Science.gov

Sample records for muscle relaxant mebeverine

  1. Requirements for muscle relaxation in Friedreich's ataxia.

    PubMed

    Mouloudi, H; Katsanoulas, C; Frantzeskos, G

    1998-02-01

    Friedreich's ataxia is an inherited disorder of the nervous system, requiring special care during anaesthesia, because of increased sensitivity to muscle relaxants. We report a case of Friedreich's ataxia in a 31-year-old woman, anaesthetised on two occasions, for tendinoplasty and pes cavus repair. Atracurium was used for neuromuscular blockade and monitored by a train-of-four twitch technique. The patient's response was normal. She returned to adequate spontaneous breathing within 20 min of the last dose of the muscle relaxant without need for anticholinesterase administration. When neuromuscular function is monitored, normal doses of muscle relaxant can safely be used in these patients.

  2. Progressive muscle relaxation, yoga stretching, and ABC relaxation theory.

    PubMed

    Ghoncheh, Shahyad; Smith, Jonathan C

    2004-01-01

    This study compared the psychological effects of progressive muscle relaxation (PMR) and yoga stretching (hatha) exercises. Forty participants were randomly divided into two groups and taught PMR or yoga stretching exercises. Both groups practiced once a week for five weeks and were given the Smith Relaxation States Inventory before and after each session. As hypothesized, practitioners of PMR displayed higher levels of relaxation states (R-States) Physical Relaxation and Disengagement at Week 4 and higher levels of Mental Quiet and Joy as a posttraining aftereffect at Week 5. Contrary to what was hypothesized, groups did not display different levels of R-States Energized or Aware. Results suggest the value of supplementing traditional somatic conceptualizations of relaxation with the psychological approach embodied in ABC relaxation theory. Clinical and research implications are discussed.

  3. Progressive muscle relaxation, breathing exercises, and ABC relaxation theory.

    PubMed

    Matsumoto, M; Smith, J C

    2001-12-01

    This study compared the psychological effects of Progressive Muscle Relaxation (PMR) and breathing exercises. Forty-two students were divided randomly into two groups and taught PMR or breathing exercises. Both groups practiced for five weeks and were given the Smith Relaxation States Inventory before and after each session. As hypothesized, PMR practitioners displayed greater increments in relaxation states (R-States) Physical Relaxation and Disengagement, while breathing practitioners displayed higher levels of R-State Strength and Awareness. Slight differences emerged at Weeks 1 and 2; major differences emerged at Weeks 4 and 5. A delayed and potentially reinforcing aftereffect emerged for PMR only after five weeks of training--increased levels of Mental Quiet and Joy. Clinical and theoretical implications are discussed.

  4. Centrally acting muscle relaxants in tetanus

    PubMed Central

    Webster, R. A.

    1961-01-01

    The anti-tetanus activity of a number of phenothiazine derivatives and other centrally acting muscle relaxants, such as mephenesin, dicyclopropyl ketoxime, 2-amino-6-methylbenzothiazole and meprobamate, has been determined in rabbits with experimental local tetanus. Structure-activity relationships were obtained for the phenothiazine derivatives and their anti-tetanus activity correlated with other central and peripheral properties. Both dicyclopropyl ketoxime and 2-amino-6-methyl-benzothiazole were twice as active as mephenesin. Meprobamate does not appear to be primarily a muscle relaxant of the mephenesin type. PMID:14005498

  5. Cortex phellodendri Extract Relaxes Airway Smooth Muscle

    PubMed Central

    Jiang, Qiu-Ju; Chen, Weiwei; Dan, Hong; Tan, Li; Zhu, He; Yang, Guangzhong; Shen, Jinhua; Peng, Yong-Bo; Zhao, Ping; Xue, Lu; Yu, Meng-Fei; Ma, Liqun; Si, Xiao-Tang; Wang, Zhuo; Dai, Jiapei; Qin, Gangjian; Zou, Chunbin; Liu, Qing-Hua

    2016-01-01

    Cortex phellodendri is used to reduce fever and remove dampness and toxin. Berberine is an active ingredient of C. phellodendri. Berberine from Argemone ochroleuca can relax airway smooth muscle (ASM); however, whether the nonberberine component of C. phellodendri has similar relaxant action was unclear. An n-butyl alcohol extract of C. phellodendri (NBAECP, nonberberine component) was prepared, which completely inhibits high K+- and acetylcholine- (ACH-) induced precontraction of airway smooth muscle in tracheal rings and lung slices from control and asthmatic mice, respectively. The contraction induced by high K+ was also blocked by nifedipine, a selective blocker of L-type Ca2+ channels. The ACH-induced contraction was partially inhibited by nifedipine and pyrazole 3, an inhibitor of TRPC3 and STIM/Orai channels. Taken together, our data demonstrate that NBAECP can relax ASM by inhibiting L-type Ca2+ channels and TRPC3 and/or STIM/Orai channels, suggesting that NBAECP could be developed to a new drug for relieving bronchospasm. PMID:27239213

  6. Cortex phellodendri Extract Relaxes Airway Smooth Muscle.

    PubMed

    Jiang, Qiu-Ju; Chen, Weiwei; Dan, Hong; Tan, Li; Zhu, He; Yang, Guangzhong; Shen, Jinhua; Peng, Yong-Bo; Zhao, Ping; Xue, Lu; Yu, Meng-Fei; Ma, Liqun; Si, Xiao-Tang; Wang, Zhuo; Dai, Jiapei; Qin, Gangjian; Zou, Chunbin; Liu, Qing-Hua

    2016-01-01

    Cortex phellodendri is used to reduce fever and remove dampness and toxin. Berberine is an active ingredient of C. phellodendri. Berberine from Argemone ochroleuca can relax airway smooth muscle (ASM); however, whether the nonberberine component of C. phellodendri has similar relaxant action was unclear. An n-butyl alcohol extract of C. phellodendri (NBAECP, nonberberine component) was prepared, which completely inhibits high K(+)- and acetylcholine- (ACH-) induced precontraction of airway smooth muscle in tracheal rings and lung slices from control and asthmatic mice, respectively. The contraction induced by high K(+) was also blocked by nifedipine, a selective blocker of L-type Ca(2+) channels. The ACH-induced contraction was partially inhibited by nifedipine and pyrazole 3, an inhibitor of TRPC3 and STIM/Orai channels. Taken together, our data demonstrate that NBAECP can relax ASM by inhibiting L-type Ca(2+) channels and TRPC3 and/or STIM/Orai channels, suggesting that NBAECP could be developed to a new drug for relieving bronchospasm.

  7. Cortex phellodendri Extract Relaxes Airway Smooth Muscle.

    PubMed

    Jiang, Qiu-Ju; Chen, Weiwei; Dan, Hong; Tan, Li; Zhu, He; Yang, Guangzhong; Shen, Jinhua; Peng, Yong-Bo; Zhao, Ping; Xue, Lu; Yu, Meng-Fei; Ma, Liqun; Si, Xiao-Tang; Wang, Zhuo; Dai, Jiapei; Qin, Gangjian; Zou, Chunbin; Liu, Qing-Hua

    2016-01-01

    Cortex phellodendri is used to reduce fever and remove dampness and toxin. Berberine is an active ingredient of C. phellodendri. Berberine from Argemone ochroleuca can relax airway smooth muscle (ASM); however, whether the nonberberine component of C. phellodendri has similar relaxant action was unclear. An n-butyl alcohol extract of C. phellodendri (NBAECP, nonberberine component) was prepared, which completely inhibits high K(+)- and acetylcholine- (ACH-) induced precontraction of airway smooth muscle in tracheal rings and lung slices from control and asthmatic mice, respectively. The contraction induced by high K(+) was also blocked by nifedipine, a selective blocker of L-type Ca(2+) channels. The ACH-induced contraction was partially inhibited by nifedipine and pyrazole 3, an inhibitor of TRPC3 and STIM/Orai channels. Taken together, our data demonstrate that NBAECP can relax ASM by inhibiting L-type Ca(2+) channels and TRPC3 and/or STIM/Orai channels, suggesting that NBAECP could be developed to a new drug for relieving bronchospasm. PMID:27239213

  8. Caffeine relaxes smooth muscle through actin depolymerization.

    PubMed

    Tazzeo, Tracy; Bates, Genevieve; Roman, Horia Nicolae; Lauzon, Anne-Marie; Khasnis, Mukta D; Eto, Masumi; Janssen, Luke J

    2012-08-15

    Caffeine is sometimes used in cell physiological studies to release internally stored Ca(2+). We obtained evidence that caffeine may also act through a different mechanism that has not been previously described and sought to examine this in greater detail. We ruled out a role for phosphodiesterase (PDE) inhibition, since the effect was 1) not reversed by inhibiting PKA or adenylate cyclase; 2) not exacerbated by inhibiting PDE4; and 3) not mimicked by submillimolar caffeine nor theophylline, both of which are sufficient to inhibit PDE. Although caffeine is an agonist of bitter taste receptors, which in turn mediate bronchodilation, its relaxant effect was not mimicked by quinine. After permeabilizing the membrane using β-escin and depleting the internal Ca(2+) store using A23187, we found that 10 mM caffeine reversed tone evoked by direct application of Ca(2+), suggesting it functionally antagonizes the contractile apparatus. Using a variety of molecular techniques, we found that caffeine did not affect phosphorylation of myosin light chain (MLC) by MLC kinase, actin-filament motility catalyzed by MLC kinase, phosphorylation of CPI-17 by either protein kinase C or RhoA kinase, nor the activity of MLC-phosphatase. However, we did obtain evidence that caffeine decreased actin filament binding to phosphorylated myosin heads and increased the ratio of globular to filamentous actin in precontracted tissues. We conclude that, in addition to its other non-RyR targets, caffeine also interferes with actin function (decreased binding by myosin, possibly with depolymerization), an effect that should be borne in mind in studies using caffeine to probe excitation-contraction coupling in smooth muscle.

  9. Muscle relaxant use during intraoperative neurophysiologic monitoring.

    PubMed

    Sloan, Tod B

    2013-02-01

    Neuromuscular blocking agents have generally been avoided during intraoperative neurophysiological monitoring (IOM) where muscle responses to nerve stimulation or transcranial stimulation are monitored. However, a variety of studies and clinical experience indicate partial neuromuscular blockade is compatible with monitoring in some patients. This review presents these experiences after reviewing the currently used agents and the methods used to assess the blockade. A review was conducted of the published literature regarding neuromuscular blockade during IOM. A variety of articles have been published that give insight into the use of partial pharmacological paralysis during monitoring. Responses have been recorded from facial muscles, vocalis muscles, and peripheral nerve muscles from transcranial or neural stimulation with neuromuscular blockade measured in the muscle tested or in the thenar muscles from ulnar nerve stimulation. Preconditioning of the nervous system with tetanic or sensory stimulation has been used. In patients without neuromuscular pathology intraoperative monitoring using peripheral muscle responses from neural stimulation is possible with partial neuromuscular blockade. Monitoring of muscle responses from cranial nerve stimulation may require a higher degree of stimulation and less neuromuscular blockade. The role of tetanic or sensory conditioning of the nervous system is not fully characterized. The impact of neuromuscular pathology or the effect of partial blockade on monitoring muscle responses from spontaneous neural activity or mechanical nerve stimulation has not been described.

  10. The origin of biexponential T2 relaxation in muscle water

    NASA Technical Reports Server (NTRS)

    Cole, W. C.; LeBlanc, A. D.; Jhingran, S. G.

    1993-01-01

    Two theories have been proposed to explain the multiexponential transverse relaxation of muscle water protons: "anatomical" and "chemical" compartmentation. In an attempt to obtain evidence to support one or the other of these two theories, interstitial and intracellular macromolecular preparations were studied and compared with rat muscle tissue by proton NMR transverse relaxation (T2) measurements. All macromolecule preparations displayed monoexponential T2 decay. Membrane alteration with DMSO/glycerin did not eliminate the biexponential T2 decay of muscle tissue. Maceration converted biexponential T2 decay of muscle tissue to single exponential decay. It is concluded that the observed two component exponential T2 decay of muscle represents anatomical compartmentation of tissue water, probably intracellular versus extracellular.

  11. Study on contraction and relaxation of experimentally denervated and immobilized muscles: Comparison with dystrophic muscles

    NASA Technical Reports Server (NTRS)

    Takamori, M.; Tsujihata, M.; Mori, M.; Hazama, R.; Ide, Y.

    1980-01-01

    The contraction-relaxation mechanism of experimentally denervated and immobilized muscles of the rabbit is examined. Results are compared with those of human dystrophic muscles, in order to elucidate the role and extent of the neurotrophic factor, and the role played by the intrinsic activity of muscle in connection with pathogenesis and pathophysiology of this disease.

  12. Spectroscopic Studies of the Super Relaxed State of Skeletal Muscle.

    PubMed

    Nogara, Leonardo; Naber, Nariman; Pate, Edward; Canton, Marcella; Reggiani, Carlo; Cooke, Roger

    2016-01-01

    In the super-relaxed state of myosin, ATPase activity is strongly inhibited by binding of the myosin heads to the core of the thick filament in a structure known as the interacting-heads motif. In the disordered relaxed state myosin heads are not bound to the core of the thick filament and have an ATPase rate that is 10 fold greater. In the interacting-heads motif the two regulatory light chains appear to bind to each other. We have made single cysteine mutants of the regulatory light chain, placed both paramagnetic and fluorescent probes on them, and exchanged them into skinned skeletal muscle fibers. Many of the labeled light chains tended to disrupt the stability of the super-relaxed state, and showed spectral changes in the transition from the disordered relaxed state to the super-relaxed state. These data support the putative interface between the two regulatory light chains identified by cryo electron microscopy and show that both the divalent cation bound to the regulatory light chain and the N-terminus of the regulatory light chain play a role in the stability of the super-relaxed state. One probe showed a shift to shorter wavelengths in the super-relaxed state such that a ratio of intensities at 440nm to that at 520nm provided a measure of the population of the super-relaxed state amenable for high throughput screens for finding potential pharmaceuticals. The results provide a proof of concept that small molecules that bind to this region can destabilize the super-relaxed state and provide a method to search for small molecules that do so leading to a potentially effective treatment for Type 2 diabetes and obesity. PMID:27479128

  13. Spectroscopic Studies of the Super Relaxed State of Skeletal Muscle

    PubMed Central

    Naber, Nariman; Pate, Edward; Canton, Marcella; Reggiani, Carlo; Cooke, Roger

    2016-01-01

    In the super-relaxed state of myosin, ATPase activity is strongly inhibited by binding of the myosin heads to the core of the thick filament in a structure known as the interacting-heads motif. In the disordered relaxed state myosin heads are not bound to the core of the thick filament and have an ATPase rate that is 10 fold greater. In the interacting-heads motif the two regulatory light chains appear to bind to each other. We have made single cysteine mutants of the regulatory light chain, placed both paramagnetic and fluorescent probes on them, and exchanged them into skinned skeletal muscle fibers. Many of the labeled light chains tended to disrupt the stability of the super-relaxed state, and showed spectral changes in the transition from the disordered relaxed state to the super-relaxed state. These data support the putative interface between the two regulatory light chains identified by cryo electron microscopy and show that both the divalent cation bound to the regulatory light chain and the N-terminus of the regulatory light chain play a role in the stability of the super-relaxed state. One probe showed a shift to shorter wavelengths in the super-relaxed state such that a ratio of intensities at 440nm to that at 520nm provided a measure of the population of the super-relaxed state amenable for high throughput screens for finding potential pharmaceuticals. The results provide a proof of concept that small molecules that bind to this region can destabilize the super-relaxed state and provide a method to search for small molecules that do so leading to a potentially effective treatment for Type 2 diabetes and obesity. PMID:27479128

  14. Muscle Relaxation of the Foot Reduces Corticospinal Excitability of Hand Muscles and Enhances Intracortical Inhibition.

    PubMed

    Kato, Kouki; Muraoka, Tetsuro; Mizuguchi, Nobuaki; Nakagawa, Kento; Nakata, Hiroki; Kanosue, Kazuyuki

    2016-01-01

    The object of this study was to clarify the effects of foot muscle relaxation on activity in the primary motor cortex (M1) of the hand area. Subjects were asked to volitionally relax the right foot from sustained contraction of either the dorsiflexor (tibialis anterior; TA relaxation) or plantarflexor (soleus; SOL relaxation) in response to an auditory stimulus. Single- and paired-pulse transcranial magnetic stimulation (TMS) was delivered to the hand area of the left M1 at different time intervals before and after the onset of TA or SOL relaxation. Motor evoked potentials (MEPs) were recorded from the right extensor carpi radialis (ECR) and flexor carpi radialis (FCR). MEP amplitudes of ECR and FCR caused by single-pulse TMS temporarily decreased after TA and SOL relaxation onset, respectively, as compared with those of the resting control. Furthermore, short-interval intracortical inhibition (SICI) of ECR evaluated with paired-pulse TMS temporarily increased after TA relaxation onset. Our findings indicate that muscle relaxation of the dorsiflexor reduced corticospinal excitability of the ipsilateral hand muscles. This is most likely caused by an increase in intracortical inhibition. PMID:27242482

  15. Muscle Relaxation of the Foot Reduces Corticospinal Excitability of Hand Muscles and Enhances Intracortical Inhibition

    PubMed Central

    Kato, Kouki; Muraoka, Tetsuro; Mizuguchi, Nobuaki; Nakagawa, Kento; Nakata, Hiroki; Kanosue, Kazuyuki

    2016-01-01

    The object of this study was to clarify the effects of foot muscle relaxation on activity in the primary motor cortex (M1) of the hand area. Subjects were asked to volitionally relax the right foot from sustained contraction of either the dorsiflexor (tibialis anterior; TA relaxation) or plantarflexor (soleus; SOL relaxation) in response to an auditory stimulus. Single- and paired-pulse transcranial magnetic stimulation (TMS) was delivered to the hand area of the left M1 at different time intervals before and after the onset of TA or SOL relaxation. Motor evoked potentials (MEPs) were recorded from the right extensor carpi radialis (ECR) and flexor carpi radialis (FCR). MEP amplitudes of ECR and FCR caused by single-pulse TMS temporarily decreased after TA and SOL relaxation onset, respectively, as compared with those of the resting control. Furthermore, short-interval intracortical inhibition (SICI) of ECR evaluated with paired-pulse TMS temporarily increased after TA relaxation onset. Our findings indicate that muscle relaxation of the dorsiflexor reduced corticospinal excitability of the ipsilateral hand muscles. This is most likely caused by an increase in intracortical inhibition. PMID:27242482

  16. Effects of muscle relaxation on sustained contraction of ipsilateral remote muscle

    PubMed Central

    Kato, Kouki; Watanabe, Tasuku; Kanosue, Kazuyuki

    2015-01-01

    The objective of this study was to clarify the temporal change of muscle activity during relaxation of ipsilateral remote muscles. While participants maintained a constant right wrist extensor isometric force, they dorsiflexed the ipsilateral ankle from resting position or relaxed from dorsiflexed position in response to an audio signal. The wrist extensor force magnitude increased in the 0–400 msec period after the onset of foot contraction compared to that of the resting condition (P < 0.05). On the other hand, wrist extensor force magnitude and electromyographic (EMG) activity decreased in the 0–400 msec period after the onset of ankle dorsiflexion compared to that of the resting condition (P < 0.05). Our findings suggest that foot muscle relaxation induces temporal reduction in hand muscle EMG activity and force magnitude. PMID:26611464

  17. Muscle relaxation techniques: a therapeutic tool for family physicians.

    PubMed Central

    Rapp, M. S.; Thomas, M. R.; Leith, M. G.

    1984-01-01

    Muscle relaxation techniques are important adjunctive therapy for anxiety-related conditions. Family physicians can learn to teach the techniques so as to try helping anxious patients themselves rather than automatically referring them to a psychiatrist. The exercises are generally acceptable to patients, are easy to learn and do not require expensive equipment. They are beneficial in insomnia and tension headache, of some value in chronic anxiety states and a useful adjunct in hypertension. In this paper the evidence supporting the value of muscle relaxation therapy is briefly reviewed, methods of teaching and of practising the techniques are described in detail, and answers to some of the questions and problems that may arise are presented. PMID:6365300

  18. Nuclear magnetic resonance transverse relaxation in muscle water.

    PubMed Central

    Fung, B M; Puon, P S

    1981-01-01

    The origin of the nonexponentiality of proton spin echoes of skeletal muscle has been carefully examined. It is shown that the slowly decaying part of the proton spin echoes is not due to extracellular water. First, for muscle from mice with in vivo deuteration, the deuteron spin echoes were also nonexponential, but the slowly decaying part had a larger weighing factor. Second, for glycerinated muscle in which cell membranes were disrupted, the proton spin echoes were similar to those in intact muscle. Third, the nonexponentiality of the proton spin echoes in intact muscle increased when postmortem rigor set in. Finally, when the lifetimes of extracellular water and intracellular water were taken into account in the exchange, it was found that the two types of water would not give two resolvable exponentials with the observed decay constants. It is suggested that the unusually short T2's and the nonexponential character of the spin echoes of proton and deuteron in muscle water are mainly due to hydrogen exchange between water and functional groups in the protein filaments. These groups have large dipolar or quadrupolar splittings, and undergo hydrogen exchange with water at intermediate rates. The exchange processes and their effects on the spin echoes are pH-dependent. The dependence of transverse relaxation of pH was observed in glycerinated rabbit psoas muscle fibers. PMID:7272437

  19. Mediators and mechanisms of relaxation in rabbit urethral smooth muscle

    PubMed Central

    Waldeck, Kristian; Ny, Lars; Persson, Katarina; Andersson, Karl-Erik

    1998-01-01

    Electrophysiological and mechanical experiments were performed to investigate whether the nitric oxide (NO)-mediated relaxation of rabbit urethral smooth muscle is associated with a hyperpolarization of the membrane potential. In addition, a possible role for vasoactive intestinal peptide (VIP) and carbon monoxide (CO) as relaxant agents in rabbit urethra was investigated. Immunohistochemical experiments were performed to characterize the NO-synthase (NOS) and VIP innervation. Possible target cells for NO were studied by using antisera against cyclic GMP. The cyclic GMP-immunoreactivity was investigated on tissues pretreated with 1 mM IBMX, 0.1 mM zaprinast and 1 mM sodium nitroprusside. Intracellular recordings of the membrane potential in the circular smooth muscle layer revealed two types of spontaneous depolarizations, slow waves with a duration of 3–4 s and an amplitude of 30–40 mV, and faster (0.5–1 s), more irregular depolarizations with an amplitude of 5–15 mV. The resting membrane potential was 39±1 mV (n=12). Application of NO (30 μM), CO (30 μM) or VIP (1 μM) did not change the resting membrane potential. Both NO (1–100 μM) and VIP (1 nM–1 μM) produced concentration-dependent relaxations amounting to 87±4% and 97±2% (n=6), respectively. The relaxant effect of CO (1–30 μM) amounted to 27±4% (n=5) at the highest concentration used. Immunohistochemical experiments revealed a rich supply of NOS-immunoreactive nerve fibres in the smooth muscle layers. Numerous spinous cyclic GMP-immunoreactive cells were found interspersed between the smooth muscle bundles, mainly localized in the outer layer. These cells had long processes forming a network surrounding the smooth muscle bundles. VIP-immunoreactivity was sparse in comparison to NOS-immunoreactive nerves. The rich supply of NOS-immunoreactive nerve fibres supports the view that NO is an important NANC-mediator in the rabbit urethra. In contrast to several

  20. Late cortical disinhibition in relaxed versus active hand muscles.

    PubMed

    Caux-Dedeystère, A; Derambure, P; Devanne, H

    2015-07-01

    Recent research suggests that long-interval intracortical inhibition (LICI) is followed by a transitory period of late cortical disinhibition (LCD) that can even lead to a net increase in cortical excitability. The relationship between LICI/LCD and voluntary drive remains poorly understood. Our study aims at investigating the influence of index abduction on LICI and LCD in an actively engaged muscle and a neighboring muscle, while varying the intensity of the conditioning stimulus (CS). Motor-evoked potentials (MEPs) were recorded from the first dorsal interosseus (FDI) and abductor digiti minimi (ADM) muscles in 13 subjects. Paired-pulses were delivered with 10 different interstimulus intervals (ranging from 60 to 290 ms). Whatever the condition (relaxed or active FDI), the test stimulus was set to evoke an MEP of 1mV. The time course of conditioned MEP amplitude was compared for relaxed and active conditions when the CS intensity was set to (i) 130% of the rest motor threshold (RMT) or (ii) to evoke the same size of MEP under both conditions. LICI lasted longer (i.e. disinhibition occurred later) at rest than during abduction when evoked either by similar or matched conditioning stimuli. No post-LICI facilitation was observed at rest - even when the CS intensity was set to 160% RMT. In contrast, long-interval intracortical facilitation (LICF) was observed in the quiescent ADM when FDI was active. LICF may then be associated with voluntary activity albeit with lack of topographic specificity. PMID:25888934

  1. Microwave dielectric relaxation in muscle. A second look.

    PubMed Central

    Foster, K R; Schepps, J L; Schwan, H P

    1980-01-01

    The dielectric permittivity and conductivity of muscle fibers from the giant barnacle, Balanus nubilus, have been measured at 1, 25, and 37 degrees C, between 10 MHz and 17 GHz. The dominant microwave dielectric relaxation process in these fibers is due to dipolar relaxation of the tissue water, which shows a characteristic relaxation frequency equal to that of pure water, ranging from 9 GHz (1 degree C) to 25 GHz (37 degree C). The total permittivity decrease, epsilon 0 -- epsilon infinity, due to this process accounts for approximately 95% of the water content of the tissue; thus, the major fraction of tissue water is dielectrically identical to the pure fluid on a picosecond time scale. A second dielectric process contributes significantly to the tissue dielectric properties between 0.1 and 1--5 GHz, and arises in part form Maxwell-Wagner effects due to the electrolyte content of the tissue, and in part from dielectric relaxation of the tissue proteins themselves. PMID:7260252

  2. Quantitative evaluation of muscle relaxation induced by Kundalini yoga with the help of EMG integrator.

    PubMed

    Narayan, R; Kamat, A; Khanolkar, M; Kamat, S; Desai, S R; Dhume, R A

    1990-10-01

    The present work is aimed to quantify the degree of relaxation of muscle under the effects of Kundalini Yoga with the help of EMG integrator. The data collected from 8 individuals (4 males 4 females) on the degree of muscle relaxation at the end of meditation revealed a significantly decreased muscle activity amounting to 58% of the basal level in both the sexes.

  3. The comparative effects of aminoglycoside antibiotics and muscle relaxants on electrical field stimulation response in rat bladder smooth muscle.

    PubMed

    Min, Chang Ho; Min, Young Sil; Lee, Sang Joon; Sohn, Uy Dong

    2016-06-01

    It has been reported that several aminoglycoside antibiotics have a potential of prolonging the action of non-depolarizing muscle relaxants by drug interactions acting pre-synaptically to inhibit acetylcholine release, but antibiotics itself also have a strong effect on relaxing the smooth muscle. In this study, four antibiotics of aminoglycosides such as gentamicin, streptomycin, kanamycin and neomycin were compared with skeletal muscle relaxants baclofen, tubocurarine, pancuronium and succinylcholine, and a smooth muscle relaxant, papaverine. The muscle strips isolated from the rat bladder were stimulated with pulse trains of 40 V in amplitude and 10 s in duration, with pulse duration of 1 ms at the frequency of 1-8 Hz, at 1, 2, 4, 6, 8 Hz respectively. To test the effect of four antibiotics on bladder smooth muscle relaxation, each of them was treated cumulatively from 1 μM to 0.1 mM with an interval of 5 min. Among the four antibiotics, gentamicin and neomycin inhibited the EFS response. The skeletal muscle relaxants (baclofen, tubocurarine, pancuronium and succinylcholine) and inhibitory neurotransmitters (GABA and glycine) did not show any significant effect. However, papaverine, had a significant effect in the relaxation of the smooth muscle. It was suggested that the aminoglycoside antibiotics have inhibitory effect on the bladder smooth muscle.

  4. Time Course of Corticospinal Excitability and Intracortical Inhibition Just before Muscle Relaxation

    PubMed Central

    Suzuki, Tomotaka; Sugawara, Kenichi; Ogahara, Kakuya; Higashi, Toshio

    2016-01-01

    Using transcranial magnetic stimulation (TMS), we investigated how short-interval intracortical inhibition (SICI) was involved with transient motor cortex (M1) excitability changes observed just before the transition from muscle contraction to muscle relaxation. Ten healthy participants performed a simultaneous relaxation task of the ipsilateral finger and foot, relaxing from 10% of their maximal voluntary contraction (MVC) force after the go signal. In the simple reaction time (RT) paradigm, single or paired TMS pulses were randomly delivered after the go signal, and motor evoked potentials (MEPs) were recorded from the right first dorsal interosseous (FDI) muscle. We analyzed the time course prior to the estimated relaxation reaction time (RRT), defined here as the onset of voluntary relaxation. SICI decreased in the 80–100 ms before RRT, and MEPs were significantly greater in amplitude in the 60–80 ms period before RRT than in the other intervals in single-pulse trials. TMS pulses did not effectively increase RRT. These results show that cortical excitability in the early stage, before muscle relaxation, plays an important role in muscle relaxation control. SICI circuits may vary between decreased and increased activation to continuously maintain muscle relaxation during or after a relaxation response. With regard to M1 excitability dynamics, we suggest that SICI also dynamically changes throughout the muscle relaxation process. PMID:26858619

  5. [Muscle relaxants in the morphometric study of the respiratory muscles in human beings].

    PubMed

    Aguar, M C; Gea, J; Orozco-Levi, M; Corominas, J; Pastó, M; Broquetas, J M

    1995-10-01

    The morphological examination of respiratory muscle can be affected by muscular contraction following biopsy. Most morphometric studies of respiratory muscles, however, have been carried out without taking into account this factor, the effect of which can be reduced by using relaxants when taking samples. Objective. To examine the effect of using a relaxant in the morphometric analysis of muscle fibers. We examined 31 muscle samples from 7 patients. Immediately after removal, each pipe was divided in half. One was placed in an isotonic physiological solution and the other in a solution of curare 0.02%. Later, both samples were processed for morphometric study with ATP-ase, NADTH and PAS tincture. Morphological data recorded for the different types of fibers included measurement of minimum diameter (Dmin), atrophy and hypertrophy indices (AI and HI) and heterogeneity of distribution (SDDmin). The Dmin was smaller in fibers transported in a curare solution than in those transported in physiological solution (67 +/- 2 microns vs. 71 +/- microns, p < 0.05). The same was true of SDDmin (13 +/- 3 vs. 12 +/- 3, p < 0.05), HI (300 +/- 88 vs. 457 +/- 107, p < 0.05). Likewise, we found a similar direct correlation between size of fibers processed with physiological solution and those processed in curare (Dmin, r = 0.731, p < 0.001; HI, r = 0.827, p < 0.001; SDDmin, r = 0.636, p < 0.0001). The use of relaxants in processing muscle samples prevents contraction and should be used systematically in the morphological analysis of muscle fibers.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7582429

  6. Smooth muscle relaxing flavonoids and terpenoids from Conyza filaginoides.

    PubMed

    Mata, R; Rojas, A; Acevedo, L; Estrada, S; Calzada, F; Rojas, I; Bye, R; Linares, E

    1997-02-01

    Activity-guided fractionation of the smooth muscle relaxing, chloroform-methanol (1:1) extract of Conyza filaginoides (D.C.) Hieron (Asteraceae) led to the isolation of three flavonoids (quercetin 3-glucoside, rutin, and pinostrobin), one sterol (alpha-spinasterol), a sesquiterpenoid (beta-caryophyllene 4,5-alpha-oxide), and two triterpenoids (erythrodiol and 3-beta-tridecanoyloxy-28-hydroxyolean-12-ene). 3-beta-Tridecanoyloxy-28-hydroxy-olean-12-ene is a new naturally occurring terpenoid. All the isolated compounds induced a concentration-dependent inhibition of the spontaneous contractions of rat ileum. The spasmolytic activity exhibited by the extract and active principles tends to support the traditional use of C filaginoides as an antispasmodic agent. PMID:9063094

  7. Smooth muscle relaxing flavonoids and terpenoids from Conyza filaginoides.

    PubMed

    Mata, R; Rojas, A; Acevedo, L; Estrada, S; Calzada, F; Rojas, I; Bye, R; Linares, E

    1997-02-01

    Activity-guided fractionation of the smooth muscle relaxing, chloroform-methanol (1:1) extract of Conyza filaginoides (D.C.) Hieron (Asteraceae) led to the isolation of three flavonoids (quercetin 3-glucoside, rutin, and pinostrobin), one sterol (alpha-spinasterol), a sesquiterpenoid (beta-caryophyllene 4,5-alpha-oxide), and two triterpenoids (erythrodiol and 3-beta-tridecanoyloxy-28-hydroxyolean-12-ene). 3-beta-Tridecanoyloxy-28-hydroxy-olean-12-ene is a new naturally occurring terpenoid. All the isolated compounds induced a concentration-dependent inhibition of the spontaneous contractions of rat ileum. The spasmolytic activity exhibited by the extract and active principles tends to support the traditional use of C filaginoides as an antispasmodic agent.

  8. Modification of motor cortex excitability during muscle relaxation in motor learning.

    PubMed

    Sugawara, Kenichi; Tanabe, Shigeo; Suzuki, Tomotaka; Saitoh, Kei; Higashi, Toshio

    2016-01-01

    We postulated that gradual muscle relaxation during motor learning would dynamically change activity in the primary motor cortex (M1) and modify short-interval intracortical inhibition (SICI). Thus, we compared changes in M1 excitability both pre and post motor learning during gradual muscle relaxation. Thirteen healthy participants were asked to gradually relax their muscles from an isometric right wrist extension (30% maximum voluntary contraction; MVC) using a tracking task for motor learning. Single or paired transcranial magnetic stimulation (TMS) was applied at either 20% or 80% of the downward force output during muscle release from 30% MVC, and we compared the effects of motor learning immediately after the 1st and 10th blocks. Motor-evoked potentials (MEPs) from the extensor and flexor carpi radialis (ECR and FCR) were then measured and compared to evaluate their relationship before and after motor learning. In both muscles and each downward force output, motor cortex excitability during muscle relaxation was significantly increased following motor learning. In the ECR, the SICI in the 10th block was significantly increased during the 80% waveform decline compared to the SICI in the 1st block. In the FCR, the SICI also exhibited a greater inhibitory effect when muscle relaxation was terminated following motor learning. During motor training, acquisition of the ability to control muscle relaxation increased the SICI in both the ECR and FCR during motor termination. This finding aids in our understanding of the cortical mechanisms that underlie muscle relaxation during motor learning.

  9. Multivariable dynamic ankle mechanical impedance with relaxed muscles.

    PubMed

    Lee, Hyunglae; Krebs, Hermano Igo; Hogan, Neville

    2014-11-01

    Neurological or biomechanical disorders may distort ankle mechanical impedance and thereby impair locomotor function. This paper presents a quantitative characterization of multivariable ankle mechanical impedance of young healthy subjects when their muscles were relaxed, to serve as a baseline to compare with pathophysiological ankle properties of biomechanically and/or neurologically impaired patients. Measurements using a highly backdrivable wearable ankle robot combined with multi-input multi-output stochastic system identification methods enabled reliable characterization of ankle mechanical impedance in two degrees-of-freedom (DOFs) simultaneously, the sagittal and frontal planes. The characterization included important ankle properties unavailable from single DOF studies: coupling between DOFs and anisotropy as a function of frequency. Ankle impedance in joint coordinates showed responses largely consistent with a second-order system consisting of inertia, viscosity, and stiffness in both seated (knee flexed) and standing (knee straightened) postures. Stiffness in the sagittal plane was greater than in the frontal plane and furthermore, was greater when standing than when seated, most likely due to the stretch of bi-articular muscles (medial and lateral gastrocnemius). Very low off-diagonal partial coherences implied negligible coupling between dorsiflexion-plantarflexion and inversion-eversion. The directions of principal axes were tilted slightly counterclockwise from the original joint coordinates. The directional variation (anisotropy) of ankle impedance in the 2-D space formed by rotations in the sagittal and frontal planes exhibited a characteristic "peanut" shape, weak in inversion-eversion over a wide range of frequencies from the stiffness dominated region up to the inertia dominated region. Implications for the assessment of neurological and biomechanical impairments are discussed.

  10. [Ionic mechanisms of endothelium-dependent relaxation of vascular smooth muscle under the action of acetylcholine].

    PubMed

    Taranenko, V M; Talaeva, T V; Bratus', V V

    1988-04-01

    Acetylcholine and nitroglycerin were shown to induce relaxation in muscles of the ring vascular segments of canine coronary arteries and rabbit aortic archs, the magnitude of the reaction depending on the level of initial tonic tension. Methylene blue abolished the relaxation. Mechanical removal of endothelium abolished the reaction to acetylcholine but not to nitroglycerin. Verapamil decreased the relaxation by 70%. The endothelium-dependent relaxation seems to be connected mainly with a decrease in the calcium entering vascular smooth muscle cells through voltage-dependent channels.

  11. Mebeverine for pediatric functional abdominal pain: a randomized, placebo-controlled trial.

    PubMed

    Pourmoghaddas, Zahra; Saneian, Hossein; Roohafza, Hamidreza; Gholamrezaei, Ali

    2014-01-01

    We evaluated the effectiveness of an antispasmodic, mebeverine, in the treatment of childhood functional abdominal pain (FAP). Children with FAP (n = 115, aged 6-18 years) received mebeverine (135 mg, twice daily) or placebo for 4 weeks. Response was defined as ≥ 2 point reduction in the 6-point pain scale or "no pain." Physician-rated global severity was also evaluated. Patients were followed up for 12 weeks. Eighty-seven patients completed the trial (44 with mebeverine). Per-protocol and intention-to-treat (ITT) analyses were conducted. Treatment response rate in the mebeverine and placebo groups based on per-protocol [ITT] analysis was 54.5% [40.6%] and 39.5% [30.3%] at week 4 (P = 0.117 [0.469]) and 72.7% [54.2%] and 53.4% [41.0] at week 12, respectively (P = 0.0503 [0.416]). There was no significant difference between the two groups in change of the physician-rated global severity score after 4 weeks (P = 0.723) or after 12 weeks (P = 0.870) in per-protocol analysis; the same results were obtained in ITT analysis. Mebeverine seems to be effective in the treatment of childhood FAP, but our study was not able to show its statistically significant effect over placebo. Further trials with larger sample of patients are warranted. PMID:25089264

  12. Mebeverine for Pediatric Functional Abdominal Pain: A Randomized, Placebo-Controlled Trial

    PubMed Central

    Saneian, Hossein

    2014-01-01

    We evaluated the effectiveness of an antispasmodic, mebeverine, in the treatment of childhood functional abdominal pain (FAP). Children with FAP (n = 115, aged 6–18 years) received mebeverine (135 mg, twice daily) or placebo for 4 weeks. Response was defined as ≥2 point reduction in the 6-point pain scale or “no pain.” Physician-rated global severity was also evaluated. Patients were followed up for 12 weeks. Eighty-seven patients completed the trial (44 with mebeverine). Per-protocol and intention-to-treat (ITT) analyses were conducted. Treatment response rate in the mebeverine and placebo groups based on per-protocol [ITT] analysis was 54.5% [40.6%] and 39.5% [30.3%] at week 4 (P = 0.117 [0.469]) and 72.7% [54.2%] and 53.4% [41.0] at week 12, respectively (P = 0.0503 [0.416]). There was no significant difference between the two groups in change of the physician-rated global severity score after 4 weeks (P = 0.723) or after 12 weeks (P = 0.870) in per-protocol analysis; the same results were obtained in ITT analysis. Mebeverine seems to be effective in the treatment of childhood FAP, but our study was not able to show its statistically significant effect over placebo. Further trials with larger sample of patients are warranted. PMID:25089264

  13. Compliance Accelerates Relaxation in Muscle by Allowing Myosin Heads to Move Relative to Actin.

    PubMed

    Campbell, Kenneth S

    2016-02-01

    The mechanisms that limit the speed at which striated muscles relax are poorly understood. This work presents, to our knowledge, novel simulations that show that the time course of relaxation is accelerated by interfilamentary movement resulting from series compliance; force drops faster when myosin heads move relative to actin during relaxation. This insight was obtained by using cross-bridge distribution techniques to simulate the mechanical behavior of half-sarcomeres that were connected in series with springs of varying stiffness. (The springs mimic the combined effects of half-sarcomere heterogeneity and muscle's series elastic component.) Half-sarcomeres that shortened by >∼10 nm when they were activated subsequently relaxed with a biphasic profile; force initially declined slowly and approximately linearly before collapsing with a fast exponential time course. Stretches imposed during the linear phase quickened relaxation, while shortening movements prolonged the time course. These predictions are consistent with data from experiments performed by many other groups using single muscle fibers and isolated myofibrils. When half-sarcomeres were linked to stiff springs (so that they did not shorten appreciably during the simulations), force relaxed with a slow exponential time course and did not show biphasic behavior. Together, these results suggest that fast relaxation of striated muscle is an emergent property that reflects multiscale interactions within the muscle architecture. The nonlinear behavior during relaxation reflects perturbations to the dynamic coupling of regulated binding sites and cycling myosin heads that are induced by interfilamentary movement.

  14. Relaxation of uterine and aortic smooth muscle by glaucolides D and E from Vernonia liatroides.

    PubMed

    Campos, María; Oropeza, Martha; Ponce, Héctor; Fernández, Jaquelina; Jimenez-Estrada, Manuel; Torres, Héctor; Reyes-Chilpa, Ricardo

    2003-01-01

    Vernonia spp. (Asteraceae) are used in herbolaria in Latin America in menstrual and stomach disorders, suggesting smooth muscle relaxing properties of some of their chemical constituents. For pharmacological support for this belief, sesquiterpene lactones glaucolides D and E were assayed on isolated rat smooth muscle. Glaucolide E proved more potent than glaucolide D to relax high KCl- or noradrenaline-induced contractions in aorta and to relax the high KCl-contraction in uterus. Hirsutinolide-type sesquiterpene lactone also was tested but displayed no effect. Relaxation of smooth muscle by structurally related sesquiterpene lactone parthenolide has been attributed mainly to the alpha-methylene gamma-lactone moiety; because glaucolides D and E lack this functional group, their relaxant properties may rely on other alkylating sites such as C10 of the germacra-1(10),4-diene-4-epoxide skeleton.

  15. Anaphylaxis to muscle relaxants: rational for skin tests.

    PubMed

    Moneret-Vautrin, D A; Kanny, G

    2002-09-01

    IgE-dependent allergy to muscle relaxants (MR) has an estimated prevalence of 1 out of 6500 General Anesthesias (GA). 62% of anaphylaxis during surgery are due to MR anaphylaxis. All the molecules are divalent, carrying two NH4+ epitopes (quaternary ammonium ions), either structurally or after rapid in vivo protonization (vecuronium). The excellent overall performance of skin test makes them the golden standard for the diagnosis of anaphylactoid reactions. Techniques include intradermal tests and prick-tests. The current localizations are the forearm and the back. Positivity criteria are 3 mm for prick-tests. For IDTs, the criterium is the doubling of the size of the injection papula, when 0.02 to 0.04 ml is injected: 8 mm. The recommended concentrations are not falsely negative. Commercial concentrations can be tested by prick tests, except for mivacurium and atracurium tested of 1:10 dilution. A scale of concentrations is advised for IDT starting with 1:10,000, up to a normally non reactive concentration that is: 100 micrograms/ml (succinylcholine), 200 micrograms/ml (gallamine), 10 micrograms/ml (atracurium), 2 micrograms/ml (mivacurium), 200 micrograms/ml (pancuronium), 400 micrograms/ml (vecuronium), 1,000 micrograms/ml (rocuronium), 200 micrograms/ml (cis atracurium). The specificity and sensitivity of the skin tests to MRs are greater than 95%. The reproducibility over years is 88%. The overall concordance of PT and IDR is 97%. Both types of tests can be used for the diagnosis. IDT have to be carried out for the search of the cross sensitization. 84% of patients do have cross sensitization to MRs but only 16% react to all MRs. The further use of MRs selected by negative IDTs has been proved to be safe.

  16. [Muscle relaxants and neuromuscular monitoring - Introduction for a safe clinical application].

    PubMed

    Döcker, Dennis; Walther, Andreas

    2012-05-01

    The use of muscle relaxants facilitates endotracheal intubation and ameliorates the conditions of surgery. But, their use should be controlled - otherwise there will be postoperative residual curarisation which can lead to patient discomfort up to severe medical complications. Therefore, an appropriate surveillance via objective neuromuscular monitoring is essential. This article gives a review of the basic principles of muscle relaxants, their clinical application and the surveillance of their effects and degradation.

  17. [Muscle relaxants and neuromuscular monitoring - Introduction for a safe clinical application].

    PubMed

    Döcker, Dennis; Walther, Andreas

    2012-05-01

    The use of muscle relaxants facilitates endotracheal intubation and ameliorates the conditions of surgery. But, their use should be controlled - otherwise there will be postoperative residual curarisation which can lead to patient discomfort up to severe medical complications. Therefore, an appropriate surveillance via objective neuromuscular monitoring is essential. This article gives a review of the basic principles of muscle relaxants, their clinical application and the surveillance of their effects and degradation. PMID:22628025

  18. Stress Testing Recovery EMG for Evaluation of Biofeedback and Progressive Muscle Relaxation Training Effects.

    ERIC Educational Resources Information Center

    Sime, Wesley E.; DeGood, Douglas E.

    The purpose of this investigation was to assess biofeedback (BF) and progressive muscle relaxation (PMR) and placebo-control training by means of a post-training transfer test. The subjects for the research were 30 women. Initial tests consisted of measuring the electromyographic response of the frontalis muscle of the forehead to stress. After…

  19. Smooth muscle relaxant activity of Crocus sativus (saffron) and its constituents: possible mechanisms

    PubMed Central

    Mokhtari-Zaer, Amin; Khazdair, Mohammad Reza; Boskabady, Mohammad Hossein

    2015-01-01

    Saffron, Crocus sativus L. (C. sativus) is rich in carotenoids and used in traditional medicine for treatment of various conditions such as coughs, stomach disorders, amenorrhea, asthma and cardiovascular disorders. These therapeutic effects of the plant are suggested to be due to its relaxant effect on smooth muscles. The effect of C. sativus and its constituents on different smooth muscles and the underlying mechanisms have been studied. Several studies have shown the relaxant effects of C. sativus and its constituents including safranal, crocin, crocetin and kaempferol on blood vessels. In addition, it was reported that saffron stigma lowers systolic blood pressure. The present review highlights the relaxant effects of C. sativus and its constituents on various smooth muscles. The possible mechanisms of this relaxing effect including activation of ß2-adrenoceptors, inhibition of histamine H1 and muscarinic receptors and calcium channels and modulation of nitric oxide (NO) are also reviewed. PMID:26468456

  20. Smooth muscle relaxant activity of Crocus sativus (saffron) and its constituents: possible mechanisms.

    PubMed

    Mokhtari-Zaer, Amin; Khazdair, Mohammad Reza; Boskabady, Mohammad Hossein

    2015-01-01

    Saffron, Crocus sativus L. (C. sativus) is rich in carotenoids and used in traditional medicine for treatment of various conditions such as coughs, stomach disorders, amenorrhea, asthma and cardiovascular disorders. These therapeutic effects of the plant are suggested to be due to its relaxant effect on smooth muscles. The effect of C. sativus and its constituents on different smooth muscles and the underlying mechanisms have been studied. Several studies have shown the relaxant effects of C. sativus and its constituents including safranal, crocin, crocetin and kaempferol on blood vessels. In addition, it was reported that saffron stigma lowers systolic blood pressure. The present review highlights the relaxant effects of C. sativus and its constituents on various smooth muscles. The possible mechanisms of this relaxing effect including activation of ß2-adrenoceptors, inhibition of histamine H1 and muscarinic receptors and calcium channels and modulation of nitric oxide (NO) are also reviewed.

  1. Endothelial-dependent relaxant actions of carbachol and substance P in arterial smooth muscle.

    PubMed

    Bolton, T B; Clapp, L H

    1986-04-01

    In helical strips cut from the small mesenteric artery of guinea-pig (GPSMA) (0.3-0.6 mm o.d.) relaxations induced by substance P were more susceptible to damage of the endothelium by rubbing than were relaxations evoked by carbachol. Relaxations induced by 2-nicotin-amidoethyl nitrate (SG75) were unaffected by this procedure. Relaxations evoked by the calcium ionophore A23187 persisted when those to substance P had been abolished by rubbing the endothelium in GPSMA, rabbit mesenteric and rabbit ear arteries. In guinea-pig pulmonary artery and aorta relaxations to A23187 were lost after this treatment. Carbachol and SG75 were more effective in inhibiting phasic than tonic tension induced by noradrenaline in GPSMA, but substance P was more effective against tonic tension. In the GPSMA, carbachol and substance P inhibited tension produced by noradrenaline to similar extents. However, carbachol was less, and substance P much less effective in inhibiting tension evoked by high-potassium solution than by noradrenaline. Susceptibility of relaxations to blockade by haemoglobin in GPSMA was: substance P greater than carbachol greater than ATP greater than SG75. The membrane potential of smooth muscle cells in the media of the GPSMA was recorded by microelectrode. Carbachol, but not substance P, hyperpolarized the cells both in the presence and absence of noradrenaline at concentrations which relaxed the muscle. These results suggest a heterogeneity in the mechanisms of endothelial-dependent relaxations induced by various vascular relaxants. PMID:2423170

  2. Comparative efficacy and safety of trimebutine versus mebeverine in the treatment of irritable bowel syndrome.

    PubMed

    Rahman, M Z; Ahmed, D S; Mahmuduzzaman, M; Rahman, M A; Chowdhury, M S; Barua, R; Ishaque, S M

    2014-01-01

    Irritable bowel syndrome (IBS) is a functional disorder characterized by chronic or recurrent abdominal pain or discomfort with bowel disturbances. This prospective, randomized clinical trial has been conducted on IBS patients, using trimebutine and Mebeverine in separate group in parallel design to compare the efficacy and safety of Trimebutine 100mg twice daily with mebeverine 135mg twice daily. Patients of 15 to 60 years old and both sexes were included from the out patient department (OPD) of gastroenterology, Bangabandhu Sheikh Mujib Medical University (BSMMU) from June 2010 to December 2011. A validated IBS-QOL instrument consisted of 34 questions used to assess improvement of quality of life before and after treatment. A total of 140 patients were enrolled in this study. Eighteen patients dropped out. One hundred twenty two patients completed the trial. In this study at the end of 6 weeks therapy, improvement of symptoms was statistically significant. However, differences of improvement between the two groups in relieving various symptoms were not statistically significant. Mean QOL score before treatment was 103 in Trimebutine group and 106 in Mebeverine group. After 6 weeks of treatment mean QOL score was 82 in Trimebutine group and 95 in Mebeverine group indicating improvement in both groups was statistically significant. The difference between the two groups was also significant. No worsening of symptoms and no side effects of the therapeutic agents was observed in any patient during the trial. PMID:24584382

  3. Effect of Progressive Muscle Relaxation on the Fatigue and Quality of Life Among Iranian Aging Persons.

    PubMed

    Hassanpour-Dehkordi, Ali; Jalali, Amir

    2016-07-01

    Since the elderly population is increasing rapidly in developing countries which may decrease the physical activity and exercise and in turn could affect the elderly's quality of life, this study aimed to investigate the effect of progressive muscle relaxation on the elderly's quality of life in Iran. In a randomized clinical trial, participants were randomly divided into intervention and control groups. For the intervention group, muscular progressive relaxation was run three days per week for three months (totally 36 sessions). In relaxation, a patient contract a group of his/her muscles in each step and relaxes them after five seconds and finally loosens all muscles and takes five deep breaths. Each session lasts for 45 minutes. The instrument of data gathering consisted of questionnaires on individual's demographic data and quality of life SF-36. After intervention, quality of life increased significantly in the patients undergoing muscular progressive relaxation and fatigue severity decreased significantly in the intervention group compared to prior to intervention. In addition, there was a statistically significant difference in mean score of physical performance, restricted activity after physical problem, energy, socially function, physical pain, overall hygiene, and quality of life between intervention and control groups. By implementing regular and continuous progressive muscle relaxation, quality of life could be increased in different dimensions in the elderly and the context could be provided to age healthily and enjoy higher health and autonomy. Therefore, all of the therapeutic staffs are recommended to implement this plan to promote the elderly's quality of life. PMID:27424013

  4. beta. -adrenergic relaxation of smooth muscle: differences between cells and tissues

    SciTech Connect

    Scheid, C.R.

    1987-09-01

    The present studies were carried out in an attempt to resolve the controversy about the Na/sup +/ dependence of ..beta..-adrenergic relaxation in smooth muscle. Previous studies on isolated smooth muscle cells from the toad stomach had suggested that at least some of the actions of ..beta..-adrenergic agents, including a stimulatory effect on /sup 45/Ca efflux, were dependent on the presence of a normal transmembrane Na/sup +/ gradient. Studies by other investigators using tissues derived from mammalian sources had suggested that the relaxing effect of ..beta..-adrenergic agents was Na/sup +/ independent. Uncertainty remained as to whether these discrepancies reflected differences between cells and tissues or differences between species. Thus, in the present studies, the authors utilized both tissues and cells from the same source, the stomach muscle of the toad Bufo marinus, and assessed the Na/sup +/ dependence of ..beta..-adrenergic relaxation. They found that elimination of a normal Na/sup +/ gradient abolished ..beta..-adrenergic relaxation of isolated cells. In tissues, however, similar manipulations had no effect on relaxation. The reasons for this discrepancy are unclear but do not appear to be attributable to changes in smooth muscle function following enzymatic dispersion. Thus the controversy concerning the mechanisms of ..beta..-adrenergic relaxation may reflect inherent differences between tissues and cells.

  5. Muscle relaxation for individuals having tattoos removed through laser treatment: possible effects regarding anxiety and pain.

    PubMed

    Huang, Faye; Chou, Wen-Jiun; Chen, Tien-Hsing; Chen, Ching; Hsieh, Yu-Lian; Chong, Mian-Yoon; Hung, Chi-Fa; Lin, Shu-Ching; Tsai, Hsiu-Huang; Wang, Liang-Jen

    2016-08-01

    Effectively managing pain is vital for the well-being and satisfaction of patients undergoing dermatologic treatments involving lasers. This study investigates the potential outcome of using muscle relaxation techniques to reduce pain among people having their tattoos removed with laser treatment. This study consists of 56 participants (mean age 18.1 ± 2.1 years) that had tattoos removed using the principle of selective photothermolysis. These participants underwent muscle relaxation before receiving the laser treatment. Their peripheral skin temperatures (PST) were measured both at the beginning and the end of the muscle relaxation period. Then, the Beck Anxiety Inventory was applied to evaluate anxiety levels. Once the laser treatment was completed, pain levels were measured using a visual analogue scale. A total of 125 person-sessions of laser treatment and psychometric assessments were performed in this study. The muscle relaxation method significantly increased the PST of the participants while reducing the levels of anxiety and pain throughout the course of the laser treatment procedure. The PST, anxiety scores, and pain scores all showed significant correlations with one another. According to the results obtained, this study proposes that muscle relaxation techniques be considered possibly auxiliary treatment options for individuals having tattoos removed through laser treatment. Additional studies with a comparison group and a larger sample size are required in the future to confirm the effectiveness of such intervention. PMID:27184151

  6. Muscle relaxation for individuals having tattoos removed through laser treatment: possible effects regarding anxiety and pain.

    PubMed

    Huang, Faye; Chou, Wen-Jiun; Chen, Tien-Hsing; Chen, Ching; Hsieh, Yu-Lian; Chong, Mian-Yoon; Hung, Chi-Fa; Lin, Shu-Ching; Tsai, Hsiu-Huang; Wang, Liang-Jen

    2016-08-01

    Effectively managing pain is vital for the well-being and satisfaction of patients undergoing dermatologic treatments involving lasers. This study investigates the potential outcome of using muscle relaxation techniques to reduce pain among people having their tattoos removed with laser treatment. This study consists of 56 participants (mean age 18.1 ± 2.1 years) that had tattoos removed using the principle of selective photothermolysis. These participants underwent muscle relaxation before receiving the laser treatment. Their peripheral skin temperatures (PST) were measured both at the beginning and the end of the muscle relaxation period. Then, the Beck Anxiety Inventory was applied to evaluate anxiety levels. Once the laser treatment was completed, pain levels were measured using a visual analogue scale. A total of 125 person-sessions of laser treatment and psychometric assessments were performed in this study. The muscle relaxation method significantly increased the PST of the participants while reducing the levels of anxiety and pain throughout the course of the laser treatment procedure. The PST, anxiety scores, and pain scores all showed significant correlations with one another. According to the results obtained, this study proposes that muscle relaxation techniques be considered possibly auxiliary treatment options for individuals having tattoos removed through laser treatment. Additional studies with a comparison group and a larger sample size are required in the future to confirm the effectiveness of such intervention.

  7. Electromechanical delay components during skeletal muscle contraction and relaxation in patients with myotonic dystrophy type 1.

    PubMed

    Esposito, Fabio; Cè, Emiliano; Rampichini, Susanna; Limonta, Eloisa; Venturelli, Massimo; Monti, Elena; Bet, Luciano; Fossati, Barbara; Meola, Giovanni

    2016-01-01

    The electromechanical delay during muscle contraction and relaxation can be partitioned into mainly electrochemical and mainly mechanical components by an EMG, mechanomyographic, and force combined approach. Component duration and measurement reliability were investigated during contraction and relaxation in a group of patients with myotonic dystrophy type 1 (DM1, n = 13) and in healthy controls (n = 13). EMG, mechanomyogram, and force were recorded in DM1 and in age- and body-matched controls from tibialis anterior (distal muscle) and vastus lateralis (proximal muscle) muscles during maximum voluntary and electrically-evoked isometric contractions. The electrochemical and mechanical components of the electromechanical delay during muscle contraction and relaxation were calculated off-line. Maximum strength was significantly lower in DM1 than in controls under both experimental conditions. All electrochemical and mechanical components were significantly longer in DM1 in both muscles. Measurement reliability was very high in both DM1 and controls. The high reliability of the measurements and the differences between DM1 patients and controls suggest that the EMG, mechanomyographic, and force combined approach could be utilized as a valid tool to assess the level of neuromuscular dysfunction in this pathology, and to follow the efficacy of pharmacological or non-pharmacological interventions.

  8. Prolongation of Relaxation Time in Extraocular Muscles With Brain Derived Neurotrophic Factor in Adult Rabbit

    PubMed Central

    Nelson, Krysta R.; Stevens, Shanlee M.; McLoon, Linda K.

    2016-01-01

    Purpose We tested the hypothesis that short-term treatment with brain derived neurotrophic factor (BDNF) would alter the contractile characteristics of rabbit extraocular muscle (EOM). Methods One week after injections of BDNF in adult rabbit superior rectus muscles, twitch properties were determined in treated and control muscles in vitro. Muscles were also examined for changes in mean cross-sectional areas, neuromuscular junction size, and percent of myofibers expressing specific myosin heavy chain isoforms, and sarcoendoplasmic reticulum calcium ATPases (SERCA) 1 and 2. Results Brain derived neurotrophic factor–treated muscles had prolonged relaxation times compared with control muscles. Time to 50% relaxation, time to 100% relaxation, and maximum rate of relaxation were increased by 24%, 27%, and 25%, respectively. No significant differences were seen in time to peak force, twitch force, or maximum rate of contraction. Brain derived neurotrophic factor treatment significantly increased mean cross-sectional areas of slow twitch and tonic myofibers, with increased areas ranging from 54% to 146%. Brain derived neurotrophic factor also resulted in an increased percentage of slow twitch myofibers in the orbital layers, ranging from 54% to 77%, and slow-tonic myofibers, ranging from 44% to 62%. No significant changes were seen SERCA1 or 2 expression or in neuromuscular junction size. Conclusions Short-term treatment with BDNF significantly prolonged the duration and rate of relaxation time and increased expression of both slow-twitch and slow-tonic myosin-expressing myofibers without changes in neuromuscular junctions or SERCA expression. The changes induced by BDNF treatment might have potential therapeutic value in dampening/reducing uncontrolled eye oscillations in nystagmus. PMID:27802489

  9. The relaxant effect of Nigella sativa on smooth muscles, its possible mechanisms and clinical applications

    PubMed Central

    Keyhanmanesh, Rana; Gholamnezhad, Zahra; Boskabady, Mohammad Hossien

    2014-01-01

    Nigella sativa (N. sativa) is a spice plant which has been traditionally used for culinary and medicinal purposes. Different therapeutic properties including the beneficial effects on asthma and dyspnea, digestive and gynecology disorders have been described for the seeds of N. sativa. There is evidence of the relaxant effects of this plant and some of its constituents on different types of smooth muscle including rabbit aorta, rabbit jejunum and trachea. The relaxant effect of N. sativa could be of therapeutic importance such as bronchodilation in asthma, vasodilation in hypertension and therapeutic effect on digestive or urogenital disorders. Therefore in the present article, the relaxant effects of N. sativa and its constituents on smooth muscles and its possible mechanisms as well as clinical application of this effect were reviewed. PMID:25859297

  10. Acrolein relaxes mouse isolated tracheal smooth muscle via a TRPA1-dependent mechanism.

    PubMed

    Cheah, Esther Y; Burcham, Philip C; Mann, Tracy S; Henry, Peter J

    2014-05-01

    Airway sensory C-fibres express TRPA1 channels which have recently been identified as a key chemosensory receptor for acrolein, a toxic and highly prevalent component of smoke. TRPA1 likely plays an intermediary role in eliciting a range of effects induced by acrolein including cough and neurogenic inflammation. Currently, it is not known whether acrolein-induced activation of TRPA1 produces other airway effects including relaxation of mouse airway smooth muscle. The aims of this study were to examine the effects of acrolein on airway smooth muscle tone in mouse isolated trachea, and to characterise the cellular and molecular mechanisms underpinning the effects of acrolein. Isometric tension recording studies were conducted on mouse isolated tracheal segments to characterise acrolein-induced relaxation responses. Release of the relaxant PGE₂ was measured by EIA to examine its role in the response. Use of selective antagonists/inhibitors permitted pharmacological characterisation of the molecular and cellular mechanisms underlying this relaxation response. Acrolein induced dose-dependent relaxation responses in mouse isolated tracheal segments. Importantly, these relaxation responses were significantly inhibited by the TRPA1 antagonists AP-18 and HC-030031, an NK₁ receptor antagonist RP-67580, and the EP₂ receptor antagonist PF-04418948, whilst completely abolished by the non-selective COX inhibitor indomethacin. Acrolein also caused rapid PGE₂ release which was suppressed by HC-030031. In summary, acrolein induced a novel bronchodilator response in mouse airways. Pharmacologic studies indicate that acrolein-induced relaxation likely involves interplay between TRPA1-expressing airway sensory C-fibres, NK₁ receptor-expressing epithelial cells, and EP₂-receptor expressing airway smooth muscle cells.

  11. Study of anisotropy in nuclear magnetic resonance relaxation times of water protons in skeletal muscle.

    PubMed Central

    Kasturi, S R; Chang, D C; Hazlewood, C F

    1980-01-01

    The anisotropy of the spin-lattice relaxation time (T1) and the spin-spin relaxation times (T2) of water protons in skeletal muscle tissue have been studied by the spin-echo technique. Both T1 and T2 have been measured for the water protons of the tibialis anterior muscle of mature male rats for theta = 0, 55, and 90 degrees, where theta is the orientation of the muscle fiber with respect to the static field. The anisotropy in T1 and T2 has been measured at temperatures of 28, -5 and -10 degrees C. No significant anisotropy was observed in the T1 of the tissue water, while an average anisotropy of approximately 5% was observed in T2 at room temperature. The average anisotropy of T2 at -5 and -10 degrees C was found to be approximately 2 and 1.3%, respectively. PMID:6266530

  12. N-methyl-D-aspartate (NMDA)-mediated muscle relaxant action of memantine in rats.

    PubMed

    Schwarz, M; Block, F; Sontag, K H

    1992-08-31

    The present study examined in vivo whether memantine exerts muscle relaxant activity via an antagonistic action at N-methyl-D-aspartate (NMDA) receptors. Intraperitoneal (i.p.) administration of memantine, 50-100 mumol/kg, reduced the tonic activity in the electromyogram recorded from the gastrocnemius muscle of spastic mutant rats. This effect was prevented by coadministration of NMDA. Memantine, while not affecting monosynaptic Hoffmann (H)-reflexes, depressed polysynaptic flexor reflexes in anaesthetized rats following i.p. (6.25-100 mumol/kg) or intrathecal (i.t., 10-500 nmol) administration. The latter effect was prevented by i.t. coadministration of NMDA, but not of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). These observations suggest that NMDA receptors might be involved in the mediation of the muscle relaxant activity of memantine.

  13. Predicting the activation states of the muscles governing upper esophageal sphincter relaxation and opening.

    PubMed

    Omari, Taher I; Jones, Corinne A; Hammer, Michael J; Cock, Charles; Dinning, Philip; Wiklendt, Lukasz; Costa, Marcello; McCulloch, Timothy M

    2016-03-15

    The swallowing muscles that influence upper esophageal sphincter (UES) opening are centrally controlled and modulated by sensory information. Activation and deactivation of neural inputs to these muscles, including the intrinsic cricopharyngeus (CP) and extrinsic submental (SM) muscles, results in their mechanical activation or deactivation, which changes the diameter of the lumen, alters the intraluminal pressure, and ultimately reduces or promotes flow of content. By measuring the changes in diameter, using intraluminal impedance, and the concurrent changes in intraluminal pressure, it is possible to determine when the muscles are passively or actively relaxing or contracting. From these "mechanical states" of the muscle, the neural inputs driving the specific motor behaviors of the UES can be inferred. In this study we compared predictions of UES mechanical states directly with the activity measured by electromyography (EMG). In eight subjects, pharyngeal pressure and impedance were recorded in parallel with CP- and SM-EMG activity. UES pressure and impedance swallow profiles correlated with the CP-EMG and SM-EMG recordings, respectively. Eight UES muscle states were determined by using the gradient of pressure and impedance with respect to time. Guided by the level and gradient change of EMG activity, mechanical states successfully predicted the activity of the CP muscle and SM muscle independently. Mechanical state predictions revealed patterns consistent with the known neural inputs activating the different muscles during swallowing. Derivation of "activation state" maps may allow better physiological and pathophysiological interpretations of UES function.

  14. Non-selective cation channels mediate chloroquine-induced relaxation in precontracted mouse airway smooth muscle.

    PubMed

    Zhang, Ting; Luo, Xiao-Jing; Sai, Wen-Bo; Yu, Meng-Fei; Li, Wen-Er; Ma, Yun-Fei; Chen, Weiwei; Zhai, Kui; Qin, Gangjian; Guo, Donglin; Zheng, Yun-Min; Wang, Yong-Xiao; Shen, Jin-Hua; Ji, Guangju; Liu, Qing-Hua

    2014-01-01

    Bitter tastants can induce relaxation in precontracted airway smooth muscle by activating big-conductance potassium channels (BKs) or by inactivating voltage-dependent L-type Ca2+ channels (VDLCCs). In this study, a new pathway for bitter tastant-induced relaxation was defined and investigated. We found nifedipine-insensitive and bitter tastant chloroquine-sensitive relaxation in epithelium-denuded mouse tracheal rings (TRs) precontracted with acetylcholine (ACH). In the presence of nifedipine (10 µM), ACH induced cytosolic Ca2+ elevation and cell shortening in single airway smooth muscle cells (ASMCs), and these changes were inhibited by chloroquine. In TRs, ACH triggered a transient contraction under Ca2+-free conditions, and, following a restoration of Ca2+, a strong contraction occurred, which was inhibited by chloroquine. Moreover, the ACH-activated whole-cell and single channel currents of non-selective cation channels (NSCCs) were blocked by chloroquine. Pyrazole 3 (Pyr3), an inhibitor of transient receptor potential C3 (TRPC3) channels, partially inhibited ACH-induced contraction, intracellular Ca2+ elevation, and NSCC currents. These results demonstrate that NSCCs play a role in bitter tastant-induced relaxation in precontracted airway smooth muscle.

  15. Changes in Porcine Muscle Water Characteristics during Growth—An in Vitro Low-Field NMR Relaxation Study

    NASA Astrophysics Data System (ADS)

    Bertram, Hanne Christine; Rasmussen, Marianne; Busk, Hans; Oksbjerg, Niels; Karlsson, Anders Hans; Andersen, Henrik Jørgen

    2002-08-01

    This study investigates the effects of developmental stage and muscle type on the mobility and distribution of water within skeletal muscles, using low-field 1H-NMR transverse relaxation measurements in vitro on four different porcine muscles ( M. longissimus dorsi, M. semitendinosus, M. biceps femoris, M. vastus intermedius) from a total of 48 pigs slaughtered at various weight classes between 25 kg and 150 kg. Principal component analysis (PCA) revealed effects of both slaughter weight and muscle type on the transverse relaxation decay. Independent of developmental stage and muscle type, distributed exponential analysis of the NMR T 2 relaxation data imparted the existence of three distinct water populations, T 2b, T 21, and T 22, with relaxation times of approximately 1-10, 45-120, and 200-500 ms, respectively. The most profound change during muscle growth was a shift toward faster relaxation in the intermediate time constant, T 21. It decreased by approx. 24% in all four muscle types during the period from 25 to 150 kg live weight. Determination of dry matter, fat, and protein content in the muscles showed that the changes in relaxation time of the intermediate time constant, T 21, during growth should be ascribed mainly to a change in protein content, as the protein content explained 77% of the variation in the T 21 time constant. Partial least squares (PLS) regression revealed validated correlations in the region of 0.58 to 0.77 between NMR transverse relaxation data and muscle development for all the four muscle types, which indicates that NMR relaxation measurements may be used in the prediction of muscle developmental stage.

  16. Effect of modified hold-relax stretching and static stretching on hamstring muscle flexibility.

    PubMed

    Ahmed, Hashim; Iqbal, Amir; Anwer, Shahnawaz; Alghadir, Ahmad

    2015-02-01

    [Purpose] The aim of present study was to compare the effectiveness of modified hold-relax stretching and static stretching in improving the hamstring muscle flexibility. [Subjects and Methods] Forty-five male subjects with hamstring tightness were included in this study. The subjects were randomly placed into three groups: the modified hold-relax stretching, static stretching and control groups. The modified hold-relax stretching group performed 7 seconds of isometric contraction and then relaxed for 5 seconds, and this was repeated five times daily for five consecutive days. The static stretching group received 10 minutes of static stretching with the help of a pulley and weight system for five consecutive days. The control group received only moist heat for 20 minutes for five consecutive days. A baseline reading of passive knee extension (PKE) was taken prior to the intervention; rest measurements were taken immediate post intervention on day 1, day 3, day 5, and after a 1 week follow-up, i.e., at the 12th day. [Results] On comparing the baseline readings of passive knee extension (PKE), there was no difference noted between the three groups. On comparing the posttest readings on day 5 between the 3 groups, a significant difference was noted. However, post hoc analysis revealed an insignificant difference between the modified hold-relax stretching and static stretching groups. There was a significant difference between the static stretching and control groups and between the modified hold-relax stretching and control groups. [Conclusion] The results of this study indicate that both the modified hold-relax stretching technique and static stretching are equally effective, as there was no significant difference in improving the hamstring muscle flexibility between the two groups.

  17. Effect of modified hold-relax stretching and static stretching on hamstring muscle flexibility

    PubMed Central

    Ahmed, Hashim; Iqbal, Amir; Anwer, Shahnawaz; Alghadir, Ahmad

    2015-01-01

    [Purpose] The aim of present study was to compare the effectiveness of modified hold-relax stretching and static stretching in improving the hamstring muscle flexibility. [Subjects and Methods] Forty-five male subjects with hamstring tightness were included in this study. The subjects were randomly placed into three groups: the modified hold-relax stretching, static stretching and control groups. The modified hold-relax stretching group performed 7 seconds of isometric contraction and then relaxed for 5 seconds, and this was repeated five times daily for five consecutive days. The static stretching group received 10 minutes of static stretching with the help of a pulley and weight system for five consecutive days. The control group received only moist heat for 20 minutes for five consecutive days. A baseline reading of passive knee extension (PKE) was taken prior to the intervention; rest measurements were taken immediate post intervention on day 1, day 3, day 5, and after a 1 week follow-up, i.e., at the 12th day. [Results] On comparing the baseline readings of passive knee extension (PKE), there was no difference noted between the three groups. On comparing the posttest readings on day 5 between the 3 groups, a significant difference was noted. However, post hoc analysis revealed an insignificant difference between the modified hold-relax stretching and static stretching groups. There was a significant difference between the static stretching and control groups and between the modified hold-relax stretching and control groups. [Conclusion] The results of this study indicate that both the modified hold-relax stretching technique and static stretching are equally effective, as there was no significant difference in improving the hamstring muscle flexibility between the two groups. PMID:25729210

  18. The myosin inhibitor blebbistatin stabilizes the super-relaxed state in skeletal muscle.

    PubMed

    Wilson, Clyde; Naber, Nariman; Pate, Edward; Cooke, Roger

    2014-10-01

    The super-relaxed state of myosin (SRX), in which the myosin ATPase activity is strongly inhibited, has been observed in a variety of muscle types. It has been proposed that myosin heads in this state are inhibited by binding to the core of the thick filament in a structure known as the interacting-heads motif. The myosin inhibitor blebbistatin has been shown in structural studies to stabilize the binding of myosin heads to the thick filament, and here we have utilized measurements of single ATP turnovers to show that blebbistatin also stabilizes the SRX in both fast and slow skeletal muscle, providing further support for the proposal that myosin heads in the SRX are also in the interacting-heads motif. We find that the SRX is stabilized using blebbistatin even in conditions that normally destabilize it, e.g., rigor ADP. Using blebbistatin we show that spin-labeled nucleotides bound to myosin have an oriented spectrum in the SRX in both slow and fast skeletal muscle. This is to our knowledge the first observation of oriented spin probes on the myosin motor domain in relaxed skeletal muscle fibers. The spectra for skeletal muscle with blebbistatin are similar to those observed in relaxed tarantula fibers in the absence of blebbistatin, demonstrating that the structure of the SRX is similar in different muscle types and in the presence and absence of blebbistatin. The mobility of spin probes attached to nucleotides bound to myosin shows that the conformation of the nucleotide site is closed in the SRX. PMID:25296316

  19. Comparing brief stress management courses in a community sample: mindfulness skills and progressive muscle relaxation.

    PubMed

    Agee, John D; Danoff-Burg, Sharon; Grant, Christoffer A

    2009-01-01

    This study sought to compare a five-week mindfulness meditation (MM) course to a five-week course that taught progressive muscle relaxation (PMR). Forty-three adults from the community were randomly assigned to either MM (n = 19) or PMR (n = 24) courses after responding to flyers and other advertisements for a free stress management course. Mindfulness meditation participants practiced meditation significantly more often than PMR participants practiced relaxation during the intervention period (F[1, 43] = 7.42; P < .05). Interestingly, the two conditions did not differ significantly in their posttreatment levels of relaxation or mindfulness. Although there were no differences between groups on any of the primary outcome measures, across both treatment conditions there were statistically significant reductions from pretreatment to posttreatment in general psychological distress. Thus, although MM did not emerge as clearly superior to PMR, results of this study suggest that a brief mindfulness skills course may be effective for stress management.

  20. Effects of Telfairia occidentalis (fluted pumpkin; Cucurbitaceae) in mouse models of convulsion, muscle relaxation, and depression.

    PubMed

    Akindele, Abidemi J; Ajao, Mutiu Y; Aigbe, Flora R; Enumah, Uchenna S

    2013-09-01

    Telfairia occidentalis (Cucurbitaceae) is a leafy vegetable used in soup and folk medicine in southern Nigeria. Ethnobotanical survey revealed that preparations of the plant are used in the treatment of central nervous system-related disorders including convulsion. This study was conducted to investigate the effect of the hydroethanolic leaf extract of T. occidentalis in mouse models of convulsion, muscle relaxation, and depression. The strychnine and isoniazid convulsion, traction and climbing muscle relaxation, and forced swim and tail suspension depression tests were used in this study. The extract was administered orally (p.o.) at dose range of 25-800 mg/kg while distilled water (10 mL/kg p.o.) served as negative control. Diazepam (5 mg/kg p.o.) was used as positive control in the convulsion and muscle relaxation models while imipramine (64 mg/kg p.o.) served the same purpose in the depression tests. T. occidentalis significantly increased the onset (P<.001) and reduced the duration of convulsion (P<.05, .01) in the strychnine test and increased the time to death (P<.05, .01, .001) in the isoniazid model. The extract insignificantly increased the reaction time in the traction test while it significantly increased the time in the climbing test (P<.001). In the forced swim and tail suspension models, T. occidentalis significantly (P<.001) and dose-dependently increased the duration of immobility. The results obtained in this study suggest that the hydroethanolic leaf extract of T. occidentalis possesses anticonvulsant and muscle relaxant properties, thus justifying its folkloric use.

  1. Role of Nitric Oxide Produced by Lactobacilli in Relaxation of Intestinal Smooth Muscles.

    PubMed

    Yarullina, D R; Mikheeva, R O; Sabirullina, G I; Zelenikhin, P V; Ilinskaya, O N; Sitdikova, G F

    2016-01-01

    Application of NO-producing lactobacilli to a rat jejunum segment induced muscle relaxation that was potentiated after activation of bacterial NO production with NO synthase substrate L-arginine. Similar changes in the intestinal contractile activity were observed in response to exogenous NO formed by sodium nitroprusside. These results indicated the involvement of NO synthesized by probiotic lactobacilli in the regulation of the intestinal motor function.

  2. Identification of a novel starfish neuropeptide that acts as a muscle relaxant.

    PubMed

    Kim, Chan-Hee; Kim, Eun Jung; Go, Hye-Jin; Oh, Hye Young; Lin, Ming; Elphick, Maurice R; Park, Nam Gyu

    2016-04-01

    Neuropeptides that act as muscle relaxants have been identified in chordates and protostomian invertebrates but little is known about the molecular identity of neuropeptides that act as muscle relaxants in deuterostomian invertebrates (e.g. echinoderms) that are 'evolutionary intermediates' of chordates and protostomes. Here, we have used the apical muscle of the starfish Patiria pectinifera to assay for myorelaxants in extracts of this species. A hexadecapeptide with the amino acid sequence Phe-Gly-Lys-Gly-Gly-Ala-Tyr-Asp-Pro-Leu-Ser-Ala-Gly-Phe-Thr-Asp was identified and designated starfish myorelaxant peptide (SMP). Cloning and sequencing of a cDNA encoding the SMP precursor protein revealed that it comprises 12 copies of SMP as well as 3 peptides (7 copies in total) that are structurally related to SMP. Analysis of the expression of SMP precursor transcripts in P. pectinifera using qPCR revealed the highest expression in the radial nerve cords and lower expression levels in a range of neuromuscular tissues, including the apical muscle, tube feet and cardiac stomach. Consistent with these findings, SMP also caused relaxation of tube foot and cardiac stomach preparations. Furthermore, SMP caused relaxation of apical muscle preparations from another starfish species - Asterias amurensis. Collectively, these data indicate that SMP has a general physiological role as a muscle relaxant in starfish. Interestingly, comparison of the sequence of the SMP precursor with known neuropeptide precursors revealed that SMP belongs to a bilaterian family of neuropeptides that include molluscan pedal peptides (PP) and arthropodan orcokinins (OK). This is the first study to determine the function of a PP/OK-type peptide in a deuterostome. Pedal peptide/orcokinin (PP/OK)-type peptides are a family of structurally related neuropeptides that were first identified and functionally characterised in protostomian invertebrates. Here, we report the discovery of starfish myorelaxant

  3. A Synthetic Chloride Channel Relaxes Airway Smooth Muscle of the Rat

    PubMed Central

    Yau, Kwok-hei; Mak, Judith Choi-wo; Leung, Susan Wai-sum; Yang, Dan; Vanhoutte, Paul M.

    2012-01-01

    Synthetic ion channels may have potential therapeutic applications, provided they possess appropriate biological activities. The present study was designed to examine the ability of small molecule-based synthetic Cl– channels to modulate airway smooth muscle responsiveness. Changes in isometric tension were measured in rat tracheal rings. Relaxations to the synthetic chloride channel SCC-1 were obtained during sustained contractions to KCl. The anion dependency of the effect of SCC-1 was evaluated by ion substitution experiments. The sensitivity to conventional Cl– transport inhibitors was also tested. SCC-1 caused concentration-dependent relaxations during sustained contractions to potassium chloride. This relaxing effect was dependent on the presence of extracellular Cl– and HCO3−. It was insensitive to conventional Cl– channels/transport inhibitors that blocked the cystic fibrosis transmembrane conductance regulator and calcium-activated Cl– channels. SCC-1 did not inhibit contractions induced by carbachol, endothelin-1, 5-hydroxytryptamine or the calcium ionophore A23187. SCC-1 relaxes airway smooth muscle during contractions evoked by depolarizing solutions. The Cl– conductance conferred by this synthetic compound is distinct from the endogenous transport systems for chloride anions. PMID:23049786

  4. Sodium pump activity and calcium relaxation in vascular smooth muscle of deoxycorticosterone acetate-salt rats

    SciTech Connect

    Soltis, E.E.; Field, F.P.

    1986-11-01

    The Na/sup +/-K/sup +/ pump activity was determined in femoral arterial smooth muscle from deoxycorticosterone acetate (DOCA)-salt hypertensive rats using potassium relaxation and ouabain-sensitive /sup 86/Rb uptake as indices. The membrane-stabilizing effect of calcium and its relation to Na/sup +/-K/sup +/ pump activity also were examined. Femoral arteries from DOCA-salt rats exhibited a greater relaxation in response to potassium addition after contraction with norepinephrine in a low potassium (0.6 mM) Krebs solution. The concentration of potassium required to produce a 50% relaxation was significantly less in DOCA-salt rats. Ouabain-sensitive /sup 86/Rb uptake was significantly greater at 3, 10, and 20 minutes of /sup 86/Rb incubation in femoral arteries from DOCA-salt rats. Linear regression analysis revealed a significant correlation between the uptake of /sup 86/Rb and time of incubation in both control and DOCA-salt rats. A significant difference in the slopes of the regression lines showed that the rate of uptake was greater in DOCA-salt rats. No difference was observed in ouabain-insensitive /sup 86/Rb uptake. A dose-dependent relaxation in response to increasing concentrations of calcium following contraction to norepinephrine was observed in femoral arteries from control and DOCA-salt rats. The relaxation was directly dependent on the level of extracellular potassium and was blocked by ouabain. Femoral arteries from DOCA-salt rats relaxed to a significantly greater extent in response to calcium at each level of potassium when compared with controls. These results provide further evidence for an increase in Na/sup +/-K/sup +/ pump activity in vascular smooth muscle from DOCA-salt hypertensive rats.

  5. Considerations for the appropriate use of skeletal muscle relaxants for the management of acute low back pain.

    PubMed

    Witenko, Corey; Moorman-Li, Robin; Motycka, Carol; Duane, Kevin; Hincapie-Castillo, Juan; Leonard, Paul; Valaer, Christopher

    2014-06-01

    For patients with low back pain, skeletal muscle relaxants are often initiated after failure of first-line analgesics. However, these medications (reviewed in this article) are controversial alternatives that carry risks of adverse effects and increased cost. PMID:25050056

  6. Flavonoids from Achyrocline satureioides with relaxant effects on the smooth muscle of Guinea pig corpus cavernosum.

    PubMed

    Hnatyszyn, O; Moscatelli, V; Rondina, R; Costa, M; Arranz, C; Balaszczuk, A; Coussio, J; Ferraro, G

    2004-01-01

    Ethanol extract of the aerial parts of Achyrocline satureioides (Lam.) DC. (Asteraceae) showed a significant, dose dependent, relaxant effect on the smooth muscle of corpus cavernosum strips, obtained from Guinea pig (65.5 +/- 4.1% of relaxation at the dose of 25.0 mg/ml). Bioassay guided fractionation of this extract furnished two flavonoids, quercetin and quercetin 3-methyl ether, with important vasorelaxing effects on the corpus cavernosum strips (79.8 +/- 8.4 and 66.0 +/- 4.8% of relaxation respectively at the dose of 0.075 mg/ml). Two methyl derivatives of quercetin obtained by synthesis, quercetin 3,7,3',4'-tetramethylether and quercetin 3,5,7,3',4'-pentamethylether, showed similar relaxant effects at the dose of 0.075 mg/ml (86.4 +/- 8.5 and 67.31 +/- 1.4% of relaxation respectively). The results show that the ethanol extract of A. satureioides and the assayed compounds exhibit significant vasorelaxing properties. Additionally, it is shown that the number of methyl groups in the quercetin nucleus has no significant influence on the effectiveness of these compounds.

  7. Pulmonary surfactant in the airway physiology: a direct relaxing effect on the smooth muscle.

    PubMed

    Calkovska, A; Uhliarova, B; Joskova, M; Franova, S; Kolomaznik, M; Calkovsky, V; Smolarova, S

    2015-04-01

    Beside alveoli, surface active material plays an important role in the airway physiology. In the upper airways it primarily serves in local defense. Lower airway surfactant stabilizes peripheral airways, provides the transport and defense, has barrier and anti-edematous functions, and possesses direct relaxant effect on the smooth muscle. We tested in vitro the effect of two surfactant preparations Curosurf® and Alveofact® on the precontracted smooth muscle of intra- and extra-pulmonary airways. Relaxation was more pronounced for lung tissue strip containing bronchial smooth muscle as the primary site of surfactant effect. The study does not confirm the participation of ATP-dependent potassium channels and cAMP-regulated epithelial chloride channels known as CFTR chloride channels, or nitric oxide involvement in contractile response of smooth muscle to surfactant.By controlling wall thickness and airway diameter, pulmonary surfactant is an important component of airway physiology. Thus, surfactant dysfunction may be included in pathophysiology of asthma, COPD, or other diseases with bronchial obstruction.

  8. The effect of progressive muscle relaxation on pregnant women's general health

    PubMed Central

    Sadeghi, Azam; Sirati-Nir, Masoud; Ebadi, Abbas; Aliasgari, Matin; Hajiamini, Zahra

    2015-01-01

    Background: Pregnancy may be accompanied by serious physiological and psychological changes as it is a stressful period in a woman's life. So, this study was conducted to determine the effect of progressive muscle relaxation on pregnant women's general health. Materials and Methods: In this clinical trial, 60 primigravida women admitted to the prenatal clinic of selected hospitals in Iran constituted the study population. Using purposive sampling method, the level of general health of the women was measured with General Health Questionnaire-28 (GHQ-28). Then, the samples were randomly divided into control and experimental groups. Three 1.5–2 h relaxation training sessions were held for the experimental group. After 8 weeks, the level of general health of both groups was measured again. Finally, the collected data were analyzed using Chi-square and paired t-test (P < 0.05). Results: Total mean score of general health of the experimental group and the control group before the intervention was 35.83 (6.92) and 29.46 (8.3), respectively, and after the intervention, the respective scores were 20.2 (5.61) and 27.85 (8.24). Although after the intervention both groups showed an increased level of general health, the difference in general health between before and after intervention was significant in the experimental group (P < 0.001). Furthermore, comparison of variations in mean scores of general health level before and after intervention in the two groups showed a significant difference (P < 0.001). Conclusions: Given that the results showed the effectiveness of progressive muscle relaxation on pregnant women's general health, the prenatal clinics can include a training program for progressive muscle relaxation in the routine training programs for pregnant women. PMID:26793248

  9. Sternomastoid muscle fatigue and twitch maximum relaxation rate in patients with steroid dependent asthma.

    PubMed Central

    Mak, V. H.; Bugler, J. R.; Spiro, S. G.

    1993-01-01

    BACKGROUND--Long term oral corticosteroid treatment is a cause of myopathy of the skeletal muscles. The effect of long term treatment with oral corticosteroids on the respiratory muscles is uncertain. Respiratory muscle function and fatigue in sternomastoid muscle were investigated in a group of patients with chronic severe asthma who were taking oral corticosteroids. The results were compared with those from a group of patients with chronic airflow limitation who were not taking oral steroids. METHODS--Twelve patients with chronic severe asthma, taking a mean daily dosage of 8 mg of prednisolone for a mean (SD) of 16.8 (9.1) years, were compared with patients with chronic airflow limitation and individually matched for sex, age, and severity of airflow limitation. Lung function tests, maximal mouth pressures, and quadriceps and sternomastoid muscle strength were measured. The sternomastoid muscle was fatigued by maximal headlift exercise to 70% of initial headlift force and the endurance time noted. Sternomastoid fatigue was assessed by twitch maximum relaxation rate (TMRR) measured in the fresh state and for 30 minutes after exercise. RESULTS--There was no significant difference between the control group and the corticosteroid group for maximal mouth pressures, fresh state TMRR, and quadriceps and sternomastoid strength. The control group had a significantly longer mean (SD) endurance time than the corticosteroid group (121 (47) s v 86 (24) s), and also had significantly less slowing and faster recovery of the TMRR after exercise. The slowing and recovery of the TMRR in the corticosteroid group, however, was similar to that previously reported for normal subjects. CONCLUSION--Respiratory muscle weakness does not occur more often in patients taking oral corticosteroids. The corticosteroid group was more prone to fatigue than the control group, but was similar to normal subjects. This suggests that chronic airflow limitation may produce a training effect on the

  10. Pharmacological characterization of the relaxant effect induced by adrenomedullin in rat cavernosal smooth muscle.

    PubMed

    Leite, L N; Gonzaga, N A; Tirapelli, D P C; Tirapelli, L F; Tirapelli, C R

    2014-10-01

    The aim of the present study was to determine the mechanisms underlying the relaxant effect of adrenomedullin (AM) in rat cavernosal smooth muscle (CSM) and the expression of AM system components in this tissue. Functional assays using standard muscle bath procedures were performed in CSM isolated from male Wistar rats. Protein and mRNA levels of pre-pro-AM, calcitonin receptor-like receptor (CRLR), and Subtypes 1, 2 and 3 of the receptor activity-modifying protein (RAMP) family were assessed by Western immunoblotting and quantitative real-time polymerase chain reaction, respectively. Nitrate and 6-keto-prostaglandin F(1α) (6-keto-PGF(1α); a stable product of prostacyclin) levels were determined using commercially available kits. Protein and mRNA of AM, CRLR, and RAMP 1, -2, and -3 were detected in rat CSM. Immunohistochemical assays demonstrated that AM and CRLR were expressed in rat CSM. AM relaxed CSM strips in a concentration-dependent manner. AM(22-52), a selective antagonist for AM receptors, reduced the relaxation induced by AM. Conversely, CGRP(8-37), a selective antagonist for calcitonin gene-related peptide receptors, did not affect AM-induced relaxation. Preincubation of CSM strips with N(G)-nitro-L-arginine-methyl-ester (L-NAME, nitric oxide synthase inhibitor), 1H-(1,2,4)oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, quanylyl cyclase inhibitor), Rp-8-Br-PET-cGMPS (cGMP-dependent protein kinase inhibitor), SC560 [5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-trifluoromethyl pyrazole, selective cyclooxygenase-1 inhibitor], and 4-aminopyridine (voltage-dependent K(+) channel blocker) reduced AM-induced relaxation. On the other hand, 7-nitroindazole (selective neuronal nitric oxide synthase inhibitor), wortmannin (phosphatidylinositol 3-kinase inhibitor), H89 (protein kinase A inhibitor), SQ22536 [9-(tetrahydro-2-furanyl)-9H-purin-6-amine, adenylate cyclase inhibitor], glibenclamide (selective blocker of ATP-sensitive K(+) channels), and apamin (Ca(2+)-activated

  11. Pharmacological characterization of the relaxant effect induced by adrenomedullin in rat cavernosal smooth muscle

    PubMed Central

    Leite, L.N.; Gonzaga, N.A.; Tirapelli, D.P.C.; Tirapelli, L.F.; Tirapelli, C.R.

    2014-01-01

    The aim of the present study was to determine the mechanisms underlying the relaxant effect of adrenomedullin (AM) in rat cavernosal smooth muscle (CSM) and the expression of AM system components in this tissue. Functional assays using standard muscle bath procedures were performed in CSM isolated from male Wistar rats. Protein and mRNA levels of pre-pro-AM, calcitonin receptor-like receptor (CRLR), and Subtypes 1, 2 and 3 of the receptor activity-modifying protein (RAMP) family were assessed by Western immunoblotting and quantitative real-time polymerase chain reaction, respectively. Nitrate and 6-keto-prostaglandin F1α (6-keto-PGF1α; a stable product of prostacyclin) levels were determined using commercially available kits. Protein and mRNA of AM, CRLR, and RAMP 1, -2, and -3 were detected in rat CSM. Immunohistochemical assays demonstrated that AM and CRLR were expressed in rat CSM. AM relaxed CSM strips in a concentration-dependent manner. AM22-52, a selective antagonist for AM receptors, reduced the relaxation induced by AM. Conversely, CGRP8-37, a selective antagonist for calcitonin gene-related peptide receptors, did not affect AM-induced relaxation. Preincubation of CSM strips with NG-nitro-L-arginine-methyl-ester (L-NAME, nitric oxide synthase inhibitor), 1H-(1,2,4)oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, quanylyl cyclase inhibitor), Rp-8-Br-PET-cGMPS (cGMP-dependent protein kinase inhibitor), SC560 [5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-trifluoromethyl pyrazole, selective cyclooxygenase-1 inhibitor], and 4-aminopyridine (voltage-dependent K+ channel blocker) reduced AM-induced relaxation. On the other hand, 7-nitroindazole (selective neuronal nitric oxide synthase inhibitor), wortmannin (phosphatidylinositol 3-kinase inhibitor), H89 (protein kinase A inhibitor), SQ22536 [9-(tetrahydro-2-furanyl)-9H-purin-6-amine, adenylate cyclase inhibitor], glibenclamide (selective blocker of ATP-sensitive K+ channels), and apamin (Ca2+-activated channel blocker

  12. Three-dimensional organization of troponin on cardiac muscle thin filaments in the relaxed state.

    PubMed

    Yang, Shixin; Barbu-Tudoran, Lucian; Orzechowski, Marek; Craig, Roger; Trinick, John; White, Howard; Lehman, William

    2014-02-18

    Muscle contraction is regulated by troponin-tropomyosin, which blocks and unblocks myosin binding sites on actin. To elucidate this regulatory mechanism, the three-dimensional organization of troponin and tropomyosin on the thin filament must be determined. Although tropomyosin is well defined in electron microscopy helical reconstructions of thin filaments, troponin density is mostly lost. Here, we determined troponin organization on native relaxed cardiac muscle thin filaments by applying single particle reconstruction procedures to negatively stained specimens. Multiple reference models led to the same final structure, indicating absence of model bias in the procedure. The new reconstructions clearly showed F-actin, tropomyosin, and troponin densities. At the 25 Å resolution achieved, troponin was considerably better defined than in previous reconstructions. The troponin density closely resembled the shape of troponin crystallographic structures, facilitating detailed interpretation of the electron microscopy density map. The orientation of troponin-T and the troponin core domain established troponin polarity. Density attributable to the troponin-I mobile regulatory domain was positioned where it could hold tropomyosin in its blocking position on actin, thus suggesting the underlying structural basis of thin filament regulation. Our previous understanding of thin filament regulation had been limited to known movements of tropomyosin that sterically block and unblock myosin binding sites on actin. We now show how troponin, the Ca(2+) sensor, may control these movements, ultimately determining whether muscle contracts or relaxes. PMID:24559988

  13. SLOW MYOSIN ATP TURNOVER IN THE SUPER-RELAXED STATE IN TARANTULA MUSCLE

    PubMed Central

    Naber, Nariman; Cooke, Roger

    2011-01-01

    We measured the nucleotide turnover rate of myosin in tarantula leg-muscle fibers by observing single turnovers of the fluorescent nucleotide analog, mantATP, as monitored by the decrease in fluorescence when mantATP is replaced by ATP in a chase experiment. We find a multi-exponential process, with approximately two-thirds of the myosin showing a very slow nucleotide turnover time constant, ~30 minutes. This slow-turnover state is termed the super-relaxed state (SRX). If fibers are incubated in mantADP and chased with ADP, the SRX is not seen, indicating that trinucleotide-relaxed myosins are responsible for the SRX. Phosphorylation of the myosin regulatory light chain eliminates the fraction of myosin with the very long lifetime. The data imply that the very long-lived SRX in tarantula fibers is a highly novel adaptation for energy conservation in an animal that spends extremely long periods of time in a quiescent state employing a lie-in-wait hunting strategy. The presence of the SRX measured here correlates well with the binding of myosin heads to the core of the thick filament in a structure known as the “interacting-heads motif” observed previously by electron microscopy. Both the structural array and the long-lived SRX require relaxed filaments or relaxed fibers, both are lost upon myosin phosphorylation, and both appear to be more stable in tarantula than in vertebrate skeletal or vertebrate cardiac preparations. PMID:21763701

  14. Antioxidant effect of muscle relaxants (vecuronium, rocuronium) on the rabbit abdominal aortic endothelial damage induced by reactive oxygen species

    PubMed Central

    Jeong, Ji Seon; Cho, Eun Sun; Kim, Dong Won; Jeong, Mi Ae

    2013-01-01

    Background Muscle relaxants induce vascular smooth muscle relaxation by inducing synthesis of the prostaglandins that influence vasomotor tone. However, the effects of muscle relaxants on endothelial cells and tissues following injury by reactive oxygen species (ROS) are unclear. We tested the effects of the muscle relaxants vecuronium and rocuronium on impaired acetylcholine (ACh)-induced relaxation following induction of ROS in rabbit aorta in vitro. Methods Isolated rabbit abdominal aortic ring segments were pretreated with vecuronium or rocuronium at 10-4, 3 × 10-4, 10-3 or 3 × 10-3 M, with or without inhibitors of Cu/Zn superoxide dismutase (diethyldithiocarbamate; DETCA, 0.8 mM) or catalase (3-amino-1,2,4-triazole; 3AT, 50 mM). All groups of aortic rings were then exposed to ROS generated by electrolysis in the organ bath medium (Krebs-Henseleit solution). The effects of vecuronium and rocuronium on ROS-induced impairment of relaxation induced by ACh (10-6 M) were assessed. Results Aortic rings treated with vecuronium or rocuronium at 10-4, 3 × 10-4, 10-3 or 3 × 10-3 M preserved the capacity for ACh-induced endothelial relaxation following ROS exposure in a dose-dependent manner. Pretreatment with DETCA partially inhibited the protective effects of vecuronium and rocuronium on ACh-induced relaxation (P < 0.001), but pretreatment with 3AT had no effect. Conclusions Muscle relaxants protected the endothelium in isolated rabbit abdominal aorta from free-radical injury in a dose-dependent manner. These results suggest that vecuronium and rocuronium may act as superoxide anion scavengers. PMID:24427462

  15. Effect of some smooth muscle relaxant drugs on calcium-related phenomena.

    PubMed

    Ronca-Testoni, S; Hrelia, S; Hakim, G; Ronca, G; Rossi, C A

    1984-04-30

    Some smooth muscle relaxant drugs devoid of anticholinergic action have been tested for their interaction with calmodulin, calmodulin-stimulated cyclic nucleotide phosphodiesterase activity, and uterine membrane binding sites for nitrendipine and adenosine. The myolytic activity of octylonium bromide and pinaverium bromide may be due to their interaction with calmodulin-dependent systems. Trimebutine maleate does not bind either to calmodulin or to nitrendipine and adenosine receptors. Tiropramide has no effect on calmodulin-dependent systems and on Ca2+ channels but it shows a competition for the A2-type adenosine receptors. PMID:6329247

  16. Interaction of smooth muscle relaxant drugs with calmodulin and cyclic nucleotide phosphodiesterase.

    PubMed

    Ronca-Testoni, S; Hrelia, S; Hakim, G; Rossi, C A

    1985-01-15

    Some smooth muscle relaxant drugs with an unknown mechanism of action have been tested for their interaction with calmodulin and with calmodulin-induced cyclic nucleotide phosphodiesterase (PDE) activity. The affinity of these drugs for calmodulin does not parallel their inhibitory effect on the calmodulin activation of PDE. The lack of parallelism could be due to a binding of the drugs to different sites on calmodulin; furthermore a binding of papaverine, octylonium bromide and felodipine to PDE molecule might also be considered to explain their inhibitory effect on PDE basal activity. The myolytic effect of octylonium bromide and pinaverium bromide may be due to their interaction with calmodulin-dependent systems. PMID:2981701

  17. HEF-19-induced relaxation of colonic smooth muscles and the underlying mechanisms

    PubMed Central

    Wei, Yuan-Yuan; Sun, Lu-Lu; Fu, Shou-Ting

    2013-01-01

    AIM: To investigate the relaxant effect of chromane HEF-19 on colonic smooth muscles isolated from rabbits, and the underlying mechanisms. METHODS: The relaxant effect and action mechanisms of HEF-19 were investigated using descending colon smooth muscle of the rabbits. Preparations 1 cm long were mounted in 15-mL tissue baths containing Tyrode’s solution, maintained at 37 ± 0.5 °C and aerated with a mixture of 5% CO2 in oxygen (Carbogen). The tension and amplitude of the smooth muscle strips were recorded after adding HEF-19 (10-6, 10-5 and 10-4 mol/L). After cumulative administration of four antispasmodic agents, including acetylcholine chloride (Ach) (10-4 mol/L), histamine (10-4 mol/L), high-K+ (60 mmol/L) and BaCl2 (8.2 mmol/L), HEF-19 (3 × 10-7-3 × 10-4 mol/L) was added to investigate the relaxant effect of HEF-19. CaCl2 (10-4-2.5 × 10-3 mol/L) was added cumulatively to the smooth muscle preparations pretreated with and without HEF-19 (1 × 10-6 or 3 × 10-6 mol/L) and verapamil (1 × 10-7 mol/L) to study the mechanisms involved. Finally, phasic contraction was induced with ACh (15 × 10-6 mol/L), and CaCl2 (4 × 10-3 mol/L) was added to the smooth muscle preparations pretreated with and without HEF-19 (3 × 10-6 mol/L or 1 × 10-5 mol/L) and verapamil (1 × 10-7 mol/L) in calcium-free medium to further study the underlying mechanisms. RESULTS: HEF-19 (1 × 10-6, 1 × 10-5 and 1 × 10-4 mol/L) suppressed spontaneous contraction of rabbit colonic smooth muscles. HEF-19 (3 × 10-7-3 × 10-4 mol/L) relaxed in a concentration-dependent manner colonic smooth muscle preparations pre-contracted with BaCl2, high-K+ solution, Ach or histamine with respective EC50 values of 5.15 ± 0.05, 5.12 ± 0.08, 5.58 ± 0.16 and 5.25 ± 0.24, thus showing a spasmolytic activity. HEF-19 (1 × 10-6 mol/L and 3 × 10-6 mol/L) shifted the concentration-response curves of CaCl2 to the right and depressed the maximum response to CaCl2. The two components contracted by Ach were

  18. Changes in the flexion-relaxation response induced by hip extensor and erector spinae muscle fatigue

    PubMed Central

    2010-01-01

    Background The flexion-relaxation phenomenon (FRP) is defined by reduced lumbar erector spinae (ES) muscle myoelectric activity during full trunk flexion. The objectives of this study were to quantify the effect of hip and back extensor muscle fatigue on FRP parameters and lumbopelvic kinematics. Methods Twenty-seven healthy adults performed flexion-extension tasks under 4 different experimental conditions: no fatigue/no load, no fatigue/load, fatigue/no load, and fatigue/load. Total flexion angle corresponding to the onset and cessation of myoelectric silence, hip flexion angle, lumbar flexion angle and maximal trunk flexion angle were compared across different experimental conditions by 2 × 2 (Load × Fatigue) repeated-measures ANOVA. Results The angle corresponding to the ES onset of myoelectric silence was reduced after the fatigue task, and loading the spine decreased the lumbar contribution to motion compared to the hip during both flexion and extension. A relative increment of lumbar spine motion compared to pelvic motion was also observed in fatigue conditions. Conclusions Previous results suggested that ES muscles, in a state of fatigue, are unable to provide sufficient segmental stabilization. The present findings indicate that, changes in lumbar-stabilizing mechanisms in the presence of muscle fatigue seem to be caused by modulation of lumbopelvic kinematics. PMID:20525336

  19. Tri-modal regulation of cardiac muscle relaxation; intracellular calcium decline, thin filament deactivation, and cross-bridge cycling kinetics

    PubMed Central

    Biesiadecki, Brandon J.; Davis, Jonathan P.; Ziolo, Mark T.; Janssen, Paul M.L.

    2014-01-01

    Cardiac muscle relaxation is an essential step in the cardiac cycle. Even when the contraction of the heart is normal and forceful, a relaxation phase that is too slow will limit proper filling of the ventricles. Relaxation is too often thought of as a mere passive process that follows contraction. However, many decades of advancements in our understanding of cardiac muscle relaxation have shown it is a highly complex and well-regulated process. In this review, we will discuss three distinct events that can limit the rate of cardiac muscle relaxation: the rate of intracellular calcium decline, the rate of thin-filament de-activation, and the rate of cross-bridge cycling. Each of these processes are directly impacted by a plethora of molecular events. In addition, these three processes interact with each other, further complicating our understanding of relaxation. Each of these processes is continuously modulated by the need to couple bodily oxygen demand to cardiac output by the major cardiac physiological regulators. Length-dependent activation, frequency-dependent activation, and β-adrenergic regulation all directly and indirectly modulate calcium decline, thin-filament deactivation, and cross-bridge kinetics. We hope to convey our conclusion that cardiac muscle relaxation is a process of intricate checks and balances, and should not be thought of as a single rate-limiting step that is regulated at a single protein level. Cardiac muscle relaxation is a system level property that requires fundamental integration of three governing systems: intracellular calcium decline, thin filament deactivation, and cross-bridge cycling kinetics. PMID:25484996

  20. H2 Receptor-Mediated Relaxation of Circular Smooth Muscle in Human Gastric Corpus: the Role of Nitric Oxide (NO).

    PubMed

    Lee, Sang Eok; Kim, Dae Hoon; Kim, Young Chul; Han, Joung-Ho; Choi, Woong; Kim, Chan Hyung; Jeong, Hye Won; Park, Seon-Mee; Yun, Sei Jin; Choi, Song-Yi; Sung, Rohyun; Kim, Young Ho; Yoo, Ra Young; Sun, Park Hee; Kim, Heon; Song, Young-Jin; Xu, Wen-Xie; Yun, Hyo-Yung; Lee, Sang Jin

    2014-10-01

    This study was designed to examine the effects of histamine on gastric motility and its specific receptor in the circular smooth muscle of the human gastric corpus. Histamine mainly produced tonic relaxation in a concentration-dependent and reversible manner, although histamine enhanced contractility in a minor portion of tissues tested. Histamine-induced tonic relaxation was nerve-insensitive because pretreatment with nerve blockers cocktail (NBC) did not inhibit relaxation. Additionally, K(+) channel blockers, such as tetraethylammonium (TEA), apamin (APA), and glibenclamide (Glib), had no effect. However, N(G)-nitro-L-arginine methyl ester (L-NAME) and 1H-(1,2,4)oxadiazolo (4,3-A) quinoxalin-1-one (ODQ), an inhibitor of soluble guanylate cyclase (sGC), did inhibit histamine-induced tonic relaxation. In particular, histamine-induced tonic relaxation was converted to tonic contraction by pretreatment with L-NAME. Ranitidine, the H2 receptor blocker, inhibited histamine-induced tonic relaxation. These findings suggest that histamine produced relaxation in circular smooth muscle of human gastric smooth muscle through H2 receptor and NO/sGC pathways.

  1. H2 Receptor-Mediated Relaxation of Circular Smooth Muscle in Human Gastric Corpus: the Role of Nitric Oxide (NO)

    PubMed Central

    Lee, Sang Eok; Kim, Dae Hoon; Han, Joung-Ho; Choi, Woong; Kim, Chan Hyung; Jeong, Hye Won; Park, Seon-Mee; Yun, Sei Jin; Choi, Song-Yi; Sung, Rohyun; Kim, Young Ho; Yoo, Ra Young; Sun, Park Hee; Kim, Heon; Song, Young-Jin; Xu, Wen-Xie; Lee, Sang Jin

    2014-01-01

    This study was designed to examine the effects of histamine on gastric motility and its specific receptor in the circular smooth muscle of the human gastric corpus. Histamine mainly produced tonic relaxation in a concentration-dependent and reversible manner, although histamine enhanced contractility in a minor portion of tissues tested. Histamine-induced tonic relaxation was nerve-insensitive because pretreatment with nerve blockers cocktail (NBC) did not inhibit relaxation. Additionally, K+ channel blockers, such as tetraethylammonium (TEA), apamin (APA), and glibenclamide (Glib), had no effect. However, NG-nitro-L-arginine methyl ester (L-NAME) and 1H-(1,2,4)oxadiazolo (4,3-A) quinoxalin-1-one (ODQ), an inhibitor of soluble guanylate cyclase (sGC), did inhibit histamine-induced tonic relaxation. In particular, histamine-induced tonic relaxation was converted to tonic contraction by pretreatment with L-NAME. Ranitidine, the H2 receptor blocker, inhibited histamine-induced tonic relaxation. These findings suggest that histamine produced relaxation in circular smooth muscle of human gastric smooth muscle through H2 receptor and NO/sGC pathways. PMID:25352763

  2. H2 Receptor-Mediated Relaxation of Circular Smooth Muscle in Human Gastric Corpus: the Role of Nitric Oxide (NO).

    PubMed

    Lee, Sang Eok; Kim, Dae Hoon; Kim, Young Chul; Han, Joung-Ho; Choi, Woong; Kim, Chan Hyung; Jeong, Hye Won; Park, Seon-Mee; Yun, Sei Jin; Choi, Song-Yi; Sung, Rohyun; Kim, Young Ho; Yoo, Ra Young; Sun, Park Hee; Kim, Heon; Song, Young-Jin; Xu, Wen-Xie; Yun, Hyo-Yung; Lee, Sang Jin

    2014-10-01

    This study was designed to examine the effects of histamine on gastric motility and its specific receptor in the circular smooth muscle of the human gastric corpus. Histamine mainly produced tonic relaxation in a concentration-dependent and reversible manner, although histamine enhanced contractility in a minor portion of tissues tested. Histamine-induced tonic relaxation was nerve-insensitive because pretreatment with nerve blockers cocktail (NBC) did not inhibit relaxation. Additionally, K(+) channel blockers, such as tetraethylammonium (TEA), apamin (APA), and glibenclamide (Glib), had no effect. However, N(G)-nitro-L-arginine methyl ester (L-NAME) and 1H-(1,2,4)oxadiazolo (4,3-A) quinoxalin-1-one (ODQ), an inhibitor of soluble guanylate cyclase (sGC), did inhibit histamine-induced tonic relaxation. In particular, histamine-induced tonic relaxation was converted to tonic contraction by pretreatment with L-NAME. Ranitidine, the H2 receptor blocker, inhibited histamine-induced tonic relaxation. These findings suggest that histamine produced relaxation in circular smooth muscle of human gastric smooth muscle through H2 receptor and NO/sGC pathways. PMID:25352763

  3. Modeling of twitch fade based on slow interaction of nondepolarizing muscle relaxants with the presynaptic receptors.

    PubMed

    Bhatt, Shashi B; Amann, Anton; Nigrovic, Vladimir

    2006-08-01

    Nondepolarizing muscle relaxants (MRs) diminish the indirectly evoked single twitch due to their binding to the postsynaptic receptors. Additionally, the MRs produce progressive diminution of successive twitches upon repetitive stimulation (fade). Our study addresses the generation of fade as observed under clinical situation. The study was conducted in two phases. In the clinical part, we have evaluated the time course of twitch depression and fade following the administration of several doses of three MRs (rocuronium, pancuronium, and cisatracurium). In the second part, we have modified our model of neuromuscular transmission to simulate the time course of twitch depression and fade. The MR was assumed to bind to a single site on the presynaptic receptor to produce fade. The rates of interaction with the presynaptic receptors were characterized in terms of the arbitrarily assigned equilibrium dissociation constant and the half-life for dissociation of the presynaptic complex. A method was developed to relate the release of acetylcholine to the occupancy of the presynaptic receptors. The strength of the first and the fourth twitch was calculated from the peak concentration of the activated postsynaptic receptors, i.e., of those receptors with both sites occupied by acetylcholine. Our results indicate that, while the affinity of the MR for the presynaptic receptor plays little role in the time course of fade, the rate of dissociation of the complex between the presynaptic receptors and the muscle relaxant may be critical in determining the time course of fade. Tentative estimates of this parameter are offered.

  4. The effects of music relaxation and muscle relaxation techniques on sleep quality and emotional measures among individuals with posttraumatic stress disorder

    PubMed Central

    Blanaru, Monica; Bloch, Boaz; Vadas, Limor; Arnon, Zahi; Ziv, Naomi; Kremer, Ilana; Haimov, Iris

    2012-01-01

    Posttraumatic stress disorder (PTSD), an anxiety disorder with lifetime prevalence of 7.8%, is characterized by symptoms that develop following exposure to traumatic life events and that cause an immediate experience of intense fear, helplessness or horror. PTSD is marked by recurrent nightmares typified by the recall of intrusive experiences and by extended disturbance throughout sleep. Individuals with PTSD respond poorly to drug treatments for insomnia. The disadvantages of drug treatment for insomnia underline the importance of non-pharmacological alternatives. Thus, the present study had three aims: first, to compare the efficiency of two relaxation techniques (muscular relaxation and progressive music relaxation) in alleviating insomnia among individuals with PTSD using both objective and subjective measures of sleep quality; second, to examine whether these two techniques have different effects on psychological indicators of PTSD, such as depression and anxiety; and finally, to examine how initial PTSD symptom severity and baseline emotional measures are related to the efficiency of these two relaxation methods. Thirteen PTSD patients with no other major psychiatric or neurological disorders participated in the study. The study comprised one seven-day running-in, no-treatment period, followed by two seven-day experimental periods. The treatments constituted either music relaxation or muscle relaxation techniques at desired bedtime. These treatments were randomly assigned. During each of these three experimental periods, subjects' sleep was continuously monitored with a wrist actigraph (Ambulatory Monitoring, Inc.), and subjects were asked to fill out several questionnaires concerned with a wide spectrum of issues, such as sleep, depression, and anxiety. Analyses revealed a significant increase in objective and subjective sleep efficiency and a significant reduction in depression level following music relaxation. Moreover, following music relaxation, a highly

  5. The effects of music relaxation and muscle relaxation techniques on sleep quality and emotional measures among individuals with posttraumatic stress disorder.

    PubMed

    Blanaru, Monica; Bloch, Boaz; Vadas, Limor; Arnon, Zahi; Ziv, Naomi; Kremer, Ilana; Haimov, Iris

    2012-07-26

    Posttraumatic stress disorder (PTSD), an anxiety disorder with lifetime prevalence of 7.8%, is characterized by symptoms that develop following exposure to traumatic life events and that cause an immediate experience of intense fear, helplessness or horror. PTSD is marked by recurrent nightmares typified by the recall of intrusive experiences and by extended disturbance throughout sleep. Individuals with PTSD respond poorly to drug treatments for insomnia. The disadvantages of drug treatment for insomnia underline the importance of non-pharmacological alternatives. Thus, the present study had three aims: first, to compare the efficiency of two relaxation techniques (muscular relaxation and progressive music relaxation) in alleviating insomnia among individuals with PTSD using both objective and subjective measures of sleep quality; second, to examine whether these two techniques have different effects on psychological indicators of PTSD, such as depression and anxiety; and finally, to examine how initial PTSD symptom severity and baseline emotional measures are related to the efficiency of these two relaxation methods. Thirteen PTSD patients with no other major psychiatric or neurological disorders participated in the study. The study comprised one seven-day running-in, no-treatment period, followed by two seven-day experimental periods. The treatments constituted either music relaxation or muscle relaxation techniques at desired bedtime. These treatments were randomly assigned. During each of these three experimental periods, subjects' sleep was continuously monitored with a wrist actigraph (Ambulatory Monitoring, Inc.), and subjects were asked to fill out several questionnaires concerned with a wide spectrum of issues, such as sleep, depression, and anxiety. Analyses revealed a significant increase in objective and subjective sleep efficiency and a significant reduction in depression level following music relaxation. Moreover, following music relaxation, a highly

  6. Differential Effects of 7 and 16 Groups of Muscle Relaxation Training Following Repeated Submaximal Intensity Exercise in Young Football Players.

    PubMed

    Sharifah Maimunah, S M P; Hashim, H A

    2016-02-01

    This study compares two versions of progressive muscle relaxation (PMR) training (7 and 16 muscle groups) on oxygen consumption (VO2), heart rates, rating of perceived exertion and choice reaction time. Football (soccer) players (N = 26; M age = 13.4 yr., SD = 0.5) were randomly assigned to either 7 muscle groups PMR, 16 muscle groups PMR, or a control group. PMR training requires the participants to tense a muscle, hold the muscle contraction, and then relax it. Measurement was conducted prior to and after the completion of 12 sessions of PMR. The dependent variables were measured following four bouts of intermittent exercise consisting of 12 min. of running at 60% VO2max for 10 min. followed by running at 90% VO2max for 2 min. with a 3-min. rest for each bout. Lower VO2, heart rate, perceived exertion, and quicker reaction time were expected in both relaxation groups compared to the control group. The results revealed a significant reduction in heart rates and choice reaction time for both relaxation groups, but the longer version produced significantly quicker choice reaction time. PMID:27420318

  7. β-Alanine supplementation enhances human skeletal muscle relaxation speed but not force production capacity.

    PubMed

    Hannah, Ricci; Stannard, Rebecca Louise; Minshull, Claire; Artioli, Guilherme Giannini; Harris, Roger Charles; Sale, Craig

    2015-03-01

    β-Alanine (BA) supplementation improves human exercise performance. One possible explanation for this is an enhancement of muscle contractile properties, occurring via elevated intramuscular carnosine resulting in improved calcium sensitivity and handling. This study investigated the effect of BA supplementation on in vivo contractile properties and voluntary neuromuscular performance. Twenty-three men completed two experimental sessions, pre- and post-28 days supplementation with 6.4 g/day of BA (n = 12) or placebo (PLA; n = 11). During each session, force was recorded during a series of knee extensor contractions: resting and potentiated twitches and octet (8 pulses, 300 Hz) contractions elicited via femoral nerve stimulation; tetanic contractions (1 s, 1-100 Hz) via superficial muscle stimulation; and maximum and explosive voluntary contractions. BA supplementation had no effect on the force-frequency relationship, or the force responses (force at 25 and 50 ms from onset, peak force) of resting or potentiated twitches, and octet contractions (P > 0.05). Resting and potentiated twitch electromechanical delay and time-to-peak tension were unaffected by BA supplementation (P > 0.05), although half-relaxation time declined by 7-12% (P < 0.05). Maximum and explosive voluntary forces were unchanged after BA supplementation. BA supplementation had no effect on evoked force responses, implying that altered calcium sensitivity and/or release are not the mechanisms by which BA supplementation influences exercise performance. The reduced half-relaxation time with BA supplementation might, however, be explained by enhanced reuptake of calcium, which has implications for the efficiency of muscle contraction following BA supplementation.

  8. A clinical and pharmacologic review of skeletal muscle relaxants for musculoskeletal conditions.

    PubMed

    Beebe, Frank A; Barkin, Robert L; Barkin, Stacie

    2005-01-01

    Muscle strains and other musculoskeletal disorders (MSDs) are a leading cause of work absenteeism. Muscle pain, spasm, swelling, and inflammation are symptomatic of strains. The precise relationship between musculoskeletal pain and spasm is not well understood. The dictum that pain induces spasm, which causes more pain, is not substantiated by critical analysis. The painful muscle may not show EMG activity, and when there is, the timing and intensity often do not correlate with the pain. Clinical and physiologic studies show that pain tends to inhibit rather than facilitate reflex contractile activity. The decision to treat and choice of therapy are largely dictated by the duration, severity of symptoms, and degree of dysfunction. Trigger point injections are sometimes used with excellent results in the treatment of muscle spasm in myofacial pain and low-back pain. NSAIDs are used with much greater frequency than oral skeletal muscle relaxants (SMRs) or opioids in the treatment of acute MSDs. Unfortunately, remarkably little sound science guides the choice of drug for the treatment of acute, uncomplicated MSDs, and the evaluation of efficacy of one agent over another is complicated by numerous factors. Only a limited number of high-quality, randomized, controlled trials (RCTs) provide evidence of the effectiveness of NSAIDs or SMRs in the treatment of acute, uncomplicated MSDs. The quality of design, execution, and reporting of trials for the treatment of MSDs needs to be improved. The combination of an SMR and an NSAID or COX-2 inhibitor or the combination of SMR and tramadol/acetaminophen is superior to single agents alone. PMID:15767833

  9. A clinical and pharmacologic review of skeletal muscle relaxants for musculoskeletal conditions.

    PubMed

    Beebe, Frank A; Barkin, Robert L; Barkin, Stacie

    2005-01-01

    Muscle strains and other musculoskeletal disorders (MSDs) are a leading cause of work absenteeism. Muscle pain, spasm, swelling, and inflammation are symptomatic of strains. The precise relationship between musculoskeletal pain and spasm is not well understood. The dictum that pain induces spasm, which causes more pain, is not substantiated by critical analysis. The painful muscle may not show EMG activity, and when there is, the timing and intensity often do not correlate with the pain. Clinical and physiologic studies show that pain tends to inhibit rather than facilitate reflex contractile activity. The decision to treat and choice of therapy are largely dictated by the duration, severity of symptoms, and degree of dysfunction. Trigger point injections are sometimes used with excellent results in the treatment of muscle spasm in myofacial pain and low-back pain. NSAIDs are used with much greater frequency than oral skeletal muscle relaxants (SMRs) or opioids in the treatment of acute MSDs. Unfortunately, remarkably little sound science guides the choice of drug for the treatment of acute, uncomplicated MSDs, and the evaluation of efficacy of one agent over another is complicated by numerous factors. Only a limited number of high-quality, randomized, controlled trials (RCTs) provide evidence of the effectiveness of NSAIDs or SMRs in the treatment of acute, uncomplicated MSDs. The quality of design, execution, and reporting of trials for the treatment of MSDs needs to be improved. The combination of an SMR and an NSAID or COX-2 inhibitor or the combination of SMR and tramadol/acetaminophen is superior to single agents alone.

  10. β-Adrenoceptor-mediated Relaxation of Urinary Bladder Muscle in β2-Adrenoceptor Knockout Mice

    PubMed Central

    Propping, Stefan; Lorenz, Kristina; Michel, Martin C.; Wirth, Manfred P.; Ravens, Ursula

    2016-01-01

    Background and Objective: In order to characterize the β-adrenoceptor (AR) subtypes involved in agonist-stimulated relaxation of murine urinary bladder we studied the effects of (-)-isoprenaline and CL 316,243 on tonic contraction and spontaneous contractions in detrusor strips of wild-type (WT) and β2-AR knockout (β2-AR KO) mice. Materials and Methods: Urinary bladders were isolated from male WT and β2-AR KO mice. β-AR subtype expression was determined with quantitative real-time PCR. Intact muscle strips pre-contracted with KCl (40 mM) were exposed to cumulatively increasing concentrations of (-)-isoprenaline or β3-AR agonist CL 316,243 in the presence and absence of the subtype-selective β-AR blockers CGP 20712A (β1-ARs), ICI 118,551 (β2-ARs), and L748,337 (β3-ARs). Results: Quantitative real-time PCR confirmed lack of β2-AR expression in bladder tissue from β2-AR KO mice. In isolated detrusor strips, pre-contraction with KCl increased basal tone and enhanced spontaneous activity significantly more in β2-AR KO than in WT. (-)-Isoprenaline relaxed tonic tension and attenuated spontaneous activity with similar potency, but the concentrations required were two orders of magnitude higher in β2-AR KO than WT. The concentration-response curves (CRCs) for relaxation were not affected by CGP 20712A (300 nM), but were shifted to the right by ICI 118,551 (50 nM) and L748,337 (10 μM). The -logEC50 values for (-)-isoprenaline in WT and β2-AR KO tissue were 7.98 and 6.00, respectively, suggesting a large receptor reserve of β2-AR. (-)-CL 316,243 relaxed detrusor and attenuated spontaneous contractions from WT and β2-AR KO mice with a potency corresponding to the drug’s affinity for β3-AR. L743,337 shifted the CRCs to the right. Conclusion: Our findings in β2-AR KO mice suggest that there is a large receptor reserve for β2-AR in WT mice so that this β-AR subtype will mediate relaxation of tone and attenuation of spontaneous activity under physiological

  11. A Psychophysiological Comparison of the Effects of Three Relaxation Techniques: Respiratory Manipulation Training, Progressive Muscle Relaxation, and Pleasant Imagery.

    ERIC Educational Resources Information Center

    Longo, David J.

    A within-subjects, three condition design was employed to examine the effects of three relaxation techniques on blood pressures, pulse rates, and self-report measures of relaxation for 12 college students. Respiratory Manipulation Training incorporated instructions to exhale and not to inhale for as long as possible. When breathing could no longer…

  12. Circular and longitudinal muscles shortening indicates sliding patterns during peristalsis and transient lower esophageal sphincter relaxation

    PubMed Central

    Patel, Nirali; Jiang, Yanfen; Mittal, Ravinder K.; Kim, Tae Ho; Ledgerwood, Melissa

    2015-01-01

    Esophageal axial shortening is caused by longitudinal muscle (LM) contraction, but circular muscle (CM) may also contribute to axial shortening because of its spiral morphology. The goal of our study was to show patterns of contraction of CM and LM layers during peristalsis and transient lower esophageal sphincter (LES) relaxation (TLESR). In rats, esophageal and LES morphology was assessed by histology and immunohistochemistry, and function with the use of piezo-electric crystals and manometry. Electrical stimulation of the vagus nerve was used to induce esophageal contractions. In 18 healthy subjects, manometry and high frequency intraluminal ultrasound imaging during swallow-induced esophageal contractions and TLESR were evaluated. CM and LM thicknesses were measured (40 swallows and 30 TLESRs) as markers of axial shortening, before and at peak contraction, as well as during TLESRs. Animal studies revealed muscular connections between the LM and CM layers of the LES but not in the esophagus. During vagal stimulated esophageal contraction there was relative movement between the LM and CM. Human studies show that LM-to-CM (LM/CM) thickness ratio at baseline was 1. At the peak of swallow-induced contraction LM/CM ratio decreased significantly (<1), whereas the reverse was the case during TLESR (>2). The pattern of contraction of CM and LM suggests sliding of the two muscles. Furthermore, the sliding patterns are in the opposite direction during peristalsis and TLESR. PMID:26045610

  13. A comparative study of potassium-induced relaxation in vascular smooth muscle of tiger salamanders and rats.

    PubMed

    Malvin, G M; Webb, R C

    1984-07-01

    This study compares potassium-induced relaxation in vascular tissue of an amphibian (Ambystoma tigrinum) and a mammal (rat). Aortas (salamanders) and tail arteries (rats) were cut into helical strips for isometric force recording. After norepinephrine-induced contraction in potassium-free solution, arteries relaxed in response to added potassium (1-20 mmol/l). Potassium-induced relaxation was greater in rat tail arteries than in salamander aortas. Half-maximal relaxation occurred at a potassium concentration of approximately 3 mmol/l in both species. Ouabain inhibited potassium-induced relaxation; salamanders were more sensitive to the glycoside than rats. Potassium-induced relaxation decreased as the temperature of the bathing medium was lowered; half-maximal inhibition occurred at 19 and 29 degrees C for salamander aortas and rat tail arteries, respectively. Potassium-induced relaxation also varied with the interval in potassium-free solution, the hydrogen ion concentration (rats only), and the magnitude of norepinephrine-induced contraction. It appears that the cellular mechanism causing potassium-induced relaxation is similar in blood vessels of salamanders and rats. The observations are consistent with the hypothesis that stimulated electrogenic sodium transport produced membrane hyperpolarization and relaxation in vascular smooth muscle.

  14. Changes in the flexion relaxation response induced by lumbar muscle fatigue

    PubMed Central

    Descarreaux, Martin; Lafond, Danik; Jeffrey-Gauthier, Renaud; Centomo, Hugo; Cantin, Vincent

    2008-01-01

    Background The flexion relaxation phenomenon (FRP) is an interesting model to study the modulation of lumbar stability. Previous investigations have explored the effect of load, angular velocity and posture on this particular response. However, the influence of muscular fatigue on FRP parameters has not been thoroughly examined. The objective of the study is to identify the effect of erector spinae (ES) muscle fatigue and spine loading on myoelectric silence onset and cessation in healthy individuals during a flexion-extension task. Methods Twenty healthy subjects participated in this study and performed blocks of 3 complete trunk flexions under 4 different experimental conditions: no fatigue/no load (1), no fatigue/load (2), fatigue/no load(3), and fatigue/load (4). Fatigue was induced according to the Sorenson protocol, and electromyographic (EMG) power spectral analysis confirmed that muscular fatigue was adequate in each subject. Trunk and pelvis angles and surface EMG of the ES L2 and L5 were recorded during a flexion-extension task. Trunk flexion angle corresponding to the onset and cessation of myoelectric silence was then compared across the different experimental conditions using 2 × 2 repeated-measures ANOVA. Results Onset of myoelectric silence during the flexion motion appeared earlier after the fatigue task. Additionally, the cessation of myoelectric silence was observed later during the extension after the fatigue task. Statistical analysis also yielded a main effect of load, indicating a persistence of ES myoelectric activity in flexion during the load condition. Conclusion The results of this study suggest that the presence of fatigue of the ES muscles modifies the FRP. Superficial back muscle fatigue seems to induce a shift in load-sharing towards passive stabilizing structures. The loss of muscle contribution together with or without laxity in the viscoelastic tissues may have a substantial impact on post fatigue stability. PMID:18218087

  15. Transcendental meditation verus muscle relaxation: two-year follow-up of a controlled experiment.

    PubMed

    Zuroff, D C; Schwarz, J C

    1980-10-01

    In this questionnaire survey the authors measured the outcome among 20 students randomly assigned to muscle relaxation training and 19 assigned to transcendental mediatation at one year (the number of respondents in each group was 13 and 16, respectively) and two and one-half years (the number of respondents was 18 and 17, respectively). At both follow-ups there were no differences between the groups in frequency of practice or satisfaction. In both groups, less than 25% reported more than moderate satisfaction, and less than 20% practices as mush as once per week. Subjects' expectancies at nine weeks predicted their satisfaction and frequency of practice at two and on-half years. The authors conclude that although some subjects (15%-20%) to enjoy and continue to practice transcendental meditation, it is not universally beneficial.

  16. Muscle relaxant or prone position, which one unfastened the entrapped epidural catheter?

    PubMed

    Zanjani, Amir Poya; Mirzashahi, Babak; Emami, Ali; Hassani, Motahareh

    2015-01-01

    Some nonsurgical steps have been introduced to remove an entrapped catheter. But occasionally, the majority of them fail, and we are forced to extract the catheter through an invasive procedure. This article depicts our team's experience on the issue. When we found that the inserted epidural catheter was entrapped, we performed all recommended noninvasive maneuvers to release the catheter, but no progress was achieved. Therefore, after obtaining informed consent, we induced anesthesia and changed her to a prone position to explore her back. The intact catheter was removed easily in this stage. The authors believe, in this process, it would have been better if they had tried pulling the catheter in a prone position as a preliminary step. Furthermore, pulling the catheter in a prone position after injecting a muscle relaxant appeared to be more effective and saved the patient from the scheduled surgery. PMID:26240556

  17. Self-organising learning control and its application to muscle relaxant anaesthesia.

    PubMed

    Linkens, D A; Hasnain, S B

    1990-11-01

    The concept of a self-organising control system is attractive in biomedicine because of the imprecise nature of available physiological models. In this paper a particular strategy called a self-organising controller (SOC) originating from the work of Barron on aerospace systems is applied to the control of muscle relaxant anaesthesia. The SOC algorithm, which requires no prior knowledge of system dynamics, is described, both in single variable and multivariable format. Simulation results are presented for SOC performance on a well-established pancuronium model. Three implementations are described, being the use of a general purpose language, a SUN workstation approach, and a parallel computer transputer solution. The latter approach becomes important for multivariable control because of the computing-intensive nature of SOC. The transputer is shown to be a suitable vehicle for implementation in terms of speed and parallelism for SOC.

  18. Effects of the hold and relax-agonist contraction technique on recovery from delayed onset muscle soreness after exercise in healthy adults

    PubMed Central

    Cha, Hyun-Gyu; Kim, Myoung-Kwon

    2015-01-01

    [Purpose] This study was conducted to verify the effects of the hold relax-agonist contraction and passive straight leg raising techniques on muscle activity, fatigue, and range of motion of the hip joint after the induction of delayed onset muscle soreness in the hamstring muscle. [Subjects] Sixty subjects were randomly assigned to a hold relax-agonist contraction group and a passive straight leg raising group. [Methods] Subjects in the experimental group underwent hold relax-agonist contraction at the hamstring muscle, while subjects in the control group underwent passive straight leg raising at the hamstring muscle. [Results] Subjects in the hold relax-agonist contraction group showed a significant increase in hamstring muscle activity and hip joint angle and a significant decrease in muscle fatigue. In the passive straight leg raising group, the hip joint angle increased significantly after the intervention. In the hold relax-agonist contraction group, hamstring muscle activity increased significantly and muscle fatigue decreased significantly. [Conclusion] We conclude that the hold relax-agonist contraction technique may be beneficial for improving muscle activation and decreasing muscle fatigue. PMID:26644691

  19. Smooth muscle membrane potential modulates endothelium-dependent relaxation of rat basilar artery via myo-endothelial gap junctions.

    PubMed

    Allen, Tracy; Iftinca, Mircea; Cole, William C; Plane, Frances

    2002-12-15

    The release of endothelium-derived relaxing factors, such as nitric oxide (NO), is dependent on an increase in intracellular calcium levels ([Ca(2+)](i)) within endothelial cells. Endothelial cell membrane potential plays a critical role in the regulation of [Ca(2+)](i) in that calcium influx from the extracellular space is dependent on membrane hyperpolarization. In this study, the effect of inhibition of vascular smooth muscle delayed rectifier K(+) (K(DR)) channels by 4-aminopyridine (4-AP) on endothelium-dependent relaxation of rat basilar artery to acetylcholine (ACh) was assessed. ACh-evoked endothelium-dependent relaxations were inhibited by N-(Omega)-nitro-L-arginine (L-NNA) or 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), confirming a role for NO and guanylyl cyclase. 4-AP (300 microM) also suppressed ACh-induced relaxation, with the maximal response reduced from approximately 92 to approximately 33 % (n = 11; P < 0.01). However, relaxations in response to exogenous NO, applied in the form of authentic NO, sodium nitroprusside or diethylamineNONOate (DEANONOate), were not affected by 4-AP treatment (n = 3-11). These data are not consistent with the view that 4-AP-sensitive K(DR) channels are mediators of vascular hyperpolarization and relaxation in response to endothelium-derived NO. Inhibition of ACh-evoked relaxation by 4-AP was reversed by pinacidil (0.5-1 microM; n = 5) or 18beta-glycyrrhetinic acid (18betaGA; 5 microM; n = 5), indicating that depolarization and electrical coupling of the smooth muscle to the endothelium were involved. 4-AP caused depolarization of both endothelial and vascular smooth muscle cells of isolated segments of basilar artery (mean change 11 +/- 1 and 9 +/- 2 mV, respectively; n = 15). Significantly, 18betaGA almost completely prevented the depolarization of endothelial cells (n = 6), but not smooth muscle cells (n = 6) by 4-AP. ACh-induced hyperpolarization of endothelium and smooth muscle cells was also reduced by 4-AP

  20. Neuronal and smooth muscle receptors involved in the PACAP- and VIP-induced relaxations of the pig urinary bladder neck

    PubMed Central

    Hernández, M; Barahona, M V; Recio, P; Benedito, S; Martínez, A C; Rivera, L; García-Sacristán, A; Prieto, D; Orensanz, L M

    2006-01-01

    Background and purpose: As pituitary adenylate cyclase-activating polypeptide 38 (PACAP 38)- and vasoactive intestinal peptide (VIP) are widely distributed in the urinary tract, the current study investigated the receptors and mechanisms involved in relaxations induced by these peptides in the pig bladder neck. Experimental approach: Urothelium-denuded strips were suspended in organ baths for isometric force recordings and the relaxations to VIP and PACAP analogues were investigated. Key results: VIP, PACAP 38, PACAP 27 and [Ala11,22,28]-VIP produced similar relaxations. Inhibition of neuronal voltage-gated Ca2+ channels reduced relaxations to PACAP 38 and increased those induced by VIP. Blockade of capsaicin-sensitive primary afferents (CSPA), nitric oxide (NO)-synthase or guanylate cyclase reduced the PACAP 38 relaxations but failed to modify the VIP responses. Inhibition of VIP/PACAP receptors and of voltage-gated K+ channels reduced PACAP 38 and VIP relaxations, which were not modified by the K+ channel blockers iberiotoxin, charybdotoxin, apamin or glibenclamide. The phosphodiesterase 4 inhibitor rolipram and the adenylate cyclase activator forskolin produced potent relaxations. Blockade of protein kinase A (PKA) reduced PACAP 38- and VIP-induced relaxations. Conclusions and implications: PACAP 38 and VIP relax the pig urinary bladder neck through muscle VPAC2 receptors linked to the cAMP-PKA pathway and involve activation of voltage-gated K+ channels. Facilitatory PAC1 receptors located at CSPA and coupled to NO release, and inhibitory VPAC receptors at motor endings are also involved in the relaxations to PACAP 38 and VIP, respectively. VIP/PACAP receptor antagonists could be useful in the therapy of urinary incontinence produced by intrinsic sphincter deficiency. PMID:16847435

  1. Argentinian plant extracts with relaxant effect on the smooth muscle of the corpus cavernosum of guinea pig.

    PubMed

    Hnatyszyn, O; Moscatelli, V; Garcia, J; Rondina, R; Costa, M; Arranz, C; Balaszczuk, A; Ferraro, G; Coussio, J D

    2003-11-01

    Extracts of different polarity from Baccharis trimera, Haplopappus rigidus Huperzia saururus, Maytenus ilicifolia, Satureja parvifolia and Senecio eriophyton were tested for their relaxant activity on smooth muscle using L-phenylephrine precontracted strips of corpus cavernosum obtained from Guinea pigs. Highly significant and dose dependent results were obtained with the dichloromethane extracts of H. saururus (87% of relaxation at the dose of 10 mg/ml), S. parvifolia (95% of relaxation at 2.5 mg/ml) and S. eriophyton (94% of relaxation at 5 mg/ml). Similar effects were observed with the methanol extracts of H. saururus (88% of relaxation at 10 mg/ml) and S. parvifolia (84% of relaxation at 10 mg/ml). These results were comparable to those obtained with the dichloromethane and methanol extracts of the well known Mexican species Turnera diffusa. Moreover, the aqueous extract of H. rigidus and the aqueous and methanol extracts of S. eriophyton were highly effective in a dose dependent manner (more than 90% of relaxation at the dose of 10 mg/ml). Significant results, but with a lower overall relaxant activity (about 70% of relaxation at 10 mg/ml), could also be obtained with the aqueous extract of S. parvifolia and with the dichlormethane and methanol extracts of B. trimera and M. ilicifolia. The positive controls with Sildenafil citrate at doses ranging from 0.35 to 35 microg/ml yielded moderate effects (up to 46% of relaxation at 35 microg/ml). The effects observed in the present study seem to validate the folk medicinal use of the tested plants and open new ways in the search for natural products with vasodilatory effects. PMID:14692728

  2. Muscle relaxing activity of Hyssopus officinalis essential oil on isolated intestinal preparations.

    PubMed

    Lu, Mei; Battinelli, Lucia; Daniele, Claudia; Melchioni, Cristiana; Salvatore, Giuseppe; Mazzanti, Gabriela

    2002-03-01

    The muscle relaxing activity of the essential oil of Hyssopus officinalis L. (Lamiaceae) and some of its main components (isopinocamphone, limonene and beta-pinene) was studied on isolated preparations of guinea-pig and rabbit intestine. The essential oil and isopinocamphone inhibited the acetylcholine- and BaCl2-induced contractions in guinea-pig ileum in a concentration-dependent manner (IC50 42.4 microg/ml and 61.9 microg/ml to acetylcholine; 48.3 microg/ml and 70.4 microg/ml to BaCl2) whereas limonene or beta-pinene left tissue contraction unchanged. In guinea-pig ileum H. officinalis essential oil also blocked the contractions induced by CaCl2. In isolated rabbit jejunum the essential oil reduced the amplitude of spontaneous movements and decreased the basal tone; neither haemoglobin, methylene blue, N(omega)-nitro-L-arginine methyl ester (L-NAME) or propranolol blocked the myorelaxant effect.

  3. Muscle relaxing activity of Hyssopus officinalis essential oil on isolated intestinal preparations.

    PubMed

    Lu, Mei; Battinelli, Lucia; Daniele, Claudia; Melchioni, Cristiana; Salvatore, Giuseppe; Mazzanti, Gabriela

    2002-03-01

    The muscle relaxing activity of the essential oil of Hyssopus officinalis L. (Lamiaceae) and some of its main components (isopinocamphone, limonene and beta-pinene) was studied on isolated preparations of guinea-pig and rabbit intestine. The essential oil and isopinocamphone inhibited the acetylcholine- and BaCl2-induced contractions in guinea-pig ileum in a concentration-dependent manner (IC50 42.4 microg/ml and 61.9 microg/ml to acetylcholine; 48.3 microg/ml and 70.4 microg/ml to BaCl2) whereas limonene or beta-pinene left tissue contraction unchanged. In guinea-pig ileum H. officinalis essential oil also blocked the contractions induced by CaCl2. In isolated rabbit jejunum the essential oil reduced the amplitude of spontaneous movements and decreased the basal tone; neither haemoglobin, methylene blue, N(omega)-nitro-L-arginine methyl ester (L-NAME) or propranolol blocked the myorelaxant effect. PMID:11914956

  4. Effects of fatigue and reduced intracellular pH on segment dynamics in 'isometric' relaxation of frog muscle fibres.

    PubMed

    Curtin, N A; Edman, K A

    1989-06-01

    1. Longitudinal movements of marked segments of single fibres from the anterior tibialis muscle were recorded during tetanus and relaxation under isometric (fixed-end) conditions. 2. During relaxation, shortening and lengthening of different segments occurred simultaneously, starting at about the same time as the end of the linear fall of force (shoulder on the force record). 3. Variations in intracellular pH, measured with pH-sensitive microelectrodes, along the length of fibres were not statistically significant, and are unlikely to be responsible for the non-uniform behaviour of different segments. 4. As expected from earlier studies, both fatigue (produced by increasing tetanus duration or decreasing the time between tetani) and intracellular acidification (produced by raised extracellular CO2), reduced the tetanus force and prolonged the linear phase of force decline in relaxation. Each treatment delayed the start and markedly reduced the amount of segment movement in relaxation. 5. Fatigue and intracellular acidification have a smaller effect on force during stretching than on force produced under isometric conditions. This may contribute to making the segments behave in a more uniform way during relaxation under these conditions. 6. Changes in the Ca2+ uptake mechanisms are also discussed as possible causes for the changes in segment behaviour in relaxation.

  5. Synthesis and pharmacological screening for muscle relaxant, anticonvulsant, and sedative activities of certain organic compounds produced by Michael addition.

    PubMed

    Said, Makarem M; Ahmed, Amany A E; El-Alfy, Abir T

    2004-12-01

    Michael addition of certain nucleophiles on alpha, beta-unsaturated ketones 1 led to the formation of adducts 2-7 as well as the reaction of arylidene derivatives with secondary amines afforded the amino compounds 9 and 11. Also, dialkylmalonates were treated with alpha-cyano cinnamide to afford 13. On the other hand, double Michael cycloaddition of ethylcyanoacetate or tetrachlorophthalic anhydride to the suitable divinylketone were synthesized to produce 15-17. Selected compounds (13 and 6) were screened for muscle relaxant, anticonvulsant, and sedative activities using established pharmacological models. Their activities were compared with that of phenobarbital sodium taken as standard. Compound 6 was the most potent muscle relaxant while compounds 13a and 13c offered the highest anticonvulsant activity. Meanwhile compound 13c showed the highest potentiation of phenobarbital induced sleep in mice. PMID:15646790

  6. In vitro effect of medicinal plants used to treat erectile dysfunction on smooth muscle relaxation and human sperm.

    PubMed

    Rakuambo, N C; Meyer, J J M; Hussein, A; Huyser, C; Mdlalose, S P; Raidani, T G

    2006-04-21

    Chloroform and ethanol extracts of root bark of Securidaca longepedunculata, Wrightia natalensis and Rhoicissus tridentata were investigated for their in vitro activity on the contraction of corpus cavernosal smooth muscle of white New Zealand rabbits. Some of the extracts of these plants relaxed the corpus cavernosal smooth muscle at low concentrations. The highest activity was obtained from Securidaca longepedunculata chloroform extracts at a concentration of 13.0 mg/ml, which induced 66.6% relaxation. Viagra was used as a positive control in this study. Extracts of Securidaca longepedunculata added to human spermatozoa affected certain sperm parameters negatively at 6.5 mg/ml and higher whilst there was no effect at 1.0 mg/ml. PMID:16309865

  7. Mechanical Impedance of the Non-loaded Lower Leg with Relaxed Muscles in the Transverse Plane

    PubMed Central

    Ficanha, Evandro Maicon; Ribeiro, Guilherme Aramizo; Rastgaar, Mohammad

    2015-01-01

    This paper describes the protocols and results of the experiments for the estimation of the mechanical impedance of the humans’ lower leg in the External–Internal direction in the transverse plane under non-load bearing condition and with relaxed muscles. The objectives of the estimation of the lower leg’s mechanical impedance are to facilitate the design of passive and active prostheses with mechanical characteristics similar to the humans’ lower leg, and to define a reference that can be compared to the values from the patients suffering from spasticity. The experiments were performed with 10 unimpaired male subjects using a lower extremity rehabilitation robot (Anklebot, Interactive Motion Technologies, Inc.) capable of applying torque perturbations to the foot. The subjects were in a seated position, and the Anklebot recorded the applied torques and the resulting angular movement of the lower leg. In this configuration, the recorded dynamics are due mainly to the rotations of the ankle’s talocrural and the subtalar joints, and any contribution of the tibiofibular joints and knee joint. The dynamic mechanical impedance of the lower leg was estimated in the frequency domain with an average coherence of 0.92 within the frequency range of 0–30 Hz, showing a linear correlation between the displacement and the torques within this frequency range under the conditions of the experiment. The mean magnitude of the stiffness of the lower leg (the impedance magnitude averaged in the range of 0–1 Hz) was determined as 4.9 ± 0.74 Nm/rad. The direct estimation of the quasi-static stiffness of the lower leg results in the mean value of 5.8 ± 0.81 Nm/rad. An analysis of variance shows that the estimated values for the stiffness from the two experiments are not statistically different. PMID:26697424

  8. Mechanical Impedance of the Non-loaded Lower Leg with Relaxed Muscles in the Transverse Plane.

    PubMed

    Ficanha, Evandro Maicon; Ribeiro, Guilherme Aramizo; Rastgaar, Mohammad

    2015-01-01

    This paper describes the protocols and results of the experiments for the estimation of the mechanical impedance of the humans' lower leg in the External-Internal direction in the transverse plane under non-load bearing condition and with relaxed muscles. The objectives of the estimation of the lower leg's mechanical impedance are to facilitate the design of passive and active prostheses with mechanical characteristics similar to the humans' lower leg, and to define a reference that can be compared to the values from the patients suffering from spasticity. The experiments were performed with 10 unimpaired male subjects using a lower extremity rehabilitation robot (Anklebot, Interactive Motion Technologies, Inc.) capable of applying torque perturbations to the foot. The subjects were in a seated position, and the Anklebot recorded the applied torques and the resulting angular movement of the lower leg. In this configuration, the recorded dynamics are due mainly to the rotations of the ankle's talocrural and the subtalar joints, and any contribution of the tibiofibular joints and knee joint. The dynamic mechanical impedance of the lower leg was estimated in the frequency domain with an average coherence of 0.92 within the frequency range of 0-30 Hz, showing a linear correlation between the displacement and the torques within this frequency range under the conditions of the experiment. The mean magnitude of the stiffness of the lower leg (the impedance magnitude averaged in the range of 0-1 Hz) was determined as 4.9 ± 0.74 Nm/rad. The direct estimation of the quasi-static stiffness of the lower leg results in the mean value of 5.8 ± 0.81 Nm/rad. An analysis of variance shows that the estimated values for the stiffness from the two experiments are not statistically different.

  9. Conserved Intramolecular Interactions Maintain Myosin Interacting-Heads Motifs Explaining Tarantula Muscle Super-Relaxed State Structural Basis.

    PubMed

    Alamo, Lorenzo; Qi, Dan; Wriggers, Willy; Pinto, Antonio; Zhu, Jingui; Bilbao, Aivett; Gillilan, Richard E; Hu, Songnian; Padrón, Raúl

    2016-03-27

    Tarantula striated muscle is an outstanding system for understanding the molecular organization of myosin filaments. Three-dimensional reconstruction based on cryo-electron microscopy images and single-particle image processing revealed that, in a relaxed state, myosin molecules undergo intramolecular head-head interactions, explaining why head activity switches off. The filament model obtained by rigidly docking a chicken smooth muscle myosin structure to the reconstruction was improved by flexibly fitting an atomic model built by mixing structures from different species to a tilt-corrected 2-nm three-dimensional map of frozen-hydrated tarantula thick filament. We used heavy and light chain sequences from tarantula myosin to build a single-species homology model of two heavy meromyosin interacting-heads motifs (IHMs). The flexibly fitted model includes previously missing loops and shows five intramolecular and five intermolecular interactions that keep the IHM in a compact off structure, forming four helical tracks of IHMs around the backbone. The residues involved in these interactions are oppositely charged, and their sequence conservation suggests that IHM is present across animal species. The new model, PDB 3JBH, explains the structural origin of the ATP turnover rates detected in relaxed tarantula muscle by ascribing the very slow rate to docked unphosphorylated heads, the slow rate to phosphorylated docked heads, and the fast rate to phosphorylated undocked heads. The conservation of intramolecular interactions across animal species and the presence of IHM in bilaterians suggest that a super-relaxed state should be maintained, as it plays a role in saving ATP in skeletal, cardiac, and smooth muscles. PMID:26851071

  10. Structure of myosin filaments from relaxed Lethocerus flight muscle by cryo-EM at 6 Å resolution

    PubMed Central

    Hu, Zhongjun; Taylor, Dianne W.; Reedy, Michael K.; Edwards, Robert J.; Taylor, Kenneth A.

    2016-01-01

    We describe a cryo–electron microscopy three-dimensional image reconstruction of relaxed myosin II–containing thick filaments from the flight muscle of the giant water bug Lethocerus indicus. The relaxed thick filament structure is a key element of muscle physiology because it facilitates the reextension process following contraction. Conversely, the myosin heads must disrupt their relaxed arrangement to drive contraction. Previous models predicted that Lethocerus myosin was unique in having an intermolecular head-head interaction, as opposed to the intramolecular head-head interaction observed in all other species. In contrast to the predicted model, we find an intramolecular head-head interaction, which is similar to that of other thick filaments but oriented in a distinctly different way. The arrangement of myosin’s long α-helical coiled-coil rod domain has been hypothesized as either curved layers or helical subfilaments. Our reconstruction is the first report having sufficient resolution to track the rod α helices in their native environment at resolutions ~5.5 Å, and it shows that the layer arrangement is correct for Lethocerus. Threading separate paths through the forest of myosin coiled coils are four nonmyosin peptides. We suggest that the unusual position of the heads and the rod arrangement separated by nonmyosin peptides are adaptations for mechanical signal transduction whereby applied tension disrupts the myosin heads as a component of stretch activation. PMID:27704041

  11. In skeletal muscle the relaxation of the resting membrane potential induced by K(+) permeability changes depends on Cl(-) transport.

    PubMed

    Geukes Foppen, R J

    2004-01-01

    In resting skeletal muscle the potassium permeability is determined by the permeability of the inwardly potassium rectifier. Continuous resting membrane potential measurements are done to follow the relaxation of the membrane potential upon changes in potassium permeability. Inhibition of the inwardly potassium rectifier, by extracellular application of 80 microM Ba(2+), causes the cell to depolarize with mean time constants as follows: in control 127+/-7 s ( n=23), in the presence of bumetanide, as an inhibitor of the Na(+)/K(+)/2Cl(-) cotransporter, 182+/-23 s ( n=7), in hypertonic media (340 mosmol/kg) 90.4+/-5 s ( n=7) and in reduced chloride medium 64+/-8 s ( n=5). The depolarizing relaxation of the membrane potential induced by reduction of extracellular potassium produces similar results. These time constants are at least three orders of magnitude slower than the time constants reported in the literature for the inhibition of the inwardly potassium rectifier. Chloride transport affects the relaxation of the membrane potential. A further characterization of chloride transport is done by following the relaxation of the membrane potential upon application of chloride transport modulators. It is argued that the electroneutral cotransporter, for which a flux was preliminarily estimated of 13.4 pmol cm(-2) s(-1), has a considerable role in the processes related to the resting membrane potential.

  12. Effect of tissue fat and water content on nuclear magnetic resonance relaxation times of cardiac and skeletal muscle.

    PubMed

    Scholz, T D; Fleagle, S R; Parrish, F C; Breon, T; Skorton, D J

    1990-01-01

    Understanding tissue determinants that affect the nuclear magnetic resonance (NMR) properties of myocardium would improve noninvasive characterization of myocardial tissue. To determine if NMR relaxation times would reflect changes in tissue fat content, two experimental models were investigated. First, an idealized model using mixtures of beef skeletal muscle and beef fat was studied to investigate the effects of a wide range of tissue fat content. Second, myocardium with varying fat content from hogs raised to have varying degrees of ponderosity was analyzed. Tissue fat and water contents and spin-lattice (T1) and spin-spin (T2) relaxation times at 20 MHz were measured. The skeletal muscle/fat mixtures ranged in fat content from 35% to 95% with water content variations from 50% to 75%. Water content decreased as fat content increased. A significant inverse linear relationship was found between T1 and sample fat content (r = -0.997). Spin-spin relaxation times showed a significant positive curvilinear relationship with fat content (r2 = 0.96). In the animal experiments, 18 hogs were studied with samples obtained from both right and left ventricular (LV) free walls, with care taken to avoid epicardial fat. Myocardial fat content ranged from 3% to 25%. A significant correlation was found between LV fat content and corrected LV mass (r = 0.62), which suggested that the increase in LV mass could be explained, at least in part, by changes in myocardial fat content. Similar to the muscle/fat mixture model, a significant positive curvilinear relationship was found between myocardial T2 and tissue fat content (r2 = 0.67) for all the myocardial samples.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Simultaneous determination of mebeverine hydrochloride and chlordiazepoxide in their binary mixture using novel univariate spectrophotometric methods via different manipulation pathways

    NASA Astrophysics Data System (ADS)

    Lotfy, Hayam M.; Fayez, Yasmin M.; Michael, Adel M.; Nessim, Christine K.

    2016-02-01

    Smart, sensitive, simple and accurate spectrophotometric methods were developed and validated for the quantitative determination of a binary mixture of mebeverine hydrochloride (MVH) and chlordiazepoxide (CDZ) without prior separation steps via different manipulating pathways. These pathways were applied either on zero order absorption spectra namely, absorbance subtraction (AS) or based on the recovered zero order absorption spectra via a decoding technique namely, derivative transformation (DT) or via ratio spectra namely, ratio subtraction (RS) coupled with extended ratio subtraction (EXRS), spectrum subtraction (SS), constant multiplication (CM) and constant value (CV) methods. The manipulation steps applied on the ratio spectra are namely, ratio difference (RD) and amplitude modulation (AM) methods or applying a derivative to these ratio spectra namely, derivative ratio (DD1) or second derivative (D2). Finally, the pathway based on the ratio spectra of derivative spectra is namely, derivative subtraction (DS). The specificity of the developed methods was investigated by analyzing the laboratory mixtures and was successfully applied for their combined dosage form. The proposed methods were validated according to ICH guidelines. These methods exhibited linearity in the range of 2-28 μg/mL for mebeverine hydrochloride and 1-12 μg/mL for chlordiazepoxide. The obtained results were statistically compared with those of the official methods using Student t-test, F-test, and one way ANOVA, showing no significant difference with respect to accuracy and precision.

  14. The influence of increased muscle spindle sensitivity on Achilles tendon jerk and H-reflex in relaxed human subjects.

    PubMed

    Rossi-Durand, Christiane

    2002-01-01

    Whether the fusimotor system contributes to reflex gain changes during reinforcement maneuvers is re-examined in the light of new data. Recently, from direct recordings of spindle afferent activity originating from ankle flexor muscles, we showed that mental computation increased the muscle spindle mechanical sensitivity in completely relaxed human subjects without concomitant alpha-motoneuron activation, providing evidence for selective fusimotor drive activation. In the present study, the effects of mental computation were investigated on monosynaptic reflexes elicited in non-contracting soleus muscle either by direct nerve stimulation (Hoffmann reflex, H) or by tendon tap (Tendinous reflex, T). The aim was to relate the time course of the changes in reflex size to the increase in spindle sensitivity during mental task in order to explore whether fusimotor activation can influence the size of the monosynaptic reflex. The results show changes in reflex amplitude that parallel the increase in muscle spindle sensitivity. When T-reflex is consistently facilitated during mental effort, the H-reflex is either depressed or facilitated, depending on the subjects. These findings suggest that the increased activity in muscle spindle primary endings may account for mental computation-induced changes in both tendon jerk and H-reflex. The facilitation of T-reflex is attributed to the enhanced spindle mechanical sensitivity and the inhibition of H-reflex is attributed to post-activation depression following the increased Ia ongoing discharge. This study supports the view that the fusimotor sensitization of muscle spindles is responsible for changes in both the mechanically and electrically elicited reflexes. It is concluded that the fusimotor drive contributed to adjustment of the size of tendon jerk and H-reflex during mental effort. The possibility that a mental computation task may also operate by reducing the level of presynaptic inhibition is discussed on the basis of H

  15. Activation of bitter taste receptors (tas2rs) relaxes detrusor smooth muscle and suppresses overactive bladder symptoms

    PubMed Central

    Nyirimigabo, Eric; Mi, Yue; Wang, Yan; Liu, Qinghua; Man, Libo; Wu, Shiliang; Jin, Jie; Ji, Guangju

    2016-01-01

    Bitter taste receptors (TAS2Rs) are traditionally thought to be expressed exclusively on the taste buds of the tongue. However, accumulating evidence has indicated that this receptor family performs non-gustatory functions outside the mouth in addition to taste. Here, we examined the role of TAS2Rs in human and mouse detrusor smooth muscle (DSM). We showed that mRNA for various TAS2R subtypes was expressed in both human and mouse detrusor smooth muscle (DSM) at distinct levels. Chloroquine (CLQ), an agonist for TAS2Rs, concentration-dependently relaxed carbachol- and KCl-induced contractions of human DSM strips. Moreover, 100 μM of CLQ significantly inhibited spontaneous and electrical field stimulation (EFS)-induced contractions of human DSM strips. After a slight contraction, CLQ (1 mM) entirely relaxed carbachol-induced contraction of mouse DSM strips. Furthermore, denatonium and quinine concentration-dependently decreased carbachol-induced contractions of mouse DSM strips. Finally, we demonstrated that CLQ treatment significantly suppressed the overactive bladder (OAB) symptoms of mice with partial bladder outlet obstruction (PBOO). In conclusion, we for the first time provide evidence of the existence of TAS2Rs in the urinary DSM and demonstrate that TAS2Rs may represent a potential target for OAB. These findings open a new approach to develop drugs for OAB in the future. PMID:27056888

  16. Do sleep hygiene measures and progressive muscle relaxation influence sleep bruxism? Report of a randomised controlled trial.

    PubMed

    Valiente López, M; van Selms, M K A; van der Zaag, J; Hamburger, H L; Lobbezoo, F

    2015-04-01

    The aim of this study was to assess the effects of sleep hygiene measures combined with relaxation techniques in the management of sleep bruxism (SB) in a double-blind, parallel, controlled, randomised clinical trial design. Sixteen participants (mean ± s.d. age = 39·9 ± 10·8 years) were randomly assigned to a control group (n = 8) or to the experimental treatment group (n = 8). Participants belonging to the latter group were instructed to perform sleep hygiene measures and progressive muscle relaxation techniques for a 4-week period. Two polysomnographic recordings, including bilateral masseter electromyographic activity, were made: one prior to the treatment and the other after the treatment period. The number of bruxism episodes per hour, the number of burst per hour and the bruxism time index (i.e. the percentage of total sleep time spent bruxing) were established as outcome variables. No significant differences could be observed between the outcome measures obtained before and after the 4-week period, neither for the sleep bruxism variables nor for the sleep variables. Within the limitations of this study, it was concluded that there is no effect of sleep hygiene measures together with progressive relaxation techniques on sleep bruxism or sleep over a 4-week observation period.

  17. Selective targeting of the α5-subunit of GABAA receptors relaxes airway smooth muscle and inhibits cellular calcium handling

    PubMed Central

    Yocum, Gene T.; Siviski, Matthew E.; Yim, Peter D.; Fu, Xiao Wen; Poe, Michael M.; Cook, James M.; Harrison, Neil; Perez-Zoghbi, Jose; Emala, Charles W.

    2015-01-01

    The clinical need for novel bronchodilators for the treatment of bronchoconstrictive diseases remains a major medical issue. Modulation of airway smooth muscle (ASM) chloride via GABAA receptor activation to achieve relaxation of precontracted ASM represents a potentially beneficial therapeutic option. Since human ASM GABAA receptors express only the α4- and α5-subunits, there is an opportunity to selectively target ASM GABAA receptors to improve drug efficacy and minimize side effects. Recently, a novel compound (R)-ethyl8-ethynyl-6-(2-fluorophenyl)-4-methyl-4H-benzo[f]imidazo[1,5-a][1,4] diazepine-3-carboxylate (SH-053-2′F-R-CH3) with allosteric selectivity for α5-subunit containing GABAA receptors has become available. We questioned whether this novel GABAA α5-selective ligand relaxes ASM and affects intracellular calcium concentration ([Ca2+]i) regulation. Immunohistochemical staining localized the GABAA α5-subunit to human ASM. The selective GABAA α5 ligand SH-053-2′F-R-CH3 relaxes precontracted intact ASM; increases GABA-activated chloride currents in human ASM cells in voltage-clamp electrophysiology studies; and attenuates bradykinin-induced increases in [Ca2+]i, store-operated Ca2+ entry, and methacholine-induced Ca2+ oscillations in peripheral murine lung slices. In conclusion, selective subunit targeting of endogenous α5-subunit containing GABAA receptors on ASM may represent a novel therapeutic option to treat severe bronchospasm. PMID:25659897

  18. Influenza A infection attenuates relaxation responses of mouse tracheal smooth muscle evoked by acrolein.

    PubMed

    Cheah, Esther Y; Mann, Tracy S; Burcham, Philip C; Henry, Peter J

    2015-02-15

    The airway epithelium is an important source of relaxant mediators, and damage to the epithelium caused by respiratory tract viruses may contribute to airway hyperreactivity. The aim of this study was to determine whether influenza A-induced epithelial damage would modulate relaxation responses evoked by acrolein, a toxic and prevalent component of smoke. Male BALB/c mice were inoculated intranasally with influenza A/PR-8/34 (VIRUS-infected) or allantoic fluid (SHAM-infected). On day 4 post-inoculation, isometric tension recording studies were conducted on carbachol pre-contracted tracheal segments isolated from VIRUS and SHAM mice. Relaxant responses to acrolein (30 μM) were markedly smaller in VIRUS segments compared to SHAM segments (2 ± 1% relaxation vs. 28 ± 5%, n=14, p<0.01). Similarly, relaxation responses of VIRUS segments to the neuropeptide substance P (SP) were greatly attenuated (1 ± 1% vs. 47 ± 6% evoked by 1 nM SP, n=14, p<0.001). Consistent with epithelial damage, PGE2 release in response to both acrolein and SP were reduced in VIRUS segments (>35% reduction, n=6, p<0.01), as determined using ELISA. In contrast, exogenous PGE2 was 2.8-fold more potent in VIRUS relative to SHAM segments (-log EC50 7.82 ± 0.14 vs. 7.38 ± 0.05, n=7, p<0.01) whilst responses of VIRUS segments to the β-adrenoceptor agonist isoprenaline were similar to SHAM segments. In conclusion, relaxation responses evoked by acrolein were profoundly diminished in tracheal segments isolated from influenza A-infected mice. The mechanism through which influenza A infection attenuates this response appears to involve reduced production of PGE2 in response to SP due to epithelial cell loss, and may provide insight into the airway hyperreactivity observed with influenza A infection.

  19. Pleiotropic Effects of Bitter Taste Receptors on [Ca2+]i Mobilization, Hyperpolarization, and Relaxation of Human Airway Smooth Muscle Cells.

    PubMed

    Camoretti-Mercado, Blanca; Pauer, Susan H; Yong, Hwan Mee; Smith, Dan'elle C; Deshpande, Deepak A; An, Steven S; Liggett, Stephen B

    2015-01-01

    Asthma is characterized by airway inflammation and airflow obstruction from human airway smooth muscle (HASM) constriction due to increased local bronchoconstrictive substances. We have recently found bitter taste receptors (TAS2Rs) on HASM, which increase [Ca2+]i and relax the muscle. We report here that some, but not all, TAS2R agonists decrease [Ca2+]i and relax HASM contracted by G-protein coupled receptors (GPCRs) that stimulate [Ca2+]i. This suggests both a second pathway by which TAS2Rs relax, and, a heterogeneity of the response phenotype. We utilized eight TAS2R agonists and five procontractile GPCR agonists in cultured HASM cells. We find that heterogeneity in the inhibitory response hinges on which procontractile GPCR is activated. For example, chloroquine inhibits [Ca2+]i increases from histamine, but failed to inhibit [Ca2+]i increases from endothelin-1. Conversely, aristolochic acid inhibited [Ca2+]i increases from endothelin-1 but not histamine. Other dichotomous responses were found when [Ca2+]i was stimulated by bradykinin, angiotensin, and acetylcholine. There was no association between [Ca2+]i inhibition and TAS2R subtype, nor whether [Ca2+]i was increased by Gq- or Gi-coupled GPCRs. Selected studies revealed a correlation between [Ca2+]i inhibition and HASM cell-membrane hyperpolarization. To demonstrate physiologic correlates, ferromagnetic beads were attached to HASM cells and cell stiffness measured by magnetic twisting cytometry. Consistent with the [Ca2+]i inhibition results, chloroquine abolished the cell stiffening response (contraction) evoked by histamine but not by endothelin-1, while aristolochic acid inhibited cell stiffening from endothelin-1, but not from histamine. In studies using intact human bronchi, these same differential responses were found. Those TAS2R agonists that decreased [Ca2+]i, promoted hyperpolarization, and decreased HASM stiffness, caused relaxation of human airways. Thus TAS2Rs relax HASM in two ways: a low

  20. Cyanide and sulfide interact with nitrogenous compounds to influence the relaxation of various smooth muscles

    SciTech Connect

    Kruszyna, H.; Kruszyna, R.; Smith, R.P.

    1985-05-01

    Sodium nitroprusside relaxed guinea pig ileum after the segment had been submaximally contracted by either histamine or acetylcholine, intact isolated rabbit gall bladder after submaximal contraction by either acetylcholine or cholecystokinin octapeptide, and rat pulmonary artery helical strips after submaximal contraction with norepinephrine. In each of these cases the relaxation produced by nitroprusside was at least partially reversed by the subsequent addition of excess sodium cyanide. Cyanide, however, in nontoxic concentrations did not reverse the spasmolytic effects of hydroxylamine hydrochloride, sodium azide, nitroglycerin, sodium nitrite, or nitric oxide hemoglobin on guinea pig ileum, nor did cyanide alone in the same concentrations have any effect. The similar interaction between nitroprusside and cyanide on rabbit aortic strips is not dependent on the presence of an intact endothelia cell layer. Also, on rabbit aortic strips and like cyanide, sodium sulfide reversed the spasmolytic effects of azide and hydroxylamine, but it had little or no effect on the relaxation induced by papaverine. Unlike cyanide, however, sulfide augmented the relaxation induced by nitroprusside, and it reversed the effects of nitric oxide hemoglobin, nitroglycerin, and nitrite. A direct chemical reaction between sulfide and nitroprusside may account for the difference between it and cyanide. Although evidence was obtained also for a direct chemical reaction between sulfide and norepinephrine, that reaction does not seem to have played a role in these results.

  1. Vascular smooth muscle cell dysfunction in diabetes: nuclear receptors channel to relaxation.

    PubMed

    Doyon, Geneviève; Bruemmer, Dennis

    2016-10-01

    Endothelial dysfunction and impaired vascular relaxation represent a common cause of microvascular disease in patients with diabetes. Although multiple mechanisms underlying altered endothelial cell function in diabetes have been described, there is currently no specific and approved pharmacological treatment. In this edition of Clinical Science, Morales-Cano et al. characterize voltage-dependent K(+) (Kv) channels as genes regulated by pharmacological activation of peroxisome proliferator-activated receptor-b/d (PPARb/d). Diabetes altered Kv channel function leading to impaired coronary artery relaxation, which was prevented by pharmacological activation of PPARb/d. These studies highlight an important mechanism of vascular dysfunction in diabetes and point to a potential approach for therapy, particularly considering that PPARb/d ligands have been developed and tested in small clinical trials.

  2. Vascular smooth muscle cell dysfunction in diabetes: nuclear receptors channel to relaxation.

    PubMed

    Doyon, Geneviève; Bruemmer, Dennis

    2016-10-01

    Endothelial dysfunction and impaired vascular relaxation represent a common cause of microvascular disease in patients with diabetes. Although multiple mechanisms underlying altered endothelial cell function in diabetes have been described, there is currently no specific and approved pharmacological treatment. In this edition of Clinical Science, Morales-Cano et al. characterize voltage-dependent K(+) (Kv) channels as genes regulated by pharmacological activation of peroxisome proliferator-activated receptor-b/d (PPARb/d). Diabetes altered Kv channel function leading to impaired coronary artery relaxation, which was prevented by pharmacological activation of PPARb/d. These studies highlight an important mechanism of vascular dysfunction in diabetes and point to a potential approach for therapy, particularly considering that PPARb/d ligands have been developed and tested in small clinical trials. PMID:27634843

  3. The antagonism of muscle relaxants by ambenonium and methoxyambenonium in the cat.

    PubMed

    Blaber, L C

    1960-09-01

    The ability of ambenonium and a methoxy analogue to antagonize paralysis produced either by tubocurarine or by decamethonium has been studied in the tibialis anterior muscle of the cat under chloralose anaesthesia. In small doses, both oxamides facilitated neuromuscular transmission, but in larger doses they depressed the sensitivity of the motor end plates to depolarizing substances and it is considered that this latter action is sufficient to account for their anti-decamethonium action. Although both compounds possess anticholinesterase activity, there was found to be no correlation between their relative abilities to antagonize tubocurarine paralysis and their abilities to inhibit muscle cholinesterase in vitro.

  4. Relaxant and contractile responses of detrusor muscle strips obtained from bladder outlet-obstructed rats treated with doxazosin enantiomers.

    PubMed

    Wang, Miao; Ren, Xue-Jiao; Zhao, Qing-Hua; Lin, Li-Xin; Wang, Xue; Zhao, Yan; Ren, Lei-Ming

    2011-12-01

    (-)Doxazosin, one of (±)doxazosin enantiomers, was speculated to have a pharmacological enantioselectivity between the cardiovascular system and the urinary system by comparison with (+)doxazosin. Therefore, to evaluate the potential benefits of (-)doxazosin in the treatment of benign prostate hyperplasia, we compared the effects of the 3 agents, using rat mesenteric artery preparations and obstructed bladder strips. Concentration-response curves for carbachol (contractile response) and isoprenaline (relaxant response) in detrusor muscle strips of the bladder outlet obstruction (BOO) rats were shifted to the left, with significant increases in the Emax values, and significant decreases in the EC50 values by comparison with the sham-operated rats (P < 0.05, n = 10). The enhanced responses in detrusor muscle strips of the BOO rats treated with (±)doxazosin and its enantiomers at 3 mg·(kg body mass)(-1)·day(-1) for 2 weeks returned to normal levels, and the 3 agents inhibited the enhanced responses to carbachol and isoprenaline to the same extent. On the other hand, the 3 agents uncompetitively inhibited the vasoconstrictive response curves for NA in the rat isolated mesenteric artery, and the pKB value of (-)doxazosin at vascular α1-adrenoceptors was significantly smaller (P < 0.05, n = 6) than that of (+)doxazosin or (±)doxazosin. In conclusion, although (-)doxazosin inhibits vascular functional α1-adrenoceptors more weakly than (+)doxazosin, both agents equally ameliorate the enhanced responses in detrusor muscle of BOO rats, suggesting that the chiral carbon atom in the molecular structure of doxazosin does not affect its beneficial effects in the bladder smooth muscle of BOO rats.

  5. Hydrogen sulphide inhibits Ca2+ release through InsP3 receptors and relaxes airway smooth muscle

    PubMed Central

    Castro-Piedras, Isabel; Perez-Zoghbi, Jose F

    2013-01-01

    Hydrogen sulphide (H2S) is a signalling molecule that appears to regulate diverse cell physiological process in several organs and systems including vascular and airway smooth muscle cell (SMC) contraction. Decreases in endogenous H2S synthesis have been associated with the development of cardiovascular diseases and asthma. Here we investigated the mechanism of airway SMC relaxation induced by H2S in small intrapulmonary airways using mouse lung slices and confocal and phase-contrast video microscopy. Exogenous H2S donor Na2S (100 μm) reversibly inhibited Ca2+ release and airway contraction evoked by inositol-1,4,5-trisphosphate (InsP3) uncaging in airway SMCs. Similarly, InsP3-evoked Ca2+ release and contraction was inhibited by endogenous H2S precursor l-cysteine (10 mm) but not by l-serine (10 mm) or either amino acid in the presence of dl-propargylglycine (PPG). Consistent with the inhibition of Ca2+ release through InsP3 receptors (InsP3Rs), Na2S reversibly inhibited acetylcholine (ACh)-induced Ca2+ oscillations in airway SMCs. In addition, Na2S, the H2S donor GYY-4137, and l-cysteine caused relaxation of airways pre-contracted with either ACh or 5-hydroxytryptamine (5-HT). Na2S-induced airway relaxation was resistant to a guanylyl cyclase inhibitor (ODQ) and a protein kinase G inhibitor (Rp-8-pCPT-cGMPS). The effects of H2S on InsP3-evoked Ca2+ release and contraction as well as on the relaxation of agonist-contracted airways were mimicked by the thiol-reducing agent dithiothreitol (DTT, 10 mm) and inhibited by the oxidizing agent diamide (30 μm). These studies indicate that H2S causes airway SMC relaxation by inhibiting Ca2+ release through InsP3Rs and consequent reduction of agonist-induced Ca2+ oscillations in SMCs. The results suggest a novel role for endogenously produced H2S that involves the modulation of InsP3-evoked Ca2+ release – a cell-signalling system of critical importance for many physiological and pathophysiological processes. PMID

  6. Relaxation, [Ca2+]i and [Mg2+]i during prolonged tetanic stimulation of intact, single fibres from mouse skeletal muscle.

    PubMed Central

    Westerblad, H; Allen, D G

    1994-01-01

    1. In skeletal muscle there is generally a slowing of relaxation with increasing tetanus duration and it has been suggested that this is due to Ca2+ loading of parvalbumin (PA). To study this we have produced prolonged tetani in intact, single fibres from a mouse foot muscle which contain a high concentration of PA. We measured the rate of tension relaxation and also various aspects of Ca2+ handling. 2. During 'interrupted' tetani (15 repeated cycles of 100 ms with stimulation and 50 ms without) we observed a marked slowing of the relaxation both under control conditions and in acidosis (obtained by increasing the bath CO2 content). This slowing was not accompanied by any reduction of the initial rate of decline of the free myoplasmic Ca2+ concentration ([Ca2+]i), which was measured with indo-1. 3. The functioning of the sarcoplasmic reticulum (SR) pump after tetani of various durations was analysed by plotting d[Ca2+]i/dt vs. [Ca2+]i during the final slow decline of [Ca2+]i after tetani. This analysis showed that the rate of SR Ca2+ pumping after a 1 s tetanus is less than half of that after a 100 ms tetanus. 4. The amplitude of the tail of [Ca2+]i 250 ms into relaxation was measured after tetani of various durations. This amplitude increased with tetanus duration and could be fitted to the sum of one exponential and one linear function. The exponential component increased with a time constant of 0.17 s and probably reflects Ca2+ loading of PA. 5. Ca2+ binding to PA will displace Mg2+ and hence the free myoplasmic concentration of Mg2+ ([Mg2+]i) will increase. To study this we used the fluorescent Mg2+ indicator furaptra. The results showed an increase of [Mg2+]i during prolonged tetani which, after removing the Ca2+ component of the fluorescent signal, amounted to about 0.5 mM. 6. A model of Ca2+ movements and tension production in skeletal muscle was used. The model showed that the increase of the amplitude of [Ca2+]i tails after tetani of various durations can

  7. Effectiveness of progressive muscle relaxation therapy as a worksite health promotion program in the automobile assembly line

    PubMed Central

    SUNDRAM, Bala Murali; DAHLUI, Maznah; CHINNA, Karuthan

    2015-01-01

    The aim of this study was to examine the effectiveness of Progressive Muscle Relaxation (PMR) as part of a Worksite Health Promotion Program on self-perceived stress, anxiety and depression among male automotive assembly-line workers through a quasi-experimental trial. Two assembly plants were chosen with one receiving PMR therapy and the other Pamphlets. Intention-to-treat analysis was conducted to test the effectiveness of the relaxation therapy. Stress, Depression and Anxiety levels were measured using the shortened DASS-21 questionnaire. Data were analyzed using Chi-square, Independent sample t test and Repeated-measures analysis of variance to test the significance of the effects of intervention (time * group) for the measures of Stress, Depression and Anxiety. Significant favourable intervention effects on stress were found in the PMR group (Effect size=0.6) as compared to the Pamphlet group (Effect size=0.2). There was a significant group *time interaction effect (p<0.001) on Stress levels. Depression and Anxiety levels were minimal at baseline in both the groups with mild or no reduction in levels. The improvement in stress levels showed the potential of PMR therapy as a coping strategy at the workplace. Further research in this field is necessary to examine the beneficial effects of coping strategies in the workplace. PMID:26726829

  8. Education, progressive muscle relaxation therapy, and exercise for the treatment of night eating syndrome. A pilot study.

    PubMed

    Vander Wal, Jillon S; Maraldo, Toni M; Vercellone, Allison C; Gagne, Danielle A

    2015-06-01

    Night eating syndrome (NES) is a circadian rhythm disorder in which food intake is shifted toward the end of the day, interfering with sleep. According to the biobehavioral model of NES, the disorder is the result of a genetic predisposition that, coupled with stress, leads to enhanced reuptake of serotonin, thereby dysregulating circadian rhythms and decreasing satiety. Using the biobehavioral model as a guide, we developed a brief behavioral intervention using education, relaxation strategies, and exercise to address the core symptoms of NES. In this pilot randomized controlled clinical trial, 44 participants with NES were randomly assigned to an educational group (E; n = 14), E plus progressive muscle relaxation therapy (PMR; n = 15); or PMR plus exercise (PMR Plus, n = 15). Participants received a baseline intervention with 1- and 3-week follow-up sessions. Effectiveness analyses showed that participants in all three groups evidenced significant reductions on measures of NES symptoms (p < .001), depression (p < .05), anxiety (p < .01), and perceived stress (p < .05). However, the only significant between group change was for the percent of food eaten after the evening meal, with the PMR group showing the greatest reduction (-30.54%), followed by the PMR Plus group (-20.42%) and the E group (-9.5%); only the difference between the PMR and E groups was statistically significant (p = .012). Reductions in NES scores were significantly associated with reductions on measures of depression (r = .47; p < .01) and perceived stress (r = .37; p < .05), but not anxiety (r = .26, p = ns). Results support the role of education and relaxation in the behavioral treatment of NES.

  9. Rock Tea extract (Jasonia glutinosa) relaxes rat aortic smooth muscle by inhibition of L-type Ca(2+) channels.

    PubMed

    Valero, Marta Sofía; Oliván-Viguera, Aida; Garrido, Irene; Langa, Elisa; Berzosa, César; López, Víctor; Gómez-Rincón, Carlota; Murillo, María Divina; Köhler, Ralf

    2015-12-01

    In traditional herbal medicine, Rock Tea (Jasonia glutinosa) is known for its prophylactic and therapeutic value in various disorders including arterial hypertension. However, the mechanism by which Rock Tea exerts blood pressure-lowering actions has not been elucidated yet. Our aim was to demonstrate vasorelaxing effects of Rock Tea extract and to reveal its possible action mechanism. Isometric myography was conducted on high-K+-precontracted rings from rat thoracic aorta and tested extracts at concentrations of 0.5-5 mg/ml. Whole-cell patch-clamp experiments were performed in rat aortic vascular smooth muscle cells (line A7r5) to determine blocking effects on L-type Ca(2+) channels. Rock Tea extract relaxed the aorta contracted by high [K+] concentration dependently with an EC50 of ≈2.4 mg/ml and produced ≈75 % relaxation at the highest concentration tested. The L-type Ca(2+) channel blocker, verapamil (10(-6) M), had similar effects. Rock Tea extract had no effect in nominally Ca(2+)-free high-K(+) buffer but significantly inhibited contractions to re-addition of Ca(2+). Rock Tea extract inhibited the contractions induced by the L-type Ca(2+) channel activator Bay K 8644 (10(-5) M) and by phenylephrine (10(-6) M). Rock Tea extract and Y-27632 (10(-6) M), Rho-kinase inhibitor, had similar effects and the respective effects were not additive. Patch-clamp experiments demonstrated that Rock Tea extract (2.5 mg/ml) virtually abolished L-type Ca(2+) currents in A7r5. We conclude that Rock Tea extract produced vasorelaxation of rat aorta and that this relaxant effect is mediated by inhibition of L-type Ca(2+) channels. Rock Tea extracts may be of phytomedicinal value for prevention and adjuvant treatment of hypertension and other cardiovascular diseases.

  10. Smooth muscle relaxation activity of an aqueous extract of dried immature fruit of Poncirus trifoliata (PF-W) on an isolated strip of rat ileum.

    PubMed

    Kim, Kyu-Sang; Shim, Won-Sik; dela Peña, Ike Campomayor; Seo, Eun-Kyung; Kim, Woo-Young; Jin, Hyo-Eon; Kim, Dae-Duk; Chung, Suk-Jae; Cheong, Jae-Hoon; Shim, Chang-Koo

    2013-08-01

    We demonstrated that an aqueous extract of dried immature fruit of Poncirus trifoliate (PF-W) produces relaxation of intestinal smooth muscle using the ileac strips of a rat. Furthermore, the underlying mechanism of its relaxant activity was investigated. PF-W was prepared using the standard extraction protocol. A 1.5 - 2 cm long rat ileac strip was placed in an organ bath with Tyrode's solution and smooth muscle contractility was recorded by connecting it to a force transducer. Various compounds were added to the organ baths, and changes in muscular contractility were measured. PF-W concentration-dependently induced relaxation of rat ileac strips that were contracted both spontaneously and via acetylcholine treatment. Various potassium channel blockers did not inhibit the relaxation by PF-W. No difference in the effect of PF-W was observed between ileac strips treated with low (20 mM) and high concentrations (60 mM) of KCl. PF-W inhibited the contraction of rat ileac strips induced by extracellular calcium. PF-W acts as a potent smooth muscle relaxant, implicating its possible action as a rapid acting reliever for abdominal pains and a cure for intestinal convulsion. Considering that PF-W also exhibits prokinetic activity, its use in various gastrointestinal disorders seems promising.

  11. How muscle relaxation and laterotrusion resolve open locks of the temporomandibular joint. Forward dynamic 3D-modeling of the human masticatory system.

    PubMed

    Tuijt, M; Koolstra, J H; Lobbezoo, F; Naeije, M

    2016-01-25

    Patients with symptomatic hypermobility of the temporomandibular joint report problems with the closing movement of their jaw. Some are even unable to close their mouth opening wide (open lock). Clinical experience suggests that relaxing the jaw muscles or performing a jaw movement to one side (laterotrusion) might be a solution. The aim of our study was to assess the potential of these strategies for resolving an open lock and we hypothesised that both strategies work equally well in resolving open locks. We assessed the interplay of muscle forces, joint reaction forces and their moments during closing of mouth, following maximal mouth opening. We used a 3D biomechanical model of the masticatory system with a joint shape and muscle orientation that predispose for an open lock. In a forward dynamics approach, the effect of relaxation and laterotrusion strategies was assessed. Performing a laterotrusion movement was predicted to release an open lock for a steeper anterior slope of the articular eminence than relaxing the jaw-closing muscles, herewith we rejected our hypothesis. Both strategies could provide a net jaw closing moment, but only the laterotrusion strategy was able to provide a net posterior force for steeper anterior slope angles. For both strategies, the temporalis muscle appeared pivotal to retrieve the mandibular condyles to the glenoid fossa, due to its' more dorsally oriented working lines. PMID:26726782

  12. Frequency-Specific Synchronization in the Bilateral Subthalamic Nuclei Depending on Voluntary Muscle Contraction and Relaxation in Patients with Parkinson’s Disease

    PubMed Central

    Kato, Kenji; Yokochi, Fusako; Iwamuro, Hirokazu; Kawasaki, Takashi; Hamada, Kohichi; Isoo, Ayako; Kimura, Katsuo; Okiyama, Ryoichi; Taniguchi, Makoto; Ushiba, Junichi

    2016-01-01

    The volitional control of muscle contraction and relaxation is a fundamental component of human motor activity, but how the processing of the subcortical networks, including the subthalamic nucleus (STN), is involved in voluntary muscle contraction (VMC) and voluntary muscle relaxation (VMR) remains unclear. In this study, local field potentials (LFPs) of bilateral STNs were recorded in patients with Parkinson’s disease (PD) while performing externally paced VMC and VMR tasks of the unilateral wrist extensor muscle. The VMC- or VMR-related oscillatory activities and their functional couplings were investigated over the theta (4–7 Hz), alpha (8–13 Hz), beta (14–35 Hz), and gamma (40–100 Hz) frequency bands. Alpha and beta desynchronizations were observed in bilateral STNs at the onset of both VMC and VMR tasks. On the other hand, theta and gamma synchronizations were prominent in bilateral STNs specifically at the onset of the VMC task. In particular, just after VMC, theta functional coupling between the bilateral STNs increased, and the theta phase became coupled to the gamma amplitude within the contralateral STN in a phase-amplitude cross-frequency coupled manner. On the other hand, the prominent beta-gamma cross-frequency couplings observed in the bilateral STNs at rest were reduced by the VMC and VMR tasks. These results suggest that STNs are bilaterally involved in the different performances of muscle contraction and relaxation through the theta-gamma and beta-gamma networks between bilateral STNs in patients with PD. PMID:27064969

  13. Neurosedative and muscle relaxant activities of aqueous extract of Bryophyllum pinnatum.

    PubMed

    Yemitan, O K; Salahdeen, H M

    2005-03-01

    The saline leaf extract of Bryophyllum pinnatum was investigated on neuropharmacological activities to ascertain claims of local use. When tested in mice, it produced a dose-dependent prolongation of onset and duration of pentobarbitone-induced hypnosis, reduction of exploratory activities in the head-dip and evasion tests. Moreover, a dose-dependent muscle in-coordination was observed in the inclined screen, traction and climbing tests. It delayed onset to convulsion in both strychnine- and picrotoxin-induced seizures in addition to minimal protection against picrotoxin seizures. PMID:15752629

  14. Heterogeneity of neuronal and smooth muscle receptors involved in the VIP- and PACAP-induced relaxations of the pig intravesical ureter

    PubMed Central

    Hernández, Medardo; Barahona, María Victoria; Recio, Paz; Rivera, Luis; Benedito, Sara; Martínez, Ana Cristina; García-Sacristán, Albino; Orensanz, Luis M; Prieto, Dolores

    2003-01-01

    The mechanisms and receptors involved in the vasoactive intestinal peptide (VIP)- and pituitary adenylate cyclase-activating polypeptide (PACAP)-induced relaxations of the pig intravesical ureter were investigated.VIP, PACAP 38 and PACAP 27 concentration-dependently relaxed U46619-contracted ureteral strips with a similar potency. [Ala11,22,28]-VIP, a VPAC1 agonist, showed inconsistent relaxations.The neuronal voltage-gated Ca2+ channel inhibitor, ω-conotoxin GVIA (ω-CgTX, 1 μM), reduced the VIP relaxations. Urothelium removal or blockade of capsaicin-sensitive primary afferents, nitric oxide (NO) synthase and guanylate cyclase with capsaicin (10 μM), NG-nitro-L-arginine (L-NOARG, 100 μM) and 1H-[1,2,4]-oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 5 μM), respectively, did not change the VIP relaxations. However, the PACAP 38 relaxations were reduced by ω-CgTX, capsaicin, L-NOARG and ODQ.The VIP and VIP/PACAP receptor antagonists, [Lys1, Pro2,5, Arg3,4, Tyr6]-VIP (1 μM) and PACAP (6–38) (0.4 μM), inhibited VIP and VIP and PACAP 38, respectively, relaxations.The nonselective and large-conductance Ca2-activated K+ channel blockers, tetraethylammonium (3 mM) and charybdotoxin (0.1 μM), respectively, and neuropeptide Y (0.1 μM) did not modify the VIP relaxations. The small-conductance Ca2-activated K+ channel blocker apamin (1 μM) did not change the PACAP 27 relaxations.The cAMP-dependent protein kinase A (PKA) blocker, 8-(4-chlorophenylthio)adenosine-3′,5′-cyclic monophosphorothioate (Rp-8-CPT-cAMPS, 100 μM), reduced VIP relaxations. The phosphodiesterase 4 inhibitor rolipram and the adenylate cyclase activator forskolin relaxed ureteral preparations. The rolipram relaxations were reduced by Rp-8-CPT-cAMPS. Forskolin (30 nM) evoked a potentiation of VIP relaxations.These results suggest that VIP and PACAP relax the pig ureter through smooth muscle receptors, probably of the VPAC2 subtype, linked to a cAMP-PKA pathway. Neuronal VPAC receptors localized at

  15. Airway hyperresponsiveness in asthma: a problem of limited smooth muscle relaxation with inspiration.

    PubMed Central

    Skloot, G; Permutt, S; Togias, A

    1995-01-01

    We hypothesized that hyperresponsiveness in asthma is caused by an impairment in the ability of inspiration to stretch airway smooth muscle. If the hypothesis was correct, we reasoned that the sensitivity to inhaled methacholine in normal and asthmatic subjects should be the same if the challenge was carried out under conditions where deep inspirations were prohibited. 10 asthmatic and 10 normal subjects received increasing concentrations of inhaled methacholine under conditions where forced expirations from a normal end-tidal inspiration were performed. When no deep inspirations were allowed, the response to methacholine was similar in the normal and asthmatic subjects, compatible with the hypothesis we propose. Completely contrary to our expectations, however, was the marked responsivity to methacholine that remained in the normal subjects after deep breaths were initiated. 6 of the 10 normal subjects had > 20% reduction in forced expiratory volume in one second (FEV 1) at doses of methacholine < 8 mg/ml, whereas there was < 15% reduction with 75 mg/ml during routine challenge. The ability of normal subjects to develop asthmatic responses when the modulating effects of increases in lung volume was voluntarily suppressed suggests that an intrinsic impairment of the ability of inspiration to stretch airway smooth muscle is a major feature of asthma. PMID:7593627

  16. Knee muscle strength correlates with joint cartilage T2 relaxation time in young participants with risk factors for osteoarthritis.

    PubMed

    Macías-Hernández, Salvador Israel; Miranda-Duarte, Antonio; Ramírez-Mora, Isabel; Cortés-González, Socorro; Morones-Alba, Juan Daniel; Olascoaga-Gómez, Andrea; Coronado-Zarco, Roberto; Soria-Bastida, María de Los Angeles; Nava-Bringas, Tania Inés; Cruz-Medina, Eva

    2016-08-01

    The objective of this study is to correlate T2 relaxation time (T2RT), measured by magnetic resonance imaging (MRI) with quadriceps and hamstring strength in young participants with risk factors for knee osteoarthritis (OA). A descriptive cross-sectional study was conducted with participants between 20 and 40 years of age, without diagnosis of knee OA. Their T2 relaxation time was measured through MRI, and their muscle strength (MS) was measured with an isokinetic dynamometer. Seventy-one participants were recruited, with an average age of 28.3 ± 5.5 years; 39 (55 %) were females. Negative correlations were found between T2RT and quadriceps peak torque (QPT) in males in the femur r = -0.46 (p = 0.01), tibia r = -0.49 (p = 0.02), and patella r = -0.44 (p = 0.01). In women, correlations were found among the femur r = -0.43 (p = 0.01), tibia r = -0.61 (p = 0.01), and patella r = -0.32 (p = 0.05) and among hamstring peak torque (HPT), in the femur r = -0.46 (p = 0.01), hamstring total work (HTW) r = -0.42 (p = 0.03), and tibia r = -0.33 (p = 0.04). Linear regression models showed good capacity to predict T2RT through QPT in both genders. The present study shows that early changes in femoral, tibial, and patellar cartilage are significantly correlated with MS, mainly QPT, and that these early changes might be explained by MS, which could play an important role in pre-clinical phases of the disease.

  17. Characterization of β-adrenoceptor mediated smooth muscle relaxation and the detection of mRNA for β1-, β2- and β3-adrenoceptors in rat ileum

    PubMed Central

    Roberts, S J; Papaioannou, M; Evans, B A; Summers, R J

    1999-01-01

    Functional and molecular approaches were used to characterize the β-AR subtypes mediating relaxation of rat ileal smooth muscle.In functional studies, (−)-isoprenaline relaxation was unchanged by CGP20712A (β1-AR antagonist) or ICI118551 (β2-AR antagonist) but shifted by propranolol (pKB=6.69). (±)-Cyanopindolol, CGP12177 and ICID7114 did not cause relaxation but antagonized (−)-isoprenaline relaxation.BRL37344 (β3-AR agonist) caused biphasic relaxation. The high affinity component was shifted with low affinity by propranolol, (±)-cyanopindolol, tertatolol and alprenolol. CL316243 (β3-AR agonist) relaxation was unaffected by CGP20712A or ICI118551 but blocked by SR58894A (β3-AR antagonist; pA2=7.80). Enhanced relaxation after exposure to forskolin and pertussis toxin showed that β3-AR relaxation can be altered by manipulation of components of the adenylate cyclase signalling pathway.The β1-AR agonist RO363 relaxed the ileum (pEC50=6.18) and was blocked by CGP20712A. Relaxation by the β2-AR agonist zinterol (pEC50=5.71) was blocked by SR58894A but not by ICI118551.In rat ileum, β1-, β2- and β3-AR mRNA was detected. Comparison of tissues showed that β3-AR mRNA expression was greatest in WAT>colon=ileum>cerebral cortex>soleus; β1-AR mRNA was most abundant in cerebral cortex>WAT>ileum=colon>soleus; β2-AR mRNA was expressed in soleus>WAT>ileum=colon>cerebral cortex.These results show that β3-ARs are the predominant β-AR subtype mediating rat ileal relaxation while β1-ARs may produce a small relaxation. The β2-AR agonist zinterol produces relaxation through β3-ARs and there was no evidence for the involvement of β2-ARs in relaxation despite the detection of β2-AR mRNA. PMID:10433503

  18. Smooth muscle calcium and endothelium-derived relaxing factor in the abnormal vascular responses of acute renal failure.

    PubMed Central

    Conger, J D; Robinette, J B; Schrier, R W

    1988-01-01

    Abnormal renovascular reactivity, characterized by paradoxical vasoconstriction to a reduction in renal perfusion pressure (RPP) in the autoregulatory range, increased sensitivity to renal nerve stimulation (RNS), and loss of vasodilatation to acetylcholine have all been demonstrated in ischemic acute renal failure (ARF). To determine if ischemic injury alters vascular contractility by increasing smooth muscle cell calcium or calcium influx, the renal blood flow (RBF) response to reductions in RPP within the autoregulatory range and to RNS were tested before and after a 90-min intrarenal infusion of verapamil or diltiazem in 7-d ischemic ARF rats. Both calcium entry blockers, verapamil and diltiazem, blocked the aberrant vasoconstrictor response to a reduction in RPP and RNS (both P less than 0.001). In a second series of experiments the potential role of an ischemia-induced endothelial injury and of the absence of endothelium-derived relaxing factor (EDRF) production were examined to explain the lack of vasodilatation to acetylcholine. Acetylcholine, bradykinin (a second EDRF-dependent vasodilator), or prostacyclin, an EDRF-independent vasodilator, was infused intrarenally for 90 min, and RBF responses to a reduction in RPP and RNS were tested in 7-d ischemic ARF rats. Neither acetylcholine nor bradykinin caused vasodilatation or altered the slope of the relationship between RBF and RPP. By contrast, prostacyclin increased RBF (P less than 0.001), but did not change the vascular response to changes in RPP. It was concluded that the abnormal pressor sensitivity to a reduction in RPP and RNS was due to changes in renovascular smooth muscle cell calcium activity that could be blocked by calcium entry blockers. A lack of response to EDRF-dependent vasodilators, as a result of ischemic endothelial injury, may contribute to the increased pressor sensitivity of the renal vessels. PMID:3261301

  19. [General pharmacology of 6-amino-2-fluoromethyl-3-(o-tolyl)-4(3H)-quinazolinone (afloqualone), a new centrally acting muscle relaxant. I. Effects on the central nervous system (author's transl)].

    PubMed

    Ochiai, T; Yamamura, M; Kudo, Y; Ishida, R

    1981-10-01

    The general pharmacology of afloqualone, a new centrally acting muscle relaxant, in the CNS was examined in mice and rats and findings compared with those of other central muscle relaxants. Afloqualone showed relatively strong hexobarbital and barbital anesthesia potentiating action. Taking into account the dose ratio of anesthesia potentiating action to the muscle relaxing action, however, the potency of anesthesia potentiating action of afloqualone is lower than that of chlormezanone. At doses producing muscle relaxing action, afloqualone inhibited spontaneous motor activity, methamphetamine-induced hypermotility, pentylenetetrazol-, nicotine-, and maximum electroshock-convulsions, fighting episodes in foot-shocked mice, conditioned avoidance response in rat pole-climbing test, and acetic acid-induced writhing syndrome and lowered normal body temperature. The dose ratios of these pharmacological actions to muscle relaxing action of afloqualone, however, were larger than those of chlormezanone and mephenesin. This suggests that the central depressant activity of afloqualone is less potent and the specificity of muscle relaxing action of afloqualone is higher than those of climbing behaviour, physostigmine-induced death, serotonin-induced heat twitch, and reserpine-induced hypothermia, even at 50 mg/kg. Tolperisone showed neither muscle relaxing action nor other central actions when administered orally.

  20. Bispyridinium non-oximes: An evaluation of cardiac effects in isolated hearts and smooth muscle relaxing effects in jejunum.

    PubMed

    Neumaier, Katharina; Worek, Franz; Thiermann, Horst; Wille, Timo

    2016-09-01

    Bispyridinium non-oximes seem to be promising candidates for the generic treatment of nerve agent poisoning as they interact with nicotinic and muscarinic acetylcholine receptors. The lead compound MB327 showed therapeutic effectiveness in vitro and in vivo but was toxic at higher doses. In the present study, the effect of various bispyridinium non-oximes on isolated heart and small intestine function was investigated. Bispyridinium non-oximes and oximes were tested in at least seven different concentrations in rat jejunum preparations pre-treated with carbachol. All bispyridinium non-oximes showed classical dose response curves with MB327 being the most effective (EC50=6.6μM) and MB782 being slightly less effective (EC50=10.4μM). Neither the bispyridinium non-oximes nor the oximes showed cardiotoxic effects in the isolated Langendorff heart. The tested bispyridinum compounds showed no direct cardiac effect but had variable smooth muscle relaxing effects. Further in vivo studies are required to get more insight into potential toxic mechanisms of these promising nerve agent antidotes. PMID:27184650

  1. Neocuproine, a selective Cu(I) chelator, and the relaxation of rat vascular smooth muscle by S-nitrosothiols.

    PubMed

    Al-Sa'doni, H H; Megson, I L; Bisland, S; Butler, A R; Flitney, F W

    1997-07-01

    1. A study has been made of the effect of neocuproine, a specific Cu(I) chelator, on vasodilator responses of rat isolated perfused tail artery to two nitrosothiols: S-nitroso-N-acetyl-D,L-penicillamine (SNAP) and S-nitroso-glutathione (GSNO). 2. Bolus injections (10 microl) of SNAP or GSNO (10(-7)-10(-3) M) were delivered into the lumen of perfused vessels pre-contracted with sufficient phenylephrine (1-7 microM) to develop pressures of 100-120 mmHg. Two kinds of experiment were made: SNAP and GSNO were either (a) pre-mixed with neocuproine (10(-4) M) and then injected into arteries; or (b) vessels were continuously perfused with neocuproine (10(-5) M) and then injected with either pure SNAP or GSNO. 3. In each case, neocuproine significantly attenuated vasodilator responses to both nitrosothiols, although the nature of the inhibitory effect differed in the two types of experiment. We conclude that the ability of exogenous nitrosothiols to relax vascular smooth muscle in our ex vivo model is dependent upon a Cu(I) catalyzed process. Evidence is presented which suggests that a similar Cu(I)-dependent mechanism is responsible for the release of NO from endogenous nitrosothiols and that this process may assist in maintaining vasodilator tone in vivo.

  2. A comparison of self-hypnosis versus progressive muscle relaxation in patients with multiple sclerosis and chronic pain.

    PubMed

    Jensen, Mark P; Barber, Joseph; Romano, Joan M; Molton, Ivan R; Raichle, Katherine A; Osborne, Travis L; Engel, Joyce M; Stoelb, Brenda L; Kraft, George H; Patterson, David R

    2009-04-01

    Twenty-two patients with multiple sclerosis (MS) and chronic pain we recruited into a quasi-experimental trial comparing the effects of self-hypnosis training (HYP) with progressive muscle relaxation (PMR) on pain intensity and pain interference; 8 received HYP and the remaining 14 participants were randomly assigned to receive either HYP or PMR. HYP-condition participants reported significantly greater pre- to postsession as well as pre- to posttreatment decreases in pain and pain interference than PMR-condition participants, and gains were maintained at 3-month follow-up. Most of the participants in both conditions reported that they continued to use the skills they learned in treatment and experienced pain relief when they did so. General hypnotizability was not significantly related to treatment outcome, but treatment-outcome expectancy assessed before and after the first session was. The results support the efficacy of self-hypnosis training for the management of chronic pain in persons with MS. PMID:19234967

  3. A Comparison of Self-Hypnosis Versus Progressive Muscle Relaxation in Patients With Multiple Sclerosis and Chronic Pain1

    PubMed Central

    Jensen, Mark P.; Barber, Joseph; Romano, Joan M.; Molton, Ivan R.; Raichle, Katherine A.; Osborne, Travis L.; Engel, Joyce M.; Stoelb, Brenda L.; Kraft, George H.; Patterson, David R.

    2009-01-01

    Twenty-two patients with multiple sclerosis (MS) and chronic pain we recruited into a quasi-experimental trial comparing the effects of self-hypnosis training (HYP) with progressive muscle relaxation (PMR) on pain intensity and pain interference; 8 received HYP and the remaining 14 participants were randomly assigned to receive either HYP or PMR. HYP-condition participants reported significantly greater pre- to postsession as well as pre- to posttreatment decreases in pain and pain interference than PMR-condition participants, and gains were maintained at 3-month follow-up. Most of the participants in both conditions reported that they continued to use the skills they learned in treatment and experienced pain relief when they did so. General hypnotizability was not significantly related to treatment outcome, but treatment-outcome expectancy assessed before and after the first session was. The results support the efficacy of self-hypnosis training for the management of chronic pain in persons with MS. PMID:19234967

  4. Essential role of the interstitial cells of Cajal in nitric oxide-mediated relaxation of longitudinal muscle of the mouse ileum.

    PubMed

    Takeuchi, Tadayoshi; Fujinami, Kaori; Fujita, Akikazu; Okishio, Yutaka; Takewaki, Tadashi; Hata, Fumiaki

    2004-05-01

    The role of interstitial cells of Cajal (ICC) in electrical field stimulation (EFS)-induced neurogenic responses in ileum was studied by using the ICC-deficient mutant (SLC-W/W(V)) mouse and its wild type. In the immunohistochemical study with anti-c-Kit antibody, ICC was observed in the myenteric plexus (MY) and deep muscular plexus (DMP) region in the wild type. In the mutant, ICC-MY were lost, only ICC-DMP were present. EFS induced a rapid contraction of the ileal segments from the wild type mouse in the direction of longitudinal muscle. In the mutant mouse, onset of contraction was delayed and its rate was slowed. EFS induced nonadrenergic, noncholinergic (NANC) relaxation in the presence of atropine and guanethidine in the wild type. A nitric oxide synthase inhibitor inhibited the relaxation and L-arginine reversed it. In the mutant, EFS did not induce NANC relaxation. There was no difference between the responsiveness of the segments from wild type and mutant mice to exogenously added acetylcholine or Nor-1. Taking into account the selective loss of ICC-MY in the mutant mice, it seems likely that ICC-MY have an essential role in inducing nitric oxide-mediated relaxation of longitudinal muscle of the mouse ileum and that ICC-MY partly participate in EFS-induced contraction.

  5. Pharmacological effect on the average rates of development of the contractile and relaxation phases of the acetylcholine contractile effect in the smooth muscles of guinea-pig caecum.

    PubMed

    Radomirov, R

    1976-01-01

    The average rates of development of the contractile and relaxation phases and their relative dependence in the acetylcholine contractile effect, after treatment with papaverine, prostaglandines E1 and F2 alpha and BaCl2, are tested on longitudinal and circular smooth muscles of guinea-pig caecum. Changes are observed in the effect on the phase rates of the contractile process caused by acetylcholine in the two muscles under the effect of the different drugs. In both muscles the relative dependence between the phase velocities is lowered by papaverine and raised by BaCl2. It is assumed that the interaction of the pharmacological substances with the calcium ions plays a role in the rate of manifestation of the pharmacological effect.

  6. Evidence that different mechanisms underlie smooth muscle relaxation to nitric oxide and nitric oxide donors in the rabbit isolated carotid artery

    PubMed Central

    Plane, Frances; Wiley, Katherine E; Jeremy, Jamie Y; Cohen, Richard A; Garland, Christopher J

    1998-01-01

    The endothelium-dependent relaxants acetylcholine (ACh; 0.03–10 μM) and A23187 (0.03–10 μM), and nitric oxide (NO), applied either as authentic NO (0.01–10 μM) or as the NO donors 3-morpholino-sydnonimine (SIN-1; 0.1–10 μM) and S-nitroso-N-acetylpenicillamine (SNAP; 0.1–10 μM), each evoked concentration-dependent relaxation in phenylephrine stimulated (1–3 μM; mean contraction and depolarization, 45.8±5.3 mV and 31.5±3.3 mN; n=10) segments of rabbit isolated carotid artery. In each case, relaxation closely correlated with repolarization of the smooth muscle membrane potential and stimulated a maximal reversal of around 95% and 98% of the phenylephrine-induced depolarization and contraction, respectively.In tissues stimulated with 30 mM KCl rather than phenylephrine, smooth muscle hyperpolarization and relaxation to ACh, A23187, authentic NO and the NO donors were dissociated. Whereas the hyperpolarization was reduced by 75–80% to around a total of 10 mV, relaxation was only inhibited by 35% (n=4–7 in each case; P<0.01). The responses which persisted to ACh and A23187 in the presence of 30 mM KCl were abolished by either the NO synthase inhibitor L-NG-nitroarginine methyl ester (L-NAME; 100 μM) or the inhibitor of soluble guanylyl cyclase 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 10 μM; 10 min; n=4 in each case; P<0.01).Exposure to ODQ significantly attenuated both repolarization and relaxation to ACh, A23187 and authentic NO, reducing the maximum changes in both membrane potential and tension to each relaxant to around 60% of control values (n=4 in each case; P<0.01). In contrast, ODQ almost completely inhibited repolarization and relaxation to SIN-1 and SNAP, reducing the maximum responses to around 8% in each case (n=3–5; P<0.01).The potassium channel blockers glibenclamide (10 μM), iberiotoxin (100 nM) and apamin (50 nM), alone or in combination, had no significant effect on relaxation to ACh

  7. Acute relaxation of mouse duodenum [correction of duodenun] by estrogens. Evidence for an estrogen receptor-independent modulation of muscle excitability.

    PubMed

    Díaz, Mario; Ramírez, Cristina M; Marin, Raquel; Marrero-Alonso, Jorge; Gómez, Tomás; Alonso, Rafael

    2004-10-01

    17-beta-Estradiol, the stereoisomer 17-alpha-estradiol and the synthetic estrogen diethylstilbestrol (DES), all caused a rapid (<3 min) dose-dependent reversible relaxation of mouse duodenal spontaneous activity, reduced basal tone and depressed the responses to CaCl(2) and KCl. The steroidal antiestrogen 7alpha-[9-[(4,4,5,5,5,-pentafluoropenty)sulphinyl]nonyl]-estra-1,3,5(19)-triene-3,17beta-diol (ICI182,780) failed to either mimic or prevent the effect of 17-beta-estradiol. The effect of estrogens was unrelated to activation of nitric oxide (NO), mitogen-activated protein kinase (MAPK), protein kinase A (PKA), protein kinase G (PKG) or protein kinase C (PKC). Estrogen-induced relaxation was partially reversed by 1,4-dihydro-2,6-dimethyl-5-nitro-4-[2-(trifluoromethyl)phenyl]-pyridine-3-carboxilic acid methyl ester (BAY-K8644), depolarization, or by application of tetraethylammonium or 4-aminopyridine, but not by glibenclamide, apamin, charybdotoxin, paxilline or verruculogen. The effects of BAY-K8644 and K(+) channel blockers were synergistic, and allowed relaxed tissues to recover spontaneous activity and basal tone. We hypothesize that the rapid non-genomic spasmolytic effect of estrogens on mouse duodenal muscle might be triggered by an estrogen-receptor-independent mechanism likely involving activation of tetraethylamonium- and 4-aminopyridine-sensitive K(+) channels and inhibition of L-type Ca2(+) channels on the smooth muscle cells. PMID:15464075

  8. Studies on the Biotransformation of Veratric Acid, a Human Metabolite of Mebeverine, by Using the Incubated Hen's Egg.

    PubMed

    Kiep, L; Göhl, M; Schmidt, J; Seifert, K

    2015-09-01

    Metabolism studies with selected test substances have shown that a model on the basis of the incubated hen's egg is suitable as a supplement to animal experimentation. Because of its 3,4-dimethoxyphenyl structure veratric acid (3,4-dimethoxybenzoic acid), a known human metabolite of mebeverine, was chosen as model substance for the present investigations and the parent compound as well as 4-hydroxy-3-methoxybenzoic acid were identified as main metabolites. The absence of 3-hydroxy-4-methoxybenzoic acid lets conclude that the O-demethylation takes place exclusively at the p-methoxyl function. In addition, 3,3',4,4'-tetramethoxy-l-ornithuric acid (2,5-bis-(3,4-dimethoxybenzoylamino)pentanoic acid) and its O-desmethyl derivative could be characterized as further metabolites. So far an amino acid conjugate has not been described after veratric acid administration in a vertebrate. There were no indications for the appearance of 3,4-dihydroxybenzoic acid in the veratric acid metabolism. This was confirmed by corresponding studies having the isomeric guaiacol acids as precursor. Furthermore, it could be proved that in ovo the O-methylation of 3,4-dihydroxybenzoic acid occurs regioselective at the m-hydroxyl group. The results which broaden the knowledge on the metabolic fate of veratric acid are discussed in comparison with those in mammals. The metabolites were identified by GC-MS, ESI-HRMS and LC/ESI-MS/MS. The structure of the synthesized reference substance was confirmed by MS, (1)H and (13)C NMR spectral data. PMID:25310250

  9. The small heat shock-related protein, HSP20, is a cAMP-dependent protein kinase substrate that is involved in airway smooth muscle relaxation

    PubMed Central

    Komalavilas, Padmini; Penn, Raymond B.; Flynn, Charles R.; Thresher, Jeffrey; Lopes, Luciana B.; Furnish, Elizabeth J.; Guo, Manhong; Pallero, Manuel A.; Murphy-Ullrich, Joanne E.; Brophy, Colleen M.

    2009-01-01

    Activation of the cAMP/cAMP-dependent PKA pathway leads to relaxation of airway smooth muscle (ASM). The purpose of this study was to examine the role of the small heat shock-related protein HSP20 in mediating PKA-dependent ASM relaxation. Human ASM cells were engineered to constitutively express a green fluorescent protein-PKA inhibitory fusion protein (PKI-GFP) or GFP alone. Activation of the cAMP-dependent signaling pathways by isoproterenol (ISO) or forskolin led to increases in the phosphorylation of HSP20 in GFP but not PKI-GFP cells. Forskolin treatment in GFP but not PKI-GFP cells led to a loss of central actin stress fibers and decreases in the number of focal adhesion complexes. This loss of stress fibers was associated with dephosphorylation of the actin-depolymerizing protein cofilin in GFP but not PKI-GFP cells. To confirm that phosphorylated HSP20 plays a role in PKA-induced ASM relaxation, intact strips of bovine ASM were precontracted with serotonin followed by ISO. Activation of the PKA pathway led to relaxation of bovine ASM, which was associated with phosphorylation of HSP20 and dephosphorylation of cofilin. Finally, treatment with phosphopeptide mimetics of HSP20 possessing a protein transduction domain partially relaxed precontracted bovine ASM strips. In summary, ISO-induced phosphorylation of HSP20 or synthetic phosphopeptide analogs of HSP20 decreases phosphorylation of cofilin and disrupts actin in ASM, suggesting that one possible mechanism by which HSP20 mediates ASM relaxation is via regulation of actin filament dynamics. PMID:17993590

  10. How to Make the Ghosts in my Bedroom Disappear? Focused-Attention Meditation Combined with Muscle Relaxation (MR Therapy)—A Direct Treatment Intervention for Sleep Paralysis

    PubMed Central

    Jalal, Baland

    2016-01-01

    Sleep paralysis (SP) is a common state of involuntary immobility occurring at sleep onset or offset. It can include terrifying hypnogogic or hypnopompic hallucinations of menacing bedroom intruders. Unsurprisingly, the experience is associated with great fear and horror worldwide. To date, there exist no direct treatment intervention for SP. In this article, I propose for the first time a type of focused inward-attention meditation combined with muscle relaxation as a direct intervention to be applied during the attack, to ameliorate and possibly eliminate it (what could be called, meditation-relaxation or MR therapy for SP). The intervention includes four steps: (1) reappraisal of the meaning of the attack; (2) psychological and emotional distancing; (3) inward focused-attention meditation; (4) muscle relaxation. The intervention promotes attentional shift away from unpleasant external and internal stimuli (i.e., terrifying hallucinations and bodily paralysis sensations) unto an emotionally pleasant internal object (e.g., a positive memory). It may facilitate a relaxed meditative state characterized by a shift from sympathetic to parasympathetic dominance, associated with greater levels of alpha activity (which may lead to drowsiness and potentially sleep). The procedure may also reduce the initial panic and arousal that occur when realizing one is paralyzed. In addition, I present a novel Panic-Hallucination (PH) Model of Sleep Paralysis; describing how through escalating cycles of fear and panic-like autonomic arousal, a positive feedback loop is created that worsens the attack (e.g., leading to longer and more fearful episodes), drives content of hallucinations, and causes future episodes of SP. Case examples are presented to illustrate the feasibility of MR therapy for SP. PMID:26858675

  11. How to Make the Ghosts in my Bedroom Disappear? Focused-Attention Meditation Combined with Muscle Relaxation (MR Therapy)-A Direct Treatment Intervention for Sleep Paralysis.

    PubMed

    Jalal, Baland

    2016-01-01

    Sleep paralysis (SP) is a common state of involuntary immobility occurring at sleep onset or offset. It can include terrifying hypnogogic or hypnopompic hallucinations of menacing bedroom intruders. Unsurprisingly, the experience is associated with great fear and horror worldwide. To date, there exist no direct treatment intervention for SP. In this article, I propose for the first time a type of focused inward-attention meditation combined with muscle relaxation as a direct intervention to be applied during the attack, to ameliorate and possibly eliminate it (what could be called, meditation-relaxation or MR therapy for SP). The intervention includes four steps: (1) reappraisal of the meaning of the attack; (2) psychological and emotional distancing; (3) inward focused-attention meditation; (4) muscle relaxation. The intervention promotes attentional shift away from unpleasant external and internal stimuli (i.e., terrifying hallucinations and bodily paralysis sensations) unto an emotionally pleasant internal object (e.g., a positive memory). It may facilitate a relaxed meditative state characterized by a shift from sympathetic to parasympathetic dominance, associated with greater levels of alpha activity (which may lead to drowsiness and potentially sleep). The procedure may also reduce the initial panic and arousal that occur when realizing one is paralyzed. In addition, I present a novel Panic-Hallucination (PH) Model of Sleep Paralysis; describing how through escalating cycles of fear and panic-like autonomic arousal, a positive feedback loop is created that worsens the attack (e.g., leading to longer and more fearful episodes), drives content of hallucinations, and causes future episodes of SP. Case examples are presented to illustrate the feasibility of MR therapy for SP.

  12. How to Make the Ghosts in my Bedroom Disappear? Focused-Attention Meditation Combined with Muscle Relaxation (MR Therapy)-A Direct Treatment Intervention for Sleep Paralysis.

    PubMed

    Jalal, Baland

    2016-01-01

    Sleep paralysis (SP) is a common state of involuntary immobility occurring at sleep onset or offset. It can include terrifying hypnogogic or hypnopompic hallucinations of menacing bedroom intruders. Unsurprisingly, the experience is associated with great fear and horror worldwide. To date, there exist no direct treatment intervention for SP. In this article, I propose for the first time a type of focused inward-attention meditation combined with muscle relaxation as a direct intervention to be applied during the attack, to ameliorate and possibly eliminate it (what could be called, meditation-relaxation or MR therapy for SP). The intervention includes four steps: (1) reappraisal of the meaning of the attack; (2) psychological and emotional distancing; (3) inward focused-attention meditation; (4) muscle relaxation. The intervention promotes attentional shift away from unpleasant external and internal stimuli (i.e., terrifying hallucinations and bodily paralysis sensations) unto an emotionally pleasant internal object (e.g., a positive memory). It may facilitate a relaxed meditative state characterized by a shift from sympathetic to parasympathetic dominance, associated with greater levels of alpha activity (which may lead to drowsiness and potentially sleep). The procedure may also reduce the initial panic and arousal that occur when realizing one is paralyzed. In addition, I present a novel Panic-Hallucination (PH) Model of Sleep Paralysis; describing how through escalating cycles of fear and panic-like autonomic arousal, a positive feedback loop is created that worsens the attack (e.g., leading to longer and more fearful episodes), drives content of hallucinations, and causes future episodes of SP. Case examples are presented to illustrate the feasibility of MR therapy for SP. PMID:26858675

  13. Myosin Head Configuration in Relaxed Insect Flight Muscle: X-Ray Modeled Resting Cross-Bridges in a Pre-Powerstroke State Are Poised for Actin Binding

    PubMed Central

    AL-Khayat, Hind A.; Hudson, Liam; Reedy, Michael K.; Irving, Thomas C.; Squire, John M.

    2003-01-01

    Low-angle x-ray diffraction patterns from relaxed insect flight muscle recorded on the BioCAT beamline at the Argonne APS have been modeled to 6.5 nm resolution (R-factor 9.7%, 65 reflections) using the known myosin head atomic coordinates, a hinge between the motor (catalytic) domain and the light chain-binding (neck) region (lever arm), together with a simulated annealing procedure. The best head conformation angles around the hinge gave a head shape that was close to that typical of relaxed M•ADP•Pi heads, a head shape never before demonstrated in intact muscle. The best packing constrained the eight heads per crown within a compact crown shelf projecting at ∼90° to the filament axis. The two heads of each myosin molecule assume nonequivalent positions, one head projecting outward while the other curves round the thick filament surface to nose against the proximal neck of the projecting head of the neighboring molecule. The projecting heads immediately suggest a possible cross-bridge cycle. The relaxed projecting head, oriented almost as needed for actin attachment, will attach, then release Pi followed by ADP, as the lever arm with a purely axial change in tilt drives ∼10 nm of actin filament sliding on the way to the nucleotide-free limit of its working stroke. The overall arrangement appears well designed to support precision cycling for the myogenic oscillatory mode of contraction with its enhanced stretch-activation response used in flight by insects equipped with asynchronous fibrillar flight muscles. PMID:12885653

  14. Comparison of the Short-Term Outcomes after Postisometric Muscle Relaxation or Kinesio Taping Application for Normalization of the Upper Trapezius Muscle Tone and the Pain Relief: A Preliminary Study

    PubMed Central

    Ptaszkowski, Kuba; Slupska, Lucyna; Paprocka-Borowicz, Małgorzata; Kołcz-Trzęsicka, Anna; Zwierzchowski, Kamil; Halska, Urszula; Przestrzelska, Monika; Mucha, Dariusz; Rosińczuk, Joanna

    2015-01-01

    The main purpose of the study was to evaluate the resting bioelectrical activity of the upper trapezius muscle (the UT muscle) before and after one of the two interventions: postisometric muscle relaxation (PIR) and Kinesio Taping (KT). Moreover a comparison between group results was conducted. From the initial 61 volunteers, 52 were selected after exclusion criteria and were allocated randomly to 2 groups: PIR group and KT group. Outcome measures were assessed at baseline and completion of the intervention. The primary outcome measure was change in bioelectrical activity of UT muscle evaluated by surface electromyography (sEMG). Secondary outcomes included subjective assessment of pain using visual analogue scale (VAS). Significant differences were found only in KT group: the average resting bioelectrical activity decreased by 0.8 μV (p = 0.0237) and the average VAS result reduced by 2.0 points (p = 0.0001). Greater decrease of VAS results was recorded in KT group compared to PIR group (p = 0.0010). Both PIR and KT intervention did not influence significantly the resting bioelectrical activity of UT muscle. KT application was better for pain relief in the studied sample compared with PIR intervention. PMID:26347792

  15. Possible site of action of 2-methylserotonin in inducing relaxation of acetylcholine-induced contraction in the molluscan (Mytilus edulis) smooth muscle.

    PubMed

    Murakami, H; Kizawa, Y; Sano, M; Edamura, N; Maruyama, C; Yamazaki, A

    1992-02-01

    1. The present study investigated the presence of 5-HT3 receptor using 2-methylserotonin (2-Me-5-HT) in the smooth muscle of Mytilus ABRM. 2. 2-Me-5-HT relaxed the acetylcholine-induced contraction in a dose-dependent manner ranging from 10(-6) to 3 x 10(-4) M (pD2 = 5.55 +/- 0.32). 3. 2-Me-5-HT-induced relaxation was antagonized by 3 x 10(-5) M ketanserin in a competitive manner (pA2 = 5.14 +/- 0.1), but not by cypropheptadine, mianserin, MDL 72222 or ICS 205-930 at a concentration of 3 x 10(-5) M. 4. 2-Me-5-HT (3 x 10(-4) M) did not alter the content of cyclic AMP and cyclic GMP in the ABRM. 5. These findings suggested that the 2-Me-5-HT-induced relaxation was mediated through 5-HT2-like receptors and was not linked to cyclic AMP or GMP systems, and, further, that 5-HT3 receptor subtype was not present in the ABRM.

  16. Spontaneous photo-relaxation of urethral smooth muscle from sheep, pig and rat and its relationship with nitrergic neurotransmission

    PubMed Central

    Triguero, D; Costa, G; Labadía, A; Jiménez, E; García-Pascual, A

    2000-01-01

    In the present work we have characterized the relaxant response induced by light stimulation (LS) in the lower urinary tract from sheep, pig and rat, establishing its relationship with nitrergic neurotransmission. Urethral, but not detrusor, preparations showed pronounced photo-relaxation (PR) which declined progressively following repetitive LS. Sheep urethral PR was again restored either spontaneously or (to a greater extent) by exogenous nitric oxide (NO) addition and by electrical field stimulation (EFS) of intrinsic nitrergic nerves. Greater NO generation was detected from sheep urethral than from detrusor homogenates following illumination. Sheep urethral PR was inhibited by oxyhaemoglobin, but not by methaemoglobin, carboxy-PTIO, extracellular superoxide anion generators or superoxide dismutase. Guanylyl cyclase but not adenylyl cyclase activation mediates urethral relaxation to LS. Urethral PR was more resistant to inhibition by L-thiocitrulline than EFS-induced responses, although this agent prevented PR restoration by high-frequency EFS. Urethral PR was TTX insensitive and partially modified in high-K+ solutions. Cold storage for 24 h greatly impaired urethral PR, although it was restored by high-frequency EFS. Repetitive exposure to LS, EFS or exogenous NO induced changes in the shape of the EFS-induced nitrergic relaxation, possibly by pre-synaptic mechanisms. In conclusion, we suggest the presence of an endogenous, photo-labile, nitro-compound store in the urethra, which seems to be replenished by neural nitric oxide synthase activity, indicating a close functional relationship with the nitrergic neurotransmitter. PMID:10713968

  17. Randomized controlled trial to evaluate the effects of progressive resistance training compared to progressive muscle relaxation in breast cancer patients undergoing adjuvant radiotherapy: the BEST study

    PubMed Central

    2013-01-01

    Background Cancer-related fatigue (CRF) is one of the most common and distressing side effects of cancer and its treatment. During and after radiotherapy breast cancer patients often suffer from CRF which frequently impairs quality of life (QoL). Despite the high prevalence of CRF in breast cancer patients and the severe impact on the physical and emotional well-being, effective treatment methods are scarce. Physical activity for breast cancer patients has been reported to decrease fatigue, to improve emotional well-being and to increase physical strength. The pathophysiological and molecular mechanisms of CRF and the molecular-biologic changes induced by exercise, however, are poorly understood. In the BEST trial we aim to assess the effects of resistance training on fatigue, QoL and physical fitness as well as on molecular, immunological and inflammatory changes in breast cancer patients during adjuvant radiotherapy. Methods/design The BEST study is a prospective randomized, controlled intervention trial investigating the effects of a 12-week supervised progressive resistance training compared to a 12-week supervised muscle relaxation training in 160 patients with breast cancer undergoing adjuvant radiotherapy. To determine the effect of exercise itself beyond potential psychosocial group effects, patients in the control group perform a group-based progressive muscle relaxation training. Main inclusion criterion is histologically confirmed breast cancer stage I-III after lumpectomy or mastectomy with indication for adjuvant radiotherapy. Main exclusion criteria are acute infectious diseases, severe neurological, musculosceletal or cardiorespiratory disorders. The primary endpoint is cancer-related fatigue; secondary endpoints include immunological and inflammatory parameters analyzed in peripheral blood, saliva and urine. In addition, QoL, depression, physical performance and cognitive capacity will be assessed. Discussion The BEST study is the first randomized

  18. Cytokine-Induced S-Nitrosylation of Soluble Guanylyl Cyclase and Expression of Phosphodiesterase 1A Contribute to Dysfunction of Longitudinal Smooth Muscle Relaxation.

    PubMed

    Rajagopal, Senthilkumar; Nalli, Ancy D; Kumar, Divya P; Bhattacharya, Sayak; Hu, Wenhui; Mahavadi, Sunila; Grider, John R; Murthy, Karnam S

    2014-09-01

    The following manuscript was published as a Fast Forward article on September 9, 2014: Rajagopal S, Nalli AD, Kumar DP, Bhattacharya S, Hu W, Mahavadi S, Grider JR, and Murthy KS, Cytokine-Induced S-Nitrosylation of Soluble Guanylyl Cyclase and Expression of Phosphodiesterase 1A Contribute to Dysfunction of Longitudinal Smooth Muscle Relaxation. J Pharmacol Exp Ther jpet.114.218156; doi:10.1124/jpet.114.218156. It was later found that the chemical identity of IC86340 was not sufficiently disclosed. The authors are unable, at this time, to provide this information in accordance with the editorial policies of The Journal of Pharmacology and Experimental Therapeutics. As a result, the manuscript has been withdrawn from publication. We apologize for any inconvenience this may cause JPET's readers. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  19. The myosin interacting-heads motif is present in the relaxed thick filament of the striated muscle of scorpion.

    PubMed

    Pinto, Antonio; Sánchez, Fredi; Alamo, Lorenzo; Padrón, Raúl

    2012-12-01

    Electron microscopy (EM) studies of 2D crystals of smooth muscle myosin molecules have shown that in the inactive state the two heads of a myosin molecule interact asymmetrically forming a myosin interacting-heads motif. This suggested that inactivation of the two heads occurs by blocking of the actin-binding site of one (free head) and the ATP hydrolysis site of the other (blocked head). This motif has been found by EM of isolated negatively stained myosin molecules of unregulated (vertebrate skeletal and cardiac muscle) and regulated (invertebrate striated and vertebrate smooth muscle) myosins, and nonmuscle myosin. The same motif has also been found in 3D-reconstructions of frozen-hydrated (tarantula, Limulus, scallop) and negatively stained (scallop, vertebrate cardiac) isolated thick filaments. We are carrying out studies of isolated thick filaments from other species to assess how general this myosin interacting-heads motif is. Here, using EM, we have visualized isolated, negatively stained thick filaments from scorpion striated muscle. We modified the iterative helical real space reconstruction (IHRSR) method to include filament tilt, and band-pass filtered the aligned segments before averaging, achieving a 3.3 nm resolution 3D-reconstruction. This reconstruction revealed the presence of the myosin interacting-heads motif (adding to evidence that is widely spread), together with 12 subfilaments in the filament backbone. This demonstrates that conventional negative staining and imaging can be used to detect the presence of the myosin interacting-heads motif in helically ordered thick filaments from different species and muscle types, thus avoiding the use of less accessible cryo-EM and low electron-dose procedures. PMID:22982253

  20. [Evaluation of the degree of muscle blockade: a comparative study using electromyography of the muscular relaxation induced by pancuronium, atracurium and vecuronium].

    PubMed

    Cabarrocas, E; Roigé, J; Durán, L; Gancedo, V; Ballvé, M; Martínez Bayón, M J

    1990-01-01

    To compare the muscle relaxing effect of pancuronium, atracurium and vecuronium, 99 patients operated on under neuroleptanesthesia were divided in three groups depending on whether they had received, during induction, pancuronium 0.1 mg/kg, atracurium 0.5 mg/kg, or vecuronium 0.1 mg/kg. One-fourth of the initial dose was repeated if necessary. The electromyographic study of the muscle relaxing effect was carried out with stimulation of the cubital nerve with courses of supramaximal square wave electric stimuli in 'trains of four'. The time to maximal blockade (TMB), the time of clinical effectiveness (TCE), the total duration time (TDT), the time of duration of the maintenance dose (DM 25) and the recovery index (RI) were measured. TMB was 4.3 +/- 1 min for pancuronium, 3.5 +/- 0.8 min for atracurium, and 3.3 +/- 0.98 min for vecuronium. The differences between pancuronium and the other drugs were statistically significant, but they were not so between the latter two. TCE was 67.9 +/- 13.5 min for pancuronium, significantly longer than with vecuronium and atracurium (28.2 +/- 5.7 and 31.5 +/- 4.7, respectively). TDT was 126.2 +/- 19.9 min for pancuronium, 61.2 +/- 11.5 min for atracurium and 55.5 +/- 16.7 for vecuronium. The mean duration of the repeated dose was 52.7 +/- 8.4 min for pancuronium, 19.9 +/- 5 min for vecuronium and 10.9 +/- 5 min for atracurium. RI, which was similar for atracurium and vecuronium (12.7 +/- 1.7 min and 12.8 +/- 3.3 min), was longer for pancuronium (27.7 +/- 4.3 min).

  1. Vascular Protective Effect of an Ethanol Extract of Camellia japonica Fruit: Endothelium-Dependent Relaxation of Coronary Artery and Reduction of Smooth Muscle Cell Migration.

    PubMed

    Park, Sin-Hee; Shim, Bong-Sup; Yoon, Jun-Seong; Lee, Hyun-Ho; Lee, Hye-Won; Yoo, Seok-Bong; Wi, An-Jin; Park, Whoa-Shig; Kim, Hyun-Jung; Kim, Dong-Wok; Oak, Min-Ho

    2015-01-01

    Camellia japonica is a popular garden plant in Asia and widely used as cosmetic sources and traditional medicine. However, the possibility that C. japonica affects cardiovascular system remains unclear. The aim of the present study was to evaluate vascular effects of an extract of C. japonica. Vascular reactivity was assessed in organ baths using porcine coronary arteries and inhibition of proliferation and migration were assessed using human vascular smooth muscle cells (VSMCs). All four different parts, leaf, stem, flower, and fruits, caused concentration-dependent relaxations and C. japonica fruit (CJF) extract showed the strongest vasorelaxation and its effect was endothelium dependent. Relaxations to CJF were markedly reduced by inhibitor of endothelial nitric oxide synthase (eNOS) and inhibitor of PI3-kinase, but not affected by inhibitor of cyclooxygenase and endothelium-derived hyperpolarizing factor-mediated response. CJF induced activated a time- and concentration-dependent phosphorylation of eNOS in endothelial cells. Altogether, these studies have demonstrated that CJF is a potent endothelium-dependent vasodilator and this effect was involved in, at least in part, PI3K-eNOS-NO pathway. Moreover, CJF attenuated TNF-α induced proliferation and PDGF-BB induced migration of VSMCs. The present findings indicate that CJF could be a valuable candidate of herbal medicine for cardiovascular diseases associated with endothelial dysfunction and atherosclerosis. PMID:26697138

  2. Auricular Acupuncture Versus Progressive Muscle Relaxation in Patients with Anxiety Disorders or Major Depressive Disorder: A Prospective Parallel Group Clinical Trial.

    PubMed

    de Lorent, Lukas; Agorastos, Agorastos; Yassouridis, Alexander; Kellner, Michael; Muhtz, Christoph

    2016-08-01

    Although acupuncture treatment is increasingly in demand among psychiatric patients, to date no studies have investigated the effectiveness of auricular acupuncture (AA) in treating anxiety disorders or major depressive disorder. Thus, this study aimed to compare the effectiveness of AA versus progressive muscle relaxation (PMR), a standardized and accepted relaxation method. We examined 162 patients with a primary diagnosis of anxiety disorder or major depressive disorder, and each patient chose between treatment with AA, executed according to the National Acupuncture Detoxification Association protocol, and treatment with PMR. Each group had treatments twice a week for 4 weeks. Before and after treatment, each participant rated four items on a visual analog scale: anxiety, tension, anger/aggression, and mood. Statistical analyses were performed with the original visual analog scale scores and the Change-Intensity Index, an appropriate indicator of the difference between two values of a variable. Our results show that treatment with AA significantly decreased tension, anxiety, and anger/aggression throughout the 4 weeks, but did not elevate mood. Between AA and PMR, no statistically significant differences were found at any time. Thus, we suggest that both AA and PMR may be useful, equally-effective additional interventions in the treatment of the above-mentioned disorders. PMID:27555224

  3. Beta-adrenergic relaxation of mouse urinary bladder smooth muscle in the absence of large-conductance Ca2+-activated K+ channel.

    PubMed

    Brown, Sean M; Bentcheva-Petkova, Lilia M; Liu, Lei; Hristov, Kiril L; Chen, Muyan; Kellett, Whitney F; Meredith, Andrea L; Aldrich, Richard W; Nelson, Mark T; Petkov, Georgi V

    2008-10-01

    In urinary bladder smooth muscle (UBSM), stimulation of beta-adrenergic receptors (beta-ARs) leads to activation of the large-conductance Ca2+-activated K+ (BK) channel currents (Petkov GV and Nelson MT. Am J Physiol Cell Physiol 288: C1255-C1263, 2005). In this study we tested the hypothesis that the BK channel mediates UBSM relaxation in response to beta-AR stimulation using the highly specific BK channel inhibitor iberiotoxin (IBTX) and a BK channel knockout (BK-KO) mouse model in which the gene for the pore-forming subunit was deleted. UBSM strips isolated from wild-type (WT) and BK-KO mice were stimulated with 20 mM K+ or 1 microM carbachol to induce phasic and tonic contractions. BK-KO and WT UBSM strips pretreated with IBTX had increased overall contractility, and UBSM BK-KO cells were depolarized with approximately 12 mV. Isoproterenol, a nonspecific beta-AR agonist, and forskolin, an adenylate cyclase activator, decreased phasic and tonic contractions of WT UBSM strips in a concentration-dependent manner. In the presence of IBTX, the concentration-response curves to isoproterenol and forskolin were shifted to the right in WT UBSM strips. Isoproterenol- and forskolin-mediated relaxations were enhanced in BK-KO UBSM strips, and a leftward shift in the concentration-response curves was observed. The leftward shift was eliminated upon PKA inhibition with H-89, suggesting upregulation of the beta-AR-cAMP pathway in BK-KO mice. These results indicate that the BK channel is a key modulator in beta-AR-mediated relaxation of UBSM and further suggest that alterations in BK channel expression or function could contribute to some pathophysiological conditions such as overactive bladder and urinary incontinence.

  4. The influence of intracellular pH on contraction, relaxation and [Ca2+]i in intact single fibres from mouse muscle.

    PubMed

    Westerblad, H; Allen, D G

    1993-07-01

    1. The effects of intracellular pH (pHi) on myoplasmic free calcium concentration ([Ca2+]i) and contractile performance were studied in intact single fibres dissected from mouse skeletal muscle. Indo-1 was used to measure [Ca2+]i and pHi was altered by changing perfusate CO2. 2. Tetanic tension was decreased at acidic pHi and increased at alkaline pHi whereas the rate of mechanical relaxation was showed at both acidic and alkaline pHi. Resting and tetanic [Ca2+]i were increased at acidic pHi and decreased at alkaline pHi while the final rate of decline of [Ca2+]i after a tetanus was markedly slowed at acid pHi but only marginally accelerated at alkaline pHi. 3. Steady-state [Ca2+]i-tension curves were constructed from measurements of tetani at different stimulus frequencies. The curves at acid pHi showed a reduced maximum Ca(2+)-activated tension and a reduced Ca2+ sensitivity, and curves at alkaline pHi showed the opposite changes. 4. Two methods were devised to determine the contribution of [Ca2+]i to the rate of relaxation. In one method the instantaneous tension was plotted as a function of instantaneous [Ca2+]i throughout a tetanus and compared with the steady-state [Ca2+]i-tension relation. In a second method the [Ca2+]i signal during a tetanus was converted to a Ca(2+)-derived tension record by means of the steady-state [Ca2+]i-tension relation and this Ca(2+)-derived tension was then compared to the true tension. 5. The sarcoplasmic reticulum (SR) pump function was analysed by plotting -d[Ca2+]i/dt against [Ca2+]i during the final slow decline of [Ca2+]i after a tetanus. This analysis shows that the Ca2+ uptake by the SR is a third- or fourth-power function of [Ca2+]i and that acidosis substantially slows the rate of SR Ca2+ pumping. 6. In conclusion, the slowing of relaxation at acidic pHi could be attributed to a slowing of cross-bridge detachment rather than the observed slowing of the rate of uptake of Ca2+. Conversely the slowing of relaxation in

  5. Relaxant effect of ethanol extract of Carum carvi on dispersed intestinal smooth muscle cells of the guinea pig.

    PubMed

    Al-Essa, Mohammed K; Shafagoj, Yanal A; Mohammed, Faysal I; Afifi, Fatma U

    2010-01-01

    The present study investigates the direct effects of Carum carvi L. (Apiaceae) ethanol extract on dispersed intestinal smooth muscle cells (SMC) of guinea pigs. Effects of the plant extract on SMC and of acetylcholine (Ach) on extract pretreated SMC were measured by micrometric scanning technique. Three different extract concentrations (2.5 mg/mL, 250 mug/mL, and 25 mug/mL) were used. Ethanol extract of C. carvi reduced significantly the response of dispersed SMC to Ach. Pretreatment of SMC with the highest concentration of C. carvi ethanol extract (2.5 mg/mL) has significantly inhibited the response of SMC to Ach. The data obtained indicate a dose-dependent inhibition of the contraction induced by Ach. This response may explain, in part, the beneficial effect of caraway in relieving gastrointestinal symptoms associated with dyspepsia.

  6. The effect of improvisation-assisted desensitization, and music-assisted progressive muscle relaxation and imagery on reducing pianists' music performance anxiety.

    PubMed

    Kim, Youngshin

    2008-01-01

    The purpose of this study was to investigate the effects of two music therapy approaches, improvisation-assisted desensitization, and music-assisted progressive muscle relaxation and imagery on ameliorating the symptoms of music performance anxiety (MPA) among student pianists. Thirty female college pianists (N = 30) were randomly assigned to one of two conditions: (a) improvised music-assisted desensitization group (n = 15), or (b) music-assisted progressive muscle relaxation (PMR) and imagery group (n = 15). All participants received 6 weekly music therapy sessions according to their assigned group. Two lab performances were provided; one before and one after the 6 music therapy sessions, as the performance stimuli for MPA. All participants completed pretest and posttest measures that included four types of visual analogue scales (MPA, stress, tension, and comfort), the state portion of Spielberger's State-Trait Anxiety Inventory (STAI), and the Music Performance Anxiety Questionnaire (MPAQ) developed by Lehrer, Goldman, and Strommen (1990). Participants' finger temperatures were also measured. When results of the music-assisted PMR and imagery condition were compared from pretest to posttest, statistically significant differences occurred in 6 out of the 7 measures-MPA, tension, comfort, STAI, MPAQ, and finger temperature, indicating that the music-assisted PMR and imagery treatment was very successful in reducing MPA. For the improvisation-assisted desensitization condition, the statistically significant decreases in tension and STAI, with increases in finger temperature indicated that this approach was effective in managing MPA to some extent. When the difference scores for the two approaches were compared, there was no statistically significant difference between the two approaches for any of the seven measures. Therefore, no one treatment condition appeared more effective than the other. Although statistically significant differences were not found between

  7. Evidence that additional mechanisms to cyclic GMP mediate the decrease in intracellular calcium and relaxation of rabbit aortic smooth muscle to nitric oxide

    PubMed Central

    Weisbrod, Robert M; Griswold, Mark C; Yaghoubi, Mohammad; Komalavilas, Padmini; Lincoln, Thomas M; Cohen, Richard A

    1998-01-01

    The role of cyclic GMP in the ability of nitric oxide (NO) to decrease intracellular free calcium concentration [Ca2+]i and divalent cation influx was studied in rabbit aortic smooth muscle cells in primary culture. In cells stimulated with angiotensin II (AII, 10−7 M), NO (10−10–10−6 M) increased cyclic GMP levels measured by radioimmunoassay and decreased [Ca2+]i and cation influx as indicated by fura-2 fluorimetry.Zaprinast (10−4 M), increased NO-stimulated levels of cyclic GMP by 3–20 fold. Although the phosphodiesterase inhibitor lowered the level of [Ca2+]i reached after administration of NO, the initial decreases in [Ca2+]i initiated by NO were not significantly different in magnitude or duration from those that occurred in the absence of zaprinast.The guanylyl cyclase inhibitor, H-(1,2,4) oxadiazolo(4,3-a) quinoxallin-1-one (ODQ, 10−5 M), blocked cyclic GMP accumulation and activation of protein kinase G, as measured by back phosphorylation of the inositol trisphosphate receptor. ODQ and Rp-8-Br-cyclic GMPS, a protein kinase G inhibitor, decreased the effects of NO, 10−10–10−8 M, but the decrease in [Ca2+]i or cation influx caused by higher concentrations of NO (10−7–10−6 M) were unaffected. Relaxation of intact rabbit aorta rings to NO (10−7–10−5 M) also persisted in the presence of ODQ without a significant increase in cyclic GMP. Rp-8-Br-cyclic GMPS blocked the decreases in cation influx caused by a cell permeable cyclic GMP analog, but ODQ and/or the protein kinase G inhibitor had no significant effect on the decrease caused by NO.Although inhibitors of cyclic GMP, protein kinase G and phosphodiesterase can be shown to affect the decrease in [Ca2+]i and cation influx via protein kinase G, these studies indicate that when these mechanisms are blocked, cyclic GMP-independent mechanisms also contribute significantly to the decrease in [Ca2+]i and smooth muscle relaxation to NO. PMID:9886761

  8. Peptide IC-20, encoded by skin kininogen-1 of the European yellow-bellied toad, Bombina variegata, antagonizes bradykinin-induced arterial smooth muscle relaxation

    PubMed Central

    Yang, Mu; Zhou, Mei; Bai, Bing; Ma, Chengbang; Wei, Le; Wang, Lei; Chen, Tianbao; Shaw, Chris

    2011-01-01

    Objectives: The objectives were to determine if the skin secretion of the European yellow-bellied toad (Bombina variegata), in common with other related species, contains a bradykinin inhibitor peptide and to isolate and structurally characterize this peptide. Materials and Methods: Lyophilized skin secretion obtained from this toad was subjected to reverse phase HPLC fractionation with subsequent bioassay of fractions for antagonism of the bradykinin activity using an isolated rat tail artery smooth muscle preparation. Subsequently, the primary structure of the peptide was established by a combination of microsequencing, mass spectroscopy, and molecular cloning, following which a synthetic replicate was chemically synthesised for bioassay. Results: A single peptide of molecular mass 2300.92 Da was resolved in HPLC fractions of skin secretion and its primary structure determined as IYNAIWP-KH-NK-KPGLL-. Database interrogation with this sequence indicated that this peptide was encoded by skin kininogen-1 previously cloned from B. variegata. The blank cycles were occupied by cysteinyl (C) residues and the peptide was located toward the C-terminus of the skin kininogen, and flanked N-terminally by a classical –KR- propeptide convertase processing site. The peptide was named IC-20 in accordance (I = N-terminal isoleucine, C = C-terminal cysteine, 20 = number of residues). Like the natural peptide, its synthetic replicate displayed an antagonism of bradykinin-induced arterial smooth muscle relaxation. Conclusion: IC-20 represents a novel bradykinin antagonizing peptide from amphibian skin secretions and is the third such peptide found to be co-encoded with bradykinins within skin kininogens. PMID:21687349

  9. sup 31 P and sup 1 H NMR studies of the structure of enzyme-bound substrate complexes of lobster muscle arginine kinase: Relaxation measurements with Mn(II) and Co(II)

    SciTech Connect

    Jarori, G.K.; Ray, B.D.; Rao, B.D.N. )

    1989-11-28

    The paramagnetic effects of Mn(II) and Co(II) on the spin-lattice relaxation rates of {sup 31}P nuclei of ATP and ADP and of Mn(II) on the spin-lattice relaxation rate of the {delta} protons of arginine bound to arginine kinase from lobster tail muscle have been measured. Temperature variation of {sup 31}P relaxation rates in E-MnADP and E-MnATP yields activation energies ({Delta}E) in the range 6-10 kcal/mol. Thus, the {sup 31}P relaxation rates in these complexes are exchange limited and cannot provide structural information. However, the relaxation rates in E-CoADP and E-CoATP exhibit frequency dependence and {Delta}E values in the range 1-2 kcal/mol; i.e., these rates depend upon {sup 31}P-Co(II) distances. These distances were calculated to be in the range 3.2-4.5 {angstrom}, appropriate for direct coordination between Co(II) and the phosphoryl groups. The paramagnetic effect of Mn(II) on the {sup 1}H spin-lattice relaxation rate of the {delta} protons of arginine in the E-MnADP-Arg complex was also measured at three frequencies. From the frequency dependence of the relaxation rate an effective {tau}{sub C} of 0.6 ns has also been calculated, which is most likely to be the electron spin relaxation rate ({tau}{sub S1}) for Mn(II) in this complex. The distance estimated on the basis of the reciprocal sixth root of the average relaxation rate of the {delta} protons was 10.9 {plus minus} 0.3 {angstrom}.

  10. A Randomized Controlled Trial for the Effectiveness of Progressive Muscle Relaxation and Guided Imagery as Anxiety Reducing Interventions in Breast and Prostate Cancer Patients Undergoing Chemotherapy

    PubMed Central

    Charalambous, Andreas; Giannakopoulou, Margarita; Bozas, Evangelos; Paikousis, Lefkios

    2015-01-01

    Objective. To test the effectiveness of guided imagery (GI) and progressive muscle relaxation (PMR) as stress reducing interventions in patients with prostate and breast cancer who undergo chemotherapy. Methods. Patients were randomly assigned to either the control group or the intervention group (PMR and GI). Patients were observed for a total duration of 3 weeks and assessed with the SAS and BECK-II questionnaires for anxiety and depression, respectively, in addiotion to two biological markers (saliva cortisol and saliva amylase) (trial registration number: NCT01275872). Results. 256 patients were registered and 236 were randomly assigned. In total 104 were randomised to the control group and 104 to the intervention group. Intervention's mean anxiety score and depression score changes were significantly different compared to the control's (b = −29.4, p < 0.001; b = −29.4, p < 0.001, resp.). Intervention group's cortisol levels before the intervention (0.30 ± 0.25) gradually decreased up to week 3 (0.16 ± 0.18), whilst the control group's cortisol levels before the intervention (0.21 ± 0.22) gradually increased up to week 3 (0.44 ± 0.35). The same interaction appears for the Amylase levels (p < 0.001). Conclusions. The findings showed that patients with prostate and breast cancer undergoing chemotherapy treatment can benefit from PMR and GI sessions to reduce their anxiety and depression. PMID:26347018

  11. Differential effects of mindful breathing, progressive muscle relaxation, and loving-kindness meditation on decentering and negative reactions to repetitive thoughts.

    PubMed

    Feldman, Greg; Greeson, Jeff; Senville, Joanna

    2010-10-01

    Decentering has been proposed as a potential mechanism of mindfulness-based interventions but has received limited empirical examination to date in experimental studies comparing mindfulness meditation to active comparison conditions. In the present study, we compared the immediate effects of mindful breathing (MB) to two alternative stress-management techniques: progressive muscle relaxation (PMR) and loving-kindness meditation (LKM) to test whether decentering is unique to mindfulness meditation or common across approaches. Novice meditators (190 female undergraduates) were randomly assigned to complete one of three 15-min stress-management exercises (MB, PMR, or LKM) presented by audio recording. Immediately after the exercise, participants completed measures of decentering, frequency of repetitive thoughts during the exercise, and degree of negative reaction to thoughts. As predicted, participants in the MB condition reported greater decentering relative to the other two conditions. The association between frequency of repetitive thought and negative reactions to thoughts was relatively weaker in the MB condition than in the PMR and LKM conditions, in which these two variables were strongly and positively correlated. Consistent with the construct of decentering, the relative independence between these two variables in the MB condition suggests that mindful breathing may help to reduce reactivity to repetitive thoughts. Taken together, results help to provide further evidence of decentering as a potential mechanism that distinguishes mindfulness practice from other credible stress-management approaches.

  12. The effects of the transcendental mediation technique and progressive muscle relaxation on EEG coherence, stress reactivity, and mental health in black adults.

    PubMed

    Gaylord, C; Orme-Johnson, D; Travis, F

    1989-05-01

    Eighty-three black college students, staff and adults were pretested on EEG coherence, skin potential (SP) habituation to a series of loud tones, psychometric measures of mental health (Tennessee Self-Concept Empirical Scales and Spielberger State-Trait Anxiety Inventory) and IQ. They were then randomly assigned to one of the three treatment groups: the Transcendental Meditation technique (TM); Progressive Muscle Relaxation (PR); or cognitive-behavioral strategies (C). Approximately one year later, they were posttested. TM and PR increased significantly on an overall mental health factor (p less than .036) and anxiety (p less than .0006). TM showed a greater reduction in neuroticism than PR and C (p less than .032). TM also showed global increases in alpha and theta coherence among frontal and central leads during the TM period compared to eyes closed (p less than .016), whereas PR and C did not show EEG state changes. The coherence increases during TM were most marked in the right hemisphere (F4C4). TM showed faster SP habituation at posttest compared to pretest (p less than .047) whereas PR did not (data was missing for C). None of the groups showed longitudinal changes in EEG, perhaps due to lack of regularity of participation in the treatment programs.

  13. 2-Arachidonylglyceryl ether and abnormal cannabidiol-induced vascular smooth muscle relaxation in rabbit pulmonary arteries via receptor-pertussis toxin sensitive G proteins-ERK1/2 signaling.

    PubMed

    Su, Judy Y; Vo, Anhkiet C

    2007-03-22

    The receptor(s) used by cannabinoids to relax vascular smooth muscle is unknown. Here, we investigated the effects of 2-arachidonylglyceryl ether (2-AG ether), a metabolically stable endocannabinoid, and abnormal cannabidiol (abn-CBD) on relaxation of permeabilized pulmonary arterial strips monitored with force, and on extracellular signal-regulated mitogen-activated protein kinases (ERK1/2) phosphorylation in permeabilized vascular smooth muscle cells using immunoblotting. We found that 2-AG ether and abn-CBD caused relaxation and increased phosphorylation of ERK1/2. 2-AG ether effects were completely abolished by N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251), and N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (SR141716A), and partially blocked by (-)-1.3-dimethoxy-2-(3-3,4-trans-p-menthadien-(1,8)-yl)-orcinol (O-1918). In contrast, abn-CBD effects were completely abolished by O-1918, and only partially blocked by AM251, and SR141716A. Both 2-AG ether and abn-CBD effects were partially blocked by pertussis toxin, an inhibitor of Gi/o proteins. PD98059, an inhibitor of mitogen activated protein kinase kinase (MEK), completely abolished the relaxation, but only partially blocked the increased phosphorylation of ERK1/2 by 2-AG ether. In contrast, abn-CBD-induced relaxation was partially blocked and the increased phosphorylation of ERK1/2 was abolished by PD98059. These findings suggest that 2-AG ether and abn-CBD-induced vascular smooth muscle relaxation are mediated by the cannabinoid CB1 receptor, and the abn-CBD receptor, respectively, and are modulated by cross-talk between the receptors. These responses occur mainly by coupling to pertussis toxin sensitive G proteins, but also, in part independent of these G proteins, which have been classically thought to initiate MEK/ERK1/2 signaling to relax vascular smooth muscle.

  14. Relaxation: mapping an uncharted world.

    PubMed

    Smith, J C; Amutio, A; Anderson, J P; Aria, L A

    1996-03-01

    Nine hundred and forty practitioners of massage, abbreviated progressive muscle relaxation (PMR), yoga stretching, breathing, imagery meditation, and various combination treatments described their technique experiences on an 82-item wordlist. Factor analysis yielded 10 interpretable relaxation categories: Joyful Affects and Appraisals (Joyful), Distant, Calm, Aware, Prayerful, Accepted, Untroubled, Limp, Silent, and Mystery The relaxation response and cognitive/somatic specificity models predict Calm and Limp, which account for only 5.5% of the variance of relaxation experience. Unlike much of previous relaxation research, we found important technique differences. PMR and massage are associated with Distant and Limp; yoga stretching, breathing, and meditation with Aware; meditation with Prayerful and all techniques except PMR with Joyful. Results are consistent with cognitive-behavioral relaxation theory and have implications for relaxation theory, treatment, training, assessment, and research. We close with a revised model of relaxation that posits three global dimensions; tension-relief, passive disengagement, and passive engagement.

  15. Guided Imagery And Progressive Muscle Relaxation as a Cluster of Symptoms Management Intervention in Patients Receiving Chemotherapy: A Randomized Control Trial

    PubMed Central

    Charalambous, Andreas; Giannakopoulou, Margarita; Bozas, Evaggelos; Marcou, Yiola; Kitsios, Petros; Paikousis, Lefkios

    2016-01-01

    Objective Patients receiving chemotherapy often experience many different symptoms that can be difficult to alleviate and ultimately negatively influence their quality of life. Such symptoms include pain, fatigue, nausea, vomiting and retching, anxiety and depression. There is a gap in the relevant literature on the effectiveness of cognitive-behavioural and relaxation techniques in symptom clusters. The study reflects this gap in the literature and aimed to test the effectiveness of Guided Imagery (GI) and Progressive Muscle Relaxation (PMR) on a cluster of symptoms experienced by patients undergoing chemotherapy. Methods This was a randomized control trial with 208 patients equally assigned either in the intervention or the control group. Measurements in both groups were collected at baseline and at completion of intervention (4 weeks). Patients were assessed for pain, fatigue, nausea, vomiting and retching, anxiety and depression. The overall management of the cluster was also assessed based on the patients’ self-reported health related quality of life-HRQoL. Chi-square tests (X2), independent T-tests and Linear Mixed Models were calculated. Results Patients in the intervention group experienced lower levels of Fatigue (p<0.0.0225), and Pain (p = 0.0003) compared to those in the control group and experienced better HRQoL (p<0.0001) [PRE-POST: Intervention: Pain 4.2(2.5) - 2.5(1.6), Fatigue 27.6(4.1) - 19.3(4.1), HRQoL 54.9(22.7) - 64.5(23), Control: Pain 3.5(1.7) - 4.8(1.5), Fatigue 28.7(4.1) - 32.5(3.8), HRQoL 51.9(22.3)– 41.2(24.1)]. Nausea, vomiting and retching occurred significantly less often in the intervention group [pre-post: 25.4(5.9)– 20.6(5.6) compared to the control group (17.8(6.5)– 22.7(5.3) (F = 58.50 p<0.0001). More patients in the control group (pre:n = 33-post:n = 47) were found to be moderately depressed compared to those in the intervention group (pre:n = 35-post:n = 15) (X2 = 5.93; p = 0.02). Conclusion This study provided evidence

  16. Relaxation: A Fourth "R" for Education.

    ERIC Educational Resources Information Center

    Frederick, A. B.

    Relaxation training helps the individual handle tension through concentrating upon efficient use of muscles. A program of progressive relaxation can be easily incorporated into elementary and secondary schools. Objectives of such a program include the following: (a) to learn to relax technically for purposes of complete rest (deep muscle…

  17. A physiological and subjective evaluation of meditation, hypnosis, and relaxation.

    PubMed

    Morse, D R; Martin, J S; Furst, M L; Dubin, L L

    1977-01-01

    Ss were monitored for respiratory rate, pulse rate, blood pressure, skin resistance, EEG activity, and muscle activity. They were monitored during the alert state, meditation (TM or simple word type), hypnosis (relaxation and task types), and relaxation. Ss gave a verbal comparative evaluation of each state. The results showed significantly better relaxation responses for the relaxation states (relaxation, relaxation-hypnosis, meditation) than for the alert state. There were no significant differences between the relaxation states except for the measure "muscle activity" in which meditation was significantly better than the other relaxation states. Overall, there were significant differences between task-hypnosis and relaxation-hypnosis. No significant differences were found between TM and simple word meditation. For the subjective measures, relaxation-hypnosis and meditation were significantly better than relaxation, but no significant differences were found between meditation and relaxation-hypnosis.

  18. Relaxation System

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Environ Corporation's relaxation system is built around a body lounge, a kind of super easy chair that incorporates sensory devices. Computer controlled enclosure provides filtered ionized air to create a feeling of invigoration, enhanced by mood changing aromas. Occupant is also surrounded by multidimensional audio and the lighting is programmed to change colors, patterns, and intensity periodically. These and other sensory stimulators are designed to provide an environment in which the learning process is stimulated, because research has proven that while an individual is in a deep state of relaxation, the mind is more receptive to new information.

  19. Which treatment for low back pain? A factorial randomised controlled trial comparing intravenous analgesics with oral analgesics in the emergency department and a centrally acting muscle relaxant with placebo over three days [ISRCTN09719705].

    PubMed

    Havel, Christof; Sieder, Anna; Herkner, Harald; Domanovits, Hans; Schmied, Mascha; Segel, Rudolf; Koreny, Maria; Laggner, Anton N; Müllner, Marcus

    2001-01-01

    BACKGROUND: About two thirds of adults suffer from backpain at some time during their life. In the emergency room many patients with acute back pain are treated with intravenous non-steroidal analgesics. Whether this treatment is superior to oral administration of non-steroidal analgesics is unknown. Intravenous administration, however, requires considerable amounts of resources and accounts for high workload in busy clinics. In the further course centrally acting muscle relaxants are prescribed but the effectiveness remains unclear. The objective of this study is on the one hand to compare the effectiveness of intravenous with oral non-steroidal analgesics for acute treatment and on the other hand to compare the effectiveness of a centrally active muscle relaxant with placebo given for three days after presentation to the ED (emergency department). METHODS/DESIGN: This study is intended as a randomised controlled factorial trial mainly for two reasons: (1) the sequence of treatments resembles the actual proceedings in every-day clinical practice, which is important for the generalisability of the results and (2) this design allows to take interactions between the two sequential treatment strategies into account. There is a patient preference arm included because patients preference is an important issue providing valuable information: (1) it allows to assess the interaction between desired treatment and outcome, (2) results can be extrapolated to a wider group while (3) conserving the advantages of a fully randomised controlled trial. CONCLUSION: We hope to shed more light on the effectiveness of treatment modalities available for acute low back pain.

  20. Which treatment for low back pain? A factorial randomised controlled trial comparing intravenous analgesics with oral analgesics in the emergency department and a centrally acting muscle relaxant with placebo over three days [ISRCTN09719705

    PubMed Central

    Havel, Christof; Sieder, Anna; Herkner, Harald; Domanovits, Hans; Schmied, Mascha; Segel, Rudolf; Koreny, Maria; Laggner, Anton N; Müllner, Marcus

    2001-01-01

    Background About two thirds of adults suffer from backpain at some time during their life. In the emergency room many patients with acute back pain are treated with intravenous non-steroidal analgesics. Whether this treatment is superior to oral administration of non-steroidal analgesics is unknown. Intravenous administration, however, requires considerable amounts of resources and accounts for high workload in busy clinics. In the further course centrally acting muscle relaxants are prescribed but the effectiveness remains unclear. The objective of this study is on the one hand to compare the effectiveness of intravenous with oral non-steroidal analgesics for acute treatment and on the other hand to compare the effectiveness of a centrally active muscle relaxant with placebo given for three days after presentation to the ED (emergency department). Methods/Design This study is intended as a randomised controlled factorial trial mainly for two reasons: (1) the sequence of treatments resembles the actual proceedings in every-day clinical practice, which is important for the generalisability of the results and (2) this design allows to take interactions between the two sequential treatment strategies into account. There is a patient preference arm included because patients preference is an important issue providing valuable information: (1) it allows to assess the interaction between desired treatment and outcome, (2) results can be extrapolated to a wider group while (3) conserving the advantages of a fully randomised controlled trial. Conclusion We hope to shed more light on the effectiveness of treatment modalities available for acute low back pain. PMID:11716789

  1. Multi-parametric MRI Characterization of Healthy Human Thigh Muscles at 3.0T - Relaxation, Magnetization Transfer, Fat/Water, and Diffusion Tensor Imaging

    PubMed Central

    Li, Ke; Dortch, Richard D.; Welch, E. Brian; Bryant, Nathan D.; Buck, Amanda K.W.; Towse, Theodore F.; Gochberg, Daniel F.; Does, Mark D.; Damon, Bruce M.; Park, Jane H.

    2014-01-01

    Muscle diseases commonly have clinical presentations of inflammation, fat infiltration, fibrosis, and atrophy. However, the results of existing laboratory tests and clinical presentations are not well correlated. Advanced quantitative MRI techniques may allow the assessment of myo-pathological changes in a sensitive and objective manner. To progress towards this goal, an array of quantitative MRI protocols was implemented for human thigh muscles, their reproducibility was assessed, and the statistical relationships among parameters were determined. These quantitative methods included fat/water imaging, multiple spin-echo T2 imaging (with and without fat signal suppression, FS), selective inversion recovery for T1 and quantitative magnetization transfer (qMT) imaging (with and without FS), and diffusion tensor imaging. Data were acquired at 3.0 T from nine healthy subjects. To assess the repeatability of each method, the subjects were re-imaged on an average of 35 days later. Pre-testing lifestyle restrictions were applied to standardize physiological conditions across scans. Strong between-day intra-class correlations were observed in all quantitative indices except for the macromolecular-to-free water pool size ratio (PSR) with FS, a metric derived from qMT data. Two-way analysis of variance revealed no significant between-day differences in the mean values for any parameter estimate. The repeatability was further assessed with Bland-Altman plots, and low repeatability coefficients were obtained for all parameters. Among-muscle differences in the quantitative MRI indices and inter-class correlations among the parameters were identified. There were inverse relationships between fractional anisotropy (FA) and the 2nd eigenvalue, the 3rd eigenvalue, and the standard deviation of first eigenvector. The FA was positively related to the PSR, while the other diffusion indices were inversely related to the PSR. These findings support the use of these T1, T2, fat

  2. Mechanics of myocardial relaxation: application of a model to isometric and isotonic relaxation of rat myocardium.

    PubMed

    Wiegner, A W; Bing, O H

    1982-01-01

    Using a simple model for cardiac muscle relaxation which takes into account muscle length, activation, elasticity and a rate constant for the decay of activation, we are able to use easily measured mechanical parameters to assess the state of the cardiac relaxing system. In isolated trabeculae carneae from the left ventricle of the rat, performing physiologically sequenced contractions, observations have been made (1) at varying preloads and afterloads, (2) with changes in temperature from 23 degrees to 33 degrees C, (3) with changes in bath Ca2+ concentration and (4) with the addition of isoproterenol. During isometric relaxation, the slope (SIM) of the curve relating maximum rate of decline of force (-dF/dtmax) to end-systolic muscle length is load-independent and sensitive to interventions which directly affect the cardiac relaxing system (e.g., temperature, isoproterenol); it is only slightly sensitive to bath calcium concentration. During isotonic relaxation, the maximum velocity of lengthening (+dL/dtmax) is in negative linear proportion to muscle shortening at a given preload, the slope (SIT) of the curve relating +dL/dtmax to end-systolic length is sensitive to the interventions which directly affect the cardiac relaxing system but insensitive to calcium-mediated inotropic interventions. The model provides a theoretical basis for the use of SIM and SIT as measures of the relaxation process. PMID:7161285

  3. Breathing and Relaxation

    MedlinePlus

    ... Top Doctors in the Nation Departments & Divisions Home Health Insights Stress & Relaxation Breathing and Relaxation Breathing and Relaxation Make ... Management Assess Your Stress Coping Strategies Identifying ... & Programs Health Insights Doctors & Departments Research & Science Education & Training Make ...

  4. Relaxation Assessment with Varied Structured Milieu (RELAX).

    ERIC Educational Resources Information Center

    Cassel, Russell N.; Cassel, Susie L.

    1983-01-01

    Describes Relaxation Assessment with Varied Structured Milieu (RELAX), a clinical program designed to assess the degree to which an individual is able to demonstrate self-control for overall general relaxation. The program is designed for use with the Cassel Biosensors biofeedback equipment. (JAC)

  5. Myofascial pain: relief by post-isometric relaxation.

    PubMed

    Lewit, K; Simons, D G

    1984-08-01

    The post-isometric relaxation technique begins by placing the muscle in a stretched position. Then an isometric contraction is exerted against minimal resistance. Relaxation and then gentle stretch follow as the muscle releases. This technique was applied to tight, tender muscles that are commonly associated with musculoskeletal pain and was systematically tested on 351 muscle groups in 244 patients. The method produced immediate pain relief in 94%, lasting pain relief in 63%, as well as lasting relief of point tenderness in 23% of the sites treated. Patients who practiced autotherapy on a home program were more likely to realize lasting relief. Pain was relieved in both the muscle itself and at tender insertion points. The technique is useful in addition to, or in place of, local anesthetic injection or dry needling. These results confirm other observations that the increased tension of the affected muscles and the resulting pain and dysfunction are both relieved by restoring the full stretch length of the muscle.

  6. Use of Biofeedback/Relaxation Procedures with Learning Disabled Children.

    ERIC Educational Resources Information Center

    Carter, John L.; Russell, Harold L.

    The report covers a series of investigations on the effects of biofeedback/muscle relaxation training on the academic achievement of learning disabled (LD) students. In the first study, 32 LD elementary school students made gains in all measures except arithmetic following electromyograph biofeedback/relaxation treatment. Implementation of the…

  7. The amiodarone derivative 2-methyl-3-(3,5-diiodo-4-carboxymethoxybenzyl)benzofuran (KB130015) opens large-conductance Ca2+-activated K+ channels and relaxes vascular smooth muscle.

    PubMed

    Gessner, Guido; Heller, Regine; Hoshi, Toshinori; Heinemann, Stefan H

    2007-01-26

    2-methyl-3-(3,5-diiodo-4-carboxymethoxybenzyl)benzofuran (KB130015) has been developed to retain the antiarrhythmic properties of the parent molecule amiodarone but to eliminate its undesired side effects. In patch-clamp experiments, KB130015 activated large-conductance, Ca2+-activated BK(Ca) channels formed by hSlo1 (alpha) subunits in HEK 293 cells. Channels were reversibly activated by shifting the open-probability/voltage (P(o)/V) relationship by about -60 mV in 3 muM intracellular free Ca2+ ([Ca2+]in). No effect on the single-channel conductance was observed. KB130015-mediated activation of BK(Ca) channels was half-maximal at 20 microM with a Hill coefficient of 2.8. BK(Ca) activation by KB130015 did not require the presence of Ca2+ and still occurred with saturating (100 microM) [Ca2+]in. Effects of the prototypic BK(Ca) activator NS1619 (1,3-dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-2H-benzimidazol-2-one) and those of KB130015 were not additive suggesting that both activators may at least partially share a common mechanism of action. KB130015-mediated activation was observed also for BK(Ca) channels from insects and for human BK(Ca) channels with already profoundly left-shifted voltage-dependence. In contrast, human intermediate conductance Ca2+-activated channels were inhibited by KB130015. Using segments of porcine pulmonary arteries, KB130015 induced endothelium-independent vasorelaxation, half-maximal at 43 microM KB130015. Relaxation was inhibited by 1 mM tetraethylammonium, suggesting that KB130015 can activate vascular smooth muscle type BK(Ca) channels under physiological conditions. Interestingly, the shift in the P(o)/V relationship was considerably stronger (-90 mV in 3 microM [Ca2+]in) for BK(Ca) channels containing Slo-beta1 subunits. Thus, KB130015 belongs to a novel class of BK(Ca) channel openers that exert an effect depending on the subunit composition of the channel complex.

  8. Your Muscles

    MedlinePlus

    ... Homework? Here's Help White House Lunch Recipes Your Muscles KidsHealth > For Kids > Your Muscles Print A A ... and skeletal (say: SKEL-uh-tul) muscle. Smooth Muscles Smooth muscles — sometimes also called involuntary muscles — are ...

  9. Providing Relaxation Training to Cancer Chemotherapy Patients: A Comparison of Three Delivery Techniques.

    ERIC Educational Resources Information Center

    Carey, Michael P.; Burish, Thomas G.

    1987-01-01

    Evaluated effectiveness of three strategies for delivering relaxation training to cancer chemotherapy patients who were experiencing treatment-related side effects. Professionally, as opposed to paraprofessionally, administered or audiotaped progressive muscle-relaxation training and guided relaxation imagery reduced emotional distress and…

  10. Hyperammonemia results in reduced muscle function independent of muscle mass.

    PubMed

    McDaniel, John; Davuluri, Gangarao; Hill, Elizabeth Ann; Moyer, Michelle; Runkana, Ashok; Prayson, Richard; van Lunteren, Erik; Dasarathy, Srinivasan

    2016-02-01

    The mechanism of the nearly universal decreased muscle strength in cirrhosis is not known. We evaluated whether hyperammonemia in cirrhosis causes contractile dysfunction independent of reduced skeletal muscle mass. Maximum grip strength and muscle fatigue response were determined in cirrhotic patients and controls. Blood and muscle ammonia concentrations and grip strength normalized to lean body mass were measured in the portacaval anastomosis (PCA) and sham-operated pair-fed control rats (n = 5 each). Ex vivo contractile studies in the soleus muscle from a separate group of Sprague-Dawley rats (n = 7) were performed. Skeletal muscle force of contraction, rate of force development, and rate of relaxation were measured. Muscles were also subjected to a series of pulse trains at a range of stimulation frequencies from 20 to 110 Hz. Cirrhotic patients had lower maximum grip strength and greater muscle fatigue than control subjects. PCA rats had a 52.7 ± 13% lower normalized grip strength compared with control rats, and grip strength correlated with the blood and muscle ammonia concentrations (r(2) = 0.82). In ex vivo muscle preparations following a single pulse, the maximal force, rate of force development, and rate of relaxation were 12.1 ± 3.5 g vs. 6.2 ± 2.1 g; 398.2 ± 100.4 g/s vs. 163.8 ± 97.4 g/s; -101.2 ± 22.2 g/s vs. -33.6 ± 22.3 g/s in ammonia-treated compared with control muscle preparation, respectively (P < 0.001 for all comparisons). Tetanic force, rate of force development, and rate of relaxation were depressed across a range of stimulation from 20 to 110 Hz. These data provide the first direct evidence that hyperammonemia impairs skeletal muscle strength and increased muscle fatigue and identifies a potential therapeutic target in cirrhotic patients.

  11. Audio-visual relaxation training for anxiety, sleep, and relaxation among Chinese adults with cardiac disease.

    PubMed

    Tsai, Sing-Ling

    2004-12-01

    The long-term effect of an audio-visual relaxation training (RT) treatment involving deep breathing, exercise, muscle relaxation, guided imagery, and meditation was compared with routine nursing care for reducing anxiety, improving sleep, and promoting relaxation in Chinese adults with cardiac disease. This research was a quasi-experimental, two-group, pretest-posttest study. A convenience sample of 100 cardiology patients (41 treatment, 59 control) admitted to one large medical center hospital in the Republic of China (ROC) was studied for 1 year. The hypothesized relationships were supported. RT significantly (p <.05) improved anxiety, sleep, and relaxation in the treatment group as compared to the control group. It appears audio-visual RT might be a beneficial adjunctive therapy for adult cardiac patients. However, considerable further work using stronger research designs is needed to determine the most appropriate instructional methods and the factors that contribute to long-term consistent practice of RT with Chinese populations.

  12. Relaxation selective pulses in fast relaxing systems.

    PubMed

    Lopez, Christopher J; Lu, Wei; Walls, Jamie D

    2014-05-01

    In this work, the selectivity or sharpness of the saturation profiles for relaxation selective pulses (R^rsps) that suppress magnetization possessing relaxation times of T2=T2(rsp) and T1=αT2 for α∈12,∞ was optimized. Along with sharpening the selectivity of the R^rsps, the selective saturation of these pulses was also optimized to be robust to both B0 and B1 inhomogeneities. Frequency-swept hyperbolic secant and adiabatic time-optimal saturation pulse inputs were found to work best in the optimizations, and the pulse lengths required to selectivity saturate the magnetization were always found to be less than the inversion recovery delay, T1ln(2). The selectivity of the optimized relaxation selective pulses was experimentally demonstrated in aqueous solutions with varying concentrations of the paramagnetic species, [Mn(+2)], and for use in solvent suppression. Finally, the "rotational" properties of spin relaxation were explored along with an analytical derivation of adiabatic time-optimal saturation pulses. PMID:24631803

  13. Pelvic floor muscle rehabilitation using biofeedback.

    PubMed

    Newman, Diane K

    2014-01-01

    Pelvic floor muscle exercises have been recommended for urinary incontinence since first described by obstetrician gynecologist Dr. Arnold Kegel more than six decades ago. These exercises are performed to strengthen pelvic floor muscles, provide urethral support to prevent urine leakage, and suppress urgency. In clinical urology practice, expert clinicians also teach patients how to relax the muscle to improve bladder emptying and relieve pelvic pain caused by muscle spasm. When treating lower urinary tract symptoms, an exercise training program combined with biofeedback therapy has been recommended as first-line treatment. This article provides clinical application of pelvic floor muscle rehabilitation using biofeedback as a technique to enhance pelvic floor muscle training.

  14. Muscle Cramps

    MedlinePlus

    Muscle cramps are sudden, involuntary contractions or spasms in one or more of your muscles. They often occur after exercise or at night, ... to several minutes. It is a very common muscle problem. Muscle cramps can be caused by nerves ...

  15. Muscle Disorders

    MedlinePlus

    Your muscles help you move and help your body work. Different types of muscles have different jobs. There are many problems that can affect muscles. Muscle disorders can cause weakness, pain or even ...

  16. Muscle atrophy

    MedlinePlus

    Muscle wasting; Wasting; Atrophy of the muscles ... There are two types of muscle atrophy: disuse and neurogenic. Disuse atrophy is caused by not using the muscles enough . This type of atrophy can often be ...

  17. Muscle biopsy

    MedlinePlus

    ... the removal of a small piece of muscle tissue for examination. ... dystrophy Myopathic changes (destruction of the muscle) Necrosis (tissue death) of muscle Necrotizing vasculitis Traumatic muscle damage Polymyositis Additional conditions ...

  18. Viscoelastic properties of laryngeal posturing muscles

    NASA Astrophysics Data System (ADS)

    Alipour, Fariborz; Hunter, Eric; Titze, Ingo

    2003-10-01

    Viscoelastic properties of canine laryngeal muscles were measured in a series of in vitro experiments. Laryngeal posturing that controls vocal fold length and adduction/abduction is an essential component of the voice production. The dynamics of posturing depends on the viscoelastic and physiological properties of the laryngeal muscles. The time-dependent and nonlinear behaviors of these tissues are also crucial in the voice production and pitch control theories. The lack of information on some of these muscles such as posterior cricoarytenoid muscle (PCA), lateral cricoarytenoid muscle (LCA), and intraarytenoid muscle (IA) was the major incentive for this study. Samples of PCA and LCA muscles were made from canine larynges and mounted on a dual-servo system (Ergometer) as described in our previous works. Two sets of experiments were conducted on each muscle, a 1-Hz stretch and release experiment that provides stress-strain data and a stress relaxation test. Data from these muscles were fitted to viscoelastic models and Young's modulus and viscoelastic constants are obtained for each muscle. Preliminary data indicates that elastics properties of these muscles are similar to those of thyroarytenoid and cricothyroid muscles. The relaxation response of these muscles also shows some similarity to other laryngeal muscles in terms of time constants.

  19. [Main relaxation techniques].

    PubMed

    Mateos Rodilla, Juana

    2002-11-01

    After having provided a detailed explanation on what relaxation consists of (see Rev. Rol Enf 2002; 25(9):582-586), the author presents a recap of the major known relaxation techniques including progressive muscular therapy, yoga stretching exercises, breathing techniques, therapeutic massages, meditation,... emphasizing the theoretical basis and practical experience as a function of each technique; each person ought to adopt those techniques which are most appropriate.

  20. Appropriateness of Taped versus Live Relaxation in the Systematic Desensitization of Anticipatory Nausea and Vomiting in Cancer Patients.

    ERIC Educational Resources Information Center

    Morrow, Gary R.

    1984-01-01

    Investigated whether the relaxation part of systematic desensitization could be learned by cancer patients from a prerecorded audiotape. Results showed four of five patients assigned to a taped-relaxation group experienced nausea while listening to the audiotape, whereas none of five patients taught muscle relaxation in person reported nausea. (BH)

  1. High K+-Induced Relaxation by Nitric Oxide in Human Gastric Fundus

    PubMed Central

    Kim, Dae Hoon; Choi, Woong; Sung, Rohyun; Kim, Hun Sik; Kim, Heon; Yoo, Ra Young; Park, Seon-Mee; Yun, Sei Jin; Song, Young-Jin; Xu, Wen-Xie; Lee, Sang Jin

    2012-01-01

    This study was designed to elucidate high K+-induced relaxation in the human gastric fundus. Circular smooth muscle from the human gastric fundus greater curvature showed stretch-dependent high K+ (50 mM)-induced contractions. However, longitudinal smooth muscle produced stretch-dependent high K+-induced relaxation. We investigated several relaxation mechanisms to understand the reason for the discrepancy. Protein kinase inhibitors such as KT 5823 (1 µM) and KT 5720 (1 µM) which block protein kinases (PKG and PKA) had no effect on high K+-induced relaxation. K+ channel blockers except 4-aminopyridine (4-AP), a voltage-dependent K+ channel (KV) blocker, did not affect high K+-induced relaxation. However, N(G)-nitro-L-arginine and 1H-(1,2,4)oxadiazolo (4,3-A)quinoxalin-1-one, an inhibitors of soluble guanylate cyclase (sGC) and 4-AP inhibited relaxation and reversed relaxation to contraction. High K+-induced relaxation of the human gastric fundus was observed only in the longitudinal muscles from the greater curvature. These data suggest that the longitudinal muscle of the human gastric fundus greater curvature produced high K+-induced relaxation that was activated by the nitric oxide/sGC pathway through a KV channel-dependent mechanism. PMID:23118553

  2. Facioscapulohumeral muscular dystrophy: consequences of chromatin relaxation

    PubMed Central

    van der Maarel, Silvère M.; Miller, Daniel G.; Tawil, Rabi; Filippova, Galina N.; Tapscott, Stephen J.

    2013-01-01

    Purpose of review In recent years we have seen remarkable progress in our understanding of the disease mechanism underlying facioscapulohumeral muscular dystrophy (FSHD). The purpose of this review is to provide a comprehensive overview of our current understanding of the disease mechanism and to discuss the observations supporting the possibility of a developmental defect in this disorder. Recent findings In the majority of cases FSHD is caused by contraction of the D4Z4 repeat array (FSHD1). This results in local chromatin relaxation and stable expression of the DUX4 retrogene in skeletal muscle, but only when a polymorphic DUX4 polyadenylation signal is present. In some cases (FSHD2), D4Z4 chromatin relaxation and stable DUX4 expression occurs in the absence of D4Z4 array contraction. DUX4 is a germline transcription factor and its expression in skeletal muscle leads to activation of early stem cell and germline programs and transcriptional activation of retroelements. Summary Recent studies have provided a plausible disease mechanism for FSHD where FSHD results from inappropriate expression of the germline transcription factor DUX4. The genes regulated by DUX4 suggest several mechanisms of muscle damage, and provide potential biomarkers and therapeutic targets that should be investigated in future studies. PMID:22892954

  3. Skeletal muscle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are approximately 650-850 muscles in the human body these include skeletal (striated), smooth and cardiac muscle. The approximation is based on what some anatomists consider separate muscle or muscle systems. Muscles are classified based on their anatomy (striated vs. smooth) and if they are v...

  4. Signaling in muscle contraction.

    PubMed

    Kuo, Ivana Y; Ehrlich, Barbara E

    2015-02-02

    Signaling pathways regulate contraction of striated (skeletal and cardiac) and smooth muscle. Although these are similar, there are striking differences in the pathways that can be attributed to the distinct functional roles of the different muscle types. Muscles contract in response to depolarization, activation of G-protein-coupled receptors and other stimuli. The actomyosin fibers responsible for contraction require an increase in the cytosolic levels of calcium, which signaling pathways induce by promoting influx from extracellular sources or release from intracellular stores. Rises in cytosolic calcium stimulate numerous downstream calcium-dependent signaling pathways, which can also regulate contraction. Alterations to the signaling pathways that initiate and sustain contraction and relaxation occur as a consequence of exercise and pathophysiological conditions.

  5. Biofeedback-Assisted Relaxation Training in the Elementary Classroom.

    ERIC Educational Resources Information Center

    Zaichkowsky, Linda B.; And Others

    1986-01-01

    Examined feasibility of training young elementary school children in stress responses and coping techniques. Findings indicated children can learn to control heart rate, respiration rate, and skin temperature responses by participating in a program that includes instruction on proper breathing; modified, progressive muscle relaxation; visual…

  6. Reducing Anxiety in Gifted Children by Inducing Relaxation.

    ERIC Educational Resources Information Center

    Roome, John R.; Romney, David M.

    1985-01-01

    Thirty gifted children (grades six to eight) were allocated to either progressive muscle relaxation or biofeedback treatment groups or to a no-treament, control group. Biofeedback Ss evinced a significant decrease in anxiety and both groups moved towards more internal locus of control compared with controls. There was no change in trait anxiety.…

  7. Relaxation Training and Covert Positive Reinforcement with Elementary School Children.

    ERIC Educational Resources Information Center

    Vacc, Nicholas A.; Greenleaf, Susan M.

    1980-01-01

    Variations of systematic desensitization that include deep muscle relaxation (DMR) seem useful in remediating some behavior problems of children. Studied the effects of DMR and DMR with Covert Positive Reinforcement (CPR) in reducing maladaptive behavior of children, ages 6 to 12. (Author)

  8. Muscle Deoxygenation Causes Muscle Fatigue

    NASA Technical Reports Server (NTRS)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D.

    1999-01-01

    Muscle fatigue is a common musculoskeletal disorder in the work place, and may be a harbinger for more disabling cumulative trauma disorders. Although the cause of fatigue is multifactorial, reduced blood flow and muscle oxygenation may be the primary factor in causing muscle fatigue during low intensity muscle exertion. Muscle fatigue is defined as a reduction in muscle force production, and also occurs among astronauts who are subjected to postural constraints while performing lengthy, repetitive tasks. The objectives of this research are to: 1) develop an objective tool to study the role of decreased muscle oxygenation on muscle force production, and 2) to evaluate muscle fatigue during prolonged glovebox work.

  9. Muscle disorder

    MedlinePlus

    Myopathic changes; Myopathy; Muscle problem ... Blood tests sometimes show abnormally high muscle enzymes. If a muscle disorder might also affect other family members, genetic testing may be done. When someone has symptoms and signs ...

  10. Hair Dye and Hair Relaxers

    MedlinePlus

    ... For Consumers Consumer Information by Audience For Women Hair Dye and Hair Relaxers Share Tweet Linkedin Pin it More sharing ... products. If you have a bad reaction to hair dyes and relaxers, you should: Stop using the ...

  11. Analysis of pomegranate juice components in rat corpora cavernosal relaxation.

    PubMed

    Oztekin, C V; Gur, S; Abdulkadir, N A; Kartal, M; Karabakan, M; Akdemir, A O; Gökkaya, C S; Cetinkaya, M

    2014-01-01

    This study evaluated the action of pomegranate juice (PJ) and its five principal phenolic constituents on rat corpus cavernosum smooth muscle (CCSM). Isometric tension studies were performed after precontraction with phenylephrine in CCSM from rats. Relaxant responses to PJ and its constituents ellagic acid (EA), chlorogenic acid, caffeic acid, cumaric acid and rutin were investigated. PJ and EA caused CCSM relaxations (94.1 ± 3.7 and 51.3 ± 9.9%), while others induced limited relaxant responses. EA response was not inhibited by L-N(G)-nitroarginine methyl ester (100 μM) and 1H-[1,2,4]-oxadiazolo[4,3-a]quinoxalin-1-one (1 μM). Tetraethylammonium (100 μM) and apamin (10 μM) and nifedipine (10 μM) inhibited EA-induced relaxations at 10(-3) M by 84%, 82% and 78%, respectively. Glibenclamide (10 μM) inhibited EA response (97%, 100 μM). PJ-induced relaxation was not altered by several inhibitors. EA was estimated to be responsible for 13.3% of relaxation caused by PJ. Our study demonstrated that PJ and EA-induced marked relaxations in CCSM. The opening of Ca(2+)-activated K+ channels and the inhibition of Ca(2+)-channels regulate the relaxation by EA, but not PJ. EA has a minor contribution to the marked relaxation obtained by PJ, suggesting the presence of other PJ constituents, which induce nitric oxide-independent corporal relaxation. Further studies are needed to examine the potential of PJ in combination with a PDE5 inhibitor in ED.

  12. Relaxation phenomena in disordered systems

    NASA Astrophysics Data System (ADS)

    Sciortino, F.; Tartaglia, P.

    1997-02-01

    In this article we discuss how the assumptions of self-similarity imposed on the distribution of independently relaxing modes, as well as on their amplitude and characteristic times, manifest in the global relaxation phenomena. We also review recent applications of such approach to the description of relaxation phenomena in microemulsions and molecular glasses.

  13. A Comparison of Relaxation Strategies.

    ERIC Educational Resources Information Center

    Matthews, Doris B.

    Some researchers argue that all relaxation techniques produce a single relaxation response while others support a specific-effects hypothesis which suggests that progressive relaxation affects the musculoskeletal system and that guided imagery affects cognitive changes. Autogenics is considered a technique which is both somatic and cognitive. This…

  14. Potassium channel-mediated relaxation to acetylcholine in rabbit arteries.

    PubMed

    Cowan, C L; Palacino, J J; Najibi, S; Cohen, R A

    1993-09-01

    Endothelium-dependent relaxation is associated with smooth muscle hyperpolarization in many arteries which may account for relaxation that persists in the presence of nitric oxide inhibitors such as NG-nitro-L-arginine methyl ester (L-NAME). Acetylcholine (ACh)-induced relaxations of the rabbit thoracic and abdominal aorta and iliac and carotid arteries were studied for the relative contribution of nitric oxide-dependent and -independent mechanisms in rings suspended for measurement of isometric tension. Although relaxation of the thoracic aorta to ACh (10(-6) M) was almost blocked completely by L-NAME (3 x 10(-5) M), the maximal relaxation in the abdominal aorta, carotid and iliac arteries was only reduced by 28, 26 and 62%, respectively. In rings of abdominal aorta, L-NAME blocked the ACh-stimulated (10(-6) M) rise in cyclic GMP verifying that relaxation which persists in L-NAME-treated rings is not mediated by nitric oxide. The L-NAME resistant response was nearly abolished by elevated external K+ in rings of abdominal aorta and carotid artery, suggesting this relaxation may be mediated by a membrane potential sensitive mechanism. Furthermore, tetraethylammonium (10(-3) M) partially and charybdotoxin (5 x 10(-8) M) completely inhibited the remaining L-NAME-resistant relaxation in both abdominal aorta and carotid artery, suggesting a role for Ca(++)-activated K(+)-channels. Blockers of ATP-sensitive K+ channels also inhibited the L-NAME resistant relaxation in the abdominal aorta only.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8396636

  15. Synchronous monitoring of muscle dynamics and muscle force for maximum isometric tetanus

    NASA Astrophysics Data System (ADS)

    Zakir Hossain, M.; Grill, Wolfgang

    2010-03-01

    Skeletal muscle is a classic example of a biological soft matter . At both macro and microscopic levels, skeletal muscle is exquisitely oriented for force generation and movement. In addition to the dynamics of contracting and relaxing muscle which can be monitored with ultrasound, variations in the muscle force are also expected to be monitored. To observe such force and sideways expansion variations synchronously for the skeletal muscle a novel detection scheme has been developed. As already introduced for the detection of sideways expansion variations of the muscle, ultrasonic transducers are mounted sideways on opposing positions of the monitored muscle. To detect variations of the muscle force, angle of pull of the monitored muscle has been restricted by the mechanical pull of the sonic force sensor. Under this condition, any variation in the time-of-flight (TOF) of the transmitted ultrasonic signals can be introduced by the variation of the path length between the transducers. The observed variations of the TOF are compared to the signals obtained by ultrasound monitoring for the muscle dynamics. The general behavior of the muscle dynamics and muscle force shows almost an identical concept. Since muscle force also relates the psychological boosting-up effects, the influence of boosting-up on muscle force and muscle dynamics can also be quantified form this study. Length-tension or force-length and force-velocity relationship can also be derived quantitatively with such monitoring.

  16. Modeling Muscles

    ERIC Educational Resources Information Center

    Goodwyn, Lauren; Salm, Sarah

    2007-01-01

    Teaching the anatomy of the muscle system to high school students can be challenging. Students often learn about muscle anatomy by memorizing information from textbooks or by observing plastic, inflexible models. Although these mediums help students learn about muscle placement, the mediums do not facilitate understanding regarding integration of…

  17. [Death in a relaxation tank].

    PubMed

    Rupp, Wolf; Simon, Karl-Heinz; Bohnert, Michael

    2009-01-01

    Complete relaxation can be achieved by floating in a darkened, sound-proof relaxation tank filled with salinated water kept at body temperature. Under these conditions, meditation exercises up to self-hypnosis may lead to deep relaxation with physical and mental revitalization. A user manipulated his tank, presumably to completely cut off all optical and acoustic stimuli and accidentally also covered the ventilation hole. The man was found dead in his relaxation tank. The findings suggested lack of oxygen as the cause of death.

  18. Topological constraints on magnetic relaxation.

    PubMed

    Yeates, A R; Hornig, G; Wilmot-Smith, A L

    2010-08-20

    The final state of turbulent magnetic relaxation in a reversed field pinch is well explained by Taylor's hypothesis. However, recent resistive-magnetohydrodynamic simulations of the relaxation of braided solar coronal loops have led to relaxed fields far from the Taylor state, despite the conservation of helicity. We point out the existence of an additional topological invariant in any flux tube with a nonzero field: the topological degree of the field line mapping. We conjecture that this constrains the relaxation, explaining why only one of three example simulations reaches the Taylor state. PMID:20868104

  19. The influence of external compression on muscle blood flow during exercise

    SciTech Connect

    Styf, J. )

    1990-01-01

    Intramuscular pressures and muscle blood flow were measured in the anterior tibial muscle during dynamic concentric exercise in 14 subjects. Pressures were recorded by the microcapillary infusion method and muscle blood flow by the 133-Xenon clearance technique. Muscle blood flow during constant exercise decreased from 34.5 (SD = 10.3) to 10.6 (SD = 4.9) ml/100 g/min (P less than 0.001) when muscle relaxation pressure was increased from 13.5 (SD = 2.7) to 39.9 (SD = 9.0) mm Hg by external compression. Muscle relaxation pressure during exercise is the intramuscular pressure between contractions. External compression of the lower limb during exercise impedes muscle blood flow by increasing muscle relaxation pressure. The experimental model seems suitable to study the influence of external compression by knee braces on intramuscular pressure during exercise.

  20. Relaxation Techniques for Trauma.

    PubMed

    Scotland-Coogan, Diane; Davis, Erin

    2016-01-01

    Physiological symptoms of posttraumatic stress disorder (PTSD) manifest as increased arousal and reactivity seen as anger outburst, irritability, reckless behavior with no concern for consequences, hypervigilance, sleep disturbance, and problems with focus (American Psychiatric Association, 2013 ). In seeking the most beneficial treatment for PTSD, consideration must be given to the anxiety response. Relaxation techniques are shown to help address the physiological manifestations of prolonged stress. The techniques addressed by the authors in this article include mindfulness, deep breathing, yoga, and meditation. By utilizing these techniques traditional therapies can be complemented. In addition, those who are averse to the traditional evidence-based practices or for those who have tried traditional therapies without success; these alternative interventions may assist in lessening physiological manifestations of PTSD. Future research studies assessing the benefits of these treatment modalities are warranted to provide empirical evidence to support the efficacy of these treatments. PMID:27119722

  1. Comet Bursting Through Relaxation

    NASA Astrophysics Data System (ADS)

    Jacobson, Seth A.; Scheeres, D. J.

    2012-10-01

    Comets may be excited and occupy non-principal axis (complex) rotation states for a large fraction of their lifetimes. Many comet nuclei have been identified or are suspected to occupy non-principal axis (complex) rotation [Belton 2005, etc.] as well as have evolving rotation rates [Belton 2011, etc.]. Comet orbits drive these rotation states through cycles of excitation due to surface jets and relaxation due to time variable internal stresses that dissipate energy in the anelastic comet interior. Furthermore, relaxation from complex rotation can increase the loads along the symmetry axis of prolate comets. These loads stretch the body along the symmetry axis and may be the cause of the characteristic ``bowling pin’’ shape and eventually may lead to failure. This is an alternative model for comet bursting. Each cycle deposits only a small amount of energy and stress along the axis, but this process is repeated every orbit during which jets are activated. Our model for the evolution of comet nuclei includes torques due to a number of discrete jets located on the surface based on Neishtadt et al. [2002]. The model also includes internal dissipation using an approach developed by Sharma et al. [2005] and Vokrouhlicky et al. [2009]. These equations are averaged over the instantaneous spin state and the heliocentric orbit so the long-term evolution of the comet can be determined. We determine that even after the inclusion of internal dissipation there still exist non-principal axis equilibrium states for certain jet geometries. For ranges of dissipation factors and jet geometries, prolate comets are found to occupy states that have time variable internal loads over long time periods. These periodic loadings along the symmetry axis may lead to ``necking’’ as the body extends along the axis to release the stress and eventually disruption.

  2. Disturbed Paraspinal Reflex Following Prolonged Flexion-Relaxation and Recovery

    PubMed Central

    Rogers, Ellen L.; Granata, Kevin P.

    2006-01-01

    Study Design. Repeated measures experimental study of the effect of flexion-relaxation, recovery, and gender on paraspinal reflex dynamics. Objective. To determine the effect of prolonged flexion-relaxation and recovery time on reflex behavior in human subjects. Summary of Background Data. Prolonged spinal flexion has been shown to disturb the paraspinal reflex activity in both animals and human beings. Laxity in passive tissues of the spine from flexion strain may contribute to desensitization of mechanoreceptors. Animal studies indicate that recovery of reflexes may take up to several hours. Little is known about human paraspinal reflex behavior following flexion tasks or the recovery of reflex behavior following the flexion tasks. Methods. A total of 25 subjects performed static flexionrelaxation tasks. Paraspinal muscle reflexes were recorded before and immediately after flexion-relaxation and after a recovery period. Reflexes were quantified from systems identification analyses of electromyographic response in relation to pseudorandom force disturbances applied to the trunk. Results. Trunk angle measured during flexion-relaxation postures was significantly higher following static flexion-relaxation tasks (P < 0.001), indicating creep deformation of passive supporting structures in the trunk. Reflex response was diminished following flexion-relaxation (P < 0.029) and failed to recover to baseline levels during 16 minutes of recovery. Conclusion. Reduced reflex may indicate that the spine is less stable following prolonged flexion-relaxation and, therefore, susceptible to injury. The absence of recovery in reflex after a substantial time indicates that increased low back pain risk from flexion-relaxation may persist after the end of the flexion task. PMID:16582860

  3. Noninvasive analysis of human neck muscle function

    NASA Technical Reports Server (NTRS)

    Conley, M. S.; Meyer, R. A.; Bloomberg, J. J.; Feeback, D. L.; Dudley, G. A.

    1995-01-01

    STUDY DESIGN. Muscle use evoked by exercise was determined by quantifying shifts in signal relaxation times of T2-weighted magnetic resonance images. Images were collected at rest and after exercise at each of two intensities (moderate and intense) for each of four head movements: 1) extension, 2) flexion, 3) rotation, and 4) lateral flexion. OBJECTIVE. This study examined the intensity and pattern of neck muscle use evoked by various movements of the head. The results will help elucidate the pathophysiology, and thus methods for treating disorders of the cervical musculoskeletal system. SUMMARY OF BACKGROUND DATA. Exercise-induced contrast shifts in T2 has been shown to indicate muscle use during the activity. The noninvasive nature of magnetic resonance imaging appears to make it an ideal approach for studying the function of the complex neuromuscular system of the neck. METHODS. The extent of T2 increase was examined to gauge how intensely nine different neck muscles or muscle pairs were used in seven subjects. The absolute and relative cross-sectional area of muscle showing a shift in signal relaxation was assessed to infer the pattern of use among and within individual neck muscles or muscle pairs. RESULTS. Signal relaxation increased with exercise intensity for each head movement. The absolute and relative cross-sectional area of muscle showing a shift in signal relaxation also increased with exercise load. Neck muscles or muscle pairs extensively used to perform each head movement were: extension--semispinalis capitis and cervicis and splenius capitis; flexion--sternocleidomastoid and longus capitis and colli; rotation--splenius capitis, levator scapulae, scalenus, semispinalis capitis ipsilateral to the rotation, and sternocleidomastoid contralateral; and lateral flexion--sternocleidomastoid CONCLUSION. The results of this study, in part, agree with the purported functions of neck muscles derived from anatomic location. This also was true for the few

  4. A Fresh Look at Potential Mechanisms of Change in Applied Relaxation for Generalized Anxiety Disorder: A Case Series

    ERIC Educational Resources Information Center

    Hayes-Skelton, Sarah A.; Usmani, Aisha; Lee, Jonathan K.; Roemer, Lizabeth; Orsillo, Susan M.

    2012-01-01

    Applied relaxation (AR), which involves noticing early signs of anxiety and responding with a relaxation response, is an empirically supported treatment for generalized anxiety disorder (GAD). However, research on hypothesized mechanisms of AR (e.g., reduced muscle tension) has been mixed, making it likely that additional mechanisms are…

  5. Evaluation of muscle injury using magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    LeBlanc, A. D.; Jaweed, M.; Evans, H.

    1993-01-01

    The objective of this study was to investigate spin echo T2 relaxation time changes in thigh muscles after intense eccentric exercise in healthy men. Spin echo and calculated T2 relaxation time images of the thighs were obtained on several occasions after exercise of one limb; the contralateral limb served as control. Muscle damage was verified by elevated levels of serum creatine kinase (CK). Thirty percent of the time no exercise effect was discernible on the magnetic resonance (MR) images. In all positive MR images (70%) the semitendinosus muscle was positive, while the biceps femoris, short head, and gracilis muscles were also positive in 50% and 25% of the total cases, respectively. The peak T2 relaxation time and serum CK were correlated (r = 0.94, p<0.01); temporal changes in muscle T2 relaxation time and serum CK were similar, although T2 relaxation time remained positive after serum CK returned to background levels. We conclude that magnetic resonance imaging can serve as a useful tool in the evaluation of eccentric exercise muscle damage by providing a quantitative indicator of damage and its resolution as well as the specific areas and muscles.

  6. Measuring the Longitudinal NMR Relaxation Rates of Fast Relaxing Nuclei Using a Signal Eliminating Relaxation Filter

    NASA Astrophysics Data System (ADS)

    Hansen, D. Flemming; Led, Jens J.

    2001-08-01

    A new experiment for selective determination of the relaxation rates of fast relaxing NMR signals is presented. The experiment is derived from the conventional inversion recovery experiment by substituting the 180° inversion pulse of this experiment with a signal eliminating relaxation filter (SERF) consisting of three 180° pulses separated by two variable delays, Δ1 and Δ2. The SERF experiment allows a selective suppression of signals with relaxation rates below a given limit while monitoring the relaxation of faster relaxing signals. The experiment was tested on a sample of 20% oxidized plastocyanin from Anabaena variabilis, where the fast exchange of an electron between the reduced (diamagnetic) and the oxidized (paramagnetic) form results in a series of average signals with widely different relaxation rates. To ensure an optimum extraction of information from the experimental data, the relaxation rates were obtained from the SERF experiment by a simultaneous analysis of all the FIDs of the experiment using a fast linear prediction model method developed previously. The reliability of the relaxation rates obtained from the SERF experiment was confirmed by a comparison of the rates with the corresponding rates obtained from a conventional inversion recovery experiment.

  7. Measuring the longitudinal NMR relaxation rates of fast relaxing nuclei using a signal eliminating relaxation filter.

    PubMed

    Hansen, D F; Led, J J

    2001-08-01

    A new experiment for selective determination of the relaxation rates of fast relaxing NMR signals is presented. The experiment is derived from the conventional inversion recovery experiment by substituting the 180 degrees inversion pulse of this experiment with a signal eliminating relaxation filter (SERF) consisting of three 180 degrees pulses separated by two variable delays, Delta1 and Delta2. The SERF experiment allows a selective suppression of signals with relaxation rates below a given limit while monitoring the relaxation of faster relaxing signals. The experiment was tested on a sample of 20% oxidized plastocyanin from Anabaena variabilis, where the fast exchange of an electron between the reduced (diamagnetic) and the oxidized (paramagnetic) form results in a series of average signals with widely different relaxation rates. To ensure an optimum extraction of information from the experimental data, the relaxation rates were obtained from the SERF experiment by a simultaneous analysis of all the FIDs of the experiment using a fast linear prediction model method developed previously. The reliability of the relaxation rates obtained from the SERF experiment was confirmed by a comparison of the rates with the corresponding rates obtained from a conventional inversion recovery experiment.

  8. An analysis on muscle tone of lower limb muscles on flexible flat foot.

    PubMed

    Um, Gi-Mai; Wang, Joong-San; Park, Si-Eun

    2015-10-01

    [Purpose] The aim of this study was to examine differences in the muscle tone and stiffness of leg muscles according to types of flexible flat foot. [Subjects and Methods] For 30 subjects 10 in a normal foot group (NFG), 10 in group with both flexible flat feet (BFFG), and 10 in a group with flexible flat feet on one side (OFFG), myotonometry was used to measure the muscle tone and stiffness of the tibialis anterior muscle (TA), the rectus femoris muscle (RF), the medial gastrocnemius (MG), and the long head of the biceps femoris muscle (BF) of both lower extremities. [Results] In the measurement results, only the stiffness of TA and MG of the NFG and the BFFG showed significant differences. The muscle tone and stiffness were highest in the BFFG, followed by the OFFG and NFG, although the difference was insignificant. In the case of the OFFG, there was no significant difference in muscle tone and stiffness compared to that in the NGF and the BFFG. Furthermore, in the NFG, the non-dominant leg showed greater muscle tone and stiffness than the dominant leg, although the difference was insignificant. [Conclusion] During the relax condition, the flexible flat foot generally showed a greater muscle tone and stiffness of both lower extremities compared to the normal foot. The stiffness was particularly higher in the TA and MG muscles. Therefore, the muscle tone and stiffness of the lower extremity muscles must be considered in the treatment of flat foot.

  9. Bio-inspired Hybrid Carbon Nanotube Muscles.

    PubMed

    Kim, Tae Hyeob; Kwon, Cheong Hoon; Lee, Changsun; An, Jieun; Phuong, Tam Thi Thanh; Park, Sun Hwa; Lima, Márcio D; Baughman, Ray H; Kang, Tong Mook; Kim, Seon Jeong

    2016-01-01

    There has been continuous progress in the development for biomedical engineering systems of hybrid muscle generated by combining skeletal muscle and artificial structure. The main factor affecting the actuation performance of hybrid muscle relies on the compatibility between living cells and their muscle scaffolds during cell culture. Here, we developed a hybrid muscle powered by C2C12 skeletal muscle cells based on the functionalized multi-walled carbon nanotubes (MWCNT) sheets coated with poly(3,4-ethylenedioxythiophene) (PEDOT) to achieve biomimetic actuation. This hydrophilic hybrid muscle is physically durable in solution and responds to electric field stimulation with flexible movement. Furthermore, the biomimetic actuation when controlled by electric field stimulation results in movement similar to that of the hornworm by patterned cell culture method. The contraction and relaxation behavior of the PEDOT/MWCNT-based hybrid muscle is similar to that of the single myotube movement, but has faster relaxation kinetics because of the shape-maintenance properties of the freestanding PEDOT/MWCNT sheets in solution. Our development provides the potential possibility for substantial innovation in the next generation of cell-based biohybrid microsystems. PMID:27220918

  10. Bio-inspired Hybrid Carbon Nanotube Muscles

    NASA Astrophysics Data System (ADS)

    Kim, Tae Hyeob; Kwon, Cheong Hoon; Lee, Changsun; An, Jieun; Phuong, Tam Thi Thanh; Park, Sun Hwa; Lima, Márcio D.; Baughman, Ray H.; Kang, Tong Mook; Kim, Seon Jeong

    2016-05-01

    There has been continuous progress in the development for biomedical engineering systems of hybrid muscle generated by combining skeletal muscle and artificial structure. The main factor affecting the actuation performance of hybrid muscle relies on the compatibility between living cells and their muscle scaffolds during cell culture. Here, we developed a hybrid muscle powered by C2C12 skeletal muscle cells based on the functionalized multi-walled carbon nanotubes (MWCNT) sheets coated with poly(3,4-ethylenedioxythiophene) (PEDOT) to achieve biomimetic actuation. This hydrophilic hybrid muscle is physically durable in solution and responds to electric field stimulation with flexible movement. Furthermore, the biomimetic actuation when controlled by electric field stimulation results in movement similar to that of the hornworm by patterned cell culture method. The contraction and relaxation behavior of the PEDOT/MWCNT-based hybrid muscle is similar to that of the single myotube movement, but has faster relaxation kinetics because of the shape-maintenance properties of the freestanding PEDOT/MWCNT sheets in solution. Our development provides the potential possibility for substantial innovation in the next generation of cell-based biohybrid microsystems.

  11. Bio-inspired Hybrid Carbon Nanotube Muscles

    PubMed Central

    Kim, Tae Hyeob; Kwon, Cheong Hoon; Lee, Changsun; An, Jieun; Phuong, Tam Thi Thanh; Park, Sun Hwa; Lima, Márcio D.; Baughman, Ray H.; Kang, Tong Mook; Kim, Seon Jeong

    2016-01-01

    There has been continuous progress in the development for biomedical engineering systems of hybrid muscle generated by combining skeletal muscle and artificial structure. The main factor affecting the actuation performance of hybrid muscle relies on the compatibility between living cells and their muscle scaffolds during cell culture. Here, we developed a hybrid muscle powered by C2C12 skeletal muscle cells based on the functionalized multi-walled carbon nanotubes (MWCNT) sheets coated with poly(3,4-ethylenedioxythiophene) (PEDOT) to achieve biomimetic actuation. This hydrophilic hybrid muscle is physically durable in solution and responds to electric field stimulation with flexible movement. Furthermore, the biomimetic actuation when controlled by electric field stimulation results in movement similar to that of the hornworm by patterned cell culture method. The contraction and relaxation behavior of the PEDOT/MWCNT-based hybrid muscle is similar to that of the single myotube movement, but has faster relaxation kinetics because of the shape-maintenance properties of the freestanding PEDOT/MWCNT sheets in solution. Our development provides the potential possibility for substantial innovation in the next generation of cell-based biohybrid microsystems. PMID:27220918

  12. Longitudinal Muscle Dysfunction in Achalasia Esophagus and Its Relevance

    PubMed Central

    Hong, Su Jin; Bhargava, Valmik

    2013-01-01

    Muscularis propria of the esophagus is organized into circular and longitudinal muscle layers. Goal of this review is to summarize the role of longitudinal muscle in physiology and pathophysiology of esophageal sensory and motor function. Simultaneous manometry and ultrasound imaging that measure circular and longitudinal muscle contraction respectively reveal that during peristalsis 2 layers of the esophagus contract in perfect synchrony. On the other hand, during transient relaxation of the lower esophageal sphincter (LES), longitudinal muscle contracts independently of circular muscle. Recent studies provide novel insights, i.e., longitudinal muscle contraction of the esophagus induces LES relaxation and possibly descending relaxation of the esophagus. In achalasia esophagus and other motility disorders there is discoordination between the 2 muscle layers. Longitudinal muscle contraction patterns are different in the recently described three types of achalasia identified by high-resolution manometry. Robust contraction of the longitudinal muscle in type II achalasia causes pan-esophageal pressurization and is the mechanism of whatever little esophageal emptying that take place in the absence of peristalsis and impaired LES relaxation. It may be that preserved longitudinal muscle contraction is also the reason for superior outcome to medical/surgical therapy in type II achalasia esophagus. Prolonged contractions of longitudinal muscles of the esophagus is a possible mechanism of heartburn and "angina like" pain seen in esophageal motility disorders and possibly achalasia esophagus. Novel techniques to record longitudinal muscle contraction are on the horizon. Neuro-pharmacologic control of circular and longitudinal muscles is different, which provides an important opportunity for the development of novel pharmacological therapies to treat sensory and motor disorders of the esophagus. PMID:23667744

  13. Laparoscopic surgery and muscle relaxants: is deep block helpful?

    PubMed

    Kopman, Aaron F; Naguib, Mohamed

    2015-01-01

    It has been hypothesized that providing deep neuromuscular block (a posttetanic count of 1 or more, but a train-of-four [TOF] count of zero) when compared with moderate block (TOF counts of 1-3) for laparoscopic surgery would allow for the use of lower inflation pressures while optimizing surgical space and enhancing patient safety. We conducted a literature search on 6 different medical databases using 3 search strategies in each database in an attempt to find data substantiating this proposition. In addition, we studied the reference lists of the articles retrieved in the search and of other relevant articles known to the authors. There is some evidence that maintaining low inflation pressures during intra-abdominal laparoscopic surgery may reduce postoperative pain. Unfortunately most of the studies that come to these conclusions give few if any details as to the anesthetic protocol or the management of neuromuscular block. Performing laparoscopic surgery under low versus standard pressure pneumoperitoneum is associated with no difference in outcome with respect to surgical morbidity, conversion to open cholecystectomy, hemodynamic effects, length of hospital stay, or patient satisfaction. There is a limit to what deep neuromuscular block can achieve. Attempts to perform laparoscopic cholecystectomy at an inflation pressure of 8 mm Hg are associated with a 40% failure rate even at posttetanic counts of 1 or less. Well-designed studies that ask the question "is deep block superior to moderate block vis-à-vis surgical operating conditions" are essentially nonexistent. Without exception, all the peer-reviewed studies we uncovered which state that they investigated this issue have such serious flaws in their protocols that the authors' conclusions are suspect. However, there is evidence that abdominal compliance was not increased by a significant amount when deep block was established when compared with moderate neuromuscular block. Maintenance of deep block for the duration of the pneumoperitoneum presents a problem for clinicians who do not have access to sugammadex. Reversal of block with neostigmine at a time when no response to TOF stimulation can be elicited is slow and incomplete and increases the potential for postoperative residual neuromuscular block. The obligatory addition of sugammadex to any anesthetic protocol based on the continuous maintenance of deep block is not without associated caveats. First, monitoring of neuromuscular function is still essential and second, antagonism of deep block necessitates doses of sugammadex of ≥4.0 mg/kg. Thus, maintenance of deep block has substantial economic repercussions. There are little objective data to support the proposition that deep neuromuscular block (when compared with less intense block; TOF counts of 1-3) contributes to better patient outcome or improves surgical operating conditions.

  14. Improved Characterization of Healthy and Malignant Tissue by NMR Line-Shape Relaxation Correlations

    PubMed Central

    Peemoeller, H.; Shenoy, R.K.; Pintar, M.M.; Kydon, D.W.; Inch, W.R.

    1982-01-01

    We performed a relaxation-line-shape correlation NMR experiment on muscle, liver, kidney, and spleen tissues of healthy mice and of mouse tumor tissue. In each tissue studied, five spin groups were resolved and characterized by their relaxation parameters. We report a previously uncharacterized semi-solid spin group and discuss briefly the value of this method for the identification of malignant tissues. PMID:7104438

  15. [Indications for relaxation in geriatrics].

    PubMed

    Richard, J; Picot, A; de Bus, P; Andreoli, A; Dalakaki, X

    1975-11-01

    On a three years base experience in the geriatiic department of Geneva's University Psychiatric Clinic the paper studies the problem of selecting aged patients to be treated by relaxation according to the method of J. De Ajuriaguerra et M. Cahen. Observations are presented in an attempt to define three main points: a) the role played by relaxation when there is an objective [corrected] impairment of the body's integrity; b) relaxation effect on aged persons neurotic states evolution; c) the reality of considering dementia as a counter-indication of relaxation therapy. These remarks complete those presented previously about the training of therapists in relaxation, the type of control to be organized for them and their patients, the technical management of the cure, the place of relaxation in the post graduate psychiatric training, the effects of the therapy on the patients human environnement behavior in and out of the hospital, the way body is perceived through relaxation by the aged patients and it's consequences on the adjustment of an aging person.

  16. Micromachined muscle cell analysis chip

    NASA Astrophysics Data System (ADS)

    Wang, Weijie; Li, Paul C. H.; Parameswaran, M.

    2000-10-01

    We report the fabrication of a microfluidic biochip integrated with an acoustic wave sensor that can be used to characterize the contraction of single cardiac (heart) muscle cells. The work will lead to rapid analysis of single muscle cells in response to various drugs by determining changes in mass and viscoelastic properties during cell contraction and relaxation. The microfabricated device is a combination of a top cover plate which is a glass substrate containing etched channels and a bottom plate which is an AT-cut quartz crystal with excitation electrodes. The glass plate is micromachined with a network of channels and chambers, which is intended for delivery of fluids, selection and retention of single muscle cells. The bottom plate (quartz crystal) comprises all the patterned electrodes for acoustic wave launching and detection. The quartz plate is operated in the thickness-shear acoustic wave mode.

  17. Can Black Hole Relax Unitarily?

    NASA Astrophysics Data System (ADS)

    Solodukhin, S. N.

    2005-03-01

    We review the way the BTZ black hole relaxes back to thermal equilibrium after a small perturbation and how it is seen in the boundary (finite volume) CFT. The unitarity requires the relaxation to be quasi-periodic. It is preserved in the CFT but is not obvious in the case of the semiclassical black hole the relaxation of which is driven by complex quasi-normal modes. We discuss two ways of modifying the semiclassical black hole geometry to maintain unitarity: the (fractal) brick wall and the worm-hole modification. In the latter case the entropy comes out correctly as well.

  18. Tonic muscle pain does not increase fusimotor drive to human leg muscles: implications for chronic muscle pain.

    PubMed

    Fazalbhoy, Azharuddin; Macefield, Vaughan G; Birznieks, Ingvars

    2013-06-01

    Experimental pain induced in animals has shown that noxious stimulation of group III and IV afferents increases the firing of muscle spindles via a reflex excitation of fusimotor (γ) motoneurones. Chronic muscle pain has been hypothesized to develop as a result of a vicious cycle involving this mechanism. In order to explore the effects of long-lasting muscle pain on the fusimotor system, single unit muscle spindle afferents were recorded from 15 subjects. Afferent activity was recorded from foot and ankle extensor muscles whilst infusing hypertonic saline into the tibialis anterior muscle of the ipsilateral leg, producing moderate-strong pain lasting for ∼60 min. A change in fusimotor drive was inferred by observing changes in the mean discharge rate of spontaneously active muscle spindle afferents. Homonymous and heteronymous muscles remained relaxed and showed no increase in activity, arguing against any fusimotor-driven increase in motor activity, and there was no net change in the firing of muscle spindle afferents. We conclude that long-lasting stimulation of group III and IV afferents fails to excite fusimotor neurones and increase muscle spindle discharge. Accordingly, the vicious cycle theory has no functional basis for the development of myalgia in human subjects. PMID:23417691

  19. Artificial muscle: facts and fiction.

    PubMed

    Schaub, Marcus C

    2011-01-01

    Mechanical devices are sought to support insufficient or paralysed striated muscles including the failing heart. Nickel-titanium alloys (nitinol) present the following two properties: (i) super-elasticity, and (ii) the potential to assume different crystal structures depending on temperature and/or stress. Starting from the martensite state nitinol is able to resume the austenite form (state of low potential energy and high entropy) even against an external resistance. This one-way shape change is deployed in self-expanding vascular stents. Heating induces the force generating transformation from martensite to the austenite state while cooling induces relaxation back to the martensite state. This two-way shape change oscillating between the two states may be used in cyclically contracting support devices of silicon-coated nitinol wires. Such a contractile device sutured to the right atrium has been tested in vitro in a bench model and in vivo in sheep. The contraction properties of natural muscles, specifically of the myocardium, and the tight correlation with ATP production by oxidative phosphorylation in the mitochondria is briefly outlined. Force development by the nitinol device cannot be smoothly regulated as in natural muscle. Its mechanical impact is forced onto the natural muscle regardless of the actual condition with regard to metabolism and Ca2+-homeostasis. The development of artificial muscle on the basis of nitinol wires is still in its infancy. The nitinol artificial muscle will have to prove its viability in the various clinical settings. PMID:22183715

  20. Artificial muscle: facts and fiction.

    PubMed

    Schaub, Marcus C

    2011-12-19

    Mechanical devices are sought to support insufficient or paralysed striated muscles including the failing heart. Nickel-titanium alloys (nitinol) present the following two properties: (i) super-elasticity, and (ii) the potential to assume different crystal structures depending on temperature and/or stress. Starting from the martensite state nitinol is able to resume the austenite form (state of low potential energy and high entropy) even against an external resistance. This one-way shape change is deployed in self-expanding vascular stents. Heating induces the force generating transformation from martensite to the austenite state while cooling induces relaxation back to the martensite state. This two-way shape change oscillating between the two states may be used in cyclically contracting support devices of silicon-coated nitinol wires. Such a contractile device sutured to the right atrium has been tested in vitro in a bench model and in vivo in sheep. The contraction properties of natural muscles, specifically of the myocardium, and the tight correlation with ATP production by oxidative phosphorylation in the mitochondria is briefly outlined. Force development by the nitinol device cannot be smoothly regulated as in natural muscle. Its mechanical impact is forced onto the natural muscle regardless of the actual condition with regard to metabolism and Ca2+-homeostasis. The development of artificial muscle on the basis of nitinol wires is still in its infancy. The nitinol artificial muscle will have to prove its viability in the various clinical settings.

  1. Effects of step exercise on muscle damage and muscle Ca2+ content in men and women.

    PubMed

    Fredsted, Anne; Clausen, Torben; Overgaard, Kristian

    2008-07-01

    Eccentric exercise often produces severe muscle damage, whereas concentric exercise of a similar load elicits a minor degree of muscle damage. The cellular events initiating muscle damage are thought to include an increase in cytosolic Ca. It was hypothesized that eccentric muscle activity in humans would lead to a larger degree of cell damage and increased intracellular Ca accumulation in skeletal muscle than concentric activity would. Furthermore, possible differences between men and women in muscle damage were investigated following step exercise. Thirty-three healthy subjects (18 men and 15 women) participated in a 30-minute step exercise protocol involving concentric contractions with 1 leg and eccentric contractions with the other leg. Muscle Ca content, maximal voluntary contraction (MVC), and muscle enzymes in the plasma were measured. In a subgroup of the subjects, T2 relaxation time was measured by magnetic resonance imaging. No significant changes were found in muscle Ca content in vastus lateralis biopsy specimens in women or in men. Following step exercise, MVC decreased in both legs of both genders. The women had a significantly larger strength decrease in the eccentric leg than the men had on postexercise day 2 (p < 0.01). Plasma creatine kinase increased following step exercise, with a sevenfold higher response in women than in men on day 3 (p < 0.001). The women, but not the men, had an increase in T2 relaxation time in the eccentrically working adductor magnus muscle, peaking on day 3 (75%) (p < 0.001). In conclusion, step exercise does not lead to Ca accumulation in the vastus lateralis but does induce muscle damage preferentially in the eccentrically working muscles, considerably more in women than in men. This indicates that gender-specific step training programs may be warranted to avoid excessive muscle damage. PMID:18545196

  2. Simulation of DNA Supercoil Relaxation.

    PubMed

    Ivenso, Ikenna D; Lillian, Todd D

    2016-05-24

    Several recent single-molecule experiments observe the response of supercoiled DNA to nicking endonucleases and topoisomerases. Typically in these experiments, indirect measurements of supercoil relaxation are obtained by observing the motion of a large micron-sized bead. The bead, which also serves to manipulate DNA, experiences significant drag and thereby obscures supercoil dynamics. Here we employ our discrete wormlike chain model to bypass experimental limitations and simulate the dynamic response of supercoiled DNA to a single strand nick. From our simulations, we make three major observations. First, extension is a poor dynamic measure of supercoil relaxation; in fact, the linking number relaxes so fast that it cannot have much impact on extension. Second, the rate of linking number relaxation depends upon its initial partitioning into twist and writhe as determined by tension. Third, the extensional response strongly depends upon the initial position of plectonemes.

  3. A study of molecular dynamics and freezing phase transition in tissues by proton spin relaxation.

    PubMed Central

    Rustgi, S N; Peemoeller, H; Thompson, R T; Kydon, D W; Pintar, M M

    1978-01-01

    Muscle, spleen, and kidney tissues from 4-wk-old C57 black mice were studied by proton magnetic resonance. Spin-lattice relaxation times at high fields and in the rotating frame, as well as the spin-spin relaxation times, are reported as a function of temperature in the liquid and frozen phase. Motions of large molecules and of water molecules and their changes at the freezing phase transition are studied. The shortcomings of the two-state fast-exchange relaxation model are discussed. PMID:667294

  4. Relaxation of Isolated Ventricular Cardiomyocytes by a Voltage-Dependent Process

    NASA Astrophysics Data System (ADS)

    Bridge, John H. B.; Spitzer, Kenneth W.; Ershler, Philip R.

    1988-08-01

    Cell contraction and relaxation were measured in single voltage-clamped guinea pig cardiomyocytes to investigate the contribution of sarcolemmal Na+-Ca2+ exchange to mechanical relaxation. Cells clamped from -80 to 0 millivolts displayed initial phasic and subsequent tonic contractions; caffeine reduced or abolished the phasic and enlarged the tonic contraction. The rate of relaxation from tonic contractions was steeply voltage-dependent and was significantly slowed in the absence of a sarcolemmal Na+ gradient. Tonic contractions elicited in the absence of a Na+ gradient promptly relaxed when external Na+ was applied, reflecting activation of Na+-Ca2+ exchange. It appears that a voltage-dependent Na+-Ca2+ exchange can rapidly mechanically relax mammalian heart muscle.

  5. Peripheral and central fatigue after muscle-damaging exercise is muscle length dependent and inversely related.

    PubMed

    Skurvydas, Albertas; Brazaitis, Marius; Kamandulis, Sigitas; Sipaviciene, Saule

    2010-08-01

    Healthy untrained men performed 10 series of 12 knee eccentric extension repetitions (EE) at 160 degrees /s. The maximal voluntary isometric contraction force of the quadriceps muscle, the maximal rate of electrically induced torque development (RTD) and relaxation (RTR), isokinetic concentric torque at 30 degrees /s, the electrostimulation-induced torque at 20 and 100Hz frequencies were established before and after EE at shorter and longer muscle lengths. Besides, voluntary activation (VA) index and central activation ratio (CAR) were tested. There was more peripheral fatigue than central after EE. We established more central fatigue as well as low frequency fatigue at a shorter muscle length compared to the longer muscle length. Relative RTD as well as relative RTR, improved after EE and did not depend on the muscle length. Finally, central fatigue is inversely significantly related with the eccentric torque reduction during eccentric exercise and with the changes in muscle torque induced by low frequency stimulation.

  6. Exercise-induced muscle cramp. Proposed mechanisms and management.

    PubMed

    Bentley, S

    1996-06-01

    Muscle cramp is a common, painful, physiological disturbance of skeletal muscle. Many athletes are regularly frustrated by exercise-induced muscle cramp yet the pathogenesis remains speculative with little scientific research on the subject. This has resulted in a perpetuation of myths as to the cause and treatment of it. There is a need for scientifically based protocols for the management of athletes who suffer exercise-related muscle cramp. This article reviews the literature and neurophysiology of muscle cramp occurring during exercise. Disturbances at various levels of the central and peripheral nervous system and skeletal muscle are likely to be involved in the mechanism of cramp and may explain the diverse range of conditions in which cramp occurs. The activity of the motor neuron is subject to a multitude of influences including peripheral receptor sensory input, spinal reflexes, inhibitory interneurons in the spinal cord, synaptic and neurotransmitter modulation and descending CNS input. The muscle spindle and golgi tendon organ proprioceptors are fundamental to the control of muscle length and tone and the maintenance of posture. Disturbance in the activity of these receptors may occur through faulty posture, shortened muscle length, intense exercise and exercise to fatigue, resulting in increased motor neuron activity and motor unit recruitment. The relaxation phase of muscle contraction is prolonged in a fatigued muscle, raising the likelihood of fused summation of action potentials if motor neuron activity delivers a sustained high firing frequency. Treatment of cramp is directed at reducing muscle spindle and motor neuron activity by reflex inhibition and afferent stimulation. There are no proven strategies for the prevention of exercise-induced muscle cramp but regular muscle stretching using post-isometric relaxation techniques, correction of muscle balance and posture, adequate conditioning for the activity, mental preparation for competition and

  7. Relaxation schemes for Chebyshev spectral multigrid methods

    NASA Technical Reports Server (NTRS)

    Kang, Yimin; Fulton, Scott R.

    1993-01-01

    Two relaxation schemes for Chebyshev spectral multigrid methods are presented for elliptic equations with Dirichlet boundary conditions. The first scheme is a pointwise-preconditioned Richardson relaxation scheme and the second is a line relaxation scheme. The line relaxation scheme provides an efficient and relatively simple approach for solving two-dimensional spectral equations. Numerical examples and comparisons with other methods are given.

  8. Small Heat Shock Proteins in Smooth Muscle

    PubMed Central

    Salinthone, Sonemany; Tyagi, Manoj; Gerthoffer, William T.

    2008-01-01

    The small heat shock proteins (HSPs) HSP20, HSP27 and αB-crystallin are chaperone proteins that are abundantly expressed in smooth muscles are important modulators of muscle contraction, cell migration and cell survival. This review focuses on factors regulating expression of small HSPs in smooth muscle, signaling pathways that regulate macromolecular structure and the biochemical and cellular functions of small HSPs. Cellular processes regulated by small HSPs include chaperoning denatured proteins, maintaining cellular redox state and modifying filamentous actin polymerization. These processes influence smooth muscle proliferation, cell migration, cell survival, muscle contraction and synthesis of signaling proteins. Understanding functions of small heat shock proteins is relevant to mechanisms of disease in which dysfunctional smooth muscle causes symptoms, or is a target of drug therapy. One example is that secreted HSP27 may be a useful marker of inflammation during atherogenesis. Another is that phosphorylated HSP20 which relaxes smooth muscle may prove to be highly relevant to treatment of hypertension, vasospasm, asthma, premature labor and overactive bladder. Because small HSPs also modulate smooth muscle proliferation and cell migration they may prove to be targets for developing effective, novel treatments of clinical problems arising from remodeling of smooth muscle in vascular, respiratory and urogenital systems. PMID:18579210

  9. Phase transitions in semidefinite relaxations

    PubMed Central

    Javanmard, Adel; Montanari, Andrea; Ricci-Tersenghi, Federico

    2016-01-01

    Statistical inference problems arising within signal processing, data mining, and machine learning naturally give rise to hard combinatorial optimization problems. These problems become intractable when the dimensionality of the data is large, as is often the case for modern datasets. A popular idea is to construct convex relaxations of these combinatorial problems, which can be solved efficiently for large-scale datasets. Semidefinite programming (SDP) relaxations are among the most powerful methods in this family and are surprisingly well suited for a broad range of problems where data take the form of matrices or graphs. It has been observed several times that when the statistical noise is small enough, SDP relaxations correctly detect the underlying combinatorial structures. In this paper we develop asymptotic predictions for several detection thresholds, as well as for the estimation error above these thresholds. We study some classical SDP relaxations for statistical problems motivated by graph synchronization and community detection in networks. We map these optimization problems to statistical mechanics models with vector spins and use nonrigorous techniques from statistical mechanics to characterize the corresponding phase transitions. Our results clarify the effectiveness of SDP relaxations in solving high-dimensional statistical problems. PMID:27001856

  10. Phase transitions in semidefinite relaxations.

    PubMed

    Javanmard, Adel; Montanari, Andrea; Ricci-Tersenghi, Federico

    2016-04-19

    Statistical inference problems arising within signal processing, data mining, and machine learning naturally give rise to hard combinatorial optimization problems. These problems become intractable when the dimensionality of the data is large, as is often the case for modern datasets. A popular idea is to construct convex relaxations of these combinatorial problems, which can be solved efficiently for large-scale datasets. Semidefinite programming (SDP) relaxations are among the most powerful methods in this family and are surprisingly well suited for a broad range of problems where data take the form of matrices or graphs. It has been observed several times that when the statistical noise is small enough, SDP relaxations correctly detect the underlying combinatorial structures. In this paper we develop asymptotic predictions for several detection thresholds, as well as for the estimation error above these thresholds. We study some classical SDP relaxations for statistical problems motivated by graph synchronization and community detection in networks. We map these optimization problems to statistical mechanics models with vector spins and use nonrigorous techniques from statistical mechanics to characterize the corresponding phase transitions. Our results clarify the effectiveness of SDP relaxations in solving high-dimensional statistical problems. PMID:27001856

  11. Myofibrils Bear Most of the Resting Tension in Frog Skeletal Muscle

    NASA Astrophysics Data System (ADS)

    Magid, Alan; Law, Douglas J.

    1985-12-01

    The tension that develops when relaxed muscles are stretched is the resting (or passive) tension. It has recently been shown that the resting tension of intact skeletal muscle fibers is equivalent to that of mechanically skinned skeletal muscle fibers. Laser diffraction measurements of sarcomere length have now been used to show that the exponential relation between resting tension and sarcomere length for whole frog semitendinosus muscle is similar to that of single fibers. Slack sarcomere lengths and the rates of stress relaxation in these muscles were similar to those in skinned fibers, and sarcomere length remained unchanged during stress relaxation, as in skinned fibers. Thus, in intact semitendinosus muscle of the frog up to a sarcomere length of about 3.8 micrometers, resting tension arises, not in the connective tissue as is commonly thought, but in the elastic resistance of the myofibrils.

  12. [Efficacy of combined relaxation exercises for children with bronchial asthma].

    PubMed

    Gröller, B

    1991-05-01

    In the framework of a pilot study, 15 children having bronchial asthma (4 female, 11 male; age 5-11;6) participated, over a period of 8 weeks, in two weekly sessions of combined relaxation, respiratory and sports exercises. The present article in particular focuses on the relaxation exercises, made up of Progressive Muscle Relaxation and Autogenic Training elements as well as of phantasy travels, mantras, and periodic music. Ongoing observation of the children during training, the findings of subsequent semi-structured interviews with them, topical instances of coping with impending asthma attacks by using the techniques learned, as well as the results of a catamnestic inquiry some three years later--all indicate a positive impact of the relaxation exercises. Statistical analysis of the data at hand revealed significant improvements in a number of pulmonary function parameters (airway resistance, forced expiratory volume for 1 s, forced vital capacity, peak expiratory flow rate). Interpretation of these findings must however take into account the entirety of the training provided.

  13. [Effectiveness of combined relaxation exercises for children with bronchial asthma].

    PubMed

    Gröller, B

    1992-02-01

    In the framework of a pilot study, 15 children having bronchial asthma (4 female, 11 male; age 5-11; 6) participated, over a period of 8 weeks, in two weekly sessions of combined relaxation, respiratory and sports exercises. The present article in particular focuses on the relaxation exercises, made up of Progressive Muscle Relaxation and Autogenic Training elements as well as of phantasy travels, mantras, and periodic music. Ongoing observation of the children during training, the findings of subsequent semi-structured interviews with them, topical instances of coping with impending asthma attacks by using the techniques learnt, as well as the result of a catamnestic inquiry some three years later--all indicate a positive impact of the relaxation exercises. Statistical analysis of the data at hand revealed significant improvements in a number of pulmonary function parameters (airway resistance, forced expiratory volume for 1 s, forced vital capacity, peak expiratory flow rate). Interpretation of these findings must however take into account the entirety of the training provided.

  14. Anisotropic spin relaxation in graphene.

    PubMed

    Tombros, N; Tanabe, S; Veligura, A; Jozsa, C; Popinciuc, M; Jonkman, H T; van Wees, B J

    2008-07-25

    Spin relaxation in graphene is investigated in electrical graphene spin valve devices in the nonlocal geometry. Ferromagnetic electrodes with in-plane magnetizations inject spins parallel to the graphene layer. They are subject to Hanle spin precession under a magnetic field B applied perpendicular to the graphene layer. Fields above 1.5 T force the magnetization direction of the ferromagnetic contacts to align to the field, allowing injection of spins perpendicular to the graphene plane. A comparison of the spin signals at B=0 and B=2 T shows a 20% decrease in spin relaxation time for spins perpendicular to the graphene layer compared to spins parallel to the layer. We analyze the results in terms of the different strengths of the spin-orbit effective fields in the in-plane and out-of-plane directions and discuss the role of the Elliott-Yafet and Dyakonov-Perel mechanisms for spin relaxation. PMID:18764351

  15. Ellipsoidal Relaxation of Deformed Vesicles

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Lira, Rafael B.; Riske, Karin A.; Dimova, Rumiana; Lin, Hao

    2015-09-01

    Theoretical analysis and experimental quantification on the ellipsoidal relaxation of vesicles are presented. The current work reveals the simplicity and universal aspects of this process. The Helfrich formula is shown to apply to the dynamic relaxation of moderate-to-high tension membranes, and a closed-form solution is derived which predicts the vesicle aspect ratio as a function of time. Scattered data are unified by a time scale, which leads to a similarity behavior, governed by a distinctive solution for each vesicle type. Two separate regimes in the relaxation are identified, namely, the "entropic" and the "constant-tension" regimes. The bending rigidity and the initial membrane tension can be simultaneously extracted from the data analysis, posing the current approach as an effective means for the mechanical analysis of biomembranes.

  16. Substance P-induced relaxation and hyperpolarization in human cerebral arteries.

    PubMed Central

    Petersson, J.; Zygmunt, P. M.; Brandt, L.; Högestätt, E. D.

    1995-01-01

    1. Vascular effects of substance P were studied in human isolated pial arteries removed from 14 patients undergoing cerebral cortical resection. 2. Substance P induced a concentration-dependent relaxation in the presence of indomethacin. No relaxation was seen in arteries where the endothelium had been removed. 3. N omega-nitro-L-arginine (L-NOARG, 0.3 mM) abolished the relaxation in arteries from six patients. The relaxation was only partially inhibited in the remaining eight patients, the reduction of the maximum relaxation being less than 50% in each patient. 4. The L-NOARG-resistant relaxation was abolished when the external K+ concentration was raised above 30 mM. 5. Substance P caused a smooth muscle hyperpolarization (in the presence of L-NOARG and indomethacin), but only when the artery showed an L-NOARG-resistant relaxation. 6. The results indicate that nitric oxide is an important mediator of endothelium-dependent relaxation in human cerebral arteries. Furthermore, another endothelium-dependent pathway, causing hyperpolarization and vasodilatation, was identified in arteries from more than half the population of patients. PMID:7582516

  17. A mixed relaxed clock model.

    PubMed

    Lartillot, Nicolas; Phillips, Matthew J; Ronquist, Fredrik

    2016-07-19

    Over recent years, several alternative relaxed clock models have been proposed in the context of Bayesian dating. These models fall in two distinct categories: uncorrelated and autocorrelated across branches. The choice between these two classes of relaxed clocks is still an open question. More fundamentally, the true process of rate variation may have both long-term trends and short-term fluctuations, suggesting that more sophisticated clock models unfolding over multiple time scales should ultimately be developed. Here, a mixed relaxed clock model is introduced, which can be mechanistically interpreted as a rate variation process undergoing short-term fluctuations on the top of Brownian long-term trends. Statistically, this mixed clock represents an alternative solution to the problem of choosing between autocorrelated and uncorrelated relaxed clocks, by proposing instead to combine their respective merits. Fitting this model on a dataset of 105 placental mammals, using both node-dating and tip-dating approaches, suggests that the two pure clocks, Brownian and white noise, are rejected in favour of a mixed model with approximately equal contributions for its uncorrelated and autocorrelated components. The tip-dating analysis is particularly sensitive to the choice of the relaxed clock model. In this context, the classical pure Brownian relaxed clock appears to be overly rigid, leading to biases in divergence time estimation. By contrast, the use of a mixed clock leads to more recent and more reasonable estimates for the crown ages of placental orders and superorders. Altogether, the mixed clock introduced here represents a first step towards empirically more adequate models of the patterns of rate variation across phylogenetic trees.This article is part of the themed issue 'Dating species divergences using rocks and clocks'.

  18. A mixed relaxed clock model

    PubMed Central

    2016-01-01

    Over recent years, several alternative relaxed clock models have been proposed in the context of Bayesian dating. These models fall in two distinct categories: uncorrelated and autocorrelated across branches. The choice between these two classes of relaxed clocks is still an open question. More fundamentally, the true process of rate variation may have both long-term trends and short-term fluctuations, suggesting that more sophisticated clock models unfolding over multiple time scales should ultimately be developed. Here, a mixed relaxed clock model is introduced, which can be mechanistically interpreted as a rate variation process undergoing short-term fluctuations on the top of Brownian long-term trends. Statistically, this mixed clock represents an alternative solution to the problem of choosing between autocorrelated and uncorrelated relaxed clocks, by proposing instead to combine their respective merits. Fitting this model on a dataset of 105 placental mammals, using both node-dating and tip-dating approaches, suggests that the two pure clocks, Brownian and white noise, are rejected in favour of a mixed model with approximately equal contributions for its uncorrelated and autocorrelated components. The tip-dating analysis is particularly sensitive to the choice of the relaxed clock model. In this context, the classical pure Brownian relaxed clock appears to be overly rigid, leading to biases in divergence time estimation. By contrast, the use of a mixed clock leads to more recent and more reasonable estimates for the crown ages of placental orders and superorders. Altogether, the mixed clock introduced here represents a first step towards empirically more adequate models of the patterns of rate variation across phylogenetic trees. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. PMID:27325829

  19. Molecular relaxations in amorphous phenylbutazone

    NASA Astrophysics Data System (ADS)

    Sahra, M.; Thayyil, M. Shahin; Capaccioli, S.

    2016-05-01

    Molecular dynamics of phenylbutazone in the supercooled liquid and glassy state is studied using broadband dielectric spectroscopy for test frequencies 1 kHz, 10 kHz and 100 kHz over a wide temperature range. Above the glass transition temperature Tg, the presence of the structural α-relaxation peak was observed which shifts towards lower frequencies as the temperature decreases and kinetically freezes at Tg. Besides the structural α-relaxation peak, a β-process which arises due to the localized molecular fluctuations is observed at lower temperature.

  20. The Role of Regular Home Practice in the Relaxation Treatment of Tension Headache.

    ERIC Educational Resources Information Center

    Blanchard, Edward B.; And Others

    1991-01-01

    Gave 27 tension headache sufferers progressive muscle relaxation (PMR) training, with 14 of those subjects also receiving home practice and application instructions. Compared to third group of sufferers (n=6) who merely monitored headache activity, both treated groups showed significant reduction in headache activity. Treatment groups did not…

  1. The Effect of Relaxation Interventions on Cortisol Levels in HIV-Sero-Positive Women

    PubMed Central

    Jones, Deborah; Owens, Mary; Kumar, Mahendra; Cook, Ryan; Weiss, Stephen M.

    2016-01-01

    Purpose Activation of the hypothalamic–pituitary–adrenal axis, assessed in terms of cortisol levels, may enhance the ability of HIV to infect lymphocytes and downregulate the immune system, accelerating disease progression. This study sought to determine the effects of relaxation techniques on cortisol levels in HIV-sero-positive women. Methods Women (n = 150) were randomized to a group cognitive–behavioral stress management (CBSM) condition or an individual information condition and underwent 3 types of relaxation training (progressive muscle relaxation, imagery, and autogenic training). Cortisol levels were obtained pre- and postrelaxation. Results Guided imagery was effective in reducing cortisol in the group condition (t = 3.90, P < .001), and muscle relaxation reduced cortisol in the individual condition (t = 3.11, P = .012). Among participants in the group condition attending all sessions, the magnitude of pre- to postsession reduction became greater over time. Conclusions Results suggest that specific relaxation techniques may be partially responsible for cortisol decreases associated with relaxation and CBSM. PMID:23715264

  2. Arginase II Deletion Increases Corpora Cavernosa Relaxation in Diabetic Mice

    PubMed Central

    Toque, Haroldo; Tostes, Rita; Yao, Lin; Xu, Zhimin; Webb, Clinton R.; Caldwell, Ruth; Caldwell, Robert

    2010-01-01

    Introduction Diabetes-induced erectile dysfunction involves elevated arginase (Arg) activity and expression. Because nitric oxide (NO) synthase and Arg share and compete for their substrate L-arginine, NO production is likely linked to regulation of Arg. Arg is highly expressed and implicated in erectile dysfunction. Aim It was hypothesized that Arg-II isoform deletion enhances relaxation function of corpora cavernosal (CC) smooth muscle in a streptozotocin (STZ) diabetic model. Methods Eight weeks after STZ-induced diabetes, vascular functional studies, Arg activity assay, and protein expression levels of Arg and constitutive NOS (using western blots) were assessed in CC tissues from non-diabetic wild type (WT), diabetic (D) WT (WT+D), Arg-II knockout (KO) and Arg-II KO+D mice (N=8–10 per group). Main Outcome Measures Inhibition or lack of arginase results in facilitation of CC relaxation in diabetic CC. Results Strips of CC from Arg-II KO mice exhibited an enhanced maximum endothelium-dependent relaxation (from 70+3% to 84+4%) and increased nitrergic relaxation (by 55%, 71%, 42%, 42%, and 24% for 1, 2, 4, 8 and 16 Hz, respectively) compared to WT mice. WT+D mice showed a significant reduction of endothelium-dependent maximum relaxation (44+8%), but this impairment of relaxation was significantly prevented in Arg-II KO+D mice (69+4%). Sympathetic-mediated and alpha-adrenergic agent-induced contractile responses also were increased in CC strips from D compared to non-D controls. Contractile responses were significantly lower in Arg-II KO control and D versus the WT groups. WT+D mice increased Arg activity (1.5-fold) and Arg-II protein expression and decreased total and phospho-eNOS at Ser-1177, and nNOS levels. These alterations were not seen in Arg-II KO mice. Additionally, the Arg inhibitor BEC (50 μM) enhanced nitrergic and endothelium-dependent relaxation in CC of WT+D mice. Conclusion These studies show for the first time that Arg-II deletion improves CC

  3. 5-hydroxytryptamine induced relaxation in the pig urinary bladder neck

    PubMed Central

    Recio, Paz; Barahona, María Victoria; Orensanz, Luis M; Bustamante, Salvador; Martínez, Ana Cristina; Benedito, Sara; García-Sacristán, Albino; Prieto, Dolores; Hernández, Medardo

    2009-01-01

    the pig urinary bladder neck through muscle 5-HT7 receptors linked to the cAMP-PKA pathway. Prejunctional 5-HT1A receptors and Kv channels modulated 5-HT-induced relaxations whereas postjunctional K+ channels were not involved in such responses. 5-HT7 receptor antagonists could be useful in the therapy of urinary incontinence produced by intrinsic sphincter deficiency. PMID:19309355

  4. "Stressing" Relaxation in the Classroom.

    ERIC Educational Resources Information Center

    Prager-Decker, Iris

    A rationale is offered for incorporating relaxation training in elementary school classroom activities. Cited are research studies which focus on the reaction of children to stressful life changes and resulting behavioral and physical disorders. A list is given of significant life events which may be factors in causing diseases or misbehavior in…

  5. Theory of nuclear magnetic relaxation

    NASA Technical Reports Server (NTRS)

    Mcconnell, J.

    1983-01-01

    A theory of nuclear magnetic interaction is based on the study of the stochastic rotation operator. The theory is applied explicitly to relaxation by anisotropic chemical shift and to spin-rotational interactions. It is applicable also to dipole-dipole and quadrupole interactions.

  6. Relaxation times estimation in MRI

    NASA Astrophysics Data System (ADS)

    Baselice, Fabio; Caivano, Rocchina; Cammarota, Aldo; Ferraioli, Giampaolo; Pascazio, Vito

    2014-03-01

    Magnetic Resonance Imaging is a very powerful techniques for soft tissue diagnosis. At the present, the clinical evaluation is mainly conducted exploiting the amplitude of the recorded MR image which, in some specific cases, is modified by using contrast enhancements. Nevertheless, spin-lattice (T1) and spin-spin (T2) relaxation times can play an important role in many pathology diagnosis, such as cancer, Alzheimer or Parkinson diseases. Different algorithms for relaxation time estimation have been proposed in literature. In particular, the two most adopted approaches are based on Least Squares (LS) and on Maximum Likelihood (ML) techniques. As the amplitude noise is not zero mean, the first one produces a biased estimator, while the ML is unbiased but at the cost of high computational effort. Recently the attention has been focused on the estimation in the complex, instead of the amplitude, domain. The advantage of working with real and imaginary decomposition of the available data is mainly the possibility of achieving higher quality estimations. Moreover, the zero mean complex noise makes the Least Square estimation unbiased, achieving low computational times. First results of complex domain relaxation times estimation on real datasets are presented. In particular, a patient with an occipital lesion has been imaged on a 3.0T scanner. Globally, the evaluation of relaxation times allow us to establish a more precise topography of biologically active foci, also with respect to contrast enhanced images.

  7. Distributed Relaxation for Conservative Discretizations

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.

    2001-01-01

    A multigrid method is defined as having textbook multigrid efficiency (TME) if the solutions to the governing system of equations are attained in a computational work that is a small (less than 10) multiple of the operation count in one target-grid residual evaluation. The way to achieve this efficiency is the distributed relaxation approach. TME solvers employing distributed relaxation have already been demonstrated for nonconservative formulations of high-Reynolds-number viscous incompressible and subsonic compressible flow regimes. The purpose of this paper is to provide foundations for applications of distributed relaxation to conservative discretizations. A direct correspondence between the primitive variable interpolations for calculating fluxes in conservative finite-volume discretizations and stencils of the discretized derivatives in the nonconservative formulation has been established. Based on this correspondence, one can arrive at a conservative discretization which is very efficiently solved with a nonconservative relaxation scheme and this is demonstrated for conservative discretization of the quasi one-dimensional Euler equations. Formulations for both staggered and collocated grid arrangements are considered and extensions of the general procedure to multiple dimensions are discussed.

  8. Ellipsoidal relaxation of electrodeformed vesicles

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Lin, Hao; Lira, Rafael; Dimova, Rumiana; Riske, Karin

    2015-11-01

    Electrodeformation has been extensively applied to investigate the mechanical behavior of vesicles and cells. While the deformation process often exhibits complex behavior and reveals interesting physics, the relaxation process post-pulsation is equally intriguing yet less frequently studied. In this work theoretical analysis and experimental quantification on the ellipsoidal relaxation of vesicles are presented, which reveal the simplicity and universal aspects of this process. The Helfrich formula, which is derived only for equilibrated shapes, is shown to be applicable to dynamic situations such as in relaxation. A closed-form solution is derived which predicts the vesicle aspect ratio as a function of time. Scattered data are unified by a timescale, which leads to a similarity behavior, governed by a distinctive solution for each vesicle type. Two separate regimes in the relaxation are identified, namely, the ``entropic'' and the ``constant-tension'' regime. The bending rigidity and the initial membrane tension can be simultaneously extracted from the data/model analysis, posing the current approach as an effective means for the mechanical analysis of biomembranes.

  9. Relaxation properties in classical diamagnetism.

    PubMed

    Carati, A; Benfenati, F; Galgani, L

    2011-06-01

    It is an old result of Bohr that, according to classical statistical mechanics, at equilibrium a system of electrons in a static magnetic field presents no magnetization. Thus a magnetization can occur only in an out of equilibrium state, such as that produced through the Foucault currents when a magnetic field is switched on. It was suggested by Bohr that, after the establishment of such a nonequilibrium state, the system of electrons would quickly relax back to equilibrium. In the present paper, we study numerically the relaxation to equilibrium in a modified Bohr model, which is mathematically equivalent to a billiard with obstacles, immersed in a magnetic field that is adiabatically switched on. We show that it is not guaranteed that equilibrium is attained within the typical time scales of microscopic dynamics. Depending on the values of the parameters, one has a relaxation either to equilibrium or to a diamagnetic (presumably metastable) state. The analogy with the relaxation properties in the Fermi Pasta Ulam problem is also pointed out.

  10. Spin relaxation in disordered media

    NASA Astrophysics Data System (ADS)

    Dzheparov, F. S.

    2011-10-01

    A review is given on theoretical grounds and typical experimental appearances of spin dynamics and relaxation in solids containing randomly distributed nuclear and/or electronic spins. Brief content is as follows. Disordered and magnetically diluted systems. General outlines of the spin transport theory. Random walks in disordered systems (RWDS). Observable values in phase spin relaxation, free induction decay (FID). Interrelation of longitudinal and transversal relaxation related to dynamics of occupancies and phases. Occupation number representation for equations of motion. Continuum media approximation and inapplicability of moment expansions. Long-range transitions vs percolation theory. Concentration expansion as a general constructive basis for analytical methods. Scaling properties of propagators. Singular point. Dynamical and kinematical memory in RWDS. Ways of regrouping of concentration expansions. CTRW and semi-phenomenology. Coherent medium approximation for nuclear relaxation via paramagnetic impurities. Combining of memory functions and cumulant expansions for calculation of FID. Path integral representations for RWDS. Numerical simulations of RWDS. Spin dynamics in magnetically diluted systems with low Zeeman and medium low dipole temperatures. Cluster expansions, regularization of dipole interactions and spectral dynamics.

  11. Relaxation properties in classical diamagnetism

    NASA Astrophysics Data System (ADS)

    Carati, A.; Benfenati, F.; Galgani, L.

    2011-06-01

    It is an old result of Bohr that, according to classical statistical mechanics, at equilibrium a system of electrons in a static magnetic field presents no magnetization. Thus a magnetization can occur only in an out of equilibrium state, such as that produced through the Foucault currents when a magnetic field is switched on. It was suggested by Bohr that, after the establishment of such a nonequilibrium state, the system of electrons would quickly relax back to equilibrium. In the present paper, we study numerically the relaxation to equilibrium in a modified Bohr model, which is mathematically equivalent to a billiard with obstacles, immersed in a magnetic field that is adiabatically switched on. We show that it is not guaranteed that equilibrium is attained within the typical time scales of microscopic dynamics. Depending on the values of the parameters, one has a relaxation either to equilibrium or to a diamagnetic (presumably metastable) state. The analogy with the relaxation properties in the Fermi Pasta Ulam problem is also pointed out.

  12. Tbx15 controls skeletal muscle fibre-type determination and muscle metabolism.

    PubMed

    Lee, Kevin Y; Singh, Manvendra K; Ussar, Siegfried; Wetzel, Petra; Hirshman, Michael F; Goodyear, Laurie J; Kispert, Andreas; Kahn, C Ronald

    2015-01-01

    Skeletal muscle is composed of both slow-twitch oxidative myofibers and fast-twitch glycolytic myofibers that differentially impact muscle metabolism, function and eventually whole-body physiology. Here we show that the mesodermal transcription factor T-box 15 (Tbx15) is highly and specifically expressed in glycolytic myofibers. Ablation of Tbx15 in vivo leads to a decrease in muscle size due to a decrease in the number of glycolytic fibres, associated with a small increase in the number of oxidative fibres. This shift in fibre composition results in muscles with slower myofiber contraction and relaxation, and also decreases whole-body oxygen consumption, reduces spontaneous activity, increases adiposity and glucose intolerance. Mechanistically, ablation of Tbx15 leads to activation of AMPK signalling and a decrease in Igf2 expression. Thus, Tbx15 is one of a limited number of transcription factors to be identified with a critical role in regulating glycolytic fibre identity and muscle metabolism. PMID:26299309

  13. Equivalent Relaxations of Optimal Power Flow

    SciTech Connect

    Bose, S; Low, SH; Teeraratkul, T; Hassibi, B

    2015-03-01

    Several convex relaxations of the optimal power flow (OPF) problem have recently been developed using both bus injection models and branch flow models. In this paper, we prove relations among three convex relaxations: a semidefinite relaxation that computes a full matrix, a chordal relaxation based on a chordal extension of the network graph, and a second-order cone relaxation that computes the smallest partial matrix. We prove a bijection between the feasible sets of the OPF in the bus injection model and the branch flow model, establishing the equivalence of these two models and their second-order cone relaxations. Our results imply that, for radial networks, all these relaxations are equivalent and one should always solve the second-order cone relaxation. For mesh networks, the semidefinite relaxation and the chordal relaxation are equally tight and both are strictly tighter than the second-order cone relaxation. Therefore, for mesh networks, one should either solve the chordal relaxation or the SOCP relaxation, trading off tightness and the required computational effort. Simulations are used to illustrate these results.

  14. Muscle strain (image)

    MedlinePlus

    A muscle strain is the stretching or tearing of muscle fibers. A muscle strain can be caused by sports, exercise, a ... something that is too heavy. Symptoms of a muscle strain include pain, tightness, swelling, tenderness, and the ...

  15. Relaxation Models for Glassy Systems

    NASA Astrophysics Data System (ADS)

    Ajay

    In this thesis we explore some models based on constrained dynamics to understand the origin and ubiquity of the stretched exponential relaxation q(t) = exp(-(t/tau)^{ beta}). The first chapter has a pedagogical introduction to this field. Then we explore two models based primarily on constraints to see whether they would exhibit a stretched exponential relaxation. The first is a sliding block type of model based on a child's puzzle which has blocks and vacancies. The blocks can move only when they are nearest neighbor to a vacancy. We simulate random walk of the blocks and explore the relaxation behavior to equilibrium. We obtain three regimes of relaxation. In the short time regime (where the constraints are strong) we see a stretched exponential behavior. The intermediate time regime is best described as a simple random walk and we obtain a power law (with exponent 1/2). The long time behavior is a simple exponential, as expected. We do a Monte Carlo simulation of random walk on a bond-diluted hypercube. The site-diluted version of this model was suggested by Campbell as an explanation of the relaxation behavior seen in spin glasses. We come to it from the perspective of a system which exemplifies only constraints and nothing else (we have hard constraints with {cal H} = 0). We see that the relaxation to equilibrium is exponential for all p >=q 1/2 and below that it is a stretched exponential. In fact, the beta decreases as p decreases and attains a value of 1/4 at the percolation threshold of p = 1/n, where n is the dimensionality of the hypercube. We also do a calculation for determining the probability of connectivity for finite graphs. This demonstrates that the usual numerical results provided in graph theory, which are in the limit of infinite graphs, are not accurate for finite graphs. The final chapter has a conclusion. We also propose a model based on random graphs and percolation for studying sliding block kind of models.

  16. Restricting query relaxation through user constraints

    SciTech Connect

    Gaasterland, T.

    1993-07-01

    This paper describes techniques to restrict and to heuristically control relaxation of deductive database queries. The process of query relaxation provides a user with a means to automatically identify new queries that are related to the user`s original query. However, for large databases, many relaxations may be possible. The methods to control and restrict the relaxation process introduced in this paper focus the relaxation process and make it more efficient. User restrictions over the data base domain may be expressed as user constraints. This paper describes how user constraints can restrict relaxed queries. Also, a set of heuristics based on cooperative answering techniques are presented for controlling the relaxation process. Finally, the interaction of the methods for relaxing queries, processing user constraints, and applying the heuristic rules is described.

  17. Plasmon-mediated energy relaxation in graphene

    NASA Astrophysics Data System (ADS)

    Ferry, D. K.; Somphonsane, R.; Ramamoorthy, H.; Bird, J. P.

    2015-12-01

    Energy relaxation of hot carriers in graphene is studied at low temperatures, where the loss rate may differ significantly from that predicted for electron-phonon interactions. We show here that plasmons, important in the relaxation of energetic carriers in bulk semiconductors, can also provide a pathway for energy relaxation in transport experiments in graphene. We obtain a total loss rate to plasmons that results in energy relaxation times whose dependence on temperature and density closely matches that found experimentally.

  18. Plasmon-mediated energy relaxation in graphene

    SciTech Connect

    Ferry, D. K.; Somphonsane, R.; Ramamoorthy, H.; Bird, J. P.

    2015-12-28

    Energy relaxation of hot carriers in graphene is studied at low temperatures, where the loss rate may differ significantly from that predicted for electron-phonon interactions. We show here that plasmons, important in the relaxation of energetic carriers in bulk semiconductors, can also provide a pathway for energy relaxation in transport experiments in graphene. We obtain a total loss rate to plasmons that results in energy relaxation times whose dependence on temperature and density closely matches that found experimentally.

  19. Perceived and physiological indicators of relaxation: as different as Mozart and Alice in chains.

    PubMed

    Burns, J; Labbé, E; Williams, K; McCall, J

    1999-09-01

    The effects of listening to different types of music on perceived and physiological indicators of relaxation were evaluated. Fifty-six undergraduate students, 24 males and 32 females, mean age of 21, were randomly assigned to listen to classical, hard rock, self-selected relaxing music, or no music. Participants' relaxation level, skin temperature, muscle tension and heart rate were evaluated before and after exposure to a music condition. Analyses of variance using baseline measures as covariates indicated that skin temperature decreased for all conditions (p = 0.001) and the classical, self-selected relaxing music and no music groups reported significant increases in feelings of relaxation (p = 0.004). These results partially support the hypothesis that classical and self-selected relaxing music can increase perceptions of relaxation to a greater degree than listening to hard rock music. However, no differences were found between different types of music on physiological indicators of arousal. Implications for using music to reduce stress were discussed.

  20. Nitrergic Pathway Is the Main Contributing Mechanism in the Human Gastric Fundus Relaxation: An In Vitro Study

    PubMed Central

    Ko, Eun-Ju; Lee, Ji-Yeon; Ahn, Ki Duck; Bae, Je Moon; Rhee, Poong-Lyul

    2016-01-01

    Background Human gastric fundus relaxation is mediated by intrinsic inhibitory pathway. We investigated the roles of nitrergic and purinergic pathways, two known inhibitory factors in gastric motility, on spontaneous and nerve-evoked contractions in human gastric fundus muscles. Methods Gastric fundus muscle strips (12 circular and 13 longitudinal) were obtained from patients without previous gastrointestinal motility disorder who underwent gastrectomy for stomach cancer. Using these specimens, we examined basal tone, peak, amplitude, and frequency of spontaneous contractions, and peak and nadir values under electrical field stimulation (EFS, 150 V, 0.3 ms, 10 Hz, 20 s). To examine responses to purinergic and nitrergic inhibition without cholinergic innervation, atropine (muscarinic antagonist, 1 μM), MRS2500 (a purinergic P2Y1 receptor antagonist, 1 μM), and N-nitro-L-arginine (L-NNA, a nitric oxide synthase inhibitor, 100 μM) were added sequentially for spontaneous and electrically-stimulated contractions. Tetrodotoxin was used to confirm any neuronal involvement. Results In spontaneous contraction, L-NNA increased basal tone and peak in both muscle layers, while amplitude and frequency were unaffected. EFS (up to 10 Hz) uniformly induced initial contraction and subsequent relaxation in a frequency-dependent manner. Atropine abolished initial on-contraction and induced only relaxation during EFS. While MRS2500 showed no additional influence, L-NNA reversed relaxation (p = 0.012 in circular muscle, and p = 0.006 in longitudinal muscle). Tetrodotoxin abolished any EFS-induced motor response. Conclusions The relaxation of human gastric fundus muscle is reduced by nitrergic inhibition. Hence, nitrergic pathway appears to be the main mechanism for the human gastric fundus relaxation. PMID:27589594

  1. Viscoelastic Relaxation of Lunar Basins

    NASA Astrophysics Data System (ADS)

    Mohit, P. S.; Phillips, R. J.

    2004-12-01

    The large lunar impact basins provide a unique glimpse into early lunar history. Here we investigate the possibility that the relief of the oldest lunar basins (with the exception of South-Pole Aitken) has decayed through viscous relaxation. We identify nine ancient multi-ring basins with very low relief and low-amplitude Bouguer and free-air gravity anomalies. The characteristics of these basins are consistent with either 1) relaxation of topographic relief by ductile flow (e.g. Solomon et al., 1982) or 2) obliteration of basin topography during crater collapse immediately following impact. Both scenarios require that the basins formed early in lunar history, when the Moon was hot. The latter possibility appears to be unlikely due to the great topographic relief of South Pole-Aitken basin (SPA), the largest and oldest impact basin on the Moon (with the possible exception of the putative Procellarum basin; Wilhelms, 1987). On the other hand, the thin crust beneath SPA may not have allowed ductile flow in its lower portions, even for a hot Moon, implying that a thicker crust is required beneath other ancient basins for the hypothesis of viscous relaxation to be tenable. Using a semi-analytic, self-gravitating viscoelastic model, we investigate the conditions necessary to produce viscous relaxation of lunar basins. We model topographic relaxation for a crustal thickness of 30 km, using a dry diabase flow law for the crust and dry olivine for the mantle. We find that the minimum temperature at the base of the crust (Tb) permitting nearly complete relaxation of topography by ductile flow on a timescale < 108 yrs is 1400 K, corresponding to a heat flow of 55mW/m2, into the crust. Ductile flow in the lower crust becomes increasingly difficult as the crustal thickness decreases. The crust beneath SPA, thinned by the impact, is only 15-20 km thick and would require Tb ≥ 1550 K for relaxation to occur. The fact that SPA has maintained high-amplitude relief suggests that

  2. Kinetic activation-relaxation technique.

    PubMed

    Béland, Laurent Karim; Brommer, Peter; El-Mellouhi, Fedwa; Joly, Jean-François; Mousseau, Normand

    2011-10-01

    We present a detailed description of the kinetic activation-relaxation technique (k-ART), an off-lattice, self-learning kinetic Monte Carlo (KMC) algorithm with on-the-fly event search. Combining a topological classification for local environments and event generation with ART nouveau, an efficient unbiased sampling method for finding transition states, k-ART can be applied to complex materials with atoms in off-lattice positions or with elastic deformations that cannot be handled with standard KMC approaches. In addition to presenting the various elements of the algorithm, we demonstrate the general character of k-ART by applying the algorithm to three challenging systems: self-defect annihilation in c-Si (crystalline silicon), self-interstitial diffusion in Fe, and structural relaxation in a-Si (amorphous silicon).

  3. Models of violently relaxed galaxies

    NASA Astrophysics Data System (ADS)

    Merritt, David; Tremaine, Scott; Johnstone, Doug

    1989-02-01

    The properties of spherical self-gravitating models derived from two distribution functions that incorporate, in a crude way, the physics of violent relaxation are investigated. The first distribution function is identical to the one discussed by Stiavelli and Bertin (1985) except for a change in the sign of the 'temperature', i.e., e exp(-aE) to e exp(+aE). It is shown that these 'negative temperature' models provide a much better description of the end-state of violent relaxation than 'positive temperature' models. The second distribution function is similar to the first except for a different dependence on angular momentum. Both distribution functions yield single-parameter families of models with surface density profiles very similar to the R exp 1/4 law. Furthermore, the central concentration of models in both families increases monotonically with the velocity anisotropy, as expected in systems that formed through cold collapse.

  4. Localized relaxation in stabilized zirconia

    NASA Astrophysics Data System (ADS)

    Ohta, M.; Kirimoto, K.; Nobugai, K.; Wigmore, J. K.; Miyasato, T.

    2002-05-01

    Stabilized zirconia is well known for long-range transport of oxygen ions which is caused by diffusion relaxation of oxygen vacancies. We used torsional vibrations to measure the temperature dependence of internal friction in yttria-stabilized zirconia (YSZ) doped with 9.5 mol% Y 2O 3 and calcia-stabilized zirconia (CSZ) doped with 12 mol% CaO. In the temperature range 300- 700 K, the internal friction peak exhibits anisotropy, different in YSZ from CSZ, which we attribute to localized relaxation of oxygen vacancies. The results imply that some oxygen vacancies are bound within the local structure, a greater number in CSZ than in YSZ, and suggest that the defect symmetry of local structure depends on the type of dopant ion.

  5. Evaluating Swallowing Muscles Essential for Hyolaryngeal Elevation by Using Muscle Functional Magnetic Resonance Imaging

    SciTech Connect

    Pearson, William G.; Hindson, David F.; Langmore, Susan E.; Zumwalt, Ann C.

    2013-03-01

    Purpose: Reduced hyolaryngeal elevation, a critical event in swallowing, is associated with radiation therapy. Two muscle groups that suspend the hyoid, larynx, and pharynx have been proposed to elevate the hyolaryngeal complex: the suprahyoid and longitudinal pharyngeal muscles. Thought to assist both groups is the thyrohyoid, a muscle intrinsic to the hyolaryngeal complex. Intensity modulated radiation therapy guidelines designed to preserve structures important to swallowing currently exclude the suprahyoid and thyrohyoid muscles. This study used muscle functional magnetic resonance imaging (mfMRI) in normal healthy adults to determine whether both muscle groups are active in swallowing and to test therapeutic exercises thought to be specific to hyolaryngeal elevation. Methods and Materials: mfMRI data were acquired from 11 healthy subjects before and after normal swallowing and after swallowing exercise regimens (the Mendelsohn maneuver and effortful pitch glide). Whole-muscle transverse relaxation time (T2 signal, measured in milliseconds) profiles of 7 test muscles were used to evaluate the physiologic response of each muscle to each condition. Changes in effect size (using the Cohen d measure) of whole-muscle T2 profiles were used to determine which muscles underlie swallowing and swallowing exercises. Results: Post-swallowing effect size changes (where a d value of >0.20 indicates significant activity during swallowing) for the T2 signal profile of the thyrohyoid was a d value of 0.09; a d value of 0.40 for the mylohyoid, 0.80 for the geniohyoid, 0.04 for the anterior digastric, and 0.25 for the posterior digastric-stylohyoid in the suprahyoid muscle group; and d values of 0.47 for the palatopharyngeus and 0.28 for the stylopharyngeus muscles in the longitudinal pharyngeal muscle group. The Mendelsohn maneuver and effortful pitch glide swallowing exercises showed significant effect size changes for all muscles tested, except for the thyrohyoid. Conclusions

  6. Muscle functional MRI analysis of trunk muscle recruitment during extension exercises in asymptomatic individuals.

    PubMed

    De Ridder, E M D; Van Oosterwijck, J O; Vleeming, A; Vanderstraeten, G G; Danneels, L A

    2015-04-01

    The present study examined the activity levels of the thoracic and lumbar extensor muscles during different extension exercise modalities in healthy individuals. Therefore, 14 subjects performed four different types of extension exercises in prone position: dynamic trunk extension, dynamic-static trunk extension, dynamic leg extension, and dynamic-static leg extension. Pre- and post-exercise muscle functional magnetic resonance imaging scans from the latissimus dorsi, the thoracic and lumbar parts of the longissimus, iliocostalis, and multifidus were performed. Differences in water relaxation values (T2-relaxation) before and after exercise were calculated (T2-shift) as a measure of muscle activity and compared between extension modalities. Linear mixed-model analysis revealed higher lumbar extensor activity during trunk extension compared with leg extension (T2-shift of 5.01 ms and 3.55 ms, respectively) and during the dynamic-static exercise performance compared with the dynamic exercise performance (T2-shift of 4.77 ms and 3.55 ms, respectively). No significant differences in the thoracic extensor activity between the exercises could be demonstrated. During all extension exercises, the latissimus dorsi was the least activated compared with the paraspinal muscles. While all extension exercises are equivalent effective to train the thoracic muscles, trunk extension exercises performed in a dynamic-static way are the most appropriate to enhance lumbar muscle strength.

  7. Dynamic Relaxation of Financial Indices

    NASA Astrophysics Data System (ADS)

    Shen, J.; Zheng, B.; Lin, H.; Qiu, T.

    The dynamic relaxation of the German DAX both before and after a large price-change is investigated. The dynamic behavior is characterized by a power law. At the minutely time scale, the exponent p governing the power-law behavior takes a same value before and after the large price change, while at the daily time scale, it is different. Numerical simulations of an interacting EZ herding model are performed for comparison.

  8. Shear Relaxations of Confined Liquids.

    NASA Astrophysics Data System (ADS)

    Carson, George Amos, Jr.

    Ultrathin (<40 A) films of octamethylcyclotetrasiloxane (OMCTS), hexadecane, and dodecane were subjected to linear and non-linear oscillatory shear between flat plates. Shearing frequencies of 0.1 to 800 s^{-1} were applied at pressures from zero to 0.8 MPa using a surface rheometer only recently developed. In most cases the plates were atomically smooth mica surfaces; the role of surface interactions was examined by replacing these with alkyl chain monolayers. OMCTS and hexadecane were examined at a temperature about 5 Celsius degrees above their melting points and tended to solidify. Newtonian plateaus having enormous viscosities were observed at low shear rates. The onset of shear thinning implied relaxation times of about 0.1 s in the linear structure of the confined liquids. Large activation volumes (~80 nm ^3) suggested that shear involved large-scale collective motion. Dodecane was studied at a much higher temperature relative to its melting point and showed no signs of impending solidification though it exhibited well-defined regions of Newtonian response and power law shear thinning. When treated with molecular sieves before use, dodecane had relaxation times which were short (0.02 s) compared to hexadecane, but still exhibited large-scale collective motion. When treated with silica gel, an unexplained long -time relaxation (10 s) was seen in the Newtonian viscosity of dodecane. The relaxation time of the linear structure, 0.005 s was very small, and the storage modulus was unresolvable. The small activation volume (7nm^3) indicated a much lower level of collective motion. The activation volume remained small when dodecane was confined between tightly bound, low energy, alkyl monolayers. At low strains the storage and loss moduli became very large (>10^4 Pa), probably due to interactions with flaws in the monolayers. Dramatic signs of wall slip were observed at large strains even at low pressures.

  9. Spin relaxation in metallic ferromagnets

    NASA Astrophysics Data System (ADS)

    Berger, L.

    2011-02-01

    The Elliott theory of spin relaxation in metals and semiconductors is extended to metallic ferromagnets. Our treatment is based on the two-current model of Fert, Campbell, and Jaoul. The d→s electron-scattering process involved in spin relaxation is the inverse of the s→d process responsible for the anisotropic magnetoresistance (AMR). As a result, spin-relaxation rate 1/τsr and AMR Δρ are given by similar formulas, and are in a constant ratio if scattering is by solute atoms. Our treatment applies to nickel- and cobalt-based alloys which do not have spin-up 3d states at the Fermi level. This category includes many of the technologically important magnetic materials. And we show how to modify the theory to apply it to bcc iron-based alloys. We also treat the case of Permalloy Ni80Fe20 at finite temperature or in thin-film form, where several kinds of scatterers exist. Predicted values of 1/τsr and Δρ are plotted versus resistivity of the sample. These predictions are compared to values of 1/τsr and Δρ derived from ferromagnetic-resonance and AMR experiments in Permalloy.

  10. Arresting relaxation in Pickering Emulsions

    NASA Astrophysics Data System (ADS)

    Atherton, Tim; Burke, Chris

    2015-03-01

    Pickering emulsions consist of droplets of one fluid dispersed in a host fluid and stabilized by colloidal particles absorbed at the fluid-fluid interface. Everyday materials such as crude oil and food products like salad dressing are examples of these materials. Particles can stabilize non spherical droplet shapes in these emulsions through the following sequence: first, an isolated droplet is deformed, e.g. by an electric field, increasing the surface area above the equilibrium value; additional particles are then adsorbed to the interface reducing the surface tension. The droplet is then allowed to relax toward a sphere. If more particles were adsorbed than can be accommodated by the surface area of the spherical ground state, relaxation of the droplet is arrested at some non-spherical shape. Because the energetic cost of removing adsorbed colloids exceeds the interfacial driving force, these configurations can remain stable over long timescales. In this presentation, we present a computational study of the ordering present in anisotropic droplets produced through the mechanism of arrested relaxation and discuss the interplay between the geometry of the droplet, the dynamical process that produced it, and the structure of the defects observed.

  11. Effect of chronic knee osteoarthritis on flexion-relaxation phenomenon of the erector spinae in elderly females

    PubMed Central

    Jeong, Yeon-Gyu; Jeong, Yeon-Jae; Koo, Jung-Wan

    2016-01-01

    [Purpose] This study investigated the flexion-relaxation phenomenon of the erector spinae in elderly women with chronic knee osteoarthritis and determined whether the flexion-relaxation phenomenon can be used as a pain evaluation tool in such cases. [Subjects and Methods] Seventeen elderly females with chronic knee osteoarthritis and 13 healthy young females voluntarily participated in this study. They performed three postural positions in 15 s: trunk flexion, complete trunk flexion, and trunk extension, each for 5 s. While these positions were held, muscle activation of the thoracic and lumbar erector spinae were measured using surface electromyography. The flexion-relaxation rate was determined by dividing the values for trunk extension by those of complete trunk flexion and by dividing the values for trunk flexion by those of complete trunk flexion. [Results] According to our results, the flexion-relaxation phenomenon was different between healthy young and elderly females with chronic knee osteoarthritis. Specifically, there was a difference in the left thoracic erector spinae muscle, but not in the left and right lumbar erector spinae or right thoracic spinae muscle. [Conclusion] Our study demonstrated that the erector spinae muscle flexion-relaxation phenomenon can be used as a pain evaluation tool in elderly females with chronic knee osteoarthritis. PMID:27512244

  12. The pharmacology of a molluscan smooth muscle.

    PubMed

    TWAROG, B M

    1959-09-01

    The effects of a number of pharmacologically active substances on contraction and on membrane polarization of the anterior byssal retractor muscle of Mytilus edulis, L., have been studied. Tetramethylammonium bromide, trimethyl(4-oxopentyl)ammonium chloride and nicotine, like acetylcholine, produced depolarization and sustained contraction. Nicotine, on repeated application, lost acetylcholine-like activity and effectively blocked acetylcholine. In order of decreasing potency, methanthelinium, tubocurarine, benzoquinonium, tetraethylammonium, atropine, pentamethonium, and decamethonium blocked acetylcholine action. These agents did not show initial acetylcholine-like action and did not relax sustained contractions. Adrenaline, noradrenaline, tyramine, dibenamine, phentolamine, and lysergic acid diethylamide relaxed sustained contractions without reducing initial depolarization and tension development in response to acetylcholine or electrical stimuli. Adrenaline and noradrenaline often caused depolarization and contraction when first applied, and displayed relaxing action on subsequent application.

  13. Capillary muscle

    PubMed Central

    Cohen, Caroline; Mouterde, Timothée; Quéré, David; Clanet, Christophe

    2015-01-01

    The contraction of a muscle generates a force that decreases when increasing the contraction velocity. This “hyperbolic” force–velocity relationship has been known since the seminal work of A. V. Hill in 1938 [Hill AV (1938) Proc R Soc Lond B Biol Sci 126(843):136–195]. Hill’s heuristic equation is still used, and the sliding-filament theory for the sarcomere [Huxley H, Hanson J (1954) Nature 173(4412):973–976; Huxley AF, Niedergerke R (1954) Nature 173(4412):971–973] suggested how its different parameters can be related to the molecular origin of the force generator [Huxley AF (1957) Prog Biophys Biophys Chem 7:255–318; Deshcherevskiĭ VI (1968) Biofizika 13(5):928–935]. Here, we develop a capillary analog of the sarcomere obeying Hill’s equation and discuss its analogy with muscles. PMID:25944938

  14. Effects of Various Forms of Relaxation Training on Physiological and Self-Report Measures of Relaxation

    ERIC Educational Resources Information Center

    Reinking, Richard H.; Kohl, Marilyn L.

    1975-01-01

    Examines relative effectiveness of four types of relaxation training including Jacobson-Wolpe and electromyograph (EMG) feedback. Dependent measures are EMG recordings and self-report measures of relaxation. All groups reported increased relaxation, but EMG groups were superior in EMG measures of speed of learning and depth of relaxation.…

  15. Relation between Direct Observation of Relaxation and Self-Reported Mindfulness and Relaxation States

    ERIC Educational Resources Information Center

    Hites, Lacey S.; Lundervold, Duane A.

    2013-01-01

    Forty-four individuals, 18-47 (MN 21.8, SD 5.63) years of age, took part in a study examining the magnitude and direction of the relationship between self-report and direct observation measures of relaxation and mindfulness. The Behavioral Relaxation Scale (BRS), a valid direct observation measure of relaxation, was used to assess relaxed behavior…

  16. Sexual dimorphism of Murine Masticatory Muscle Function

    PubMed Central

    Daniels, David W.; Tian, Zuozhen; Barton, Elisabeth R.

    2008-01-01

    (1) Objective To determine if gender distinctions of force generating capacity existed in murine masticatory muscles. (2) Design In order to investigate the effect of sex on force generating capacity in this muscle group, an isolated muscle preparation was developed utilizing the murine anterior deep masseter. Age-matched male and female mice were utilized to assess function, muscle fiber type and size in this muscle. (3) Results Maximum isometric force production was not different between age-matched male and female mice. However, the rate of force generation and relaxation was slower in female masseter muscles. Assessment of fiber type distribution by immunohistochemistry revealed a threefold decrease in the proportion of myosin heavy chain 2b positive fibers in female masseters, which correlated with the differences in contraction kinetics. (4) Conclusions These results provide evidence that masticatory muscle strength in mice is not affected by sex, but there are significant distinctions in kinetics associated with force production between males and females. PMID:18028868

  17. Cardiovascular and airway relaxant activities of peony root extract.

    PubMed

    Ghayur, Muhammad N; Gilani, Anwarul H; Rasheed, Huma; Khan, Abdullah; Iqbal, Zafar; Ismail, Muhammad; Saeed, Sheikh A; Janssen, Luke J

    2008-11-01

    Paeonia emodi (peony) is a well known plant used medicinally to treat hypertension, palpitations, and asthma. Despite its popularity, there are few reports in the scientific literature examining its use in such conditions. We prepared a 70% ethanolic extract of peony root (Pe.Cr) and applied it to segments of guinea pig atria and trachea and rat aorta suspended separately in tissue baths. Activity against arachidonic acid (AA)-induced platelet aggregation was measured in human platelet-rich plasma. Airway relaxant effect was evaluated against acetylcholine (ACh)-induced airway contraction in mouse lung slices loaded with fluo-4. Pe.Cr (0.3-10 mg/mL) showed an atropine-resistant negative inotropic effect in atria. In rat aorta, an endothelium-independent vasodilatory effect (0.3-10 mg/mL) was seen in phenylephrine- and high-K+-induced contractions. Pe.Cr (0.01-1 mg/mL) also inhibited AA-induced platelet aggregation. In isolated trachea, Pe.Cr (0.3-10 mg/mL) relaxed carbachol- and histamine-induced contractions independently of beta-adrenergic receptors. In mouse lung slices, Pe.Cr (0.3-1 mg/mL) inhibited ACh-induced airway narrowing and oscillations of intracellular Ca2+ in airway smooth muscle cells. The results showed cardiosuppressant, vasodilatory, antiplatelet, and tracheal and airway relaxant activities of peony, providing potential justification for its medicinal use in different hyperactive cardiovascular and respiratory disorders.

  18. Dynamics of Glass Relaxation at Room Temperature

    NASA Astrophysics Data System (ADS)

    Welch, Roger C.; Smith, John R.; Potuzak, Marcel; Guo, Xiaoju; Bowden, Bradley F.; Kiczenski, T. J.; Allan, Douglas C.; King, Ellyn A.; Ellison, Adam J.; Mauro, John C.

    2013-06-01

    The problem of glass relaxation under ambient conditions has intrigued scientists and the general public for centuries, most notably in the legend of flowing cathedral glass windows. Here we report quantitative measurement of glass relaxation at room temperature. We find that Corning® Gorilla® Glass shows measurable and reproducible relaxation at room temperature. Remarkably, this relaxation follows a stretched exponential decay rather than simple exponential relaxation, and the value of the stretching exponent (β=3/7) follows a theoretical prediction made by Phillips for homogeneous glasses.

  19. Distinguishing spin relaxation mechanisms in organic semiconductors.

    PubMed

    Harmon, N J; Flatté, M E

    2013-04-26

    A theory is introduced for spin relaxation and spin diffusion of hopping carriers in a disordered system. For disorder described by a distribution of waiting times between hops (e.g., from multiple traps, site-energy disorder, and/or positional disorder) the dominant spin relaxation mechanisms in organic semiconductors (hyperfine, hopping-induced spin-orbit, and intrasite spin relaxation) each produce different characteristic spin relaxation and spin diffusion dependences on temperature. The resulting unique experimental signatures predicted by the theory for each mechanism in organic semiconductors provide a prescription for determining the dominant spin relaxation mechanism. PMID:23679752

  20. Relaxation effect of a novel Danshensu/tetramethylpyrazine derivative on rat mesenteric arteries.

    PubMed

    Li, Rachel Wai-Sum; Yang, C; Shan, Luchen; Zhang, Zaijun; Wang, Yuqiang; Kwan, Y W; Lee, Simon M Y; Hoi, Maggie P M; Chan, S W; Cheung, Alex Chun; Cheung, K H; Leung, George P H

    2015-08-15

    Danshen (Radix Salviae miltiorrhizae) and ChuanXiong (Ligusticum wallichii) are two traditional herbal medicines commonly used in China for the treatment of cardiovascular diseases. The active components in Danshen and ChuanXiong are Danshensu (DSS, (R)-3, 4-dihydroxyphenyllactic acid) and tetramethylpyrazine (TMP), respectively. In the present study, a new compound named ADTM, which is a conjugation of DSS and TMP, was synthesized and its effect on the contractility of rat mesenteric arteries was examined. The relaxation effect of ADTM on rat mesenteric arteries was studied using myography. The effects of ADTM on Ca(2+) channels were measured by Ca(2+) imaging and patch-clamp techniques. The results showed that ADTM caused a concentration-dependent relaxation of rat mesenteric arteries. This relaxation effect was not affected by the removal of endothelium or inhibitors of nitric oxide synthase, cyclooxygenase, guanylyl cyclase and adenylyl cyclase. Potassium channel blockers including tetraethylammonium, iberiotoxin, apamin, 4-aminopyridine, BaCl2 and glibenclamide also failed to inhibit the relaxation response to ADTM. ADTM inhibited CaCl2-induced contractions and reduced the Ca(2+) influx in isolated mesenteric arterial muscle cells. Our results suggest that ADTM may be a novel relaxing agent. Its mechanism of action involves the direct blockade of voltage-gated Ca(2+) channels in vascular smooth muscle cells, resulting in a decrease in Ca(2+) influx into the cells. PMID:25952729

  1. Effect of Rb+ on cromakalim-induced relaxation and ion fluxes in guinea pig trachea.

    PubMed

    Foster, K A; Arch, J R; Newson, P N; Shaw, D; Taylor, S G

    1992-11-01

    The effects of cromakalim, verapamil and salbutamol have been examined in guinea pig trachealis smooth muscle in both Krebs physiological salt solution and Krebs solution where K+ has been replaced by Rb+. Cromakalim-induced relaxation in the presence of Rb+ was reduced in extent and became transient, whilst the relaxation response to verapamil was enhanced and that to salbutamol unaffected. The transient relaxation occurring in Rb+ was blocked by quinidine and glibenclamide. The presence of extracellular Rb+ also prevented cromakalim-stimulated efflux of both 86Rb+ and 42/43K+. There was, however, no effect on cromakalim-stimulated 86Rb+ uptake. It is proposed that cromakalim is opening two populations of potassium channel in guinea pig tracheal smooth muscle, one of which is susceptible to blockade by Rb+ and one of which is not. The latter channel appears to play the dominant role in cromakalim-stimulated uptake, and is responsible for the transient relaxation response in the presence of rubidium, whilst the former is responsible for the maintained relaxation. PMID:1468491

  2. Effects of hydrogen sulphide in smooth muscle.

    PubMed

    Dunn, William R; Alexander, Stephen P H; Ralevic, Vera; Roberts, Richard E

    2016-02-01

    In recent years, it has become apparent that the gaseous pollutant, hydrogen sulphide (H2S) can be synthesised in the body and has a multitude of biological actions. This review summarizes some of the actions of this 'gasotransmitter' in influencing the smooth muscle that is responsible for controlling muscular activity of hollow organs. In the vasculature, while H2S can cause vasoconstriction by complex interactions with other biologically important gases, such as nitric oxide, the prevailing response is vasorelaxation. While most vasorelaxation responses occur by a direct action of H2S on smooth muscle cells, it has recently been proposed to be an endothelium-derived hyperpolarizing factor. H2S also promotes relaxation in other smooth muscle preparations including bronchioles, the bladder, gastrointestinal tract and myometrium, opening up the opportunity of exploiting the pharmacology of H2S in the treatment of conditions where smooth muscle tone is excessive. The original concept, that H2S caused smooth muscle relaxation by activating ATP-sensitive K(+) channels, has been supplemented with observations that H2S can also modify the activity of other potassium channels, intracellular pH, phosphodiesterase activity and transient receptor potential channels on sensory nerves. While the enzymes responsible for generating endogenous H2S are widely expressed in smooth muscle preparations, it is much less clear what the physiological role of H2S is in determining smooth muscle contractility. Clarification of this requires the development of potent and selective inhibitors of H2S-generating enzymes.

  3. Unusual fast secondary relaxation in metallic glass

    PubMed Central

    Wang, Q.; Zhang, S.T.; Yang, Y.; Dong, Y.D.; Liu, C.T.; Lu, J.

    2015-01-01

    The relaxation spectrum of glassy solids has long been used to probe their dynamic structural features and the fundamental deformation mechanisms. Structurally complicated glasses, such as molecular glasses, often exhibit multiple relaxation processes. By comparison, metallic glasses have a simple atomic structure with dense atomic packing, and their relaxation spectra were commonly found to be simpler than those of molecular glasses. Here we show the compelling evidence obtained across a wide range of temperatures and frequencies from a La-based metallic glass, which clearly shows two peaks of secondary relaxations (fast versus slow) in addition to the primary relaxation peak. The discovery of the unusual fast secondary relaxation unveils the complicated relaxation dynamics in metallic glasses and, more importantly, provides us the clues which help decode the structural features serving as the ‘trigger' of inelasticity on mechanical agitations. PMID:26204999

  4. Biaxial stress relaxation in glassy polymers - Polymethylmethacrylate.

    NASA Technical Reports Server (NTRS)

    Sternstein, S. S.; Ho, T. C.

    1972-01-01

    Biaxial stress relaxation studies were performed on glassy polymethylmethacrylate in combined torsion-tension strain fields using a specially designed apparatus with exceptionally high stiffness and low cross talk between the torsional and tensile load measuring transducers. It was found that at low strain levels uniaxial tension relaxation is slower than pure torsion relaxation; tensile-component relaxation rates are unaffected by the level of torsional strain; torsional-component relaxation rates decrease as tensile strain is increased; uniaxial tension relaxation rates approach the pure torsion rates at higher strains (about 2%). A phenomenological treatment is presented which shows that relaxation rates can be coupled to the strain fields in which they are observed and yet be consistent with the concepts of linear viscoelasticity and the Boltzmann superposition integral.

  5. Upper esophageal sphincter mechanical states analysis: a novel methodology to describe UES relaxation and opening

    PubMed Central

    Omari, Taher I.; Wiklendt, Lukasz; Dinning, Philip; Costa, Marcello; Rommel, Nathalie; Cock, Charles

    2015-01-01

    The swallowing muscles that influence upper esophageal sphincter (UES) opening are centrally controlled and modulated by sensory information. Activation of neural inputs to these muscles, the intrinsic cricopharyngeus muscle and extrinsic suprahyoid muscles, results in their contraction or relaxation, which changes the diameter of the lumen, alters the intraluminal pressure and ultimately inhibits or promotes flow of content. This relationship that exists between the changes in diameter and concurrent changes in intraluminal pressure has been used previously to calculate the “mechanical states” of the muscle; that is when the muscles are passively or actively, relaxing or contracting. Diseases that alter the neural pathways to these muscles can result in weakening the muscle contractility and/or decreasing the muscle compliance, all of which can cause dysphagia. Detecting these changes in the mechanical state of the muscle is difficult and as the current interpretation of UES motility is based largely upon pressure measurement (manometry), subtle changes in the muscle function during swallow can be missed. We hypothesized that quantification of mechanical states of the UES and the pressure-diameter properties that define them, would allow objective characterization of the mechanisms that govern the timing and extent of UES opening during swallowing. To achieve this we initially analyzed swallows captured by simultaneous videofluoroscopy and UES pressure with impedance recording. From these data we demonstrated that intraluminal impedance measurements could be used to determine changes in the internal diameter of the lumen when compared to videofluoroscopy. Then using a database of pressure-impedance studies, recorded from young and aged healthy controls and patients with motor neuron disease, we calculated the UES mechanical states in relation to a standardized swallowed bolus volume, normal aging and dysphagia pathology. Our results indicated that eight

  6. Production of endothelium-dependent relaxation responses by saphenous vein grafts in the canine arterial circulation.

    PubMed

    el Khatib, H; Lupinetti, F M; Sanofsky, S J; Behrendt, D M

    1991-09-01

    To determine if venous endothelium can acquire the ability to elicit endothelium-dependent relaxation responses, five dogs underwent femoral artery bypass with autogenous saphenous vein. The veins were harvested 15 to 17 months later. Endothelium-dependent relaxation was determined by measuring tension of deendothelialized coronary arteries mounted on a tensiometer and superfused with the effluent of the vein grafts. These grafts were perfused with acetylcholine and calcium ionophore A23187, which cause case vascular smooth muscle relaxation by means of endothelium-dependent relaxing factor production. Control arteries and veins were obtained from other dogs for comparison. In response to acetylcholine from 10(-9) to 10(-4) mol/L, the final cumulative relaxation produced in the detector coronary artery (mean +/- SD) was 64.2% +/- 25.7% by the control arteries, 14.2% +/- 5.5% by the vein bypass graft, and 5.3% +/- 5.6% by the control veins. In response to A23187 from 10(-8) to 10(-4) mol/L, the final cumulative relaxation was 66.2% +/- 19.0% by the control arteries, 30.6% +/- 8.9% by the vein bypass grafts, and 5.3% +/- 5.6% by the control veins. The differences were significant between the vein bypass grafts and the control arteries (p less than 0.04 for acetylcholine; p less than 0.04 for A23187) and the control veins (p less than 0.03 for acetylcholine; p less than 0.02 for A23187). Perfusion of saphenous veins used as chronic arterial bypass grafts with either acetylcholine or A23187 produced detector vessel relaxation, consistent with endothelium-dependent relaxing factor production. The magnitude of the relaxation response did not approach that from perfusion of control arteries. PMID:1887376

  7. Characteristics and frequency of transient relaxations of the lower esophageal sphincter in patients with reflux esophagitis.

    PubMed

    Mittal, R K; McCallum, R W

    1988-09-01

    Electromyogram of the submental muscles, esophageal manometry, and pH studies were simultaneously performed in an unselected group of 12 patients with subjective and objective evidence of gastroesophageal reflux (GER) disease to determine the frequency of transient relaxation of the lower esophageal sphincter (LES) and mechanisms of GER. Findings from these patients were compared with data from 10 asymptomatic healthy volunteers. Recordings were obtained for 1 h in the fasting state and 3 h after a standard 850-kcal meal. Transient relaxation of the LES was the only mechanism of acid reflux in normal subjects and accounted for 73.0% of the episodes of acid reflux in patients with GER disease. In both normal subjects and patients with GER, a large number of transient relaxations were associated at their onset with an attenuated submental EMG complex, a small pharyngeal contraction, and an esophageal contraction. The incidences of these associated events were similar in the two study populations. The frequency of transient relaxation of the LES in patients with GER was identical to that of controls. The frequency did not differ even in 9 patients with GER disease who had endoscopic esophagitis. Thirty-six percent of transient relaxations in the normal subjects were accompanied by pH evidence of reflux, but in the GER patients with endoscopic esophagitis 65% of the transient LES relaxations resulted in a reflux event. Acid reflux at the moment of deep inspiration was the second most common mechanism of GER in our patients. Four patients who demonstrated this mechanism had hiatal hernias and more severe esophagitis than the rest of the group. Our findings confirm that transient relaxation of the LES is the major mechanism of GER in patients with reflux esophagitis. However, the similar frequency of this relaxation in GER patients and in healthy asymptomatic subjects suggests that factors other than transient LES relaxation play an important role in the pathogenesis of

  8. Stem Cell Antigen-1 in Skeletal Muscle Function

    PubMed Central

    Bernstein, Harold S.; Samad, Tahmina; Cholsiripunlert, Sompob; Khalifian, Saami; Gong, Wenhui; Ritner, Carissa; Aurigui, Julian; Ling, Vivian; Wilschut, Karlijn J.; Bennett, Stephen; Hoffman, Julien; Oishi, Peter

    2013-01-01

    Stem cell antigen-1 (Sca-1) is a member of the Ly-6 multigene family encoding highly homologous, glycosyl-phosphatidylinositol-anchored membrane proteins. Sca-1 is expressed on muscle-derived stem cells and myogenic precursors recruited to sites of muscle injury. We previously reported that inhibition of Sca-1 expression stimulated myoblast proliferation in vitro and regulated the tempo of muscle repair in vivo. Despite its function in myoblast expansion during muscle repair, a role for Sca-1 in normal, post-natal muscle has not been thoroughly investigated. We systematically compared Sca-1-/- (KO) and Sca-1+/+ (WT) mice and hindlimb muscles to elucidate the tissue, contractile, and functional effects of Sca-1 in young and aging animals. Comparison of muscle volume, fibrosis, myofiber cross-sectional area, and Pax7+ myoblast number showed little differences between ages or genotypes. Exercise protocols, however, demonstrated decreased stamina in KO versus WT mice, with young KO mice achieving results similar to aging WT animals. In addition, KO mice did not improve with practice, while WT animals demonstrated conditioning over time. Surprisingly, myomechanical analysis of isolated muscles showed that KO young muscle generated more force and experienced less fatigue. However, KO muscle also demonstrated incomplete relaxation with fatigue. These findings suggest that Sca-1 is necessary for muscle conditioning with exercise, and that deficient conditioning in Sca-1 KO animals becomes more pronounced with age. PMID:24042315

  9. A Simple, Inexpensive Model to Demonstrate How Contraction of GI Longitudinal Smooth Muscle Promotes Propulsion

    ERIC Educational Resources Information Center

    Lujan, Heidi L.; DiCarlo, Stephen E.

    2015-01-01

    Peristalis is a propulsive activity that involves both circular and longitudinal muscle layers of the esophagus, distal stomach, and small and large intestines. During peristalsis, the circular smooth muscle contracts behind (on the orad side) the bolus and relaxes in front (on the aborad side) of the bolus. At the same time, the longitudinal…

  10. Relaxation damping in oscillating contacts.

    PubMed

    Popov, M; Popov, V L; Pohrt, R

    2015-01-01

    If a contact of two purely elastic bodies with no sliding (infinite coefficient of friction) is subjected to superimposed oscillations in the normal and tangential directions, then a specific damping appears, that is not dependent on friction or dissipation in the material. We call this effect "relaxation damping". The rate of energy dissipation due to relaxation damping is calculated in a closed analytic form for arbitrary axially-symmetric contacts. In the case of equal frequency of normal and tangential oscillations, the dissipated energy per cycle is proportional to the square of the amplitude of tangential oscillation and to the absolute value of the amplitude of normal oscillation, and is dependent on the phase shift between both oscillations. In the case of low frequency tangential oscillations with superimposed high frequency normal oscillations, the dissipation is proportional to the ratio of the frequencies. Generalization of the results for macroscopically planar, randomly rough surfaces as well as for the case of finite friction is discussed. PMID:26549011

  11. Violent relaxation of ellipsoidal clouds

    NASA Astrophysics Data System (ADS)

    Benhaiem, David; Sylos Labini, Francesco

    2015-04-01

    An isolated, initially cold and ellipsoidal cloud of self-gravitating particles represents a relatively simple system in which to study the effects of deviations from spherical symmetry in the mechanism of violent relaxation. Initial deviations from spherical symmetry are shown to play a dynamical role that is equivalent to that of density fluctuations in the case of an initially spherical cloud. Indeed, these deviations control the amount of particle-energy change and thus determine the properties of the final energy distribution, particularly the appearance of two species of particles: bound and free. Ejection of mass and energy from the system, together with the formation of a density profile decaying as ρ(r) ˜ r-4 and a Keplerian radial velocity dispersion profile, are prominent features similar to those observed after the violent relaxation of spherical clouds. In addition, we find that ejected particles are characterized by highly non-spherical shapes, the features of which can be traced in the initial deviations from spherical symmetry that are amplified during the dynamical evolution: particles can indeed form anisotropic configurations, like bars and/or discs, even though the initial cloud was very close to spherical.

  12. Relaxation damping in oscillating contacts

    PubMed Central

    Popov, M.; Popov, V.L.; Pohrt, R.

    2015-01-01

    If a contact of two purely elastic bodies with no sliding (infinite coefficient of friction) is subjected to superimposed oscillations in the normal and tangential directions, then a specific damping appears, that is not dependent on friction or dissipation in the material. We call this effect “relaxation damping”. The rate of energy dissipation due to relaxation damping is calculated in a closed analytic form for arbitrary axially-symmetric contacts. In the case of equal frequency of normal and tangential oscillations, the dissipated energy per cycle is proportional to the square of the amplitude of tangential oscillation and to the absolute value of the amplitude of normal oscillation, and is dependent on the phase shift between both oscillations. In the case of low frequency tangential oscillations with superimposed high frequency normal oscillations, the dissipation is proportional to the ratio of the frequencies. Generalization of the results for macroscopically planar, randomly rough surfaces as well as for the case of finite friction is discussed. PMID:26549011

  13. Channelopathies of skeletal muscle excitability

    PubMed Central

    Cannon, Stephen C.

    2016-01-01

    Familial disorders of skeletal muscle excitability were initially described early in the last century and are now known to be caused by mutations of voltage-gated ion channels. The clinical manifestations are often striking, with an inability to relax after voluntary contraction (myotonia) or transient attacks of severe weakness (periodic paralysis). An essential feature of these disorders is fluctuation of symptoms that are strongly impacted by environmental triggers such as exercise, temperature, or serum K+ levels. These phenomena have intrigued physiologists for decades, and in the past 25 years the molecular lesions underlying these disorders have been identified and mechanistic studies are providing insights for therapeutic strategies of disease modification. These familial disorders of muscle fiber excitability are “channelopathies” caused by mutations of a chloride channel (ClC-1), sodium channel (NaV1.4), calcium channel (CaV1.1) and several potassium channels (Kir2.1, Kir2.6, Kir3.4). This review provides a synthesis of the mechanistic connections between functional defects of mutant ion channels, their impact on muscle excitability, how these changes cause clinical phenotypes, and approaches toward therapeutics. PMID:25880512

  14. Airway smooth muscle in the pathophysiology and treatment of asthma

    PubMed Central

    Solway, Julian

    2013-01-01

    Airway smooth muscle (ASM) plays an integral part in the pathophysiology of asthma. It is responsible for acute bronchoconstriction, which is potentiated by constrictor hyperresponsiveness, impaired relaxation and length adaptation. ASM also contributes to airway remodeling and inflammation in asthma. In light of this, ASM is an important target in the treatment of asthma. PMID:23305987

  15. Involvement of nitric oxide pathway in the PAF-induced relaxation of rat thoracic aorta.

    PubMed Central

    Moritoki, H.; Hisayama, T.; Takeuchi, S.; Miyano, H.; Kondoh, W.

    1992-01-01

    1. The mechanism of the vasorelaxant effect of platelet activating factor (PAF) on rat thoracic aorta and the effect of aging on the PAF-induced relaxation were investigated. 2. PAF at concentrations causing relaxation induced marked increases in guanosine 3':5'-cyclic monophosphate (cyclic GMP) production, but did not induce an increase in adenosine 3':5'-cyclic monophosphate (cyclic AMP). 3. Removal of the endothelium by mechanical rubbing, and treatment with the PAF antagonists CV-3988, CV-6209 and FR-900452, the nitric oxide biosynthesis inhibitor, NG-nitro L-arginine, the radical scavenger, haemoglobin, and the soluble guanylate cyclase inhibitor, methylene blue, inhibited PAF-induced relaxation and abolished or attenuated PAF-stimulated cyclic GMP production. 4. The relaxation was greatest in arteries from rats aged 4 weeks. With an increase in age, the response of the arteries to PAF was attenuated. 5. Endothelium-dependent cyclic GMP production also decreased with increase in age of the rats. 6. These results suggest that PAF stimulates production of nitric oxide from L-arginine by acting on the PAF receptors in the endothelium, which in turn stimulates soluble guanylate cyclase in the smooth muscle cells, and so increases production of cyclic GMP, thus relaxing the arteries. Age-associated decrease in PAF-induced relaxation may result from a reduction of cyclic GMP formation. PMID:1358382

  16. Histamine H1-receptors mediate endothelium-dependent relaxation of rat isolated pulmonary arteries.

    PubMed

    Szarek, J L; Bailly, D A; Stewart, N L; Gruetter, C A

    1992-01-01

    Histamine has been reported to cause endothelium-dependent relaxation of vascular smooth muscle and vasodilation. This study was undertaken to examine the inhibitory effects of histamine on cylindrical segments of extrapulmonary arteries isolated from male Sprague Dawley rats. In arterial segments precontracted with phenylephrine (10 microM), histamine (0.1-100 microM) elicited concentration-dependent relaxation responses. Removal of the endothelium or pretreatment with methylene blue (10 microM) abolished relaxation responses to low concentrations of histamine and markedly inhibited those caused by histamine at concentrations greater than 1 microM. Incubation of endothelium-intact arterial segments with pyrilamine (1 microM) caused a significant rightward shift of the histamine concentration-response curves. Treatment of the segments with cimetidine (100 microM) or indomethacin (10 microM) only minimally antagonized histamine-induced relaxation in arteries with endothelium. Residual relaxation responses observed in arteries stripped of endothelium were unaffected by pretreatment with cimetidine, indomethacin, or pyrilamine. The results suggest that the inhibitory effect of histamine in rat pulmonary arteries is mediated predominantly by activation of H1-receptors on the endothelium and the subsequent release of endothelium-derived relaxing factor(s).

  17. Carbon-13 and proton magnetic resonance of mouse muscle.

    PubMed Central

    Fung, B M

    1977-01-01

    It is shown that roughly 4 mmol carbon atoms/g mouse muscle can give rise to a "high resolution" 13C NMR spectrum. From the 13C spectrum, it is estimated that the protons from mobile organic molecules or molecular segments amount to 6-8%of total nonrigid protons (organic plus water) in muscle. Their spin-spin relaxation times (T2) are of the order of 0.4-2 ms. At 37 degrees C, the proton spin-echo decay of mouse muscle changes rapidly with time after death, while that of mouse brain does not. PMID:890043

  18. Muscle activity pattern dependent pain development and alleviation.

    PubMed

    Sjøgaard, Gisela; Søgaard, Karen

    2014-12-01

    Muscle activity is for decades considered to provide health benefits irrespectively of the muscle activity pattern performed and whether it is during e.g. sports, transportation, or occupational work tasks. Accordingly, the international recommendations for public health-promoting physical activity do not distinguish between occupational and leisure time physical activity. However, in this body of literature, attention has not been paid to the extensive documentation on occupational physical activity imposing a risk of impairment of health - in particular musculoskeletal health in terms of muscle pain. Focusing on muscle activity patterns and musculoskeletal health it is pertinent to elucidate the more specific aspects regarding exposure profiles and body regional pain. Static sustained muscle contraction for prolonged periods often occurs in the neck/shoulder area during occupational tasks and may underlie muscle pain development in spite of rather low relative muscle load. Causal mechanisms include a stereotype recruitment of low threshold motor units (activating type 1 muscle fibers) characterized by a lack of temporal as well as spatial variation in recruitment. In contrast during physical activities at leisure and sport the motor recruitment patterns are more dynamic including regularly relatively high muscle forces - also activating type 2 muscles fibers - as well as periods of full relaxation even of the type 1 muscle fibers. Such activity is unrelated to muscle pain development if adequate recovery is granted. However, delayed muscle soreness may develop following intensive eccentric muscle activity (e.g. down-hill skiing) with peak pain levels in thigh muscles 1-2 days after the exercise bout and a total recovery within 1 week. This acute pain profile is in contrast to the chronic muscle pain profile related to repetitive monotonous work tasks. The painful muscles show adverse functional, morphological, hormonal, as well as metabolic characteristics. Of

  19. Biofeedback and meditation: effects on muscle tension and locus of control.

    PubMed

    Zaichkowsky, L D; Kamen, R

    1978-06-01

    A total of 48 subjects participated in a relaxation experiment to determine whether frontalis muscle EMG biofeedback, Transcendental Meditation, and meditation (Benson technique) produced decreased muscle tension and concomitant changes in locus of control. All three treatments resulted in significant decreases in frontalis muscle tension when compared to a control. Concomitant changes towards an internal locus of control occurred only in the subjects given biofeedback.

  20. Muscle strain treatment

    MedlinePlus

    Treatment - muscle strain ... Question: How do you treat a muscle strain ? Answer: Rest the strained muscle and apply ice for the first few days after the injury. Anti-inflammatory medicines or acetaminophen ( ...

  1. Eye muscle repair - discharge

    MedlinePlus

    ... page: //medlineplus.gov/ency/patientinstructions/000111.htm Eye muscle repair - discharge To use the sharing features on ... enable JavaScript. You or your child had eye muscle repair surgery to correct eye muscle problems that ...

  2. How to make rapid eye movements "rapid": the role of growth factors for muscle contractile properties.

    PubMed

    Li, Tian; Feng, Cheng-Yuan; von Bartheld, Christopher S

    2011-03-01

    Different muscle functions require different muscle contraction properties. Saccade-generating extraocular muscles (EOMs) are the fastest muscles in the human body, significantly faster than limb skeletal muscles. Muscle contraction speed is subjected to plasticity, i.e., contraction speed can be adjusted to serve different demands, but little is known about the molecular mechanisms that control contraction speed. Therefore, we examined whether myogenic growth factors modulate contractile properties, including twitch contraction time (onset of force to peak force) and half relaxation time (peak force to half relaxation). We examined effects of three muscle-derived growth factors: insulin-like growth factor 1 (IGF1), cardiotrophin-1 (CT1), and glial cell line-derived neurotrophic factor (GDNF). In gain-of-function experiments, CT1 or GDNF injected into the orbit shortened contraction time, and IGF1 or CT1 shortened half relaxation time. In loss-of-function experiments with binding proteins or neutralizing antibodies, elimination of endogenous IGFs prolonged both contraction time and half relaxation time, while eliminating endogenous GDNF prolonged contraction time, with no effect on half relaxation time. Elimination of endogenous IGFs or CT1, but not GDNF, significantly reduced contractile force. Thus, IGF1, CT1, and GDNF have partially overlapping but not identical effects on muscle contractile properties. Expression of these three growth factors was measured in chicken and/or rat EOMs by real-time PCR. The "fast" EOMs express significantly more message encoding these growth factors and their receptors than skeletal muscles with slower contractile properties. Taken together, these findings indicate that EOM contractile kinetics is regulated by the amount of myogenic growth factors available to the muscle.

  3. A numerical study of vector resonant relaxation

    NASA Astrophysics Data System (ADS)

    Kocsis, Bence; Tremaine, Scott

    2015-04-01

    Stars bound to a supermassive black hole interact gravitationally. Persistent torques acting between stellar orbits lead to a rapid resonant relaxation of the orbital orientation vectors (`vector' resonant relaxation) and slower relaxation of the eccentricities (`scalar' resonant relaxation), both at rates much faster than two-body or non-resonant relaxation. We describe a new parallel symplectic integrator, N-RING, which follows the dynamical evolution of a cluster of N stars through vector resonant relaxation, by averaging the pairwise interactions over the orbital period and periapsis precession time-scale. We use N-RING to follow the evolution of clusters containing over 104 stars for tens of relaxation times. Among other results, we find that the evolution is dominated by torques among stars with radially overlapping orbits, and that resonant relaxation can be modelled as a random walk of the orbit normals on the sphere, with angular step size ranging from ˜0.5-1 rad. The relaxation rate in a cluster with a fixed number of stars is proportional to the root mean square (rms) mass of the stars. The rms torque generated by the cluster stars is reduced below the torque between Kepler orbits due to apsidal precession and declines weakly with the eccentricity of the perturbed orbit. However, since the angular momentum of an orbit also decreases with eccentricity, the relaxation rate is approximately eccentricity-independent for e ≲ 0.7 and grows rapidly with eccentricity for e ≳ 0.8. We quantify the relaxation using the autocorrelation function of the spherical multipole moments; this decays exponentially and the e-folding time may be identified with the vector resonant relaxation time-scale.

  4. Dielectric relaxation in a protein matrix

    SciTech Connect

    Pierce, D.W.; Boxer, S.G.

    1992-06-25

    The dielectric relaxation of a sperm whale ApoMb-DANCA complex is measured by the fluorescence dynamic Stokes shift method. Emission energy increases with decreasing temperature, suggesting that the relaxation activation energies of the rate-limiting motions either depend on the conformational substrate or different types of protein motions with different frequencies participate in the reaction. Experimental data suggest that there may be relaxations on a scale of <100 ps. 61 refs., 7 figs., 2 tabs.

  5. Temperature relaxation in dense plasma mixtures

    NASA Astrophysics Data System (ADS)

    Faussurier, Gérald; Blancard, Christophe

    2016-09-01

    We present a model to calculate temperature-relaxation rates in dense plasma mixtures. The electron-ion relaxation rates are calculated using an average-atom model and the ion-ion relaxation rates by the Landau-Spitzer approach. This method allows the study of the temperature relaxation in many-temperature electron-ion and ion-ion systems such as those encountered in inertial confinement fusion simulations. It is of interest for general nonequilibrium thermodynamics dealing with energy flows between various systems and should find broad use in present high energy density experiments.

  6. Delayed Over-Relaxation for iterative methods

    NASA Astrophysics Data System (ADS)

    Antuono, M.; Colicchio, G.

    2016-09-01

    We propose a variant of the relaxation step used in the most widespread iterative methods (e.g. Jacobi Over-Relaxation, Successive Over-Relaxation) which combines the iteration at the predicted step, namely (n + 1), with the iteration at step (n - 1). We provide a theoretical analysis of the proposed algorithm by applying such a delayed relaxation step to a generic (convergent) iterative scheme. We prove that, under proper assumptions, this significantly improves the convergence rate of the initial iterative method. As a relevant example, we apply the proposed algorithm to the solution of the Poisson equation, highlighting the advantages in comparison with classical iterative models.

  7. Lavender fragrance cleansing gel effects on relaxation.

    PubMed

    Field, Tiffany; Diego, Miguel; Hernandez-Reif, Maria; Cisneros, Wendy; Feijo, Larissa; Vera, Yanexy; Gil, Karla; Grina, Diana; Claire He, Qing

    2005-02-01

    Alertness, mood, and math computations were assessed in 11 healthy adults who sniffed a cosmetic cleansing gel with lavender floral blend aroma, developed to be relaxing using Mood Mapping. EEG patterns and heart rate were also recorded before, during, and after the aroma session. The lavender fragrance blend had a significant transient effect of improving mood, making people feel more relaxed, and performing the math computation faster. The self-report and physiological data are consistent with relaxation profiles during other sensory stimuli such as massage and music, as reported in the literature. The data suggest that a specific cosmetic fragrance can have a significant role in enhancing relaxation.

  8. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    SciTech Connect

    Xu, Yuan Cardell, Lars-Olaf

    2014-02-15

    some patients with asthma. - Highlights: • Nicotine from smoking impaired epithelial COX-2-mediated airway relaxation. • Nicotine's effects were at least partially mediated by α7-nicotinic receptors. • Kinin-receptor-mediated airway relaxations are mediated by EP2 receptors in mice. • Nicotine reduced mPGES-1 mRNA and protein expressions in airway smooth muscle. • Dexamethasone could not restore nicotine-impaired airway relaxations.

  9. Involvement of Potassium Channels and Calcium-Independent Mechanisms in Hydrogen Sulfide-Induced Relaxation of Rat Mesenteric Small Arteries.

    PubMed

    Hedegaard, Elise R; Gouliaev, Anja; Winther, Anna K; Arcanjo, Daniel D R; Aalling, Mathilde; Renaltan, Nirthika S; Wood, Mark E; Whiteman, Matthew; Skovgaard, Nini; Simonsen, Ulf

    2016-01-01

    Endogenous hydrogen sulfide (H2S) is involved in the regulation of vascular tone. We hypothesized that the lowering of calcium and opening of potassium (K) channels as well as calcium-independent mechanisms are involved in H2S-induced relaxation in rat mesenteric small arteries. Amperometric recordings revealed that free [H2S] after addition to closed tubes of sodium hydrosulfide (NaHS), Na2S, and GYY4137 [P-(4-methoxyphenyl)-P-4-morpholinyl-phosphinodithioic acid] were, respectively, 14%, 17%, and 1% of added amount. The compounds caused equipotent relaxations in isometric myographs, but based on the measured free [H2S], GYY4137 caused more relaxation in relation to released free H2S than NaHS and Na2S in rat mesenteric small arteries. Simultaneous measurements of [H2S] and tension showed that 15 µM of free H2S caused 61% relaxation in superior mesenteric arteries. Simultaneous measurements of smooth muscle calcium and tension revealed that NaHS lowered calcium and caused relaxation of NE-contracted arteries, while high extracellular potassium reduced NaHS relaxation without corresponding calcium changes. In NE-contracted arteries, NaHS (1 mM) lowered the phosphorylation of myosin light chain, while phosphorylation of myosin phosphatase target subunit 1 remained unchanged. Protein kinase A and G, inhibitors of guanylate cyclase, failed to reduce NaHS relaxation, whereas blockers of voltage-gated KV7 channels inhibited NaHS relaxation, and blockers of mitochondrial complex I and III abolished NaHS relaxation. Our findings suggest that low micromolar concentrations of free H2S open K channels followed by lowering of smooth muscle calcium, and by another mechanism involving mitochondrial complex I and III leads to uncoupling of force, and hence vasodilation. PMID:26493746

  10. Involvement of Potassium Channels and Calcium-Independent Mechanisms in Hydrogen Sulfide-Induced Relaxation of Rat Mesenteric Small Arteries.

    PubMed

    Hedegaard, Elise R; Gouliaev, Anja; Winther, Anna K; Arcanjo, Daniel D R; Aalling, Mathilde; Renaltan, Nirthika S; Wood, Mark E; Whiteman, Matthew; Skovgaard, Nini; Simonsen, Ulf

    2016-01-01

    Endogenous hydrogen sulfide (H2S) is involved in the regulation of vascular tone. We hypothesized that the lowering of calcium and opening of potassium (K) channels as well as calcium-independent mechanisms are involved in H2S-induced relaxation in rat mesenteric small arteries. Amperometric recordings revealed that free [H2S] after addition to closed tubes of sodium hydrosulfide (NaHS), Na2S, and GYY4137 [P-(4-methoxyphenyl)-P-4-morpholinyl-phosphinodithioic acid] were, respectively, 14%, 17%, and 1% of added amount. The compounds caused equipotent relaxations in isometric myographs, but based on the measured free [H2S], GYY4137 caused more relaxation in relation to released free H2S than NaHS and Na2S in rat mesenteric small arteries. Simultaneous measurements of [H2S] and tension showed that 15 µM of free H2S caused 61% relaxation in superior mesenteric arteries. Simultaneous measurements of smooth muscle calcium and tension revealed that NaHS lowered calcium and caused relaxation of NE-contracted arteries, while high extracellular potassium reduced NaHS relaxation without corresponding calcium changes. In NE-contracted arteries, NaHS (1 mM) lowered the phosphorylation of myosin light chain, while phosphorylation of myosin phosphatase target subunit 1 remained unchanged. Protein kinase A and G, inhibitors of guanylate cyclase, failed to reduce NaHS relaxation, whereas blockers of voltage-gated KV7 channels inhibited NaHS relaxation, and blockers of mitochondrial complex I and III abolished NaHS relaxation. Our findings suggest that low micromolar concentrations of free H2S open K channels followed by lowering of smooth muscle calcium, and by another mechanism involving mitochondrial complex I and III leads to uncoupling of force, and hence vasodilation.

  11. Isometric squeeze relaxation (progressive relaxation) vs meditation: absorption and focusing as predictors of state effects.

    PubMed

    Weinstein, M; Smith, J C

    1992-12-01

    We taught isometric squeeze relaxation (a variant of progressive relaxation) or meditation to 52 anxious subjects (16 men, 36 women). For meditation, pretreatment high absorption correlated with reductions in state cognitive and somatic anxiety as well as increments in state focusing. For isometric squeeze relaxation, pretreatment low state focusing correlated with reductions in somatic anxiety and increments in focusing. Results suggest that isometric squeeze relaxation (and progressive relaxation) may be more appropriate for individuals who have difficulty focusing, and meditation for those who already possess well-developed relaxation skills at a trait level. The results appear more consistent with Smith's cognitive-behavioral model of relaxation than with Benson's relaxation response or Davidson and Schwartz's specific effects models.

  12. Zen meditation and ABC relaxation theory: an exploration of relaxation states, beliefs, dispositions, and motivations.

    PubMed

    Gillani, N B; Smith, J C

    2001-06-01

    This study is an attempt to rigorously map the psychological effects of Zen meditation among experienced practitioners. Fifty-nine Zen meditators with at least six years of experience practiced an hour of traditional Zazen seated meditation. A control group of 24 college students spent 60 min silently reading popular magazines. Before relaxation, all participants took the Smith Relaxation States Inventory (SRSI), the Smith Relaxation Dispositions/Motivations Inventory (SRD/MI), and the Smith Relaxation Beliefs Inventory (SRBI). After practice, participants again took the SRSI. Analyses revealed that meditators are less likely to believe in God, more likely to believe in Inner Wisdom, and more likely to display the relaxation dispositions Mental Quiet, Mental Relaxation, and Timeless/Boundless/Infinite. Pre- and postsession analyses revealed that meditators showed greater increments in the relaxation states Mental Quiet, Love and Thankfulness, and Prayerfulness, as well as reduced Worry. Results support Smith's ABC Relaxation Theory.

  13. Distinct mechanisms of relaxation to bioactive components from chamomile species in porcine isolated blood vessels.

    PubMed

    Roberts, R E; Allen, S; Chang, A P Y; Henderson, H; Hobson, G C; Karania, B; Morgan, K N; Pek, A S Y; Raghvani, K; Shee, C Y; Shikotra, J; Street, E; Abbas, Z; Ellis, K; Heer, J K; Alexander, S P H

    2013-11-01

    German chamomile (Matricaria recutita L.), a widely-used herbal medicine, has been reported to have a wide range of biological effects, including smooth muscle relaxation. The aim of this study was to compare the effects of representative compounds from chamomile (apigenin, luteolin, (-)-α-bisabolol, farnesene, umbelliferone; 3-30 μM) on vascular tone using porcine coronary and splenic arteries mounted for isometric tension recording in isolated tissue baths and precontracted with the thromboxane-mimetic U46619. Apigenin, luteolin, and (-)-α-bisabolol produced slow, concentration-dependent relaxations in both the coronary and splenic arteries that were not blocked by inhibition of nitric oxide synthase or potassium channels. Removal of extracellular calcium inhibited the relaxations to all three compounds, and these compounds also inhibited calcium re-addition-evoked contractions, indicating that the relaxation response may be mediated through inhibition of calcium influx. Apigenin and luteolin, but not (-)-α-bisabolol, enhanced the relaxation to the nitric oxide donor sodium nitroprusside, indicating that apigenin and luteolin may act to regulate cyclic GMP levels. Umbelliferone produced a rapid, transient relaxation in the splenic artery, but not the coronary artery, that was inhibited by L-NAME and removal of the endothelium, suggesting an influence on nitric oxide production. Farnesene, at concentrations up to 30 μM, was without effect in either blood vessel. In conclusion, hydroxylated compounds (apigenin, luteolin and (-)-α-bisabolol) found in chamomile all caused a slow relaxation of isolated blood vessels through an effect on calcium influx. Umbelliferone, on the other hand, produced a rapid, transient relaxation dependent upon release of nitric oxide from the endothelium.

  14. Distinct mechanisms of relaxation to bioactive components from chamomile species in porcine isolated blood vessels.

    PubMed

    Roberts, R E; Allen, S; Chang, A P Y; Henderson, H; Hobson, G C; Karania, B; Morgan, K N; Pek, A S Y; Raghvani, K; Shee, C Y; Shikotra, J; Street, E; Abbas, Z; Ellis, K; Heer, J K; Alexander, S P H

    2013-11-01

    German chamomile (Matricaria recutita L.), a widely-used herbal medicine, has been reported to have a wide range of biological effects, including smooth muscle relaxation. The aim of this study was to compare the effects of representative compounds from chamomile (apigenin, luteolin, (-)-α-bisabolol, farnesene, umbelliferone; 3-30 μM) on vascular tone using porcine coronary and splenic arteries mounted for isometric tension recording in isolated tissue baths and precontracted with the thromboxane-mimetic U46619. Apigenin, luteolin, and (-)-α-bisabolol produced slow, concentration-dependent relaxations in both the coronary and splenic arteries that were not blocked by inhibition of nitric oxide synthase or potassium channels. Removal of extracellular calcium inhibited the relaxations to all three compounds, and these compounds also inhibited calcium re-addition-evoked contractions, indicating that the relaxation response may be mediated through inhibition of calcium influx. Apigenin and luteolin, but not (-)-α-bisabolol, enhanced the relaxation to the nitric oxide donor sodium nitroprusside, indicating that apigenin and luteolin may act to regulate cyclic GMP levels. Umbelliferone produced a rapid, transient relaxation in the splenic artery, but not the coronary artery, that was inhibited by L-NAME and removal of the endothelium, suggesting an influence on nitric oxide production. Farnesene, at concentrations up to 30 μM, was without effect in either blood vessel. In conclusion, hydroxylated compounds (apigenin, luteolin and (-)-α-bisabolol) found in chamomile all caused a slow relaxation of isolated blood vessels through an effect on calcium influx. Umbelliferone, on the other hand, produced a rapid, transient relaxation dependent upon release of nitric oxide from the endothelium. PMID:23845591

  15. Nitric oxide: Mediator of nonadrenergic noncholinergic nerve-induced responses of opossum esophageal muscle

    SciTech Connect

    Murray, J.; Du, C.; Conklin, J.L.; Ledlow, A.; Bates, J.N. )

    1991-03-15

    Nonadrenergic noncholinergic (NANC) nerves of the opossum esophagus mediate relaxation of circular muscle from the lower esophageal sphincter (LES) and the off contraction of circular esophageal muscle. The latencies between the end of the stimulus and the off contraction describe a gradient such that the latency is longest in muscle from the caudad esophagus. N{sup G}-nitro-L-arginine (L-NNA), an inhibitor of nitric oxide synthase, and nitric oxide were used to test the hypothesis that NO is a mediator of these nerve-induced responses. Both electrical field stimulation (EFS) of intrinsic esophageal nerves and exogenous NO relaxed LES muscle. Only EFS-induced relaxation was inhibited by L-NNA. L-arginine, the substrate for NO synthase, antagonized the inhibitory effect of L-NNA. Exogenous NO neither relaxed nor contracted circular esophageal muscle. Both the amplitude and the latency of the off contraction were diminished by L-NNA. L-arginine antagonized the action of L-NNA. N{sup G}-nitro-L-arginine also attenuated the gradient in the latency of the off response by shortening latencies in muscle form the caudad esophagus. It had no effect on cholinergic nerve-induced contraction of longitudinal esophageal muscle. These data support the hypothesis that NO or an NO-containing compound mediates NANC nerve-induced responses of the esophagus and LES.

  16. The vestibular system does not modulate fusimotor drive to muscle spindles in contracting leg muscles of seated subjects.

    PubMed

    Bent, L R; Sander, M; Bolton, P S; Macefield, V G

    2013-06-01

    We previously showed that sinusoidal galvanic vestibular stimulation (GVS) does not modulate the firing of spontaneously active muscle spindles in relaxed human leg muscles. However, given that there is little, if any, fusimotor drive to relaxed human muscles, we tested the hypothesis that vestibular modulation of muscle spindles becomes apparent during volitional contractions at levels that engage the fusimotor system. Unitary recordings were made from 28 muscle spindle afferents via tungsten microelectrodes inserted percutaneously into the common peroneal nerve of seated awake human subjects. Twenty-one of the spindle afferents were spontaneously active at rest and each increased its firing rate during a weak static contraction; seven were silent at rest and were recruited during the contraction. Sinusoidal bipolar binaural galvanic vestibular stimulation (±2 mA, 100 cycles) was applied to the mastoid processes at 0.8 Hz. This continuous stimulation produced a sustained illusion of "rocking in a boat" or "swinging in a hammock" but no entrainment of EMG. Despite these robust vestibular illusions, none of the fusimotor-driven muscle spindles exhibited phase-locked modulation of firing during sinusoidal GVS. We conclude that this dynamic vestibular input was not sufficient to modulate the firing of fusimotor neurones recruited during a voluntary steady-state contraction, arguing against a significant role of the vestibular system in adjusting the sensitivity of muscle spindles via fusimotor neurones. PMID:23552997

  17. Muscle Fatigue Affects the Interpolated Twitch Technique When Assessed Using Electrically-Induced Contractions in Human and Rat Muscles.

    PubMed

    Neyroud, Daria; Cheng, Arthur J; Bourdillon, Nicolas; Kayser, Bengt; Place, Nicolas; Westerblad, Håkan

    2016-01-01

    The interpolated twitch technique (ITT) is the gold standard to assess voluntary activation and central fatigue. Yet, its validity has been questioned. Here we studied how peripheral fatigue can affect the ITT. Repeated contractions at submaximal frequencies were produced by supramaximal electrical stimulations of the human adductor pollicis muscle in vivo and of isolated rat soleus fiber bundles; an extra stimulation pulse was given during contractions to induce a superimposed twitch. Human muscles fatigued by repeated 30-Hz stimulation trains (3 s on-1 s off) showed an ~80% reduction in the superimposed twitch force accompanied by a severely reduced EMG response (M-wave amplitude), which implies action potential failure. Subsequent experiments combined a less intense stimulation protocol (1.5 s on-3 s off) with ischemia to cause muscle fatigue, but which preserved M-wave amplitude. However, the superimposed twitch force still decreased markedly more than the potentiated twitch force; with ITT this would reflect increased "voluntary activation." In contrast, the superimposed twitch force was relatively spared when a similar protocol was performed in rat soleus bundles. Force relaxation was slowed by >150% in fatigued human muscles, whereas it was unchanged in rat soleus bundles. Accordingly, results similar to those in the human muscle were obtained when relaxation was slowed by cooling the rat soleus muscles. In conclusion, our data demonstrate that muscle fatigue can confound the quantification of central fatigue using the ITT.

  18. Muscle Fatigue Affects the Interpolated Twitch Technique When Assessed Using Electrically-Induced Contractions in Human and Rat Muscles

    PubMed Central

    Neyroud, Daria; Cheng, Arthur J.; Bourdillon, Nicolas; Kayser, Bengt; Place, Nicolas; Westerblad, Håkan

    2016-01-01

    The interpolated twitch technique (ITT) is the gold standard to assess voluntary activation and central fatigue. Yet, its validity has been questioned. Here we studied how peripheral fatigue can affect the ITT. Repeated contractions at submaximal frequencies were produced by supramaximal electrical stimulations of the human adductor pollicis muscle in vivo and of isolated rat soleus fiber bundles; an extra stimulation pulse was given during contractions to induce a superimposed twitch. Human muscles fatigued by repeated 30-Hz stimulation trains (3 s on–1 s off) showed an ~80% reduction in the superimposed twitch force accompanied by a severely reduced EMG response (M-wave amplitude), which implies action potential failure. Subsequent experiments combined a less intense stimulation protocol (1.5 s on–3 s off) with ischemia to cause muscle fatigue, but which preserved M-wave amplitude. However, the superimposed twitch force still decreased markedly more than the potentiated twitch force; with ITT this would reflect increased “voluntary activation.” In contrast, the superimposed twitch force was relatively spared when a similar protocol was performed in rat soleus bundles. Force relaxation was slowed by >150% in fatigued human muscles, whereas it was unchanged in rat soleus bundles. Accordingly, results similar to those in the human muscle were obtained when relaxation was slowed by cooling the rat soleus muscles. In conclusion, our data demonstrate that muscle fatigue can confound the quantification of central fatigue using the ITT. PMID:27445844

  19. [Free from stress by autogenic therapy. Relaxation technique yielding peace of mind and self-insight].

    PubMed

    Broms, C

    1999-02-10

    The utilisation of self-regulatory capacity is one of the purposes of autogenic therapy, a method consisting of exercises focused on the limbs, lungs, heart, diaphragm and head. The physiological response is muscle relaxation, increased peripheral blood flow, lower heart rate and blood pressure, slower and deeper breathing, and reduced oxygen consumption. Autogenic training is applicable in most pathological conditions associated with stress, and can be used preventively or as a complement to conventional treatment.

  20. Muscle shape consistency and muscle volume prediction of thigh muscles.

    PubMed

    Mersmann, F; Bohm, S; Schroll, A; Boeth, H; Duda, G; Arampatzis, A

    2015-04-01

    The present study investigated the applicability of a muscle volume prediction method using only the muscle length (L(M)), the maximum anatomical cross-sectional area (ACSA(max)), and a muscle-specific shape factor (p) on the quadriceps vastii. L(M), ACSA(max), muscle volume, and p were obtained from magnetic resonance images of the vastus intermedius (VI), lateralis (VL), and medialis (VM) of female (n = 20) and male (n = 17) volleyball athletes. The average p was used to predict muscle volumes (V(p)) using the equation V(p)  = p × ACSA(max)  × L(M). Although there were significant differences in the muscle dimensions between male and female athletes, p was similar and on average 0.582, 0.658, 0.543 for the VI, VL, and VM, respectively. The position of ACSA(max) showed low variability and was at 57%, 60%, and 81% of the thigh length for VI, VL, and VM. Further, there were no significant differences between measured and predicted muscle volumes with root mean square differences of 5-8%. These results suggest that the muscle shape of the quadriceps vastii is independent of muscle dimensions or sex and that the prediction method could be sensitive enough to detect changes in muscle volume related to degeneration, atrophy, or hypertrophy.

  1. On the mechanism of the relaxing adrenaline effect on cat jejunum.

    PubMed

    Petkov, V; Radomirov, R

    1975-01-01

    The effect of propranolol, phentolamine, papaverine, theophyline and Ca++, administered in different combinations of their threshold doses, on the relaxing effect of adrenaline was studied on an isolated segment of proximal jejunum of male cats. It was established that phentolamine weakened the relaxing effect of adrenaline, while propranolol had no effect on it. Papaverine potentiated the relaxinf effects of adrenaline both when administered alone and in combination with propranolol or with phentolamine. Theophylline weakened the relaxing effect of adfrenaline and of the combination phentolamine-adrenaline. Ca++ increased the smooth-muscle tone. The interpretation of the results obtained leads to the fundamental conclusions that the relaxing effect of adrenaline on cat jejunum is more alpha- than beta-adrenergically determined and that the system of the cyclic AMP participates in its realization. At the smae time, however, the possibility of participation of other mechanisms is not excluded. The smooth-muscle effect of papaverine and theophylline is not determined only by their inhibitory effect on phosphodiesterase.

  2. Regulation and dysregulation of esophageal peristalsis by the integrated function of circular and longitudinal muscle layers in health and disease.

    PubMed

    Mittal, Ravinder K

    2016-09-01

    Muscularis propria throughout the entire gastrointestinal tract including the esophagus is comprised of circular and longitudinal muscle layers. Based on the studies conducted in the colon and the small intestine, for more than a century, it has been debated whether the two muscle layers contract synchronously or reciprocally during the ascending contraction and descending relaxation of the peristaltic reflex. Recent studies in the esophagus and colon prove that the two muscle layers indeed contract and relax together in almost perfect synchrony during ascending contraction and descending relaxation of the peristaltic reflex, respectively. Studies in patients with various types of esophageal motor disorders reveal temporal disassociation between the circular and longitudinal muscle layers. We suggest that the discoordination between the two muscle layers plays a role in the genesis of esophageal symptoms, i.e., dysphagia and esophageal pain. Certain pathologies may selectively target one and not the other muscle layer, e.g., in eosinophilic esophagitis there is a selective dysfunction of the longitudinal muscle layer. In achalasia esophagus, swallows are accompanied by the strong contraction of the longitudinal muscle without circular muscle contraction. The possibility that the discoordination between two muscle layers plays a role in the genesis of esophageal symptoms, i.e., dysphagia and esophageal pain are discussed. The purpose of this review is to summarize the regulation and dysregulation of peristalsis by the coordinated and discoordinated function of circular and longitudinal muscle layers in health and diseased states.

  3. Changes in contractile properties by androgen hormones in sexually dimorphic muscles of male frogs (Xenopus laevis).

    PubMed Central

    Regnier, M; Herrera, A A

    1993-01-01

    1. Male frogs (Xenopus laevis) were castrated then given either empty or testosterone-filled implants to produce animals with low or high levels of circulating testosterone. Eight weeks later the contractile properties of an androgen-sensitive forelimb flexor, the flexor carpi radialis muscle (FCR), were measured in vitro. Another forelimb flexor muscle, the coracoradialis, and a hindlimb muscle, the iliofibularis, were analysed similarly. 2. Plasma testosterone levels were 0.9 +/- 0.3 ng/ml (+/- S.E.M.) in castrated frogs with blank implants (C) and 61.3 +/- 4.7 ng/ml in castrates with testosterone implants (CT). Unoperated males, sampled at various times of the year, ranged between 10.8 and 51.0 ng/ml. 3. With direct electrical stimulation of the FCR, contraction time of the isometric twitch was not affected by testosterone levels. Relaxation times were affected, however. Half- and 90% relaxation times were 27 and 42% longer, respectively, for CT compared to C muscles. 4. Testosterone also had no effect on the contraction time of twitches elicited by stimulation of the FCR nerve. Half- and 90% relaxation times were 51 and 76% longer, respectively, for CT compared to C muscles. 5. Tetanus tension, elicited by direct stimulation of the FCR at 50 Hz, was 86% greater in CT compared to C muscles. The average cross-sectional area of FCR muscle fibres was 84% greater in CT muscles. These results implied that testosterone treatment had no effect on specific muscle tension. 6. Stimulation of the FCR nerve at 50 Hz resulted in 53% less tension than the same stimulus applied directly to CT muscles. In C muscles the difference was only 14%. This suggested that testosterone treatment reduced synaptic efficacy. 7. In CT muscles, direct or nerve stimulation of fibres in the shoulder region of the FCR elicited twitches that contracted and relaxed more slowly than fibres in the elbow region. In C muscles there was no difference in contraction or relaxation time between fibres in

  4. Cancer cachexia decreases specific force and accelerates fatigue in limb muscle

    SciTech Connect

    Roberts, B.M.; Frye, G.S.; Ahn, B.; Ferreira, L.F.; Judge, A.R.

    2013-06-07

    Highlights: •C-26 cancer cachexia causes a significant decrease in limb muscle absolute force. •C-26 cancer cachexia causes a significant decrease in limb muscle specific force. •C-26 cancer cachexia decreases fatigue resistance in the soleus muscle. •C-26 cancer cachexia prolongs time to peak twitch tension in limb muscle. •C-26 cancer cachexia prolongs one half twitch relaxation time in limb muscle. -- Abstract: Cancer cachexia is a complex metabolic syndrome that is characterized by the loss of skeletal muscle mass and weakness, which compromises physical function, reduces quality of life, and ultimately can lead to mortality. Experimental models of cancer cachexia have recapitulated this skeletal muscle atrophy and consequent decline in muscle force generating capacity. However, more recently, we provided evidence that during severe cancer cachexia muscle weakness in the diaphragm muscle cannot be entirely accounted for by the muscle atrophy. This indicates that muscle weakness is not just a consequence of muscle atrophy but that there is also significant contractile dysfunction. The current study aimed to determine whether contractile dysfunction is also present in limb muscles during severe Colon-26 (C26) carcinoma cachexia by studying the glycolytic extensor digitorum longus (EDL) muscle and the oxidative soleus muscle, which has an activity pattern that more closely resembles the diaphragm. Severe C-26 cancer cachexia caused significant muscle fiber atrophy and a reduction in maximum absolute force in both the EDL and soleus muscles. However, normalization to muscle cross sectional area further demonstrated a 13% decrease in maximum isometric specific force in the EDL and an even greater decrease (17%) in maximum isometric specific force in the soleus. Time to peak tension and half relaxation time were also significantly slowed in both the EDL and the solei from C-26 mice compared to controls. Since, in addition to postural control, the oxidative

  5. Analysis of sawtooth relaxation oscillations in tokamaks

    SciTech Connect

    Yamazaki, K.; McGuire, K.; Okabayashi, M.

    1982-07-01

    Sawtooth relaxation oscillations are analyzed using the Kadomtsev's disruption model and a thermal relaxation model. The sawtooth period is found to be very sensitive to the thermal conduction loss. Qualitative agreement between these calculations and the sawtooth period observed in several tokamaks is demonstrated.

  6. Magnetization Transfer Induced Biexponential Longitudinal Relaxation

    PubMed Central

    Prantner, Andrew M.; Bretthorst, G. Larry; Neil, Jeffrey J.; Garbow, Joel R.; Ackerman, Joseph J.H.

    2009-01-01

    Longitudinal relaxation of brain water 1H magnetization in mammalian brain in vivo is typically analyzed on a per voxel basis using a monoexponential model, thereby assigning a single relaxation time constant to all 1H magnetization within a given voxel. This approach was tested by obtaining inversion recovery data from grey matter of rats at 64 exponentially-spaced recovery times. Using Bayesian probability for model selection, brain water data were best represented by a biexponential function characterized by fast and slow relaxation components. At 4.7 T, the amplitude fraction of the rapidly relaxing component is 3.4 ± 0.7 % with a rate constant of 44 ± 12 s-1 (mean ± SD; 174 voxels from 4 rats). The rate constant of the slow relaxing component is 0.66 ± 0.04 s-1. At 11.7 T, the corresponding values are 6.9 ± 0.9 %, 19 ± 5 s-1, and 0.48 ± 0.02 s-1 (151 voxels from 4 rats). Several putative mechanisms for biexponential relaxation behavior were evaluated, and magnetization transfer between bulk water protons and non-aqueous protons was determined to be the source of biexponential longitudinal relaxation. MR methods requiring accurate quantification of longitudinal relaxation may need to take this effect explicitly into account. PMID:18759367

  7. Mechanical advantage of sternomastoid and scalene muscles in dogs.

    PubMed

    Legrand, A; Ninane, V; De Troyer, A

    1997-05-01

    Theoretical studies have led to the prediction that the maximal effect of a given respiratory muscle on airway opening pressure (Pao) is the product of muscle mass, the maximal active muscle tension per unit cross-sectional area, and the fractional change in muscle length per unit volume increase of the relaxed chest wall. It has previously been shown that the parasternal intercostals behave in agreement with this prediction (A. De Troyer, A. Legrand, and T. A. Wilson. J. Physiol. (Lond) 495: 239-246, 1996; A. Legrand, T. A. Wilson, and A. De Troyer. J. Appl. Physiol. 80: 2097-2101, 1996). In the present study, we have tested the prediction further by measuring the response to passive inflation and the pressure-generating ability of the sternomastoid and scalene muscles in eight anesthetized dogs. With 1-liter passive inflation, the sternomastoids and scalenes shortened by 2.03 +/- 0.17 and 5.98 +/- 0.43%, respectively, of their relaxation length (P < 0.001). During maximal stimulation, the two muscles caused similar falls in Pao. However, the sternomastoids had greater mass such that the change in Pao (delta Pao) per unit muscle mass was -0.19 +/- 0.02 cmH2O/g for the scalenes and only -0.07 +/- 0.01 cmH2O/g for the sternomastoids (P < 0.001). After extension of the neck, there was a reduction in both the muscle shortening during passive inflation and the fall in Pao during stimulation. The delta Pao per unit muscle mass was thus closely related to the change in length; the slope of the relationship was 3.1. These observations further support the concept that the fractional changes in length of the respiratory muscles during passive inflation can be used to predict their pressure-generating ability. PMID:9134901

  8. Nitric oxide is the mediator of both endothelium-dependent relaxation and hyperpolarization of the rabbit carotid artery.

    PubMed

    Cohen, R A; Plane, F; Najibi, S; Huk, I; Malinski, T; Garland, C J

    1997-04-15

    It is controversial whether the endothelial cell release of nitric oxide (NO) or a different factor(s) accounts for endothelium-dependent hyperpolarization, because in many arteries endothelium-dependent relaxation and hyperpolarization resists inhibitors of NO synthase. The contribution of NO to acetylcholine-induced endothelium-dependent hyperpolarization and relaxation of the rabbit carotid artery was determined by measuring NO with electrochemical and chemiluminescence techniques. In the presence of phenylephrine to depolarize and contract the smooth muscle cells, acetylcholine caused concentration-dependent hyperpolarization and relaxation which were closely correlated to the release of NO. N(omega)-nitro-L-arginine methyl ester (30 microM) partially reduced the release of NO and caused a similar reduction in smooth muscle cell relaxation and hyperpolarization. To determine if the residual responses were mediated by another endothelium-derived mediator or NO released despite treatment with N(omega)-nitro-L-arginine methyl ester, N(omega)-nitro-L-arginine (300 microM) was added. The combined inhibitors further reduced, but did not eliminate, NO release, smooth muscle relaxation, and hyperpolarization. Hyperpolarization and relaxation to acetylcholine remained closely correlated with the release of NO in the presence of the inhibitors. In addition, the NO donor, SIN-1, caused hyperpolarization and relaxation which correlated with the concentrations of NO that it released. These studies indicate that (i) the release of NO by acetylcholine is only partially inhibited by these inhibitors of NO synthase when used even at high concentrations, and (ii) NO rather than another factor accounts fully for endothelium-dependent responses of the rabbit carotid artery. PMID:9108128

  9. Nitric oxide is the mediator of both endothelium-dependent relaxation and hyperpolarization of the rabbit carotid artery

    PubMed Central

    Cohen, Richard A.; Plane, Frances; Najibi, Soheil; Huk, Igor; Malinski, Tadeusz; Garland, Chris J.

    1997-01-01

    It is controversial whether the endothelial cell release of nitric oxide (NO) or a different factor(s) accounts for endothelium-dependent hyperpolarization, because in many arteries endothelium-dependent relaxation and hyperpolarization resists inhibitors of NO synthase. The contribution of NO to acetylcholine-induced endothelium-dependent hyperpolarization and relaxation of the rabbit carotid artery was determined by measuring NO with electrochemical and chemiluminescence techniques. In the presence of phenylephrine to depolarize and contract the smooth muscle cells, acetylcholine caused concentration-dependent hyperpolarization and relaxation which were closely correlated to the release of NO. Nω-nitro-l-arginine methyl ester (30 μM) partially reduced the release of NO and caused a similar reduction in smooth muscle cell relaxation and hyperpolarization. To determine if the residual responses were mediated by another endothelium-derived mediator or NO released despite treatment with Nω-nitro-l-arginine methyl ester, Nω-nitro-l-arginine (300 μM) was added. The combined inhibitors further reduced, but did not eliminate, NO release, smooth muscle relaxation, and hyperpolarization. Hyperpolarization and relaxation to acetylcholine remained closely correlated with the release of NO in the presence of the inhibitors. In addition, the NO donor, SIN-1, caused hyperpolarization and relaxation which correlated with the concentrations of NO that it released. These studies indicate that (i) the release of NO by acetylcholine is only partially inhibited by these inhibitors of NO synthase when used even at high concentrations, and (ii) NO rather than another factor accounts fully for endothelium-dependent responses of the rabbit carotid artery. PMID:9108128

  10. Enthalpy relaxation and annealing effect in polystyrene.

    PubMed

    Sakatsuji, Waki; Konishi, Takashi; Miyamoto, Yoshihisa

    2013-07-01

    The effects of thermal history on the enthalpy relaxation in polystyrene are studied by differential scanning calorimetry. The temperature dependence of the specific heat in the liquid and the glassy states, that of relaxation time, and the exponent of the Kohlrausch-Williams-Watts function are determined by measurements of the thermal response against sinusoidal temperature variation. A phenomenological model equation previously proposed to interpret the memory effect in the frozen state is applied to the enthalpy relaxation and the evolution of entropy under a given thermal history is calculated. The annealing below the glass transition temperature produces two effects on enthalpy relaxation: the decay of excess entropy with annealing time in the early stage of annealing and the increase in relaxation time due to physical aging in the later stage. The crossover of these effects is reflected in the variation of temperature of the maximum specific heat observed in the heating process after annealing and cooling.

  11. CARDIAC MUSCLE

    PubMed Central

    Sommer, Joachim R.; Johnson, Edward A.

    1968-01-01

    With light and electron microscopy a comparison has been made of the morphology of ventricular (V) and Purkinje (P) fibers of the hearts of guinea pig, rabbit, cat, dog, goat, and sheep. The criteria, previously established for the rabbit heart, that V fibers are distinguished from P fibers by the respective presence and absence of transverse tubules is shown to be true for all animals studied. No evidence was found of a permanent connection between the sarcoplasmic reticulum and the extracellular space. The sarcoplasmic reticulum (SR) of V fibers formed couplings with the sarcolemma of a transverse tubule (interior coupling) and with the peripheral sarcolemma (peripheral coupling), whereas in P fibers the SR formed only peripheral couplings. The forms of the couplings were identical. The significance, with respect to excitation-contraction coupling, of the difference in the form of the couplings in cardiac versus skeletal muscle is discussed together with the electrophysiological implications of the differing geometries of bundles of P fibers from different animals. PMID:5645545

  12. Distinct mechanisms of relaxation to bioactive components from chamomile species in porcine isolated blood vessels

    SciTech Connect

    Roberts, R.E. Allen, S.; Chang, A.P.Y.; Henderson, H.; Hobson, G.C.; Karania, B.; Morgan, K.N.; Pek, A.S.Y.; Raghvani, K.; Shee, C.Y.; Shikotra, J.; Street, E.; Abbas, Z.; Ellis, K.; Heer, J.K.; Alexander, S.P.H.

    2013-11-01

    German chamomile (Matricaria recutita L.), a widely-used herbal medicine, has been reported to have a wide range of biological effects, including smooth muscle relaxation. The aim of this study was to compare the effects of representative compounds from chamomile (apigenin, luteolin, (−)-α-bisabolol, farnesene, umbelliferone; 3–30 μM) on vascular tone using porcine coronary and splenic arteries mounted for isometric tension recording in isolated tissue baths and precontracted with the thromboxane-mimetic U46619. Apigenin, luteolin, and (−)-α-bisabolol produced slow, concentration-dependent relaxations in both the coronary and splenic arteries that were not blocked by inhibition of nitric oxide synthase or potassium channels. Removal of extracellular calcium inhibited the relaxations to all three compounds, and these compounds also inhibited calcium re-addition-evoked contractions, indicating that the relaxation response may be mediated through inhibition of calcium influx. Apigenin and luteolin, but not (−)-α-bisabolol, enhanced the relaxation to the nitric oxide donor sodium nitroprusside, indicating that apigenin and luteolin may act to regulate cyclic GMP levels. Umbelliferone produced a rapid, transient relaxation in the splenic artery, but not the coronary artery, that was inhibited by L-NAME and removal of the endothelium, suggesting an influence on nitric oxide production. Farnesene, at concentrations up to 30 μM, was without effect in either blood vessel. In conclusion, hydroxylated compounds (apigenin, luteolin and (−)-α-bisabolol) found in chamomile all caused a slow relaxation of isolated blood vessels through an effect on calcium influx. Umbelliferone, on the other hand, produced a rapid, transient relaxation dependent upon release of nitric oxide from the endothelium. - Highlights: • Apigenin, luteolin, and (-)-α-bisabolol are present in chamomile. • They produced slow, concentration-dependent relaxations in arteries. • These

  13. Characterization of the potassium channels involved in EDHF-mediated relaxation in cerebral arteries

    PubMed Central

    Petersson, Jesper; Zygmunt, Peter M; Högestätt, Edward D

    1997-01-01

    In the presence of NG-nitro-L-arginine (L-NOARG, 0.3 mM) and indomethacin (10 μM), the relaxations induced by acetylcholine and the calcium (Ca) ionophore A23187 are considered to be mediated by endothelium-derived hyperpolarizing factor (EDHF) in the guinea-pig basilar artery.Inhibitors of adenosine 5′-triphosphate (ATP)-sensitive potassium (K)-channels (KATP; glibenclamide, 10 μM), voltage-sensitive K-channels (KV; dendrotoxin-I, 0.1 μM or 4-aminopyridine, 1 mM), small (SKCa; apamin, 0.1 μM) and large (BKCa; iberiotoxin, 0.1 μM) conductance Ca-sensitive K-channels did not affect the L-NOARG/indomethacin-resistant relaxation induced by acetylcholine.Synthetic charybdotoxin (0.1 μM), an inhibitor of BKCa and KV, caused a rightward shift of the concentration-response curve for acetylcholine and reduced the maximal relaxation in the presence of L-NOARG and indomethacin, whereas the relaxation induced by A23187 was not significantly inhibited.A combination of charybdotoxin (0.1 μM) and apamin (0.1 μM) abolished the L-NOARG/indomethacin-resistant relaxations induced by acetylcholine and A23187. However, the acetylcholine-induced relaxation was not affected by a combination of iberiotoxin (0.1 μM) and apamin (0.1 μM).Ciclazindol (10 μM), an inhibitor of KV in rat portal vein smooth muscle, inhibited the L-NOARG/indomethacin-resistant relaxations induced by acetylcholine and A23187, and the relaxations were abolished when ciclazindol (10 μM) was combined with apamin (0.1 μM).Human pial arteries from two out of four patients displayed an L-NOARG/indomethacin-resistant relaxation in response to substance P. This relaxation was abolished in both cases by pretreatment with the combination of charybdotoxin (0.1 μM) and apamin (0.1 μM), whereas each toxin had little effect alone.The results suggest that KV, but not KATP and BKCa, is involved in the EDHF-mediated relaxation in the guinea-pig basilar artery. The synergistic

  14. Comparison of the thoracic flexion relaxation ratio and pressure pain threshold after overhead assembly work and below knee assembly work

    PubMed Central

    Yoo, Won-gyu

    2016-01-01

    [Purpose] The purpose of this study was to compare the thoracic flexion relaxation ratio following overhead work and below-knee work. [Subjects and Methods] Ten men (20–30 years) were recruited to this study. The thoracic flexion relaxation ratio and pressure pain threshold was measured after both overhead work and below-knee work. [Results] The pressure-pain thresholds of the thoracic erector spinae muscle decreased significantly from initial, to overhead, to below-knee work. Similarly, the thoracic flexion relaxation ratio decreased significantly from initial, to overhead, to below-knee work. [Conclusion] Below-knee work results in greater thoracic pain than overhead work. Future studies should investigate below-knee work in detail. This study confirmed the thoracic relaxation phenomenon in the mid-position of the thoracic erector spinae. PMID:26957744

  15. Fatigue and caffeine effects in fast-twitch and slow-twitch muscles of the mouse.

    PubMed

    Brust, M

    1976-12-28

    In excised, curarized and massively stimulated fast-twitch mouse gastrocnemius muscles the early twitch tension enhancements (treppe) during 1/s activity between 10 and 36 degrees C increase and affect more contractions as temperature increases. Tension output eventually declines at a temperature-independent rate. Half-relaxation time lengthens below 25 degrees C and shortens above 25 degrees C. During 1/0.63s twitches half-relaxation time lengthens even at 25 degrees C. In slow-twitch soleus muscles activity decreases twitch tension and half-relaxation time regardless of temperature. Activity shortens contraction times in both muscles. Oxygen lack induced by NaN3 cannot account satisfactorily for these results. Activation is apparently more plastic in the gastrocnemius than in the soleus, and the relationship between the rates of their activation and relaxation processes and the temperature sensitivities of these rates also seem to differ. In both muscles caffeine can convert activity-induced shortened of half-relaxation times into prolongations. In the soleus this effect is more pronounced at 30 than at 25 degrees C. At high temperature and twitch rates caffeine reduces treppe amplitude and duration without affecting the eventual twitch tension decline in the gastrocnemius while it greatly accelerates twitch tension decline in the soleus. In both muscles intrafiber Ca2+ movements are apparently major determinants of fatigue behavior. PMID:1034914

  16. Postseismic relaxation and transient creep

    USGS Publications Warehouse

    Savage, J.C.; Svarc, J.L.; Yu, S.-B.

    2005-01-01

    Postseismic deformation has been observed in the epicentral area following the 1992 Landers (M = 7.3), 1999 Chi-Chi (M = 7.6), 1999 Hector Mine (M = 7.1), 2002 Denali (M = 7.9), 2003 San Simeon (M = 6.5), and 2004 Parkfield (M = 6.0) earthquakes. The observations consist of repeated GPS measurements of the position of one monument relative to another (separation ???100 km). The early observations (t < 0.1 year) are well fit by the function a' + c'log(t), where t is the time after the earthquake and a' and c' are constants chosen to fit the data. Because a log(t) time dependence is characteristic of transient (primary) creep, the early postseismic response may be governed by transient creep as Benioff proposed in 1951. That inference is provisional as the stress conditions prevailing in postseismic relaxation are not identical to the constant stress condition in creep experiments. The observed logarithmic time dependence includes no characteristic time that might aid in identifying the micromechanical cause.

  17. Stress-induced muscle effort as a cause of repetitive strain injury?

    PubMed

    Rietveld, S; van Beest, I; Kamphuis, J H

    2007-12-01

    The influence of stress-induced muscle effort during computer utilization was tested in patients with repetitive strain injury (RSI). Twenty academic researchers with a formal medical diagnosis of RSI and 20 matched controls, randomly selected from a sample of 71 colleagues with and without RSI, typed after stress (induced via an intelligence/skill task under social pressure) and after relaxation. Results indicated that both groups had more electromyography (EMG) activity in the shoulder muscles during typing after stress than after relaxation, but that patients started with higher baseline muscle activity. Furthermore, EMG activity of different muscle groups during typing after stress correlated among controls, but not among patients. Finally, analysis of intake forms showed that patients scored higher than controls on neuroticism and alexithymia, but not on extraversion, openness, agreeableness and conscientiousness. It was concluded that deviations in muscle activity during computer utilization, as well as neuroticism and alexithymia, may be risk factors for RSI.

  18. Genetic deletion of aquaporin-1 results in microcardia and low blood pressure in mouse with intact nitric oxide-dependent relaxation, but enhanced prostanoids-dependent relaxation.

    PubMed

    Montiel, V; Leon Gomez, E; Bouzin, C; Esfahani, H; Romero Perez, M; Lobysheva, I; Devuyst, O; Dessy, C; Balligand, J L

    2014-02-01

    The water channels, aquaporins (AQPs) are key mediators of transcellular fluid transport. However, their expression and role in cardiac tissue is poorly characterized. Particularly, AQP1 was suggested to transport other molecules (nitric oxide (NO), hydrogen peroxide (H2O2)) with potential major bearing on cardiovascular physiology. We therefore examined the expression of all AQPs and the phenotype of AQP1 knockout mice (vs. wild-type littermates) under implanted telemetry in vivo, as well as endothelium-dependent relaxation in isolated aortas and resistance vessels ex vivo. Four aquaporins were expressed in wild-type heart tissue (AQP1, AQP7, AQP4, AQP8) and two aquaporins in aortic and mesenteric vessels (AQP1-AQP7). AQP1 was expressed in endothelial as well as cardiac and vascular muscle cells and co-segregated with caveolin-1. AQP1 knockout (KO) mice exhibited a prominent microcardia and decreased myocyte transverse dimensions despite no change in capillary density. Both male and female AQP1 KO mice had lower mean BP, which was not attributable to altered water balance or autonomic dysfunction (from baroreflex and frequency analysis of BP and HR variability). NO-dependent BP variability was unperturbed. Accordingly, endothelium-derived hyperpolarizing factor (EDH(F)) or NO-dependent relaxation were unchanged in aorta or resistance vessels ex vivo. However, AQP1 KO mesenteric vessels exhibited an increase in endothelial prostanoids-dependent relaxation, together with increased expression of COX-2. This enhanced relaxation was abrogated by COX inhibition. We conclude that AQP1 does not regulate the endothelial EDH or NO-dependent relaxation ex vivo or in vivo, but its deletion decreases baseline BP together with increased prostanoids-dependent relaxation in resistance vessels. Strikingly, this was associated with microcardia, unrelated to perturbed angiogenesis. This may raise interest for new inhibitors of AQP1 and their use to treat hypertrophic cardiac

  19. Proteinase-activated receptor-1 (PAR1) and PAR2 mediate relaxation of guinea pig internal anal sphincter.

    PubMed

    Huang, Shih-Che

    2014-02-10

    Activation of proteinase-activated receptor-1 (PAR1) and PAR2 stimulates contraction of the rat but relaxation of the guinea pig colon. The aim of the present study was to investigate PAR effects on internal anal sphincter (IAS) motility. We measured relaxation of isolated muscle strips from the guinea pig IAS caused by PAR agonists using isometric transducers. Reverse transcription polymerase chain reaction (RT-PCR) was performed to determine the existence of PAR. In the IAS, thrombin and PAR1 peptide agonists TFLLR-NH2 and SFLLRN-NH2 evoked moderate to marked relaxation in a concentration-dependent manner. In addition, trypsin and PAR2 peptide agonists 2-furoyl-LIGRLO-NH2, SLIGRL-NH2 and SLIGKV-NH2 produced relaxation. In contrast, both PAR1 and PAR2 inactive control peptides did not elicit relaxation. Furthermore, the selective PAR1 antagonist vorapaxar and PAR2 antagonist GB 83 specifically inhibited thrombin and trypsin-induced relaxations, respectively. RT-PCR revealed the presence of PAR1 and PAR2 in the IAS. This indicates that PAR1 and PAR2 mediate the IAS relaxation. The relaxant responses of TFLLR-NH2 and trypsin were attenuated by N(omega)-Nitro-L-arginine (L-NNA), indicating involvement of NO. These responses were not affected by tetrodotoxin, implying that the PAR effects are not neurally mediated. On the other hand, PAR4 agonists GYPGKF-NH2, GYPGQV-NH2 and AYPGKF-NH2 did not cause relaxation or contraction, suggesting that PAR4 is not involved in the sphincter motility. Taken together, these results demonstrate that both PAR1 and PAR2 mediate relaxation of the guinea pig IAS through the NO pathway. PAR1 and PAR2 may regulate IAS tone and might be potential therapeutic targets for anal motility disorders. PMID:24631471

  20. Viscoelasticity-based MR elastography of skeletal muscle

    NASA Astrophysics Data System (ADS)

    Klatt, Dieter; Papazoglou, Sebastian; Braun, Jürgen; Sack, Ingolf

    2010-11-01

    An in vivo multifrequency magnetic resonance elastography (MRE) protocol was developed for studying the viscoelastic properties of human skeletal muscle in different states of contraction. Low-frequency shear vibrations in the range of 25-62.5 Hz were synchronously induced into the femoral muscles of seven volunteers and measured in a cross-sectional view by encoding the fast-transverse shear wave component parallel to the muscle fibers. The so-called springpot model was used for deriving two viscoelastic constants, μ and α, from the dispersion functions of the complex shear modulus in relaxed and in loaded muscle. Representing the shear elasticity parallel to the muscle fibers, μ increased in all volunteers upon contraction from 2.68 ± 0.23 kPa to 3.87 ± 0.50 kPa. Also α varied with load, indicating a change in the geometry of the mechanical network of muscle from relaxation (α = 0.253 ± 0.009) to contraction (α = 0.270 ± 0.009). These results provide a reference for a future assessment of muscular dysfunction using rheological parameters.

  1. Contraction and relaxation of isolated cardiac myocytes of the frog under varying mechanical loads.

    PubMed

    Parikh, S S; Zou, S Z; Tung, L

    1993-02-01

    The mechanics of cardiac systole and relaxation have been studied primarily at the level of the whole heart or intact muscle. End-systolic pressure-volume relations of frog hearts have been found to be load dependent, whereas those of the mammal are relatively load independent. On the other hand, myocardial relaxation as studied at the muscle level is load independent in the frog but markedly load dependent in the mammal. Interpretation of these studies is complicated because of the unknown contribution of extracellular connective tissue, neurohumoral factors, and, in the case of the heart, the complex chamber geometry. Therefore, it is valuable to study cardiac mechanics at the level of the basic unit of contractile activity--the isolated myocyte. The goal of this study was to subject isolated frog cardiomyocytes to mechanical loading paradigms that mimic those presented to the cells within the heart. In the first part of this study, the afterload and preload of contracting cells were varied to study their effects on the end-systolic force-length relation, which was consistently found to be load independent over the range of isotonic shortening tested (typically 5%). We also investigated the force-length-time response of the cells to test the concept of the heart behaving as a time-varying elastance. Our results suggest that in this regard the frog myocyte behaves like mammalian muscle, and they are consistent with the presence of a small viscosity within the cell. We conclude that the tissue structure of the frog heart may contribute to disparity in mechanical behavior at the different structural levels. In the second part of this study, we subjected isolated frog cardiomyocytes to four different loading paradigms to test the hypothesis that myocardial relaxation in the frog is independent of load. These sequences consisted of afterloaded contractions followed by conventional isotonic-isometric relaxation (ACCR) or afterloaded contractions followed by

  2. Measurement of Young's relaxation modulus using nanoindentation

    NASA Astrophysics Data System (ADS)

    Huang, Gang; Lu, Hongbing

    2006-09-01

    In a previous paper (Lu et al., Mechanics of Time-Dependent Materials, 7, 2003, 189 207), we described methods to measure the creep compliance of polymers using Berkovich and spherical indenters by nanoindentation. However, the relaxation modulus is often needed in stress and deformation analysis. It has been well known that the interconversion between creep compliance and relaxation function presents an ill-posed problem, so that converting the creep compliance function to the relaxation function cannot always give accurate results, especially considering that the creep data at short times in nanoindentation are often not reliable, and the overall nanoindentation time is short, typically a few hundred seconds. In this paper, we present methods to measure Young’s relaxation functions directly using nanoindentation. A constant-rate displacement loading history is usually used in nanoindentations. Using viscoelastic contact mechanics, Young’s relaxation modulus is extracted using nanoindentation load-displacement data. Three bulk polymers, Polymethyl Methacrylate (PMMA), Polycarbonate (PC) and Polyurethane (PU), are used in this study. The Young’s relaxation functions measured from the nanoindentation are compared with data measured from conventional tensile and shear tests to evaluate the precision of the methods. A reasonably good agreement has been reached for all these materials for indentation depth higher than a certain value, providing reassurance for these methods for measuring relaxation functions.

  3. Spin-Lattice Relaxation Times in 1H NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Wink, Donald J.

    1989-01-01

    Discussed are the mechanisms of nuclear magnetic relaxation, and applications of relaxation times. The measurement of spin-lattice relaxations is reviewed. It is stressed that sophisticated techniques such as these are becoming more important to the working chemist. (CW)

  4. Mesenteric artery contraction and relaxation studies using automated wire myography.

    PubMed

    Bridges, Lakeesha E; Williams, Cicely L; Pointer, Mildred A; Awumey, Emmanuel M

    2011-09-22

    Proximal resistance vessels, such as the mesenteric arteries, contribute substantially to the peripheral resistance. These small vessels of between 100-400 μm in diameter function primarily in directing blood flow to various organs according to the overall requirements of the body. The rat mesenteric artery has a diameter greater than 100 μm. The myography technique, first described by Mulvay and Halpern(1), was based on the method proposed by Bevan and Osher(2). The technique provides information about small vessels under isometric conditions, where substantial shortening of the muscle preparation is prevented. Since force production and sensitivity of vessels to different agonists is dependent on the extent of stretch, according to active tension-length relation, it is essential to conduct contraction studies under isometric conditions to prevent compliance of the mounting wires. Stainless steel wires are preferred to tungsten wires because of oxidation of the latter, which affects recorded responses(3).The technique allows for the comparison of agonist-induced contractions of mounted vessels to obtain evidence for normal function of vascular smooth muscle cell receptors. We have shown in several studies that isolated mesenteric arteries that are contracted with phenylyephrine relax upon addition of cumulative concentrations of extracellular calcium (Ca(2+)(e;)). The findings led us to conclude that perivascular sensory nerves, which express the G protein-coupled Ca(2+)-sensing receptor (CaR), mediate this vasorelaxation response. Using an automated wire myography method, we show here that mesenteric arteries from Wistar, Dahl salt-sensitive(DS) and Dahl salt-resistant (DR) rats respond differently to Ca(2+)(e;). Tissues from Wistar rats showed higher Ca(2+)-sensitivity compared to those from DR and DS. Reduced CaR expression in mesenteric arteries from DS rats correlates with reduced Ca(2+)(e;)-induced relaxation of isolated, pre-contracted arteries. The data

  5. Relaxation of vibrational degrees of freedom

    NASA Astrophysics Data System (ADS)

    Frohn, A.

    Shock tubes were used to measure relaxation times of the degrees of freedom in inelastic collisions of gas molecules. Design and construction of the experimental setup are described. For relaxation time measurements of vibrational degrees of freedom an initial pressure between 0.1 and 1 mbar is found to be optimal, and for dissociation between 1 and 10 mbar. The density gradients in the shock tube flow are measured with four differential laser interferometers and plotted with a transient recorder. A FORTRAN program was developed to determine the relaxation times. This measurement technique does not in general allow the degrees of freedom to be investigated separately.

  6. Relaxation time in disordered molecular systems

    SciTech Connect

    Rocha, Rodrigo P.; Freire, José A.

    2015-05-28

    Relaxation time is the typical time it takes for a closed physical system to attain thermal equilibrium. The equilibrium is brought about by the action of a thermal reservoir inducing changes in the system micro-states. The relaxation time is intuitively expected to increase with system disorder. We derive a simple analytical expression for this dependence in the context of electronic equilibration in an amorphous molecular system model. We find that the disorder dramatically enhances the relaxation time but does not affect its independence of the nature of the initial state.

  7. Collisionless Relaxation in Non-Neutral Plasmas

    SciTech Connect

    Levin, Yan; Pakter, Renato; Teles, Tarcisio N.

    2008-02-01

    A theoretical framework is presented which allows us to quantitatively predict the final stationary state achieved by a non-neutral plasma during a process of collisionless relaxation. As a specific application, the theory is used to study relaxation of charged-particle beams. It is shown that a fully matched beam relaxes to the Lynden-Bell distribution. However, when a mismatch is present and the beam oscillates, parametric resonances lead to a core-halo phase separation. The approach developed accounts for both the density and the velocity distributions in the final stationary state.

  8. Le Chatelier's principle with multiple relaxation channels

    NASA Astrophysics Data System (ADS)

    Gilmore, R.; Levine, R. D.

    1986-05-01

    Le Chatelier's principle is discussed within the constrained variational approach to thermodynamics. The formulation is general enough to encompass systems not in thermal (or chemical) equilibrium. Particular attention is given to systems with multiple constraints which can be relaxed. The moderation of the initial perturbation increases as additional constraints are removed. This result is studied in particular when the (coupled) relaxation channels have widely different time scales. A series of inequalities is derived which describes the successive moderation as each successive relaxation channel opens up. These inequalities are interpreted within the metric-geometry representation of thermodynamics.

  9. Novel treatment strategies for smooth muscle disorders: Targeting Kv7 potassium channels.

    PubMed

    Haick, Jennifer M; Byron, Kenneth L

    2016-09-01

    Smooth muscle cells provide crucial contractile functions in visceral, vascular, and lung tissues. The contractile state of smooth muscle is largely determined by their electrical excitability, which is in turn influenced by the activity of potassium channels. The activity of potassium channels sustains smooth muscle cell membrane hyperpolarization, reducing cellular excitability and thereby promoting smooth muscle relaxation. Research over the past decade has indicated an important role for Kv7 (KCNQ) voltage-gated potassium channels in the regulation of the excitability of smooth muscle cells. Expression of multiple Kv7 channel subtypes has been demonstrated in smooth muscle cells from viscera (gastrointestinal, bladder, myometrial), from the systemic and pulmonary vasculature, and from the airways of the lung, from multiple species, including humans. A number of clinically used drugs, some of which were developed to target Kv7 channels in other tissues, have been found to exert robust effects on smooth muscle Kv7 channels. Functional studies have indicated that Kv7 channel activators and inhibitors have the ability to relax and contact smooth muscle preparations, respectively, suggesting a wide range of novel applications for the pharmacological tool set. This review summarizes recent findings regarding the physiological functions of Kv7 channels in smooth muscle, and highlights potential therapeutic applications based on pharmacological targeting of smooth muscle Kv7 channels throughout the body.

  10. The effects of progressive muscular relaxation as a nursing procedure used for those who suffer from stress due to multiple sclerosis 1

    PubMed Central

    Novais, Paolla Gabrielle Nascimento; Batista, Karla de Melo; Grazziano, Eliane da Silva; Amorim, Maria Helena Costa

    2016-01-01

    ABSTRACT Objective: to evaluate the effect of progressive muscle relaxation as a nursing procedure on the levels of stress for sufferers of multiple sclerosis. Method: random clinical trials conducted at the Neurology outpatients unit at a University Hospital. The sample consisted of 40 patients who were being monitored as outpatients (20 in a control group and 20 in an experimental group). The Progressive Muscle Relaxation technique was used. The control variables were collected through interviews that were recorded on forms and on the Perceived Stress Scale that we used. Five meetings were held every fortnight covering a period of eight weeks. The experimental group was advised to carry out daily progressive muscle relaxation activities. After eight weeks of these activities, they were evaluated again to measure their levels of stress. In order to analyze the data used, the software package Statistics for Social Sciences version 19.0 was used. Results: the application of the t test showed a significant reduction in the Perceived Stress Scale scores in the experimental group (p<0.001), which in turn proved that there was a reduction in the levels of stress after the application of the relaxation practic-es. Conclusion: the progressive muscle relaxation activities contributed to the reduction in stress levels for multiple sclerosis suffers and thus can be used in nursing for patients. Clinical Trials Identifier: NCT 02673827. PMID:27598379

  11. Involvement of large-conductance Ca(2+) -activated K(+) channels in both nitric oxide and endothelium-derived hyperpolarization-type relaxation in human penile small arteries.

    PubMed

    Király, István; Pataricza, János; Bajory, Zoltán; Simonsen, Ulf; Varro, András; Papp, Julius Gy; Pajor, Lászlo; Kun, Attila

    2013-07-01

    Large-conductance Ca(2+) -activated K(+) channels (BKC a ), located on the vascular smooth muscle, play an important role in regulation of vascular tone. In penile corpus cavernosum tissue, opening of BKC a channels leads to relaxation of corporal smooth muscle, which is essential during erection; however, there is little information on the role of BKC a channels located in penile vascular smooth muscle. This study was designed to investigate the involvement of BKC a channels in endothelium-dependent and endothelium-independent relaxation of human intracavernous penile arteries. In human intracavernous arteries obtained in connection with transsexual operations, change in isometric force was recorded in microvascular myographs, and endothelium-dependent [nitric oxide (NO) and endothelium-derived hyperpolarization (EDH)-type] and endothelium-independent (NO-donor) relaxations were measured in contracted arteries. In penile small arteries contracted with phenylephrine, acetylcholine evoked NO- and EDH-type relaxations, which were sensitive to iberiotoxin (IbTX), a selective blocker of BKC a channels. Iberiotoxin also inhibited relaxations induced by a NO-donor, sodium nitroprusside. NS11021, a selective opener of BKC a channels, evoked pronounced relaxations that were inhibited in the presence of IbTX. NS13558, a BKC a -inactive analogue of NS11021, failed to relax human penile small arteries. Our results show that BKC a channels are involved in both NO- and EDH-type relaxation of intracavernous penile arteries obtained from healthy men. The effect of a selective opener of BKC a channels also suggests that direct activation of the channel may be an advantageous approach for treatment of impaired endothelium-dependent relaxation often associated with erectile dysfunction.

  12. Carbon monoxide effects on calcium levels in vascular smooth muscle

    SciTech Connect

    Lin, H.; McGrath, J.J.

    1988-01-01

    Previously the authors showed that carbon monoxide (CO) relaxes vascular smooth muscle in the working heart and thoracic aorta preparation perfused with hemoglobin-free, Krebs-Henseleit (KH) solution. The CO-induced relaxation was not caused by hypoxia, nor was it mediated by adrenergic influences, adenosine, or prostaglandins. In these studies the effect of CO on calcium (Ca/sup + +/) concentrations in vascular smooth muscle was determined using /sup 45/Ca as a tracer. Isolated rat thoracic aorta segments were incubated with /sup 45/Ca and gassed with O/sub 2/, N/sub 2/, or CO for 60 min. Verapamil was used to verify the effectiveness of the test system. Ca/sup + +/ concentrations were 488 /+ -/ 35 and 515 /+ -/ 26 mM/g tissue (X /+ -/ SE) in aortic rings gassed with O/sub 2/ and N/sub 2/, respectively. CO reduced Ca/sup + +/ concentrations significantly (P<0.01) by 29% to 369 /+ -/ 18 mM/g tissue. Verapamil treatment reduced Ca/sup + +/ concentrations by 40% to 314 /+ -/ 23 mM/g tissue. These results suggest that CO relaxes vascular smooth muscle and dilates blood vessels by decreasing Ca/sup + +/ concentrations in vascular smooth muscle.

  13. Muscle activation patterns when passively stretching spastic lower limb muscles of children with cerebral palsy.

    PubMed

    Bar-On, Lynn; Aertbeliën, Erwin; Molenaers, Guy; Desloovere, Kaat

    2014-01-01

    The definition of spasticity as a velocity-dependent activation of the tonic stretch reflex during a stretch to a passive muscle is the most widely accepted. However, other mechanisms are also thought to contribute to pathological muscle activity and, in patients post-stroke and spinal cord injury can result in different activation patterns. In the lower-limbs of children with spastic cerebral palsy (CP) these distinct activation patterns have not yet been thoroughly explored. The aim of the study was to apply an instrumented assessment to quantify different muscle activation patterns in four lower-limb muscles of children with CP. Fifty-four children with CP were included (males/females n = 35/19; 10.8 ± 3.8 yrs; bilateral/unilateral involvement n =  32/22; Gross Motor Functional Classification Score I-IV) of whom ten were retested to evaluate intra-rater reliability. With the subject relaxed, single-joint, sagittal-plane movements of the hip, knee, and ankle were performed to stretch the lower-limb muscles at three increasing velocities. Muscle activity and joint motion were synchronously recorded using inertial sensors and electromyography (EMG) from the adductors, medial hamstrings, rectus femoris, and gastrocnemius. Muscles were visually categorised into activation patterns using average, normalized root mean square EMG (RMS-EMG) compared across increasing position zones and velocities. Based on the visual categorisation, quantitative parameters were defined using stretch-reflex thresholds and normalized RMS-EMG. These parameters were compared between muscles with different activation patterns. All patterns were dominated by high velocity-dependent muscle activation, but in more than half, low velocity-dependent activation was also observed. Muscle activation patterns were found to be both muscle- and subject-specific (p<0.01). The intra-rater reliability of all quantitative parameters was moderate to good. Comparing RMS-EMG between incremental position

  14. Unusual fibularis (peroneus) muscle.

    PubMed

    Fabrizio, Philip A

    2015-10-01

    Routine dissection has identified a previously unrecorded fibularis (peroneus) muscle in a 74-year-old male cadaver. The anomalous fibularis muscle was found lying immediately antero-medial to the fibularis longus (FL) muscle of the left leg. The anomalous muscle arose from the muscle belly of the FL in the proximal 1/2 of the leg. The muscle belly gave way to a long slender tendon that continued distally behind the lateral malleolus and inserted onto the superficial aspect of the inferior fibular retinaculum. The current finding and clinical significance are discussed.

  15. Antagonism of acetylcholine action in guinea-pig tracheal smooth muscle and epithelium by pirenzepine, 4-DAMP and atropine.

    PubMed

    Orer, H S; Guc, M O; Rezaki, Y E; Ilhan, M; Kayaalp, S O

    1990-01-01

    Acetylcholine-induced guinea-pig tracheal smooth muscle contraction and epithelium-derived relaxant factor release were evaluated using guinea-pig open tracheal rings and rat anococcygeus muscle bioassay to get insight into the participation of muscarinic receptor subtypes in these responses. There was a significant difference between the two pA2 values obtained in contraction and relaxation experiments for pirenzepine, but no difference was found either for atropine or for 4-DAMP. This difference seems to be due to the participation of M1-receptors in smooth muscle contraction.

  16. Muscle biofeedback and transcendental meditation. A controlled evaluation of efficacy in the treatment of chronic anxiety.

    PubMed

    Raskin, M; Bali, L R; Peeke, H V

    1980-01-01

    Recent articles have suggested that muscle biofeedback and transcendental meditation may be useful in treating chronic anxiety. To assess this, we conducted a controlled study comparing muscle biofeedback, transcendental mediation, and relaxation therapy. The study consisted of a six-week baseline period, six weeks of treatment, a six-week posttreatment observation period, and later follow-up. Thirty-one subjects completed the first part of the study and have been followed up for three to 18 months. Forty percent of the subjects had a clinically significant decrease in their anxiety. There were no differences between treatments with respect to treatment efficacy, onset of symptom amelioration, or maintenance of therapeutic gains. We found no evidence suggesting that the degree of muscle relaxation induced by any of the treatments is related to the therapeutic outcome. Relaxation therapies as a sole treatment appear to have a limited place in the treatment of chronic anxiety.

  17. Protein dynamics from nuclear magnetic relaxation.

    PubMed

    Charlier, Cyril; Cousin, Samuel F; Ferrage, Fabien

    2016-05-01

    Nuclear magnetic resonance is a ubiquitous spectroscopic tool to explore molecules with atomic resolution. Nuclear magnetic relaxation is intimately connected to molecular motions. Many methods and models have been developed to measure and interpret the characteristic rates of nuclear magnetic relaxation in proteins. These approaches shed light on a rich and diverse range of motions covering timescales from picoseconds to seconds. Here, we introduce some of the basic concepts upon which these approaches are built and provide a series of illustrations.

  18. Relaxation techniques for children and young people.

    PubMed

    Hobbie, C

    1989-01-01

    The relaxation response, relaxation with mental imagery/self-hypnosis, and centering are techniques that can be used by the nurse practitioner in a variety of clinical situations to help children and young people manage stress. These approaches also can be used to treat certain common pediatric problems, such as headaches, enuresis, acute and chronic pain, and habit disorders. The techniques and their appropriate use are described. PMID:2647960

  19. METHOD OF HYPERBOLIC SYSTEMS WITH STIFF RELAXATION

    SciTech Connect

    R. B. LOWRIE; J. E. MOREL

    2001-03-01

    Three methods are analyzed for solving a linear hyperbolic system that contains stiff relaxation. We show that the semi-discrete discontinuous Galerkin method, with a linear basis, is accurate when the relaxation time is unresolved (asymptotically preserving--AP). A recently developed central method is shown to be non-AP. To discriminate between AP and non-AP methods, we argue that one must study problems that are diffusion dominated.

  20. Relaxation techniques for children and young people.

    PubMed

    Hobbie, C

    1989-01-01

    The relaxation response, relaxation with mental imagery/self-hypnosis, and centering are techniques that can be used by the nurse practitioner in a variety of clinical situations to help children and young people manage stress. These approaches also can be used to treat certain common pediatric problems, such as headaches, enuresis, acute and chronic pain, and habit disorders. The techniques and their appropriate use are described.

  1. Human Muscle Fiber

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The stimulus of gravity affects RNA production, which helps maintain the strength of human muscles on Earth (top), as seen in this section of muscle fiber taken from an astronaut before spaceflight. Astronauts in orbit and patients on Earth fighting muscle-wasting diseases need countermeasures to prevent muscle atrophy, indicated here with white lipid droplets (bottom) in the muscle sample taken from the same astronaut after spaceflight. Kerneth Baldwin of the University of California, Irvine, is conducting research on how reducing the stimulus of gravity affects production of the RNA that the body uses as a blueprint for making muscle proteins. Muscle proteins are what give muscles their strength, so when the RNA blueprints aren't available for producing new proteins to replace old ones -- a situation that occurs in microgravity -- the muscles atrophy. When the skeletal muscle system is exposed to microgravity during spaceflight, the muscles undergo a reduced mass that translates to a reduction in strength. When this happens, muscle endurance decreases and the muscles are more prone to injury, so individuals could have problems in performing extravehicular activity [space walks] or emergency egress because their bodies are functionally compromised.

  2. Muscle strain injuries.

    PubMed

    Garrett, W E

    1996-01-01

    One of the most common injuries seen in the office of the practicing physician is the muscle strain. Until recently, little data were available on the basic science and clinical application of this basic science for the treatment and prevention of muscle strains. Studies in the last 10 years represent action taken on the direction of investigation into muscle strain injuries from the laboratory and clinical fronts. Findings from the laboratory indicate that certain muscles are susceptible to strain injury (muscles that cross multiple joints or have complex architecture). These muscles have a strain threshold for both passive and active injury. Strain injury is not the result of muscle contraction alone, rather, strains are the result of excessive stretch or stretch while the muscle is being activated. When the muscle tears, the damage is localized very near the muscle-tendon junction. After injury, the muscle is weaker and at risk for further injury. The force output of the muscle returns over the following days as the muscle undertakes a predictable progression toward tissue healing. Current imaging studies have been used clinically to document the site of injury to the muscle-tendon junction. The commonly injured muscles have been described and include the hamstring, the rectus femoris, gastrocnemius, and adductor longus muscles. Injuries inconsistent with involvement of a single muscle-tendon junction proved to be at tendinous origins rather than within the muscle belly. Important information has also been provided regarding injuries with poor prognosis, which are potentially repairable surgically, including injuries to the rectus femoris muscle, the hamstring origin, and the abdominal wall. Data important to the management of common muscle injuries have been published. The risks of reinjury have been documented. The early efficacy and potential for long-term risks of nonsteroidal antiinflammatory agents have been shown. New data can also be applied to the field

  3. Multivariable Static Ankle Mechanical Impedance With Active Muscles.

    PubMed

    Lee, Hyunglae; Ho, Patrick; Rastgaar, Mohammad; Krebs, Hermano Igo; Hogan, Neville

    2014-01-01

    This paper reports quantification of multivariable static ankle mechanical impedance when muscles were active. Repetitive measurements using a highly backdrivable therapeutic robot combined with robust function approximation methods enabled reliable characterization of the nonlinear torque-angle relation at the ankle in two coupled degrees of freedom simultaneously, a combination of dorsiflexion-plantarflexion and inversion-eversion, and how it varied with muscle activation. Measurements on 10 young healthy seated subjects quantified the behavior of the human ankle when muscles were active at 10% of maximum voluntary contraction. Stiffness, a linear approximation to static ankle mechanical impedance, was estimated from the continuous vector field. As with previous measurements when muscles were maximally relaxed, we found that ankle stiffness was highly direction-dependent, being weakest in inversion/eversion. Predominantly activating a single muscle or co-contracting antagonistic muscles significantly increased ankle stiffness in all directions but it increased more in the sagittal plane than in the frontal plane, accentuating the relative weakness of the ankle in the inversion-eversion direction. Remarkably, the observed increase was not consistent with simple superposition of muscle-generated stiffness, which may be due to the contribution of unmonitored deep ankle muscles. Implications for the assessment of neuro-mechanical disorders are discussed.

  4. In vivo myosin step-size from zebrafish skeletal muscle

    PubMed Central

    Ajtai, Katalin; Sun, Xiaojing; Takubo, Naoko; Wang, Yihua

    2016-01-01

    Muscle myosins transduce ATP free energy into actin displacement to power contraction. In vivo, myosin side chains are modified post-translationally under native conditions, potentially impacting function. Single myosin detection provides the ‘bottom-up’ myosin characterization probing basic mechanisms without ambiguities inherent to ensemble observation. Macroscopic muscle physiological experimentation provides the definitive ‘top-down’ phenotype characterizations that are the concerns in translational medicine. In vivo single myosin detection in muscle from zebrafish embryo models for human muscle fulfils ambitions for both bottom-up and top-down experimentation. A photoactivatable green fluorescent protein (GFP)-tagged myosin light chain expressed in transgenic zebrafish skeletal muscle specifically modifies the myosin lever-arm. Strychnine induces the simultaneous contraction of the bilateral tail muscles in a live embryo, causing them to be isometric while active. Highly inclined thin illumination excites the GFP tag of single lever-arms and its super-resolution orientation is measured from an active isometric muscle over a time sequence covering many transduction cycles. Consecutive frame lever-arm angular displacement converts to step-size by its product with the estimated lever-arm length. About 17% of the active myosin steps that fall between 2 and 7 nm are implicated as powerstrokes because they are beyond displacements detected from either relaxed or ATP-depleted (rigor) muscle. PMID:27249818

  5. In vivo myosin step-size from zebrafish skeletal muscle.

    PubMed

    Burghardt, Thomas P; Ajtai, Katalin; Sun, Xiaojing; Takubo, Naoko; Wang, Yihua

    2016-05-01

    Muscle myosins transduce ATP free energy into actin displacement to power contraction. In vivo, myosin side chains are modified post-translationally under native conditions, potentially impacting function. Single myosin detection provides the 'bottom-up' myosin characterization probing basic mechanisms without ambiguities inherent to ensemble observation. Macroscopic muscle physiological experimentation provides the definitive 'top-down' phenotype characterizations that are the concerns in translational medicine. In vivo single myosin detection in muscle from zebrafish embryo models for human muscle fulfils ambitions for both bottom-up and top-down experimentation. A photoactivatable green fluorescent protein (GFP)-tagged myosin light chain expressed in transgenic zebrafish skeletal muscle specifically modifies the myosin lever-arm. Strychnine induces the simultaneous contraction of the bilateral tail muscles in a live embryo, causing them to be isometric while active. Highly inclined thin illumination excites the GFP tag of single lever-arms and its super-resolution orientation is measured from an active isometric muscle over a time sequence covering many transduction cycles. Consecutive frame lever-arm angular displacement converts to step-size by its product with the estimated lever-arm length. About 17% of the active myosin steps that fall between 2 and 7 nm are implicated as powerstrokes because they are beyond displacements detected from either relaxed or ATP-depleted (rigor) muscle. PMID:27249818

  6. Muscle glycogen and cell function--Location, location, location.

    PubMed

    Ørtenblad, N; Nielsen, J

    2015-12-01

    The importance of glycogen, as a fuel during exercise, is a fundamental concept in exercise physiology. The use of electron microscopy has revealed that glycogen is not evenly distributed in skeletal muscle fibers, but rather localized in distinct pools. In this review, we present the available evidence regarding the subcellular localization of glycogen in skeletal muscle and discuss this from the perspective of skeletal muscle fiber function. The distribution of glycogen in the defined pools within the skeletal muscle varies depending on exercise intensity, fiber phenotype, training status, and immobilization. Furthermore, these defined pools may serve specific functions in the cell. Specifically, reduced levels of these pools of glycogen are associated with reduced SR Ca(2+) release, muscle relaxation rate, and membrane excitability. Collectively, the available literature strongly demonstrates that the subcellular localization of glycogen has to be considered to fully understand the role of glycogen metabolism and signaling in skeletal muscle function. Here, we propose that the effect of low muscle glycogen on excitation-contraction coupling may serve as a built-in mechanism, which links the energetic state of the muscle fiber to energy utilization.

  7. Respiratory effect of the intercostal muscles in the dog.

    PubMed

    Wilson, T A; De Troyer, A

    1993-12-01

    In a previous paper (J. Appl. Physiol. 73: 2283-2288, 1992), respiratory effect was defined as the change in airway pressure produced by active tension in a muscle with the airway closed, mechanical advantage was defined as the respiratory effect per unit mass per unit active stress, and it was shown that mechanical advantage is proportional to muscle shortening during the relaxation maneuver. Here, we report values of mechanical advantage and maximum respiratory effect of the intercostal muscles of the dog. Orientations of the intercostal muscles in the third and sixth interspaces were measured. Mechanical advantages of the muscles in these interspaces were computed by computing their shortening from these data and data in the literature on rib displacement. We found that parasternal internal intercostals and dorsal external intercostals of the upper interspace have large inspiratory mechanical advantages and that dorsal internal intercostals of the lower interspace and triangularis sterni have large expiratory mechanical advantages. Mass distributions in the two interspaces were also measured, and maximum respiratory effects of the muscles were calculated from their mass, mechanical advantage, and the value for maximum stress in skeletal muscle. Estimated maximum respiratory effects of the inspiratory and expiratory muscle groups of the entire rib cage were tested by measuring the maximum inspiratory pressures that were generated by the parasternal and external intercostals acting alone. Measured pressures, -13 cmH2O for the parasternals and -11 cmH2O for the external intercostals, agreed well with the computed values. PMID:8125884

  8. Rounded stretched exponential for time relaxation functions.

    PubMed

    Powles, J G; Heyes, D M; Rickayzen, G; Evans, W A B

    2009-12-01

    A rounded stretched exponential function is introduced, C(t)=exp{(tau(0)/tau(E))(beta)[1-(1+(t/tau(0))(2))(beta/2)]}, where t is time, and tau(0) and tau(E) are two relaxation times. This expression can be used to represent the relaxation function of many real dynamical processes, as at long times, t>tau(0), the function converges to a stretched exponential with normalizing relaxation time, tau(E), yet its expansion is even or symmetric in time, which is a statistical mechanical requirement. This expression fits well the shear stress relaxation function for model soft soft-sphere fluids near coexistence, with tau(E)relaxation (both the modulus and viscosity forms). It is shown that both the dielectric spectra and dynamic shear modulus imaginary parts approach the real axis with a slope equal to 0 at high frequency, whereas the dynamic viscosity has an infinite slope in the same limit. This indicates that inertial effects at high frequency are best discerned in the modulus rather than the viscosity Cole-Cole plot. As a consequence of the even expansion in time of the shear stress relaxation function, the value of the storage modulus derived from it at very high frequency exceeds that in the infinite frequency limit (i.e., G(infinity)).

  9. Dielectric relaxation of gamma irradiated muscovite mica

    SciTech Connect

    Kaur, Navjeet; Singh, Mohan; Singh, Lakhwant; Awasthi, A.M.; Lochab, S.P.

    2015-03-15

    Highlights: • The present article reports the effect of gamma irradiation on the dielectric relaxation characteristics of muscovite mica. • Dielectric and electrical relaxations have been analyzed in the framework of dielectric permittivity, electric modulus and Cole–Cole formalisms. • The frequency dependent electrical conductivity has been rationalized using Johnsher’s universal power law. • The experimentally measured electric modulus and conductivity data have been fitted using Havriliak–Negami dielectric relaxation function. - Abstract: In the present research, the dielectric relaxation of gamma irradiated muscovite mica was studied in the frequency range of 0.1 Hz–10 MHz and temperature range of 653–853 K, using the dielectric permittivity, electric modulus and conductivity formalisms. The dielectric constants (ϵ′ and ϵ′′) are found to be high for gamma irradiated muscovite mica as compared to the pristine sample. The frequency dependence of the imaginary part of complex electric modulus (M′′) and dc conductivity data conforms Arrhenius law with single value of activation energy for pristine sample and two values of activation energy for gamma irradiated mica sample. The experimentally assessed electric modulus and conductivity information have been interpreted by the Havriliak–Negami dielectric relaxation explanation. Using the Cole–Cole framework, an analysis of real and imaginary characters of the electric modulus for pristine and gamma irradiated sample was executed which reflects the non-Debye relaxation mechanism.

  10. Healthy Muscles Matter

    MedlinePlus

    ... keep my muscles more healthy? Definitions What can go wrong? Injuries Almost everyone has had sore muscles ... If you have been inactive, “start low and go slow” by gradually increasing how often and how ...

  11. Eye muscle repair - slideshow

    MedlinePlus

    ... page: //medlineplus.gov/ency/presentations/100062.htm Eye muscle repair - series—Normal anatomy To use the sharing ... the eyeball to the eye socket. The external muscles of the eye are found behind the conjunctiva. ...

  12. Differential effects of acetylcholine, nitric oxide and levcromakalim on smooth muscle membrane potential and tone in the rabbit basilar artery.

    PubMed

    Plane, F; Garland, C J

    1993-10-01

    1. Endothelium-dependent hyperpolarization of smooth muscle cells in isolated, pre-contracted segments of rabbit basilar artery in response to acetylcholine (100 microM) was abolished in the presence of glibenclamide (10 microM). 2. Acetylcholine-evoked relaxation was unaffected by either glibenclamide or 65 mM potassium chloride, indicating that the change in membrane potential did not form an essential component of relaxation and that high concentrations of potassium did not inhibit the release or action of endothelium-derived relaxing factor in this vessel. 3. Saturated solutions of nitric oxide (NO) gas in solution (150 microM), which evoked maximal relaxation of arterial segments pre-contracted and depolarized by noradrenaline (10-100 microM), did not alter the membrane potential of either unstimulated or depolarized smooth muscle cells. 4. The potassium channel opener levcromakalim, evoked concentration-dependent relaxation and hyperpolarization in pre-constricted smooth muscle cells. The threshold concentrations for hyperpolarization and relaxation, the EC50 values and the maximally effective concentration of levcromakalim (around 30 nM, 150 nM and 10 microM, respectively) were not significantly different, and both components of the response were inhibited by glibenclamide (10 microM), indicating a close coupling between the two responses. 5. In the presence of 65 mM potassium chloride, the hyperpolarization to levcromakalim was abolished, while a small relaxation (25 +/- 4%) persisted, indicating an additional mechanism for relaxation to this agent. 6. These results show that different mechanisms underlie the relaxant action of potassium channel openers, NO and endothelium-derived factors in cerebral arteries and provide further evidence that in the basilar artery, in contrast to some other vessels, endothelium-dependent hyperpolarization to acetylcholine is not important for smooth muscle relaxation.

  13. Short-term effects of integrated motor imagery practice on muscle activation and force performance.

    PubMed

    Di Rienzo, F; Blache, Y; Kanthack, T F D; Monteil, K; Collet, C; Guillot, A

    2015-10-01

    The effect of motor imagery (MI) practice on isometric force development is well-documented. However, whether practicing MI during rest periods of physical training improves the forthcoming performance remains unexplored. We involved 18 athletes in a counterbalanced design including three physical training sessions scheduled over five consecutive days. Training involved 10 maximal isometric contractions against a force plate, with the elbow at 90°. During two sessions, we integrated MI practice (focusing on either muscle activation or relaxation) during the inter-trial rest periods. We measured muscle performance from force plate and electromyograms of the biceps brachii and anterior deltoideus. We continuously monitored electrodermal activity (EDA) to control sympathetic nervous system activity. MI of muscle activation resulted in higher isometric force as compared to both MI of muscle relaxation and passive recovery (respectively +2.1% and +3.5%). MI practice of muscle relaxation also outperformed the control condition (+1.9%). Increased activation of the biceps brachii was recorded under both MI practice conditions compared to control. Biceps brachii activation was similar between the two MI practice conditions, but electromyography revealed a marginal trend toward greater activation of the anterior deltoideus during MI practice of muscle activation. EDA and self-reports indicated that these effects were independent from physiological arousal and motivation. These results might account for priming effects of MI practice yielding to higher muscle activation and force performance. Present findings may be of interest for applications in sports training and neurologic rehabilitation. PMID:26241339

  14. Exercising with a Muscle Disease

    MedlinePlus

    ... are: • cramping in muscles (probably related to insufficient energy supply for muscles) • pain in muscles • weakness of exercised muscles • dark urine that looks like cola, following exercise (seek ...

  15. Regional thermal specialisation in a mammal: temperature affects power output of core muscle more than that of peripheral muscle in adult mice (Mus musculus).

    PubMed

    James, Rob S; Tallis, Jason; Angilletta, Michael J

    2015-01-01

    In endotherms, such as mammals and birds, internal organs can specialise to function within a narrow thermal range. Consequently, these organs should become more sensitive to changes in body temperature. Yet, organs at the periphery of the body still experience considerable fluctuations in temperature, which could select for lower thermal sensitivity. We hypothesised that the performance of soleus muscle taken from the leg would depend less on temperature than would the performance of diaphragm muscle taken from the body core. Soleus and diaphragm muscles were isolated from mice and subjected to isometric and work-loop studies to analyse mechanical performance at temperatures between 15 and 40 °C. Across this thermal range, soleus muscle took longer to generate isometric force and longer to relax, and tended to produce greater normalised maximal force (stress) than did diaphragm muscle. The time required to produce half of maximal force during isometric tetanus and the time required to relax half of maximal force were both more sensitive to temperature in soleus than they were in diaphragm. However, thermal sensitivities of maximal force during isometric tetani were similar for both muscles. Consistent with our hypothesis, power output (the product of speed and force) was greater in magnitude and more thermally sensitive in diaphragm than it was in soleus. Our findings, when combined with previous observations of muscles from regionally endothermic fish, suggest that endothermy influences the thermal sensitivities of power output in core and peripheral muscles.

  16. Muscle Session Summary

    NASA Technical Reports Server (NTRS)

    Baldwin, Kenneth; Feeback, Daniel

    1999-01-01

    Presentations from the assembled group of investigators involved in specific research projeects related to skeletal muscle in space flight can categorized in thematic subtopics: regulation of contractile protein phenotypes, muscle growth and atrophy, muscle structure: injury, recovery,and regeneration, metabolism and fatigue, and motor control and loading factors.

  17. Extent of salmeterol-mediated reassertion of relaxation in guinea-pig trachea pretreated with aliphatic side chain structural analogues.

    PubMed Central

    Bergendal, A.; Lindén, A.; Skoogh, B. E.; Gerspacher, M.; Anderson, G. P.; Löfdahl, C. G.

    1996-01-01

    1. Salmeterol is a potent, selective and long acting beta 2-adrenoceptor agonist. In vitro, salmeterol exerts 'reassertion' relaxation of airways smooth muscle. Reassertion relaxation refers to the capacity of salmeterol to cause repeated functional antagonism of induced contraction when airway smooth muscle is intermittently exposed to, then washed free from, beta-adrenoceptor antagonists such as sotalol. The mechanism(s) underlying reassertion relaxation are unknown but may relate to high affinity binding of the long aliphatic side chain of salmeterol to an accessory site, distinct from the agonist recognition site, in or near the beta 2-adrenoceptor (exosite binding hypothesis). 2. In order to test the exosite hypothesis, three pure analogues of salmeterol, each exactly preserving the molecular structure of the aliphatic side chain but with zero or low efficacy at the beta 2-adrenoceptor were synthesized. The effect of pre-incubating guinea-pig tracheal smooth muscle with these analogues on salmeterol-induced reassertion relaxation was determined. 3. Computer Assisted Molecular Modelling of these molecules revealed that each of them exactly preserved the low energy linear conformation of the aliphatic side chain of salmeterol. Measurement of lipophilicity (octanol:water partition coefficient; log P) and direct partition into synthetic membranes (membrane partition coefficient; Kpmem) showed that all compounds had high affinity for lipids and membranes. In particular the biophysical properties of CGP 59162 (log P 1.89, Kpmem 16500) were very similar to salmeterol (log P 1.73, Kpmem 16800). 4. Two of the analogues, CGP 54103 and D 2543 (1 microM), which are structural mimics of the side chain of salmeterol, differing slightly in their length, did not prevent either the initial relaxation induced by salmeterol (0.1 microM) or the reassertion relaxation; however, it was not possible to determine whether either of these molecules occupied the beta 2-adrenoceptor. 5

  18. Chronic clenbuterol treatment compromises force production without directly altering skeletal muscle contractile machinery

    PubMed Central

    Py, G; Ramonatxo, C; Sirvent, P; Sanchez, A M J; Philippe, A G; Douillard, A; Galbès, O; Lionne, C; Bonnieu, A; Chopard, A; Cazorla, O; Lacampagne, A; Candau, R B

    2015-01-01

    Clenbuterol is a β2-adrenergic receptor agonist known to induce skeletal muscle hypertrophy and a slow-to-fast phenotypic shift. The aim of the present study was to test the effects of chronic clenbuterol treatment on contractile efficiency and explore the underlying mechanisms, i.e. the muscle contractile machinery and calcium-handling ability. Forty-three 6-week-old male Wistar rats were randomly allocated to one of six groups that were treated with either subcutaneous equimolar doses of clenbuterol (4 mg kg−1 day−1) or saline solution for 9, 14 or 21 days. In addition to the muscle hypertrophy, although an 89% increase in absolute maximal tetanic force (Po) was noted, specific maximal tetanic force (sPo) was unchanged or even depressed in the slow twitch muscle of the clenbuterol-treated rats (P < 0.05). The fit of muscle contraction and relaxation force kinetics indicated that clenbuterol treatment significantly reduced the rate constant of force development and the slow and fast rate constants of relaxation in extensor digitorum longus muscle (P < 0.05), and only the fast rate constant of relaxation in soleus muscle (P < 0.05). Myofibrillar ATPase activity increased in both relaxed and activated conditions in soleus (P < 0.001), suggesting that the depressed specific tension was not due to the myosin head alteration itself. Moreover, action potential-elicited Ca2+ transients in flexor digitorum brevis fibres (fast twitch fibres) from clenbuterol-treated animals demonstrated decreased amplitude after 14 days (−19%, P < 0.01) and 21 days (−25%, P < 0.01). In conclusion, we showed that chronic clenbuterol treatment reduces contractile efficiency, with altered contraction and relaxation kinetics, but without directly altering the contractile machinery. Lower Ca2+ release during contraction could partially explain these deleterious effects. PMID:25656230

  19. Chronic clenbuterol treatment compromises force production without directly altering skeletal muscle contractile machinery.

    PubMed

    Py, G; Ramonatxo, C; Sirvent, P; Sanchez, A M J; Philippe, A G; Douillard, A; Galbès, O; Lionne, C; Bonnieu, A; Chopard, A; Cazorla, O; Lacampagne, A; Candau, R B

    2015-04-15

    Clenbuterol is a β2 -adrenergic receptor agonist known to induce skeletal muscle hypertrophy and a slow-to-fast phenotypic shift. The aim of the present study was to test the effects of chronic clenbuterol treatment on contractile efficiency and explore the underlying mechanisms, i.e. the muscle contractile machinery and calcium-handling ability. Forty-three 6-week-old male Wistar rats were randomly allocated to one of six groups that were treated with either subcutaneous equimolar doses of clenbuterol (4 mg kg(-1) day(-1) ) or saline solution for 9, 14 or 21 days. In addition to the muscle hypertrophy, although an 89% increase in absolute maximal tetanic force (Po ) was noted, specific maximal tetanic force (sPo) was unchanged or even depressed in the slow twitch muscle of the clenbuterol-treated rats (P < 0.05). The fit of muscle contraction and relaxation force kinetics indicated that clenbuterol treatment significantly reduced the rate constant of force development and the slow and fast rate constants of relaxation in extensor digitorum longus muscle (P < 0.05), and only the fast rate constant of relaxation in soleus muscle (P < 0.05). Myofibrillar ATPase activity increased in both relaxed and activated conditions in soleus (P < 0.001), suggesting that the depressed specific tension was not due to the myosin head alteration itself. Moreover, action potential-elicited Ca(2+) transients in flexor digitorum brevis fibres (fast twitch fibres) from clenbuterol-treated animals demonstrated decreased amplitude after 14 days (-19%, P < 0.01) and 21 days (-25%, P < 0.01). In conclusion, we showed that chronic clenbuterol treatment reduces contractile efficiency, with altered contraction and relaxation kinetics, but without directly altering the contractile machinery. Lower Ca(2+) release during contraction could partially explain these deleterious effects. PMID:25656230

  20. Stable 5,6-epoxyeicosatrienoic acid analog relaxes coronary arteries through potassium channel activation.

    PubMed

    Yang, Wenqi; Gauthier, Kathryn M; Reddy, L Manmohan; Sangras, Bhavani; Sharma, Kamalesh K; Nithipatikom, Kasem; Falck, John R; Campbell, William B

    2005-04-01

    5,6-epoxyeicosatrienoic acid (5,6-EET) is a cytochrome P450 epoxygenase metabolite of arachidonic acid that causes vasorelaxation. However, investigations of its role in biological systems have been limited by its chemical instability. We developed a stable agonist of 5,6-EET, 5-(pentadeca-3(Z),6(Z),9(Z)-trienyloxy)pentanoic acid (PTPA), in which the 5,6-epoxide was replaced with a 5-ether. PTPA obviates chemical and enzymatic hydrolysis. In bovine coronary artery rings precontracted with U46619, PTPA (1 nmol/L to 10 micromol/L) induced concentration-dependent relaxations, with maximal relaxation of 86+/-5% and EC50 of 1 micromol/L. The relaxations were inhibited by the cyclooxygenase inhibitor indomethacin (10 micromol/L; max relaxation 43+/-9%); the ATP-sensitive K+ channel inhibitor glybenclamide (10 micromol/L; max relaxation 49+/-6%); and the large conductance calcium-activated K+ channel inhibitor iberiotoxin (100 nmol/L; max relaxation 38+/-6%) and abolished by the combination of iberiotoxin with indomethacin or glybenclamide or increasing extracellular K+ to 20 mmol/L. Whole-cell outward K+ current was increased nearly 6-fold by PTPA (10 micromol/L), which was also blocked by iberiotoxin. Additionally, we synthesized 5-(pentadeca-6(Z),9(Z)-dienyloxy)pentanoic acid and 5-(pentadeca-3(Z),9(Z)-dienyloxy)pentanoic acid (PDPA), PTPA analogs that lack the 8,9 or 11,12 double bonds of arachidonic acid and therefore are not substrates for cyclooxygenase. The PDPAs caused concentration-dependent relaxations (max relaxations 46+/-13% and 52+/-7%, respectively; EC50 1micromol/L), which were not altered by glybenclamide but blocked by iberiotoxin. These studies suggested that PTPA induces relaxation through 2 mechanisms: (1) cyclooxygenase-dependent metabolism to 5-ether-containing prostaglandins that activate ATP-sensitive K+ channels and (2) activation of smooth muscle large conductance calcium-activated K+ channels. PDPAs only activate large conductance calcium

  1. Applied Relaxation as Training in Self-Control

    ERIC Educational Resources Information Center

    Chang-Liang, Rosa; Denney, Douglas R.

    1976-01-01

    Text-anxious students who were high or low in general anxiety were treated with applied relaxation, systematic desensitization, relaxation only, or no treatment (control). The results indicated that applied relaxation was more effective in reducing anxiety than relaxation only and no treatment on measures of general anxiety and measures of test…

  2. Aminoglycoside-mediated relaxation of the ductus arteriosus in sepsis-associated PDA.

    PubMed

    Vucovich, Megan M; Cotton, Robert B; Shelton, Elaine L; Goettel, Jeremy A; Ehinger, Noah J; Poole, Stanley D; Brown, Naoko; Wynn, James L; Paria, Bibhash C; Slaughter, James C; Clark, Reese H; Rojas, Mario A; Reese, Jeff

    2014-09-01

    Sepsis is strongly associated with patency of the ductus arteriosus (PDA) in critically ill newborns. Inflammation and the aminoglycoside antibiotics used to treat neonatal sepsis cause smooth muscle relaxation, but their contribution to PDA is unknown. We examined whether: 1) lipopolysaccharide (LPS) or inflammatory cytokines cause relaxation of the ex vivo mouse DA; 2) the aminoglycosides gentamicin, tobramycin, or amikacin causes DA relaxation; and 3) newborn infants treated with aminoglycosides have an increased risk of symptomatic PDA (sPDA). Changes in fetal mouse DA tone were measured by pressure myography in response to LPS, TNF-α, IFN-γ, macrophage-inflammatory protein 2, IL-15, IL-13, CXC chemokine ligand 12, or three aminoglycosides. A clinical database of inborn patients of all gestations was analyzed for association between sPDA and aminoglycoside treatment. Contrary to expectation, neither LPS nor any of the inflammatory mediators caused DA relaxation. However, each of the aminoglycosides caused concentration-dependent vasodilation in term and preterm mouse DAs. Pretreatment with indomethacin and N-(G)-nitro-L-arginine methyl ester did not prevent gentamicin-induced DA relaxation. Gentamicin-exposed DAs developed less oxygen-induced constriction than unexposed DAs. Among 488,349 infants who met the study criteria, 40,472 (8.3%) had sPDA. Confounder-adjusted odds of sPDA were higher in gentamicin-exposed infants, <25 wk and >32 wk. Together, these findings suggest that factors other than inflammation contribute to PDA. Aminoglycoside-induced vasorelaxation and inhibition of oxygen-induced DA constriction support the paradox that antibiotic treatment of sepsis may contribute to DA relaxation. This association was also found in newborn infants, suggesting that antibiotic selection may be an important consideration in efforts to reduce sepsis-associated PDA.

  3. Effects of reactive oxygen species and neutrophils on endothelium-dependent relaxation of rat thoracic aorta

    PubMed Central

    Bauer, Viktor; Sotníková, Ružena; Drábiková, Katarína

    2011-01-01

    Reactive oxygen species (ROS) are produced in different metabolic processes including the respiratory burst of neutrophils accompanying local inflammation. The aim of this study was to analyze the effects of N-formyl-methionyl-leucyl-phenylalanine (FMLP)-activated neutrophils, isolated from the guinea pig peritoneal cavity, on isolated rings of a large (conduit) artery, the rat thoracic aorta. FMLP-activated neutrophils enhanced the basal tension increased by α1-adrenergic stimulation. In phenylephrine-precontracted aortae, they elicited marked contraction, while in noradrenaline-precontracted rat aortal rings they caused a biphasic response (contraction-relaxation). To eliminate interaction of activated neutrophils with catecholamines, in the subsequent experiments the basal tension was increased by KCl-induced depolarization. Activated neutrophils evoked a low-amplitude biphasic response (relaxation-contraction) on the KCl-induced contraction. Not only the acetylcholine- and A23187-induced relaxations but also the catalase sensitive hydrogen peroxide (H2O2) elicited contractions were endothelium-dependent. Even though the acetylcholine-induced relaxation was changed by activated neutrophils and by the ROS studied, their effects differed significantly, yet none of them did eliminate fully the endothelium-dependent acetylcholine relaxation. The effect of activated neutrophils resembled the effect of superoxide anion radical (O2 •–) produced by xanthine/xanthine oxidase (X/XO) and differed from the inhibitory effects of Fe2SO4/H2O2-produced hydroxyl radical (•OH) and H2O2. Thus O2 •– produced either by activated neutrophils or X/XO affected much less the endothelium-dependent acetylcholine-activated relaxation mechanisms than did •OH and H2O2. In the large (conduit) artery, the effects of activated neutrophils and various ROS (O2 •–, •OH and H2O2) seem to be more dependent on muscle tension than on endothelial mechanisms. PMID:22319253

  4. Aminoglycoside-mediated relaxation of the ductus arteriosus in sepsis-associated PDA.

    PubMed

    Vucovich, Megan M; Cotton, Robert B; Shelton, Elaine L; Goettel, Jeremy A; Ehinger, Noah J; Poole, Stanley D; Brown, Naoko; Wynn, James L; Paria, Bibhash C; Slaughter, James C; Clark, Reese H; Rojas, Mario A; Reese, Jeff

    2014-09-01

    Sepsis is strongly associated with patency of the ductus arteriosus (PDA) in critically ill newborns. Inflammation and the aminoglycoside antibiotics used to treat neonatal sepsis cause smooth muscle relaxation, but their contribution to PDA is unknown. We examined whether: 1) lipopolysaccharide (LPS) or inflammatory cytokines cause relaxation of the ex vivo mouse DA; 2) the aminoglycosides gentamicin, tobramycin, or amikacin causes DA relaxation; and 3) newborn infants treated with aminoglycosides have an increased risk of symptomatic PDA (sPDA). Changes in fetal mouse DA tone were measured by pressure myography in response to LPS, TNF-α, IFN-γ, macrophage-inflammatory protein 2, IL-15, IL-13, CXC chemokine ligand 12, or three aminoglycosides. A clinical database of inborn patients of all gestations was analyzed for association between sPDA and aminoglycoside treatment. Contrary to expectation, neither LPS nor any of the inflammatory mediators caused DA relaxation. However, each of the aminoglycosides caused concentration-dependent vasodilation in term and preterm mouse DAs. Pretreatment with indomethacin and N-(G)-nitro-L-arginine methyl ester did not prevent gentamicin-induced DA relaxation. Gentamicin-exposed DAs developed less oxygen-induced constriction than unexposed DAs. Among 488,349 infants who met the study criteria, 40,472 (8.3%) had sPDA. Confounder-adjusted odds of sPDA were higher in gentamicin-exposed infants, <25 wk and >32 wk. Together, these findings suggest that factors other than inflammation contribute to PDA. Aminoglycoside-induced vasorelaxation and inhibition of oxygen-induced DA constriction support the paradox that antibiotic treatment of sepsis may contribute to DA relaxation. This association was also found in newborn infants, suggesting that antibiotic selection may be an important consideration in efforts to reduce sepsis-associated PDA. PMID:24993047

  5. Clonogenic multipotent stem cells in human adipose tissue differentiate into functional smooth muscle cells

    PubMed Central

    Rodríguez, Larissa V.; Alfonso, Zeni; Zhang, Rong; Leung, Joanne; Wu, Benjamin; Ignarro, Louis J.

    2006-01-01

    Smooth muscle is a major component of human tissues and is essential for the normal function of a multitude of organs including the intestine, urinary tract and the vascular system. The use of stem cells for cell-based tissue engineering and regeneration strategies represents a promising alternative for smooth muscle repair. For such strategies to succeed, a reliable source of smooth muscle precursor cells must be identified. Adipose tissue provides an abundant source of multipotent cells. In this study, the capacity of processed lipoaspirate (PLA) and adipose-derived stem cells to differentiate into phenotypic and functional smooth muscle cells was evaluated. To induce differentiation, PLA cells were cultured in smooth muscle differentiation medium. Smooth muscle differentiation of PLA cells induced genetic expression of all smooth muscle markers and further confirmed by increased protein expression of smooth muscle cell-specific α actin (ASMA), calponin, caldesmon, SM22, myosin heavy chain (MHC), and smoothelin. Clonal studies of adipose derived multipotent cells demonstrated differentiation of these cells into smooth muscle cells in addition to trilineage differentiation capacity. Importantly, smooth muscle-differentiated cells, but not their precursors, exhibit the functional ability to contract and relax in direct response to pharmacologic agents. In conclusion, adipose-derived cells have the potential to differentiate into functional smooth muscle cells and, thus, adipose tissue can be a useful source of cells for treatment of injured tissues where smooth muscle plays an important role. PMID:16880387

  6. Glucocorticoids and Skeletal Muscle.

    PubMed

    Bodine, Sue C; Furlow, J David

    2015-01-01

    Glucocorticoids are known to regulate protein metabolism in skeletal muscle, producing a catabolic effect that is opposite that of insulin. In many catabolic diseases, such as sepsis, starvation, and cancer cachexia, endogenous glucocorticoids are elevated contributing to the loss of muscle mass and function. Further, exogenous glucocorticoids are often given acutely and chronically to treat inflammatory conditions such as asthma, chronic obstructive pulmonary disease, and rheumatoid arthritis, resulting in muscle atrophy. This chapter will detail the nature of glucocorticoid-induced muscle atrophy and discuss the mechanisms thought to be responsible for the catabolic effects of glucocorticoids on muscle. PMID:26215994

  7. Oxidative Metabolism in Muscle

    NASA Astrophysics Data System (ADS)

    Ferrari, M.; Binzoni, T.; Quaresima, V.

    1997-06-01

    Oxidative metabolism is the dominant source of energy for skeletal muscle. Near-infrared spectroscopy allows the non-invasive measurement of local oxygenation, blood flow and oxygen consumption. Although several muscle studies have been made using various near-infrared optical techniques, it is still difficult to interpret the local muscle metabolism properly. The main findings of near-infrared spectroscopy muscle studies in human physiology and clinical medicine are summarized. The advantages and problems of near-infrared spectroscopy measurements, in resting and exercising skeletal muscles studies, are discussed through some representative examples.

  8. Parvalbumin characteristics in the sonic muscle of a freshwater ornamental grunting toadfish (Allenbatrachus grunniens).

    PubMed

    Chiu, Kuo-Hsun; Hsieh, Fu-Ming; Chen, Yu-Yun; Huang, Hurng-Wern; Shiea, Jentaie; Mok, Hin-Kiu

    2013-04-01

    The grunting toadfish, Allenbatrachus grunniens, is an ornamental fish in freshwater aquariums, and it has the ability to produce sounds. The sonic muscle of the toadfish is the fastest vertebrate muscle ever measured, and the rates of Ca(2+) transport and cross-bridge dissociation are also the fastest. Parvalbumins (PAs) are Ca(2+)-binding proteins that help in muscle relaxation in vertebrates. Several PA isoforms have been identified in variable ratios in different muscle types. Both male and female grunting toadfish have intrinsic sonic muscles attached to their swim bladders, but no significant difference in morphology between male and female sonic muscles has been observed. In this study, we used SDS-PAGE and western blotting to characterize the total PA expression and to identify the PAs from the sonic muscle and the white body muscle of A. grunniens. Although the total PA concentrations were similar in sonic and white muscles, there were differences in the isoform percentages. Two and four PA isoforms were identified from sonic muscle and white muscle, respectively. The estimated sizes of PA1, PA2, and PA3 in the sonic muscle of the grunting toadfish were 10, 10.5, and 10.5 kDa, respectively, and the isoelectric points of PA1, PA2, and PA3 in the grunting toadfish were 4.77, 4.58, and 4.42, respectively. In the sonic muscle, the primary PA isoform was PA1, which comprised more than 94 % of total PA, whereas PA2 comprised only 5 % of the total PA content. In contrast, in white muscle, the primary isoform was PA2, which comprised 58 % of the total PA. Both PA1 (with PA1a) and PA3 represented approximately 20 % of the total PA in white muscle. These results indicate that there is no positive correlation between a high PA content and the speed of muscle relaxation; however, PA1 might have the greatest effect on the relaxation of the grunting toadfish's sonic muscle. PMID:22744796

  9. Carrier relaxation dynamics in heavy fermion compounds

    SciTech Connect

    Demsar, J.; Tracy, L. A.; Averitt, R. D.; Trugman, S. A.; Sarrao, John L.,; Taylor, Antoinette J.,

    2002-01-01

    The first femtosecond carrier relaxation dynamics studies in heavy fermion compounds are presented. The carrier relaxation time shows a dramatic hundred-fold increase below the Kondo temperature revealing a dramatic sensitivity to the electronic density of states near the Fermi level. Femtosecond time-resolved optical spectroscopy is an excellent experimental alternative to conventional spectroscopic methods that probe the low energy electronic structure in strongly correlated electron systems. In particular, it has been shown that carrier relaxation dynamics are very sensitive to changes in the low energy density of states (e.g. associated with the formation of a low energy gap or pseudogap) providing new insights into the low energy electronic structure in these materials. In this report we present the first studies of carrier relaxation dynamics in heavy fermion (HF) systems by means of femtosecond time-resolved optical spectroscopy. Our results show that the carrier relaxation dynamics, below the Kondo temperature (T{sub K}), are extremely sensitive to the low energy density of states (DOS) near the Ferini level to which localized f-moments contribute. Specifically, we have performed measurements of the photoinduced reflectivity {Delta}R/R dynamics as a function of temperature and excitation intensity on the series of HF compounds YbXCu{sub 4} (X = Ag, Cd, In) in comparison to their non-magnetic counterparts LuXCu{sub 4}.

  10. Doppler effect induced spin relaxation boom

    PubMed Central

    Zhao, Xinyu; Huang, Peihao; Hu, Xuedong

    2016-01-01

    We study an electron spin qubit confined in a moving quantum dot (QD), with our attention on both spin relaxation, and the product of spin relaxation, the emitted phonons. We find that Doppler effect leads to several interesting phenomena. In particular, spin relaxation rate peaks when the QD motion is in the transonic regime, which we term a spin relaxation boom in analogy to the classical sonic boom. This peak indicates that a moving spin qubit may have even lower relaxation rate than a static qubit, pointing at the possibility of coherence-preserving transport for a spin qubit. We also find that the emitted phonons become strongly directional and narrow in their frequency range as the qubit reaches the supersonic regime, similar to Cherenkov radiation. In other words, fast moving excited spin qubits can act as a source of non-classical phonons. Compared to classical Cherenkov radiation, we show that quantum dot confinement produces a small but important correction on the Cherenkov angle. Taking together, these results have important implications to both spin-based quantum information processing and coherent phonon dynamics in semiconductor nanostructures. PMID:26996253

  11. Doppler effect induced spin relaxation boom.

    PubMed

    Zhao, Xinyu; Huang, Peihao; Hu, Xuedong

    2016-03-21

    We study an electron spin qubit confined in a moving quantum dot (QD), with our attention on both spin relaxation, and the product of spin relaxation, the emitted phonons. We find that Doppler effect leads to several interesting phenomena. In particular, spin relaxation rate peaks when the QD motion is in the transonic regime, which we term a spin relaxation boom in analogy to the classical sonic boom. This peak indicates that a moving spin qubit may have even lower relaxation rate than a static qubit, pointing at the possibility of coherence-preserving transport for a spin qubit. We also find that the emitted phonons become strongly directional and narrow in their frequency range as the qubit reaches the supersonic regime, similar to Cherenkov radiation. In other words, fast moving excited spin qubits can act as a source of non-classical phonons. Compared to classical Cherenkov radiation, we show that quantum dot confinement produces a small but important correction on the Cherenkov angle. Taking together, these results have important implications to both spin-based quantum information processing and coherent phonon dynamics in semiconductor nanostructures.

  12. Doppler effect induced spin relaxation boom

    NASA Astrophysics Data System (ADS)

    Zhao, Xinyu; Huang, Peihao; Hu, Xuedong

    2016-03-01

    We study an electron spin qubit confined in a moving quantum dot (QD), with our attention on both spin relaxation, and the product of spin relaxation, the emitted phonons. We find that Doppler effect leads to several interesting phenomena. In particular, spin relaxation rate peaks when the QD motion is in the transonic regime, which we term a spin relaxation boom in analogy to the classical sonic boom. This peak indicates that a moving spin qubit may have even lower relaxation rate than a static qubit, pointing at the possibility of coherence-preserving transport for a spin qubit. We also find that the emitted phonons become strongly directional and narrow in their frequency range as the qubit reaches the supersonic regime, similar to Cherenkov radiation. In other words, fast moving excited spin qubits can act as a source of non-classical phonons. Compared to classical Cherenkov radiation, we show that quantum dot confinement produces a small but important correction on the Cherenkov angle. Taking together, these results have important implications to both spin-based quantum information processing and coherent phonon dynamics in semiconductor nanostructures.

  13. Doppler effect induced spin relaxation boom.

    PubMed

    Zhao, Xinyu; Huang, Peihao; Hu, Xuedong

    2016-01-01

    We study an electron spin qubit confined in a moving quantum dot (QD), with our attention on both spin relaxation, and the product of spin relaxation, the emitted phonons. We find that Doppler effect leads to several interesting phenomena. In particular, spin relaxation rate peaks when the QD motion is in the transonic regime, which we term a spin relaxation boom in analogy to the classical sonic boom. This peak indicates that a moving spin qubit may have even lower relaxation rate than a static qubit, pointing at the possibility of coherence-preserving transport for a spin qubit. We also find that the emitted phonons become strongly directional and narrow in their frequency range as the qubit reaches the supersonic regime, similar to Cherenkov radiation. In other words, fast moving excited spin qubits can act as a source of non-classical phonons. Compared to classical Cherenkov radiation, we show that quantum dot confinement produces a small but important correction on the Cherenkov angle. Taking together, these results have important implications to both spin-based quantum information processing and coherent phonon dynamics in semiconductor nanostructures. PMID:26996253

  14. Convex relaxations for gas expansion planning

    SciTech Connect

    Borraz-Sanchez, Conrado; Bent, Russell Whitford; Backhaus, Scott N.; Hijazi, Hassan; Van Hentenryck, Pascal

    2016-01-01

    Expansion of natural gas networks is a critical process involving substantial capital expenditures with complex decision-support requirements. Here, given the non-convex nature of gas transmission constraints, global optimality and infeasibility guarantees can only be offered by global optimisation approaches. Unfortunately, state-of-the-art global optimisation solvers are unable to scale up to real-world size instances. In this study, we present a convex mixed-integer second-order cone relaxation for the gas expansion planning problem under steady-state conditions. The underlying model offers tight lower bounds with high computational efficiency. In addition, the optimal solution of the relaxation can often be used to derive high-quality solutions to the original problem, leading to provably tight optimality gaps and, in some cases, global optimal solutions. The convex relaxation is based on a few key ideas, including the introduction of flux direction variables, exact McCormick relaxations, on/off constraints, and integer cuts. Numerical experiments are conducted on the traditional Belgian gas network, as well as other real larger networks. The results demonstrate both the accuracy and computational speed of the relaxation and its ability to produce high-quality solution

  15. Convex relaxations for gas expansion planning

    DOE PAGES

    Borraz-Sanchez, Conrado; Bent, Russell Whitford; Backhaus, Scott N.; Hijazi, Hassan; Van Hentenryck, Pascal

    2016-01-01

    Expansion of natural gas networks is a critical process involving substantial capital expenditures with complex decision-support requirements. Here, given the non-convex nature of gas transmission constraints, global optimality and infeasibility guarantees can only be offered by global optimisation approaches. Unfortunately, state-of-the-art global optimisation solvers are unable to scale up to real-world size instances. In this study, we present a convex mixed-integer second-order cone relaxation for the gas expansion planning problem under steady-state conditions. The underlying model offers tight lower bounds with high computational efficiency. In addition, the optimal solution of the relaxation can often be used to derive high-quality solutionsmore » to the original problem, leading to provably tight optimality gaps and, in some cases, global optimal solutions. The convex relaxation is based on a few key ideas, including the introduction of flux direction variables, exact McCormick relaxations, on/off constraints, and integer cuts. Numerical experiments are conducted on the traditional Belgian gas network, as well as other real larger networks. The results demonstrate both the accuracy and computational speed of the relaxation and its ability to produce high-quality solution« less

  16. Increased risk of muscle tears below physiological temperature ranges

    PubMed Central

    Scott, E. E. F.; Hamilton, D. F.; Wallace, R. J.; Muir, A. Y.

    2016-01-01

    Objectives Temperature is known to influence muscle physiology, with the velocity of shortening, relaxation and propagation all increasing with temperature. Scant data are available, however, regarding thermal influences on energy required to induce muscle damage. Methods Gastrocnemius and soleus muscles were harvested from 36 male rat limbs and exposed to increasing impact energy in a mechanical test rig. Muscle temperature was varied in 5°C increments, from 17°C to 42°C (to encompass the in vivo range). The energy causing non-recoverable deformation was recorded for each temperature. A measure of tissue elasticity was determined via accelerometer data, smoothed by low-pass fifth order Butterworth filter (10 kHz). Data were analysed using one-way analysis of variance (ANOVA) and significance was accepted at p = 0.05. Results The energy required to induce muscle failure was significantly lower at muscle temperatures of 17°C to 32°C compared with muscle at core temperature, i.e., 37°C (p < 0.01). During low-energy impacts there were no differences in muscle elasticity between cold and warm muscles (p = 0.18). Differences in elasticity were, however, seen at higher impact energies (p < 0.02). Conclusion Our findings are of particular clinical relevance, as when muscle temperature drops below 32°C, less energy is required to cause muscle tears. Muscle temperatures of 32°C are reported in ambient conditions, suggesting that it would be beneficial, particularly in colder environments, to ensure that peripheral muscle temperature is raised close to core levels prior to high-velocity exercise. Thus, this work stresses the importance of not only ensuring that the muscle groups are well stretched, but also that all muscle groups are warmed to core temperature in pre-exercise routines. Cite this article: Professor A. H. R. W. Simpson. Increased risk of muscle tears below physiological temperature ranges. Bone Joint Res 2016;5:61–65. DOI: 10

  17. A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle.

    PubMed

    Nelson, Benjamin R; Makarewich, Catherine A; Anderson, Douglas M; Winders, Benjamin R; Troupes, Constantine D; Wu, Fenfen; Reese, Austin L; McAnally, John R; Chen, Xiongwen; Kavalali, Ege T; Cannon, Stephen C; Houser, Steven R; Bassel-Duby, Rhonda; Olson, Eric N

    2016-01-15

    Muscle contraction depends on release of Ca(2+) from the sarcoplasmic reticulum (SR) and reuptake by the Ca(2+)adenosine triphosphatase SERCA. We discovered a putative muscle-specific long noncoding RNA that encodes a peptide of 34 amino acids and that we named dwarf open reading frame (DWORF). DWORF localizes to the SR membrane, where it enhances SERCA activity by displacing the SERCA inhibitors, phospholamban, sarcolipin, and myoregulin. In mice, overexpression of DWORF in cardiomyocytes increases peak Ca(2+) transient amplitude and SR Ca(2+) load while reducing the time constant of cytosolic Ca(2+) decay during each cycle of contraction-relaxation. Conversely, slow skeletal muscle lacking DWORF exhibits delayed Ca(2+) clearance and relaxation and reduced SERCA activity. DWORF is the only endogenous peptide known to activate the SERCA pump by physical interaction and provides a means for enhancing muscle contractility. PMID:26816378

  18. Effect of muscle load tasks with maximal isometric contractions on oxygenation of the trapezius muscle and sympathetic nervous activity in females with chronic neck and shoulder pain

    PubMed Central

    2012-01-01

    Background Sympathetic nervous activity contributes to the maintenance of muscle oxygenation. However, patients with chronic pain may suffer from autonomic dysfunction. Furthermore, insufficient muscle oxygenation is observed among workers with chronic neck and shoulder pain. The aim of our study was to investigate how muscle load tasks affect sympathetic nervous activity and changes in oxygenation of the trapezius muscles in subjects with chronic neck and shoulder pain. Methods Thirty females were assigned to two groups: a pain group consisting of subjects with chronic neck and shoulder pain and a control group consisting of asymptomatic subjects. The participants performed three sets of isometric exercise in an upright position; they contracted their trapezius muscles with maximum effort and let the muscles relax (Relax). Autonomic nervous activity and oxygenation of the trapezius muscles were measured by heart rate variability (HRV) and Near-Infrared Spectroscopy. Results Oxyhemoglobin and total hemoglobin of the trapezius muscles in the pain group were lower during the Relax period compared with the control group. In addition, the low frequency / high frequency (LF/HF) ratio of HRV significantly increased during isometric exercise in the control group, whereas there were no significant changes in the pain group. Conclusions Subjects with neck and shoulder pain showed lower oxygenation and blood flow of the trapezius muscles responding to isometric exercise, compared with asymptomatic subjects. Subjects with neck and shoulder pain also showed no significant changes in the LF/HF ratio of HRV responding to isometric exercise, which would imply a reduction in sympathetic nervous activity. PMID:22889146

  19. Decreasing the required lumbar extensor moment induces earlier onset of flexion relaxation.

    PubMed

    Zwambag, Derek P; De Carvalho, Diana E; Brown, Stephen H M

    2016-10-01

    Flexion relaxation (FR) is characterized by the lumbar erector spinae (LES) becoming myoelectrically silent near full trunk flexion. This study was designed to: (1) determine if decreasing the lumbar moment during flexion would induce FR to occur earlier; (2) characterize thoracic and abdominal muscle activity during FR. Ten male participants performed four trunk flexion/extension movement conditions; lumbar moment was altered by attaching 0, 5, 10, or 15lb counterweights to the torso. Electromyography (EMG) was recorded from eight trunk muscles. Lumbar moment, lumbar flexion and trunk inclination angles were calculated at the critical point of LES inactivation (CPLES). Results demonstrated that counterweights decreased the lumbar moment and lumbar flexion angle at CPLES (p<0.0001 and p=0.0029, respectively); the hypothesis that FR occurs earlier when lumbar moment is reduced was accepted. The counterweights did not alter trunk inclination at CPLES (p=0.1987); this is believed to result from an altered hip to spine flexion ratio when counterweights were attached. Lumbar multifidus demonstrated FR, similar to LES, while thoracic muscles remained active throughout flexion. Abdominal muscles activated at the same instant as CPLES, except in the 15lb condition where abdominal muscles activated before CPLES resulting in a period of increased co-contraction. PMID:27267174

  20. Pyocyanin inhibits both nitric oxide-dependent and -independent relaxation in porcine coronary arteries.

    PubMed

    Hempenstall, Allison; Grant, Gary D; Anoopkumar-Dukie, Shailendra; Johnson, Peter J

    2015-02-01

    The effects of the Pseudomonas aeruginosa virulence factor pyocyanin (PCN) on the contractile function of porcine coronary arteries was investigated in vitro. Artery rings (5 mm) were suspended in organ baths containing Krebs' solution for the measurement of isometric tension. The effect of PCN on resting and precontracted coronary arteries was initially investigated with various agents. Arteries were precontracted with prostaglandin (PG) F2α or potassium chloride and endothelium-dependent relaxations were induced by various agents in the presence of PCN. Pyocyanin (0.1-10 μmol/L) evoked small-amplitude, dose-dependent contractions in resting porcine coronary arteries. In addition, PCN amplified the contractile response to PGF2α , but did not alter responses to carbachol. Pyocyanin (0.1-10 μmol/L) significantly inhibited endothelium-dependent relaxations evoked by neurokinin A. Pyocyanin also inhibited relaxations evoked by diethylamine nitric oxide (a nitric oxide donor), forskolin (an adenylate cyclase activator), dibuytyryl-cAMP (a cAMP analogue), 8-bromo-cGMP (a cGMP analogue) and P1075 (a KATP channel activator), but not isoprenaline (β-adrenoceceptor agonist). These results indicate that physiological concentrations of PCN interfere with multiple intracellular processes involved in vascular smooth muscle relaxation, in particular pathways downstream of nitric oxide release. Thus, PCN may alter normal vascular function in patients infected with P. aeruginosa.

  1. A review of recent findings about stress-relaxation in the respiratory system tissues.

    PubMed

    Rubini, Alessandro; Carniel, Emanuele Luigi

    2014-12-01

    This article reviews the state of the art about an unclear physiological phenomenon interesting respiratory system tissues, i.e., stress-relaxation. Due to their visco-elastic properties, the tissues do not maintain constant stress under constant deformation. Rather, the stress slowly relaxes and falls to a lower value. The exact molecular basis of this complex visco-elastic behavior is not well defined, but it has been suggested that it may be generated because of the anisotropic mechanical properties of elastin and collagen fibers in the alveolar septa and their interaction phenomena, such as reciprocal sliding, also in relation to interstitial liquid movements. The effects on stress-relaxation of various biochemical and physical factors are reviewed, including the consequences of body temperature variations, respiratory system inflammations and hyperbaric oxygen exposure, endocrinal factors, circulating blood volume variations, changes in inflation volume and/or flow, changes in intra-abdominal pressure because of pneumoperitoneum or Trendelenburg position. The effects of these factors on stress-relaxation have practical consequences because, depending on visco-elastic pressure amount which is requested to inflate the respiratory system in different conditions, respiratory muscles have to produce different values of inspiratory pressure during spontaneous breathing. High inspiratory pressure values might increase the risk of respiratory failure development on mechanical basis.

  2. Characteristics of transient lower esophageal sphincter relaxation in humans.

    PubMed

    Mittal, R K; McCallum, R W

    1987-05-01

    Transient lower esophageal sphincter relaxations (TLESR) were studied in 10 normal healthy subjects. Electrical activity of mylohyoid muscle measured by an electromyogram (MEMG), pressures from pharynx, three esophageal sites, lower esophageal sphincter, and stomach were simultaneously recorded for 1 h, while fasting and 3 h after an 850 kcal meal. Reflux of acid into esophagus and/or occurrence of belching accompanying a TLESR was also monitored. TLESRs occurred with an equal frequency in fasting and postprandial state (6.2 vs. 6.4 h). However, frequency of an acid reflux during a TLESR was much greater postprandially than after fasting (44.8 vs. 9.6%). Belching coincided with 8% of TLESRs. A small MEMG complex and a small pharyngeal complex were present at onset of TLESR in 41.6 and 26.9% of instances, respectively. TLESRs were then categorized as either postswallow, if it occurred within 10 s of a preceding swallow-induced LES relaxation, or isolated, if its onset to previous swallow was greater than 10 s. Esophageal contractions were noticed at onset of 84% of isolated TLESRs. When present at two distal sites, this contraction was always of a simultaneous nature. Esophageal contractions at onset of postswallow TLESR were less frequent (33.3%) but when present were usually observed at the proximal esophageal site. At completion of a TLESR, the LES never recovered without an associated esophageal contraction, the latter was either swallow mediated or a spontaneous simultaneous esophageal contraction. Our data indicate that 1) MEMG and pharyngeal motor events may accompany TLESRs; and 2) esophageal contraction frequently heralds the onset, and it always occurs at completion of a TLESR.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Mozart versus new age music: relaxation states, stress, and ABC relaxation theory.

    PubMed

    Smith, Jonathan C; Joyce, Carol A

    2004-01-01

    Smith's (2001) Attentional Behavioral Cognitive (ABC) relaxation theory proposes that all approaches to relaxation (including music) have the potential for evoking one or more of 15 factor-analytically derived relaxation states, or "R-States" (Sleepiness, Disengagement, Rested / Refreshed, Energized, Physical Relaxation, At Ease/Peace, Joy, Mental Quiet, Childlike Innocence, Thankfulness and Love, Mystery, Awe and Wonder, Prayerfulness, Timeless/Boundless/Infinite, and Aware). The present study investigated R-States and stress symptom-patterns associated with listening to Mozart versus New Age music. Students (N = 63) were divided into three relaxation groups based on previously determined preferences. Fourteen listened to a 28-minute tape recording of Mozart's Eine Kleine Nachtmusik and 14 listened to a 28-minute tape of Steven Halpern's New Age Serenity Suite. Others (n = 35) did not want music and instead chose a set of popular recreational magazines. Participants engaged in their relaxation activity at home for three consecutive days for 28 minutes a session. Before and after each session, each person completed the Smith Relaxation States Inventory (Smith, 2001), a comprehensive questionnaire tapping 15 R-States as well as the stress states of somatic stress, worry, and negative emotion. Results revealed no differences at Session 1. At Session 2, those who listened to Mozart reported higher levels of At Ease/Peace and lower levels of Negative Emotion. Pronounced differences emerged at Session 3. Mozart listeners uniquely reported substantially higher levels of Mental Quiet, Awe and Wonder, and Mystery. Mozart listeners reported higher levels, and New Age listeners slightly elevated levels, of At Ease/Peace and Rested/Refreshed. Both Mozart and New Age listeners reported higher levels of Thankfulness and Love. In summary, those who listened to Mozart's Eine Kleine Nachtmusik reported more psychological relaxation and less stress than either those who listened to

  4. Mozart versus new age music: relaxation states, stress, and ABC relaxation theory.

    PubMed

    Smith, Jonathan C; Joyce, Carol A

    2004-01-01

    Smith's (2001) Attentional Behavioral Cognitive (ABC) relaxation theory proposes that all approaches to relaxation (including music) have the potential for evoking one or more of 15 factor-analytically derived relaxation states, or "R-States" (Sleepiness, Disengagement, Rested / Refreshed, Energized, Physical Relaxation, At Ease/Peace, Joy, Mental Quiet, Childlike Innocence, Thankfulness and Love, Mystery, Awe and Wonder, Prayerfulness, Timeless/Boundless/Infinite, and Aware). The present study investigated R-States and stress symptom-patterns associated with listening to Mozart versus New Age music. Students (N = 63) were divided into three relaxation groups based on previously determined preferences. Fourteen listened to a 28-minute tape recording of Mozart's Eine Kleine Nachtmusik and 14 listened to a 28-minute tape of Steven Halpern's New Age Serenity Suite. Others (n = 35) did not want music and instead chose a set of popular recreational magazines. Participants engaged in their relaxation activity at home for three consecutive days for 28 minutes a session. Before and after each session, each person completed the Smith Relaxation States Inventory (Smith, 2001), a comprehensive questionnaire tapping 15 R-States as well as the stress states of somatic stress, worry, and negative emotion. Results revealed no differences at Session 1. At Session 2, those who listened to Mozart reported higher levels of At Ease/Peace and lower levels of Negative Emotion. Pronounced differences emerged at Session 3. Mozart listeners uniquely reported substantially higher levels of Mental Quiet, Awe and Wonder, and Mystery. Mozart listeners reported higher levels, and New Age listeners slightly elevated levels, of At Ease/Peace and Rested/Refreshed. Both Mozart and New Age listeners reported higher levels of Thankfulness and Love. In summary, those who listened to Mozart's Eine Kleine Nachtmusik reported more psychological relaxation and less stress than either those who listened to

  5. A general relaxation theory of simple liquids

    NASA Technical Reports Server (NTRS)

    Merilo, M.; Morgan, E. J.

    1973-01-01

    A relatively simple relaxation theory to account for the behavior of liquids under dynamic conditions was proposed. The general dynamical equations are similar in form to the phenomenological relaxation equations used in theories of viscoelasticity, however, they differ in that all the coefficients of the present equations are expressed in terms of thermodynamic and molecular quantities. The theory is based on the concept that flow in a liquid distorts both the radial and the velocity distribution functions, and that relaxation equations describing the return of these functions to their isotropic distributions, characterizing a stationary liquid, can be written. The theory was applied to the problems of steady and oscillatory shear flows and to the propagation of longitudinal waves. In all cases classical results are predicted for strain rates, and an expression for the viscosity of a liquid, simular to the Macedo-Litovitz equation, is obtained.

  6. Stratospheric Relaxation in IMPACT's Radiation Code

    SciTech Connect

    Edis, T; Grant, K; Cameron-Smith, P

    2006-11-13

    While Impact incorporates diagnostic radiation routines from our work in previous years, it has not previously included the stratospheric relaxation required for forcing calculations. We have now implemented the necessary changes for stratospheric relaxation, tested its stability, and compared the results with stratosphere temperatures obtained from CAM3 met data. The relaxation results in stable temperature profiles in the stratosphere, which is encouraging for use in forcing calculations. It does, however, produce a cooling bias when compared to CAM3, which appears to be due to differences in radiation calculations rather than the interactive treatment of ozone. The cause of this bias is unclear as yet, but seems to be systematic and hence cancels out when differences are taken relative to a control simulation.

  7. Substrate stress relaxation regulates cell spreading

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Ovijit; Gu, Luo; Darnell, Max; Klumpers, Darinka; Bencherif, Sidi A.; Weaver, James C.; Huebsch, Nathaniel; Mooney, David J.

    2015-02-01

    Studies of cellular mechanotransduction have converged upon the idea that cells sense extracellular matrix (ECM) elasticity by gauging resistance to the traction forces they exert on the ECM. However, these studies typically utilize purely elastic materials as substrates, whereas physiological ECMs are viscoelastic, and exhibit stress relaxation, so that cellular traction forces exerted by cells remodel the ECM. Here we investigate the influence of ECM stress relaxation on cell behaviour through computational modelling and cellular experiments. Surprisingly, both our computational model and experiments find that spreading for cells cultured on soft substrates that exhibit stress relaxation is greater than cells spreading on elastic substrates of the same modulus, but similar to that of cells spreading on stiffer elastic substrates. These findings challenge the current view of how cells sense and respond to the ECM.

  8. Swelling and Stress Relaxation in Portland Brownstone

    NASA Astrophysics Data System (ADS)

    Jimenez, I.; Scherer, G.

    2003-04-01

    Portland Brownstone (PB) is an arkose sandstone extensively used in the northeast-ern USA during the nineteenth century. This reddish-brown stone contains a fraction of swelling clays that are thought to contribute to its degradation upon cycles of wet-ting and drying. During drying events, contraction of the drying surface leads to stresses approaching the tensile strength of the stone. However, we have found that the magnitude of these stresses is limited by the ability of the stone to undergo stress relaxation. In this paper we describe novel methods to determine the magnitude of the stresses and the rate at which they develop and relax. We also discuss the influ-ence of surfactants on the magnitude of swelling and the rate of the stress relaxation of PB. The implications of our findings for the understanding of damage due to swelling of clays are discussed.

  9. Substrate stress relaxation regulates cell spreading

    PubMed Central

    Chaudhuri, Ovijit; Gu, Luo; Darnell, Max; Klumpers, Darinka; Bencherif, Sidi A.; Weaver, James C.; Huebsch, Nathaniel; Mooney, David J

    2015-01-01

    Studies of cellular mechanotransduction have converged upon the idea that cells sense extracellular matrix (ECM) elasticity by gauging resistance to the traction forces they exert on the ECM. However, these studies typically utilize purely elastic materials as substrates, whereas physiological ECM are viscoelastic, and exhibit stress relaxation, so that cellular traction forces exerted by cells remodel the ECM. Here we investigate the influence of ECM stress relaxation on cell behavior through computational modeling and cellular experiments. Surprisingly, both our computational model and experiments find that spreading for cells cultured on soft substrates that exhibit stress relaxation is greater than cells spreading on elastic substrates of the same modulus, but similar to that of cells spreading on stiffer elastic substrates. These findings challenge the current view of how cells sense and respond to the ECM. PMID:25695512

  10. RELAXATION PROCESSES IN SOLAR WIND TURBULENCE

    SciTech Connect

    Servidio, S.; Carbone, V.; Gurgiolo, C.; Goldstein, M. L.

    2014-07-10

    Based on global conservation principles, magnetohydrodynamic (MHD) relaxation theory predicts the existence of several equilibria, such as the Taylor state or global dynamic alignment. These states are generally viewed as very long-time and large-scale equilibria, which emerge only after the termination of the turbulent cascade. As suggested by hydrodynamics and by recent MHD numerical simulations, relaxation processes can occur during the turbulent cascade that will manifest themselves as local patches of equilibrium-like configurations. Using multi-spacecraft analysis techniques in conjunction with Cluster data, we compute the current density and flow vorticity and for the first time demonstrate that these localized relaxation events are observed in the solar wind. Such events have important consequences for the statistics of plasma turbulence.

  11. Structural relaxation of vacancies in amorphous silicon

    SciTech Connect

    Kim, E.; Lee, Y.H.; Chen, C.; Pang, T.

    1997-07-01

    The authors have studied the structural relaxation of vacancies in amorphous silicon (a-Si) using a tight-binding molecular-dynamics method. The most significant difference between vacancies in a-Si and those in crystalline silicon (c-Si) is that the deep gap states do not show up in a-Si. This difference is explained through the unusual behavior of the structural relaxation near the vacancies in a-Si, which enhances the sp{sup 2} + p bonding near the band edges. They have also observed that the vacancies do not migrate below 450 K although some of them can still be annihilated, particularly at high defect density due to large structural relaxation.

  12. Dielectric relaxation of high-k oxides

    PubMed Central

    2013-01-01

    Frequency dispersion of high-k dielectrics was observed and classified into two parts: extrinsic cause and intrinsic cause. Frequency dependence of dielectric constant (dielectric relaxation), that is the intrinsic frequency dispersion, could not be characterized before considering the effects of extrinsic frequency dispersion. Several mathematical models were discussed to describe the dielectric relaxation of high-k dielectrics. For the physical mechanism, dielectric relaxation was found to be related to the degree of polarization, which depended on the structure of the high-k material. It was attributed to the enhancement of the correlations among polar nanodomain. The effect of grain size for the high-k materials' structure mainly originated from higher surface stress in smaller grain due to its higher concentration of grain boundary. PMID:24180696

  13. A muscle stem cell for every muscle: variability of satellite cell biology among different muscle groups

    PubMed Central

    Randolph, Matthew E.; Pavlath, Grace K.

    2015-01-01

    The human body contains approximately 640 individual skeletal muscles. Despite the fact that all of these muscles are composed of striated muscle tissue, the biology of these muscles and their associated muscle stem cell populations are quite diverse. Skeletal muscles are affected differentially by various muscular dystrophies (MDs), such that certain genetic mutations specifically alter muscle function in only a subset of muscles. Additionally, defective muscle stem cells have been implicated in the pathology of some MDs. The biology of muscle stem cells varies depending on the muscles with which they are associated. Here we review the biology of skeletal muscle stem cell populations of eight different muscle groups. Understanding the biological variation of skeletal muscles and their resident stem cells could provide valuable insight into mechanisms underlying the susceptibility of certain muscles to myopathic disease. PMID:26500547

  14. A gravity exercise system. [for muscle conditioning during manned space flight

    NASA Technical Reports Server (NTRS)

    Brandt, W. E.; Clark, A. L.

    1973-01-01

    An effective method for muscle conditioning during weightlessness flight is derived from isometric exercise. The basic principle of gravity exercise is to periodically displace the human body upon reactionless rollers so that spacial equilibrium can only be maintained by the proper tension and relaxation of the body's muscles. A rotating platform mounted upon two degrees of freedom rollers provides such a condition of gravitational reaction stress throughout each of its 360 deg rotation.

  15. Magnetic Relaxation in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Miller, Kenneth; Fornberg, Bengt; Flyer, Natasha; Low, B. C.

    2009-01-01

    This is a mathematical study of the long-lived hydromagnetic structures produced in the tenuous solar corona by the turbulent, resistive relaxation of a magnetic field under the condition of extremely high electrical conductivity. The relaxation theory of Taylor, originally developed for a laboratory device, is extended to treat the open atmosphere where the relaxing field must interact with its surrounding fields. A boundary-value problem is posed for a two-dimensional model that idealizes the corona as the half Cartesian plane filled with a potential field (1) that is anchored to a rigid, perfectly conducting base and (2) that embeds a force-free magnetic field in the form of a flux-rope oriented horizontally and perpendicular to the Cartesian plane. The flux-rope has a free boundary, which is an unknown in the construction of a solution for this atmosphere. Pairs of magnetostatic solutions are constructed to represent the initial and final states of a flux-rope relaxation that conserve both the total magnetic helicity and total axial magnetic flux, using a numerical iterative method specially developed for this study. The collection of numerical solutions found provides an insight into the interplay among several hydromagnetic properties in the formation of long-lived coronal structures. In particular, the study shows (1) that the outward spread of reconnection between a relaxing flux-rope and its external field may be arrested at some outer magnetic flux surface within which a constant-α force-free field emerges as the minimum-energy state and (2) that this outward spread is complicated by an inward, partial collapse of the relaxing flux-rope produced by a loss of internal magnetic pressure.

  16. Molecular Relaxations in Constrained Nanoscale Systems

    NASA Astrophysics Data System (ADS)

    Knorr, Daniel B., Jr.

    Current engineering challenges in the areas of energy, gas separation and photonics demand novel materials that are cognitively engineered at the molecular level, with a view toward replacing the conventional trial and error approach to materials development. Cognitive molecular engineering of organic materials demands the incorporation of internal constraints (inherent to molecular architecture) and external constraints (stemming from interactions with system boundaries) to obtain desired material properties. Both types of constraints affect intrinsic relaxation behavior in a material, which dictates thermal and viscoelastic material properties. The challenge, then, is to quantify the influence of constraints on relaxation behavior with a view toward producing a 'toolbox' for molecular engineering. In this work, local atomic force microscopy based thermomechanical measurements, paired with dielectric spectroscopy, kinetic models and molecular dynamic simulation are used to explore the effect of constraints on the relaxation behavior of model lubricants, amorphous polymers, and organic non-linear optical (NLO) materials. The impact of interfacial constraints on the inter- and intramolecular relaxation processes were investigated in lubricating model systems from fast relaxing simple monolayers to sluggishly unwinding complex polymer systems. At the free surface of amorphous polystyrene, apparent Arrhenius-type surface and subsurface activation energies were found where dissipation is a discrete function of loading, indicating sensitivity to surface and subsurface mobilities. Finally, in organic NLO systems, constraints in the form of self assembling dendritic groups are introduced to provide both sufficient mobility for alignment of their constituent chromophores and limited mobility for long-term alignment stability. Relaxation activation energies for NLO materials were deduced for these self assembling glassy chromophores, resulting in a first toolbox to guide

  17. [Etomidate and suxamethonium. The duration of relaxation and pseudocholinesterase activity. A clinical experimental study (author's transl)].

    PubMed

    Doenicke, A; Dittmann-Kessler, I; Sramoto, A; Beyer, E

    1980-03-01

    In ten health volunteers general anaesthesia was induced with etomidate (0.3 mg per kg body weight) and continued with NWO/O2 inhalation. Together with etomidate, suxamethonium (1.5 mg per kg body weight) was given simultaneously and the same dose reinjected as soon as the original muscle tone had returned completely. At equal intervals after the first and second injection the pseudocholinesterase was spectrophotometrically measured. No significant alteration of the enzyme activity was detectable at any time. Etomidate therefore does not inhibit the pseudocholinesterase. The two phases of relaxation were registered with the "finger-twitch" method and their duration compared. Etomidate did not prolong the time of relaxation after suxamethonium.

  18. Spin Relaxation and Spin Transport in Graphene

    NASA Astrophysics Data System (ADS)

    Wu, M. W.

    2012-02-01

    In this talk we are going to present our theoretical investigations on spin dynamics of graphene under various conditions based on a fully microscopic kinetic-spin-Bloch-equation approach [1]. We manage to nail down the solo spin relaxation mechanism of graphene in measurements from two leading groups, one in US and one in the Netherland. Many novel effects of the electron-electron Coulomb interaction on spin relaxation in graphene are addressed. Our theory can have nice agreement with experimental data.[4pt] [1] M. W. Wu, J. H. Jiang, and M. Q. Weng, ``Spin dynamics in semiconductors,'' Phys. Rep. 493, 61 (2010).

  19. Vibrational relaxation in hypersonic flow fields

    NASA Technical Reports Server (NTRS)

    Meador, Willard E.; Miner, Gilda A.; Heinbockel, John H.

    1993-01-01

    Mathematical formulations of vibrational relaxation are derived from first principles for application to fluid dynamic computations of hypersonic flow fields. Relaxation within and immediately behind shock waves is shown to be substantially faster than that described in current numerical codes. The result should be a significant reduction in nonequilibrium radiation overshoot in shock layers and in radiative heating of hypersonic vehicles; these results are precisely the trends needed to bring theoretical predictions more in line with flight data. Errors in existing formulations are identified and qualitative comparisons are made.

  20. Magnetic Relaxation Detector for Microbead Labels

    PubMed Central

    Liu, Paul Peng; Skucha, Karl; Duan, Yida; Megens, Mischa; Kim, Jungkyu; Izyumin, Igor I.; Gambini, Simone; Boser, Bernhard

    2014-01-01

    A compact and robust magnetic label detector for biomedical assays is implemented in 0.18-μm CMOS. Detection relies on the magnetic relaxation signature of a microbead label for improved tolerance to environmental variations and relaxed dynamic range requirement, eliminating the need for baseline calibration and reference sensors. The device includes embedded electromagnets to eliminate external magnets and reduce power dissipation. Correlated double sampling combined with offset servo loops and magnetic field modulation, suppresses the detector offset to sub-μT. Single 4.5-μm magnetic beads are detected in 16 ms with a probability of error <0.1%. PMID:25308988

  1. Nonlocal and collective relaxation in stellar systems

    NASA Technical Reports Server (NTRS)

    Weinberg, Martin D.

    1993-01-01

    The modal response of stellar systems to fluctuations at large scales is presently investigated by means of analytic theory and n-body simulation; the stochastic excitation of these modes is shown to increase the relaxation rate even for a system which is moderately far from instability. The n-body simulations, when designed to suppress relaxation at small scales, clearly show the effects of large-scale fluctuations. It is predicted that large-scale fluctuations will be largest for such marginally bound systems as forming star clusters and associations.

  2. Synthetic aperture radar autofocus via semidefinite relaxation.

    PubMed

    Liu, Kuang-Hung; Wiesel, Ami; Munson, David C

    2013-06-01

    The autofocus problem in synthetic aperture radar imaging amounts to estimating unknown phase errors caused by unknown platform or target motion. At the heart of three state-of-the-art autofocus algorithms, namely, phase gradient autofocus, multichannel autofocus (MCA), and Fourier-domain multichannel autofocus (FMCA), is the solution of a constant modulus quadratic program (CMQP). Currently, these algorithms solve a CMQP by using an eigenvalue relaxation approach. We propose an alternative relaxation approach based on semidefinite programming, which has recently attracted considerable attention in other signal processing problems. Experimental results show that our proposed methods provide promising performance improvements for MCA and FMCA through an increase in computational complexity.

  3. Diffraction Ellipsometry Studies on Insect Flight Muscle

    NASA Astrophysics Data System (ADS)

    Shen, Sui

    Characterization of the orientation and distribution of myosin cross-bridge at rigor, relax, low ionic strength (36 mM) and activation (pCa 4.3) conditions are of great interest since these states have been proposed to be transient steps in the cyclical interaction of myosin heads with actin during contraction. Measurements sensitive to the cross-bridge orientation in chemically skinned single muscle fibers of the insect, Lethocerus collossicus have been performed under various physiological conditions using laser diffraction ellipsometry. Determination of both the total birefringence, Deltan, and the differential field ratio, rm DFR (defined as {E_parallel -E_|over E_parallel-E _|}),is necessary for complete characterization of the optical polarization state. For rigor insect fiber, the birefringence value was close to the value we obtained from chemically skinned frog muscle fibers. However, the differential field ratio, DFR, was a negative value for insect fiber, while we always measured a positive value from frog muscle fibers. Polarization states of light diffracted from fibers exhibited a dependence on configurations of structural proteins at different conditions: fluid index matching using o-toluidine, alpha -chymotrypsin cleavage, KCl myosin extraction, rigor state, relaxed state, exogenous S-1 binding on rigor fiber, low ionic strength state, activation state at resting or stretched length. Results of our data analysis suggested that: (1) the negative DFR value of the insect flight muscle was contributed by alpha-actinin arranged perpendicular to the fiber axis in the Z-line, (2) in rigor fiber, 70% of myosin heads are doubly bound (45^circ and 90^ circ) while the rest of 30% are in single head binding configuration (90^circ), (3) myosin heads are randomly oriented in relaxed fiber, (4) mean axial angle is about 62^ circ for exogenous myosin heads binding on rigor fiber, (5) at low ionic strength, 25% of the total myosin heads are weakly attached to actin

  4. TNF-α knockout mice have increased corpora cavernosa relaxation

    PubMed Central

    2010-01-01

    Introduction Erectile dysfunction (ED) is considered an early clinical manifestation of vascular disease and an independent risk factor for cardiovascular events associated with endothelial dysfunction and increased levels of pro-inflammatory cytokines. Tumor necrosis factor-alpha (TNF-α), a pro-inflammatory cytokine, suppresses endothelial nitric oxide synthase (eNOS) expression. Aim Considering that nitric oxide (NO) is of critical importance in penile erection, we hypothesized that blockade of TNF-α actions would increase cavernosal smooth muscle relaxation through an increase in NOS expression. Methods In vitro organ bath studies were used to measure cavernosal reactivity in wild type and TNF-α knockout (TNF-α KO) mice and NOS expression was evaluated by western blot. In addition, spontaneous erections (in vivo) were evaluated by videomonitoring the animals (30 min.). Collagen and elastin expression were evaluated by Masson trichrome and Verhoff-van Gieson stain reaction, respectively. Main Outcome Measures Corpora cavernosa from TNF-α KO mice exhibited increased NO-dependent relaxation, which was associated with increased eNOS and neuronal NOS (nNOS) cavernosal expression. Results Cavernosal strips from TNF-α KO mice displayed increased endothelium-dependent [97.4±5.3 vs Control: 76.3±6.3, %] and nonadrenergic-noncholinergic (NANC) [93.3±3.0 vs Control: 67.5±16.0; 16 Hz] relaxation compared to control animals. These responses were associated with increased protein expression of eNOS and nNOS (p<0.05). Sympathetic-mediated [0.69±0.16 vs Control: 1.22±0.22; 16 Hz] as well as phenylephrine-induced contractile responses [1.6±0.1 vs Control: 2.5±0.1, mN] were attenuated in cavernosal strips from TNF-α KO mice. Additionally, corpora cavernosa from TNF-α KO mice displayed increased collagen and elastin expression. In vivo experiments demonstrated that TNF-α KO mice display increased number of spontaneous erections. Conclusion Corpora cavernosa from

  5. Effect of inaction on function of fast and slow muscle spindles

    NASA Technical Reports Server (NTRS)

    Arutyunyan, R. S.

    1980-01-01

    There is no data on the comparative effect of tenotomy on the function of the muscle spindles of fast and slow muscles. This study covers this question. The experiments were conducted on cats. The musuculus extensor digitorum longus (m. EDL) was selected as the fast muscle, and the musculus soleus (m. Sol.) as the slow. In a comparison of the spontaneous activity of primary and secondary endings of the fast and slow muscle spindles (i.e., the activity with complete relaxation of the muscles) normally no difference between them was successfully found. The authors recorded the integrative, and not the individual activity, and secondly, under conditions of such recording technique, those slight changes that are observed in the fast muscle receptors could remain unnoticed.

  6. A comparison of somatic relaxation and EEG activity in classical progressive relaxation and transcendental meditation.

    PubMed

    Warrenburg, S; Pagano, R R; Woods, M; Hlastala, M

    1980-03-01

    Oxygen consumption, electroencephalogram (EEG), and four other measures of somatic relaxation were monitored in groups of long-term practitioners of classical Jacobson's progressive relaxation (PR) and Transcendental Meditation (TM) and also in a group of novice PR trainees. All subjects (1) practiced relaxation or meditation (treatment), (2) sat with eyes closed (EC control), and (3) read from a travel book during two identical sessions on different days. EEG findings indicated that all three groups remained primarily awake during treatment and EC control and that several subjects in each group displayed rare theta (5-7 Hz) waveforms. All three groups demonstrated similar decrements in somatic activity during treatment and EC control which were generally of small magnitude (e. g., 2-5% in oxygen consumption). These results supported the "relaxation response" model for state changes in somatic relaxation for techniques practiced under low levels of stress but not the claim that the relaxation response produced a hypometabolic state. Despite similar state effects, the long-term PR group manifested lower levels of somatic activity across all conditions compared to both novice PR and long-term TM groups. We concluded that PR causes a generalized trait of somatic relaxation which is manifested in a variety of settings and situations. Two likely explanations for this trait were discussed: (1) PR practitioners are taught to generalize relaxation to daily activities, and/or (2) according to a "multiprocess model," PR is a "somatic technique," which should produce greater somatic relaxation than does TM, a "cognitive technique." Further research is required to elucidate these possibilities.

  7. Inhibitory effect of beta3-adrenoceptor agonist in lower esophageal sphincter smooth muscle: in vitro studies.

    PubMed

    Sarma, D N K; Banwait, Kuldip; Basak, Ashim; DiMarino, Anthony J; Rattan, Satish

    2003-01-01

    We investigated the effects of (R,R)-5-[2-[2-3-chlorophenyl)-2-hydroxyethyl] - amino]propyl] - 1,3 - benzodioxole - 2, 2 - dicarboxylate (CL 316243) (a typical beta3-agonist) on the spontaneously tonic smooth muscle of the lower esophageal sphincter (LES). Studies were carried out in smooth muscle strips and smooth muscle cells (SMCs) of opossum LES. Isometric tension was recorded in the basal state and after CL 316243, and before and after beta3-antagonist (S)-N-[4-[2-[[3-[-(acetamidomethyl)phenoxy]-2-hydroxypropyl]amino]ethyl]phenyl]benzenesulfonamide (L 748337) and nonselective antagonist propranolol. In some experiments, the effects of nonadrenergic noncholinergic (NANC) nerve activation by electrical field stimulation (EFS) were also examined. The effects of CL 316243 were compared with those of nonselective beta-agonist isoproterenol. CL 316243 caused a concentration-dependent relaxation of the LES smooth muscle. The relaxant action of CL 316243 was determined to be directly at the smooth muscle because it remained unmodified by the neurotoxin tetrodotoxin and other neurohumoral antagonists, and also was observed in the SMCs. L 748337 selectively antagonized the relaxant effect of CL 316243 and, conversely, had no significant effect on the inhibitory actions of isoproterenol. CL 316243 (1 x 10(-8) M) caused an augmentation of NANC relaxation in the LES. Another beta3-agonist, (S)-4-[hydroxy-3-phenoxy-propylamino-ethoxy]-N-(2-methoxyethyl)-phenoxyacetamide (ZD 7114), also caused concentration-dependent full relaxation of the LES that was selectively antagonized by beta3-anatagonist 3-(2-ethylphenoxy)-1-[(1S)1,2,3,4-tetrahydronaphth-1-ylaminol]-(2S)-2-propanol oxalate (SR 59230A). These studies defined the effects of characteristic inhibitory beta3-adrenoceptors in the spontaneously tonic LES smooth muscle and suggested a potential therapeutic role in the esophageal motility disorders characterized by hypertensive LES. PMID:12490574

  8. Comprehensive analysis of tropomyosin isoforms in skeletal muscles by top-down proteomics.

    PubMed

    Jin, Yutong; Peng, Ying; Lin, Ziqing; Chen, Yi-Chen; Wei, Liming; Hacker, Timothy A; Larsson, Lars; Ge, Ying

    2016-04-01

    Mammalian skeletal muscles are heterogeneous in nature and are capable of performing various functions. Tropomyosin (Tpm) is a major component of the thin filament in skeletal muscles and plays an important role in controlling muscle contraction and relaxation. Tpm is known to consist of multiple isoforms resulting from different encoding genes and alternative splicing, along with post-translational modifications. However, a systematic characterization of Tpm isoforms in skeletal muscles is still lacking. Therefore, we employed top-down mass spectrometry (MS) to identify and characterize Tpm isoforms present in different skeletal muscles from multiple species, including swine, rat, and human. Our study revealed that Tpm1.1 and Tpm2.2 are the two major Tpm isoforms in swine and rat skeletal muscles, whereas Tpm1.1, Tpm2.2, and Tpm3.12 are present in human skeletal muscles. Tandem MS was utilized to identify the sequences of the major Tpm isoforms. Furthermore, quantitative analysis revealed muscle-type specific differences in the abundance of un-modified and modified Tpm isoforms in rat and human skeletal muscles. This study represents the first systematic investigation of Tpm isoforms in skeletal muscles, which not only demonstrates the capabilities of top-down MS for the comprehensive characterization of skeletal myofilament proteins but also provides the basis for further studies on these Tpm isoforms in muscle-related diseases. PMID:27090236

  9. Comprehensive analysis of tropomyosin isoforms in skeletal muscles by top-down proteomics.

    PubMed

    Jin, Yutong; Peng, Ying; Lin, Ziqing; Chen, Yi-Chen; Wei, Liming; Hacker, Timothy A; Larsson, Lars; Ge, Ying

    2016-04-01

    Mammalian skeletal muscles are heterogeneous in nature and are capable of performing various functions. Tropomyosin (Tpm) is a major component of the thin filament in skeletal muscles and plays an important role in controlling muscle contraction and relaxation. Tpm is known to consist of multiple isoforms resulting from different encoding genes and alternative splicing, along with post-translational modifications. However, a systematic characterization of Tpm isoforms in skeletal muscles is still lacking. Therefore, we employed top-down mass spectrometry (MS) to identify and characterize Tpm isoforms present in different skeletal muscles from multiple species, including swine, rat, and human. Our study revealed that Tpm1.1 and Tpm2.2 are the two major Tpm isoforms in swine and rat skeletal muscles, whereas Tpm1.1, Tpm2.2, and Tpm3.12 are present in human skeletal muscles. Tandem MS was utilized to identify the sequences of the major Tpm isoforms. Furthermore, quantitative analysis revealed muscle-type specific differences in the abundance of un-modified and modified Tpm isoforms in rat and human skeletal muscles. This study represents the first systematic investigation of Tpm isoforms in skeletal muscles, which not only demonstrates the capabilities of top-down MS for the comprehensive characterization of skeletal myofilament proteins but also provides the basis for further studies on these Tpm isoforms in muscle-related diseases.

  10. The magnitude of muscle strain does not influence serial sarcomere number adaptations following eccentric exercise.

    PubMed

    Butterfield, Timothy A; Herzog, Walter

    2006-02-01

    It is generally accepted that eccentric exercise, when performed by a muscle that is unaccustomed to that type of contraction, results in a delayed onset of muscle soreness (DOMS). A prolonged exposure to eccentric exercise leads to the disappearance of the signs and symptoms associated with DOMS, which has been referred to as the repeated bout effect (RBE). Although the mechanisms underlying the RBE remain unclear, several mechanisms have been proposed, including the serial sarcomere number addition following exercise induced muscle damage. In the traditional DOMS and RBE protocols, muscle injury has been treated as a global parameter, with muscle force and strain assumed to be uniform throughout the muscle. To assess the effects of muscle-tendon unit strain, fiber strain, torque and injury on serial sarcomere number adaptations, three groups of New Zealand White (NZW) rabbits were subjected to chronic repetitive eccentric exercise bouts of the ankle dorsiflexors for 6 weeks. These eccentric exercise protocols consisted of identical muscle tendon unit (MTU) strain, but other mechanical factors were systematically altered. Following chronic eccentric exercise, serial sarcomere number adaptations were not identical between the three eccentric exercise protocols, and serial sarcomere number adaptations were not uniform across all regions of the muscle. Peak torque and relaxation fiber strain were the best predictors of serial sarcomere number across all three protocols. Therefore, MTU strain does not appear to be the primary cause for sarcomerogenesis, and differential adaptations within the muscle may be explained by the nonuniform architecture of the muscle, resulting in differential local fiber strains.

  11. Muscle development and obesity

    PubMed Central

    2008-01-01

    The formation of skeletal muscle from the epithelial somites involves a series of events triggered by temporally and spatially discrete signals resulting in the generation of muscle fibers which vary in their contractile and metabolic nature. The fiber type composition of muscles varies between individuals and it has now been found that there are differences in fiber type proportions between lean and obese animals and humans. Amongst the possible causes of obesity, it has been suggested that inappropriate prenatal environments may ‘program’ the fetus and may lead to increased risks for disease in adult life. The characteristics of muscle are both heritable and plastic, giving the tissue some ability to adapt to signals and stimuli both pre and postnatally. Given that muscle is a site of fatty acid oxidation and carbohydrate metabolism and that its development can be changed by prenatal events, it is interesting to examine the possible relationship between muscle development and the risk of obesity. PMID:19279728

  12. Relaxation dynamics of multilayer triangular Husimi cacti.

    PubMed

    Galiceanu, Mircea; Jurjiu, Aurel

    2016-09-14

    We focus on the relaxation dynamics of multilayer polymer structures having, as underlying topology, the Husimi cactus. The relaxation dynamics of the multilayer structures is investigated in the framework of generalized Gaussian structures model using both Rouse and Zimm approaches. In the Rouse type-approach, we determine analytically the complete eigenvalues spectrum and based on it we calculate the mechanical relaxation moduli (storage and loss modulus) and the average monomer displacement. First, we monitor these physical quantities for structures with a fixed generation number and we increase the number of layers, such that the linear topology will smoothly come into play. Second, we keep constant the size of the structures, varying simultaneously two parameters: the generation number of the main layer, G, and the number of layers, c. This fact allows us to study in detail the crossover from a pure Husimi cactus behavior to a predominately linear chain behavior. The most interesting situation is found when the two limiting topologies cancel each other. For this case, we encounter in the intermediate frequency/time domain regions of constant slope for different values of the parameter set (G, c) and we show that the number of layers follows an exponential-law of G. In the Zimm-type approach, which includes the hydrodynamic interactions, the quantities that describe the mechanical relaxation dynamics do not show scaling behavior as in the Rouse model, except the limiting case, namely, a very high number of layers and low generation number. PMID:27634273

  13. Charge Relaxation Dynamics of an Electrolytic Nanocapacitor

    PubMed Central

    2015-01-01

    Understanding ion relaxation dynamics in overlapping electric double layers (EDLs) is critical for the development of efficient nanotechnology-based electrochemical energy storage, electrochemomechanical energy conversion, and bioelectrochemical sensing devices as well as the controlled synthesis of nanostructured materials. Here, a lattice Boltzmann (LB) method is employed to simulate an electrolytic nanocapacitor subjected to a step potential at t = 0 for various degrees of EDL overlap, solvent viscosities, ratios of cation-to-anion diffusivity, and electrode separations. The use of a novel continuously varying and Galilean-invariant molecular-speed-dependent relaxation time (MSDRT) with the LB equation recovers a correct microscopic description of the molecular-collision phenomena and enhances the stability of the LB algorithm. Results for large EDL overlaps indicated oscillatory behavior for the ionic current density, in contrast to monotonic relaxation to equilibrium for low EDL overlaps. Further, at low solvent viscosities and large EDL overlaps, anomalous plasmalike spatial oscillations of the electric field were observed that appeared to be purely an effect of nanoscale confinement. Employing MSDRT in our simulations enabled modeling of the fundamental physics of the transient charge relaxation dynamics in electrochemical systems operating away from equilibrium wherein Nernst–Einstein relation is known to be violated. PMID:25678941

  14. Stretched Exponential relaxation in pure Se glass

    NASA Astrophysics Data System (ADS)

    Dash, S.; Ravindren, S.; Boolchand, P.

    A universal feature of glasses is the stretched exponential relaxation, f (t) = exp[ - t / τ ] β . The model of diffusion of excitations to randomly distributed traps in a glass by Phillips1 yields the stretched exponent β = d[d +2] where d, the effective dimensionality. We have measured the enthalpy of relaxation ΔHnr (tw) at Tg of Se glass in modulated DSC experiments as glasses age at 300K and find β = 0.43(2) for tw in the 0 relaxation is a narrowing of the glass transition width from 7.1°C to 1.4°C, and the ΔHnr term increasing from 0.21 cal/gm to 0.92 cal/gm. In bulk GexSe100-x glasses as x increases to 20%, the length of the polymeric Sen chains between the Ge-crosslinks decreases to n = 2. and the striking relaxation effects nearly vanish. J.C. Phillips, Rep.Prog.Phys. 59 , 1133 (1996). Supported by NSF Grant DMR 08-53957.

  15. Relaxation for Children. (Revised and Expanded Edition.)

    ERIC Educational Resources Information Center

    Rickard, Jenny

    Intended as a guide to reduce negative stress in children, this book suggests relaxation and meditation techniques to help children cope with stressful events. Part 1 provides an introduction to the format of the book. Part 2 contains summaries of the 10 sessions that make up the program. Each session has six sequential stages in which students…

  16. Relaxation processes in administered-rate pricing

    NASA Astrophysics Data System (ADS)

    Hawkins, Raymond J.; Arnold, Michael R.

    2000-10-01

    We show how the theory of anelasticity unifies the observed dynamics and proposed models of administered-rate products. This theory yields a straightforward approach to rate model construction that we illustrate by simulating the observed relaxation dynamics of two administered rate products. We also demonstrate how the use of this formalism leads to a natural definition of market friction.

  17. Magnetic relaxation in dipolar magnetic nanoparticle clusters

    NASA Astrophysics Data System (ADS)

    Hovorka, Ondrej; Barker, Joe; Chantrell, Roy; Friedman, Gary; York-Drexel Collaboration

    2013-03-01

    Understanding the role of dipolar interactions on thermal relaxation in magnetic nanoparticle (MNP) systems is of fundamental importance in magnetic recording, for optimizing the hysteresis heating contribution in the hyperthermia cancer treatment in biomedicine, or for biological and chemical sensing, for example. In this talk, we discuss our related efforts to quantify the influence of dipolar interactions on thermal relaxation in small clusters of MNPs. Setting up the master equation and solving the associated eigenvalue problem, we identify the observable relaxation time scale spectra for various types of MNP clusters, and demonstrate qualitatively different spectral characteristics depending on the point group of symmetries of the particle arrangement within the cluster - being solely a dipolar interaction effect. Our findings provide insight into open questions related to magnetic relaxation in bulk MNP systems, and may prove to be also of practical relevance, e.g., for improving robustness of methodologies in biological and chemical sensing. OH gratefully acknowledges support from a Marie Curie Intra European Fellowship within the 7th European Community Framework Programme under grant agreement PIEF-GA-2010-273014

  18. Relaxation Mechanisms in Hyperpolarized Polycrystalline ^129Xe

    NASA Astrophysics Data System (ADS)

    Samuelson, G.; Su, T.; Saam, B.

    2002-10-01

    Through spin exchange with optically polarized Rb vapor, it is possible to achieve upwards of 30% nuclear spin polarization in ^129Xe and a corresponding NMR signal some 5 orders of magnitude stronger than typical thermally polarized ^129Xe. Due to such a strong signal, hyperpolarized ^129Xe is being used for several leading-edge technologies (eg. biochemical spectroscopy, MRI, and polarization transfer). We have measured the nuclear spin relaxation rate of polycrystalline hyperpolarized ^129Xe at 77K (well below the freezing point of 160K) in a magnetic field of only a few Gauss and have observed that the hyperpolarization completely survives the freezing process. Furthermore, in this regime we have observed non-exponential spin relaxation that depends strongly on magnetic field, isotopic concentration (between ^129Xe and ^131Xe) and differences in crystallite formation. We present a simple spin-diffusion model that fits and explains the features of the data. Our results agree with the hypothesis that at low fields and temperatures the dominant spin relaxation mechanism is cross-relaxation with ^131Xe on the surface of the crystallites (Gatzke, et al., PRL b70, 690 (1993)).

  19. Collection Development: Relaxation & Meditation, September 1, 2010

    ERIC Educational Resources Information Center

    Lettus, Dodi

    2010-01-01

    One of the first books to document the relationship between stress and physical and emotional health was "The Relaxation Response" by Herbert Benson, M.D., with Miriam Z. Klipper. Originally published in 1975, the book grew out of Benson's observations as a cardiologist and his research as a fellow at Harvard Medical School. Benson's study of…

  20. Relaxation Treatment for Insomnia: A Component Analysis.

    ERIC Educational Resources Information Center

    Woolfolk, Robert L.; McNulty, Terrence F.

    1983-01-01

    Compared four relaxation treatments for sleep onset insomnia with a waiting-list control. Treatments varied in presence or absence of muscular tension-release instructions and in foci of attention. Results showed all treatment conditions reduced latency of sleep onset and fatigue; visual focusing best reduced the number of nocturnal awakenings.…

  1. Relaxation dynamics of multilayer triangular Husimi cacti

    NASA Astrophysics Data System (ADS)

    Galiceanu, Mircea; Jurjiu, Aurel

    2016-09-01

    We focus on the relaxation dynamics of multilayer polymer structures having, as underlying topology, the Husimi cactus. The relaxation dynamics of the multilayer structures is investigated in the framework of generalized Gaussian structures model using both Rouse and Zimm approaches. In the Rouse type-approach, we determine analytically the complete eigenvalues spectrum and based on it we calculate the mechanical relaxation moduli (storage and loss modulus) and the average monomer displacement. First, we monitor these physical quantities for structures with a fixed generation number and we increase the number of layers, such that the linear topology will smoothly come into play. Second, we keep constant the size of the structures, varying simultaneously two parameters: the generation number of the main layer, G, and the number of layers, c. This fact allows us to study in detail the crossover from a pure Husimi cactus behavior to a predominately linear chain behavior. The most interesting situation is found when the two limiting topologies cancel each other. For this case, we encounter in the intermediate frequency/time domain regions of constant slope for different values of the parameter set (G, c) and we show that the number of layers follows an exponential-law of G. In the Zimm-type approach, which includes the hydrodynamic interactions, the quantities that describe the mechanical relaxation dynamics do not show scaling behavior as in the Rouse model, except the limiting case, namely, a very high number of layers and low generation number.

  2. Dipole Relaxation in an Electric Field.

    ERIC Educational Resources Information Center

    Neumann, Richard M.

    1980-01-01

    Derives an expression for the orientational entropy of a rigid rod (electric dipole) from Boltzmann's equation. Subsequent application of Newton's second law of motion produces Debye's classical expression for the relaxation of an electric dipole in a viscous medium. (Author/GS)

  3. BOOK REVIEW: Magnetohydrodynamics of Plasma Relaxation

    NASA Astrophysics Data System (ADS)

    Connor, J. W.

    1998-06-01

    This monograph on magnetohydrodynamic (MHD) relaxation in plasmas by Ortolani and Schnack occupies a fascinating niche in the plasma physics literature. It is rare in the complex and often technically sophisticated subject of plasma physics to be able to isolate a topic and deal with it comprehensively in a mere 180 pages. Furthermore, it brings a refreshingly original and personal approach to the treatment of plasma relaxation, synthesizing the experiences of the two authors to produce a very readable account of phenomena appearing in such diverse situations as laboratory reversed field pinches (RFPs) and the solar corona. Its novelty lies in that, while it does acknowledge the seminal Taylor theory of relaxation as a general guide, it emphasizes the role of large scale numerical MHD simulations in developing a picture for the relaxation phenomena observed in experiment and nature. Nevertheless, the volume has some minor shortcomings: a tendency to repetitiveness and some omissions that prevent it being entirely self-contained. The monograph is divided into nine chapters, with the first a readable, `chatty', introduction to the physics and phenomena of relaxation discussed in the later chapters. Chapter 2 develops the tools for describing relaxation processes, namely the resistive MHD model, leading to a discussion of resistive instabilities and the stability properties of RFPs. This chapter demonstrates the authors' confessed desire to avoid mathematical detail with a rather simplified discussion of Δ' and magnetic islands; it also sets the stage for their own belief, or thesis, that numerical simulation of the non-linear consequences of the MHD model is the best approach to explaining the physics of relaxation. Nevertheless, in Chapter 3 they provide a reasonably good account and critique of one analytic approach that is available, and which is the commonly accepted picture for relaxation in pinches - the Taylor relaxation theory based on the conservation of

  4. Dielectric Relaxation of Water in Complex Systems

    NASA Astrophysics Data System (ADS)

    Feldman, Yuri; Puzenko, Alexander A.; Ishai, Paul Ben; Levy, Evgenya

    Whenever water interacts with another dipolar or charged entity, a broadening of the dielectric relaxation peak occurs. This broadening can often be described by the phenomenological Cole-Cole (CC) spectral function. A new approach (Puzenko AA, Ben Ishai P, and Feldman Y, Phys Rev Lett 105:037601, 2010) based on the fractal nature of the time set of the interaction of the relaxing water dipoles with its encompassing matrix has been recently presented showing a fundamental connection between the relaxation time, τ, the broadening parameter, α, and the Kirkwood-Fröhlich correlation function B. Parameters B, τ and α where chosen as the coordinates of a new 3D space. The evolution of the relaxation process due to the variation of external macroscopic parameters (temperature, pressure etc.) represents the trajectory in 3D space. This trajectory demonstrates the connection between the kinetic and structural properties of the water in complex system. It is also shown how the model describes the state of water in two porous silica glasses and in two different types of aqueous solutions: ionic, and non-ionic. The complex dielectric spectra of a series of solutions of sodium chloride and potassium chloride in water have been measured and have been carefully analyzed along with previously measured spectra for aqueous solutions of D-glucose and D-fructose.

  5. Muscle Changes in Aging

    PubMed Central

    Siparsky, Patrick N.; Kirkendall, Donald T.; Garrett, William E.

    2014-01-01

    Muscle physiology in the aging athlete is complex. Sarcopenia, the age-related decrease in lean muscle mass, can alter activity level and affect quality of life. This review addresses the microscopic and macroscopic changes in muscle with age, recognizes contributing factors including nutrition and changes in hormone levels, and identifies potential pharmacologic agents in clinical trial that may aid in the battle of this complex, costly, and disabling problem. Level of Evidence: Level 5. PMID:24427440

  6. An artificial muscle computer

    NASA Astrophysics Data System (ADS)

    Marc O'Brien, Benjamin; Alexander Anderson, Iain

    2013-03-01

    We have built an artificial muscle computer based on Wolfram's "2, 3" Turing machine architecture, the simplest known universal Turing machine. Our computer uses artificial muscles for its instruction set, output buffers, and memory write and addressing mechanisms. The computer is very slow and large (0.15 Hz, ˜1 m3); however by using only 13 artificial muscle relays, it is capable of solving any computable problem given sufficient memory, time, and reliability. The development of this computer shows that artificial muscles can think—paving the way for soft robots with reflexes like those seen in nature.

  7. MUSCLE INJURIES IN ATHLETES

    PubMed Central

    Barroso, Guilherme Campos; Thiele, Edilson Schwansee

    2015-01-01

    This article had the aim of demonstrating the physiology, diagnosis and treatment of muscle injuries, focusing on athletes and their demands and expectations. Muscle injuries are among the most common complaints in orthopedic practice, occurring both among athletes and among non-athletes. These injuries present a challenge for specialists, due to the slow recovery, during which time athletes are unable to take part in training and competitions, and due to frequent sequelae and recurrences of the injuries. Most muscle injuries (between 10% and 55% of all injuries) occur during sports activities. The muscles most commonly affected are the ischiotibial, quadriceps and gastrocnemius. These muscles go across two joints and are more subject to acceleration and deceleration forces. The treatment for muscle injuries varies from conservative treatment to surgery. New procedures are being used, like the hyperbaric chamber and the use of growth factors. However, there is still a high rate of injury recurrence. Muscle injury continues to be a topic of much controversy. New treatments are being researched and developed, but prevention through muscle strengthening, stretching exercises and muscle balance continues to be the best “treatment”. PMID:27027021

  8. Prominent β-relaxations in yttrium based metallic glasses

    SciTech Connect

    Luo, P.; Lu, Z.; Zhu, Z. G.; Li, Y. Z.; Bai, H. Y.; Wang, W. H.

    2015-01-19

    Most metallic glasses (MGs) exhibit weak slow β-relaxation. We report the prominent β-relaxation in YNiAl metallic glass with a wide composition range. Compared with other MGs, the MGs show a pronounced β-relaxation peak and high β-relaxation peak temperature, and the β-relaxation behavior varies significantly with the changes of the constituent elements, which is attributed to the fluctuations of chemical interactions between the components. We demonstrate the correlation between the β-relaxation and the activation of flow units for mechanical behaviors of the MG and show that the MG is model system for studying some controversial issues in glasses.

  9. The effect of music relaxation versus progressive muscular relaxation on insomnia in older people and their relationship to personality traits.

    PubMed

    Ziv, Naomi; Rotem, Tomer; Arnon, Zahi; Haimov, Iris

    2008-01-01

    A large percentage of older people suffer from chronic insomnia, affecting many aspects of life quality and well-being. Although insomnia is most often treated with medication, a growing number of studies demonstrate the efficiency of various relaxation techniques. The present study had three aims: first, to compare two relaxation techniques--music relaxation and progressive muscular relaxation--on various objective and subjective measures of sleep quality; second, to examine the effect of these techniques on anxiety and depression; and finally, to explore possible relationships between the efficiency of both techniques and personality variables. Fifteen older adults took part in the study. Following one week of base-line measurements of sleep quality, participants followed one week of music relaxation and one week of progressive muscular relaxation before going to sleep. Order of relaxation techniques was controlled. Results show music relaxation was more efficient in improving sleep. Sleep efficiency was higher after music relaxation than after progressive muscular relaxation. Moreover, anxiety was lower after music relaxation. Progressive muscular relaxation was related to deterioration of sleep quality on subjective measures. Beyond differences between the relaxation techniques, extraverts seemed to benefit more from both music and progressive muscular relaxation. The advantage of non-pharmacological means to treat insomnia, and the importance of taking individual differences into account are discussed.

  10. Fluctuations in tension during contraction of single muscle fibers.

    PubMed Central

    Borejdo, J; Morales, M F

    1977-01-01

    We have searched for fluctuations in the steady-state tension developed by stimulated single muscle fibers. Such tension "noise" is expected to be present as a result of the statistical fluctuations in the number and/or state of myosin cross-bridges interacting with thin filament sites at any time. A sensitive electro-optical tension transducer capable of resolving the expected fluctuations in magnitude and frequency was constructed to search for the fluctuations. The noise was analyzed by computing the power spectra and amplitude of stochastic fluctuations in the photomultiplier counting rate, which was made proportional to muscle force. The optical system and electronic instrumentation together with the minicomputer software are described. Tensions were measured in single skinned glycerinated rabbit psoas muscle fibers in rigor and during contraction and relaxation. The results indicate the presence of fluctuations in contracting muscles and a complete absence of tension noise in eith rigor or relaxation. Also, a numerical method was developed to simulate the power spectra and amplitude of fluctuations, given the rate constants for association and dissociation of the cross-bridges and actin. The simulated power spectra and the frequency distributions observed experimentally are similar. PMID:922123

  11. Biotransformation of glyceryl trinitrate occurs concurrently with relaxation of rabbit aorta

    SciTech Connect

    Brien, J.F.; McLaughlin, B.E.; Breedon, T.H.; Bennett, B.M.; Nakatsu, K.; Marks, G.S.

    1986-05-01

    This study was conducted to test the hypothesis that biotransformation of glyceryl trinitrate (GTN) is involved in GTN-induced relaxation of vascular smooth muscle. Isolated rabbit aortic strips (RAS) were contracted submaximally with phenylephrine (PE) and then were incubated with 0.5 microM (/sup 14/C)GTN in a time course study. GTN-induced relaxation (inhibition of PE-induced tone) of RAS was monitored and tissue GTN and glyceryl-1,2- and 1,3-dinitrate (GDN) concentrations were measured by thin-layer chromatography and liquid scintillation spectrometry at 0.5, 1, 2 and 20 min after incubation. Biotransformation of GTN to GDN occurred during GTN-induced relaxation of RAS. The tissue GDN concentration was dependent on the time duration of incubation with GTN and was related to the magnitude of GTN-induced tissue relaxation. At the 20-min interval, the GDN concentration in the incubation medium indicated appreciable efflux of GDN metabolites from the RAS. In the biotransformation of GTN by RAS, there was about 4-fold preferential formation of 1,2-GDN compared with 1,3-GDN. RAS were made tolerant to GTN in vitro by incubation with 500 microM GTN for 1 hr. After washing, GTN-tolerant and nontolerant (incubation with vehicle for 1 hr) RAS were contracted submaximally with PE, and then were incubated with 0.5 microM (/sup 14/C)GTN for 2 min. GTN-induced relaxation of RAS and tissue GDN concentration were significantly less for GTN-tolerant tissue compared with nontolerant tissue. Tissue GTN concentration was similar for both GTN-tolerant and nontolerant RAS, which indicated that the tissue uptake of GTN was similar and that GTN biotransformation was diminished in tolerant tissue.(ABST

  12. Excess L-arginine restores endothelium-dependent relaxation impaired by monocrotaline pyrrole

    SciTech Connect

    Cheng Wei; Oike, Masahiro . E-mail: moike@pharmaco.med.kyushu-u.ac.jp; Hirakawa, Masakazu; Ohnaka, Keizo; Koyama, Tetsuya; Ito, Yushi

    2005-09-15

    The pyrrolizidine alkaloid plant toxin monocrotaline pyrrole (MCTP) causes pulmonary hypertension in experimental animals. The present study aimed to examine the effects of MCTP on the endothelium-dependent relaxation. We constructed an in vitro disease model of pulmonary hypertension by overlaying MCTP-treated bovine pulmonary artery endothelial cells (CPAEs) onto pulmonary artery smooth muscle cell-embedded collagen gel lattice. Acetylcholine (Ach) induced a relaxation of the control CPAEs-overlaid gels that were pre-contracted with noradrenaline, and the relaxation was inhibited by L-NAME, an inhibitor of NO synthase (NOS). In contrast, when MCTP-treated CPAEs were overlaid, the pre-contracted gels did not show a relaxation in response to Ach in the presence of 0.5 mM L-arginine. Expression of endothelial NOS protein, Ach-induced Ca{sup 2+} transients and cellular uptake of L-[{sup 3}H]arginine were significantly smaller in MCTP-treated CPAEs than in control cells, indicating that these changes were responsible for the impaired NO production in MCTP-treated CPAEs. Since cellular uptake of L-[{sup 3}H]arginine linearly increased according to its extracellular concentration, we hypothesized that the excess concentration of extracellular L-arginine might restore NO production in MCTP-treated CPAEs. As expected, in the presence of 10 mM L-arginine, Ach showed a relaxation of the MCTP-treated CPAEs-overlaid gels. These results indicate that the impaired NO production in damaged endothelial cells can be reversed by supplying excess L-arginine.

  13. The use of relaxation techniques in the perioperative management of proctological patients: preliminary results.

    PubMed

    Renzi, C; Peticca, L; Pescatori, M

    2000-11-01

    Relaxation techniques positively affect the psychosomatic pattern of patients undergoing surgical treatment. Among these techniques guided imaging (GI) has been reported to improve outcome following colorectal surgery. This study assessed the effects of GI on the postoperative course in proctological patients. We carried out a prospective randomized trial in a group of patients operated on for anorectal diseases in our coloproctology unit. Patients were randomized into group 1 (n = 43) with standard care and group 2 (n = 43) with relaxation techniques; they listened to a GI tape with music and relaxing text before, during, and after surgery. The following parameters were evaluated by a questionnaire (a) postoperative pain measured by visual analogue score, (b) the quality of sleep measured by a similar score, and (c) the nature of first micturition, evaluated as normal or difficult. Groups were similar in age and sex distribution, type of disease, and operation performed. The pain score was 3.2 +/- 1.4 in GI patients and 4.1 +/- 2.1 in controls (P = 0.07). The quality of sleep score was 4.8 +/- 2.9 in GI patients and 6.4 +/- 2.7 in controls (P = 0.01). The first micturition was painful in 10.3% of GI patients and in 27.3% of controls (P = 0.09). Perioperative relaxation techniques thus showed a trend to reducing pain following anorectal surgery and significantly improving the quality of sleep; a decrease in anxiety and a consequent muscle relaxation may be involved. Therefore GI, a low cost and noninvasive procedure, can be recommended as an helpful tool in this type of surgery.

  14. Mn2+ activates skinned smooth muscle cells in the absence of myosin light chain phosphorylation.

    PubMed

    Hoar, P E; Kerrick, W G

    1988-08-01

    Two effects of Mn2+ on skinned fibers from chicken gizzard smooth muscle were observed, dependent on the presence or absence of dithiothreitol (DTT) reducing agent. One involves protein oxidation (in the absence of DTT) with production of a "latch"-like state, and the other involves direct Mn2+ activation of contractile proteins. Cells activated by Mn2+ in the presence of ATP and the absence of Ca2+, Mg2+ and DTT did not relax when transferred to normal relaxing solutions. In contrast, when 5 mM DTT was included in the Mn2+ contracting solution to prevent protein oxidation by Mn2+, the cells still contracted when exposed to Mn2+, but relaxed rapidly when the Mn2+ was removed. In the presence of DTT both the Mn2+ activation and the relaxation following removal of Mn2+ were more rapid than normal Ca2+-activated contractions and relaxations. The skinned fibers activated by Mn2+ in the absence of DTT showed little active shortening unless DTT was added. This rigor-like state is probably due to oxidation of contractile proteins since the cells relaxed when exposed to a relaxing solution containing DTT (50 mM) and then contracted again in response to Ca2+ and relaxed normally. The Mn2+ activation was not associated with myosin light chain phosphorylation, in contrast to Ca2+-activated contractions. PMID:3186428

  15. Quasilinear Viscoelastic Behavior of Bovine Extraocular Muscle Tissue

    PubMed Central

    Yoo, Lawrence; Kim, Hansang; Gupta, Vijay; Demer, Joseph L.

    2009-01-01

    Purpose Until now, there has been no comprehensive mathematical model of the nonlinear viscoelastic stress-strain behavior of extraocular muscles (EOMs). The present study describes, with the use of a quasilinear viscoelastic (QLV) model, the nonlinear, history-dependent viscoelastic properties and elastic stress-strain relationship of EOMs. Methods Six oculorotary EOMs were obtained fresh from a local abattoir. Longitudinally oriented specimens were taken from different regions of the EOMs and subjected to uniaxial tensile, relaxation, and cyclic loading testing with the use of an automated load cell under temperature and humidity control. Twelve samples were subjected to uniaxial tensile loading with 1.7%/s strain rate until failure. Sixteen specimens were subjected to relaxation studies over 1500 seconds. Cyclic loading was performed to validate predictions of the QLV model characterized from uniaxial tensile loading and relaxation data. Results Uniform and highly repeatable stress-strain behavior was observed for 12 specimens extracted from various regions of all EOMs. Results from 16 different relaxation trials illustrated that most stress relaxation occurred during the first 30 to 60 seconds for 30% extension. Elastic and reduced relaxation functions were fit to the data, from which a QLV model was assembled and compared with cyclic loading data. Predictions of the QLV model agreed with observed peak cyclic loading stress values to within 8% for all specimens and conditions. Conclusions Close agreement between the QLV model and the relaxation and cyclic loading data validates model quantification of EOM mechanical properties and will permit the development of accurate overall models of mechanics of ocular motility and strabismus. PMID:19357357

  16. NUCLEOSIDE PHOSPHATASE ACTIVITIES IN RAT CARDIAC MUSCLE.

    PubMed

    ESSNER, E; NOVIKOFF, A B; QUINTANA, N

    1965-05-01

    Localizations of aldehyde-resistant nucleoside phosphatase activities in frozen sections of rat cardiac muscle have been studied by electron microscopy. Activities are higher after fixation with formaldehyde than with glutaraldehyde. After incubation with adenosine triphosphate or inosine diphosphate at pH 7.2, reaction product is found in the "terminal cisternae" or "transverse sacs" of the sarcoplasmic reticulum, which, together with the "intermediary vesicles" (T system), constitute the "dyads" or "triads". Reaction product is also present at the membranes of micropinocytotic vacuoles which apparently form from the plasma membrane of capillary endothelial cells and from the sarcolemma. In certain regions of the intercalated discs, reaction product is found within the narrow spaces between sarcolemmas of adjacent cells and within micropinocytotic vacuoles that seem to form from the sarcolemma. With inosine diphosphate, reaction product is also found in other parts of the sarcoplasmic reticulum. After incubation with cytidine monophosphate at pH 5, reaction product is present in the transverse sacs of sarcoplasmic reticulum, in micropinocytotic vacuoles in capillary endothelium, and in lysosomes of muscle fibers and capillaries. The possible significance of the sarcoplasmic reticulum phosphatases is discussed in relation to the role the reticulum probably plays in moving calcium ions and thereby controlling contraction and relaxation of the muscle fiber.

  17. Ischemia causes muscle fatigue

    NASA Technical Reports Server (NTRS)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D. M.

    2001-01-01

    The purpose of this investigation was to determine whether ischemia, which reduces oxygenation in the extensor carpi radialis (ECR) muscle, causes a reduction in muscle force production. In eight subjects, muscle oxygenation (TO2) of the right ECR was measured noninvasively and continuously using near infrared spectroscopy (NIRS) while muscle twitch force was elicited by transcutaneous electrical stimulation (1 Hz, 0.1 ms). Baseline measurements of blood volume, muscle oxygenation and twitch force were recorded continuously, then a tourniquet on the upper arm was inflated to one of five different pressure levels: 20, 40, 60 mm Hg (randomized order) and diastolic (69 +/- 9.8 mm Hg) and systolic (106 +/- 12.8 mm Hg) blood pressures. Each pressure level was maintained for 3-5 min, and was followed by a recovery period sufficient to allow measurements to return to baseline. For each respective tourniquet pressure level, mean TO2 decreased from resting baseline (100% TO2) to 99 +/- 1.2% (SEM), 96 +/- 1.9%, 93 +/- 2.8%, 90 +/- 2.5%, and 86 +/- 2.7%, and mean twitch force decreased from resting baseline (100% force) to 99 +/- 0.7% (SEM), 96 +/- 2.7%, 93 +/- 3.1%, 88 +/- 3.2%, and 86 +/- 2.6%. Muscle oxygenation and twitch force at 60 mm Hg tourniquet compression and above were significantly lower (P < 0.05) than baseline value. Reduced twitch force was correlated in a dose-dependent manner with reduced muscle oxygenation (r = 0.78, P < 0.001). Although the correlation does not prove causation, the results indicate that ischemia leading to a 7% or greater reduction in muscle oxygenation causes decreased muscle force production in the forearm extensor muscle. Thus, ischemia associated with a modest decline in TO2 causes muscle fatigue.

  18. Inhibitory action of acetylcholine on the smooth muscle from the lower esophageal sphincter.

    PubMed

    Velkova, V; Papasova, M; Boev, K; Bonev, A

    1979-01-01

    The effect of acetylcholine (Ach) on smooth-muscle strips isolated along the transversal axis of cat lower esophageal sphincter (LES) is studied. Ach in low concentrations (10(-11)--10(-9) g/ml) causes contraction of the muscle strips. Increase of the concentration to 10(-8) g/ml leads to biphasic effect: contraction with relaxation. Inhibitory response predominates at Ach 10(-6) and 10(-5) g/ml. Atropine (10(-6) M) eliminates the excitatory phase but it has no effect on the second relaxation phase. Propranolol (10(-6), 2 X 10(-6) M) as well as phentolamine turn the inhibitory response to Ach into contraction. Noradrenaline leads to LES contraction while isoprenaline induces relaxation. In smooth-muscle LES strips from cats pretreated with reserpine (1 mg/kg for 3 days), Ach in the concentrations used (10(-5), 10(-6) g/ml) leads to contraction. The changes observed are membrane-dependent -- the contraction is accompanied by depolarization, relaxation by hyperpolarization. The inhibitory effect of Ach on LES smooth muscle is discussed in the light of the hypothesis of Burn and Rand (1960) about the release of noradrenaline under the effect of Ach.

  19. High relaxivity Gd(III)-DNA gold nanostars: investigation of shape effects on proton relaxation.

    PubMed

    Rotz, Matthew W; Culver, Kayla S B; Parigi, Giacomo; MacRenaris, Keith W; Luchinat, Claudio; Odom, Teri W; Meade, Thomas J

    2015-03-24

    Gadolinium(III) nanoconjugate contrast agents (CAs) have distinct advantages over their small-molecule counterparts in magnetic resonance imaging. In addition to increased Gd(III) payload, a significant improvement in proton relaxation efficiency, or relaxivity (r1), is often observed. In this work, we describe the synthesis and characterization of a nanoconjugate CA created by covalent attachment of Gd(III) to thiolated DNA (Gd(III)-DNA), followed by surface conjugation onto gold nanostars (DNA-Gd@stars). These conjugates exhibit remarkable r1 with values up to 98 mM(-1) s(-1). Additionally, DNA-Gd@stars show efficient Gd(III) delivery and biocompatibility in vitro and generate significant contrast enhancement when imaged at 7 T. Using nuclear magnetic relaxation dispersion analysis, we attribute the high performance of the DNA-Gd@stars to an increased contribution of second-sphere relaxivity compared to that of spherical CA equivalents (DNA-Gd@spheres). Importantly, the surface of the gold nanostar contains Gd(III)-DNA in regions of positive, negative, and neutral curvature. We hypothesize that the proton relaxation enhancement observed results from the presence of a unique hydrophilic environment produced by Gd(III)-DNA in these regions, which allows second-sphere water molecules to remain adjacent to Gd(III) ions for up to 10 times longer than diffusion. These results establish that particle shape and second-sphere relaxivity are important considerations in the design of Gd(III) nanoconjugate CAs.

  20. Autoradiographic Studies of Intracellular Calcium in Frog Skeletal Muscle

    PubMed Central

    Winegrad, Saul

    1965-01-01

    Autoradiographs consisting of a 1000 A thick tissue section and a 1400 A thick emulsion film have been prepared from frog toe muscles labeled with Ca45. The muscles had been fixed with an oxalate-containing osmium solution at rest at room temperature, at rest at 4°C, during relaxation following K+ depolarization or after prolonged depolarization. From 6 to 39 per cent of K+ contracture tension was produced during fixation. The grains in the autoradiographs were always concentrated in the center 0.2 to 0.3 µ of the I band and the region of the overlapping of the thick and thin filaments. The greater the tension produced during fixation, the greater was the concentration in the A band and the smaller the concentration in the I band. Autoradiographs of two muscles fixed by freeze-substitution resembled those of muscles which produced little tension during osmium fixation. Muscles which shortened during fixation produced fewer grains. In the narrow (<2.0 µ) sarcomeres of the shortened muscles, grain density decreased with decreasing sarcomere width. A theoretical analysis of the significance of these grain distributions is proposed and discussed. PMID:14284779

  1. Structure of Skeletal Muscle

    MedlinePlus

    ... Cells, Tissues, & Membranes Cell Structure & Function Cell Structure Cell Function Body Tissues Epithelial Tissue Connective Tissue Muscle Tissue ... nerves. This is directly related to the primary function of skeletal muscle, ... an impulse from a nerve cell. Generally, an artery and at least one vein ...

  2. Autoimmune muscle disease.

    PubMed

    Mammen, Andrew

    2016-01-01

    Patients with polymyositis (PM), dermatomyositis (DM), and immune-mediated necrotizing myopathy (IMNM) present with the subacute onset of symmetric proximal muscle weakness, elevated muscle enzymes, myopathic findings on electromyography, and autoantibodies. DM patients are distinguished by their cutaneous manifestations. Characteristic features on muscle biopsy include the invasion of nonnecrotic muscle fibers by T cells in PM, perifascicular atrophy in DM, and myofiber necrosis without prominent inflammation in IMNM. Importantly, these are regarded as autoimmune diseases and most patients respond partially, if not completely, to immunosuppressive therapy. Patients with inclusion body myositis (IBM) usually present with the insidious onset of asymmetric weakness in distal muscles (e.g., wrist flexors, and distal finger flexors), often when more proximal muscle groups are relatively preserved. Although IBM muscle biopsies usually have focal invasion of myofibers by lymphocytes, the majority of IBM biopsies also include rimmed vacuoles. While most IBM patients do have autoantibodies, treatment with immunosuppressive agents does not improve their clinical course. Along with the presence of abnormally aggregated proteins on muscle biopsy, the refractory nature and relentless course of IBM suggest that the underlying pathophysiology may include a dominant myodegenerative component. This chapter will focus on the epidemiology, clinical presentation, and treatment of the autoimmune myopathies and IBM. An emphasis will be placed on recent advances, indicating that these are a diverse family of diseases and that each of more than a dozen myositis autoantibodies is associated with a distinct clinical phenotype. PMID:27112692

  3. SMOOTH MUSCLE STEM CELLS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vascular smooth muscle cells (SMCs) originate from multiple types of progenitor cells. In the embryo, the most well-studied SMC progenitor is the cardiac neural crest stem cell. Smooth muscle differentiation in the neural crest lineage is controlled by a combination of cell intrinsic factors, includ...

  4. Effects of lumbar stabilization exercises on the flexion-relaxation phenomenon of the erector spinae.

    PubMed

    Park, San-Seong; Choi, Bo-Ram

    2016-06-01

    [Purpose] This study evaluated the differences in the flexion-relaxation phenomenon (FRP) of the right and left erector spinae muscles in asymptomatic subjects and the effect of lumbar stabilization exercises on these differences. [Subjects and Methods] Twenty-six participants (12 in the exercise group and 14 in the control group) with a difference in the FRP in the right and left erector spinae muscles were recruited from among healthy students attending Silla University. The exercise group performed two lumbar stabilization exercises (back bridge exercise and hand-knee exercise) for 4 weeks. The control group did not exercise. [Results] No significant group-by-exercise interaction was found. The right and left erector spinae muscles did show a difference in FRP between the control and exercise groups (119.2 ± 69.2 and 131.1 ± 85.2 ms, respectively). In addition, the exercise group showed a significant decrease in post-exercise (50.0 ± 27.0 ms) compared to pre-exercise (112.3 ± 41.5 ms) differences in the right and left FRP. [Conclusion] These results suggest that lumbar stabilization exercises may counter asymmetry of the FRP in the erector spinae muscles, possibly preventing low back pain in the general population.

  5. Effects of lumbar stabilization exercises on the flexion-relaxation phenomenon of the erector spinae.

    PubMed

    Park, San-Seong; Choi, Bo-Ram

    2016-06-01

    [Purpose] This study evaluated the differences in the flexion-relaxation phenomenon (FRP) of the right and left erector spinae muscles in asymptomatic subjects and the effect of lumbar stabilization exercises on these differences. [Subjects and Methods] Twenty-six participants (12 in the exercise group and 14 in the control group) with a difference in the FRP in the right and left erector spinae muscles were recruited from among healthy students attending Silla University. The exercise group performed two lumbar stabilization exercises (back bridge exercise and hand-knee exercise) for 4 weeks. The control group did not exercise. [Results] No significant group-by-exercise interaction was found. The right and left erector spinae muscles did show a difference in FRP between the control and exercise groups (119.2 ± 69.2 and 131.1 ± 85.2 ms, respectively). In addition, the exercise group showed a significant decrease in post-exercise (50.0 ± 27.0 ms) compared to pre-exercise (112.3 ± 41.5 ms) differences in the right and left FRP. [Conclusion] These results suggest that lumbar stabilization exercises may counter asymmetry of the FRP in the erector spinae muscles, possibly preventing low back pain in the general population. PMID:27390399

  6. Effects of lumbar stabilization exercises on the flexion-relaxation phenomenon of the erector spinae

    PubMed Central

    Park, San-seong; Choi, Bo-ram

    2016-01-01

    [Purpose] This study evaluated the differences in the flexion-relaxation phenomenon (FRP) of the right and left erector spinae muscles in asymptomatic subjects and the effect of lumbar stabilization exercises on these differences. [Subjects and Methods] Twenty-six participants (12 in the exercise group and 14 in the control group) with a difference in the FRP in the right and left erector spinae muscles were recruited from among healthy students attending Silla University. The exercise group performed two lumbar stabilization exercises (back bridge exercise and hand-knee exercise) for 4 weeks. The control group did not exercise. [Results] No significant group-by-exercise interaction was found. The right and left erector spinae muscles did show a difference in FRP between the control and exercise groups (119.2 ± 69.2 and 131.1 ± 85.2 ms, respectively). In addition, the exercise group showed a significant decrease in post-exercise (50.0 ± 27.0 ms) compared to pre-exercise (112.3 ± 41.5 ms) differences in the right and left FRP. [Conclusion] These results suggest that lumbar stabilization exercises may counter asymmetry of the FRP in the erector spinae muscles, possibly preventing low back pain in the general population. PMID:27390399

  7. Types of muscle tissue (image)

    MedlinePlus

    The 3 types of muscle tissue are cardiac, smooth, and skeletal. Cardiac muscle cells are located in ... heart, appear striated, and are under involuntary control. Smooth muscle fibers are located in walls of hollow ...

  8. Research opportunities in muscle atrophy

    NASA Technical Reports Server (NTRS)

    Herbison, G. J.; Talbot, J. M.

    1984-01-01

    A trophy of skeletal muscle; muscle a trophy associated with manned space flight; the nature, causes, and mechanisms of muscle atrophy associated with space flight, selected physiological factors, biochemical aspects, and countermeasures are addressed.

  9. Nonlinear visco-elastic relaxation of non-lithostatic pressure

    NASA Astrophysics Data System (ADS)

    Podladchikov, Yury; Dabrowski, Marcin

    2014-05-01

    We investigate the rate of viscoelastic relaxation of non-lithostatic pressure as a function of a number of model parameters. Nonlinearity and anisotropy of viscosity are under investigation. We also study to what limit the pressure is relaxing.

  10. The Influence of High-Frequency Gravitational Waves Upon Muscles

    SciTech Connect

    Moy, Lawrence S.; Baker, Robert M. L. Jr

    2007-01-30

    The objective of this paper is to present a theory for the possible influence of high-frequency gravitational waves or HFGWs and pulsed micro-current electromagnetic waves or EMs on biological matter specifically on muscle cells and myofibroblasts. The theory involves consideration of the natural frequency of contractions and relaxations of muscles, especially underlying facial skin, and the possible influence of HFGWs on that process. GWs pass without attenuation through all material thus conventional wisdom would dictate that GWs would have no influence on biological matter. On the other hand, GWs can temporarily modify a gravitational field in some locality if they are of high frequency and such a modification might have an influence in changing the skin muscles' natural frequency. Prior to the actual laboratory generation of HFGWs their influence can be emulated by micro-current EM pulses to the skin and some evidence presented here on that effect may predict the influence of HFGWs. We believe that the HFGW pulsations lead to increased muscle activity and may serve to reverse the aging process. A novel theoretical framework concerning these relaxation phenomena is one result of the paper. Another result is the analysis of the possible delivery system of the FBAR-generated HFGWs, the actual power of the generated HFGWs, and the system's application to nanostructural modification of the skin or muscle cells. It is concluded that a series of non-evasive experiments, which are identified, will have the potential to test theory by detecting and analyzing the possible HFGWs change in polarization, refraction, etc. after their interaction with the muscle cells.

  11. Interrelations of muscle functional MRI, diffusion-weighted MRI and (31) P-MRS in exercised lower back muscles.

    PubMed

    Hiepe, Patrick; Gussew, Alexander; Rzanny, Reinhard; Anders, Christoph; Walther, Mario; Scholle, Hans-Christoph; Reichenbach, Jürgen R

    2014-08-01

    Exercise-induced changes of transverse proton relaxation time (T2 ), tissue perfusion and metabolic turnover were investigated in the lower back muscles of volunteers by applying muscle functional MRI (mfMRI) and diffusion-weighted imaging (DWI) before and after as well as dynamic (31) P-MRS during the exercise. Inner (M. multifidus, MF) and outer lower back muscles (M. erector spinae, ES) were examined in 14 healthy young men performing a sustained isometric trunk-extension. Significant phosphocreatine (PCr) depletions ranging from 30% (ES) to 34% (MF) and Pi accumulations between 95% (left ES) and 120%-140% (MF muscles and right ES) were observed during the exercise, which were accompanied by significantly decreased pH values in all muscles (∆pH ≈ -0.05). Baseline T2 values were similar across all investigated muscles (approximately 27 ms at 3 T), but revealed right-left asymmetric increases (T2 ,inc ) after the exercise (right ES/MF: T2 ,inc  = 11.8/9.7%; left ES/MF: T2 ,inc  = 4.6/8.9%). Analyzed muscles also showed load-induced increases in molecular diffusion D (p = .007) and perfusion fraction f (p = .002). The latter parameter was significantly higher in the MF than in the ES muscles both at rest and post exercise. Changes in PCr (p = .03), diffusion (p < .01) and perfusion (p = .03) were strongly associated with T2,inc , and linear mixed model analysis revealed that changes in PCr and perfusion both affect T2,inc (p < .001). These findings support previous assumptions that T2 changes are not only an intra-cellular phenomenon resulting from metabolic stress but are also affected by increased perfusion in loaded muscles.

  12. Onion artificial muscles

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Chun; Shih, Wen-Pin; Chang, Pei-Zen; Lai, Hsi-Mei; Chang, Shing-Yun; Huang, Pin-Chun; Jeng, Huai-An

    2015-05-01

    Artificial muscles are soft actuators with the capability of either bending or contraction/elongation subjected to external stimulation. However, there are currently no artificial muscles that can accomplish these actions simultaneously. We found that the single layered, latticed microstructure of onion epidermal cells after acid treatment became elastic and could simultaneously stretch and bend when an electric field was applied. By modulating the magnitude of the voltage, the artificial muscle made of onion epidermal cells would deflect in opposing directions while either contracting or elongating. At voltages of 0-50 V, the artificial muscle elongated and had a maximum deflection of -30 μm; at voltages of 50-1000 V, the artificial muscle contracted and deflected 1.0 mm. The maximum force response is 20 μN at 1000 V.

  13. Modeling aftershocks as a stretched exponential relaxation

    NASA Astrophysics Data System (ADS)

    Mignan, A.

    2015-11-01

    The decay rate of aftershocks has been modeled as a power law since the pioneering work of Omori in the late nineteenth century. Although other expressions have been proposed in recent decades to describe the temporal behavior of aftershocks, the number of model comparisons remains limited. After reviewing the aftershock models published from the late nineteenth century until today, I solely compare the power law, pure exponential and stretched exponential expressions defined in their simplest forms. By applying statistical methods recommended recently in applied mathematics, I show that all aftershock sequences tested in three regional earthquake catalogs (Southern and Northern California, Taiwan) and with three declustering techniques (nearest-neighbor, second-order moment, window methods) follow a stretched exponential instead of a power law. These results infer that aftershocks are due to a simple relaxation process, in accordance with most other relaxation processes observed in Nature.

  14. Two-temperature reaction and relaxation rates

    NASA Astrophysics Data System (ADS)

    Kolesnichenko, E.; Gorbachev, Yu.

    2016-09-01

    Within the method of solving the kinetic equations for gas mixtures with internal degrees of freedom developed by the authors and based on the approximate summational invariants (ASI) concept, gas-dynamic equations for a multi-temperature model for the spatially inhomogeneous case are derived. For the two-temperature case, the expressions for the non-equilibrium reaction and relaxation rates are obtained. Special attention is drawn to corresponding thermodynamic equations. Different possibilities of introducing the gas-dynamic variables related to the internal degrees of freedom are considered. One is based on the choice of quantum numbers as the ASI, while the other is based on the choice of internal (vibrational) energy as the ASI. Limits to a one-temperature situation are considered in all the cases. For the cutoff harmonic oscillator model, explicit expressions for the reaction and relaxation rates are derived.

  15. The relief of anxiety through relaxing meditation.

    PubMed

    Meares, A

    1976-08-01

    Our sensory input derives from sources in the environment, in our body and in the mind itself. When the sensory input reaches a critical level it is incompletely integrated, and anxiety results. A logical understanding of the cause of anxiety has no therapeutic effect. But the mind itself has the ability to reduce anxiety if suitable circumstances are provided. This can be quite easily achieved in the stillness of mind induced in a simple meditative experience known as Mental Ataraxis. The patient is first shown complete physical relaxation in global fashion. He is then brought to experience the relaxation as part of his whole being so that his mind fully participates in the process. He practises this, starting in a position of slight discomfort which eases as the meditative experience develops. The approach does not involve the patient in doing less work. The lessening of anxiety reduces nervous tension, psychosomatic disorders and defensive distortions of the personality.

  16. Relaxation times and charge conductivity of silicene

    NASA Astrophysics Data System (ADS)

    Mazloom, Azadeh; Parhizgar, Fariborz; Abedinpour, Saeed H.; Asgari, Reza

    2016-07-01

    We investigate the transport and single particle relaxation times of silicene in the presence of neutral and charged impurities. The static charge conductivity is studied using the semiclassical Boltzmann formalism when the spin-orbit interaction is taken into account. The screening is modeled within Thomas-Fermi and random-phase approximations. We show that the transport relaxation time is always longer than the single particle one. Easy electrical controllability of both carrier density and band gap in this buckled two-dimensional structure makes it a suitable candidate for several electronic and optoelectronic applications. In particular, we observe that the dc charge conductivity could be easily controlled through an external electric field, a very promising feature for applications as electrical switches and transistors. Our findings would be qualitatively valid for other buckled honeycomb lattices of the same family, such as germanine and stanine.

  17. Relaxation schemes for spectral multigrid methods

    NASA Technical Reports Server (NTRS)

    Phillips, Timothy N.

    1987-01-01

    The effectiveness of relaxation schemes for solving the systems of algebraic equations which arise from spectral discretizations of elliptic equations is examined. Iterative methods are an attractive alternative to direct methods because Fourier transform techniques enable the discrete matrix-vector products to be computed almost as efficiently as for corresponding but sparse finite difference discretizations. Preconditioning is found to be essential for acceptable rates of convergence. Preconditioners based on second-order finite difference methods are used. A comparison is made of the performance of different relaxation methods on model problems with a variety of conditions specified around the boundary. The investigations show that iterations based on incomplete LU decompositions provide the most efficient methods for solving these algebraic systems.

  18. Creep and relaxation behavior of Inconel-617

    SciTech Connect

    Osthoff, W.; Ennis, P.J.; Nickel, H.; Schuster, H.

    1984-08-01

    The static and dynamic creep behavior of Inconel alloy 617 has been determined in constant load creep tests, relaxation tests, and stress reduction tests in the temperature range 1023 to 1273 K. The results have been interpreted using the internal stress concept: The dependence of the internal stress on the applied stress and test temperature was determined. In a few experiments, the influence of cold deformation prior to the creep test on the magnitude of the internal stress was also investigated. It was found that the experimentally observed relaxation behavior could be more satisfactorily described using the Norton creep equation modified by incorporation of the internal stress than by the conventional Norton creep equation.

  19. Electrochemical relaxation at electrically conducting polymers

    NASA Astrophysics Data System (ADS)

    Nateghi, M. R.; zarandi, M. B.

    2008-08-01

    In this study, slow relaxation (SR) associated with the electroreduction of polyaniline (PAn) films during polarization to high cathodic potentials was investigated by cyclic voltammetry technique. Anodic voltammetric currents were used as experimental variable to indicate the relaxation occurring in PAn films deposited electrochemically on the Pt electrode surface. The dependence of SR on polymer film thickness, waiting potential, and mobility of the doped anion was investigated. Percolation threshold potential for heteropolyanion doped PAn was estimated to be between 150 and 200 mV depending on polymer thickness on the electrode surface. A new model of the conducting to insulating conversion is described by the percolation theory and mobility gap changes during the process.

  20. Energy relaxation of a dissipative quantum oscillator

    SciTech Connect

    Kumar, Pradeep; Pollak, Eli

    2014-12-21

    The dissipative harmonic oscillator is studied as a model for vibrational relaxation in a liquid environment. Continuum limit expressions are derived for the time-dependent average energy, average width of the population, and the vibrational population itself. The effect of the magnitude of the solute-solvent interaction, expressed in terms