Sample records for muscle strength methods

  1. Importance and challenges of measuring intrinsic foot muscle strength

    PubMed Central

    2012-01-01

    Background Intrinsic foot muscle weakness has been implicated in a range of foot deformities and disorders. However, to establish a relationship between intrinsic muscle weakness and foot pathology, an objective measure of intrinsic muscle strength is needed. The aim of this review was to provide an overview of the anatomy and role of intrinsic foot muscles, implications of intrinsic weakness and evaluate the different methods used to measure intrinsic foot muscle strength. Method Literature was sourced from database searches of MEDLINE, PubMed, SCOPUS, Cochrane Library, PEDro and CINAHL up to June 2012. Results There is no widely accepted method of measuring intrinsic foot muscle strength. Methods to estimate toe flexor muscle strength include the paper grip test, plantar pressure, toe dynamometry, and the intrinsic positive test. Hand-held dynamometry has excellent interrater and intrarater reliability and limits toe curling, which is an action hypothesised to activate extrinsic toe flexor muscles. However, it is unclear whether any method can actually isolate intrinsic muscle strength. Also most methods measure only toe flexor strength and other actions such as toe extension and abduction have not been adequately assessed. Indirect methods to investigate intrinsic muscle structure and performance include CT, ultrasonography, MRI, EMG, and muscle biopsy. Indirect methods often discriminate between intrinsic and extrinsic muscles, but lack the ability to measure muscle force. Conclusions There are many challenges to accurately measure intrinsic muscle strength in isolation. Most studies have measured toe flexor strength as a surrogate measure of intrinsic muscle strength. Hand-held dynamometry appears to be a promising method of estimating intrinsic muscle strength. However, the contribution of extrinsic muscles cannot be excluded from toe flexor strength measurement. Future research should clarify the relative contribution of intrinsic and extrinsic muscles during intrinsic foot muscle strength testing. PMID:23181771

  2. Objective evaluation of muscle strength in infants with hypotonia and muscle weakness.

    PubMed

    Reus, Linda; van Vlimmeren, Leo A; Staal, J Bart; Janssen, Anjo J W M; Otten, Barto J; Pelzer, Ben J; Nijhuis-van der Sanden, Maria W G

    2013-04-01

    The clinical evaluation of an infant with motor delay, muscle weakness, and/or hypotonia would improve considerably if muscle strength could be measured objectively and normal reference values were available. The authors developed a method to measure muscle strength in infants and tested 81 typically developing infants, 6-36 months of age, and 17 infants with Prader-Willi Syndrome (PWS) aged 24 months. The inter-rater reliability of the measurement method was good (ICC=.84) and the convergent validity was confirmed by high Pearson's correlations between muscle strength, age, height, and weight (r=.79-.85). A multiple linear regression model was developed to predict muscle strength based on age, height, and weight, explaining 73% of the variance in muscle strength. In infants with PWS, muscle strength was significantly decreased. Pearson's correlations showed that infants with PWS in which muscle strength was more severely affected also had a larger motor developmental delay (r=.75). Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Dynamic Analysis of the Abnormal Isometric Strength Movement Pattern between Shoulder and Elbow Joint in Patients with Hemiplegia.

    PubMed

    Liu, Yali; Hong, Yuezhen; Ji, Linhong

    2018-01-01

    Patients with hemiplegia usually have weak muscle selectivity and usually perform strength at a secondary joint (secondary strength) during performing a strength at one joint (primary strength). The abnormal strength pattern between shoulder and elbow joint has been analyzed by the maximum value while the performing process with strength changing from 0 to maximum then to 0 was a dynamic process. The objective of this study was to develop a method to dynamically analyze the strength changing process. Ten patients were asked to perform four group asks (maximum and 50% maximum voluntary strength in shoulder abduction, shoulder adduction, elbow flexion, and elbow extension). Strength and activities from seven muscles were measured. The changes of secondary strength had significant correlation with those of primary strength in all tasks ( R > 0.76, p < 0.01). The antagonistic muscles were moderately influenced by the primary strength ( R > 0.4, p < 0.01). Deltoid muscles, biceps brachii, triceps brachii, and brachioradialis had significant influences on the abnormal strength pattern (all p < 0.01). The dynamic method was proved to be efficient to analyze the different influences of muscles on the abnormal strength pattern. The muscles, deltoid muscles, biceps brachii, triceps brachii, and brachioradialis, much influenced the stereotyped movement pattern between shoulder and elbow joint.

  4. Dynamic Analysis of the Abnormal Isometric Strength Movement Pattern between Shoulder and Elbow Joint in Patients with Hemiplegia

    PubMed Central

    2018-01-01

    Patients with hemiplegia usually have weak muscle selectivity and usually perform strength at a secondary joint (secondary strength) during performing a strength at one joint (primary strength). The abnormal strength pattern between shoulder and elbow joint has been analyzed by the maximum value while the performing process with strength changing from 0 to maximum then to 0 was a dynamic process. The objective of this study was to develop a method to dynamically analyze the strength changing process. Ten patients were asked to perform four group asks (maximum and 50% maximum voluntary strength in shoulder abduction, shoulder adduction, elbow flexion, and elbow extension). Strength and activities from seven muscles were measured. The changes of secondary strength had significant correlation with those of primary strength in all tasks (R > 0.76, p < 0.01). The antagonistic muscles were moderately influenced by the primary strength (R > 0.4, p < 0.01). Deltoid muscles, biceps brachii, triceps brachii, and brachioradialis had significant influences on the abnormal strength pattern (all p < 0.01). The dynamic method was proved to be efficient to analyze the different influences of muscles on the abnormal strength pattern. The muscles, deltoid muscles, biceps brachii, triceps brachii, and brachioradialis, much influenced the stereotyped movement pattern between shoulder and elbow joint. PMID:29610654

  5. Objective Evaluation of Muscle Strength in Infants with Hypotonia and Muscle Weakness

    ERIC Educational Resources Information Center

    Reus, Linda; van Vlimmeren, Leo A.; Staal, J. Bart; Janssen, Anjo J. W. M.; Otten, Barto J.; Pelzer, Ben J.; Nijhuis-van der Sanden, Maria W. G.

    2013-01-01

    The clinical evaluation of an infant with motor delay, muscle weakness, and/or hypotonia would improve considerably if muscle strength could be measured objectively and normal reference values were available. The authors developed a method to measure muscle strength in infants and tested 81 typically developing infants, 6-36 months of age, and 17…

  6. The effect of Nordic hamstring strength training on muscle architecture, stiffness, and strength.

    PubMed

    Seymore, Kayla D; Domire, Zachary J; DeVita, Paul; Rider, Patrick M; Kulas, Anthony S

    2017-05-01

    Hamstring strain injury is a frequent and serious injury in competitive and recreational sports. While Nordic hamstring (NH) eccentric strength training is an effective hamstring injury-prevention method, the protective mechanism of this exercise is not understood. Strength training increases muscle strength, but also alters muscle architecture and stiffness; all three factors may be associated with reducing muscle injuries. The purpose of this study was to examine the effects of NH eccentric strength training on hamstring muscle architecture, stiffness, and strength. Twenty healthy participants were randomly assigned to an eccentric training group or control group. Control participants performed static stretching, while experimental participants performed static stretching and NH training for 6 weeks. Pre- and post-intervention measurements included: hamstring muscle architecture and stiffness using ultrasound imaging and elastography, and maximal hamstring strength measured on a dynamometer. The experimental group, but not the control group, increased volume (131.5 vs. 145.2 cm 3 , p < 0.001) and physiological cross-sectional area (16.1 vs. 18.1 cm 2 , p = 0.032). There were no significant changes to muscle fascicle length, stiffness, or eccentric hamstring strength. The NH intervention was an effective training method for muscle hypertrophy, but, contrary to common literature findings for other modes of eccentric training, did not increase fascicle length. The data suggest that the mechanism behind NH eccentric strength training mitigating hamstring injury risk could be increasing volume rather than increasing muscle length. Future research is, therefore, warranted to determine if muscle hypertrophy induced by NH training lowers future hamstring strain injury risk.

  7. Asymmetry of Muscle Strength in Elite Athletes

    ERIC Educational Resources Information Center

    Drid, Patrik; Drapsin, Miodrag; Trivic, Tatjana; Lukac, Damir; Obadov, Slavko; Milosevic, Zoran

    2009-01-01

    "Study aim": To determine muscle strength variables in elite judoists and wrestlers since thigh muscle strength and bilaterally balanced flexor-to-extensor ratio minimise injury risk and are desirable for achieving sport successes. "Material and methods": Judoists, wrestlers and untrained subjects, 10 each, were subjected to isokinetic strength…

  8. Muscle strength and fatigue in newly diagnosed patients with myasthenia gravis.

    PubMed

    Vinge, Lotte; Andersen, Henning

    2016-10-01

    Dynamometry is increasingly used as an objective measurement of muscle strength in neurological diseases. No study has applied dynamometry in untreated newly diagnosed patients with myasthenia gravis (MG). Isometric muscle strength at the shoulder, knee, and ankle was determined in 21 MG patients before and after initial anti-myasthenic treatment. Isometric strength was compared with MG evaluation scales. Muscle strength was reduced for knee extensors and shoulder abductors but normal for ankle extensors. Isometric muscle strength did not correlate significantly with manual muscle testing (MG Composite). Dynamometry revealed improved muscle strength of up to 50% (median 17%; range -1.8-49.8) despite no change in the MG Composite score. Dynamometry appears to be a more sensitive method of identifying changes in limb strength than MG evaluation scales. This supports the use of dynamometry in MG patients, especially for evaluation of the effect of anti-myasthenic treatment. Muscle Nerve 54: 709-714, 2016. © 2016 Wiley Periodicals, Inc.

  9. Effect of mirror use on lower extremity muscle strength of patients with chronic stroke.

    PubMed

    Kim, Myoung-Kwon; Choe, Yu-Won; Shin, Young-Jun; Peng, Cheng; Choi, Eun-Hong

    2018-02-01

    [Purpose] This study examines the effect on muscle strength of lower extremity muscle strength exercise while using a mirror on the non-paretic side in patients with chronic stroke. [Subjects and Methods] Subjects were randomly assigned to a non-mirror lower extremity exercise group (n=10), a mirror lower extremity exercise group (n=10), or a mirror lower extremity muscle strength exercise group (n=10). Subjects were asked to do the exercise assigned to their group (5 sets 30 times a day, 5 times weekly for 4 weeks) with general physical therapy in the hospital. Muscle strength in the knee extensor and flexor of paretic and non-paretic side were measured using electrical muscle testing device before and after the intervention. [Results] Muscle strength significantly increased within each group after intervention. No significant differences were found among the three groups. [Conclusion] This study showed that the lower extremity muscle strength exercise of the non-paretic side using a mirror has a positive effect on muscle strength in patient with chronic stroke.

  10. Muscle Strength and Muscle Mass in Older Patients during Hospitalization: The EMPOWER Study

    PubMed Central

    Van Ancum, Jeanine M.; Scheerman, Kira; Pierik, Vincent D.; Numans, Siger T.; Verlaan, Sjors; Smeenk, Hanne E.; Slee-Valentijn, Monique; Kruizinga, Roeliene C.; Meskers, Carel G.M.; Maier, Andrea B.

    2017-01-01

    Background Low muscle strength and muscle mass are associated with an increased length of hospital stay and higher mortality rate in inpatients. To what extent hospitalization affects muscle strength and muscle mass is unclear. Objective We aimed to assess muscle strength and muscle mass at admission and during hospitalization in older patients and its relation with being at risk of geriatric conditions. Methods The EMPOWER study included patients aged 70 years and older, admitted to 4 wards of the VU University Medical Center in the Netherlands between April and December 2015. At admission, patients were screened for being at risk of 4 geriatric conditions: delirium, falls, malnutrition, and functional disability. At admission and at discharge, muscle strength and muscle mass were assessed. Results A total of 373 patients (mean age, standard deviation [SD]: 79.6, 6.38 years) were included at admission, and 224 patients (mean age, SD: 80.1, 6.32 years) at discharge. At admission, lower muscle strength in both female and male patients and low muscle mass in male patients were associated with being at risk of a higher cumulative number of geriatric conditions. Muscle strength increased during hospitalization, but no change in muscle mass was observed. Changes in muscle measures were not associated with being at risk of geriatric conditions. Discussion Older patients with lower muscle strength and muscle mass at admission were at risk of a higher cumulative number of geriatric conditions. However, being at risk of geriatric conditions did not forecast further decrease in muscle strength and muscle mass during hospitalization PMID:28817825

  11. Prevalence of sarcopenia in elderly maintenance hemodialysis patients: the impact of different diagnostic criteria.

    PubMed

    Lamarca, F; Carrero, J J; Rodrigues, J C D; Bigogno, F G; Fetter, R L; Avesani, C M

    2014-07-01

    The prevalence of sarcopenia on elderly maintenance hemodialysis (MHD) has been scarcely investigated. To investigate the prevalence of decreased muscle mass and strength alone or combined (true sarcopenia) in elderly patients on MHD according to different methods and cutoff limits. Additionally, we evaluated the agreement between dual energy x-ray absorptiometry (DXA) and surrogate methods for the assessment of muscle mass. Observational and cross-sectional study. Non-institutionalized 102 elderly (age > 60 years) patients on MHD. Sarcopenia was considered when the patient fit one criteria for low muscle mass assessed by DXA, bioelectrical impedance (BIA), sum of skinfold thicknesses (SKF), calf circumference and mid-arm muscle circumference (MAMC) and one for low muscle strength evaluated by handgrip dynamometer. Decreased muscle strength was found in 85% of the patients. The prevalence of decreased muscle mass varied from 4 to 73.5% and of sarcopenia (decreased muscle mass and strength combined) from 4 to 63%, depending on the method and cutoff limit applied. A small percentage of patients (2 to 15%) were classified as sarcopenic by more than one diagnostic criteria. The agreement between DXA and the surrogate methods to assess muscle mass showed better kappa coefficients with BIA (r=0.36; P<0.01) and SKF (r=0.40; P<0.01). A wide prevalence of sarcopenia is observed depending on the method and cutoff limit applied. This may limit extrapolate on to clinical practice. BIA and SKF were the surrogate methods to assess muscle mass with the best concordance with DXA in elderly MHD patients.

  12. Strength and fatigability of selected muscles in upper limb: assessing muscle imbalance relevant to tennis elbow.

    PubMed

    Alizadehkhaiyat, O; Fisher, A C; Kemp, G J; Frostick, S P

    2007-08-01

    The aetiology of tennis elbow has remained uncertain for more than a century. To examine muscle imbalance as a possible pathophysiological factor requires a reliable method of assessment. This paper describes the development of such a method and its performance in healthy subjects. We propose a combination of surface and fine-wire EMG of shoulder and forearm muscles and wrist strength measurements as a reliable tool for assessing muscle imbalance relevant to the pathophysiology of tennis elbow. Six healthy volunteers participated. EMG data were acquired at 50% maximal voluntary isometric contraction from five forearm muscles during grip and three shoulder muscles during external rotation and abduction, and analysed using normalized median frequency slope as a fatigue index. Wrist extension/flexion strength was measured using a purpose-built dynamometer. Significant negative slope of median frequency was found for all muscles, with good reproducibility, and no significant difference in slope between the different muscles of the shoulder and the wrist. (Amplitude slope showed high variability and was therefore unsuitable for this purpose.) Wrist flexion was 27+/-8% stronger than extension (mean+/-SEM, p=0.006). This is a reliable method for measuring muscle fatigue in forearm and shoulder. EMG and wrist strength studies together can be used for assessing and identifying the muscle balance in the wrist-forearm-shoulder chain.

  13. Associations of knee muscle force, bone malalignment, and knee-joint laxity with osteoarthritis in elderly people.

    PubMed

    Nakagawa, Kazumasa; Maeda, Misako

    2017-03-01

    [Purpose] From the viewpoint of prevention of knee osteoarthritis, the aim of this study was to verify how muscle strength and joint laxity are related to knee osteoarthritis. [Subjects and Methods] The study subjects consisted of 90 community-dwelling elderly people aged more than 60 years (22 males, 68 females). Femorotibial angle alignment, knee joint laxity, knee extensors and flexor muscle strengths were measured in all subjects. In addition, the subjects were divided into four groups based on the presence of laxity and knee joint deformation, and the muscle strength values were compared. [Results] There was no significant difference in knee extensor muscle strength among the four groups. However, there was significant weakness of the knee flexor muscle in the group with deformation and laxity was compared with the group without deformation and laxity. [Conclusion] Decreased knee flexor muscle strengths may be involved in knee joint deformation. The importance of muscle strength balance was also considered.

  14. Mixed-Methods Resistance Training Increases Power and Strength of Young and Older Men.

    ERIC Educational Resources Information Center

    Newton, Robert U.; Hakkinen, Keijo; Hakkinen, Arja; McCormick, Matt; Volek, Jeff; Kraemer, William J.

    2002-01-01

    Examined the effects of a 10-week, mixed-methods resistance training program on young and older men. Although results confirmed some age-related reductions in muscle strength and power, the older men demonstrated similar capacity to the younger men for increases in muscle strength and power via an appropriate, periodized resistance training…

  15. Effects of Elastic Resistance Exercise on Muscle Strength and Functional Performance in Healthy Adults: A Systematic Review and Meta-Analysis.

    PubMed

    de Oliveira, Poliana Alves; Blasczyk, Juscelino Castro; Souza Junior, Gerson; Lagoa, Karina Ferreira; Soares, Milene; de Oliveira, Ricardo Jacó; Filho, Paulo José Barbosa Gutierres; Carregaro, Rodrigo Luiz; Martins, Wagner Rodrigues

    2017-04-01

    Elastic Resistance Exercise (ERE) has already demonstrated its effectiveness in older adults and, when combined with the resistance generated by fixed loads, in adults. This review summarizes the effectiveness of ERE performed as isolated method on muscle strength and functional performance in healthy adults. A database search was performed (MEDLine, Cochrane Library, PEDro and Web of Knowledge) to identify controlled clinical trials in English language. The mean difference (MD) with 95% confidence intervals (CIs) and overall effect size were calculated for all comparisons. The PEDro scale was used assess the methodological quality. From the 93 articles identified by the search strategy, 5 met the inclusion criteria, in which 3 presented high quality (PEDro > 6). Meta-analyses demonstrated that the effects of ERE were superior when compared with passive control on functional performance and muscle strength. When compared with active controls, the effect of ERE was inferior on function performance and with similar effect on muscle strength. ERE are effective to improve functional performance and muscle strength when compared with no intervention, in healthy adults. ERE are not superior to other methods of resistance training to improve functional performance and muscle strength in health adults.

  16. Respiratory Muscle Strength Predicts Decline in Mobility in Older Persons

    PubMed Central

    Buchman, A.S.; Boyle, P.A.; Wilson, R.S.; Leurgans, S.; Shah, R.C.; Bennett, D.A.

    2008-01-01

    Objectives To test the hypothesis that respiratory muscle strength is associated with the rate of change in mobility even after controlling for leg strength and physical activity. Methods Prospective study of 890 ambulatory older persons without dementia who underwent annual clinical evaluations to examine change in the rate of mobility over time. Results In a linear mixed-effect model adjusted for age, sex, and education, mobility declined about 0.12 unit/year, and higher levels of respiratory muscle strength were associated with a slower rate of mobility decline (estimate 0.043, SE 0.012, p < 0.001). Respiratory muscle strength remained associated with the rate of change in mobility even after controlling for lower extremity strength (estimate 0.036, SE 0.012, p = 0.004). In a model that included terms for respiratory muscle strength, lower extremity strength and physical activity together, all three were independent predictors of mobility decline in older persons. These associations remained significant even after controlling for body composition, global cognition, the development of dementia, parkinsonian signs, possible pulmonary disease, smoking, joint pain and chronic diseases. Conclusion Respiratory muscle strength is associated with mobility decline in older persons independent of lower extremity strength and physical activity. Clinical interventions to improve respiratory muscle strength may decrease the burden of mobility impairment in the elderly. PMID:18784416

  17. Muscle strength and knee range of motion after femoral lengthening.

    PubMed

    Bhave, Anil; Shabtai, Lior; Woelber, Erik; Apelyan, Arman; Paley, Dror; Herzenberg, John E

    2017-04-01

    Background and purpose - Femoral lengthening may result in decrease in knee range of motion (ROM) and quadriceps and hamstring muscle weakness. We evaluated preoperative and postoperative knee ROM, hamstring muscle strength, and quadriceps muscle strength in a diverse group of patients undergoing femoral lengthening. We hypothesized that lengthening would not result in a significant change in knee ROM or muscle strength. Patients and methods - This prospective study of 48 patients (mean age 27 (9-60) years) compared ROM and muscle strength before and after femoral lengthening. Patient age, amount of lengthening, percent lengthening, level of osteotomy, fixation time, and method of lengthening were also evaluated regarding knee ROM and strength. The average length of follow-up was 2.9 (2.0-4.7) years. Results - Mean amount of lengthening was 5.2 (2.4-11.0) cm. The difference between preoperative and final knee flexion ROM was 2° for the overall group. Congenital shortening cases lost an average of 5% or 6° of terminal knee flexion, developmental cases lost an average of 3% or 4°, and posttraumatic cases regained all motion. The difference in quadriceps strength at 45° preoperatively and after lengthening was not statistically or clinically significant (2.7 Nm; p = 0.06). Age, amount of lengthening, percent lengthening, osteotomy level, fixation time, and lengthening method had no statistically significant influence on knee ROM or quadriceps strength at final follow-up. Interpretation - Most variables had no effect on ROM or strength, and higher age did not appear to be a limiting factor for femoral lengthening. Patients with congenital causes were most affected in terms of knee flexion.

  18. Estimation of 1RM for knee extension based on the maximal isometric muscle strength and body composition.

    PubMed

    Kanada, Yoshikiyo; Sakurai, Hiroaki; Sugiura, Yoshito; Arai, Tomoaki; Koyama, Soichiro; Tanabe, Shigeo

    2017-11-01

    [Purpose] To create a regression formula in order to estimate 1RM for knee extensors, based on the maximal isometric muscle strength measured using a hand-held dynamometer and data regarding the body composition. [Subjects and Methods] Measurement was performed in 21 healthy males in their twenties to thirties. Single regression analysis was performed, with measurement values representing 1RM and the maximal isometric muscle strength as dependent and independent variables, respectively. Furthermore, multiple regression analysis was performed, with data regarding the body composition incorporated as another independent variable, in addition to the maximal isometric muscle strength. [Results] Through single regression analysis with the maximal isometric muscle strength as an independent variable, the following regression formula was created: 1RM (kg)=0.714 + 0.783 × maximal isometric muscle strength (kgf). On multiple regression analysis, only the total muscle mass was extracted. [Conclusion] A highly accurate regression formula to estimate 1RM was created based on both the maximal isometric muscle strength and body composition. Using a hand-held dynamometer and body composition analyzer, it was possible to measure these items in a short time, and obtain clinically useful results.

  19. The effectiveness of a single session of Whole-Body Vibration in improving the balance and the strength in type 2 diabetic patients with mild to moderate degree of peripheral neuropathy: a pilot study.

    PubMed

    Kordi Yoosefinejad, Amin; Shadmehr, Azadeh; Olyaei, Ghloamreza; Talebian, Saeed; Bagheri, Hossein

    2014-01-01

    Peripheral neuropathy is a common complication of diabetes mellitus. Muscle strength and the balance deficits are seen in these patients. Whole-Body Vibration (WBV) is a time-efficient method which may be beneficial for them. The immediate effects of WBV on muscle strength and balance have not been studied yet. The aim of this study was to investigate the effects of one session of WBV on muscle strength and the balance of diabetic patients. Ten diabetic patients with peripheral neuropathy took part in this study. Outcome measurements were total strength, strength of tibialis anterior and quadriceps femoris muscles and the balance parameters including Unilateral Stance Test and Timed Up and Go Test. Tibialis anterior muscle strength and Timed Up and GO Test parameters showed significant differences post-exercise in comparison to baseline. A session of WBV had positive effects on muscle strength and the balance in patients with type-2 diabetes associated with neuropathy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Correlation between toe flexor strength and ankle dorsiflexion ROM during the countermovement jump.

    PubMed

    Yun, Sung Joon; Kim, Moon-Hwan; Weon, Jong-Hyuck; Kim, Young; Jung, Sung-Hoon; Kwon, Oh-Yun

    2016-08-01

    [Purpose] This study assessed the relationships between peak toe flexor muscle strength, ankle dorsiflexion range of motion, and countermovement jump height. [Subjects and Methods] Eighteen healthy volunteers participated in the study. Each participant completed tests for peak toe flexor muscle strength, ankle dorsiflexion range of motion, and countermovement jump height. [Results] The results showed (1) a moderate correlation between ankle dorsiflexion range of motion and countermovement jump height and (2) a high correlation between peak first toe flexor muscle strength and countermovement jump height. Peak first toe flexor muscle strength and ankle dorsiflexion range of motion are the main contributors to countermovement jump performance. [Conclusion] These findings indicate that the measurement of peak first toe flexor muscle strength and ankle dorsiflexion range of motion may be useful in clinical practice for improving jump performance in athletes training for sports such as volleyball and basketball.

  1. Effect of neuromuscular electrical stimulation on facial muscle strength and oral function in stroke patients with facial palsy

    PubMed Central

    Choi, Jong-Bae

    2016-01-01

    [Purpose] The aim of this study was to investigate the effect of neuromuscular electrical stimulation on facial muscle strength and oral function in stroke patients with facial palsy. [Subjects and Methods] Nine subjects received the electrical stimulation and traditional dysphagia therapy. Electrical stimulation was applied to stimulate each subject’s facial muscles 30 minutes a day, 5 days a week, for 4 weeks. [Results] Subjects showed significant improvement in cheek and lip strength and oral function after the intervention. [Conclusion] This study demonstrates that electrical stimulation improves facial muscle strength and oral function in stroke patients with dysphagia. PMID:27799689

  2. The effect of bridge exercise method on the strength of rectus abdominis muscle and the muscle activity of paraspinal muscles while doing treadmill walking with high heels.

    PubMed

    Kang, Taewook; Lee, Jaeseok; Seo, Junghoon; Han, Dongwook

    2017-04-01

    [Purpose] The purpose of this research is to investigate the effect of the method of bridge exercise on the change of rectus abdominis muscle and the muscle activity of paraspinal muscles while doing treadmill walking with high heels. [Subjects and Methods] The subjects of this research are healthy female students consisting of 10 persons performing bridge exercises in a supine group, 10 persons performing bridge exercises in a prone group, and 10 persons in a control group while in S university in Busan. Bridge exercise in supine position is performed in hook lying position. Bridge exercise in prone position is plank exercise in prostrate position. To measure the strength of rectus abdominis muscle, maintaining times of the posture was used. To measure the muscle activity of paraspinal muscles, EMG (4D-MT & EMD-11, Relive, Korea) was used. [Results] The strength of rectus abdominis muscle of both bridge exercises in the supine group and bridge exercises in the prone group increases significantly after exercise. The muscle activity of paraspinal muscle such as thoracic parts and lumbar parts in bridge exercises in the prone group decreases statistically while walking on a treadmill with high heels. Muscle activity of thoracic parts paraspinal muscle and bridge exercises in the supine group decreased significantly. [Conclusion] According to this study, we noticed that bridge exercise in a prone position is desirable for women who prefer wearing high heels as a back pain prevention exercise method.

  3. Does the Q - H index show a stronger relationship than the H:Q ratio in regard to knee pain during daily activities in patients with knee osteoarthritis?

    PubMed

    Fujita, Remi; Matsui, Yasumoto; Harada, Atsushi; Takemura, Marie; Kondo, Izumi; Nemoto, Tetsuya; Sakai, Tadahiro; Hiraiwa, Hideki; Ota, Susumu

    2016-12-01

    [Purpose] The purpose of this study was to elucidate the relationship between knee muscle strength and knee pain in activities of daily living, based on consideration of the difference between extension and flexion strength (Q - H) and the hamstring:quadriceps (H:Q) ratio in patients with knee osteoarthritis. [Subjects and Methods] The participants were 78 females with knee osteoarthritis, and a total of 133 knees that had not been treated surgically were the targets of this research. The legs were divided according to dominance. Isometric knee extension and flexion muscle strength and knee pain during activities of daily living were measured. The H:Q ratio (flexion/extension muscle strength) and the difference between extension and flexion strength, (extension muscle strength/weight) minus (flexion muscle strength/weight), that is, Q - H, were calculated. The correlation between these indices and the knee pain score during activities of daily living was investigated. [Results] Greater knee pain during activities of daily living was related to lower knee extension muscle strength and Q - H in both the dominant and nondominant legs. Knee flexion muscle strength and the H:Q ratio were not significantly correlated with knee pain during any activities of daily living. [Conclusion] Knee extension muscle strength and Q - H were found to be significantly correlated with knee pain during activities of daily living, whereas the H:Q ratio was not.

  4. Anabolic and Catabolic Biomarkers As Predictors of Muscle Strength Decline: The InCHIANTI Study

    PubMed Central

    Maggio, Marcello; Lauretani, Fulvio; Bandinelli, Stefania; Ceda, Gian Paolo; Di Iorio, Angelo; Giallauria, Francesco; Guralnik, Jack M.; Ferrucci, Luigi

    2010-01-01

    Abstract Background Poor muscle strength is a major public health concern in older persons, predisposing to functional limitations, increased fall risk, and higher mortality. Understanding risk factors for muscle strength decline may offer opportunities for prevention and treatment. One of the possible causes of muscle strength decline is imbalance between catabolic and anabolic signaling. This study aims to examine whether high levels of multiple catabolic and low levels of multiple anabolic biomarkers predict accelerated decline of muscle strength. Methods In a representative sample of 716 men and women aged ≥65 years in the InCHIANTI study we measured C-reactive protein, interleukin-6 (IL-6), IL-1 receptor antagonist (IL-1RA), tumor necrosis factor-α receptor 1 as well as dehydroepiandrosterone sulfate (DHEA-S), insulin-like growth factor-1, and bioavailable testosterone. Biomarker values were divided into tertiles and the numbers of catabolic/anabolic biomarkers in the highest/lowest tertile were calculated. Hand-grip strength was measured at baseline and 3- and 6-year follow up. Results In adjusted linear mixed models, higher concentration of IL-6 (p = 0.02) and IL-1RA (p = 0.04) as well as lower levels of DHEA-S (p = 0.01) predicted muscle strength decline. After combining all inflammatory markers, the rate of decline in grip strength was progressively greater with the increasing number of dysregulated catabolic biomarkers (p = 0.01). No effect on accelerated muscle strength decline was seen according to number of dysregulated anabolic hormones. Conclusions Having multiple elevated catabolic biomarkers is a better predictor of muscle strength decline than a single biomarker alone, suggesting that a catabolic dysregulation is at the core of the mechanism leading to muscle strength decline with aging. PMID:20230273

  5. Association between body composition and stair negotiation ability among individuals >55 years of age: a cross-sectional study

    PubMed Central

    Dip, Renata Maciulis; Cabrera, Marcos AS; Prato, Sabrina Ferrari

    2017-01-01

    Background Loss of muscle strength exerts a considerable impact on the quality of life and mortality of older adults. The present household survey study measured body composition and muscle strength with the aim of analyzing the roles of low lean mass, low muscle strength and obesity in stair negotiation ability and the effect of comorbidities on the relationship between body composition and functional capacity. Methods Body composition was assessed using bioelectrical impedance analysis and muscle strength was assessed with a hand grip dynamometer. The study population comprised individuals >55 years of age from a medium-sized Brazilian municipality. The sample included 451 participants. Results A total of 368 subjects were interviewed; their ages varied from 56 to 91 years. Among males, low muscle strength was associated with stair negotiation difficulty independent of muscle mass, age and obesity but muscle mass was not. However, when we analyzed comorbidities and body composition jointly, chronic lower limb pain and obesity were independently associated with stair negotiation difficulty but body composition and age were not. Among women, after comorbidities were included into the model, low muscle strength and obesity remained associated with stair negotiation difficulty as chronic lower limb pain and depression. The relationship between muscle function and comorbidities is discussed in this article. PMID:28860730

  6. Diagnostic methods to assess inspiratory and expiratory muscle strength*

    PubMed Central

    Caruso, Pedro; de Albuquerque, André Luis Pereira; Santana, Pauliane Vieira; Cardenas, Leticia Zumpano; Ferreira, Jeferson George; Prina, Elena; Trevizan, Patrícia Fernandes; Pereira, Mayra Caleffi; Iamonti, Vinicius; Pletsch, Renata; Macchione, Marcelo Ceneviva; Carvalho, Carlos Roberto Ribeiro

    2015-01-01

    Impairment of (inspiratory and expiratory) respiratory muscles is a common clinical finding, not only in patients with neuromuscular disease but also in patients with primary disease of the lung parenchyma or airways. Although such impairment is common, its recognition is usually delayed because its signs and symptoms are nonspecific and late. This delayed recognition, or even the lack thereof, occurs because the diagnostic tests used in the assessment of respiratory muscle strength are not widely known and available. There are various methods of assessing respiratory muscle strength during the inspiratory and expiratory phases. These methods are divided into two categories: volitional tests (which require patient understanding and cooperation); and non-volitional tests. Volitional tests, such as those that measure maximal inspiratory and expiratory pressures, are the most commonly used because they are readily available. Non-volitional tests depend on magnetic stimulation of the phrenic nerve accompanied by the measurement of inspiratory mouth pressure, inspiratory esophageal pressure, or inspiratory transdiaphragmatic pressure. Another method that has come to be widely used is ultrasound imaging of the diaphragm. We believe that pulmonologists involved in the care of patients with respiratory diseases should be familiar with the tests used in order to assess respiratory muscle function.Therefore, the aim of the present article is to describe the advantages, disadvantages, procedures, and clinical applicability of the main tests used in the assessment of respiratory muscle strength. PMID:25972965

  7. Shank Muscle Strength Training Changes Foot Behaviour during a Sudden Ankle Supination

    PubMed Central

    Hagen, Marco; Lescher, Stephanie; Gerhardt, Andreas; Lahner, Matthias; Felber, Stephan; Hennig, Ewald M.

    2015-01-01

    Background The peroneal muscles are the most effective lateral stabilisers whose tension braces the ankle joint complex against excessive supination. The purpose of this study was to identify the morphological and biomechanical effects of two machine-based shank muscle training methods. Methods Twenty-two healthy male recreationally active sports students performed ten weeks of single-set high resistance strength training with 3 training sessions per week. The subjects conducted subtalar pronator/supinator muscle training (ST) with the right leg by using a custom-made apparatus; the left foot muscles were exercised with machine-based talocrural plantar and dorsiflexor training (TT). Muscle strength (MVIC), muscle volume and foot biomechanics (rearfoot motion, ground reaction forces, muscle reaction times) during a sudden ankle supination were recorded before and after the intervention. Results Compared to TT, ST resulted in significantly higher pronator (14% vs. 8%, P<0.01) and supinator MVIC (25% vs. 12%, P<0.01). During sudden foot inversions, both ST and TT resulted in reduced supination velocity (-12%; P<0.01). The muscle reaction onset time was faster after the training in peroneus longus (PL) (P<0.01). Muscle volume of PL (P<0.01) and TA (P<0.01) increased significantly after both ST and TT. Conclusion After both ST and TT, the ankle joint complex is mechanically more stabilised against sudden supinations due to the muscle volume increase of PL and TA. As the reduced supination velocities indicate, the strength training effects are already present during free-fall. According to a sudden ankle supination in standing position, both machine-based dorsiflexor and pronator strength training is recommended for enhancing the mechanical stability of the ankle. PMID:26110847

  8. Relationships between Isometric Muscle Strength, Gait Parameters, and Gross Motor Function Measure in Patients with Cerebral Palsy

    PubMed Central

    Shin, Hyung-Ik; Sung, Ki Hyuk; Chung, Chin Youb; Lee, Kyoung Min; Lee, Seung Yeol; Lee, In Hyeok

    2016-01-01

    Purpose This study investigated the correlation between isometric muscle strength, gross motor function, and gait parameters in patients with spastic cerebral palsy and to find which muscle groups play an important role for gait pattern in a flexed knee gait. Materials and Methods Twenty-four ambulatory patients (mean age, 10.0 years) with spastic cerebral palsy who were scheduled for single event multilevel surgery, including distal hamstring lengthening, were included. Preoperatively, peak isometric muscle strength was measured for the hip flexor, hip extensor, knee flexor, and knee extensor muscle groups using a handheld dynamometer, and three-dimensional (3D) gait analysis and gross motor function measure (GMFM) scoring were also performed. Correlations between peak isometric strength and GMFM, gait kinematics, and gait kinetics were analyzed. Results Peak isometric muscle strength of all muscle groups was not related to the GMFM score and the gross motor function classification system level. Peak isometric strength of the hip extensor and knee extensor was significantly correlated with the mean pelvic tilt (r=-0.588, p=0.003 and r=-0.436, p=0.033) and maximum pelvic obliquity (r=-0.450, p=0.031 and r=-0.419, p=0.041). There were significant correlations between peak isometric strength of the knee extensor and peak knee extensor moment in early stance (r=0.467, p=0.021) and in terminal stance (r=0.416, p=0.043). Conclusion There is no correlation between muscle strength and gross motor function. However, this study showed that muscle strength, especially of the extensor muscle group of the hip and knee joints, might play a critical role in gait by stabilizing pelvic motion and decreasing energy consumption in a flexed knee gait. PMID:26632404

  9. Effects of humeral head compression taping on the isokinetic strength of the shoulder external rotator muscle in patients with rotator cuff tendinitis.

    PubMed

    Kim, Moon-Hwan; Oh, Jae-Seop

    2015-01-01

    [Purpose] The purpose of this study was to examine the effects of humeral head compression taping (HHCT) on the strength of the shoulder external rotator muscle in patients with rotator cuff tendinitis. [Subjects and Methods] Twenty patients with rotator cuff tendinitis were recruited. The shoulder external rotator strength was measured using a Biodex isokinetic dynamometer system. A paired t-test was performed to evaluate within-group differences in the strength of the shoulder external rotator muscle. [Results] Significantly higher shoulder external rotator peak torque and peak torque per body weight were found in the HHCT condition than in the no-taping condition. [Conclusion] HHCT may effectively increase the shoulder external rotator muscle strength in patients with rotator cuff tendinitis.

  10. Characterization of Strength and Function in Ambulatory Adults With GNE Myopathy

    PubMed Central

    Argov, Zohar; Bronstein, Faye; Esposito, Alicia; Feinsod-Meiri, Yael; Florence, Julaine M.; Fowler, Eileen; Greenberg, Marcia B.; Malkus, Elizabeth C.; Rebibo, Odelia; Siener, Catherine S.; Caraco, Yoseph; Kolodny, Edwin H.; Lau, Heather A.; Pestronk, Alan; Shieh, Perry; Mayhew, Jill E.

    2017-01-01

    Abstract Objective: To characterize the pattern and extent of muscle weakness and impact on physical functioning in adults with GNEM. Methods: Strength and function were assessed in GNEM subjects (n = 47) using hand-held dynamometry, manual muscle testing, upper and lower extremity functional capacity tests, and the GNEM-Functional Activity Scale (GNEM-FAS). Results: Profound upper and lower muscle weakness was measured using hand-held dynamometry in a characteristic pattern, previously described. Functional tests and clinician-reported outcomes demonstrated the consequence of muscle weakness on physical functioning. Conclusions: The characteristic pattern of upper and lower muscle weakness associated with GNEM and the resulting functional limitations can be reliably measured using these clinical outcome assessments of muscle strength and function. PMID:28827485

  11. Cardiorespiratory fitness and muscle strength in late adolescence and long-term risk of early heart failure in Swedish men.

    PubMed

    Lindgren, Martin; Åberg, Maria; Schaufelberger, Maria; Åberg, David; Schiöler, Linus; Torén, Kjell; Rosengren, Annika

    2017-05-01

    Aims To investigate the association between cardiorespiratory fitness (CRF) and muscle strength in late adolescence and the long-term risk of heart failure (HF). Methods A cohort was created of Swedish men enrolled in compulsory military service between 1968 and 2005 with measurements for CRF and muscle strength ( n = 1,226,623; mean age 18.3 years). They were followed until 31 December 2014 for HF hospitalization as recorded in the Swedish national inpatient registry. Results During the follow-up period (median (interquartile range) 28.4 (22.0-37.0) years), 7656 cases of first HF hospitalization were observed (mean ± SD age at diagnosis 50.1 ± 7.9 years). CRF and muscle strength were estimated by maximum capacity cycle ergometer testing and strength exercises (knee extension, elbow flexion and hand grip). Inverse dose-response relationships were found between CRF and muscle strength with HF as a primary or contributory diagnosis with an adjusted hazards ratio (95% confidence interval) of 1.60 (1.44-1.77) for low CRF and 1.45 (1.32-1.58) for low muscle strength categories. The associations of incident HF with CRF and muscle strength persisted, regardless of adjustments for the other potential confounders. The highest risk was observed for HF associated with coronary heart disease, diabetes or hypertension. Conclusions In this longitudinal study of young men, we found inverse and mutually independent associations between CRF and muscle strength with risk of hospitalization for HF. If causal, these results may emphasize the importance of the promotion of CRF and muscle strength in younger populations.

  12. Clinical Implications for Muscle Strength Differences in Women of Different Age and Racial Groups: The WIN Study.

    PubMed

    Trudelle-Jackson, Elaine; Ferro, Emerenciana; Morrow, James R

    2011-01-01

    BACKGROUND: Reduction in muscle strength is strongly associated with functional decline in women, and women with lower quadriceps strength adjusted for body weight are more likely to develop knee osteoarthritis. OBJECTIVE: To compare body weight--adjusted strength among women of different age/racial groups. STUDY DESIGN: Cross-sectional study of muscle strength in 918 women aged 20--83 (M ± SD = 52 ± 13). METHODS: An orthopedic examination was conducted including measurement of handgrip and lower extremity strength (hip abductors/external rotators, knee flexors/extensors). Data were grouped into young (20--39 years, n = 139), middle (40--54 years, n = 300), and older (55+ years, n = 424) ages for white (n = 699) and African American (AA) (n = 164) women. Means and standard deviations for strength adjusted for body weight were calculated for each age and racial group and compared using 2-way multivariate analysis of variance and post hoc tests. RESULTS: No significant age-by-race interaction (P = .092) but significant main effects for age and race (P < .001). Pairwise comparisons revealed significant differences in knee extensor and flexor strength between all age groups. For grip and hip external rotator strength, significant differences were found between the middle and older groups. Differences in hip abductor strength were found between the young and middle-aged groups. AA women had lower strength than white women in all muscle groups (P < .05) except hip external rotators. CONCLUSIONS: Strength decreased with age in all muscle groups but magnitude of decrease varied by muscle. Strengthening programs should target different muscles, depending on a woman's age and race.

  13. Evaluation of peripheral muscle strength of patients undergoing elective cardiac surgery: a longitudinal study

    PubMed Central

    Santos, Kelli Maria Souza; de Cerqueira Neto, Manoel Luiz; Carvalho, Vitor Oliveira; de Santana Filho, Valter Joviniano; da Silva Junior, Walderi Monteiro; Araújo Filho, Amaro Afrânio; Cerqueira, Telma Cristina Fontes; Cacau, Lucas de Assis Pereira

    2014-01-01

    Introduction Peripheral muscle strength has been little explored in the literature in the context of cardiac rehabilitation. Objective To evaluate the peripheral muscle strength of patients undergoing elective cardiac surgery. Methods This was a longitudinal observational study. The peripheral muscle strength was measured using isometric dynamometry lower limb (knee extensors and flexors) at three different times: preoperatively (M1), the day of discharge (M2) and hospital discharge (M3). Participants received physiotherapy pre and postoperatively during the days of hospitalization during the morning and afternoon. Results Twenty-two patients were evaluated. The values of peripheral muscle strength of knee extensors preoperative found were about 50% lower than those predicted for the healthy population. When comparing muscle strength prior (M1), with the remaining evaluation, found himself in a fall of 29% for the movement of knee extension and 25% for knee flexion in M2 and a decrease of 10% movement for knee extension and 13% for knee flexion in M3 when comparing with M1. Conclusion The values of peripheral muscle strength prior of the study patients were lower than predicted for the healthy population of the same age. After the surgical event this reduction is even more remarkable, being reestablished until the time of discharge, to values close to baseline. PMID:25372909

  14. Evaluation of rotator cuff muscle strength in healthy individuals

    PubMed Central

    Cortez, Paulo José Oliveira; Tomazini, José Elias

    2015-01-01

    OBJECTIVE: To compare the strength generated by the rotator muscles of the shoulder joint between the right upper limb and left upper limb among healthy individuals. METHODS: To evaluate the muscle strength of upper limbs from isometric contractions in the horizontal direction (rotation) an isometric dynamometer was used, equipped with transducers, signal conditioning, a data acquisition board, and finally, a computer. Study participants were 22 male military subjects, aged between 18 and 19 years old, body mass between 57.7 and 93.0 kg (71.8 ± 9.45 kg) and height between 1.67 and 1.90 m (1.75 ± 0.06 m), healthy and without clinical diseases or any type of orthopedic injury in the muscle skeletal system. RESULTS: The internal rotation in the right upper limb (RUL) was higher than the average strength of internal rotation in the left upper limb (LUL) (p = 0.723). The external rotation strength in RUL was lower than the average strength of external rotation in the LUL (p=0.788). No statistical difference was observed by comparing the strength values of all isometric strength tests. CONCLUSION: For the sample and methodology used to assess muscle strength, there was no statistical difference between the strength generated by the muscles of the rotator cuff of the right and left upper limbs. Experimental Study. PMID:26207091

  15. Applicability and agreement of different diagnostic criteria for sarcopenia estimation in the elderly.

    PubMed

    Pagotto, Valéria; Silveira, Erika Aparecida

    2014-01-01

    The purpose of this study cross-sectional study comprising 132 community dwelling elderly (≥ 60 years) was to identify sarcopenia prevalence in the Brazilian elderly, utilizing different diagnostic criteria and analyze agreement between criteria. Sarcopenia was assessed by nine muscle mass diagnostic criteria, by two muscle strength criteria and also by the combination of criteria. Prevalence was analyzed for each method, along with differences by gender and age group through calculation of the prevalence ratio (PR) and confidence interval (CI) 95%. The Kappa coefficient was used to analyze the level of agreement between all criteria. Sarcopenia prevalence varied between 60.6% and 8.3% with the application of muscle mass criteria, and between 54.2% and 48.8% with the application of strength criteria. The combination muscle mass+strength resulted in a decrease of prevalence in all criteria, varying between 36.6% and 6.1%. There was an increase in prevalence according to age groups for all methods. Prevalence was higher for men according to three muscle mass criteria, and higher in women for strength criteria and by two combined mass+strength criteria. The best level of agreement was obtained for two methods that utilized dual energy X-ray absorptiometry (DXA). The prevalence of sarcopenia differs by gender and age and definition criteria. The low agreement levels obtained between methods and the different prevalence values encountered indicate the necessities of an operational definition for the estimation of sarcopenia in different population. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Comparison of muscle/lean mass measurement methods: correlation with functional and biochemical testing.

    PubMed

    Buehring, B; Siglinsky, E; Krueger, D; Evans, W; Hellerstein, M; Yamada, Y; Binkley, N

    2018-03-01

    DXA-measured lean mass is often used to assess muscle mass but has limitations. Thus, we compared DXA lean mass with two novel methods-bioelectric impedance spectroscopy and creatine (methyl-d3) dilution. The examined methodologies did not measure lean mass similarly and the correlation with muscle biomarkers/function varied. Muscle function tests predict adverse health outcomes better than lean mass measurement. This may reflect limitations of current mass measurement methods. Newer approaches, e.g., bioelectric impedance spectroscopy (BIS) and creatine (methyl-d3) dilution (D3-C), may more accurately assess muscle mass. We hypothesized that BIS and D3-C measured muscle mass would better correlate with function and bone/muscle biomarkers than DXA measured lean mass. Evaluations of muscle/lean mass, function, and serum biomarkers were obtained in older community-dwelling adults. Mass was assessed by DXA, BIS, and orally administered D3-C. Grip strength, timed up and go, and jump power were examined. Potential muscle/bone serum biomarkers were measured. Mass measurements were compared with functional and serum data using regression analyses; differences between techniques were determined by paired t tests. Mean (SD) age of the 112 (89F/23M) participants was 80.6 (6.0) years. The lean/muscle mass assessments were correlated (.57-.88) but differed (p < 0.0001) from one another with DXA total body less head being highest at 37.8 (7.3) kg, D3-C muscle mass at 21.1 (4.6) kg, and BIS total body intracellular water at 17.4 (3.5) kg. All mass assessment methods correlated with grip strength and jump power (R = 0.35-0.63, p < 0.0002), but not with gait speed or repeat chair rise. Lean mass measures were unrelated to the serum biomarkers measured. These three methodologies do not similarly measure muscle/lean mass and should not be viewed as being equivalent. Functional tests assessing maximal muscle strength/power (grip strength and jump power) correlated with all mass measures whereas gait speed was not. None of the selected serum measures correlated with mass. Efforts to optimize muscle mass assessment and identify their relationships with health outcomes are needed.

  17. Pelvic floor muscle strength in primiparous women according to the delivery type: cross-sectional study 1

    PubMed Central

    Mendes, Edilaine de Paula Batista; de Oliveira, Sonia Maria Junqueira Vasconcellos; Caroci, Adriana de Souza; Francisco, Adriana Amorim; Oliveira, Sheyla Guimaraes; da Silva, Renata Luana

    2016-01-01

    ABSTRACT Objectives: to compare the pelvic floor muscle strength in primiparous women after normal birth and cesarean section, related to the socio-demographic characteristics, nutritional status, dyspareunia, urinary incontinence, perineal exercise in pregnancy, perineal condition and weight of the newborn. Methods: this was a cross-sectional study conducted after 50 - 70 postpartum days, with 24 primiparous women who underwent cesarean delivery and 72 who had a normal birth. The 9301 PeritronTM was used for analysis of muscle strength. The mean muscle strength was compared between the groups by two-way analysis of variance. Results: the pelvic floor muscle strength was 24.0 cmH2O (±16.2) and 25.4 cmH2O (±14.7) in postpartum primiparous women after normal birth and cesarean section, respectively, with no significant difference. The muscular strength was greater in postpartum women with ≥ 12 years of study (42.0 ±26.3 versus 14.6 ±7.7 cmH2O; p= 0.036) and in those who performed perineal exercises (42.6±25.4 11.8±4.9 vs. cmH2O; p = 0.010), compared to caesarean. There was no difference in muscle strength according to delivery type regarding nutritional status, dyspareunia, urinary incontinence, perineal condition or newborn weight. Conclusion: pelvic floor muscle strength does not differ between primiparous women based on the type of delivery. Postpartum women with normal births, with higher education who performed perineal exercise during pregnancy showed greater muscle strength. PMID:27533267

  18. Comparison of Three Methods of Assessing Muscle Strength and Imbalance Ratios of the Knee

    PubMed Central

    Moss, Crayton L.; Wright, P. Thomas

    1993-01-01

    Three strength measurement methods for determining muscle strength and imbalance ratios of the knee were compared in 41 (23 female, 18 male) NCAA Division I track and field athletes. Peak quadriceps extensions and hamstring flexions were measured isotonically, isometrically, and isokinetically. Isokinetic measurements were performed on a Cybex II at 60°/s. Isometric extension and flexion measurements were performed using the Nicholas Manual Muscle Tester (Lafayette Instruments; Lafayette, Ind). Isotonic measurements were done on both Universal and Nautilus apparatuses. Testing order was randomized to avoid a treatment order effect. A repeated measures ANOVA and a post hoc Tukey test were used to compare the three methods of assessing strength and imbalance ratios of the knee. Absolute strength values were significantly different according to gender and mode of testing. Bilateral strength imbalance ratios for knee flexion were significantly lower for the Nautilus leg curl machine. Ipsilateral strength imbalance ratios were significantly greater for the Cybex II. Our results indicated that absolute strength values cannot be interchanged between testing modes. Except for Cybex II (ipsilateral) and Nautilus (bilateral knee flexion), strength imbalance ratios could be interchanged. ImagesFig 1.Fig 2.Fig 3.Fig 4.Fig 5.Fig 6.Fig 7.INGING PMID:16558207

  19. Complex strength performance in patients with haemophilia A. Method development and testing.

    PubMed

    Runkel, B; Kappelhoff, M; Hilberg, T

    2015-01-01

    The aim of this study was to develop a complex strength measurement method and to apply this new method for the first time in patients with haemophilia (PwH). 20 PwH with severe haemophilia A and 20 controls were included into the study. All subjects completed ten measurements of maximum isometric strength. Furthermore, the 20 control subjects completed re-test-measurements to evaluate the method. As a result, the method showed a high reliability (ICC 0.764 to 0.934). Between the two groups significant reductions in PwH between -(19-35%) were detected, regarding the relative force of the M. triceps brachii (-19%; p = 0.008), M. biceps brachii (-19%; p = 0.031), M. latissimus dorsi (-17%; p = 0.019), M. biceps femoris right (-20%; p = 0.036) and M. quadriceps femoris (right: -29%; p = 0.004; left: -35%; p = 0.002). No differences were found for M. rectus abdominis and in the hand strength. Thus, there is no general deficit in the muscle strength in PwH. The most obvious deficits exist in the upper and lower extremities and in the back muscles. PwH should carry out complex muscle strength training and integrate it early into a comprehensive treatment concept.

  20. Strength deficits identified with concentric action of the hip extensors and eccentric action of the hamstrings predispose to hamstring injury in elite sprinters.

    PubMed

    Sugiura, Yusaku; Saito, Tomoyuki; Sakuraba, Keishoku; Sakuma, Kazuhiko; Suzuki, Eiichi

    2008-08-01

    Prospective cohort study. In this prospective cohort study of elite sprinters, muscle strength of the hip extensors, as well as of the knee extensors and flexors, was measured to determine a possible relationship between strength deficits and subsequent hamstring injury within 12 months of testing. The method used for testing muscle strength simulated the specific muscle action during late swing and early contact phases when sprinting. There have been no prospective studies in elite sprinters that examine the concentric and eccentric isokinetic strength of the hip extensors and the quadriceps and hamstring muscles in a manner that reflects their actions in late swing or early contact phases of sprinting. Consequently, the causal relationship between hip and thigh muscle strength and hamstring injury in elite sprinters may not be fully understood. Isokinetic testing was performed on 30 male elite sprinters to assess hip extensors, quadriceps, and hamstring muscle strength. The occurrence of hamstring injury among the subjects was determined during the year following the muscle strength measurements. The strength of the hip extensors, quadriceps, and hamstring muscles, as well as the hamstrings-quadriceps and hip extensors- quadriceps ratios were compared. Hamstring injury occurred in 6 subjects during the 1-year period. Isokinetic testing at a speed of 60 degrees /s revealed weakness of the injured limb with eccentric action of the hamstring muscles and during concentric action of the hip extensors. When performing a side-to-side comparison for the injured sprinters, the hamstring injury always occurred on the weaker side. Differences in the hamstrings-quadriceps and hip extensors-quadriceps strength ratios were also evident between uninjured and injured limbs, and this was attributable to deficits in hamstring strength. Hamstring injury in elite sprinters was associated with weakness during eccentric action of the hamstrings and weakness during concentric action of the hip extensors, but only when tested at the slower speed of 60 degrees /s.

  1. Muscle strength in breast cancer patients receiving different treatment regimes

    PubMed Central

    Klassen, Oliver; Schmidt, Martina E.; Ulrich, Cornelia M.; Schneeweiss, Andreas; Potthoff, Karin; Steindorf, Karen

    2016-01-01

    Abstract Background Muscle dysfunction and sarcopenia have been associated with poor performance status, an increased mortality risk, and greater side effects in oncologic patients. However, little is known about how performance is affected by cancer therapy. We investigated muscle strength in breast cancer patients in different adjuvant treatment settings and also compared it with data from healthy individuals. Methods Breast cancer patients (N = 255) from two randomized controlled exercise trials, staged 0–III and aged 54.4 ± 9.4 years, were categorized into four groups according to their treatment status. In a cross‐sectional design, muscle function was assessed bilaterally by isokinetic dynamometry (0°, 60°, 180°/s) as maximal voluntary isometric contraction (MVIC) and maximal isokinetic peak torque (MIPT) in shoulder rotators and knee flexors and extensors. Additionally, muscular fatigue index (FI%) and shoulder flexibility were evaluated. Healthy women (N = 26), aged 53.3 ± 9.8 years, were tested using the same method. Analysis of covariance was used to estimate the impact of different cancer treatments on skeletal muscle function with adjustment for various clinical and socio‐demographic factors. Results Consistently, lower muscle strength was measured in shoulder and knee strength in patients after chemotherapy. On average, patients had up to 25% lower strength in lower extremities and 12–16% in upper extremities in MVIC and MIPT during cancer treatment compared with healthy women. No substantial difference between patient groups in shoulder strength, but significantly lower shoulder flexibility in patients with radical mastectomy was measured. Chemotherapy‐treated patients had consistently higher FI%. No serious adverse events were reported. Conclusions Breast cancer patients showed markedly impaired muscle strength and joint dysfunctions before and after anticancer treatment. The significant differences between patients and healthy individuals underline the need of exercise therapy as early as possible in order to prevent or counteract the loss of muscle function after curative surgery as well as the consequences of neo‐/adjuvant chemotherapy. PMID:27896952

  2. Assessment of foot and ankle muscle strength using hand held dynamometry in patients with established rheumatoid arthritis

    PubMed Central

    2013-01-01

    Background The foot and ankle are frequently affected in patients with rheumatoid arthritis (RA). One of the negative consequences of RA on the physical function of patients is a decrease in muscle strength. However, little is known about foot and muscle strength in this population. The aim of the study was to evaluate significant differences in foot and ankle muscle strength between patients with established RA against age and sex-matched controls using hand-held dynamometry. Methods The maximal muscle strength of ankle plantarflexion, dorsiflexion, eversion and inversion was assessed in 14 patients with RA, mean (SD) disease duration of 22 (14.1) years, and 20 age and sex-matched control participants using hand-held dynamometry. Results Significant differences were observed in muscle strength between the two groups in plantarflexion (p = 0.00), eversion (p = 0.04) and inversion (p = 0.01). No significant difference was found in dorsiflexion (p > 0.05). The patients with RA displayed a significantly lower plantarflexion-dorsiflexion ratio than the control participants (p = 0.03). Conclusions The results from this study showed that the RA patients displayed a significant decrease in ankle dorsiflexion, eversion and inversion when compared to the non-RA control group suggesting that foot and ankle muscle strength may be affected by the pathological processes in RA. This study is a preliminary step for the measurement of muscle impairments within the RA population. PMID:23522448

  3. Reduced Appendicular Lean Body Mass, Muscle Strength, and Size of Type II Muscle Fibers in Patients with Spondyloarthritis versus Healthy Controls: A Cross-Sectional Study.

    PubMed

    Røren Nordén, Kristine; Dagfinrud, Hanne; Løvstad, Amund; Raastad, Truls

    Introduction . The purpose of this study was to investigate body composition, muscle function, and muscle morphology in patients with spondyloarthritis (SpA). Methods . Ten male SpA patients (mean ± SD age 39 ± 4.1 years) were compared with ten healthy controls matched for sex, age, body mass index, and self-reported level of physical exercise. Body composition was measured by dual energy X-ray absorptiometry. Musculus quadriceps femoris (QF) strength was assessed by maximal isometric contractions prior to test of muscular endurance. Magnetic resonance imaging of QF was used to measure muscle size and calculate specific muscle strength. Percutaneous needle biopsy samples were taken from m. vastus lateralis . Results . SpA patients presented with significantly lower appendicular lean body mass (LBM) ( p = 0.02), but there was no difference in bone mineral density, fat mass, or total LBM. Absolute QF strength was significantly lower in SpA patients ( p = 0.03) with a parallel trend for specific strength ( p = 0.08). Biopsy samples from the SpA patients revealed significantly smaller cross-sectional area (CSA) of type II muscle fibers ( p = 0.04), but no difference in CSA type I fibers. Conclusions . Results indicate that the presence of SpA disease is associated with reduced appendicular LBM, muscle strength, and type II fiber CSA.

  4. Highlights from the functional single nucleotide polymorphisms associated with human muscle size and strength or FAMuSS study.

    PubMed

    Pescatello, Linda S; Devaney, Joseph M; Hubal, Monica J; Thompson, Paul D; Hoffman, Eric P

    2013-01-01

    The purpose of the Functional Single Nucleotide Polymorphisms Associated with Human Muscle Size and Strength study or FAMuSS was to identify genetic factors that dictated the response of health-related fitness phenotypes to resistance exercise training (RT). The phenotypes examined were baseline muscle strength and muscle, fat, and bone volume and their response to RT. FAMuSS participants were 1300 young (24 years), healthy men (42%) and women (58%) that were primarily of European-American descent. They were genotyped for ~500 polymorphisms and completed the Paffenbarger Physical Activity Questionnaire to assess energy expenditure and time spent in light, moderate, and vigorous intensity habitual physical activity and sitting. Subjects then performed a 12-week progressive, unilateral RT program of the nondominant arm with the dominant arm used as a comparison. Before and after RT, muscle strength was measured with the maximum voluntary contraction and one repetition maximum, while MRI measured muscle, fat, and bone volume. We will discuss the history of how FAMuSS originated, provide a brief overview of the FAMuSS methods, and summarize our major findings regarding genotype associations with muscle strength and size, body composition, cardiometabolic biomarkers, and physical activity.

  5. Highlights from the Functional Single Nucleotide Polymorphisms Associated with Human Muscle Size and Strength or FAMuSS Study

    PubMed Central

    Pescatello, Linda S.; Devaney, Joseph M.; Hubal, Monica J.; Thompson, Paul D.; Hoffman, Eric P.

    2013-01-01

    The purpose of the Functional Single Nucleotide Polymorphisms Associated with Human Muscle Size and Strength study or FAMuSS was to identify genetic factors that dictated the response of health-related fitness phenotypes to resistance exercise training (RT). The phenotypes examined were baseline muscle strength and muscle, fat, and bone volume and their response to RT. FAMuSS participants were 1300 young (24 years), healthy men (42%) and women (58%) that were primarily of European-American descent. They were genotyped for ~500 polymorphisms and completed the Paffenbarger Physical Activity Questionnaire to assess energy expenditure and time spent in light, moderate, and vigorous intensity habitual physical activity and sitting. Subjects then performed a 12-week progressive, unilateral RT program of the nondominant arm with the dominant arm used as a comparison. Before and after RT, muscle strength was measured with the maximum voluntary contraction and one repetition maximum, while MRI measured muscle, fat, and bone volume. We will discuss the history of how FAMuSS originated, provide a brief overview of the FAMuSS methods, and summarize our major findings regarding genotype associations with muscle strength and size, body composition, cardiometabolic biomarkers, and physical activity. PMID:24455711

  6. Personality Typology in Relation to Muscle Strength

    PubMed Central

    Terracciano, Antonio; Milaneschi, Yuri; Metter, E. Jeffrey; Ferrucci, Luigi

    2011-01-01

    Background Physical inactivity plays a central role in the age-related decline in muscle strength, an important component in the process leading to disability. Personality, a significant determinant of health behaviors including physical activity, could therefore impact muscle strength throughout adulthood and affect the rate of muscle strength decline with aging. Personality typologies combining “high neuroticism” (N≥55), “low extraversion” (E<45), and “low conscientiousness” (C<45) have been associated with multiple risky health behaviors but have not been investigated with regards to muscle strength. Purpose The purpose of this study is to investigate associations between individual and combined typologies consisting of high N, low E, and low C and muscle strength, and whether physical activity and body mass index act as mediators. Method This cross-sectional study includes 1,220 participants from the Baltimore Longitudinal Study of Aging. Results High N was found among 18%, low E among 31%, and low C among 26% of the sample. High levels of N, particularly when combined with either low E or low C, were associated with lower muscle strength compared with having only one or none of these personality types. Facet analyses suggest an important role for the N components of depression and hostility. Physical activity level appears to partly explain some of these associations. Conclusion Findings provide support for the notion that the typological approach to personality may be useful in identifying specific personality types at risk of low muscle strength and offer the possibility for more targeted prevention and intervention programs. PMID:21614452

  7. Review of Modelling Techniques for In Vivo Muscle Force Estimation in the Lower Extremities during Strength Training

    PubMed Central

    Schellenberg, Florian; Oberhofer, Katja; Taylor, William R.

    2015-01-01

    Background. Knowledge of the musculoskeletal loading conditions during strength training is essential for performance monitoring, injury prevention, rehabilitation, and training design. However, measuring muscle forces during exercise performance as a primary determinant of training efficacy and safety has remained challenging. Methods. In this paper we review existing computational techniques to determine muscle forces in the lower limbs during strength exercises in vivo and discuss their potential for uptake into sports training and rehabilitation. Results. Muscle forces during exercise performance have almost exclusively been analysed using so-called forward dynamics simulations, inverse dynamics techniques, or alternative methods. Musculoskeletal models based on forward dynamics analyses have led to considerable new insights into muscular coordination, strength, and power during dynamic ballistic movement activities, resulting in, for example, improved techniques for optimal performance of the squat jump, while quasi-static inverse dynamics optimisation and EMG-driven modelling have helped to provide an understanding of low-speed exercises. Conclusion. The present review introduces the different computational techniques and outlines their advantages and disadvantages for the informed usage by nonexperts. With sufficient validation and widespread application, muscle force calculations during strength exercises in vivo are expected to provide biomechanically based evidence for clinicians and therapists to evaluate and improve training guidelines. PMID:26417378

  8. Relationship between agility and lower limb muscle strength, targeting university badminton players.

    PubMed

    Sonoda, Takuya; Tashiro, Yuto; Suzuki, Yusuke; Kajiwara, Yu; Zeidan, Hala; Yokota, Yuki; Kawagoe, Mirei; Nakayama, Yasuaki; Bito, Tsubasa; Shimoura, Kanako; Tatsumi, Masataka; Nakai, Kengo; Nishida, Yuichi; Yoshimi, Soyoka; Aoyama, Tomoki

    2018-02-01

    [Purpose] Targeting university badminton players, this study investigated the relationship between agility, which is associated with performance in badminton, and lower limb muscle strength, and examined which muscles influence agility. [Subjects and Methods] A total of 23 male university badminton players were evaluated for side-shuffle test scores and lower limb strength. The relationships between agility, lower limb strength, and duration of experience playing badminton were evaluated using a correlation analysis. Moreover, the relationship between agility and lower limb strength was evaluated by partial correlation analysis, adjusting for the effects of experience of each badminton player. [Results] The agility score correlated with hip extension and ankle plantar flexion strength, with adjustment for badminton experience. [Conclusion] This study suggests that hip extension training and improvement in ankle plantar flexion strength may improve agility.

  9. ASSOCIATION OF KNEE PAIN WITH A REDUCTION IN THIGH MUSCLE STRENGTH – A CROSS-SECTIONAL ANALYSIS INCLUDING 4553 OSTEOARTHRITIS INITIATIVE PARTICIPANTS

    PubMed Central

    Ruhdorfer, Anja; Wirth, Wolfgang; Eckstein, Felix

    2016-01-01

    Objective To cross-sectionally determine the quantitative relationship of age-adjusted, sex-specific isometric knee extensor and flexor strength to patient-reported knee pain. Methods Difference of thigh muscle strength by age, and that of age-adjusted strength per unit increase on the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) knee pain scale, was estimated from linear regression analysis of 4553 Osteoarthritis Initiative participants (58% women). Strata encompassing the minimal clinically important difference (MCID) in knee pain were compared to evaluate a potentially non-linear relationship between WOMAC pain levels and muscle strength. Results In Osteoarthritis Initiative participants without pain, the age-related difference in isometric knee extensor strength was −9.0%/−8.2% (women/men) per decade, and that of flexor strength was −11%/−6.9%. Differences in age-adjusted strength values for each unit of WOMAC pain (1/20) amounted to −1.9%/−1.6% for extensor and −2.5%/−1.7% for flexor strength. Differences in torque/weight for each unit of WOMAC pain ranged from −3.3 to − 2.1%. There was no indication of a non-linear relationship between pain and strength across the range of observed WOMAC values, and similar results were observed in women and men. Conclusion Each increase by 1/20 units in WOMAC pain was associated with a ~2% lower age-adjusted isometric extensor and flexor strength in either sex. As a reduction in muscle strength is known to prospectively increase symptoms in knee osteoarthritis and as pain appears to reduce thigh muscle strength, adequate therapy of pain and muscle strength is required in knee osteoarthritis patients to avoid a vicious circle of self-sustaining clinical deterioration. PMID:27836675

  10. Changes in muscle strength in individuals with statin-induced myopathy: A summary of 3 investigations.

    PubMed

    Panza, Gregory A; Taylor, Beth A; Dada, Marcin R; Thompson, Paul D

    2015-01-01

    There are inconsistent findings regarding muscular weakness in individuals with statin-induced myalgia. We used rigorous muscle testing to compare findings from 3 investigations in 3 different study populations to determine if statin myalgia is associated with measurable weakness. In all 3 studies, we measured maximal isometric handgrip strength, resting respiratory exchange ratio (RER), and knee extensor isometric and isokinetic force. In 2 of the 3 studies, elbow flexor isometric and isokinetic force and knee endurance fatigue index were also assessed. Knee extensor and elbow flexor measurements were obtained using an isokinetic dynamometer. Resting RER was measured using a metabolic breath-by-breath collection method. Measurement outcomes were compared on vs off drug. In study 1, 18 participants fit the criteria for statin myalgia. Participants taking atorvastatin 80 mg daily had significantly lower muscle strength in 5 (P < .05) of 14 measured variables. Participants on placebo (N = 10) with myalgia had significantly lower muscle strength in 4 (P < .05) of 14 measured variables. In study 2, 18 participants tested positive for statin-induced myalgia when receiving simvastatin 20 mg daily and displayed no significant muscle strength changes (all P > .05). In study 3, 11 patients with statin-induced myalgia completed the study and had a significant decrease in 2 (P < .05) of 10 leg muscle strength variables. In all 3 studies, no significant changes were shown for handgrip strength or RER (all P > .05). Our results indicate that after a short-term treatment with statin therapy, a rigorous muscle strength protocol does not show decrements of muscle strength in subjects with statin myalgia. Short-term treatment with statin therapy is not common in clinical practice. Thus, future studies should examine the effects of prolonged statin therapy on muscle strength. Published by Elsevier Inc.

  11. Research opportunities in muscle atrophy

    NASA Technical Reports Server (NTRS)

    Herbison, G. J. (Editor); Talbot, J. M. (Editor)

    1984-01-01

    Muscle atrophy in a weightless environment is studied. Topics of investigation include physiological factors of muscle atrophy in space flight, biochemistry, countermeasures, modelling of atrophied muscle tissue, and various methods of measurement of muscle strength and endurance. A review of the current literature and suggestions for future research are included.

  12. Relation between the Disability of the Arm, Shoulder and Hand Score and Muscle Strength in Post-Cardiac Surgery Patients.

    PubMed

    Izawa, Kazuhiro P; Kasahara, Yusuke; Hiraki, Koji; Hirano, Yasuyuki; Watanabe, Satoshi

    2017-11-27

    Background: The Disabilities of the Arm, Shoulder, and Hand (DASH) questionnaire is a valid and reliable patient-reported outcome measure. DASH can be assessed by self-reported upper extremity disability and symptoms. We aimed to examine the relationship between the physiological outcome of muscle strength and the DASH score after cardiac surgery. Methods: This cross-sectional study assessed 50 consecutive cardiac patients that were undergoing cardiac surgery. Physiological outcomes of handgrip strength and knee extensor muscle strength and the DASH score were measured at one month after cardiac surgery and were assessed. Results were analyzed using Spearman correlation coefficients. Results: The final analysis comprised 43 patients (men: 32, women: 11; age: 62.1 ± 9.1 years; body mass index: 22.1 ± 4.7 kg/m²; left ventricular ejection fraction: 53.5 ± 13.7%). Respective handgrip strength, knee extensor muscle strength, and DASH score were 27.4 ± 8.3 kgf, 1.6 ± 0.4 Nm/kg, and 13.3 ± 12.3, respectively. The DASH score correlated negatively with handgrip strength ( r = -0.38, p = 0.01) and with knee extensor muscle strength ( r = -0.32, p = 0.04). Conclusion: Physiological outcomes of both handgrip strength and knee extensor muscle strength correlated negatively with the DASH score. The DASH score appears to be a valuable tool with which to assess cardiac patients with poor physiological outcomes, particularly handgrip strength as a measure of upper extremity function, which is probably easier to follow over time than lower extremity function after patients complete cardiac rehabilitation.

  13. Assessment of the effect of pelvic floor exercises on pelvic floor muscle strength using ultrasonography in patients with urinary incontinence: a prospective randomized controlled trial

    PubMed Central

    Tosun, Ozge Celiker; Solmaz, Ulas; Ekin, Atalay; Tosun, Gokhan; Gezer, Cenk; Ergenoglu, Ahmet Mete; Yeniel, Ahmet Ozgur; Mat, Emre; Malkoc, Mehtap; Askar, Niyazi

    2016-01-01

    [Purpose] The aim of this study was to evaluate whether the effect of pelvic floor exercises on pelvic floor muscle strength could be detected via ultrasonography in patients with urinary incontinence. [Subjects and Methods] Of 282 incontinent patients, 116 participated in the study and were randomly divided into a pelvic floor muscle training (n=65) group or control group (n=51). The pelvic floor muscle training group was given pelvic floor exercise training for 12 weeks. Both groups were evaluated at the beginning of the study and after 12 weeks. Abdominal ultrasonography measurements in transverse and longitudinal planes, the PERFECT scheme, perineometric evaluation, the stop test, the stress test, and the pad test were used to assess pelvic floor muscle strength in all cases. [Results] After training, the PERFECT, perineometry and transabdominal ultrasonography measurements were found to be significantly improved, and the stop test and pad test results were significantly decreased in the pelvic floor muscle training group, whereas no difference was observed in the control group. There was a positive correlation between the PERFECT force measurement scale and ultrasonography force measurement scale before and after the intervention in the control and pelvic floor muscle training groups (r=0.632 and r=0.642, respectively). [Conclusion] Ultrasonography can be used as a noninvasive method to identify the change in pelvic floor muscle strength with exercise training. PMID:27065519

  14. Effect of surgical closing in total knee arthroplasty at flexion or extension: a prospective, randomized study.

    PubMed

    Kömürcü, Erkam; Yüksel, Halil Yalçın; Ersöz, Murat; Aktekin, Cem Nuri; Hapa, Onur; Çelebi, Levent; Akbal, Ayla; Biçimoğlu, Ali

    2014-12-01

    The aim of this study was to evaluate the effect of knee position during wound closure (flexed vs. extended) in total knee arthroplasty on knee strength and function, as determined by knee society scores and isokinetic testing of extensor and flexor muscle groups. In a prospective, randomized, double-blind trial, 29 patients were divided in two groups: for Group 1 patients, surgical closing was performed with the knee extended, and for Group 2 patients, the knee flexed at 90°. All the patients were treated with the same anaesthesia method, surgical team, surgical technique, prosthesis type, and rehabilitation process. American Knee Society Score values and knee flexion degrees were recorded. Isokinetic muscle strength measurements of both knees in flexion and extension were taken using 60° and 180°/s angular velocity. The peak torque and total work values, isokinetic muscle strength differences, and total work difference values were calculated for surgically repaired and healthy knees. No significant difference in the mean American Knee Society Score values and knee flexion degrees was observed between the two groups. However, using isokinetic evaluation, a significant difference was found in the isokinetic muscle strength differences and total work difference of the flexor muscle between the two groups when patients were tested at 180°/s. Less loss of strength was detected in the isokinetic muscle strength differences of the flexor muscle in Group 2 (-4.2%) than in Group 1 (-23.1%). For patients undergoing total knee arthroplasty, post-operative flexor muscle strength is improved if the knee is flexed during wound closure. II.

  15. High and odd impact exercise training improved physical function and fall risk factors in community-dwelling older men

    PubMed Central

    Allison, Sarah J.; Brooke-Wavell, Katherine; Folland, Jonathan

    2018-01-01

    High impact exercise programmes can improve bone strength, but little is known about whether this type of training further benefits fracture risk by improving physical function in older people. Objectives: This study investigated the influence of high impact exercise on balance, muscle function and morphology in older men. Methods: Fifty, healthy men (65-80 years) were assigned to a 6-month multidirectional hopping programme (TG) and twenty age and physical activity matched volunteers served as controls (CG). Before and after training, muscle function (hop performance, leg press and plantar- and dorsiflexion strength) and physiological determinants (muscle thickness and architecture) as well as balance control (sway path, one leg stance duration) were measured. Resting gastrocnemius medialis (GM) muscle thickness and architecture were assessed using ultrasonography. Results: Significant improvements in hop impulse (+12%), isometric leg-press strength (+4%) and ankle plantarflexion strength (+11%), dorsiflexor strength (+20%) were found in the TG compared to the CG (ANOVA interaction, P<0.05) and unilateral stance time improved over time for TG. GM muscle thickness indicated modest hypertrophy (+4%), but muscle architecture was unchanged. Conclusion: The positive changes in strength and balance after high impact and odd impact training would be expected to improve physical function in older adults. PMID:29504585

  16. Pelvic floor muscle strength of women consulting at the gynecology outpatient clinics and its correlation with sexual dysfunction: A cross-sectional study.

    PubMed

    Ozdemir, Filiz Ciledag; Pehlivan, Erkan; Melekoglu, Rauf

    2017-01-01

    To investigate the pelvic floor muscle strength of the women andevaluateits possible correlation with sexual dysfunction. In this cross-sectional type study, stratified clusters were used for the sampling method. Index of Female Sexual Function (IFSF) worksheetwere used for questions on sexual function. The pelvic floor muscle strength of subjects was assessed byperineometer. The chi-squared test, logistic regression and Pearson's correlation analysis were used for the statistical analysis. Four hundred thirty primiparous women, mean age 38.5 participated in this study. The average pelvic floor muscle strength value was found 31.4±9.6 cm H 2 O and the average Index of Female Sexual Function (IFSF) score was found 26.5±6.9. Parity (odds ratio OR=5.546) and age 40 or higher (OR=3.484) were found correlated with pelvic floor muscle weakness (p<0.05). The factors directly correlated with sexual dysfunction were found being overweight (OR=2.105) and age 40 or higher (OR=2.451) (p<0.05). Pearson's correlation analysis showed that there was a statistically significantlinear correlation between the muscular strength of the pelvic floor and sexual function (p=0.001). The results suggested subjects with decreased pelvic floor muscle strength value had higher frequency of sexual dysfunction.

  17. A New Approach to Improve Cognition, Muscle Strength, and Postural Balance in Community-Dwelling Elderly with a 3-D Virtual Reality Kayak Program.

    PubMed

    Park, Junhyuck; Yim, JongEun

    2016-01-01

    Aging is usually accompanied with deterioration of physical abilities, such as muscular strength, sensory sensitivity, and functional capacity. Recently, intervention methods with virtual reality have been introduced, providing an enjoyable therapy for elderly. The aim of this study was to investigate whether a 3-D virtual reality kayak program could improve the cognitive function, muscle strength, and balance of community-dwelling elderly. Importantly, kayaking involves most of the upper body musculature and needs the balance control. Seventy-two participants were randomly allocated into the kayak program group (n = 36) and the control group (n = 36). The two groups were well matched with respect to general characteristics at baseline. The participants in both groups performed a conventional exercise program for 30 min, and then the 3-D virtual reality kayak program was performed in the kayak program group for 20 min, two times a week for 6 weeks. Cognitive function was measured using the Montreal Cognitive Assessment. Muscle strength was measured using the arm curl and handgrip strength tests. Standing and sitting balance was measured using the Good Balance system. The post-test was performed in the same manner as the pre-test; the overall outcomes such as cognitive function (p < 0.05), muscle strength (p < 0.05), and balance (standing and sitting balance, p < 0.05) were significantly improved in kayak program group compared to the control group. We propose that the 3-D virtual reality kayak program is a promising intervention method for improving the cognitive function, muscle strength, and balance of elderly.

  18. Normal isometric strength of rotatorcuff muscles in adults.

    PubMed

    Chezar, A; Berkovitch, Y; Haddad, M; Keren, Y; Soudry, M; Rosenberg, N

    2013-01-01

    The most prevalent disorders of the shoulder are related to the muscles of rotator cuff. In order to develop a mechanical method for the evaluation of the rotator cuff muscles, we created a database of isometric force generation by the rotator cuff muscles in normal adult population. We hypothesised the existence of variations according to age, gender and dominancy of limb. A total of 400 healthy adult volunteers were tested, classified into groups of 50 men and women for each decade of life. Maximal isometric force was measured at standardised positions for supraspinatus, infraspinatus and subscapularis muscles in both shoulders in every person. Torque of the force was calculated and normalised to lean body mass. The profiles of mean torque-time curves for each age and gender group were compared. Our data showed that men gradually gained maximal strength in the fifth decade, and showed decreased strength in the sixth. In women the maximal strength was gained in the fourth decade with gradual decline to the sixth decade of life. The dominant arm was stronger in most of the tested groups. The torque profiles of the rotator cuff muscles in men at all ages were significantly higher than that in women. We found previously unrecognised variations of rotator cuff muscles' isometric strength according to age, gender and dominancy in a normal population. The presented data may serve as a basis for the future studies for identification of the abnormal patterns of muscle isometric strength in patients with pathology of the rotator cuff muscles. Cite this article: Bone Joint Res 2013;2:214-19.

  19. Strength and ability to implement the activities of daily living in elderly resident in rural areas

    PubMed Central

    Souza dos Santos, Samara; Carneiro Vasconcelos, Lélia Renata; Alves dos Santos, Clarice

    2016-01-01

    Objective: To examine the association between muscle strength and the ability to perform basic and instrumental activities of daily living in elderly resident in rural areas of Jequie, Brazil. Methods: We performed a cross-sectional design study with a population of 104 individuals aged sixty or older, registered in the Family Health Unit of the district of Itajuru, Jequie-Brazil. Data collection was performed using a standardized instrument used as an interview, followed by the application of tests (bending arm with dumbbell and rising from a chair 30 sec). The basic and instrumental activities of daily living were investigated through the Katz and Lawton scales, respectively. The chi-square test with p ≤0.05 was used as a measure of statistical significance for bivariate analyzes between muscle strength and ability to perform daily activities. Results: The results showed a significant association between muscle strength and dynamic ability to perform activities of daily living. Conclusion: Reduced muscle strength is an important predictor of the functional ability of the elderly. Accordingly, it is recommended to observe muscle strength in actions directed at the elderly. PMID:27821897

  20. Quantification of pelvic floor muscle strength in female urinary incontinence: A systematic review and comparison of contemporary methodologies.

    PubMed

    Deegan, Emily G; Stothers, Lynn; Kavanagh, Alex; Macnab, Andrew J

    2018-01-01

    There remains no gold standard for quantification of voluntary pelvic floor muscle (PFM) strength, despite international guidelines that recommend PFM assessment in females with urinary incontinence (UI). Methods currently reported for quantification of skeletal muscle strength across disciplines are systematically reviewed and their relevance for clinical and academic use related to the pelvic floor are described. A systematic review via Medline, PubMed, CINHAL, and the Cochrane database using key terms for pelvic floor anatomy and function were cross referenced with skeletal muscle strength quantification from 1946 to 2016. Full text peer-reviewed articles in English having female subjects with incontinence were identified. Each study was analyzed for use of controls, type of methodology as direct or indirect measures, benefits, and limitations of the technique. A total of 1586 articles were identified of which 50 met the inclusion criteria. Nine methodologies of determining PFM strength were described including: digital palpation, perineometer, dynamometry, EMG, vaginal cones, ultrasonography, magnetic resonance imaging, urine stream interruption test, and the Colpexin pull test. Thirty-two percent lacked a control group. Technical refinements in both direct and indirect instrumentation for PFM strength measurement are allowing for sensitivity. However, the most common methods of quantification remain digital palpation and perineometry; techniques that pose limitations and yield subjective or indirect measures of muscular strength. Dynamometry has potential as an accurate and sensitive tool, but is limited by inability to assess PFM strength during dynamic movements. © 2017 Wiley Periodicals, Inc.

  1. Effect of resistance training on muscle strength and rate of force development in healthy older adults: A systematic review and meta-analysis.

    PubMed

    Guizelini, Pedrode Camargo; de Aguiar, Rafael Alves; Denadai, Benedito Sérgio; Caputo, Fabrizio; Greco, Camila Coelho

    2018-02-01

    Rapid force capacity, identified by rate of rise in contractile force at the onset of contraction, i.e., the rate of force development (RFD), has been considered an important neuromuscular parameter of physical fitness in elderly individuals. Randomized control studies conducted in adults have found that resistance training may elicit different outcomes in terms of RFD and muscle strength. Thus, the main purpose of this study was to review systematically the literature for studies regarding the influence of resistance training on muscle strength and RFD in elderly persons. A literature search was performed in major electronic databases from inception to March 2017. Studies including health individuals with a mean age≥60years, describing the effect of resistance training on RFD and muscle strength were found eligible. The outcomes were calculated as the difference in percentage change between control and experimental groups (% change) and data were presented as mean±95% confidence limits. Meta-analyses were performed using a random-effects model and, in addition, simple and multiple meta-regression analyses were used to identify effects of age, training type, sessions per week and training duration on % change in RFD and muscle strength. Thirteen training effects were collected from 10 studies included in the meta-analysis. The resistance training program had a moderate beneficial effect on both muscle strength (% change=18.40%, 95% CL 13.69-23.30, p<0.001) and RFD (% change=26.68, 95% CL 14.41-35.52, p<0.001). Results of the meta-regression revealed that the variables age, training type (i.e., strength and explosive), training duration (4-16weeks) and sessions per week had no significant effects on muscle strength and RFD improvement. Moreover, there was no significant relationship (p=0.073) between the changes in muscle strength and RFD. It can be concluded that explosive training and heavy strength training are effective resistance training methods aiming to improve both muscle strength and RFD after short-to-medium training period. However, muscle strength and RFD seem to adapt differently to resistance training programs, suggesting caution for their interchangeable use in clinical assessments of the elderly. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Relation between the Disability of the Arm, Shoulder and Hand Score and Muscle Strength in Post-Cardiac Surgery Patients

    PubMed Central

    Kasahara, Yusuke; Hiraki, Koji; Hirano, Yasuyuki; Watanabe, Satoshi

    2017-01-01

    Background: The Disabilities of the Arm, Shoulder, and Hand (DASH) questionnaire is a valid and reliable patient-reported outcome measure. DASH can be assessed by self-reported upper extremity disability and symptoms. We aimed to examine the relationship between the physiological outcome of muscle strength and the DASH score after cardiac surgery. Methods: This cross-sectional study assessed 50 consecutive cardiac patients that were undergoing cardiac surgery. Physiological outcomes of handgrip strength and knee extensor muscle strength and the DASH score were measured at one month after cardiac surgery and were assessed. Results were analyzed using Spearman correlation coefficients. Results: The final analysis comprised 43 patients (men: 32, women: 11; age: 62.1 ± 9.1 years; body mass index: 22.1 ± 4.7 kg/m2; left ventricular ejection fraction: 53.5 ± 13.7%). Respective handgrip strength, knee extensor muscle strength, and DASH score were 27.4 ± 8.3 kgf, 1.6 ± 0.4 Nm/kg, and 13.3 ± 12.3, respectively. The DASH score correlated negatively with handgrip strength (r = −0.38, p = 0.01) and with knee extensor muscle strength (r = −0.32, p = 0.04). Conclusion: Physiological outcomes of both handgrip strength and knee extensor muscle strength correlated negatively with the DASH score. The DASH score appears to be a valuable tool with which to assess cardiac patients with poor physiological outcomes, particularly handgrip strength as a measure of upper extremity function, which is probably easier to follow over time than lower extremity function after patients complete cardiac rehabilitation. PMID:29186880

  3. A Randomized Trial on the Effect of Bone Tissue on Vibration-induced Muscle Strength Gain and Vibration-induced Reflex Muscle Activity

    PubMed Central

    Cidem, Muharrem; Karacan, İlhan; Diraçoğlu, Demirhan; Yıldız, Aysel; Küçük, Suat Hayri; Uludağ, Murat; Gün, Kerem; Özkaya, Murat; Karamehmetoğlu, Şafak Sahir

    2014-01-01

    Background: Whole-body vibration (WBV) induces reflex muscle activity and leads to increased muscle strength. However, little is known about the physiological mechanisms underlying the effects of whole-body vibration on muscular performance. Tonic vibration reflex is the most commonly cited mechanism to explain the effects of whole-body vibration on muscular performance, although there is no conclusive evidence that tonic vibration reflex occurs. The bone myoregulation reflex is another neurological mechanism used to explain the effects of vibration on muscular performance. Bone myoregulation reflex is defined as a reflex mechanism in which osteocytes exposed to cyclic mechanical loading induce muscle activity. Aims: The aim of this study was to assess whether bone tissue affected vibration-induced reflex muscle activity and vibration-induced muscle strength gain. Study Design: A prospective, randomised, controlled, double-blind, parallel-group clinical trial. Methods: Thirty-four participants were randomised into two groups. High-magnitude whole-body vibration was applied in the exercise group, whereas low-magnitude whole-body vibration exercises were applied in the control group throughout 20 sessions. Hip bone mineral density, isokinetic muscle strength, and plasma sclerostin levels were measured. The surface electromyography data were processed to obtain the Root Mean Squares, which were normalised by maximal voluntarily contraction. Results: In the exercise group, muscle strength increased in the right and left knee flexors (23.9%, p=0.004 and 27.5%, p<0.0001, respectively). However, no significant change was observed in the knee extensor muscle strength. There was no significant change in the knee muscle strength in the control group. The vibration-induced corrected Root Mean Squares of the semitendinosus muscle was decreased by 2.8 times (p=0.005) in the exercise group, whereas there was no change in the control group. Sclerostin index was decreased by 15.2% (p=0.031) in the exercise group and increased by 20.8% (p=0.028) in the control group. A change in the sclerostin index was an important predictor of a change in the vibration-induced normalised Root Mean Square of the semitendinosus muscle (R2=0.7, p=0.0001). Femoral neck bone mineral density was an important predictor of muscle strength gain (R2=0.26, p=0.035). Conclusion: This study indicates that bone tissue may have an effect on vibration-induced muscle strength gain and vibration-induced reflex muscle activity. Trial registration: ClinicalTrials.gov: NCT01310348. PMID:25207162

  4. Low agreement between the fitnessgram criterion references for adolescents

    PubMed Central

    Coledam, Diogo Henrique Constantino; Batista, João Pedro; Glaner, Maria Fátima

    2015-01-01

    OBJECTIVE: To analyze the association and agreement of fitnessgram reference criteria (RC) for cardiorespiratory fitness, body mass index (BMI) and strength in youth. METHODS: The study included 781 youth, 386 females, aged 10 to 18 years of Londrina-PR. It were performed cardiorespiratory fitness and muscular strength tests and was calculated body mass index. The association between the tests was analyzed using Poisson regression to obtain prevalence ratio (PR) and confidence intervals of 95%, while agreement of the reference criteria was tested by Kappa index. RESULTS: Significant associations were found between cardiorespiratory fitness and BMI (PR=1,49, 1,27-1,75), muscle strength and BMI (PR=1,55, 1,17-2,08), cardiorespiratory fitness and muscle strength (PR=1,81, 1,47-2,24). The agreement between reference criteria ranged from weak to fair, 48.8% (k=0.05, p=0.10) for cardiorespiratory fitness and BMI, 52.9% (k=0.09, p=0.001) for muscle strength and BMI and 38.4% (k=0.22, p<0.001) for cardiorespiratory fitness and muscle strength. CONCLUSIONS: Although RC for cardiorespiratory fitness, muscle strength and BMI are associated, the agreement between them ranged from weak to fair. To evaluate health related physical fitness it is suggest the execution of all tests, since each test has specific characteristics. PMID:25649383

  5. Short physical performance battery for middle-aged and older adult cardiovascular disease patients: implication for strength tests and lower extremity morphological evaluation.

    PubMed

    Yasuda, Tomohiro; Fukumura, Kazuya; Nakajima, Toshiaki

    2017-04-01

    [Purpose] To examine if the SPPB is higher with healthy subjects than outpatients, which was higher than inpatients and if the SPPB can be validated assessment tool for strength tests and lower extremity morphological evaluation in cardiovascular disease patients. [Subjects and Methods] Twenty-four middle aged and older adults with cardiovascular disease were recruited from inpatient and outpatient facilities and assigned to separate experimental groups. Twelve age-matched healthy volunteers were assigned to a control group. SPPB test was used to assess balance and functional motilities. The test outcomes were compared with level of care (inpatient vs. outpatient), physical characteristics, strength and lower extremity morphology. [Results] Total SPPB scores, strength tests (knee extensor muscle strength), and lower extremity morphological evaluation (muscle thickness of anterior and posterior mid-thigh and posterior lower-leg) were greater in healthy subjects and outpatients groups compared with inpatients. To predict total Short Physical Performance Battery scores, the predicted knee extension and anterior mid-thigh muscle thickness were calculated. [Conclusion] The SPPB is an effective tool as the strength tests and lower extremity morphological evaluation for middle-aged and older adult cardiovascular disease patients. Notably, high knee extensor muscle strength and quadriceps femoris muscle thickness are positively associated with high SPPB scores.

  6. Trampoline exercise vs. strength training to reduce neck strain in fighter pilots.

    PubMed

    Sovelius, Roope; Oksa, Juha; Rintala, Harri; Huhtala, Heini; Ylinen, Jari; Siitonen, Simo

    2006-01-01

    Fighter pilots' muscular strength and endurance are subjected to very high demands. Pilots' fatigued muscles are at higher risk for injuries. The purpose of this study was to compare the effects of two different training methods in reducing muscular loading during in-flight and cervical loading testing (CLT). There were 16 volunteer Finnish Air Force cadets who were divided into 2 groups: a strength training group (STG) and a trampoline training group (TTG). During the 6-wk training period, the STG performed dynamic flexion and extension and isometric rotation exercises, and the TTG performed trampoline bouncing exercises. During in-flight and CLT, muscle strain from the sternocleidomastoid, cervical erector spinae, trapezius, and thoracic erector spinae muscles was recorded with EMG. In-flight muscle strain in the STG after the training period decreased in the sternocleidomastoid 50%, cervical erector spinae 3%, trapezius 4%, and thoracic erector spinae 8%. In the TTG, the decrease was 41%, 30%, 20%, and 6%, respectively. In CLT, the results were similar. After a 3-mo follow-up period with intensive high +Gz flying, EMG during CLT was still lower than in baseline measurements. Both training methods were found to be effective in reducing muscle strain during in-flight and CLT, especially in the cervical muscles. There was no statistically significant difference between the training groups. Introduced exercises expand muscles' capacities in different ways and the authors recommend both strength and trampoline training programs to be included in fighter pilots' physical education programs.

  7. Multivoxel proton magnetic resonance spectroscopy in facioscapulohumeral muscular dystrophy.

    PubMed

    Leung, Doris G; Wang, Xin; Barker, Peter B; Carrino, John A; Wagner, Kathryn R

    2018-06-01

    Facioscapulohumeral muscular dystrophy (FSHD) is a hereditary disorder that causes progressive muscle wasting. This study evaluates the use of proton magnetic resonance spectroscopy ( 1 H MRS) as a biomarker of muscle strength and function in FSHD. Thirty-six individuals with FSHD and 15 healthy controls underwent multivoxel 1 H MRS of a cross-section of the mid-thigh. Concentrations of creatine, intramyocellular and extramyocellular lipids, and trimethylamine (TMA)-containing compounds in skeletal muscle were calculated. Metabolite concentrations for individuals with FSHD were compared with those of controls. The relationship between metabolite concentrations and muscle strength was also examined. The TMA/creatine (Cr) ratio in individuals with FSHD was reduced compared with controls. The TMA/Cr ratio in the hamstrings also showed a moderate linear correlation with muscle strength. 1 H MRS offers a potential method of detecting early muscle pathology in FSHD prior to the development of fat infiltration. Muscle Nerve 57: 958-963, 2018. © 2017 Wiley Periodicals, Inc.

  8. Burrowing as a novel voluntary strength training method for mice: A comparison of various voluntary strength or resistance exercise methods.

    PubMed

    Roemers, P; Mazzola, P N; De Deyn, P P; Bossers, W J; van Heuvelen, M J G; van der Zee, E A

    2018-04-15

    Voluntary strength training methods for rodents are necessary to investigate the effects of strength training on cognition and the brain. However, few voluntary methods are available. The current study tested functional and muscular effects of two novel voluntary strength training methods, burrowing (digging a substrate out of a tube) and unloaded tower climbing, in male C57Bl6 mice. To compare these two novel methods with existing exercise methods, resistance running and (non-resistance) running were included. Motor coordination, grip strength and muscle fatigue were measured at baseline, halfway through and near the end of a fourteen week exercise intervention. Endurance was measured by an incremental treadmill test after twelve weeks. Both burrowing and resistance running improved forelimb grip strength as compared to controls. Running and resistance running increased endurance in the treadmill test and improved motor skills as measured by the balance beam test. Post-mortem tissue analyses revealed that running and resistance running induced Soleus muscle hypertrophy and reduced epididymal fat mass. Tower climbing elicited no functional or muscular changes. As a voluntary strength exercise method, burrowing avoids the confounding effects of stress and positive reinforcers elicited in forced strength exercise methods. Compared to voluntary resistance running, burrowing likely reduces the contribution of aerobic exercise components. Burrowing qualifies as a suitable voluntary strength training method in mice. Furthermore, resistance running shares features of strength training and endurance (aerobic) exercise and should be considered a multi-modal aerobic-strength exercise method in mice. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Handgrip strength deficits best explain limitations in performing bimanual activities after stroke.

    PubMed

    Basílio, Marluce Lopes; de Faria-Fortini, Iza; Polese, Janaine Cunha; Scianni, Aline A; Faria, Christina Dcm; Teixeira-Salmela, Luci Fuscaldi

    2016-04-01

    [Purpose] To evaluate the relationships between residual strength deficits (RSD) of the upper limb muscles and the performance in bimanual activities and to determine which muscular group would best explain the performance in bimanual activities of chronic stroke individuals. [Subjects and Methods] Strength measures of handgrip, wrist extensor, elbow flexor/extensor, and shoulder flexor muscles of 107 subjects were obtained and expressed as RSD. The performance in bimanual activities was assessed by the ABILHAND questionnaire. [Results] The correlations between the RSD of handgrip and wrist extensor muscles with the ABILHAND scores were negative and moderate, whereas those with the elbow flexor/extensor and shoulder flexor muscles were negative and low. Regression analysis showed that the RSD of handgrip and wrist extensor muscles explained 38% of the variance in the ABILHAND scores. Handgrip RSD alone explained 33% of the variance. [Conclusion] The RSD of the upper limb muscles were negatively associated with the performance in bimanual activities and the RSD of handgrip muscles were the most relevant variable. It is possible that stroke subjects would benefit from interventions aiming at improving handgrip strength, when the goal is to increase the performance in bimanual activities.

  10. Hip Abductor Muscle Volume and Strength Differences Between Women With Chronic Hip Joint Pain and Asymptomatic Controls.

    PubMed

    Mastenbrook, Matthew J; Commean, Paul K; Hillen, Travis J; Salsich, Gretchen B; Meyer, Gretchen A; Mueller, Michael J; Clohisy, John C; Harris-Hayes, Marcie

    2017-12-01

    Study Design Secondary analysis, cross-sectional study. Background Chronic hip joint pain (CHJP) can lead to limitations in activity participation, but the musculoskeletal factors associated with the condition are relatively unknown. Understanding the factors associated with CHJP may help develop rehabilitation strategies to improve quality of life of individuals with long-term hip pain. Objectives To compare measures of hip abductor muscle volume and hip abductor muscle strength between women with CHJP and asymptomatic controls. Methods Thirty women, 15 with CHJP and 15 matched asymptomatic controls (age range, 18-40 years), participated in this study. Magnetic resonance imaging was used to determine the volume of the primary hip abductor muscles, consisting of the gluteus medius, gluteus minimus, a small portion of the gluteus maximus, and the tensor fascia latae, within a defined region of interest. Break tests were performed using a handheld dynamometer to assess hip abductor strength. During the strength test, the participant was positioned in sidelying with the involved hip in 15° of abduction. Independent-samples t tests were used to compare muscle volume and strength values between those with CHJP and asymptomatic controls. Results Compared to asymptomatic controls, women with CHJP demonstrated significantly increased gluteal muscle volume (228 ± 40 cm 3 versus 199 ± 29 cm 3 , P = .032), but decreased hip abductor strength (74.6 ± 16.8 Nm versus 93.6 ± 20.2 Nm, P = .009). There were no significant differences in tensor fascia lata muscle volume between the 2 groups (P = .640). Conclusion Women with CHJP appear to have larger gluteal muscle volume, but decreased hip abductor strength, compared to asymptomatic controls. J Orthop Sports Phys Ther 2017;47(12):923-930. Epub 9 Oct 2017. doi:10.2519/jospt.2017.7380.

  11. Analysis of postural control and muscular performance in young and elderly women in different age groups

    PubMed Central

    Gomes, Matheus M.; Reis, Júlia G.; Carvalho, Regiane L.; Tanaka, Erika H.; Hyppolito, Miguel A.; Abreu, Daniela C. C.

    2015-01-01

    BACKGROUND: muscle strength and power are two factors affecting balance. The impact of muscle strength and power on postural control has not been fully explored among different age strata over sixty. OBJECTIVES: the aim of the present study was to assess the muscle strength and power of elderly women in different age groups and determine their correlation with postural control. METHOD: eighty women were divided into four groups: the young 18-30 age group (n=20); the 60-64 age group (n=20); the 65-69 age group (n=20); and the 70-74 age group (n=20). The participants underwent maximum strength (one repetition maximum or 1-RM) and muscle power tests to assess the knee extensor and flexor muscles at 40%, 70%, and 90% 1-RM intensity. The time required by participants to recover their balance after disturbing their base of support was also assessed. RESULTS: the elderly women in the 60-64, 65-69, and 70-74 age groups exhibited similar muscle strength, power, and postural control (p>0.05); however, these values were lower than those of the young group (p<0.05) as expected. There was a correlation between muscle strength and power and the postural control performance (p<0.05). CONCLUSION: despite the age difference, elderly women aged 60 to 74 years exhibited similar abilities to generate strength and power with their lower limbs, and this ability could be one factor that explains the similar postural control shown by these women. PMID:25651132

  12. Baseline and Longitudinal Change in Isometric Muscle Strength Prior to Radiographic Progression in Osteoarthritic and Pre-Osteoarthritic Knees- Data from the Osteoarthritis Initiative

    PubMed Central

    Eckstein, Felix; Hitzl, Wolfgang; Duryea, Jeff; Kwoh, C. Kent; Wirth, Wolfgang

    2013-01-01

    OBJECTIVE To test whether cross-sectional or longitudinal measures of thigh muscle isometric strength differ between knees with and without subsequent radiographic progression of knee osteoarthritis (KOA), with particular focus on pre-osteoarthritic female knees (knees with risk factors but without definite radiographic KOA). METHODS Of 4796 Osteoarthritis Initiative participants, 2835 knees with Kellgren Lawrence grade (KLG) 0–3 had central X-ray readings, annual quantitative joint space width (JSW) and isometric muscle strength measurements (Good strength chair). Separate slope ANCOVA models were used to determine differences in strength between “progressor” and “non- progressor” knees, after adjusting for age, body mass index, and pain. RESULTS 466 participant knees exceeded the smallest detectable JSW change during each of two observation intervals (year 2→4 and year 1→3) and were classified as progressors (213 women, 253 men; 128 KLG0/1, 330 KLG2/3); 946 participant knees did not exceed this threshold in either interval and were classified as non-progressors (588 women, 358 from men; 288KLG0/1, 658KLG2/3). Female progressor knees, including those with KLG0/1, tended to have lower extensor and flexor strength at year2 and at baseline than those without progression, but the difference was not significant after adjusting for confounders. No significant difference was observed in longitudinal change of muscle strength (baseline→year2) prior to radiographic progression. No significant differences were found for muscle strength in men, and none for change in strength concomitant with progression. CONCLUSION This study provides no strong evidence that (changes in) isometric muscle strength precedes or is associated with structural (radiographic) progression of KOA. PMID:23473978

  13. Randomized control trial to evaluate the effects of acute testosterone administration in men on muscle mass, strength, and physical function following ACL reconstructive surgery: rationale, design, methods.

    PubMed

    Wu, Brian W; Berger, Max; Sum, Jonathan C; Hatch, George F; Schroeder, E Todd

    2014-12-06

    The anterior cruciate ligament (ACL) is one of four major ligaments in the knee that provide stability during physical activity. A tear in the ACL is characterized by joint instability that leads to decreased activity, knee dysfunction, reduced quality of life and a loss of muscle mass and strength. While rehabilitation is the standard-of-care for return to daily function, additional surgical reconstruction can provide individuals with an opportunity to return to sports and strenuous physical activity. Over 200,000 ACL reconstructions are performed in the United States each year, and rehabilitation following surgery is slow and expensive. One possible method to improve the recovery process is the use of intramuscular testosterone, which has been shown to increase muscle mass and strength independent of exercise. With short-term use of supraphysiologic doses of testosterone, we hope to reduce loss of muscle mass and strength and minimize loss of physical function following ACL reconstruction compared to standard-of-care alone. This study is a double-blinded randomized control trial. Men 18-50 years of age, scheduled for ACL reconstruction are randomized into two groups. Participants randomized to the testosterone group receive intramuscular testosterone administration once per week for 8 weeks starting 2 weeks prior to surgery. Participants randomized to the control group receive a saline placebo intramuscularly instead of testosterone. Lean mass, muscle strength and physical function are measured at 5 time points: 2 weeks pre-surgery, 1 day pre-surgery, and 6, 12, 24 weeks post-surgery. Both groups follow standard-of-care rehabilitation protocol. We believe that testosterone therapy will help reduce the loss of muscle mass and strength experienced after ACL injury and reconstruction. Hopefully this will provide a way to shorten the rehabilitation necessary following ACL reconstruction. If successful, testosterone therapy may also be used for other injuries involving trauma and muscle atrophy. NCT01595581, REGISTRATION: May 8, 2012.

  14. Pilates and Proprioceptive Neuromuscular Facilitation Methods Induce Similar Strength Gains but Different Neuromuscular Adaptations in Elderly Women.

    PubMed

    Teixeira de Carvalho, Fabiana; de Andrade Mesquita, Laiana Sepúlveda; Pereira, Rafael; Neto, Osmar Pinto; Amaro Zangaro, Renato

    2017-01-01

    Background/Study Context: The aging process is associated with a decline in muscle mass, strength, and conditioning. Two training methods that may be useful to improve muscle function are Pilates and proprioceptive neuromuscular facilitation (PNF). Thus, the present study aimed to compare the influence of training programs using Pilates and PNF methods with elderly women. Sixty healthy elderly women were randomly divided into three groups: Pilates group, PNF group, and control group. Pilates and PNF groups underwent 1-month training programs with Pilates and PNF methods, respectively. The control group received no intervention during the 1 month. The maximal isometric force levels from knee extension and flexion, as well as the electromyography (EMG) signals from quadriceps and biceps femoris, were recorded before and after the 1-month intervention period. A two-way analysis of variance revealed that the Pilates and PNF methods induced similar strength gains from knee flexors and extensors, but Pilates exhibited greater low-gamma drive (i.e., oscillations in 30-60 Hz) in the EMG power spectrum after the training period. These results support use of both Pilates and PNF methods to enhance lower limb muscle strength in older groups, which is very important for gait, postural stability, and performance of daily life activities.

  15. Impaired hip muscle strength in patients with femoroacetabular impingement syndrome.

    PubMed

    Kierkegaard, Signe; Mechlenburg, Inger; Lund, Bent; Søballe, Kjeld; Dalgas, Ulrik

    2017-12-01

    Patients with femoroacetabular impingement (FAI) experience hip pain as well as decreased function and lowered quality of life. The aim was to compare maximal isometric and isokinetic muscle strength (MVC) during hip flexion and extension and rate of force development (RFD) during extension between patients with FAI and a matched reference group. Secondary, the aim was to compare patient hips and subgroups defined by gender and age as well as to investigate associations between hip muscle strength and self-reported outcomes. Design Cross-sectional, comparative study Methods Sixty patients (36±9 years, 63% females) and 30 age and gender matched reference persons underwent MVC tests in an isokinetic dynamometer. During hip flexion and extension, patients' affected hip showed a strength deficit of 15-21% (p<0.001) and 10-25% (p<0.03) compared with reference MVC, respectively. The affected hip of the patients was significantly weaker than their contralateral hip. RFD was significantly decreased for both patient hips compared to the reference group (p<0.05). While age had less effect on MVC, female patients were more affected than male patients. Self-reported measures were associated with isometric hip muscle strength. Patients with FAI demonstrate decreased hip flexion and extension strength when compared to (1) reference persons and (2) their contralateral hip. There seems to be a gender specific affection which should be investigated further and addressed when planning training protocols. Furthermore, self-reported measures were associated with isometric muscle strength, which underlines the clinical importance of the reduced muscle strength. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  16. Effects of 8 Weeks’ Specific Physical Training on the Rotator Cuff Muscle Strength and Technique of Javelin Throwers

    PubMed Central

    Kim, Hyeyoung; Lee, Youngsun; Shin, Insik; Kim, Kitae; Moon, Jeheon

    2014-01-01

    [Purpose] For maximum efficiency and to prevent injury during javelin throwing, it is critical to maintain muscle balance and coordination of the rotator cuff and the glenohumeral joint. In this study, we investigated the change in the rotator cuff muscle strength, throw distance and technique of javelin throwers after they had performed a specific physical training that combined elements of weight training, function movement screen training, and core training. [Subjects] Ten javelin throwers participated in this study: six university athletes in the experimental group and four national-level athletes in the control group. [Methods] The experimental group performed 8 weeks of the specific physical training. To evaluate the effects of the training, measurements were performed before and after the training for the experimental group. Measurements comprised anthropometry, isokinetic muscle strength measurements, the function movement screen test, and movement analysis. [Results] After the specific physical training, the function movement screen score and external and internal rotator muscle strength showed statistically significant increases. Among kinematic factors, only pull distance showed improvement after training. [Conclusion] Eight weeks of specific physical training for dynamic stabilizer muscles enhanced the rotator cuff muscle strength, core stability, throw distance, and flexibility of javelin throwers. These results suggest that specific physical training can be useful for preventing shoulder injuries and improving the performance for javelin throwers. PMID:25364111

  17. Effects of 8 weeks' specific physical training on the rotator cuff muscle strength and technique of javelin throwers.

    PubMed

    Kim, Hyeyoung; Lee, Youngsun; Shin, Insik; Kim, Kitae; Moon, Jeheon

    2014-10-01

    [Purpose] For maximum efficiency and to prevent injury during javelin throwing, it is critical to maintain muscle balance and coordination of the rotator cuff and the glenohumeral joint. In this study, we investigated the change in the rotator cuff muscle strength, throw distance and technique of javelin throwers after they had performed a specific physical training that combined elements of weight training, function movement screen training, and core training. [Subjects] Ten javelin throwers participated in this study: six university athletes in the experimental group and four national-level athletes in the control group. [Methods] The experimental group performed 8 weeks of the specific physical training. To evaluate the effects of the training, measurements were performed before and after the training for the experimental group. Measurements comprised anthropometry, isokinetic muscle strength measurements, the function movement screen test, and movement analysis. [Results] After the specific physical training, the function movement screen score and external and internal rotator muscle strength showed statistically significant increases. Among kinematic factors, only pull distance showed improvement after training. [Conclusion] Eight weeks of specific physical training for dynamic stabilizer muscles enhanced the rotator cuff muscle strength, core stability, throw distance, and flexibility of javelin throwers. These results suggest that specific physical training can be useful for preventing shoulder injuries and improving the performance for javelin throwers.

  18. High-Intensity Strength Training Improves Function of Chronically Painful Muscles: Case-Control and RCT Studies

    PubMed Central

    Andersen, Christoffer H.; Skotte, Jørgen H.; Suetta, Charlotte; Søgaard, Karen; Saltin, Bengt; Sjøgaard, Gisela

    2014-01-01

    Aim. This study investigates consequences of chronic neck pain on muscle function and the rehabilitating effects of contrasting interventions. Methods. Women with trapezius myalgia (MYA, n = 42) and healthy controls (CON, n = 20) participated in a case-control study. Subsequently MYA were randomized to 10 weeks of specific strength training (SST, n = 18), general fitness training (GFT, n = 16), or a reference group without physical training (REF, n = 8). Participants performed tests of 100 consecutive cycles of 2 s isometric maximal voluntary contractions (MVC) of shoulder elevation followed by 2 s relaxation at baseline and 10-week follow-up. Results. In the case-control study, peak force, rate of force development, and rate of force relaxation as well as EMG amplitude were lower in MYA than CON throughout all 100 MVC. Muscle fiber capillarization was not significantly different between MYA and CON. In the intervention study, SST improved all force parameters significantly more than the two other groups, to levels comparable to that of CON. This was seen along with muscle fiber hypertrophy and increased capillarization. Conclusion. Women with trapezius myalgia have lower strength capacity during repetitive MVC of the trapezius muscle than healthy controls. High-intensity strength training effectively improves strength capacity during repetitive MVC of the painful trapezius muscle. PMID:24707475

  19. Muscle strength, gait, and balance in 20 patients with hip osteoarthritis followed for 2 years after THA

    PubMed Central

    Dalén, Nils; Berg, Hans E

    2010-01-01

    Background Patients with hip osteoarthritis (OA) have muscular weakness, impaired balance, and limp. Deficits in the different limb muscles and their recovery courses are largely unknown, however. We hypothesized that there is persisting muscular weakness in lower limb muscles and an impaired balance and gait 2 years after THA. Patients and methods 20 elderly patients with unilateral OA were assessed before, and 6 and 24 months after surgery for maximal voluntary isometric strength of hip and knee muscles and by gait analysis, postural stability, and clinical scores (HHS, SF-36, EuroQoL). Results Hip muscles showed a remaining 6% weakness compared to the contralateral healthy limb 2 years after THA. Preoperatively and 6 months postoperatively, that deficit was 18% and 12%, respectively. Knee extensors fully recovered a preoperative 27% deficit after 2 years. Gait analysis demonstrated a shorter single stance phase for the OA limb compared to healthy limb preoperatively, that had already recovered at the 6-month follow-up. Balance of two-foot standing showed improvement in both sagittal and lateral sway after operation. All clinical scores improved. Interpretation Muscle strength data demonstrated a slow but full recovery of muscles acting about the knee, but there was still a deficit in hip muscle strength 2 years after THA. Gait and balance recovered after the operation. To accelerate improvement in muscular strength after THA, postoperative training should probably be more intense and target hip abductors. PMID:20367414

  20. Validity and test–retest reliability of a novel simple back extensor muscle strength test

    PubMed Central

    Harding, Amy T; Weeks, Benjamin Kurt; Horan, Sean A; Little, Andrew; Watson, Steven L; Beck, Belinda Ruth

    2017-01-01

    Objectives: To develop and determine convergent validity and reliability of a simple and inexpensive clinical test to quantify back extensor muscle strength. Methods: Two testing sessions were conducted, 7 days apart. Each session involved three trials of standing maximal isometric back extensor muscle strength using both the novel test and isokinetic dynamometry. Lumbar spine bone mineral density was examined by dual-energy X-ray absorptiometry. Validation was examined with Pearson correlations (r). Test–retest reliability was examined with intraclass correlation coefficients and limits of agreement. Pearson correlations and intraclass correlation coefficients are presented with corresponding 95% confidence intervals. Linear regression was used to examine the ability of peak back extensor muscle strength to predict indices of lumbar spine bone mineral density and strength. Results: A total of 52 healthy adults (26 men, 26 women) aged 46.4 ± 20.4 years were recruited from the community. A strong positive relationship was observed between peak back extensor strength from hand-held and isokinetic dynamometry (r = 0.824, p < 0.001). For the novel back extensor strength test, short- and long-term reliability was excellent (intraclass correlation coefficient = 0.983 (95% confidence interval, 0.971–0.990), p < 0.001 and intraclass correlation coefficient = 0.901 (95% confidence interval, 0.833–0.943), p < 0.001, respectively). Limits of agreement for short-term repeated back extensor strength measures with the novel back extensor strength protocol were −6.63 to 7.70 kg, with a mean bias of +0.71 kg. Back extensor strength predicted 11% of variance in lumbar spine bone mineral density (p < 0.05) and 9% of lumbar spine index of bone structural strength (p < 0.05). Conclusion: Our novel hand-held dynamometer method to determine back extensor muscle strength is quick, relatively inexpensive, and reliable; demonstrates initial convergent validity in a healthy population; and is associated with bone mass at a clinically important site. PMID:28255442

  1. Intra-rater Reliability of Arm and Hand Muscle Strength Measurements in Persons With Late Effects of Polio.

    PubMed

    Brogårdh, Christina; Flansbjer, Ulla-Britt; Carlsson, Håkan; Lexell, Jan

    2015-10-01

    Muscle weakness in the upper limb is common in persons with late effects of polio. To be able to measure muscle strength and follow changes over time, reliable measurements are needed. To evaluate the intra-rater reliability of isometric and isokinetic arm and hand muscle strength measurements in persons with late effects of polio. A test-retest design. A university hospital outpatient clinic. Twenty-eight persons (mean age 68 years, SD 11 years) with late effects of polio in their upper limbs. Isometric shoulder abduction, isokinetic concentric elbow flexion and extension, isometric elbow flexion, and isometric grip strength were measured twice, 14 days apart. Reliability was evaluated with the intra-class correlation coefficient, the mean difference between the test sessions (d¯), together with the 95% confidence intervals for d¯ , the standard error of measurement (SEM and SEM%), the smallest real difference (SRD and SRD%), and Bland-Altman graphs. A fixed dynamometer (Biodex) was used to measure arm strength and an electronic dynamometer (GRIP-it) was used to measure grip strength. Intra-rater reliability was high, with intra-class correlation coefficients between 0.87 and 0.98. The SEM%, representing the smallest change for a group of persons, ranged from 7%-24% for all strength measurements, and the SRD%, representing the smallest change for an individual person, ranged from 20%-67%. Muscle strength in the upper limbs can be reliably measured in persons with late effects of polio. However, the measurement errors indicate that the method is more suitable to detect changes in muscle strength for a group of persons than for an individual person. Copyright © 2015 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  2. Strength Testing.

    ERIC Educational Resources Information Center

    Londeree, Ben R.

    1981-01-01

    Postural deviations resulting from strength and flexibility imbalances include swayback, scoliosis, and rounded shoulders. Screening tests are one method for identifying strength problems. Tests for the evaluation of postural problems are described, and exercises are presented for the strengthening of muscles. (JN)

  3. Effects of trunk stability on isometric knee extension muscle strength measurement while sitting.

    PubMed

    Hirano, Masahiro; Gomi, Masahiro; Katoh, Munenori

    2016-09-01

    [Purpose] This study aimed to investigate the effect of trunk stability on isometric knee extension muscle strength measurement while sitting by performing simultaneous measurements with a handheld dynamometer (HHD) and an isokinetic dynamometer (IKD) in the same seated condition. [Subjects and Methods] The subjects were 30 healthy volunteers. Isometric knee extension muscle strength was simultaneously measured with a HHD and an IKD by using an IKD-specific chair. The measurement was performed twice. Measurement instrument variables and the number of measurements were examined by using the analysis of variance and correlation tests. [Results] The measurement instrument variables and the number of measurements were not significantly different. The correlation coefficients between the HHD and IKD measurements were ≥0.96. [Conclusion] Isometric knee extension muscle strength measurement using the HHD in the sitting position resulted in a lower value than that using the IKD, presumably because of the effect of trunk stability on the measurement. In the same seated posture with trunk stability, no significant difference in measurement values was observed between the HHD and IKD. The present findings suggest that trunk stability while seated during isometric knee extension muscle strength measurement influenced the HHD measurement.

  4. The Immediate Effect of Neuromuscular Joint Facilitation (NJF) Treatment on Hip Muscle Strength.

    PubMed

    Wang, Hongdan; Huo, Ming; Huang, Qiuchen; Li, Desheng; Maruyama, Hitoshi

    2013-11-01

    [Purpose] This study investigated the change in hip muscle strength of younger persons after neuromuscular joint facilitation (NJF) treatment. [Subjects] The subjects were 45 healthy young people, who were divided into two groups: a NJF group and a proprioceptive neuromuscular facilitation (PNF) group. The NJF group consisted of 21 subjects (11 males, 10 females), and the PNF group consisted of 24 subjects (11 males, 13 females). [Methods] Participants in the NJF group received NJF treatment. We measured the maximal flexor strength and the maximal extensor strength during isokinetic movement of the hip joint before and after intervention in both groups. The angular velocities used were 60°/sec and 180°/sec. [Results] The NJF group showed significant increases in the maximal flexor strength and the maximal extensor strength after the intervention at each angular velocity. In the PNF group, the maximal flexor strength of 60°/sec and the maximal extensor strength of 180°/sec were significant increases. [Conclusion] These results suggest that there is an immediate effect of NJF intervention on hip muscle strength.

  5. Validity and reliability of isometric muscle strength measurements of hip abduction and abduction with external hip rotation in a bent-hip position using a handheld dynamometer with a belt.

    PubMed

    Aramaki, Hidefumi; Katoh, Munenori; Hiiragi, Yukinobu; Kawasaki, Tsubasa; Kurihara, Tomohisa; Ohmi, Yorikatsu

    2016-07-01

    [Purpose] This study aimed to investigate the relatedness, reliability, and validity of isometric muscle strength measurements of hip abduction and abduction with an external hip rotation in a bent-hip position using a handheld dynamometer with a belt. [Subjects and Methods] Twenty healthy young adults, with a mean age of 21.5 ± 0.6 years were included. Isometric hip muscle strength in the subjects' right legs was measured under two posture positions using two devices: a handheld dynamometer with a belt and an isokinetic dynamometer. Reliability was evaluated using an intra-class correlation coefficient (ICC); relatedness and validity were evaluated using Pearson's product moment correlation coefficient. Differences in measurements of devices were assessed by two-way ANOVA. [Results] ICC (1, 1) was ≥0.9; significant positive correlations in measurements were found between the two devices under both conditions. No main effect was found between the measurement values. [Conclusion] Our findings revealed that there was relatedness, reliability, and validity of this method for isometric muscle strength measurements using a handheld dynamometer with a belt.

  6. Assessment of Lower Limb Muscle Strength and Power Using Hand-Held and Fixed Dynamometry: A Reliability and Validity Study

    PubMed Central

    Perraton, Luke G.; Bower, Kelly J.; Adair, Brooke; Pua, Yong-Hao; Williams, Gavin P.; McGaw, Rebekah

    2015-01-01

    Introduction Hand-held dynamometry (HHD) has never previously been used to examine isometric muscle power. Rate of force development (RFD) is often used for muscle power assessment, however no consensus currently exists on the most appropriate method of calculation. The aim of this study was to examine the reliability of different algorithms for RFD calculation and to examine the intra-rater, inter-rater, and inter-device reliability of HHD as well as the concurrent validity of HHD for the assessment of isometric lower limb muscle strength and power. Methods 30 healthy young adults (age: 23±5yrs, male: 15) were assessed on two sessions. Isometric muscle strength and power were measured using peak force and RFD respectively using two HHDs (Lafayette Model-01165 and Hoggan microFET2) and a criterion-reference KinCom dynamometer. Statistical analysis of reliability and validity comprised intraclass correlation coefficients (ICC), Pearson correlations, concordance correlations, standard error of measurement, and minimal detectable change. Results Comparison of RFD methods revealed that a peak 200ms moving window algorithm provided optimal reliability results. Intra-rater, inter-rater, and inter-device reliability analysis of peak force and RFD revealed mostly good to excellent reliability (coefficients ≥ 0.70) for all muscle groups. Concurrent validity analysis showed moderate to excellent relationships between HHD and fixed dynamometry for the hip and knee (ICCs ≥ 0.70) for both peak force and RFD, with mostly poor to good results shown for the ankle muscles (ICCs = 0.31–0.79). Conclusions Hand-held dynamometry has good to excellent reliability and validity for most measures of isometric lower limb strength and power in a healthy population, particularly for proximal muscle groups. To aid implementation we have created freely available software to extract these variables from data stored on the Lafayette device. Future research should examine the reliability and validity of these variables in clinical populations. PMID:26509265

  7. Quantitative muscle ultrasound and quadriceps strength in patients with post-polio syndrome.

    PubMed

    Bickerstaffe, Alice; Beelen, Anita; Zwarts, Machiel J; Nollet, Frans; van Dijk, Johannes P

    2015-01-01

    We investigated whether muscle ultrasound can distinguish muscles affected by post-polio syndrome (PPS) from healthy muscles and whether severity of ultrasound abnormalities is associated with muscle strength. Echo intensity, muscle thickness, and isometric strength of the quadriceps muscles were measured in 48 patients with PPS and 12 healthy controls. Patients with PPS had significantly higher echo intensity and lower muscle thickness than healthy controls. In patients, both echo intensity and muscle thickness were associated independently with muscle strength. A combined measure of echo intensity and muscle thickness was more strongly related to muscle strength than either parameter alone. Quantitative ultrasound distinguishes healthy muscles from those affected by PPS, and measures of muscle quality and quantity are associated with muscle strength. Hence, ultrasound could be a useful tool for assessing disease severity and monitoring changes resulting from disease progression or clinical intervention in patients with PPS. © 2014 Wiley Periodicals, Inc.

  8. Reference values for muscle strength: a systematic review with a descriptive meta-analysis.

    PubMed

    Benfica, Poliana do Amaral; Aguiar, Larissa Tavares; Brito, Sherindan Ayessa Ferreira de; Bernardino, Luane Helena Nunes; Teixeira-Salmela, Luci Fuscaldi; Faria, Christina Danielli Coelho de Morais

    2018-05-03

    Muscle strength is an important component of health. To describe and evaluate the studies which have established the reference values for muscle strength on healthy individuals and to synthesize these values with a descriptive meta-analysis approach. A systematic review was performed in MEDLINE, LILACS, and SciELO databases. Studies that investigated the reference values for muscle strength of two or more appendicular/axial muscle groups of health individuals were included. Methodological quality, including risk of bias was assessed by the QUADAS-2. Data extracted included: country of the study, sample size, population characteristics, equipment/method used, and muscle groups evaluated. Of the 414 studies identified, 46 were included. Most of the studies had adequate methodological quality. Included studies evaluated: appendicular (80.4%) and axial (36.9%) muscles; adults (78.3%), elderly (58.7%), adolescents (43.5%), children (23.9%); isometric (91.3%) and isokinetic (17.4%) strength. Six studies (13%) with similar procedures were synthesized with meta-analysis. Generally, the coefficient of variation values that resulted from the meta-analysis ranged from 20.1% to 30% and were similar to those reported by the original studies. The meta-analysis synthesized the reference values of isometric strength of 14 muscle groups of the dominant/non-dominant sides of the upper/lower limbs of adults/elderly from developed countries, using dynamometers/myometer. Most of the included studies had adequate methodological quality. The meta-analysis provided reference values for the isometric strength of 14 appendicular muscle groups of the dominant/non-dominant sides, measured with dynamometers/myometers, of men/women, of adults/elderly. These data may be used to interpret the results of the evaluations and establish appropriate treatment goals. Copyright © 2018 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Publicado por Elsevier Editora Ltda. All rights reserved.

  9. Dynamics of muscle strength improvement during isokinetic rehabilitation of athletes with ACL rupture and chondromalacia patellae.

    PubMed

    Desnica Bakrac, N

    2003-03-01

    To assess quantitatively dynamics and extent of the increase in muscle strength during isokinetic rehabilitation. daily measurements of muscle strength; detailed testing at the beginning and at the end of rehabilitation. Cybex Rehabilitation Center, Zagreb. 44 athletes (31 m, 13 F, age 16-35), 3 injury-defined groups: athletes with ACL rupture (non-reconstructed and reconstructed) and chondromalacia patellae. all subjects underwent isokinetic rehabilitation on Cybex Orthotron KT2 device, using individually designed protocols (extension and flexion exercises, concentric muscle contractions, 15 treatments). monitoring of daily progress on rehabilitation device and detailed testing on diagnostic device. All patients showed considerable improvement. Muscle strength improved on average 141% (SD=110) in ACL-reconstructed group, 144% (SD=130) for chondromalacia patellae group and 150% (SD=74) for ACL-non-reconstructed group, comparing to initial strength. Dynamic status tested on Cybex Otrhotron diagnostic device prior and after rehabilitation strongly correlated with final progress monitored on the rehabilitation device. Isokinetic rehabilitation is a quick and effective method in treating knee injuries in athletes. Both types of objective criteria have shown significant increase in muscle strength. The improvement of muscle strength was on the average 149% (SD=101), which is about 10% daily for 15 treatments. The greatest progress, 19% per day, occurred during first five days. The athletes were able to resume their sport activities as follows: patients from chondromalacia patellae group, and most of them from the non-reconstructed ACL group were back in competition within a month, while 75% from the ACL reconstructed group came back within 3 months, and the rest of them within 5 months.

  10. The Effect of Statins on Skeletal Muscle Function

    PubMed Central

    Parker, Beth A.; Capizzi, Jeffrey A.; Grimaldi, Adam S.; Clarkson, Priscilla M.; Cole, Stephanie M.; Keadle, Justin; Chipkin, Stuart; Pescatello, Linda S.; Simpson, Kathleen; White, C. Michael; Thompson, Paul D.

    2015-01-01

    Background Many clinicians believe that statins cause muscle pain, but this has not been observed in clinical trials and the effect of statins on muscle performance has not been carefully studied. Methods and Results The Effect of STatins On Skeletal Muscle Function and Performance (STOMP) study assessed symptoms and measured creatine kinase (CK), exercise capacity, and muscle strength before and after atorvastatin 80 mg or placebo were administered for 6 months to 420 healthy, statin-naive subjects. No individual CK value exceeded 10 times normal, but average CK increased 20.8 ± 141.1 U/L (p<0.0001) with atorvastatin. There were no significant changes in several measures of muscle strength or exercise capacity with atorvastatin, but more atorvastatin than placebo subjects developed myalgia (19 vs 10; p = 0.05). Myalgic subjects on atorvastatin or placebo decreased muscle strength in 5 of 14 and 4 of 14 variables respectively (p = 0.69). Conclusions These results indicate that high-dose atorvastatin for 6 months does not decrease average muscle strength or exercise performance in healthy, previously untreated subjects. Nevertheless, this blinded, controlled trial confirms the undocumented impression that statins increase muscle complaints. Atorvastatin also increased average CK suggesting that statins produce mild muscle injury even among asymptomatic subjects. This increase in CK should prompt studies examining the effects of more prolonged, high-dose statin treatment on muscular performance. Clinical Trial Registration Information: www.clinicaltrials.gov; Identifier: NCT00609063. PMID:23183941

  11. Strength characterization of knee flexor and extensor muscles in Prader-Willi and obese patients

    PubMed Central

    Capodaglio, Paolo; Vismara, Luca; Menegoni, Francesco; Baccalaro, Gabriele; Galli, Manuela; Grugni, Graziano

    2009-01-01

    Background despite evidence of an obesity-related disability, there is a lack of objective muscle functional data in overweight subjects. Only few studies provide instrumental strength measurements in non-syndromal obesity, whereas no data about Prader-Willi syndrome (PWS) are reported. The aim of our study was to characterize the lower limb muscle function of patients affected by PWS as compared to non-syndromal obesity and normal-weight subjects. Methods We enrolled 20 obese (O) females (age: 29.1 ± 6.5 years; BMI: 38.1 ± 3.1), 6 PWS females (age: 27.2 ± 4.9 years; BMI: 45.8 ± 4.4) and 14 healthy normal-weight (H) females (age: 30.1 ± 4.7 years; BMI: 21 ± 1.6). Isokinetic strength during knee flexion and extension in both lower limbs at the fixed angular velocities of 60°/s, 180°/s, 240°/s was measured with a Cybex Norm dynamometer. Results the H, O and PWS populations appear to be clearly stratified with regard to muscle strength.: PWS showed the lowest absolute peak torque (PT) for knee flexor and extensor muscles as compared to O (-55%) and H (-47%) (P = 0.00001). O showed significantly higher strength values than H as regard to knee extension only (P = 0.0014). When strength data were normalised by body weight, PWS showed a 50% and a 70% reduction in PT as compared to O and H, respectively. Knee flexors strength values were on average half of those reported for extension in all of the three populations. Conclusion the novel aspect of our study is the determination of objective measures of muscle strength in PWS and the comparison with O and H patients. The objective characterization of muscle function performed in this study provides baseline and outcome measures that may quantify specific strength deficits amendable with tailored rehabilitation programs and monitor effectiveness of treatments. PMID:19419559

  12. Effects of isokinetic calf muscle exercise program on muscle strength and venous function in patients with chronic venous insufficiency.

    PubMed

    Ercan, Sabriye; Çetin, Cem; Yavuz, Turhan; Demir, Hilmi M; Atalay, Yurdagül B

    2018-05-01

    Objective The aim of this study was to observe the change of the ankle joint range of motion, the muscle strength values measured with an isokinetic dynamometer, pain scores, quality of life scale, and venous return time in chronic venous insufficiency diagnosed patients by prospective follow-up after 12-week exercise program including isokinetic exercises. Methods The patient group of this study comprised 27 patients (23 female, 4 male) who were diagnosed with chronic venous insufficiency. An exercise program including isokinetic exercise for the calf muscle was given to patients three days per week for 12 weeks. At the end of 12 weeks, five of the patients left the study due to inadequate compliance with the exercise program. As a result, control data of 22 patients were included. Ankle joint range of active motion, isokinetic muscle strength, pain, quality of life, and photoplethysmography measurements were assessed before starting and after the exercise program. Results Evaluating changes of the starting and control data depending on time showed that all isokinetic muscle strength measurement parameters, range of motion, and overall quality of life values of patients improved. Venous return time values have also increased significantly ( p < 0.05). Conclusion In conclusion, increase in muscle strength has been provided with exercise therapy in patients with chronic venous insufficiency. It has been determined that the increase in muscle strength affected the venous pump and this ensured improvement in venous function and range of motion of the ankle. In addition, it has been detected that pain reduced and quality of life improved after the exercise program.

  13. Time-Course of Muscle Mass Loss, Damage, and Proteolysis in Gastrocnemius following Unloading and Reloading: Implications in Chronic Diseases

    PubMed Central

    Chacon-Cabrera, Alba; Lund-Palau, Helena; Gea, Joaquim; Barreiro, Esther

    2016-01-01

    Background Disuse muscle atrophy is a major comorbidity in patients with chronic diseases including cancer. We sought to explore the kinetics of molecular mechanisms shown to be involved in muscle mass loss throughout time in a mouse model of disuse muscle atrophy and recovery following immobilization. Methods Body and muscle weights, grip strength, muscle phenotype (fiber type composition and morphometry and muscle structural alterations), proteolysis, contractile proteins, systemic troponin I, and mitochondrial content were assessed in gastrocnemius of mice exposed to periods (1, 2, 3, 7, 15 and 30 days) of non-invasive hindlimb immobilization (plastic splint, I cohorts) and in those exposed to reloading for different time-points (1, 3, 7, 15, and 30 days, R cohorts) following a seven-day period of immobilization. Groups of control animals were also used. Results Compared to non-exposed controls, muscle weight, limb strength, slow- and fast-twitch cross-sectional areas, mtDNA/nDNA, and myosin content were decreased in mice of I cohorts, whereas tyrosine release, ubiquitin-proteasome activity, muscle injury and systemic troponin I levels were increased. Gastrocnemius reloading following splint removal improved muscle mass loss, strength, fiber atrophy, injury, myosin content, and mtDNA/nDNA, while reducing ubiquitin-proteasome activity and proteolysis. Conclusions A consistent program of molecular and cellular events leading to reduced gastrocnemius muscle mass and mitochondrial content and reduced strength, enhanced proteolysis, and injury, was seen in this non-invasive mouse model of disuse muscle atrophy. Unloading of the muscle following removal of the splint significantly improved the alterations seen during unloading, characterized by a specific kinetic profile of molecular events involved in muscle regeneration. These findings have implications in patients with chronic diseases including cancer in whom physical activity may be severely compromised. PMID:27792730

  14. Decreased Muscle Strength Relates to Self-Reported Stooping, Crouching, or Kneeling Difficulty in Older Adults

    PubMed Central

    Goldberg, Allon; Alexander, Neil B.

    2010-01-01

    Background Bending down and kneeling are fundamental tasks of daily living, yet nearly a quarter of older adults report having difficulty performing or being unable to perform these movements. Older adults with stooping, crouching, or kneeling (SCK) difficulty have demonstrated an increased fall risk. Strength (force-generating capacity) measures may be useful for determining both SCK difficulty and fall risk. Objective The purposes of this study were: (1) to examine muscle strength differences in older adults with and without SCK difficulty and (2) to examine the relative contributions of trunk and leg muscle strength to SCK difficulty. Design This was a cross-sectional observational study. Methods Community-dwelling older adults (age [X̅±SD]=75.5±6.0 years) with SCK difficulty (n=27) or without SCK difficulty (n=21) were tested for leg and trunk strength and functional mobility. Isometric strength at the trunk, hip, knee, and ankle also was normalized by body weight and height. Results Compared with older adults with no SCK difficulty, those with SCK difficulty had significant decreases in normalized trunk extensor, knee extensor, and ankle dorsiflexor and plantar-flexor strength. In 2 separate multivariate analyses, raw ankle plantar-flexor strength (odds ratio [OR]=0.97, 95% confidence interval [CI]=0.95–0.99) and normalized knee extensor strength (OR=0.61, 95% CI=0.44–0.82) were significantly associated with SCK difficulty. Stooping, crouching, and kneeling difficulty also correlated with measures of functional balance and falls. Limitations Although muscle groups that were key to rising from SCK were examined, there are other muscle groups that may contribute to safe SCK performance. Conclusions Decreased muscle strength, particularly when normalized for body size, predicts SCK difficulty. These data emphasize the importance of strength measurement at multiple levels in predicting self-reported functional impairment. PMID:19942678

  15. Poor physical function in elderly women in low-level aged care is related to muscle strength rather than to measures of sarcopenia

    PubMed Central

    Woods, Julie L; Iuliano-Burns, Sandra; King, Susannah J; Strauss, Boyd J; Walker, Karen Z

    2011-01-01

    Purpose: To determine the prevalence of sarcopenia and investigate relationships among body composition, muscle strength, and physical function in elderly women in low-level aged care. Subjects and methods: Sixty-three ambulatory women (mean age 86 years) participated in this cross-sectional study where body composition was determined by dual energy X-ray absorptiometry (DXA); ankle, knee, and hip strength by the Nicholas Manual Muscle Tester; and physical function by ‘timed up and go’ (TUG) and walking speed (WS) over 6 meters. Body composition data from a female reference group (n = 62, mean age 29 years) provided cut-off values for defining sarcopenia. Results: Elderly women had higher body mass index (P < 0.001), lower lean mass (P < 0.001), and higher fat mass (P < 0.01) than the young reference group. Only a small proportion (3.2%) had absolute sarcopenia (defined by appendicular skeletal muscle mass/height squared) whereas 37% had relative sarcopenia class II (defined by percentage skeletal muscle mass). Scores for TUG and WS indicated relatively poor physical function, yet these measures were not associated with muscle mass or indices of sarcopenia. In multivariate analysis, only hip abductor strength predicted both TUG and WS (both P = 0.01). Conclusion: Hip strength is a more important indicator of physical functioning than lean mass. Measurement of hip strength may therefore be a useful screening tool to detect those at risk of functional decline and requirement for additional care. Further longitudinal studies with a range of other strength measures are warranted. PMID:21472094

  16. The effects of shoulder stabilization exercises and pectoralis minor stretching on balance and maximal shoulder muscle strength of healthy young adults with round shoulder posture.

    PubMed

    Kim, Mi-Kyoung; Lee, Jung Chul; Yoo, Kyung-Tae

    2018-03-01

    [Purpose] The purpose of this study was to analyze the effects of pectoralis minor stretching and shoulder strengthening with an elastic band on balance and maximal shoulder muscle strength in young adults with rounded shoulder posture. [Subjects and Methods] Nineteen subjects with rounded shoulder posture were randomly divided into 2 groups: a shoulder stabilization exercise group and a stretching exercise group. The groups performed each exercise for 40 minutes, 3 times a week, for 4 weeks. Static balance (eyes open and closed), dynamic balance (the limits of stability in 4 directions) and shoulder muscle strength in 5 directions were measure before and after the exercises. [Results] The stretching exercise demonstrated a significant difference between the pre- and post-exercise in the static balance with eyes closed and extension and horizontal abduction strength while the stabilization exercise demonstrated significant difference in the left and right directions between the pre- and post-exercise of the dynamic balance and flexion strength. The stabilization exercise demonstrated significant differences shown in the flexion between the pre- and post-test. [Conclusion] The shoulder stabilization and stretching exercises improved the static balance, dynamic balance, and muscle strength.

  17. No Differences Between Alter G-Trainer and Active and Passive Recovery Strategies on Isokinetic Strength, Systemic Oxidative Stress and Perceived Muscle Soreness After Exercise-Induced Muscle Damage.

    PubMed

    Cooke, Matthew B; Nix, Carrie M; Greenwood, Lori D; Greenwood, Mike C

    2018-03-01

    Cooke, MB, Nix, C, Greenwood, L, and Greenwood, M. No Differences Between Alter G-Trainer and Active and Passive Recovery Strategies on Isokinetic Strength, Systemic Oxidative Stress and Perceived Muscle Soreness After Exercise-Induced Muscle Damage. J Strength Cond Res 32(3): 736-747, 2018-The incidence of muscle injuries is prevalent in elite sport athletes and weekend warriors and strategies that safely and effectively hasten recovery are highly desirable. The purpose of this study was to examine the differences between 3 recovery methods after eliciting muscle damage in recreationally active men relative to maximal isokinetic contractions, perceived muscle soreness, and psychological mood states. Twenty-five recreationally active men (22.15 ± 3.53 years, 75.75 ± 11.91 kg, 180.52 ± 7.3 cm) were randomly matched by V[Combining Dot Above]O2 peak (53.86 ± 6.65 ml·kg·min) and assigned to one of 3 recovery methods: anti-gravity treadmill (G-Trainer) (N = 8), conventional treadmill (N = 8) or static stretching (N = 9). Recovery methods were performed 30 minutes, 24, 48, and 72 hours after a 45-minute downhill run. Following eccentrically biased running, no significant differences were noted in isokinetic knee flexion and extension peak torque, systemic markers of muscle damage, oxidative stress and lipid peroxidation such as serum creatine kinase (CK), superoxide dismutase (SOD), and malondialdehyde (MDA), respectively, and subjective ratings of perceived muscle soreness between recovery methods. The G-Trainer group did however display a higher mood state as indicated by the Profile of Mood State global scores at 24 hours postexercise when compared to the conventional treadmill recovery group (p = 0.035). The improved mood state after the use of the anti-gravity treadmill may provide clinical relevance to other populations.

  18. Muscle Strength and Muscle Mass in Older Patients during Hospitalization: The EMPOWER Study.

    PubMed

    Van Ancum, Jeanine M; Scheerman, Kira; Pierik, Vincent D; Numans, Siger T; Verlaan, Sjors; Smeenk, Hanne E; Slee-Valentijn, Monique; Kruizinga, Roeliene C; Meskers, Carel G M; Maier, Andrea B

    2017-01-01

    Low muscle strength and muscle mass are associated with an increased length of hospital stay and higher mortality rate in inpatients. To what extent hospitalization affects muscle strength and muscle mass is unclear. We aimed to assess muscle strength and muscle mass at admission and during hospitalization in older patients and its relation with being at risk of geriatric conditions. The EMPOWER study included patients aged 70 years and older, admitted to 4 wards of the VU University Medical Center in the Netherlands between April and December 2015. At admission, patients were screened for being at risk of 4 geriatric conditions: delirium, falls, malnutrition, and functional disability. At admission and at discharge, muscle strength and muscle mass were assessed. A total of 373 patients (mean age, standard deviation [SD]: 79.6, 6.38 years) were included at admission, and 224 patients (mean age, SD: 80.1, 6.32 years) at discharge. At admission, lower muscle strength in both female and male patients and low muscle mass in male patients were associated with being at risk of a higher cumulative number of geriatric conditions. Muscle strength increased during hospitalization, but no change in muscle mass was observed. Changes in muscle measures were not associated with being at risk of geriatric conditions. Older patients with lower muscle strength and muscle mass at admission were at risk of a higher cumulative number of geriatric conditions. However, being at risk of geriatric conditions did not forecast further decrease in muscle strength and muscle mass during hospitalization. © 2017 The Author(s) Published by S. Karger AG, Basel.

  19. EFFECTS OF DIFFERENT DURATION EXERCISE PROGRAMS IN CHILDREN WITH SEVERE BURNS

    PubMed Central

    Clayton, Robert P.; Wurzer, Paul; Andersen, Clark R.; Mlcak, Ronald P.; Herndon, David N.; Suman, Oscar E.

    2016-01-01

    Introduction Burns lead to persistent and detrimental muscle breakdown and weakness. Standard treatment at our institution includes a voluntary 12-week rehabilitative exercise program to limit and reverse the effects of increased muscle catabolism. In the present work, we investigated if different durations of exercise, 6 or 12 weeks, produce comparable improvements in muscle strength, body composition, and cardiopulmonary fitness. Methods We prospectively enrolled and randomized patients with ≥30% total body surface area (TBSA) burned to receive 6- or 12-weeks of exercise rehabilitation. Patients were evaluated for muscle strength, oxygen consumption capacity, and lean body mass at discharge (n = 42) and post exercise. After 6 weeks (n = 18) or 12 weeks (n = 24) of exercise training, leg muscle strength was assessed as peak torque per body weight using a Biodex Isokinetic Dynamometer. Oxygen consumption capacity, measured as peak VO2, was studied using a standard treadmill-based test, and lean body mass was determined using dual-energy X-ray absorptiometry. Results Significant improvements in muscle strength, peak VO2, and lean body mass were seen after 6 weeks of exercise training (p<0.001), with only significant improvements in peak VO2 being seen after 6 weeks more of training. Conclusion These data suggest that a 6-week rehabilitative exercise program is sufficient for improving muscle strength, body composition, and cardiopulmonary fitness in pediatric burn patients. However, continuation of at- or near-home cardiopulmonary training following the 6 weeks of at-hospital rehabilitation may be useful. PMID:27908464

  20. Effectiveness of hip muscle strengthening in patellofemoral pain syndrome patients: a systematic review

    PubMed Central

    Santos, Thiago R. T.; Oliveira, Bárbara A.; Ocarino, Juliana M.; Holt, Kenneth G.; Fonseca, Sérgio T.

    2015-01-01

    Introduction: Patellofemoral pain syndrome (PFPS) is characterized by anterior knee pain, which may limit the performance of functional activities. The influence of hip joint motion on the development of this syndrome has already been documented in the literature. In this regard, studies have investigated the effectiveness of hip muscle strengthening in patients with PFPS. Objectives: The aims of this systematic review were (1) to summarize the literature related to the effects of hip muscle strengthening on pain intensity, muscle strength, and function in individuals with PFPS and (2) to evaluate the methodological quality of the selected studies. Method: A search for randomized controlled clinical trials was conducted using the following databases: Google Scholar, MEDLINE, PEDro, LILACS, and SciELO. The selected studies had to distinguish the effects of hip muscle strengthening in a group of patients with PFPS, as compared to non-intervention or other kinds of intervention, and had to investigate the following outcomes: pain, muscle strength, and function. The methodological quality of the selected studies was analyzed by means of the PEDro scale. Results: Seven studies were selected. These studies demonstrated that hip muscle strengthening was effective in reducing pain. However, the studies disagreed regarding the treatments' ability to improve muscle strength. Improvement in functional capabilities after hip muscle strengthening was found in five studies. Conclusion: Hip muscle strengthening is effective in reducing the intensity of pain and improving functional capabilities in patients with PFPS, despite the lack of evidence for its ability to increase muscle strength. PMID:26039034

  1. The Effect of Aquatic Exercise Therapy on Muscle Strength and Joint's Range of Motion in Hemophilia Patients.

    PubMed

    Kargarfard, Mehdi; Dehghadani, Mehdi; Ghias, Reza

    2013-01-01

    This study was to evaluate the effect of a period of aquatic exercise therapy on muscle strength and joints range of motion in hemophilia patients. This was a semiexperimental, pretest, post-test study with a control group. This semi-experimental study comprised twenty men suffering moderate hemophilia were selected by convenience sampling method from patients of a referral hospital. They were randomly assigned to intervention and control groups of equal number. The hemophilia patients who were referred to Sayedo-Shohada Hospital enrolled in this study. Twenty men suffering moderate hemophilia were selected using convenience sampling method and then divided randomly into intervention and control groups (10 patients in each group). Subjects of aquatic exercise therapy group underwent activity in water in three sessions (45-60 minutes) per week for 8 weeks, while the control group was only under follow-up and during this period did not experience any effective physical activity. The patients' muscle strength and joint range of motion were evaluated through standard laboratory tools, using an isokinetic dynamometer (Biodex, Systems III) and a standard goniometer in the beginning and at end of the study. Finally, data was analyzed using analysis of covariance (ANCOVA). The strength of the muscles around the knee joint (to perform extension and flexion movements) increased significantly in the case group while the control group experienced a significant reduction of strength in left leg, but in right leg remarkable change was observed. Range of motion in all joints was improved in the case group, while the control group did not improve significantly. The results showed that aquatic exercise therapy can be a useful method to improve joints' strength and range of motion in hemophilia patients in order to improve their daily functioning and quality of life.

  2. Resistance training inhibits the elevation of skeletal muscle derived-BDNF level concomitant with improvement of muscle strength in zucker diabetic rat

    PubMed Central

    Kim, Hee-Jae; So, Byunghun; Son, Jun Seok; Song, Han Sol; Oh, Seung Lyul; Seong, Je Kyung; Lee, Hoyoung; Song, Wook

    2015-01-01

    [Purpose] In the present study, we investigated the effects of 8 weeks of progressive resistance training on the level of skeletal muscle derived BDNF as well as glucose intolerance in Zucker diabetic rats. [Methods] Six week-old male Zucker diabetic fatty (ZDF) and Zucker lean control (ZLC) rats were randomly divided into 3 groups: sedentary ZLC (ZLC-Con), sedentary ZDF (ZDF-Con), and exercised ZDF (ZDF-Ex). Progressive resistance training using a ladder and tail weights was performed for 8 weeks (3 days/week). [Results] After 8 weeks of resistance training, substantial reduction in body weight was observed in ZDF-Ex compared to ZDF-Con. Though the skeletal muscle volume did not change, grip strength grip strength was significantly higher in ZDF-Ex compared to ZDF-Con. In the soleus, the level of BDNF was increased in ZDF-Con, but was significantly decreased (p<0.05) in ZDF-Ex, showing a training effect. Moreover, we found that there was a negative correlation (r=-0.657; p=0.004) between grip strength and BDNF level whereas there was a positive correlation (r=0.612; p=0.008) between plasma glucose level and BDNF level in skeletal muscle. [Conclusion] Based upon our results, we demonstrated that resistance training inhibited the elevation of skeletal muscle derived-BDNF expression concomitant with the improvement of muscle strength in zucker diabetic rats. In addition, muscle-derived BDNF might be a potential mediator for the preventive effect of resistance training on the progress of type 2 diabetes. PMID:27274460

  3. [The effect of an exercise program to strengthen pelvic floor muscles in multiparous women].

    PubMed

    Assis, Thaís Rocha; Sá, Ana Claudia Antonio Maranhão; Amaral, Waldemar Naves do; Batista, Elicéia Marcia; Formiga, Cibelle Kayenne Martins Roberto; Conde, Délio Marques

    2013-01-01

    To investigate the effect of an individualized and supervised exercise program for the pelvic floor muscles (PFM) in the postpartum period of multiparous women, and to verify the correlation between two methods used to assess PFM strength. An open clinical trial was performed with puerperal, multiparous women aged 18 to 35 years. The sample consisted of 23 puerperal women divided into two groups: Intervention Group (IG, n=11) and Control Group (CG, n=12). The puerperal women in IG participated in an eight-week PFM exercise program, twice a week. The puerperal women in CG did not receive any recommendations regarding exercise. PFM strength was assessed using digital vaginal palpation and a perineometer. The statistical analysis was performed using the following tests: Fisher's exact, χ(2), Student's t, Kolmogorov-Smirnov for two samples, and Pearson's correlation coefficient. Significance was defined as p<0.05. The participants' mean age was 24 ± 4.5 years in IG and 25.3 ± 4 years in CG (p=0.4). After the exercise program, a significant difference was found between the groups in both modalities of muscle strength assessment (p<0.001). The two muscle strength assessment methods showed a significant correlation in both assessments (1(st) assessment: r=0.889, p<0.001; 2(nd) assessment: r=0.925, p<0.001). The exercise program promoted a significant improvement in PFM strength. Good correlation was observed between digital vaginal palpation and a perineometer, which indicates that vaginal palpation can be used in clinical practice, since it is an inexpensive method that demonstrated significant correlation with an objective method, i.e. the use of a perioneometer.

  4. FAST CP: protocol of a randomised controlled trial of the efficacy of a 12-week combined Functional Anaerobic and Strength Training programme on muscle properties and mechanical gait deficiencies in adolescents and young adults with spastic-type cerebral palsy

    PubMed Central

    Gillett, Jarred G; Lichtwark, Glen A; Boyd, Roslyn N; Barber, Lee A

    2015-01-01

    Introduction Individuals with cerebral palsy (CP) have muscles that are smaller, weaker and more resistant to stretch compared to typically developing people. Progressive resistance training leads to increases in muscle size and strength. In CP, the benefits of resistance training alone may not transfer to improve other activities such as walking; however, the transfer of strength improvements to improved mobility may be enhanced by performing training that involves specific functional tasks or motor skills. This study aims to determine the efficacy of combined functional anaerobic and strength training in (1) influencing muscle strength, structure and function and (2) to determine if any changes in muscle strength and structure following training impact on walking ability and gross motor functional capacity and performance in the short (following 3 months of training) and medium terms (a further 3 months post-training). Methods and analysis 40 adolescents and young adults with CP will be recruited to undertake a 12-week training programme. The training programme will consist of 3×75 min sessions per week, made up of 5 lower limb resistance exercises and 2–3 functional anaerobic exercises per session. The calf muscles will be specifically targeted, as they are the most commonly impacted muscles in CP and are a key muscle group involved in walking. If, as we believe, muscle properties change following combined strength and functional training, there may be long-term benefits of this type of training in slowing the deterioration of muscle function in people with spastic-type CP. Ethics and dissemination Ethical approval has been obtained from the ethics committees at The University of Queensland (2014000066) and Children's Health Queensland (HREC/15/QRCH/30). The findings will be disseminated by publications in peer-reviewed journals, conferences and local research organisations’ media. Trial registration number Australian and New Zealand Clinical Trials Registry (ACTRN12614001217695). PMID:26116614

  5. Cut points of muscle strength associated with metabolic syndrome in men.

    PubMed

    Sénéchal, Martin; McGavock, Jonathan M; Church, Timothy S; Lee, Duck-Chul; Earnest, Conrad P; Sui, Xuemei; Blair, Steven N

    2014-08-01

    The loss of muscle strength with age increases the likelihood of chronic conditions, including metabolic syndrome (MetS). However, the minimal threshold of muscle strength at which the risk for MetS increases has never been established. This study aimed to identify a threshold of muscle strength associated with MetS in men. We created receiver operating curves for muscle strength and the risk of MetS from a cross-sectional sample of 5685 men age <50 yr and 1541 men age ≥50 yr enrolled in the Aerobics Center Longitudinal Study. The primary outcome measure, the MetS, was defined according to the National Cholesterol Education Program Adult Treatment Panel III criteria. Upper and lower body muscle strength was treated as a composite measure of one-repetition maximum tests on bench and leg press and scaled to body weight. Low muscle strength was defined as the lowest age-specific 20th percentile, whereas high muscle strength was defined as composite muscle strength above the 20th percentile. In men aged <50 yr, the odds of MetS were 2.20-fold (95% confidence interval = 1.89-2.54) higher in those with low muscle strength, independent of age, smoking, and alcohol intake. The strength of this association was similar for men age ≥50 yr (odds ratio = 2.11, 95% confidence interval = 1.62-2.74). In men age < 50 yr, the composite strength threshold associated with MetS was 2.57 kg·kg body weight, whereas in men age ≥ 50 yr the threshold was 2.35 kg·kg body weight. This study is the first to identify a threshold of muscle strength associated with an increased likelihood of MetS in men. Measures of muscle strength may help identify men at risk of chronic disease.

  6. Low dynamic muscle strength and its associations with fatigue, functional performance, and quality of life in premenopausal patients with systemic lupus erythematosus and low disease activity: a case–control study

    PubMed Central

    2013-01-01

    Background The purpose of the present study was to compare dynamic muscle strength, functional performance, fatigue, and quality of life in premenopausal systemic lupus erythematosus (SLE) patients with low disease activity versus matched-healthy controls and to determine the association of dynamic muscle strength with fatigue, functional performance, and quality of life in SLE patients. Methods We evaluated premenopausal (18–45 years) SLE patients with low disease activity (Systemic lupus erythematosus disease activity index [SLEDAI]: mean 1.5 ± 1.2). The control (n = 25) and patient (n = 25) groups were matched by age, physical characteristics, and the level of physical activities in daily life (International Physical Activity Questionnaire IPAQ). Both groups had not participated in regular exercise programs for at least six months prior to the study. Dynamic muscle strength was assessed by one-repetition maximum (1-RM) tests. Functional performance was assessed by the Timed Up and Go (TUG), in 30-s test a chair stand and arm curl using a 2-kg dumbbell and balance test, handgrip strength and a sit-and-reach flexibility test. Quality of life (SF-36) and fatigue were also measured. Results The SLE patients showed significantly lower dynamic muscle strength in all exercises (leg press 25.63%, leg extension 11.19%, leg curl 15.71%, chest press 18.33%, lat pulldown 13.56%, 1-RM total load 18.12%, P < 0.001-0.02) compared to the controls. The SLE patients also had lower functional performance, greater fatigue and poorer quality of life. In addition, fatigue, SF-36 and functional performance accounted for 52% of the variance in dynamic muscle strength in the SLE patients. Conclusions Premenopausal SLE patients with low disease activity showed lower dynamic muscle strength, along with increased fatigue, reduced functional performance, and poorer quality of life when compared to matched controls. PMID:24011222

  7. The Effect of Low Extremity Plyometric Training on Back Muscle Power of High School Throwing Event Athletes

    PubMed Central

    Park, Gi Duck; Lee, Joong Chul; Lee, Juri

    2014-01-01

    [Purpose] The physical strength elements required for athletic throwing events include muscle strength, swiftness, agility, speed, flexibility, and physical balance. Although plyometric training and weight training are implemented as representative training methods for improving swiftness and agility, most studies of it have been conducted with players of other sports. [Subjects] The study subjects were 10 throwing event athletes attending K physical education high school. The subjects were randomly assigned to a control group of five subjects and an experimental group of five subjects. To analyze the body composition, an Inbody 3.0 instrument (Biospace, Korea) was used as experimental equipment to measure heights, weight, body fat percentages, and muscle masses and a Biodex system 4.0 (BIODEX, USA) was used to measure isokinetic muscle-joint and lumbar muscle strengths. The plyometric training consisted of 15 techniques out of the training methods introduced in the ‘Power up plyometric training’. The plyometric program was implemented without any training load three times per week during daybreak exercises for the experimental group. The number of times and the number of sets were changed over time as follows: three sets of 10 times in the 1st −4th weeks, three sets of 15 times in the 5th–8th weeks, and five sets of 15 times in the 9th−12th weeks. [Results] According to the ANCOVA results of lumbar extensor muscle strength at 60°/sec, the overall reliability of the model was significant. According to the ANCOVA results of lumbar flexor muscle strength at 60°/sec, the overall reliability of the model was significant. [Conclusion] Plyometric training positively affected high school throwing event athletes. To summarize the study findings, the application of plyometric training with high intensity and loads improved the results of athletes who perform highly intensive exercises at normal times. PMID:24567698

  8. The effect of low extremity plyometric training on back muscle power of high school throwing event athletes.

    PubMed

    Park, Gi Duck; Lee, Joong Chul; Lee, Juri

    2014-01-01

    [Purpose] The physical strength elements required for athletic throwing events include muscle strength, swiftness, agility, speed, flexibility, and physical balance. Although plyometric training and weight training are implemented as representative training methods for improving swiftness and agility, most studies of it have been conducted with players of other sports. [Subjects] The study subjects were 10 throwing event athletes attending K physical education high school. The subjects were randomly assigned to a control group of five subjects and an experimental group of five subjects. To analyze the body composition, an Inbody 3.0 instrument (Biospace, Korea) was used as experimental equipment to measure heights, weight, body fat percentages, and muscle masses and a Biodex system 4.0 (BIODEX, USA) was used to measure isokinetic muscle-joint and lumbar muscle strengths. The plyometric training consisted of 15 techniques out of the training methods introduced in the 'Power up plyometric training'. The plyometric program was implemented without any training load three times per week during daybreak exercises for the experimental group. The number of times and the number of sets were changed over time as follows: three sets of 10 times in the 1st -4th weeks, three sets of 15 times in the 5th-8th weeks, and five sets of 15 times in the 9th-12th weeks. [Results] According to the ANCOVA results of lumbar extensor muscle strength at 60°/sec, the overall reliability of the model was significant. According to the ANCOVA results of lumbar flexor muscle strength at 60°/sec, the overall reliability of the model was significant. [Conclusion] Plyometric training positively affected high school throwing event athletes. To summarize the study findings, the application of plyometric training with high intensity and loads improved the results of athletes who perform highly intensive exercises at normal times.

  9. Epidemiology of Sarcopenia: Determinants Throughout the Lifecourse

    PubMed Central

    Shaw, SC; Denison, EM; Cooper, C

    2017-01-01

    Sarcopenia is an age-related syndrome characterised by progressive and generalised loss of skeletal muscle mass and strength; it is a major contributor to the risk of physical frailty, functional impairment in older people, poor health-related quality of life, and premature death. Many different definitions have been used to describe sarcopenia and have resulted in varying estimates of prevalence of the condition. The most recent attempts of definitions have tried to integrate information on muscle mass, strength and physical function and provide a definition that is useful in both research and clinical settings. This review focuses on the epidemiology of the three distinct physiological components of sarcopenia, and highlights the similarities and differences between their patterns of variation with age, gender, geography and time; and the individual risk factors that cluster selectively with muscle mass, strength and physical function. Methods used to measure muscle mass, strength and physical functioning and how differences in these approaches can contribute to the varying prevalence rates will also be described. The evidence for this review was gathered by undertaking a systematic search of the literature. The descriptive characteristics of muscle mass, strength and function described in this review point to the urgent need for a consensual definition of sarcopenia incorporating these parameters. PMID:28469267

  10. Review of Modelling Techniques for In Vivo Muscle Force Estimation in the Lower Extremities during Strength Training.

    PubMed

    Schellenberg, Florian; Oberhofer, Katja; Taylor, William R; Lorenzetti, Silvio

    2015-01-01

    Knowledge of the musculoskeletal loading conditions during strength training is essential for performance monitoring, injury prevention, rehabilitation, and training design. However, measuring muscle forces during exercise performance as a primary determinant of training efficacy and safety has remained challenging. In this paper we review existing computational techniques to determine muscle forces in the lower limbs during strength exercises in vivo and discuss their potential for uptake into sports training and rehabilitation. Muscle forces during exercise performance have almost exclusively been analysed using so-called forward dynamics simulations, inverse dynamics techniques, or alternative methods. Musculoskeletal models based on forward dynamics analyses have led to considerable new insights into muscular coordination, strength, and power during dynamic ballistic movement activities, resulting in, for example, improved techniques for optimal performance of the squat jump, while quasi-static inverse dynamics optimisation and EMG-driven modelling have helped to provide an understanding of low-speed exercises. The present review introduces the different computational techniques and outlines their advantages and disadvantages for the informed usage by nonexperts. With sufficient validation and widespread application, muscle force calculations during strength exercises in vivo are expected to provide biomechanically based evidence for clinicians and therapists to evaluate and improve training guidelines.

  11. Muscle Strength and Changes in Physical Function in Women With Systemic Lupus Erythematosus.

    PubMed

    Andrews, James S; Trupin, Laura; Schmajuk, Gabriela; Barton, Jennifer; Margaretten, Mary; Yazdany, Jinoos; Yelin, Edward H; Katz, Patricia P

    2015-08-01

    Cross-sectional studies have observed that muscle weakness is associated with worse physical function among women with systemic lupus erythematosus (SLE). The present study examines whether reduced upper and lower extremity muscle strength predict declines in function over time among adult women with SLE. One hundred forty-six women from a longitudinal SLE cohort participated in the study. All measures were collected during in-person research visits approximately 2 years apart. Upper extremity muscle strength was assessed by grip strength. Lower extremity muscle strength was assessed by peak knee torque of extension and flexion. Physical function was assessed using the Short Physical Performance Battery (SPPB). Regression analyses modeled associations of baseline upper and lower extremity muscle strength with followup SPPB scores controlling for baseline SPPB, age, SLE duration, SLE disease activity (Systemic Lupus Activity Questionnaire), physical activity level, prednisone use, body composition, and depression. Secondary analyses tested whether associations of baseline muscle strength with followup in SPPB scores differed between intervals of varying baseline muscle strength. Lower extremity muscle strength strongly predicted changes over 2 years in physical function even when controlling for covariates. The association of reduced lower extremity muscle strength with reduced physical function in the future was greatest among the weakest women. Reduced lower extremity muscle strength predicted clinically significant declines in physical function, especially among the weakest women. Future studies should test whether therapies that promote preservation of lower extremity muscle strength may prevent declines in function among women with SLE. © 2015, American College of Rheumatology.

  12. Core strength training for patients with chronic low back pain.

    PubMed

    Chang, Wen-Dien; Lin, Hung-Yu; Lai, Ping-Tung

    2015-03-01

    [Purpose] Through core strength training, patients with chronic low back pain can strengthen their deep trunk muscles. However, independent training remains challenging, despite the existence of numerous core strength training strategies. Currently, no standardized system has been established analyzing and comparing the results of core strength training and typical resistance training. Therefore, we conducted a systematic review of the results of previous studies to explore the effectiveness of various core strength training strategies for patients with chronic low back pain. [Methods] We searched for relevant studies using electronic databases. Subsequently, we evaluated their quality by analyzing the reported data. [Results] We compared four methods of evaluating core strength training: trunk balance, stabilization, segmental stabilization, and motor control exercises. According to the results of various scales and evaluation instruments, core strength training is more effective than typical resistance training for alleviating chronic low back pain. [Conclusion] All of the core strength training strategies examined in this study assist in the alleviation of chronic low back pain; however, we recommend focusing on training the deep trunk muscles to alleviate chronic low back pain.

  13. Improvement in muscle performance after one-year cessation of low-magnitude high-frequency vibration in community elderly

    PubMed Central

    Cheung, W-H.; Li, C-Y.; Zhu, T.Y.; Leung, K-S.

    2016-01-01

    Objectives: To investigate the effects on muscle performance after one-year cessation of 18-month low-magnitude high-frequency vibration (LMHFV) intervention in the untrained community elderly. Methods: This is a case-control study with 59 community elderly women (25 control without any treatment; 34 received 18-month LMHFV but discontinued for 1 year from our previous clinical study). Muscle strength, balancing ability, occurrence of fall/fracture, quality of life (QoL) were assessed 1-year after cessation of intervention. The 30-month results were compared with baseline and 18-month treatment endpoint data between groups. Results: At 30 months (i.e. one year post-intervention), the muscle strengths of dominant and non-dominant legs relative to baseline in treatment group were significantly better than those of control. In balancing ability test, reaction time, movement velocity and maximum excursion of treatment group (relative to baseline) remained significantly better than the control group. The muscle strength, balancing ability and quality of life at 30 months relative to 18 months did not show significant differences between the two groups. Conclusion: The benefits of LMHFV for balancing ability, muscle strength and risk of falling in elderly were retained 1 year after cessation of LMHFV. PMID:26944817

  14. The Effect of Aquatic Exercise Therapy on Muscle Strength and Joint's Range of Motion in Hemophilia Patients

    PubMed Central

    Kargarfard, Mehdi; Dehghadani, Mehdi; Ghias, Reza

    2013-01-01

    Background: This study was to evaluate the effect of a period of aquatic exercise therapy on muscle strength and joints range of motion in hemophilia patients. Methods: This was a semiexperimental, pretest, post-test study with a control group. This semi-experimental study comprised twenty men suffering moderate hemophilia were selected by convenience sampling method from patients of a referral hospital. They were randomly assigned to intervention and control groups of equal number. The hemophilia patients who were referred to Sayedo-Shohada Hospital enrolled in this study. Twenty men suffering moderate hemophilia were selected using convenience sampling method and then divided randomly into intervention and control groups (10 patients in each group). Subjects of aquatic exercise therapy group underwent activity in water in three sessions (45-60 minutes) per week for 8 weeks, while the control group was only under follow-up and during this period did not experience any effective physical activity. The patients’ muscle strength and joint range of motion were evaluated through standard laboratory tools, using an isokinetic dynamometer (Biodex, Systems III) and a standard goniometer in the beginning and at end of the study. Finally, data was analyzed using analysis of covariance (ANCOVA). Results: The strength of the muscles around the knee joint (to perform extension and flexion movements) increased significantly in the case group while the control group experienced a significant reduction of strength in left leg, but in right leg remarkable change was observed. Range of motion in all joints was improved in the case group, while the control group did not improve significantly. Conclusion: The results showed that aquatic exercise therapy can be a useful method to improve joints’ strength and range of motion in hemophilia patients in order to improve their daily functioning and quality of life. PMID:23412736

  15. Tendon neuroplastic training: changing the way we think about tendon rehabilitation: a narrative review

    PubMed Central

    Rio, Ebonie; Kidgell, Dawson; Moseley, G Lorimer; Docking, Sean; Purdam, Craig; Cook, Jill

    2016-01-01

    Tendinopathy can be resistant to treatment and often recurs, implying that current treatment approaches are suboptimal. Rehabilitation programmes that have been successful in terms of pain reduction and return to sport outcomes usually include strength training. Muscle activation can induce analgesia, improving self-efficacy associated with reducing one's own pain. Furthermore, strength training is beneficial for tendon matrix structure, muscle properties and limb biomechanics. However, current tendon rehabilitation may not adequately address the corticospinal control of the muscle, which may result in altered control of muscle recruitment and the consequent tendon load, and this may contribute to recalcitrance or symptom recurrence. Outcomes of interest include the effect of strength training on tendon pain, corticospinal excitability and short interval cortical inhibition. The aims of this concept paper are to: (1) review what is known about changes to the primary motor cortex and motor control in tendinopathy, (2) identify the parameters shown to induce neuroplasticity in strength training and (3) align these principles with tendon rehabilitation loading protocols to introduce a combination approach termed as tendon neuroplastic training. Strength training is a powerful modulator of the central nervous system. In particular, corticospinal inputs are essential for motor unit recruitment and activation; however, specific strength training parameters are important for neuroplasticity. Strength training that is externally paced and akin to a skilled movement task has been shown to not only reduce tendon pain, but modulate excitatory and inhibitory control of the muscle and therefore, potentially tendon load. An improved understanding of the methods that maximise the opportunity for neuroplasticity may be an important progression in how we prescribe exercise-based rehabilitation in tendinopathy for pain modulation and potentially restoration of the corticospinal control of the muscle-tendon complex. PMID:26407586

  16. Influence of aging on isometric muscle strength, fat-free mass and electromyographic signal power of the upper and lower limbs in women

    PubMed Central

    Amaral, Josária F.; Alvim, Felipe C.; Castro, Eliane A.; Doimo, Leonice A.; Silva, Marcus V.; Novo, José M.

    2014-01-01

    Background Aging is a multifactorial process that leads to changes in the quantity and quality of skeletal muscle and contributes to decreased levels of muscle strength. Objective This study sought to investigate whether the isometric muscle strength, fat-free mass (FFM) and power of the electromyographic (EMG) signal of the upper and lower limbs of women are similarly affected by aging. Method The sample consisted of 63 women, who were subdivided into three groups (young (YO) n=33, 24.7±3.5 years; middle age (MA) n=15, 58.6±4.2 years; and older adults (OA). n=15, 72.0±4.2 years). Isometric strength was recorded simultaneously with the capture of the electrical activity of the flexor muscles of the fingers and the vastus lateralis during handgrip and knee extension tests, respectively. FFM was assessed using dual-energy X-ray absorptiometry. Results The handgrip strength measurements were similar among groups (p=0.523), whereas the FFM of the upper limbs was lower in group OA compared to group YO (p=0.108). The RMSn values of the hand flexors were similar among groups (p=0.754). However, the strength of the knee extensors, the FFM of the lower limbs and the RMSn values of the vastus lateralis were lower in groups MA (p=0.014, p=0.006 and p=0.013, respectively) and OA (p=0.000, p=0.000 and p<0.000, respectively) compared to group YO. Conclusions The results of this study demonstrate that changes in isometric muscle strength in MLG and electromyographic activity of the lower limbs are more pronounced with the aging process of the upper limb. PMID:24676705

  17. Effects of Training Using Video Games on the Muscle Strength, Muscle Tone, and Activities of Daily Living of Chronic Stroke Patients

    PubMed Central

    Lee, GyuChang

    2013-01-01

    [Purpose] The purpose of this study was to investigate the effects of training using video games played on the Xbox Kinect on the muscle strength, muscle tone, and activities of daily living of post-stroke patients. [Subjects] Fourteen stroke patients were recruited. They were randomly allocated into two groups; the experimental group (n=7) and the control group (n=7). [Methods] The experimental group performed training using video games played on the Xbox Kinect together with conventional occupational therapy for 6 weeks (1 hour/day, 3 days/week), and the control group received conventional occupational therapy only for 6 weeks (30 min/day, 3 days/week). Before and after the intervention, the participants were measured for muscle strength, muscle tone, and performance of activities of daily living. [Results] There were significant differences pre- and post-test in muscle strength of the upper extremities, except the wrist, and performance of activities of daily living in the experimental group. There were no significant differences between the two groups at post-test. [Conclusion] The training using video games played on the Xbox Kinect had a positive effect on the motor function and performance of activities of daily living. This study showed that training using video games played on the Xbox Kinect may be an effective intervention for the rehabilitation of stroke patients. PMID:24259810

  18. RELATIONSHIP BETWEEN ISOMETRIC THIGH MUSCLE STRENGTH AND MINIMAL CLINICALLY IMPORTANT DIFFERENCES (MCIDS) IN KNEE FUNCTION IN OSTEOARTHRITIS – DATA FROM THE OSTEOARTHRITIS INITIATIVE

    PubMed Central

    Ruhdorfer, Anja; Wirth, Wolfgang; Eckstein, Felix

    2014-01-01

    Objective To determine the relationship between thigh muscle strength and clinically relevant differences in self-assessed lower limb function. Methods Isometric knee extensor and flexor strength of 4553 Osteoarthritis Initiative participants (2651 women/1902 men) was related to Western Ontario McMasters Universities (WOMAC) physical function scores by linear regression. Further, groups of Male and female participant strata with minimal clinically important differences (MCIDs) in WOMAC function scores (6/68) were compared across the full range of observed values, and to participants without functional deficits (WOMAC=0). The effect of WOMAC knee pain and body mass index on the above relationships was explored using stepwise regression. Results Per regression equations, a 3.7% reduction in extensor and a 4.0% reduction in flexor strength were associated with an MCID in WOMAC function in women, and a 3.6%/4.8% reduction in men. For strength divided by body weight, reductions were 5.2%/6.7% in women and 5.8%/6.7% in men. Comparing MCID strata across the full observed range of WOMAC function confirmed the above estimates and did not suggest non-linear relationships across the spectrum of observed values. WOMAC pain correlated strongly with WOMAC function, but extensor (and flexor) muscle strength contributed significant independent information. Conclusion Reductions of approximately 4% in isometric muscle strength and of 6% in strength/weight were related to a clinically relevant difference in WOMAC functional disability. Longitudinal studies will need to confirm these relationships within persons. Muscle extensor (and flexor) strength (per body weight) provided significant independent information in addition to pain in explaining variability in lower limb function. PMID:25303012

  19. Electromyostimulation, circuits and monitoring

    NASA Technical Reports Server (NTRS)

    Doerr, Donald F.

    1994-01-01

    One method to determine the benefit of electromyostimulation (EMS) requires an accurate strength assessment of the muscle of interest using a muscle force testing device. Several commercial devices are available. After a pre-EMS muscle assessment, a protocol with accurately controlled stimulation parameters must be applied and monitored. both the actual current and the resultant muscle force must be measured throughout the study. At the conclusion of the study, a reassessment of the muscle strength must be gathered. In our laboratory, electromyostimulation is being studied as a possible countermeasure to the muscle atrophy (degeneration) experienced in space. This muscle loss not only weakens the astronaut, but adversely affects his/her readaptation to 1-g upon return from space. Muscle atrophy is expected to have a more significant effect in long term space flight as anticipated in our space station. Our studies have concentrated on stimulating the four major muscle groups in the leg. These muscles were stimulated sequentially to allow individual muscle force quantification above the knee and ankle. The leg must be restrained in an instrumented brace to allow this measurement and preclude muscle cramping.

  20. High risk of malnutrition is associated with low muscle mass in older hospitalized patients - a prospective cohort study.

    PubMed

    Pierik, Vincent D; Meskers, Carel G M; Van Ancum, Jeanine M; Numans, Siger T; Verlaan, Sjors; Scheerman, Kira; Kruizinga, Roeliene C; Maier, Andrea B

    2017-06-05

    Malnutrition, low muscle strength and muscle mass are highly prevalent in older hospitalized patients and associated with adverse outcomes. Malnutrition may be a risk factor for developing low muscle mass. We aimed to investigate the association between the risk of malnutrition and 1) muscle strength and muscle mass at admission and 2) the change of muscle strength and muscle mass during hospitalization in older patients. The EMPOWER study included 378 patients aged seventy years or older who were acutely or electively admitted to four different wards of an academic teaching hospital in Amsterdam. Patients were grouped into low risk of malnutrition and high risk of malnutrition based on the Short Nutritional Assessment Questionnaire (SNAQ) score and were assessed for hand grip strength and muscle mass using hand held dynamometry respectively bioelectrical impedance analysis (BIA) within 48 h after admission and at day seven, or earlier at the day of discharge. Muscle mass was expressed as skeletal muscle mass, appendicular lean mass, fat free mass and the skeletal muscle index. The mean age of the patients was 79.7 years (SD 6.39), 48.9% were female. At admission, being at high risk of malnutrition was significantly associated with lower muscle mass (Odds Ratio, 95% CI, 0.90, 0.85-0.96), but not with muscle strength. Muscle strength and muscle mass did not change significantly during hospitalization in both groups. In older hospitalized patients, a high risk of malnutrition is associated with lower muscle mass at admission, but not with muscle strength nor with change of either muscle strength or muscle mass during hospitalization.

  1. Methods for the determination of skeletal muscle blood flow: development, strengths and limitations.

    PubMed

    Gliemann, Lasse; Mortensen, Stefan P; Hellsten, Ylva

    2018-06-01

    Since the first measurements of limb blood flow at rest and during nerve stimulation were conducted in the late 1800s, a number of methods have been developed for the determination of limb and skeletal muscle blood flow in humans. The methods, which have been applied in the study of aspects such as blood flow regulation, oxygen uptake and metabolism, differ in terms of strengths and degree of limitations but most have advantages for specific settings. The purpose of this review is to describe the origin and the basic principles of the methods, important aspects and requirements of the procedures. One of the earliest methods, venous occlusion plethysmography, is a noninvasive method which still is extensively used and which provides similar values as other more direct blood flow methods such as ultrasound Doppler. The constant infusion thermodilution method remains the most appropriate for the determination of blood flow during maximal exercise. For resting blood flow and light-to-moderate exercise, the non-invasive ultrasound Doppler methodology, if handled by a skilled operator, is recommendable. Positron emission tomography with radiolabeled water is an advanced method which requires highly sophisticated equipment and allows for the determination of muscle-specific blood flow, regional blood flows and estimate of blood flow heterogeneity within a muscle. Finally, the contrast-enhanced ultrasound method holds promise for assessment of muscle-specific blood flow, but the interpretation of the data obtained remains uncertain. Currently lacking is high-resolution methods for continuous visualization and monitoring of the skeletal muscle microcirculation in humans.

  2. The influence of inspiratory muscle training combined with the Pilates method on lung function in elderly women: A randomized controlled trial.

    PubMed

    Alvarenga, Guilherme Medeiros de; Charkovski, Simone Arando; Santos, Larissa Kelin Dos; Silva, Mayara Alves Barbosa da; Tomaz, Guilherme Oliveira; Gamba, Humberto Remigio

    2018-01-01

    Aging is progressive, and its effects on the respiratory system include changes in the composition of the connective tissues of the lung that influence thoracic and lung compliance. The Powerbreathe® K5 is a device used for inspiratory muscle training with resistance adapted to the level of the inspiratory muscles to be trained. The Pilates method promotes muscle rebalancing exercises that emphasize the powerhouse. The aim of this study was to evaluate the influence of inspiratory muscle training combined with the Pilates method on lung function in elderly women. The participants were aged sixty years or older, were active women with no recent fractures, and were not gait device users. They were randomly divided into a Pilates with inspiratory training group (n=11), a Pilates group (n=11) and a control group (n=9). Spirometry, manovacuometry, a six-minute walk test, an abdominal curl-up test, and pulmonary variables were assessed before and after twenty intervention sessions. The intervention led to an increase in maximal inspiratory muscle strength and pressure and power pulmonary variables (p<0.0001), maximal expiratory muscle strength (p<0.0014), six-minute walk test performance (p<0.01), and abdominal curl-up test performance (p<0.00001). The control group showed no differences in the analyzed variables (p>0.05). The results of this study suggest inspiratory muscle training associated with the Pilates method provides an improvement in the lung function and physical conditioning of elderly patients.

  3. Muscle power is an independent determinant of pain and quality of life in knee osteoarthritis

    USDA-ARS?s Scientific Manuscript database

    OBJECTIVE: This study examined the relationships between leg muscle strength, power, and perceived disease severity in subjects with knee osteoarthritis (OA) in order to determine whether dynamic leg extensor muscle power would be associated with pain and quality of life in knee OA. METHODS: Baseli...

  4. Lower Cognitive Function in Older Patients with Lower Muscle Strength and Muscle Mass.

    PubMed

    van Dam, Romee; Van Ancum, Jeanine M; Verlaan, Sjors; Scheerman, Kira; Meskers, Carel G M; Maier, Andrea B

    2018-06-18

    Low muscle strength and muscle mass are associated with adverse outcomes in older hospitalized patients. The aim of this study was to assess the association between cognitive functioning and muscle strength and muscle mass in hospitalized older patients. This prospective inception cohort included 378 patients aged 70 years or older. At admission patients were assessed for cognitive functioning by use of the Six-Item Cognitive Impairment Test (6-CIT). Muscle strength and muscle mass were assessed using handheld dynamometry and segmental multifrequency bioelectrical impedance analysis, within 48 h after admission and on day 7, or earlier on the day of discharge. The data of 371 patients (mean age ± standard deviation 80.1 ± 6.4 years, 49.3% female) were available for analyses. The median (interquartile range) 6-CIT score was 4 (0-8) points. At admission, lower cognitive functioning was associated with lower muscle strength, lower skeletal muscle mass (SMM), lower appendicular lean mass, and lower SMM index. Cognitive functioning was not associated with change in muscle strength and muscle mass during hospitalization. This study further strengthens evidence for an association between lower cognitive functioning and lower muscle strength and muscle mass, but without a further decline during hospitalization. © 2018 The Author(s) Published by S. Karger AG, Basel.

  5. The impact of obesity on skeletal muscle strength and structure through adolescence to old age.

    PubMed

    Tomlinson, D J; Erskine, R M; Morse, C I; Winwood, K; Onambélé-Pearson, Gladys

    2016-06-01

    Obesity is associated with functional limitations in muscle performance and increased likelihood of developing a functional disability such as mobility, strength, postural and dynamic balance limitations. The consensus is that obese individuals, regardless of age, have a greater absolute maximum muscle strength compared to non-obese persons, suggesting that increased adiposity acts as a chronic overload stimulus on the antigravity muscles (e.g., quadriceps and calf), thus increasing muscle size and strength. However, when maximum muscular strength is normalised to body mass, obese individuals appear weaker. This relative weakness may be caused by reduced mobility, neural adaptations and changes in muscle morphology. Discrepancies in the literature remain for maximal strength normalised to muscle mass (muscle quality) and can potentially be explained through accounting for the measurement protocol contributing to muscle strength capacity that need to be explored in more depth such as antagonist muscle co-activation, muscle architecture, a criterion valid measurement of muscle size and an accurate measurement of physical activity levels. Current evidence demonstrating the effect of obesity on muscle quality is limited. These factors not being recorded in some of the existing literature suggest a potential underestimation of muscle force either in terms of absolute force production or relative to muscle mass; thus the true effect of obesity upon skeletal muscle size, structure and function, including any interactions with ageing effects, remains to be elucidated.

  6. Effects of Nintendo Wii Fit Plus training on ankle strength with functional ankle instability.

    PubMed

    Kim, Ki-Jong; Jun, Hyun-Ju; Heo, Myoung

    2015-11-01

    [Purpose] The objective of this study was to examine the effects of a training program using the Nintendo Wii Fit Plus on the ankle muscle strengths of subjects with functional ankle instability. [Subjects and Methods] This study was conducted using subjects in their 20s who had functional ankle instability. They were randomized to a strengthening training group and a balance training group with 10 subjects in each, and they performed an exercise using Nintendo Wii Fit Plus for 20 minutes. In addition, every participant completed preparation and finishing exercises for 5 minutes, respectively. [Results] The muscle strengths after conducting plantar flexion and dorsiflexion significantly increased at the angular velocities of 60° and 120° in the strengthening training group. Furthermore, the muscle strengths after conducting plantar flexion, dorsiflexion, eversion, and inversion significantly increased at the angular velocities of 60° and 120° in the balance training group. [Conclusion] The balance training group using Nintendo Wii Fit Plus showed better results than the strengthening training group. Consequently, it is recommended to add the balance training program of the Nintendo Wii Fit Plus to conventional exercise programs to improve ankle muscle strength in functional ankle instability at a low cost.

  7. The effects of training by virtual reality or gym ball on pelvic floor muscle strength in postmenopausal women: a randomized controlled trial

    PubMed Central

    Martinho, Natalia M.; Silva, Valéria R.; Marques, Joseane; Carvalho, Leonardo C.; Iunes, Denise H.; Botelho, Simone

    2016-01-01

    ABSTRACT Objective To evaluate the effectiveness of abdominopelvic training by virtual reality compared to pelvic floor muscle training (PFMT) using a gym ball (a previously tested and efficient protocol) on postmenopausal women’s pelvic floor muscle (PFM) strength. Method A randomized controlled trial was conducted with 60 postmenopausal women, randomly allocated into two groups: Abdominopelvic training by virtual reality – APT_VR (n=30) and PFMT using a gym ball – PFMT_GB (n=30). Both types of training were supervised by the same physical therapist, during 10 sessions each, for 30 minutes. The participants’ PFM strength was evaluated by digital palpation and vaginal dynamometry, considering three different parameters: maximum strength, average strength and endurance. An intention-to-treat approach was used to analyze the participants according to original groups. Results No significant between-group differences were observed in most analyzed parameters. The outcome endurance was higher in the APT_VR group (p=0.003; effect size=0.89; mean difference=1.37; 95% CI=0.46 to 2.28). Conclusion Both protocols have improved the overall PFM strength, suggesting that both are equally beneficial and can be used in clinical practice. Muscle endurance was higher in patients who trained using virtual reality. PMID:27437716

  8. The influence of inspiratory muscle training combined with the Pilates method on lung function in elderly women: A randomized controlled trial

    PubMed Central

    de Alvarenga, Guilherme Medeiros; Charkovski, Simone Arando; dos Santos, Larissa Kelin; da Silva, Mayara Alves Barbosa; Tomaz, Guilherme Oliveira; Gamba, Humberto Remigio

    2018-01-01

    OBJECTIVE: Aging is progressive, and its effects on the respiratory system include changes in the composition of the connective tissues of the lung that influence thoracic and lung compliance. The Powerbreathe® K5 is a device used for inspiratory muscle training with resistance adapted to the level of the inspiratory muscles to be trained. The Pilates method promotes muscle rebalancing exercises that emphasize the powerhouse. The aim of this study was to evaluate the influence of inspiratory muscle training combined with the Pilates method on lung function in elderly women. METHODS: The participants were aged sixty years or older, were active women with no recent fractures, and were not gait device users. They were randomly divided into a Pilates with inspiratory training group (n=11), a Pilates group (n=11) and a control group (n=9). Spirometry, manovacuometry, a six-minute walk test, an abdominal curl-up test, and pulmonary variables were assessed before and after twenty intervention sessions. RESULTS: The intervention led to an increase in maximal inspiratory muscle strength and pressure and power pulmonary variables (p<0.0001), maximal expiratory muscle strength (p<0.0014), six-minute walk test performance (p<0.01), and abdominal curl-up test performance (p<0.00001). The control group showed no differences in the analyzed variables (p>0.05). CONCLUSION: The results of this study suggest inspiratory muscle training associated with the Pilates method provides an improvement in the lung function and physical conditioning of elderly patients. PMID:29924184

  9. Pulmonary Function, Muscle Strength and Mortality in Old Age

    PubMed Central

    Buchman, A. S.; Boyle, P. A.; Wilson, R.S.; Gu, Liping; Bienias, Julia L.; Bennett, D. A.

    2009-01-01

    Numerous reports have linked extremity muscle strength with mortality but the mechanism underlying this association is not known. We used data from 960 older persons without dementia participating in the Rush Memory and Aging Project to test two sequential hypotheses: first, that extremity muscle strength is a surrogate for respiratory muscle strength, and second, that the association of respiratory muscle strength with mortality is mediated by pulmonary function. In a series of proportional hazards models, we first demonstrated that the association of extremity muscle strength with mortality was no longer significant after including a term for respiratory muscle strength, controlling for age, sex, education, and body mass index. Next, the association of respiratory muscle strength with mortality was attenuated by more than 50% and no longer significant after including a term for pulmonary function. The findings were unchanged after controlling for cognitive function, parkinsonian signs, physical frailty, balance, physical activity, possible COPD, use of pulmonary medications, vascular risk factors including smoking, chronic vascular diseases, musculoskeletal joint pain, and history of falls. Overall, these findings suggest that pulmonary function may partially account for the association of muscle strength and mortality. PMID:18755207

  10. Lower limb muscle impairment in myotonic dystrophy type 1: the need for better guidelines.

    PubMed

    Petitclerc, Émilie; Hébert, Luc J; Desrosiers, Johanne; Gagnon, Cynthia

    2015-04-01

    In myotonic dystrophy type 1 (DM1), leg muscle weakness is a major impairment. There are challenges to obtaining a clear portrait of muscle strength impairment. A systematic literature review was conducted on lower limb strength impairment in late-onset and adult phenotypes to document variables which affect strength measurement. Thirty-two articles were reviewed using the COSMIN guidelines. Only a third of the studies described a reproducible protocol. Only 2 muscle groups have documented reliability for quantitative muscle testing and only 1 total score for manual muscle testing. Variables affecting muscle strength impairment are not described in most studies. This review illustrates the variability in muscle strength assessment in relation to DM1 characteristics and the questionable validity of the results with regard to undocumented methodological properties. There is therefore a clear need to adopt a consensus on the use of a standardized muscle strength assessment protocol. © 2015 Wiley Periodicals, Inc.

  11. Effects of an integrated health education and elastic band resistance training program on physical function and muscle strength in community-dwelling elderly women: Healthy Aging and Happy Aging II study.

    PubMed

    Oh, Seung-Lyul; Kim, Hee-Jae; Woo, Shinae; Cho, Be-Long; Song, Misoon; Park, Yeon-Hwan; Lim, Jae-Young; Song, Wook

    2017-05-01

    In the present study, we determined the effect of an integrated health education and elastic band resistance training program on body composition, physical function, muscle strength and quality in community-dwelling elderly women. We recruited participants with eligibility inclusion criteria, and randomly assigned them to either the control group (n = 19) or the intervention group (n = 19). The integrated intervention program comprised of health education and individual counseling, and elastic band training for 18 weeks (8 weeks of supervised training and 10 weeks of self-directed training). We assessed body composition, muscle strength and quality, and physical function at pre-, after 8 weeks (mid-) and 18 weeks (post-training). After the intervention, there were no significant changes in skeletal muscle index, fat free mass, total lean mass and total fat mass for both the control group and intervention group. However, the interaction effect was significantly different in SPPB score (P < 0.05), isokinetic strength (60 deg/s, P < 0.001; 120 deg/s; P < 0.05) and muscle quality (P < 0.05) after 18 weeks of intervention relative to the baseline of the control and intervention groups. The supervised elastic band training of 8 weeks did not improve short physical performance battery score and isokinetic strength, whereas there was a significant increase of those outcomes (10.6% improvement, 9.8~23.5% improvement) after 10 weeks of following self-directed exercise compared with the baseline. These results show the effectiveness of following self-directed resistance training with health education after supervised training cessation in improvement of short physical performance battery and leg muscle strength. This intervention program might be an effective method to promote muscle strength and quality, and to prevent frailty in elderly women. Geriatr Gerontol Int 2017; 17: 825-833. © 2016 Japan Geriatrics Society.

  12. Effect of enzyme therapy and prognostic factors in 69 adults with Pompe disease: an open-label single-center study

    PubMed Central

    2012-01-01

    Background Enzyme replacement therapy (ERT) in adults with Pompe disease, a progressive neuromuscular disorder, is of promising but variable efficacy. We investigated whether it alters the course of disease, and also identified potential prognostic factors. Methods Patients in this open-label single-center study were treated biweekly with 20 mg/kg alglucosidase alfa. Muscle strength, muscle function, and pulmonary function were assessed every 3–6 months and analyzed using repeated-measures ANOVA. Results Sixty-nine patients (median age 52.1 years) were followed for a median of 23 months. Muscle strength increased after start of ERT (manual muscle testing 1.4 percentage points per year (pp/y); hand-held dynamometry 4.0 pp/y; both p < 0.001). Forced vital capacity (FVC) remained stable when measured in upright, but declined in supine position (−1.1 pp/y; p = 0.03). Muscle function did not improve in all patients (quick motor function test 0.7 pp/y; p = 0.14), but increased significantly in wheelchair-independent patients and those with mild and moderate muscle weakness. Relative to the pre-treatment period (49 patients with 14 months pre-ERT and 22 months ERT median follow-up), ERT affected muscle strength positively (manual muscle testing +3.3 pp/y, p < 0.001 and hand-held dynamometry +7.9 pp/y, p < 0.001). Its effect on upright FVC was +1.8 pp/y (p = 0.08) and on supine FVC +0.8 (p = 0.38). Favorable prognostic factors were female gender for muscle strength, and younger age and better clinical status for supine FVC. Conclusions We conclude that ERT positively alters the natural course of Pompe disease in adult patients; muscle strength increased and upright FVC stabilized. Functional outcome is probably best when ERT intervention is timely. PMID:23013746

  13. ACL deficient potential copers and non-copers reveal different isokinetic quadriceps strength profiles in the early stage after injury

    PubMed Central

    Eitzen, I; Eitzen, TJ; Holm, I; Snyder-Mackler, L; Risberg, MA

    2011-01-01

    Background Isokinetic muscle strength tests using the peak torque value is the most frequently included quadriceps muscle strength measurement for anterior cruciate ligament (ACL) injured subjects. Aims The purpose of this study was to investigate quadriceps muscle performance during the whole isokinetic curve in ACL deficient subjects classified as potential copers or non-copers, and investigate whether these curve profiles were associated with single-leg hop performance. We hypothesized that quadriceps muscle torque at other knee flexion angles than peak torque would give more information about quadriceps muscle strength deficits. Furthermore, we hypothesized that there would be significant torque differences between potential copers and non-copers, and a significant relationship between angle specific torque values and single-leg hop performance. Study Design Cross-sectional study; Level of evidence, 2 Methods Seventy-six individuals with a complete unilateral ACL rupture within the last 3 months were included. The subjects were classified into potential copers and non-copers according to the criteria from Fitzgerald et al12. Isokinetic quadriceps muscle tests were performed at 60°/sec (Biodex 6000). Mean torque values were calculated for peak torque as well as for specific knee flexion angles. The one-leg hop and the 6 meter timed hop tests were included and symmetry indices were used. Results The peak torque value did not identify the largest quadriceps muscle strength deficit. Rather, these were established at knee flexion angles of less than 40°. There were significant differences in angle specific torque values between potential copers and non-copers (p<0.05). Moderate to strong associations were disclosed between angle specific torque values and single-leg hop performance, but only for non-copers (r≥0.32– 0.58). Conclusions Angle specific quadriceps muscle torque values of less than 40° of knee flexion provide more information on the quadriceps strength deficits after ACL injury compared to the commonly used peak torque values. PMID:20110458

  14. Cut-off Points for Muscle Mass - Not Grip Strength or Gait Speed - Determine Variations in Sarcopenia Prevalence.

    PubMed

    Masanés, F; Rojano I Luque, X; Salvà, A; Serra-Rexach, J A; Artaza, I; Formiga, F; Cuesta, F; López Soto, A; Ruiz, D; Cruz-Jentoft, A J

    2017-01-01

    The European Working Group on Sarcopenia in Older People (EWGSOP) has proposed different methods and cut-off points for the three parameters that define sarcopenia: muscle mass, muscle strength and physical performance. Although this facilitates clinical practice, it limits comparability between studies and leads to wide differences in published prevalence rates. The aim of this study was to assess how changes in cut-off points for muscle mass, gait speed and grip strength affected sarcopenia prevalence according to EWGSOP criteria. Cross-sectional analysis of elderly individuals recruited from outpatient clinics (n=298) and nursing homes (n=276). We measured muscle mass, grip strength and gait speed and assessed how changes in cut-off points changed sarcopenia prevalence in both populations. An increase from 5.45 kg/m2 to 6.68 kg/m2 in the muscle mass index for female outpatients and nursing-home residents increased sarcopenia prevalence from 4% to 23% and from 9% to 47%, respectively; for men, for an increase from 7.25 kg/m2 to 8.87 kg/m2, the corresponding increases were from 1% to 22% and from 6% to 41%, respectively. Changes in gait speed and grip strength had a limited impact on sarcopenia prevalence. The cut-off points used for muscle mass affect the reported prevalence rates for sarcopenia and, in turn, affect comparability between studies. The main factors influencing the magnitude of the change are muscle mass index distribution in the population and the absolute value of the cut-off points: the same difference between two references (e.g., 7.5 kg/m2 to 7.75 kg/m2 or 7.75 kg/m2 to 8 kg/m2) may produce different changes in prevalence. Changes in cut-off points for gait speed and grip strength had a limited impact on sarcopenia prevalence and on study comparability.

  15. Manual muscle testing: a method of measuring extremity muscle strength applied to critically ill patients.

    PubMed

    Ciesla, Nancy; Dinglas, Victor; Fan, Eddy; Kho, Michelle; Kuramoto, Jill; Needham, Dale

    2011-04-12

    Survivors of acute respiratory distress syndrome (ARDS) and other causes of critical illness often have generalized weakness, reduced exercise tolerance, and persistent nerve and muscle impairments after hospital discharge. Using an explicit protocol with a structured approach to training and quality assurance of research staff, manual muscle testing (MMT) is a highly reliable method for assessing strength, using a standardized clinical examination, for patients following ARDS, and can be completed with mechanically ventilated patients who can tolerate sitting upright in bed and are able to follow two-step commands. (7, 8) This video demonstrates a protocol for MMT, which has been taught to ≥ 43 research staff who have performed >800 assessments on >280 ARDS survivors. Modifications for the bedridden patient are included. Each muscle is tested with specific techniques for positioning, stabilization, resistance, and palpation for each score of the 6-point ordinal Medical Research Council scale. Three upper and three lower extremity muscles are graded in this protocol: shoulder abduction, elbow flexion, wrist extension, hip flexion, knee extension, and ankle dorsiflexion. These muscles were chosen based on the standard approach for evaluating patients for ICU-acquired weakness used in prior publications. (1,2).

  16. Immediate effects of neuromuscular joint facilitation intervention after anterior cruciate ligament reconstruction.

    PubMed

    Wang, Lei

    2016-07-01

    [Purpose] The aim of this study was to examine the immediate effects of neuromuscular joint facilitation (NJF) on the functional activity level after rehabilitation of anterior cruciate ligament (ACL) reconstruction. [Subjects and Methods] Ten young subjects (8 males and 2 females) who underwent ACL reconstruction were included in the study. The subjects were divided into two groups, namely, knee joint extension muscle strength training (MST) group and knee joint extension outside rotation pattern of NJF group. Extension strength was measured in both groups before and after the experiment. Surface electromyography (sEMG) of the vastus medialis and vastus lateralis muscles and joint position error (JPE) test of the knee joint were also conducted. [Results] JPE test results and extension strength measurements in the NJF group were improved compared with those in the MST group. Moreover, the average discharge of the vastus medialis and vastus lateralis muscles on sEMG in the NJF group was significantly increased after MST and NJF treatments. [Conclusion] The obtained results suggest that NJF training in patients with ACL reconstruction can improve knee proprioception ability and muscle strength.

  17. The Need for Standardized Assessment of Muscle Quality in Skeletal Muscle Function Deficit and Other Aging-Related Muscle Dysfunctions: A Symposium Report.

    PubMed

    Correa-de-Araujo, Rosaly; Harris-Love, Michael O; Miljkovic, Iva; Fragala, Maren S; Anthony, Brian W; Manini, Todd M

    2017-01-01

    A growing body of scientific literature suggests that not only changes in skeletal muscle mass, but also other factors underpinning muscle quality, play a role in the decline in skeletal muscle function and impaired mobility associated with aging. A symposium on muscle quality and the need for standardized assessment was held on April 28, 2016 at the International Conference on Frailty and Sarcopenia Research in Philadelphia, Pennsylvania. The purpose of this symposium was to provide a venue for basic science and clinical researchers and expert clinicians to discuss muscle quality in the context of skeletal muscle function deficit and other aging-related muscle dysfunctions. The present article provides an expanded introduction concerning the emerging definitions of muscle quality and a potential framework for scientific inquiry within the field. Changes in muscle tissue composition, based on excessive levels of inter- and intra-muscular adipose tissue and intramyocellular lipids, have been found to adversely impact metabolism and peak force generation. However, methods to easily and rapidly assess muscle tissue composition in multiple clinical settings and with minimal patient burden are needed. Diagnostic ultrasound and other assessment methods continue to be developed for characterizing muscle pathology, and enhanced sonography using sensors to provide user feedback and improve reliability is currently the subject of ongoing investigation and development. In addition, measures of relative muscle force such as specific force or grip strength adjusted for body size have been proposed as methods to assess changes in muscle quality. Furthermore, performance-based assessments of muscle power via timed tests of function and body size estimates, are associated with lower extremity muscle strength may be responsive to age-related changes in muscle quality. Future aims include reaching consensus on the definition and standardized assessments of muscle quality, and providing recommendations to address critical clinical and technology research gaps within the field.

  18. Intra-rater reliability of hallux flexor strength measures using the Nintendo Wii Balance Board.

    PubMed

    Quek, June; Treleaven, Julia; Brauer, Sandra G; O'Leary, Shaun; Clark, Ross A

    2015-01-01

    The purpose of this study was to investigate the intra-rater reliability of a new method in combination with the Nintendo Wii Balance Board (NWBB) to measure the strength of hallux flexor muscle. Thirty healthy individuals (age: 34.9 ± 12.9 years, height: 170.4 ± 10.5 cm, weight: 69.3 ± 15.3 kg, female = 15) participated. Repeated testing was completed within 7 days. Participants performed strength testing in sitting using a wooden platform in combination with the NWBB. This new method was set up to selectively recruit an intrinsic muscle of the foot, specifically the flexor hallucis brevis muscle. Statistical analysis was performed using intra-class coefficients and ordinary least product analysis. To estimate measurement error, standard error of measurement (SEM), minimal detectable change (MDC) and percentage error were calculated. Results indicate excellent intra-rater reliability (ICC = 0.982, CI = 0.96-0.99) with an absence of systematic bias. SEM, MDC and percentage error value were 0.5, 1.4 and 12 % respectively. This study demonstrates that a new method in combination with the NWBB application is reliable to measure hallux flexor strength and has potential to be used for future research and clinical application.

  19. Growth hormone therapy, muscle thickness, and motor development in Prader-Willi syndrome: an RCT.

    PubMed

    Reus, Linda; Pillen, Sigrid; Pelzer, Ben J; van Alfen-van der Velden, Janielle A A E M; Hokken-Koelega, Anita C S; Zwarts, Machiel; Otten, Barto J; Nijhuis-van der Sanden, Maria W G

    2014-12-01

    To investigate the effect of physical training combined with growth hormone (GH) on muscle thickness and its relationship with muscle strength and motor development in infants with Prader-Willi syndrome (PWS). In a randomized controlled trial, 22 infants with PWS (12.9 ± 7.1 months) were followed over 2 years to compare a treatment group (n = 10) with a waiting-list control group (n = 12). Muscle thickness of 4 muscle groups was measured by using ultrasound. Muscle strength was evaluated by using the Infant Muscle Strength meter. Motor performance was measured with the Gross Motor Function Measurement. Analyses of variance were used to evaluate between-group effects of GH on muscle thickness at 6 months and to compare pre- and posttreatment (after 12 months of GH) values. Multilevel analyses were used to evaluate effects of GH on muscle thickness over time, and multilevel bivariate analyses were used to test relationships between muscle thickness, muscle strength, and motor performance. A significant positive effect of GH on muscle thickness (P < .05) was found. Positive relationships were found between muscle thickness and muscle strength (r = 0.61, P < .001), muscle thickness and motor performance (r = 0.81, P < .001), and muscle strength and motor performance (r = 0.76, P < .001). GH increased muscle thickness, which was related to muscle strength and motor development in infants with PWS. Catch-up growth was faster in muscles that are most frequently used in early development. Because this effect was independent of GH, it suggests a training effect. Copyright © 2014 by the American Academy of Pediatrics.

  20. Impact of physical activity, sedentary behaviour and muscle strength on bone stiffness in 2-10-year-old children-cross-sectional results from the IDEFICS study.

    PubMed

    Herrmann, Diana; Buck, Christoph; Sioen, Isabelle; Kouride, Yiannis; Marild, Staffan; Molnár, Dénes; Mouratidou, Theodora; Pitsiladis, Yannis; Russo, Paola; Veidebaum, Toomas; Ahrens, Wolfgang

    2015-09-17

    Physical activity (PA), weight-bearing exercises (WBE) and muscle strength contribute to skeletal development, while sedentary behaviour (SB) adversely affects bone health. Previous studies examined the isolated effect of PA, SB or muscle strength on bone health, which was usually assessed by x-ray methods, in children. Little is known about the combined effects of these factors on bone stiffness (SI) assessed by quantitative ultrasound. We investigated the joint association of PA, SB and muscle strength on SI in children. In 1512 preschool (2- < 6 years) and 2953 school children (6-10 years), data on calcaneal SI as well as on accelerometer-based sedentary time (SED), light (LPA), moderate (MPA) and vigorous PA (VPA) were available. Parents reported sports (WBE versus no WBE), leisure time PA and screen time of their children. Jumping distance and handgrip strength served as indicators for muscle strength. The association of PA, SB and muscle strength with SI was estimated by multivariate linear regression, stratified by age group. Models were adjusted for age, sex, country, fat-free mass, daylight duration, consumption of dairy products and PA, or respectively SB. Mean SI was similar in preschool (79.5 ± 15.0) and school children (81.3 ± 12.1). In both age groups, an additional 10 min/day in MPA or VPA increased the SI on average by 1 or 2%, respectively (p ≤ .05). The negative association of SED with SI decreased after controlling for MVPA. LPA was not associated with SI. Furthermore, participation in WBE led to a 3 and 2% higher SI in preschool (p = 0.003) and school children (p < .001), respectively. Although muscle strength significantly contributed to SI, it did not affect the associations of PA with SI. In contrast to objectively assessed PA, reported leisure time PA and screen time showed no remarkable association with SI. This study suggests that already an additional 10 min/day of MPA or VPA or the participation in WBE may result in a relevant increase in SI in children, taking muscle strength and SB into account. Our results support the importance of assessing accelerometer-based PA in large-scale studies. This may be important when deriving dose-response relationships between PA and bone health in children.

  1. Incubating Isolated Mouse EDL Muscles with Creatine Improves Force Production and Twitch Kinetics in Fatigue Due to Reduction in Ionic Strength

    PubMed Central

    Head, Stewart I.; Greenaway, Bronwen; Chan, Stephen

    2011-01-01

    Background Creatine supplementation can improve performance during high intensity exercise in humans and improve muscle strength in certain myopathies. In this present study, we investigated the direct effects of acute creatine incubation on isolated mouse fast-twitch EDL muscles, and examined how these effects change with fatigue. Methods and Results The extensor digitorum longus muscle from mice aged 12–14 weeks was isolated and stimulated with field electrodes to measure force characteristics in 3 different states: (i) before fatigue; (ii) immediately after a fatigue protocol; and (iii) after recovery. These served as the control measurements for the muscle. The muscle was then incubated in a creatine solution and washed. The measurement of force characteristics in the 3 different states was then repeated. In un-fatigued muscle, creatine incubation increased the maximal tetanic force. In fatigued muscle, creatine treatment increased the force produced at all frequencies of stimulation. Incubation also increased the rate of twitch relaxation and twitch contraction in fatigued muscle. During repetitive fatiguing stimulation, creatine-treated muscles took 55.1±9.5% longer than control muscles to lose half of their original force. Measurement of weight changes showed that creatine incubation increased EDL muscle mass by 7%. Conclusion Acute creatine application improves force production in isolated fast-twitch EDL muscle, and these improvements are particularly apparent when the muscle is fatigued. One likely mechanism for this improvement is an increase in Ca2+ sensitivity of contractile proteins as a result of ionic strength decreases following creatine incubation. PMID:21850234

  2. Wii balance board exercise improves balance and lower limb muscle strength of overweight young adults.

    PubMed

    Siriphorn, Akkradate; Chamonchant, Dannaovarat

    2015-01-01

    [Purpose] The potential health benefits of the Nintendo Wii balance board exercise have been widely investigated. However, no study has been conducted to examine the benefits of Wii exercise for overweight young adults. The aim of this study was to investigate the effect of exercise performed on a Nintendo Wii balance board on the balance and lower limb muscle strength in overweight young adults. [Subjects and Methods] Within-subject repeated measures analysis was used. Sixteen young adults (aged 21.87±1.13 years, body mass index 24.15 ± 0.50 kg/m(2)) were recruited. All subjects performed an exercise program on a Wii balance board for 8 weeks (30 min/session, twice a week for 8 weeks). A NeuroCom Balance Master and a hand-held dynamometer were used to measure balance performance and lower limb muscle strength. [Results] According to the comparison of pre- and post-intervention measurements, the Wii balance board exercise program significantly improved the limit of stability parameters. There was also a significant increase in strength of four lower-limb muscle groups: the hip flexor, knee flexor, ankle dorsiflexor and ankle plantarflexor. [Conclusion] These findings suggest that a Wii balance board exercise program can be used to improve the balance and lower limb muscle strength of overweight young adults.

  3. Weaker lower extremity muscle strength predicts traumatic knee injury in youth female but not male athletes

    PubMed Central

    Ryman Augustsson, Sofia; Ageberg, Eva

    2017-01-01

    Background The role of lower extremity (LE) muscle strength for predicting traumatic knee injury in youth athletes is largely unknown. Aims The aim was to investigate the influence of LE muscle strength on traumatic knee injury in youth female and male athletes. Methods 225 athletes (40% females) from sport senior high schools in Sweden were included in this case–control study. The athletes recorded any traumatic knee injury that had occurred during their high-school period in a web-based injury form. A one repetition maximum (1RM) barbell squat test was used to measure LE muscle strength. The 1RM was dichotomised to analyse ‘weak’ versus ‘strong’ athletes according to the median (weakmedian vs strongmedian). Results 63 traumatic knee injuries, including 18 ACL injuries, were registered. The majority of injured female athletes were in the weak group compared with the strong group (p=0.0001). The odds of sustaining a traumatic knee injury and an ACL injury was 9.5 times higher and 7 times higher, respectively, in the weakmedian group compared with the strongmedian group in females (p ≤0.011). A relative 1RM squat ≤1.05 kg (105% of bodyweight) was established as the best cut-off value to distinguish high versus low risk of injury in female athletes. No strength–injury relationships were observed for the male athletes (p ≥0.348). Conclusions Weaker LE muscle strength predicted traumatic knee injury in youth female athletes, but not in males. This suggests that LE muscle strength should be included in injury screening in youth female athletes. PMID:29259807

  4. Muscle recovery after ACL reconstruction with 4-strand semitendinosus graft harvested through either a posterior or anterior incision: a preliminary study.

    PubMed

    Dujardin, D; Fontanin, N; Geffrier, A; Morel, N; Mensa, C; Ohl, X

    2015-09-01

    Harvesting of a 4-strand semitendinosis (ST4) graft during anterior cruciate ligament (ACL) reconstruction can be performed through either a posterior or anterior approach. The objective of this study was to evaluate the recovery of the quadriceps and hamstring muscles as a function of the graft harvesting method. We hypothesized that posterior harvesting (PH) would lead to better recovery in hamstring strength than anterior harvesting (AH). In this prospective study, the semitendinosus was harvested through an anterior incision in the first group of patients and through a posterior one in the second group of patients. The patients were enrolled consecutively, without randomization. Isokinetic muscle testing was performed three and six months postoperative to determine the strength deficit in the quadriceps and hamstring muscles of the operated leg relative to the uninjured contralateral leg. Thirty-nine patients were included: 20 in the AH group and 19 in the PH group. The mean quadriceps strength deficit after three and six months was 42% and 26% for AH and 29% and 19% for the PH, respectively (P=0.01 after three months and P=0.16 after six months). The mean hamstring strength deficit after three and six months was 31% and 17% for AH and 23% and 15% for the PH, respectively (P=0.09 after three months and P=0.45 after six months). After three months, the PH group had recovered 12% more quadriceps muscle strength than the AH group (P=0.03). Our hypothesis was not confirmed. Harvesting of a ST4 graft for ACL reconstruction using a posterior approach led to better muscle strength recovery in the quadriceps only after three months. Level 3. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  5. Body weight-supported training in Becker and limb girdle 2I muscular dystrophy.

    PubMed

    Jensen, Bente R; Berthelsen, Martin P; Husu, Edith; Christensen, Sofie B; Prahm, Kira P; Vissing, John

    2016-08-01

    We studied the functional effects of combined strength and aerobic anti-gravity training in severely affected patients with Becker and Limb-Girdle muscular dystrophies. Eight patients performed 10-week progressive combined strength (squats, calf raises, lunges) and aerobic (walk/run, jogging in place or high knee-lift) training 3 times/week in a lower-body positive pressure environment. Closed-kinetic-chain leg muscle strength, isometric knee strength, rate of force development (RFD), and reaction time were evaluated. Baseline data indicated an intact neural activation pattern but showed compromised muscle contractile properties. Training (compliance 91%) improved functional leg muscle strength. Squat series performance increased 30%, calf raises 45%, and lunges 23%. Anti-gravity training improved closed-kinetic-chain leg muscle strength despite no changes in isometric knee extension strength and absolute RFD. The improved closed-kinetic-chain performance may relate to neural adaptation involving motor learning and/or improved muscle strength of other muscles than the weak knee extensors. Muscle Nerve 54: 239-243, 2016. © 2016 Wiley Periodicals, Inc.

  6. Scapular-Muscle Performance: Two Training Programs in Adolescent Swimmers

    PubMed Central

    Van de Velde, Annemie; De Mey, Kristof; Maenhout, Annelies; Calders, Patrick; Cools, Ann M.

    2011-01-01

    Abstract Context: Swimming requires well-balanced scapular-muscle performance. An additional strength-training program for the shoulders is pursued by swimmers, but whether these muscle-training programs need to be generic or specific for endurance or strength is unknown. Objective: To evaluate isokinetic scapular-muscle performance in a population of adolescent swimmers and to compare the results of training programs designed for strength or muscle endurance. Design: Controlled laboratory study. Setting: University human research laboratory. Patients or Other Participants: Eighteen adolescent swimmers. Intervention(s): Each participant pursued a 12-week scapular-training program designed to improve either muscle strength or muscle endurance. Main Outcome Measure(s): Bilateral peak force, fatigue index, and protraction/retraction strength ratios before and after the scapular-training program. Results: Scapular protraction/retraction ratios were slightly higher than 1 (dominant side  =  1.08, nondominant side  =  1.25, P  =  .006). Side-to-side differences in retraction strength were apparent both before and after the training program (P  =  .03 and P  = .05, respectively). After the training program, maximal protraction (P < .05) and retraction (P < .01) strength improved on the nondominant side. Peak force and fatigue index were not different between the training groups. The fatigue indexes for protraction on both sides (P < .05) and retraction on the nondominant side (P  =  .009) were higher after the training program. Conclusions: We describe the scapular-muscle characteristics of a group of adolescent swimmers. Both muscle-strength and muscle-endurance programs improved absolute muscle strength. Neither of the strength programs had a positive effect on scapular-muscle endurance. Our results may be valuable for coaches and physiotherapists when they are designing exercise programs for swimmers. PMID:21391801

  7. Relationship Between Muscle Strength Asymmetry and Body Sway in Older Adults.

    PubMed

    Koda, Hitoshi; Kai, Yoshihiro; Murata, Shin; Osugi, Hironori; Anami, Kunihiko; Fukumoto, Takahiko; Imagita, Hidetaka

    2018-05-31

    The purpose of this study was to investigate the relationship between muscle strength asymmetry and body sway while walking. We studied 63 older adult women. Strong side and weak side of knee extension strength, toe grip strength, hand grip strength, and body sway while walking were measured. The relationship between muscle strength asymmetry for each muscle and body sway while walking was evaluated using Pearson's correlation coefficient. Regarding the muscles recognized to have significant correlation with body sway, the asymmetry cutoff value causing an increased sway was calculated. Toe grip strength asymmetry was significantly correlated with body sway. Toe grip strength asymmetry causing an increased body sway had a cutoff value of 23.5%. Our findings suggest toe grip strength asymmetry may be a target for improving gait stability.

  8. Impact of Pain Reported During Isometric Quadriceps Muscle Strength Testing in People With Knee Pain: Data From the Osteoarthritis Initiative

    PubMed Central

    Stratford, Paul W.

    2011-01-01

    Background Muscle force testing is one of the more common categories of diagnostic tests used in clinical practice. Clinicians have little evidence to guide interpretations of muscle force tests when pain is elicited during testing. Objective The purpose of this study was to examine the construct validity of isometric quadriceps muscle strength tests by determining whether the relationship between maximal isometric quadriceps muscle strength and functional status was influenced by pain during isometric testing. Design A cross-sectional design was used. Methods Data from the Osteoarthritis Initiative were used to identify 1,344 people with unilateral knee pain and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain subscale scores of 1 or higher on the involved side. Measurements of maximal isometric quadriceps strength and ratings of pain during isometric testing were collected. Outcome variables were WOMAC physical function subscale, 20-m walk test, 400-m walk test, and a repeated chair stand test. Multiple regression models were used to determine whether pain during testing modified or confounded the relationship between strength and functional status. Results Pearson r correlations among the isometric quadriceps strength measures and the 4 outcome measures ranged from −.36 (95% confidence interval=−.41, −.31) for repeated chair stands to .36 (95% confidence interval=.31, .41) for the 20-m walk test. In the final analyses, neither effect modification nor confounding was found for the repeated chair stand test, the 20-m walk test, the 400-m walk test, or the WOMAC physical function subscale. Moderate or severe pain during testing was weakly associated with reduced strength, but mild pain was not. Limitations The disease spectrum was skewed toward mild or moderate symptoms, and the pain measurement scale used during muscle force testing was not ideal. Conclusions Given that the spectrum of the sample was skewed toward mild or moderate symptoms and disease, the data suggest that isometric quadriceps muscle strength tests maintain their relationship with self-report or performance-based disability measures even when pain is elicited during testing. PMID:21835892

  9. Novel Analog For Muscle Deconditioning

    NASA Technical Reports Server (NTRS)

    Ploutz-Snyder, Lori; Ryder, Jeff; Buxton, Roxanne; Redd. Elizabeth; Scott-Pandorf, Melissa; Hackney, Kyle; Fiedler, James; Ploutz-Snyder, Robert; Bloomberg, Jacob

    2011-01-01

    Existing models (such as bed rest) of muscle deconditioning are cumbersome and expensive. We propose a new model utilizing a weighted suit to manipulate strength, power, or endurance (function) relative to body weight (BW). Methods: 20 subjects performed 7 occupational astronaut tasks while wearing a suit weighted with 0-120% of BW. Models of the full relationship between muscle function/BW and task completion time were developed using fractional polynomial regression and verified by the addition of pre-and postflightastronaut performance data for the same tasks. Splineregression was used to identify muscle function thresholds below which task performance was impaired. Results: Thresholds of performance decline were identified for each task. Seated egress & walk (most difficult task) showed thresholds of leg press (LP) isometric peak force/BW of 18 N/kg, LP power/BW of 18 W/kg, LP work/BW of 79 J/kg, isokineticknee extension (KE)/BW of 6 Nm/kg, and KE torque/BW of 1.9 Nm/kg.Conclusions: Laboratory manipulation of relative strength has promise as an appropriate analog for spaceflight-induced loss of muscle function, for predicting occupational task performance and establishing operationally relevant strength thresholds.

  10. Quadriceps intramuscular fat fraction rather than muscle size is associated with knee osteoarthritis

    PubMed Central

    Kumar, Deepak; Karampinos, Dimitrios C.; MacLeod, Toran D.; Lin, Wilson; Nardo, Lorenzo; Li, Xiaojuan; Link, Thomas M; Majumdar, Sharmila; Souza, Richard B

    2014-01-01

    Objectives To compare thigh muscle intramuscular fat (intraMF) fractions and area between people with and without knee radiographic osteoarthritis (ROA); and to evaluate the relationships of quadriceps adiposity and area with strength, function and knee MRI lesions. Methods Ninety six subjects (ROA: KL >1; n = 30, control: KL = 0,1; n = 66) underwent 3-Tesla MRI of the thigh muscles using chemical shift-based water/fat MR imaging (fat fractions) and the knee (clinical grading). Subjects were assessed for isometric/isokinetic quadriceps/hamstrings strength, function (KOOS, stair climbing test [SCT], and 6-minute walk test [(6MWT]. Thigh muscle intraMF fractions, muscle area and strength, and function were compared between controls and ROA subjects, adjusting for age. Relationships between measures of muscle fat/area with strength, function, KL and lesion scores were assessed using regression and correlational analyses. Results The ROA group had worse KOOS scores but SCT and 6MWT were not different. The ROA group had greater quadriceps intraMF fraction but not for other muscles. Quadriceps strength was lower in ROA group but the area was not different. Quadriceps intraMF fraction but not area predicted self-reported disability. Aging, worse KL, and cartilage and meniscus lesions were associated with higher quadriceps intraMF fraction. Conclusion Quadriceps intraMF is higher in people with knee OA and is related to symptomatic and structural severity of knee OA, where as the quadriceps area is not. Quadriceps fat fraction from chemical shift-based water/fat MR imaging may have utility as a marker of structural and symptomatic severity of knee OA disease process. PMID:24361743

  11. Effect of the Mandibular Orthopedic Repositioning Appliance (MORA) on Forearm Muscle Activation and Grasping Power during Pinch and Hook Grip.

    PubMed

    Lee, Sang-Yeol; Park, Yi-Jeong; Park, Hye-Min; Bae, Hae-Jin; Yu, Min-Ji; Choi, Hee-Won; Hwang, Na-Young

    2014-02-01

    [Purpose] This study verified the changes in muscle activities and grasping power during maximal isometric exercise of the forearm and masseter muscle with and without a mandibular orthopedic repositioning appliance (MORA). It also offers basic data for defining the correlation of function of hand with mouth. [Methods] EMG was used to measure masticatory muscle, flexor bundle and extensor bundle activities with or without MORA while subjects performed the hook grip and pinch grip. The measuring tool used for measuring grip strength was the same as that used for measuring pinch and hook strength. The subjects were 28 healthy young adults. [Result] Muscle activity and grasping power significantly increased when wearing the MORA. [Conclusion] The result indicates that wearing MORA can increase muscle activity and grasping power of forearm and masseter muscle. We think wearing MORA might help improve the function of the forearm because it activates the function of the masseter.

  12. Effects of William training on lumbosacral muscles function, lumbar curve and pain.

    PubMed

    Fatemi, Rouholah; Javid, Marziyeh; Najafabadi, Ebrahim Moslehi

    2015-01-01

    There are many types of treatments and recommendations for restoring back deformities depending on doctors' knowledge and opinions. The purpose of the exercises is to reduce pain and to ensure stability of the lower trunk by toning the abdominal muscles, buttocks and hamstrings. Given the duration of flares and relapses rate, it is important to apply an efficient and lasting treatment. To evaluate the effects of 8 weeks of William's training on flexibility of lumbosacral muscles and lumbar angle in females with Hyperlordosis. Forty female students with lumbar lordosis more than normal degrees (Hyperlordotic) that were randomly divided into exercise and control groups were selected as the study sample. The lumbar lordosis was measured using a flexible ruler, flexibility of hamstring muscles was measured with the active knee extension test, the hip flexor muscles strength was measured using Thomas test, the lumbar muscles flexibility measures by Schober test, abdominal muscles strength measured by Sit-Up test and back pain was measured using McGill's Visual Analogue Scales (VAS) questionnaire. Data were compared before and post-test using independent and paired t-testes. Results showed that 8 weeks of William's exercise led to significant decreases in lumbar angle and back pain, increases in flexibility of hamstring muscles, hip flexor muscles flexibility, lumbar extensor muscles flexibility and abdominal muscles strength. The findings show that William's corrective training can be considered as a useful and valid method for restoring and refining back deformities like as accentuated back-arc and became wreaked muscles' performance in lumbar areas.

  13. The association between muscle strength and activity limitations in patients with the hypermobility type of Ehlers-Danlos syndrome: the impact of proprioception.

    PubMed

    Scheper, Mark; Rombaut, Lies; de Vries, Janneke; De Wandele, Inge; van der Esch, Martin; Visser, Bart; Malfait, Franciska; Calders, Patrick; Engelbert, Raoul

    2017-07-01

    The patients diagnosed with Ehlers-Danlos Syndrome Hypermobility Type (EDS-HT) are characterized by pain, proprioceptive inacuity, muscle weakness, potentially leading to activity limitations. In EDS-HT, a direct relationship between muscle strength, proprioception and activity limitations has never been studied. The objective of the study was to establish the association between muscle strength and activity limitations and the impact of proprioception on this association in EDS-HT patients. Twenty-four EDS-HT patients were compared with 24 controls. Activity limitations were quantified by Health Assessment Questionnaire (HAQ), Six-Minute Walk test (6MWT) and 30-s chair-rise test (30CRT). Muscle strength was quantified by handheld dynamometry. Proprioception was quantified by movement detection paradigm. In analyses, the association between muscle strength and activity limitations was controlled for proprioception and confounders. Muscle strength was associated with 30CRT (r = 0.67, p = <0.001), 6MWT (r = 0.58, p = <0.001) and HAQ (r = 0.63, p= <0.001). Proprioception was associated with 30CRT (r = 0.55, p < 0.001), 6MWT (r = 0.40, p = <0.05) and HAQ (r = 0.46, p < 0.05). Muscle strength was found to be associated with activity limitations, however, proprioceptive inacuity confounded this association. Muscle strength is associated with activity limitations in EDS-HT patients. Joint proprioception is of influence on this association and should be considered in the development of new treatment strategies for patients with EDS-HT. Implications for rehabilitation Reducing activity limitations by enhancing muscle strength is frequently applied in the treatment of EDS-HT patients. Although evidence regarding treatment efficacy is scarce, the current paper confirms the rationality that muscle strength is an important factor in the occurrence of activity limitations in EDS-HT patients. Although muscle strength is the most dominant factor that is associated with activity limitations, this association is confounded by proprioception. In contrast to common belief proprioception was not directly associated with activity limitations but confounded this association. Controlling muscle strength on the bases of proprioceptive input may be more important for reducing activity limitations than just enhancing sheer muscle strength.

  14. Development of estimation system of knee extension strength using image features in ultrasound images of rectus femoris

    NASA Astrophysics Data System (ADS)

    Murakami, Hiroki; Watanabe, Tsuneo; Fukuoka, Daisuke; Terabayashi, Nobuo; Hara, Takeshi; Muramatsu, Chisako; Fujita, Hiroshi

    2016-04-01

    The word "Locomotive syndrome" has been proposed to describe the state of requiring care by musculoskeletal disorders and its high-risk condition. Reduction of the knee extension strength is cited as one of the risk factors, and the accurate measurement of the strength is needed for the evaluation. The measurement of knee extension strength using a dynamometer is one of the most direct and quantitative methods. This study aims to develop a system for measuring the knee extension strength using the ultrasound images of the rectus femoris muscles obtained with non-invasive ultrasonic diagnostic equipment. First, we extract the muscle area from the ultrasound images and determine the image features, such as the thickness of the muscle. We combine these features and physical features, such as the patient's height, and build a regression model of the knee extension strength from training data. We have developed a system for estimating the knee extension strength by applying the regression model to the features obtained from test data. Using the test data of 168 cases, correlation coefficient value between the measured values and estimated values was 0.82. This result suggests that this system can estimate knee extension strength with high accuracy.

  15. Pulmonary Function, Muscle Strength, and Incident Mobility Disability in Elders

    PubMed Central

    Buchman, Aron S.; Boyle, Patricia A.; Leurgans, Sue E.; Evans, Denis A.; Bennett, David A.

    2009-01-01

    Muscle strength, including leg strength and respiratory muscle strength, are relatively independently associated with mobility disability in elders. However, the factors linking muscle strength with mobility disability are unknown. To test the hypothesis that pulmonary function mediates the association of muscle strength with the development of mobility disability in elders, we used data from a longitudinal cohort study of 844 ambulatory elders without dementia participating in the Rush Memory and Aging Project with a mean follow-up of 4.0 years (SD = 1.39). A composite measure of pulmonary function was based on spirometric measures of forced vital capacity, forced expiratory volume, and peak expiratory flow. Respiratory muscle strength was based on maximal inspiratory pressure and expiratory pressure and leg strength based on hand-held dynamometry. Mobility disability was defined as a gait speed less than or equal to 0.55 m/s based on annual assessment of timed walk. Secondary analyses considered time to loss of the ability to ambulate. In separate proportional hazards models which controlled for age, sex, and education, composite measures of pulmonary function, respiratory muscle strength, and leg strength were each associated with incident mobility disability (all P values < 0.001). Further, all three were related to the development of incident mobility disability when considered together in a single model (pulmonary function: hazard ratio [HR], 0.721; 95% confidence interval [CI], 0.577, 0.902; respiratory muscle strength: HR, 0.732; 95% CI, 0.593, 0.905; leg strength: HR, 0.791; 95% CI, 0.640, 0.976). Secondary analyses examining incident loss of the ability to ambulate revealed similar findings. Overall, these findings suggest that lower levels of pulmonary function and muscle strength are relatively independently associated with the development of mobility disability in the elderly. PMID:19934353

  16. Relation between functional mobility and dynapenia in institutionalized frail elderly

    PubMed Central

    Soares, Antonio Vinicius; Marcelino, Elessandra; Maia, Késsia Cristina; Borges, Noé Gomes

    2017-01-01

    ABSTRACT Objective To investigate the relation between functional mobility and dynapenia in institutionalized frail elderly. Methods A descriptive, correlational study involving 26 institutionalized elderly men and women, mean age 82.3±6 years. The instruments employed were the Mini Mental State Examination, the Geriatric Depression Scale, the International Physical Activity Questionnaire, the Timed Up and Go test, a handgrip dynamometer and a portable dynamometer for large muscle groups (shoulder, elbow and hip flexors, knee extensors and ankle dorsiflexors). Results Significant negative correlation between functional mobility levels assessed by the Timed Up and Go test and dynapenia was observed in all muscle groups evaluated, particularly in knee extensors (r -0.65). Conclusion A significant negative correlation between muscle strength, particularly knee extensor strength, and functional mobility was found in institutionalized elderly. Data presented indicate that the higher the muscle strength, the shorter the execution time, and this could demonstrate better performance in this functional mobility test. PMID:29091148

  17. Effects of a Modified German Volume Training Program on Muscular Hypertrophy and Strength.

    PubMed

    Amirthalingam, Theban; Mavros, Yorgi; Wilson, Guy C; Clarke, Jillian L; Mitchell, Lachlan; Hackett, Daniel A

    2017-11-01

    Amirthalingam, T, Mavros, Y, Wilson, GC, Clarke, JL, Mitchell, L, and Hackett, DA. Effects of a modified German volume training program on muscular hypertrophy and strength. J Strength Cond Res 31(11): 3109-3119, 2017-German Volume Training (GVT), or the 10 sets method, has been used for decades by weightlifters to increase muscle mass. To date, no study has directly examined the training adaptations after GVT. The purpose of this study was to investigate the effect of a modified GVT intervention on muscular hypertrophy and strength. Nineteen healthy men were randomly assign to 6 weeks of 10 or 5 sets of 10 repetitions for specific compound resistance exercises included in a split routine performed 3 times per week. Total and regional lean body mass, muscle thickness, and muscle strength were measured before and after the training program. Across groups, there were significant increases in lean body mass measures, however, greater increases in trunk (p = 0.043; effect size [ES] = -0.21) and arm (p = 0.083; ES = -0.25) lean body mass favored the 5-SET group. No significant increases were found for leg lean body mass or measures of muscle thickness across groups. Significant increases were found across groups for muscular strength, with greater increases in the 5-SET group for bench press (p = 0.014; ES = -0.43) and lat pull-down (p = 0.003; ES = -0.54). It seems that the modified GVT program is no more effective than performing 5 sets per exercise for increasing muscle hypertrophy and strength. To maximize hypertrophic training effects, it is recommended that 4-6 sets per exercise be performed, as it seems gains will plateau beyond this set range and may even regress due to overtraining.

  18. The L-Z complexity of exercise-induced muscle fatigue based on acoustic myographye

    NASA Astrophysics Data System (ADS)

    Yijian, Min; Xinyuan, Liu; Tingting, Wang

    2014-01-01

    The mechanism of exercise fatigue was investigated during exercise using L-Z complexity of non-linear analysis. Muscle fatigue was induced in the sitting position by lifting the heel under a load. An acoustic myogram of the gastrocnemius was obtained until exhaustion. The different modes of the speed responses were calculated using the L-Z complexity method, which analyzes muscle fibers participation, while the exercise is in progress. The L-Z complexity decreased incrementally with decreases in muscle strength, reaching a minimum value when the muscle was exhausted. Our data indicate that the L-Z complexity method is easy to use and effective at revealing the dynamic characteristics and variations of exercise fatigue. This method could be used to monitor sports training.

  19. Effects of Nintendo Wii Fit Plus training on ankle strength with functional ankle instability

    PubMed Central

    Kim, Ki-Jong; Jun, Hyun-Ju; Heo, Myoung

    2015-01-01

    [Purpose] The objective of this study was to examine the effects of a training program using the Nintendo Wii Fit Plus on the ankle muscle strengths of subjects with functional ankle instability. [Subjects and Methods] This study was conducted using subjects in their 20s who had functional ankle instability. They were randomized to a strengthening training group and a balance training group with 10 subjects in each, and they performed an exercise using Nintendo Wii Fit Plus for 20 minutes. In addition, every participant completed preparation and finishing exercises for 5 minutes, respectively. [Results] The muscle strengths after conducting plantar flexion and dorsiflexion significantly increased at the angular velocities of 60° and 120° in the strengthening training group. Furthermore, the muscle strengths after conducting plantar flexion, dorsiflexion, eversion, and inversion significantly increased at the angular velocities of 60° and 120° in the balance training group. [Conclusion] The balance training group using Nintendo Wii Fit Plus showed better results than the strengthening training group. Consequently, it is recommended to add the balance training program of the Nintendo Wii Fit Plus to conventional exercise programs to improve ankle muscle strength in functional ankle instability at a low cost. PMID:26696703

  20. Joint laxity and the relationship between muscle strength and functional ability in patients with osteoarthritis of the knee.

    PubMed

    van der Esch, M; Steultjens, M; Knol, D L; Dinant, H; Dekker, J

    2006-12-15

    To establish the impact of knee joint laxity on the relationship between muscle strength and functional ability in osteoarthritis (OA) of the knee. A cross-sectional study of 86 patients with OA of the knee was conducted. Tests were performed to determine varus-valgus laxity, muscle strength, and functional ability. Laxity was assessed using a device that measures the angular deviation of the knee in the frontal plane. Muscle strength was measured using a computer-driven isokinetic dynamometer. Functional ability was assessed by observation (100-meter walking test) and self report (Western Ontario and McMaster Universities Osteoarthritis Index [WOMAC]). Regression analyses were performed to assess the impact of joint laxity on the relationship between muscle strength and functional ability. In regression analyses, the interaction between muscle strength and joint laxity contributed to the variance in both walking time (P = 0.002) and WOMAC score (P = 0.080). The slope of the regression lines indicated that the relationship between muscle strength and functional ability (walking time, WOMAC) was stronger in patients with high knee joint laxity. Patients with knee OA and high knee joint laxity show a stronger relationship between muscle strength and functional ability than patients with OA and low knee joint laxity. Patients with OA, high knee joint laxity, and low muscle strength are most at risk of being disabled.

  1. Muscle Strength Is Protective Against Osteoporosis in an Ethnically Diverse Sample of Adults.

    PubMed

    McGrath, Ryan P; Kraemer, William J; Vincent, Brenda M; Hall, Orman T; Peterson, Mark D

    2017-09-01

    McGrath, RP, Kraemer, WJ, Vincent, BM, Hall, OT, and Peterson, MD. Muscle strength is protective against osteoporosis in an ethnically diverse sample of adults. J Strength Cond Res 31(9): 2586-2589, 2017-The odds of developing osteoporosis may be affected by modifiable and nonmodifiable factors such as muscle strength and ethnicity. This study sought to (a) determine whether increased muscle strength was associated with decreased odds of osteoporosis and (b) identify whether the odds of osteoporosis differed by ethnicity. Data from the 2013 to 2014 National Health and Nutrition Examination Survey were analyzed. Muscle strength was measured with a hand-held dynamometer, and dual-energy x-ray absorptiometry was used to assess femoral neck bone mineral density. A T-score of ≤2.5 was used to define osteoporosis. Separate covariate-adjusted logistic regression models were performed on each sex to determine the association between muscle strength and osteoporosis. Odds ratios (ORs) were also generated to identify if the association between muscle strength and osteoporosis differed by ethnicity using non-Hispanic blacks as the reference group. There were 2,861 participants included. Muscle strength was shown to be protective against osteoporosis for men (OR: 0.94; 95% confidence interval [CI]: 0.94-0.94) and women (OR: 0.90; CI: 0.90-0.90). Although ORs varied across ethnicities, non-Hispanic Asian men (OR: 6.62; CI: 6.51-6.72) and women (OR: 6.42; CI: 6.37-6.48) were at highest odds of osteoporosis. Increased muscle strength reduced the odds of osteoporosis among both men and women in a nationally representative, ethnically diverse sample of adults. Non-Hispanic Asians had the highest odds of developing osteoporosis. Irrespective of sex or ethnicity, increased muscle strength may help protect against the odds of developing osteoporosis.

  2. Neuromuscular Electrical Stimulation Versus Volitional Isometric Strength Training in Children With Spastic Diplegic Cerebral Palsy: A Preliminary Study

    PubMed Central

    Stackhouse, Scott K.; Binder-Macleod, Stuart A.; Stackhouse, Carrie A.; McCarthy, James J.; Prosser, Laura A.; Lee, Samuel C. K.

    2011-01-01

    Background To date, no reports have investigated neuromuscular electrical stimulation (NMES) to increase muscle force production of children with cerebral palsy (CP) using high-force contractions and low repetitions. Objective The aims of this study were to determine if isometric NMES or volitional training in children with CP could increase muscle strength and walking speed and to examine the mechanisms that may contribute to increased force production. Methods Eleven children with spastic diplegia were assigned to an NMES training group or to a volitional training group. Participants in the NMES group had electrodes implanted percutaneously to activate the quadriceps femoris and triceps surae muscles. The volitional group trained with maximal effort contractions. Both groups performed a 12-week isometric strength-training program. Maximum voluntary isometric contract ion (MVIC) force, voluntary muscle activation, quadriceps and triceps surae cross-sectional area (CSA), and walking speed were measured pre- and post-strength training. Results The NMES-trained group had greater increases in normalized force production for both die quadriceps femoris and triceps surae. Similarly only the NMES group showed an increase in walking speed after training. Changes in voluntary muscle activation explained approximately 67% and 37% of the changes seen in the MVIC of the NMES and volitional groups, respectively. Quadriceps femoris maximum CSA increased significantly for the NMES group only. Conclusions This study was the first to quantitatively show strength gains with the use of NMES in children with CP. These results support the need for future experimental studies that will examine the clinical effectiveness of NMES strength training. PMID:17369515

  3. Dynapenic Obesity and Prevalence of Type 2 Diabetes in Middle-Aged Japanese Men

    PubMed Central

    Kawakami, Ryoko; Sawada, Susumu S.; Lee, I-Min; Matsushita, Munehiro; Gando, Yuko; Okamoto, Takashi; Tsukamoto, Koji; Higuchi, Mitsuru; Miyachi, Motohiko; Blair, Steven N.

    2015-01-01

    Background The independent and combined associations of muscle strength and obesity on the prevalence of type 2 diabetes in Japanese men remain unclear. Methods Hand grip strength was cross-sectionally evaluated between 2011 and 2013 to assess muscle strength in 5039 male workers aged 40 to 64 years. Weight and height were measured, and overweight/obesity was defined as a body mass index ≥25 kg/m2. The prevalence of type 2 diabetes, defined as fasting plasma glucose ≥126 mg/dL and/or hemoglobin A1c ≥6.5% and/or self-reported physician-diagnosed diabetes, was evaluated. Odds ratios (OR) and 95% confidence intervals (95% CI) for the prevalence of type 2 diabetes were obtained using a logistic regression model. Results In total, 611 participants had type 2 diabetes, and 1763 participants were overweight/obese. After adjustment for covariates, we found an inverse association between muscle strength and the prevalence of type 2 diabetes (P for trend <0.01). In addition, when the analyses were stratified by obesity status, the multivariable-adjusted OR per 2-standard-deviation increase in muscle strength was 0.64 (95% CI, 0.49–0.83) in the overweight/obese group, compared to a weaker relationship in the normal-weight group (OR 0.79 per 2-standard-deviation increase; 95% CI, 0.60–1.06). Conclusions Dynapenia, an age-related decrease in muscle strength, is associated with increased prevalence of type 2 diabetes, and this relationship is stronger in overweight/obese middle-aged Japanese men than in normal-weight men. PMID:26256772

  4. Scientific basis and practical aspects of creatine supplementation for athletes.

    PubMed

    Volek, Jeff S; Rawson, Eric S

    2004-01-01

    A large number of studies have been published on creatine supplementation over the last decade. Many studies show that creatine supplementation in conjunction with resistance training augments gains in muscle strength and size. The underlying physiological mechanism(s) to explain this ergogenic effect remain unclear. Increases in muscle fiber hypertrophy and myosin heavy chain expression have been observed with creatine supplementation. Creatine supplementation increases acute weightlifting performance and training volume, which may allow for greater overload and adaptations to training. Creatine supplementation may also induce a cellular swelling in muscle cells, which in turn may affect carbohydrate and protein metabolism. Several studies point to the conclusion that elevated intramuscular creatine can enhance glycogen levels but an effect on protein synthesis/degradation has not been consistently detected. As expected there is a distribution of responses to creatine supplementation that can be largely explained by the degree of creatine uptake into muscle. Thus, there is wide interest in methods to maximize muscle creatine levels. A carbohydrate or carbohydrate/protein-induced insulin response appears to benefit creatine uptake. In summary, the predominance of research indicates that creatine supplementation represents a safe, effective, and legal method to enhance muscle size and strength responses to resistance training.

  5. Muscle strength in patients with acromegaly at diagnosis and during long-term follow-up.

    PubMed

    Füchtbauer, Laila; Olsson, Daniel S; Bengtsson, Bengt-Åke; Norrman, Lise-Lott; Sunnerhagen, Katharina S; Johannsson, Gudmundur

    2017-08-01

    Patients with acromegaly have decreased body fat (BF) and increased extracellular water (ECW) and muscle mass. Although there is a lack of systematic studies on muscle function, it is believed that patients with acromegaly may suffer from proximal muscle weakness despite their increased muscle mass. We studied body composition and muscle function in untreated acromegaly and after biochemical remission. Prospective observational study. Patients with acromegaly underwent measurements of muscle strength (dynamometers) and body composition (four-compartment model) at diagnosis ( n  = 48), 1 year after surgery ( n  = 29) and after long-term follow-up (median 11 years) ( n  = 24). Results were compared to healthy subjects. Untreated patients had increased body cell mass (113 ± 9% of predicted) and ECW (110 ± 20%) and decreased BF (67 ± 7.6%). At one-year follow-up, serum concentration of IGF-I was reduced and body composition had normalized. At baseline, isometric muscle strength in knee flexors and extensors was normal and concentric strength was modestly increased whereas grip strength and endurance was reduced. After one year, muscle strength was normal in both patients with still active disease and patients in remission. At long-term follow-up, all patients were in remission. Most muscle function tests remained normal, but isometric flexion and the fatigue index were increased to 153 ± 42% and 139 ± 28% of predicted values, respectively. Patients with untreated acromegaly had increased body cell mass and normal or modestly increased proximal muscle strength, whereas their grip strength was reduced. After biochemical improvement and remission, body composition was normalized, hand grip strength was increased, whereas proximal muscle fatigue increased. © 2017 European Society of Endocrinology.

  6. Diurnal and day-to-day variation of isometric muscle strength in myasthenia gravis.

    PubMed

    Vinge, Lotte; Jakobsen, Johannes; Pedersen, Asger Roer; Andersen, Henning

    2016-01-01

    In patients with myasthenia gravis (MG), muscle strength is expected to decrease gradually during the day due to physical activities. Isometric muscle strength at the shoulder, knee, and ankle was determined in 10 MG patients (MGFA class II-IV) who were receiving usual medical treatment and in 10 control subjects. To determine diurnal and day-to-day variation, muscle strength was measured 4 times during day 1 and once at day 2. Knee extension strength decreased during the day in both patients and controls. Neither diurnal nor day-to-day variation of muscle strength was higher in patients compared with controls. Patients with mild to moderate MG did not have increased variation of isometric muscle strength during the day or from day-to-day compared with controls. This suggests that isometric muscle performance can be determined with high reproducibility in similar groups of MG patients without regard to time of day. © 2015 Wiley Periodicals, Inc.

  7. Relationship between lower extremity isometric muscle strength and standing balance in patients with multiple sclerosis.

    PubMed

    Citaker, Seyit; Guclu-Gunduz, Arzu; Yazici, Gokhan; Bayraktar, Deniz; Nazliel, Bijen; Irkec, Ceyla

    2013-01-01

    Muscle strength and standing balance decrease in patients with Multiple Sclerosis (MS). The aim of the present study was to investigate the relationship between the lower extremity isometric muscle strength and standing balance in patients with MS. Forty-seven patients with MS and 10 healthy volunteers were included. Neurological disability level was assessed using Expanded Disability Status Scale (EDSS). Isometric strength of seven lower extremity muscles (hip flexor-extensor-abductor-adductor, knee flexor-extensor, and ankle dorsal flexor) was assessed using hand-held dynamometer. Duration of static one-leg standing balance was measured using digital chronometer. Hip flexor-extensor-abductor-adductor, knee flexor-extensor, and ankle dorsal flexor isometric muscle strength, and duration of one-leg standing balance were decreased in patients with MS when compared with controls (p < 0.05). All assessed lower extremity isometric muscle strength and EDSS level was related duration of one-leg standing balance in patients with MS. All assessed lower extremity isometric muscle strength (except ankle dorsal flexor) was related with EDSS. Hip flexor-extensor-abductor-adductor, knee flexor-extensor, and ankle dorsal flexor isometric muscle strength decreases in ambulatory MS patients. Lower extremity muscle weakness and neurological disability level are related with imbalance in MS population. Hip and knee region muscles weakness increases the neurological disability level. For the better balance and decrease neurological disability level whole lower extremity muscle strengthening should be included in rehabilitation programs.

  8. Assessment of intensive care unit‐acquired weakness in young and old mice: An E. coli septic peritonitis model

    PubMed Central

    Hoogland, Inge C.M.; Wieske, Luuk; Weber, Nina C.; Verhamme, Camiel; Schultz, Marcus J.; van Schaik, Ivo N.; Horn, Janneke

    2015-01-01

    ABSTRACT Introduction: There are few reports of in vivo muscle strength measurements in animal models of ICU‐acquired weakness (ICU‐AW). In this study we investigated whether the Escherichia coli (E. coli) septic peritonitis mouse model may serve as an ICU‐AW model using in vivo strength measurements and myosin/actin assays, and whether development of ICU‐AW is age‐dependent in this model. Methods: Young and old mice were injected intraperitoneally with E. coli and treated with ceftriaxone. Forelimb grip strength was measured at multiple time points, and the myosin/actin ratio in muscle was determined. Results: E. coli administration was not associated with grip strength decrease, neither in young nor in old mice. In old mice, the myosin/actin ratio was lower in E. coli mice at t = 48 h and higher at t = 72 h compared with controls. Conclusions: This E. coli septic peritonitis mouse model did not induce decreased grip strength. In its current form, it seems unsuitable as a model for ICU‐AW. Muscle Nerve 53: 127–133, 2016 PMID:26015329

  9. Relative strengths of the calf muscles based on MRI volume measurements.

    PubMed

    Jeng, Clifford L; Thawait, Gaurav K; Kwon, John Y; Machado, Antonio; Boyle, James W; Campbell, John; Carrino, John A

    2012-05-01

    In 1985, Silver et al. published a cadaver study which determined the relative order of strength of the muscles in the calf. Muscle strength, which is proportional to volume, was obtained by dissecting out the individual muscles, weighing them, and then multiplying by the specific gravity. No similar studies have been performed using {\\it in vivo} measurements of muscle volume. Ten normal subjects underwent 3-Tesla MRI's of both lower extremities using non-fat-saturated T2 SPACE sequences. The volume for each muscle was determined by tracing the muscle contour on sequential axial images and then interpolating the volume using imaging software. The results from this study differ from Silver's original article. The lateral head of the gastrocnemius was found to be stronger than the tibialis anterior muscle. The FHL and EDL muscles were both stronger than the peroneus longus. There was no significant difference in strength between the peroneus longus and brevis muscles. This revised order of muscle strengths in the calf based on in vivo MRI findings may assist surgeons in determining the optimal tendons to transfer in order to address muscle weakness and deformity.

  10. Influence of muscle strength on early mobility in critically ill adult patients: Systematic literature review.

    PubMed

    Roberson, Audrey R; Starkweather, Angela; Grossman, Catherine; Acevedo, Edmund; Salyer, Jeanne

    Muscle strength may be one indicator of readiness to mobilize that can be used to guide decisions regarding early mobility efforts and to progressively advance mobilization. To provide a synthesis of current measures of muscle strength in the assessment of early mobilization in critically ill adult patients who are receiving MV therapy. Research studies conducted between 2000-2015 were identified using PubMed, CINHAL, MEDLINE, and the Cochrane Database of Systematic Reviews databases using the search terms "muscle strength", "intensive care", "mechanical ventilation" and "muscle weakness". Nine articles used manual muscle testing, the Medical Research Council scale and/or hand-held dynamometer to provide objective measures for assessing muscle strength in the critically ill adult patient population. Further research is needed to examine the application of standardized measures of muscle strength for guiding decisions regarding early and progressive advancement of mobility goals in adult ICU patients on MV. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. An inverted J-shaped association of serum uric acid with muscle strength among Japanese adult men: a cross-sectional study

    PubMed Central

    2013-01-01

    Background Uric acid (UA) may protect muscle function from oxidative damage due to reactive oxygen species through its powerful antioxidant capacity. However, several studies have demonstrated that hyperuricemia is closely related to systemic inflammation and has oxidant properties effects, both of which may increase the risk of muscle strength loss. The purpose of this study was to examine the association of serum UA concentration with grip strength and leg extension power in adult men. Methods This study is a cross-sectional survey in which 630 Japanese male employees aged 30 years and older participated. Five hundred and eighty-six subjects participated in the measurement of grip strength, and 355 subjects participated in the measurement of leg extension power. Blood samples were obtained for serum UA analysis. Results After adjustment for potential confounders, grip strength differed significantly between participants with and those without hyperuricemia (geometric mean and 95% confidence interval [CI]: 40.3 [39.2–41.3] kg vs. 41.9 [41.3–42.5] kg; P = 0.01). In addition, serum UA levels (quartiles) showed an inverted J-shaped curve with grip strength (mean and 95% CI: Q1, 41.6 [40.6–42.6] kg; Q2, 42.2 [41.2–43.2] kg; Q3, 41.8 [40.8–42.8] kg; Q4, 40.4 [39.3–41.4] kg; P for quadratic trend = 0.05). The results in the leg extension power group were similar to those observed in the grip strength group. Conclusion This population-based cross-sectional study shows for the first time that hyperuricemia is associated with poor muscle strength. Moreover, the results indicate an inverted J-shaped association between serum UA quartiles and muscle strength. PMID:24000893

  12. In vivo 1D and 2D correlation MR spectroscopy of the soleus muscle at 7T

    PubMed Central

    Ramadan, Saadallah; Ratai, Eva-Maria; Wald, Lawrence L.; Mountford, Carolyn E.

    2013-01-01

    Aim This study aims to (1) undertake and analyse 1D and 2D MR correlation spectroscopy from human soleus muscle in vivo at 7T, and (2) determine T1 and T2 relaxation time constants at 7T field strength due to their importance in sequence design and spectral quantitation. Method Six healthy, male volunteers were consented and scanned on a 7T whole-body scanner (Siemens AG, Erlangen, Germany). Experiments were undertaken using a 28 cm diameter detunable birdcage coil for signal excitation and an 8.5 cm diameter surface coil for signal reception. The relaxation time constants, T1 and T2 were recorded using a STEAM sequence, using the ‘progressive saturation’ method for the T1 and multiple echo times for T2. The 2D L-Correlated SpectroscopY (L-COSY) method was employed with 64 increments (0.4 ms increment size) and eight averages per scan, with a total time of 17 min. Results T1 and T2 values for the metabolites of interest were determined. The L-COSY spectra obtained from the soleus muscle provided information on lipid content and chemical structure not available, in vivo, at lower field strengths. All molecular fragments within multiple lipid compartments were chemically shifted by 0.20–0.26 ppm at this field strength. 1D and 2D L-COSY spectra were assigned and proton connectivities were confirmed with the 2D method. Conclusion In vivo 1D and 2D spectroscopic examination of muscle can be successfully recorded at 7T and is now available to assess lipid alterations as well as other metabolites present with disease. T1 and T2 values were also determined in soleus muscle of male healthy volunteers. PMID:20206561

  13. [Significance of insulin resistance in the pathogenesis of sarcopenia and chronic heart failure in elderly hypertensive patients].

    PubMed

    Gorshunova, N K; Medvedev, N V

    2016-01-01

    To determine the pathogenic role of insulin resistance in the formation of involutive sarcopenia and chronic heart failure (CHF) were examined 88 elderly patients with arterial hypertension (AH) and 32 elderly patients without cardiovascular disease by methods of carbohydrate metabolism and the level of brain natriuretic peptide precursor evaluation, muscle mass and strength measuring, echocardiography, 6 minute walking test. It was found that in the group of hypertensive patients with low mass and muscle strength significantly increased indices of insulin resistance and more expressed signs of the left ventricle myocardial dysfunction and functional class of heart failure, probably as a result of disorders of energy homeostasis, resulting from the deterioration of glucose into the muscle cells of the heart and skeletal muscles.

  14. The effects of electrical stimulation and exercise therapy in patients with limb girdle muscular dystrophy

    PubMed Central

    Kılınç, Muhammed; Yıldırım, Sibel A.; Tan, Ersin

    2015-01-01

    Objective: To evaluate and compare the effects of exercise therapy and electrical stimulation on muscle strength and functional activities in patients with limb-girdle muscular dystrophy (LGMD). Methods: This controlled clinical trial included 24 subjects who were diagnosed with LGMD by the Neurology Department of the Hacettepe University Hospital, Ankara, Turkey and were referred to the Physical Therapy Department between May 2013 and December 2014. Subjects were enrolled into an electrical stimulation (11 patients) group, or an exercise therapy (13 patients) group. Results: The mean age of patients was 31.62 years in the electrical stimulation group, and 30.14 years in the exercise therapy group. The most important results in this controlled clinical study were that the muscle strength in both groups was significantly decreased and post-treatment evaluation results indicated that muscle strength of the Deltoideus was higher in the electrical stimulation group, and the difference between the groups was maintained in the follow-up period (p<0.05). However, the muscle strength of quadriceps was similar in both groups, according to the post-treatment and follow-up evaluation results (p>0.05). Additionally, the electrical stimulation group presented more obvious overall improvements than the exercise therapy group according to muscle strength, endurance, and timed performance tests. Conclusions: Since no definitive treatments currently exist for patients with LGMD, these results provide important information on the role of exercise therapy and electrical stimulation for clinicians working in rehabilitation. PMID:26166595

  15. Experimental knee joint pain during strength training and muscle strength gain in healthy subjects: a randomized controlled trial.

    PubMed

    Sørensen, T J; Langberg, H; Hodges, P W; Bliddal, H; Henriksen, M

    2012-01-01

    Knee joint pain and reduced quadriceps strength are cardinal symptoms in many knee pathologies. In people with painful knee pathologies, quadriceps exercise reduces pain, improves physical function, and increases muscle strength. A general assumption is that pain compromises muscle function and thus may prevent effective rehabilitation. This study evaluated the effects of experimental knee joint pain during quadriceps strength training on muscle strength gain in healthy individuals. Twenty-seven healthy untrained volunteers participated in a randomized controlled trial of quadriceps strengthening (3 times per week for 8 weeks). Participants were randomized to perform resistance training either during pain induced by injections of painful hypertonic saline (pain group, n = 13) or during a nonpainful control condition with injection of isotonic saline (control group, n = 14) into the infrapatellar fat pad. The primary outcome measure was change in maximal isokinetic muscle strength in knee extension/flexion (60, 120, and 180 degrees/second). The group who exercised with pain had a significantly larger improvement in isokinetic muscle strength at all angular velocities of knee extension compared to the control group. In knee flexion there were improvements in isokinetic muscle strength in both groups with no between-group differences. Experimental knee joint pain improved the training-induced gain in muscle strength following 8 weeks of quadriceps training. It remains to be studied whether knee joint pain has a positive effect on strength gain in patients with knee pathology. Copyright © 2012 by the American College of Rheumatology.

  16. Relationships between Lower Limb Muscle Strength and Locomotor Capacity in Children and Adolescents with Cerebral Palsy Who Walk Independently

    ERIC Educational Resources Information Center

    Ferland, Chantale; Lepage, Celine; Moffet, Helene; Maltais, Desiree B.

    2012-01-01

    This study aimed to quantify relationships between lower limb muscle strength and locomotor capacity for children and adolescents with cerebral palsy (CP) to identify key muscle groups for strength training. Fifty 6- to 16-year-olds with CP (Gross Motor Function Classification System level I or II) participated. Isometric muscle strength of hip…

  17. Effect of posture on oxygenation and respiratory muscle strength in convalescent infants

    PubMed Central

    Dimitriou, G; Greenough, A; Pink, L; McGhee, A; Hickey, A; Rafferty, G

    2002-01-01

    Objective: To determine if differences in respiratory muscle strength could explain any posture related effects on oxygenation in convalescent neonates. Methods: Infants were examined in three postures: supine, supine with head up tilt of 45°, and prone. A subsequent study was performed to determine the influence of head position in the supine posture. In each posture/head position, oxygen saturation (SaO2) was determined and respiratory muscle strength assessed by measurement of the maximum inspiratory pressure (PIMAX). Patients: Twenty infants, median gestational age 34.5 weeks (range 25–43), and 10 infants, median gestational age 33 weeks (range 30–36), were entered into the first and second study respectively. Results: Oxygenation was higher in the prone and supine with 45° head up tilt postures than in the supine posture (p<0.001), whereas PIMAX was higher in the supine and supine with head up tilt of 45° postures than in the prone posture (p<0.001). Head position did not influence the effect of posture on PIMAX or oxygenation. Conclusion: Superior oxygenation in the prone posture in convalescent infants was not explained by greater respiratory muscle strength, as this was superior in the supine posture. PMID:11978742

  18. Non-Straub type actin from molluscan catch muscle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shelud'ko, Nikolay S., E-mail: sheludko@stl.ru; Girich, Ulyana V.; Lazarev, Stanislav S.

    We have developed a method of obtaining natural actin from smooth muscles of the bivalves on the example of the Crenomytilus grayanus catch muscle. The muscles were previously rigorized to prevent a loss of thin filaments during homogenization and washings. Thin filaments were isolated with a low ionic strength solution in the presence of ATP and sodium pyrophosphate. Surface proteins of thin filaments-tropomyosin, troponin, calponin and some minor actin-binding proteins-were dissociated from actin filaments by increasing the ionic strength to 0.6 M KCL. Natural fibrillar actin obtained in that way depolymerizes easily in low ionic strength solutions commonly used for themore » extraction of Straub-type actin from acetone powder. Purification of natural actin was carried out by the polymerization–depolymerization cycle. The content of inactivated actin remaining in the supernatant is much less than at a similar purification of Straub-type actin. A comparative investigation was performed between the natural mussel actin and the Straub-type rabbit skeletal actin in terms of the key properties of actin: polymerization, activation of Mg-ATPase activity of myosin, and the electron-microscopic structure of actin polymers. -- Highlights: •We developed method of repolymerizable invertebrate smooth muscle actin obtaining. •Our method does not involve use of denaturating agents, which could modify proteins. •Viscosity and polymerization rate of actin, gained that way, is similar to Straub one. •Electron microscopy showed that repolymerized mussel actin is similar to Straub one. •Repolymerized mussel actin has greater ATPase activating capacity, than Straub actin.« less

  19. ISOKINETIC KNEE MUSCLE STRENGTH PROFILE IN BRAZILIAN MALE SOCCER, FUTSAL, AND BEACH SOCCER PLAYERS: A CROSS-SECTIONAL STUDY

    PubMed Central

    Mascarin, Naryana C.; Vargas, Valentine Z.; Vancini, Rodrigo L.; Andrade, Marília S.

    2017-01-01

    Background Anterior cruciate ligament injury is higher in soccer athletes as compared to athletes of other sports. Risk factors for anterior cruciate ligament injury include low knee hamstring/quadriceps strength ratio and bilateral strength deficits. Purpose To investigate isokinetic thigh muscles strength, hamstring/quadriceps strength ratio, and bilateral strength comparisons in athletes who participate in professional soccer, futsal, and beach soccer. Study Design Cross-sectional study. Methods Brazilian professional soccer (n=70), futsal (n=30), and beach soccer (n=12) players were isokinetically assessed to examine strength of knee extensors and flexors at 60 degrees/second in concentric mode, to measure peak torque of dominant and non-dominant limbs. Results In the dominant limb, for extensors muscles, futsal players presented significantly lower peak torque values (223.9 ± 33.4 Nm) than soccer (250.9 ± 43.0 Nm; p=0.02) and beach soccer players (253.1 ± 32.4 Nm; p=0.03). Peak torque for extensor muscles in the non-dominant limb was significantly lower in futsal (224.0 ± 35.8 Nm) than in beach soccer players (256.8 ± 39.8 Nm; p=0.03). Hamstring/quadriceps strength ratio for dominant limbs for futsal (57.6 ± 10.1%), soccer (53.5 ± 8.8%), and beach soccer (56.3 ± 8.4%) players presented no significant differences between groups; however, the mean values were lower than recommended values found in the literature. There were no strength deficits for any of the evaluated groups when compared bilaterally. Conclusions Futsal athletes presented lower values for quadriceps strength than soccer and beach soccer athletes. Futsal, soccer, and beach soccer players presented no strength asymmetries, but they presented with strength imbalance in hamstring/quadriceps strength ratio. Level of Evidence 3 PMID:29234562

  20. Serial Changes of Quadriceps and Hamstring Muscle Strength Following Total Knee Arthroplasty: A Meta-Analysis

    PubMed Central

    Ahn, Hyeong-Sik; Lee, Dae-Hee

    2016-01-01

    This meta-analysis was performed to analyze serial changes in thigh muscles, including quadriceps and hamstring muscles, from before to one year after total knee arthroplasty (TKA). All studies sequentially comparing isokinetic quadriceps and hamstring muscle strengths between the TKA side and the contralateral uninjured limb were included in this meta-analysis. Five studies with 7 cohorts were included in this meta-analysis. The mean differences in the strengths of quadriceps and hamstring muscles between the TKA and uninjured sides were greatest three months after surgery (26.8 N∙m, 12.8 N∙m, P<0.001), but were similar to preoperative level at six months (18.4 N∙m, 7.4 N∙m P<0.001) and were maintained for up to one year (15.9 N∙m, 4.1 N∙m P<0.001). The pooled mean differences in changes in quadriceps and hamstring strengths relative to preoperative levels were 9.2 N∙m and 4.9 N∙m, respectively, three months postoperatively (P = 0.041), but were no longer significant after six months and one year. During the year after TKA, quadriceps and hamstring muscle strengths were lowest after 3 months, recovering to preoperative level after six months, but not reaching the muscle strength on the contralateral side. Relative to preoperative levels, the difference in muscle strength between the TKA and contralateral knees was only significant at three months. Because decrease of strength of the quadriceps was significantly greater than decrease in hamstring muscle strength at postoperative three months, early rehabilitation after TKA should focus on recovery of quadriceps muscle strength. PMID:26849808

  1. Association with isokinetic ankle strength measurements and normal clinical muscle testing in sciatica patients.

    PubMed

    Ustun, N; Erol, O; Ozcakar, L; Ceceli, E; Ciner, O Akar; Yorgancioglu, Z R

    2013-01-01

    Sensitive muscle strength tests are needed to measure muscle strength in the diagnosis and management of sciatica patients. The aim of this study was to assess the isokinetic muscle strength in sciatica patients' and control subjects' ankles that exhibited normal ankle muscle strength when measured clinically. Forty-six patients with L5 and/or S1 nerve compression, and whose age, sex, weight, and height matched 36 healthy volunteers, were recruited to the study. Heel-walking, toe-walking, and manual muscle testing were used to perform ankle dorsiflexion and plantar flexion strengths in clinical examination. Patients with normal ankle dorsiflexion and plantar flexion strengths assessed by manual muscle testing and heel-and toe-walking tests were included in the study. Bilateral isokinetic (concentric/concentric) ankle plantar-flexion-dorsiflexion measurements of the patients and controls were performed within the protocol of 30°/sec (5 repetitions). Peak torque and peak torque/body weight were obtained for each ankle motion of the involved limb at 30°/s speed. L5 and/or S1 nerve compression was evident in 46 patients (76 injured limbs). Mean disease duration was two years. The plantar flexion muscle strength of the patients was found to be lower than that of the controls (p=0.036). The dorsiflexion muscle strength of the patients was found to be the same as that of the controls (p=0.211). Isokinetic testing is superior to clinical muscle testing when evaluating ankle plantar flexion torque in sciatica patients. Therefore, isokinetic muscle testing may be helpful when deciding whether to place a patient into a focused rehabilitation program.

  2. Association between muscle function, cognitive state, depression symptoms and quality of life of older people: evidence from clinical practice.

    PubMed

    Gariballa, Salah; Alessa, Awad

    2018-04-01

    Although low muscle function/strength is an important predictor of poor clinical outcome in older patients, information on its impact on mental health in clinical practice is still lacking. The aim of this report is to measure the impact of low muscle function measured by handgrip strength on mental health of older people during both acute illness and recovery. Four hundred and thirty-two randomly selected hospitalized older patients had their baseline demographic and clinical characteristics assessed within 72 h of admission, at 6 weeks and at 6 months. Low muscle strength-handgrip was defined using the European Working Group criteria. Mental health outcome measures including cognitive state, depression symptoms and quality of life were also measured. Among the 432 patients recruited, 308 (79%) had low muscle strength at baseline. Corresponding figures at 6 weeks and at 6 months were 140 (73%) and 158 (75%). Patients with poor muscle strength were significantly older with increased disability and poor nutritional status compared with those with normal muscle strength. After adjustment for age, gender, disability, comorbidity including severity of acute illness and body mass index patients with low muscle strength had worse cognitive function, quality of life and higher depression symptoms compared with those with normal muscle strength over a 6-month period (p < 0.05). Poor muscle strength in older people is associated with poor cognitive state and quality of life and increased depression symptoms during both acute illness and recovery.

  3. Dietary Protein Intake Is Protective Against Loss of Grip Strength Among Older Adults in the Framingham Offspring Cohort

    PubMed Central

    McLean, Robert R.; Mangano, Kelsey M.; Hannan, Marian T.; Kiel, Douglas P.

    2016-01-01

    Abstract Background: Age-related decline in muscle strength is an important public health issue for older adults. Dietary protein has been associated with maintenance of muscle mass, yet its relation to muscle strength remains unclear. Methods: We determined the association of dietary protein (total, animal, and plant) intake, measured by food frequency questionnaire, with change in grip strength over 6 years in 1,746 men and women from the Framingham Offspring cohort. Results: Mean age at baseline was 58.7 years (range: 29–85), and mean total, animal, and plant protein intakes were 79, 57, and 22g/d, respectively. Adjusted baseline mean grip strength did not differ across quartiles of energy-adjusted total, animal or protein intake. Greater protein intake, regardless of source, was associated with less decrease in grip strength (all p for trend ≤.05): participants in the lowest quartiles lost 0.17% to 0.27% per year while those in the highest quartiles gained 0.52% to 0.60% per year. In analyses stratified by age, participants aged 60 years or older ( n = 646) had similar linear trends on loss of grip strength for total and animal (all p for trend <.03) but not plant protein, while the trends in participants younger than 60 years ( n = 896) were not statistically significant. Conclusions: Higher dietary intakes of total and animal protein were protective against loss of grip strength in community-dwelling adults aged 60 years and older. Increasing intake of protein from these sources may help maintain muscle strength and support prevention of mobility impairment in older adults. PMID:26525088

  4. Pilates: Build Strength in Your Core Muscles

    MedlinePlus

    ... an accessible way to build strength in your core muscles for better posture, balance and flexibility. By ... an accessible way to build strength in your core muscles for better posture, balance and flexibility. If ...

  5. The ICM research agenda on intensive care unit-acquired weakness.

    PubMed

    Latronico, Nicola; Herridge, Margaret; Hopkins, Ramona O; Angus, Derek; Hart, Nicholas; Hermans, Greet; Iwashyna, Theodore; Arabi, Yaseen; Citerio, Giuseppe; Wesley Ely, E; Hall, Jesse; Mehta, Sangeeta; Puntillo, Kathleen; Van den Hoeven, Johannes; Wunsch, Hannah; Cook, Deborah; Dos Santos, Claudia; Rubenfeld, Gordon; Vincent, Jean-Louis; Van den Berghe, Greet; Azoulay, Elie; Needham, Dale M

    2017-09-01

    We present areas of uncertainty concerning intensive care unit-acquired weakness (ICUAW) and identify areas for future research. Age, pre-ICU functional and cognitive state, concurrent illness, frailty, and health trajectories impact outcomes and should be assessed to stratify patients. In the ICU, early assessment of limb and diaphragm muscle strength and function using nonvolitional tests may be useful, but comparison with established methods of global and specific muscle strength and physical function and determination of their reliability and normal values would be important to advance these techniques. Serial measurements of limb and respiratory muscle strength, and systematic screening for dysphagia, would be helpful to clarify if and how weakness of these muscle groups is independently associated with outcome. ICUAW, delirium, and sedatives and analgesics may interact with each other, amplifying the effects of each individual factor. Reduced mobility in patients with hypoactive delirium needs investigations into dysfunction of central and peripheral nervous system motor pathways. Interventional nutritional studies should include muscle mass, strength, and physical function as outcomes, and prioritize elucidation of mechanisms. At follow-up, ICU survivors may suffer from prolonged muscle weakness and wasting and other physical impairments, as well as fatigue without demonstrable weakness on examination. Further studies should evaluate the prevalence and severity of fatigue in ICU survivors and define its association with psychiatric disorders, pain, cognitive impairment, and axonal loss. Finally, methodological issues, including accounting for baseline status, handling of missing data, and inclusion of patient-centered outcome measures should be addressed in future studies.

  6. Association between muscle strength and metabolic syndrome in older Korean men and women: the Korean Longitudinal Study on Health and Aging.

    PubMed

    Yang, Eun Joo; Lim, Soo; Lim, Jae-Young; Kim, Ki Woong; Jang, Hak Chul; Paik, Nam-Jong

    2012-03-01

    The objective of the study was to investigate the association between metabolic syndrome (MS) and muscle strength in community-dwelling older men and women in Korea. Korean men and women 65 years and older living in a single, typical South Korean city (n = 647) were enrolled in the Korean Longitudinal Study on Health and Aging study. The diagnosis of MS was evaluated according to the definition of the National Cholesterol Education Program Adult Treatment Panel III. Isokinetic muscle strength of the knee extensors, as determined by peak torque per body weight (newton meter per kilogram) and hand-grip strength per body weight (newton per kilogram), was measured. Participants without MS had greater leg muscle strength and grip strength per weight. The effect of MS on muscle strength was more prominent in men than in women in our study population. Only men showed a significant interaction between MS and age for muscle strength (P = .014), and the effect was greater in men aged 65 to 74 years compared with those older than 75 years (119.2 ± 31.2 vs 134.5 ± 24.3 N m/kg). Participants with MS had weaker knee extensor strength after controlling the covariates (β = -90.80, P = .003), and the interaction term (age × MS × male sex) was significant (β = 1.00, P = .017). Metabolic syndrome is associated with muscle weakness, and this relationship is particularly pronounced in men. Age can modify the impact of MS on muscle strength. Men aged 65 to 74 years with MS need a thorough assessment of muscle strength to prevent disability. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Anabolic and catabolic biomarkers as predictors of muscle strength decline: the InCHIANTI study.

    PubMed

    Stenholm, Sari; Maggio, Marcello; Lauretani, Fulvio; Bandinelli, Stefania; Ceda, Gian Paolo; Di Iorio, Angelo; Giallauria, Francesco; Guralnik, Jack M; Ferrucci, Luigi

    2010-02-01

    Poor muscle strength is a major public health concern in older persons, predisposing to functional limitations, increased fall risk, and higher mortality. Understanding risk factors for muscle strength decline may offer opportunities for prevention and treatment. One of the possible causes of muscle strength decline is imbalance between catabolic and anabolic signaling. This study aims to examine whether high levels of multiple catabolic and low levels of multiple anabolic biomarkers predict accelerated decline of muscle strength. In a representative sample of 716 men and women aged >or=65 years in the InCHIANTI study we measured C-reactive protein, interleukin-6 (IL-6), IL-1 receptor antagonist (IL-1RA), tumor necrosis factor-alpha receptor 1 as well as dehydroepiandrosterone sulfate (DHEA-S), insulin-like growth factor-1, and bioavailable testosterone. Biomarker values were divided into tertiles and the numbers of catabolic/anabolic biomarkers in the highest/lowest tertile were calculated. Hand-grip strength was measured at baseline and 3- and 6-year follow up. In adjusted linear mixed models, higher concentration of IL-6 (p = 0.02) and IL-1RA (p = 0.04) as well as lower levels of DHEA-S (p = 0.01) predicted muscle strength decline. After combining all inflammatory markers, the rate of decline in grip strength was progressively greater with the increasing number of dysregulated catabolic biomarkers (p = 0.01). No effect on accelerated muscle strength decline was seen according to number of dysregulated anabolic hormones. Having multiple elevated catabolic biomarkers is a better predictor of muscle strength decline than a single biomarker alone, suggesting that a catabolic dysregulation is at the core of the mechanism leading to muscle strength decline with aging.

  8. Relationships between muscular strength and the level of energy sources in the muscle.

    PubMed

    Wit, A; Juskiak, R; Wit, B; Zieliński, J R

    1978-01-01

    Relationships between muscular strength and the level of energy sources in the muscle. Acta Physiol. Pol., 1978, 29 (2): 139--151. An attempt was made to establish a relationship between the post-excercise changes in the level of anaerobic energy sources and changes in the muscular strength. The gastrocnemius muscle of Wistar rats was examined. The muscle strength was measured by the resistance tensometry. In muscle specimens ATP, CP and glycogen contents were determined. It was demonstrated that changes in the post-excersise muscle response to electric stimulus have a phasic character resembling the overcompensation curve. The percent changes in the content of anaerobic energy sources in the muscle after contractions varying in duration suggests also overcompensation the muscle content of these substances. The parallelity between the time of appearance of peak overcompensation phase in the muscle strength and in the post-exercise level of musclar ATP, CP and glycogen contents suggest a casual relationship between these changes.

  9. Effects of combined endurance and strength training on muscle strength, power and hypertrophy in 40-67-year-old men.

    PubMed

    Karavirta, L; Häkkinen, A; Sillanpää, E; García-López, D; Kauhanen, A; Haapasaari, A; Alen, M; Pakarinen, A; Kraemer, W J; Izquierdo, M; Gorostiaga, E; Häkkinen, K

    2011-06-01

    Both strength and endurance training have several positive effects on aging muscle and physical performance of middle-aged and older adults, but their combination may compromise optimal adaptation. This study examined the possible interference of combined strength and endurance training on neuromuscular performance and skeletal muscle hypertrophy in previously untrained 40-67-year-old men. Maximal strength and muscle activation in the upper and lower extremities, maximal concentric power, aerobic capacity and muscle fiber size and distribution in the vastus lateralis muscle were measured before and after a 21-week training period. Ninety-six men [mean age 56 (SD 7) years] completed high-intensity strength training (S) twice a week, endurance training (E) twice a week, combined training (SE) four times per week or served as controls (C). SE and S led to similar gains in one repetition maximum strength of the lower extremities [22 (9)% and 21 (8)%, P<0.001], whereas E and C showed minor changes. Cross-sectional area of type II muscle fibers only increased in S [26 (22)%, P=0.002], while SE showed an inconsistent, non-significant change [8 (35)%, P=0.73]. Combined training may interfere with muscle hypertrophy in aging men, despite similar gains in maximal strength between the strength and the combined training groups. © 2009 John Wiley & Sons A/S.

  10. The value of multiple tests of respiratory muscle strength

    PubMed Central

    Steier, Joerg; Kaul, Sunny; Seymour, John; Jolley, Caroline; Rafferty, Gerrard; Man, William; Luo, Yuan M; Roughton, Michael; Polkey, Michael I; Moxham, John

    2007-01-01

    Background Respiratory muscle weakness is an important clinical problem. Tests of varying complexity and invasiveness are available to assess respiratory muscle strength. The relative precision of different tests in the detection of weakness is less clear, as is the value of multiple tests. Methods The respiratory muscle function tests of clinical referrals who had multiple tests assessed in our laboratories over a 6‐year period were analysed. Thresholds for weakness for each test were determined from published and in‐house laboratory data. The patients were divided into three groups: those who had all relevant measurements of global inspiratory muscle strength (group A, n = 182), those with full assessment of diaphragm strength (group B, n = 264) and those for whom expiratory muscle strength was fully evaluated (group C, n = 60). The diagnostic outcome of each inspiratory, diaphragm and expiratory muscle test, both singly and in combination, was studied and the impact of using more than one test to detect weakness was calculated. Results The clinical referrals were primarily for the evaluation of neuromuscular diseases and dyspnoea of unknown cause. A low maximal inspiratory mouth pressure (Pimax) was recorded in 40.1% of referrals in group A, while a low sniff nasal pressure (Sniff Pnasal) was recorded in 41.8% and a low sniff oesophageal pressure (Sniff Poes) in 37.9%. When assessing inspiratory strength with the combination of all three tests, 29.6% of patients had weakness. Using the two non‐invasive tests (Pimax and Sniff Pnasal) in combination, a similar result was obtained (low in 32.4%). Combining Sniff Pdi (low in 68.2%) and Twitch Pdi (low in 67.4%) reduced the diagnoses of patients with diaphragm weakness to 55.3% in group B. 38.3% of the patients in group C had expiratory muscle weakness as measured by maximum expiratory pressure (Pemax) compared with 36.7% when weakness was diagnosed by cough gastric pressure (Pgas), and 28.3% when assessed by Twitch T10. Combining all three expiratory muscle tests reduced the number of patients diagnosed as having expiratory muscle weakness to 16.7%. Conclusion The use of single tests such as Pimax, Pemax and other available individual tests of inspiratory, diaphragm and expiratory muscle strength tends to overdiagnose weakness. Combinations of tests increase diagnostic precision and, in the population studied, they reduced the diagnosis of inspiratory, specific diaphragm and expiratory muscle weakness by 19–56%. Measuring both Pimax and Sniff Pnasal resulted in a relative reduction of 19.2% of patients falsely diagnosed with inspiratory muscle weakness. The addition of Twitch Pdi to Sniff Pdi increased diagnostic precision by a smaller amount (18.9%). Having multiple tests of respiratory muscle function available both increases diagnostic precision and makes assessment possible in a range of clinical circumstances. PMID:17557772

  11. CCL2 and CCR2 variants are associated with skeletal muscle strength and change in strength with resistance training.

    PubMed

    Harmon, Brennan T; Orkunoglu-Suer, E Funda; Adham, Kasra; Larkin, Justin S; Gordish-Dressman, Heather; Clarkson, Priscilla M; Thompson, Paul D; Angelopoulos, Theodore J; Gordon, Paul M; Moyna, Niall M; Pescatello, Linda S; Visich, Paul S; Zoeller, Robert F; Hubal, Monica J; Tosi, Laura L; Hoffman, Eric P; Devaney, Joseph M

    2010-12-01

    Baseline muscle size and muscle adaptation to exercise are traits with high variability across individuals. Recent research has implicated several chemokines and their receptors in the pathogenesis of many conditions that are influenced by inflammatory processes, including muscle damage and repair. One specific chemokine, chemokine (C-C motif) ligand 2 (CCL2), is expressed by macrophages and muscle satellite cells, increases expression dramatically following muscle damage, and increases expression further with repeated bouts of exercise, suggesting that CCL2 plays a key role in muscle adaptation. The present study hypothesizes that genetic variations in CCL2 and its receptor (CCR2) may help explain muscle trait variability. College-aged subjects [n = 874, Functional Single-Nucleotide Polymorphisms Associated With Muscle Size and Strength (FAMUSS) cohort] underwent a 12-wk supervised strength-training program for the upper arm muscles. Muscle size (via MR imaging) and elbow flexion strength (1 repetition maximum and isometric) measurements were taken before and after training. The study participants were then genotyped for 11 genetic variants in CCL2 and five variants in CCR2. Variants in the CCL2 and CCR2 genes show strong associations with several pretraining muscle strength traits, indicating that inflammatory genes in skeletal muscle contribute to the polygenic system that determines muscle phenotypes. These associations extend across both sexes, and several of these genetic variants have been shown to influence gene regulation.

  12. The effects of Pilates method on pelvic floor muscle strength in patients with post-prostatectomy urinary incontinence: A randomized clinical trial.

    PubMed

    Gomes, Cíntia S; Pedriali, Fabiana R; Urbano, Mariana R; Moreira, Eliane H; Averbeck, Marcio A; Almeida, Silvio Henrique M

    2018-01-01

    To assess the effects of a Pilates exercise program compared to conventional pelvic floor muscle training (PFMT) protocol on pelvic floor muscle strength (PFMS) in patients with post-prostatectomy urinary incontinence. Patients were randomized into three treatment groups (G1: Pilates, G2: electrical stimulation combined with PFMT, and G3: control group). Duration of therapy was 10 weeks. Baseline assessment included the 24 h pad-test and the ICI-Q questionnaire. PFMS was measured using a manometric perineometry device at baseline and 4 months after radical prostatectomy (RP). The level of significance was P < 0.05. One hundred twenty three patients were randomized and 104 patients completed the study protocol (G1: n = 34; G2: n = 35; G3: n = 35). Post-treatment assessment showed statistically significant improvements in maximum strength in G2, increased endurance in G1 and G2, and increment of muscle power in all three groups (P < 0.05). However, there were no significant differences in the mean changes of maximum strength, endurance, and muscle power between groups after treatment (P > 0.05). G1 and G2 achieved a higher number of fully continent patients than G3 (P < 0.05). At the end of treatment, 59% of patients in G1, 54% in G2, and 26% in G3 were continent (no pads/day). Improvements in PFMS parameters were distinct among active treatment groups versus controls, but did not predict recovery of urinary continence at final assessment. The Pilates method promoted similar outcomes in the proportion of fully continent patients when compared to conventional PFMT 4 months after RP. © 2017 Wiley Periodicals, Inc.

  13. Muscle strength and kinetic gait pattern in children with bilateral spastic CP.

    PubMed

    Eek, Meta Nyström; Tranberg, Roy; Beckung, Eva

    2011-03-01

    Cerebral palsy is often associated with an abnormal gait pattern. This study put focus on relation between muscle strength and kinetic gait pattern in children with bilateral spastic cerebral palsy and compares them with a reference group. In total 20 children with CP and 20 typically developing children participated. They were all assessed with measurement of muscle strength in eight muscle groups in the legs and a 3-dimensional gait analysis including force data. It was found that children with CP were not only significantly weaker in all muscle groups but also walked with slower velocity and shorter stride length when compared with the reference group. Gait moments differed at the ankle level with significantly lower moments in children with CP. Gait moments were closer to the maximal muscle strength in the group of children with CP. Furthermore a correlation between plantarflexing gait moment and muscle strength was observed in six of the eight muscle groups in children with CP, a relation not found in the reference group. A similar pattern was seen between muscle strength and generating ankle power with a rho=0.582-0.766. The results of this study state the importance of the relationship of the overall muscle strength pattern in the lower extremity, not only the plantarflexors. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Pilot randomized controlled trial to evaluate the effect of aquatic and land physical therapy on musculoskeletal dysfunction of sickle cell disease patients

    PubMed Central

    Zanoni, Camila Tatiana; Galvão, Fábio; Cliquet Junior, Alberto; Saad, Sara Teresinha Olalla

    2014-01-01

    Objective To compare the effect of aquatic and land-based physiotherapy in reducing musculoskeletal hip and lower back pain and increasing overall physical capabilities of sickle cell disease patients. Methods Informed written consent was obtained from all volunteers who were submitted to evaluations using different functional scales: Lequesne's Algofunctional Questionnaire and Oswestry Disability Index, trunk and hip range of motion, goniometry, trunk and hip muscle strength assessment using load cell, and surface electromyography of the iliocostalis, long dorsal (longissimus), gluteus maximus, gluteus medius and tensor fasciae latae muscles. Ten patients were randomized into two groups: aquatic physiotherapy with a mean age of 42 years (range: 25–67) and conventional physiotherapy with a mean age of 49 years (range: 43–59). Both groups were submitted to a twelve-week program of two sessions weekly. Results After the intervention, significant improvements were observed regarding the Lequesne index (p-value = 0.0217), Oswestry Disability Index (p-value = 0.0112), range of motion of trunk extension (p-value = 0.0320), trunk flexion muscle strength (p-value = 0.0459), hip extension and abduction muscle strength (p-value = 0.0062 and p-value = 0.0257, respectively). Range of motion of trunk and hip flexion, extension, adduction and abduction, trunk extensor muscle strength and all surface electromyography variables showed no significant statistical difference. Conclusion Physical therapy is efficient to treat musculoskeletal dysfunctions in sickle cell disease patients, irrespective of the technique; however, aquatic therapy showed a trend toward improvement in muscle strength. Further studies with a larger patient sample and longer periods of therapy are necessary to confirm these results. PMID:25818817

  15. Strength Training for Skeletal Muscle Endurance after Stroke

    PubMed Central

    Ivey, Frederick M.; Prior, Steven J.; Hafer-Macko, Charlene E.; Katzel, Leslie I.; Macko, Richard F.; Ryan, Alice S.

    2018-01-01

    Background and Purpose Initial studies support the use of strength training (ST) as a safe and effective intervention after stroke. Our previous work shows that relatively aggressive, higher intensity ST translates into large effect sizes for paretic and non-paretic leg muscle volume, myostatin expression, and maximum strength post-stroke. An unanswered question pertains to how our unique ST model for stroke impacts skeletal muscle endurance (SME). Thus, we now report on ST-induced adaptation in the ability to sustain isotonic muscle contraction. Methods Following screening and baseline testing, hemiparetic stroke participants were randomized to either ST or an attention-matched stretch control group (SC). Those in the ST group trained each leg individually to muscle failure (20 repetition sets, 3× per week for 3 months) on each of three pneumatic resistance machines (leg press, leg extension, and leg curl). Our primary outcome measure was SME, quantified as the number of submaximal weight leg press repetitions possible at a specified cadence. The secondary measures included one-repetition maximum strength, 6-minute walk distance (6MWD), 10-meter walk speeds, and peak aerobic capacity (VO2 peak). Results ST participants (N = 14) had significantly greater SME gains compared with SC participants (N = 16) in both the paretic (178% versus 12%, P < .01) and non-paretic legs (161% versus 12%, P < .01). These gains were accompanied by group differences for 6MWD (P < .05) and VO2 peak (P < .05). Conclusion Our ST regimen had a large impact on the capacity to sustain submaximal muscle contraction, a metric that may carry more practical significance for stroke than the often reported measures of maximum strength. PMID:27865696

  16. Exercise at Different Ages and Appendicular Lean Mass and Strength in Later Life: Results From the Berlin Aging Study II.

    PubMed

    Eibich, Peter; Buchmann, Nikolaus; Kroh, Martin; Wagner, Gert G; Steinhagen-Thiessen, Elisabeth; Demuth, Ilja; Norman, Kristina

    2016-04-01

    Excessive loss of muscle mass in advanced age is a major risk factor for decreased physical ability and falls. Physical activity and exercise training are typically recommended to maintain muscle mass and prevent weakness. How exercise in different stages of life relates to muscle mass, grip strength, and risk for weakness in later life is not well understood. Baseline data on 891 participants at least 60 years old from the Berlin Aging Study II (BASE-II) were analyzed. Linear and logistic regressions of self-reported exercise in early adulthood, old age, or both on appendicular lean mass (ALM), grip strength, and a risk indicator for weakness (ALM/ body mass index cutoff) were calculated. In addition, treatment bounds are analyzed to address potential confounding using a method proposed by Oster. Analyses indicate that for men only, continuous exercise is significantly associated with higher muscle mass (SD = 0.24, p < .001), grip strength (SD = 0.18, p < .05), and lower risk for clinically relevant low muscle mass (odds ratio = 0.36, p < .01). Exercise in early adulthood alone is not significantly associated with muscle mass or strength. No significant associations were observed for women. The results of the current study underscore the importance of health programs to promote physical activity with a focus on young adults, a group known to be affected from environmentally associated decline of physical activity, and to promote the continuation of physical exercise from early adulthood into later life in general. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Influence of Ovarian Hormones on Strength Loss in Healthy and Dystrophic Female Mice

    PubMed Central

    Kosir, Allison M.; Mader, Tara L.; Greising, Angela G.; Novotny, Susan A.; Baltgalvis, Kristen A.; Lowe, Dawn A.

    2014-01-01

    Purpose The primary objective of this study was to determine if strength loss and recovery following eccentric contractions is impaired in healthy and dystrophic female mice with low levels of ovarian hormones. Methods Female C57BL/6 (wildtype) or mdx mice were randomly assigned to ovarian-intact (Sham) and ovariectomized (Ovx) groups. Anterior crural muscles were tested for susceptibility to injury from 150 or 50 eccentric contractions in wildtype and mdx mice, respectively. An additional experiment challenged mdx mice with a 2-wk treadmill running protocol followed by an eccentric contraction injury to posterior crural muscles. Functional recovery from injury was evaluated in wildtype mice by measuring isometric torque 3, 7, 14, or 21 days following injury. Results Ovarian hormone deficiency in wildtype mice did not impact susceptibility to injury as the ~50% isometric torque loss following eccentric contractions did not differ between Sham and Ovx mice (p=0.121). Similarly in mdx mice, hormone deficiency did not affect percent of pre injury isometric torque lost by anterior crural muscles following eccentric contractions (p=0.952), but the percent of pre injury torque in posterior crural muscles was lower in Ovx compared to Sham mice (p=0.014). Recovery from injury in wildtype mice was affected by hormone deficiency. Sham mice recovered pre injury isometric strength by 14 days (96 ± 2%) while Ovx mice maintained deficits at 14 and 21 days post injury (80 ± 3% and 84 ± 2%; p<0.001) Conclusion Ovarian hormone status did not impact the vulnerability of skeletal muscle to strength loss following eccentric contractions. However, ovarian hormone deficiency did impair the recovery of muscle strength in female mice. PMID:25255128

  18. Kaatsu training to enhance physical function of older adults with knee osteoarthritis: Design of a randomized controlled trial.

    PubMed

    Buford, Thomas W; Fillingim, Roger B; Manini, Todd M; Sibille, Kimberly T; Vincent, Kevin R; Wu, Samuel S

    2015-07-01

    As the U.S. population ages, efficacious interventions are needed to manage pain and maintain physical function among older adults with osteoarthritis (OA). Skeletal muscle weakness is a primary contributory factor to pain and functional decline among persons with OA, thus interventions are needed that improve muscle strength. High-load resistance exercise is the best-known method of improving muscle strength; however high-compressive loads commonly induce significant joint pain among persons with OA. Thus interventions with low-compressive loads are needed which improve muscle strength while limiting joint stress. This study is investigating the potential of an innovative training paradigm, known as Kaatsu, for this purpose. Kaatsu involves performing low-load exercise while externally-applied compression partially restricts blood flow to the active skeletal muscle. The objective of this randomized, single-masked pilot trial is to evaluate the efficacy and feasibility of chronic Kaatsu training for improving skeletal muscle strength and physical function among older adults. Participants aged ≥ 60 years with physical limitations and symptomatic knee OA will be randomly assigned to engage in a 3-month intervention of either (1) center-based, moderate-load resistance training, or (2) Kaatsu training matched for overall workload. Study dependent outcomes include the change in 1) knee extensor strength, 2) objective measures of physical function, and 3) subjective measures of physical function and pain. This study will provide novel information regarding the therapeutic potential of Kaatsu training while also informing about the long-term clinical viability of the paradigm by evaluating participant safety, discomfort, and willingness to continually engage in the intervention. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Effect of strength training with blood flow restriction on muscle power and submaximal strength in eumenorrheic women.

    PubMed

    Gil, Ana L S; Neto, Gabriel R; Sousa, Maria S C; Dias, Ingrid; Vianna, Jeferson; Nunes, Rodolfo A M; Novaes, Jefferson S

    2017-03-01

    Blood flow restriction (BFR) training stimulates muscle size and strength by increasing muscle activation, accumulation of metabolites and muscle swelling. This method has been used in different populations, but no studies have evaluated the effects of training on muscle power and submaximal strength (SS) in accounted for the menstrual cycle. The aim of this study was to analyse the effect of strength training (ST) with BFR on the muscle power and SS of upper and lower limbs in eumenorrheic women. Forty untrained women (18-40 years) were divided randomly and proportionally into four groups: (i) high-intensity ST at 80% of 1RM (HI), (ii) low-intensity ST at 20% of 1RM combined with partial blood flow restriction (LI + BFR), (iii) low-intensity ST at 20% of 1RM (LI) and d) control group (CG). Each training group performed eight training sessions. Tests with a medicine ball (MB), horizontal jump (HJ), vertical jump (VJ), biceps curls (BC) and knee extension (KE) were performed during the 1st day follicular phase (FP), 14th day (ovulatory phase) and 26-28th days (luteal phase) of the menstrual cycle. There was no significant difference among groups in terms of the MB, HJ, VJ or BC results at any time point (P>0·05). SS in the KE exercise was significantly greater in the LI + BFR group compared to the CG group (P = 0·014) during the LP. Therefore, ST with BFR does not appear to improve the power of upper and lower limbs and may be an alternative to improve the SS of lower limbs of eumenorrheic women. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  20. Effects of combined application of progressive resistance training and Russian electrical stimulation on quadriceps femoris muscle strength in elderly women with knee osteoarthritis.

    PubMed

    Park, Seong Hoon; Hwangbo, Gak

    2015-03-01

    [Purpose] The aim of this study was to investigate the effects of combined application of progressive resistance training and Russian electrical stimulation on quadriceps femoris muscle strength in elderly women with osteoarthritis of the knee. [Subjects] Thirty women over 65 years of age diagnosed with knee osteoarthritis participated in the present study. The subjects were randomly assigned to a control group (n=10), a progressive resistance training group (n=10), or a Russian electrical stimulation group (n=10). [Methods] Each group was treated 3 times weekly for 8 weeks, and each session lasted 45 minutes. Muscle strength was assessed by measuring the peak torque of the quadriceps femoris muscle. Outcome measurements were performed at baseline and at the fourth and eighth weeks of the treatment period. [Results] All groups showed significant intragroup differences in the quadriceps femoris muscle peak torque after the treatment intervention. There were significant intergroup differences between the Russian electrical stimulation group and the other groups. [Conclusion] The results of this study suggest that combined application of progressive resistance training and Russian electrical stimulation can be effective in strengthening the quadriceps femoris muscle in elderly women with knee osteoarthritis.

  1. Molecular mechanisms and treatment targets of muscle wasting and cachexia in heart failure: an overview.

    PubMed

    Ebner, Nicole; Elsner, Sebastian; Springer, Jochen; von Haehling, Stephan

    2014-03-01

    This article aims to describe molecular pathways involved in the development of muscle wasting and cachexia, diagnostic possibilities, and potential treatments that have seen clinical testing in recent heart failure trials. An understanding of the specific changes that cause an anabolic-catabolic imbalance is an essential first step in the development of pharmaceutical intervention strategies aimed at blocking muscle wasting. Skeletal muscle mass and muscle strength are the most important determinants of exercise capacity in patients with heart failure. In contrast to cachexia, muscle wasting is not usually associated with weight loss, implying the need for sophisticated assessment methods to correctly diagnose muscle wasting, for example the use of computed tomography, magnetic resonance imaging, or dual energy X-ray absorptiometry. Simpler techniques such as handgrip strength, exercise testing, or even a biomarker may help in determining patients with a high pre-test probability of muscle wasting. Despite intensive research efforts in the field of muscle wasting during the last couple of decades, no effective treatment of muscle wasting currently exists other than exercise training. This situation remains true even though study of the molecular pathways involved in muscle wasting suggests many therapeutic targets. Easily applicable diagnostic tools may help to identify patients at risk of developing muscle wasting.

  2. Relationships of muscle strength and bone mineral density in ambulatory children with cerebral palsy.

    PubMed

    Chen, C-L; Lin, K-C; Wu, C-Y; Ke, J-Y; Wang, C-J; Chen, C-Y

    2012-02-01

    This work explores the relationships of muscle strength and areal bone mineral density (aBMD) in ambulatory children with cerebral palsy (CP). The knee extensor strength, but not motor function, was related to aBMD. Thus, muscle strength, especially antigravity muscle strength, was more associated with aBMD in these children than motor function. Muscle strength is related to bone density in normal children. However, no studies have examined these relationships in ambulatory children with CP. This work explores the relationships of muscle strength and aBMD in ambulatory children with CP. Forty-eight ambulatory children with spastic CP, aged 5-15 years, were classified into two groups based on Gross Motor Function Classification System levels: I (n = 28) and II (n = 20). Another 31 normal development (ND) children were recruited as the comparison group for the aBMD. Children with CP underwent assessments of growth, lumbar and distal femur aBMD, Gross Motor Function Measure-66 (GMFM-66), and muscle strength of knee extensor and flexor by isokinetic dynamometer. The distal femur aBMD, but not lumbar aBMD, was lower in children with CP than in ND children (p < 0.05). Children with level I had greater knee flexor strength and GMFM-66 scores than those with level II (p < 0.001). However, the knee extensor strength and distal femur and lumbar aBMD did not differ between two groups. Regression analysis revealed the weight and knee extensor strength, but not GMFM-66 scores, were related positively to the distal femur and lumbar aBMD (adjusted r (2) = 0.56-0.65, p < 0.001). These results suggest the muscle strength, especially antigravity muscle strength, were more associated with the bone density of ambulatory children with CP than motor function. The data may allow clinicians for early identifying the ambulatory CP children of potential low bone density.

  3. Effects of Inspiratory Muscle Training and Calisthenics-and-Breathing Exercises in COPD With and Without Respiratory Muscle Weakness.

    PubMed

    Basso-Vanelli, Renata P; Di Lorenzo, Valéria A Pires; Labadessa, Ivana G; Regueiro, Eloisa M G; Jamami, Mauricio; Gomes, Evelim L F D; Costa, Dirceu

    2016-01-01

    Patients with COPD may experience respiratory muscle weakness. Two therapeutic approaches to the respiratory muscles are inspiratory muscle training and calisthenics-and-breathing exercises. The aims of the study are to compare the effects of inspiratory muscle training and calisthenics-and-breathing exercises associated with physical training in subjects with COPD as an additional benefit of strength and endurance of the inspiratory muscles, thoracoabdominal mobility, physical exercise capacity, and reduction in dyspnea on exertion. In addition, these gains were compared between subjects with and without respiratory muscle weakness. 25 subjects completed the study: 13 composed the inspiratory muscle training group, and 12 composed the calisthenics-and-breathing exercises group. Subjects were assessed before and after training by spirometry, measurements of respiratory muscle strength and test of inspiratory muscle endurance, thoracoabdominal excursion measurements, and the 6-min walk test. Moreover, scores for the Modified Medical Research Council dyspnea scale were reported. After intervention, there was a significant improvement in both groups of respiratory muscle strength and endurance, thoracoabdominal mobility, and walking distance in the 6-min walk test. Additionally, there was a decrease of dyspnea in the 6-min walk test peak. A difference was found between groups, with higher values of respiratory muscle strength and thoracoabdominal mobility and lower values of dyspnea in the 6-min walk test peak and the Modified Medical Research Council dyspnea scale in the inspiratory muscle training group. In the inspiratory muscle training group, subjects with respiratory muscle weakness had greater gains in inspiratory muscle strength and endurance. Both interventions increased exercise capacity and decreased dyspnea during physical effort. However, inspiratory muscle training was more effective in increasing inspiratory muscle strength and endurance, which could result in a decreased sensation of dyspnea. In addition, subjects with respiratory muscle weakness that performed inspiratory muscle training had higher gains in inspiratory muscle strength and endurance but not of dyspnea and submaximal exercise capacity. (ClinicalTrials.gov registration NCT01510041.). Copyright © 2016 by Daedalus Enterprises.

  4. Exercise capacity and muscle strength and risk of vascular disease and arrhythmia in 1.1 million young Swedish men: cohort study.

    PubMed

    Andersen, Kasper; Rasmussen, Finn; Held, Claes; Neovius, Martin; Tynelius, Per; Sundström, Johan

    2015-09-16

    To investigate the associations of exercise capacity and muscle strength in late adolescence with risk of vascular disease and arrhythmia. Cohort study. General population in Sweden. 1.1 million men who participated in mandatory military conscription between 1 August 1972 and 31 December 1995, at a median age of 18.2 years. Participants were followed until 31 December 2010. Associations between exercise capacity and muscle strength with risk of vascular disease and subgroups (ischaemic heart disease, heart failure, stroke, and cardiovascular death) and risk of arrhythmia and subgroups (atrial fibrillation or flutter, bradyarrhythmia, supraventricular tachycardia, and ventricular arrhythmia or sudden cardiac death). Maximum exercise capacity was estimated by the ergometer bicycle test, and muscle strength was measured as handgrip strength by a hand dynamometer. High exercise capacity or muscle strength was deemed as above the median level. During a median follow-up of 26.3 years, 26 088 vascular disease events and 17 312 arrhythmia events were recorded. Exercise capacity was inversely associated with risk of vascular disease and its subgroups. Muscle strength was also inversely associated with vascular disease risk, driven by associations of higher muscle strength with lower risk of heart failure and cardiovascular death. Exercise capacity had a U shaped association with risk of arrhythmia, driven by a direct association with risk of atrial fibrillation and a U shaped association with bradyarrhythmia. Higher muscle strength was associated with lower risk of arrhythmia (specifically, lower risk of bradyarrhythmia and ventricular arrhythmia). The combination of high exercise capacity and high muscle strength was associated with a hazard ratio of 0.67 (95% confidence interval 0.65 to 0.70) for vascular events and 0.92 (0.88 to 0.97) for arrhythmia compared with the combination of low exercise capacity and low muscle strength. Exercise capacity and muscle strength in late adolescence are independently and jointly associated with long term risk of vascular disease and arrhythmia. The health benefit of lower risk of vascular events with higher exercise capacity was not outweighed by higher risk of arrhythmia. © Andersen et al 2015.

  5. Cancer-Specific Mortality Relative to Engagement in Muscle-Strengthening Activities and Lower Extremity Strength.

    PubMed

    Dankel, Scott J; Loenneke, Jeremy P; Loprinzi, Paul D

    2018-02-01

    Skeletal muscle strength and engagement in muscle-strengthening activities are each inversely associated with all-cause mortality; however, less is known on their relationship with cancer-specific mortality. Data from the 1999-2002 National Health and Nutrition Examination Survey were used assessing 2773 individuals aged 50 years or older. Individuals being dichotomized at the 75th percentile for knee extensor strength, and engagement in muscle-strengthening activities was acquired through self-report with ≥2 sessions per week were classified as meeting guidelines. With respect to cancer-specific mortality, individuals in the upper quartile for muscle strength were at a 50% reduced risk (hazard ratio = 0.50; 95% confidence interval, 0.29-0.85; P = .01) and those meeting muscle-strengthening activities were at a nonsignificant 8% reduced risk (hazard ratio = 0.92; 95% confidence interval, 0.45-1.86, P = .81) of cancer-specific mortality after adjusting for covariates. Clinicians should routinely assess lower extremity strength and promote engagement in muscle-strengthening activities aimed at increasing muscle strength.

  6. Quadriceps muscle strength and voluntary activation after polio.

    PubMed

    Beelen, Anita; Nollet, Frans; de Visser, Marianne; de Jong, Bareld A; Lankhorst, Gustaaf J; Sargeant, Anthony J

    2003-08-01

    Quadriceps strength, maximal anatomical cross-sectional area (CSA), maximal voluntary activation (MVA), and maximal relaxation rate (MRR) were studied in 48 subjects with a past history of polio, 26 with and 22 without postpoliomyelitis syndrome (PPS), and in 13 control subjects. It was also investigated whether, apart from CSA, MVA and MRR were determinants of muscle strength. Polio subjects had significantly less strength, CSA, and MRR in the more-affected quadriceps than control subjects. MVA was reduced in 18 polio subjects and normal in all controls. PPS subjects differed from non-PPS subjects only in that the MVA of the more-affected quadriceps was significantly lower. Both CSA and MVA were found to be associated with muscle strength. Quadriceps strength in polio subjects was dependent not only on muscle mass, but also on the ability to activate the muscles. Since impaired activation was more pronounced in PPS subjects, the new muscle weakness and functional decline in PPS may be due not only to a gradual loss of muscle fibers, but also to an increasing inability to activate the muscles.

  7. [Correlations Between Joint Proprioception, Muscle Strength, and Functional Ability in Patients with Knee Osteoarthritis].

    PubMed

    Chen, Yoa; Yu, Yong; He, Cheng-qi

    2015-11-01

    To establish correlations between joint proprioception, muscle flexion and extension peak torque, and functional ability in patients with knee osteoarthritis (OA). Fifty-six patients with symptomatic knee OA were recruited in this study. Both proprioceptive acuity and muscle strength were measured using the isomed-2000 isokinetic dynamometer. Proprioceptive acuity was evaluated by establishing the joint motion detection threshold (JMDT). Muscle strength was evaluated by Max torque (Nm) and Max torque/weight (Nm/ kg). Functional ability was assessed by the Western Ontario and McMaster Universities Osteoarthritis Index physical function (WOMAC-PF) questionnaire. Correlational analyses were performed between proprioception, muscle strength, and functional ability. A multiple stepwise regression model was established, with WOMAC-PF as dependent variable and patient age, body mass index (BMI), visual analogue scale (VAS)-score, mean grade for Kellgren-Lawrance of both knees, mean strength for quadriceps and hamstring muscles of both knees, and mean JMDT of both knees as independent variables. Poor proprioception (high JMDT) was negatively correlated with muscle strength (P<0.05). There was no significant correlation between knee proprioception (high JMDT) and joint pain (WOMAC pain score), and between knee proprioception (high JMDT) and joint stiffness (WOMAC stiffness score). Poor proprioception (high JMDT) was correlated with limitation in functional ability (WOMAC physical function score r=0.659, P<0.05). WOMAC score was correlated with poor muscle strength (quadriceps muscle strength r = -0.511, P<0.05, hamstring muscle strength r = -0.408, P<0.05). The multiple stepwise regression model showed that high JMDT C standard partial regression coefficient (B) = 0.385, P<0.50 and high VAS-scale score (B=0.347, P<0.05) were significant predictors of WOMAC-PF score. Patients with poor proprioception is associated with poor muscle strength and limitation in functional ability. Patients with symptomatic OA of knees commonly endure with moderate to considerable dysfunction, which is associated with poor proprioception (high JMDT) and high VAS-scale score.

  8. Cycle training induces muscle hypertrophy and strength gain: strategies and mechanisms.

    PubMed

    Ozaki, Hayao; Loenneke, J P; Thiebaud, R S; Abe, T

    2015-03-01

    Cycle training is widely performed as a major part of any exercise program seeking to improve aerobic capacity and cardiovascular health. However, the effect of cycle training on muscle size and strength gain still requires further insight, even though it is known that professional cyclists display larger muscle size compared to controls. Therefore, the purpose of this review is to discuss the effects of cycle training on muscle size and strength of the lower extremity and the possible mechanisms for increasing muscle size with cycle training. It is plausible that cycle training requires a longer period to significantly increase muscle size compared to typical resistance training due to a much slower hypertrophy rate. Cycle training induces muscle hypertrophy similarly between young and older age groups, while strength gain seems to favor older adults, which suggests that the probability for improving in muscle quality appears to be higher in older adults compared to young adults. For young adults, higher-intensity intermittent cycling may be required to achieve strength gains. It also appears that muscle hypertrophy induced by cycle training results from the positive changes in muscle protein net balance.

  9. Kinesiophobia, Pain, Muscle Functions, and Functional Performances among Older Persons with Low Back Pain

    PubMed Central

    2017-01-01

    Objectives This study aims (1) to determine the association between kinesiophobia and pain, muscle functions, and functional performances and (2) to determine whether kinesiophobia predicts pain, muscle functions, and functional performance among older persons with low back pain (LBP). Methods This is a correlational study, involving 63 institutionalized older persons (age = 70.98 ± 7.90 years) diagnosed with LBP. Anthropometric characteristics (BMI) and functional performances (lower limb function, balance and mobility, and hand grip strength) were measured. Muscle strength (abdominal and back muscle strength) was assessed using the Baseline® Mechanical Push/Pull Dynamometer, while muscle control (transverse abdominus and multifidus) was measured by using the Pressure Biofeedback Unit. The pain intensity and the level of kinesiophobia were measured using Numerical Rating Scale and Tampa Scale of Kinesiophobia, respectively. Data were analyzed using Pearson's correlation coefficients and multivariate linear regressions. Results No significant correlations were found between kinesiophobia and pain and muscle functions (all p > 0.05). Kinesiophobia was significantly correlated with mobility and balance (p = 0.038, r = 0.263). Regressions analysis showed that kinesiophobia was a significant predictor of mobility and balance (p = 0.038). Conclusion We can conclude that kinesiophobia predicted mobility and balance in older persons with LBP. Kinesiophobia should be continuously assessed in clinical settings to recognize the obstacles that may affect patient's compliance towards a rehabilitation program in older persons with LBP. PMID:28634547

  10. A comparison between handgrip strength, upper limb fat free mass by segmental bioelectrical impedance analysis (SBIA) and anthropometric measurements in young males

    NASA Astrophysics Data System (ADS)

    Gonzalez-Correa, C. H.; Caicedo-Eraso, J. C.; Varon-Serna, D. R.

    2013-04-01

    The mechanical function and size of a muscle may be closely linked. Handgrip strength (HGS) has been used as a predictor of functional performing. Anthropometric measurements have been made to estimate arm muscle area (AMA) and physical muscle mass volume of upper limb (ULMMV). Electrical volume estimation is possible by segmental BIA measurements of fat free mass (SBIA-FFM), mainly muscle-mass. Relationship among these variables is not well established. We aimed to determine if physical and electrical muscle mass estimations relate to each other and to what extent HGS is to be related to its size measured by both methods in normal or overweight young males. Regression analysis was used to determine association between these variables. Subjects showed a decreased HGS (65.5%), FFM, (85.5%) and AMA (74.5%). It was found an acceptable association between SBIA-FFM and AMA (r2 = 0.60) and poorer between physical and electrical volume (r2 = 0.55). However, a paired Student t-test and Bland and Altman plot showed that physical and electrical models were not interchangeable (pt<0.0001). HGS showed a very weak association with anthropometric (r2 = 0.07) and electrical (r2 = 0.192) ULMMV showing that muscle mass quantity does not mean muscle strength. Other factors influencing HGS like physical training or nutrition require more research.

  11. Muscle and the physiology of locomotion. [in zero gravity

    NASA Technical Reports Server (NTRS)

    Rambaut, P. C.; Nicogossian, A. E.; Pool, S. L.

    1983-01-01

    NASA's past, current, and planned research on muscle deterioration at zero gravity and development of countermeasures are reviewed; Soviet studies are discussed as well. A definition of muscle mass and strength regulation factors, and improved measurement methods of muscle atrophy are needed. Investigations of tissue growth factors and their receptors, endogenous and exogenous anabolic protein synthesis stimulation, and a potential neurotropic factor are among the projects in progress or planned. At present, vigorous physical exercise during spaceflight is recommended as the most effective countermeasure against skeletal muscle atrophy.

  12. Short-term effect of local muscle vibration treatment versus sham therapy on upper limb in chronic post-stroke patients: a randomized controlled trial.

    PubMed

    Costantino, Cosimo; Galuppo, Laura; Romiti, Davide

    2017-02-01

    In recent years, local muscle vibration received considerable attention as a useful method for muscle stimulation in clinical therapy. Some studies described specific vibration training protocol, and few of them were conducted on post-stroke patients. Therefore there is a general uncertainty regarding the vibrations protocol. The aim of this study was to evaluate the effects of local muscle high frequency mechano-acoustic vibratory treatment on grip muscle strength, muscle tonus, disability and pain in post-stroke individuals with upper limb spasticity. Single-blind randomized controlled trial. Outpatient rehabilitation center. Thirty-two chronic poststroke patients with upper-limb spasticity: 21 males, 11 females, mean age 61.59 years ±15.50, time passed from stroke 37.78±17.72 months. The protocol treatment consisted of the application of local muscle vibration, set to a frequency of 300 Hz, for 30 minutes 3 times per week, for 12 sessions, applied to the skin covering the venter of triceps brachii and extensor carpi radialis longus and brevis muscles during voluntary isometric contraction. All participants were randomized in two groups: group A treated with vibration protocol; group B with sham therapy. All participants were evaluated before and after 4-week treatment with Hand Grip Strength Test, Modified Ashworth Scale, QuickDASH score, FIM scale, Fugl-Meyer Assessment, Jebsen-Taylor Hand Function Test and Verbal Numerical Rating Scale of pain. Outcomes between groups was compared using a repeated-measures ANOVA. Over 4 weeks, the values recorded in group A when compared to group B demonstrated statistically significant improvement in grip muscle strength, pain and quality of life and decrease of spasticity; P-values were <0.05 in all tested parameters. Rehabilitation treatment with local muscle high frequency (300 Hz) vibration for 30 minutes, 3 times a week for 4 weeks, could significantly improve muscle strength and decrease muscle tonus, disability and pain in upper limb of hemiplegic post-stroke patients. Local muscle vibration treatment might be an additional and safe tool in the management of chronic poststroke patients, granted its high therapeutic efficiency, limited cost and short and repeatable protocol of use.

  13. Subclinical Hypothyroidism has Little Influences on Muscle Mass or Strength in Elderly People

    PubMed Central

    Moon, Min Kyong; Lee, You Jin; Choi, Sung Hee; Lim, Soo; Yang, Eun Joo; Lim, Jae-Young; Paik, Nam-Jong; Kim, Ki Woong; Park, Kyong Soo; Jang, Hak C.

    2010-01-01

    Sarcopenia, the age-related decline in muscle mass, affects the muscle strength and muscle quality, and these changes decrease functional capacity. The prevalence of thyroid dysfunction increases with age, and changes in thyroid hormone level lead to neuromuscular deficits. We investigated the effects of subclinical hypothyroidism on the muscle mass, strength or quality in elderly people. One thousand one hundred eighteen subjects aged ≥65 yr were randomly selected from a local population and classified into a euthyroid (280 men and 358 women), subclinically hypothyroid (61 men and 75 women), or overtly hypothyroid (7 men and 16 women) group. Although women with subclinical hypothyroidism had a higher prevalence of sarcopenia, defined according to the ratio of appendicular skeletal muscle mass to the square of height, muscle mass, strength or quality did not differ in relation to thyroid status in men or in women. Multivariate analysis including age, diabetes, hypertension, acute coronary event, alcohol, smoking, presence of pain, physical activity score, and lipid profile, showed that thyroid-stimulating hormone level was not associated with muscle mass, strength or quality. In conclusion, subclinical hypothyroidism has little influences on muscle mass, strength or quality, and may not be associated with sarcopenia. PMID:20676329

  14. Subclinical hypothyroidism has little influences on muscle mass or strength in elderly people.

    PubMed

    Moon, Min Kyong; Lee, You Jin; Choi, Sung Hee; Lim, Soo; Yang, Eun Joo; Lim, Jae-Young; Paik, Nam-Jong; Kim, Ki Woong; Park, Kyong Soo; Jang, Hak C; Cho, Bo Youn; Park, Young Joo

    2010-08-01

    Sarcopenia, the age-related decline in muscle mass, affects the muscle strength and muscle quality, and these changes decrease functional capacity. The prevalence of thyroid dysfunction increases with age, and changes in thyroid hormone level lead to neuromuscular deficits. We investigated the effects of subclinical hypothyroidism on the muscle mass, strength or quality in elderly people. One thousand one hundred eighteen subjects aged > or = 65 yr were randomly selected from a local population and classified into a euthyroid (280 men and 358 women), subclinically hypothyroid (61 men and 75 women), or overtly hypothyroid (7 men and 16 women) group. Although women with subclinical hypothyroidism had a higher prevalence of sarcopenia, defined according to the ratio of appendicular skeletal muscle mass to the square of height, muscle mass, strength or quality did not differ in relation to thyroid status in men or in women. Multivariate analysis including age, diabetes, hypertension, acute coronary event, alcohol, smoking, presence of pain, physical activity score, and lipid profile, showed that thyroid-stimulating hormone level was not associated with muscle mass, strength or quality. In conclusion, subclinical hypothyroidism has little influences on muscle mass, strength or quality, and may not be associated with sarcopenia.

  15. Effects that passive cycling exercise have on muscle strength, duration of mechanical ventilation, and length of hospital stay in critically ill patients: a randomized clinical trial

    PubMed Central

    Machado, Aline dos Santos; Pires-Neto, Ruy Camargo; Carvalho, Maurício Tatsch Ximenes; Soares, Janice Cristina; Cardoso, Dannuey Machado; de Albuquerque, Isabella Martins

    2017-01-01

    ABSTRACT Objective: To evaluate the effects that passive cycling exercise, in combination with conventional physical therapy, have on peripheral muscle strength, duration of mechanical ventilation, and length of hospital stay in critically ill patients admitted to the ICU of a tertiary care university hospital. Methods: This was a randomized clinical trial involving 38 patients (≥ 18 years of age) on mechanical ventilation who were randomly divided into two groups: control (n = 16), receiving conventional physical therapy; and intervention (n = 22), receiving conventional physical therapy and engaging in passive cycling exercise five days per week. The mean age of the patients was 46.42 ± 16.25 years, and 23 were male. The outcomes studied were peripheral muscle strength, as measured by the Medical Research Council scale, duration of mechanical ventilation, and length of hospital stay. Results: There was a significant increase in peripheral muscle strength (baseline vs. final) in both groups (control: 40.81 ± 7.68 vs. 45.00 ± 6.89; and intervention: 38.73 ± 11.11 vs. 47.18 ± 8.75; p < 0.001 for both). However, the range of increase in strength was higher in the intervention group than in the control group (8.45 ± 5.20 vs. 4.18 ± 2.63; p = 0.005). There were no significant differences between the groups in terms of duration of mechanical ventilation or length of hospital stay. Conclusions: The results suggest that the performance of continuous passive mobilization on a cyclical basis helps to recover peripheral muscle strength in ICU patients. (ClinicalTrials.gov Identifier: NCT01769846 [http://www.clinicaltrials.gov/]) PMID:28538781

  16. Reliability and group differences in quantitative cervicothoracic measures among individuals with and without chronic neck pain

    PubMed Central

    2012-01-01

    Background Clinicians frequently rely on subjective categorization of impairments in mobility, strength, and endurance for clinical decision-making; however, these assessments are often unreliable and lack sensitivity to change. The objective of this study was to determine the inter-rater reliability, minimum detectable change (MDC), and group differences in quantitative cervicothoracic measures for individuals with and without chronic neck pain (NP). Methods Nineteen individuals with NP and 20 healthy controls participated in this case control study. Two physical therapists performed a 30-minute examination on separate days. A handheld dynamometer, gravity inclinometer, ruler, and stopwatch were used to quantify cervical range of motion (ROM), cervical muscle strength and endurance, and scapulothoracic muscle length and strength, respectively. Results Intraclass correlation coefficients for inter-rater reliability were significantly greater than zero for most impairment measures, with point estimates ranging from 0.45 to 0.93. The NP group exhibited reduced cervical ROM (P ≤ 0.012) and muscle strength (P ≤ 0.038) in most movement directions, reduced cervical extensor endurance (P = 0.029), and reduced rhomboid and middle trapezius muscle strength (P ≤ 0.049). Conclusions Results demonstrate the feasibility of obtaining objective cervicothoracic impairment measures with acceptable inter-rater agreement across time. The clinical utility of these measures is supported by evidence of impaired mobility, strength, and endurance among patients with NP, with corresponding MDC values that can help establish benchmarks for clinically significant change. PMID:23114092

  17. Effects of Training Attendance on Muscle Strength of Young Men after 11 Weeks of Resistance Training

    PubMed Central

    Gentil, Paulo; Bottaro, Martim

    2013-01-01

    Purpose Training attendance is an important variable for attaining optimal results after a resistance training (RT) program, however, the association of attendance with the gains of muscle strength is not well defined. Therefore, the purpose of the present study is to verify if attendance would affect muscle strength gains in healthy young males. Methods Ninety two young males with no previous RT experience volunteered to participate in the study. RT was performed 2 days a week for 11 weeks. One repetition maximum (1RM) in the bench press and knee extensors peak torque (PT) were measured before and after the training period. After the training period, a two step cluster analysis was used to classify the participants in accordance to training attendance, resulting in three groups, defined as high (92 to 100%), intermediate (80 to 91%) and low (60 to 79%) training attendance. Results According to the results, there were no significant correlations between strength gains and training attendance, however, when attendance groups were compared, the low training attendance group showed lower increases in 1RM bench press (8.8%) than the other two groups (17.6% and 18.0% for high and intermediate attendance, respectively). Conclusions Although there is not a direct correlation between training attendance and muscle strength gains, it is suggested that a minimum attendance of 80% is necessary to ensure optimal gains in upper body strength. PMID:23802051

  18. A comparison of manual and quantitative elbow strength testing.

    PubMed

    Shahgholi, Leili; Bengtson, Keith A; Bishop, Allen T; Shin, Alexander Y; Spinner, Robert J; Basford, Jeffrey R; Kaufman, Kenton R

    2012-10-01

    The aim of this study was to compare the clinical ratings of elbow strength obtained by skilled clinicians with objective strength measurement obtained through quantitative testing. A retrospective comparison of subject clinical records with quantitative strength testing results in a motion analysis laboratory was conducted. A total of 110 individuals between the ages of 8 and 65 yrs with traumatic brachial plexus injuries were identified. Patients underwent manual muscle strength testing as assessed on the 5-point British Medical Research Council Scale (5/5, normal; 0/5, absent) and quantitative elbow flexion and extension strength measurements. A total of 92 subjects had elbow flexion testing. Half of the subjects clinically assessed as having normal (5/5) elbow flexion strength on manual muscle testing exhibited less than 42% of their age-expected strength on quantitative testing. Eighty-four subjects had elbow extension strength testing. Similarly, half of those displaying normal elbow extension strength on manual muscle testing were found to have less than 62% of their age-expected values on quantitative testing. Significant differences between manual muscle testing and quantitative findings were not detected for the lesser (0-4) strength grades. Manual muscle testing, even when performed by experienced clinicians, may be more misleading than expected for subjects graded as having normal (5/5) strength. Manual muscle testing estimates for the lesser strength grades (1-4/5) seem reasonably accurate.

  19. Relationships between Isometric Muscle Strength, Gait Parameters, and Gross Motor Function Measure in Patients with Cerebral Palsy.

    PubMed

    Shin, Hyung Ik; Sung, Ki Hyuk; Chung, Chin Youb; Lee, Kyoung Min; Lee, Seung Yeol; Lee, In Hyeok; Park, Moon Seok

    2016-01-01

    This study investigated the correlation between isometric muscle strength, gross motor function, and gait parameters in patients with spastic cerebral palsy and to find which muscle groups play an important role for gait pattern in a flexed knee gait. Twenty-four ambulatory patients (mean age, 10.0 years) with spastic cerebral palsy who were scheduled for single event multilevel surgery, including distal hamstring lengthening, were included. Preoperatively, peak isometric muscle strength was measured for the hip flexor, hip extensor, knee flexor, and knee extensor muscle groups using a handheld dynamometer, and three-dimensional (3D) gait analysis and gross motor function measure (GMFM) scoring were also performed. Correlations between peak isometric strength and GMFM, gait kinematics, and gait kinetics were analyzed. Peak isometric muscle strength of all muscle groups was not related to the GMFM score and the gross motor function classification system level. Peak isometric strength of the hip extensor and knee extensor was significantly correlated with the mean pelvic tilt (r=-0.588, p=0.003 and r=-0.436, p=0.033) and maximum pelvic obliquity (r=-0.450, p=0.031 and r=-0.419, p=0.041). There were significant correlations between peak isometric strength of the knee extensor and peak knee extensor moment in early stance (r=0.467, p=0.021) and in terminal stance (r=0.416, p=0.043). There is no correlation between muscle strength and gross motor function. However, this study showed that muscle strength, especially of the extensor muscle group of the hip and knee joints, might play a critical role in gait by stabilizing pelvic motion and decreasing energy consumption in a flexed knee gait.

  20. Inspiratory muscle training increases inspiratory muscle strength in patients weaning from mechanical ventilation: a systematic review.

    PubMed

    Moodie, Lisa; Reeve, Julie; Elkins, Mark

    2011-01-01

    Does inspiratory muscle training improve inspiratory muscle strength and endurance, facilitate weaning, improve survival, and reduce the rate of reintubation and tracheostomy in adults receiving mechanical ventilation? Systematic review of randomised or quasi-randomised controlled trials. Adults over 16 years of age receiving mechanical ventilation. Inspiratory muscle training versus sham or no inspiratory muscle training. Data were extracted regarding inspiratory muscle strength and endurance, the duration of unassisted breathing periods, weaning success and duration, reintubation and tracheostomy, survival, adverse effects, and length of stay. Three studies involving 150 participants were included in the review. The studies varied in time to commencement of the training, the device used, the training protocol, and the outcomes measured. Inspiratory muscle training significantly increased inspiratory muscle strength over sham or no training (weighted mean difference 8 cmH(2)O, 95% CI 6 to 9). There were no statistically significant differences between the groups in weaning success or duration, survival, reintubation, or tracheostomy. Inspiratory muscle training was found to significantly increase inspiratory muscle strength in adults undergoing mechanical ventilation. Despite data from a substantial pooled cohort, it is not yet clear whether the increase in inspiratory muscle strength leads to a shorter duration of mechanical ventilation, improved weaning success, or improved survival. Further large randomised studies are required to clarify the impact of inspiratory muscle training on patients receiving mechanical ventilation. PROSPERO CRD42011001132. Copyright © 2011 Australian Physiotherapy Association. Published by .. All rights reserved.

  1. Autism Severity and Muscle Strength: A Correlation Analysis

    ERIC Educational Resources Information Center

    Kern, Janet K.; Geier, David A.; Adams, James B.; Troutman, Melissa R.; Davis, Georgia; King, Paul G.; Young, John L.; Geier, Mark R.

    2011-01-01

    The current study examined the relationship between muscle strength, as measured by hand grip strength, and autism severity, as measured by the Childhood Autism Rating Scale (CARS). Thirty-seven (37) children with a diagnosis of autism spectrum disorder (ASD) were evaluated using the CARS and then tested for hand muscle strength using a hand grip…

  2. Foot and ankle muscle strength in people with gout: A two-arm cross-sectional study.

    PubMed

    Stewart, Sarah; Mawston, Grant; Davidtz, Lisa; Dalbeth, Nicola; Vandal, Alain C; Carroll, Matthew; Morpeth, Trish; Otter, Simon; Rome, Keith

    2016-02-01

    Foot and ankle structures are the most commonly affected in people with gout. However, the effect of gout on foot and ankle muscle strength is not well understood. The primary aim of this study was to determine whether differences exist in foot and ankle muscle strength for plantarflexion, dorsiflexion, inversion and eversion between people with gout and age- and sex-matched controls. The secondary aim was to determine whether foot and ankle muscle strength was correlated with foot pain and disability. Peak isokinetic concentric muscle torque was measured for ankle plantarflexion, dorsiflexion, eversion and inversion in 20 participants with gout and 20 matched controls at two testing velocities (30°/s and 120°/s) using a Biodex dynamometer. Foot pain and disability was measured using the Manchester Foot Pain and Disability Index (MFPDI). Participants with gout demonstrated reduced muscle strength at both the 30°/s and 120°/s testing velocities for plantarflexion, inversion and eversion (P<0.05). People with gout also displayed a reduced plantarflexion-to-dorsiflexion strength ratio at both 30°/s and 120°/s (P<0.05). Foot pain and disability was higher in people with gout (P<0.0001) and MFPDI scores were inversely correlated with plantarflexion and inversion muscle strength at the 30°/s testing velocity, and plantarflexion, inversion and eversion muscle strength at the 120°/s testing velocity (all P<0.05). People with gout have reduced foot and ankle muscle strength and experience greater foot pain and disability compared to controls. Foot and ankle strength reductions are strongly associated with increased foot pain and disability in people with gout. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Relationship between paraspinal muscle cross-sectional area and relative proprioceptive weighting ratio of older persons with lumbar spondylosis.

    PubMed

    Ito, Tadashi; Sakai, Yoshihito; Nakamura, Eishi; Yamazaki, Kazunori; Yamada, Ayaka; Sato, Noritaka; Morita, Yoshifumi

    2015-07-01

    [Purpose] The purpose of this study was to examine the relationship between the paraspinal muscle cross-sectional area and the relative proprioceptive weighting ratio during local vibratory stimulation of older persons with lumbar spondylosis in an upright position. [Subjects] In all, 74 older persons hospitalized for lumbar spondylosis were included. [Methods] We measured the relative proprioceptive weighting ratio of postural sway using a Wii board while vibratory stimulations of 30, 60, or 240 Hz were applied to the subjects' paraspinal or gastrocnemius muscles. Back strength, abdominal muscle strength, and erector spinae muscle (L1/L2, L4/L5) and lumbar multifidus (L1/L2, L4/L5) cross-sectional areas were evaluated. [Results] The erector spinae muscle (L1/L2) cross-sectional area was associated with the relative proprioceptive weighting ratio during 60Hz stimulation. [Conclusion] These findings show that the relative proprioceptive weighting ratio compared to the erector spinae muscle (L1/L2) cross-sectional area under 60Hz proprioceptive stimulation might be a good indicator of trunk proprioceptive sensitivity.

  4. Do muscle mass, muscle density, strength, and physical function similarly influence risk of hospitalization in older adults?

    PubMed

    Cawthon, Peggy Mannen; Fox, Kathleen M; Gandra, Shravanthi R; Delmonico, Matthew J; Chiou, Chiun-Fang; Anthony, Mary S; Sewall, Ase; Goodpaster, Bret; Satterfield, Suzanne; Cummings, Steven R; Harris, Tamara B

    2009-08-01

    To examine the association between strength, function, lean mass, muscle density, and risk of hospitalization. Prospective cohort study. Two U.S. clinical centers. Adults aged 70 to 80 (N=3,011) from the Health, Aging and Body Composition Study. Measurements were of grip strength, knee extension strength, lean mass, walking speed, and chair stand pace. Thigh computed tomography scans assessed muscle area and density (a proxy for muscle fat infiltration). Hospitalizations were confirmed by local review of medical records. Negative binomial regression models estimated incident rate ratios (IRRs) of hospitalization for race- and sex-specific quartiles of each muscle and function parameter separately. Multivariate models adjusted for age, body mass index, health status, and coexisting medical conditions. During an average 4.7 years of follow-up, 1,678 (55.7%) participants experienced one or more hospitalizations. Participants in the lowest quartile of muscle density were more likely to be subsequently hospitalized (multivariate IRR=1.47, 95% confidence interval (CI)=1.24-1.73) than those in the highest quartile. Similarly, participants with the weakest grip strength were at greater risk of hospitalization (multivariate IRR=1.52, 95% CI=1.30-1.78, Q1 vs. Q4). Comparable results were seen for knee strength, walking pace, and chair stands pace. Lean mass and muscle area were not associated with risk of hospitalization. Weak strength, poor function, and low muscle density, but not muscle size or lean mass, were associated with greater risk of hospitalization. Interventions to reduce the disease burden associated with sarcopenia should focus on increasing muscle strength and improving physical function rather than simply increasing lean mass.

  5. Hamstring Strength and Morphology Progression after Return to Sport from Injury

    PubMed Central

    Sanfilippo, Jennifer; Silder, Amy; Sherry, Marc A; Tuite, Michael J; Heiderscheit, Bryan C

    2012-01-01

    Hamstring strain re-injury rates can reach 30% within the initial two weeks following return to sport (RTS). Incomplete recovery of strength may be a contributing factor. However, relative strength of the injured and unaffected limbs at RTS is currently unknown. PURPOSE: Characterize hamstring strength and morphology at the time of RTS and six months later. METHODS: Twenty-five athletes that experienced an acute hamstring strain injury participated, following completion of a controlled rehabilitation program. Bilateral isokinetic strength testing and magnetic resonance imaging (MRI) were performed at RTS and 6-months later. Strength (knee flexion peak torque, work, angle of peak torque) and MRI (muscle and tendon volumes) measures were compared between limbs and over time using repeated measures ANOVA. RESULTS: The injured limb showed a peak torque deficit of 9.6% compared to the uninjured limb at RTS (60°/s, p<0.001), but not 6-months following. The knee flexion angle of peak torque decreased over time for both limbs (60°/s, p<0.001). MRI revealed that 20.4% of the muscle cross-sectional area showed signs of edema at RTS with full resolution by the 6-month follow-up. Tendon volume of the injured limb tended to increase over time (p=0.108), while muscle volume decreased 4–5% in both limbs (p<0.001). CONCLUSION: Residual edema and deficits in isokinetic knee flexion strength were present at RTS, but resolved during the subsequent six months. This occurred despite MRI evidence of scar tissue formation (increased tendon volume) and muscle atrophy, suggesting that neuromuscular factors may contribute to the return of strength. PMID:23059864

  6. Respiratory muscle strength is not decreased in patients undergoing cardiac surgery.

    PubMed

    Urell, Charlotte; Emtner, Margareta; Hedenstrom, Hans; Westerdahl, Elisabeth

    2016-03-31

    Postoperative pulmonary impairments are significant complications after cardiac surgery. Decreased respiratory muscle strength could be one reason for impaired lung function in the postoperative period. The primary aim of this study was to describe respiratory muscle strength before and two months after cardiac surgery. A secondary aim was to describe possible associations between respiratory muscle strength and lung function. In this prospective observational study 36 adult cardiac surgery patients (67 ± 10 years) were studied. Respiratory muscle strength and lung function were measured before and two months after surgery. Pre- and postoperative respiratory muscle strength was in accordance with predicted values; MIP was 78 ± 24 cmH2O preoperatively and 73 ± 22 cmH2O at two months follow-up (p = 0.19). MEP was 122 ± 33 cmH2O preoperatively and 115 ± 38 cmH2O at two months follow-up (p = 0.18). Preoperative lung function was in accordance with predicted values, but was significantly decreased postoperatively. At two-months follow-up there was a moderate correlation between MIP and FEV1 (r = 0.43, p = 0.009). Respiratory muscle strength was not impaired, either before or two months after cardiac surgery. The reason for postoperative lung function alteration is not yet known. Interventions aimed at restore an optimal postoperative lung function should focus on other interventions then respiratory muscle strength training.

  7. Risk factors for worsened muscle strength after the surgical treatment of arteriovenous malformations of the eloquent motor area.

    PubMed

    Lin, Fuxin; Zhao, Bing; Wu, Jun; Wang, Lijun; Jin, Zhen; Cao, Yong; Wang, Shuo

    2016-08-01

    OBJECT Case selection for the surgical treatment of arteriovenous malformations (AVMs) of the eloquent motor area remains challenging. The aim of this study was to determine the risk factors for worsened muscle strength after surgery in patients with this disorder. METHODS At their hospital the authors retrospectively studied 48 consecutive patients with AVMs involving motor cortex and/or the descending pathway. All patients had undergone preoperative functional MRI (fMRI) and diffusion tensor imaging (DTI), followed by resection. Both functional and angioarchitectural factors were analyzed with respect to the change in muscle strength. Functional factors included lesion-to-corticospinal tract distance (LCD) on DTI and lesion-to-activation area distance (LAD) and cortical reorganization on fMRI. Based on preoperative muscle strength, the changes in muscle strength at 1 week and 6 months after surgery were defined as short-term and long-term surgical outcomes, respectively. Statistical analysis was performed using the statistical package SPSS (version 20.0.0, IBM Corp.). RESULTS Twenty-one patients (43.8%) had worsened muscle strength 1 week after surgery. However, only 10 patients (20.8%) suffered from muscle strength worsening 6 months after surgery. The LCD was significantly correlated with short-term (p < 0.001) and long-term (p < 0.001) surgical outcomes. For long-term outcomes, patients in the 5 mm ≥ LCD > 0 mm (p = 0.009) and LCD > 5 mm (p < 0.001) categories were significantly associated with a lower risk of permanent motor worsening in comparison with patients in the LCD = 0 mm group. No significant difference was found between patients in the 5 mm ≥ LCD > 0 mm group and LCD > 5 mm group (p = 0.116). Nidus size was the other significant predictor of short-term (p = 0.021) and long-term (p = 0.016) outcomes. For long-term outcomes, the area under the ROC curve (AUC) was 0.728, and the cutoff point was 3.6 cm. Spetzler-Martin grade was not associated with short-term surgical outcomes (0.143), although it was correlated with long-term outcomes (0.038). CONCLUSIONS An AVM with a nidus in contact with tracked eloquent fibers (LCD = 0) and having a large size is more likely to be associated with worsened muscle strength after surgery in patients with eloquent motor area AVMs. Surgical treatment in these patients should be carefully considered. In patients with an LCD > 5 mm, radical resection may be considered to eliminate the risk of hemorrhage.

  8. Effect of Ankle Range of Motion (ROM) and Lower-Extremity Muscle Strength on Static Balance Control Ability in Young Adults: A Regression Analysis

    PubMed Central

    Kim, Seong-Gil

    2018-01-01

    Background The purpose of this study was to investigate the effect of ankle ROM and lower-extremity muscle strength on static balance control ability in young adults. Material/Methods This study was conducted with 65 young adults, but 10 young adults dropped out during the measurement, so 55 young adults (male: 19, female: 36) completed the study. Postural sway (length and velocity) was measured with eyes open and closed, and ankle ROM (AROM and PROM of dorsiflexion and plantarflexion) and lower-extremity muscle strength (flexor and extensor of hip, knee, and ankle joint) were measured. Pearson correlation coefficient was used to examine the correlation between variables and static balance ability. Simple linear regression analysis and multiple linear regression analysis were used to examine the effect of variables on static balance ability. Results In correlation analysis, plantarflexion ROM (AROM and PROM) and lower-extremity muscle strength (except hip extensor) were significantly correlated with postural sway (p<0.05). In simple correlation analysis, all variables that passed the correlation analysis procedure had significant influence (p<0.05). In multiple linear regression analysis, plantar flexion PROM with eyes open significantly influenced sway length (B=0.681) and sway velocity (B=0.011). Conclusions Lower-extremity muscle strength and ankle plantarflexion ROM influenced static balance control ability, with ankle plantarflexion PROM showing the greatest influence. Therefore, both contractile structures and non-contractile structures should be of interest when considering static balance control ability improvement. PMID:29760375

  9. Effect of Ankle Range of Motion (ROM) and Lower-Extremity Muscle Strength on Static Balance Control Ability in Young Adults: A Regression Analysis.

    PubMed

    Kim, Seong-Gil; Kim, Wan-Soo

    2018-05-15

    BACKGROUND The purpose of this study was to investigate the effect of ankle ROM and lower-extremity muscle strength on static balance control ability in young adults. MATERIAL AND METHODS This study was conducted with 65 young adults, but 10 young adults dropped out during the measurement, so 55 young adults (male: 19, female: 36) completed the study. Postural sway (length and velocity) was measured with eyes open and closed, and ankle ROM (AROM and PROM of dorsiflexion and plantarflexion) and lower-extremity muscle strength (flexor and extensor of hip, knee, and ankle joint) were measured. Pearson correlation coefficient was used to examine the correlation between variables and static balance ability. Simple linear regression analysis and multiple linear regression analysis were used to examine the effect of variables on static balance ability. RESULTS In correlation analysis, plantarflexion ROM (AROM and PROM) and lower-extremity muscle strength (except hip extensor) were significantly correlated with postural sway (p<0.05). In simple correlation analysis, all variables that passed the correlation analysis procedure had significant influence (p<0.05). In multiple linear regression analysis, plantar flexion PROM with eyes open significantly influenced sway length (B=0.681) and sway velocity (B=0.011). CONCLUSIONS Lower-extremity muscle strength and ankle plantarflexion ROM influenced static balance control ability, with ankle plantarflexion PROM showing the greatest influence. Therefore, both contractile structures and non-contractile structures should be of interest when considering static balance control ability improvement.

  10. Is a sphygmomanometer a valid and reliable tool to measure the isometric strength of hip muscles? A systematic review.

    PubMed

    Toohey, Liam Anthony; De Noronha, Marcos; Taylor, Carolyn; Thomas, James

    2015-02-01

    Muscle strength measurement is a key component of physiotherapists' assessment and is frequently used as an outcome measure. A sphygmomanometer is an instrument commonly used to measure blood pressure that can be potentially used as a tool to assess isometric muscle strength. To systematically review the evidence on the reliability and validity of a sphygmomanometer for measuring isometric strength of hip muscles. A literature search was conducted across four databases. Studies were eligible if they presented data on reliability and/or validity, used a sphygmomanometer to measure isometric muscle strength of the hip region, and were peer reviewed. The individual studies were evaluated for quality using a standardized critical appraisal tool. A total of 644 articles were screened for eligibility, with five articles chosen for inclusion. The use of a sphygmomanometer to objectively assess isometric muscle strength of the hip muscles appears to be reliable with intraclass correlation coefficient values ranging from 0.66 to 0.94 in elderly and young populations. No studies were identified that have assessed the validity of a sphygmomanometer. The sphygmomanometer appears to be reliable for assessment of isometric muscle strength around the hip joint, but further research is warranted to establish its validity.

  11. Fish-oil supplementation enhances the effects of strength training in elderly women.

    PubMed

    Rodacki, Cintia L N; Rodacki, André L F; Pereira, Gleber; Naliwaiko, Katya; Coelho, Isabela; Pequito, Daniele; Fernandes, Luiz Cléudio

    2012-02-01

    Muscle force and functional capacity generally decrease with aging in the older population, although this effect can be reversed, attenuated, or both through strength training. Fish oil (FO), which is rich in n-3 (omega-3) PUFAs, has been shown to play a role in the plasma membrane and cell function of muscles, which may enhance the benefits of training. The effect of strength training and FO supplementation on the neuromuscular system of the elderly has not been investigated. The objective was to investigate the chronic effect of FO supplementation and strength training on the neuromuscular system (muscle strength and functional capacity) of older women. Forty-five women (aged 64 ± 1.4 y) were randomly assigned to 3 groups. One group performed strength training only (ST group) for 90 d, whereas the others performed the same strength-training program and received FO supplementation (2 g/d) for 90 d (ST90 group) or for 150 d (ST150 group; supplemented 60 d before training). Muscle strength and functional capacity were assessed before and after the training period. No differences in the pretraining period were found between groups for any of the variables. The peak torque and rate of torque development for all muscles (knee flexor and extensor, plantar and dorsiflexor) increased from pre- to posttraining in all groups. However, the effect was greater in the ST90 and ST150 groups than in the ST group. The activation level and electromechanical delay of the muscles changed from pre- to posttraining only for the ST90 and ST150 groups. Chair-rising performance in the FO groups was higher than in the ST group. Strength training increased muscle strength in elderly women. The inclusion of FO supplementation caused greater improvements in muscle strength and functional capacity.

  12. Functional polymorphisms associated with human muscle size and strength.

    PubMed

    Thompson, Paul D; Moyna, Niall; Seip, Richard; Price, Thomas; Clarkson, Priscilla; Angelopoulos, Theodore; Gordon, Paul; Pescatello, Linda; Visich, Paul; Zoeller, Robert; Devaney, Joseph M; Gordish, Heather; Bilbie, Stephen; Hoffman, Eric P

    2004-07-01

    Skeletal muscle is critically important to human performance and health, but little is known of the genetic factors influencing muscle size, strength, and its response to exercise training. The Functional single nucleotide polymorphisms (SNP) Associated with Muscle Size and Strength, or FAMuSS, Study is a multicenter, NIH-funded program to examine the influence of gene polymorphisms on skeletal muscle size and strength before and after resistance exercise training. One thousand men and women, age 18 - 40 yr, will train their nondominant arm for 12 wk. Skeletal muscle size (magnetic resonance imaging) and isometric and dynamic strength will be measured before and after training. Individuals whose baseline values or response to training deviate > or = 1.5 SD will be defined as outliers and examined for genetic variants. Initially candidate genes previously associated with muscle performance will be examined, but the study will ultimately attempt to identify genes associated with muscle performance. FAMuSS should help identify genetic factors associated with muscle performance and the response to exercise training. Such insight should contribute to our ability to predict the individual response to exercise training but may also contribute to understanding better muscle physiology, to identifying individuals who are susceptible to muscle loss with environmental challenge, and to developing pharmacologic agents capable of preserving muscle size and function.

  13. Non-elite gymnastics participation is associated with greater bone strength, muscle size, and function in pre- and early pubertal girls.

    PubMed

    Burt, L A; Naughton, G A; Greene, D A; Courteix, D; Ducher, G

    2012-04-01

    Recent reports indicate an increase in forearm fractures in children. Bone geometric properties are an important determinant of bone strength and therefore fracture risk. Participation in non-elite gymnastics appears to contribute to improving young girls' musculoskeletal health, more specifically in the upper body. The primary aim of this study was to determine the association between non-elite gymnastics participation and upper limb bone mass, geometry, and strength in addition to muscle size and function in young girls. Eighty-eight pre- and early pubertal girls (30 high-training gymnasts [HGYM, 6-16 hr/ wk], 29 low-training gymnasts [LGYM, 1-5 h r/wk] and 29 non-gymnasts [NONGYM]), aged 6-11 years were recruited. Upper limb lean mass, BMD and BMC were derived from a whole body DXA scan. Forearm volumetric BMD, bone geometry, estimated strength, and muscle CSA were determined using peripheral QCT. Upper body muscle function was investigated with muscle strength, explosive power, and muscle endurance tasks. HGYM showed greater forearm bone strength compared with NGYM, as well as greater arm lean mass, BMC, and muscle function (+5% to +103%, p < 0.05). LGYM displayed greater arm lean mass, BMC, muscle power, and endurance than NGYM (+4% to +46%, p < 0.05); however, the difference in bone strength did not reach significance. Estimated fracture risk at the distal radius, which accounted for body weight, was lower in both groups of gymnasts. Compared with NONGYM, HGYM tended to show larger skeletal differences than LGYM; yet, the two groups of gymnasts only differed for arm lean mass and muscle CSA. Non-elite gymnastics participation was associated with musculoskeletal benefits in upper limb bone geometry, strength and muscle function. Differences between the two gymnastic groups emerged for arm lean mass and muscle CSA, but not for bone strength.

  14. Effects of a Strength Training Session After an Exercise Inducing Muscle Damage on Recovery Kinetics.

    PubMed

    Abaïdia, Abd-Elbasset; Delecroix, Barthélémy; Leduc, Cédric; Lamblin, Julien; McCall, Alan; Baquet, Georges; Dupont, Grégory

    2017-01-01

    Abaïdia, A-E, Delecroix, B, Leduc, C, Lamblin, J, McCall, A, Baquet, G, and Dupont, G. Effects of a strength training session after an exercise inducing muscle damage on recovery kinetics. J Strength Cond Res 31(1): 115-125, 2017-The purpose of this study was to investigate the effects of an upper-limb strength training session the day after an exercise inducing muscle damage on recovery of performance. In a randomized crossover design, subjects performed the day after the exercise, on 2 separate occasions (passive vs. active recovery conditions) a single-leg exercise (dominant in one condition and nondominant in the other condition) consisting of 5 sets of 15 eccentric contractions of the knee flexors. Active recovery consisted of performing an upper-body strength training session the day after the exercise. Creatine kinase, hamstring strength, and muscle soreness were assessed immediately and 20, 24, and 48 hours after exercise-induced muscle damage. The upper-body strength session, after muscle-damaging exercise accelerated the recovery of slow concentric force (effect size = 0.65; 90% confidence interval = -0.06 to 1.32), but did not affect the recovery kinetics for the other outcomes. The addition of an upper-body strength training session the day after muscle-damaging activity does not negatively affect the recovery kinetics. Upper-body strength training may be programmed the day after a competition.

  15. Effect of isometric quadriceps exercise on muscle strength, pain, and function in patients with knee osteoarthritis: a randomized controlled study.

    PubMed

    Anwer, Shahnawaz; Alghadir, Ahmad

    2014-05-01

    [Purpose] The aim of present study was to investigate the effects of isometric quadriceps exercise on muscle strength, pain, and function in knee osteoarthritis. [Subjects and Methods] Outpatients (N=42, 21 per group; age range 40-65 years; 13 men and 29 women) with osteoarthritis of the knee participated in the study. The experimental group performed isometric exercises including isometric quadriceps, straight leg raising, and isometric hip adduction exercise 5 days a week for 5 weeks, whereas the control group did not performed any exercise program. The outcome measures or dependent variables selected for this study were pain intensity, isometric quadriceps strength, and knee function. These variables were measured using the Numerical Rating Scale (NRS), strength gauge device, and reduced WOMAC index, respectively. All the measurements were taken at baseline (week 0) and at the end of the trial at week 5. [Results] In between-group comparisons, the maximum isometric quadriceps strength, reduction in pain intensity, and improvement in function in the isometric exercise group at the end of the 5th week were significantly greater than those of the control group (p<0.05). [Conclusion] The 5-week isometric quadriceps exercise program showed beneficial effects on quadriceps muscle strength, pain, and functional disability in patients with osteoarthritis of the knee.

  16. Effects of soluble milk protein or casein supplementation on muscle fatigue following resistance training program: a randomized, double-blind, and placebo-controlled study

    PubMed Central

    2014-01-01

    Background The effects of protein supplementation on muscle thickness, strength and fatigue seem largely dependent on its composition. The current study compared the effects of soluble milk protein, micellar casein, and a placebo on strength and fatigue during and after a resistance training program. Methods Sixty-eight physically active men participated in this randomized controlled trial and underwent 10 weeks of lower-body resistance training. Participants were randomly assigned to the Placebo (PLA), Soluble Milk Protein (SMP, with fast digestion rate) or Micellar Casein (MC, with slow digestion rate) group. During the 10-week training period, participants were instructed to take 30 g of the placebo or protein twice a day, or three times on training days. Tests were performed on quadriceps muscles at inclusion (PRE), after 4 weeks (MID) and after 10 weeks (POST) of training. They included muscle endurance (maximum number of repetitions during leg extensions using 70% of the individual maximal load), fatigue (decrease in muscle power after the endurance test), strength, power and muscle thickness. Results Muscle fatigue was significantly lower (P < 0.05) in the SMP group at MID and POST (-326.8 ± 114.1 W and -296.6 ± 130.1 W, respectively) as compared with PLA (-439.2 ± 153.9 W and -479.2 ± 138.1 W, respectively) and MC (-415.1 ± 165.1 W and -413.7 ± 139.4 W, respectively). Increases in maximal muscle power, strength, endurance and thickness were not statistically different between groups. Conclusions The present study demonstrated that protein composition has a large influence on muscular performance after prolonged resistance training. More specifically, as compared with placebo or micellar casein, soluble milk protein (fast digestible) appeared to significantly reduce muscle fatigue induced by intense resistance exercise. PMID:25057266

  17. Sarcopenia during neoadjuvant therapy for oesophageal cancer: characterising the impact on muscle strength and physical performance.

    PubMed

    Guinan, Emer M; Doyle, S L; Bennett, A E; O'Neill, L; Gannon, J; Elliott, J A; O'Sullivan, J; Reynolds, J V; Hussey, J

    2018-05-01

    Preoperative chemo(radio)therapy for oesophageal cancer (OC) may have an attritional impact on body composition and functional status, impacting postoperative outcome. Physical decline with skeletal muscle loss has not been previously characterised in OC and may be amenable to physical rehabilitation. This study characterises skeletal muscle mass and physical performance from diagnosis to post-neoadjuvant therapy in patients undergoing preoperative chemo(radio)therapy for OC. Measures of body composition (axial computerised tomography), muscle strength (handgrip), functional capacity (walking distance), anthropometry (weight, height and waist circumference), physical activity, quality-of-life and nutritional status were captured prospectively. Sarcopenia status was defined as pre-sarcopenic (low muscle mass only), sarcopenic (low muscle mass and low muscle strength or function) or severely sarcopenic (low muscle mass and low muscle strength and low muscle function). Twenty-eight participants were studied at both time points (mean age 62.86 ± 8.18 years, n = 23 male). Lean body mass reduced by 4.9 (95% confidence interval 3.2 to 6.7) kg and mean grip strength reduced by 4.3 (2.5 to 6.1) kg from pre- to post-neoadjuvant therapy. Quality-of-life scores capturing gastrointestinal symptoms improved. Measures of anthropometry, walking distance, physical activity and nutritional status did not change. There was an increase in sarcopenic status from diagnosis (pre-sarcopenic n = 2) to post-treatment (pre-sarcopenic n = 5, severely sarcopenic n = 1). Despite maintenance of body weight, functional capacity and activity habits, participants experience declines in muscle mass and strength. Interventions involving exercise and/or nutritional support to build muscle mass and strength during preoperative therapy, even in patients who are functioning normally, are warranted.

  18. Greater Strength Gains after Training with Accentuated Eccentric than Traditional Isoinertial Loads in Already Strength-Trained Men

    PubMed Central

    Walker, Simon; Blazevich, Anthony J.; Haff, G. Gregory; Tufano, James J.; Newton, Robert U.; Häkkinen, Keijo

    2016-01-01

    As training experience increases it becomes more challenging to induce further neuromuscular adaptation. Consequently, strength trainers seek alternative training methods in order to further increase strength and muscle mass. One method is to utilize accentuated eccentric loading, which applies a greater external load during the eccentric phase of the lift as compared to the concentric phase. Based upon this practice, the purpose of this study was to determine the effects of 10 weeks of accentuated eccentric loading vs. traditional isoinertial resistance training in strength-trained men. Young (22 ± 3 years, 177 ± 6 cm, 76 ± 10 kg, n = 28) strength-trained men (2.6 ± 2.2 years experience) were allocated to concentric-eccentric resistance training in the form of accentuated eccentric load (eccentric load = concentric load + 40%) or traditional resistance training, while the control group continued their normal unsupervised training program. Both intervention groups performed three sets of 6-RM (session 1) and three sets of 10-RM (session 2) bilateral leg press and unilateral knee extension exercises per week. Maximum force production was measured by unilateral isometric (110° knee angle) and isokinetic (concentric and eccentric 30°.s−1) knee extension tests, and work capacity was measured by a knee extension repetition-to-failure test. Muscle mass was assessed using panoramic ultrasonography and dual-energy x-ray absorptiometry. Surface electromyogram amplitude normalized to maximum M-wave and the twitch interpolation technique were used to examine maximal muscle activation. After training, maximum isometric torque increased significantly more in the accentuated eccentric load group than control (18 ± 10 vs. 1 ± 5%, p < 0.01), which was accompanied by an increase in voluntary activation (3.5 ± 5%, p < 0.05). Isokinetic eccentric torque increased significantly after accentuated eccentric load training only (10 ± 9%, p < 0.05), whereas concentric torque increased equally in both the accentuated eccentric load (10 ± 9%, p < 0.01) and traditional (9 ± 6%, p < 0.01) resistance training groups; however, the increase in the accentuated eccentric load group was significantly greater (p < 0.05) than control (1 ± 7%). Knee extension repetition-to-failure improved in the accentuated eccentric load group only (28%, p < 0.05). Similar increases in muscle mass occurred in both intervention groups. In summary, accentuated eccentric load training led to greater increases in maximum force production, work capacity and muscle activation, but not muscle hypertrophy, in strength-trained individuals. PMID:27199764

  19. What Are Strength Training Activities?

    Cancer.gov

    Strength training is any practice or exercise specifically designed to increase muscle tone, strength, and fitness. Concerned that strength training will make you bulky and too muscle-y? You are not alone.

  20. Co-activation: its association with weakness and specific neurological pathology

    PubMed Central

    Busse, Monica E; Wiles, Charles M; van Deursen, Robert WM

    2006-01-01

    Background Net agonist muscle strength is in part determined by the degree of antagonist co-activation. The level of co-activation might vary in different neurological disorders causing weakness or might vary with agonist strength. Aim This study investigated whether antagonist co-activation changed a) with the degree of muscle weakness and b) with the nature of the neurological lesion causing weakness. Methods Measures of isometric quadriceps and hamstrings strength were obtained. Antagonist (hamstring) co-activation during knee extension was calculated as a ratio of hamstrings over quadriceps activity both during an isometric and during a functional sit to stand (STS) task (using kinematics) in groups of patients with extrapyramidal (n = 15), upper motor neuron (UMN) (n = 12), lower motor neuron (LMN) with (n = 18) or without (n = 12) sensory loss, primary muscle or neuromuscular junction disorder (n = 17) and in healthy matched controls (n = 32). Independent t-tests or Mann Witney U tests were used to compare between the groups. Correlations between variables were also investigated. Results In healthy subjects mean (SD) co-activation of hamstrings during isometric knee extension was 11.8 (6.2)% and during STS was 20.5 (12.9)%. In patients, co-activation ranged from 7 to 17% during isometric knee extension and 15 to 25% during STS. Only the extrapyramidal group had lower co-activation levels than healthy matched controls (p < 0.05). Agonist isometric muscle strength and co-activation correlated only in muscle disease (r = -0.6, p < 0.05) and during STS in UMN disorders (r = -0.7, p < 0.5). Conclusion It is concluded that antagonist co-activation does not systematically vary with the site of neurological pathology when compared to healthy matched controls or, in most patient groups, with strength. The lower co-activation levels found in the extrapyramidal group require confirmation and further investigation. Co-activation may be relevant to individuals with muscle weakness. Within patient serial studies in the presence of changing muscle strength may help to understand these relationships more clearly. PMID:17116259

  1. Recovery of strength is dependent on mTORC1 signaling after eccentric muscle injury.

    PubMed

    Baumann, Cory Walter; Rogers, Russell George; Otis, Jeffrey Scott; Ingalls, Christopher Paul

    2016-11-01

    Eccentric contractions may cause immediate and long-term reductions in muscle strength that can be recovered through increased protein synthesis rates. The purpose of this study was to determine whether the mechanistic target-of-rapamycin complex 1 (mTORC1), a vital controller of protein synthesis rates, is required for return of muscle strength after injury. Isometric muscle strength was assessed before, immediately after, and then 3, 7, and 14 days after a single bout of 150 eccentric contractions in mice that received daily injections of saline or rapamycin. The bout of eccentric contractions increased the phosphorylation of mTORC1 (1.8-fold) and p70s6k1 (13.8-fold), mTORC1's downstream effector, 3 days post-injury. Rapamycin blocked mTORC1 and p70s6k1 phosphorylation and attenuated recovery of muscle strength (∼20%) at 7 and 14 days. mTORC1 signaling is instrumental in the return of muscle strength after a single bout of eccentric contractions in mice. Muscle Nerve 54: 914-924, 2016. © 2016 Wiley Periodicals, Inc.

  2. A Maximum Muscle Strength Prediction Formula Using Theoretical Grade 3 Muscle Strength Value in Daniels et al.'s Manual Muscle Test, in Consideration of Age: An Investigation of Hip and Knee Joint Flexion and Extension.

    PubMed

    Usa, Hideyuki; Matsumura, Masashi; Ichikawa, Kazuna; Takei, Hitoshi

    2017-01-01

    This study attempted to develop a formula for predicting maximum muscle strength value for young, middle-aged, and elderly adults using theoretical Grade 3 muscle strength value (moment fair: M f )-the static muscular moment to support a limb segment against gravity-from the manual muscle test by Daniels et al. A total of 130 healthy Japanese individuals divided by age group performed isometric muscle contractions at maximum effort for various movements of hip joint flexion and extension and knee joint flexion and extension, and the accompanying resisting force was measured and maximum muscle strength value (moment max, M m ) was calculated. Body weight and limb segment length (thigh and lower leg length) were measured, and M f was calculated using anthropometric measures and theoretical calculation. There was a linear correlation between M f and M m in each of the four movement types in all groups, excepting knee flexion in elderly. However, the formula for predicting maximum muscle strength was not sufficiently compatible in middle-aged and elderly adults, suggesting that the formula obtained in this study is applicable in young adults only.

  3. Association between body composition and stair negotiation ability among individuals >55 years of age: a cross-sectional study.

    PubMed

    Dip, Renata Maciulis; Cabrera, Marcos As; Prato, Sabrina Ferrari

    2017-01-01

    Loss of muscle strength exerts a considerable impact on the quality of life and mortality of older adults. The present household survey study measured body composition and muscle strength with the aim of analyzing the roles of low lean mass, low muscle strength and obesity in stair negotiation ability and the effect of comorbidities on the relationship between body composition and functional capacity. Body composition was assessed using bioelectrical impedance analysis and muscle strength was assessed with a hand grip dynamometer. The study population comprised individuals >55 years of age from a medium-sized Brazilian municipality. The sample included 451 participants. A total of 368 subjects were interviewed; their ages varied from 56 to 91 years. Among males, low muscle strength was associated with stair negotiation difficulty independent of muscle mass, age and obesity but muscle mass was not. However, when we analyzed comorbidities and body composition jointly, chronic lower limb pain and obesity were independently associated with stair negotiation difficulty but body composition and age were not. Among women, after comorbidities were included into the model, low muscle strength and obesity remained associated with stair negotiation difficulty as chronic lower limb pain and depression. The relationship between muscle function and comorbidities is discussed in this article.

  4. A Maximum Muscle Strength Prediction Formula Using Theoretical Grade 3 Muscle Strength Value in Daniels et al.'s Manual Muscle Test, in Consideration of Age: An Investigation of Hip and Knee Joint Flexion and Extension

    PubMed Central

    Matsumura, Masashi; Ichikawa, Kazuna; Takei, Hitoshi

    2017-01-01

    This study attempted to develop a formula for predicting maximum muscle strength value for young, middle-aged, and elderly adults using theoretical Grade 3 muscle strength value (moment fair: Mf)—the static muscular moment to support a limb segment against gravity—from the manual muscle test by Daniels et al. A total of 130 healthy Japanese individuals divided by age group performed isometric muscle contractions at maximum effort for various movements of hip joint flexion and extension and knee joint flexion and extension, and the accompanying resisting force was measured and maximum muscle strength value (moment max, Mm) was calculated. Body weight and limb segment length (thigh and lower leg length) were measured, and Mf was calculated using anthropometric measures and theoretical calculation. There was a linear correlation between Mf and Mm in each of the four movement types in all groups, excepting knee flexion in elderly. However, the formula for predicting maximum muscle strength was not sufficiently compatible in middle-aged and elderly adults, suggesting that the formula obtained in this study is applicable in young adults only. PMID:28133549

  5. Longitudinal in vivo muscle function analysis of the DMSXL mouse model of myotonic dystrophy type 1.

    PubMed

    Decostre, Valérie; Vignaud, Alban; Matot, Béatrice; Huguet, Aline; Ledoux, Isabelle; Bertil, Emilie; Gjata, Bernard; Carlier, Pierre G; Gourdon, Geneviève; Hogrel, Jean-Yves

    2013-12-01

    Myotonic dystrophy is the most common adult muscle dystrophy. In view of emerging therapies, which use animal models as a proof of principle, the development of reliable outcome measures for in vivo longitudinal study of mouse skeletal muscle function is becoming crucial. To satisfy this need, we have developed a device to measure ankle dorsi- and plantarflexion torque in rodents. We present an in vivo 8-month longitudinal study of the contractile properties of the skeletal muscles of the DMSXL mouse model of myotonic dystrophy type 1. Between 4 and 12 months of age, we observed a reduction in muscle strength in the ankle dorsi- and plantarflexors of DMSXL compared to control mice although the strength per muscle cross-section was normal. Mild steady myotonia but no abnormal muscle fatigue was also observed in the DMSXL mice. Magnetic resonance imaging and histological analysis performed at the end of the study showed respectively reduced muscle cross-section area and smaller muscle fibre diameter in DMSXL mice. In conclusion, our study demonstrates the feasibility of carrying out longitudinal in vivo studies of muscle function over several months in a mouse model of myotonic dystrophy confirming the feasibility of this method to test preclinical therapeutics. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Distribution and severity of weakness among patients with polymyositis, dermatomyositis and juvenile dermatomyositis

    PubMed Central

    Harris-Love, M. O.; Shrader, J. A.; Koziol, D.; Pahlajani, N.; Jain, M.; Smith, M.; Cintas, H. L.; McGarvey, C. L.; James-Newton, L.; Pokrovnichka, A.; Moini, B.; Cabalar, I.; Lovell, D. J.; Wesley, R.; Plotz, P. H.; Miller, F. W.; Hicks, J. E.

    2009-01-01

    Objective. To describe the distribution and severity of muscle weakness using manual muscle testing (MMT) in 172 patients with PM, DM and juvenile DM (JDM). The secondary objectives included characterizing individual muscle group weakness and determining associations of weakness with functional status and myositis characteristics in this large cohort of patients with myositis. Methods. Strength was assessed for 13 muscle groups using the 10-point MMT and expressed as a total score, subscores based on functional and anatomical regions, and grades for individual muscle groups. Patient characteristics and secondary outcomes, such as clinical course, muscle enzymes, corticosteroid dosage and functional status were evaluated for association with strength using univariate and multivariate analyses. Results. A gradient of proximal weakness was seen, with PM weakest, DM intermediate and JDM strongest among the three myositis clinical groups (P ≤ 0.05). Hip flexors, hip extensors, hip abductors, neck flexors and shoulder abductors were the muscle groups with the greatest weakness among all three clinical groups. Muscle groups were affected symmetrically. Conclusions. Axial and proximal muscle impairment was reflected in the five weakest muscles shared by our cohort of myositis patients. However, differences in the pattern of weakness were observed among all three clinical groups. Our findings suggest a greater severity of proximal weakness in PM in comparison with DM. PMID:19074186

  7. Hormonal regulators of muscle and metabolism in aging (HORMA): Design and conduct of a complex, double-masked, multicenter trial

    USDA-ARS?s Scientific Manuscript database

    BACKGROUND: Older persons often lose muscle mass, strength, and physical function. This report describes the challenges of conducting a complex clinical investigation assessing the effects of anabolic hormones on body composition, physical function, and metabolism during aging. METHODS: HORMA is a m...

  8. Effects of strength training, detraining and retraining in muscle strength, hypertrophy and functional tasks in older female adults.

    PubMed

    Correa, Cleiton S; Cunha, Giovani; Marques, Nise; Oliveira-Reischak, Ãlvaro; Pinto, Ronei

    2016-07-01

    Previous studies presented different results regarding the maintenance time of muscular adaptations after strength training and the ability to resume the gains on muscular performance after resumption of the training programme. This study aimed to verify the effect of strength training on knee extensors and elbow flexor muscle strength, rectus femoris muscle volume and functional performance in older female adults after 12 weeks of strength training, 1 year of detraining and followed by 12 weeks of retraining. Twelve sedentary older women performed 12 weeks of strength training, 1 year of detraining and 12 weeks of retraining. The strength training was performed twice a week, and the assessment was made four times: at the baseline, after the strength training, after the detraining and after the retraining. The knee extensor and elbow flexor strength, rectus femoris muscle volume and functional task were assessed. Strength of knee extensor and elbow flexor muscles, rectus femoris muscle volume and 30-s sit-to-stand increased from baseline to post-training (respectively, 40%, 70%, 38% and 46%), decreased after detraining (respectively, -36%, -64%, -35% and -43%) and increased again these parameters after retraining (35%, 68%, 36% and 42%). Strength training induces gains on strength and hypertrophy, also increased the performance on functional tasks after the strength training. The stoppage of the strength caused strength loss and reduction of functional performance. The resumption of the strength training promoted the same gains of muscular performance in older female adults. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  9. Acute effects of static stretching on peak and end-range hamstring-to-quadriceps functional ratios

    PubMed Central

    Sekir, Ufuk; Arabaci, Ramiz; Akova, Bedrettin

    2015-01-01

    AIM: To evaluate if static stretching influences peak and end-range functional hamstring-to-quadriceps (H/Q) strength ratios in elite women athletes. METHODS: Eleven healthy female athletes in an elite competitive level participated to the study. All the participants fulfilled the static stretching or non-stretching (control) intervention protocol in a randomized design on different days. Two static unassisted stretching exercises, one in standing and one in sitting position, were used to stretch both the hamstring and quadriceps muscles during these protocols. The total time for the static stretching was 6 ± 1 min. The isokinetic peak torque measurements for the hamstring and quadriceps muscles in eccentric and concentric modes and the calculations for the functional H/Q strength ratios at angular velocities of 60°/s and 180°/s were made before (pre) and after (post) the control or stretching intervention. The strength measurements and functional strength ratio calculations were based during the entire- and end-range of knee extension. RESULTS: The pre-test scores for quadriceps and hamstring peak torque and end range values were not significantly different between the groups (P > 0.05). Subsequently, although the control group did not exhibit significant changes in quadriceps and hamstring muscle strength (P > 0.05), static stretching decreased eccentric and concentric quadriceps muscle strength at both the 60°/s and 180°/s test speeds (P < 0.01). Similarly, static stretching also decreased eccentric and concentric hamstring muscle strength at both the 60°/s and 180°/s test speeds (P < 0.01). On the other hand, when the functional H/Q strength ratios were taken into consideration, the pre-intervention values were not significant different between the groups both during the entire and end range of knee extension (P > 0.05). Furthermore, the functional H/Q strength ratios exhibited no significant alterations during the entire and end ranges of knee extension both in the static stretching or the control intervention (P > 0.05). CONCLUSION: According to our results, static stretching routine does not influence functional H/Q ratio. Athletes can confidently perform static stretching during their warm-up routines. PMID:26495249

  10. Physiological Effects of Strength Training and Various Strength Training Devices.

    ERIC Educational Resources Information Center

    Wilmore, Jack H.

    Current knowledge in the area of muscle physiology is a basis for a discussion on strength training programs. It is now recognized that the expression of strength is related to, but not dependent upon, the size of the muscle and is probably more related to the ability to recruit more muscle fibers in the contraction, or to better synchronize their…

  11. Ageing influence in the evolution of strength and muscle mass in women with fibromyalgia: the al-Ándalus project.

    PubMed

    Latorre-Román, Pedro Ángel; Segura-Jiménez, Víctor; Aparicio, Virginia A; Santos E Campos, María Aparecida; García-Pinillos, Felipe; Herrador-Colmenero, Manuel; Álvarez-Gallardo, Inmaculada C; Delgado-Fernández, Manuel

    2015-07-01

    Fibromyalgia is associated with physical disabilities in daily activities. Moreover, patients with fibromyalgia present similar levels of functional capacity and physical condition than elderly people. The aim of this study was to analyse the evolution of strength and muscle mass in women with fibromyalgia along ageing. A total sample of 492 fibromyalgia patients and 279 healthy control women were included in the study. Participants in each group were further divided into four age subgroups: subgroup 1: 30-39 years old, subgroup 2: 40-49 years old, subgroup 3: 50-59 years old and subgroup 4: 60-69 years old. Standardized field-based fitness tests were used to assess muscle strength (30-s chair stand, handgrip strength and arm curl tests). Fibromyalgia patients did not show impairment on muscle mass along ageing, without values of skeletal muscle mass index below 6.76 kg/m(2) in any group. However, in all variables of muscle strength, the fibromyalgia group showed less strength than the healthy group (p < 0.05) for all age groups. As expected, handgrip strength test showed differences along ageing only in the fibromyalgia group (p < 0.001). Age was inversely associated with skeletal muscle mass (r = -0.155, p < 0.01) and handgrip strength (r = -0.230, p < 0.001) in the FM group. Women with fibromyalgia showed a reduction in muscle strength along ageing process, with significantly lower scores than healthy women for each age group, representing a risk of dynapenia.

  12. THIGH MUSCLE CROSS-SECTIONAL AREAS AND STRENGTH IN KNEES WITH EARLY VS KNEES WITHOUT RADIOGRAPHIC KNEE OSTEOARTHRITIS: A BETWEEN-KNEE, WITHIN-PERSON COMPARISON

    PubMed Central

    Ruhdorfer, AS; Dannhauer, T; Wirth, W; Cotofana, S; Roemer, F; Nevitt, M; Eckstein, F

    2014-01-01

    Objective To compare cross-sectional and longitudinal side-differences in thigh muscle anatomical cross-sectional areas (ACSAs), muscle strength, and specific strength (strength/ACSA), between knees with early radiographic change vs. knees without radiographic knee osteoarthritis (RKOA), in the same person. Design 55 (of 4796) Osteoarthritis Initiative participants fulfilled the inclusion criteria of early RKOA in one limb (definite tibiofemoral osteophytes; no radiographic joint space narrowing [JSN]) vs. no RKOA (no osteophyte; no JSN) in the contralateral limb. ACSAs of the thigh muscles and quadriceps heads were determined using axial MRIs at 33%/30% femoral length (distal to proximal). Isometric extensor and flexor muscle strength were measured (Good Strength Chair). Baseline quadriceps ACSA and extensor (specific) strength represented the primary analytic focus, and two-year changes of quadriceps ACSAs the secondary focus. Results No statistically significant side-differences in quadriceps (or other thigh muscle) ACSAs, muscle strength, or specific strength were observed between early RKOA vs. contralateral limbs without RKOA (p≥0.44), neither in men nor in women. The two-year reduction in quadriceps ACSA in limbs with early RKOA was −0.9±6% (mean ± standard deviation) vs. −0.5±6% in limbs without RKOA (statistical difference p=0.85). Conclusion Our results do not provide evidence that early unilateral radiographic changes, i.e. presence of osteophytes, are associated with cross-sectional or longitudinal differences in quadriceps muscle status compared with contralateral knees without RKOA. At the stage of early unilateral RKOA there thus appears to be no clinical need for countervailing a potential dys-balance in quadriceps ACSAs and strength between both knees. PMID:25278072

  13. Greater understanding of normal hip physical function may guide clinicians in providing targeted rehabilitation programmes.

    PubMed

    Kemp, Joanne L; Schache, Anthony G; Makdissi, Michael; Sims, Kevin J; Crossley, Kay M

    2013-07-01

    This study investigated tests of hip muscle strength and functional performance. The specific objectives were to: (i) establish intra- and inter-rater reliability; (ii) compare differences between dominant and non-dominant limbs; (iii) compare agonist and antagonist muscle strength ratios; (iv) compare differences between genders; and (v) examine relationships between hip muscle strength, baseline measures and functional performance. Reliability study and cross-sectional analysis of hip strength and functional performance. In healthy adults aged 18-50years, normalised hip muscle peak torque and functional performance were evaluated to: (i) establish intra-rater and inter-rater reliability; (ii) analyse differences between limbs, between antagonistic muscle groups and genders; and (iii) associations between strength and functional performance. Excellent reliability (intra-rater ICC=0.77-0.96; inter-rater ICC=0.82-0.95) was observed. No difference existed between dominant and non-dominant limbs. Differences in strength existed between antagonistic pairs of muscles: hip abduction was greater than adduction (p<0.001) and hip ER was greater than IR (p<0.001). Men had greater ER strength (p=0.006) and hop for distance (p<0.001) than women. Strong associations were observed between measures of hip muscle strength (except hip flexion) and age, height, and functional performance. Deficits in hip muscle strength or functional performance may influence hip pain. In order to provide targeted rehabilitation programmes to address patient-specific impairments, and determine when individuals are ready to return to physical activity, clinicians are increasingly utilising tests of hip strength and functional performance. This study provides a battery of reliable, clinically applicable tests which can be used for these purposes. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  14. Strength Training and Detraining in Different Populations: Case Studies

    PubMed Central

    Marques, Mário C.; Zajac, Adam; Pereira, Ana; Costa, Aldo M.

    2011-01-01

    Many researchers have demonstrated that a specific strength training program can improve maximal strength and, the rate of force production, reduce the incidence of muscle-skeletal injury, and contribute to faster injury recovery times, thereby minimizing the number of missed practice sessions or competitions. Yet, to our best knowledge, there is no apparent consensus on the appropriate method of muscle strength and power training to enhance performance in distinct populations groups. Interruptions in training process because of illness, injury, holidays, post-season break or other factors are normal situations in any kind of sport. However, the detraining period and its consequences are not well reported in sports literature, and namely during puberty. Therefore, the aim of this paper was to discuss several case studies concerning different populations such us physical students, age-swimming competitors and elite power athletes. PMID:23487418

  15. Cycle ergometer and inspiratory muscle training offer modest benefit compared with cycle ergometer alone: a comprehensive assessment in stable COPD patients

    PubMed Central

    Luo, Yu-wen; Wang, Mei; Hu, Yu-he; Xu, Wen-hui; Zhou, Lu-qian; Chen, Rong-chang; Chen, Xin

    2017-01-01

    Background Cycle ergometer training (CET) has been shown to improve exercise performance of the quadriceps muscles in patients with COPD, and inspiratory muscle training (IMT) may improve the pressure-generating capacity of the inspiratory muscles. However, the effects of combined CET and IMT remain unclear and there is a lack of comprehensive assessment. Materials and methods Eighty-one patients with COPD were randomly allocated to three groups: 28 received 8 weeks of CET + IMT (combined training group), 27 received 8 weeks of CET alone (CET group), and 26 only received 8 weeks of free walking (control group). Comprehensive assessment including respiratory muscle strength, exercise capacity, pulmonary function, dyspnea, quality of life, emotional status, nutritional status, and body mass index, airflow obstruction, and exercise capacity index were measured before and after the pulmonary rehabilitation program. Results Respiratory muscle strength, exercise capacity, inspiratory capacity, dyspnea, quality of life, depression and anxiety, and nutritional status were all improved in the combined training and CET groups when compared with that in the control group (P<0.05) after pulmonary rehabilitation program. Inspiratory muscle strength increased significantly in the combined training group when compared with that in the CET group (ΔPImax [maximal inspiratory pressure] 5.20±0.89 cmH2O vs 1.32±0.91 cmH2O; P<0.05). However, there were no significant differences in the other indices between the two groups (P>0.05). Patients with weakened respiratory muscles in the combined training group derived no greater benefit than those without respiratory muscle weakness (P>0.05). There were no significant differences in these indices between the patients with malnutrition and normal nutrition after pulmonary rehabilitation program (P>0.05). Conclusion Combined training is more effective than CET alone for increasing inspiratory muscle strength. IMT may not be useful when combined with CET in patients with weakened inspiratory muscles. Nutritional status had slight impact on the effects of pulmonary rehabilitation. A comprehensive assessment approach can be more objective to evaluate the effects of combined CET and IMT. PMID:28919733

  16. Patients with ALS show highly correlated progression rates in left and right limb muscles.

    PubMed

    Rushton, David J; Andres, Patricia L; Allred, Peggy; Baloh, Robert H; Svendsen, Clive N

    2017-07-11

    Amyotrophic lateral sclerosis (ALS) progresses at different rates between patients, making clinical trial design difficult and dependent on large cohorts of patients. Currently, there are few data showing whether the left and right limbs progress at the same or different rates. This study addresses rates of decline in specific muscle groups of patients with ALS and assesses whether there is a relationship between left and right muscles in the same patient, regardless of overall progression. A large cohort of patients was used to assess decline in muscle strength in right and left limbs over time using 2 different methods: The Tufts Quantitative Neuromuscular Exam and Accurate Test of Limb Isometric Strength protocol. Then advanced linear regression statistical methods were applied to assess progression rates in each limb. This report shows that linearized progression models can predict general slopes of decline with good accuracy. Critically, the data demonstrate that while overall decline is variable, there is a high degree of correlation between left and right muscle decline in ALS. This implies that irrespective of which muscle starts declining soonest or latest, their rates of decline following onset are more consistent. First, this study demonstrates a high degree of power when using unilateral treatment approaches to detect a slowing in disease progression in smaller groups of patients, thus allowing for paired statistical tests. These findings will be useful in transplantation trials that use muscle decline to track disease progression in ALS. Second, these findings discuss methods, such as tactical selection of muscle groups, which can improve the power efficiency of all ALS clinical trials. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

  17. Diagnostic ultrasound estimates of muscle mass and muscle quality discriminate between women with and without sarcopenia

    PubMed Central

    Ismail, Catheeja; Zabal, Johannah; Hernandez, Haniel J.; Woletz, Paula; Manning, Heather; Teixeira, Carla; DiPietro, Loretta; Blackman, Marc R.; Harris-Love, Michael O.

    2015-01-01

    Introduction: Age-related changes in muscle mass and muscle tissue composition contribute to diminished strength in older adults. The objectives of this study are to examine if an assessment method using mobile diagnostic ultrasound augments well-known determinants of lean body mass (LBM) to aid sarcopenia staging, and if a sonographic measure of muscle quality is associated with muscle performance. Methods: Twenty community-dwelling female subjects participated in the study (age = 43.4 ± 20.9 years; BMI: 23.8, interquartile range: 8.5). Dual energy X-ray absorptiometry (DXA) and diagnostic ultrasound morphometry were used to estimate LBM. Muscle tissue quality was estimated via the echogenicity using grayscale histogram analysis. Peak force was measured with grip dynamometry and scaled for body size. Bivariate and multiple regression analyses were used to determine the association of the predictor variables with appendicular lean mass (aLM/ht2), and examine the relationship between scaled peak force values and muscle echogenicity. The sarcopenia LBM cut point value of 6.75 kg/m2 determined participant assignment into the Normal LBM and Low LBM subgroups. Results: The selected LBM predictor variables were body mass index (BMI), ultrasound morphometry, and age. Although BMI exhibited a significant positive relationship with aLM/ht2 (adj. R2 = 0.61, p < 0.001), the strength of association improved with the addition of ultrasound morphometry and age as predictor variables (adj. R2 = 0.85, p < 0.001). Scaled peak force was associated with age and echogenicity (adj. R2 = 0.53, p < 0.001), but not LBM. The Low LBM subgroup of women (n = 10) had higher scaled peak force, lower BMI, and lower echogenicity values in comparison to the Normal LBM subgroup (n = 10; p < 0.05). Conclusions: Diagnostic ultrasound morphometry values are associated with LBM, and improve the BMI predictive model for aLM/ht2 in women. In addition, ultrasound proxy measures of muscle quality are more strongly associated with strength than muscle mass within the study sample. PMID:26578974

  18. Changes in muscle strength in patients with statin myalgia.

    PubMed

    Panza, Gregory A; Taylor, Beth A; Roman, William; Thompson, Paul D

    2014-10-15

    Statins can produce myalgia or muscle pain, which may affect medication adherence. We measured the effects of statins on muscle strength in patients with previous statin myalgia. Leg isokinetic extension average power at 60° per second (-8.8 ± 10.5N-M, p = 0.02) and average peak torque at 60° per second (-14.0 ± 19.7N-M, p = 0.04) decreased slightly with statin use, but 8 of 10 other variables for leg strength did not change (all p >0.13). Handgrip, muscle pain, respiratory exchange ratio, and daily activity also did not change (all p >0.09). In conclusion, statin myalgia is not associated with reduced muscle strength or muscle performance. Published by Elsevier Inc.

  19. Skeletal muscle mass adjusted by height correlated better with muscular functions than that adjusted by body weight in defining sarcopenia.

    PubMed

    Han, Der-Sheng; Chang, Ke-Vin; Li, Chia-Ming; Lin, Yu-Hong; Kao, Tung-Wei; Tsai, Keh-Sung; Wang, Tyng-Grey; Yang, Wei-Shiung

    2016-01-20

    Sarcopenia, characterized by low muscle mass and function, results in frailty, comorbidities and mortality. However, its prevalence varies according to the different criteria used in its diagnosis. This cross-sectional study investigated the difference in the number of sarcopenia cases recorded by two different measurement methods of low muscle mass to determine which measurement was better. We recruited 878 (54.2% female) individuals aged over 65 years and obtained their body composition and functional parameters. Low muscle mass was defined as two standard deviations below either the mean height-adjusted (hSMI) or weight-adjusted (wSMI) muscle mass of a young reference group. The prevalence of sarcopenia was 6.7% vs. 0.4% (male/female) by hSMI, and 4.0% vs. 10.7% (male/female) by wSMI. The κ coefficients for these two criteria were 0.39 vs. 0.03 (male/female), and 0.17 in all subjects. Serum myostatin levels correlated positively with gait speed (r = 0.142, p = 0.007) after adjustment for gender. hSMI correlated with grip strength, cardiopulmonary endurance, leg endurance, gait speed, and flexibility. wSMI correlated with grip strength, leg endurance, gait speed, and flexibility. Since hSMI correlated more closely with grip strength and more muscular functions, we recommend hSMI in the diagnosis of low muscle mass.

  20. Identification of human skeletal muscle miRNA related to strength by high-throughput sequencing.

    PubMed

    Mitchell, Cameron J; D'Souza, Randall F; Schierding, William; Zeng, Nina; Ramzan, Farha; O'Sullivan, Justin M; Poppitt, Sally D; Cameron-Smith, David

    2018-06-01

    The loss of muscle size, strength, and quality with aging is a major determinant of morbidity and mortality in the elderly. The regulatory pathways that impact the muscle phenotype include the translational regulation maintained by microRNAs (miRNA). Yet the miRNAs that are expressed in human skeletal muscle and relationship to muscle size, strength, and quality are unknown. Using next-generation sequencing, we selected the 50 most abundantly expressed miRNAs and then analyzed them in vastus lateralis muscle, obtained by biopsy from middle-aged males ( n = 48; 50.0 ± 4.3 yr). Isokinetic strength testing and midthigh computed tomography was undertaken for muscle phenotype analysis. Muscle attenuation was measured by computerized tomography and is inversely proportional to myofiber lipid content. miR-486-5p accounted for 21% of total miR sequence reads, with miR-10b-5p, miR-133a-3p, and miR-22-3p accounting for a further 15, 12, and 10%, respectively. Isokinetic knee extension strength and muscle cross-sectional area were positively correlated with miR-100-5p, miR-99b-5p, and miR-191-5p expression. Muscle attenuation was negatively correlated to let-7f-5p, miR-30d-5p, and miR-125b-5p expression. In silico analysis implicates miRNAs related to strength and muscle size in the regulation of mammalian target of rapamycin, while miRNAs related to muscle attenuation may have potential roles regulating the transforming growth factor-β/SMAD3 pathway.

  1. Association between isometric muscle strength and gait joint kinetics in adolescents and young adults with cerebral palsy.

    PubMed

    Dallmeijer, A J; Baker, R; Dodd, K J; Taylor, N F

    2011-03-01

    The purpose of this study was to determine the association between isometric muscle strength of the lower limbs and gait joint kinetics in adolescents and young adults with cerebral palsy (CP). Twenty-five participants (11 males) with bilateral spastic CP, aged 14-22 years (mean: 18.9, sd: 2.0 yr) and Gross Motor Function Classification System (GMFCS) level II (n=19) and III (n=6) were tested. Hand held dynamometry was used to measure isometric strength (expressed in Nm/kg) of the hip, knee, and ankle muscles using standardized testing positions and procedures. 3D gait analysis was performed with a VICON system to calculate joint kinetics in the hip, knee and ankle during gait. Ankle peak moments exceeded by far the levels of isometric strength of the plantar flexors, while the knee and hip peak moments were just at or below maximal isometric strength of knee and hip muscles. Isometric muscle strength showed weak to moderate correlations with peak ankle and hip extension moment and power during walking. Despite considerable muscle weakness, joint moment curves were similar to norm values. Results suggest that passive stretch of the muscle-tendon complex of the triceps surae contributes to the ankle moment during walking and that muscle strength assessment may provide additional information to gait kinetics. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. A Cycle Ergometer Exercise Program Improves Exercise Capacity and Inspiratory Muscle Function in Hospitalized Patients Awaiting Heart Transplantation: a Pilot Study

    PubMed Central

    Forestieri, Patrícia; Guizilini, Solange; Peres, Monique; Bublitz, Caroline; Bolzan, Douglas W.; Rocco, Isadora S.; Santos, Vinícius B.; Moreira, Rita Simone L.; Breda, João R.; de Almeida, Dirceu R.; Carvalho, Antonio Carlos de C.; Arena, Ross; Gomes, Walter J.

    2016-01-01

    Objective The purpose of this study was to evaluate the effect of a cycle ergometer exercise program on exercise capacity and inspiratory muscle function in hospitalized patients with heart failure awaiting heart transplantation with intravenous inotropic support. Methods Patients awaiting heart transplantation were randomized and allocated prospectively into two groups: 1) Control Group (n=11) - conventional protocol; and 2) Intervention Group (n=7) - stationary cycle ergometer exercise training. Functional capacity was measured by the six-minute walk test and inspiratory muscle strength assessed by manovacuometry before and after the exercise protocols. Results Both groups demonstrated an increase in six-minute walk test distance after the experimental procedure compared to baseline; however, only the intervention group had a significant increase (P=0.08 and P=0.001 for the control and intervention groups, respectively). Intergroup comparison revealed a greater increase in the intervention group compared to the control (P<0.001). Regarding the inspiratory muscle strength evaluation, the intragroup analysis demonstrated increased strength after the protocols compared to baseline for both groups; statistical significance was only demonstrated for the intervention group, though (P=0.22 and P<0.01, respectively). Intergroup comparison showed a significant increase in the intervention group compared to the control (P<0.01). Conclusion Stationary cycle ergometer exercise training shows positive results on exercise capacity and inspiratory muscle strength in patients with heart failure awaiting cardiac transplantation while on intravenous inotropic support. PMID:27982348

  3. Pilates training improves 5-km run performance by changing metabolic cost and muscle activity in trained runners

    PubMed Central

    Finatto, Paula; Silva, Edson Soares Da; Okamura, Alexandre B.; Almada, Bruna P.; Oliveira, Henrique B.

    2018-01-01

    Purpose Strength training improves distance running economy and performance. This finding is based predominantly on maximal and explosive strength programmes applied to locomotor muscles, particularly on the lower limbs. It is not certain whether a minimization of metabolic cost (Cmet) and an improvement in running performance is feasible with strength training of the postural and trunk muscles. Methods Using kinematic, neuromuscular and metabolic measurements of running at two different speeds before and after a 12-week Pilates training programme, we tested the hypothesis that core training might improve the running Cmet and performance of trained runners. Thirty-two individuals were randomly assigned to the control group (CG, n = 16) or the Pilates group (PG, n = 16). Results Confirming our hypothesis, a significant improvement (p<0.05) was observed for running performance in the PG (pre: 25.65±0.4 min; post: 23.23±0.4 min) compared to the CG (pre: 25.33±0.58 min; post: 24.61±0.52 min). Similarly, the PG (4.33±0.07 J.kg-1.m-1) had better responses than the CG (4.71±0.11 J.kg-1.m-1) during post-training for Cmet. These findings were accompanied by decreased electromyographic activity of the postural muscles at submaximal running intensities in the PG. Conclusions Overall, these results provide a rationale for selecting strength training strategies that target adaptations on specific postural and locomotor muscles for trained distance runners. PMID:29561907

  4. A Randomized Trial on the Effect of Bone Tissue on Vibration-induced Muscle Strength Gain and Vibration-induced Reflex Muscle Activity.

    PubMed

    Cidem, Muharrem; Karacan, Ilhan; Diraçoğlu, Demirhan; Yıldız, Aysel; Küçük, Suat Hayri; Uludağ, Murat; Gün, Kerem; Ozkaya, Murat; Karamehmetoğlu, Safak Sahir

    2014-03-01

    Whole-body vibration (WBV) induces reflex muscle activity and leads to increased muscle strength. However, little is known about the physiological mechanisms underlying the effects of whole-body vibration on muscular performance. Tonic vibration reflex is the most commonly cited mechanism to explain the effects of whole-body vibration on muscular performance, although there is no conclusive evidence that tonic vibration reflex occurs. The bone myoregulation reflex is another neurological mechanism used to explain the effects of vibration on muscular performance. Bone myoregulation reflex is defined as a reflex mechanism in which osteocytes exposed to cyclic mechanical loading induce muscle activity. The aim of this study was to assess whether bone tissue affected vibration-induced reflex muscle activity and vibration-induced muscle strength gain. A prospective, randomised, controlled, double-blind, parallel-group clinical trial. Thirty-four participants were randomised into two groups. High-magnitude whole-body vibration was applied in the exercise group, whereas low-magnitude whole-body vibration exercises were applied in the control group throughout 20 sessions. Hip bone mineral density, isokinetic muscle strength, and plasma sclerostin levels were measured. The surface electromyography data were processed to obtain the Root Mean Squares, which were normalised by maximal voluntarily contraction. In the exercise group, muscle strength increased in the right and left knee flexors (23.9%, p=0.004 and 27.5%, p<0.0001, respectively). However, no significant change was observed in the knee extensor muscle strength. There was no significant change in the knee muscle strength in the control group. The vibration-induced corrected Root Mean Squares of the semitendinosus muscle was decreased by 2.8 times (p=0.005) in the exercise group, whereas there was no change in the control group. Sclerostin index was decreased by 15.2% (p=0.031) in the exercise group and increased by 20.8% (p=0.028) in the control group. A change in the sclerostin index was an important predictor of a change in the vibration-induced normalised Root Mean Square of the semitendinosus muscle (R2=0.7, p=0.0001). Femoral neck bone mineral density was an important predictor of muscle strength gain (R2=0.26, p=0.035). This study indicates that bone tissue may have an effect on vibration-induced muscle strength gain and vibration-induced reflex muscle activity. ClinicalTrials.gov: NCT01310348.

  5. Strength and Hypertrophy Adaptations Between Low- vs. High-Load Resistance Training: A Systematic Review and Meta-analysis.

    PubMed

    Schoenfeld, Brad J; Grgic, Jozo; Ogborn, Dan; Krieger, James W

    2017-12-01

    Schoenfeld, BJ, Grgic, J, Ogborn, D, and Krieger, JW. Strength and hypertrophy adaptations between low- vs. high-load resistance training: a systematic review and meta-analysis. J Strength Cond Res 31(12): 3508-3523, 2017-The purpose of this article was to conduct a systematic review of the current body of literature and a meta-analysis to compare changes in strength and hypertrophy between low- vs. high-load resistance training protocols. Searches of PubMed/MEDLINE, Cochrane Library, and Scopus were conducted for studies that met the following criteria: (a) an experimental trial involving both low-load training [≤60% 1 repetition maximum (1RM)] and high-load training (>60% 1RM); (b) with all sets in the training protocols being performed to momentary muscular failure; (c) at least one method of estimating changes in muscle mass or dynamic, isometric, or isokinetic strength was used; (d) the training protocol lasted for a minimum of 6 weeks; (e) the study involved participants with no known medical conditions or injuries impairing training capacity. A total of 21 studies were ultimately included for analysis. Gains in 1RM strength were significantly greater in favor of high- vs. low-load training, whereas no significant differences were found for isometric strength between conditions. Changes in measures of muscle hypertrophy were similar between conditions. The findings indicate that maximal strength benefits are obtained from the use of heavy loads while muscle hypertrophy can be equally achieved across a spectrum of loading ranges.

  6. Strength Training Following Hematopoietic Stem Cell Transplantation

    PubMed Central

    Hacker, Eileen Danaher; Larson, Janet; Kujath, Amber; Peace, David; Rondelli, Damiano; Gaston, Lisa

    2010-01-01

    Background Patients receiving high-dose chemotherapy and hematopoietic stem cell transplantation (HSCT) experience considerable reductions in physical activity and deterioration of their health status. Objective The purpose of this pilot study was to test the effects of strength training compared to usual activity on physical activity, muscle strength, fatigue, health status perceptions, and quality of life following HSCT. Interventions/Methods Nineteen subjects were randomized to the exercise or control group. Moderate intensity strength training began following discharge from the hospital. Dependent variables included physical activity, muscle strength, fatigue, health status perceptions and quality of life. Variables were measured prior to admission to the hospital for HSCT, day 8 following HSCT, and six weeks following discharge from the hospital. Results Significant time effects were noted for many variables with anticipated declines in physical activity, muscle strength, fatigue, and health status perceptions immediately after HSCT with subsequent improvements six weeks following hospital discharge. One group effect was noted with subjects in the exercise group reporting less fatigue than subjects in the control group. Although no significant interactions were detected, the trends suggest that the exercise group may be more physically active following the intervention compared to the usual activity group. Conclusions This study demonstrates the potential positive effects of strength training on physical activity, fatigue, and quality of life in people receiving high-dose chemotherapy and HSCT. Implications for Practice Preliminary evidence is provided for using strength training to enhance early recovery following HSCT. Elastic resistance bands are easy to use and relatively inexpensive. PMID:21116175

  7. Butyryl-cholinesterase is related to muscle mass and strength. A new biomarker to identify elderly subjects at risk of sarcopenia.

    PubMed

    Cacciatore, Francesco; Della-Morte, David; Basile, Claudia; Curcio, Francesco; Liguori, Ilaria; Roselli, Mario; Gargiulo, Gaetano; Galizia, Gianluigi; Bonaduce, Domenico; Abete, Pasquale

    2015-01-01

    To determine the relationship between Butyryl-cholinesterase (α-glycoprotein synthesized in the liver, b-CHE) and muscle mass and strength. Muscle mass by bioimpedentiometer and muscle strength by grip strength were evaluated in 337 elderly subjects (mean age: 76.2 ± 6.7 years) admitted to comprehensive geriatric assessment. b-CHE levels were lower in sarcopenic than in nonsarcopenic elderly subjects (p < 0.01). Linear regression analysis demonstrated that b-CHE is linearly related with grip strength and muscular mass both in men and women (r = 0.45 and r = 0.33, p < 0.01; r = 0.55 and r = 0.39, p < 0.01; respectively). Multivariate analysis confirms this analysis. b-CHE is related to muscle mass and strength in elderly subjects. Thus, b-CHE may be considered to be a fair biomarker for identifying elderly subjects at risk of sarcopenia.

  8. [Association of muscle strength with early markers of cardiovascular risk in sedentary adults].

    PubMed

    Triana-Reina, Héctor Reynaldo; Ramírez-Vélez, Robinson

    2013-10-01

    To assess the association between muscle strength and early cardiovascular risk (CVR) markers in sedentary adults. A total of 176 sedentary subjects aged 18-30 years were enrolled. Body mass index and fat percentage were calculated, and waist circumference, grip strength by dynamometry, systolic blood pressure, diastolic blood pressure, mean arterial pressure, and maximal oxygen uptake by VO2max were measured as CVR markers. A multivariate logistic regression analysis was used to assess associations between muscle strength and CVR markers. Inverse correlations were found between muscle strength and adiposity (r=-.317; P=.001), waist circumference (r=-.309; P=.001), systolic blood pressure (r=-.401; P=.001), and mean arterial pressure (r=-.256; P=.001). Subjects with lower levels of muscle strength had a 5.79-fold (95% CI 1.57 to 9.34; P=.008) risk of having higher adiposity levels (≥25%) and a 9.67-fold (95% CI=3.86 to 19.22; P<.001) risk of having lower physical capacity values for VO2max (≤31.5mL/kg/min(-1)). In sedentary adults, muscle strength is associated to early manifestations of CVR. It is suggested that muscle strength testing is added to routine measurement of VO2max and traditional risk factors for prevention and treatment of cardiovascular risk. Copyright © 2012 SEEN. Published by Elsevier Espana. All rights reserved.

  9. Assessing the accuracy of subject-specific, muscle-model parameters determined by optimizing to match isometric strength.

    PubMed

    DeSmitt, Holly J; Domire, Zachary J

    2016-12-01

    Biomechanical models are sensitive to the choice of model parameters. Therefore, determination of accurate subject specific model parameters is important. One approach to generate these parameters is to optimize the values such that the model output will match experimentally measured strength curves. This approach is attractive as it is inexpensive and should provide an excellent match to experimentally measured strength. However, given the problem of muscle redundancy, it is not clear that this approach generates accurate individual muscle forces. The purpose of this investigation is to evaluate this approach using simulated data to enable a direct comparison. It is hypothesized that the optimization approach will be able to recreate accurate muscle model parameters when information from measurable parameters is given. A model of isometric knee extension was developed to simulate a strength curve across a range of knee angles. In order to realistically recreate experimentally measured strength, random noise was added to the modeled strength. Parameters were solved for using a genetic search algorithm. When noise was added to the measurements the strength curve was reasonably recreated. However, the individual muscle model parameters and force curves were far less accurate. Based upon this examination, it is clear that very different sets of model parameters can recreate similar strength curves. Therefore, experimental variation in strength measurements has a significant influence on the results. Given the difficulty in accurately recreating individual muscle parameters, it may be more appropriate to perform simulations with lumped actuators representing similar muscles.

  10. Effects of pelvic floor muscle training during pregnancy.

    PubMed

    de Oliveira, Claudia; Lopes, Marco Antonio Borges; Carla Longo e Pereira, Luciana; Zugaib, Marcelo

    2007-08-01

    The objective of the present study was to evaluate the effect of pelvic floor muscle training in 46 nulliparous pregnant women. The women were divided into 2 groups: an exercise group and a control group. Functional evaluation of the pelvic floor muscle was performed by digital vaginal palpation using the strength scale described by Ortiz and by a perineometer (with and without biofeedback). The functional evaluation of the pelvic floor muscles showed a significant increase in pelvic floor muscle strength during pregnancy in both groups (P < .001). However, the magnitude of the change was greater in the exercise group than in the control group (47.4% vs. 17.3%, P < .001). The study also showed a significant positive correlation (Spearman's test, r = 0.643; P < .001) between perineometry and digital assessment in the strength of pelvic floor muscles. Pelvic floor muscle training resulted in a significant increase in pelvic floor muscle pressure and strength during pregnancy. A significant positive correlation between functional evaluation of the pelvic floor muscle and perineometry was observed during pregnancy.

  11. Sex comparisons of non-local muscle fatigue in human elbow flexors and knee extensors

    PubMed Central

    Ye, Xin; Beck, Travis W.; Wages, Nathan P.; Carr, Joshua C.

    2018-01-01

    Objectives: To examine non-local muscle fatigue (NLMF) in both contralateral homologous and non-related heterogonous muscles for both sexes. Methods: Ten men and nine women participated in this study. After the familiarization visit, subjects completed four separate randomly sequenced experimental visits, during which the fatiguing interventions (six sets of 30-second maximal isometric contractions) were performed on either their right elbow flexors or knee extensors. Before (Pre-) and after (Post-) the fatiguing interventions, the isometric strength and the corresponding surface electromyographic (EMG) amplitude were measured for the non-exercised left elbow flexors or knee extensors. Results: For the non-exercised elbow flexors, the isometric strength decreased for both sexes (sex combined mean±SE: Pre vs. Post=339.67±18.02 N vs. 314.41±16.37 N; p<0.001). For the non-exercised knee extensors, there is a time ´ sex interaction (p=0.025), showing a decreased isometric knee extension strength for men (Pre vs. Post =845.02±66.26 N vs. 817.39±67.64 N; p=0.019), but not for women. Conclusions: The presence of NMLF can be affected by factors such as sex and muscle being tested. Women are less likely to demonstrate NLMF in lower body muscle groups. PMID:29504584

  12. Impact on nutrition on muscle strength and performance in older adults

    USDA-ARS?s Scientific Manuscript database

    Muscle strength plays an important role in determining risk for falls, which result in fractures and other injuries. While bone loss has long been recognized as an inevitable consequence of aging, sarcopenia-the gradual loss of skeletal muscle mass and strength that occurs with advancing age-has rec...

  13. Sarcopenia and decreased muscle strength in the elderly woman: resistance training as a safe and effective intervention.

    PubMed

    Foster-Burns, S B

    1999-01-01

    A principle component of age-related weakness and frailty in women is sarcopenia. This decrease in skeletal muscle mass is a progressive syndrome that will affect the quality of life for elderly women by decreasing the ability to perform many activities of daily living. Strength training is known to be an effective means of increasing muscular strength and size in many populations, and can be utilized successfully to significantly improve muscle strength, muscle mass and functional mobility in elderly women up to the age of 96 years. Such exercise can minimize the syndrome of physical frailty due to decreased muscle mass and strength. Any rehabilitation or exercise program for the elderly woman would benefit from the inclusion of such a training regime.

  14. Evaluation of peripheral muscle strength of patients undergoing elective cardiac surgery: a longitudinal study.

    PubMed

    Santos, Kelli Maria Souza; Cerqueira Neto, Manoel Luiz de; Carvalho, Vitor Oliveira; Santana Filho, Valter Joviniano de; Silva Junior, Walderi Monteiro da; Araújo Filho, Amaro Afrânio; Cerqueira, Telma Cristina Fontes; Cacau, Lucas de Assis Pereira

    2014-01-01

    Peripheral muscle strength has been little explored in the literature in the context of cardiac rehabilitation. To evaluate the peripheral muscle strength of patients undergoing elective cardiac surgery. This was a longitudinal observational study. The peripheral muscle strength was measured using isometric dynamometry lower limb (knee extensors and flexors) at three different times: preoperatively (M1), the day of discharge (M2) and hospital discharge (M3). Participants received physiotherapy pre and postoperatively during the days of hospitalization during the morning and afternoon. Twenty-two patients were evaluated. The values of peripheral muscle strength of knee extensors preoperative found were about 50% lower than those predicted for the healthy population. When comparing muscle strength prior (M1), with the remaining evaluation, found himself in a fall of 29% for the movement of knee extension and 25% for knee flexion in M2 and a decrease of 10% movement for knee extension and 13% for knee flexion in M3 when comparing with M1. The values of peripheral muscle strength prior of the study patients were lower than predicted for the healthy population of the same age. After the surgical event this reduction is even more remarkable, being reestablished until the time of discharge, to values close to baseline.

  15. Balance and ankle muscle strength predict spatiotemporal gait parameters in individuals with diabetic peripheral neuropathy.

    PubMed

    Camargo, Marcela R; Barela, José A; Nozabieli, Andréa J L; Mantovani, Alessandra M; Martinelli, Alessandra R; Fregonesi, Cristina E P T

    2015-01-01

    The aims of this study were to evaluate aspects of balance, ankle muscle strength and spatiotemporal gait parameters in individuals with diabetic peripheral neuropathy (DPN) and verify whether deficits in spatiotemporal gait parameters were associated with ankle muscle strength and balance performance. Thirty individuals with DPN and 30 control individuals have participated. Spatiotemporal gait parameters were evaluated by measuring the time to walk a set distance during self-selected and maximal walking speeds. Functional mobility and balance performance were assessed using the Functional Reach and the Time Up and Go tests. Ankle isometric muscle strength was assessed with a handheld digital dynamometer. Analyses of variance were employed to verify possible differences between groups and conditions. Multiple linear regression analysis was employed to uncover possible predictors of gait deficits. Gait spatiotemporal, functional mobility, balance performance and ankle muscle strength were affected in individuals with DPN. The Time Up and Go test performance and ankle muscle isometric strength were associated to spatiotemporal gait changes, especially during maximal walking speed condition. Functional mobility and balance performance are damaged in DPN and balance performance and ankle muscle strength can be used to predict spatiotemporal gait parameters in individuals with DPN. Copyright © 2015 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  16. Whole-body vibration as a potential countermeasure for dynapenia and arterial stiffness.

    PubMed

    Figueroa, Arturo; Jaime, Salvador J; Alvarez-Alvarado, Stacey

    2016-09-01

    Age-related decreases in muscle mass and strength are associated with decreased mobility, quality of life, and increased cardiovascular risk. Coupled with the prevalence of obesity, the risk of death becomes substantially greater. Resistance training (RT) has a well-documented beneficial impact on muscle mass and strength in young and older adults, although the high-intensity needed to elicit these adaptations may have a detrimental or negligible impact on vascular function, specifically on arterial stiffness. Increased arterial stiffness is associated with systolic hypertension, left ventricular hypertrophy, and myocardial ischemia. Therefore, improvements of muscle strength and arterial function are important in older adults. Recently, whole-body vibration (WBV) exercise, a novel modality of strength training, has shown to exhibit similar results on muscle strength as RT in a wide-variety of populations, with the greatest impact in elderly individuals with limited muscle function. Additionally, WBV training has been shown to have beneficial effects on vascular function by reducing arterial stiffness. This article reviews relevant publications reporting the effects of WBV on muscle strength and/or arterial stiffness. Findings from current studies suggest the use of WBV training as an alternative modality to traditional RT to countermeasure the age-related detriments in muscle strength and arterial stiffness in older adults.

  17. Muscle Volume Increases Following 16 Weeks of Resistive Exercise Training with the Advanced Resistive Exercise Device (ARED) and Free Weights

    NASA Technical Reports Server (NTRS)

    Nash, R. E.; Loehr, J. A.; Lee, S. M. C.; English, K. L.; Evans, H.; Smith, S. A.; Hagan, R. D.

    2009-01-01

    Space flight-induced muscle atrophy, particularly in the postural and locomotorymuscles, may impair task performance during long-duration space missions and planetary exploration. High intensity free weight (FW) resistive exercise training has been shown to prevent atrophy during bed rest, a space flight analog. NASA developed the Advanced Resistive Exercise Device (ARED) to simulate the characteristics of FW exercise (i.e. constant mass, inertial force) and to be used as a countermeasure during International Space Station (ISS) missions. PURPOSE: To compare the efficacy of ARED and FW training to induce hypertrophy in specific muscle groups in ambulatory subjects prior to deploying ARED on the ISS. METHODS: Twenty untrained subjects were assigned to either the ARED (8 males, 3 females) or FW (6 males, 3 females) group and participated in a periodizedtraining protocol consisting of squat (SQ), heel raise (HR), and deadlift(DL) exercises 3 d wk-1 for 16 wks. SQ, HR, and DL muscle strength (1RM) was measured before, after 8 wks, and after 16 wks of training to prescribe exercise and measure strength changes. Muscle volume of the vastigroup (V), hamstring group (H), hip adductor group (ADD), medial gastrocnemius(MG), lateral gastrocnemius(LG), and deep posterior muscles including soleus(DP) was measured using MRI pre-and post-training. Consecutive cross-sectional images (8 mm slices with a 2 mm gap) were analyzed and summed. Anatomical references insured that the same muscle sections were analyzed pre-and post-training. Two-way repeated measures ANOVAs (p<0.05) were used to test for differences in muscle strength and volume between training devices. RESULTS: SQ, HR, and DL 1RM increased in both FW (SQ: 49+/-6%, HR: 12+/-2%, DL: 23+/-4%) and ARED (SQ: 31+/-4%, HR: 18+/-2%, DL: 23+/-3%) groups. Both groups increased muscle volume in the V (FW: 13+/-2%, ARED: 10+/-2%), H (FW: 3+/-1%, ARED: 3+/-1 %), ADD (FW: 15=/-2%, ARED: 10+/-1%), LG (FW: 7+/-2%, ARED: 4+/-1%), MG (FW: 7+/-2%, ARED: 5+/-2%), and DP (FW: 2+/-1%; ARED: 2+/-1%) after training. There were no between group differences in muscle strength or volume. CONCLUSIONS: The increase in muscle volume and strength following ARED training is not different than FW training. With the training effects similar to FW and a 600 lb load capacity, ARED likely will protect against muscle atrophy in microgravity.

  18. Reinvestigation of the dysfunction in neck and shoulder girdle muscles as the reason of cervicogenic headache among office workers.

    PubMed

    Huber, Juliusz; Lisiński, Przemysław; Polowczyk, Agnieszka

    2013-05-01

    Dysfunction of cervical and shoulder girdle muscles as reason of cervicogenic headache (CEH) was reinvestigated with clinical and neurophysiological studies. Forty office workers were randomized into two groups to verify efficiency of supervised kinesiotherapy (N = 20) aimed with improvement of muscle's activity and headache symptoms releasing. Headache intensity was evaluated with visual analog scale (VAS), range of cervical movement (ROM) with goniometer, trigger points (TrPs) incidence with palpation and muscle's strength with Lovett's scale. Reaction of patients for muscle's elongation was also evaluated. Surface electromyographical recordings were bilaterally analyzed at rest (rEMG) and during maximal contraction (mcEMG). Deficits of cervical flexion and muscles strength were found in all patients. TrPs occurred predominantly in painful trapezius muscle. Incidence of trigger points coexisted with intensity of CEH. Results indicated on muscles dysfunction which improved only after supervised therapy. Positive correlations between increase in rEMG amplitudes and high VAS scores, high-amplitude rEMG recordings incidence and increased number of TrPs were found. Negative correlation was detected between amplitude in mcEMG and amplitude of rEMG recordings. Dysfunction of trapezius muscle was most responsible for CEH etiology. Proposed algorithm of kinesiotherapy was effective as complementary method of the CEH patients treatment.

  19. Early phase adaptations in muscle strength and hypertrophy as a result of low-intensity blood flow restriction resistance training.

    PubMed

    Hill, Ethan C; Housh, Terry J; Keller, Joshua L; Smith, Cory M; Schmidt, Richard J; Johnson, Glen O

    2018-06-22

    Low-intensity venous blood flow restriction (vBFR) resistance training has been shown to promote increases in muscle strength and size. Eccentric-only muscle actions are typically a more potent stimulus to increase muscle strength and size than concentric-only muscle actions performed at the same relative intensities. Therefore, the purpose of this investigation was to examine the time-course of changes in muscle strength, hypertrophy, and neuromuscular adaptations following 4 weeks of unilateral forearm flexion low-intensity eccentric vBFR (Ecc-vBFR) vs. low-intensity concentric vBFR (Con-vBFR) resistance training performed at the same relative intensity. Thirty-six women were randomly assigned to either Ecc-vBFR (n = 12), Con-vBFR (n = 12) or control (no intervention, n = 12) group. Ecc-vBFR trained at 30% of eccentric peak torque and Con-vBFR trained at 30% of concentric peak torque. All training and testing procedures were performed at an isokinetic velocity of 120° s - ¹. Muscle strength increased similarly from 0 to 2 and 4 weeks of training as a result of Ecc-vBFR (13.9 and 35.0%) and Con-vBFR (13.4 and 31.2%), but there were no changes in muscle strength for the control group. Muscle thickness increased similarly from 0 to 2 and 4 weeks of training as a result of Ecc-vBFR (11.4 and 12.8%) and Con-vBFR (9.1 and 9.9%), but there were no changes for the control group. In addition, there were no changes in any of the neuromuscular responses. The Ecc-vBFR and Con-vBFR low-intensity training induced comparable increases in muscle strength and size. The increases in muscle strength, however, were not associated with neuromuscular adaptations.

  20. Weight reduction does not induce an undesirable decrease in muscle mass, muscle strength, or physical performance in men with obesity: a pilot study.

    PubMed

    Kim, Bokun; Tsujimoto, Takehiko; So, Rina; Zhao, Xiaoguang; Oh, Sechang; Tanaka, Kiyoji

    2017-12-31

    To date, there have been no reports on whether weight reduction causes decreases in muscle mass, muscle strength, or physical performance that could lead to health problems. Thus, in this pilot study, we investigated the appropriateness of the changes in muscle mass, muscle strength and physical performance after weight reduction. Obese men who completed a weight reduction program to decrease and maintain a body mass index (BMI) of less than 25 kg/m2 for one year were recruited for the study. One year after the completion of a weight reduction program, the participants' muscle mass, muscle strength, and physical performance were compared with those in a reference group composed of individuals whose BMI was less than 25 kg/m2. Whole-body scanning was performed using dual-energy X-ray absorptiometry to analyze muscle mass. Handgrip strength and knee extensor strength were measured to evaluate arm and leg muscle strength, respectively. For physical performance, a jump test was employed. The results showed that the biceps, triceps, subscapular, and suprailiac areas of professional fashion models were significantly thinner than those of women in general (p<.001), and that their waist size was also significantly smaller (p<.001). However, hip circumference showed no significant difference. Body mass index, waist-to-hip ratio, and body fat (%) in professional fashion models were significantly lower than those in women in general (p<.001), while the body density in professional fashion models was significantly greater (p<0.001). Weight reduction participants showed an average reduction in body weight of -16.47%. Normalized arm muscle mass and handgrip strength were significantly greater in the weight reduction group than in the reference group; however, no significant differences were detected between the two groups with respect to the other variables. After one year, there were no significant differences between the two groups. ©2017 The Korean Society for Exercise Nutrition

  1. Skeletal muscle troponin as a novel biomarker to enhance assessment of the impact of strength training on fall prevention in the older adults.

    PubMed

    Abreu, Eduardo L; Cheng, An-Lin; Kelly, Patricia J; Chertoff, Keyna; Brotto, Leticia; Griffith, Elizabeth; Kinder, Glenda; Uridge, Tina; Zachow, Rob; Brotto, Marco

    2014-01-01

    Loss of muscle mass and strength (i.e., sarcopenia) in the older adults is a strong predictor of falls, with subsequent morbidity and inability to execute activities of daily living. Use of biomarkers may enhance assessment of effects of community-based exercise interventions aimed at improving muscle strength. The aim of this study was to investigate the use of troponin as a newly proposed biomarker of skeletal muscle health when determining the outcomes of strength-training programs designed for community-dwelling adults over the age of 65 years. Outcomes of two strength training programs ("Peer Exercise Program Promotes Independence" and "Stay Strong, Stay Healthy") were assessed using physical performance tests designed for senior fitness evaluation, grip strength, and changes in serum levels of skeletal muscle-specific troponin T (sTnT). Improvement in physical performance, including a significant increase in grip strength, was associated with a significant reduction in serum levels of sTnT. Findings from these studies suggest that, when "Peer Exercise Program Promotes Independence" and "Stay Strong, Stay Healthy" are implemented for at least 10 weeks, significant gains in strength are achieved. This strength improvement was associated with a reduction in serum levels of troponin, supporting the use of troponin as a novel biomarker of muscle health in the assessment of strength training programs for the older adults. Reduced sTnT after exercise intervention suggests that skeletal muscles become stronger and less susceptible to damage because of the exercise regimens.

  2. Muscle strength and areal bone mineral density at the hip in women: a cross-sectional study.

    PubMed

    Pasco, Julie A; Holloway, Kara L; Brennan-Olsen, Sharon L; Moloney, David J; Kotowicz, Mark A

    2015-05-24

    Muscle strengthening exercises are promoted for building and maintaining a healthy skeleton. We aimed to investigate the relationship between muscle strength and areal bone mineral density (BMD) at the hip in women aged 26-97 years. This cross-sectional study utilises data from 863 women assessed for the Geelong Osteoporosis Study. Measures of hip flexor and abductor strength were made using a hand-held dynamometer (Nicholas Manual Muscle Tester). The maximal measure from three trials on each leg was used for analyses. BMD was measured at the hip using dual energy x-ray absorptiometry (DXA; Lunar DPX-L). Total lean mass, body fat mass and appendicular lean mass were determined from whole body DXA scans. Linear regression techniques were used with muscle strength as the independent variable and BMD as the dependent variable. Models were adjusted for age and indices of body composition. Measures of age-adjusted hip flexor strength and hip abductor strength were positively associated with total hip BMD. For each standard deviation (SD) increase in hip flexor strength, the increase in mean total hip BMD (SD) was 10.4 % (p = 0.009). A similar pattern was observed for hip abductor strength, with an increase in mean total hip BMD of 22.8 % (p = 0.025). All associations between hip muscle strength and total hip BMD were independent of height, but were nullified after adjusting for appendicular lean mass or total lean mass. There was a positive association observed between muscle strength and BMD at the hip. However, this association was explained by measures of lean mass.

  3. Detection of early symptoms of cumulativetrauma disorders among mothers of handicapped children: a pilot study

    PubMed Central

    Kinali, Gulsah; Üçsular, Ferda Dokuztuğ

    2018-01-01

    [Purpose] This study aimed to establish a scientific and clinical basis for the development of a method for the early diagnosis of cumulative trauma disorders experienced by mothers of disabled children. [Subjects and Methods] Ten volunteer mothers who came to a rehabilitation centre for the treatment of their children were included in this study. Surface electromyography measurements were taken during maximum isometric contraction through the extensor muscle motor point of the wrist of the mothers, and hand grip strength was measured. [Results] In the electromyography measurements, the mean electromyogram signal value obtained from the wrist extensor muscle motor point of the mothers of the healthy children was 0.3 ± 0.08 mV and the crude handgrip strength was 28.5 ± 2.08 kg. In mothers of rehabilitated children, the crude hand grip strength was 7.0 ± 1.1 kg, and the mean electromyogram signal value from the extender muscle motor point was 0.1 ± 0.02 mV. There was a significant difference between the mothers with healthy and disabled children with respect to handgrip strength and electromyography. [Conclusion] The result obtained may be important in the development of health protection programs. Further research may lead to the development of protective rehabilitation programs and the improvement of social rights for mothers with disabled children. PMID:29545677

  4. Skeletal muscle strength and endurance in recipients of lung transplants.

    PubMed

    Mathur, Sunita; Levy, Robert D; Reid, W Darlene

    2008-09-01

    Exercise limitation in recipients of lung transplant may be a result of abnormalities in the skeletal muscle. However, it is not clear whether these abnormalities are merely a reflection of the changes observed in the pretransplant condition. The purpose of this paper was to compare thigh muscle volume and composition, strength, and endurance in lung transplant recipients to people with chronic obstructive pulmonary disease (COPD). Single lung transplant recipients (n=6) and people with COPD (n=6), matched for age, sex, and BMI participated in the study. Subjects underwent MRI to determine muscle size and composition, lower extremity strength testing and an isometric endurance test of the quadriceps. Lung transplant recipients had similar muscle volumes and intramuscular fat infiltration of their thigh muscles and similar strength of the quadriceps and hamstrings to people with COPD who had not undergone transplant. However, quadriceps endurance tended to be lower in transplant recipients compared to people with COPD (15 +/- 7 seconds in transplant versus 31 +/- 12 seconds in COPD, p = 0.08). Recipients of lung transplant showed similar changes in muscle size and strength as people with COPD, however muscle endurance tended to be lower in people with lung transplants. Impairments in muscle endurance may reflect the effects of immunosuppressant medications on skeletal muscle in people with lung transplant.

  5. Respiratory muscle training increases respiratory muscle strength and reduces respiratory complications after stroke: a systematic review.

    PubMed

    Menezes, Kênia Kp; Nascimento, Lucas R; Ada, Louise; Polese, Janaine C; Avelino, Patrick R; Teixeira-Salmela, Luci F

    2016-07-01

    After stroke, does respiratory muscle training increase respiratory muscle strength and/or endurance? Are any benefits carried over to activity and/or participation? Does it reduce respiratory complications? Systematic review of randomised or quasi-randomised trials. Adults with respiratory muscle weakness following stroke. Respiratory muscle training aimed at increasing inspiratory and/or expiratory muscle strength. Five outcomes were of interest: respiratory muscle strength, respiratory muscle endurance, activity, participation and respiratory complications. Five trials involving 263 participants were included. The mean PEDro score was 6.4 (range 3 to 8), showing moderate methodological quality. Random-effects meta-analyses showed that respiratory muscle training increased maximal inspiratory pressure by 7 cmH2O (95% CI 1 to 14) and maximal expiratory pressure by 13 cmH2O (95% CI 1 to 25); it also decreased the risk of respiratory complications (RR 0.38, 95% CI 0.15 to 0.96) compared with no/sham respiratory intervention. Whether these effects carry over to activity and participation remains uncertain. This systematic review provided evidence that respiratory muscle training is effective after stroke. Meta-analyses based on five trials indicated that 30minutes of respiratory muscle training, five times per week, for 5 weeks can be expected to increase respiratory muscle strength in very weak individuals after stroke. In addition, respiratory muscle training is expected to reduce the risk of respiratory complications after stroke. Further studies are warranted to investigate whether the benefits are carried over to activity and participation. PROSPERO (CRD42015020683). [Menezes KKP, Nascimento LR, Ada L, Polese JC, Avelino PR, Teixeira-Salmela LF (2016) Respiratory muscle training increases respiratory muscle strength and reduces respiratory complications after stroke: a systematic review.Journal of Physiotherapy62: 138-144]. Copyright © 2016 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.

  6. Identification and prioritization of NUAK1 and PPP1CC as positional candidate loci for skeletal muscle strength phenotypes

    PubMed Central

    Windelinckx, An; De Mars, Gunther; Huygens, Wim; Peeters, Maarten W.; Vincent, Barbara; Wijmenga, Cisca; Lambrechts, Diether; Aerssens, Jeroen; Vlietinck, Robert; Beunen, Gaston

    2011-01-01

    Muscle strength is an important determinant in elite sports performance as well as in the activities of daily living. Muscle metabolism also plays a role in the genesis, and therefore prevention, of common pathological conditions and chronic diseases. Even though heritability estimates between 31 and 78% suggest a significant genetic component in muscle strength, only a limited number of genes influencing muscle strength have been identified. This study aimed to identify and prioritize positional candidate genes within a skeletal muscle strength quantitative trait locus on chromosome 12q22-23 for follow-up. A two-staged gene-centered fine-mapping approach using 122 single nucleotide polymorphisms (SNPs) in stage 1 identified a familybased association (n = 500) between several tagSNPs located in the ATPase, Ca2+ transporting, cardiac muscle, slow twitch 2 (ATP2A2; rs3026468), the NUAK family, SNF1-like kinase, 1 (NUAK1; rs10861553 and rs3741886), and the protein phosphatase 1, catalytic subunit, gamma isoform (PPP1CC; rs1050587 and rs7901769) genes and knee torque production (P values up to 0.00092). In stage 2, family-based association tests on additional putatively functional SNPs (e.g., exonic SNPs, SNPs in transcription factor binding sites or in conserved regions) in an enlarged sample (n = 536; 464 individuals overlap with stage 1) did not identify additional associations with muscle strength characteristics. Further in-depth analyses will be necessary to elucidate the exact role of ATP2A2, PPP1CC, and NUAK1 in muscle strength and to find out which functional polymorphisms are at the base of the interindividual strength differences. PMID:21750233

  7. The Association between Parameters of Malnutrition and Diagnostic Measures of Sarcopenia in Geriatric Outpatients

    PubMed Central

    Reijnierse, Esmee M.; Trappenburg, Marijke C.; Leter, Morena J.; Blauw, Gerard Jan; de van der Schueren, Marian A. E.; Meskers, Carel G. M.; Maier, Andrea B.

    2015-01-01

    Objectives Diagnostic criteria for sarcopenia include measures of muscle mass, muscle strength and physical performance. Consensus on the definition of sarcopenia has not been reached yet. To improve insight into the most clinically valid definition of sarcopenia, this study aimed to compare the association between parameters of malnutrition, as a risk factor in sarcopenia, and diagnostic measures of sarcopenia in geriatric outpatients. Material and Methods This study is based on data from a cross-sectional study conducted in a geriatric outpatient clinic including 185 geriatric outpatients (mean age 82 years). Parameters of malnutrition included risk of malnutrition (assessed by the Short Nutritional Assessment Questionnaire), loss of appetite, unintentional weight loss and underweight (body mass index <22 kg/m2). Diagnostic measures of sarcopenia included relative muscle mass (lean mass and appendicular lean mass [ALM] as percentages), absolute muscle mass (total lean mass and ALM/height2), handgrip strength and walking speed. All diagnostic measures of sarcopenia were standardized. Associations between parameters of malnutrition (independent variables) and diagnostic measures of sarcopenia (dependent variables) were analysed using multivariate linear regression models adjusted for age, body mass, fat mass and height in separate models. Results None of the parameters of malnutrition was consistently associated with diagnostic measures of sarcopenia. The strongest associations were found for both relative and absolute muscle mass; less stronger associations were found for muscle strength and physical performance. Underweight (p = <0.001) and unintentional weight loss (p = 0.031) were most strongly associated with higher lean mass percentage after adjusting for age. Loss of appetite (p = 0.003) and underweight (p = 0.021) were most strongly associated with lower total lean mass after adjusting for age and fat mass. Conclusion Parameters of malnutrition relate differently to diagnostic measures of sarcopenia in geriatric outpatients. The association between parameters of malnutrition and diagnostic measures of sarcopenia was strongest for both relative and absolute muscle mass, while less strong associations were found with muscle strength and physical performance. PMID:26284368

  8. Associations between Body Composition and Bone Density and Structure in Men and Women across the Adult Age Spectrum

    PubMed Central

    Baker, Joshua F.; Davis, Matthew; Alexander, Ruben; Zemel, Babette S.; Mostoufi-Moab, Sogol; Shults, Justine; Sulik, Michael; Schiferl, Daniel J.; Leonard, Mary B.

    2012-01-01

    Background/Purpose The objective of this study was identify independent associations between body composition and bone outcomes, including cortical structure and cortical and trabecular volumetric bone mineral density (vBMD) across the adult age spectrum. Methods This cross-sectional study evaluated over 400 healthy adults (48% male, 44% black race), ages 21–78 years. Multivariable linear regression models evaluated associations between whole-body DXA measures of lean body mass index (LBMI) and fat mass index (FMI) and tibia peripheral quantitative CT (pQCT) measures of cortical section modulus, cortical and trabecular vBMD and muscle density (as a measure of intramuscular fat), adjusted for age, sex, and race. All associations reported below were statistically significant (p < 0.05). Results Older age and female sex were associated with lower LBMI and muscle strength. Black race was associated with greater LBMI but lower muscle density. Greater FMI was associated with lower muscle density. Cortical section modulus was positively associated with LBMI and muscle strength and negatively associated with FMI. Adjustment for body composition eliminated the greater section modulus observed in black participants and attenuated the lower section modulus in females. Greater LBMI was associated with lower cortical BMD and greater trabecular BMD. FMI was not associated with either BMD outcome. Greater muscle density was associated with greater trabecular and cortical BMD. Associations between body composition and bone outcomes did not vary by sex (no significant tests for interaction). Conclusions These data highlight age, sex- and race-specific differences in body composition, muscle strength and muscle density, and demonstrate discrete associations with bone density and structure. These data also show that age, sex- and race- related patterns of bone density and strength are independent of differences in body composition. Longitudinal studies are needed to examine the temporal relations between changes in bone and body composition. PMID:23238122

  9. Physical activity as intervention for age-related loss of muscle mass and function: protocol for a randomised controlled trial (the LISA study)

    PubMed Central

    Eriksen, Christian Skou; Garde, Ellen; Reislev, Nina Linde; Wimmelmann, Cathrine Lawaetz; Bieler, Theresa; Ziegler, Andreas Kraag; Gylling, Anne Theil; Dideriksen, Kasper Juel; Siebner, Hartwig Roman; Mortensen, Erik Lykke; Kjaer, Michael

    2016-01-01

    Introduction Physical and cognitive function decline with age, accelerating during the 6th decade. Loss of muscle power (force×velocity product) is a dominant physical determinant for loss of functional ability, especially if the lower extremities are affected. Muscle strength training is known to maintain or even improve muscle power as well as physical function in older adults, but the optimal type of training for beneficial long-term training effects over several years is unknown. Moreover, the impact of muscle strength training on cognitive function and brain structure remains speculative. The primary aim of this randomised controlled trial is to compare the efficacy of two different 1 year strength training regimens on immediate and long-lasting improvements in muscle power in retirement-age individuals. Secondary aims are to evaluate the effect on muscle strength, muscle mass, physical and cognitive function, mental well-being, health-related quality of life and brain morphology. Methods and analysis The study includes 450 home-dwelling men and women (62–70 years). Participants are randomly allocated to (1) 1 year of supervised, centre-based heavy resistance training, (2) home-based moderate intensity resistance training or (3) habitual physical activity (control). Changes in primary (leg extensor power) and secondary outcomes are analysed according to the intention to treat principle and per protocol at 1, 2, 4, 7 and 10 years. Ethics and dissemination The study is expected to generate new insights into training-induced promotion of functional ability and independency after retirement and will help to formulate national recommendations regarding physical activity schemes for the growing population of older individuals in western societies. Results will be published in scientific peer-reviewed journals, in PhD theses and at public meetings. The study is approved by the Regional Ethical Committee (Capital Region, Copenhagen, Denmark, number H-3-2014-017). Trial registration number NCT02123641. PMID:27913559

  10. The effect of complex rehabilitation training for 12 weeks on trunk muscle function and spine deformation of patients with SCI.

    PubMed

    Sung, Dong-Hun; Yoon, Seong-Deok; Park, Gi Duck

    2015-03-01

    [Purpose] It is important for patients with incomplete spinal cord injury (SCI) to strengthen their muscle strength and return to the work force one of the ultimate objectives of rehabilitation. This study reports how a single patient with SCI became stabilized in terms of abdominal muscles and back extension muscles, as well as returning the back to the neutral position from spinal deformation, as result of complex exercises performed for 12 weeks. [Subjects] The degree of damage of the subject was rated as C grade. The subject of this study had unstable posture due to paralysis in the lower extremities of the left side after removal of a malignant tumor by surgical operation, and tilting and torsion in the pelvis increased followed by increase of kyphosis in the thoracolumbar spine. The subject was more than two years since diagnosis of incomplete SCI after surgery. [Methods] Using isokinetic lumbar muscle strength measurement equipment, peak torque/weight, total work and average power in flexion and extension of the lumbar region were measured. A trunk measurement system (Formetric 4D, DIERS, Germany), which is a 3D image processing apparatus with high resolution for vertebrae, was used in order to measure 3D vertebrae and pelvis deformation as well as static balance abilities. As an exercise method, a foam roller was used to conduct fascia relaxation massage for warming-up, and postural kyphosis was changed into postural lordosis by lat pull-down using equipment, performed in 5 sets of 15 times preset at 60% intensity of 1RM 4 set of 10 crunch exercises per set using Togu's were done while sitting at the end of Balance pad, and 4 sets of 15 bridge exercises. [Results] All angular speed tests showed a gradual increase in muscle strength. Flexion and extension showed 10% and 3% improvements, respectively. The spine deformation test showed that isokinetic exercise and lat pull-down exercise for 12 weeks resulted in improved spinal shape. [Conclusion] In this study, core stability exercise for deep muscle training and lat pull-down exercise had positive effects on lower extremity muscle strength and the spinal shape of a patient with SCI.

  11. Muscular coordination and strength training. Implications for injury rehabilitation.

    PubMed

    Rutherford, O M

    1988-03-01

    Strength training is commonly used in the rehabilitation of muscles atrophied as a result of injury and/or disuse. Studies on the effects of conventional leg extension training in healthy subjects have shown the changes to be very task-specific to the training manoeuvre itself. After conventional leg extension training for the quadriceps muscle the major improvement was in weightlifting ability with only small increases in isometric strength. The maximum dynamic force and power output during sprint cycling showed no improvement. These results suggest that the major benefit of this type of training is learning to coordinate the different muscle groups involved in the training movement rather than intrinsic increases in strength of the muscle group being trained. Other studies have shown changes in strength to be specific to the length and speed at which the muscle has been trained. The implication for rehabilitation is that strength training for isolated muscle groups may not be the most effective way of increasing functional ability. As the major changes are task-specific it may be better to incorporate the training into task-related practice. This would have the advantage of strengthening the muscle groups affected whilst increasing performance in those activities which are required in daily life.

  12. Exploring the Link between Serum Phosphate Levels and Low Muscle Strength, Dynapenia, and Sarcopenia.

    PubMed

    Chen, Yuan-Yuei; Kao, Tung-Wei; Chou, Cheng-Wai; Wu, Chen-Jung; Yang, Hui-Fang; Lai, Ching-Huang; Wu, Li-Wei; Chen, Wei-Liang

    2018-02-23

    Emerging evidences addressed an association between phosphate and muscle function. Because little attention was focused on this issue, the objective of our study was to explore the relationship of phosphate with muscle strength, dynapenia, and sarcopenia. From the National Health and Nutrition Examination Survey, a total of 7421 participants aged 20 years or older were included in our study with comprehensive examinations included anthropometric parameters, strength of the quadriceps muscle, and appendicular lean masses. Within the normal range of serum phosphate, we used quartile-based analyses to determine the potential relationships of serum phosphate with dynapenia, and sarcopenia through multivariate regression models. After adjusting for the pertinent variables, an inverse association between the serum phosphate quartiles and muscle strength was observed and the linear association was stronger than other anthropometric parameters. Notably, the significant association between phosphate and muscle strength was existed in >65 years old age group, not in 20-65 years old. The higher quartiles of phosphate had higher likelihood for predicting the presence of dynapenia rather than sarcopenia in entire population. Our study highlighted that higher quartiles of phosphate had significant association with lower muscle strength and higher risks for predicting the presence of dynapenia.

  13. Recovery of Muscle Strength After Intact Arthroscopic Rotator Cuff Repair According to Preoperative Rotator Cuff Tear Size.

    PubMed

    Shin, Sang-Jin; Chung, Jaeyoon; Lee, Juyeob; Ko, Young-Won

    2016-04-01

    The recovery of muscle strength after arthroscopic rotator cuff repair based on the preoperative tear size has not yet been well described. The purpose of this study was to evaluate the recovery period of muscle strength by a serial assessment of isometric strength after arthroscopic rotator cuff repair based on the preoperative tear size. The hypothesis was that muscle strength in patients with small and medium tears would recover faster than that in those with large-to-massive tears. Cohort study; Level of evidence, 3. A total of 164 patients who underwent arthroscopic rotator cuff repair were included. Isometric strength in forward flexion (FF), internal rotation (IR), and external rotation (ER) was evaluated preoperatively and at 6, 12, 18, and 24 months after surgery. Preoperative magnetic resonance imaging scans were assessed to evaluate the quality of the rotator cuff muscle, including fatty infiltration, occupation ratio, and tangent sign. Patient satisfaction as well as visual analog scale (VAS) for pain, American Shoulder and Elbow Surgeons (ASES), and Constant scores were assessed at every follow-up. Muscle strength demonstrated the slowest recovery in pain relief and the restoration of shoulder function. To reach the strength of the uninjured contralateral shoulder in all 3 planes of motion, recovery took 6 months in patients with small tears and 18 months in patients with medium tears. Patients with large-to-massive tears showed continuous improvement in strength up to 18 months; however, they did not reach the strength of the contralateral shoulder at final follow-up. At final follow-up, mean strength in FF, IR, and ER was 113.0%, 118.0%, and 112.6% of the contralateral shoulder in patients with small tears, respectively; 105.0%, 112.1%, and 102.6% in patients with medium tears, respectively; and 87.6%, 89.5%, and 85.2% in patients with large-to-massive tears, respectively. Muscle strength in any direction did not significantly correlate with postoperative patient satisfaction (P = .374, .515, and .692 for FF, IR, and ER, respectively), whereas it highly correlated with preoperative quality of the muscle. The recovery of muscle strength after arthroscopic repair was poorly correlated with patient satisfaction. This study recommends that regardless of pain relief and improved shoulder function, patients with larger than medium tears should be encouraged to continue with rehabilitation for the maximal restoration of muscle strength beyond 1 year postoperatively. © 2016 The Author(s).

  14. Surgery-Induced Changes and Early Recovery of Hip-Muscle Strength, Leg-Press Power, and Functional Performance after Fast-Track Total Hip Arthroplasty: A Prospective Cohort Study

    PubMed Central

    Holm, Bente; Thorborg, Kristian; Husted, Henrik; Kehlet, Henrik; Bandholm, Thomas

    2013-01-01

    Background By measuring very early changes in muscle strength and functional performance after fast-track total hip arthroplasty (THA), post-operative rehabilitation, introduced soon after surgery, can be designed to specifically target identified deficits. Objective(s) Firstly, to quantify changes (compared to pre-operative values) in hip muscle strength, leg-press power, and functional performance in the first week after THA, and secondly, to explore relationships between the muscle strength changes, and changes in hip pain, systemic inflammation, and thigh swelling. Design Prospective, cohort study. Setting Convenience sample of patients receiving a THA at Copenhagen University Hospital, Hvidovre, Denmark, between March and December 2011. Participants Thirty-five patients (65.9±7.2 years) undergoing THA. Main outcome measures Hip muscle strength, leg-press power, performance-based function, and self-reported disability were determined prior to, and 2 and 8 days after, THA (Day 2 and 8, respectively). Hip pain, thigh swelling, and C-Reactive Protein were also determined. Results Five patients were lost to follow-up. Hip muscle strength and leg press power were substantially reduced at Day 2 (range of reductions: 41–58%, P<0.001), but less pronounced at Day 8 (range of reductions: 23–31%, P<0.017). Self-reported symptoms and function (HOOS: Pain, Symptoms, and ADL) improved at Day 8 (P<0.014). Changes in hip pain, C-Reactive Protein, and thigh swelling were not related to the muscle strength and power losses. Conclusion(s) Hip muscle strength and leg-press power decreased substantially in the first week after THA – especially at Day 2 – with some recovery at Day 8. The muscle strength loss and power loss were not related to changes in hip pain, systemic inflammation, or thigh swelling. In contrast, self-reported symptoms and function improved. These data on surgery-induced changes in muscle strength may help design impairment-directed, post-operative rehabilitation to be introduced soon after surgery. Trial Registration ClinicalTrials.gov NCT01246674. PMID:23614020

  15. Practical approach to subject-specific estimation of knee joint contact force.

    PubMed

    Knarr, Brian A; Higginson, Jill S

    2015-08-20

    Compressive forces experienced at the knee can significantly contribute to cartilage degeneration. Musculoskeletal models enable predictions of the internal forces experienced at the knee, but validation is often not possible, as experimental data detailing loading at the knee joint is limited. Recently available data reporting compressive knee force through direct measurement using instrumented total knee replacements offer a unique opportunity to evaluate the accuracy of models. Previous studies have highlighted the importance of subject-specificity in increasing the accuracy of model predictions; however, these techniques may be unrealistic outside of a research setting. Therefore, the goal of our work was to identify a practical approach for accurate prediction of tibiofemoral knee contact force (KCF). Four methods for prediction of knee contact force were compared: (1) standard static optimization, (2) uniform muscle coordination weighting, (3) subject-specific muscle coordination weighting and (4) subject-specific strength adjustments. Walking trials for three subjects with instrumented knee replacements were used to evaluate the accuracy of model predictions. Predictions utilizing subject-specific muscle coordination weighting yielded the best agreement with experimental data; however this method required in vivo data for weighting factor calibration. Including subject-specific strength adjustments improved models' predictions compared to standard static optimization, with errors in peak KCF less than 0.5 body weight for all subjects. Overall, combining clinical assessments of muscle strength with standard tools available in the OpenSim software package, such as inverse kinematics and static optimization, appears to be a practical method for predicting joint contact force that can be implemented for many applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Practical approach to subject-specific estimation of knee joint contact force

    PubMed Central

    Knarr, Brian A.; Higginson, Jill S.

    2015-01-01

    Compressive forces experienced at the knee can significantly contribute to cartilage degeneration. Musculoskeletal models enable predictions of the internal forces experienced at the knee, but validation is often not possible, as experimental data detailing loading at the knee joint is limited. Recently available data reporting compressive knee force through direct measurement using instrumented total knee replacements offer a unique opportunity to evaluate the accuracy of models. Previous studies have highlighted the importance of subject-specificity in increasing the accuracy of model predictions; however, these techniques may be unrealistic outside of a research setting. Therefore, the goal of our work was to identify a practical approach for accurate prediction of tibiofemoral knee contact force (KCF). Four methods for prediction of knee contact force were compared: (1) standard static optimization, (2) uniform muscle coordination weighting, (3) subject-specific muscle coordination weighting and (4) subject-specific strength adjustments. Walking trials for three subjects with instrumented knee replacements were used to evaluate the accuracy of model predictions. Predictions utilizing subject-specific muscle coordination weighting yielded the best agreement with experimental data, however this method required in vivo data for weighting factor calibration. Including subject-specific strength adjustments improved models’ predictions compared to standard static optimization, with errors in peak KCF less than 0.5 body weight for all subjects. Overall, combining clinical assessments of muscle strength with standard tools available in the OpenSim software package, such as inverse kinematics and static optimization, appears to be a practical method for predicting joint contact force that can be implemented for many applications. PMID:25952546

  17. The Fate of the Iliopsoas Muscle in Long-term Follow-up After Open Reduction With a Medial Approach in Developmental Dysplasia of the Hip. Part 2: Isokinetic Muscle Strength Evaluation.

    PubMed

    Yilmaz, Serdar; Aksahin, Ertugrul; Ersoz, Murat; Bicimoglu, Ali

    2017-09-01

    The impact on long-term weakness of hip flexion of complete iliopsoas tenotomy during open reduction of developmental hip dysplasia with a medial approach has not yet been fully clarified. The purpose of this study was to investigate the isokinetic muscle strength (IMS) of hip flexor and extensor muscles in these patients and also to analyze the effect of spontaneous reattachment of the iliopsoas muscle on IMS measurements. The study included 20 patients. Earlier magnetic resonance imaging examination of all the patients revealed spontaneous reattachment of the iliopsoas in 18 (90%) patients. IMS measurements were performed at 60 and 150 degrees/s. The peak torque, total work (TW), average power (AP), work fatigue, and agonist to antagonist muscle ratio of the operated and nonoperated hips were recorded separately for flexors and extensors. The effect of iliopsoas reattachment on IMS was also evaluated. The mean follow-up period was 16.65±2.16 (13 to 20) years. Total work (P=0.013) and average power (P=0.009) of the flexor muscles and work fatigue of the extensor muscles (P=0.030) of the operated hip were significantly decreased when compared with the nonoperated hips at 150 degrees/s. There was no significant difference between the flexor muscles of the operated and nonoperated hips (P<0.05) at 60 degrees/s and extensor muscles (P<0.05) at 150 degrees/s. In addition, patients without reattachment had lower IMS in the operated hips. Flexor muscle strength was decreased in the operated hip against low resistance in long-term follow-up after iliopsoas tenotomy. This may reflect that hip muscle strength was decreased after prolonged activities such as sports. However, in forceful activities flexor muscle strength was retained due to iliopsoas reattachment. On the basis of this study we thought that spontaneous reattachment of the iliopsoas tendon substantially preserves muscle strength. Nonetheless possible efforts should be made to surgically reattach the psoas tendon to preserve strength of the muscle. Therapeutic level IV.

  18. Effect of DHEAS on skeletal muscle over the life span: the InCHIANTI study.

    PubMed

    Valenti, Giorgio; Denti, Licia; Maggio, Marcello; Ceda, GianPaolo; Volpato, Stefano; Bandinelli, Stefania; Ceresini, Graziano; Cappola, Anne; Guralnik, Jack M; Ferrucci, Luigi

    2004-05-01

    It has been suggested that the reduced production of dehydroepiandrosterone sulfate (DHEAS) may be partially responsible for the decline of muscle strength and mass that often occurs with aging. However, this hypothesis has been only tested in small series of normal volunteers, with little consideration for potential confounders. Using data from a representative sample of 558 men (20-95 years) we tested the hypothesis that circulating DHEAS is independently associated with muscle strength and mass. Data are from InCHIANTI, an epidemiological study conducted in the Chianti geographic area (Tuscany, Italy). DHEAS serum levels were related to lower extremity muscle strength assessed by hand-held dynamometry and calf muscle area estimated from quantitative computerized tomography. Confounders included age, anthropometrics, physical activity, smoking, energy and alcohol intake, albumin, lipids, interleukin-6, comorbidity, depressive symptoms, and disability in activities of daily living. In fully adjusted models predicting lower extremity muscle strength and calf muscle area, we found significant age*log DHEAS interactions, suggesting that the relationship between DHEAS levels and muscle parameters differs across the life span. In age-stratified models adjusted for confounders, serum DHEAS was an independent predictor of muscle strength (p <.02) and mass (p <.01), but only for men between 60 and 79 years of age. After adjusting these models for serum-free or bioavailable testosterone, results were unchanged. In men aged 60-79 years, circulating DHEAS is an independent correlate of muscle strength and calf muscle area. The possible causal role of declining DHEAS in age-related sarcopenia should be further explored in longitudinal studies.

  19. Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review.

    PubMed

    Mitchell, W Kyle; Williams, John; Atherton, Philip; Larvin, Mike; Lund, John; Narici, Marco

    2012-01-01

    Changing demographics make it ever more important to understand the modifiable risk factors for disability and loss of independence with advancing age. For more than two decades there has been increasing interest in the role of sarcopenia, the age-related loss of muscle or lean mass, in curtailing active and healthy aging. There is now evidence to suggest that lack of strength, or dynapenia, is a more constant factor in compromised wellbeing in old age and it is apparent that the decline in muscle mass and the decline in strength can take quite different trajectories. This demands recognition of the concept of muscle quality; that is the force generating per capacity per unit cross-sectional area (CSA). An understanding of the impact of aging on skeletal muscle will require attention to both the changes in muscle size and the changes in muscle quality. The aim of this review is to present current knowledge of the decline in human muscle mass and strength with advancing age and the associated risk to health and survival and to review the underlying changes in muscle characteristics and the etiology of sarcopenia. Cross-sectional studies comparing young (18-45 years) and old (>65 years) samples show dramatic variation based on the technique used and population studied. The median of values of rate of loss reported across studies is 0.47% per year in men and 0.37% per year in women. Longitudinal studies show that in people aged 75 years, muscle mass is lost at a rate of 0.64-0.70% per year in women and 0.80-00.98% per year in men. Strength is lost more rapidly. Longitudinal studies show that at age 75 years, strength is lost at a rate of 3-4% per year in men and 2.5-3% per year in women. Studies that assessed changes in mass and strength in the same sample report a loss of strength 2-5 times faster than loss of mass. Loss of strength is a more consistent risk for disability and death than is loss of muscle mass.

  20. [Evolution in muscle strength in critical patients with invasive mechanical ventilation].

    PubMed

    Via Clavero, G; Sanjuán Naváis, M; Menéndez Albuixech, M; Corral Ansa, L; Martínez Estalella, G; Díaz-Prieto-Huidobro, A

    2013-01-01

    To assess the evolution of muscle strength in critically ill patients with mechanical ventilation (MV) from withdrawal of sedatives to hospital discharge. A cohort study was conducted in two intensive care units in the Hospital Universitari de Bellvitge from November 2011 to March 2012. Consecutive patients with MV > 72h. Dependent outcome: Muscle strength measured with the Medical Research Council (MRC) scale beginning on the first day the patient was able to answer 3 out of 5 simple orders (day 1), every week, at ICU discharge and at hospital discharge or at day 60 Independent outcomes: factors associated with muscle strength loss, ventilator-free days, ICU length of stay and hospital length of stay. The patients were distributed into two groups (MRC< 48, MRC ≥ 48) after the first measurement. Thirty-four patients were assessed. Independent outcomes associated with muscle strength weakness were: days with cardiovascular SOFA >2 (P<.001) and days with costicosteroids (P<.001). Initial MRC in MRC<48 group was 38 (27-43), and 52 (50-54) in MRC ≥ 48. The largest muscle strength gain was obtained the first week (31% versus 52%). A MRC < 48 value was associated with more MV days (P<.007) and a longer ICU stay. (P<.003). The greatest muscle strength gain after withdrawing of the sedatives was achieved in the first week. Muscle strength loss was associated with a cardiovascular SOFA > 2 and costicosteroids. Patients with a MRC < 48 required more days with MV and a longer ICU stay. Copyright © 2013 Elsevier España, S.L. y SEEIUC. All rights reserved.

  1. Hip Strength Testing of Soccer Players With Long-Standing Hip and Groin Pain: What are the Clinical Implications of Pain During Testing?

    PubMed

    Rafn, Bolette S; Tang, Lars; Nielsen, Martin P; Branci, Sonia; Hölmich, Per; Thorborg, Kristian

    2016-05-01

    To investigate whether self-reported pain during hip strength testing correlates to a large degree with hip muscle strength in soccer players with long-standing unilateral hip and groin pain. Cross-sectional study. Clinical assessments at Sports Orthopaedic Research Center-Copenhagen (SORC-C), Arthroscopic Centre Amager, Copenhagen University Hospital, Denmark. Twenty-four male soccer players with unilateral long-standing hip and groin pain. The soccer players performed 5 reliable hip muscle strength tests (isometric hip flexion, adduction, abduction, isometric hip flexion-modified Thomas test, and eccentric hip adduction). Muscle strength was measured with a hand-held dynamometer, and the players rated the pain during testing on a numerical rating scale (0-10). In 4 tests (isometric hip adduction, abduction, flexion, and eccentric adduction), no significant correlations were found between pain during testing and hip muscle strength (Spearman rho = -0.28 to 0.06, P = 0.09-0.39). Isometric hip flexion (modified Thomas test position) showed a moderate negative correlation between pain and hip muscle strength (Spearman rho = -0.44, P = 0.016). Self-reported pain during testing does not seem to correlate with the majority of hip muscle strength tests used in soccer players with long-standing hip and groin pain.

  2. Irisin and FNDC5: effects of 12-week strength training, and relations to muscle phenotype and body mass composition in untrained women.

    PubMed

    Ellefsen, S; Vikmoen, O; Slettaløkken, G; Whist, J E; Nygaard, H; Hollan, I; Rauk, I; Vegge, G; Strand, T A; Raastad, T; Rønnestad, B R

    2014-09-01

    To investigate the effects of strength training on abundances of irisin-related biomarkers in skeletal muscle and blood of untrained young women, and their associations with body mass composition, muscle phenotype and levels of thyroid hormones. Eighteen untrained women performed 12 weeks of progressive whole-body heavy strength training, with measurement of strength, body composition, expression of irisin-related genes (FNDC5 and PGC1α) in two different skeletal muscles, and levels of serum-irisin and -thyroid hormones, before and after the training intervention. The strength training intervention did not result in changes in serum-irisin or muscle FNDC5 expression, despite considerable effects on strength, lean body mass (LBM) and skeletal muscle phenotype. Our data indicate that training affects irisin biology in a LBM-dependent manner. However, no association was found between steady-state serum-irisin or training-associated changes in serum-irisin and alterations in body composition. FNDC5 expression was higher in m.Biceps brachii than in m.Vastus lateralis, with individual expression levels being closely correlated, suggesting a systemic mode of transcriptional regulation. In pre-biopsies, FNDC5 expression was correlated with proportions of aerobic muscle fibers, a relationship that disappeared in post-biopsies. No association was found between serum-thyroid hormones and FNDC5 expression or serum-irisin. No evidence was found for an effect of strength training on irisin biology in untrained women, though indications were found for a complex interrelationship between irisin, body mass composition and muscle phenotype. FNDC5 expression was closely associated with muscle fiber composition in untrained muscle.

  3. Propranolol and Oxandrolone Therapy Accelerated Muscle Recovery in Burned Children.

    PubMed

    Chao, Tony; Porter, Craig; Herndon, David N; Siopi, Aikaterina; Ideker, Henry; Mlcak, Ronald P; Sidossis, Labros S; Suman, Oscar E

    2018-03-01

    Severe burns result in prolonged hypermetabolism and skeletal muscle catabolism. Rehabilitative exercise training (RET) programs improved muscle mass and strength in severely burned children. The combination of RET with β-blockade or testosterone analogs showed improved exercise-induced benefits on body composition and muscle function. However, the effect of RET combined with multiple drug therapy on muscle mass, strength, cardiorespiratory fitness, and protein turnover are unknown. In this placebo-controlled randomized trial, we hypothesize that RET combined with oxandrolone and propranolol (Oxprop) will improve muscle mass and function and protein turnover in severely burned children compared with burned children undergoing the same RET with a placebo. We studied 42 severely burned children (7-17 yr) with severe burns over 30% of the total body surface area. Patients were randomized to placebo (22 control) or to Oxprop (20) and began drug administration within 96 h of admission. All patients began RET at hospital discharge as part of their standardized care. Muscle strength (N·m), power (W), V˙O2peak, body composition, and protein fractional synthetic rate and fractional breakdown rate were measured pre-RET (PRE) and post-RET (POST). Muscle strength and power, lean body mass, and V˙O2peak increased with RET in both groups (P < 0.01). The increase in strength and power was significantly greater in Oxprop versus control (P < 0.01), and strength and power was greater in Oxprop over control POST (P < 0.05). Fractional synthetic rate was significantly higher in Oxprop than control POST (P < 0.01), resulting in improved protein net balance POST (P < 0.05). Rehabilitative exercise training improves body composition, muscle function, and cardiorespiratory fitness in children recovering from severe burns. Oxprop therapy augments RET-mediated improvements in muscle strength, power, and protein turnover.

  4. Higher blood pressure is associated with higher handgrip strength in the oldest old.

    PubMed

    Taekema, Diana G; Maier, Andrea B; Westendorp, Rudi G J; de Craen, Anton J M

    2011-01-01

    Aging is associated with progressive loss of muscle strength. Muscle tissue is vascularized by an elaborate vascular network. There is evidence that blood pressure (BP) is associated with muscle function in middle age. It is unknown how BP associates with muscle function in oldest old people. We studied the association between BP and handgrip strength in middle and old age. BP was measured automatically in middle-aged subjects and with a mercury sphygmomanometer in the oldest old. Handgrip strength was measured with a handgrip strength dynamometer. Cross-sectional measurements of handgrip strength and BP were available for 670 middle-aged subjects (mean 63.2 ± 6.6 years) and 550 oldest old subjects (all 85 years). Prospective data were available for oldest old subjects only with a 4-year follow-up at 89 years. The association between BP and handgrip strength was analyzed by linear regression analysis. In middle-aged subjects, BP and handgrip strength were not statistically significantly associated. In oldest old subjects, higher systolic BP (SBP), mean arterial pressure (MAP), and pulse pressure (PP) were associated with higher handgrip strength after adjusting for comorbidity and medication use (all P < 0.02). Furthermore, in oldest old subjects, changes in SBP, MAP, and PP after 4 years was associated with declining handgrip strength (all, P < 0.05). In oldest old, higher BP is associated with better muscle strength. Further study is necessary to investigate whether BP is a potential modifiable risk factor for prevention of age-associated decline in muscle strength.

  5. Lean muscle volume of the thigh has a stronger relationship with muscle power than muscle strength in women with knee osteoarthritis.

    PubMed

    Davison, Michael J; Maly, Monica R; Keir, Peter J; Hapuhennedige, Sandani M; Kron, Amie T; Adachi, Jonathan D; Beattie, Karen A

    2017-01-01

    Thigh lean muscle and intramuscular fat have been implicated in the impairment of physical function observed in people with knee osteoarthritis. We investigated the relationships of quadriceps and hamstrings intramuscular fat fraction and lean muscle volume with muscle power and strength, controlling for neuromuscular activation, and physical performance in women with knee OA. Women (n=20) 55years or older with symptomatic, radiographic knee osteoarthritis underwent a 3.0T magnetic resonance imaging scan of the thigh of their most symptomatic knee. Axial fat-separated images were analyzed using software to quantify intramuscular fat and lean muscle volumes of the quadriceps and hamstrings. To quantify strength and power of the knee extensors and flexors, participants performed maximum voluntary isometric contraction and isotonic knee extensions and flexions, respectively. Electromyography of the quadriceps and hamstrings was measured. Participants also completed five physical performance tests. Quadriceps and hamstrings lean muscle volumes were related to isotonic knee extensor (B=0.624; p=0.017) and flexor (B=1.518; p=0.032) power, but not knee extensor (B=0.001; p=0.615) or flexor (B=0.001; p=0.564) isometric strength. Intramuscular fat fractions were not related to isotonic knee extensor or flexor power, nor isometric strength. No relationships were found between intramuscular fat or lean muscle volume and physical performance. Muscle power may be more sensitive than strength to lean muscle mass in women with knee osteoarthritis. Thigh lean muscle mass, but neither intramuscular nor intermuscular fat, is related to knee extensor and flexor power in women with knee osteoarthritis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Changes in physical functioning and muscle strength in men receiving androgen deprivation therapy for prostate cancer: a controlled comparison.

    PubMed

    Gonzalez, Brian D; Jim, Heather S L; Small, Brent J; Sutton, Steven K; Fishman, Mayer N; Zachariah, Babu; Heysek, Randy V; Jacobsen, Paul B

    2016-05-01

    The purpose of the study is to examine changes in muscle strength and self-reported physical functioning in men receiving androgen deprivation therapy (ADT) for prostate cancer compared to matched controls. Prostate cancer patients scheduled to begin ADT (n = 62) were assessed within 20 days of starting ADT and 6 and 12 months later. Age and geographically matched prostate cancer controls treated with prostatectomy only (n = 86) were assessed at similar time intervals. Grip strength measured upper body strength, the Chair Rise Test measured lower body strength, and the SF-12 Physical Functioning scale measured self-reported physical functioning. As expected, self-reported physical functioning and upper body muscle strength declined in ADT recipients but remained stable in prostate cancer controls. Contrary to expectations, lower body muscle strength remained stable in ADT recipients but improved in prostate cancer controls. Higher Gleason scores, more medical comorbidities, and less exercise at baseline predicted greater declines in physical functioning in ADT recipients. ADT is associated with declines in self-reported physical functioning and upper body muscle strength as well as worse lower body muscle strength relative to prostate cancer controls. These findings should be included in patient education regarding the risks and benefits of ADT. Findings also underscore the importance of conducting research on ways to prevent or reverse declines in physical functioning in this patient population.

  7. Ipsilateral hip abductor weakness after inversion ankle sprain.

    PubMed

    Friel, Karen; McLean, Nancy; Myers, Christine; Caceres, Maria

    2006-01-01

    Hip stability and strength are important for proper gait mechanics and foot position during heel strike. To determine the relationships between hip muscle strength and chronic ankle sprains and hip muscle strength and ankle range of motion. Ex post facto design with the uninvolved limb serving as the control. Laboratory. A total of 23 subjects with unilateral chronic ankle sprain were recruited. Subjects had at least 2 ipsilateral ankle sprains and were bearing full weight, with the most recent injury occurring at least 3 months earlier. They were not undergoing formal or informal rehabilitation at the time of the study. We obtained goniometric measurements for all planes of motion at the ankle. Handheld dynamometry was used to assess the strength of the hip abductor and hip extensor muscles in both limbs. Hip abductor muscle strength and plantar flexion were significantly less on the involved side than the uninvolved side (P < .001 in each case). Strength of the involved hip abductor and hip extensor muscles was significantly correlated (r = 0.539, P < .01). No significant difference was noted in hip extensor muscle strength between sides (P = .19). Our subjects with unilateral chronic ankle sprains had weaker hip abduction strength and less plantar-flexion range of motion on the involved sides. Clinicians should consider exercises to increase hip abduction strength when developing rehabilitation programs for patients with ankle sprains.

  8. Effect of neck muscle strength and anticipatory cervical muscle activation on the kinematic response of the head to impulsive loads.

    PubMed

    Eckner, James T; Oh, Youkeun K; Joshi, Monica S; Richardson, James K; Ashton-Miller, James A

    2014-03-01

    Greater neck strength and activating the neck muscles to brace for impact are both thought to reduce an athlete's risk of concussion during a collision by attenuating the head's kinematic response after impact. However, the literature reporting the neck's role in controlling postimpact head kinematics is mixed. Furthermore, these relationships have not been examined in the coronal or transverse planes or in pediatric athletes. In each anatomic plane, peak linear velocity (ΔV) and peak angular velocity (Δω) of the head are inversely related to maximal isometric cervical muscle strength in the opposing direction (H1). Under impulsive loading, ΔV and Δω will be decreased during anticipatory cervical muscle activation compared with the baseline state (H2). Descriptive laboratory study. Maximum isometric neck strength was measured in each anatomic plane in 46 male and female contact sport athletes aged 8 to 30 years. A loading apparatus applied impulsive test forces to athletes' heads in flexion, extension, lateral flexion, and axial rotation during baseline and anticipatory cervical muscle activation conditions. Multivariate linear mixed models were used to determine the effects of neck strength and cervical muscle activation on head ΔV and Δω. Greater isometric neck strength and anticipatory activation were independently associated with decreased head ΔV and Δω after impulsive loading across all planes of motion (all P < .001). Inverse relationships between neck strength and head ΔV and Δω presented moderately strong effect sizes (r = 0.417 to r = 0.657), varying by direction of motion and cervical muscle activation. In male and female athletes across the age spectrum, greater neck strength and anticipatory cervical muscle activation ("bracing for impact") can reduce the magnitude of the head's kinematic response. Future studies should determine whether neck strength contributes to the observed sex and age group differences in concussion incidence. Neck strength and impact anticipation are 2 potentially modifiable risk factors for concussion. Interventions aimed at increasing athletes' neck strength and reducing unanticipated impacts may decrease the risk of concussion associated with sport participation.

  9. Knee Joint Contact Mechanics during Downhill Gait and its Relationship with Varus/Valgus Motion and Muscle Strength in Patients with Knee Osteoarthritis

    PubMed Central

    Farrokhi, Shawn; Voycheck, Carrie A.; Gustafson, Jonathan A.; Fitzgerald, G. Kelley; Tashman, Scott

    2015-01-01

    Objective The objective of this exploratory study was to evaluate tibiofemoral joint contact point excursions and velocities during downhill gait and assess the relationship between tibiofemoral joint contact mechanics with frontal-plane knee joint motion and lower extremity muscle weakness in patients with knee osteoarthritis (OA). Methods Dynamic stereo X-ray was used to quantify tibiofemoral joint contact mechanics and frontal-plane motion during the loading response phase of downhill gait in 11 patients with knee OA and 11 control volunteers. Quantitative testing of the quadriceps and the hip abductor muscles was also performed. Group differences in contact mechanics and frontal-plane motion excursions were compared using analysis of covariance with adjustments for body mass index. Differences in strength were compared using independent sample t-tests. Additionally, linear associations between contact mechanics with frontal-plane knee motion and muscle strength were evaluated using Pearson's correlation coefficients. Results Patients with knee OA demonstrated larger medial/lateral joint contact point excursions (p<0.02) and greater heel-strike joint contact point velocities (p<0.05) for the medial and lateral compartments compared to the control group. The peak medial/lateral joint contact point velocity of the medial compartment was also greater for patients with knee OA compared to their control counterparts (p=0.02). Additionally, patients with knee OA demonstrated significantly increased frontal-plane varus motion excursions (p<0.01) and greater quadriceps and hip abductor muscle weakness (p=0.03). In general, increased joint contact point excursions and velocities in patients with knee OA were linearly associated with greater frontal-plane varus motion excursions (p<0.04) but not with quadriceps or hip abductor strength. Conclusion Altered contact mechanics in patients with knee OA may be related to compromised frontal-plane joint stability but not with deficits in muscle strength. PMID:27030846

  10. A comparison of muscle strength and endurance, exercise capacity, fatigue perception and quality of life in patients with chronic obstructive pulmonary disease and healthy subjects: a cross-sectional study

    PubMed Central

    2014-01-01

    Background Chronic obstructive pulmonary disease (COPD) has significant systemic effects that substantially impact quality of life and survival. The purpose of this study was to assess and compare peripheral muscle strength and endurance, exercise capacity, fatigue perception and quality of life between patients with COPD and healthy subjects. Methods Twenty COPD patients (mean FEV1 49.3 ± 19.2%) and 20 healthy subjects were included in the study. Pulmonary function testing and six-minute walk test (6MWT) were performed. Peripheral muscle strength was measured with a hand-held dynamometer, peripheral muscle endurance was evaluated with sit-ups, squats and modified push-ups tests. Fatigue perception was assessed using the Fatigue Impact Scale (FIS) and Fatigue Severity Scale (FSS). General quality of life was determined with the Nottingham Health Profile (NHP), and cough-specific quality of life was evaluated with the Leicester Cough Questionnaire (LCQ). Results Pulmonary functions, strength of shoulder abductor and flexor muscles, numbers of sit-ups and squats, 6MWT distance and 6MWT% were significantly lower in COPD patients than in healthy subjects (p < 0.05). FIS psychosocial sub-dimension and total scores, NHP scores for all sub-dimensions except pain sub-dimension of the COPD group were significantly higher than those of healthy subjects (p < 0.05). The LCQ physical, psychological and social sub-dimensions and total scores were significantly lower in COPD patients than in healthy subjects (p < 0.05). Conclusions Pulmonary functions, peripheral muscle strength and endurance, exercise capacity and quality of life were adversely affected in patients with COPD. There are greater effect of fatigue on psychosocial functioning and general daily life activities and effect of cough on the quality of life in patients with COPD. This study supports the idea that COPD patients must be evaluated in a comprehensive manner for planning pulmonary rehabilitation programs. PMID:24468029

  11. Sarcopenic-obesity and cardiovascular disease risk in the elderly.

    PubMed

    Stephen, W C; Janssen, I

    2009-05-01

    To determine: 1) whether sarcopenic-obesity is a stronger predictor of cardiovascular disease (CVD) than either sarcopenia or obesity alone in the elderly, and 2) whether muscle mass or muscular strength is a stronger marker of CVD risk. Prospective cohort study. Participants included 3366 community-dwelling older (>or= 65 years) men and women who were free of CVD at baseline. Waist circumference (WC), bioimpedance analysis, and grip strength were used to measure abdominal obesity, whole-body muscle mass, and muscular strength, respectively. Subjects were classified as normal, sarcopenic, obese, or sarcopenic-obese based on measures of WC and either muscle mass or strength. Participants were followed for 8 years for CVD development and proportional hazard regression models were used to compare risk estimates for CVD in the four groups after adjusting for age, sex, race, income, smoking, alcohol, and cognitive status. Compared with the normal group, CVD risk was not significantly elevated within the obese, sarcopenic, or sarcopenic-obese groups as determined by WC and muscle mass. When determined by WC and muscle strength, CVD risk was not significantly increased in the sarcopenic or obese groups, but was increased by 23% (95% confidence interval: 0.99-1.54, P=0.06) within the sarcopenic-obese group. Sarcopenia and obesity alone were not sufficient to increase CVD risk. Sarcopenic-obesity, based on muscle strength but not muscle mass, was modestly associated with increased CVD risk. These findings imply that strength may be more important than muscle mass for CVD protection in old age.

  12. Assessment of foot and ankle muscle strength using hand held dynamometry in patients with established rheumatoid arthritis.

    PubMed

    Carroll, Matthew; Joyce, William; Brenton-Rule, Angela; Dalbeth, Nicola; Rome, Keith

    2013-03-22

    The foot and ankle are frequently affected in patients with rheumatoid arthritis (RA). One of the negative consequences of RA on the physical function of patients is a decrease in muscle strength. However, little is known about foot and muscle strength in this population. The aim of the study was to evaluate significant differences in foot and ankle muscle strength between patients with established RA against age and sex-matched controls using hand-held dynamometry. The maximal muscle strength of ankle plantarflexion, dorsiflexion, eversion and inversion was assessed in 14 patients with RA, mean (SD) disease duration of 22 (14.1) years, and 20 age and sex-matched control participants using hand-held dynamometry. Significant differences were observed in muscle strength between the two groups in plantarflexion (p = 0.00), eversion (p = 0.04) and inversion (p = 0.01). No significant difference was found in dorsiflexion (p > 0.05). The patients with RA displayed a significantly lower plantarflexion-dorsiflexion ratio than the control participants (p = 0.03). The results from this study showed that the RA patients displayed a significant decrease in ankle dorsiflexion, eversion and inversion when compared to the non-RA control group suggesting that foot and ankle muscle strength may be affected by the pathological processes in RA. This study is a preliminary step for the measurement of muscle impairments within the RA population.

  13. Post-absorptive muscle protein turnover affects resistance training hypertrophy

    PubMed Central

    Reidy, Paul T.; Borack, Michael S.; Markofski, Melissa M.; Dickinson, Jared M.; Fry, Christopher S.; Deer, Rachel R.; Volpi, Elena; Rasmussen, Blake B.

    2017-01-01

    Purpose Acute bouts of resistance exercise and subsequent training alters protein turnover in skeletal muscle. The mechanisms responsible for the changes in basal post-absorptive protein turnover and its impact on muscle hypertrophy following resistance exercise training are unknown. To determine whether post-absorptive muscle protein turnover following 12 weeks of resistance exercise training (RET) plays a role in muscle hypertrophy. In addition, we were interested in determining potential molecular mechanisms responsible for altering post-training muscle protein turnover. Methods Healthy young men (n=31) participated in supervised whole body progressive RET at 60-80% 1 repetition maximum (1-RM), 3d/wk for 3 months. Pre- and post-training vastus lateralis muscle biopsies and blood samples taken during an infusion of 13C6 and 15N phenylalanine and were used to assess skeletal muscle protein turnover in the post-absorptive state. Lean body mass (LBM), muscle strength (determined by dynamometry), vastus lateralis muscle thickness (MT), myofiber type-specific cross-sectional area (CSA), and mRNA were assessed pre- and post-RET. Results RET increased strength (12-40%), LBM (∼5%), MT (∼15%) and myofiber CSA (∼20%) (p<0.05). Muscle protein synthesis (MPS) increased 24% while muscle protein breakdown (MPB) decreased 21% respectively. These changes in protein turnover resulted in an improved net muscle protein balance in the basal state following RET. Further, the change in basal MPS is positively associated (r=0.555, p=0.003) with the change in muscle thickness. Conclusion Post-absorptive muscle protein turnover is associated with muscle hypertrophy during resistance exercise training. PMID:28280974

  14. Effect of strength training on regional hypertrophy of the elbow flexor muscles.

    PubMed

    Drummond, Marcos D M; Szmuchrowski, Leszek A; Goulart, Karine N O; Couto, Bruno P

    2016-10-01

    Muscle hypertrophy is the main structural adaptation to strength training. We investigated the chronic effects of strength training on muscle hypertrophy in different regions of the elbow flexor muscles. Eleven untrained men (21.8 ± 1.62 years) underwent magnetic resonance imaging to determine the proximal, medial, distal, and mean cross-sectional areas (CSA) of the elbow flexors. The volunteers completed 12 weeks of strength training. The training protocol consisted of 4 sets of 8-10 maximum repetitions of unilateral elbow flexion. The interval between sets was 120 s. The training frequency was 3 sessions per week. The magnetic resonance images verified the presence of significant and similar hypertrophy in the distal, medial, and proximal portions of the elbow flexor muscles. Muscle hypertrophy may be assessed using only the medial CSA. We should not expect different degrees of hypertrophy among the regions of the elbow flexor muscles. Muscle Nerve 54: 750-755, 2016. © 2016 Wiley Periodicals, Inc.

  15. Effect of pelvic floor muscle exercises in the treatment of urinary incontinence during pregnancy and the postpartum period.

    PubMed

    Dinc, Ayten; Kizilkaya Beji, Nezihe; Yalcin, Onay

    2009-10-01

    The aim of this study was to determine the effectiveness of pelvic floor muscle exercises on urinary incontinence during pregnancy and the postpartum period. The study was carried out on 80 pregnant women (study group, 40 subjects; control group, 40 subjects).The study group was trained by the researcher on how to do the pelvic floor muscle exercises. Both groups were evaluated for pelvic floor muscle strength and urinary complaints in their 36th to 38th week of pregnancy and postpartum sixth to eighth week. The study group had a significant decrease in urinary incontinence episodes during pregnancy and in the postpartum period, and their pelvic floor muscle strength increased to a larger extent. Control group had an increase in the postpartum muscle strength and decrease in the incontinence episodes in the postpartum period. Pelvic floor muscle exercises are quite effective in the augmentation of the pelvic floor muscle strength and consequently in the treatment of urinary incontinence.

  16. Impaired muscle strength may contribute to fatigue in patients with aneurysmal subarachnoid hemorrhage.

    PubMed

    Harmsen, Wouter J; Ribbers, Gerard M; Zegers, Bart; Sneekes, Emiel M; Praet, Stephan F E; Heijenbrok-Kal, Majanka H; Khajeh, Ladbon; van Kooten, Fop; Neggers, Sebastiaan J C M M; van den Berg-Emons, Rita J

    2017-03-01

    Patients with aneurysmal subarachnoid hemorrhage (a-SAH) show long-term fatigue and face difficulties in resuming daily physical activities. Impaired muscle strength, especially of the lower extremity, impacts the performance of daily activities and may trigger the onset of fatigue complaints. The present study evaluated knee muscle strength and fatigue in patients with a-SAH. This study included 33 patients, 6 months after a-SAH, and 33 sex-matched and age-matched healthy controls. Isokinetic muscle strength of the knee extensors and flexors was measured at 60 and 180°/s. Maximal voluntary muscle strength was defined as peak torque and measured in Newton-meter. Fatigue was examined using the Fatigue Severity Scale. In patients with a-SAH, the maximal knee extension was 22% (60°/s) and 25% (180°/s) lower and maximal knee flexion was 33% (60°/s) and 36% (180°/s) lower compared with that of matched controls (P≤0.001). The Fatigue Severity Scale score was related to maximal knee extension (60°/s: r=-0.426, P=0.015; 180°/s: r=-0.376, P=0.034) and flexion (60°/s: r=-0.482, P=0.005; 180°/s: r=-0.344, P=0.083). The knee muscle strength was 28-47% lower in fatigued (n=13) and 11-32% lower in nonfatigued (n=20) patients; deficits were larger in fatigued patients (P<0.05), particularly when the muscle strength (peak torque) was measured at 60°/s. The present results indicate that patients with a-SAH have considerably impaired knee muscle strength, which is related to more severe fatigue. The present findings are exploratory, but showed that knee muscle strength may play a role in the severity of fatigue complaints, or vice versa. Interventions targeting fatigue after a-SAH seem necessary and may consider strengthening exercise training in order to treat a debilitating condition.

  17. Relationship between Muscle Function, Muscle Typology and Postural Performance According to Different Postural Conditions in Young and Older Adults

    PubMed Central

    Paillard, Thierry

    2017-01-01

    Although motor output of the postural function clearly influences postural performance in young and older subjects, no relationship has been formally established between them. However, the relationship between lower-extremity muscle strength/power and postural performance is often pointed out, especially in older subjects. In fact, the influence of motor output may vary according to the postural condition considered (e.g., static, dynamic, challenging, disturbing). In static postural condition, there may be a relationship between lower-extremity muscle strength and postural performance when the value of muscle strength is below a certain threshold in older subjects. Above this threshold of muscle strength, this relationship may disappear. In dynamic postural condition, lower-extremity muscle power could facilitate compensatory postural actions, limiting induced body imbalance likely to generate falls in older subjects. In young subjects, there could be a relationship between very early rapid torque of the leg extensor muscles and postural performance. In the case of postural reaction to (external) perturbations, a high percentage of type II muscle fibers could be associated with the ability to react quickly to postural perturbations in young subjects, while it may enable a reduction in the risk of falls in older subjects. In practice, in older subjects, muscle strength and/or power training contributes to reducing the risk of falls, as well as slowing down the involution of muscle typology regarding type II muscle fibers. PMID:28861000

  18. Relationship between Muscle Function, Muscle Typology and Postural Performance According to Different Postural Conditions in Young and Older Adults.

    PubMed

    Paillard, Thierry

    2017-01-01

    Although motor output of the postural function clearly influences postural performance in young and older subjects, no relationship has been formally established between them. However, the relationship between lower-extremity muscle strength/power and postural performance is often pointed out, especially in older subjects. In fact, the influence of motor output may vary according to the postural condition considered (e.g., static, dynamic, challenging, disturbing). In static postural condition, there may be a relationship between lower-extremity muscle strength and postural performance when the value of muscle strength is below a certain threshold in older subjects. Above this threshold of muscle strength, this relationship may disappear. In dynamic postural condition, lower-extremity muscle power could facilitate compensatory postural actions, limiting induced body imbalance likely to generate falls in older subjects. In young subjects, there could be a relationship between very early rapid torque of the leg extensor muscles and postural performance. In the case of postural reaction to (external) perturbations, a high percentage of type II muscle fibers could be associated with the ability to react quickly to postural perturbations in young subjects, while it may enable a reduction in the risk of falls in older subjects. In practice, in older subjects, muscle strength and/or power training contributes to reducing the risk of falls, as well as slowing down the involution of muscle typology regarding type II muscle fibers.

  19. Different Levels of Eccentric Resistance during Eight Weeks of Training Affect Muscle Strength and Lean Tissue Mass

    NASA Technical Reports Server (NTRS)

    English, K. L.; Loehr, J. A.; Lee, S. M. C.; Laughlin, M. S.; Hagan, R. D.

    2008-01-01

    Coupling concentric and eccentric muscle contractions appears to be important in the development of muscle strength and hypertrophy. The interim Resistive Exercise Device (iRED) currently used aboard the International Space Station does not seem to be as effective as free weight training in ambulatory subjects and has not completely protected against muscular deconditioning due to space flight. The lack of protection during space flight could be caused by iRED's proportionally lower eccentric resistance (60-70%) compared to concentric resistance. PURPOSE: To determine the effects of 8 wks of lower body resistive exercise training using five levels of eccentric resistance on muscle strength and lean tissue mass. METHODS: Forty untrained males (34.9 +/- 7 yrs, 80.9 +/- 9.8 kg, 178.2 +/- 7.1 cm; mean +/- SD) completed three 1-repetition maximum (1-RM) strength tests for both the supine leg press (LP) and supine heel raise (HR) prior to training; subjects were matched for LP strength and randomly assigned to one of five training groups. Concentric load (% 1-RM) was constant across groups during training, but each group trained with different levels of eccentric load (0%, 33%, 66%, 100%, or 138% of concentric). Subjects trained 3 d / wk for 8 wks using a periodized program for LP and HR based on percentages of the highest pre-training 1-RM. LP and HR 1-RM and leg lean mass (LLM; assessed by DEXA) were measured pre- and post-training. A two-way ANOVA was used to analyze all dependent measures. Tukey's post hoc tests were used to test significant main effects. Within group pre- to post-training changes were compared using paired t-tests with a Bonferroni adjustment. Statistical significance was set a priori at p 0.05. All data are expressed as mean +/- SE. RESULTS: LP 1-RM strength increased significantly in all groups pre- to post-training. The 138% group increase (20.1 +/- 3.7%) was significantly greater than the 0% (7.9 +/- 2.8%), 33% (7.7 +/- 4.6%), and 66% (7.5 +/- 4.3%) groups. All groups significantly increased HR strength pre- to posttraining (33%: 7.5 +/- 6.1%; 66%: 6.6 +/- 3.7%; 100%: 12.2 +/- 1.8%; 138%: 11.0 +/- 6.4%) except for the 0% (4.9 +/- 9.1%) group. There were no differences between groups. LLM increased significantly pre- to post-training in only the 138% group; there were no differences between groups. CONCLUSIONS: Eight wks of lower body resistive exercise training with eccentric overload resulted in greater increases in LP strength than training with eccentric loads of 66% or less. Post-training HR strength was not affected by eccentric training load, perhaps because of the predominance of Type I fibers typical in the gastrocnemius. Only 138% eccentric training significantly increased LLM. PRACTICAL APPLICATIONS: For athletes or others desiring to maximize muscle strength and hypertrophy gains, training with eccentric loads greater than 100% of concentric resistance will provide greater increases in muscle strength and lean tissue mass in some muscle groups. In a rehabilitation or geriatric exercise setting that places primary emphasis on program adherence and moderate strength gains, training with an eccentric underload may provide strength increases comparable to those of traditional 1:1 training but with less muscle soreness and physiologic insult to the patient, but this has yet to be proven.

  20. Back muscle strength, lifting, and stooped working postures.

    PubMed

    Poulsen, E; Jørgensen, K

    1971-09-01

    When lifting loads and working in a forward stooped position, the muscles of the back rather than the ligaments and bony structures of the spine should overcome the gravitational forces. Formulae, based on measurements of back muscle strength, for prediction of maximal loads to be lifted, and for the ability to sustain work in a stooped position, have been worked out and tested in practical situations. From tests with 50 male and female subjects the simplest prediction formulae for maximum loads were: max. load = 1.10 x isometric back muscle strength for men; and max. load = 0.95 x isometric back muscle strength - 8 kg for women. Some standard values for maximum lifts and permissible single and repeated lifts have been calculated for men and women separately and are given in Table 1. From tests with 65 rehabilitees it was found that the maximum isometric strength of the back muscles measured at shoulder height should exceed 2/3 of the body weight, if fatigue and/or pain in the back muscles is to be avoided during work in a standing stooped position.

  1. Comparison of isokinetic muscle strength and muscle power by types of warm-up.

    PubMed

    Sim, Young-Je; Byun, Yong-Hyun; Yoo, Jaehyun

    2015-05-01

    [Purpose] The purpose of this study was to clarify the influence of static stretching at warm-up on the isokinetic muscle torque (at 60°/sec) and muscle power (at 180°/sec) of the flexor muscle and extensor muscle of the knee joint. [Subjects and Methods] The subjects of this study were 10 healthy students with no medically specific findings. The warm-up group and warm-up with stretching group performed their respective warm-up prior to the isokinetic muscle torque evaluation of the knee joint. One-way ANOVA was performed by randomized block design for each variable. [Results] The results were as follows: First, the flexor peak torque and extensor peak torque of the knee joint tended to decrease at 60°/sec in the warm-up with stretching group compared with the control group and warm-up group, but without statistical significance. Second, extensor power at 180°/sec was also not statistically significant. However, it was found that flexor power increased significantly in the warm-up with stretching group at 180°/sec compared with the control group and warm-up group in which stretching was not performed. [Conclusion] Therefore, it is considered that in healthy adults, warm-up including two sets of stretching for 20 seconds per muscle group does not decrease muscle strength and muscle power.

  2. Quantitative MRI and strength measurements in the assessment of muscle quality in Duchenne muscular dystrophy.

    PubMed

    Wokke, B H; van den Bergen, J C; Versluis, M J; Niks, E H; Milles, J; Webb, A G; van Zwet, E W; Aartsma-Rus, A; Verschuuren, J J; Kan, H E

    2014-05-01

    The purpose of this study was to assess leg muscle quality and give a detailed description of leg muscle involvement in a series of Duchenne muscular dystrophy patients using quantitative MRI and strength measurements. Fatty infiltration, as well as total and contractile (not fatty infiltrated) cross sectional areas of various leg muscles were determined in 16 Duchenne patients and 11 controls (aged 8-15). To determine specific muscle strength, four leg muscle groups (quadriceps femoris, hamstrings, anterior tibialis and triceps surae) were measured and related to the amount of contractile tissue. In patients, the quadriceps femoris showed decreased total and contractile cross sectional area, attributable to muscle atrophy. The total, but not the contractile, cross sectional area of the triceps surae was increased in patients, corresponding to hypertrophy. Specific strength decreased in all four muscle groups of Duchenne patients, indicating reduced muscle quality. This suggests that muscle hypertrophy and fatty infiltration are two distinct pathological processes, differing between muscle groups. Additionally, the quality of remaining muscle fibers is severely reduced in the legs of Duchenne patients. The combination of quantitative MRI and quantitative muscle testing could be a valuable outcome parameter in longitudinal studies and in the follow-up of therapeutic effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Resistance training-induced gains in muscle strength, body composition, and functional capacity are attenuated in elderly women with sarcopenic obesity

    PubMed Central

    de Oliveira Silva, Alessandro; Dutra, Maurílio Tiradentes; de Moraes, Wilson Max Almeida Monteiro; Funghetto, Silvana Schwerz; Lopes de Farias, Darlan; dos Santos, Paulo Henrique Fernandes; Vieira, Denis Cesar Leite; Nascimento, Dahan da Cunha; Orsano, Vânia Silva Macedo; Schoenfeld, Brad J; Prestes, Jonato

    2018-01-01

    Objectives The purpose of this study was to compare the effects of resistance training (RT) on body composition, muscle strength, and functional capacity in elderly women with and without sarcopenic obesity (SO). Methods A total of 49 women (aged ≥60 years) were divided in two groups: without SO (non-SO, n=41) and with SO (n=8). Both groups performed a periodized RT program consisting of two weekly sessions for 16 weeks. All measures were assessed at baseline and postintervention, including anthropometry and body composition (dual-energy X-ray absorptiometry), muscle strength (one repetition maximum) for chest press and 45° leg press, and functional capacity (stand up, elbow flexion, timed “up and go”). Results After the intervention, only the non-SO group presented significant reductions in percentage body fat (−2.2%; P=0.006), waist circumference (−2.7%; P=0.01), waist-to-hip ratio (−2.3; P=0.02), and neck circumference (−1.8%; P=0.03) as compared with baseline. Muscle strength in the chest press and biceps curl increased in non-SO only (12.9% and 11.3%, respectively), while 45° leg press strength increased in non-SO (50.3%) and SO (40.5%) as compared with baseline. Performance in the chair stand up and timed “up and go” improved in non-SO only (21.4% and −8.4%, respectively), whereas elbow flexion performance increased in non-SO (23.8%) and SO (21.4%). Effect sizes for motor tests were of higher magnitude in the non-SO group, and in general, considered “moderate” compared to “trivial” in the SO group. Conclusion Results suggest that adaptations induced by 16 weeks of RT are attenuated in elderly woman with SO, compromising improvements in adiposity indices and gains in muscle strength and functional capacity. PMID:29588579

  4. The Gait Deviation Index Is Associated with Hip Muscle Strength and Patient-Reported Outcome in Patients with Severe Hip Osteoarthritis—A Cross-Sectional Study

    PubMed Central

    Rosenlund, Signe; Holsgaard-Larsen, Anders; Overgaard, Søren; Jensen, Carsten

    2016-01-01

    Background The Gait Deviation Index summarizes overall gait ‘quality’, based on kinematic data from a 3-dimensional gait analysis. However, it is unknown which clinical outcomes may affect the Gait Deviation Index in patients with primary hip osteoarthritis. The aim of this study was to investigate associations between Gait Deviation Index as a measure of gait ‘quality’ and hip muscle strength and between Gait Deviation Index and patient-reported outcomes in patients with primary hip osteoarthritis. Method Forty-seven patients (34 males), aged 61.1 ± 6.7 years, with BMI 27.3 ± 3.4 (kg/m2) and with severe primary hip osteoarthritis underwent 3-dimensional gait analysis. Mean Gait Deviation Index, pain after walking and maximal isometric hip muscle strength (flexor, extensor, and abductor) were recorded. All patients completed the ‘Physical Function Short-form of the Hip disability and Osteoarthritis Outcome Score (HOOS-Physical Function) and the Hip disability and Osteoarthritis Outcome Score subscales for pain (HOOS-Pain) and quality-of-life (HOOS-QOL). Results Mean Gait Deviation Index was positively associated with hip abduction strength (p<0.01, r = 0.40), hip flexion strength (p = 0.01, r = 0.37), HOOS-Physical Function (p<0.01, r = 0.41) HOOS-QOL (p<0.01, r = 0.41), and negatively associated with HOOS-Pain after walking (p<0.01, r = -0.45). Adjusting the analysis for walking speed did not affect the association. Conclusion Patients with the strongest hip abductor and hip flexor muscles had the best gait ‘quality’. Furthermore, patients with higher physical function, quality of life scores and lower pain levels demonstrated better gait ‘quality’. These findings indicate that interventions aimed at improving hip muscle strength and pain management may to a moderate degree improve the overall gait ‘quality’ in patients with primary hip OA. PMID:27065007

  5. Female Age-Related Differences in Biomechanics and Muscle Activity During Descents on the Outstretched Arms.

    PubMed

    Lattimer, Lauren J; Lanovaz, Joel L; Farthing, Jonathan P; Madill, Stéphanie; Kim, Soo; Robinovitch, Stephen; Arnold, Cathy

    2017-07-01

    The purposes of this study were to examine female age differences in: (1) upper extremity (UE) and trunk muscle activity, elbow joint moment, loading force, and UE energy absorption during a controlled forward body descent; and (2) UE muscle strength. Twenty young (mean 24.8 ± 3.4 years) and 20 older (68.4 ± 5.7 years) women were assessed via dynamometry for isometric, concentric, and eccentric UE strength and performed forward descents on force plates at three body lean angles (60°, 45°, and 30° from horizontal). Significant differences (p < .05) were found for muscle strength, biomechanics, and muscle activity. Concentric UE strength averaged 15% lower in older women. At 30° body lean, older women absorbed less energy. Older women had greater biceps brachii activation and less external oblique activation at all body lean angles. Age differences in muscle strength, activation, and energy absorption may contribute to fall-related injury risk.

  6. Muscle strength and golf performance: a critical review.

    PubMed

    Torres-Ronda, Lorena; Sánchez-Medina, Luis; González-Badillo, Juan J

    2011-01-01

    Golf has become an increasingly popular sport and a growing body of research trying to identify its main physical requirements is being published. The aim of this review was twofold: first, to examine the existing scientific literature regarding strength training and golf in healthy, non-injured, subjects; and second, to reach conclusions that could provide information on how to design more effective strength training programs to improve golf performance as well as directions for future research. Studies which analyzed the relationship between muscle strength, swing performance variables (club head speed, driving distance, ball speed) and skill (handicap, score) were reviewed. Changes in swing performance following different strength training programs were also investigated. Finally, a critical analysis about the methodologies used was carried out. The results of the reviewed studies seem to indicate that: 1) a positive relationship exists between handicap and swing performance (even though few studies have investigated this issue); 2) there is a positive correlation between skill (handicap and/or score) and muscle strength; and 3) there is a relationship between driving distance, swing speed, ball speed and muscle strength. Results suggest that training leg-hip and trunk power as well as grip strength is especially relevant for golf performance improvement. Studies that analyzed variations in swing performance following resistance-only training programs are scarce, thus it is difficult to prove whether the observed improvements are attributable to changes in strength levels. Many of the studies reviewed presented some methodological errors in their design and not all strength assessment protocols seemed appropriate. Further studies should determine muscle strength needs in relation to final swing performance, using well designed experiments and strict isoinertial assessment protocols which adequately relate to specific golf motion, age and skill level. More studies with elite participants, either professional or amateur, would be especially desirable. Key pointsPOSITIVE CORRELATIONS EXIST BETWEEN: 1) handicap and swing performance variables; 2) muscle strength and skill (handicap and/or golf score); and 3) driving dis-tance, swing speed, ball speed and muscle strength.Leg-hip, trunk power and grip strength seem espe-cially relevant for golf performance improvement.Further research should determine muscle strength needs in relation to final swing performance, using well designed experiments and strict assessment pro-tocols which adequately relate to specific golf mo-tion, age and skill level.

  7. Muscle Strength And Golf Performance: A Critical Review

    PubMed Central

    Torres-Ronda, Lorena; Sánchez-Medina, Luis; González-Badillo, Juan J.

    2011-01-01

    Golf has become an increasingly popular sport and a growing body of research trying to identify its main physical requirements is being published. The aim of this review was twofold: first, to examine the existing scientific literature regarding strength training and golf in healthy, non-injured, subjects; and second, to reach conclusions that could provide information on how to design more effective strength training programs to improve golf performance as well as directions for future research. Studies which analyzed the relationship between muscle strength, swing performance variables (club head speed, driving distance, ball speed) and skill (handicap, score) were reviewed. Changes in swing performance following different strength training programs were also investigated. Finally, a critical analysis about the methodologies used was carried out. The results of the reviewed studies seem to indicate that: 1) a positive relationship exists between handicap and swing performance (even though few studies have investigated this issue); 2) there is a positive correlation between skill (handicap and/or score) and muscle strength; and 3) there is a relationship between driving distance, swing speed, ball speed and muscle strength. Results suggest that training leg-hip and trunk power as well as grip strength is especially relevant for golf performance improvement. Studies that analyzed variations in swing performance following resistance-only training programs are scarce, thus it is difficult to prove whether the observed improvements are attributable to changes in strength levels. Many of the studies reviewed presented some methodological errors in their design and not all strength assessment protocols seemed appropriate. Further studies should determine muscle strength needs in relation to final swing performance, using well designed experiments and strict isoinertial assessment protocols which adequately relate to specific golf motion, age and skill level. More studies with elite participants, either professional or amateur, would be especially desirable. Key points Positive correlations exist between: 1) handicap and swing performance variables; 2) muscle strength and skill (handicap and/or golf score); and 3) driving dis-tance, swing speed, ball speed and muscle strength. Leg-hip, trunk power and grip strength seem espe-cially relevant for golf performance improvement. Further research should determine muscle strength needs in relation to final swing performance, using well designed experiments and strict assessment pro-tocols which adequately relate to specific golf mo-tion, age and skill level. PMID:24149290

  8. The influence of different muscle mass measurements on the diagnosis of cancer cachexia

    PubMed Central

    Blauwhoff‐Buskermolen, Susanne; Langius, Jacqueline A.E.; Becker, Annemarie; Verheul, Henk M.W.

    2017-01-01

    Abstract Background Progressive loss of muscle mass is a major characteristic of cancer cachexia. Consensus definitions for cachexia provide different options to measure muscle mass. This study describes the effect of different methods to determine muscle mass on the diagnosis of cancer cachexia. In addition, the association of cachexia with other features of cachexia, quality of life, and survival was explored. Methods Prior to chemotherapy, cachexia was assessed by weight loss, body mass index, and muscle mass measurements, the latter by mid‐upper arm muscle area (MUAMA), computed tomography (CT) scans, and bio‐electrical impedance analysis (BIA). In addition, appetite, inflammation, muscle strength, fatigue, quality of life, and survival were measured, and associations with cachexia were explored. Results Included were 241 patients with advanced cancer of the lung (36%), colon/rectum (31%), prostate (18%), or breast (15%). Mean age was 64 ± 10 years; 54% was male. Prevalence of low muscle mass was as follows: 13% with MUAMA, 59% with CT, and 93% with BIA. In turn, the prevalence of cachexia was 37, 43, and 48%, whereby weight loss >5% was the most prominent component of being defined cachectic. Irrespective of type of muscle measurement, patients with cachexia presented more often with anorexia, inflammation, low muscle strength, and fatigue and had lower quality of life. Patients with cachexia had worse overall survival compared with patients without cachexia: HRs 2.00 (1.42–2.83) with MUAMA, 1.64 (1.15–2.34) with CT, and 1.50 (1.05–2.14) with BIA. Conclusions Although the prevalence of low muscle mass in patients with cancer depended largely on the type of muscle measurement, this had little influence on the diagnosis of cancer cachexia (as the majority of patients was already defined cachectic based on weight loss). New studies are warranted to further elucidate the additional role of muscle measurements in the diagnosis of cachexia and the association with clinical outcomes. PMID:28447434

  9. Post-exercise cold water immersion attenuates acute anabolic signalling and long-term adaptations in muscle to strength training

    PubMed Central

    Roberts, Llion A; Raastad, Truls; Markworth, James F; Figueiredo, Vandre C; Egner, Ingrid M; Shield, Anthony; Cameron-Smith, David; Coombes, Jeff S; Peake, Jonathan M

    2015-01-01

    Abstract We investigated functional, morphological and molecular adaptations to strength training exercise and cold water immersion (CWI) through two separate studies. In one study, 21 physically active men strength trained for 12 weeks (2 days per week), with either 10 min of CWI or active recovery (ACT) after each training session. Strength and muscle mass increased more in the ACT group than in the CWI group (P < 0.05). Isokinetic work (19%), type II muscle fibre cross-sectional area (17%) and the number of myonuclei per fibre (26%) increased in the ACT group (all P < 0.05), but not the CWI group. In another study, nine active men performed a bout of single-leg strength exercises on separate days, followed by CWI or ACT. Muscle biopsies were collected before and 2, 24 and 48 h after exercise. The number of satellite cells expressing neural cell adhesion molecule (NCAM) (10−30%) and paired box protein (Pax7) (20−50%) increased 24–48 h after exercise with ACT. The number of NCAM+ satellite cells increased 48 h after exercise with CWI. NCAM+- and Pax7+-positive satellite cell numbers were greater after ACT than after CWI (P < 0.05). Phosphorylation of p70S6 kinaseThr421/Ser424 increased after exercise in both conditions but was greater after ACT (P < 0.05). These data suggest that CWI attenuates the acute changes in satellite cell numbers and activity of kinases that regulate muscle hypertrophy, which may translate to smaller long-term training gains in muscle strength and hypertrophy. The use of CWI as a regular post-exercise recovery strategy should be reconsidered. Key points Cold water immersion is a popular strategy to recover from exercise. However, whether regular cold water immersion influences muscle adaptations to strength training is not well understood. We compared the effects of cold water immersion and active recovery on changes in muscle mass and strength after 12 weeks of strength training. We also examined the effects of these two treatments on hypertrophy signalling pathways and satellite cell activity in skeletal muscle after acute strength exercise. Cold water immersion attenuated long term gains in muscle mass and strength. It also blunted the activation of key proteins and satellite cells in skeletal muscle up to 2 days after strength exercise. Individuals who use strength training to improve athletic performance, recover from injury or maintain their health should therefore reconsider whether to use cold water immersion as an adjuvant to their training. PMID:26174323

  10. Screen time viewing behaviors and isometric trunk muscle strength in youth.

    PubMed

    Grøntved, Anders; Ried-Larsen, Mathias; Froberg, Karsten; Wedderkopp, Niels; Brage, Søren; Kristensen, Peter Lund; Andersen, Lars Bo; Møller, Niels Christian

    2013-10-01

    The objective of this study was to examine the association of screen time viewing behavior with isometric trunk muscle strength in youth. A cross-sectional study was carried out including 606 adolescents (14-16 yr old) participating in the Danish European Youth Heart Study, a population-based study with assessments conducted in either 1997/1998 or 2003/2004. Maximal voluntary contractions during isometric back extension and abdominal flexion were determined using a strain gauge dynamometer, and cardiorespiratory fitness (CRF) was obtained using a maximal cycle ergometer test. TV viewing time, computer use, and other lifestyle behaviors were obtained by self-report. Analyses of association of screen use behaviors with isometric trunk muscle strength were carried out using multivariable adjusted linear regression. The mean (SD) isometric strength was 0.87 (0.16) N·kg-1. TV viewing, computer use, and total screen time use were inversely associated with isometric trunk muscle strength in analyses adjusted for lifestyle and sociodemographic factors. After further adjustment for CRF and waist circumference, associations remained significant for computer use and total screen time, but TV viewing was only marginally associated with muscle strength after these additional adjustments (-0.05 SD (95% confidence interval, -0.11 to 0.005) difference in strength per 1 h·d-1 difference in TV viewing time, P = 0.08). Each 1 h·d-1 difference in total screen time use was associated with -0.09 SD (95% confidence interval, -0.14 to -0.04) lower isometric trunk muscle strength in the fully adjusted model (P = 0.001). There were no indications that the association of screen time use with isometric trunk muscle strength was attenuated among highly fit individuals (P = 0.91 for CRF by screen time interaction). Screen time use was inversely associated with isometric trunk muscle strength independent of CRF and other confounding factors.

  11. FKBP12 deficiency reduces strength deficits after eccentric contraction-induced muscle injury

    PubMed Central

    Corona, Benjamin T.; Rouviere, Clement; Hamilton, Susan L.; Ingalls, Christopher P.

    2008-01-01

    Strength deficits associated with eccentric contraction-induced muscle injury stem, in part, from excitation-contraction uncoupling. FKBP12 is a 12-kDa binding protein known to bind to the skeletal muscle sarcoplasmic reticulum Ca2+ release channel [ryanodine receptor (RyR1)] and plays an important role in excitation-contraction coupling. To assess the effects of FKBP12 deficiency on muscle injury and recovery, we measured anterior crural muscle (tibialis anterior and extensor digitorum longus muscles) strength in skeletal muscle-specific FKBP12-deficient and wild-type (WT) mice before and after a single bout of 150 eccentric contractions, as well as before and after the performance of six injury bouts. Histological damage of the tibialis anterior muscle was assessed after injury. Body weight and peak isometric and eccentric torques were lower in FKBP12-deficient mice compared with WT mice. There were no differences between FKBP12-deficient and WT mice in preinjury peak isometric and eccentric torques when normalized to body weight, and no differences in the relative decreases in eccentric torque with a single or multiple injury bouts. After a single injury bout, FKBP12-deficient mice had less initial strength deficits and recovered faster (especially females) than WT mice, despite no differences in the degree of histological damage. After multiple injury bouts, FKBP12-deficient mice recovered muscle strength faster than WT mice and exhibited significantly less histological muscle damage than WT mice. In summary, FKBP12 deficiency results in less initial strength deficits and enhanced recovery from single (especially females) and repeated bouts of injury than WT mice. PMID:18511525

  12. Exercise capacity, muscle strength and fatigue in sarcoidosis.

    PubMed

    Marcellis, R G J; Lenssen, A F; Elfferich, M D P; De Vries, J; Kassim, S; Foerster, K; Drent, M

    2011-09-01

    The aim of this case-control study was to investigate the prevalence of exercise intolerance, muscle weakness and fatigue in sarcoidosis patients. Additionally, we evaluated whether fatigue can be explained by exercise capacity, muscle strength or other clinical characteristics (lung function tests, radiographic stages, prednisone usage and inflammatory markers). 124 sarcoidosis patients (80 males) referred to the Maastricht University Medical Centre (Maastricht, the Netherlands) were included (mean age 46.6±10.2 yrs). Patients performed a 6-min walk test (6MWT) and handgrip force (HGF), elbow flexor muscle strength (EFMS), quadriceps peak torque (QPT) and hamstring peak torque (HPT) tests. Maximal inspiratory pressure (P(I,max)) was recorded. All patients completed the Fatigue Assessment Scale (FAS) questionnaire. The 6MWT was reduced in 45% of the population, while HGF, EFMS, QPT and HPT muscle strength were reduced in 15, 12, 27 and 18%, respectively. P(I,max) was reduced in 43% of the population. The majority of the patients (81%) reported fatigue (FAS ≥22). Patients with reduced peripheral muscle strength of the upper and/or lower extremities were more fatigued and demonstrated impaired lung functions, fat-free mass, P(I,max), 6MWT and quality of life. Fatigue was neither predicted by exercise capacity, nor by muscle strength. Besides fatigue, exercise intolerance and muscle weakness are frequent problems in sarcoidosis. We therefore recommend physical tests in the multidisciplinary management of sarcoidosis patients, even in nonfatigued patients.

  13. The prospective evaluation of changes in fatty infiltration and shoulder strength in nonsurgically treated rotator cuff tears.

    PubMed

    Nakamura, Yoshihiro; Yokoya, Shin; Harada, Yohei; Shiraishi, Katsunori; Adachi, Nobuo; Ochi, Mitsuo

    2017-07-01

    The purpose of this study was to evaluate the relationship of fatty infiltration in rotator cuff muscles and shoulder strength in rotator cuff tears and these changes during nonsurgical treatment. Fifty-three shoulders from 47 patients (mean age: 69.9 years) diagnosed with rotator cuff tears by magnetic resonance imaging (MRI) were treated nonsurgically. The degrees of fatty infiltration in supraspinatus (SSP) and infraspinatus (ISP) muscles were graded by the modified Goutallier classification (grade 0-1, grade 2-3, or grade 4). The isometric strength of the abductors (Abd) and external rotators (ER) were examined with a hand dynamometer. We analyzed the correlation of the modified Goutallier classification in SSP and ISP muscles with the strength of Abd and ER at initial visit. In addition, MRI and strength tests were repeated after 24 ± 6 months, and changes in fatty infiltration and strength were examined. Fatty infiltration of SSP and ISP muscles had a negative correlation with the strengths of Abd and ER at initial visit, respectively. Six of 45 shoulders (SSP grade: 0-3) and 7 of 43 shoulders (ISP grade: 0-3) had progression of fatty infiltration. Predictive factor of a progression of fatty infiltration during follow-up was decreased initial strength of Abd. There was no significant change in the strength of Abd, and the strength of ER showed significant improvement between the initial and post-treatment measurements. Even in the subgroup that had progression of fatty infiltration at follow-up, the strength of Abd and ER did not decrease significantly. Although fatty infiltration of the rotator cuff muscles exhibited a negative correlation with muscle strength, fatty infiltration and muscle weakness did not progress at the same rate. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  14. No beneficial effects of vitamin D supplementation on muscle function or quality of life in primary hyperparathyroidism: results from a randomized controlled trial.

    PubMed

    Rolighed, Lars; Rejnmark, Lars; Sikjaer, Tanja; Heickendorff, Lene; Vestergaard, Peter; Mosekilde, Leif; Christiansen, Peer

    2015-05-01

    Impairments of muscle function and strength in patients with primary hyperparathyroidism (PHPT) are rarely addressed, although decreased muscle function may contribute to increased fracture risk. We aimed to assess the changes in muscle strength, muscle function, postural stability, quality of life (QoL), and well-being during treatment with vitamin D or placebo before and after parathyroidectomy (PTX) in PHPT patients. A randomized placebo-controlled trial. We included 46 PHPT patients, mean age 58 (range 29-77) years and 35 (76%) were women. Daily treatment with 70 μg (2800 IU) cholecalciferol or placebo for 52 weeks. Treatment was administered 26 weeks before PTX and continued for 26 weeks after PTX. Changes in QoL and measures of muscle strength and function. Preoperatively, 25-hydroxyvitamin D (25OHD) increased significantly (50-94 nmol/l) compared with placebo (57-52 nmol/l). We did not measure any beneficial effects of supplementation with vitamin D compared with placebo regarding well-being, QoL, postural stability, muscle strength, or function. In all patients, we measured marked improvements in QoL, well-being (P<0.01), muscle strength in the knee flexion and extension (P<0.001), and muscle function tests (P<0.01) after surgical cure. Postural stability improved during standing with eyes closed (P<0.05), but decreased with eyes open (P<0.05). Patients with PHPT and 25OHD levels around 50 nmol/l did not benefit from vitamin D supplementation concerning muscle strength, muscle function, postural stability, well-being, or QoL. Independent of preoperative 25OHD levels, PTX improved these parameters. © 2015 European Society of Endocrinology.

  15. Hip and ankle range of motion and hip muscle strength in young female ballet dancersand controls

    PubMed Central

    Bennell, K.; Khan, K. M.; Matthews, B.; De Gruyter, M.; Cook, E.; Holzer, K.; Wark, J. D.

    1999-01-01

    OBJECTIVES: To compare the hip and ankle range of motion and hip muscle strength in 8-11 year old novice female ballet dancers and controls. METHODS: Subjects were 77 dancers and 49 controls (mean (SD) age 9.6 (0.8) and 9.6 (0.7) years respectively). Supine right active hip external rotation (ER) and internal rotation (IR) were measured using an inclinometer. A turnout protractor was used to assess standing active turnout range. The measure of ER achieved from below the hip during turnout (non-hip ER) was calculated by subtracting hip ER range from turnout range, and hip ER:IR was derived by dividing ER range by IR range. Range of right weight bearing ankle dorsiflexion was measured in a standing lunge using two methods: the distance from the foot to the wall (in centimetres) and the angle of the shank to the vertical via an inclinometer (in degrees). Right calf muscle range was measured in weight bearing using an inclinometer. A manual muscle tester was used to assess right isometric hip flexor, internal rotator, external rotator, abductor, and adductor strength. RESULTS: Dancers had less ER (p<0.05) and IR (p<0.01) range than controls but greater ER:IR (p<0.01). Although there was no difference in turnout between groups, the dancers had greater non-hip ER. Dancers had greater range of ankle dorsiflexion than controls, measured in both centimetres (p<0.01) and degrees (p<0.05), but similar calf muscle range. After controlling for body weight, controls had stronger hip muscles than dancers except for hip abductor strength which was similar. Regression analyses disclosed a moderate relation between turnout and hip ER (r = 0.40). There were no significant correlations between range of motion and training years and weekly training hours. CONCLUSIONS: Longitudinal follow up will assist in determining whether or not hip and ankle range in young dancers is genetically fixed and unable to be improved with further balletic training. 


 PMID:10522638

  16. Ankle and toe muscle strength characteristics in runners with a history of medial tibial stress syndrome.

    PubMed

    Saeki, Junya; Nakamura, Masatoshi; Nakao, Sayaka; Fujita, Kosuke; Yanase, Ko; Morishita, Katsuyuki; Ichihashi, Noriaki

    2017-01-01

    A high proportion of flexor digitorum longus attachment is found at the posteromedial border of the tibia, which is the most common location of medial tibial stress syndrome (MTSS). Therefore, plantar flexion strength of the lesser toes could be related to MTSS; however, the relationship between MTSS and muscle strength of the hallux and lesser toes is not yet evaluated due to the lack of quantitative methods. This study investigated the muscle strength characteristics in runners with a history of MTSS by using a newly developed device to measure the muscle strength of the hallux, lesser toes, and ankle. This study comprised 27 collegiate male runner participants (20.0 ± 1.6 years, 172.1 ± 5.1 cm, 57.5 ± 4.0 kg). Maximal voluntary isometric contraction (MVIC) torque of the plantar flexion, dorsiflexion, inversion, and eversion of the ankle were measured by using an electric dynamometer. MVIC torque of the 1st metatarsophalangeal joint (MTPJ) and 2nd-5th MTPJ were measured by using a custom-made torque-measuring device. MVIC torques were compared between runners with and without a history of MTSS. MVIC torque of the 1st MTPJ plantar flexion was significantly higher in runners with a history of MTSS than in those without it. In contrast, there were no significant differences in the MVIC torque values of the 2nd-5th MTPJ plantar flexion and each MVIC torque of the ankle between runners with and without a history of MTSS. A history of MTSS increased the isometric FHL strength.

  17. Endogenous hormones, muscle strength, and risk of fall-related fractures in older women.

    PubMed

    Sipilä, Sarianna; Heikkinen, Eino; Cheng, Sulin; Suominen, Harri; Saari, Päivi; Kovanen, Vuokko; Alén, Markku; Rantanen, Taina

    2006-01-01

    Among older people, fracture-causing fall often leads to health deterioration. The role of endogenous hormone status and muscle strength on fall-related fracture risk is unclear. This study investigates if, after adjustment for bone density, endogenous hormones and muscle strength would predict fall-related limb fracture incidence in older community-dwelling women followed-up over 10 years. As a part of a prospective population-based study, 187 75-year-old women were investigated. Serum estradiol, testosterone, sex hormone binding globulin, and dehydroepiandrosterone sulfate concentrations were analyzed, and isometric muscle strength and bone mineral density were assessed. Fall-related limb fractures were gathered from patient records. Serum estradiol concentration was a significant predictor of fall-related limb fractures. Women with serum estradiol concentrations less than 0.022 nmol/L had a 3-fold risk (relative risk 3.05; 95% confidence interval, 1.26-7.36), and women with estradiol concentrations between 0.022 and 0.066 nmol/L doubled the risk (relative risk 2.24; 95% confidence interval, 0.97-5.19) of fall-related limb fracture compared to the women with estradiol concentrations ()above 0.066 nmol/L. Adjustment for muscle strength and bone mineral density did not materially change the risk estimates. High muscle strength was associated with a low incidence of fall-related limb fractures. This study showed that in 75-year-old women higher serum estradiol concentration and greater muscle strength were independently associated with a low incidence of fall-related limb fractures even after adjustment for bone density. Our results suggest that hormonal status and muscle strength have their own separate mechanisms protecting from fall-related fractures. This finding is of importance in developing preventive strategies, but calls for further study.

  18. Creatine monohydrate supplementation during eight weeks of progressive resistance training increases strength in as little as two weeks without reducing markers of muscle damage.

    PubMed

    Kaviani, Mojtaba; Abassi, Aboozar; Chilibeck, Philip D

    2018-05-02

    Creatine supplementation (Cr) increases strength during resistance training, but the time course of this strength increase is unclear. The aim was to determine the precise time course by which Cr could increase strength and whether Cr prevents muscle damage during eight weeks of resistance training. Young males were randomized (double blind) to Cr (n=9, 0.07g/kg/d) and placebo (n=9) during 8-weeks of resistance training (3d/week). Strength was assessed across six exercises every two weeks. Venous blood samples obtained at baseline, and 24 and 48 hours after the final resistance training session were assessed for creatine kinase [CK] and lactate dehydrogenase [LDH] as measures of muscle damage. Strength was significantly higher in the Cr versus placebo group (p<0.05) after two weeks of training for three of the six exercises (bench press, leg press, shoulder press). By the end of the eight weeks of training, strength was significantly higher in the Cr versus placebo group (p<0.05) for four of the six exercises (bench press, leg press, shoulder press, and triceps extension, but not biceps curl or lat-pulldown). Creatine supplementation did not prevent muscle damage. Indeed, muscle damage markers increased in the Cr compared to placebo group (p<0.05). Cr increased muscular strength in as little as two weeks during a resistance training program; however, this was not accompanied by decreased muscle damage. Greater muscle damage with Cr may be due to a greater training intensity enabled by Cr supplementation. This might lead to greater protein turnover and enhanced muscle adaptation.

  19. Normal reference values of strength in pelvic floor muscle of women: a descriptive and inferential study.

    PubMed

    Chevalier, Francine; Fernandez-Lao, Carolina; Cuesta-Vargas, Antonio Ignacio

    2014-11-25

    To describe the clinical, functional and quality of life characteristics in women with Stress Urinary Incontinence (SUI). In addition, to analyse the relationship between the variables reported by the patients and those informed by the clinicians, and the relationship between instrumented variables and the manual pelvic floor strength assessment. Two hundred and eighteen women participated in this observational, analytical study. An interview about Urinary Incontinence and the quality of life questionnaires (EuroQoL-5D and SF-12) were developed as outcomes reported by the patients. Manual muscle testing and perineometry as outcomes informed by the clinician were assessed. Descriptive and correlation analysis were carried out. The average age of the subjects was (39.93 ± 12.27 years), (24.49 ± 3.54 BMI). The strength evaluated by manual testing of the right levator ani muscles was 7.79 ± 2.88, the strength of left levator ani muscles was 7.51 ± 2.91 and the strength assessed with the perineometer was 7.64 ± 2.55. A positive correlation was found between manual muscle testing and perineometry of the pelvic floor muscles (p < .001). No correlation was found between outcomes of quality of life reported by the patients and outcomes of functional capacity informed by the physiotherapist. A stratification of the strength of pelvic floor muscles in a normal distribution of a large sample of women with SUI was done, which provided the clinic with a baseline. There is a relationship between the strength of the pelvic muscles assessed manually and that obtained by a perineometer in women with SUI. There was no relationship between these values of strength and quality of life perceived.

  20. Muscle strength response to strength training is influenced by insulin-like growth factor 1 genotype in older adults.

    PubMed

    Kostek, Matthew C; Delmonico, Matthew J; Reichel, Jonathan B; Roth, Stephen M; Douglass, Larry; Ferrell, Robert E; Hurley, Ben F

    2005-06-01

    Strength training (ST) is considered an intervention of choice for the prevention and treatment of sarcopenia. Reports in the literature have suggested that the insulin-like growth factor I protein (IGF-I) plays a major role in ST-induced skeletal muscle hypertrophy and strength improvements. A microsatellite repeat in the promoter region of the IGF1 gene has been associated with IGF-I blood levels and phenotypes related to IGF-I in adult men and women. To examine the influence of this polymorphism on muscle hypertrophic and strength responses to ST, we studied 67 Caucasian men and women before and after a 10-wk single-leg knee-extension ST program. One repetition maximum strength, muscle volume via computed tomography, and muscle quality were assessed at baseline and after 10 wk of training. The IGF1 repeat promoter polymorphism and three single-nucleotide polymorphisms were genotyped. For the promoter polymorphism, subjects were grouped as homozygous for the 192 allele, heterozygous, or noncarriers of the 192 allele. After 10 wk of training, 1-repetition maximum, muscle volume, and muscle quality increased significantly for all groups combined (P < 0.001). However, carriers of the 192 allele gained significantly more strength with ST than noncarriers of the 192 allele (P = 0.02). There was also a nonsignificant trend for a greater increase in muscle volume in 192 carriers than noncarriers (P = 0.08). No significant associations were observed for the other polymorphisms studied. Thus these data suggest that the IGF1 promoter polymorphism may influence the strength response to ST. Larger sample sizes should be used in future studies to verify these results.

  1. Test-Retest Reliability of Innovated Strength Tests for Hip Muscles

    PubMed Central

    Meyer, Christophe; Corten, Kristoff; Wesseling, Mariska; Peers, Koen; Simon, Jean-Pierre; Jonkers, Ilse; Desloovere, Kaat

    2013-01-01

    The burden of hip muscles weakness and its relation to other impairments has been well documented. It is therefore a pre-requisite to have a reliable method for clinical assessment of hip muscles function allowing the design and implementation of a proper strengthening program. Motor-driven dynamometry has been widely accepted as the gold-standard for lower limb muscle strength assessment but is mainly related to the knee joint. Studies focusing on the hip joint are less exhaustive and somewhat discrepant with regard to optimal participants position, consequently influencing outcome measures. Thus, we aimed to develop a standardized test setup for the assessment of hip muscles strength, i.e. flexors/extensors and abductors/adductors, with improved participant stability and to define its psychometric characteristics. Eighteen participants performed unilateral isokinetic and isometric contractions of the hip muscles in the sagittal and coronal plane at two separate occasions. Peak torque and normalized peak torque were measured for each contraction. Relative and absolute measures of reliability were calculated using the intraclass correlation coefficient and standard error of measurement, respectively. Results from this study revealed higher levels of between-day reliability of isokinetic/isometric hip abduction/flexion peak torque compared to existing literature. The least reliable measures were found for hip extension and adduction, which could be explained by a less efficient stabilization technique. Our study additionally provided a first set of reference normalized data which can be used in future research. PMID:24260550

  2. ASSOCIATION BETWEEN LONG-TERM QUADRICEPS WEAKNESS AND EARLY WALKING MUSCLE CO-CONTRACTION AFTER TOTAL KNEE ARTHROPLASTY

    PubMed Central

    Yoshida, Yuri; Mizner, Ryan L.; Snyder-Mackler, Lynn

    2013-01-01

    INTRODUCTION Quadriceps weakness is one of the primary post-operative impairments that persist long term for patients after total knee arthroplasty (TKA). We hypothesized that early gait muscle recruitment patterns of the quadriceps and hamstrings with diminished knee performance at 3 months after surgery would be related to long-term quadriceps strength at one year after TKA. METHODS Twenty-one subjects who underwent primary unilateral TKA and 14 age-matched healthy controls were analyzed. At three months after TKA, the maximum voluntary isometric contraction of quadriceps and a comprehensive gait analysis were performed. Quadriceps strength was assessed again at one year after surgery. RESULTS Quadriceps muscle recruitment of the operated limb was greater than the non-operated limb during the loading response of gait (p=0.03), but there were no significant differences in hamstring recruitment or co-contraction between limbs (p>0.05). There were significant differences in quadriceps muscle recruitment during gait between the non-operated limb of TKA group and healthy control group (p<0.05). The TKA group showed a significant inverse relationship between one year quadriceps strength and co-contraction (r = −0.543) and hamstring muscle recruitment (r = −0.480) during loading response at 3 months after TKA. CONCLUSIONS The results revealed a reverse relationship where stronger patients tended to demonstrate lower quadriceps recruitment at 3 months post-surgery that was not observed in the healthy peer group. The altered neuromuscular patterns of quadriceps and hamstrings during gait may influence chronic quadriceps strength in individuals after TKA. PMID:23352711

  3. Bone strength and muscle properties in postmenopausal women with and without a recent distal radius fracture.

    PubMed

    Crockett, K; Arnold, C M; Farthing, J P; Chilibeck, P D; Johnston, J D; Bath, B; Baxter-Jones, A D G; Kontulainen, S A

    2015-10-01

    Distal radius (wrist) fracture (DRF) in women over age 50 years is an early sign of bone fragility. Women with a recent DRF compared to women without DRF demonstrated lower bone strength, muscle density, and strength, but no difference in dual-energy x-ray absorptiometry (DXA) measures, suggesting DXA alone may not be a sufficient predictor for DRF risk. The objective of this study was to investigate differences in bone and muscle properties between women with and without a recent DRF. One hundred sixty-six postmenopausal women (50-78 years) were recruited. Participants were excluded if they had taken bone-altering medications in the past 6 months or had medical conditions that severely affected daily living or the upper extremity. Seventy-seven age-matched women with a fracture in the past 6-24 months (Fx, n = 32) and without fracture (NFx, n = 45) were measured for bone and muscle properties using the nondominant (NFx) or non-fractured limb (Fx). Peripheral quantitative computed tomography (pQCT) was used to estimate bone strength in compression (BSIc) at the distal radius and tibia, bone strength in torsion (SSIp) at the shaft sites, muscle density, and area at the forearm and lower leg. Areal bone mineral density at the ultradistal forearm, spine, and femoral neck was measured by DXA. Grip strength and the 30-s chair stand test were used as estimates of upper and lower extremity muscle strength. Limb-specific between-group differences were compared using multivariate analysis of variance (MANOVA). There was a significant group difference (p < 0.05) for the forearm and lower leg, with the Fx group demonstrating 16 and 19% lower BSIc, 3 and 6% lower muscle density, and 20 and 21% lower muscle strength at the upper and lower extremities, respectively. There were no differences between groups for DXA measures. Women with recent DRF had lower pQCT-derived estimated bone strength at the distal radius and tibia and lower muscle density and strength at both extremities.

  4. Fibromyalgia is Associated With Altered Skeletal Muscle Characteristics Which May Contribute to Post-Exertional Fatigue in Post-Menopausal Women

    PubMed Central

    Srikuea, Ratchakrit; Symons, T. Brock; Long, Douglas E.; Lee, Jonah D.; Shang, Yu; Chomentowski, Peter J.; Yu, Guoqiang; Crofford, Leslie J.; Peterson, Charlotte A.

    2012-01-01

    Objective To identify muscle physiological properties that may contribute to post-exertional fatigue and malaise in women with fibromyalgia (FM). Methods Healthy postmenopausal women with (n=11) and without (n=11) fibromyalgia, age 51–70 years, participated in this study. Physical characteristics along with self-reported questionnaires were evaluated. Strength loss and tissue oxygenation in response to a fatiguing exercise protocol were used to quantify fatigability and the local muscle hemodynamic profile. Muscle biopsies were obtained to assess between-group differences in baseline muscle properties using histochemical, immunohistochemical and electron microscopic analyses. Results No significant difference in muscle fatigue in response to exercise was apparent between healthy controls and subjects with FM. However, self-reported fatigue and pain were correlated to prolonged loss of strength following 12-min of recovery in subjects with FM. Although there was no difference in percent SDH positive (type I) and SDH negative (type II) fibers or in mean fiber cross-sectional area between groups, subjects with FM showed greater size variability and altered fiber size distribution. Only in healthy controls, fatigue-resistance was strongly correlated with the size of SDH positive fibers and hemoglobin oxygenation. By contrast, subjects with FM with the highest percentage of SDH positive fibers recovered strength most effectively, which was correlated to capillary density. However, overall, capillary density was lower in subjects with FM. Conclusion Peripheral mechanisms i.e. altered muscle fiber size distribution and decreased capillary density may contribute to post-exertional fatigue in subjects with FM. Understanding these defects in fibromyalgic muscle may provide valuable insight for treatment. PMID:23124535

  5. No difference in long-term trunk muscle strength, cross-sectional area, and density in patients with chronic low back pain 7 to 11 years after lumbar fusion versus cognitive intervention and exercises.

    PubMed

    Froholdt, Anne; Holm, Inger; Keller, Anne; Gunderson, Ragnhild B; Reikeraas, Olav; Brox, Jens I

    2011-08-01

    Reduced muscle strength and density observed at 1 year after lumbar fusion may deteriorate more in the long term. To compare the long-term effect of lumbar fusion and cognitive intervention and exercises on muscle strength, cross-sectional area, density, and self-rated function in patients with chronic low back pain (CLBP) and disc degeneration. Randomized controlled study with a follow-up examination at 8.5 years (range, 7-11 years). Patients with CLBP and disc degeneration randomized to either instrumented posterolateral fusion of one or both of the two lower lumbar levels or a 3-week cognitive intervention and exercise program were included. Isokinetic muscle strength was measured by a Cybex 6000 (Cybex-Lumex, Inc., Ronkonkoma, NY, USA). All patients had previous experience with the test procedure. The back extension (E) flexion (F) muscles were tested, and the E/F ratios were calculated. Cross-sectional area and density of the back muscles were measured at the L3-L4 segment by computed tomography. Patients rated their function by the General Function Score. Trunk muscle strength, cross-sectional area, density, and self-rated function. Fifty-five patients (90%) were included at long-term follow-up. There were no significant differences in cross-sectional area, density, muscle strength, or self-rated function between the two groups. The cognitive intervention and exercise group increased trunk muscle extension significantly (p<.05), and both groups performed significantly better on trunk muscle flexion tests (p<.01) at long-term follow-up. On average, self-rated function improved by 56%, cross-sectional area was reduced by 8.5%, and muscle density was reduced by 27%. Although this study did not assess the morphology of muscles likely damaged by surgery, trunk muscle strength and cross-sectional area above the surgical levels are not different between those who had lumbar fusion or cognitive intervention and exercises at 7- to 11-year follow-up. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Proposal for a candidate core-set of fitness and strength tests for patients with childhood or adult idiopathic inflammatory myopathies

    PubMed Central

    van der Stap, Djamilla K.D.; Rider, Lisa G.; Alexanderson, Helene; Huber, Adam M.; Gualano, Bruno; Gordon, Patrick; van der Net, Janjaap; Mathiesen, Pernille; Johnson, Liam G.; Ernste, Floranne C.; Feldman, Brian M.; Houghton, Kristin M.; Singh-Grewal, Davinder; Kutzbach, Abraham Garcia; Munters, Li Alemo; Takken, Tim

    2015-01-01

    OBJECTIVES Currently there are no evidence-based recommendations regarding which fitness and strength tests to use for patients with childhood or adult idiopathic inflammatory myopathies (IIM). This hinders clinicians and researchers in choosing the appropriate fitness- or muscle strength-related outcome measures for these patients. Through a Delphi survey, we aimed to identify a candidate core-set of fitness and strength tests for children and adults with IIM. METHODS Fifteen experts participated in a Delphi survey that consisted of five stages to achieve a consensus. Using an extensive search of published literature and through the expertise of the experts, a candidate core-set based on expert opinion and clinimetric properties was developed. Members of the International Myositis Assessment and Clinical Studies Group (IMACS) were invited to review this candidate core-set during the final stage, which led to a final candidate core-set. RESULTS A core-set of fitness- and strength-related outcome measures was identified for children and adults with IIM. For both children and adults, different tests were identified and selected for maximal aerobic fitness, submaximal aerobic fitness, anaerobic fitness, muscle strength tests and muscle function tests. CONCLUSIONS The core-set of fitness and strength-related outcome measures provided by this expert consensus process will assist practitioners and researchers in deciding which tests to use in IIM patients. This will improve the uniformity of fitness and strength tests across studies, thereby facilitating the comparison of study results and therapeutic exercise program outcomes among patients with IIM. PMID:26568594

  7. Cancer survivors exhibit a different relationship between muscle strength and health-related quality of life/fatigue compared to healthy subjects.

    PubMed

    Morishita, S; Tsubaki, A; Fu, J B; Mitobe, Y; Onishi, H; Tsuji, T

    2018-05-16

    We investigated the difference in relationship between muscle strength and quality of life (QOL)/fatigue in long-term cancer survivors and healthy subjects. Thirty-six cancer survivors and 29 healthy subjects were assessed for body composition and bone status at the calcaneus using the Osteo Sono Assessment Index. Muscle strength was evaluated via handgrip and knee extensor strength. Health-related QOL was assessed using the Medical Outcome Study 36-item Short-Form Health Survey. Fatigue was measured using the brief fatigue inventory. Cancer survivors exhibited lower QOL scores in the physical functioning, physical role function, bodily pain and general health domains (p < .05). Grip and knee extension muscle strength in cancer survivors was positively correlated with the physical function and bodily pain of QOL (p < .05). The usual fatigue subscale score was only significantly higher in cancer survivors than in healthy subjects (p < .05). However, there were no correlations between muscle strength and fatigue in cancer survivors. Our results showed that muscle strength was an important factor for improving QOL in cancer survivors. We believe that the findings of this study will be relevant in the context of planning rehabilitation for cancer survivors. © 2018 John Wiley & Sons Ltd.

  8. Astronaut candidate strength measurement using the Cybex 2 and the LIDO Multi-Joint 2 dynamometers

    NASA Technical Reports Server (NTRS)

    Carroll, Amy E.; Wilmington, Robert P.

    1992-01-01

    The Anthropometry and Biomechanics Laboratory in the man-Systems division at NASA's Johnson Space Center has as one of its responsibilities the anthropometry and strength measurement data collection of astronaut candidates. The anthropometry data is used to ensure that the astronaut candidates are within the height restrictions for space vehicle and space suit design requirements, for example. The strength data is used to help detect abnormalities or isolate injuries to muscle groups that could jeopardize the astronauts safety. The Cybex II Dynamometer has been used for strength measurements from 1985 through 1991. The Cybex II was one of the first instruments of its kind to measure strength and similarity of muscle groups by isolating the specific joint of interest. In November 1991, a LIDO Multi-Joint II Dynamometer was purchased to upgrade the strength measurement data collection capability of the Anthropometry and Biomechanics Laboratory. The LIDO Multi-Joint II Dynamometer design offers several advantages over the Cybex II Dynamometer including a more sophisticated method of joint isolation and a more accurate and efficient computer based data collection system.

  9. Ipsilateral Hip Abductor Weakness After Inversion Ankle Sprain

    PubMed Central

    Friel, Karen; McLean, Nancy; Myers, Christine; Caceres, Maria

    2006-01-01

    Context: Hip stability and strength are important for proper gait mechanics and foot position during heel strike. Objective: To determine the relationships between hip muscle strength and chronic ankle sprains and hip muscle strength and ankle range of motion. Design: Ex post facto design with the uninvolved limb serving as the control. Setting: Laboratory. Patients or Other Participants: A total of 23 subjects with unilateral chronic ankle sprain were recruited. Subjects had at least 2 ipsilateral ankle sprains and were bearing full weight, with the most recent injury occurring at least 3 months earlier. They were not undergoing formal or informal rehabilitation at the time of the study. Main Outcome Measure(s): We obtained goniometric measurements for all planes of motion at the ankle. Handheld dynamometry was used to assess the strength of the hip abductor and hip extensor muscles in both limbs. Results: Hip abductor muscle strength and plantar flexion were significantly less on the involved side than the uninvolved side (P < .001 in each case). Strength of the involved hip abductor and hip extensor muscles was significantly correlated (r = 0.539, P < .01). No significant difference was noted in hip extensor muscle strength between sides (P = .19). Conclusions: Our subjects with unilateral chronic ankle sprains had weaker hip abduction strength and less plantar-flexion range of motion on the involved sides. Clinicians should consider exercises to increase hip abduction strength when developing rehabilitation programs for patients with ankle sprains. PMID:16619098

  10. Effect of high-intensity home-based respiratory muscle training on strength of respiratory muscles following a stroke: a protocol for a randomized controlled trial.

    PubMed

    Menezes, Kênia Kiefer Parreiras De; Nascimento, Lucas Rodrigues; Polese, Janaine Cunha; Ada, Louise; Teixeira-Salmela, Luci Fuscaldi

    Respiratory muscle training has shown to increase strength of the respiratory muscles following a stroke. However, low duration and/or intensity of training may be responsible for the small effect size seen and/or absence of carry-over effects to an activity, e.g., walking. Therefore, an investigation of the effects of long-duration, high-intensity respiratory muscle training is warranted. This proposed protocol for a randomized clinical trial will examine the efficacy of high-intensity respiratory muscle training to increase strength and improve activity following a stroke. This study will be a two-arm, prospectively registered, randomized controlled trial, with blinded assessors. Thirty-eight individuals who have suffered a stroke will participate. The experimental group will undertake a 40-min of respiratory muscle training program, seven days/week, for eight weeks in their homes. Training loads will be increased weekly. The control group will undertake a sham respiratory muscle training program with equivalent duration and scheduling of training. The primary outcome will be the strength of the inspiratory muscles, measured as maximal inspiratory pressure. Secondary outcomes will include expiratory muscle strength, inspiratory muscle endurance, dyspnea, respiratory complications, and walking capacity. Outcomes will be collected by a researcher blinded to group allocation at baseline (Week 0), after intervention (Week 8), and one month beyond intervention (Week 12). High-intensity respiratory muscle training may have the potential to optimize the strength of the respiratory muscles following a stroke. If benefits are carried over to activity, the findings may have broader implications, since walking capacity has been shown to predict physical activity and community participation on this population. Copyright © 2017 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Publicado por Elsevier Editora Ltda. All rights reserved.

  11. Acceleration effects on neck muscle strength: pilots vs. non-pilots.

    PubMed

    Seng, Kok-Yong; Lam, Pin-Min; Lee, Vee-Sin

    2003-02-01

    Conditioning of neck muscles, if any, due to repeated exposures to +Gz forces has received little research attention. This study was conducted to evaluate and compare the neck muscle strength of test volunteers representative of the general populations of fighter aircraft pilots and non-pilots. The tests were performed using a special attachment device on a computerized dynamometer. Ten pilots and ten non-pilots volunteered as test subjects. Each individual's maximal isometric neck muscle strength was evaluated in the extension, flexion, and left and right lateral bending directions in a single day. Peak values from the measurements were used for data analysis. Overall neck strength was calculated as the mean values for the four directions in each group. The overall muscular strength of the necks of pilots did not differ significantly from that of non-pilots, nor did exposure to +Gz forces lead to specific changes in isometric muscle strength across any of the four principal directions. Neck muscle strength in the four measured directions pooled across the two subgroups were statistically significant. The widespread practice of adopting protective head-positioning strategies to minimize neck strains, coupled with results from this research study, suggest that the neck muscles are subjected to reduced in-flight strengthening workouts during exposures to +Gz forces. To maximize in-flight performance and minimize +Gz-induced neck injuries, fighter pilots should be encouraged to perform on-land neck muscle strengthening exercise and in-flight head-positioning techniques. More research is needed to fine-tune this countermeasure strategy against cervical spine injury.

  12. Persistence of long term isokinetic strength deficits in subjects with lateral ankle sprain as measured with a protocol including maximal preloading.

    PubMed

    Perron, Marc; Moffet, Hélène; Nadeau, Sylvie; Hébert, Luc J; Belzile, Sylvain

    2014-12-01

    The assessment of muscle function is a cornerstone in the management of subjects who have sustained a lateral ankle sprain. The ankle range of motion being relatively small, the use of preloading allows to measure maximal strength throughout the whole amplitude and therefore to better characterize ankle muscles weaknesses. This study aimed to assess muscle strength of the injured and uninjured ankles in subjects with a lateral ankle sprain, to document the timeline of strength recovery, and to determine the influence of sprain grade on strength loss. Maximal torque of the periarticular muscles of the ankle in a concentric mode using a protocol with maximal preloading was tested in 32 male soldiers at 8 weeks and 6 months post-injury. The evertor muscles of the injured ankles were weaker than the uninjured ones at 8 weeks and 6 months post-injury (P<0.0001, effect size=0.31-0.42). Muscle weaknesses also persisted in the plantarflexors of the injured ankles at 8 weeks (P=0.0014, effect size=0.52-0.58) while at 6 months, only the subjects with a grade II sprain displayed such weaknesses (P<0.0001, effect size 0.27-0.31). The strength of the invertor and dorsiflexor muscles did not differ between sides. The use of an isokinetic protocol with preloading demonstrates significant but small strength deficits in the evertor and plantarflexor muscles. These impairments may contribute to the high incidence of recurrence of lateral ankle sprain in very active individuals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Novel Analog For Muscle Deconditioning

    NASA Technical Reports Server (NTRS)

    Ploutz-Snyder, Lori; Ryder, Jeff; Buxton, Roxanne; Redd, Elizabeth; Scott-Pandorf, Melissa; Hackney, Kyle; Fiedler, James; Bloomberg, Jacob

    2010-01-01

    Existing models of muscle deconditioning are cumbersome and expensive (ex: bedrest). We propose a new model utilizing a weighted suit to manipulate strength, power or endurance (function) relative to body weight (BW). Methods: 20 subjects performed 7 occupational astronaut tasks while wearing a suit weighted with 0-120% of BW. Models of the full relationship between muscle function/BW and task completion time were developed using fractional polynomial regression and verified by the addition of pre- and post-flight astronaut performance data using the same tasks. Spline regression was used to identify muscle function thresholds below which task performance was impaired. Results: Thresholds of performance decline were identified for each task. Seated egress & walk (most difficult task) showed thresholds of: leg press (LP) isometric peak force/BW of 18 N/kg, LP power/BW of 18 W/kg, LP work/ BW of 79 J/kg, knee extension (KE) isokinetic/BW of 6 Nm/Kg and KE torque/BW of 1.9 Nm/kg. Conclusions: Laboratory manipulation of strength / BW has promise as an appropriate analog for spaceflight-induced loss of muscle function for predicting occupational task performance and establishing operationally relevant exercise targets.

  14. Analysis of isokinetic muscle strength for sports physiotherapy research in Korean ssireum athletes

    PubMed Central

    Noh, Ji-Woong; Park, Byoung-Sun; Kim, Mee-Young; Lee, Lim-Kyu; Yang, Seung-Min; Lee, Won-Deok; Shin, Yong-Sub; Kim, Ju-Hyun; Lee, Jeong-Uk; Kwak, Taek-Yong; Lee, Tae-Hyun; Kim, Ju-Young; Park, Jaehong; Kim, Junghwan

    2015-01-01

    [Purpose] The purpose of the present study was to elucidate the muscle conditions such as the isokinetic muscle of Korean ssireum athletes. [Subjects and Methods] This study enrolled 25 elite ssireum athletes. We measured body composition and peak torque at an angular speed at 60°/s using an isokinetic muscle strength dynamometer. [Results] The lean body mass of the left upper limb was significantly higher than that of the right upper limb. However, the lean body mass of the left lower limb was significantly lower than that of the right lower limb. The peak torque for left elbow flexion was significantly higher than that for right elbow flexion. Conversely, the peak torque for left elbow extension was significantly lower than that for right elbow extension. Furthermore, the peak torque for the left knee was significantly lower than that for the right knee for both flexion and extension. [Conclusion] The data from this study elucidate in part the muscle conditions of Korean ssireum athletes, which can be used to establish a reference for the scientific study of sports physiotherapy. PMID:26644679

  15. Analysis of isokinetic muscle strength for sports physiotherapy research in Korean ssireum athletes.

    PubMed

    Noh, Ji-Woong; Park, Byoung-Sun; Kim, Mee-Young; Lee, Lim-Kyu; Yang, Seung-Min; Lee, Won-Deok; Shin, Yong-Sub; Kim, Ju-Hyun; Lee, Jeong-Uk; Kwak, Taek-Yong; Lee, Tae-Hyun; Kim, Ju-Young; Park, Jaehong; Kim, Junghwan

    2015-10-01

    [Purpose] The purpose of the present study was to elucidate the muscle conditions such as the isokinetic muscle of Korean ssireum athletes. [Subjects and Methods] This study enrolled 25 elite ssireum athletes. We measured body composition and peak torque at an angular speed at 60°/s using an isokinetic muscle strength dynamometer. [Results] The lean body mass of the left upper limb was significantly higher than that of the right upper limb. However, the lean body mass of the left lower limb was significantly lower than that of the right lower limb. The peak torque for left elbow flexion was significantly higher than that for right elbow flexion. Conversely, the peak torque for left elbow extension was significantly lower than that for right elbow extension. Furthermore, the peak torque for the left knee was significantly lower than that for the right knee for both flexion and extension. [Conclusion] The data from this study elucidate in part the muscle conditions of Korean ssireum athletes, which can be used to establish a reference for the scientific study of sports physiotherapy.

  16. Strength, power output and symmetry of leg muscles: effect of age and history of falling.

    PubMed

    Perry, Mark C; Carville, Serena F; Smith, I Christopher H; Rutherford, Olga M; Newham, Di J

    2007-07-01

    Risk factors for medically unexplained falls may include reduced muscle power, strength and asymmetry in the lower limbs. Conflicting reports exist about strength and there is little information about power and symmetry. Forty-four healthy young people (29.3 +/- 0.6 years), 44 older non-fallers (75.9 +/- 0.6 years), and 34 older fallers (76.4 +/- 0.8 years) were studied. Isometric, concentric and eccentric strength of the knee and ankle muscles and leg extension power were measured bilaterally. The younger group was stronger in all muscles and types of contraction than both older groups (P < 0.02-0.0001). Strength differences between the older groups occasionally reached significance in individual muscles and types of contraction but overall the fallers had 85% of the strength and 79% of the power of the non-fallers (P < 0.001). Young subjects generated more power than both older groups (P < 0.0001) and the fallers generated less than the non-fallers (P = 0.03). Strength symmetry showed an inconsistent age effect in some muscles and some contraction types. This was similar overall in the two older groups. Both older groups had greater asymmetry in power than the young (P < 0.02-0.004). Power asymmetry tended to be greater in the fallers than the non-fallers but this did not reach significance. These data do not support the suggestion that asymmetry of strength and power are associated with either increasing age or fall history. Power output showed clear differences between age groups and fall status and appears to be the most relevant measurement of fall risk and highlights the cumulative effects on function of small changes in strength in individual muscle groups.

  17. The healthy Nordic diet predicts muscle strength 10 years later in old women, but not old men.

    PubMed

    Perälä, Mia-Maria; von Bonsdorff, Mikaela B; Männistö, Satu; Salonen, Minna K; Simonen, Mika; Kanerva, Noora; Rantanen, Taina; Pohjolainen, Pertti; Eriksson, Johan G

    2017-07-01

    a number of nutrients have been found to be associated with better muscle strength and mass; however, the role of the whole diet on muscle strength and mass remains still unknown. to examine whether the healthy Nordic diet predicts muscle strength, and mass 10 years later among men and women. about 1,072 participants belong to the Helsinki Birth Cohort Study, born 1934-44. Diet was assessed with a validated food-frequency questionnaire during 2001-04. The Nordic diet score (NDS) was calculated. The score included Nordic fruits, vegetables, cereals, ratio of polyunsaturated to saturated fatty acids, low-fat milk, fish, red meat, total fat and alcohol. Higher scores indicated better adherence to the healthy Nordic diet. Hand grip strength, leg strength (knee extension) and muscle mass were measured during the follow-up, between 2011 and 2013. in women, each 1-unit increase in the NDS was related to 1.83 N greater leg strength (95% confidence interval [CI] 0.14-3.51; P = 0.034), and 1.44 N greater hand grip strength (95% CI: 0.04-2.84; P = 0.044). Women in the highest quartile of the NDS had on average 20.0 N greater knee extension results, and 14.2 N greater hand grip results than those in the lowest quartile. No such associations were observed among men. The NDS was not significantly related to muscle mass either in men or women. adherence to the healthy Nordic diet seems to protect from weaker muscle strength in old women. Therefore, the healthy Nordic diet may help to prevent disability. © The Author 2017. Published by Oxford University Press on behalf of the British Geriatrics Society.All rights reserved. For permissions, please email: journals.permissions@oup.com

  18. Strength and muscle mass loss with aging process. Age and strength loss.

    PubMed

    Keller, Karsten; Engelhardt, Martin

    2013-10-01

    aging process is associated with changes in muscle mass and strength with decline of muscle strength after the 30(th) life year. The aim of this study was to investigate these changes in muscle mass and strength. for this analysis 26 participants were subdivided in two groups. Group 1 comprises participants aged <40 years (n=14), group 2 those >40 years (n=12). We assessed anthropometrics, range of motions, leg circumferences and isometric strength values of the knee joints. besides comparable anthropometrics, circumferences and strength were higher in group 1 than in group 2. Circumference of upper leg (20 cm above knee articular space) showed for right leg a trend to a significant (median: 54.45 cm (1(st) quartile: 49.35/3(rd) quartile: 57.78) vs 49.80 cm (49.50/50.75), p=0.0526) and for left leg a significant 54.30 cm (49.28/58.13) vs 49.50 cm (48.00/52.53), p=0.0356) larger circumference in group 1. Isometric strength was in 60° knee flexion significantly higher in group 1 than in group 2 for right (729.88N (561.47/862.13) vs 456.92N (304.67/560.12), p=0.00448) and left leg (702.49N (581.36/983.87) vs 528.49N (332.95/648.58), p=0.0234). aging process leads to distinct muscle mass and strength loss. Muscle strength declines from people aged <40 years to those >40 years between 16.6% and 40.9%.

  19. Isometric muscle strength and mobility capacity in children with cerebral palsy.

    PubMed

    Dallmeijer, Annet J; Rameckers, Eugene A; Houdijk, Han; de Groot, Sonja; Scholtes, Vanessa A; Becher, Jules G

    2017-01-01

    To determine the relationship between isometric leg muscle strength and mobility capacity in children with cerebral palsy (CP) compared to typically developing (TD) peers. Participants were 62 children with CP (6-13 years), able to walk with (n = 10) or without (n = 52) walking aids, and 47 TD children. Isometric muscle strength of five muscle groups of the leg was measured using hand-held dynamometry. Mobility capacity was assessed with the 1-min walk, the 10-m walk, sit-to-stand, lateral-step-up and timed-stair tests. Isometric strength of children with CP was reduced to 36-82% of TD. When adjusted for age and height, the percentage of variance in mobility capacity that was explained by isometric strength of the leg muscles was 21-24% (walking speed), 25% (sit-to-stand), 28% (lateral-step-up) and 35% (timed-stair) in children with CP. Hip abductors and knee flexors had the largest contribution to the explained variance, while knee extensors showed the weakest correlation. Weak or no associations were found between strength and mobility capacity in TD children. Isometric strength, especially hip abductor and knee flexor strength, is moderately related to mobility capacity in children with CP, but not in TD children. To what extent training of these muscle groups will lead to better mobility capacity needs further study. Implications for Rehabilitation Strength training in children with cerebral palsy (CP) may be targeted more specifically at hip abductors and knee flexors. The moderate associations imply that large improvements in mobility capacity may not be expected when strength increases.

  20. The comparison of muscle strength and short-term endurance in the different periods of type 2 diabetes

    PubMed Central

    2014-01-01

    Background Patients with type 2 diabetes (T2DM) are subjected to reduction in the quality and oxidative capacity of muscles. The effect of duration of diabetes on the muscle endurance response is not clear and strength as well. Objective The aim of this study was the assessment of strength and endurance of knee extensor and flexor in the patients with T2DM < 10 and T2DM > 10 years in comparison with age, sex, BMI, ABI and PAI-matched health control subjects. Methods Isometric maximal peak torque (MPT) of knee extensor and flexor before and after 40 isokinetic repetitions with velocity of 150 degree/s were recorded in 18 patients with T2DM < 10 Y , 12 patients with T2DM > 10 Y and 20 matched health control (HC) groups. Results Both diabetic patient groups had significant lower isometric and isotonic knee extensor and flexor strength than HC. The endurance indices indicated that whereas the isometric MPT of flexor movement was reduced after isokinetic protocol in the both patient groups in comparison with HC, the less decline was seen in the isotonic torque and work during isokinetic protocol in the T2DM > 10 Y group in comparison with two other groups. The HbA1c and FPG were significantly correlated with strength not with endurance indices. Conclusions It seems the progression of diabetes accompanied with vascular, neural and muscular deficits activate, some adaptive and compensatory processes which can maintain muscle performance. PMID:24476108

  1. Correlations among visual analogue scale, neck disability index, shoulder joint range of motion, and muscle strength in young women with forward head posture.

    PubMed

    Shin, Young Jun; Kim, Won Hyo; Kim, Seong Gil

    2017-08-01

    This study investigated the correlation between the neck disability index (NDI) and visual analogue scale (VAS), which are indicators of neck pain, shoulder joint range of motion (ROM), and muscle strength in women with a slight forward head posture. This study was carried out on 42 female college students attending Uiduk University in Gyeongju, Korea. The neck pain and disability index for each subject was measured using VAS and NDI, respectively. Two physiotherapists measured the shoulder joint ROM and muscle strengths of the subjects using a goniometer and a dynamometer, respectively. External rotation, internal rotation, and abduction of the shoulder joint were measured for each subject. A significant negative correlation between neck pain and shoulder joint ROM in external rotation and the muscle strength of the shoulder joint in abduction was found in the subjects. In addition, a significant positive correlation was observed between ROM in external rotation and muscle strength in abduction. This study showed a significant negative correlation between neck pain and ROM in external rotation as well as between neck pain and the muscle strength in abduction.

  2. Outcome of Low-Invasive Local Split-Thickness Lengthening for Iliotibial Band Friction Syndrome.

    PubMed

    Inoue, Hiroaki; Hara, Kunio; Arai, Yuji; Nakagawa, Shuji; Kan, Hiroyuki; Hino, Manabu; Fujiwara, Hiroyoshi; Kubo, Toshikazu

    2018-02-01

    Conventional surgical methods for iliotibial band friction syndrome (ITBFS) may affect the iliotibial band (ITB), delaying return to sports activities or impeding performance. We have developed a minimally invasive method. This study retrospectively analyzed the outcomes of this procedure in individuals with ITBFS. This study included 34 knees of 31 individuals. Surgery involved lengthening the central part of the ITB by splitting it into a superficial and a deep layer, maintaining the anterior and posterior fibers immediately above the lateral epicondyle. Outcomes included time to resume sports activity, personal best times to run a 5000-m race before and after surgery, and 2-month post-surgery muscle strengths. The mean postoperative time to return to competition was 5.8 weeks. Personal best times of 5000-m race improved in 13 of 17 runners. Two months post-surgery, the mean extensor muscle strengths on the healthy and affected sides did not significantly differ nor did the flexor muscle strengths. In ITBFS, the ITB itself is normal. Lengthening the limited region of the ITB immediately above the lateral femoral epicondyle removes the cause of ITBFS, with a reduction in inflammation. This technique resulted in early return to competition without degrading performance. © Georg Thieme Verlag KG Stuttgart · New York.

  3. The Effects of Exercise Training in Addition to Energy Restriction on Functional Capacities and Body Composition in Obese Adults during Weight Loss: A Systematic Review

    PubMed Central

    Miller, Clint T.; Fraser, Steve F.; Levinger, Itamar; Straznicky, Nora E.; Dixon, John B.; Reynolds, John; Selig, Steve E.

    2013-01-01

    Background Obesity is associated with impairments of physical function, cardiovascular fitness, muscle strength and the capacity to perform activities of daily living. This review examines the specific effects of exercise training in relation to body composition and physical function demonstrated by changes in cardiovascular fitness, and muscle strength when obese adults undergo energy restriction. Methods Electronic databases were searched for randomised controlled trials comparing energy restriction plus exercise training to energy restriction alone. Studies published to May 2013 were included if they used multi-component methods for analysing body composition and assessed measures of fitness in obese adults. Results Fourteen RCTs met the inclusion criteria. Heterogeneity of study characteristics prevented meta-analysis. Energy restriction plus exercise training was more effective than energy restriction alone for improving cardiovascular fitness, muscle strength, and increasing fat mass loss and preserving lean body mass, depending on the type of exercise training. Conclusion Adding exercise training to energy restriction for obese middle-aged and older individuals results in favourable changes to fitness and body composition. Whilst weight loss should be encouraged for obese individuals, exercise training should be included in lifestyle interventions as it offers additional benefits. PMID:24409219

  4. Sarcopenia, Dynapenia, and the Impact of Advancing Age on Human Skeletal Muscle Size and Strength; a Quantitative Review

    PubMed Central

    Mitchell, W. Kyle; Williams, John; Atherton, Philip; Larvin, Mike; Lund, John; Narici, Marco

    2012-01-01

    Changing demographics make it ever more important to understand the modifiable risk factors for disability and loss of independence with advancing age. For more than two decades there has been increasing interest in the role of sarcopenia, the age-related loss of muscle or lean mass, in curtailing active and healthy aging. There is now evidence to suggest that lack of strength, or dynapenia, is a more constant factor in compromised wellbeing in old age and it is apparent that the decline in muscle mass and the decline in strength can take quite different trajectories. This demands recognition of the concept of muscle quality; that is the force generating per capacity per unit cross-sectional area (CSA). An understanding of the impact of aging on skeletal muscle will require attention to both the changes in muscle size and the changes in muscle quality. The aim of this review is to present current knowledge of the decline in human muscle mass and strength with advancing age and the associated risk to health and survival and to review the underlying changes in muscle characteristics and the etiology of sarcopenia. Cross-sectional studies comparing young (18–45 years) and old (>65 years) samples show dramatic variation based on the technique used and population studied. The median of values of rate of loss reported across studies is 0.47% per year in men and 0.37% per year in women. Longitudinal studies show that in people aged 75 years, muscle mass is lost at a rate of 0.64–0.70% per year in women and 0.80–00.98% per year in men. Strength is lost more rapidly. Longitudinal studies show that at age 75 years, strength is lost at a rate of 3–4% per year in men and 2.5–3% per year in women. Studies that assessed changes in mass and strength in the same sample report a loss of strength 2–5 times faster than loss of mass. Loss of strength is a more consistent risk for disability and death than is loss of muscle mass. PMID:22934016

  5. Effects of equal-volume resistance training with different training frequencies in muscle size and strength in trained men

    PubMed Central

    Fisher, James; Steele, James; Campos, Mario H.; Silva, Marcelo H.; Paoli, Antonio; Giessing, Jurgen; Bottaro, Martim

    2018-01-01

    Background The objective of the present study was to compare the effects of equal-volume resistance training (RT) performed with different training frequencies on muscle size and strength in trained young men. Methods Sixteen men with at least one year of RT experience were divided into two groups, G1 and G2, that trained each muscle group once and twice a week, respectively, for 10 weeks. Elbow flexor muscle thickness (MT) was measured using a B-Mode ultrasound and concentric peak torque of elbow extensors and flexors were assessed by an isokinetic dynamometer. Results ANOVA did not reveal group by time interactions for any variable, indicating no difference between groups for the changes in MT or PT of elbow flexors and extensors. Notwithstanding, MT of elbow flexors increased significantly (3.1%, P < 0.05) only in G1. PT of elbow flexors and extensors did not increase significantly for any group. Discussion The present study suggest that there were no differences in the results promoted by equal-volume resistance training performed once or twice a week on upper body muscle strength in trained men. Only the group performing one session per week significantly increased the MT of their elbow flexors. However, with either once or twice a week training, adaptations appear largely minimal in previously trained males.

  6. Upper limb strength estimation of physically impaired persons using a musculoskeletal model: A sensitivity analysis.

    PubMed

    Carmichael, Marc G; Liu, Dikai

    2015-01-01

    Sensitivity of upper limb strength calculated from a musculoskeletal model was analyzed, with focus on how the sensitivity is affected when the model is adapted to represent a person with physical impairment. Sensitivity was calculated with respect to four muscle-tendon parameters: muscle peak isometric force, muscle optimal length, muscle pennation, and tendon slack length. Results obtained from a musculoskeletal model of average strength showed highest sensitivity to tendon slack length, followed by muscle optimal length and peak isometric force, which is consistent with existing studies. Muscle pennation angle was relatively insensitive. The analysis was repeated after adapting the musculoskeletal model to represent persons with varying severities of physical impairment. Results showed that utilizing the weakened model significantly increased the sensitivity of the calculated strength at the hand, with parameters previously insensitive becoming highly sensitive. This increased sensitivity presents a significant challenge in applications utilizing musculoskeletal models to represent impaired individuals.

  7. Characterization of Strength and Function in Ambulatory Adults With GNE Myopathy.

    PubMed

    Argov, Zohar; Bronstein, Faye; Esposito, Alicia; Feinsod-Meiri, Yael; Florence, Julaine M; Fowler, Eileen; Greenberg, Marcia B; Malkus, Elizabeth C; Rebibo, Odelia; Siener, Catherine S; Caraco, Yoseph; Kolodny, Edwin H; Lau, Heather A; Pestronk, Alan; Shieh, Perry; Skrinar, Alison M; Mayhew, Jill E

    2017-09-01

    To characterize the pattern and extent of muscle weakness and impact on physical functioning in adults with GNEM. Strength and function were assessed in GNEM subjects (n = 47) using hand-held dynamometry, manual muscle testing, upper and lower extremity functional capacity tests, and the GNEM-Functional Activity Scale (GNEM-FAS). Profound upper and lower muscle weakness was measured using hand-held dynamometry in a characteristic pattern, previously described. Functional tests and clinician-reported outcomes demonstrated the consequence of muscle weakness on physical functioning. The characteristic pattern of upper and lower muscle weakness associated with GNEM and the resulting functional limitations can be reliably measured using these clinical outcome assessments of muscle strength and function.

  8. Human Muscle Fiber

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The stimulus of gravity affects RNA production, which helps maintain the strength of human muscles on Earth (top), as seen in this section of muscle fiber taken from an astronaut before spaceflight. Astronauts in orbit and patients on Earth fighting muscle-wasting diseases need countermeasures to prevent muscle atrophy, indicated here with white lipid droplets (bottom) in the muscle sample taken from the same astronaut after spaceflight. Kerneth Baldwin of the University of California, Irvine, is conducting research on how reducing the stimulus of gravity affects production of the RNA that the body uses as a blueprint for making muscle proteins. Muscle proteins are what give muscles their strength, so when the RNA blueprints aren't available for producing new proteins to replace old ones -- a situation that occurs in microgravity -- the muscles atrophy. When the skeletal muscle system is exposed to microgravity during spaceflight, the muscles undergo a reduced mass that translates to a reduction in strength. When this happens, muscle endurance decreases and the muscles are more prone to injury, so individuals could have problems in performing extravehicular activity [space walks] or emergency egress because their bodies are functionally compromised.

  9. Treadmill walking in water induces greater respiratory muscle fatigue than treadmill walking on land in healthy young men.

    PubMed

    Yamashina, Yoshihiro; Yokoyama, Hisayo; Naghavi, Nooshin; Hirasawa, Yoshikazu; Takeda, Ryosuke; Ota, Akemi; Imai, Daiki; Miyagawa, Toshiaki; Okazaki, Kazunobu

    2016-05-01

    The purpose of the present study was to investigate the effect of walking in water on respiratory muscle fatigue compared with that of walking on land at the same exercise intensity. Ten healthy males participated in 40-min treadmill walking trials on land and in water at an intensity of 60% of peak oxygen consumption. Respiratory function and respiratory muscle strength were evaluated before and after walking trials. Inspiratory muscle strength and forced expiratory volume in 1 s were significantly decreased immediately after walking in water, and expiratory muscle strength was significantly decreased immediately and 5 min after walking in water compared with the baseline. The decreases of inspiratory and expiratory muscle strength were significantly greater compared with that after walking on land. In conclusion, greater inspiratory and expiratory muscle fatigue was induced by walking in water than by walking on land at the same exercise intensity in healthy young men.

  10. Effect of vibration on muscle strength imbalance in lower extremity using multi-control whole body vibration platform.

    PubMed

    Yu, Chang Ho; Seo, Shin Bae; Kang, Seung Rok; Kim, Kyung; Kwon, Tae Kyu

    2015-01-01

    This study shows the improvement of muscle activity and muscle strength imbalance in the lower extremities through independent exercise loads in vibration platform. Twenty females of age 20 participated in this study. The subjects were divided into WBV group, with more than 10% of muscle strength imbalance between left and right the lower extremities, and control group, with less than 10% of muscle strength imbalance between left and right the lower extremities. As the prior experiment showed, different exercise postures provide different muscular activities. As a result, the highest muscular activity was found to be in the low squat posture. Therefore, the LS posture was selected for the exercise in this experiment. Vibration intensities were applied to dominant muscle and non-dominant muscle, and the vibration frequency was fixed at 25Hz for the WBV group. The control group was asked to perform the same exercise as the WBV group, without stimulated vibration. This exercise was conducted for a total of 4 weeks. As a result, the WBV group which showed an average deviation of 16% before the experiment, tended to decrease approximately to 5%. In this study, vibration exercise using load deviation is shown to be effective in improving the muscle strength imbalance.

  11. Association between pre‐sarcopenia, sarcopenia, and bone mineral density in patients with chronic hepatitis C

    PubMed Central

    Bering, Tatiana; Diniz, Kiara G.D.; Coelho, Marta Paula P.; Vieira, Diego A.; Soares, Maria Marta S.; Kakehasi, Adriana M.; Correia, Maria Isabel T.D.; Teixeira, Rosângela; Queiroz, Dulciene M.M.; Rocha, Gifone A.

    2018-01-01

    Abstract Background Preserved skeletal muscle is essential for the maintenance of healthy bone. Loss of bone mineral density (BMD) and muscle strength, considered a predictor of BMD, have been demonstrated in patients with cirrhosis, but they are poorly studied in chronic hepatitis C (CHC) without cirrhosis. Thus, we aimed to evaluate the prevalence of low BMD and its association with body composition, muscle strength, and nutritional status in CHC. Methods One hundred and four subjects [mean age, 50.5 ± 11.3 years; 75.0% males; 67.3% non‐cirrhotic; and 32.7% with compensated cirrhosis] with CHC, prospectively, underwent scanning of the lean tissue, appendicular skeletal muscle mass (ASM), fat mass, lumbar spine, hip, femoral neck, and whole‐body BMD by dual‐energy X‐ray absorptiometry. Muscle strength was assessed by dynamometry. Sarcopenia was defined by the presence of both low, ASM/height2 (ASMI) and low muscle strength according to the European Working Group on Sarcopenia in Older People criteria. The cut‐off points for low ASMI and low muscle strength, for women and men, were < 5.45 and < 7.26 kg/m2 and < 20 and < 30 kg, respectively. According to the adopted World Health Organization criteria in men aged > 50 years, the T‐score of osteopenia is between −1.0 and −2.49 standard deviation (SD) below the young average value and of osteoporosis is ≥−2.5 SD below the young normal mean for men, and the Z‐score of low bone mass is ≤−2.0 SD below the expected range in men aged < 50 years and women in the menacme. Nutritional status evaluation was based on the Controlling Nutritional Status score. Results Low BMD, low muscle strength, pre‐sarcopenia, sarcopenia, and sarcopenic obesity were observed in 34.6% (36/104), 27.9% (29/104), 14.4% (15/104), 8.7% (9/104), and 3.8% (4/104) of the patients, respectively. ASMI was an independent predictor of BMD (P < 0.001). Sarcopenia was independently associated with bone mineral content (P = 0.02) and malnutrition (P = 0.01). In 88.9% of the sarcopenic patients and in all with sarcopenic obesity, BMI was normal. The mid‐arm muscle circumference was positively correlated with ASMI (r = 0.88; P < 0.001). Conclusions This is the first study to demonstrate that ASM is an independent predictor of BMD in CHC. Mid‐arm muscle circumference coupled with handgrip strength testing should be incorporated into routine clinical practice to detect low muscle mass, which may be underdiagnosed when only BMI is used. These findings may influence clinical decision‐making and contribute to the development of effective strategies to screen the musculoskeletal abnormalities in CHC patients, independently of the stage of the liver disease. PMID:29349902

  12. Analysis of postural control and muscular performance in young and elderly women in different age groups.

    PubMed

    Gomes, Matheus M; Reis, Júlia G; Carvalho, Regiane L; Tanaka, Erika H; Hyppolito, Miguel A; Abreu, Daniela C C

    2015-01-01

    muscle strength and power are two factors affecting balance. The impact of muscle strength and power on postural control has not been fully explored among different age strata over sixty. the aim of the present study was to assess the muscle strength and power of elderly women in different age groups and determine their correlation with postural control. eighty women were divided into four groups: the young 18-30 age group (n=20); the 60-64 age group (n=20); the 65-69 age group (n=20); and the 70-74 age group (n=20). The participants underwent maximum strength (one repetition maximum or 1-RM) and muscle power tests to assess the knee extensor and flexor muscles at 40%, 70%, and 90% 1-RM intensity. The time required by participants to recover their balance after disturbing their base of support was also assessed. the elderly women in the 60-64, 65-69, and 70-74 age groups exhibited similar muscle strength, power, and postural control (p>0.05); however, these values were lower than those of the young group (p<0.05) as expected. There was a correlation between muscle strength and power and the postural control performance (p<0.05). despite the age difference, elderly women aged 60 to 74 years exhibited similar abilities to generate strength and power with their lower limbs, and this ability could be one factor that explains the similar postural control shown by these women.

  13. Chronic effect of light resistance exercise after ingestion of a high-protein snack on increase of skeletal muscle mass and strength in young adults.

    PubMed

    Kato, Yushi; Sawada, Atsushi; Numao, Shigeharu; Suzuki, Masashige

    2011-01-01

    We have previously reported on the possibility that light resistance exercise performed with a high plasma amino acid concentration resulting from the ingestion of a high-protein snack (HPS; 15 g protein, 18 g sugar) 3 h after a basal meal promotes the utilization of amino acids in peripheral tissues such as muscle in both rats and humans. In the present study, we further examined the effectiveness of a daily routine involving ingestion of HPS 3 h after a basal meal and subsequent light resistance exercise (dumbbell exercise) in increasing the mass and strength of human muscle. Ten young adult males were subject to the following 3 conditions for 5 wk each, with sufficient recovery period between each condition: (1) Snack-Exercise (SE), (2) Snack-Sedentary (SS), and (3) No snack-Exercise (NE). The SE group showed a significant increase in lean body mass and total cross-sectional area (CSA) of the right forearm muscles along with a significant decrease in body fat mass. The SS group showed no change in body composition. Furthermore, the SE group showed significant increase in grip strength and isometric knee extensor muscle strength, while the SS group showed no increase in muscle strength. The NE group showed significant increase in grip strength. In conclusion, daily routine ingestion of HPS 3 h after a basal meal and subsequent light resistance exercise is effective in increasing the mass and strength of human muscle.

  14. Evaluation of Skeletal Muscle Function in Lung Transplant Candidates.

    PubMed

    Rozenberg, Dmitry; Singer, Lianne G; Herridge, Margaret; Goldstein, Roger; Wickerson, Lisa; Chowdhury, Noori A; Mathur, Sunita

    2017-09-01

    Lung transplantation (LTx) is offered to older and more complex patients who may be at higher risk of skeletal muscle dysfunction, but the clinical implications of this remain uncertain. The study aims were to characterize deficits in skeletal muscle mass, strength and physical performance, and examine the associations of these deficits with clinical outcomes. Fifty LTx candidates (58% men; age, 59 ± 9 years) were prospectively evaluated for skeletal muscle deficits: muscle mass using bioelectrical impedance, quadriceps, respiratory muscle and handgrip strength, and physical performance with the Short Physical Performance Battery. Comparisons between number of muscle deficits (low muscle mass, quadriceps strength and physical performance) and 6-minute walk distance (6MWD), London Chest Activity of Daily Living Questionnaire, and quality of life were assessed using one-way analysis of variance. Associations with pretransplant and posttransplant delisting/mortality, hospital duration, and 3-month posttransplant 6MWD were evaluated using Fisher exact test and Spearman correlation. Deficits in quadriceps strength (n = 27) and physical performance (n = 24) were more common than muscle mass (n = 8). LTx candidates with 2 or 3 muscle deficits (42%) compared with those without any deficits (26%) had worse 6MWD = -109 m (95% confidence interval [CI], -175 to -43), London Chest Activity of Daily Living Questionnaire = 18 (95% CI, 7-30), and St. George's Activity Domain = 12 (95% CI, 2-21). Number of muscle deficits was associated with posttransplant hospital stay (r = 0.34, P = 0.04), but not with delisting/mortality or posttransplant 6MWD. Deficits in quadriceps muscle strength and physical performance are common in LTx candidates and further research is needed to assess whether modifying muscle function pretransplant can lead to improved clinical outcomes.

  15. Relation between systemic inflammatory markers, peripheral muscle mass, and strength in limb muscles in stable COPD patients.

    PubMed

    Ferrari, Renata; Caram, Laura M O; Faganello, Marcia M; Sanchez, Fernanda F; Tanni, Suzana E; Godoy, Irma

    2015-01-01

    The aim of this study was to investigate the association between systemic inflammatory mediators and peripheral muscle mass and strength in COPD patients. Fifty-five patients (69% male; age: 64±9 years) with mild/very severe COPD (defined as forced expiratory volume in the first second [FEV1] =54%±23%) were evaluated. We evaluated serum concentrations of IL-8, CRP, and TNF-α. Peripheral muscle mass was evaluated by computerized tomography (CT); midthigh cross-sectional muscle area (MTCSA) and midarm cross-sectional muscle area (MACSA) were obtained. Quadriceps, triceps, and biceps strength were assessed through the determination of the one-repetition maximum. The multiple regression results, adjusted for age, sex, and FEV1%, showed positive significant association between MTCSA and leg extension (0.35 [0.16, 0.55]; P=0.001), between MACSA and triceps pulley (0.45 [0.31, 0.58]; P=0.001), and between MACSA and biceps curl (0.34 [0.22, 0.47]; P=0.001). Plasma TNF-α was negatively associated with leg extension (-3.09 [-5.99, -0.18]; P=0.04) and triceps pulley (-1.31 [-2.35, -0.28]; P=0.01), while plasma CRP presented negative association with biceps curl (-0.06 [-0.11, -0.01]; P=0.02). Our results showed negative association between peripheral muscle mass (evaluated by CT) and muscle strength and that systemic inflammation has a negative influence in the strength of specific groups of muscles in individuals with stable COPD. This is the first study showing association between systemic inflammatory markers and strength in upper limb muscles.

  16. Association between sarcopenia and higher-level functional capacity in daily living in community-dwelling elderly subjects in Japan.

    PubMed

    Tanimoto, Yoshimi; Watanabe, Misuzu; Sun, Wei; Sugiura, Yumiko; Tsuda, Yuko; Kimura, Motoshi; Hayashida, Itsushi; Kusabiraki, Toshiyuki; Kono, Koichi

    2012-01-01

    This study aimed to determine the association between sarcopenia, defined by muscle mass, muscle strength, and physical performance, and higher-level functional capacity in community-dwelling Japanese elderly people. Subjects were 1158 elderly, community-dwelling Japanese people aged 65 or older. We used bioelectrical impedance analysis to measure muscle mass, grip strength to measure muscle strength, and usual walking speed to measure physical performance. Sarcopenia was characterized by low muscle mass, plus low muscle strength or low physical performance. Subjects without low muscle mass, low muscle strength, and low physical performance were classified as "normal." Examination of higher-level functional capacity was performed using the Tokyo Metropolitan Institute of Gerontology Index of Competence (TMIG-IC). The TMIG-IC is a 13-item questionnaire completed by the subject; it contains five questions on self-maintenance and four questions each on intellectual activity and social role. Sarcopenia was identified in 11.3% and 10.7% of men and women, respectively. The percentage of disability for instrumental activities of daily living (IADL) was 39.0% in men with sarcopenia and 30.6% in women with sarcopenia. After adjustment for age, in men, sarcopenia was significantly associated with IADL disability compared with intermediate and normal subjects. In women, sarcopenia was significantly associated with every subscale of the TMIG-IC disability compared with intermediate and normal subjects. This study revealed that sarcopenia, defined by muscle mass, muscle strength, and physical performance, had a significant association with disability in higher-level functional capacity in elderly Japanese subjects. Interventions to prevent sarcopenia may prevent higher-level functional disability among elderly people. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Maximal isometric muscle strength values obtained By hand-held dynamometry in children between 6 and 15 years of age.

    PubMed

    Escobar, Raul G; Munoz, Karin T; Dominguez, Angelica; Banados, Pamela; Bravo, Maria J

    2017-01-01

    In this study we aimed to determine the maximal isometric muscle strength of a healthy, normal-weight, pediatric population between 6 and 15 years of age using hand-held dynamometry to establish strength reference values. The secondary objective was determining the relationship between strength and anthropometric parameters. Four hundred normal-weight Chilean children, split into 10 age groups, separated by 1-year intervals, were evaluated. Each age group included between 35 and 55 children. The strength values increased with increasing age and weight, with a correlation of 0.83 for age and 0.82 for weight. The results were similar to those reported in previous studies regarding the relationships among strength, age, and anthropometric parameters, but the reported strength differed. These results provide normal strength parameters for healthy and normal-weight Chilean children between 6 and 15 years of age and highlight the relevance of ethnicity in defining reference values for muscle strength in a pediatric population. Muscle Nerve 55: 16-22, 2017. © 2016 Wiley Periodicals, Inc.

  18. Examination of the pronator quadratus muscle during hardware removal procedures after volar plating for distal radius fractures.

    PubMed

    Nho, Jae-Hwi; Gong, Hyun Sik; Song, Cheol Ho; Wi, Seung Myung; Lee, Young Ho; Baek, Goo Hyun

    2014-09-01

    It is not clear whether the pronator quadratus (PQ) muscle actually heals and provides a meaningful pronation force after volar plating for distal radius fractures (DRFs). We aimed to determine whether the length of the PQ muscle, which is dissected and then repaired during volar plating for a DRF, affects the forearm rotation strength and clinical outcomes. We examined 41 patients who requested hardware removal after volar plating. We measured the isokinetic forearm rotation strength and clinical outcomes including grip strength, wrist range of motion, and disabilities of the arm, shoulder and hand (DASH) scores at 6 months after fracture fixation. During the hardware removal surgery, which was performed at an average of 9 months (range, 8.3 to 11.5 months) after fracture fixation, we measured the PQ muscle length. The average PQ muscle length was 68% of the normal muscle length, and no significant relationship was found between the PQ muscle length and the outcomes including isokinetic forearm rotation strength, grip strength, wrist range of motion, and DASH scores. This study demonstrates that the length of the healed PQ muscle does not affect isokinetic forearm rotation strength and clinical outcomes after volar plating for DRFs. The results of this study support our current practice of loose repair of the PQ that is performed by most of the surgeons to prevent tendon irritation over the plate, and suggest that tight repair of the PQ is not necessary for achieving improved forearm function.

  19. Pelvic floor muscle training increases pelvic floor muscle strength more in post-menopausal women who are not using hormone therapy than in women who are using hormone therapy: a randomised trial.

    PubMed

    Ignácio Antônio, Flávia; Herbert, Robert D; Bø, Kari; Rosa-E-Silva, Ana Carolina Japur Sá; Lara, Lúcia Alves Silva; Franco, Maira de Menezes; Ferreira, Cristine Homsi Jorge

    2018-06-15

    Are there differences in the effectiveness of pelvic floor muscle training on pelvic floor muscle strength and urinary incontinence symptoms in postmenopausal women who are and are not using hormone therapy? Randomised, controlled trial with concealed allocation, blinded assessors, and intention-to-treat analysis. Ninety-nine postmenopausal women, 38 of whom were using daily systemic oestrogen/progestogen therapy. The experimental group (n=51) received an intensive supervised pelvic floor muscle training protocol, and the control group (n=48) received no intervention. The randomisation was stratified by hormone therapy use. Change in pelvic floor muscle strength assessed with manometry at 12 weeks. Prevalence and severity of urinary incontinence symptoms were assessed using questionnaires. Eighty-eight women provided data that could be included in the analysis. Pelvic floor muscle training increased pelvic floor muscle strength by 8.0 cmH 2 O (95% CI 3.4 to 12.6) in women not using hormone therapy and by -0.9 cmH 2 0 (95% CI -6.5 to 4.8) in women using hormone therapy (interaction p=0.018). A sensitivity analysis showed that the greater training effect in women who were not using hormone therapy was still apparent if the analysis was conducted on percentage change in strength rather than absolute change in strength. There was also a significantly greater effect of training in women not using hormone therapy on prevalence of urinary incontinence symptoms (ratio of odds ratios=7.4; interaction p=0.028). The difference in effects on severity of urinary incontinence symptoms was not statistically significant (interaction p=0.37). Pelvic floor muscle training increases pelvic floor muscle strength more in women who are not using hormone therapy than in women using hormone therapy. ClinicalTrials.gov NCT02549729. [Ignácio Antônio F, Herbert RD, Bø K, Rosa-e-Silva ACJS, Lara LAS, Franco MdM, Ferreira CHJ (2018) Pelvic floor muscle training increases pelvic floor muscle strength more in post-menopausal women who are not using hormone therapy than in women who are using hormone therapy: a randomised trial. Journal of Physiotherapy XX: XX-XX]. Copyright © 2018 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.

  20. Biotechnology

    NASA Image and Video Library

    2003-01-22

    The stimulus of gravity affects RNA production, which helps maintain the strength of human muscles on Earth (top), as seen in this section of muscle fiber taken from an astronaut before spaceflight. Astronauts in orbit and patients on Earth fighting muscle-wasting diseases need countermeasures to prevent muscle atrophy, indicated here with white lipid droplets (bottom) in the muscle sample taken from the same astronaut after spaceflight. Kerneth Baldwin of the University of California, Irvine, is conducting research on how reducing the stimulus of gravity affects production of the RNA that the body uses as a blueprint for making muscle proteins. Muscle proteins are what give muscles their strength, so when the RNA blueprints aren't available for producing new proteins to replace old ones -- a situation that occurs in microgravity -- the muscles atrophy. When the skeletal muscle system is exposed to microgravity during spaceflight, the muscles undergo a reduced mass that translates to a reduction in strength. When this happens, muscle endurance decreases and the muscles are more prone to injury, so individuals could have problems in performing extravehicular activity [space walks] or emergency egress because their bodies are functionally compromised.

  1. Statin myalgia is not associated with reduced muscle strength, mass or protein turnover in older male volunteers, but is allied with a slowing of time to peak power output, insulin resistance and differential muscle mRNA expression

    PubMed Central

    Mallinson, Joanne E.; Marimuthu, Kanagaraj; Murton, Andrew; Selby, Anna; Smith, Kenneth; Constantin‐Teodosiu, Dumitru; Rennie, Michael J.

    2015-01-01

    Key points Statins cause muscle‐specific side effects, most commonly muscle aches/weakness (myalgia), particularly in older people. Furthermore, evidence has linked statin use to increased risk of type 2 diabetes. However, the mechanisms involved are unknown.This is the first study to measure muscle protein turnover rates and insulin sensitivity in statin myalgic volunteers and age‐matched, non‐statin users under controlled fasting and fed conditions using gold standard methods.We demonstrate in older people that chronic statin myalgia is not associated with deficits in muscle strength and lean mass or the dysregulation of muscle protein turnover compared to non‐statin users. Furthermore, there were no between‐group differences in blood or muscle inflammatory markers.Statin users did, however, show blunting of muscle power output at the onset of dynamic exercise, increased abdominal adiposity, whole body and leg insulin resistance, and clear differential expression of muscle genes linked to mitochondrial dysfunction and apoptosis, which warrant further investigation. Abstract Statins are associated with muscle myalgia and myopathy, which probably reduce habitual physical activity. This is particularly relevant to older people who are less active, sarcopaenic and at increased risk of statin myalgia. We hypothesised that statin myalgia would be allied to impaired strength and work capacity in older people, and determined whether differences aligned with divergences in lean mass, protein turnover, insulin sensitivity and the molecular regulation of these processes. Knee extensor strength and work output during 30 maximal isokinetic contractions were assessed in healthy male volunteers, nine with no statin use (control 70.4 ± 0.7 years) and nine with statin myalgia (71.5 ± 0.9 years). Whole body and leg glucose disposal, muscle myofibrillar protein synthesis (MPS) and leg protein breakdown (LPB) were measured during fasting (≈5 mU l−1 insulin) and fed (≈40 mU l−1 insulin + hyperaminoacidaemia) euglyceamic clamps. Muscle biopsies were taken before and after each clamp. Lean mass, MPS, LPB and strength were not different but work output during the initial three isokinetic contractions was 19% lower (P < 0.05) in statin myalgic subjects due to a delay in time to reach peak power output. Statin myalgic subjects had reduced whole body (P = 0.05) and leg (P < 0.01) glucose disposal, greater abdominal adiposity (P < 0.05) and differential expression of 33 muscle mRNAs (5% false discovery rate (FDR)), six of which, linked to mitochondrial dysfunction and apoptosis, increased at 1% FDR. Statin myalgia was associated with impaired muscle function, increased abdominal adiposity, whole body and leg insulin resistance, and evidence of mitochondrial dysfunction and apoptosis. PMID:25620655

  2. Regular exercisers have stronger pelvic floor muscles than nonregular exercisers at midpregnancy.

    PubMed

    Bø, Kari; Ellstrøm Engh, Marie; Hilde, Gunvor

    2018-04-01

    Today all healthy pregnant women are encouraged to be physically active throughout pregnancy, with recommendations to participate in at least 30 minutes of aerobic activity on most days of the week in addition to performing strength training of the major muscle groups 2-3 days per week and also pelvic floor muscle training. There is, however, an ongoing debate whether general physical activity enhances or declines pelvic floor muscle function. The objectives of the study were to compare vaginal resting pressure, pelvic floor muscle strength, and endurance in regular exercisers (exercise ≥30 minutes 3 or more times per week) and nonexercisers at midpregnancy. Furthermore, another objective was to assess whether regular general exercise or pelvic floor muscle strength was associated with urinary incontinence. This was a cross-sectional study at mean gestational week 20.9 (±1.4) including 218 nulliparous pregnant women, with a mean age of 28.6 years (range, 19-40 years) and prepregnancy body mass index of 23.9 kg/m 2 (SD, 4.0). Vaginal resting pressure, pelvic floor muscle strength, and pelvic floor muscle endurance were measured by a high-precision pressure transducer connected to a vaginal balloon. The International Consultation on Incontinence Questionnaire Urinary Incontinence Short Form was used to assess urinary incontinence. Differences between groups were analyzed using an independent-sample Student t test. Linear regression analysis was conducted to adjust for prepregnancy body mass index, age, smoking during pregnancy, and regular pelvic floor muscle training during pregnancy. The significance value was set to P ≤ .05. Regular exercisers had statistically significant stronger (mean 6.4 cm H 2 O [95% confidence interval, 1.7-11.2]) and more enduring (mean 39.9 cm H 2 Osec [95% confidence interval, 42.2-75.7]) pelvic floor muscles. Only pelvic floor muscle strength remained statistically significant, when adjusting for possible confounders. Pelvic floor muscle strength and not regular general exercise was associated with urinary continence (adjusted B, -6.4 [95% confidence interval, -11.5 to -1.4]). Regular exercisers at midpregnancy have stronger pelvic floor muscles than their sedentary counterparts. However, pelvic floor muscle strength and not regular general exercise was associated with urinary incontinence. There is a need for additional studies in elite athletes and women performing more strenuous exercise regimens. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Prediction of Postoperative Clinical Recovery of Drop Foot Attributable to Lumbar Degenerative Diseases, via a Bayesian Network.

    PubMed

    Takenaka, Shota; Aono, Hiroyuki

    2017-03-01

    Drop foot resulting from degenerative lumbar diseases can impair activities of daily living. Therefore, predictors of recovery of this symptom have been investigated using univariate or/and multivariate analyses. However, the conclusions have been somewhat controversial. Bayesian network models, which are graphic and intuitive to the clinician, may facilitate understanding of the prognosis of drop foot resulting from degenerative lumbar diseases. (1) To show a layered correlation among predictors of recovery from drop foot resulting from degenerative lumbar diseases; and (2) to develop support tools for clinical decisions to treat drop foot resulting from lumbar degenerative diseases. Between 1993 and 2013, we treated 141 patients with decompressive lumbar spine surgery who presented with drop foot attributable to degenerative diseases. Of those, 102 (72%) were included in this retrospective study because they had drop foot of recent development and had no diseases develop that affect evaluation of drop foot after surgery. Specifically, 28 (20%) patients could not be analyzed because their records were not available at a minimum of 2 years followup after surgery and 11 (8%) were lost owing to postoperative conditions that affect the muscle strength evaluation. Eight candidate variables were sex, age, herniated soft disc, duration of the neurologic injury (duration), preoperative tibialis anterior muscle strength (pretibialis anterior), leg pain, cauda equina syndrome, and number of involved levels. Manual muscle testing was used to assess the tibialis anterior muscle strength. Drop foot was defined as a tibialis anterior muscle strength score of less than 3 of 5 (5 = movement against gravity and full resistance, 4 = movement against gravity and moderate resistance, 3 = movement against gravity through full ROM, 3- = movement against gravity through partial ROM, 2 = movement with gravity eliminated through full ROM, 1 = slight contraction but no movement, and 0 = no contraction). The two outcomes of interest were postoperative tibialis anterior muscle strength (posttibialis anterior) of 3 or greater and posttibialis anterior strength of 4 or greater at 2 years after surgery. We developed two separate Bayesian network models with outcomes of interest for posttibialis anterior strength of 3 or greater and posttibialis anterior strength of 4 or greater. The two outcomes correspond to "good" and "excellent" results based on previous reports, respectively. Direct predictors are defined as variables that have the tail of the arrow connecting the outcome of interest, whereas indirect predictors are defined as variables that have the tail of the arrow connecting either direct predictors or other indirect predictors that have the tail of the arrow connecting direct predictors. Sevenfold cross validation and receiver-operating characteristic (ROC) curve analyses were performed to evaluate the accuracy and robustness of the Bayesian network models. Both of our Bayesian network models showed that weaker muscle power before surgery (pretibialis anterior ≤ 1) and longer duration of neurologic injury before treatment (> 30 days) were associated with a decreased likelihood of return of function by 2 years. The models for posttibialis anterior muscle strength of 3 or greater and posttibialis anterior muscle strength of 4 or greater were the same in terms of the graphs, showing that the two direct predictors were pretibialis anterior muscle strength (score ≤ 1 or ≥ 2) and duration (≤ 30 days or > 30 days). Age, herniated soft disc, and leg pain were identified as indirect predictors. We developed a decision-support tool in which the clinician can enter pretibialis anterior muscle strength and duration, and from this obtain the probability estimates of posttibialis anterior muscle strength. The probability estimates of posttibialis anterior muscle strength of 3 or greater and posttibialis anterior muscle strength of 4 or greater were 94% and 85%, respectively, in the most-favorable conditions (pretibialis anterior ≥ 2; duration ≤ 30 days) and 18% and 14%, respectively, in the least-favorable conditions (pretibialis anterior ≤ 1; duration > 30 days). On the sevenfold cross validation, the area under the ROC curve yielded means of 0.78 (95% CI, 0.68-0.87) and 0.74 (95% CI, 0.64-0.84) for posttibialis anterior muscle strength of 3 or greater and posttibialis anterior muscle strength of 4 or greater, respectively. The results of this study suggest that the clinician can understand intuitively the layered correlation among predictors by Bayesian network models. Based on the models, the decision-support tool successfully provided the probability estimates of posttibialis anterior muscle strength to treat drop foot attributable to lumbar degenerative diseases. These models were shown to be robust on the internal validation but should be externally validated in other populations. Level III, therapeutic study.

  4. Does pelvic floor muscle training abolish symptoms of urinary incontinence? A randomized controlled trial.

    PubMed

    Celiker Tosun, O; Kaya Mutlu, E; Ergenoglu, A M; Yeniel, A O; Tosun, G; Malkoc, M; Askar, N; Itil, I M

    2015-06-01

    To determine whether symptoms of urinary incontinence is reduced by pelvic floor muscle training, to determine whether urinary incontinence can be totally eliminated by strengthening the pelvic floor muscle to grade 5 on the Oxford scale. Prospective randomized controlled clinical trial. Outpatient urogynecology department. One hundred thirty cases with stress and mixed urinary incontinence. All participants were randomly allocated to the pelvic floor muscle training group or control group. A 12-week home based exercise program, prescribed individually, was performed by the pelvic floor muscle training group. Urinary incontinence symptoms (Incontinence Impact Questionnaire-7, Urogenital Distress Inventory-6, bladder diary, stop test and pad test) were assessed, and the pelvic floor muscle strength was measured for (PERFECT testing, perineometric and ultrasound) all participants before and after 12 weeks of treatment. The pelvic floor muscle training group had significant improvement in their symptoms of urinary incontinence (P=0.001) and an increase in pelvic floor muscle strength (P=0.001, by the dependent t test) compared with the control group. All the symptoms of urinary incontinence were significantly decreased in the patients that had reached pelvic floor muscle strength of grade 5 and continued the pelvic floor muscle training (P<0.05). The study demonstrated that pelvic floor muscle training is effective in reducing the symptoms of stress and mixed urinary incontinence and in increasing pelvic floor muscle strength. © The Author(s) 2014.

  5. Effects of Strength vs. Ballistic-Power Training on Throwing Performance

    PubMed Central

    Zaras, Nikolaos; Spengos, Konstantinos; Methenitis, Spyridon; Papadopoulos, Constantinos; Karampatsos, Giorgos; Georgiadis, Giorgos; Stasinaki, Aggeliki; Manta, Panagiota; Terzis, Gerasimos

    2013-01-01

    The purpose of the present study was to investigate the effects of 6 weeks strength vs. ballistic-power (Power) training on shot put throwing performance in novice throwers. Seventeen novice male shot-put throwers were divided into Strength (N = 9) and Power (n = 8) groups. The following measurements were performed before and after the training period: shot put throws, jumping performance (CMJ), Wingate anaerobic performance, 1RM strength, ballistic throws and evaluation of architectural and morphological characteristics of vastus lateralis. Throwing performance increased significantly but similarly after Strength and Power training (7.0-13.5% vs. 6.0-11.5%, respectively). Muscular strength in leg press increased more after Strength than after Power training (43% vs. 21%, respectively), while Power training induced an 8.5% increase in CMJ performance and 9.0 - 25.8% in ballistic throws. Peak power during the Wingate test increased similarly after Strength and Power training. Muscle thickness increased only after Strength training (10%, p < 0.05). Muscle fibre Cross Sectional Area (fCSA) increased in all fibre types after Strength training by 19-26% (p < 0.05), while only type IIx fibres hypertrophied significantly after Power training. Type IIx fibres (%) decreased after Strength but not after Power training. These results suggest that shot put throwing performance can be increased similarly after six weeks of either strength or ballistic power training in novice throwers, but with dissimilar muscular adaptations. Key points Ballistic-power training with 30% of 1RM is equally effective in increasing shot put performance as strength training, in novice throwers, during a short training cycle of six weeks. In novice shot putters with relatively low initial muscle strength/mass, short-term strength training might be more important since it can increase both muscle strength and shot put performance. The ballistic type of power training resulted in a significant increase of the mass of type IIx muscle fibres and no change in their proportion. Thus, this type of training might be used effectively during the last weeks before competition, when the strength training load is usually reduced, in order to increase muscle power and shot put performance in novice shot putters. PMID:24149736

  6. Effects of Strength vs. Ballistic-Power Training on Throwing Performance.

    PubMed

    Zaras, Nikolaos; Spengos, Konstantinos; Methenitis, Spyridon; Papadopoulos, Constantinos; Karampatsos, Giorgos; Georgiadis, Giorgos; Stasinaki, Aggeliki; Manta, Panagiota; Terzis, Gerasimos

    2013-01-01

    The purpose of the present study was to investigate the effects of 6 weeks strength vs. ballistic-power (Power) training on shot put throwing performance in novice throwers. Seventeen novice male shot-put throwers were divided into Strength (N = 9) and Power (n = 8) groups. The following measurements were performed before and after the training period: shot put throws, jumping performance (CMJ), Wingate anaerobic performance, 1RM strength, ballistic throws and evaluation of architectural and morphological characteristics of vastus lateralis. Throwing performance increased significantly but similarly after Strength and Power training (7.0-13.5% vs. 6.0-11.5%, respectively). Muscular strength in leg press increased more after Strength than after Power training (43% vs. 21%, respectively), while Power training induced an 8.5% increase in CMJ performance and 9.0 - 25.8% in ballistic throws. Peak power during the Wingate test increased similarly after Strength and Power training. Muscle thickness increased only after Strength training (10%, p < 0.05). Muscle fibre Cross Sectional Area (fCSA) increased in all fibre types after Strength training by 19-26% (p < 0.05), while only type IIx fibres hypertrophied significantly after Power training. Type IIx fibres (%) decreased after Strength but not after Power training. These results suggest that shot put throwing performance can be increased similarly after six weeks of either strength or ballistic power training in novice throwers, but with dissimilar muscular adaptations. Key pointsBallistic-power training with 30% of 1RM is equally effective in increasing shot put performance as strength training, in novice throwers, during a short training cycle of six weeks.In novice shot putters with relatively low initial muscle strength/mass, short-term strength training might be more important since it can increase both muscle strength and shot put performance.The ballistic type of power training resulted in a significant increase of the mass of type IIx muscle fibres and no change in their proportion. Thus, this type of training might be used effectively during the last weeks before competition, when the strength training load is usually reduced, in order to increase muscle power and shot put performance in novice shot putters.

  7. Effect of traditional resistance and power training using rated perceived exertion for enhancement of muscle strength, power, and functional performance.

    PubMed

    Tiggemann, Carlos Leandro; Dias, Caroline Pieta; Radaelli, Regis; Massa, Jéssica Cassales; Bortoluzzi, Rafael; Schoenell, Maira Cristina Wolf; Noll, Matias; Alberton, Cristine Lima; Kruel, Luiz Fernando Martins

    2016-04-01

    The present study compared the effects of 12 weeks of traditional resistance training and power training using rated perceived exertion (RPE) to determine training intensity on improvements in strength, muscle power, and ability to perform functional task in older women. Thirty healthy elderly women (60-75 years) were randomly assigned to traditional resistance training group (TRT; n = 15) or power training group (PT; n = 15). Participants trained twice a week for 12 weeks using six exercises. The training protocol was designed to ascertain that participants exercised at an RPE of 13-18 (on a 6-20 scale). Maximal dynamic strength, muscle power, and functional performance of lower limb muscles were assessed. Maximal dynamic strength muscle strength leg press (≈58 %) and knee extension (≈20 %) increased significantly (p < 0.001) and similarly in both groups after training. Muscle power also increased with training (≈27 %; p < 0.05), with no difference between groups. Both groups also improved their functional performance after training period (≈13 %; p < 0.001), with no difference between groups. The present study showed that TRT and PT using RPE scale to control intensity were significantly and similarly effective in improving maximal strength, muscle power, and functional performance of lower limbs in elderly women.

  8. Elbow flexor and extensor muscle weakness in lateral epicondylalgia.

    PubMed

    Coombes, Brooke K; Bisset, Leanne; Vicenzino, Bill

    2012-05-01

    To evaluate whether deficits of elbow flexor and extensor muscle strength exist in lateral epicondylalgia (LE) in comparison with a healthy control population. Cross-sectional study. 150 participants with unilateral LE were compared with 54 healthy control participants. Maximal isometric elbow flexion and extension strength were measured bilaterally using a purpose-built standing frame such that gripping was avoided. The authors found significant side differences in elbow extensor (-6.54 N, 95% CI -11.43 to -1.65, p=0.008, standardised mean difference (SMD) -0.45) and flexor muscle strength (-11.26 N, 95% CI -19.59 to -2.94, p=0.009, SMD -0.46) between LE and control groups. Within the LE group, only elbow extensor muscle strength deficits between sides was significant (affected-unaffected: -2.94 N, 95% CI -5.44 to -0.44). Small significant deficits of elbow extensor and flexor muscle strength exist in the affected arm of unilateral LE in comparison with healthy controls. Notably, comparing elbow strength between the affected and unaffected sides in unilateral epicondylalgia is likely to underestimate these deficits. Trial Registration Australian New Zealand Clinical Trials Register ACTRN12609000051246.

  9. Strength and ability to implement the activities of daily living in elderly resident in rural areas.

    PubMed

    Vasconcelos Rocha, Saulo; Souza Dos Santos, Samara; Carneiro Vasconcelos, Lélia Renata; Alves Dos Santos, Clarice

    2016-09-30

    To examine the association between muscle strength and the ability to perform basic and instrumental activities of daily living in elderly resident in rural areas of Jequie, Brazil. We performed a cross-sectional design study with a population of 104 individuals aged sixty or older, registered in the Family Health Unit of the district of Itajuru, Jequie-Brazil. Data collection was performed using a standardized instrument used as an interview, followed by the application of tests (bending arm with dumbbell and rising from a chair 30 sec). The basic and instrumental activities of daily living were investigated through the Katz and Lawton scales, respectively. The chi-square test with p ≤0.05 was used as a measure of statistical significance for bivariate analyzes between muscle strength and ability to perform daily activities. The results showed a significant association between muscle strength and dynamic ability to perform activities of daily living. Reduced muscle strength is an important predictor of the functional ability of the elderly. Accordingly, it is recommended to observe muscle strength in actions directed at the elderly.

  10. Hip muscle strength is decreased in middle-aged recreational male athletes with midportion Achilles tendinopathy: A cross-sectional study.

    PubMed

    Habets, B; Smits, H W; Backx, F J G; van Cingel, R E H; Huisstede, B M A

    2017-05-01

    Investigating differences in hip muscle strength between athletes with Achilles tendinopathy (AT) and asymptomatic controls. Cross-sectional case-control study. Sports medical center. Twelve recreational male athletes with mid-portion AT and twelve matched asymptomatic controls. Isometric strength of the hip abductors, external rotators, and extensors was measured using a handheld dynamometer. Functional hip muscle performance was evaluated with the single-leg squat. The Victorian Institute of Sport Assessment-Achilles (VISA-A) questionnaire was completed to determine clinical severity of symptoms. Compared to controls, participants with AT demonstrated 28.9% less isometric hip abduction strength (p = 0.012), 34.2% less hip external rotation strength (p = 0.010), and 28.3% less hip extension strength (p = 0.034) in the injured limb. Similar differences were found for the non-injured limb (26.7-41.8%; p < 0.03). No significant differences were found in functional hip muscle performance between the injured and non-injured limb or between the groups, and no significant correlation was found between hip muscle strength and VISA-A scores. Recreational male athletes with chronic mid-portion AT demonstrated bilateral weakness of hip abductors, external rotators, and extensors compared to their asymptomatic counterparts. These findings suggest that hip muscle strength may be important in the assessment and rehabilitation of those with AT. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Upper Extremity Muscle Volumes and Functional Strength After Resistance Training in Older Adults

    PubMed Central

    Daly, Melissa; Vidt, Meghan E.; Eggebeen, Joel D.; Simpson, W. Greg; Miller, Michael E.; Marsh, Anthony P.; Saul, Katherine R.

    2014-01-01

    Aging leads to a decline in strength and an associated loss of independence. The authors examined changes in muscle volume, maximum isometric joint moment, functional strength, and 1-repetition maximum (1RM) after resistance training (RT) in the upper extremity of older adults. They evaluated isometric joint moment and muscle volume as predictors of functional strength. Sixteen healthy older adults (average age 75 ± 4.3 yr) were randomized to a 6-wk upper extremity RT program or control group. The RT group increased 1RM significantly (p < .01 for all exercises). Compared with controls, randomization to RT led to greater functional pulling strength (p = .003), isometric shoulder-adduction moment (p = .041), elbow-flexor volume (p = .017), and shoulder-adductor volume (p = .009). Shoulder-muscle volumes and isometric moments were good predictors of functional strength. The authors conclude that shoulder strength is an important factor for performing functional reaching and pulling tasks and a key target for upper extremity RT interventions. PMID:22952203

  12. Longer Interset Rest Periods Enhance Muscle Strength and Hypertrophy in Resistance-Trained Men.

    PubMed

    Schoenfeld, Brad J; Pope, Zachary K; Benik, Franklin M; Hester, Garrett M; Sellers, John; Nooner, Josh L; Schnaiter, Jessica A; Bond-Williams, Katherine E; Carter, Adrian S; Ross, Corbin L; Just, Brandon L; Henselmans, Menno; Krieger, James W

    2016-07-01

    Schoenfeld, BJ, Pope, ZK, Benik, FM, Hester, GM, Sellers, J, Nooner, JL, Schnaiter, JA, Bond-Williams, KE, Carter, AS, Ross, CL, Just, BL, Henselmans, M, and Krieger, JW. Longer interset rest periods enhance muscle strength and hypertrophy in resistance-trained men. J Strength Cond Res 30(7): 1805-1812, 2016-The purpose of this study was to investigate the effects of short rest intervals normally associated with hypertrophy-type training versus long rest intervals traditionally used in strength-type training on muscular adaptations in a cohort of young, experienced lifters. Twenty-one young resistance-trained men were randomly assigned to either a group that performed a resistance training (RT) program with 1-minute rest intervals (SHORT) or a group that employed 3-minute rest intervals (LONG). All other RT variables were held constant. The study period lasted 8 weeks with subjects performing 3 total body workouts a week comprised 3 sets of 8-12 repetition maximum (RM) of 7 different exercises per session. Testing was performed prestudy and poststudy for muscle strength (1RM bench press and back squat), muscle endurance (50% 1RM bench press to failure), and muscle thickness of the elbow flexors, triceps brachii, and quadriceps femoris by ultrasound imaging. Maximal strength was significantly greater for both 1RM squat and bench press for LONG compared to SHORT. Muscle thickness was significantly greater for LONG compared to SHORT in the anterior thigh, and a trend for greater increases was noted in the triceps brachii (p = 0.06) as well. Both groups saw significant increases in local upper body muscle endurance with no significant differences noted between groups. This study provides evidence that longer rest periods promote greater increases in muscle strength and hypertrophy in young resistance-trained men.

  13. Muscle quality, aerobic fitness and fat mass predict lower-extremity physical function in community-dwelling older adults.

    PubMed

    Misic, Mark M; Rosengren, Karl S; Woods, Jeffrey A; Evans, Ellen M

    2007-01-01

    Muscle mass, strength and fitness play a role in lower-extremity physical function (LEPF) in older adults; however, the relationships remain inadequately characterized. This study aimed to examine the relationships between leg mineral free lean mass (MFLM(LEG)), leg muscle quality (leg strength normalized for MFLM(LEG)), adiposity, aerobic fitness and LEPF in community-dwelling healthy elderly subjects. Fifty-five older adults (69.3 +/- 5.5 years, 36 females, 19 males) were assessed for leg strength using an isokinetic dynamometer, body composition by dual energy X-ray absorptiometry and aerobic fitness via a treadmill maximal oxygen consumption test. LEPF was assessed using computerized dynamic posturography and stair ascent/descent, a timed up-and-go task and a 7-meter walk with and without an obstacle. Muscle strength, muscle quality and aerobic fitness were similarly correlated with static LEPF tests (r range 0.27-0.40, p < 0.05); however, the strength of the independent predictors was not robust with explained variance ranging from 9 to 16%. Muscle quality was the strongest correlate of all dynamic LEPF tests (r range 0.54-0.65, p < 0.001). Using stepwise linear regression analysis, muscle quality was the strongest independent predictor of dynamic physical function explaining 29-42% of the variance (p < 0.001), whereas aerobic fitness or body fat mass explained 5-6% of the variance (p < 0.05) depending on performance measure. Muscle quality is the most important predictor, and aerobic fitness and fat mass are secondary predictors of LEPF in community-dwelling older adults. These findings support the importance of exercise, especially strength training, for optimal body composition, and maintenance of strength and physical function in older adults.

  14. Assessment of Musculoskeletal Strength and Levels of Fatigue during Different Phases of Menstrual Cycle in Young Adults

    PubMed Central

    D Souza, Urban John; Shivaprakash, G

    2017-01-01

    Introduction Some of the physiological factors and athletic performance might show variation along the phases of menstrual cycle. The alterations seen in these physiological parameters of various systems relating to oscillations in hormonal levels do affect the autonomic nervous system and metabolic functions. Former studies heave inconclusively about the influence of hormones on exercise performance, predominantly muscle strength and rate of fatigue during different phases of the menstrual cycle. Studies regarding influence of these variations during bleeding phase were not done. Aim To evaluate the muscle strength variations and also the rate of fatigue during various phases of the menstrual cycle in young adults. Materials and Methods This was a prospective study conducted among 100 healthy adult female volunteers aged 18-24 years, with normal regular menstrual cycles persistent between 26- 32 days (average of 28 days), for a minimum of last 6 months. Muscle strength was assessed by calculating the work done and fatigue rate using Mosso’s ergograph and by handgrip dynamometer strength. Each subject was evaluated consecutively for two menstrual cycles in all three phases which were classified as Phase 1- Menstrual phase, Phase 2- Follicular phase and Phase 3- Luteal phase. The data obtained was analysed by statistical tool One-way ANOVA followed by a post-hoc Tukeys test. A p-value of ≤ 0.05 was considered significant. Results The amount of work done and handgrip strength was significantly higher in phase 2 (p<0.001) and relatively reduced in phase 1 and 3 (p<0.001) of menstrual cycle. In terms of fatigue rate percentage, phase 2 showed significantly lesser values (p<0.001) as compared to phase 1 and 3 of menstrual cycle. Conclusion We conclude that the cyclical variation in endogenous reproductive hormones increases the muscle strength in follicular phase of the menstrual cycle. Thus provide support for the influence of these hormones in regulation of these parameters in the premenopausal age group. PMID:28384857

  15. Hyperandrogenism Enhances Muscle Strength After Progressive Resistance Training, Independent of Body Composition, in Women With Polycystic Ovary Syndrome.

    PubMed

    Kogure, Gislaine S; Silva, Rafael C; Miranda-Furtado, Cristiana L; Ribeiro, Victor B; Pedroso, Daiana C C; Melo, Anderson S; Ferriani, Rui A; Reis, Rosana Maria Dos

    2018-06-20

    Kogure, GS, Silva, RC, Miranda-Furtado, CL, Ribeiro, VB, Pedroso, DCC, Melo, AS, Ferriani, RA, and Reis, RMd. Hyperandrogenism enhances muscle strength after progressive resistance training, independent of body composition, in women with polycystic ovary syndrome. J Strength Cond Res XX(X): 000-000, 2018-The effects of resistance exercise on muscle strength, body composition, and increase in cross-sectional area of skeletal muscle (hypertrophy) were evaluated in women with polycystic ovary syndrome (PCOS). This case-control study included 45 PCOS and 52 non-PCOS women, with age between 18-37 years and body mass index of 18-39.9 kg·m. Subjects performed a program of progressive resistance training (PRT), 3 times per week for 4 months. Biochemical characteristics were measured before and after PRT. Muscle strength evaluated by 1 maximum repetition test and body composition and hypertrophy indicator, evaluated by anthropometry, were measured at baseline, at 8 weeks, and at 16 weeks after PRT. Progressive resistance training produced an increase in maximum strength (bench press, p = 0.04; leg extension, p = 0.04) in the PCOS group; however, no changes were observed in body composition between groups. Concentration of testosterone decreased in both PCOS and non-PCOS groups (p < 0.01, both) after PRT, as well as glycemia (PCOS, p = 0.01; non-PCOS, p = 0.02) and body fat percentage (p < 0.01, both). An increase in hypertrophy indicators, lean body mass (LBM), and maximum strength on all exercises was observed in both PCOS and non-PCOS groups (p < 0.01). This training protocol promoted increases in muscle strength in PCOS women, and improved hyperandrogenism and body composition by decreasing body fat and increasing LBM and muscle strength in both PCOS and non-PCOS groups. Therefore, it is suggested that resistance exercise programs could promote health and fitness in women of reproductive age, especially functional capacity of strength those with PCOS.

  16. The Relationship of Core Strength and Activation and Performance on Three Functional Movement Screens.

    PubMed

    Johnson, Caleb D; Whitehead, Paul N; Pletcher, Erin R; Faherty, Mallory S; Lovalekar, Mita T; Eagle, Shawn R; Keenan, Karen A

    2018-04-01

    Johnson, CD, Whitehead, PN, Pletcher, ER, Faherty, MS, Lovalekar, MT, Eagle, SR, and Keenan, KA. The relationship of core strength and activation and performance on three functional movement screens. J Strength Cond Res 32(4): 1166-1173, 2018-Current measures of core stability used by clinicians and researchers suffer from several shortcomings. Three functional movement screens appear, at face-value, to be dependent on the ability to activate and control core musculature. These 3 screens may present a viable alternative to current measures of core stability. Thirty-nine subjects completed a deep squat, trunk stability push-up, and rotary stability screen. Scores on the 3 screens were summed to calculate a composite score (COMP). During the screens, muscle activity was collected to determine the length of time that the bilateral erector spinae, rectus abdominis, external oblique, and gluteus medius muscles were active. Strength was assessed for core muscles (trunk flexion and extension, trunk rotation, and hip abduction and adduction) and accessory muscles (knee flexion and extension and pectoralis major). Two ordinal logistic regression equations were calculated with COMP as the outcome variable, and: (a) core strength and accessory strength, (b) only core strength. The first model was significant in predicting COMP (p = 0.004) (Pearson's Chi-Square = 149.132, p = 0.435; Nagelkerke's R-Squared = 0.369). The second model was significant in predicting COMP (p = 0.001) (Pearson's Chi-Square = 148.837, p = 0.488; Nagelkerke's R-Squared = 0.362). The core muscles were found to be active for most screens, with percentages of "time active" for each muscle ranging from 54-86%. In conclusion, performance on the 3 screens is predicted by core strength, even when accounting for "accessory" strength variables. Furthermore, it seems the screens elicit wide-ranging activation of core muscles. Although more investigation is needed, these screens, collectively, seem to be a good assessment of core strength.

  17. Glucose uptake heterogeneity of the leg muscles is similar between patients with multiple sclerosis and healthy controls during walking.

    PubMed

    Kindred, John H; Ketelhut, Nathaniel B; Rudroff, Thorsten

    2015-02-01

    Difficulties in ambulation are one of the main problems reported by patients with multiple sclerosis. A previous study by our research group showed increased recruitment of muscle groups during walking, but the influence of skeletal muscle properties, such as muscle fiber activity, has not been fully elucidated. The purpose of this investigation was to use the novel method of calculating glucose uptake heterogeneity in the leg muscles of patients with multiple sclerosis and compare these results to healthy controls. Eight patients with multiple sclerosis (4 men) and 8 healthy controls (4 men) performed 15 min of treadmill walking at a comfortable self-selected speed following muscle strength tests. Participants were injected with ≈ 8 mCi of [(18)F]-fluorodeoxyglucose during walking after which positron emission tomography/computed tomography imaging was performed. No differences in muscle strength were detected between multiple sclerosis and control groups (P>0.27). Within the multiple sclerosis, group differences in muscle volume existed between the stronger and weaker legs in the vastus lateralis, semitendinosus, and semimembranosus (P<0.03). Glucose uptake heterogeneity between the groups was not different for any muscle group or individual muscle of the legs (P>0.16, P≥0.05). Patients with multiple sclerosis and healthy controls showed similar muscle fiber activity during walking. Interpretations of these results, with respect to our previous study, suggest that walking difficulties in patients with multiple sclerosis may be more associated with altered central nervous system motor patterns rather than alterations in skeletal muscle properties. Published by Elsevier Ltd.

  18. Effects of Pilates mat exercises on muscle strength and on pulmonary function in patients with cystic fibrosis*

    PubMed Central

    Franco, Caroline Buarque; Ribeiro, Antonio Fernando; Morcillo, André Moreno; Zambon, Mariana Porto; Almeida, Marina Buarque; Rozov, Tatiana

    2014-01-01

    OBJECTIVE: To analyze the effects of Pilates mat exercises in patients with cystic fibrosis (CF). METHODS: This was a clinical trial involving 19 CF patients recruited from either the CF Outpatient Clinic of the State University at Campinas Hospital de Clínicas or the Children's Institute of the University of São Paulo School of Medicine Hospital das Clínicas. All of the patients performed Pilates mat exercises for four months (one 60-min session per week). The variables studied (before and after the intervention) were respiratory muscle strength, MIP, MEP, FVC, and FEV1. RESULTS: After the intervention, MIP was significantly higher in the male patients (p = 0.017), as were MIP and MEP in the female patients (p = 0.005 and p = 0.007, respectively). There were no significant differences between the pre- and post-intervention values of FVC or FEV1, neither in the sample as a whole nor among the patients of either gender. CONCLUSIONS: Our results show that Pilates mat exercises have beneficial effects on respiratory muscle strength in CF patients. PMID:25410840

  19. The effect of low back pain on trunk muscle size/function and hip strength in elite football (soccer) players.

    PubMed

    Hides, Julie A; Oostenbroek, Tim; Franettovich Smith, Melinda M; Mendis, M Dilani

    2016-12-01

    Low back pain (LBP) is a common problem in football (soccer) players. The effect of LBP on the trunk and hip muscles in this group is unknown. The relationship between LBP and trunk muscle size and function in football players across the preseason was examined. A secondary aim was to assess hip muscle strength. Twenty-five elite soccer players participated in the study, with assessments conducted on 23 players at both the start and end of the preseason. LBP was assessed with questionnaires and ultrasound imaging was used to assess size and function of trunk muscles at the start and end of preseason. Dynamometry was used to assess hip muscle strength at the start of the preseason. At the start of the preseason, 28% of players reported the presence of LBP and this was associated with reduced size of the multifidus, increased contraction of the transversus abdominis and multifidus muscles. LBP decreased across the preseason, and size of the multifidus muscle improved over the preseason. Ability to contract the abdominal and multifidus muscles did not alter across the preseason. Asymmetry in hip adductor and abductor muscle strength was found between players with and without LBP. Identifying modifiable factors in players with LBP may allow development of more targeted preseason rehabilitation programmes.

  20. Skeletal muscle relaxant effect of a standardized extract of Valeriana officinalis L. after acute administration in mice.

    PubMed

    Caudal, Dorian; Guinobert, Isabelle; Lafoux, Aude; Bardot, Valérie; Cotte, César; Ripoche, Isabelle; Chalard, Pierre; Huchet, Corinne

    2018-04-01

    Valeriana officinalis L. root extracts are traditionally taken for their sedative and anxiolytic properties and are also used for muscle relaxation. Relaxant effects were clearly observed on smooth muscle whereas data on effects on skeletal muscle are scarce and inconsistent. The aim of this study was to assess whether a standardized extract (SE) of V. officinalis had myorelaxant effects by decreasing skeletal muscle strength and/or neuromuscular tone in mice. Mice received an acute dose of V. officinalis SE (2 or 5 g/kg per os) or tetrazepam (10 mg/kg ip), a standard myorelaxant drug. Thirty minutes later, the maximal muscle strength was measured using a grip test, while global skeletal muscle function (endurance and neuromuscular tone) was assessed in a wire hanging test. Compared to tetrazepam, both doses of V. officinalis SE induced a pronounced decrease in skeletal muscle strength without any significant effects on endurance and neuromuscular tone. This study provides clear evidence that the extract of V. officinalis tested has a relaxant effect on skeletal muscle. By decreasing skeletal muscle strength without impacting endurance and neuromuscular tone, V. officinalis SE could induce less undesirable side effects than standard myorelaxant agents, and be particularly useful for avoiding falls in the elderly.

  1. Effects of free leucine supplementation and resistance training on muscle strength and functional status in older adults: a randomized controlled trial

    PubMed Central

    Trabal, Joan; Forga, Maria; Leyes, Pere; Torres, Ferran; Rubio, Jordi; Prieto, Esther; Farran-Codina, Andreu

    2015-01-01

    Objective To assess the effect of free leucine supplementation combined with resistance training versus resistance training only on muscle strength and functional status in older adults. Methods This was a randomized, double-blind, placebo-controlled, parallel study with two intervention groups. Thirty older adults were randomly assigned to receive either 10 g leucine/day (leucine group [LG], n=15) or a placebo (control group [CG], n=15), plus resistance training over a 12-week period. Maximal overcoming isometric leg strength, functional status, nutritional status, body composition, health-related quality of life, depression, and dietary intake were assessed at 4 and 12 weeks. Missing data at 12 weeks were handled using mixed models for repeated measurements for data imputation. Results Twenty-four subjects completed the 4-week assessment and eleven completed the 12-week intervention. Clinically significant gains were found in isometric leg strength at both assessment time points. Analysis of the effect size also showed how participants in LG outperformed those in CG for chair stands and the timed up and go test. No significant changes were observed for the rest of the outcomes. Conclusion Our combined analysis showed moderate changes in isometric leg muscle strength and certain components of functional status. The magnitude of changes found on these outcomes should be qualified as a positive effect of the concomitant intervention. PMID:25926725

  2. Baseline and longitudinal change in isometric muscle strength prior to radiographic progression in osteoarthritic and pre-osteoarthritic knees--data from the Osteoarthritis Initiative.

    PubMed

    Eckstein, F; Hitzl, W; Duryea, J; Kent Kwoh, C; Wirth, W

    2013-05-01

    To test whether cross-sectional or longitudinal measures of thigh muscle isometric strength differ between knees with and without subsequent radiographic progression of knee osteoarthritis (KOA), with particular focus on pre-osteoarthritic female knees (knees with risk factors but without definite radiographic KOA). Of 4,796 Osteoarthritis Initiative participants, 2,835 knees with Kellgren Lawrence grade (KLG) 0-3 had central X-ray readings, annual quantitative joint space width (JSW) and isometric muscle strength measurements (Good strength chair). Separate slope analysis of covariance (ANCOVA) models were used to determine differences in strength between "progressor" and "non-progressor" knees, after adjusting for age, body mass index, and pain. 466 participant knees exceeded the smallest detectable JSW change during each of two observation intervals (year 2→4 and year 1→3) and were classified as progressors (213 women, 253 men; 128 KLG0/1, 330 KLG2/3); 946 participant knees did not exceed this threshold in either interval and were classified as non-progressors (588 women, 358 from men; 288KLG0/1, 658KLG2/3). Female progressor knees, including those with KLG0/1, tended to have lower extensor and flexor strength at year 2 and at baseline than those without progression, but the difference was not significant after adjusting for confounders. No significant difference was observed in longitudinal change of muscle strength (baseline→year 2) prior to radiographic progression. No significant differences were found for muscle strength in men, and none for change in strength concomitant with progression. This study provides no strong evidence that (changes in) isometric muscle strength precedes or is associated with structural (radiographic) progression of KOA. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  3. Cross-sectional association between muscle strength and self-reported physical function in 195 hip osteoarthritis patients.

    PubMed

    Hall, Michelle; Wrigley, Tim V; Kasza, Jessica; Dobson, Fiona; Pua, Yong Hao; Metcalf, Ben R; Bennell, Kim L

    2017-02-01

    This study aimed to evaluate associations between strength of selected hip and knee muscles and self-reported physical function, and their clinical relevance, in men and women with hip osteoarthritis (OA). Cross-sectional data from 195 participants with symptomatic hip OA were used. Peak isometric torque of hip extensors, flexors, and abductors, and knee extensors were measured, along with physical function using the Western Ontario and McMaster Universities Osteoarthritis Index questionnaire. Separate linear regressions in men and women were used to determine the association between strength and physical function accounting for age, pain, and radiographic disease severity. Subsequently, magnitudes of strength associated with estimates of minimal clinically important improvement (MCII) in physical function were estimated according to severity of difficulty with physical function. For men, greater strength of the hip extensors, hip flexors and knee extensors were each associated with better physical function. For women, greater muscle strength of all tested muscles were each associated with better physical function. For men and women, increases in muscle strength between 17-32%, 133-223%, and 151-284% may be associated with estimates of MCII in physical function for those with mild, moderate, and severe physical dysfunction, respectively. Greater isometric strength of specific hip and thigh muscle groups may be associated with better self-reported physical function in men and women. In people with mild physical dysfunction, an estimate of MCII in physical function may be associated with attainable increases in strength. However, in patients with more severe dysfunction, greater and perhaps unattainable strength increases may be associated with an estimate of MCII in physical function. Longitudinal studies are required to validate these observations. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Alterations of the in vivo torque-velocity relationship of human skeletal muscle following 30 days exposure to simulated microgravity

    NASA Technical Reports Server (NTRS)

    Dudley, Gary A.; Duvoisin, Marc; Convertino, Victor A.; Buchanan, Paul

    1989-01-01

    The effect of a continuous 30-d-long 6-deg headdown bedrest (BR) on the force output ability of skeletal muscles was investigated in human subjects by measuring peak angle specific torque of the knee extensor (KE) and knee flexor (KF) muscle groups of both limbs during unilateral efforts at four speeds (0.52. 1.74, 2.97, and 4.19 rad/sec) during eccentric action. It was found that, for the KE muscle group, the headdown BR resulted in decreases, by 19 percent on the average, of peak angle specific torque; on the other hand, the strength of the KF muscles was not altered significantly. A post-BR recovery for 30 days was found to restore muscle strength of the KE muscle group to about 92 percent of the pre-BR values. Changes of strength were not affected by the type of speed of muscle action.

  5. NemaFlex: a microfluidics-based technology for standardized measurement of muscular strength of C. elegans.

    PubMed

    Rahman, Mizanur; Hewitt, Jennifer E; Van-Bussel, Frank; Edwards, Hunter; Blawzdziewicz, Jerzy; Szewczyk, Nathaniel J; Driscoll, Monica; Vanapalli, Siva A

    2018-06-12

    Muscle strength is a functional measure of quality of life in humans. Declines in muscle strength are manifested in diseases as well as during inactivity, aging, and space travel. With conserved muscle biology, the simple genetic model C. elegans is a high throughput platform in which to identify molecular mechanisms causing muscle strength loss and to develop interventions based on diet, exercise, and drugs. In the clinic, standardized strength measures are essential to quantitate changes in patients; however, analogous standards have not been recapitulated in the C. elegans model since force generation fluctuates based on animal behavior and locomotion. Here, we report a microfluidics-based system for strength measurement that we call 'NemaFlex', based on pillar deflection as the nematode crawls through a forest of pillars. We have optimized the micropillar forest design and identified robust measurement conditions that yield a measure of strength that is independent of behavior and gait. Validation studies using a muscle contracting agent and mutants confirm that NemaFlex can reliably score muscular strength in C. elegans. Additionally, we report a scaling factor to account for animal size that is consistent with a biomechanics model and enables comparative strength studies of mutants. Taken together, our findings anchor NemaFlex for applications in genetic and drug screens, for defining molecular and cellular circuits of neuromuscular function, and for dissection of degenerative processes in disuse, aging, and disease.

  6. Effects of caffeine intake on muscle strength and power: a systematic review and meta-analysis.

    PubMed

    Grgic, Jozo; Trexler, Eric T; Lazinica, Bruno; Pedisic, Zeljko

    2018-01-01

    Caffeine is commonly used as an ergogenic aid. Literature about the effects of caffeine ingestion on muscle strength and power is equivocal. The aim of this systematic review and meta-analysis was to summarize results from individual studies on the effects of caffeine intake on muscle strength and power. A search through eight databases was performed to find studies on the effects of caffeine on: (i) maximal muscle strength measured using 1 repetition maximum tests; and (ii) muscle power assessed by tests of vertical jump. Meta-analyses of standardized mean differences (SMD) between placebo and caffeine trials from individual studies were conducted using the random effects model. Ten studies on the strength outcome and ten studies on the power outcome met the inclusion criteria for the meta-analyses. Caffeine ingestion improved both strength (SMD = 0.20; 95% confidence interval [CI]: 0.03, 0.36; p  = 0.023) and power (SMD = 0.17; 95% CI: 0.00, 0.34; p  = 0.047). A subgroup analysis indicated that caffeine significantly improves upper (SMD = 0.21; 95% CI: 0.02, 0.39; p  = 0.026) but not lower body strength (SMD = 0.15; 95% CI: -0.05, 0.34; p  = 0.147). The meta-analyses showed significant ergogenic effects of caffeine ingestion on maximal muscle strength of upper body and muscle power. Future studies should more rigorously control the effectiveness of blinding. Due to the paucity of evidence, additional findings are needed in the female population and using different forms of caffeine, such as gum and gel.

  7. Effects of Different Types of Exercise on Body Composition, Muscle Strength, and IGF-1 in the Elderly with Sarcopenic Obesity.

    PubMed

    Chen, Hung-Ting; Chung, Yu-Chun; Chen, Yu-Jen; Ho, Sung-Yen; Wu, Huey-June

    2017-04-01

    To investigate the influence of resistance training (RT), aerobic training (AT), or combination training (CT) interventions on the body composition, muscle strength performance, and insulin-like growth factor 1 (IGF-1) of patients with sarcopenic obesity. Randomized controlled trial. Community center and research center. Sixty men and women aged 65-75 with sarcopenic obesity. Participants were randomly assigned to RT, AT, CT, and control (CON) groups. After training twice a week for 8 weeks, the participants in each group ceased training for 4 weeks before being examined for the retention effects of the training interventions. The body composition, grip strength, maximum back extensor strength, maximum knee extensor muscle strength, and blood IGF-1 concentration were measured. The skeletal muscle mass (SMM), body fat mass, appendicular SMM/weight %, and visceral fat area (VFA) of the RT, AT, and CT groups were significantly superior to those of the CON group at both week 8 and week 12. Regarding muscle strength performance, the RT group exhibited greater grip strength at weeks 8 and 12 as well as higher knee extensor performance at week 8 than that of the other groups. At week 8, the serum IGF-1 concentration of the RT group was higher than the CON group, whereas the CT group was superior to the AT and CON groups. Older adults with sarcopenic obesity who engaged in the RT, AT, and CT interventions demonstrated increased muscle mass and reduced total fat mass and VFA compared with those without training. The muscle strength performance and serum IGF-1 level in trained groups, especially in the RT group, were superior to the control group. © 2017, Copyright the Authors Journal compilation © 2017, The American Geriatrics Society.

  8. Progressive shoulder-neck exercise on cervical muscle functions in middle-aged and senior patients with chronic neck pain.

    PubMed

    Lin, I-Hsien; Chang, Kwang-Hwa; Liou, Tsan-Hon; Tsou, Chih-Min; Huang, Yi-Ching

    2018-02-01

    Although neck pain is a common musculoskeletal disorder, there is no consensus on suitable exercise methods for middle-aged and senior patients with chronic neck pain. Therefore, this study investigated the effectiveness of a 6-week shoulder-neck exercise intervention program on cervical muscle function improvement in patients aged 45 years or older with chronic neck pain. The aim of the present study was to evaluate the effects of progressive shoulder-neck exercise on cervical muscle functions of middle-aged and senior patients with chronic neck pain. A randomized controlled single-blind trial. Rehabilitation department of a hospital. A total of 72 subjects aged ≥45 years with chronic neck pain were randomly allocated to either an experimental group (N.=36; age 57.3±8.74 years) or a control group (N.=36; age 58.15±8.17 years). The control group received only traditional physiotherapy, whereas the experimental group participated in a 6-week shoulder-neck exercise program consisting of cranio-cervical flexion and progressive resistance exercises in addition to receiving traditional physiotherapy. The muscle functions of subjects in both groups were tested before the experiment and also after the intervention program. The pretest and posttest measured the cranio-cervical flexion test (CCFT) and the superficial cervical muscle strength. After the intervention, the experimental group had a 56.48 point improvement in the performance index of the CCFT (P<0.001), a 1.71-kg improvement in superficial neck flexor strength (P<0.001), and a 2.52-kg improvement in superficial neck extensor strength (P<0.001), indicating that in 6-week intervention significantly influenced the improvement of cervical muscle functions. This study confirmed that the 6-week progressive shoulder-neck exercise program can effectively improve cervical muscle function in middle-aged and senior patients with chronic neck pain. Progressive shoulder-neck exercise might provide positive effect on deep and superficial neck muscle strength in patients with chronic neck pain. Therefore, this study may serve as a reference for the clinical rehabilitation of patients with chronic neck pain.

  9. Role of maximal inspiratory presure in the evaluetion of respiratory muscle strength in asthmatics - Systematic review.

    PubMed

    Cavalcante Marcelino, Alessandra M F; da Silva, Hilton Justino

    2010-01-01

    Asthma is a chronic illness of the airways that can reduce respiratory muscle strength due to the resulting hyperinflation or treatment with corticosteroids. One of the ways to evaluate this respiratory muscular weakness is the Maximal Inspiratory Pressure (PImax). A systematic review of the databases PUBMED/MEDLINE, LILACS and SCIELO was carried through, using the key words: Asthma, respiratory muscle and muscle strength. Fifty were found and six articles that evaluated the PImax in asthmatics, from these, thirty were excluded, making a total of twenty six articles. Through the present revision we show the effectiveness of PImax in evaluating respiratory muscle strength in asthmatics. More studies are needed, however, fot better understanding of the asthmatic individual. Rev Port Pneumol 2010; XVI (3): 463-470. © 2010 Sociedade Portuguesa de Pneumologia/SPP.

  10. Postexercise blood flow restriction does not enhance muscle hypertrophy induced by multiple-set high-load resistance exercise.

    PubMed

    Madarame, Haruhiko; Nakada, Satoshi; Ohta, Takahisa; Ishii, Naokata

    2018-05-01

    To test the applicability of postexercise blood flow restriction (PEBFR) in practical training programmes, we investigated whether PEBFR enhances muscle hypertrophy induced by multiple-set high-load resistance exercise (RE). Seven men completed an eight-week RE programme for knee extensor muscles. Employing a within-subject design, one leg was subjected to RE + PEBFR, whereas contralateral leg to RE only. On each exercise session, participants performed three sets of unilateral knee extension exercise at approximately 70% of their one-repetition maximum for RE leg first, and then performed three sets for RE + PEBFR leg. Immediately after completion of the third set, the proximal portion of the RE + PEBFR leg was compressed with an air-pressure cuff for 5 min at a pressure ranging from 100 to 150 mmHg. If participants could perform 10 repetitions for three sets in two consecutive exercise sessions, the work load was increased by 5% at the next exercise session. Muscle thickness and strength of knee extensor muscles were measured before and after the eight-week training period and after the subsequent eight-week detraining period. There was a main effect of time but no condition × time interaction or main effect of condition for muscle thickness and strength. Both muscle thickness and strength increased after the training period independent of the condition. This result suggests that PEBFR would not be an effective training method at least in an early phase of adaptation to high-load resistance exercise. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  11. Sarcopenia and its individual criteria are associated, in part, with mortality among patients on hemodialysis.

    PubMed

    Kittiskulnam, Piyawan; Chertow, Glenn M; Carrero, Juan J; Delgado, Cynthia; Kaysen, George A; Johansen, Kirsten L

    2017-07-01

    The relative importance of sarcopenia and its individual components as independent predictors of mortality in the dialysis population has not been determined. We estimated whole-body muscle mass using pre-dialysis bioimpedance spectroscopy measurements in 645 ACTIVE/ADIPOSE-enrolled prevalent hemodialysis patients from San Francisco and Atlanta. Low muscle mass was defined as two standard deviations below sex-specific means for young adults from NHANES and indexed to height 2 , body weight, body surface area, or body mass index. We evaluated the association of sarcopenia (low muscle mass) by four indexing methods, weak hand grip strength, and slow gait speed with mortality. Seventy-eight deaths were observed during a mean follow-up of 1.9 years. Sarcopenia was not significantly associated with mortality after adjusting for covariates. No muscle mass criteria were associated with death, regardless of indexing metrics. In contrast, having weak grip strength or slow walking speed was associated with mortality in the adjusted model. Only gait slowness significantly improved the predictive accuracy for death with an increase in C-statistic from 0.63 to 0.68. However, both gait slowness and hand grip weakness significantly improved the net reclassification index compared to models without performance measures (50.5% for slowness and 33.7% for weakness), whereas models with muscle size did not. Neither sarcopenia nor low muscle mass by itself was a better predictor of mortality than functional limitation alone in patients receiving hemodialysis. Thus, physical performance measures, including slow gait speed and weak hand grip strength, were associated with mortality even after adjustment for muscle size and other confounders. Published by Elsevier Inc.

  12. The effects of exercise on muscle strength, body composition, physical functioning and the inflammatory profile of older adults: a systematic review.

    PubMed

    Liberman, Keliane; Forti, Louis N; Beyer, Ingo; Bautmans, Ivan

    2017-01-01

    This systematic review reports the most recent literature regarding the effects of physical exercise on muscle strength, body composition, physical functioning and inflammation in older adults. All articles were assessed for methodological quality and where possible effect size was calculated. Thirty-four articles were included - four involving frail, 24 healthy and five older adults with a specific disease. One reported on both frail and nonfrail patients. Several types of exercise were used: resistance training, aerobic training, combined resistance training and aerobic training and others. In frail older persons, moderate-to-large beneficial exercise effects were noted on inflammation, muscle strength and physical functioning. In healthy older persons, effects of resistance training (most frequently investigated) on inflammation or muscle strength can be influenced by the exercise modalities (intensity and rest interval between sets). Muscle strength seemed the most frequently used outcome measure, with moderate-to-large effects obtained regardless the exercise intervention studied. Similar effects were found in patients with specific diseases. Exercise has moderate-to-large effects on muscle strength, body composition, physical functioning and inflammation in older adults. Future studies should focus on the influence of specific exercise modalities and target the frail population more.

  13. High and odd impact exercise training improved physical function and fall risk factors in community-dwelling older men.

    PubMed

    Allison, Sarah J; Brooke-Wavell, Katherine; Folland, Jonathan

    2018-03-01

    High impact exercise programmes can improve bone strength, but little is known about whether this type of training further benefits fracture risk by improving physical function in older people. This study investigated the influence of high impact exercise on balance, muscle function and morphology in older men. Fifty, healthy men (65-80 years) were assigned to a 6-month multidirectional hopping programme (TG) and twenty age and physical activity matched volunteers served as controls (CG). Before and after training, muscle function (hop performance, leg press and plantar- and dorsiflexion strength) and physiological determinants (muscle thickness and architecture) as well as balance control (sway path, one leg stance duration) were measured. Resting gastrocnemius medialis (GM) muscle thickness and architecture were assessed using ultrasonography. Significant improvements in hop impulse (+12%), isometric leg-press strength (+4%) and ankle plantarflexion strength (+11%), dorsiflexor strength (+20%) were found in the TG compared to the CG (ANOVA interaction, P⟨0.05) and unilateral stance time improved over time for TG. GM muscle thickness indicated modest hypertrophy (+4%), but muscle architecture was unchanged. The positive changes in strength and balance after high impact and odd impact training would be expected to improve physical function in older adults.

  14. Kinematic MRI study of upper-airway biomechanics using electrical muscle stimulation

    NASA Astrophysics Data System (ADS)

    Brennick, Michael J.; Margulies, Susan S.; Ford, John C.; Gefter, Warren B.; Pack, Allan I.

    1997-05-01

    We have developed a new and powerful method to study the movement and function of upper airway muscles. Our method is to use direct electrical stimulation of individual upper airway muscles, while performing state of the art high resolution magnetic resonance imaging (MRI). We have adapted a paralyzed isolated UA cat model so that positive or negative static pressure in the UA can be controlled at specific levels while electrical muscle stimulation is applied during MRI. With these techniques we can assess the effect of muscle stimulation on airway cross-sectional area compliance and soft tissue motion. We are reporting the preliminary results and MRI techniques which have enabled us to examine changes in airway dimensions which result form electrical stimulation of specific upper airway dilator muscles. The results of this study will be relevant to the development of new clinical treatments for obstructive sleep apnea by providing new information as to exactly how upper airway muscles function to dilate the upper airway and the strength of stimulation required to prevent the airway obstruction when overall muscle tone may not be sufficient to maintain regular breathing.

  15. Association of Muscle Endurance, Fatigability, and Strength With Functional Limitation and Mortality in the Health Aging and Body Composition Study

    PubMed Central

    Patel, Kushang V.; Fried, Linda F.; Robinson-Cohen, Cassianne; de Boer, Ian H.; Harris, Tamara; Murphy, Rachel A.; Satterfield, Suzanne; Goodpaster, Bret H.; Shlipak, Michael; Newman, Anne B.; Kestenbaum, Bryan

    2017-01-01

    Background: Mobility limitation is highly prevalent among older adults and is central to the loss of functional independence. Dynamic isokinetic muscle fatigue testing may reveal increased vulnerability to disability and mortality beyond strength testing. Methods: We studied community-dwelling older adults enrolled in the Health Aging and Body Composition study (age range: 71–82) free of mobility disability and who underwent isokinetic muscle fatigue testing in 1999–2000 (n = 1,963). Isokinetic quadriceps work and fatigue index was determined over 30 repetitions and compared with isometric quadriceps maximum torque. Work was normalized to leg lean mass accounting for gender-specific differences (specific work). The primary outcome was incident persistent severe lower extremity limitation (PSLL), defined as two consecutive reports of either having a lot of difficulty or being unable to walk 1/4 mile or climb 10 steps without resting. The secondary outcome was all-cause mortality. Results: There were 608 (31%) occurrences of incident PSLL and 488 (25%) deaths during median follow-up of 9.3 years. After adjustment, lower isokinetic work was associated with significantly greater risks of PSLL and mortality across the full measured range. Hazard ratios per standard deviation lower specific isokinetic work were 1.22 (95% CI 1.12, 1.33) for PSLL and 1.21 (95% CI 1.13, 1.30) for mortality, respectively. Lower isometric strength was associated with PSLL, but not mortality. Fatigue index was not associated with PSLL or mortality. Conclusions: Muscle endurance, estimated by isokinetic work, is an indicator of muscle health associated with mobility limitation and mortality providing important insight beyond strength testing. PMID:27907890

  16. Knee Extensor Rate of Torque Development Before and After Arthroscopic Partial Meniscectomy, With Analysis of Neuromuscular Mechanisms.

    PubMed

    Cobian, Daniel G; Koch, Cameron M; Amendola, Annunziato; Williams, Glenn N

    2017-12-01

    Study Design Descriptive, prospective single-cohort longitudinal study. Background Though rapid torque development is essential in activities of daily living and sports, it hasn't been specifically tested by most physical therapists or incorporated into rehabilitation programs until late in the treatment process. Little evidence is available on quadriceps torque development capacity before and after arthroscopic knee surgery. Objectives To study knee extensor rate of torque development, contributing mechanisms, and associations with strength and patient-reported outcomes before and during the first 6 weeks after arthroscopic partial meniscectomy. Methods Twenty subjects (mean ± SD age, 42.3 ± 13.7 years; body mass index, 26.6 ± 3.1 kg/m 2 ) were tested before surgery, and at 2 and 5 weeks after surgery. Quadriceps muscle volume, strength, activation, rate of torque development, and patient-reported outcomes were evaluated across the study period. Results Significant side-to-side differences in quadriceps strength and voluntary rate of torque development were observed at each time point (P<.05). Changes in muscle activity were associated with changes in rapid torque development capacity. Side-to-side rate of torque development deficits after surgery were associated with lower patient-reported outcomes scores. Conclusion Diminished rapid torque development capacity is common in arthroscopic meniscal debridement patients. This reduced capacity is associated with an inability to quickly recruit and drive the quadriceps muscles (neural mechanisms) and not muscle atrophy or other peripheral factors tested. Patient-reported outcomes are associated with quadriceps rate of torque development, but not strength or muscle size. Rapid torque development warrants greater attention in rehabilitation. J Orthop Sports Phys Ther 2017;47(12):945-956. Epub 9 Oct 2017. doi:10.2519/jospt.2017.7310.

  17. Different nutritional assessment tools as predictors of postoperative complications in patients undergoing colorectal cancer resection.

    PubMed

    Maurício, Sílvia Fernandes; Xiao, Jingjie; Prado, Carla M; Gonzalez, Maria Cristina; Correia, Maria Isabel Toulson Davisson

    2017-09-04

    Malnutrition in patients with colorectal cancer contributes to increased postoperative complications. The aim of the study was to evaluate the prognostic value of several nutritional assessment parameters: body mass index versus percentage of weight loss grading system (BMI/%WL); Patient-Generated Subjective Global Assessment (PG-SGA); standardized phase angle (SPA) by BIA; muscle strength by handgrip strength; muscle mass by computerized tomography; and the combination of muscle mass and strength in patients undergoing resection surgery. Patients diagnosed with cancer of the colon or rectum, who were over 18 years old and were scheduled to undergo surgical treatment were invited to participate. Postoperative complications were assessed from the first day post-surgery until discharge. Complications classified as Grade II or above according to the Clavien-Dindo classification were considered. Chi-square test or Fisher's exact test, bivariate analysis, Poisson regression and receiver operator characteristic (ROC) curve were utilized and p < 0.05 was considered significant. 84 patients were evaluated, with 28 (33.3%) presenting with Grade II postoperative complications. SPA showed no association with postoperative complications (p = 0.199). In multivariate analysis, low skeletal muscle mass showed a relative risk (RR) of 1.80 (CI: 1.02-3.17), BMI/%WL equal or higher than grade 3 had a RR of 1.90 (95% CI: 1.22-3.39). PG-SGA classified as malnutrition showed a RR of 2.08 (95% CI: 1.06-4.06); and low muscle mass plus low muscle strength showed a RR 2.13 (95% CI: 1.23-3.69). Low strength alone was not associated with postoperative complications after controlling for confounding factors (p = 0.16; 95% CI: 0.83-2.77). Low muscle mass in combination with low strength showed the highest predictive power for postoperative complications (AUC: 0.68; CI: 0.56-0.80). BMI/%WL > grade 3, PG-SGA defined malnutrition, low muscle mass and low muscle mass plus low strength were independent risk factors for complications controlling for confounding factors. However, low muscle mass in combination with low muscle strength were the strongest variables associated with complications. NCT02901132 (www.clinicaltrials.gov). Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  18. Insulin resistance and muscle strength in older persons.

    PubMed

    Abbatecola, Angela M; Ferrucci, Luigi; Ceda, Gianpaolo; Russo, Cosimo R; Lauretani, Fulvio; Bandinelli, Stefania; Barbieri, Michelangela; Valenti, Giorgio; Paolisso, Giuseppe

    2005-10-01

    The functional consequences of an age-related insulin resistance (IR) state on muscle functioning are unknown. Because insulin is needed for adequate muscle function, an age-related insulin-resistant state may also be a determining factor. We evaluated the relationship between IR and handgrip muscle strength in men and women from a large population-based study (n = 968). The degree of IR was evaluated by the homeostasis model assessment (HOMA) and muscle strength was assessed using handgrip. Simple sex-stratified correlations demonstrated that, in men, body mass index-adjusted handgrip strength correlated positively with physical activity (r = 0.321; p < .001), muscle area (r = 0.420; p < .001), muscle density (r = 0.263; p = .001), plasma albumin (r = 0.156; p = .001), insulin-like growth factor-1 (r = 0.258; p < .001), calcium (r = 0.140; p = .006), and testosterone (r = 0.325; p < .001) concentrations, whereas a negative association was found for age (r = -0.659; p < .001) and myoglobin plasma levels (r = -0.164; p =.001). In women, body mass index-adjusted handgrip strength correlated positively with physical activity (r = 0.280; p < .001), muscle area (r = 0.306; p < .001), muscle density (r = 0.341; p = .001), plasma albumin (r = 0.140; p =.001), and insulin-like growth factor-1 (r = 0.300; p < .001), whereas a negative association was found for age (r = -0.563; p < .001), myoglobin levels (r = -0.164; p = .001), and IR (r = -0.130; p = .04). Sex-stratified analyses adjusted for multiple confounders showed that the relationship between IR and handgrip strength was found significant in women, whereas it was negligible and not significant in men.

  19. The functional significance of hamstrings composition: is it really a "fast" muscle group?

    PubMed

    Evangelidis, Pavlos E; Massey, Garry J; Ferguson, Richard A; Wheeler, Patrick C; Pain, Matthew T G; Folland, Jonathan P

    2017-11-01

    Hamstrings muscle fiber composition may be predominantly fast-twitch and could explain the high incidence of hamstrings strain injuries. However, hamstrings muscle composition in vivo, and its influence on knee flexor muscle function, remains unknown. We investigated biceps femoris long head (BFlh) myosin heavy chain (MHC) composition from biopsy samples, and the association of hamstrings composition and hamstrings muscle volume (using MRI) with knee flexor maximal and explosive strength. Thirty-one young men performed maximal (concentric, eccentric, isometric) and explosive (isometric) contractions. BFlh exhibited a balanced MHC distribution [mean ± SD (min-max); 47.1 ± 9.1% (32.6-71.0%) MHC-I, 35.5 ± 8.5% (21.5-60.0%) MHC-IIA, 17.4 ± 9.1% (0.0-30.9%) MHC-IIX]. Muscle volume was correlated with knee flexor maximal strength at all velocities and contraction modes (r = 0.62-0.76, P < 0.01), but only associated with late phase explosive strength (time to 90 Nm; r = -0.53, P < 0.05). In contrast, BFlh muscle composition was not related to any maximal or explosive strength measure. BFlh MHC composition was not found to be "fast", and therefore composition does not appear to explain the high incidence of hamstrings strain injury. Hamstrings muscle volume explained 38-58% of the inter-individual differences in knee flexor maximum strength at a range of velocities and contraction modes, while BFlh muscle composition was not associated with maximal or explosive strength. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Respiratory weakness in patients with chronic neck pain.

    PubMed

    Dimitriadis, Zacharias; Kapreli, Eleni; Strimpakos, Nikolaos; Oldham, Jacqueline

    2013-06-01

    Respiratory muscle strength is one parameter that is currently proposed to be affected in patients with chronic neck pain. This study was aimed at examining whether patients with chronic neck pain have reduced respiratory strength and with which neck pain problems their respiratory strength is associated. In this controlled cross-sectional study, 45 patients with chronic neck pain and 45 healthy well-matched controls were recruited. Respiratory muscle strength was assessed through maximal mouth pressures. The subjects were additionally assessed for their pain intensity and disability, neck muscle strength, endurance of deep neck flexors, neck range of movement, forward head posture and psychological states. Paired t-tests showed that patients with chronic neck pain have reduced Maximal Inspiratory (MIP) (r = 0.35) and Maximal Expiratory Pressures (MEP) (r = 0.39) (P < 0.05). Neck muscle strength (r > 0.5), kinesiophobia (r < -0.3) and catastrophizing (r < -0.3) were significantly associated with maximal mouth pressures (P < 0.05), whereas MEP was additionally negatively correlated with neck pain and disability (r < -0.3, P < 0.05). Neck muscle strength was the only predictor that remained as significant into the prediction models of MIP and MEP. It can be concluded that patients with chronic neck pain present weakness of their respiratory muscles. This weakness seems to be a result of the impaired global and local muscle system of neck pain patients, and psychological states also appear to have an additional contribution. Clinicians are advised to consider the respiratory system of patients with chronic neck pain during their usual assessment and appropriately address their treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. A comparison of the effects of 6 weeks of traditional resistance training, plyometric training, and complex training on measures of strength and anthropometrics.

    PubMed

    MacDonald, Christopher J; Lamont, Hugh S; Garner, John C

    2012-02-01

    Complex training (CT; alternating between heavy and lighter load resistance exercises with similar movement patterns within an exercise session) is a form of training that may potentially bring about a state of postactivation potentiation, resulting in increased dynamic power (Pmax) and rate of force development during the lighter load exercise. Such a method may be more effective than either modality, independently for developing strength. The purpose of this research was to compare the effects of resistance training (RT), plyometric training (PT), and CT on lower body strength and anthropometrics. Thirty recreationally trained college-aged men were trained using 1 of 3 methods: resistance, plyometric, or complex twice weekly for 6 weeks. The participants were tested pre, mid, and post to assess back squat strength, Romanian dead lift (RDL) strength, standing calf raise (SCR) strength, quadriceps girth, triceps surae girth, body mass, and body fat percentage. Diet was not controlled during this study. Statistical measures revealed a significant increase for squat strength (p = 0.000), RDL strength (p = 0.000), and SCR strength (p = 0.000) for all groups pre to post, with no differences between groups. There was also a main effect for time for girth measures of the quadriceps muscle group (p = 0.001), the triceps surae muscle group (p = 0.001), and body mass (p = 0.001; post hoc revealed no significant difference). There were main effects for time and group × time interactions for fat-free mass % (RT: p = 0.031; PT: p = 0.000). The results suggest that CT mirrors benefits seen with traditional RT or PT. Moreover, CT revealed no decrement in strength and anthropometric values and appears to be a viable training modality.

  2. Comparison of a space shuttle flight (STS-78) and bed rest on human muscle function

    NASA Technical Reports Server (NTRS)

    Trappe, S. W.; Trappe, T. A.; Lee, G. A.; Widrick, J. J.; Costill, D. L.; Fitts, R. H.

    2001-01-01

    The purpose of this investigation was to assess muscle fiber size, composition, and in vivo contractile characteristics of the calf muscle of four male crew members during a 17-day spaceflight (SF; Life and Microgravity Sciences Spacelab Shuttle Transport System-78 mission) and eight men during a 17-day bed rest (BR). The protocols and timelines of these two investigations were identical, therefore allowing for direct comparisons between SF and the BR. The subjects' age, height, and weight were 43 +/- 2 yr, 183 +/- 4 cm, and 86 +/- 3 kg for SF and 43 +/- 2 yr, 182 +/- 3 cm, and 82 +/- 4 kg for BR, respectively. Calf muscle strength was examined before SF and BR; on days 2, 8, and 12 during SF and BR; and on days 2 and 8 of recovery. Muscle biopsies were obtained before and within 3 h after SF (gastrocnemius and soleus) and BR (soleus) before reloading. Maximal isometric calf strength and the force-velocity characteristics were unchanged with SF or BR. Additionally, neither SF nor BR had any effect on fiber composition or fiber size of the calf muscles studied. In summary, no changes in calf muscle strength and morphology were observed after the 17-day SF and BR. Because muscle strength is lost during unloading, both during spaceflight and on the ground, these data suggest that the testing sequence employed during the SF and BR may have served as a resistance training countermeasure to attenuate whole muscle strength loss.

  3. Psychosocial correlates of cardiorespiratory fitness and muscle strength in overweight and obese post-menopausal women: a MONET study.

    PubMed

    Karelis, Antony D; Fontaine, Jonathan; Messier, Virginie; Messier, Lyne; Blanchard, Chris; Rabasa-Lhoret, Remi; Strychar, Irene

    2008-07-01

    The purpose of this study was to examine the psychosocial correlates of cardiorespiratory fitness (VO2peak) and muscle strength in overweight and obese sedentary post-menopausal women. The study population consisted of 137 non-diabetic, sedentary overweight and obese post-menopausal women (mean age 57.7 years, s = 4.8; body mass index 32.4 kg.m(-2), s = 4.6). At baseline we measured: (1) body composition using dual-energy X-ray absorptiometry; (2) visceral fat using computed tomography; (3) insulin sensitivity using the hyperinsulinaemic-euglycaemic clamp; (4) cardiorespiratory fitness; (5) muscle strength using the leg press exercise; and (6) psychosocial profile (quality of life, perceived stress, self-esteem, body-esteem, and perceived risk for developing chronic diseases) using validated questionnaires. Both VO2peak and muscle strength were significantly correlated with quality of life (r = 0.29, P < 0.01 and r = 0.30, P < 0.01, respectively), and quality of life subscales for: physical functioning (r = 0.28, P < 0.01 and r = 0.22, P < 0.05, respectively), pain (r = 0.18, P < 0.05 and r = 0.23, P < 0.05, respectively), role functioning (r = 0.20, P < 0.05 and r = 0.24, P < 0.05, respectively), and perceived risks (r = -0.24, P < 0.01 and r = -0.30, P < 0.01, respectively). In addition, VO2peak was significantly associated with positive health perceptions, greater body esteem, and less time watching television/video. Stepwise regression analysis showed that quality of life for health perceptions and for role functioning were independent predictors of VO2peak and muscle strength, respectively. In conclusion, higher VO2peak and muscle strength are associated with a favourable psychosocial profile, and the psychosocial correlates of VO2peak were different from those of muscle strength. Furthermore, psychosocial factors could be predictors of VO2peak and muscle strength in our cohort of overweight and obese sedentary post-menopausal women.

  4. Morphologic Characteristics and Strength of the Hamstring Muscles Remain Altered at 2 Years After Use of a Hamstring Tendon Graft in Anterior Cruciate Ligament Reconstruction.

    PubMed

    Konrath, Jason M; Vertullo, Christopher J; Kennedy, Ben A; Bush, Hamish S; Barrett, Rod S; Lloyd, David G

    2016-10-01

    The hamstring tendon graft used in anterior cruciate ligament (ACL) reconstruction has been shown to lead to changes to the semitendinosus and gracilis musculature. We hypothesized that (1) loss of donor muscle size would significantly correlate with knee muscle strength deficits, (2) loss of donor muscle size would be greater for muscles that do not experience tendon regeneration, and (3) morphological adaptations would also be evident in nondonor knee muscles. Cross-sectional study; Level of evidence, 3. Twenty participants (14 men and 6 women, mean age 29 ± 7 years, mean body mass 82 ± 15 kg) who had undergone an ACL reconstruction with a hamstring tendon graft at least 2 years previously underwent bilateral magnetic resonance imaging and subsequent strength testing. Muscle and tendon volumes, peak cross-sectional areas (CSAs), and lengths were determined for 12 muscles and 6 functional muscle groups of the surgical and contralateral limbs. Peak isokinetic concentric strength was measured in knee flexion/extension and internal/external tibial rotation. Only 35% of the patients showed regeneration of both the semitendinosus and gracilis tendons. The regenerated tendons were longer with larger volume and CSA compared with the contralateral side. Deficits in semitendinosus and gracilis muscle size were greater for muscles in which tendons did not regenerate. In addition, combined hamstring muscles (semitendinosus, semimembranosus, and biceps femoris) and combined medial knee muscles (semitendinosus, semimembranosus, gracilis, vastus medialis, medial gastrocnemius, and sartorius) on the surgical side were reduced in volume by 12% and 10%, respectively. A 7% larger volume was observed in the surgical limb for the biceps femoris muscle and corresponded with a lower internal/external tibial rotation strength ratio. The difference in volume, peak CSA, and length of the semitendinosus and gracilis correlated significantly with the deficit in knee flexion strength, with Pearson correlations of 0.51, 0.57, and 0.61, respectively. The muscle-tendon properties of the semitendinosus and gracilis are substantially altered after harvesting, and these alterations may contribute to knee flexor weakness in the surgical limb. These deficits are more pronounced in knees with tendons that do not regenerate and are only partially offset by compensatory hypertrophy of other hamstring muscles. © 2016 The Author(s).

  5. Chronic exercise preserves lean muscle mass in masters athletes.

    PubMed

    Wroblewski, Andrew P; Amati, Francesca; Smiley, Mark A; Goodpaster, Bret; Wright, Vonda

    2011-09-01

    Aging is commonly associated with a loss of muscle mass and strength, resulting in falls, functional decline, and the subjective feeling of weakness. Exercise modulates the morbidities of muscle aging. Most studies, however, have examined muscle-loss changes in sedentary aging adults. This leaves the question of whether the changes that are commonly associated with muscle aging reflect the true physiology of muscle aging or whether they reflect disuse atrophy. This study evaluated whether high levels of chronic exercise prevents the loss of lean muscle mass and strength experienced in sedentary aging adults. A cross-section of 40 high-level recreational athletes ("masters athletes") who were aged 40 to 81 years and trained 4 to 5 times per week underwent tests of health/activity, body composition, quadriceps peak torque (PT), and magnetic resonance imaging of bilateral quadriceps. Mid-thigh muscle area, quadriceps area (QA), subcutaneous adipose tissue, and intramuscular adipose tissue were quantified in magnetic resonance imaging using medical image processing, analysis, and visualization software. One-way analysis of variance was used to examine age group differences. Relationships were evaluated using Spearman correlations. Mid-thigh muscle area (P = 0.31) and lean mass (P = 0.15) did not increase with age and were significantly related to retention of mid-thigh muscle area (P < 0.0001). This occurred despite an increase in total body fat percentage (P = 0.003) with age. Mid-thigh muscle area (P = 0.12), QA (P = 0.17), and quadriceps PT did not decline with age. Specific strength (strength per QA) did not decline significantly with age (P = 0.06). As muscle area increased, PT increased significantly (P = 0.008). There was not a significant relationship between intramuscular adipose tissue (P = 0.71) or lean mass (P = 0.4) and PT. This study contradicts the common observation that muscle mass and strength decline as a function of aging alone. Instead, these declines may signal the effect of chronic disuse rather than muscle aging. Evaluation of masters athletes removes disuse as a confounding variable in the study of lower-extremity function and loss of lean muscle mass. This maintenance of muscle mass and strength may decrease or eliminate the falls, functional decline, and loss of independence that are commonly seen in aging adults.

  6. Managing Knee Osteoarthritis: The Effects of Body Weight Supported Physical Activity on Joint Pain, Function, and Thigh Muscle Strength.

    PubMed

    Peeler, Jason; Christian, Mathew; Cooper, Juliette; Leiter, Jeffrey; MacDonald, Peter

    2015-11-01

    To determine the effect of a 12-week lower body positive pressure (LBPP)-supported low-load treadmill walking program on knee joint pain, function, and thigh muscle strength in overweight patients with knee osteoarthritis (OA). Prospective, observational, repeated measures investigation. Community-based, multidisciplinary sports medicine clinic. Thirty-one patients aged between 55 and 75 years, with a body mass index ≥25 kg/m and mild-to-moderate knee OA. Twelve-week LBPP-supported low-load treadmill walking regimen. Acute knee joint pain (visual analog scale) during full weight bearing treadmill walking, chronic knee pain, and joint function [Knee Injury and Osteoarthritis Outcome Score (KOOS) questionnaire] during normal activities of daily living, and thigh muscle strength (isokinetic testing). Appropriate methods of statistical analysis were used to compare data from baseline and follow-up evaluation. Participants reported significant improvements in knee joint pain and function and demonstrated significant increases in thigh muscle strength about the degenerative knee. Participants also experienced significant reductions in acute knee pain during full weight bearing treadmill walking and required dramatically less LBPP support to walk pain free on the treadmill. Data suggest that an LBPP-supported low-load exercise regimen can be used to significantly diminish knee pain, enhance joint function, and increase thigh muscle strength, while safely promoting pain-free walking exercise in overweight patients with knee OA. These findings have important implications for the development of nonoperative treatment strategies that can be used in the management of joint symptoms associated with progressive knee OA in at-risk patient populations. This research suggests that LBPP-supported low-load walking is a safe user-friendly mode of exercise that can be successfully used in the management of day-to-day joint symptoms associated with knee OA, helping to improve the physical health, quality of life, and social well-being of North America's aging population.

  7. ACTN3 R577X Polymorphism and Neuromuscular Response to Resistance Training

    PubMed Central

    Gentil, Paulo; Pereira, Rinaldo W.; Leite, Tailce K.M.; Bottaro, Martim

    2011-01-01

    The R577X polymorphism at the ACTN3 gene has been associated with muscle strength, hypertrophy and athletic status. The X allele, which is associated with the absence of ACTN3 protein is supposed to impair performance of high force/velocity muscle contractions. The purpose of the present study was to investigate the association of the R577X polymorphism with the muscle response to resistance training in young men. One hundred forty one men performed two resistance training sessions per week for 11 weeks. Participants were tested for 1RM bench press, knee extensors peak torque, and knee extensors muscle thickness at baseline and after the training period. Genotyping was conducted using de DdeI restriction enzyme. Genotype distribution was 34.4% for RR, 47% for RX and 18.6% for the XX genotype. According to the results, the R577X polymorphism at the ACTN3 gene is not associated with baseline muscle strength or with the muscle strength response to resistance training. However, only carriers of the R allele showed increases in muscle thickness in response to training. Key points ACTN3 Genotype distribution in the present study was similar to others populations (34.4% for RR, 47% for RX, and 18.6% for the XX). The R577X polymorphism at the ACTN3 gene is not associated with baseline muscle strength or with the muscle strength response to resistance training. It appears that the R allele carriers respond better to muscle thickness gains in response to training. PMID:24149888

  8. ACTN3 R577X Polymorphism and Neuromuscular Response to Resistance Training.

    PubMed

    Gentil, Paulo; Pereira, Rinaldo W; Leite, Tailce K M; Bottaro, Martim

    2011-01-01

    The R577X polymorphism at the ACTN3 gene has been associated with muscle strength, hypertrophy and athletic status. The X allele, which is associated with the absence of ACTN3 protein is supposed to impair performance of high force/velocity muscle contractions. The purpose of the present study was to investigate the association of the R577X polymorphism with the muscle response to resistance training in young men. One hundred forty one men performed two resistance training sessions per week for 11 weeks. Participants were tested for 1RM bench press, knee extensors peak torque, and knee extensors muscle thickness at baseline and after the training period. Genotyping was conducted using de DdeI restriction enzyme. Genotype distribution was 34.4% for RR, 47% for RX and 18.6% for the XX genotype. According to the results, the R577X polymorphism at the ACTN3 gene is not associated with baseline muscle strength or with the muscle strength response to resistance training. However, only carriers of the R allele showed increases in muscle thickness in response to training. Key pointsACTN3 Genotype distribution in the present study was similar to others populations (34.4% for RR, 47% for RX, and 18.6% for the XX).The R577X polymorphism at the ACTN3 gene is not associated with baseline muscle strength or with the muscle strength response to resistance training.It appears that the R allele carriers respond better to muscle thickness gains in response to training.

  9. Balance and muscle power of children with Charcot-Marie-Tooth.

    PubMed

    Silva, Tais R; Testa, Amanda; Baptista, Cyntia R J A; Marques, Wilson; Mattiello-Sverzut, Ana C

    2014-01-01

    In certain diseases, functional constraints establish a greater relationship with muscle power than muscle strength. However, in hereditary peripheral polyneuropathies, no such relationship was found in the literature. In children with Charcot-Marie-Tooth (CMT), to identify the impact of muscle strength and range of movement on the static/dynamic balance and standing long jump based on quantitative and functional variables. The study analyzed 19 participants aged between 6 and 16 years, of both genders and with clinical diagnoses of CMT of different subtypes. Anthropometric data, muscle strength of the lower limbs (hand-held dynamometer), ankle and knee range of movement, balance (Pediatric Balance Scale) and standing long jump distance were obtained by standardized procedures. For the statistical analysis, Pearson and Spearman correlation coefficients were used. There was a strong positive correlation between balance and the muscle strength of the right plantar flexors (r=0.61) and dorsiflexors (r=0.59) and a moderate correlation between balance and the muscle strength of inversion (r=0.41) and eversion of the right foot (r=0.44). For the long jump and range of movement, there was a weak positive correlation with right and left plantar flexion (r=0.20 and r=0.12, respectively) and left popliteal angle (r=0.25), and a poor negative correlation with left dorsiflexion (r=-0.15). The data on the patients analyzed suggests that the maintenance of distal muscle strength favors performance during balance tasks, while limitations in the range of movement of the legs seem not to be enough to influence the performance of the horizontal long jump.

  10. The impact of type 1 diabetes and diabetic polyneuropathy on muscle strength and fatigability.

    PubMed

    Orlando, Giorgio; Balducci, Stefano; Bazzucchi, Ilenia; Pugliese, Giuseppe; Sacchetti, Massimo

    2017-06-01

    Although it is widely accepted that diabetic polyneuropathy (DPN) is linked to a marked decline in neuromuscular performance, information on the possible impact of type 1 diabetes (T1D) on muscle strength and fatigue remains unclear. The purpose of this study was to investigate the effects of T1D and DPN on strength and fatigability in knee extensor muscles. Thirty-one T1D patients (T1D), 22 T1D patients with DPN (DPN) and 23 matched healthy control participants (C) were enrolled. Maximal voluntary contraction (MVC) and endurance time at an intensity level of 50% of the MVC were assessed at the knee extensor muscles with an isometric dynamometer. Clinical characteristics of diabetic patients were assessed by considering a wide range of vascular and neurological parameters. DPN group had lower knee extensor muscles strength than T1D (-19%) and the C group (-37.5%). T1D group was 22% weaker when compared to the C group. Lower body muscle fatigability of DPN group was 22 and 45.5% higher than T1D and C group, respectively. T1D group possessed a higher fatigability (29.4%) compared to C group. A correlation was found between motor and sensory nerve conduction velocity and muscle strength and fatigability. Patients with T1D are characterised by both a higher fatigability and a lower muscle strength, which are aggravated by DPN. Our data suggest that factors other than nervous damage play a role in the pathogenesis of such defect.

  11. [Factors related to sarcopenia in community-dwelling elderly subjects in Japan].

    PubMed

    Tanimoto, Yoshimi; Watanabe, Misuzu; Sugiura, Yumiko; Hayashida, Itsushi; Kusabiraki, Toshiyuki; Kono, Koichi

    2013-01-01

    This study aimed at determining the factors associated with sarcopenia, defined as low muscle mass and strength and low physical performance, in community-dwelling elderly subjects in Japan. The subjects included 1,074 elderly, community-dwelling Japanese people aged 65 years or older. We measured appendicular muscle mass (AMM) by bioelectrical impedance analysis, grip strength, and usual walking speed. A low muscle mass was defined by the AMM index (AMI, weight [kg]/height [m(2)] as >2 standard deviations below the mean AMI for normal young subjects. The lowest quartile for grip strength and usual walking speed were classified as low muscle strength and low physical performance, respectively. "Sarcopenia" was characterized by a low muscle mass, combined with either a low muscle strength or low physical performance. Subjects without low muscle mass or strength and low physical performance were classified as "normal." Subjects were classified as being "intermediate" if they were neither "sarcopenic" nor "normal." Items in the questionnaire included residential status, past medical history, admission during the past year, smoking and drinking habits, leisure-time physical activity, health status, depression, masticatory ability, and dietary variety score. Sarcopenia was identified in 13.7% of men and 15.5% of women. Among men, a large proportion of subjects with sarcopenia had poor masticatory ability and a low dietary variety score compared with normal or intermediate subjects. Among women, a large proportion of the subjects with sarcopenia lived alone, had poor exercise habits, considered themselves to be unhealthy, and had poor masticatory ability compared with normal or intermediate subjects. A multiple logistic regression analysis showed that age and dietary variety in men and age and masticatory ability in women were associated with sarcopenia. The present study carried out in Japan showed that sarcopenia, assessed by muscle mass, muscle strength, and physical performance, was associated with age, dietary variety score (in men), and masticatory ability (in women).

  12. Sporadic inclusion body myositis: pilot study on the effects of a home exercise program on muscle function, histopathology and inflammatory reaction.

    PubMed

    Arnardottir, Snjolaug; Alexanderson, Helene; Lundberg, Ingrid E; Borg, Kristian

    2003-01-01

    To evaluate the safety and effect of a home training program on muscle function in 7 patients with sporadic inclusion body myositis. The patients performed exercise 5 days a week over a 12-week period. Safety was assessed by clinical examination, repeated muscle biopsies and serum levels of creatine kinase. Muscle strength was evaluated by clinical examination, dynamic dynamometer and by a functional index in myositis. Strength was not significantly improved after the exercise, however none of the patients deteriorated concerning muscle function. The histopathology was unchanged and there were no signs of increased muscle inflammation or of expression of cytokines and adhesion molecules in the muscle biopsies. Creatine kinase levels were unchanged. A significant decrease was found in the areas that were positively stained for EN-4 (a marker for endothelial cells) in the muscle biopsies after training. The home exercise program was considered as not harmful to the muscles regarding muscle inflammation and function. Exercise may prevent loss of muscle strength due to disease and/or inactivity.

  13. PROGRESSIVE RESISTANCE VOLUNTARY WHEEL RUNNING IN THE mdx MOUSE

    PubMed Central

    Call, Jarrod A.; McKeehen, James N.; Novotny, Susan A.; Lowe, Dawn A.

    2012-01-01

    Exercise training has been minimally explored as a therapy to mitigate the loss of muscle strength for individuals with Duchenne muscular dystrophy (DMD). Voluntary wheel running is known to elicit beneficial adaptations in the mdx mouse model for DMD. The aim of this study was to examine progressive resistance wheel running in mdx mice by comprehensively testing muscle function before, during, and after a 12-week training period. Male mdx mice at ~4 weeks age were randomized into three groups: Sedentary, Free Wheel, and Resist Wheel. Muscle strength was assessed via in vivo dorsiflexion torque, grip strength, and whole body tension intermittently throughout the training period. Contractility of isolated soleus muscles was analyzed at the study’s conclusion. Both Free and Resist Wheel mice had greater grip strength (~22%) and soleus muscle specific tetanic force (26%) compared with Sedentary mice. This study demonstrates that two modalities of voluntary exercise are beneficial to dystrophic muscle and may help establish parameters for an exercise prescription for DMD. PMID:21104862

  14. Effects of Nordic walking on physical functions and depression in frail people aged 70 years and above.

    PubMed

    Lee, Han Suk; Park, Jeung Hun

    2015-08-01

    [Purpose] This study investigated the effects of Nordic walking on physical functions and depression in frail people aged 70 years and above. [Subjects] Twenty frail elderly individuals ≥70 years old were assigned to either a Nordic walking group (n=8) or general exercise group (n=10). [Methods] The duration of intervention was equal in both groups (3 sessions/week for 12 weeks, 60 min/session). Physical function (balance, upper extremity strength, lower extremity strength, weakness) and depression were examined before and after the interventions. [Results] With the exception of upper extremity muscle strength, lower extremity strength, weakness, balance, and depression after Nordic walking demonstrated statistically significant improvement. However, in the general exercise group, only balance demonstrated a statistically significant improvement after the intervention. There were significant differences in the changes in lower extremity muscle strength, weakness and depression between the groups. [Conclusion] In conclusion, Nordic walking was more effective than general exercise. Therefore, we suggest that Nordic walking may be an attractive option for significant functional improvement in frail people over 70 years old.

  15. Effect of Physical Methods of Lymphatic Drainage on Postexercise Recovery of Mixed Martial Arts Athletes.

    PubMed

    Zebrowska, Aleksandra; Trybulski, Robert; Roczniok, Robert; Marcol, Wieslaw

    2017-08-16

    Physical methods are reported to be important for accelerating skeletal muscle regeneration, decreasing muscle soreness, and shortening of the recovery time. The aim of the study was to assess the effect of the physical methods of lymphatic drainage (PMLD) such as manual lymphatic drainage (MLD), the Bodyflow (BF) therapy, and lymphatic drainage by deep oscillation (DO) on postexercise regeneration of the forearm muscles of mixed martial arts (MMA) athletes. Eighty MMA athletes aged 27.5 ± 6.4 years were allocated to 4 groups: MLD, the BF device, DO therapy, and the control group. Blood flow velocity in the cephalic vein was measured with the ultrasound Doppler velocity meter. Maximal strength of the forearm muscles (Fmax), muscle tissue tension, pain threshold, blood lactate concentration (LA), and activity of creatine kinase were measured in all groups at rest, after the muscle fatigue test (post-ex) and then 20 minutes, 24, and 48 hours after the application of PMLD. The muscle fatigue test reduced Fmax in all subjects, but in the groups receiving MLD, DO, and BF significantly higher Fmax was observed at recovery compared with post-ex values. The application of MDL reduced the postexercise blood LA and postexercise muscle tension. The lymphatic drainage methods, whether manual or using electro-stimulation and DO, improve postexercise regeneration of the forearm muscles of MMA athletes. The methods can be an important element of therapeutic management focused on optimizing training effects and reducing the risk of injuries of the combat sports athletes.

  16. The variation of the strength of neck extensor muscles and semispinalis capitis muscle size with head and neck position.

    PubMed

    Rezasoltani, A; Nasiri, R; Faizei, A M; Zaafari, G; Mirshahvelayati, A S; Bakhshidarabad, L

    2013-04-01

    Semispinalis capitis muscle (SECM) is a massive and long cervico-thoracic muscle which functions as a main head and neck extensor muscle. The aim of this study was to detect the effect of head and neck positions on the strength of neck extensor muscles and size of SECM in healthy subjects. Thirty healthy women students voluntarily participated in this study. An ultrasonography apparatus (Hitachi EUB 525) and a system of tension-meter were used to scan the right SECM at the level of third cervical spine and to measure the strength of neck extensor muscles at three head and neck positions. Neck extensor muscles were stronger in neutral than flexion or than extension positions while the size of SECM was larger in extension than neutral or than flexion position. The force generation capacity of the main neck extensor muscle was lower at two head and neck flexion and extension positions than neutral position. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Preserving Healthy Muscle during Weight Loss123

    PubMed Central

    Cava, Edda; Yeat, Nai Chien; Mittendorfer, Bettina

    2017-01-01

    Weight loss is the cornerstone of therapy for people with obesity because it can ameliorate or completely resolve the metabolic risk factors for diabetes, coronary artery disease, and obesity-associated cancers. The potential health benefits of diet-induced weight loss are thought to be compromised by the weight-loss–associated loss of lean body mass, which could increase the risk of sarcopenia (low muscle mass and impaired muscle function). The objective of this review is to provide an overview of what is known about weight-loss–induced muscle loss and its implications for overall physical function (e.g., ability to lift items, walk, and climb stairs). The currently available data in the literature show the following: 1) compared with persons with normal weight, those with obesity have more muscle mass but poor muscle quality; 2) diet-induced weight loss reduces muscle mass without adversely affecting muscle strength; 3) weight loss improves global physical function, most likely because of reduced fat mass; 4) high protein intake helps preserve lean body and muscle mass during weight loss but does not improve muscle strength and could have adverse effects on metabolic function; 5) both endurance- and resistance-type exercise help preserve muscle mass during weight loss, and resistance-type exercise also improves muscle strength. We therefore conclude that weight-loss therapy, including a hypocaloric diet with adequate (but not excessive) protein intake and increased physical activity (particularly resistance-type exercise), should be promoted to maintain muscle mass and improve muscle strength and physical function in persons with obesity. PMID:28507015

  18. STRENGTH PROFILES IN HEALTHY INDIVIDUALS WITH AND WITHOUT SCAPULAR DYSKINESIS

    PubMed Central

    Scibek, Jason S.; Carcia, Christopher R.

    2017-01-01

    Background Muscular weakness of the shoulder complex is commonly found in patients presenting with scapular dyskinesis; however, little is known regarding muscular performance in healthy individuals with scapular dyskinesis. Purpose To compare isometric strength measures of the shoulder complex between healthy individuals with and without scapular dyskinesis. It was hypothesized that healthy individuals with scapular dyskinesis would demonstrate decreased isometric strength of the scapular stabilizers and rotator cuff when compared to healthy individuals without scapular dyskinesis. Study Design Cross-sectional study. Methods Forty healthy, college-aged participants were recruited. Sixty-eight percent of subjects (27 of 40) presented with scapular dyskinesis. Thus, a matched-pairs analysis was conducted with 26 subjects (age: 22.00 ± 2.06 y; height: 168.77 ± 8.07 cm; mass: 70.98 ± 13.14 kg; BMI: 24.75 ± 3.04 kg/m2; 6 males; 20 females). The presence of scapular dyskinesis was determined visually using the scapular dyskinesis test with a dichotomous outcome (yes/no). Strength of the scapular stabilizers and rotator cuff was assessed via manual muscle testing using a handheld dynamometer. Force measures obtained with the handheld dynamometer were used to quantify strength. For each muscle tested, the mean peak force of three trials were normalized to body weight and used for data analysis. Additionally, strength ratios were calculated and analyzed. Differences in strength and strength ratios between those with and without scapular dyskinesis were compared using separate two-way mixed ANOVAs with repeated measures. Results No significant differences for either strength (F1.83,43.92 = 1.10, p = .34) or strength ratios (F1.83,44.02 = 1.93, p = .16) were observed between those with and without scapular dyskinesis. A significant main effect (F1.83,43.92 = 239.32, p < .01) for muscles tested was observed, and post-hoc analysis revealed significant trends resulting in a generalized order: the upper trapezius generated the greatest amount of force, followed by serratus anterior and middle trapezius, lower trapezius, supraspinatus, medial rotators, and lateral rotators. Conclusion The results of this study indicate that differences in shoulder muscle strength do not exist between healthy subjects with and without scapular dyskinesis. Additionally, scapular dyskinesis appears to be prevalent in healthy populations. Level of Evidence Level 3 PMID:28593084

  19. Ischemic conditioning increases strength and volitional activation of paretic muscle in chronic stroke: a pilot study.

    PubMed

    Hyngstrom, Allison S; Murphy, Spencer A; Nguyen, Jennifer; Schmit, Brian D; Negro, Francesco; Gutterman, David D; Durand, Matthew J

    2018-05-01

    Ischemic conditioning (IC) on the arm or leg has emerged as an intervention to improve strength and performance in healthy populations, but the effects on neurological populations are unknown. The purpose of this study was to quantify the effects of a single session of IC on knee extensor strength and muscle activation in chronic stroke survivors. Maximal knee extensor torque measurements and surface EMG were quantified in 10 chronic stroke survivors (>1 yr poststroke) with hemiparesis before and after a single session of IC or sham on the paretic leg. IC consisted of 5 min of compression with a proximal thigh cuff (inflation pressure = 225 mmHg for IC or 25 mmHg for sham) followed by 5 min of rest. This was repeated five times. Maximal knee extensor strength, EMG magnitude, and motor unit firing behavior were measured before and immediately after IC or sham. IC increased paretic leg strength by 10.6 ± 8.5 Nm, whereas no difference was observed in the sham group (change in sham = 1.3 ± 2.9 Nm, P = 0.001 IC vs. sham). IC-induced increases in strength were accompanied by a 31 ± 15% increase in the magnitude of muscle EMG during maximal contractions and a 5% decrease in motor unit recruitment thresholds during submaximal contractions. Individuals who had the most asymmetry in strength between their paretic and nonparetic legs had the largest increases in strength ( r 2  = 0.54). This study provides evidence that a single session of IC can increase strength through improved muscle activation in chronic stroke survivors. NEW & NOTEWORTHY Present rehabilitation strategies for chronic stroke survivors do not optimally activate paretic muscle, and this limits potential strength gains. Ischemic conditioning of a limb has emerged as an effective strategy to improve muscle performance in healthy individuals but has never been tested in neurological populations. In this study, we show that ischemic conditioning on the paretic leg of chronic stroke survivors can increase leg strength and muscle activation while reducing motor unit recruitment thresholds.

  20. Strength characterization of knee flexor and extensor muscles in Prader-Willi and obese patients.

    PubMed

    Capodaglio, Paolo; Vismara, Luca; Menegoni, Francesco; Baccalaro, Gabriele; Galli, Manuela; Grugni, Graziano

    2009-05-06

    despite evidence of an obesity-related disability, there is a lack of objective muscle functional data in overweight subjects. Only few studies provide instrumental strength measurements in non-syndromal obesity, whereas no data about Prader-Willi syndrome (PWS) are reported. The aim of our study was to characterize the lower limb muscle function of patients affected by PWS as compared to non-syndromal obesity and normal-weight subjects. We enrolled 20 obese (O) females (age: 29.1 +/- 6.5 years; BMI: 38.1 +/- 3.1), 6 PWS females (age: 27.2 +/- 4.9 years; BMI: 45.8 +/- 4.4) and 14 healthy normal-weight (H) females (age: 30.1 +/- 4.7 years; BMI: 21 +/- 1.6). Isokinetic strength during knee flexion and extension in both lower limbs at the fixed angular velocities of 60 degrees /s, 180 degrees /s, 240 degrees /s was measured with a Cybex Norm dynamometer. the H, O and PWS populations appear to be clearly stratified with regard to muscle strength.: PWS showed the lowest absolute peak torque (PT) for knee flexor and extensor muscles as compared to O (-55%) and H (-47%) (P = 0.00001). O showed significantly higher strength values than H as regard to knee extension only (P = 0.0014). When strength data were normalised by body weight, PWS showed a 50% and a 70% reduction in PT as compared to O and H, respectively. Knee flexors strength values were on average half of those reported for extension in all of the three populations. the novel aspect of our study is the determination of objective measures of muscle strength in PWS and the comparison with O and H patients. The objective characterization of muscle function performed in this study provides baseline and outcome measures that may quantify specific strength deficits amendable with tailored rehabilitation programs and monitor effectiveness of treatments.

  1. Mirror Therapy with Neuromuscular Electrical Stimulation for improving motor function of stroke survivors: A pilot randomized clinical study.

    PubMed

    Lee, DongGeon; Lee, GyuChang; Jeong, JiSim

    2016-07-27

    This study was to investigate the effects of Mirror Therapy (MT) combined with Neuromuscular Electrical Stimulation (NMES) on muscle strength and tone, motor function, balance, and gait ability in stroke survivors with hemiplegia. This study was a randomized controlled trial. Twenty-seven hemiplegic stroke survivors from a rehabilitation center participated in the study. The participants were randomly assigned to either an experimental or a control group. The experimental group (n = 14) underwent MT combined with NMES and conventional physical therapy, and the control group (n = 13) underwent conventional physical therapy alone. Muscle strength and tone, balance, and gait ability were examined at baseline and after 4 weeks of intervention. A hand-held dynamometer was used to assess muscle strength, the Modified Ashworth Scale (MAS) was used to assess muscle tone, the Berg Balance Scale (BBS) and Timed Up and Go test (TUG) were used to ascertain balance, and the 6-m Walk Test (6mWT) was used to examine gait ability. After the intervention, compared to baseline values, there were significant improvements in muscle strength and MAS, BBS, TUG, and 6mWT values in the experimental group (P< 0.05). In addition, at post-intervention, there were significant differences between the two groups in muscle strength and BBS (P< 0.05). MT combined with NMES may effectively improve muscle strength and balance in hemiplegic stroke survivors. However, further studies are necessary to demonstrate brain reorganization after MT combined with NMES.

  2. Endocrine determinants of incident sarcopenia in middle-aged and elderly European men

    PubMed Central

    Gielen, Evelien; O'Neill, Terence W; Pye, Stephen R; Adams, Judith E; Wu, Frederick C; Laurent, Michaël R; Claessens, Frank; Ward, Kate A; Boonen, Steven; Bouillon, Roger; Vanderschueren, Dirk; Verschueren, Sabine

    2015-01-01

    Background In men, the long-term consequences of low serum levels of sex steroids, vitamin D metabolites, and insulin-like growth factor 1 (IGF-1) on the evolution of muscle mass, muscle strength, or physical performance are unclear. Moreover, there are no data about the relationship between these hormones and incident sarcopenia defined as low muscle mass and function. The aim of this study was to determine whether the baseline levels of sex hormones, vitamin D metabolites, and IGF-1 predict changes in muscle mass, muscle strength, physical performance, and incident sarcopenia. Methods In 518 men aged 40–79 years, recruited for participation in the European Male Ageing Study, total, free, and bioavailable testosterone (T), oestradiol (E), sex hormone-binding globulin, IGF-1, 25-hydroxyvitamin D (25OHD), 1,25-dihydroxyvitamin D (1,25(OH)2D), and parathyroid hormone were assessed at baseline. Appendicular lean mass (aLM), gait speed, and grip strength were measured at baseline and after a mean follow-up of 4.3 years. Sarcopenia was defined by the definition of Baumgartner (relative aLM ≤7.26 kg/m2), the International Working Group on Sarcopenia (IWGS), and the European Working Group on Sarcopenia in Older People (EWGSOP). Results aLM significantly decreased from age 50 years, while gait speed and grip strength significantly decreased from age 70 years. The incidence of sarcopenia by the definitions of Baumgartner, IWGS, and EWGSOP was 8.1%, 3.0%, and 1.6%, respectively. After adjustment for age, centre, body mass index, smoking, and number of comorbidities at baseline, baseline levels of T and vitamin D metabolites were not associated with change in aLM, gait speed, and/or grip strength, while a high baseline level of total E2 was associated with a greater decrease in aLM. In men aged ≥70 years, low IGF-1 was associated with a greater decrease in gait speed. Baseline endocrine variables were not independently associated with an increased risk of incident sarcopenia by any definition. Conclusions Low levels of T and 25OHD do not predict loss of muscle mass, gait speed, or grip strength in middle-aged and elderly community-dwelling European men. Low IGF-1 predicts change in gait speed in men aged ≥70 years. PMID:26401471

  3. Immediate effects of kinesiotaping on quadriceps muscle strength: a single-blind, placebo-controlled crossover trial.

    PubMed

    Vercelli, Stefano; Sartorio, Francesco; Foti, Calogero; Colletto, Lorenzo; Virton, Domenico; Ronconi, Gianpaolo; Ferriero, Giorgio

    2012-07-01

    To investigate the immediate effects on maximal muscle strength of kinesiotaping (KT) applied to the dominant quadriceps of healthy subjects. Single-blind, placebo-controlled crossover trial. "Salvatore Maugeri" Foundation. With ethical approval and informed consent, a convenience sample of 36 healthy volunteers were recruited. Two subjects did not complete the sessions and were excluded from the analysis. Subjects were tested across 3 different sessions, randomly receiving 2 experimental KT conditions applied with the aim of enhancing and inhibiting muscle strength and a sham KT application. Quadriceps muscle strength was measured by means of an isokinetic maximal test performed at 60 and 180 degrees per second. Two secondary outcome measures were performed: the single-leg triple hop for distance to measure limb performance and the Global Rating of Change Scale (GRCS) to calculate agreement between KT application and subjective perception of strength. Compared with baseline, none of the 3 taping conditions showed a significant change in muscle strength and performance (all P > 0.05). Effect size was very low under all conditions (≤0.08). Very few subjects showed an individual change greater than the minimal detectable change. Global Rating of Change Scale scores demonstrated low to moderate agreement with the type of KT applied, but some placebo effects were reported independently of condition. Our findings indicated no significant effect in the maximal quadriceps strength immediately after the application of inhibition, facilitation, or sham KT. These results do not support the use of KT applied in this way to change maximal muscle strength in healthy people.

  4. Shoulder muscle strength in paraplegics before and after kayak ergometer training.

    PubMed

    Bjerkefors, Anna; Jansson, Anna; Thorstensson, Alf

    2006-07-01

    The purpose was to investigate if shoulder muscle strength in post-rehabilitated persons with spinal cord injury (SCI) was affected by kayak ergometer training and to compare shoulder strength in persons with SCI and able-bodied persons. Ten persons with SCI (7 males and 3 females, injury levels T3-T12) performed 60 min kayak ergometer training three times a week for 10 weeks with progressively increased intensity. Maximal voluntary concentric contractions were performed during six shoulder movements: flexion and extension (range of motion 65 degrees ), abduction and adduction (65 degrees ), and external and internal rotation (60 degrees ), with an angular velocity of 30 degrees s(-1). Position specific strength was assessed at three shoulder angles (at the beginning, middle and end of the range of motion) in the respective movements. Test-retests were performed for all measurements before the training and the mean intraclass correlation coefficient was 0.941 (95% CI 0.928-0.954). There was a main effect of kayak ergometer training with increased shoulder muscle strength after training in persons with SCI. The improvements were independent of shoulder movement, and occurred in the beginning and middle positions. A tendency towards lower shoulder muscle strength was observed in the SCI group compared to a matched reference group of able-bodied persons. Thus, it appears that post-rehabilitated persons with SCI have not managed to fully regain/maintain their shoulder muscle strength on a similar level as that of able-bodied persons, and are able to improve their shoulder muscle strength after a period of kayak ergometer training.

  5. Strength of knee flexors of the paretic limb as an important determinant of functional status in post-stroke rehabilitation.

    PubMed

    Kostka, Joanna; Czernicki, Jan; Pruszyńska, Magdalena; Miller, Elżbieta

    The purpose of the study was to assess the effectiveness of the multi-modal exercise program (MMEP) in patients after stroke, and to identify muscles that are the best predictors of functional performance and changes in functional status in a 3-week rehabilitation program. Thirty-one post-stroke patients (60.6±12.7 years) participating in a 3-week MMEP took part in the study. Measurements of extensor and flexor strength of the knee (F ext , F flex ) were done. Functional performance was measured using Timed Up & Go test (TUG), 6-Minute Walk Test (6-MWT) and Tinetti Test. The rehabilitation program improved all the results of functional tests, as well as the values of strength in the patients. Both baseline and post-rehabilitation functional status was associated with knee flexor and extensor muscle strength of paretic but not of non-paretic limbs. At baseline examination muscle strength difference between both F flex kg -1 and F ext kg -1 had an influence on functional status. After rehabilitation the effect of muscle strength difference on functional status was not evident for F ext kg -1 and, interestingly, even more prominent for F flex kg -1 . MMEP can effectively increase muscle strength and functional capacity in post-stroke patients. Knee flexor muscle strength of the paretic limb and the knee flexor difference between the limbs is the best predictor of functional performance in stroke survivors. Copyright © 2017 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  6. Preferential reduction of quadriceps over respiratory muscle strength and bulk after lung transplantation for cystic fibrosis.

    PubMed

    Pinet, C; Scillia, P; Cassart, M; Lamotte, M; Knoop, C; Mélot, C; Estenne, M

    2004-09-01

    In the absence of complications, recipients of lung transplants for cystic fibrosis have normal pulmonary function but the impact of the procedure on the strength and bulk of respiratory and limb muscles has not been studied. Twelve stable patients who had undergone lung transplantation for cystic fibrosis 48 months earlier (range 8-95) and 12 normal subjects matched for age, height, and sex were studied. The following parameters were measured: standard lung function, peak oxygen uptake by cycle ergometry, diaphragm surface area by computed tomographic (CT) scanning, diaphragm and abdominal muscle thickness by ultrasonography, twitch transdiaphragmatic and gastric pressures, quadriceps isokinetic strength, and quadriceps cross section by CT scanning, and lean body mass. Diaphragm mass was computed from diaphragm surface area and thickness. Twitch transdiaphragmatic and gastric pressures, diaphragm mass, and abdominal muscle thickness were similar in the two groups but quadriceps strength and cross section were decreased by nearly 30% in the patients. Patients had preserved quadriceps strength per unit cross section but reduced quadriceps cross section per unit lean body mass. The cumulative dose of corticosteroids was an independent predictor of quadriceps atrophy. Peak oxygen uptake showed positive correlations with quadriceps strength and cross section in the two groups, but peak oxygen uptake per unit quadriceps strength or cross section was reduced in the patient group. The diaphragm and abdominal muscles have preserved strength and bulk in patients transplanted for cystic fibrosis but the quadriceps is weak due to muscle atrophy. This atrophy is caused in part by corticosteroid therapy and correlates with the reduction in exercise capacity.

  7. Body Composition, Neuromuscular Performance, and Mobility: Comparison Between Regularly Exercising and Inactive Older Women.

    PubMed

    Rava, Anni; Pihlak, Anu; Ereline, Jaan; Gapeyeva, Helena; Kums, Tatjana; Purge, Priit; Jürimäe, Jaak; Pääsuke, Mati

    2017-01-01

    The purpose of this study was to evaluate the differences in body composition, neuromuscular performance, and mobility in healthy, regularly exercising and inactive older women, and examine the relationship between skeletal muscle indices and mobility. Overall, 32 healthy older women participated. They were divided into groups according to their physical activity history as regularly exercising (n = 22) and inactive (n = 10) women. Body composition, hand grip strength, leg extensor muscle strength, rapid force development, power output, and mobility indices were assessed. Regularly exercising women had lower fat mass and higher values for leg extensor muscle strength and muscle quality, and also for mobility. Leg extensor muscle strength and power output during vertical jumping and appendicular lean mass per unit of body mass were associated with mobility in healthy older women. It was concluded that long-term regular exercising may have beneficial effects on body composition and physical function in older women.

  8. Genome-wide linkage scan for maximum and length-dependent knee muscle strength in young men: significant evidence for linkage at chromosome 14q24.3

    PubMed Central

    De Mars, G; Windelinckx, A; Huygens, W; Peeters, M W; Beunen, G P; Aerssens, J; Vlietinck, R; Thomis, M A I

    2008-01-01

    Background: Maintenance of high muscular fitness is positively related to bone health, functionality in daily life and increasing insulin sensitivity, and negatively related to falls and fractures, morbidity and mortality. Heritability of muscle strength phenotypes ranges between 31% and 95%, but little is known about the identity of the genes underlying this complex trait. As a first attempt, this genome-wide linkage study aimed to identify chromosomal regions linked to muscle and bone cross-sectional area, isometric knee flexion and extension torque, and torque–length relationship for knee flexors and extensors. Methods: In total, 283 informative male siblings (17–36 years old), belonging to 105 families, were used to conduct a genome-wide SNP-based multipoint linkage analysis. Results: The strongest evidence for linkage was found for the torque–length relationship of the knee flexors at 14q24.3 (LOD  = 4.09; p<10−5). Suggestive evidence for linkage was found at 14q32.2 (LOD  = 3.00; P = 0.005) for muscle and bone cross-sectional area, at 2p24.2 (LOD  = 2.57; p = 0.01) for isometric knee torque at 30° flexion, at 1q21.3, 2p23.3 and 18q11.2 (LOD  = 2.33, 2.69 and 2.21; p<10−4 for all) for the torque–length relationship of the knee extensors and at 18p11.31 (LOD  = 2.39; p = 0.0004) for muscle-mass adjusted isometric knee extension torque. Conclusions: We conclude that many small contributing genes rather than a few important genes are involved in causing variation in different underlying phenotypes of muscle strength. Furthermore, some overlap in promising genomic regions were identified among different strength phenotypes. PMID:18178634

  9. Differences in muscle strength after ACL reconstruction do not influence cardiorespiratory responses to isometabolic exercise

    PubMed Central

    Andrade, Marília S.; Lira, Claudio A. B.; Vancini, Rodrigo L.; Nakamoto, Fernanda P.; Cohen, Moisés; Silva, Antonio C.

    2014-01-01

    Objectives To investigate whether the muscle strength decrease that follows anterior cruciate ligament (ACL) reconstruction would lead to different cardiorespiratory adjustments during dynamic exercise. Method Eighteen active male subjects were submitted to isokinetic evaluation of knee flexor and extensor muscles four months after ACL surgery. Thigh circumference was also measured and an incremental unilateral cardiopulmonary exercise test was performed separately for both involved and uninvolved lower limbs in order to compare heart rate, oxygen consumption, minute ventilation, and ventilatory pattern (breath rate, tidal volume, inspiratory time, expiratory time, tidal volume/inspiratory time) at three different workloads (moderate, anaerobic threshold, and maximal). Results There was a significant difference between isokinetic extensor peak torque measured in the involved (116.5±29.1 Nm) and uninvolved (220.8±40.4 Nm) limbs, p=0.000. Isokinetic flexor peak torque was also lower in the involved limb than in the uninvolved limb (107.8±15.4 and 132.5±26.3 Nm, p=0.004, respectively). Lower values were also found in involved thigh circumference as compared with uninvolved limb (46.9±4.3 and 48.5±3.9 cm, p=0.005, respectively). No differences were found between the lower limbs in any of the variables of the incremental cardiopulmonary tests at all exercise intensities. Conclusions Our findings indicate that, four months after ACL surgery, there is a significant deficit in isokinetic strength in the involved limb, but these differences in muscle strength requirement do not produce differences in the cardiorespiratory adjustments to exercise. Based on the hypotheses from the literature which explain the differences in the physiological responses to exercise for different muscle masses, we can deduce that, after 4 months of a rehabilitation program after an ACL reconstruction, individuals probably do not present differences in muscle oxidative and peripheral perfusion capacities that could elicit higher levels of peripheral cardiorepiratory stimulus during exercise. PMID:24838811

  10. Soleus Atrophy Is Common After the Nonsurgical Treatment of Acute Achilles Tendon Ruptures: A Randomized Clinical Trial Comparing Surgical and Nonsurgical Functional Treatments.

    PubMed

    Heikkinen, Juuso; Lantto, Iikka; Flinkkila, Tapio; Ohtonen, Pasi; Niinimaki, Jaakko; Siira, Pertti; Laine, Vesa; Leppilahti, Juhana

    2017-05-01

    It remains controversial whether nonsurgical or surgical treatment provides better calf muscle strength recovery after an acute Achilles tendon rupture (ATR). Recent evidence has suggested that surgery might surpass nonsurgical treatment in restoring strength after an ATR. To assess whether magnetic resonance imaging (MRI) findings could explain calf muscle strength deficits and the difference between nonsurgical and surgical treatments in restoring calf muscle strength. Randomized controlled trial; Level of evidence, 1. From 2009 to 2013, 60 patients with acute ATRs were randomized to surgery or nonsurgical treatment with an identical rehabilitation protocol. The primary outcome measure was the volume of calf muscles assessed using MRI at 3 and 18 months. The secondary outcome measures included fatty degeneration of the calf muscles and length of the affected Achilles tendon. Additionally, isokinetic plantarflexion strength was measured in both legs. At 3 months, the study groups showed no differences in muscle volumes or fatty degeneration. However, at 18 months, the mean differences between affected and healthy soleus muscle volumes were 83.2 cm 3 (17.7%) after surgery and 115.5 cm 3 (24.8%) after nonsurgical treatment (difference between means, 33.1 cm 3 ; 95% CI, 1.3-65.0; P = .042). The study groups were not substantially different in the volumes or fatty degeneration of other muscles. From 3 to 18 months, compensatory hypertrophy was detected in the flexor hallucis longus (FHL) and deep flexors in both groups. In the nonsurgical treatment group, the mean difference between affected and healthy FHL muscle volumes was -9.3 cm 3 (12%) and in the surgical treatment group was -8.4 cm 3 (10%) ( P ≤ .001). At 18 months, Achilles tendons were, on average, 19 mm longer in patients treated nonsurgically compared with patients treated surgically ( P < .001). At 18 months, surgically treated patients demonstrated 10% to 18% greater strength results ( P = .037). Calf muscle isokinetic strength deficits for the entire range of ankle motion correlated with soleus atrophy (ρ = 0.449-0.611; P < .001). Treating ATRs nonsurgically with a functional rehabilitation protocol resulted in greater soleus muscle atrophy compared with surgical treatment. The mean Achilles tendon length was 19 mm longer after nonsurgical treatment than after the surgical treatment of ATRs. These structural changes partly explained the 10% to 18% greater calf muscle strength observed in patients treated with surgery compared with those treated nonsurgically. Registration: NCT02012803 ( ClinicalTrials.gov identifier).

  11. Normative Quadriceps and Hamstring Muscle Strength Values for Female, Healthy, Elite Handball and Football Players.

    PubMed

    Risberg, May A; Steffen, Kathrin; Nilstad, Agnethe; Myklebust, Grethe; Kristianslund, Eirik; Moltubakk, Marie M; Krosshaug, Tron

    2018-05-23

    Risberg, MA, Steffen, K, Nilstad, A, Myklebust, G, Kristianslund, E, Moltubakk, MM, and Krosshaug, T. Normative quadriceps and hamstring muscle strength values for female, healthy, elite handball and football players. J Strength Cond Res XX(X): 000-000, 2018-This study presents normative values for isokinetic knee extension and flexion muscle strength tests in 350 elite, female, handball (n = 150) and football (n = 200) players. Isokinetic concentric muscle strength tests at 60°·sec were recorded bilaterally using a dynamometer. Peak torque (in Newton meter [N·m]), body mass normalized peak torque (N·m·kg), and hamstring to quadriceps ratio (H:Q ratio) for dominant and nondominant legs were recorded. The female elite players were 20.9 ± 4.0 years, started playing at the elite level at the age of 18.2 ± 2.7 years, with a mean of 9.7 ± 2.2 hours of weekly in-season training. Handball players demonstrated greater quadriceps muscle strength compared with football players (11.0%) (p < 0.001), also when normalized to body mass (4.1%) (p = 0.012), but not for weight-adjusted hamstring muscle strength. The H:Q ratio was higher on the dominant compared with the nondominant leg for handball players only (p = 0.012).The H:Q ratio was significantly lower for handball players (0.58) compared with football players (0.60) (p < 0.02). These normative values for isokinetic knee extension and flexion torques of healthy, elite, female handball and football players can be used to set rehabilitation goals for muscle strength after injury and enable comparison with uninjured legs. Significantly greater quadriceps muscle strength was found for handball players compared with football players, also when normalized to body mass.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

  12. Short-Term Unilateral Resistance Training Results in Cross Education of Strength Without Changes in Muscle Size, Activation, or Endocrine Response.

    PubMed

    Beyer, Kyle S; Fukuda, David H; Boone, Carleigh H; Wells, Adam J; Townsend, Jeremy R; Jajtner, Adam R; Gonzalez, Adam M; Fragala, Maren S; Hoffman, Jay R; Stout, Jeffrey R

    2016-05-01

    Short-term unilateral resistance training results in cross education of strength without changes in muscle size, activation, or endocrine response. J Strength Cond Res 30(5): 1213-1223, 2016-The purpose of this study was to assess the cross education of strength and changes in the underlying mechanisms (muscle size, activation, and hormonal response) after a 4-week unilateral resistance training (URT) program. A group of 9 untrained men completed a 4-week URT program on the dominant leg (DOM), whereas cross education was measured in the nondominant leg (NON); and were compared with a control group (n = 8, CON). Unilateral isometric force (PKF), leg press (LP) and leg extension (LE) strength, muscle size (by ultrasonography) and activation (by electromyography) of the rectus femoris and vastus lateralis, and the hormonal response (testosterone, growth hormone, insulin, and insulin-like growth factor-1) were tested pretraining and posttraining. Group × time interactions were present for PKF, LP, LE, and muscle size in DOM and for LP in NON. In all interactions, the URT group improved significantly better than CON. There was a significant acute hormonal response to URT, but no chronic adaptation after the 4-week training program. Four weeks of URT resulted in an increase in strength and size of the trained musculature, and cross education of strength in the untrained musculature, which may occur without detectable changes in muscle size, activation, or the acute hormonal response.

  13. Effect of statins on skeletal muscle function.

    PubMed

    Parker, Beth A; Capizzi, Jeffrey A; Grimaldi, Adam S; Clarkson, Priscilla M; Cole, Stephanie M; Keadle, Justin; Chipkin, Stuart; Pescatello, Linda S; Simpson, Kathleen; White, C Michael; Thompson, Paul D

    2013-01-01

    Many clinicians believe that statins cause muscle pain, but this has not been observed in clinical trials, and the effect of statins on muscle performance has not been carefully studied. The Effect of Statins on Skeletal Muscle Function and Performance (STOMP) study assessed symptoms and measured creatine kinase, exercise capacity, and muscle strength before and after atorvastatin 80 mg or placebo was administered for 6 months to 420 healthy, statin-naive subjects. No individual creatine kinase value exceeded 10 times normal, but average creatine kinase increased 20.8±141.1 U/L (P<0.0001) with atorvastatin. There were no significant changes in several measures of muscle strength or exercise capacity with atorvastatin, but more atorvastatin than placebo subjects developed myalgia (19 versus 10; P=0.05). Myalgic subjects on atorvastatin or placebo had decreased muscle strength in 5 of 14 and 4 of 14 variables, respectively (P=0.69). These results indicate that high-dose atorvastatin for 6 months does not decrease average muscle strength or exercise performance in healthy, previously untreated subjects. Nevertheless, this blinded, controlled trial confirms the undocumented impression that statins increase muscle complaints. Atorvastatin also increased average creatine kinase, suggesting that statins produce mild muscle injury even among asymptomatic subjects. This increase in creatine kinase should prompt studies examining the effects of more prolonged, high-dose statin treatment on muscular performance. URL: http://www.clinicaltrials.gov. Unique identifier: NCT00609063.

  14. Reliability of handheld dynamometry in assessment of hip strength in adult male football players.

    PubMed

    Fulcher, Mark L; Hanna, Chris M; Raina Elley, C

    2010-01-01

    The aim of this study was to evaluate the intra- and interrater reliability of handheld dynamometry (HHD) for measuring hip muscle strength in a sample of 30 healthy semi-professional adult male football players. The reliability of HHD had not been assessed in athletes who were likely to be stronger than populations tested previously. Maximal isometric strength of resisted hip flexion and adduction were measured. Mean strength ranged from 51.5 kg for dominant hip flexion to 26.7 kg for hip adduction at 90 degrees of hip flexion. Intrarater reliability intraclass correlation coefficients (ICCs) ranged from 0.70 to 0.89. ICCs for interrater reliability ranged from 0.66 to 0.87. As expected, muscle strength in this group of athletes was significantly higher than that of populations in which HHD reliability has been assessed. Despite this, muscle strength testing of hip flexor and adductor muscles can be performed with good to excellent intra- and interrater reliability in this population. Copyright (c) 2009. Published by Elsevier Ltd.

  15. Patterns and correlates of grip strength change with age in Afro-Caribbean men.

    PubMed

    Forrest, Kimberly Y Z; Bunker, Clareann H; Sheu, Yahtyng; Wheeler, Victor W; Patrick, Alan L; Zmuda, Joseph M

    2012-05-01

    muscle strength is essential for physical functions and an indicator of morbidity and mortality in older adults. Among the factors associated with muscle strength loss with age, ethnicity has been shown to play an important role. to examine the patterns and correlates of muscle strength change with age in a population-based cohort of middle-aged and older Afro-Caribbean men. handgrip strength and body composition were measured in 1,710 Afro-Caribbean men. Data were also collected for demographic variables, medical history and lifestyle behaviours. the age range of the study population was 29-89 years. Grip strength increased below age 50 years, and decreased after age 50 years over 4.5-year follow-up. The average loss in grip strength was 2.2% (0.49% per year) for ages 50 years or older and 3.8% (0.64% per year) for ages 65 years or older. The significant independent predictors of grip strength loss included older age, a greater body mass index, lower initial arm lean mass and greater loss of arm lean mass. Afro-Caribbean men experience a significant decline in muscle strength with advanced age. The major independent factors associated with strength loss were similar to other ethnic groups, including age, body weight and lean mass.

  16. Ultrasound evaluation of muscle thickness changes in the external oblique, internal oblique, and transversus abdominis muscles considering the influence of posture and muscle contraction.

    PubMed

    Sugaya, Tomoaki; Abe, Yota; Sakamoto, Masaaki

    2014-09-01

    [Purpose] The aim of this study was to investigate muscle thickness changes in the external oblique (EO), internal oblique (IO), and transversus abdominis (TrA) muscles between the neutral position and trunk rotation, under a state of rest without voluntary contractions, and isometric contractions to both sides with resistance of 50% of the maximum trunk rotation strength. [Subjects] The subjects of this study were 21 healthy young men. [Methods] Muscle thickness changes in the EO, IO, and TrA in each position and state were evaluated by ultrasound. The range of motion at maximum trunk rotation and the maximum strength of trunk rotation were measured using a hand-held dynamometer. [Results] In the neutral position and at 50% trunk rotation to the right side, the thicknesses of the IO and TrA significantly increased with resistance. In both states, the thicknesses of the IO and TrA significantly increased at 50% trunk rotation to the right side. [Conclusion] The muscular contractions of the IO and TrA were stronger during ipsilateral rotation than in the neutral position and with resistance than at rest. Moreover, the muscular contraction was strongest in the resistive state during ipsilateral rotation.

  17. Novel Use of the Nintendo Wii Board for Measuring Isometric Lower Limb Strength: A Reproducible and Valid Method in Older Adults.

    PubMed

    Gronbech Jorgensen, Martin; Andersen, Stig; Ryg, Jesper; Masud, Tahir

    2015-01-01

    Portable, low-cost, objective and reproducible assessment of muscle strength in the lower limbs is important as it allows clinicians to precisly track progression of patients undergoing rehabilitation. The Nintendo Wii Balance Board (WBB) is portable, inexpensive, durable, available worldwide, and may serve the above function. The purpose of the study was to evaluate (1) reproducibility and (2) concurrent validity of the WBB for measuring isometric muscle strength in the lower limb. A custom hardware and software was developed to utilize the WBB for assessment of isometric muscle strength. Thirty older adults (69.0 ± 4.2 years of age) were studied on two separate occasions on both the WBB and a stationary isometric dynamometer (SID). On each occasion, three recordings were obtained from each device. For the first recording, means and maximum values were used for further analysis. The test-retest reproducibility was examined using intraclass correlation coefficients (ICC), Standard Error of Measurement (SEM), and limits of agreement (LOA). Bland-Altman plots (BAP) and ICC's were used to explore concurrent validity. No systematic difference between test-retest was detected for the WBB. ICC within-device were between 0.90 and 0.96 and between-devices were from 0.80 to 0.84. SEM ranged for the WBB from 9.7 to 13.9%, and for the SID from 11.9 to 13.1%. LOA ranged for the WBB from 20.3 to 28.7% and for the SID from 24.2 to 26.6%. The BAP showed no relationship between the difference and the mean. A high relative and an acceptable absolute reproducibility combined with a good validity was found for the novel method using the WBB for measuring isometric lower limb strength in older adults. Further research using the WBB for assessing lower limb strength should be conducted in different study-populations.

  18. Quantitative Evaluation of Muscle Function, Gait, and Postural Control in People Experiencing Critical Illness After Discharge From the Intensive Care Unit.

    PubMed

    Kiriella, Jeevaka B; Araujo, Tamara; Vergara, Martin; Lopez-Hernandez, Laura; Cameron, Jill I; Herridge, Margaret; Gage, William H; Mathur, Sunita

    2018-01-01

    The path to recovery of muscle strength and mobility following discharge from the intensive care unit (ICU) has not been well described. The study objective was to quantify muscle function, gait, and postural control at 3 and 6 months after discharge in people who were recovering from critical illness and who were ventilated for 7 days or more. This was a nested longitudinal study with continuous inclusion of individuals over a 2-year period and with age- and sex-matched controls. Twenty-four people were tested at 3 months after ICU discharge; 16 of them (67%) were reevaluated at 6 months (post-ICU group). Healthy controls (n = 12) were tested at a single time point. Muscle function of the knee extensors (KEs), plantar flexors (PFs), and dorsiflexors (DFs) was assessed on a dynamometer. Gait was measured using an electronic walkway, and postural control was measured with 2 portable force plates. Muscle weakness was observed across all muscle groups at 3 months, with the greatest strength reductions in the ankle PFs (45%) and DFs (30%). Muscle power was reduced in the PFs and DFs but was not reduced in the KEs. Gait in the post-ICU group was characterized by a narrower step, longer stride, and longer double-support time than in the controls. Improvements were found in KE strength and in stride time and double-support time during gait at 6 months. Leg muscle strength and power had moderate associations with gait velocity, step width, and stride length (r = .44-.65). The small heterogeneous sample of people with a high level of function was a limitation of this study. Muscle strength and power were impaired at 6 months after ICU discharge and were associated with gait parameters. Future studies are needed to examine the role of muscle strength and power training in post-ICU rehabilitation programs to improve mobility. © 2017 American Physical Therapy Association

  19. The Relationship between Walk Distance and Muscle Strength, Muscle Pain in Visually Disabled People

    ERIC Educational Resources Information Center

    Akyol, Betül

    2018-01-01

    The purpose of this study is to examine the relationship between six-minute walk test and muscle pain, muscle strength in visually disabled people. The study includes 50 visually disabled people, aged between 17, 21 ± 5,3. Participants were classified into three categories according to their degree of vision (B1, B2, B3). All participants were…

  20. Effects of cross-education on the muscle after a period of unilateral limb immobilization using a shoulder sling and swathe.

    PubMed

    Magnus, Charlene R A; Barss, Trevor S; Lanovaz, Joel L; Farthing, Jonathan P

    2010-12-01

    The purpose of this study was to apply cross-education during 4 wk of unilateral limb immobilization using a shoulder sling and swathe to investigate the effects on muscle strength, muscle size, and muscle activation. Twenty-five right-handed participants were assigned to one of three groups as follows: the Immob + Train group wore a sling and swathe and strength trained (n = 8), the Immob group wore a sling and swathe and did not strength train (n = 8), and the Control group received no treatment (n = 9). Immobilization was applied to the nondominant (left) arm. Strength training consisted of maximal isometric elbow flexion and extension of the dominant (right) arm 3 days/wk. Torque (dynamometer), muscle thickness (ultrasound), maximal voluntary activation (interpolated twitch), and electromyography (EMG) were measured. The change in right biceps and triceps brachii muscle thickness [7.0 ± 1.9 and 7.1 ± 2.2% (SE), respectively] was greater for Immob + Train than Immob (0.4 ± 1.2 and -1.9 ± 1.7%) and Control (0.8 ± 0.5 and 0.0 ± 1.1%, P < 0.05). Left biceps and triceps brachii muscle thickness for Immob + Train (2.2 ± 0.7 and 3.4 ± 2.1%, respectively) was significantly different from Immob (-2.8 ± 1.1 and -5.2 ± 2.7%, respectively, P < 0.05). Right elbow flexion strength for Immob + Train (18.9 ± 5.5%) was significantly different from Immob (-1.6 ± 4.0%, P < 0.05). Right and left elbow extension strength for Immob + Train (68.1 ± 25.9 and 32.2 ± 9.0%, respectively) was significantly different from the respective limb of Immob (1.3 ± 7.7 and -6.1 ± 7.8%) and Control (4.7 ± 4.7 and -0.2 ± 4.5%, P < 0.05). Immobilization in a sling and swathe decreased strength and muscle size but had no effect on maximal voluntary activation or EMG. The cross-education effect on the immobilized limb was greater after elbow extension training. This study suggests that strength training the nonimmobilized limb benefits the immobilized limb for muscle size and strength.

  1. The role of skeletal muscle in the pathophysiology and management of knee osteoarthritis.

    PubMed

    Krishnasamy, Priathashini; Hall, Michelle; Robbins, Sarah R

    2018-05-01

    The role of skeletal muscle in the pathophysiology of knee OA is poorly understood. To date, the majority of literature has focused on the association of muscle strength with OA symptoms, disease onset and progression. However, deficits or improvements in skeletal muscle strength do not fully explain the mechanisms behind outcome measures in knee OA, such as pain, function and structural disease. This review aims to summarize components of skeletal muscle, providing a holistic view of skeletal muscle mechanisms that includes muscle function, quality and composition and their interactions. Similarly, the role of skeletal muscle in the management of knee OA will be discussed.

  2. A 4-week, lifestyle-integrated, home-based exercise training programme elicits improvements in physical function and lean mass in older men and women: a pilot study.

    PubMed

    Cegielski, Jessica; Brook, Matthew S; Quinlan, Jonathan I; Wilkinson, Daniel J; Smith, Kenneth; Atherton, Philip J; Phillips, Bethan E

    2017-01-01

    Developing alternative exercise programmes that can alleviate certain barriers to exercise such as psychological, environmental or socio-economical barriers, but provide similar physiological benefits e.g. increases in muscle mass and strength, is of grave importance. This pilot study aimed to assess the efficacy of an unsupervised, 4-week, whole-body home-based exercise training (HBET) programme, incorporated into daily living activities, on skeletal muscle mass, power and strength. Twelve healthy older volunteers (63±3 years, 7 men: 5 women, BMI: 29±1 kg/m²) carried out the 4-week "lifestyle-integrated" HBET of 8 exercises, 3x12 repetitions each, every day. Before and after HBET, a number of physical function tests were carried out: unilateral leg extension 1-RM (one- repetition maximum), MVC (maximal voluntary contraction) leg extension, lower leg muscle power (via Nottingham Power Rig), handgrip strength and SPPBT (short physical performance battery test). A D 3 -Creatine method was used for assessment of whole-body skeletal muscle mass, and ultrasound was used to measure the quadriceps cross-sectional area (CSA) and vastus lateralis muscle thickness. Four weeks HBET elicited significant (p<0.05) improvements in leg muscle power (276.7±38.5 vs. 323.4±43.4 W), maximal voluntary contraction (60°: 154.2±18.4 vs. 168.8±15.2 Nm, 90°: 152.1±10.5 vs. 159.1±11.4 Nm) and quadriceps CSA (57.5±5.4 vs. 59.0±5.3 cm 2 ), with a trend for an increase in leg strength (1-RM: 45.7±5.9 vs. 49.6±6.0 kg, P=0.08). This was despite there being no significant differences in whole-body skeletal muscle mass, as assessed via D 3 -Creatine. This study demonstrates that increases in multiple aspects of muscle function can be achieved in older adults with just 4-weeks of "lifestyle-integrated" HBET, with a cost-effective means. This training mode may prove to be a beneficial alternative for maintaining and/or improving muscle mass and function in older adults.

  3. Spine lateral flexion strength development differences between exercises with pelvic stabilization and without pelvic stabilization

    NASA Astrophysics Data System (ADS)

    Straton, Alexandru; Gidu, Diana Victoria; Micu, Alexandru

    2015-02-01

    Poor lateral flexor muscle strength can be an important source of lumbar/thoracic back pain in women. The purpose of this study was to evaluate pelvic stabilization (PS) and no pelvic stabilization (NoPS) lateral flexion strength exercise training on the development of isolated right and left lateral flexion strength. Isometric torque of the isolated right and left lateral flexion muscles was measured at two positions (0° and 30° opposed angle range of motion) on 42 healthy women before and after 8 weeks of PS and NoPS lateral flexion strength exercise training. Subjects were assigned in three groups, the first (n=14) trained 3 times/week with PS lateral flexion strength exercise, the second (n=14) trained 3 times/week with NoPS lateral flexion strength exercise and the third (control, n=14) did not train. Post training isometric strength values describing PS and NoPS lateral flexion strength improved in greater extent for the PS lateral flexion strength exercise group and in lesser extent for the NoPS lateral flexion strength exercise group, in both angles (p<0.05) relative to controls. These data indicate that the most effective way of training the spine lateral flexion muscles is PS lateral flexion strength exercises; NoPS lateral flexion strength exercises can be an effective way of training for the spine lateral flexion muscles, if there is no access to PS lateral flexion strength training machines.

  4. Analysis of the Static Strength and Relative Endurance of Women Athletes

    ERIC Educational Resources Information Center

    Heyward, Vivian; McCreary, Leslie

    1977-01-01

    Investigations of static strength and relative endurance of the grip muscles of women athletes revealed that mean endurance time was significantly greater than for men. Results were discussed in light of evidence suggesting possible sex differences in muscle hypertrophy, capillarization of muscle tissue, critical occluding tension level, and…

  5. Creatine Supplementation Associated or Not with Strength Training upon Emotional and Cognitive Measures in Older Women: A Randomized Double-Blind Study

    PubMed Central

    Alves, Christiano Robles Rodrigues; Merege Filho, Carlos Alberto Abujabra; Benatti, Fabiana Braga; Brucki, Sonia; Pereira, Rosa Maria R.; de Sá Pinto, Ana Lucia; Lima, Fernanda Rodrigues; Roschel, Hamilton; Gualano, Bruno

    2013-01-01

    Purpose To assess the effects of creatine supplementation, associated or not with strength training, upon emotional and cognitive measures in older woman. Methods This is a 24-week, parallel-group, double-blind, randomized, placebo-controlled trial. The individuals were randomly allocated into one of the following groups (n=14 each): 1) placebo, 2) creatine supplementation, 3) placebo associated with strength training or 4) creatine supplementation associated with strength training. According to their allocation, the participants were given creatine (4 x 5 g/d for 5 days followed by 5 g/d) or placebo (dextrose at the same dosage) and were strength trained or not. Cognitive function, assessed by a comprehensive battery of tests involving memory, selective attention, and inhibitory control, and emotional measures, assessed by the Geriatric Depression Scale, were evaluated at baseline, after 12 and 24 weeks of the intervention. Muscle strength and food intake were evaluated at baseline and after 24 weeks. Results After the 24-week intervention, both training groups (ingesting creatine supplementation and placebo) had significant reductions on the Geriatric Depression Scale scores when compared with the non-trained placebo group (p = 0.001 and p = 0.01, respectively) and the non-trained creatine group (p < 0.001 for both comparison). However, no significant differences were observed between the non-trained placebo and creatine (p = 0.60) groups, or between the trained placebo and creatine groups (p = 0.83). Both trained groups, irrespective of creatine supplementation, had better muscle strength performance than the non-trained groups. Neither strength training nor creatine supplementation altered any parameter of cognitive performance. Food intake remained unchanged. Conclusion Creatine supplementation did not promote any significant change in cognitive function and emotional parameters in apparently healthy older individuals. In addition, strength training per se improved emotional state and muscle strength, but not cognition, with no additive effects of creatine supplementation. Trial Registration Clinicaltrials.gov NCT01164020 PMID:24098469

  6. Subcutaneous immunoglobulin preserves muscle strength in chronic inflammatory demyelinating polyneuropathy.

    PubMed

    Markvardsen, L H; Harbo, T; Sindrup, S H; Christiansen, I; Andersen, H; Jakobsen, J

    2014-12-01

    Subcutaneous immunoglobulin (SCIG) is superior to placebo treatment for maintenance of muscle strength during 12 weeks in patients with chronic inflammatory demyelinating polyneuropathy (CIDP). The present study evaluated whether SCIG preserves muscle strength for 1 year in an open-label follow-up study. Seventeen responders to intravenous immunoglobulin (IVIG) who had participated in the previous study of SCIG versus placebo in CIDP were included. After one IVIG infusion 2 weeks prior to baseline, all continued on SCIG treatment at weekly equal dosage and were evaluated after 3, 6 and 12 months. Primary end-points were changes in muscle strength evaluated by isokinetic dynamometry in four affected muscle groups and a composite score of muscle performance and function tests, including Medical Research Council (MRC) score, grip strength, 40-m walking test (40-MWT) and nine-hole peg test (9-HPT). Secondary end-points were changes of each of the listed parameters at each time point as well as an overall disability sum score (ODSS). The dose of SCIG was significantly unaltered during the follow-up period. Overall the isokinetic dynamometry value increased by 7.2% (P = 0.033) and after 3, 6 and 12 months by 5.7%, 8.2% and 6.8% (ns). The overall composite score at all time intervals and for each interval remained unchanged. Amongst the secondary parameters the MRC score increased significantly by 1.7% (P = 0.007), whereas grip strength, 40-MWT, 9-HPT and ODSS remained unchanged. SCIG preserves muscle strength and functional ability in patients with CIDP who previously responded to IVIG. SCIG should be considered as an alternative in long-term treatment of CIDP patients. © 2014 The Author(s) European Journal of Neurology © 2014 EAN.

  7. Surface Electromyography of the Forearm Musculature During the Windmill Softball Pitch

    PubMed Central

    Remaley, D. Trey; Fincham, Bryce; McCullough, Bryan; Davis, Kirk; Nofsinger, Charles; Armstrong, Charles; Stausmire, Julie M.

    2015-01-01

    Background: Previous studies investigating the windmill softball pitch have focused primarily on shoulder musculature and function, collecting limited data on elbow and forearm musculature. Little information is available in the literature regarding the forearm. This study documents forearm muscle electromyographic (EMG) activity that has not been previously published. Purpose: Elbow and upper extremity overuse injuries are on the rise in fast-pitch softball pitchers. This study attempts to describe forearm muscle activity in softball pitchers during the windmill softball pitch. Overuse injuries can be prevented if a better understanding of mechanics is defined. Study Design: Descriptive laboratory study. Methods: Surface EMG and high-speed videography was used to study forearm muscle activation patterns during the windmill softball pitch on 10 female collegiate-level pitchers. Maximum voluntary isometric contraction of each muscle was used as a normalizing value. Each subject was tested during a single laboratory session per pitcher. Data included peak muscle activation, average muscle activation, and time to peak activation for 6 pitch types: fastball, changeup, riseball, curveball, screwball, and dropball. Results: During the first 4 phases, muscle activity (seen as signal strength on the EMG recordings) was limited and static in nature. The greatest activation occurred in phases 5 and 6, with increased signal strength, evidence of stretch-shortening cycle, and different muscle characteristics with each pitch style. These 2 phases of the windmill pitch are where the arm is placed in the 6 o’clock position and then at release of the ball. The flexor carpi ulnaris signal strength was significantly greater than the other forearm flexors. Timing of phases 1 through 5 was successively shorter for each pitch. There was a secondary pattern of activation in the flexor carpi ulnaris in phase 4 for all pitches except the fastball and riseball. Conclusion: During the 6 pitches, the greatest muscular activity was in phases 5 and 6. Flexor carpi ulnaris activity was greatest among the muscles tested. The riseball had the highest peak activity, but the curveball and dropball had the highest average signal strength. This muscle activity correlates with increasing distraction in the elbow, suggesting that flexor muscles act to counterdistract the elbow as they do for the baseball pitch. Clinical Relevance: Windmill pitchers are unique among overhead athletes as they throw, on average, more pitches per overhead athlete. Understanding the mechanics and physiology of the elbow in windmill pitchers is crucial to prevention and treatment of these increasingly common elbow injuries. This study establishes baseline data that will be useful to further prevent windmill pitch elbow injury. PMID:26535372

  8. ASSOCIATION OF ISOMETRIC STRENGTH OF HIP AND KNEE MUSCLES WITH INJURY RISK IN HIGH SCHOOL CROSS COUNTRY RUNNERS.

    PubMed

    Luedke, Lace E; Heiderscheit, Bryan C; Williams, D S Blaise; Rauh, Mitchell J

    2015-11-01

    High school cross country runners have a high incidence of overuse injuries, particularly to the knee and shin. As lower extremity strength is modifiable, identification of strength attributes that contribute to anterior knee pain (AKP) and shin injuries may influence prevention and management of these injuries. To determine if a relationship existed between isometric hip abductor, knee extensor and flexor strength and the incidence of AKP and shin injury in high school cross country runners. Sixty-eight high school cross country runners (47 girls, 21 boys) participated in the study. Isometric strength tests of hip abductors, knee extensors and flexors were performed with a handheld dynamometer. Runners were prospectively followed during the 2014 interscholastic cross country season for occurrences of AKP and shin injury. Bivariate logistic regression was used to examine risk relationships between strength values and occurrence of AKP and shin injury. During the season, three (4.4%) runners experienced AKP and 13 (19.1%) runners incurred a shin injury. Runners in the tertiles indicating weakest hip abductor (chi-square = 6.140; p=0.046), knee extensor (chi-square = 6.562; p=0.038), and knee flexor (chi-square = 6.140; p=0.046) muscle strength had a significantly higher incidence of AKP. Hip and knee muscle strength was not significantly associated with shin injury. High school cross country runners with weaker hip abductor, knee extensor and flexor muscle strength had a higher incidence of AKP. Increasing hip and knee muscle strength may reduce the likelihood of AKP in high school cross country runners. 2b.

  9. A Model for Predicting Integrated Man-Machine System Reliability: Model Logic and Description

    DTIC Science & Technology

    1974-11-01

    3. Fatigue buildup curve. The common requirement of all tests on the Dynamic Strength factor is for the muscles involved to propel, support, or...move the body repeatedly or to support it continuously over time. The tests of our Static Strength factor emphasize the lifting power of the muscles ...or the pounds of pressure which the muscles can exert. ... In contrast to Dynamic Strength the force exerted is against external objects, rather

  10. Effects of long term Tai Chi practice and jogging exercise on muscle strength and endurance in older people.

    PubMed

    Xu, D Q; Li, J X; Hong, Y

    2006-01-01

    To investigate the influence of regular Tai Chi (TC) practice and jogging on muscle strength and endurance in the lower extremities of older people. Twenty one long term older TC practitioners were compared with 18 regular older joggers and 22 sedentary counterparts. Maximum concentric strength of knee flexors and extensors was tested at angular velocities of 30 degrees/s and 120 degrees/s. Ankle dorsiflexors and plantar flexors were tested at 30 degrees/s and the dynamic endurance of the knee flexors and extensors was assessed at a speed of 180 degrees/s. The differences in the muscle strength of the knee joint amongst the three experimental groups were significant at the higher velocity. The strengths of knee extensors and flexors in the control group were significantly lower than those in the jogging group and marginally lower than those in the TC group. For the ankle joint, the subjects in both the TC and jogging groups generated more torque in their ankle dorsiflexors. In addition, the muscle endurance of knee extensors was more pronounced in TC practitioners than in controls. Regular older TC practitioners and joggers showed better scores than the sedentary controls on most muscle strength and endurance measures. However, the magnitude of the exercise effects on muscles might depend on the characteristics of different types of exercise.

  11. Effectiveness of hip muscle strengthening in patellofemoral pain syndrome patients: a systematic review.

    PubMed

    Santos, Thiago R T; Oliveira, Bárbara A; Ocarino, Juliana M; Holt, Kenneth G; Fonseca, Sérgio T

    2015-01-01

    Patellofemoral pain syndrome (PFPS) is characterized by anterior knee pain, which may limit the performance of functional activities. The influence of hip joint motion on the development of this syndrome has already been documented in the literature. In this regard, studies have investigated the effectiveness of hip muscle strengthening in patients with PFPS. The aims of this systematic review were (1) to summarize the literature related to the effects of hip muscle strengthening on pain intensity, muscle strength, and function in individuals with PFPS and (2) to evaluate the methodological quality of the selected studies. A search for randomized controlled clinical trials was conducted using the following databases: Google Scholar, MEDLINE, PEDro, LILACS, and SciELO. The selected studies had to distinguish the effects of hip muscle strengthening in a group of patients with PFPS, as compared to non-intervention or other kinds of intervention, and had to investigate the following outcomes: pain, muscle strength, and function. The methodological quality of the selected studies was analyzed by means of the PEDro scale. Seven studies were selected. These studies demonstrated that hip muscle strengthening was effective in reducing pain. However, the studies disagreed regarding the treatments' ability to improve muscle strength. Improvement in functional capabilities after hip muscle strengthening was found in five studies. Hip muscle strengthening is effective in reducing the intensity of pain and improving functional capabilities in patients with PFPS, despite the lack of evidence for its ability to increase muscle strength.

  12. Knee flexor strength and balance control impairment may explain declines during prolonged walking in women with mild multiple sclerosis.

    PubMed

    Ramari, Cintia; Moraes, Andréa G; Tauil, Carlos B; von Glehn, Felipe; Motl, Robert; de David, Ana C

    2018-02-01

    Physiological factors such as muscle weakness and balance could explain declines in walking distance by multiple sclerosis (MS) patients. The purpose of this study was to characterize levels and examine associations among decline in walking distance, balance and muscular strength in women with mild MS. Participants included 28 women with mild relapsing-remitting MS and 21 women without MS. We executed the 6-min walk test (6MWT) to verify declines in walking distance. Isokinetic knee flexion (KF) and extension (KE) muscle strength was measured using a dynamometer. Balance was quantified using a force platform, with eyes open and closed, on a rigid and foam surface. The MS patients presented declines in walking, lower KF muscle strength, and worse balance than controls. KF strength and balance correlated with walking in the MS group. The KF strength explained differences between groups in walking. The KF strength and balance presented as predictors of walking slowing down in the 6MWT, in mild MS. Women with mild MS have strength impairment of knee flexor muscles and balance control impairment that may explain walking related motor fatigability during prolonged walking. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Joint proprioception, muscle strength, and functional ability in patients with osteoarthritis of the knee.

    PubMed

    van der Esch, M; Steultjens, M; Harlaar, J; Knol, D; Lems, W; Dekker, J

    2007-06-15

    To test the hypotheses that poor knee joint proprioception is related to limitations in functional ability, and poor proprioception aggravates the impact of muscle weakness on limitations in functional ability in osteoarthritis (OA) of the knee. Sixty-three patients with symptomatic OA of the knee were tested. Proprioceptive acuity was assessed by establishing the joint motion detection threshold (JMDT) in the anteroposterior direction. Muscle strength was measured using a computer-driven isokinetic dynamometer. Functional ability was assessed by the 100-meter walking test, the Get Up and Go (GUG) test, and the Western Ontario and McMaster Universities Osteoarthritis Index physical function (WOMAC-PF) questionnaire. Correlation analyses were performed to assess the relationship between proprioception, muscle strength, and functional ability. Regression analyses were performed to assess the impact of proprioception on the relationship between muscle strength and functional ability. Poor proprioception (high JMDT) was related to more limitation in functional ability (walking time r = 0.30, P < 0.05; GUG time r = 0.30, P < 0.05; WOMAC-PF r = 0.26, P <0.05). In regression analyses, the interaction between proprioception and muscle strength was significantly related to functional ability (walking time, P < 0.001 and GUG time, P < 0.001) but not to WOMAC-PF score (P = 0.625). In patients with poor proprioception, reduction of muscle strength was associated with more severe deterioration of functional ability than in patients with accurate proprioception. Patients with poor proprioception show more limitation in functional ability, but this relationship is rather weak. In patients with poor proprioception, muscle weakness has a stronger impact on limitations in functional ability than in patients with accurate proprioception.

  14. The effect of radical treatment and rehabilitation on muscle mass and strength: a randomized trial in stages I-III lung cancer patients.

    PubMed

    Salhi, B; Huysse, W; Van Maele, G; Surmont, V F; Derom, E; van Meerbeeck, J P

    2014-04-01

    Little is known about the impact of an oncological treatment on muscle mass and strength in patients with lung cancer and the impact of a subsequent rehabilitation program. This study investigates the effect of radical treatment and post-treatment pulmonary rehabilitation on muscle mass and strength in patients with lung cancer and the relationship between muscle mass and strength. Lung cancer patients, candidate for radical treatment, were randomly (2:1) allocated after radical treatment to either standard follow up (CON) or a 12-week rehabilitation training program (RT). Muscle mass was estimated by bioelectric impedance and CT-scan. Muscle strength was estimated by measuring quadriceps force (QF) with a hand held dynamometer. All variables were measured before (M1) and after radical treatment (M2), and at the earliest 12 weeks after randomization (M3). Data are presented as means with standard deviation. 45 lung cancer patients (age: 65 years (9)) participated in the study. At M2, both muscle cross sectional area (MCSA) and QF were significantly decreased (p<0.05). 28 patients were randomized. 13/18 RT and 9/10 CON patients ended the trial. At M3, RT-patients improved significantly their MCSA compared to CON-patients (ΔMCSA: 6 cm(2) (6) (p=0.003) vs. 1cm(2) (11) (p=0.8)). Muscle mass and strength: (1) are decreased at presentation in a substantial part of lung cancer patients; (2) are significantly negatively affected by radical treatment and (3) completely recover after a 12 week structured rehabilitation program, whereas a further decline was observed in CON-patients. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Muscle strength and physical performance as predictors of mortality, hospitalization, and disability in the oldest old.

    PubMed

    Legrand, Delphine; Vaes, Bert; Matheï, Catharina; Adriaensen, Wim; Van Pottelbergh, Gijs; Degryse, Jean-Marie

    2014-06-01

    To evaluate the predictive value of muscle strength and physical performance in the oldest old for all-cause mortality; hospitalization; and the onset of disability, defined as a decline in activities of daily living (ADLs), independent of muscle mass, inflammatory markers, and comorbidities. A prospective, observational, population-based follow-up study. Three well-circumscribed areas of Belgium. Five hundred sixty participants aged 80 and older were followed for 33.5 months (interquartile range 31.1-35.6 months). Grip strength, Short Physical Performance Battery (SPPB) score, and muscle mass were measured at baseline; ADLs at baseline and after 20 months; and all-cause mortality and time to first hospitalization from inclusion onward. Kaplan-Meier curves and Cox proportional hazards models were calculated for all-cause mortality and hospitalization. Logistic regression analysis was used to determine predictors of decline in ADLs. Kaplan-Meier curves showed significantly higher all-cause mortality and hospitalization in subjects in the lowest tertile of grip strength and SPPB score. The adjusted Cox proportional hazards model showed that participants with high grip strength or a high SPPB score had a lower risk of mortality and hospitalization, independent of muscle mass, inflammatory markers, and comorbidity. A relationship was found between SPPB score and decline in ADLs, independent of muscle mass, inflammation, and comorbidity. In people aged 80 and older, physical performance is a strong predictor of mortality, hospitalization, and disability, and muscle strength is a strong predictor of mortality and hospitalization. All of these relationships were independent of muscle mass, inflammatory markers, and comorbidity. © 2014, Copyright the Authors Journal compilation © 2014, The American Geriatrics Society.

  16. Integrating Pilates Exercise into an Exercise Program for 65+ Year-Old Women to Reduce Falls

    PubMed Central

    Irez, Gonul Babayigit; Ozdemir, Recep Ali; Evin, Ruya; Irez, Salih Gokhan; Korkusuz, Feza

    2011-01-01

    The purpose of this study was to determine if Pilates exercise could improve dynamic balance, flexibility, reaction time and muscle strength in order to reduce the number of falls among older women. 60 female volunteers over the age of 65 from a residential home in Ankara participated in this study. Participants joined a 12-week series of 1-hour Pilates sessions three times per week. Dynamic balance, flexibility, reaction time and muscle strength were measured before and after the program. The number of falls before and during the 12-week period was also recorded. Dynamic balance, flexibility, reaction time and muscle strength improved (p < 0. 05) in the exercise group when compared to the non-exercise group. In conclusion, Pilates exercises are effective in improving dynamic balance, flexibility, reaction time, and muscle strength as well as decreasing the propensity to fall in older women. Key points Pilates-based exercises improve dynamic balance, reaction time and muscle strength in the elderly. Pilates exercise may reduce the number of falls in elderly women by increasing these fitness parameters. PMID:24149302

  17. [Effects of tai chi in postmenopausal women with osteoporosis: a systematic review].

    PubMed

    Chang, Ting-Jung; Ting, Yu-Ting; Sheu, Shei-Lan; Chang, Hsiao-Yun

    2014-10-01

    Tai chi has been increasingly applied in osteoporosis patients. However, systematic reviews of the efficacy of this practice have been few and of limited scope. This study reviews previous experimental research work using tai chi as an intervention in postmenopausal women with osteoporosis and to appraise the reported research designs used, tai chi methods used, and outcomes. A systematic review method was used to search 14 databases for articles published between January 1980 and July 2013. Searched keywords included: "tai chi," "osteoporosis," and "postmenopausal women". The 2,458 articles initially identified were reduced to 4 valid articles based on considerations of criteria and repeatability. The 4 valid articles used either a randomized clinical trial (RCT) or a controlled clinical trial (CCT). They were further analyzed and synthesized in terms of common variables such as balance, muscle strength, and quality of life. Three of the 4 studies identified significant pretest / posttest differences in physiological aspects of quality of life in participants but did not obtain consistent results in terms of the psychological aspects. While reports identified a significant and positive tai chi effect on balance, they all used different measurements to do so. Only one of the four studies identified significant improvement in muscle strength. Therefore, this review could not identify clear support for the effectiveness of tai chi on balance or muscle strength. This review did not definitively support the positive effects of tai chi on balance, muscle strength, and quality of life in postmenopausal women with osteoporosis. The designs used in the tai chi interventions may be referenced for future studies. We suggest that future studies use data triangulation rather than a single-item tool to validate the research in order to cross-verify the same information. This may strengthen the research and increase the credibility and the validity of related findings.

  18. Strength deficits of the shoulder complex during isokinetic testing in people with chronic stroke

    PubMed Central

    Nascimento, Lucas R.; Teixeira-Salmela, Luci F.; Polese, Janaine C.; Ada, Louise; Faria, Christina D. C. M.; Laurentino, Glória E. C.

    2014-01-01

    OBJECTIVES: To examine the strength deficits of the shoulder complex after stroke and to characterize the pattern of weakness according to type of movement and type of isokinetic parameter. METHOD: Twelve chronic stroke survivors and 12 age-matched healthy controls had their shoulder strength measured using a Biodex isokinetic dynamometer. Concentric measures of peak torque and work during shoulder movements were obtained in random order at speeds of 60°/s for both groups and sides. Type of movement was defined as scapulothoracic (protraction and retraction), glenohumeral (shoulder internal and external rotation) or combined (shoulder flexion and extension). Type of isokinetic parameter was defined as maximum (peak torque) or sustained (work). Strength deficits were calculated using the control group as reference. RESULTS: The average strength deficit for the paretic upper limb was 52% for peak torque and 56% for work. Decreases observed in the non-paretic shoulder were 21% and 22%, respectively. Strength deficit of the scapulothoracic muscles was similar to the glenohumeral muscles, with a mean difference of 6% (95% CI -5 to 17). Ability to sustain torque throughout a given range of motion was decreased as much as the peak torque, with a mean difference of 4% (95% CI -2 to 10). CONCLUSIONS: The findings suggest that people after stroke might benefit from strengthening exercises directed at the paretic scapulothoracic muscles in addition to exercises of arm elevation. Clinicians should also prescribe different exercises to improve the ability to generate force and the ability to sustain the torque during a specific range of motion. PMID:25003280

  19. BIOMECHANICAL DIFFERENCES IN BRAZILIAN JIU-JITSU ATHLETES: THE ROLE OF COMBAT STYLE

    PubMed Central

    Lima, Alane Almeida; Coelho, Anita Camila Sampaio; Lima, Yuri Lopes; Almeida, Gabriel Peixoto Leão; Bezerra, Márcio Almeida; de Oliveira, Rodrigo Ribeiro

    2017-01-01

    Background Brazilian Jiu-Jitsu (BJJ) athletes can be divided into two combat styles: pass fighters (PFs) and guard fighters (GFs). Flexibility of the posterior chain muscles is highly necessary in these athletes, especially in GFs. On the other hand, isometric strength of the trunk extensors is required in PFs. Handgrip strength is important in holding the kimono of the opponent, and symmetrical lower-limb strength is important for the prevention of injuries due to the overload caused by training. Purpose The aim of this study was to compare the biomechanical profiles of BJJ athletes with different combat styles using the following outcome measures: flexibility, trunk extensor isometric endurance, postural balance, handgrip isometric endurance and lower-limb muscle strength. Methods A cross-sectional study was conducted using 19 GFs and 19 PFs. The sit-and-reach test was used to evaluate the flexibility of the posterior chain muscles. The Biodex Balance System® was used to evaluate balance. A handgrip dynamometer and a dorsal dynamometer were used to evaluate handgrip and trunk extensor endurance, respectively. Quadriceps and hamstring strength were evaluated with an isokinetic dynamometer at 60 °/s. Results No differences were observed between groups in terms of flexibility, balance, handgrip isometric endurance or quadriceps and hamstring strength; however, PFs (81.33) showed more isometric trunk extension endurance than GFs (68.85) (p = 0.02). Both groups had low values for hamstring/quadriceps ratio. Conclusion No significant biomechanical differences were observed between PFs and GFs. Level of Evidence 2b PMID:28217417

  20. Relationship of obesity with physical activity, aerobic fitness and muscle strength in Flemish adults.

    PubMed

    Duvigneaud, N; Matton, L; Wijndaele, K; Deriemaeker, P; Lefevre, J; Philippaerts, R; Thomis, M; Delecluse, C; Duquet, W

    2008-06-01

    The aim of this study was to analyse differences in physical activity, cardiorespiratory fitness (CRF) and muscle strength between normal weight, overweight and obese adults and to investigate the role of physical activity variables in the analyses of differences in CRF and muscle strength between these groups. A total of 807 men and 633 women (age: 18-75 years) were included in this cross-sectional study. Weight, height, waist circumference (WC) and bioelectrical impedance were measured. Different dimensions of physical activity were assessed using a validated questionnaire. CRF (VO(2peak)) was evaluated by a maximal test on a cycle ergometer. Knee strength was measured with a calibrated Biodex System Pro 3 dynamometer. Three methods were used for classification in obesity groups: body mass index (BMI), WC and combined BMI-WC classification. Health-related sports and physical activity level are negatively associated with obesity in men, but not in women. Television viewing is positively associated with obesity, while VO(2peak)/fat free mass (FFM) and knee strength/FFM show a negative association with obesity in both genders. Overall, subjects with normal WC seem to be more physically active and to have somewhat better values for CRF compared to those with high WC within the same BMI category. Lower values for relative CRF and knee strength in obese subjects compared to their lean counterparts remain after adjustment for physical activity. This study confirms the lower level of physical activity and the impaired CRF and knee strength in obese adults compared to their lean counterparts. This study also sustains the importance of measuring WC and CRF during clinical examinations.

  1. Effect of an herbal/botanical supplement on strength, balance, and muscle function following 12-weeks of resistance training: a placebo controlled study

    PubMed Central

    2014-01-01

    Background StemSport (SS; StemTech International, Inc. San Clemente, CA) contains a proprietary blend of the botanical Aphanizomenon flos-aquae and several herbal antioxidant and anti-inflammatory substances. SS has been purported to accelerate tissue repair and restore muscle function following resistance exercise. Here, we examine the effects of SS supplementation on strength adaptations resulting from a 12-week resistance training program in healthy young adults. Methods Twenty-four young adults (16 males, 8 females, mean age = 20.5 ± 1.9 years, mass = 70.9 ± 11.9 kg, stature = 176.6 ± 9.9 cm) completed the twelve week training program. The study design was a double-blind, placebo controlled parallel group trial. Subjects either received placebo or StemSport supplement (SS; mg/day) during the training. 1-RM bench press, 1-RM leg press, vertical jump height, balance (star excursion and center of mass excursion), isokinetic strength (elbow and knee flexion/extension) and perception of recovery were measured at baseline and following the 12-week training intervention. Results Resistance training increased 1-RM strength (p < 0.008), vertical jump height (p < 0.03), and isokinetic strength (p < 0.05) in both SS and placebo groups. No significant group-by-time interactions were observed (all p-values >0.10). Conclusions These data suggest that compared to placebo, the SS herbal/botanical supplement did not enhance training induced adaptations to strength, balance, and muscle function above strength training alone. PMID:24910543

  2. Subtyping children with developmental coordination disorder based on physical fitness outcomes.

    PubMed

    Aertssen, Wendy; Bonney, Emmanuel; Ferguson, Gillian; Smits-Engelsman, Bouwien

    2018-05-28

    Children with Developmental Coordination Disorder (DCD) are known to have poor physical fitness. However, differentiating homogenous subgroups of DCD using fitness performance has not yet been established. Therefore the purpose of this study was to identify subtypes in children with and without DCD using measures of physical fitness. Children (aged 6-10 years, n = 217) constituted the sample for this study. They were assessed on 1) aerobic fitness (20m Shuttle Run test), 2) anaerobic fitness (Muscle Power Sprint Test), 3) isometric muscle strength (handheld dynamometry) 4) functional upper and lower body strength (Functional Strength Measurement) and 5) motor coordination [Movement Assessment Battery for Children-2nd edition (MABC-2) test]. The Ward method was used to identify the various clusters. Five subtypes emerged in the entire sample. In the typically developing (TD) children mainly 2 subtypes (number 5 and 2) were found containing 89% of the TD children (n = 55), with the largest group demonstrating above average performance on all measures (cluster 5). Children in subtype 2 had just above average motor coordination and good aerobic fitness but lower muscle strength. Subtypes 1, 3 and 4 were clearly "DCD" clusters, however they showed difference in fitness performance. Subtype 1 contained children with DCD who showed poor performance on all fitness outcomes (n = 45). Children with DCD in subtype 3 had poor aerobic but average strength and anaerobic fitness (n = 48). Subtype 4 contained children with DCD (n = 45) who had good muscle strength and anaerobic fitness. Of these, 36% were at risk of DCD while 24% had definite motor coordination problems. Our findings indicate that children with and without DCD demonstrate heterogeneous physical fitness profiles. The majority of the children (66%) with DCD belonged to subtypes with lower fitness performance. Further studies are needed to confirm these findings in other samples of DCD children. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. The responsiveness of sensibility and strength tests in patients undergoing carpal tunnel decompression

    PubMed Central

    2011-01-01

    Background Several clinical measures of sensory and motor function are used alongside patient-rated questionnaires to assess outcomes of carpal tunnel decompression. However there is a lack of evidence regarding which clinical tests are most responsive to clinically important change over time. Methods In a prospective cohort study 63 patients undergoing carpal tunnel decompression were assessed using standardised clinician-derived and patient reported outcomes before surgery, at 4 and 8 months follow up. Clinical sensory assessments included: touch threshold with monofilaments (WEST), shape-texture identification (STI™ test), static two-point discrimination (Mackinnon-Dellon Disk-Criminator) and the locognosia test. Motor assessments included: grip and tripod pinch strength using a digital grip analyser (MIE), manual muscle testing of abductor pollicis brevis and opponens pollicis using the Rotterdam Intrinsic Handheld Myometer (RIHM). The Boston Carpal Tunnel Questionnaire (BCTQ) was used as a patient rated outcome measure. Results Relative responsiveness at 4 months was highest for the BCTQ symptom severity scale with moderate to large effects sizes (ES = -1.43) followed by the BCTQ function scale (ES = -0.71). The WEST and STI™ were the most responsive sensory tests at 4 months showing moderate effect sizes (WEST ES = 0.55, STI ES = 0.52). Grip and pinch strength had a relatively higher responsiveness compared to thenar muscle strength but effect sizes for all motor tests were very small (ES ≤0.10) or negative indicating a decline compared to baseline in some patients. Conclusions For clinical assessment of sensibility touch threshold assessed by monofilaments (WEST) and tactile gnosis measured with the STI™ test are the most responsive tests and are recommended for future studies. The use of handheld myometry (RIHM) for manual muscle testing, despite more specifically targeting thenar muscles, was less responsive than grip or tripod pinch testing using the digital grip analyser (MIE). When assessing power and pinch strength the effect of other concomitant conditions such as degenerative joint disease on strength needs to be considered. PMID:22032626

  4. Strength training, but not endurance training, reduces motor unit discharge rate variability.

    PubMed

    Vila-Chã, Carolina; Falla, Deborah

    2016-02-01

    This study evaluates and compares the effects of strength and endurance training on motor unit discharge rate variability and force steadiness of knee extensor muscles. Thirty sedentary healthy men (age, 26.0±3.8yrs) were randomly assigned to strength training, endurance training or a control group. Conventional endurance and strength training was performed 3days per week, over a period of 6weeks. Maximum voluntary contraction (MVC), time to task failure (at 30% MVC), coefficient of variation (CoV) of force and of the discharges rates of motor units from the vastus medialis obliquus and vastus lateralis were determined as subjects performed 20% and 30% MVC knee extension contractions before and after training. CoV of motor unit discharges rates was significantly reduced for both muscles following strength training (P<0.001), but did not change in the endurance (P=0.875) or control group (P=0.995). CoV of force was reduced after the strength training intervention only (P<0.01). Strength training, but not endurance training, reduces motor unit discharge rate variability and enhances force steadiness of the knee extensors. These results provide new insights into the neuromuscular adaptations that occur with different training methods. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Do oarsmen have asymmetries in the strength of their back and leg muscles?

    PubMed

    Parkin, S; Nowicky, A V; Rutherford, O M; McGregor, A H

    2001-07-01

    The aim of this study was to establish whether asymmetry of the strength of the leg and trunk musculature is more prominent in rowers than in controls. Nineteen oarsmen and 20 male controls matched for age, height and body mass performed a series of isokinetic and isometric strength tests on an isokinetic dynamometer. These strength tests focused on the trunk and leg muscles. Comparisons of strength were made between and within groups for right and left symmetry patterns, hamstring: quadriceps ratios, and trunk flexor and extensor ratios. The results revealed no left and right asymmetries in either the knee extensor or flexor strength parameters (including both isometric and isokinetic measures). Knee extensor strength was significantly greater in the rowing population, but knee flexor strength was similar between the two groups. No difference was seen between the groups for the hamstring: quadriceps strength ratio. In the rowing population, stroke side had no influence on leg strength. No differences were observed in the isometric strength of the trunk flexors and extensors between groups, although EMG activity was significantly higher in the rowing population. Patterns of asymmetry of muscle activity were observed between the left and right erector spinae muscles during extension, which was significantly related to rowing side (P < 0.01). These observations could be related to the high incidence of low back pain in oarsmen.

  6. Methods for the assessment of peripheral muscle fatigue and its energy and metabolic determinants in COPD.

    PubMed

    Rondelli, Rafaella Rezende; Dal Corso, Simone; Simões, Alexandre; Malaguti, Carla

    2009-11-01

    It has been well established that, in addition to the pulmonary involvement, COPD has systemic consequences that can lead to peripheral muscle dysfunction, with greater muscle fatigue, lower exercise tolerance and lower survival in these patients. In view of the negative repercussions of early muscle fatigue in COPD, the objective of this review was to discuss the principal findings in the literature on the metabolic and bioenergy determinants of muscle fatigue, its functional repercussions, as well as the methods for its identification and quantification. The anatomical and functional substrate of higher muscle fatigue in COPD appears to include lower levels of high-energy phosphates, lower mitochondrial density, early lactacidemia, higher serum ammonia and reduced muscle perfusion. These alterations can be revealed by contraction failure, decreased firing rates of motor units and increased recruitment of motor units in a given activity, which can be functionally detected by a reduction in muscle strength, power and endurance. This review article also shows that various types of muscle contraction regimens and protocols have been used in order to detect muscle fatigue in this population. With this understanding, rehabilitation strategies can be developed in order to improve the resistance to muscle fatigue in this population.

  7. Abnormal pulmonary function and respiratory muscle strength findings in Chinese patients with Parkinson's disease and multiple system atrophy--comparison with normal elderly.

    PubMed

    Wang, Yao; Shao, Wei-bo; Gao, Li; Lu, Jie; Gu, Hao; Sun, Li-hua; Tan, Yan; Zhang, Ying-dong

    2014-01-01

    There have been limited comparative data regarding the investigations on pulmonary and respiratory muscle function in the patients with different parkinsonism disorders such as Parkinson's disease (PD) and multiple system atrophy (MSA) versus normal elderly. The present study is aiming to characterize the performance of pulmonary function and respiratory muscle strength in PD and MSA, and to investigate the association with severity of motor symptoms and disease duration. Pulmonary function and respiratory muscle strength tests were performed in 30 patients with PD, 27 with MSA as well as in 20 age-, sex-, height-, weight-matched normal elderly controls. All the patients underwent United Parkinson's disease rating scale (UPDRS) or united multiple system atrophy rating scale (UMSARS) separately as diagnosed. Vital capacity, forced expiratory volume in 1 second and forced vital capacity decreased, residual volume and ratio of residual volume to total lung capacity increased in both PD and MSA groups compared to controls (p<0.05). Diffusing capacity was decreased in the MSA group, compared with PD and normal elderly control groups (p<0.05). Respiratory muscle strength was lower in both PD and MSA groups than in controls (p<0.05). The values representing spirometry function and respiratory muscle strength were found to have a negative linear correlation with mean score of UPDRS-III in PD and mean score of UMSARS-I in MSA. Respiratory muscle strength showed a negative linear correlation with the mean score of UMSARS-II and disease duration in MSA patients. These findings suggest that respiratory dysfunction is involved in PD and MSA. Respiratory muscle strength is remarkably reduced, and some of the parameters correlate with disease duration and illness severity. The compromised respiratory function in neurodegenerative disorders should be the focus of further researches.

  8. CHANGES IN MUSCLE DAMAGE MARKERS IN FEMALE BASKETBALL PLAYERS

    PubMed Central

    Moreira, A.; Nosaka, K.; Nunes, J.A.; Viveiros, L.; Jamurtas, A.Z.

    2014-01-01

    The aim of the present study was to investigate changes in muscle soreness, blood muscle damage markers, muscle strength and agility following an official basketball match. Eleven elite female professional basketball players (27.4 ± 4.8 years, 179.5 ± 5.5 cm, 72.0 ± 7.8 kg) of a team participated in this study. The official match was the seventh match of the season in the first phase of the Brazilian National Female Basketball Championship. Muscle soreness, plasma creatine kinase activity (CK), and myoglobin concentration (Mb) were determined before and after the match (post-match, 24 and 48 hours after the match). The 1RM strength for bench press and leg press, and the agility T test were assessed before and at 24 and 48 hours after the match. Significant increases in muscle soreness, CK and Mb were observed at 24 and 48 hours post-match (p<0.05). No significant changes in the 1RM strength and T test were detected during recovery (24 and 48 hours after the match). These results suggest that a basketball match induced limited muscle damage with minimal effect on performance during recovery. The small increase in muscle damage markers following a basketball match did not affect strength and agility performance. PMID:24917683

  9. Changes in muscle damage markers in female basketball players.

    PubMed

    Moreira, A; Nosaka, K; Nunes, J A; Viveiros, L; Jamurtas, A Z; Aoki, M S

    2014-03-01

    The aim of the present study was to investigate changes in muscle soreness, blood muscle damage markers, muscle strength and agility following an official basketball match. Eleven elite female professional basketball players (27.4 ± 4.8 years, 179.5 ± 5.5 cm, 72.0 ± 7.8 kg) of a team participated in this study. The official match was the seventh match of the season in the first phase of the Brazilian National Female Basketball Championship. Muscle soreness, plasma creatine kinase activity (CK), and myoglobin concentration (Mb) were determined before and after the match (post-match, 24 and 48 hours after the match). The 1RM strength for bench press and leg press, and the agility T test were assessed before and at 24 and 48 hours after the match. Significant increases in muscle soreness, CK and Mb were observed at 24 and 48 hours post-match (p<0.05). No significant changes in the 1RM strength and T test were detected during recovery (24 and 48 hours after the match). These results suggest that a basketball match induced limited muscle damage with minimal effect on performance during recovery. The small increase in muscle damage markers following a basketball match did not affect strength and agility performance.

  10. A structural equation model of the relationship between muscle strength, balance performance, walking endurance and community integration in stroke survivors

    PubMed Central

    2017-01-01

    Purpose To use structural equation modelling (SEM) to determine (1) the direct and indirect associations of strength of paretic lower limb muscles with the level of community integration, and (2) the direct association of walking endurance and balance performance with the level of community integration in community-dwelling stroke survivors. Materials and methods In this cross-sectional study of 105 stroke survivors, the Subjective Index of Physical and Social Outcome (SIPSO) was used to measure the level of community integration. Lower-limb strength measures included isometric paretic ankle strength and isokinetic paretic knee peak torque. The Berg Balance Scale (BBS) and the 6-minute walk test (6MWT) were used to evaluate balance performance and walking endurance, respectively. Results SEM revealed that the distance walked on the 6MWT had the strongest direct association with the SIPSO score (β = 0.41, p <0.001). An increase of one standard deviation in the 6MWT distance resulted in an increase of 0.41 standard deviations in the SIPSO score. Moreover, dorsiflexion strength (β = 0.18, p = 0.044) and the BBS score (β = 0.21, p = 0.021) had direct associations with the SIPSO score. Conclusions The results of the proposed model suggest that rehabilitation training of community-dwelling stroke survivors could focus on walking endurance, balance performance and dorsiflexor muscle strengthening if the aim is to augment the level of community integration. PMID:29049293

  11. Testing the Hip Abductor Muscle Strength of Older Persons Using a Handheld Dynamometer.

    PubMed

    Awwad, Daniel H; Buckley, Jonathan D; Thomson, Rebecca L; O'Connor, Matthew; Carbone, Tania A; Chehade, Mellick J

    2017-09-01

    To investigate the reliability of a clinically applicable method of dynamometry to assess and monitor hip abductor muscle strength in older persons. Bilateral isometric hip abductor muscle strength measured with a handheld dynamometer, patients supine with the contralateral hip positioned directly against a wall for stabilization. Reliability determined by comparing intra-assessor and inter-assessor results and comparison to a criterion standard (stabilized dynamometer with patients in the standing position). UniSA Nutritional Physiology Research Centre. Twenty-one patients older than 65 years were recruited from the Royal Adelaide Hospital. Intraclass correlation coefficients (ICCs), bias, and limits of agreement calculated to determine reliability. Intra-assessor and inter-assessor ICCs were high (0.94 and 0.92-0.94, respectively). There was no intra-assessor bias and narrow limits of agreement (±2.4%). There was a small inter-assessor bias but narrow limits of agreement (0.6%-0.9% and ± 2.3%, respectively). There was a wide variation comparing results to the criterion standard (±5.0%-5.2% limits of agreement), highlighting problems attributed to difficulties that the test population had with the standing position used in the criterion standard test. Testing older persons' hip abductor muscle strength while in the supine position with optimal pelvic stabilization using a handheld dynamometer is highly reliable. While further studies must be done to assess patients with specific pathologies, this test has potential application to monitor and evaluate the effects of surgical interventions and/or rehabilitation protocols for a variety of conditions affecting hip abductor function such as hip fractures and arthritis.

  12. Genetic variation in the human vitamin D receptor is associated with muscle strength, fat mass and body weight in Swedish women.

    PubMed

    Grundberg, Elin; Brändström, Helena; Ribom, Eva L; Ljunggren, Osten; Mallmin, Hans; Kindmark, Andreas

    2004-03-01

    Bone mineral density (BMD) is under strong genetic control and a number of candidate genes have been associated with BMD. Both muscle strength and body weight are considered to be important predictors of BMD but far less is known about the genes affecting muscle strength and fat mass. The purpose of this study was to investigate the poly adenosine (A) repeat and the BsmI SNP in the vitamin D receptor (VDR) in relation to muscle strength and body composition in healthy women. A population-based study of 175 healthy women aged 20-39 years was used. The polymorphic regions in the VDR gene (the poly A repeat and the BsmI SNP) were amplified by PCR. Body mass measurements (fat mass, lean mass, body weight and body mass index) and muscle strength (quadriceps, hamstring and grip strength) were evaluated. Individuals with shorter poly A repeat, ss and/or absence of the linked BsmI restriction site (BB) have higher hamstring strength (ss vs LL, P=0.02), body weight (ss vs LL, P=0.049) and fat mass (ss vs LL, P=0.04) compared with women with a longer poly A repeat (LL) and/or the presence of the linked BsmI restriction site (bb). Genetic variation in the VDR is correlated with muscle strength, fat mass and body weight in premenopausal women. Further functional studies on the poly A microsatellite are needed to elucidate whether this is the functionally relevant locus or if the polymorphism is in linkage disequilibrium with a functional variant in a closely situated gene further downstream of the VDR 3'UTR.

  13. Relationship between lower limb muscle strength, self-reported pain and function, and frontal plane gait kinematics in knee osteoarthritis.

    PubMed

    Park, Sang-Kyoon; Kobsar, Dylan; Ferber, Reed

    2016-10-01

    The relationship between muscle strength, gait biomechanics, and self-reported physical function and pain for patients with knee osteoarthritis is not well known. The objective of this study was to investigate these relationships in this population. Twenty-four patients with knee osteoarthritis and 24 healthy controls were recruited. Self-reported pain and function, lower-limb maximum isometric force, and frontal plane gait kinematics during treadmill walking were collected on all patients. Between-group differences were assessed for 1) muscle strength and 2) gait biomechanics. Linear regressions were computed within the knee osteoarthritis group to examine the effect of muscle strength on 1) self-reported pain and function, and 2) gait kinematics. Patients with knee osteoarthritis exhibited reduced hip external rotator, knee extensor, and ankle inversion muscle force output compared with healthy controls, as well as increased peak knee adduction angles (effect size=0.770; p=0.013). Hip abductor strength was a significant predictor of function, but not after controlling for covariates. Ankle inversion, hip abduction, and knee flexion strength were significant predictors of peak pelvic drop angle after controlling for covariates (34.4% unique variance explained). Patients with knee osteoarthritis exhibit deficits in muscle strength and while they play an important role in the self-reported function of patients with knee osteoarthritis, the effect of covariates such as sex, age, mass, and height was more important in this relationship. Similar relationships were observed from gait variables, except for peak pelvic drop, where hip, knee, and ankle strength remained important predictors of this variable after controlling for covariates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Multifocal Motor Neuropathy

    MedlinePlus

    ... immunoglobulin (IVIg) or immunosuppressive therapy with cyclophosphamide. Prognosis Improvement in muscle strength usually begins within 3 to ... of slow progression over many years. x Prognosis Improvement in muscle strength usually begins within 3 to ...

  15. The Relationship between Vitamin D and Muscle Size and Strength in Patients on Hemodialysis

    PubMed Central

    Gordon, Patricia L.; Sakkas, Giorgos K.; Doyle, Julie W.; Shubert, Tiffany; Johansen, Kirsten L.

    2007-01-01

    OBJECTIVE Vitamin D has various actions in skeletal muscle. The purpose of this study was to compare lower limb muscle size and strength in hemodialysis (HD) patients being treated with 1,25-dihydroxyvitamin D (calcitriol) or a 1,25-dihydroxyvitamin D analog (paricalcitol) to HD patients who were receiving none. DESIGN This was a retrospective cross-sectional study. SETTING Outpatient hemodialysis centers. PATIENTS HD patients receiving calcitriol or paricalcitol (active vitamin D) for control of secondary hyperparathyroidism (VitD, n = 49) were compared to HD patients who were not (n = 30). MAIN OUTCOME MEASURES Cross-sectional areas (CSA) of thigh and tibialis anterior muscles by magnetic resonance imaging (MRI), and three measures of strength; three-repetition maximum (3RM) for knee extension (isotonic), peak torque of knee extensors (isokinetic), and maximal voluntary contraction (MVC) of the ankle dorsiflexor muscles (isometric). RESULTS There were no differences in age, weight, dialysis vintage, or intact parathyroid hormone levels between the groups, although serum albumin was higher in the VitD group (p <0.05). Patients in the VitD group had larger thigh muscle CSA (p < 0.05) and were stronger across all strength measures (p< 0.05) after controlling for age and gender (ANCOVA). When all analyses were subsequently adjusted for serum albumin concentration, only the difference in 3RM knee extension strength lost significance. There were no significant differences in any measurements between patients who received calcitriol or paricalcitol. CONCLUSION Treatment with active vitamin D was associated with greater muscle size and strength in this cohort of HD patients. PMID:17971312

  16. Functional capacity and muscular abnormalities in subclinical hypothyroidism.

    PubMed

    Reuters, Vaneska S; Teixeira, Patrícia de Fátima S; Vigário, Patrícia S; Almeida, Cloyra P; Buescu, Alexandre; Ferreira, Márcia M; de Castro, Carmen L N; Gold, Jaime; Vaisman, Mario

    2009-10-01

    Neuromuscular abnormalities and low exercise tolerance are frequently observed in overt hypothyroidism, but it remains controversial if they can also occur in subclinical hypothyroidism (sHT). The aim of this study is to evaluate neuromuscular symptoms, muscle strength, and exercise capacity in sHT, compared with healthy euthyroid individuals. A cross-sectional study was performed with 44 sHT and 24 euthyroid outpatients from a university hospital. Neuromuscular symptoms were questioned. Muscle strength was tested for neck, shoulder, arm, and hip muscle groups, using manual muscle testing (MMT). Quadriceps muscle strength was tested with a chair dynamometer and inspiratory muscle strength (IS) by a manuvacuometer. Functional capacity was estimated based on the peak of oxygen uptake (mL/kg/min), using the Bruce treadmill protocol. Cramps (54.8% versus 25.0%; P < 0.05), weakness (45.2% versus 12.6; P < 0.05), myalgia (47.6% versus 25.0%; P = 0.07), and altered MMT (30.8% versus 8.3%; P = 0.040) were more frequent in sHT. Quadriceps strength and IS were not impaired in sHT and the same was observed for functional capacity. IS was significantly lower in patients complaining of fatigue and weakness (P < 0.05) and tended to be lower in those with altered MMT (P = 0.090). Neuromuscular complaints and altered MMT were significantly more frequent in sHT than in controls, and IS was lower in patients with these abnormalities. Results suggest that altered muscle strength by MMT and the coexistence of neuromuscular complaints in patients with sHT may indicate neuromuscular dysfunction.

  17. Relationship between physical function and biomechanical gait patterns in boys with haemophilia.

    PubMed

    Stephensen, D; Taylor, S; Bladen, M; Drechsler, W I

    2016-11-01

    The World Federation of Haemophilia recommends joint and muscle health is evaluated using X-ray and magnetic resonance imaging, together with clinical examination scores. To date, inclusion of performance-based functional activities to monitor children with the condition has received little attention. To evaluate test-retest repeatability of physical function tests and quantify relationships between physical function, lower limb muscle strength and gait patterns in young boys with haemophilia. Timed 6-minute walk, timed up and down stairs, timed single leg stance, muscle strength of the knee extensors, ankle dorsi and plantar flexors, together with joint biomechanics during level walking were collected from 21 boys aged 6-12 years with severe haemophilia. Measures of physical function and recording of muscle strength with a hand-held myometer were repeatable (ICC > 0.78). Distances walked in six minutes, time taken to go up and down a flight of stairs and lower limb muscle strength correlated closely with ankle range of motion, together with peak knee flexion and ankle dorsi and plantarflexion moments during walking (P < 0.05). Alterations in gait patterns of boys with haemophilia appear to be associated with changes in performance of physical function and performance seems to depend on their muscle strength. Timed 6-minute walk test, timed up and down steps test and muscle strength of the knee extensors showed the strongest correlation with biomechanical joint function, and hence might serve as a basis for the clinical monitoring of physical function outcomes in children with haemophilia. © 2016 John Wiley & Sons Ltd.

  18. Somatropin treatment of spinal muscular atrophy: a placebo-controlled, double-blind crossover pilot study.

    PubMed

    Kirschner, J; Schorling, D; Hauschke, D; Rensing-Zimmermann, C; Wein, U; Grieben, U; Schottmann, G; Schara, U; Konrad, K; Müller-Felber, W; Thiele, S; Wilichowski, E; Hobbiebrunken, E; Stettner, G M; Korinthenberg, R

    2014-02-01

    In preclinical studies growth hormone and its primary mediator IGF-1 have shown potential to increase muscle mass and strength. A single patient with spinal muscular atrophy reported benefit after compassionate use of growth hormone. Therefore we evaluated the efficacy and safety of growth hormone treatment for spinal muscular atrophy in a multicenter, randomised, double-blind, placebo-controlled, crossover pilot trial. Patients (n = 19) with type II/III spinal muscular atrophy were randomised to receive either somatropin (0.03 mg/kg/day) or placebo subcutaneously for 3 months, followed by a 2-month wash-out phase before 3 months of treatment with the contrary remedy. Changes in upper limb muscle strength (megascore for elbow flexion and hand-grip in Newton) were assessed by hand-held myometry as the primary measure of outcome. Secondary outcome measures included lower limb muscle strength, motor function using the Hammersmith Functional Motor Scale and other functional tests for motor function and pulmonary function. Somatropin treatment did not significantly affect upper limb muscle strength (point estimate mean: 0.08 N, 95% confidence interval (CI:-3.79;3.95, p = 0.965), lower limb muscle strength (point estimate mean: 2.23 N, CI:-2.19;6.63, p = 0.302) or muscle and pulmonary function. Side effects occurring during somatropin treatment corresponded with well-known side effects of growth hormone substitution in patients with growth hormone deficiency. In this pilot study, growth hormone treatment did not improve muscle strength or function in patients with spinal muscular atrophy type II/III. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Can repetitive transcranial magnetic stimulation increase muscle strength in functional neurological paresis? A proof-of-principle study.

    PubMed

    Broersma, M; Koops, E A; Vroomen, P C; Van der Hoeven, J H; Aleman, A; Leenders, K L; Maurits, N M; van Beilen, M

    2015-05-01

    Therapeutic options are limited in functional neurological paresis disorder. Earlier intervention studies did not control for a placebo effect, hampering assessment of effectivity. A proof-of-principle investigation was conducted into the therapeutic potential of repetitive transcranial magnetic stimulation (rTMS), using a single-blind two-period placebo-controlled cross-over design. Eleven patients received active 15 Hz rTMS over the contralateral motor cortex (hand area), in two periods of 5 days, for 30 min once a day at 80% of resting motor threshold, with a train length of 2 s and an intertrain interval of 4 s. Eight of these eleven patients were also included in the placebo treatment condition. Primary outcome measure was change in muscle strength as measured by dynamometry after treatment. Secondary outcome measure was the subjective change in muscle strength after treatment. In patients who received both treatments, active rTMS induced a significantly larger median increase in objectively measured muscle strength (24%) compared to placebo rTMS (6%; P < 0.04). Subjective ratings showed no difference due to treatment, i.e. patients did not perceive these objectively measured motor improvements (P = 0.40). Our findings suggest that rTMS by itself can potentially improve muscle weakness in functional neurological paresis disorder. Whereas patients' muscle strength increased as measured with dynamometry, patients did not report increased functioning of the affected hand, subjectively. The results may indicate that decreased muscle strength is not the core symptom and that rTMS should be added to behavioral approaches in functional neurological paresis. © 2015 EAN.

  20. Age-related and disease-related muscle loss: the effect of diabetes, obesity, and other diseases

    PubMed Central

    Kalyani, Rita Rastogi; Corriere, Mark; Ferrucci, Luigi

    2014-01-01

    The term sarcopenia refers to the loss of muscle mass that occurs with ageing. On the basis of study results showing that muscle mass is only moderately related to functional outcomes, international working groups have proposed that loss of muscle strength or physical function should also be included in the definition. Irrespective of how sarcopenia is defined, both low muscle mass and poor muscle strength are clearly highly prevalent and important risk factors for disability and potentially mortality in individuals as they age. Many chronic diseases, in addition to ageing, could also accelerate decrease of muscle mass and strength, and this effect could be a main underlying mechanism by which chronic diseases cause physical disability. In this Review, we address both age-related and disease-related muscle loss, with a focus on diabetes and obesity but including other disease states, and potential common mechanisms and treatments. Development of treatments for age-related and disease-related muscle loss might improve active life expectancy in older people, and lead to substantial health-care savings and improved quality of life. PMID:24731660

Top