A comparison of manual and quantitative elbow strength testing.
Shahgholi, Leili; Bengtson, Keith A; Bishop, Allen T; Shin, Alexander Y; Spinner, Robert J; Basford, Jeffrey R; Kaufman, Kenton R
2012-10-01
The aim of this study was to compare the clinical ratings of elbow strength obtained by skilled clinicians with objective strength measurement obtained through quantitative testing. A retrospective comparison of subject clinical records with quantitative strength testing results in a motion analysis laboratory was conducted. A total of 110 individuals between the ages of 8 and 65 yrs with traumatic brachial plexus injuries were identified. Patients underwent manual muscle strength testing as assessed on the 5-point British Medical Research Council Scale (5/5, normal; 0/5, absent) and quantitative elbow flexion and extension strength measurements. A total of 92 subjects had elbow flexion testing. Half of the subjects clinically assessed as having normal (5/5) elbow flexion strength on manual muscle testing exhibited less than 42% of their age-expected strength on quantitative testing. Eighty-four subjects had elbow extension strength testing. Similarly, half of those displaying normal elbow extension strength on manual muscle testing were found to have less than 62% of their age-expected values on quantitative testing. Significant differences between manual muscle testing and quantitative findings were not detected for the lesser (0-4) strength grades. Manual muscle testing, even when performed by experienced clinicians, may be more misleading than expected for subjects graded as having normal (5/5) strength. Manual muscle testing estimates for the lesser strength grades (1-4/5) seem reasonably accurate.
Importance and challenges of measuring intrinsic foot muscle strength
2012-01-01
Background Intrinsic foot muscle weakness has been implicated in a range of foot deformities and disorders. However, to establish a relationship between intrinsic muscle weakness and foot pathology, an objective measure of intrinsic muscle strength is needed. The aim of this review was to provide an overview of the anatomy and role of intrinsic foot muscles, implications of intrinsic weakness and evaluate the different methods used to measure intrinsic foot muscle strength. Method Literature was sourced from database searches of MEDLINE, PubMed, SCOPUS, Cochrane Library, PEDro and CINAHL up to June 2012. Results There is no widely accepted method of measuring intrinsic foot muscle strength. Methods to estimate toe flexor muscle strength include the paper grip test, plantar pressure, toe dynamometry, and the intrinsic positive test. Hand-held dynamometry has excellent interrater and intrarater reliability and limits toe curling, which is an action hypothesised to activate extrinsic toe flexor muscles. However, it is unclear whether any method can actually isolate intrinsic muscle strength. Also most methods measure only toe flexor strength and other actions such as toe extension and abduction have not been adequately assessed. Indirect methods to investigate intrinsic muscle structure and performance include CT, ultrasonography, MRI, EMG, and muscle biopsy. Indirect methods often discriminate between intrinsic and extrinsic muscles, but lack the ability to measure muscle force. Conclusions There are many challenges to accurately measure intrinsic muscle strength in isolation. Most studies have measured toe flexor strength as a surrogate measure of intrinsic muscle strength. Hand-held dynamometry appears to be a promising method of estimating intrinsic muscle strength. However, the contribution of extrinsic muscles cannot be excluded from toe flexor strength measurement. Future research should clarify the relative contribution of intrinsic and extrinsic muscles during intrinsic foot muscle strength testing. PMID:23181771
Ustun, N; Erol, O; Ozcakar, L; Ceceli, E; Ciner, O Akar; Yorgancioglu, Z R
2013-01-01
Sensitive muscle strength tests are needed to measure muscle strength in the diagnosis and management of sciatica patients. The aim of this study was to assess the isokinetic muscle strength in sciatica patients' and control subjects' ankles that exhibited normal ankle muscle strength when measured clinically. Forty-six patients with L5 and/or S1 nerve compression, and whose age, sex, weight, and height matched 36 healthy volunteers, were recruited to the study. Heel-walking, toe-walking, and manual muscle testing were used to perform ankle dorsiflexion and plantar flexion strengths in clinical examination. Patients with normal ankle dorsiflexion and plantar flexion strengths assessed by manual muscle testing and heel-and toe-walking tests were included in the study. Bilateral isokinetic (concentric/concentric) ankle plantar-flexion-dorsiflexion measurements of the patients and controls were performed within the protocol of 30°/sec (5 repetitions). Peak torque and peak torque/body weight were obtained for each ankle motion of the involved limb at 30°/s speed. L5 and/or S1 nerve compression was evident in 46 patients (76 injured limbs). Mean disease duration was two years. The plantar flexion muscle strength of the patients was found to be lower than that of the controls (p=0.036). The dorsiflexion muscle strength of the patients was found to be the same as that of the controls (p=0.211). Isokinetic testing is superior to clinical muscle testing when evaluating ankle plantar flexion torque in sciatica patients. Therefore, isokinetic muscle testing may be helpful when deciding whether to place a patient into a focused rehabilitation program.
Rafn, Bolette S; Tang, Lars; Nielsen, Martin P; Branci, Sonia; Hölmich, Per; Thorborg, Kristian
2016-05-01
To investigate whether self-reported pain during hip strength testing correlates to a large degree with hip muscle strength in soccer players with long-standing unilateral hip and groin pain. Cross-sectional study. Clinical assessments at Sports Orthopaedic Research Center-Copenhagen (SORC-C), Arthroscopic Centre Amager, Copenhagen University Hospital, Denmark. Twenty-four male soccer players with unilateral long-standing hip and groin pain. The soccer players performed 5 reliable hip muscle strength tests (isometric hip flexion, adduction, abduction, isometric hip flexion-modified Thomas test, and eccentric hip adduction). Muscle strength was measured with a hand-held dynamometer, and the players rated the pain during testing on a numerical rating scale (0-10). In 4 tests (isometric hip adduction, abduction, flexion, and eccentric adduction), no significant correlations were found between pain during testing and hip muscle strength (Spearman rho = -0.28 to 0.06, P = 0.09-0.39). Isometric hip flexion (modified Thomas test position) showed a moderate negative correlation between pain and hip muscle strength (Spearman rho = -0.44, P = 0.016). Self-reported pain during testing does not seem to correlate with the majority of hip muscle strength tests used in soccer players with long-standing hip and groin pain.
Lower limb muscle impairment in myotonic dystrophy type 1: the need for better guidelines.
Petitclerc, Émilie; Hébert, Luc J; Desrosiers, Johanne; Gagnon, Cynthia
2015-04-01
In myotonic dystrophy type 1 (DM1), leg muscle weakness is a major impairment. There are challenges to obtaining a clear portrait of muscle strength impairment. A systematic literature review was conducted on lower limb strength impairment in late-onset and adult phenotypes to document variables which affect strength measurement. Thirty-two articles were reviewed using the COSMIN guidelines. Only a third of the studies described a reproducible protocol. Only 2 muscle groups have documented reliability for quantitative muscle testing and only 1 total score for manual muscle testing. Variables affecting muscle strength impairment are not described in most studies. This review illustrates the variability in muscle strength assessment in relation to DM1 characteristics and the questionable validity of the results with regard to undocumented methodological properties. There is therefore a clear need to adopt a consensus on the use of a standardized muscle strength assessment protocol. © 2015 Wiley Periodicals, Inc.
Basso-Vanelli, Renata P; Di Lorenzo, Valéria A Pires; Labadessa, Ivana G; Regueiro, Eloisa M G; Jamami, Mauricio; Gomes, Evelim L F D; Costa, Dirceu
2016-01-01
Patients with COPD may experience respiratory muscle weakness. Two therapeutic approaches to the respiratory muscles are inspiratory muscle training and calisthenics-and-breathing exercises. The aims of the study are to compare the effects of inspiratory muscle training and calisthenics-and-breathing exercises associated with physical training in subjects with COPD as an additional benefit of strength and endurance of the inspiratory muscles, thoracoabdominal mobility, physical exercise capacity, and reduction in dyspnea on exertion. In addition, these gains were compared between subjects with and without respiratory muscle weakness. 25 subjects completed the study: 13 composed the inspiratory muscle training group, and 12 composed the calisthenics-and-breathing exercises group. Subjects were assessed before and after training by spirometry, measurements of respiratory muscle strength and test of inspiratory muscle endurance, thoracoabdominal excursion measurements, and the 6-min walk test. Moreover, scores for the Modified Medical Research Council dyspnea scale were reported. After intervention, there was a significant improvement in both groups of respiratory muscle strength and endurance, thoracoabdominal mobility, and walking distance in the 6-min walk test. Additionally, there was a decrease of dyspnea in the 6-min walk test peak. A difference was found between groups, with higher values of respiratory muscle strength and thoracoabdominal mobility and lower values of dyspnea in the 6-min walk test peak and the Modified Medical Research Council dyspnea scale in the inspiratory muscle training group. In the inspiratory muscle training group, subjects with respiratory muscle weakness had greater gains in inspiratory muscle strength and endurance. Both interventions increased exercise capacity and decreased dyspnea during physical effort. However, inspiratory muscle training was more effective in increasing inspiratory muscle strength and endurance, which could result in a decreased sensation of dyspnea. In addition, subjects with respiratory muscle weakness that performed inspiratory muscle training had higher gains in inspiratory muscle strength and endurance but not of dyspnea and submaximal exercise capacity. (ClinicalTrials.gov registration NCT01510041.). Copyright © 2016 by Daedalus Enterprises.
Kordi Yoosefinejad, Amin; Shadmehr, Azadeh; Olyaei, Ghloamreza; Talebian, Saeed; Bagheri, Hossein
2014-01-01
Peripheral neuropathy is a common complication of diabetes mellitus. Muscle strength and the balance deficits are seen in these patients. Whole-Body Vibration (WBV) is a time-efficient method which may be beneficial for them. The immediate effects of WBV on muscle strength and balance have not been studied yet. The aim of this study was to investigate the effects of one session of WBV on muscle strength and the balance of diabetic patients. Ten diabetic patients with peripheral neuropathy took part in this study. Outcome measurements were total strength, strength of tibialis anterior and quadriceps femoris muscles and the balance parameters including Unilateral Stance Test and Timed Up and Go Test. Tibialis anterior muscle strength and Timed Up and GO Test parameters showed significant differences post-exercise in comparison to baseline. A session of WBV had positive effects on muscle strength and the balance in patients with type-2 diabetes associated with neuropathy. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sugiura, Yusaku; Saito, Tomoyuki; Sakuraba, Keishoku; Sakuma, Kazuhiko; Suzuki, Eiichi
2008-08-01
Prospective cohort study. In this prospective cohort study of elite sprinters, muscle strength of the hip extensors, as well as of the knee extensors and flexors, was measured to determine a possible relationship between strength deficits and subsequent hamstring injury within 12 months of testing. The method used for testing muscle strength simulated the specific muscle action during late swing and early contact phases when sprinting. There have been no prospective studies in elite sprinters that examine the concentric and eccentric isokinetic strength of the hip extensors and the quadriceps and hamstring muscles in a manner that reflects their actions in late swing or early contact phases of sprinting. Consequently, the causal relationship between hip and thigh muscle strength and hamstring injury in elite sprinters may not be fully understood. Isokinetic testing was performed on 30 male elite sprinters to assess hip extensors, quadriceps, and hamstring muscle strength. The occurrence of hamstring injury among the subjects was determined during the year following the muscle strength measurements. The strength of the hip extensors, quadriceps, and hamstring muscles, as well as the hamstrings-quadriceps and hip extensors- quadriceps ratios were compared. Hamstring injury occurred in 6 subjects during the 1-year period. Isokinetic testing at a speed of 60 degrees /s revealed weakness of the injured limb with eccentric action of the hamstring muscles and during concentric action of the hip extensors. When performing a side-to-side comparison for the injured sprinters, the hamstring injury always occurred on the weaker side. Differences in the hamstrings-quadriceps and hip extensors-quadriceps strength ratios were also evident between uninjured and injured limbs, and this was attributable to deficits in hamstring strength. Hamstring injury in elite sprinters was associated with weakness during eccentric action of the hamstrings and weakness during concentric action of the hip extensors, but only when tested at the slower speed of 60 degrees /s.
Foot and ankle muscle strength in people with gout: A two-arm cross-sectional study.
Stewart, Sarah; Mawston, Grant; Davidtz, Lisa; Dalbeth, Nicola; Vandal, Alain C; Carroll, Matthew; Morpeth, Trish; Otter, Simon; Rome, Keith
2016-02-01
Foot and ankle structures are the most commonly affected in people with gout. However, the effect of gout on foot and ankle muscle strength is not well understood. The primary aim of this study was to determine whether differences exist in foot and ankle muscle strength for plantarflexion, dorsiflexion, inversion and eversion between people with gout and age- and sex-matched controls. The secondary aim was to determine whether foot and ankle muscle strength was correlated with foot pain and disability. Peak isokinetic concentric muscle torque was measured for ankle plantarflexion, dorsiflexion, eversion and inversion in 20 participants with gout and 20 matched controls at two testing velocities (30°/s and 120°/s) using a Biodex dynamometer. Foot pain and disability was measured using the Manchester Foot Pain and Disability Index (MFPDI). Participants with gout demonstrated reduced muscle strength at both the 30°/s and 120°/s testing velocities for plantarflexion, inversion and eversion (P<0.05). People with gout also displayed a reduced plantarflexion-to-dorsiflexion strength ratio at both 30°/s and 120°/s (P<0.05). Foot pain and disability was higher in people with gout (P<0.0001) and MFPDI scores were inversely correlated with plantarflexion and inversion muscle strength at the 30°/s testing velocity, and plantarflexion, inversion and eversion muscle strength at the 120°/s testing velocity (all P<0.05). People with gout have reduced foot and ankle muscle strength and experience greater foot pain and disability compared to controls. Foot and ankle strength reductions are strongly associated with increased foot pain and disability in people with gout. Copyright © 2015 Elsevier Ltd. All rights reserved.
Muscle Strength and Changes in Physical Function in Women With Systemic Lupus Erythematosus.
Andrews, James S; Trupin, Laura; Schmajuk, Gabriela; Barton, Jennifer; Margaretten, Mary; Yazdany, Jinoos; Yelin, Edward H; Katz, Patricia P
2015-08-01
Cross-sectional studies have observed that muscle weakness is associated with worse physical function among women with systemic lupus erythematosus (SLE). The present study examines whether reduced upper and lower extremity muscle strength predict declines in function over time among adult women with SLE. One hundred forty-six women from a longitudinal SLE cohort participated in the study. All measures were collected during in-person research visits approximately 2 years apart. Upper extremity muscle strength was assessed by grip strength. Lower extremity muscle strength was assessed by peak knee torque of extension and flexion. Physical function was assessed using the Short Physical Performance Battery (SPPB). Regression analyses modeled associations of baseline upper and lower extremity muscle strength with followup SPPB scores controlling for baseline SPPB, age, SLE duration, SLE disease activity (Systemic Lupus Activity Questionnaire), physical activity level, prednisone use, body composition, and depression. Secondary analyses tested whether associations of baseline muscle strength with followup in SPPB scores differed between intervals of varying baseline muscle strength. Lower extremity muscle strength strongly predicted changes over 2 years in physical function even when controlling for covariates. The association of reduced lower extremity muscle strength with reduced physical function in the future was greatest among the weakest women. Reduced lower extremity muscle strength predicted clinically significant declines in physical function, especially among the weakest women. Future studies should test whether therapies that promote preservation of lower extremity muscle strength may prevent declines in function among women with SLE. © 2015, American College of Rheumatology.
Riddle, Daniel L; Stratford, Paul W
2011-10-01
Muscle force testing is one of the more common categories of diagnostic tests used in clinical practice. Clinicians have little evidence to guide interpretations of muscle force tests when pain is elicited during testing. The purpose of this study was to examine the construct validity of isometric quadriceps muscle strength tests by determining whether the relationship between maximal isometric quadriceps muscle strength and functional status was influenced by pain during isometric testing. A cross-sectional design was used. Data from the Osteoarthritis Initiative were used to identify 1,344 people with unilateral knee pain and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain subscale scores of 1 or higher on the involved side. Measurements of maximal isometric quadriceps strength and ratings of pain during isometric testing were collected. Outcome variables were WOMAC physical function subscale, 20-m walk test, 400-m walk test, and a repeated chair stand test. Multiple regression models were used to determine whether pain during testing modified or confounded the relationship between strength and functional status. Pearson r correlations among the isometric quadriceps strength measures and the 4 outcome measures ranged from -.36 (95% confidence interval=-.41, -.31) for repeated chair stands to .36 (95% confidence interval=.31, .41) for the 20-m walk test. In the final analyses, neither effect modification nor confounding was found for the repeated chair stand test, the 20-m walk test, the 400-m walk test, or the WOMAC physical function subscale. Moderate or severe pain during testing was weakly associated with reduced strength, but mild pain was not. The disease spectrum was skewed toward mild or moderate symptoms, and the pain measurement scale used during muscle force testing was not ideal. Given that the spectrum of the sample was skewed toward mild or moderate symptoms and disease, the data suggest that isometric quadriceps muscle strength tests maintain their relationship with self-report or performance-based disability measures even when pain is elicited during testing.
Stratford, Paul W.
2011-01-01
Background Muscle force testing is one of the more common categories of diagnostic tests used in clinical practice. Clinicians have little evidence to guide interpretations of muscle force tests when pain is elicited during testing. Objective The purpose of this study was to examine the construct validity of isometric quadriceps muscle strength tests by determining whether the relationship between maximal isometric quadriceps muscle strength and functional status was influenced by pain during isometric testing. Design A cross-sectional design was used. Methods Data from the Osteoarthritis Initiative were used to identify 1,344 people with unilateral knee pain and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain subscale scores of 1 or higher on the involved side. Measurements of maximal isometric quadriceps strength and ratings of pain during isometric testing were collected. Outcome variables were WOMAC physical function subscale, 20-m walk test, 400-m walk test, and a repeated chair stand test. Multiple regression models were used to determine whether pain during testing modified or confounded the relationship between strength and functional status. Results Pearson r correlations among the isometric quadriceps strength measures and the 4 outcome measures ranged from −.36 (95% confidence interval=−.41, −.31) for repeated chair stands to .36 (95% confidence interval=.31, .41) for the 20-m walk test. In the final analyses, neither effect modification nor confounding was found for the repeated chair stand test, the 20-m walk test, the 400-m walk test, or the WOMAC physical function subscale. Moderate or severe pain during testing was weakly associated with reduced strength, but mild pain was not. Limitations The disease spectrum was skewed toward mild or moderate symptoms, and the pain measurement scale used during muscle force testing was not ideal. Conclusions Given that the spectrum of the sample was skewed toward mild or moderate symptoms and disease, the data suggest that isometric quadriceps muscle strength tests maintain their relationship with self-report or performance-based disability measures even when pain is elicited during testing. PMID:21835892
Characterization of Strength and Function in Ambulatory Adults With GNE Myopathy.
Argov, Zohar; Bronstein, Faye; Esposito, Alicia; Feinsod-Meiri, Yael; Florence, Julaine M; Fowler, Eileen; Greenberg, Marcia B; Malkus, Elizabeth C; Rebibo, Odelia; Siener, Catherine S; Caraco, Yoseph; Kolodny, Edwin H; Lau, Heather A; Pestronk, Alan; Shieh, Perry; Skrinar, Alison M; Mayhew, Jill E
2017-09-01
To characterize the pattern and extent of muscle weakness and impact on physical functioning in adults with GNEM. Strength and function were assessed in GNEM subjects (n = 47) using hand-held dynamometry, manual muscle testing, upper and lower extremity functional capacity tests, and the GNEM-Functional Activity Scale (GNEM-FAS). Profound upper and lower muscle weakness was measured using hand-held dynamometry in a characteristic pattern, previously described. Functional tests and clinician-reported outcomes demonstrated the consequence of muscle weakness on physical functioning. The characteristic pattern of upper and lower muscle weakness associated with GNEM and the resulting functional limitations can be reliably measured using these clinical outcome assessments of muscle strength and function.
Objective Evaluation of Muscle Strength in Infants with Hypotonia and Muscle Weakness
ERIC Educational Resources Information Center
Reus, Linda; van Vlimmeren, Leo A.; Staal, J. Bart; Janssen, Anjo J. W. M.; Otten, Barto J.; Pelzer, Ben J.; Nijhuis-van der Sanden, Maria W. G.
2013-01-01
The clinical evaluation of an infant with motor delay, muscle weakness, and/or hypotonia would improve considerably if muscle strength could be measured objectively and normal reference values were available. The authors developed a method to measure muscle strength in infants and tested 81 typically developing infants, 6-36 months of age, and 17…
Yasuda, Tomohiro; Fukumura, Kazuya; Nakajima, Toshiaki
2017-04-01
[Purpose] To examine if the SPPB is higher with healthy subjects than outpatients, which was higher than inpatients and if the SPPB can be validated assessment tool for strength tests and lower extremity morphological evaluation in cardiovascular disease patients. [Subjects and Methods] Twenty-four middle aged and older adults with cardiovascular disease were recruited from inpatient and outpatient facilities and assigned to separate experimental groups. Twelve age-matched healthy volunteers were assigned to a control group. SPPB test was used to assess balance and functional motilities. The test outcomes were compared with level of care (inpatient vs. outpatient), physical characteristics, strength and lower extremity morphology. [Results] Total SPPB scores, strength tests (knee extensor muscle strength), and lower extremity morphological evaluation (muscle thickness of anterior and posterior mid-thigh and posterior lower-leg) were greater in healthy subjects and outpatients groups compared with inpatients. To predict total Short Physical Performance Battery scores, the predicted knee extension and anterior mid-thigh muscle thickness were calculated. [Conclusion] The SPPB is an effective tool as the strength tests and lower extremity morphological evaluation for middle-aged and older adult cardiovascular disease patients. Notably, high knee extensor muscle strength and quadriceps femoris muscle thickness are positively associated with high SPPB scores.
Exercise capacity, muscle strength and fatigue in sarcoidosis.
Marcellis, R G J; Lenssen, A F; Elfferich, M D P; De Vries, J; Kassim, S; Foerster, K; Drent, M
2011-09-01
The aim of this case-control study was to investigate the prevalence of exercise intolerance, muscle weakness and fatigue in sarcoidosis patients. Additionally, we evaluated whether fatigue can be explained by exercise capacity, muscle strength or other clinical characteristics (lung function tests, radiographic stages, prednisone usage and inflammatory markers). 124 sarcoidosis patients (80 males) referred to the Maastricht University Medical Centre (Maastricht, the Netherlands) were included (mean age 46.6±10.2 yrs). Patients performed a 6-min walk test (6MWT) and handgrip force (HGF), elbow flexor muscle strength (EFMS), quadriceps peak torque (QPT) and hamstring peak torque (HPT) tests. Maximal inspiratory pressure (P(I,max)) was recorded. All patients completed the Fatigue Assessment Scale (FAS) questionnaire. The 6MWT was reduced in 45% of the population, while HGF, EFMS, QPT and HPT muscle strength were reduced in 15, 12, 27 and 18%, respectively. P(I,max) was reduced in 43% of the population. The majority of the patients (81%) reported fatigue (FAS ≥22). Patients with reduced peripheral muscle strength of the upper and/or lower extremities were more fatigued and demonstrated impaired lung functions, fat-free mass, P(I,max), 6MWT and quality of life. Fatigue was neither predicted by exercise capacity, nor by muscle strength. Besides fatigue, exercise intolerance and muscle weakness are frequent problems in sarcoidosis. We therefore recommend physical tests in the multidisciplinary management of sarcoidosis patients, even in nonfatigued patients.
Back muscle strength, lifting, and stooped working postures.
Poulsen, E; Jørgensen, K
1971-09-01
When lifting loads and working in a forward stooped position, the muscles of the back rather than the ligaments and bony structures of the spine should overcome the gravitational forces. Formulae, based on measurements of back muscle strength, for prediction of maximal loads to be lifted, and for the ability to sustain work in a stooped position, have been worked out and tested in practical situations. From tests with 50 male and female subjects the simplest prediction formulae for maximum loads were: max. load = 1.10 x isometric back muscle strength for men; and max. load = 0.95 x isometric back muscle strength - 8 kg for women. Some standard values for maximum lifts and permissible single and repeated lifts have been calculated for men and women separately and are given in Table 1. From tests with 65 rehabilitees it was found that the maximum isometric strength of the back muscles measured at shoulder height should exceed 2/3 of the body weight, if fatigue and/or pain in the back muscles is to be avoided during work in a standing stooped position.
Characterization of Strength and Function in Ambulatory Adults With GNE Myopathy
Argov, Zohar; Bronstein, Faye; Esposito, Alicia; Feinsod-Meiri, Yael; Florence, Julaine M.; Fowler, Eileen; Greenberg, Marcia B.; Malkus, Elizabeth C.; Rebibo, Odelia; Siener, Catherine S.; Caraco, Yoseph; Kolodny, Edwin H.; Lau, Heather A.; Pestronk, Alan; Shieh, Perry; Mayhew, Jill E.
2017-01-01
Abstract Objective: To characterize the pattern and extent of muscle weakness and impact on physical functioning in adults with GNEM. Methods: Strength and function were assessed in GNEM subjects (n = 47) using hand-held dynamometry, manual muscle testing, upper and lower extremity functional capacity tests, and the GNEM-Functional Activity Scale (GNEM-FAS). Results: Profound upper and lower muscle weakness was measured using hand-held dynamometry in a characteristic pattern, previously described. Functional tests and clinician-reported outcomes demonstrated the consequence of muscle weakness on physical functioning. Conclusions: The characteristic pattern of upper and lower muscle weakness associated with GNEM and the resulting functional limitations can be reliably measured using these clinical outcome assessments of muscle strength and function. PMID:28827485
van der Esch, M; Steultjens, M; Knol, D L; Dinant, H; Dekker, J
2006-12-15
To establish the impact of knee joint laxity on the relationship between muscle strength and functional ability in osteoarthritis (OA) of the knee. A cross-sectional study of 86 patients with OA of the knee was conducted. Tests were performed to determine varus-valgus laxity, muscle strength, and functional ability. Laxity was assessed using a device that measures the angular deviation of the knee in the frontal plane. Muscle strength was measured using a computer-driven isokinetic dynamometer. Functional ability was assessed by observation (100-meter walking test) and self report (Western Ontario and McMaster Universities Osteoarthritis Index [WOMAC]). Regression analyses were performed to assess the impact of joint laxity on the relationship between muscle strength and functional ability. In regression analyses, the interaction between muscle strength and joint laxity contributed to the variance in both walking time (P = 0.002) and WOMAC score (P = 0.080). The slope of the regression lines indicated that the relationship between muscle strength and functional ability (walking time, WOMAC) was stronger in patients with high knee joint laxity. Patients with knee OA and high knee joint laxity show a stronger relationship between muscle strength and functional ability than patients with OA and low knee joint laxity. Patients with OA, high knee joint laxity, and low muscle strength are most at risk of being disabled.
Low agreement between the fitnessgram criterion references for adolescents
Coledam, Diogo Henrique Constantino; Batista, João Pedro; Glaner, Maria Fátima
2015-01-01
OBJECTIVE: To analyze the association and agreement of fitnessgram reference criteria (RC) for cardiorespiratory fitness, body mass index (BMI) and strength in youth. METHODS: The study included 781 youth, 386 females, aged 10 to 18 years of Londrina-PR. It were performed cardiorespiratory fitness and muscular strength tests and was calculated body mass index. The association between the tests was analyzed using Poisson regression to obtain prevalence ratio (PR) and confidence intervals of 95%, while agreement of the reference criteria was tested by Kappa index. RESULTS: Significant associations were found between cardiorespiratory fitness and BMI (PR=1,49, 1,27-1,75), muscle strength and BMI (PR=1,55, 1,17-2,08), cardiorespiratory fitness and muscle strength (PR=1,81, 1,47-2,24). The agreement between reference criteria ranged from weak to fair, 48.8% (k=0.05, p=0.10) for cardiorespiratory fitness and BMI, 52.9% (k=0.09, p=0.001) for muscle strength and BMI and 38.4% (k=0.22, p<0.001) for cardiorespiratory fitness and muscle strength. CONCLUSIONS: Although RC for cardiorespiratory fitness, muscle strength and BMI are associated, the agreement between them ranged from weak to fair. To evaluate health related physical fitness it is suggest the execution of all tests, since each test has specific characteristics. PMID:25649383
Autism Severity and Muscle Strength: A Correlation Analysis
ERIC Educational Resources Information Center
Kern, Janet K.; Geier, David A.; Adams, James B.; Troutman, Melissa R.; Davis, Georgia; King, Paul G.; Young, John L.; Geier, Mark R.
2011-01-01
The current study examined the relationship between muscle strength, as measured by hand grip strength, and autism severity, as measured by the Childhood Autism Rating Scale (CARS). Thirty-seven (37) children with a diagnosis of autism spectrum disorder (ASD) were evaluated using the CARS and then tested for hand muscle strength using a hand grip…
Objective evaluation of muscle strength in infants with hypotonia and muscle weakness.
Reus, Linda; van Vlimmeren, Leo A; Staal, J Bart; Janssen, Anjo J W M; Otten, Barto J; Pelzer, Ben J; Nijhuis-van der Sanden, Maria W G
2013-04-01
The clinical evaluation of an infant with motor delay, muscle weakness, and/or hypotonia would improve considerably if muscle strength could be measured objectively and normal reference values were available. The authors developed a method to measure muscle strength in infants and tested 81 typically developing infants, 6-36 months of age, and 17 infants with Prader-Willi Syndrome (PWS) aged 24 months. The inter-rater reliability of the measurement method was good (ICC=.84) and the convergent validity was confirmed by high Pearson's correlations between muscle strength, age, height, and weight (r=.79-.85). A multiple linear regression model was developed to predict muscle strength based on age, height, and weight, explaining 73% of the variance in muscle strength. In infants with PWS, muscle strength was significantly decreased. Pearson's correlations showed that infants with PWS in which muscle strength was more severely affected also had a larger motor developmental delay (r=.75). Copyright © 2013 Elsevier Ltd. All rights reserved.
Latorre-Román, Pedro Ángel; Segura-Jiménez, Víctor; Aparicio, Virginia A; Santos E Campos, María Aparecida; García-Pinillos, Felipe; Herrador-Colmenero, Manuel; Álvarez-Gallardo, Inmaculada C; Delgado-Fernández, Manuel
2015-07-01
Fibromyalgia is associated with physical disabilities in daily activities. Moreover, patients with fibromyalgia present similar levels of functional capacity and physical condition than elderly people. The aim of this study was to analyse the evolution of strength and muscle mass in women with fibromyalgia along ageing. A total sample of 492 fibromyalgia patients and 279 healthy control women were included in the study. Participants in each group were further divided into four age subgroups: subgroup 1: 30-39 years old, subgroup 2: 40-49 years old, subgroup 3: 50-59 years old and subgroup 4: 60-69 years old. Standardized field-based fitness tests were used to assess muscle strength (30-s chair stand, handgrip strength and arm curl tests). Fibromyalgia patients did not show impairment on muscle mass along ageing, without values of skeletal muscle mass index below 6.76 kg/m(2) in any group. However, in all variables of muscle strength, the fibromyalgia group showed less strength than the healthy group (p < 0.05) for all age groups. As expected, handgrip strength test showed differences along ageing only in the fibromyalgia group (p < 0.001). Age was inversely associated with skeletal muscle mass (r = -0.155, p < 0.01) and handgrip strength (r = -0.230, p < 0.001) in the FM group. Women with fibromyalgia showed a reduction in muscle strength along ageing process, with significantly lower scores than healthy women for each age group, representing a risk of dynapenia.
The value of multiple tests of respiratory muscle strength
Steier, Joerg; Kaul, Sunny; Seymour, John; Jolley, Caroline; Rafferty, Gerrard; Man, William; Luo, Yuan M; Roughton, Michael; Polkey, Michael I; Moxham, John
2007-01-01
Background Respiratory muscle weakness is an important clinical problem. Tests of varying complexity and invasiveness are available to assess respiratory muscle strength. The relative precision of different tests in the detection of weakness is less clear, as is the value of multiple tests. Methods The respiratory muscle function tests of clinical referrals who had multiple tests assessed in our laboratories over a 6‐year period were analysed. Thresholds for weakness for each test were determined from published and in‐house laboratory data. The patients were divided into three groups: those who had all relevant measurements of global inspiratory muscle strength (group A, n = 182), those with full assessment of diaphragm strength (group B, n = 264) and those for whom expiratory muscle strength was fully evaluated (group C, n = 60). The diagnostic outcome of each inspiratory, diaphragm and expiratory muscle test, both singly and in combination, was studied and the impact of using more than one test to detect weakness was calculated. Results The clinical referrals were primarily for the evaluation of neuromuscular diseases and dyspnoea of unknown cause. A low maximal inspiratory mouth pressure (Pimax) was recorded in 40.1% of referrals in group A, while a low sniff nasal pressure (Sniff Pnasal) was recorded in 41.8% and a low sniff oesophageal pressure (Sniff Poes) in 37.9%. When assessing inspiratory strength with the combination of all three tests, 29.6% of patients had weakness. Using the two non‐invasive tests (Pimax and Sniff Pnasal) in combination, a similar result was obtained (low in 32.4%). Combining Sniff Pdi (low in 68.2%) and Twitch Pdi (low in 67.4%) reduced the diagnoses of patients with diaphragm weakness to 55.3% in group B. 38.3% of the patients in group C had expiratory muscle weakness as measured by maximum expiratory pressure (Pemax) compared with 36.7% when weakness was diagnosed by cough gastric pressure (Pgas), and 28.3% when assessed by Twitch T10. Combining all three expiratory muscle tests reduced the number of patients diagnosed as having expiratory muscle weakness to 16.7%. Conclusion The use of single tests such as Pimax, Pemax and other available individual tests of inspiratory, diaphragm and expiratory muscle strength tends to overdiagnose weakness. Combinations of tests increase diagnostic precision and, in the population studied, they reduced the diagnosis of inspiratory, specific diaphragm and expiratory muscle weakness by 19–56%. Measuring both Pimax and Sniff Pnasal resulted in a relative reduction of 19.2% of patients falsely diagnosed with inspiratory muscle weakness. The addition of Twitch Pdi to Sniff Pdi increased diagnostic precision by a smaller amount (18.9%). Having multiple tests of respiratory muscle function available both increases diagnostic precision and makes assessment possible in a range of clinical circumstances. PMID:17557772
Celiker Tosun, O; Kaya Mutlu, E; Ergenoglu, A M; Yeniel, A O; Tosun, G; Malkoc, M; Askar, N; Itil, I M
2015-06-01
To determine whether symptoms of urinary incontinence is reduced by pelvic floor muscle training, to determine whether urinary incontinence can be totally eliminated by strengthening the pelvic floor muscle to grade 5 on the Oxford scale. Prospective randomized controlled clinical trial. Outpatient urogynecology department. One hundred thirty cases with stress and mixed urinary incontinence. All participants were randomly allocated to the pelvic floor muscle training group or control group. A 12-week home based exercise program, prescribed individually, was performed by the pelvic floor muscle training group. Urinary incontinence symptoms (Incontinence Impact Questionnaire-7, Urogenital Distress Inventory-6, bladder diary, stop test and pad test) were assessed, and the pelvic floor muscle strength was measured for (PERFECT testing, perineometric and ultrasound) all participants before and after 12 weeks of treatment. The pelvic floor muscle training group had significant improvement in their symptoms of urinary incontinence (P=0.001) and an increase in pelvic floor muscle strength (P=0.001, by the dependent t test) compared with the control group. All the symptoms of urinary incontinence were significantly decreased in the patients that had reached pelvic floor muscle strength of grade 5 and continued the pelvic floor muscle training (P<0.05). The study demonstrated that pelvic floor muscle training is effective in reducing the symptoms of stress and mixed urinary incontinence and in increasing pelvic floor muscle strength. © The Author(s) 2014.
Effects of age and sex on the results of an ankle plantar-flexor manual muscle test.
Jan, Mei-Hwa; Chai, Huei-Ming; Lin, Yeong-Fwu; Lin, Janice Chien-Ho; Tsai, Li-Ying; Ou, Yu-Chih; Lin, Da-Hon
2005-10-01
The ability to perform 20 or more one-leg heel-rises is considered a "normal" grade for muscle strength (force-generating capacity of muscle) of the ankle plantar flexors, regardless of age and sex. Because muscle strength is closely related to age and sex, the "normal" test criterion was re-evaluated in different groups categorized by age and sex. One hundred eighty sedentary volunteers (21-80 years of age) without lower-limb lesions performed as many repetitions of one-leg heel-rise as possible. Lunsford and Perry criteria were used to determine completion of the test. The age and sex of the participants influenced the maximal repetitions of heel-rise, and the repetitions decreased with age and in female subjects. The muscle strength of the ankle plantar flexors, as measured by manual muscle testing, varied with age and sex. Clinicians should consider the variances of age and sex when they perform manual muscle testing of the ankle plantar flexors.
Kemp, Joanne L; Schache, Anthony G; Makdissi, Michael; Sims, Kevin J; Crossley, Kay M
2013-07-01
This study investigated tests of hip muscle strength and functional performance. The specific objectives were to: (i) establish intra- and inter-rater reliability; (ii) compare differences between dominant and non-dominant limbs; (iii) compare agonist and antagonist muscle strength ratios; (iv) compare differences between genders; and (v) examine relationships between hip muscle strength, baseline measures and functional performance. Reliability study and cross-sectional analysis of hip strength and functional performance. In healthy adults aged 18-50years, normalised hip muscle peak torque and functional performance were evaluated to: (i) establish intra-rater and inter-rater reliability; (ii) analyse differences between limbs, between antagonistic muscle groups and genders; and (iii) associations between strength and functional performance. Excellent reliability (intra-rater ICC=0.77-0.96; inter-rater ICC=0.82-0.95) was observed. No difference existed between dominant and non-dominant limbs. Differences in strength existed between antagonistic pairs of muscles: hip abduction was greater than adduction (p<0.001) and hip ER was greater than IR (p<0.001). Men had greater ER strength (p=0.006) and hop for distance (p<0.001) than women. Strong associations were observed between measures of hip muscle strength (except hip flexion) and age, height, and functional performance. Deficits in hip muscle strength or functional performance may influence hip pain. In order to provide targeted rehabilitation programmes to address patient-specific impairments, and determine when individuals are ready to return to physical activity, clinicians are increasingly utilising tests of hip strength and functional performance. This study provides a battery of reliable, clinically applicable tests which can be used for these purposes. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Muscle strength and fatigue in newly diagnosed patients with myasthenia gravis.
Vinge, Lotte; Andersen, Henning
2016-10-01
Dynamometry is increasingly used as an objective measurement of muscle strength in neurological diseases. No study has applied dynamometry in untreated newly diagnosed patients with myasthenia gravis (MG). Isometric muscle strength at the shoulder, knee, and ankle was determined in 21 MG patients before and after initial anti-myasthenic treatment. Isometric strength was compared with MG evaluation scales. Muscle strength was reduced for knee extensors and shoulder abductors but normal for ankle extensors. Isometric muscle strength did not correlate significantly with manual muscle testing (MG Composite). Dynamometry revealed improved muscle strength of up to 50% (median 17%; range -1.8-49.8) despite no change in the MG Composite score. Dynamometry appears to be a more sensitive method of identifying changes in limb strength than MG evaluation scales. This supports the use of dynamometry in MG patients, especially for evaluation of the effect of anti-myasthenic treatment. Muscle Nerve 54: 709-714, 2016. © 2016 Wiley Periodicals, Inc.
Functional Capacity in Adults With Cerebral Palsy: Lower Limb Muscle Strength Matters.
Gillett, Jarred G; Lichtwark, Glen A; Boyd, Roslyn N; Barber, Lee A
2018-05-01
To investigate the relation between lower limb muscle strength, passive muscle properties, and functional capacity outcomes in adults with cerebral palsy (CP). Cross-sectional study. Tertiary institution biomechanics laboratory. Adults with spastic-type CP (N=33; mean age, 25y; range, 15-51y; mean body mass, 70.15±21.35kg) who were either Gross Motor Function Classification System (GMFCS) level I (n=20) or level II (n=13). Not applicable. Six-minute walk test (6MWT) distance (m), lateral step-up (LSU) test performance (total repetitions), timed up-stairs (TUS) performance (s), maximum voluntary isometric strength of plantar flexors (PF) and dorsiflexors (DF) (Nm.kg -1 ), and passive ankle joint and muscle stiffness. Maximum isometric PF strength independently explained 61% of variance in 6MWT performance, 57% of variance in LSU test performance, and 50% of variance in TUS test performance. GMFCS level was significantly and independently related to all 3 functional capacity outcomes, and age was retained as a significant independent predictor of LSU and TUS test performance. Passive medial gastrocnemius muscle fascicle stiffness and ankle joint stiffness were not significantly related to functional capacity measures in any of the multiple regression models. Low isometric PF strength was the most important independent variable related to distance walked on the 6MWT, fewer repetitions on the LSU test, and slower TUS test performance. These findings suggest lower isometric muscle strength contributes to the decline in functional capacity in adults with CP. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Usa, Hideyuki; Matsumura, Masashi; Ichikawa, Kazuna; Takei, Hitoshi
2017-01-01
This study attempted to develop a formula for predicting maximum muscle strength value for young, middle-aged, and elderly adults using theoretical Grade 3 muscle strength value (moment fair: M f )-the static muscular moment to support a limb segment against gravity-from the manual muscle test by Daniels et al. A total of 130 healthy Japanese individuals divided by age group performed isometric muscle contractions at maximum effort for various movements of hip joint flexion and extension and knee joint flexion and extension, and the accompanying resisting force was measured and maximum muscle strength value (moment max, M m ) was calculated. Body weight and limb segment length (thigh and lower leg length) were measured, and M f was calculated using anthropometric measures and theoretical calculation. There was a linear correlation between M f and M m in each of the four movement types in all groups, excepting knee flexion in elderly. However, the formula for predicting maximum muscle strength was not sufficiently compatible in middle-aged and elderly adults, suggesting that the formula obtained in this study is applicable in young adults only.
Matsumura, Masashi; Ichikawa, Kazuna; Takei, Hitoshi
2017-01-01
This study attempted to develop a formula for predicting maximum muscle strength value for young, middle-aged, and elderly adults using theoretical Grade 3 muscle strength value (moment fair: Mf)—the static muscular moment to support a limb segment against gravity—from the manual muscle test by Daniels et al. A total of 130 healthy Japanese individuals divided by age group performed isometric muscle contractions at maximum effort for various movements of hip joint flexion and extension and knee joint flexion and extension, and the accompanying resisting force was measured and maximum muscle strength value (moment max, Mm) was calculated. Body weight and limb segment length (thigh and lower leg length) were measured, and Mf was calculated using anthropometric measures and theoretical calculation. There was a linear correlation between Mf and Mm in each of the four movement types in all groups, excepting knee flexion in elderly. However, the formula for predicting maximum muscle strength was not sufficiently compatible in middle-aged and elderly adults, suggesting that the formula obtained in this study is applicable in young adults only. PMID:28133549
Chen, Tzurei; Chou, Li-Shan
2017-12-01
To examine the association of muscle strength and balance control with the amount of time taken to perform sit-to-walk (STW) or turning components of the Timed Up and Go (TUG) test in older adults. Correlations; multiple regression models. General community. Older adults (N=60) age >70 years recruited from the community. Not applicable. Muscle strength, balance control, and TUG test performance time. Muscle strength was quantified by peak joint moments during the isometric maximal voluntary contraction test for bilateral hip abductors, knee extensors, and ankle plantar flexors. Balance control was assessed with the Berg Balance Scale, Fullerton Advanced Balance Scale, and center of mass and ankle inclination angle derived during the TUG test performance. We found that balance control measures were significantly associated with both STW and turning durations even after controlling for muscle strength and other confounders (STW duration: P<.001, turning duration: P=.001). Adding strength to the regression model was found to significantly improve its prediction of STW duration (F change =5.945, P=.018), but not turning duration (F change =1.03, P=.14). Our findings suggest that poor balance control is an important factor that contributes to longer STW and turning durations on the TUG test. Furthermore, strength has a higher association with STW than turning duration. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
van Dyk, N; Witvrouw, E; Bahr, R
2018-04-25
In elite sport, the use of strength testing to establish muscle function and performance is common. Traditionally, isokinetic strength tests have been used, measuring torque during concentric and eccentric muscle action. A device that measures eccentric hamstring muscle strength while performing the Nordic hamstring exercise is now also frequently used. The study aimed to investigate the variability of isokinetic muscle strength over time, for example, between seasons, and the relationship between isokinetic testing and the new Nordic hamstring exercise device. All teams (n = 18) eligible to compete in the premier football league in Qatar underwent a comprehensive strength assessment during their periodic health evaluation at Aspetar Orthopaedic and Sports Medicine Hospital in Qatar. Isokinetic strength was investigated for measurement error, and correlated to Nordic hamstring exercise strength. Of the 529 players included, 288 players had repeated tests with 1/2 seasons between test occasions. Variability (measurement error) between test occasions was substantial, as demonstrated by the measurement error (approximately 25 Nm, 15%), whether separated by 1 or 2 seasons. Considering hamstring injuries, the same pattern was observed among injured (n = 60) and uninjured (n = 228) players. A poor correlation (r = .35) was observed between peak isokinetic hamstring eccentric torque and Nordic hamstring exercise peak force. The strength imbalance between limbs calculated for both test modes was not correlated (r = .037). There is substantial intraindividual variability in all isokinetic test measures, whether separated by 1 or 2 seasons, irrespective of injury. Also, eccentric hamstring strength and limb-to-limb imbalance were poorly correlated between the isokinetic and Nordic hamstring exercise tests. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
A Model for Predicting Integrated Man-Machine System Reliability: Model Logic and Description
1974-11-01
3. Fatigue buildup curve. The common requirement of all tests on the Dynamic Strength factor is for the muscles involved to propel, support, or...move the body repeatedly or to support it continuously over time. The tests of our Static Strength factor emphasize the lifting power of the muscles ...or the pounds of pressure which the muscles can exert. ... In contrast to Dynamic Strength the force exerted is against external objects, rather
Intratester Reliability and Construct Validity of a Hip Abductor Eccentric Strength Test.
Brindle, Richard A; Ebaugh, David; Milner, Clare E
2018-06-06
Side-lying hip abductor strength tests are commonly used to evaluate muscle strength. In a "break" test, the tester applies sufficient force to lower the limb to the table while the patient resists. The peak force is postulated to occur while the leg is lowering, thus representing the participant's eccentric muscle strength. However, it is unclear whether peak force occurs before or after the leg begins to lower. To determine intrarater reliability and construct validity of a hip abductor eccentric strength test. Intrarater reliability and construct validity study. Twenty healthy adults (26 [6] y; 1.66 [0.06] m; 62.2 [8.0] kg) made 2 visits to the laboratory at least 1 week apart. During the hip abductor eccentric strength test, a handheld dynamometer recorded peak force and time to peak force, and limb position was recorded via a motion capture system. Intrarater reliability was determined using intraclass correlation, SEM, and minimal detectable difference. Construct validity was assessed by determining if peak force occurred after the start of the lowering phase using a 1-sample t test. The hip abductor eccentric strength test had substantial intrarater reliability (intraclass correlation (3,3) = .88; 95% confidence interval, .65-.95), SEM of 0.9 %BWh, and a minimal detectable difference of 2.5 %BWh. Construct validity was established as peak force occurred 2.1 (0.6) seconds (range: 0.7-3.7 s) after the start of the lowering phase of the test (P ≤ .001). The hip abductor eccentric strength test is a valid and reliable measure of eccentric muscle strength. This test may be used clinically to assess changes in eccentric muscle strength over time.
Kostka, Joanna; Czernicki, Jan; Pruszyńska, Magdalena; Miller, Elżbieta
The purpose of the study was to assess the effectiveness of the multi-modal exercise program (MMEP) in patients after stroke, and to identify muscles that are the best predictors of functional performance and changes in functional status in a 3-week rehabilitation program. Thirty-one post-stroke patients (60.6±12.7 years) participating in a 3-week MMEP took part in the study. Measurements of extensor and flexor strength of the knee (F ext , F flex ) were done. Functional performance was measured using Timed Up & Go test (TUG), 6-Minute Walk Test (6-MWT) and Tinetti Test. The rehabilitation program improved all the results of functional tests, as well as the values of strength in the patients. Both baseline and post-rehabilitation functional status was associated with knee flexor and extensor muscle strength of paretic but not of non-paretic limbs. At baseline examination muscle strength difference between both F flex kg -1 and F ext kg -1 had an influence on functional status. After rehabilitation the effect of muscle strength difference on functional status was not evident for F ext kg -1 and, interestingly, even more prominent for F flex kg -1 . MMEP can effectively increase muscle strength and functional capacity in post-stroke patients. Knee flexor muscle strength of the paretic limb and the knee flexor difference between the limbs is the best predictor of functional performance in stroke survivors. Copyright © 2017 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Caudal, Dorian; Guinobert, Isabelle; Lafoux, Aude; Bardot, Valérie; Cotte, César; Ripoche, Isabelle; Chalard, Pierre; Huchet, Corinne
2018-04-01
Valeriana officinalis L. root extracts are traditionally taken for their sedative and anxiolytic properties and are also used for muscle relaxation. Relaxant effects were clearly observed on smooth muscle whereas data on effects on skeletal muscle are scarce and inconsistent. The aim of this study was to assess whether a standardized extract (SE) of V. officinalis had myorelaxant effects by decreasing skeletal muscle strength and/or neuromuscular tone in mice. Mice received an acute dose of V. officinalis SE (2 or 5 g/kg per os) or tetrazepam (10 mg/kg ip), a standard myorelaxant drug. Thirty minutes later, the maximal muscle strength was measured using a grip test, while global skeletal muscle function (endurance and neuromuscular tone) was assessed in a wire hanging test. Compared to tetrazepam, both doses of V. officinalis SE induced a pronounced decrease in skeletal muscle strength without any significant effects on endurance and neuromuscular tone. This study provides clear evidence that the extract of V. officinalis tested has a relaxant effect on skeletal muscle. By decreasing skeletal muscle strength without impacting endurance and neuromuscular tone, V. officinalis SE could induce less undesirable side effects than standard myorelaxant agents, and be particularly useful for avoiding falls in the elderly.
Effect of mirror use on lower extremity muscle strength of patients with chronic stroke.
Kim, Myoung-Kwon; Choe, Yu-Won; Shin, Young-Jun; Peng, Cheng; Choi, Eun-Hong
2018-02-01
[Purpose] This study examines the effect on muscle strength of lower extremity muscle strength exercise while using a mirror on the non-paretic side in patients with chronic stroke. [Subjects and Methods] Subjects were randomly assigned to a non-mirror lower extremity exercise group (n=10), a mirror lower extremity exercise group (n=10), or a mirror lower extremity muscle strength exercise group (n=10). Subjects were asked to do the exercise assigned to their group (5 sets 30 times a day, 5 times weekly for 4 weeks) with general physical therapy in the hospital. Muscle strength in the knee extensor and flexor of paretic and non-paretic side were measured using electrical muscle testing device before and after the intervention. [Results] Muscle strength significantly increased within each group after intervention. No significant differences were found among the three groups. [Conclusion] This study showed that the lower extremity muscle strength exercise of the non-paretic side using a mirror has a positive effect on muscle strength in patient with chronic stroke.
Acceleration effects on neck muscle strength: pilots vs. non-pilots.
Seng, Kok-Yong; Lam, Pin-Min; Lee, Vee-Sin
2003-02-01
Conditioning of neck muscles, if any, due to repeated exposures to +Gz forces has received little research attention. This study was conducted to evaluate and compare the neck muscle strength of test volunteers representative of the general populations of fighter aircraft pilots and non-pilots. The tests were performed using a special attachment device on a computerized dynamometer. Ten pilots and ten non-pilots volunteered as test subjects. Each individual's maximal isometric neck muscle strength was evaluated in the extension, flexion, and left and right lateral bending directions in a single day. Peak values from the measurements were used for data analysis. Overall neck strength was calculated as the mean values for the four directions in each group. The overall muscular strength of the necks of pilots did not differ significantly from that of non-pilots, nor did exposure to +Gz forces lead to specific changes in isometric muscle strength across any of the four principal directions. Neck muscle strength in the four measured directions pooled across the two subgroups were statistically significant. The widespread practice of adopting protective head-positioning strategies to minimize neck strains, coupled with results from this research study, suggest that the neck muscles are subjected to reduced in-flight strengthening workouts during exposures to +Gz forces. To maximize in-flight performance and minimize +Gz-induced neck injuries, fighter pilots should be encouraged to perform on-land neck muscle strengthening exercise and in-flight head-positioning techniques. More research is needed to fine-tune this countermeasure strategy against cervical spine injury.
Chevalier, Francine; Fernandez-Lao, Carolina; Cuesta-Vargas, Antonio Ignacio
2014-11-25
To describe the clinical, functional and quality of life characteristics in women with Stress Urinary Incontinence (SUI). In addition, to analyse the relationship between the variables reported by the patients and those informed by the clinicians, and the relationship between instrumented variables and the manual pelvic floor strength assessment. Two hundred and eighteen women participated in this observational, analytical study. An interview about Urinary Incontinence and the quality of life questionnaires (EuroQoL-5D and SF-12) were developed as outcomes reported by the patients. Manual muscle testing and perineometry as outcomes informed by the clinician were assessed. Descriptive and correlation analysis were carried out. The average age of the subjects was (39.93 ± 12.27 years), (24.49 ± 3.54 BMI). The strength evaluated by manual testing of the right levator ani muscles was 7.79 ± 2.88, the strength of left levator ani muscles was 7.51 ± 2.91 and the strength assessed with the perineometer was 7.64 ± 2.55. A positive correlation was found between manual muscle testing and perineometry of the pelvic floor muscles (p < .001). No correlation was found between outcomes of quality of life reported by the patients and outcomes of functional capacity informed by the physiotherapist. A stratification of the strength of pelvic floor muscles in a normal distribution of a large sample of women with SUI was done, which provided the clinic with a baseline. There is a relationship between the strength of the pelvic muscles assessed manually and that obtained by a perineometer in women with SUI. There was no relationship between these values of strength and quality of life perceived.
Camargo, Marcela R; Barela, José A; Nozabieli, Andréa J L; Mantovani, Alessandra M; Martinelli, Alessandra R; Fregonesi, Cristina E P T
2015-01-01
The aims of this study were to evaluate aspects of balance, ankle muscle strength and spatiotemporal gait parameters in individuals with diabetic peripheral neuropathy (DPN) and verify whether deficits in spatiotemporal gait parameters were associated with ankle muscle strength and balance performance. Thirty individuals with DPN and 30 control individuals have participated. Spatiotemporal gait parameters were evaluated by measuring the time to walk a set distance during self-selected and maximal walking speeds. Functional mobility and balance performance were assessed using the Functional Reach and the Time Up and Go tests. Ankle isometric muscle strength was assessed with a handheld digital dynamometer. Analyses of variance were employed to verify possible differences between groups and conditions. Multiple linear regression analysis was employed to uncover possible predictors of gait deficits. Gait spatiotemporal, functional mobility, balance performance and ankle muscle strength were affected in individuals with DPN. The Time Up and Go test performance and ankle muscle isometric strength were associated to spatiotemporal gait changes, especially during maximal walking speed condition. Functional mobility and balance performance are damaged in DPN and balance performance and ankle muscle strength can be used to predict spatiotemporal gait parameters in individuals with DPN. Copyright © 2015 Diabetes India. Published by Elsevier Ltd. All rights reserved.
Kierkegaard, Marie; Petitclerc, Émilie; Hébert, Luc J; Mathieu, Jean; Gagnon, Cynthia
2018-02-28
To assess changes and responsiveness in outcome measures of mobility, balance, muscle strength and manual dexterity in adults with myotonic dystrophy type 1. A 9-year longitudinal study conducted with 113 patients. The responsiveness of the Timed Up and Go test, Berg Balance Scale, quantitative muscle testing, grip and pinch-grip strength, and Purdue Pegboard Test was assessed using criterion and construct approaches. Patient-reported perceived changes (worse/stable) in balance, walking, lower-limb weakness, stair-climbing and hand weakness were used as criteria. Predefined hypotheses about expected area under the receiver operating characteristic curves (criterion approach) and correlations between relative changes (construct approach) were explored. The direction and magnitude of median changes in outcome measures corresponded with patient-reported changes. Median changes in the Timed Up and Go test, grip strength, pinch-grip strength and Purdue Pegboard Test did not, in general, exceed known measurement errors. Most criterion (72%) and construct (70%) approach hypotheses were supported. Promising responsiveness was found for outcome measures of mobility, balance and muscle strength. Grip strength and manual dexterity measures showed poorer responsiveness. The performance-based outcome measures captured changes over the 9-year period and responsiveness was promising. Knowledge of measurement errors is needed to interpret the meaning of these longitudinal changes.
Skeletal muscle strength and endurance in recipients of lung transplants.
Mathur, Sunita; Levy, Robert D; Reid, W Darlene
2008-09-01
Exercise limitation in recipients of lung transplant may be a result of abnormalities in the skeletal muscle. However, it is not clear whether these abnormalities are merely a reflection of the changes observed in the pretransplant condition. The purpose of this paper was to compare thigh muscle volume and composition, strength, and endurance in lung transplant recipients to people with chronic obstructive pulmonary disease (COPD). Single lung transplant recipients (n=6) and people with COPD (n=6), matched for age, sex, and BMI participated in the study. Subjects underwent MRI to determine muscle size and composition, lower extremity strength testing and an isometric endurance test of the quadriceps. Lung transplant recipients had similar muscle volumes and intramuscular fat infiltration of their thigh muscles and similar strength of the quadriceps and hamstrings to people with COPD who had not undergone transplant. However, quadriceps endurance tended to be lower in transplant recipients compared to people with COPD (15 +/- 7 seconds in transplant versus 31 +/- 12 seconds in COPD, p = 0.08). Recipients of lung transplant showed similar changes in muscle size and strength as people with COPD, however muscle endurance tended to be lower in people with lung transplants. Impairments in muscle endurance may reflect the effects of immunosuppressant medications on skeletal muscle in people with lung transplant.
Dallmeijer, A J; Baker, R; Dodd, K J; Taylor, N F
2011-03-01
The purpose of this study was to determine the association between isometric muscle strength of the lower limbs and gait joint kinetics in adolescents and young adults with cerebral palsy (CP). Twenty-five participants (11 males) with bilateral spastic CP, aged 14-22 years (mean: 18.9, sd: 2.0 yr) and Gross Motor Function Classification System (GMFCS) level II (n=19) and III (n=6) were tested. Hand held dynamometry was used to measure isometric strength (expressed in Nm/kg) of the hip, knee, and ankle muscles using standardized testing positions and procedures. 3D gait analysis was performed with a VICON system to calculate joint kinetics in the hip, knee and ankle during gait. Ankle peak moments exceeded by far the levels of isometric strength of the plantar flexors, while the knee and hip peak moments were just at or below maximal isometric strength of knee and hip muscles. Isometric muscle strength showed weak to moderate correlations with peak ankle and hip extension moment and power during walking. Despite considerable muscle weakness, joint moment curves were similar to norm values. Results suggest that passive stretch of the muscle-tendon complex of the triceps surae contributes to the ankle moment during walking and that muscle strength assessment may provide additional information to gait kinetics. Copyright © 2010 Elsevier B.V. All rights reserved.
Pulmonary Function, Muscle Strength and Mortality in Old Age
Buchman, A. S.; Boyle, P. A.; Wilson, R.S.; Gu, Liping; Bienias, Julia L.; Bennett, D. A.
2009-01-01
Numerous reports have linked extremity muscle strength with mortality but the mechanism underlying this association is not known. We used data from 960 older persons without dementia participating in the Rush Memory and Aging Project to test two sequential hypotheses: first, that extremity muscle strength is a surrogate for respiratory muscle strength, and second, that the association of respiratory muscle strength with mortality is mediated by pulmonary function. In a series of proportional hazards models, we first demonstrated that the association of extremity muscle strength with mortality was no longer significant after including a term for respiratory muscle strength, controlling for age, sex, education, and body mass index. Next, the association of respiratory muscle strength with mortality was attenuated by more than 50% and no longer significant after including a term for pulmonary function. The findings were unchanged after controlling for cognitive function, parkinsonian signs, physical frailty, balance, physical activity, possible COPD, use of pulmonary medications, vascular risk factors including smoking, chronic vascular diseases, musculoskeletal joint pain, and history of falls. Overall, these findings suggest that pulmonary function may partially account for the association of muscle strength and mortality. PMID:18755207
Scheper, Mark; Rombaut, Lies; de Vries, Janneke; De Wandele, Inge; van der Esch, Martin; Visser, Bart; Malfait, Franciska; Calders, Patrick; Engelbert, Raoul
2017-07-01
The patients diagnosed with Ehlers-Danlos Syndrome Hypermobility Type (EDS-HT) are characterized by pain, proprioceptive inacuity, muscle weakness, potentially leading to activity limitations. In EDS-HT, a direct relationship between muscle strength, proprioception and activity limitations has never been studied. The objective of the study was to establish the association between muscle strength and activity limitations and the impact of proprioception on this association in EDS-HT patients. Twenty-four EDS-HT patients were compared with 24 controls. Activity limitations were quantified by Health Assessment Questionnaire (HAQ), Six-Minute Walk test (6MWT) and 30-s chair-rise test (30CRT). Muscle strength was quantified by handheld dynamometry. Proprioception was quantified by movement detection paradigm. In analyses, the association between muscle strength and activity limitations was controlled for proprioception and confounders. Muscle strength was associated with 30CRT (r = 0.67, p = <0.001), 6MWT (r = 0.58, p = <0.001) and HAQ (r = 0.63, p= <0.001). Proprioception was associated with 30CRT (r = 0.55, p < 0.001), 6MWT (r = 0.40, p = <0.05) and HAQ (r = 0.46, p < 0.05). Muscle strength was found to be associated with activity limitations, however, proprioceptive inacuity confounded this association. Muscle strength is associated with activity limitations in EDS-HT patients. Joint proprioception is of influence on this association and should be considered in the development of new treatment strategies for patients with EDS-HT. Implications for rehabilitation Reducing activity limitations by enhancing muscle strength is frequently applied in the treatment of EDS-HT patients. Although evidence regarding treatment efficacy is scarce, the current paper confirms the rationality that muscle strength is an important factor in the occurrence of activity limitations in EDS-HT patients. Although muscle strength is the most dominant factor that is associated with activity limitations, this association is confounded by proprioception. In contrast to common belief proprioception was not directly associated with activity limitations but confounded this association. Controlling muscle strength on the bases of proprioceptive input may be more important for reducing activity limitations than just enhancing sheer muscle strength.
André, Helô-Isa; Carnide, Filomena; Moço, Andreia; Valamatos, Maria-João; Ramalho, Fátima; Santos-Rocha, Rita; Veloso, António
2018-06-05
The assessment of the plantar-flexors muscle strength in older adults (OA) is of the utmost importance since they are strongly associated with the performance of fundamental tasks of daily life. The objective was to strengthen the validity of the Calf-Raise-Senior (CRS) test by assessing the biomechanical movement pattern of calf muscles in OA with different levels of functional fitness (FF) and physical activity (PA). Twenty-six OA were assessed with CRS, a FF battery, accelerometry, strength tests, kinematics and electromyography (EMG). OA with the best and worst CRS scores were compared. The association between the scores and EMG pattern of ankle muscles was determined. OA with the best CRS scores presented higher levels of FF, PA, strength, power, speed and range of movement, and a more efficient movement pattern during the test. Subjects who scored more at the CRS test demonstrated the possibility to use a stretch-shortening cycle type of action in the PF muscles to increase power during the movements. OA with different levels of FF can be stratified by the muscular activation pattern of the calf muscles and the scores in CRS test. This study reinforced the validity of CRS for evaluating ankle strength and power in OA. Copyright © 2018 Elsevier Ltd. All rights reserved.
van der Esch, M; Steultjens, M; Harlaar, J; Knol, D; Lems, W; Dekker, J
2007-06-15
To test the hypotheses that poor knee joint proprioception is related to limitations in functional ability, and poor proprioception aggravates the impact of muscle weakness on limitations in functional ability in osteoarthritis (OA) of the knee. Sixty-three patients with symptomatic OA of the knee were tested. Proprioceptive acuity was assessed by establishing the joint motion detection threshold (JMDT) in the anteroposterior direction. Muscle strength was measured using a computer-driven isokinetic dynamometer. Functional ability was assessed by the 100-meter walking test, the Get Up and Go (GUG) test, and the Western Ontario and McMaster Universities Osteoarthritis Index physical function (WOMAC-PF) questionnaire. Correlation analyses were performed to assess the relationship between proprioception, muscle strength, and functional ability. Regression analyses were performed to assess the impact of proprioception on the relationship between muscle strength and functional ability. Poor proprioception (high JMDT) was related to more limitation in functional ability (walking time r = 0.30, P < 0.05; GUG time r = 0.30, P < 0.05; WOMAC-PF r = 0.26, P <0.05). In regression analyses, the interaction between proprioception and muscle strength was significantly related to functional ability (walking time, P < 0.001 and GUG time, P < 0.001) but not to WOMAC-PF score (P = 0.625). In patients with poor proprioception, reduction of muscle strength was associated with more severe deterioration of functional ability than in patients with accurate proprioception. Patients with poor proprioception show more limitation in functional ability, but this relationship is rather weak. In patients with poor proprioception, muscle weakness has a stronger impact on limitations in functional ability than in patients with accurate proprioception.
Lower Cognitive Function in Older Patients with Lower Muscle Strength and Muscle Mass.
van Dam, Romee; Van Ancum, Jeanine M; Verlaan, Sjors; Scheerman, Kira; Meskers, Carel G M; Maier, Andrea B
2018-06-18
Low muscle strength and muscle mass are associated with adverse outcomes in older hospitalized patients. The aim of this study was to assess the association between cognitive functioning and muscle strength and muscle mass in hospitalized older patients. This prospective inception cohort included 378 patients aged 70 years or older. At admission patients were assessed for cognitive functioning by use of the Six-Item Cognitive Impairment Test (6-CIT). Muscle strength and muscle mass were assessed using handheld dynamometry and segmental multifrequency bioelectrical impedance analysis, within 48 h after admission and on day 7, or earlier on the day of discharge. The data of 371 patients (mean age ± standard deviation 80.1 ± 6.4 years, 49.3% female) were available for analyses. The median (interquartile range) 6-CIT score was 4 (0-8) points. At admission, lower cognitive functioning was associated with lower muscle strength, lower skeletal muscle mass (SMM), lower appendicular lean mass, and lower SMM index. Cognitive functioning was not associated with change in muscle strength and muscle mass during hospitalization. This study further strengthens evidence for an association between lower cognitive functioning and lower muscle strength and muscle mass, but without a further decline during hospitalization. © 2018 The Author(s) Published by S. Karger AG, Basel.
Relationship between physical function and biomechanical gait patterns in boys with haemophilia.
Stephensen, D; Taylor, S; Bladen, M; Drechsler, W I
2016-11-01
The World Federation of Haemophilia recommends joint and muscle health is evaluated using X-ray and magnetic resonance imaging, together with clinical examination scores. To date, inclusion of performance-based functional activities to monitor children with the condition has received little attention. To evaluate test-retest repeatability of physical function tests and quantify relationships between physical function, lower limb muscle strength and gait patterns in young boys with haemophilia. Timed 6-minute walk, timed up and down stairs, timed single leg stance, muscle strength of the knee extensors, ankle dorsi and plantar flexors, together with joint biomechanics during level walking were collected from 21 boys aged 6-12 years with severe haemophilia. Measures of physical function and recording of muscle strength with a hand-held myometer were repeatable (ICC > 0.78). Distances walked in six minutes, time taken to go up and down a flight of stairs and lower limb muscle strength correlated closely with ankle range of motion, together with peak knee flexion and ankle dorsi and plantarflexion moments during walking (P < 0.05). Alterations in gait patterns of boys with haemophilia appear to be associated with changes in performance of physical function and performance seems to depend on their muscle strength. Timed 6-minute walk test, timed up and down steps test and muscle strength of the knee extensors showed the strongest correlation with biomechanical joint function, and hence might serve as a basis for the clinical monitoring of physical function outcomes in children with haemophilia. © 2016 John Wiley & Sons Ltd.
Diagnostic methods to assess inspiratory and expiratory muscle strength*
Caruso, Pedro; de Albuquerque, André Luis Pereira; Santana, Pauliane Vieira; Cardenas, Leticia Zumpano; Ferreira, Jeferson George; Prina, Elena; Trevizan, Patrícia Fernandes; Pereira, Mayra Caleffi; Iamonti, Vinicius; Pletsch, Renata; Macchione, Marcelo Ceneviva; Carvalho, Carlos Roberto Ribeiro
2015-01-01
Impairment of (inspiratory and expiratory) respiratory muscles is a common clinical finding, not only in patients with neuromuscular disease but also in patients with primary disease of the lung parenchyma or airways. Although such impairment is common, its recognition is usually delayed because its signs and symptoms are nonspecific and late. This delayed recognition, or even the lack thereof, occurs because the diagnostic tests used in the assessment of respiratory muscle strength are not widely known and available. There are various methods of assessing respiratory muscle strength during the inspiratory and expiratory phases. These methods are divided into two categories: volitional tests (which require patient understanding and cooperation); and non-volitional tests. Volitional tests, such as those that measure maximal inspiratory and expiratory pressures, are the most commonly used because they are readily available. Non-volitional tests depend on magnetic stimulation of the phrenic nerve accompanied by the measurement of inspiratory mouth pressure, inspiratory esophageal pressure, or inspiratory transdiaphragmatic pressure. Another method that has come to be widely used is ultrasound imaging of the diaphragm. We believe that pulmonologists involved in the care of patients with respiratory diseases should be familiar with the tests used in order to assess respiratory muscle function.Therefore, the aim of the present article is to describe the advantages, disadvantages, procedures, and clinical applicability of the main tests used in the assessment of respiratory muscle strength. PMID:25972965
Mastenbrook, Matthew J; Commean, Paul K; Hillen, Travis J; Salsich, Gretchen B; Meyer, Gretchen A; Mueller, Michael J; Clohisy, John C; Harris-Hayes, Marcie
2017-12-01
Study Design Secondary analysis, cross-sectional study. Background Chronic hip joint pain (CHJP) can lead to limitations in activity participation, but the musculoskeletal factors associated with the condition are relatively unknown. Understanding the factors associated with CHJP may help develop rehabilitation strategies to improve quality of life of individuals with long-term hip pain. Objectives To compare measures of hip abductor muscle volume and hip abductor muscle strength between women with CHJP and asymptomatic controls. Methods Thirty women, 15 with CHJP and 15 matched asymptomatic controls (age range, 18-40 years), participated in this study. Magnetic resonance imaging was used to determine the volume of the primary hip abductor muscles, consisting of the gluteus medius, gluteus minimus, a small portion of the gluteus maximus, and the tensor fascia latae, within a defined region of interest. Break tests were performed using a handheld dynamometer to assess hip abductor strength. During the strength test, the participant was positioned in sidelying with the involved hip in 15° of abduction. Independent-samples t tests were used to compare muscle volume and strength values between those with CHJP and asymptomatic controls. Results Compared to asymptomatic controls, women with CHJP demonstrated significantly increased gluteal muscle volume (228 ± 40 cm 3 versus 199 ± 29 cm 3 , P = .032), but decreased hip abductor strength (74.6 ± 16.8 Nm versus 93.6 ± 20.2 Nm, P = .009). There were no significant differences in tensor fascia lata muscle volume between the 2 groups (P = .640). Conclusion Women with CHJP appear to have larger gluteal muscle volume, but decreased hip abductor strength, compared to asymptomatic controls. J Orthop Sports Phys Ther 2017;47(12):923-930. Epub 9 Oct 2017. doi:10.2519/jospt.2017.7380.
Misic, Mark M; Rosengren, Karl S; Woods, Jeffrey A; Evans, Ellen M
2007-01-01
Muscle mass, strength and fitness play a role in lower-extremity physical function (LEPF) in older adults; however, the relationships remain inadequately characterized. This study aimed to examine the relationships between leg mineral free lean mass (MFLM(LEG)), leg muscle quality (leg strength normalized for MFLM(LEG)), adiposity, aerobic fitness and LEPF in community-dwelling healthy elderly subjects. Fifty-five older adults (69.3 +/- 5.5 years, 36 females, 19 males) were assessed for leg strength using an isokinetic dynamometer, body composition by dual energy X-ray absorptiometry and aerobic fitness via a treadmill maximal oxygen consumption test. LEPF was assessed using computerized dynamic posturography and stair ascent/descent, a timed up-and-go task and a 7-meter walk with and without an obstacle. Muscle strength, muscle quality and aerobic fitness were similarly correlated with static LEPF tests (r range 0.27-0.40, p < 0.05); however, the strength of the independent predictors was not robust with explained variance ranging from 9 to 16%. Muscle quality was the strongest correlate of all dynamic LEPF tests (r range 0.54-0.65, p < 0.001). Using stepwise linear regression analysis, muscle quality was the strongest independent predictor of dynamic physical function explaining 29-42% of the variance (p < 0.001), whereas aerobic fitness or body fat mass explained 5-6% of the variance (p < 0.05) depending on performance measure. Muscle quality is the most important predictor, and aerobic fitness and fat mass are secondary predictors of LEPF in community-dwelling older adults. These findings support the importance of exercise, especially strength training, for optimal body composition, and maintenance of strength and physical function in older adults.
Cut points of muscle strength associated with metabolic syndrome in men.
Sénéchal, Martin; McGavock, Jonathan M; Church, Timothy S; Lee, Duck-Chul; Earnest, Conrad P; Sui, Xuemei; Blair, Steven N
2014-08-01
The loss of muscle strength with age increases the likelihood of chronic conditions, including metabolic syndrome (MetS). However, the minimal threshold of muscle strength at which the risk for MetS increases has never been established. This study aimed to identify a threshold of muscle strength associated with MetS in men. We created receiver operating curves for muscle strength and the risk of MetS from a cross-sectional sample of 5685 men age <50 yr and 1541 men age ≥50 yr enrolled in the Aerobics Center Longitudinal Study. The primary outcome measure, the MetS, was defined according to the National Cholesterol Education Program Adult Treatment Panel III criteria. Upper and lower body muscle strength was treated as a composite measure of one-repetition maximum tests on bench and leg press and scaled to body weight. Low muscle strength was defined as the lowest age-specific 20th percentile, whereas high muscle strength was defined as composite muscle strength above the 20th percentile. In men aged <50 yr, the odds of MetS were 2.20-fold (95% confidence interval = 1.89-2.54) higher in those with low muscle strength, independent of age, smoking, and alcohol intake. The strength of this association was similar for men age ≥50 yr (odds ratio = 2.11, 95% confidence interval = 1.62-2.74). In men age < 50 yr, the composite strength threshold associated with MetS was 2.57 kg·kg body weight, whereas in men age ≥ 50 yr the threshold was 2.35 kg·kg body weight. This study is the first to identify a threshold of muscle strength associated with an increased likelihood of MetS in men. Measures of muscle strength may help identify men at risk of chronic disease.
Tosun, Ozge Celiker; Solmaz, Ulas; Ekin, Atalay; Tosun, Gokhan; Gezer, Cenk; Ergenoglu, Ahmet Mete; Yeniel, Ahmet Ozgur; Mat, Emre; Malkoc, Mehtap; Askar, Niyazi
2016-01-01
[Purpose] The aim of this study was to evaluate whether the effect of pelvic floor exercises on pelvic floor muscle strength could be detected via ultrasonography in patients with urinary incontinence. [Subjects and Methods] Of 282 incontinent patients, 116 participated in the study and were randomly divided into a pelvic floor muscle training (n=65) group or control group (n=51). The pelvic floor muscle training group was given pelvic floor exercise training for 12 weeks. Both groups were evaluated at the beginning of the study and after 12 weeks. Abdominal ultrasonography measurements in transverse and longitudinal planes, the PERFECT scheme, perineometric evaluation, the stop test, the stress test, and the pad test were used to assess pelvic floor muscle strength in all cases. [Results] After training, the PERFECT, perineometry and transabdominal ultrasonography measurements were found to be significantly improved, and the stop test and pad test results were significantly decreased in the pelvic floor muscle training group, whereas no difference was observed in the control group. There was a positive correlation between the PERFECT force measurement scale and ultrasonography force measurement scale before and after the intervention in the control and pelvic floor muscle training groups (r=0.632 and r=0.642, respectively). [Conclusion] Ultrasonography can be used as a noninvasive method to identify the change in pelvic floor muscle strength with exercise training. PMID:27065519
Roberson, Audrey R; Starkweather, Angela; Grossman, Catherine; Acevedo, Edmund; Salyer, Jeanne
Muscle strength may be one indicator of readiness to mobilize that can be used to guide decisions regarding early mobility efforts and to progressively advance mobilization. To provide a synthesis of current measures of muscle strength in the assessment of early mobilization in critically ill adult patients who are receiving MV therapy. Research studies conducted between 2000-2015 were identified using PubMed, CINHAL, MEDLINE, and the Cochrane Database of Systematic Reviews databases using the search terms "muscle strength", "intensive care", "mechanical ventilation" and "muscle weakness". Nine articles used manual muscle testing, the Medical Research Council scale and/or hand-held dynamometer to provide objective measures for assessing muscle strength in the critically ill adult patient population. Further research is needed to examine the application of standardized measures of muscle strength for guiding decisions regarding early and progressive advancement of mobility goals in adult ICU patients on MV. Copyright © 2017 Elsevier Inc. All rights reserved.
Froholdt, Anne; Holm, Inger; Keller, Anne; Gunderson, Ragnhild B; Reikeraas, Olav; Brox, Jens I
2011-08-01
Reduced muscle strength and density observed at 1 year after lumbar fusion may deteriorate more in the long term. To compare the long-term effect of lumbar fusion and cognitive intervention and exercises on muscle strength, cross-sectional area, density, and self-rated function in patients with chronic low back pain (CLBP) and disc degeneration. Randomized controlled study with a follow-up examination at 8.5 years (range, 7-11 years). Patients with CLBP and disc degeneration randomized to either instrumented posterolateral fusion of one or both of the two lower lumbar levels or a 3-week cognitive intervention and exercise program were included. Isokinetic muscle strength was measured by a Cybex 6000 (Cybex-Lumex, Inc., Ronkonkoma, NY, USA). All patients had previous experience with the test procedure. The back extension (E) flexion (F) muscles were tested, and the E/F ratios were calculated. Cross-sectional area and density of the back muscles were measured at the L3-L4 segment by computed tomography. Patients rated their function by the General Function Score. Trunk muscle strength, cross-sectional area, density, and self-rated function. Fifty-five patients (90%) were included at long-term follow-up. There were no significant differences in cross-sectional area, density, muscle strength, or self-rated function between the two groups. The cognitive intervention and exercise group increased trunk muscle extension significantly (p<.05), and both groups performed significantly better on trunk muscle flexion tests (p<.01) at long-term follow-up. On average, self-rated function improved by 56%, cross-sectional area was reduced by 8.5%, and muscle density was reduced by 27%. Although this study did not assess the morphology of muscles likely damaged by surgery, trunk muscle strength and cross-sectional area above the surgical levels are not different between those who had lumbar fusion or cognitive intervention and exercises at 7- to 11-year follow-up. Copyright © 2011 Elsevier Inc. All rights reserved.
How Fit Are Elementary Children in Grades 2-4?
ERIC Educational Resources Information Center
Lemlech, Johanna K.
As part of a Feelin' Good intervention program to improve the physical fitness of children in grades 2 through 4, 603 students were tested for muscle strength and flexibility. Complete pre- and posttest data were obtained from 388 students. Two muscle strength tests and two flexibility tests demonstrated consistent sex differences in performance.…
Strength and ability to implement the activities of daily living in elderly resident in rural areas.
Vasconcelos Rocha, Saulo; Souza Dos Santos, Samara; Carneiro Vasconcelos, Lélia Renata; Alves Dos Santos, Clarice
2016-09-30
To examine the association between muscle strength and the ability to perform basic and instrumental activities of daily living in elderly resident in rural areas of Jequie, Brazil. We performed a cross-sectional design study with a population of 104 individuals aged sixty or older, registered in the Family Health Unit of the district of Itajuru, Jequie-Brazil. Data collection was performed using a standardized instrument used as an interview, followed by the application of tests (bending arm with dumbbell and rising from a chair 30 sec). The basic and instrumental activities of daily living were investigated through the Katz and Lawton scales, respectively. The chi-square test with p ≤0.05 was used as a measure of statistical significance for bivariate analyzes between muscle strength and ability to perform daily activities. The results showed a significant association between muscle strength and dynamic ability to perform activities of daily living. Reduced muscle strength is an important predictor of the functional ability of the elderly. Accordingly, it is recommended to observe muscle strength in actions directed at the elderly.
2013-01-01
Background The purpose of the present study was to compare dynamic muscle strength, functional performance, fatigue, and quality of life in premenopausal systemic lupus erythematosus (SLE) patients with low disease activity versus matched-healthy controls and to determine the association of dynamic muscle strength with fatigue, functional performance, and quality of life in SLE patients. Methods We evaluated premenopausal (18–45 years) SLE patients with low disease activity (Systemic lupus erythematosus disease activity index [SLEDAI]: mean 1.5 ± 1.2). The control (n = 25) and patient (n = 25) groups were matched by age, physical characteristics, and the level of physical activities in daily life (International Physical Activity Questionnaire IPAQ). Both groups had not participated in regular exercise programs for at least six months prior to the study. Dynamic muscle strength was assessed by one-repetition maximum (1-RM) tests. Functional performance was assessed by the Timed Up and Go (TUG), in 30-s test a chair stand and arm curl using a 2-kg dumbbell and balance test, handgrip strength and a sit-and-reach flexibility test. Quality of life (SF-36) and fatigue were also measured. Results The SLE patients showed significantly lower dynamic muscle strength in all exercises (leg press 25.63%, leg extension 11.19%, leg curl 15.71%, chest press 18.33%, lat pulldown 13.56%, 1-RM total load 18.12%, P < 0.001-0.02) compared to the controls. The SLE patients also had lower functional performance, greater fatigue and poorer quality of life. In addition, fatigue, SF-36 and functional performance accounted for 52% of the variance in dynamic muscle strength in the SLE patients. Conclusions Premenopausal SLE patients with low disease activity showed lower dynamic muscle strength, along with increased fatigue, reduced functional performance, and poorer quality of life when compared to matched controls. PMID:24011222
van Sloten, Thomas T; Savelberg, Hans H C M; Duimel-Peeters, Inge G P; Meijer, Kenneth; Henry, Ronald M A; Stehouwer, Coen D A; Schaper, Nicolaas C
2011-01-01
We evaluated the associations of diabetic complications and underlying pathology with daily walking activity in type 2 diabetic patients without manifest mobility limitations. 100 persons with type 2 diabetes (mean age 64.5 ± 9.4 years) were studied. Persons with manifest mobility limitations were excluded. Possible determinants measured: peripheral neuropathy, neuropathic pain, peripheral arterial disease, cardiovascular disease, decreased muscle strength (handgrip strength), BMI, depression, falls and fear of falling. Walking activity was measured during one week with a pedometer. Functional capacity was measured with the 6 min walk test, the timed "up and go" test and a stair climbing test. prevalence of neuropathy (40%) and obesity (53%) was high. Persons took a median of 6429 steps/day. In multivariate regression analysis, adjusted for age and sex, neuropathy was associated with a reduction of 1967 steps/day, decreased muscle strength with 1782 steps/day, and an increase in BMI of 1 kg/m(2) with a decrease of 210 steps/day (all p<0.05). Decreased muscle strength and BMI, but not neuropathy, were associated with outcome of functional capacity tests in multiple regression analysis. peripheral neuropathy, decreased muscle strength and obesity are strongly associated with walking in persons with type 2 diabetes without manifest mobility limitations. 2010 Elsevier Ireland Ltd. All rights reserved.
Effect of DHEAS on skeletal muscle over the life span: the InCHIANTI study.
Valenti, Giorgio; Denti, Licia; Maggio, Marcello; Ceda, GianPaolo; Volpato, Stefano; Bandinelli, Stefania; Ceresini, Graziano; Cappola, Anne; Guralnik, Jack M; Ferrucci, Luigi
2004-05-01
It has been suggested that the reduced production of dehydroepiandrosterone sulfate (DHEAS) may be partially responsible for the decline of muscle strength and mass that often occurs with aging. However, this hypothesis has been only tested in small series of normal volunteers, with little consideration for potential confounders. Using data from a representative sample of 558 men (20-95 years) we tested the hypothesis that circulating DHEAS is independently associated with muscle strength and mass. Data are from InCHIANTI, an epidemiological study conducted in the Chianti geographic area (Tuscany, Italy). DHEAS serum levels were related to lower extremity muscle strength assessed by hand-held dynamometry and calf muscle area estimated from quantitative computerized tomography. Confounders included age, anthropometrics, physical activity, smoking, energy and alcohol intake, albumin, lipids, interleukin-6, comorbidity, depressive symptoms, and disability in activities of daily living. In fully adjusted models predicting lower extremity muscle strength and calf muscle area, we found significant age*log DHEAS interactions, suggesting that the relationship between DHEAS levels and muscle parameters differs across the life span. In age-stratified models adjusted for confounders, serum DHEAS was an independent predictor of muscle strength (p <.02) and mass (p <.01), but only for men between 60 and 79 years of age. After adjusting these models for serum-free or bioavailable testosterone, results were unchanged. In men aged 60-79 years, circulating DHEAS is an independent correlate of muscle strength and calf muscle area. The possible causal role of declining DHEAS in age-related sarcopenia should be further explored in longitudinal studies.
Effects of William training on lumbosacral muscles function, lumbar curve and pain.
Fatemi, Rouholah; Javid, Marziyeh; Najafabadi, Ebrahim Moslehi
2015-01-01
There are many types of treatments and recommendations for restoring back deformities depending on doctors' knowledge and opinions. The purpose of the exercises is to reduce pain and to ensure stability of the lower trunk by toning the abdominal muscles, buttocks and hamstrings. Given the duration of flares and relapses rate, it is important to apply an efficient and lasting treatment. To evaluate the effects of 8 weeks of William's training on flexibility of lumbosacral muscles and lumbar angle in females with Hyperlordosis. Forty female students with lumbar lordosis more than normal degrees (Hyperlordotic) that were randomly divided into exercise and control groups were selected as the study sample. The lumbar lordosis was measured using a flexible ruler, flexibility of hamstring muscles was measured with the active knee extension test, the hip flexor muscles strength was measured using Thomas test, the lumbar muscles flexibility measures by Schober test, abdominal muscles strength measured by Sit-Up test and back pain was measured using McGill's Visual Analogue Scales (VAS) questionnaire. Data were compared before and post-test using independent and paired t-testes. Results showed that 8 weeks of William's exercise led to significant decreases in lumbar angle and back pain, increases in flexibility of hamstring muscles, hip flexor muscles flexibility, lumbar extensor muscles flexibility and abdominal muscles strength. The findings show that William's corrective training can be considered as a useful and valid method for restoring and refining back deformities like as accentuated back-arc and became wreaked muscles' performance in lumbar areas.
Arikan, Hulya; Yatar, İlker; Calik-Kutukcu, Ebru; Aribas, Zeynep; Saglam, Melda; Vardar-Yagli, Naciye; Savci, Sema; Inal-Ince, Deniz; Ozcelik, Ugur; Kiper, Nural
2015-01-01
There are limited reports that compare muscle strength, functional exercise capacity, activities of daily living (ADL) and parameters of physical fitness of cystic fibrosis (CF) patients with healthy peers in the literature. The purpose of this study was to assess and compare respiratory and peripheral muscle strength, functional exercise capacity, ADL and physical fitness in patients with CF and healthy subjects. Nineteen patients with CF (mean forced expiratory volume in one second-FEV1: 86.56±18.36%) and 20 healthy subjects were included in this study. Respiratory (maximal inspiratory pressure-MIP and maximal expiratory pressure-MEP) and peripheral muscle strength (quadriceps, shoulder abductors and hand grip strength) were evaluated. Functional exercise capacity was determined with 6min walk test (6MWT). ADL was assessed with Glittre ADL test and physical fitness was assessed with Munich fitness test (MFT). There were not any statistically significant difference in MIP, %MIP, MEP and %MEP values between two groups (p>0.05). %Peripheral muscle strength (% quadriceps and shoulder abductors strength), 6MWT distance and %6MWT distance were significantly lower in patients with CF than those of healthy subjects (p<0.05). Glittre ADL-test time was significantly longer in patients with CF than healthy subjects (p<0.05). According to Munich fitness test, the number of bouncing a ball, hanging score, distance of standing vertical jumping and standing vertical jumping score were significantly lower in patients with CF than those of healthy subjects (p<0.05). Peripheral muscle strength, functional exercise capacity, ADL performance and speed, coordination, endurance and power components of physical fitness are adversely affected in mild-severe patients with CF compared to healthy peers. Evaluations must be done in comprehensive manner in patients with CF with all stages. Copyright © 2015 Elsevier Ltd. All rights reserved.
Reliability of handheld dynamometry in assessment of hip strength in adult male football players.
Fulcher, Mark L; Hanna, Chris M; Raina Elley, C
2010-01-01
The aim of this study was to evaluate the intra- and interrater reliability of handheld dynamometry (HHD) for measuring hip muscle strength in a sample of 30 healthy semi-professional adult male football players. The reliability of HHD had not been assessed in athletes who were likely to be stronger than populations tested previously. Maximal isometric strength of resisted hip flexion and adduction were measured. Mean strength ranged from 51.5 kg for dominant hip flexion to 26.7 kg for hip adduction at 90 degrees of hip flexion. Intrarater reliability intraclass correlation coefficients (ICCs) ranged from 0.70 to 0.89. ICCs for interrater reliability ranged from 0.66 to 0.87. As expected, muscle strength in this group of athletes was significantly higher than that of populations in which HHD reliability has been assessed. Despite this, muscle strength testing of hip flexor and adductor muscles can be performed with good to excellent intra- and interrater reliability in this population. Copyright (c) 2009. Published by Elsevier Ltd.
Jung, Hungu; Yamasaki, Masahiro
2016-12-08
Reduced lower extremity range of motion (ROM) and muscle strength are related to functional disability in older adults who cannot perform one or more activities of daily living (ADL) independently. The purpose of this study was to determine which factors of seven lower extremity ROMs and two muscle strengths play dominant roles in the physical performance of community-dwelling older women. Ninety-five community-dwelling older women (mean age ± SD, 70.7 ± 4.7 years; age range, 65-83 years) were enrolled in this study. Seven lower extremity ROMs (hip flexion, hip extension, knee flexion, internal and external hip rotation, ankle dorsiflexion, and ankle plantar flexion) and two muscle strengths (knee extension and flexion) were measured. Physical performance tests, including functional reach test (FRT), 5 m gait test, four square step test (FSST), timed up and go test (TUGT), and five times sit-to-stand test (FTSST) were performed. Stepwise regression models for each of the physical performance tests revealed that hip extension ROM and knee flexion strength were important explanatory variables for FRT, FSST, and FTSST. Furthermore, ankle plantar flexion ROM and knee extension strength were significant explanatory variables for the 5 m gait test and TUGT. However, ankle dorsiflexion ROM was a significant explanatory variable for FRT alone. The amount of variance on stepwise multiple regression for the five physical performance tests ranged from 25 (FSST) to 47% (TUGT). Hip extension, ankle dorsiflexion, and ankle plantar flexion ROMs, as well as knee extension and flexion strengths may play primary roles in the physical performance of community-dwelling older women. Further studies should assess whether specific intervention programs targeting older women may achieve improvements in lower extremity ROM and muscle strength, and thereby play an important role in the prevention of dependence on daily activities and loss of physical function, particularly focusing on hip extension, ankle dorsiflexion, and ankle plantar flexion ROMs as well as knee extension and flexion strength.
Panza, Gregory A; Taylor, Beth A; Dada, Marcin R; Thompson, Paul D
2015-01-01
There are inconsistent findings regarding muscular weakness in individuals with statin-induced myalgia. We used rigorous muscle testing to compare findings from 3 investigations in 3 different study populations to determine if statin myalgia is associated with measurable weakness. In all 3 studies, we measured maximal isometric handgrip strength, resting respiratory exchange ratio (RER), and knee extensor isometric and isokinetic force. In 2 of the 3 studies, elbow flexor isometric and isokinetic force and knee endurance fatigue index were also assessed. Knee extensor and elbow flexor measurements were obtained using an isokinetic dynamometer. Resting RER was measured using a metabolic breath-by-breath collection method. Measurement outcomes were compared on vs off drug. In study 1, 18 participants fit the criteria for statin myalgia. Participants taking atorvastatin 80 mg daily had significantly lower muscle strength in 5 (P < .05) of 14 measured variables. Participants on placebo (N = 10) with myalgia had significantly lower muscle strength in 4 (P < .05) of 14 measured variables. In study 2, 18 participants tested positive for statin-induced myalgia when receiving simvastatin 20 mg daily and displayed no significant muscle strength changes (all P > .05). In study 3, 11 patients with statin-induced myalgia completed the study and had a significant decrease in 2 (P < .05) of 10 leg muscle strength variables. In all 3 studies, no significant changes were shown for handgrip strength or RER (all P > .05). Our results indicate that after a short-term treatment with statin therapy, a rigorous muscle strength protocol does not show decrements of muscle strength in subjects with statin myalgia. Short-term treatment with statin therapy is not common in clinical practice. Thus, future studies should examine the effects of prolonged statin therapy on muscle strength. Published by Elsevier Inc.
Growth hormone therapy, muscle thickness, and motor development in Prader-Willi syndrome: an RCT.
Reus, Linda; Pillen, Sigrid; Pelzer, Ben J; van Alfen-van der Velden, Janielle A A E M; Hokken-Koelega, Anita C S; Zwarts, Machiel; Otten, Barto J; Nijhuis-van der Sanden, Maria W G
2014-12-01
To investigate the effect of physical training combined with growth hormone (GH) on muscle thickness and its relationship with muscle strength and motor development in infants with Prader-Willi syndrome (PWS). In a randomized controlled trial, 22 infants with PWS (12.9 ± 7.1 months) were followed over 2 years to compare a treatment group (n = 10) with a waiting-list control group (n = 12). Muscle thickness of 4 muscle groups was measured by using ultrasound. Muscle strength was evaluated by using the Infant Muscle Strength meter. Motor performance was measured with the Gross Motor Function Measurement. Analyses of variance were used to evaluate between-group effects of GH on muscle thickness at 6 months and to compare pre- and posttreatment (after 12 months of GH) values. Multilevel analyses were used to evaluate effects of GH on muscle thickness over time, and multilevel bivariate analyses were used to test relationships between muscle thickness, muscle strength, and motor performance. A significant positive effect of GH on muscle thickness (P < .05) was found. Positive relationships were found between muscle thickness and muscle strength (r = 0.61, P < .001), muscle thickness and motor performance (r = 0.81, P < .001), and muscle strength and motor performance (r = 0.76, P < .001). GH increased muscle thickness, which was related to muscle strength and motor development in infants with PWS. Catch-up growth was faster in muscles that are most frequently used in early development. Because this effect was independent of GH, it suggests a training effect. Copyright © 2014 by the American Academy of Pediatrics.
Markvardsen, L H; Harbo, T; Sindrup, S H; Christiansen, I; Andersen, H; Jakobsen, J
2014-12-01
Subcutaneous immunoglobulin (SCIG) is superior to placebo treatment for maintenance of muscle strength during 12 weeks in patients with chronic inflammatory demyelinating polyneuropathy (CIDP). The present study evaluated whether SCIG preserves muscle strength for 1 year in an open-label follow-up study. Seventeen responders to intravenous immunoglobulin (IVIG) who had participated in the previous study of SCIG versus placebo in CIDP were included. After one IVIG infusion 2 weeks prior to baseline, all continued on SCIG treatment at weekly equal dosage and were evaluated after 3, 6 and 12 months. Primary end-points were changes in muscle strength evaluated by isokinetic dynamometry in four affected muscle groups and a composite score of muscle performance and function tests, including Medical Research Council (MRC) score, grip strength, 40-m walking test (40-MWT) and nine-hole peg test (9-HPT). Secondary end-points were changes of each of the listed parameters at each time point as well as an overall disability sum score (ODSS). The dose of SCIG was significantly unaltered during the follow-up period. Overall the isokinetic dynamometry value increased by 7.2% (P = 0.033) and after 3, 6 and 12 months by 5.7%, 8.2% and 6.8% (ns). The overall composite score at all time intervals and for each interval remained unchanged. Amongst the secondary parameters the MRC score increased significantly by 1.7% (P = 0.007), whereas grip strength, 40-MWT, 9-HPT and ODSS remained unchanged. SCIG preserves muscle strength and functional ability in patients with CIDP who previously responded to IVIG. SCIG should be considered as an alternative in long-term treatment of CIDP patients. © 2014 The Author(s) European Journal of Neurology © 2014 EAN.
Desnica Bakrac, N
2003-03-01
To assess quantitatively dynamics and extent of the increase in muscle strength during isokinetic rehabilitation. daily measurements of muscle strength; detailed testing at the beginning and at the end of rehabilitation. Cybex Rehabilitation Center, Zagreb. 44 athletes (31 m, 13 F, age 16-35), 3 injury-defined groups: athletes with ACL rupture (non-reconstructed and reconstructed) and chondromalacia patellae. all subjects underwent isokinetic rehabilitation on Cybex Orthotron KT2 device, using individually designed protocols (extension and flexion exercises, concentric muscle contractions, 15 treatments). monitoring of daily progress on rehabilitation device and detailed testing on diagnostic device. All patients showed considerable improvement. Muscle strength improved on average 141% (SD=110) in ACL-reconstructed group, 144% (SD=130) for chondromalacia patellae group and 150% (SD=74) for ACL-non-reconstructed group, comparing to initial strength. Dynamic status tested on Cybex Otrhotron diagnostic device prior and after rehabilitation strongly correlated with final progress monitored on the rehabilitation device. Isokinetic rehabilitation is a quick and effective method in treating knee injuries in athletes. Both types of objective criteria have shown significant increase in muscle strength. The improvement of muscle strength was on the average 149% (SD=101), which is about 10% daily for 15 treatments. The greatest progress, 19% per day, occurred during first five days. The athletes were able to resume their sport activities as follows: patients from chondromalacia patellae group, and most of them from the non-reconstructed ACL group were back in competition within a month, while 75% from the ACL reconstructed group came back within 3 months, and the rest of them within 5 months.
Reliability of the Q Force; a mobile instrument for measuring isometric quadriceps muscle strength.
Douma, K W; Regterschot, G R H; Krijnen, W P; Slager, G E C; van der Schans, C P; Zijlstra, W
2016-01-01
The ability to generate muscle strength is a pre-requisite for all human movement. Decreased quadriceps muscle strength is frequently observed in older adults and is associated with a decreased performance and activity limitations. To quantify the quadriceps muscle strength and to monitor changes over time, instruments and procedures with a sufficient reliability are needed. The Q Force is an innovative mobile muscle strength measurement instrument suitable to measure in various degrees of extension. Measurements between 110 and 130° extension present the highest values and the most significant increase after training. The objective of this study is to determine the test-retest reliability of muscle strength measurements by the Q Force in older adults in 110° extension. Forty-one healthy older adults, 13 males and 28 females were included in the study. Mean (SD) age was 81.9 (4.89) years. Isometric muscle strength of the Quadriceps muscle was assessed with the Q Force at 110° of knee extension. Participants were measured at two sessions with a three to eight day interval between sessions. To determine relative reliability, the intraclass correlation coefficient (ICC) was calculated. To determine absolute reliability, Bland and Altman Limits of Agreement (LOA) were calculated and t-tests were performed. Relative reliability of the Q Force is good to excellent as all ICC coefficients are higher than 0.75. Generally a large 95 % LOA, reflecting only moderate absolute reliability, is found as exemplified for the peak torque left leg of -18.6 N to 33.8 N and the right leg of -9.2 N to 26.4 N was between 15.7 and 23.6 Newton representing 25.2 % to 39.9 % of the size of the mean. Small systematic differences in mean were found between measurement session 1 and 2. The present study shows that the Q Force has excellent relative test-retest reliability, but limited absolute test-retest reliability. Since the Q Force is relatively cheap and mobile it is suitable for application in various clinical settings, however, its capability to detect changes in muscle force over time is limited but comparable to existing instruments.
Respiratory Muscle Strength Predicts Decline in Mobility in Older Persons
Buchman, A.S.; Boyle, P.A.; Wilson, R.S.; Leurgans, S.; Shah, R.C.; Bennett, D.A.
2008-01-01
Objectives To test the hypothesis that respiratory muscle strength is associated with the rate of change in mobility even after controlling for leg strength and physical activity. Methods Prospective study of 890 ambulatory older persons without dementia who underwent annual clinical evaluations to examine change in the rate of mobility over time. Results In a linear mixed-effect model adjusted for age, sex, and education, mobility declined about 0.12 unit/year, and higher levels of respiratory muscle strength were associated with a slower rate of mobility decline (estimate 0.043, SE 0.012, p < 0.001). Respiratory muscle strength remained associated with the rate of change in mobility even after controlling for lower extremity strength (estimate 0.036, SE 0.012, p = 0.004). In a model that included terms for respiratory muscle strength, lower extremity strength and physical activity together, all three were independent predictors of mobility decline in older persons. These associations remained significant even after controlling for body composition, global cognition, the development of dementia, parkinsonian signs, possible pulmonary disease, smoking, joint pain and chronic diseases. Conclusion Respiratory muscle strength is associated with mobility decline in older persons independent of lower extremity strength and physical activity. Clinical interventions to improve respiratory muscle strength may decrease the burden of mobility impairment in the elderly. PMID:18784416
Functional capacity and muscular abnormalities in subclinical hypothyroidism.
Reuters, Vaneska S; Teixeira, Patrícia de Fátima S; Vigário, Patrícia S; Almeida, Cloyra P; Buescu, Alexandre; Ferreira, Márcia M; de Castro, Carmen L N; Gold, Jaime; Vaisman, Mario
2009-10-01
Neuromuscular abnormalities and low exercise tolerance are frequently observed in overt hypothyroidism, but it remains controversial if they can also occur in subclinical hypothyroidism (sHT). The aim of this study is to evaluate neuromuscular symptoms, muscle strength, and exercise capacity in sHT, compared with healthy euthyroid individuals. A cross-sectional study was performed with 44 sHT and 24 euthyroid outpatients from a university hospital. Neuromuscular symptoms were questioned. Muscle strength was tested for neck, shoulder, arm, and hip muscle groups, using manual muscle testing (MMT). Quadriceps muscle strength was tested with a chair dynamometer and inspiratory muscle strength (IS) by a manuvacuometer. Functional capacity was estimated based on the peak of oxygen uptake (mL/kg/min), using the Bruce treadmill protocol. Cramps (54.8% versus 25.0%; P < 0.05), weakness (45.2% versus 12.6; P < 0.05), myalgia (47.6% versus 25.0%; P = 0.07), and altered MMT (30.8% versus 8.3%; P = 0.040) were more frequent in sHT. Quadriceps strength and IS were not impaired in sHT and the same was observed for functional capacity. IS was significantly lower in patients complaining of fatigue and weakness (P < 0.05) and tended to be lower in those with altered MMT (P = 0.090). Neuromuscular complaints and altered MMT were significantly more frequent in sHT than in controls, and IS was lower in patients with these abnormalities. Results suggest that altered muscle strength by MMT and the coexistence of neuromuscular complaints in patients with sHT may indicate neuromuscular dysfunction.
Utility and reliability of non-invasive muscle function tests in high-fat-fed mice.
Martinez-Huenchullan, Sergio F; McLennan, Susan V; Ban, Linda A; Morsch, Marco; Twigg, Stephen M; Tam, Charmaine S
2017-07-01
What is the central question of this study? Non-invasive muscle function tests have not been validated for use in the study of muscle performance in high-fat-fed mice. What is the main finding and its importance? This study shows that grip strength, hang wire and four-limb hanging tests are able to discriminate the muscle performance between chow-fed and high-fat-fed mice at different time points, with grip strength being reliable after 5, 10 and 20 weeks of dietary intervention. Non-invasive tests are commonly used for assessing muscle function in animal models. The value of these tests in obesity, a condition where muscle strength is reduced, is unclear. We investigated the utility of three non-invasive muscle function tests, namely grip strength (GS), hang wire (HW) and four-limb hanging (FLH), in C57BL/6 mice fed chow (chow group, n = 48) or a high-fat diet (HFD group, n = 48) for 20 weeks. Muscle function tests were performed at 5, 10 and 20 weeks. After 10 and 20 weeks, HFD mice had significantly reduced GS (in newtons; mean ± SD: 10 weeks chow, 1.89 ± 0.1 and HFD, 1.79 ± 0.1; 20 weeks chow, 1.99 ± 0.1 and HFD, 1.75 ± 0.1), FLH [in seconds per gram body weight; median (interquartile range): 10 weeks chow, 2552 (1337-4964) and HFD, 1230 (749-1994); 20 weeks chow, 2048 (765-3864) and HFD, 1036 (717-1855)] and HW reaches [n; median (interquartile range): 10 weeks chow, 4 (2-5) and HFD, 2 (1-3); 20 weeks chow, 3 (1-5) and HFD, 1 (0-2)] and higher falls [n; median (interquartile range): 10 weeks chow, 0 (0-2) and HFD, 3 (1-7); 20 weeks chow, 1 (0-4) and HFD, 8 (5-10)]. Grip strength was reliable in both dietary groups [intraclass correlation coefficient (ICC) = 0.5-0.8; P < 0.05], whereas FLH showed good reliability in chow (ICC = 0.7; P < 0.05) but not in HFD mice after 10 weeks (ICC < 0.5). Our data demonstrate that non-invasive muscle function tests are valuable and reliable tools for assessment of muscle strength and function in high-fat-fed mice. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.
Latorre-Román, Pedro Á; Arévalo-Arévalo, Juan Manuel; García-Pinillos, Felipe
2016-06-03
Aging is a complex physiological process whose main feature is the progressive loss of functionality, which may be delayed or attenuated by improving physical fitness. To determine the association between leg strength and the muscle cross-sectional area of the quadriceps femoris in relation to physical activity level in the elderly. Thirty-two functionally autonomous people over 80 years (men: 82.80±2.09 years; women: 83.77±4.09 years) participated in this study. The Barthel Index, the Yale Physical Activity Survey and the Chair Stand Test were the instruments used. There were significant differences between sexes in muscle area (p<0.001) in the Chair Stand Test (p=0.028) and the walk index (p=0.029), with higher values in men. The muscle area and the Chair Stand Test correlated significantly with the walk index (r=0.445, p<0.005, and r=0.522, p<0.001, respectively) and the total weekly activity index (r=0.430, p<0.005, and r=0.519, p<0.001, respectively). In the multiple linear regression models for the total weekly activity index, muscle area and the Chair Stand Test, only the latter behaved as a predictor variable. Muscle strength and muscle mass of quadriceps showed a significant association with the physical activity level in older people. Leg muscle strength was useful to reveal muscle mass and physical activity level in older people, which is relevant as a clinical practice indicator.
Kömürcü, Erkam; Yüksel, Halil Yalçın; Ersöz, Murat; Aktekin, Cem Nuri; Hapa, Onur; Çelebi, Levent; Akbal, Ayla; Biçimoğlu, Ali
2014-12-01
The aim of this study was to evaluate the effect of knee position during wound closure (flexed vs. extended) in total knee arthroplasty on knee strength and function, as determined by knee society scores and isokinetic testing of extensor and flexor muscle groups. In a prospective, randomized, double-blind trial, 29 patients were divided in two groups: for Group 1 patients, surgical closing was performed with the knee extended, and for Group 2 patients, the knee flexed at 90°. All the patients were treated with the same anaesthesia method, surgical team, surgical technique, prosthesis type, and rehabilitation process. American Knee Society Score values and knee flexion degrees were recorded. Isokinetic muscle strength measurements of both knees in flexion and extension were taken using 60° and 180°/s angular velocity. The peak torque and total work values, isokinetic muscle strength differences, and total work difference values were calculated for surgically repaired and healthy knees. No significant difference in the mean American Knee Society Score values and knee flexion degrees was observed between the two groups. However, using isokinetic evaluation, a significant difference was found in the isokinetic muscle strength differences and total work difference of the flexor muscle between the two groups when patients were tested at 180°/s. Less loss of strength was detected in the isokinetic muscle strength differences of the flexor muscle in Group 2 (-4.2%) than in Group 1 (-23.1%). For patients undergoing total knee arthroplasty, post-operative flexor muscle strength is improved if the knee is flexed during wound closure. II.
Mentiplay, Benjamin F; Tan, Dawn; Williams, Gavin; Adair, Brooke; Pua, Yong-Hao; Bower, Kelly J; Clark, Ross A
2018-04-27
Isometric rate of torque development examines how quickly force can be exerted and may resemble everyday task demands more closely than isometric strength. Rate of torque development may provide further insight into the relationship between muscle function and gait following stroke. Aims of this study were to examine the test-retest reliability of hand-held dynamometry to measure isometric rate of torque development following stroke, to examine associations between strength and rate of torque development, and to compare the relationships of strength and rate of torque development to gait velocity. Sixty-three post-stroke adults participated (60 years, 34 male). Gait velocity was assessed using the fast-paced 10 m walk test. Isometric strength and rate of torque development of seven lower-limb muscle groups were assessed with hand-held dynamometry. Intraclass correlation coefficients were calculated for reliability and Spearman's rho correlations were calculated for associations. Regression analyses using partial F-tests were used to compare strength and rate of torque development in their relationship with gait velocity. Good to excellent reliability was shown for strength and rate of torque development (0.82-0.97). Strong associations were found between strength and rate of torque development (0.71-0.94). Despite high correlations between strength and rate of torque development, rate of torque development failed to provide significant value to regression models that already contained strength. Assessment of isometric rate of torque development with hand-held dynamometry is reliable following stroke, however isometric strength demonstrated greater relationships with gait velocity. Further research should examine the relationship between dynamic measures of muscle strength/torque and gait after stroke. Copyright © 2018 Elsevier Ltd. All rights reserved.
Validity and test–retest reliability of a novel simple back extensor muscle strength test
Harding, Amy T; Weeks, Benjamin Kurt; Horan, Sean A; Little, Andrew; Watson, Steven L; Beck, Belinda Ruth
2017-01-01
Objectives: To develop and determine convergent validity and reliability of a simple and inexpensive clinical test to quantify back extensor muscle strength. Methods: Two testing sessions were conducted, 7 days apart. Each session involved three trials of standing maximal isometric back extensor muscle strength using both the novel test and isokinetic dynamometry. Lumbar spine bone mineral density was examined by dual-energy X-ray absorptiometry. Validation was examined with Pearson correlations (r). Test–retest reliability was examined with intraclass correlation coefficients and limits of agreement. Pearson correlations and intraclass correlation coefficients are presented with corresponding 95% confidence intervals. Linear regression was used to examine the ability of peak back extensor muscle strength to predict indices of lumbar spine bone mineral density and strength. Results: A total of 52 healthy adults (26 men, 26 women) aged 46.4 ± 20.4 years were recruited from the community. A strong positive relationship was observed between peak back extensor strength from hand-held and isokinetic dynamometry (r = 0.824, p < 0.001). For the novel back extensor strength test, short- and long-term reliability was excellent (intraclass correlation coefficient = 0.983 (95% confidence interval, 0.971–0.990), p < 0.001 and intraclass correlation coefficient = 0.901 (95% confidence interval, 0.833–0.943), p < 0.001, respectively). Limits of agreement for short-term repeated back extensor strength measures with the novel back extensor strength protocol were −6.63 to 7.70 kg, with a mean bias of +0.71 kg. Back extensor strength predicted 11% of variance in lumbar spine bone mineral density (p < 0.05) and 9% of lumbar spine index of bone structural strength (p < 0.05). Conclusion: Our novel hand-held dynamometer method to determine back extensor muscle strength is quick, relatively inexpensive, and reliable; demonstrates initial convergent validity in a healthy population; and is associated with bone mass at a clinically important site. PMID:28255442
Strength and ability to implement the activities of daily living in elderly resident in rural areas
Souza dos Santos, Samara; Carneiro Vasconcelos, Lélia Renata; Alves dos Santos, Clarice
2016-01-01
Objective: To examine the association between muscle strength and the ability to perform basic and instrumental activities of daily living in elderly resident in rural areas of Jequie, Brazil. Methods: We performed a cross-sectional design study with a population of 104 individuals aged sixty or older, registered in the Family Health Unit of the district of Itajuru, Jequie-Brazil. Data collection was performed using a standardized instrument used as an interview, followed by the application of tests (bending arm with dumbbell and rising from a chair 30 sec). The basic and instrumental activities of daily living were investigated through the Katz and Lawton scales, respectively. The chi-square test with p ≤0.05 was used as a measure of statistical significance for bivariate analyzes between muscle strength and ability to perform daily activities. Results: The results showed a significant association between muscle strength and dynamic ability to perform activities of daily living. Conclusion: Reduced muscle strength is an important predictor of the functional ability of the elderly. Accordingly, it is recommended to observe muscle strength in actions directed at the elderly. PMID:27821897
Normal isometric strength of rotatorcuff muscles in adults.
Chezar, A; Berkovitch, Y; Haddad, M; Keren, Y; Soudry, M; Rosenberg, N
2013-01-01
The most prevalent disorders of the shoulder are related to the muscles of rotator cuff. In order to develop a mechanical method for the evaluation of the rotator cuff muscles, we created a database of isometric force generation by the rotator cuff muscles in normal adult population. We hypothesised the existence of variations according to age, gender and dominancy of limb. A total of 400 healthy adult volunteers were tested, classified into groups of 50 men and women for each decade of life. Maximal isometric force was measured at standardised positions for supraspinatus, infraspinatus and subscapularis muscles in both shoulders in every person. Torque of the force was calculated and normalised to lean body mass. The profiles of mean torque-time curves for each age and gender group were compared. Our data showed that men gradually gained maximal strength in the fifth decade, and showed decreased strength in the sixth. In women the maximal strength was gained in the fourth decade with gradual decline to the sixth decade of life. The dominant arm was stronger in most of the tested groups. The torque profiles of the rotator cuff muscles in men at all ages were significantly higher than that in women. We found previously unrecognised variations of rotator cuff muscles' isometric strength according to age, gender and dominancy in a normal population. The presented data may serve as a basis for the future studies for identification of the abnormal patterns of muscle isometric strength in patients with pathology of the rotator cuff muscles. Cite this article: Bone Joint Res 2013;2:214-19.
Metz, Roderik; van der Heijden, Geert J M G; Verleisdonk, Egbert-Jan M M; Tamminga, Rob; van der Werken, Christiaan
2009-10-01
The aim of this study was to measure the effect of treatment of acute Achilles tendon ruptures on calf muscle strength recovery. Eighty-three patients with acute Achilles tendon rupture were randomly allocated to either minimally invasive surgery with functional after-treatment or conservative treatment by functional bracing. Calf muscle strength using isokinetic testing was evaluated at 3 months and after 6 or more months posttreatment. To exclusively investigate the effect of treatment on outcome, the authors excluded patients with major complications from the analysis. In 31 of 39 patients in the surgical treatment group and 25 of 34 patients in the conservative treatment group, isokinetic strength tests were performed. In the analysis of differences in mean peak torque, no statistically significant differences were found between surgery and conservative treatment, except for plantar flexion strength at 90 degrees per second at the second measurement, favoring conservative treatment. After 8 to 10 months follow- up, loss of plantar flexion strength was still present in the injured leg in both treatment groups. In conclusion, isokinetic muscle strength testing did not detect a statistically significant difference between minimally invasive surgical treatment with functional after-treatment and conservative treatment by functional bracing of acute Achilles tendon ruptures.
Bae, Jeongyee; Cho, Seong Il
2014-12-01
The purposes of this study was to develop a comprehensive community-based fall prevention program and to test the effects of the program on the muscle strength, postural balance and fall efficacy for elderly people. The design of this study was a nonequivalent control group pretest-posttest design. There were 28 participants in the experimental group and 29 in the control group. The program consisted of balance exercises, elastic resistance exercises and prevention education. The program was provided five times a week for 8 weeks and each session lasted 90 minutes. Data were analyzed using χ²-test, independent t-test and paired t-test using the SPSS program. Muscle strength of the lower extremities, postural balance and fall efficacy scores significantly improved in the experimental group compared to the control group. These results suggest that this program can improve lower extremity muscle strength, postural balance and fall efficacy in elders. Therefore, this program is recommended for use in fall prevention programs for elders living in the community.
Correlation between toe flexor strength and ankle dorsiflexion ROM during the countermovement jump.
Yun, Sung Joon; Kim, Moon-Hwan; Weon, Jong-Hyuck; Kim, Young; Jung, Sung-Hoon; Kwon, Oh-Yun
2016-08-01
[Purpose] This study assessed the relationships between peak toe flexor muscle strength, ankle dorsiflexion range of motion, and countermovement jump height. [Subjects and Methods] Eighteen healthy volunteers participated in the study. Each participant completed tests for peak toe flexor muscle strength, ankle dorsiflexion range of motion, and countermovement jump height. [Results] The results showed (1) a moderate correlation between ankle dorsiflexion range of motion and countermovement jump height and (2) a high correlation between peak first toe flexor muscle strength and countermovement jump height. Peak first toe flexor muscle strength and ankle dorsiflexion range of motion are the main contributors to countermovement jump performance. [Conclusion] These findings indicate that the measurement of peak first toe flexor muscle strength and ankle dorsiflexion range of motion may be useful in clinical practice for improving jump performance in athletes training for sports such as volleyball and basketball.
Illi, Sabine K; Held, Ulrike; Frank, Irène; Spengler, Christina M
2012-08-01
Two distinct types of specific respiratory muscle training (RMT), i.e. respiratory muscle strength (resistive/threshold) and endurance (hyperpnoea) training, have been established to improve the endurance performance of healthy individuals. We performed a systematic review and meta-analysis in order to determine the factors that affect the change in endurance performance after RMT in healthy subjects. A computerized search was performed without language restriction in MEDLINE, EMBASE and CINAHL and references of original studies and reviews were searched for further relevant studies. RMT studies with healthy individuals assessing changes in endurance exercise performance by maximal tests (constant load, time trial, intermittent incremental, conventional [non-intermittent] incremental) were screened and abstracted by two independent investigators. A multiple linear regression model was used to identify effects of subjects' fitness, type of RMT (inspiratory or combined inspiratory/expiratory muscle strength training, respiratory muscle endurance training), type of exercise test, test duration and type of sport (rowing, running, swimming, cycling) on changes in performance after RMT. In addition, a meta-analysis was performed to determine the effect of RMT on endurance performance in those studies providing the necessary data. The multiple linear regression analysis including 46 original studies revealed that less fit subjects benefit more from RMT than highly trained athletes (6.0% per 10 mL · kg⁻¹ · min⁻¹ decrease in maximal oxygen uptake, 95% confidence interval [CI] 1.8, 10.2%; p = 0.005) and that improvements do not differ significantly between inspiratory muscle strength and respiratory muscle endurance training (p = 0.208), while combined inspiratory and expiratory muscle strength training seems to be superior in improving performance, although based on only 6 studies (+12.8% compared with inspiratory muscle strength training, 95% CI 3.6, 22.0%; p = 0.006). Furthermore, constant load tests (+16%, 95% CI 10.2, 22.9%) and intermittent incremental tests (+18.5%, 95% CI 10.8, 26.3%) detect changes in endurance performance better than conventional incremental tests (both p < 0.001) with no difference between time trials and conventional incremental tests (p = 0.286). With increasing test duration, improvements in performance are greater (+0.4% per minute test duration, 95% CI 0.1, 0.6%; p = 0.011) and the type of sport does not influence the magnitude of improvements (all p > 0.05). The meta-analysis, performed on eight controlled trials revealed a significant improvement in performance after RMT, which was detected by constant load tests, time trials and intermittent incremental tests, but not by conventional incremental tests. RMT improves endurance exercise performance in healthy individuals with greater improvements in less fit individuals and in sports of longer durations. The two most common types of RMT (inspiratory muscle strength and respiratory muscle endurance training) do not differ significantly in their effect, while combined inspiratory/expiratory strength training might be superior. Improvements are similar between different types of sports. Changes in performance can be detected by constant load tests, time trials and intermittent incremental tests only. Thus, all types of RMT can be used to improve exercise performance in healthy subjects but care must be taken regarding the test used to investigate the improvements.
ERIC Educational Resources Information Center
Londeree, Ben R.
1981-01-01
Postural deviations resulting from strength and flexibility imbalances include swayback, scoliosis, and rounded shoulders. Screening tests are one method for identifying strength problems. Tests for the evaluation of postural problems are described, and exercises are presented for the strengthening of muscles. (JN)
The Relationship between Walk Distance and Muscle Strength, Muscle Pain in Visually Disabled People
ERIC Educational Resources Information Center
Akyol, Betül
2018-01-01
The purpose of this study is to examine the relationship between six-minute walk test and muscle pain, muscle strength in visually disabled people. The study includes 50 visually disabled people, aged between 17, 21 ± 5,3. Participants were classified into three categories according to their degree of vision (B1, B2, B3). All participants were…
Comparison of Three Methods of Assessing Muscle Strength and Imbalance Ratios of the Knee
Moss, Crayton L.; Wright, P. Thomas
1993-01-01
Three strength measurement methods for determining muscle strength and imbalance ratios of the knee were compared in 41 (23 female, 18 male) NCAA Division I track and field athletes. Peak quadriceps extensions and hamstring flexions were measured isotonically, isometrically, and isokinetically. Isokinetic measurements were performed on a Cybex II at 60°/s. Isometric extension and flexion measurements were performed using the Nicholas Manual Muscle Tester (Lafayette Instruments; Lafayette, Ind). Isotonic measurements were done on both Universal and Nautilus apparatuses. Testing order was randomized to avoid a treatment order effect. A repeated measures ANOVA and a post hoc Tukey test were used to compare the three methods of assessing strength and imbalance ratios of the knee. Absolute strength values were significantly different according to gender and mode of testing. Bilateral strength imbalance ratios for knee flexion were significantly lower for the Nautilus leg curl machine. Ipsilateral strength imbalance ratios were significantly greater for the Cybex II. Our results indicated that absolute strength values cannot be interchanged between testing modes. Except for Cybex II (ipsilateral) and Nautilus (bilateral knee flexion), strength imbalance ratios could be interchanged. ImagesFig 1.Fig 2.Fig 3.Fig 4.Fig 5.Fig 6.Fig 7.INGING PMID:16558207
Are pain location and physical examinations useful in locating a tear site of the rotator cuff?
Itoi, Eiji; Minagawa, Hiroshi; Yamamoto, Nobuyuki; Seki, Nobutoshi; Abe, Hidekazu
2006-02-01
Pain is the most common symptom of patients with rotator cuff tendinopathy, but little is known about the relationship between the site of pain and the site of cuff pathologic lesions. Also, accuracies of physical examinations used to locate a tear by assessing the muscle strength seem to be affected by the threshold for muscle weakness, but no studies have been reported regarding the efficacies of physical examinations in reference to their threshold. Pain location is useful in locating a tear site. Efficacies of physical examinations to evaluate the function of the cuff muscles depend on the threshold for muscle weakness. Case series; Level of evidence, 4. The authors retrospectively reviewed the clinical charts of 160 shoulders of 149 patients (mean age, 53 years) with either rotator cuff tears (140 shoulders) or cuff tendinitis (20 shoulders). The location of pain was recorded on a standardized form with 6 different areas. The diagnostic accuracies of the following tests were assessed with various thresholds for muscle weakness: supraspinatus test, the external rotation strength test, and the lift-off test. Lateral and anterior portions of the shoulder were the most common sites of pain regardless of existence of tear or tear location. The supraspinatus test was most accurate when it was assessed to have positive results with the muscle strength less than manual muscle testing grade 5, whereas the lift-off test was most accurate with a threshold less than grade 3. The external rotation strength test was most accurate with a threshold of less than grade 4+. The authors conclude that pain location is not useful in locating the site of a tear, whereas the physical examinations aiming to locate the tear site are clinically useful when assessed to have positive results with appropriate threshold for muscle weakness.
Pulmonary Function, Muscle Strength, and Incident Mobility Disability in Elders
Buchman, Aron S.; Boyle, Patricia A.; Leurgans, Sue E.; Evans, Denis A.; Bennett, David A.
2009-01-01
Muscle strength, including leg strength and respiratory muscle strength, are relatively independently associated with mobility disability in elders. However, the factors linking muscle strength with mobility disability are unknown. To test the hypothesis that pulmonary function mediates the association of muscle strength with the development of mobility disability in elders, we used data from a longitudinal cohort study of 844 ambulatory elders without dementia participating in the Rush Memory and Aging Project with a mean follow-up of 4.0 years (SD = 1.39). A composite measure of pulmonary function was based on spirometric measures of forced vital capacity, forced expiratory volume, and peak expiratory flow. Respiratory muscle strength was based on maximal inspiratory pressure and expiratory pressure and leg strength based on hand-held dynamometry. Mobility disability was defined as a gait speed less than or equal to 0.55 m/s based on annual assessment of timed walk. Secondary analyses considered time to loss of the ability to ambulate. In separate proportional hazards models which controlled for age, sex, and education, composite measures of pulmonary function, respiratory muscle strength, and leg strength were each associated with incident mobility disability (all P values < 0.001). Further, all three were related to the development of incident mobility disability when considered together in a single model (pulmonary function: hazard ratio [HR], 0.721; 95% confidence interval [CI], 0.577, 0.902; respiratory muscle strength: HR, 0.732; 95% CI, 0.593, 0.905; leg strength: HR, 0.791; 95% CI, 0.640, 0.976). Secondary analyses examining incident loss of the ability to ambulate revealed similar findings. Overall, these findings suggest that lower levels of pulmonary function and muscle strength are relatively independently associated with the development of mobility disability in the elderly. PMID:19934353
Do stages of menopause affect the outcomes of pelvic floor muscle training?
Tosun, Özge Çeliker; Mutlu, Ebru Kaya; Tosun, Gökhan; Ergenoğlu, Ahmet Mete; Yeniel, Ahmet Özgur; Malkoç, Mehtap; Aşkar, Niyazi; İtil, İsmail Mete
2015-02-01
The purpose of our study is to determine whether there is a difference in pelvic floor muscle strength attributable to pelvic floor muscle training conducted during different stages of menopause. One hundred twenty-two women with stress urinary incontinence and mixed urinary incontinence were included in this prospective controlled study. The participants included in this study were separated into three groups according to the Stages of Reproductive Aging Workshop staging system as follows: group 1 (n = 41): stages -3 and -2; group 2 (n = 32): stages +1 and -1; and group 3 (n = 30): stage +2. All three groups were provided an individual home exercise program throughout the 12-week study. Pelvic floor muscle strength before and after the 12-week treatment was measured in all participants (using the PERFECT [power, endurance, number of repetitions, and number of fast (1-s) contractions; every contraction is timed] scheme, perineometry, transabdominal ultrasound, Brink scale, pad test, and stop test). Data were analyzed using analysis of variance. There were no statistically significant differences in pre-exercise training pelvic floor muscle strength parameters among the three groups. After 12 weeks, there were statistically significant increases in PERFECT scheme, Brink scale, perineometry, and ultrasound values. In contrast, there were significant decreases in stop test and 1-hour pad test values observed in the three groups (P = 0.001, dependent t test). In comparison with the other groups, group 1 demonstrated statistically significant improvements in the following postexercise training parameters: power, repetition, speed, Brink vertical displacement, and stop test. The lowest increase was observed in group 2 (P < 0.05). Strength increase can be achieved at all stages of menopause with pelvic floor muscle training, but the rates of increase vary according to the menopausal stage of the participants. Women in the late menopausal transition and early menopause are least responsive to pelvic floor muscle strength training. Further studies in this field are needed.
Effects of pelvic floor muscle training during pregnancy.
de Oliveira, Claudia; Lopes, Marco Antonio Borges; Carla Longo e Pereira, Luciana; Zugaib, Marcelo
2007-08-01
The objective of the present study was to evaluate the effect of pelvic floor muscle training in 46 nulliparous pregnant women. The women were divided into 2 groups: an exercise group and a control group. Functional evaluation of the pelvic floor muscle was performed by digital vaginal palpation using the strength scale described by Ortiz and by a perineometer (with and without biofeedback). The functional evaluation of the pelvic floor muscles showed a significant increase in pelvic floor muscle strength during pregnancy in both groups (P < .001). However, the magnitude of the change was greater in the exercise group than in the control group (47.4% vs. 17.3%, P < .001). The study also showed a significant positive correlation (Spearman's test, r = 0.643; P < .001) between perineometry and digital assessment in the strength of pelvic floor muscles. Pelvic floor muscle training resulted in a significant increase in pelvic floor muscle pressure and strength during pregnancy. A significant positive correlation between functional evaluation of the pelvic floor muscle and perineometry was observed during pregnancy.
Muscle strength in patients with acromegaly at diagnosis and during long-term follow-up.
Füchtbauer, Laila; Olsson, Daniel S; Bengtsson, Bengt-Åke; Norrman, Lise-Lott; Sunnerhagen, Katharina S; Johannsson, Gudmundur
2017-08-01
Patients with acromegaly have decreased body fat (BF) and increased extracellular water (ECW) and muscle mass. Although there is a lack of systematic studies on muscle function, it is believed that patients with acromegaly may suffer from proximal muscle weakness despite their increased muscle mass. We studied body composition and muscle function in untreated acromegaly and after biochemical remission. Prospective observational study. Patients with acromegaly underwent measurements of muscle strength (dynamometers) and body composition (four-compartment model) at diagnosis ( n = 48), 1 year after surgery ( n = 29) and after long-term follow-up (median 11 years) ( n = 24). Results were compared to healthy subjects. Untreated patients had increased body cell mass (113 ± 9% of predicted) and ECW (110 ± 20%) and decreased BF (67 ± 7.6%). At one-year follow-up, serum concentration of IGF-I was reduced and body composition had normalized. At baseline, isometric muscle strength in knee flexors and extensors was normal and concentric strength was modestly increased whereas grip strength and endurance was reduced. After one year, muscle strength was normal in both patients with still active disease and patients in remission. At long-term follow-up, all patients were in remission. Most muscle function tests remained normal, but isometric flexion and the fatigue index were increased to 153 ± 42% and 139 ± 28% of predicted values, respectively. Patients with untreated acromegaly had increased body cell mass and normal or modestly increased proximal muscle strength, whereas their grip strength was reduced. After biochemical improvement and remission, body composition was normalized, hand grip strength was increased, whereas proximal muscle fatigue increased. © 2017 European Society of Endocrinology.
Diamond, Laura E; Wrigley, Tim V; Hinman, Rana S; Hodges, Paul W; O'Donnell, John; Takla, Amir; Bennell, Kim L
2016-09-01
This study investigated isometric and isokinetic hip strength in individuals with and without symptomatic femoroacetabular impingement (FAI). The specific aims were to: (i) determine whether differences exist in isometric and isokinetic hip strength measures between groups; (ii) compare hip strength agonist/antagonist ratios between groups; and (iii) examine relationships between hip strength and self-reported measures of either hip pain or function in those with FAI. Cross-sectional. Fifteen individuals (11 males; 25±5 years) with symptomatic FAI (clinical examination and imaging (alpha angle >55° (cam FAI), and lateral centre edge angle >39° and/or positive crossover sign (combined FAI))) and 14 age- and sex-matched disease-free controls (no morphological FAI on magnetic resonance imaging) underwent strength testing. Maximal voluntary isometric contraction strength of hip muscle groups and isokinetic hip internal (IR) and external rotation (ER) strength (20°/s) were measured. Groups were compared with independent t-tests and Mann-Whitney U tests. Participants with FAI had 20% lower isometric abduction strength than controls (p=0.04). There were no significant differences in isometric strength for other muscle groups or peak isokinetic ER or IR strength. The ratio of isometric, but not isokinetic, ER/IR strength was significantly higher in the FAI group (p=0.01). There were no differences in ratios for other muscle groups. Angle of peak IR torque was the only feature correlated with symptoms. Individuals with symptomatic FAI demonstrate isometric hip abductor muscle weakness and strength imbalance in the hip rotators. Strength measurement, including agonist/antagonist ratios, may be relevant for clinical management of FAI. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Lee, DongGeon; Lee, GyuChang; Jeong, JiSim
2016-07-27
This study was to investigate the effects of Mirror Therapy (MT) combined with Neuromuscular Electrical Stimulation (NMES) on muscle strength and tone, motor function, balance, and gait ability in stroke survivors with hemiplegia. This study was a randomized controlled trial. Twenty-seven hemiplegic stroke survivors from a rehabilitation center participated in the study. The participants were randomly assigned to either an experimental or a control group. The experimental group (n = 14) underwent MT combined with NMES and conventional physical therapy, and the control group (n = 13) underwent conventional physical therapy alone. Muscle strength and tone, balance, and gait ability were examined at baseline and after 4 weeks of intervention. A hand-held dynamometer was used to assess muscle strength, the Modified Ashworth Scale (MAS) was used to assess muscle tone, the Berg Balance Scale (BBS) and Timed Up and Go test (TUG) were used to ascertain balance, and the 6-m Walk Test (6mWT) was used to examine gait ability. After the intervention, compared to baseline values, there were significant improvements in muscle strength and MAS, BBS, TUG, and 6mWT values in the experimental group (P< 0.05). In addition, at post-intervention, there were significant differences between the two groups in muscle strength and BBS (P< 0.05). MT combined with NMES may effectively improve muscle strength and balance in hemiplegic stroke survivors. However, further studies are necessary to demonstrate brain reorganization after MT combined with NMES.
Relation between functional mobility and dynapenia in institutionalized frail elderly.
Soares, Antonio Vinicius; Marcelino, Elessandra; Maia, Késsia Cristina; Borges, Noé Gomes
2017-01-01
To investigate the relation between functional mobility and dynapenia in institutionalized frail elderly. A descriptive, correlational study involving 26 institutionalized elderly men and women, mean age 82.3±6 years. The instruments employed were the Mini Mental State Examination, the Geriatric Depression Scale, the International Physical Activity Questionnaire, the Timed Up and Go test, a handgrip dynamometer and a portable dynamometer for large muscle groups (shoulder, elbow and hip flexors, knee extensors and ankle dorsiflexors). Significant negative correlation between functional mobility levels assessed by the Timed Up and Go test and dynapenia was observed in all muscle groups evaluated, particularly in knee extensors (r -0.65). A significant negative correlation between muscle strength, particularly knee extensor strength, and functional mobility was found in institutionalized elderly. Data presented indicate that the higher the muscle strength, the shorter the execution time, and this could demonstrate better performance in this functional mobility test.
Effects of caffeine intake on muscle strength and power: a systematic review and meta-analysis.
Grgic, Jozo; Trexler, Eric T; Lazinica, Bruno; Pedisic, Zeljko
2018-01-01
Caffeine is commonly used as an ergogenic aid. Literature about the effects of caffeine ingestion on muscle strength and power is equivocal. The aim of this systematic review and meta-analysis was to summarize results from individual studies on the effects of caffeine intake on muscle strength and power. A search through eight databases was performed to find studies on the effects of caffeine on: (i) maximal muscle strength measured using 1 repetition maximum tests; and (ii) muscle power assessed by tests of vertical jump. Meta-analyses of standardized mean differences (SMD) between placebo and caffeine trials from individual studies were conducted using the random effects model. Ten studies on the strength outcome and ten studies on the power outcome met the inclusion criteria for the meta-analyses. Caffeine ingestion improved both strength (SMD = 0.20; 95% confidence interval [CI]: 0.03, 0.36; p = 0.023) and power (SMD = 0.17; 95% CI: 0.00, 0.34; p = 0.047). A subgroup analysis indicated that caffeine significantly improves upper (SMD = 0.21; 95% CI: 0.02, 0.39; p = 0.026) but not lower body strength (SMD = 0.15; 95% CI: -0.05, 0.34; p = 0.147). The meta-analyses showed significant ergogenic effects of caffeine ingestion on maximal muscle strength of upper body and muscle power. Future studies should more rigorously control the effectiveness of blinding. Due to the paucity of evidence, additional findings are needed in the female population and using different forms of caffeine, such as gum and gel.
CHANGES IN MUSCLE DAMAGE MARKERS IN FEMALE BASKETBALL PLAYERS
Moreira, A.; Nosaka, K.; Nunes, J.A.; Viveiros, L.; Jamurtas, A.Z.
2014-01-01
The aim of the present study was to investigate changes in muscle soreness, blood muscle damage markers, muscle strength and agility following an official basketball match. Eleven elite female professional basketball players (27.4 ± 4.8 years, 179.5 ± 5.5 cm, 72.0 ± 7.8 kg) of a team participated in this study. The official match was the seventh match of the season in the first phase of the Brazilian National Female Basketball Championship. Muscle soreness, plasma creatine kinase activity (CK), and myoglobin concentration (Mb) were determined before and after the match (post-match, 24 and 48 hours after the match). The 1RM strength for bench press and leg press, and the agility T test were assessed before and at 24 and 48 hours after the match. Significant increases in muscle soreness, CK and Mb were observed at 24 and 48 hours post-match (p<0.05). No significant changes in the 1RM strength and T test were detected during recovery (24 and 48 hours after the match). These results suggest that a basketball match induced limited muscle damage with minimal effect on performance during recovery. The small increase in muscle damage markers following a basketball match did not affect strength and agility performance. PMID:24917683
Changes in muscle damage markers in female basketball players.
Moreira, A; Nosaka, K; Nunes, J A; Viveiros, L; Jamurtas, A Z; Aoki, M S
2014-03-01
The aim of the present study was to investigate changes in muscle soreness, blood muscle damage markers, muscle strength and agility following an official basketball match. Eleven elite female professional basketball players (27.4 ± 4.8 years, 179.5 ± 5.5 cm, 72.0 ± 7.8 kg) of a team participated in this study. The official match was the seventh match of the season in the first phase of the Brazilian National Female Basketball Championship. Muscle soreness, plasma creatine kinase activity (CK), and myoglobin concentration (Mb) were determined before and after the match (post-match, 24 and 48 hours after the match). The 1RM strength for bench press and leg press, and the agility T test were assessed before and at 24 and 48 hours after the match. Significant increases in muscle soreness, CK and Mb were observed at 24 and 48 hours post-match (p<0.05). No significant changes in the 1RM strength and T test were detected during recovery (24 and 48 hours after the match). These results suggest that a basketball match induced limited muscle damage with minimal effect on performance during recovery. The small increase in muscle damage markers following a basketball match did not affect strength and agility performance.
Xu, D Q; Li, J X; Hong, Y
2006-01-01
To investigate the influence of regular Tai Chi (TC) practice and jogging on muscle strength and endurance in the lower extremities of older people. Twenty one long term older TC practitioners were compared with 18 regular older joggers and 22 sedentary counterparts. Maximum concentric strength of knee flexors and extensors was tested at angular velocities of 30 degrees/s and 120 degrees/s. Ankle dorsiflexors and plantar flexors were tested at 30 degrees/s and the dynamic endurance of the knee flexors and extensors was assessed at a speed of 180 degrees/s. The differences in the muscle strength of the knee joint amongst the three experimental groups were significant at the higher velocity. The strengths of knee extensors and flexors in the control group were significantly lower than those in the jogging group and marginally lower than those in the TC group. For the ankle joint, the subjects in both the TC and jogging groups generated more torque in their ankle dorsiflexors. In addition, the muscle endurance of knee extensors was more pronounced in TC practitioners than in controls. Regular older TC practitioners and joggers showed better scores than the sedentary controls on most muscle strength and endurance measures. However, the magnitude of the exercise effects on muscles might depend on the characteristics of different types of exercise.
Do oarsmen have asymmetries in the strength of their back and leg muscles?
Parkin, S; Nowicky, A V; Rutherford, O M; McGregor, A H
2001-07-01
The aim of this study was to establish whether asymmetry of the strength of the leg and trunk musculature is more prominent in rowers than in controls. Nineteen oarsmen and 20 male controls matched for age, height and body mass performed a series of isokinetic and isometric strength tests on an isokinetic dynamometer. These strength tests focused on the trunk and leg muscles. Comparisons of strength were made between and within groups for right and left symmetry patterns, hamstring: quadriceps ratios, and trunk flexor and extensor ratios. The results revealed no left and right asymmetries in either the knee extensor or flexor strength parameters (including both isometric and isokinetic measures). Knee extensor strength was significantly greater in the rowing population, but knee flexor strength was similar between the two groups. No difference was seen between the groups for the hamstring: quadriceps strength ratio. In the rowing population, stroke side had no influence on leg strength. No differences were observed in the isometric strength of the trunk flexors and extensors between groups, although EMG activity was significantly higher in the rowing population. Patterns of asymmetry of muscle activity were observed between the left and right erector spinae muscles during extension, which was significantly related to rowing side (P < 0.01). These observations could be related to the high incidence of low back pain in oarsmen.
Vercelli, Stefano; Sartorio, Francesco; Foti, Calogero; Colletto, Lorenzo; Virton, Domenico; Ronconi, Gianpaolo; Ferriero, Giorgio
2012-07-01
To investigate the immediate effects on maximal muscle strength of kinesiotaping (KT) applied to the dominant quadriceps of healthy subjects. Single-blind, placebo-controlled crossover trial. "Salvatore Maugeri" Foundation. With ethical approval and informed consent, a convenience sample of 36 healthy volunteers were recruited. Two subjects did not complete the sessions and were excluded from the analysis. Subjects were tested across 3 different sessions, randomly receiving 2 experimental KT conditions applied with the aim of enhancing and inhibiting muscle strength and a sham KT application. Quadriceps muscle strength was measured by means of an isokinetic maximal test performed at 60 and 180 degrees per second. Two secondary outcome measures were performed: the single-leg triple hop for distance to measure limb performance and the Global Rating of Change Scale (GRCS) to calculate agreement between KT application and subjective perception of strength. Compared with baseline, none of the 3 taping conditions showed a significant change in muscle strength and performance (all P > 0.05). Effect size was very low under all conditions (≤0.08). Very few subjects showed an individual change greater than the minimal detectable change. Global Rating of Change Scale scores demonstrated low to moderate agreement with the type of KT applied, but some placebo effects were reported independently of condition. Our findings indicated no significant effect in the maximal quadriceps strength immediately after the application of inhibition, facilitation, or sham KT. These results do not support the use of KT applied in this way to change maximal muscle strength in healthy people.
Manca, Andrea; Cabboi, Maria Paola; Ortu, Enzo; Ginatempo, Francesca; Dragone, Daniele; Zarbo, Ignazio Roberto; de Natale, Edoardo Rosario; Mureddu, Giovanni; Bua, Guido; Deriu, Franca
2016-06-01
The contralateral strength training (CST) effect is a transfer of muscle performance to the untrained limb following training of the contralateral side. The aim of this study was to explore, in individuals with multiple sclerosis (MS) presenting marked lower limb strength asymmetry, the effectiveness of CST on management of muscle weakness of the more-affected limb following training of the less-affected limb. A single-subject research design was used. Eight individuals with MS underwent 16 to 18 high-intensity training sessions of the less-affected ankle dorsiflexor muscles. The primary outcome measure of this single-system case series was maximal strength expressed as peak moment and maximal work. Secondary outcome measures were: Six-Minute-Walk Test, Timed "Up & Go" Test, 10-Meter Timed Walk Test, and Multiple Sclerosis Quality of Life-54 questionnaire. After the 6-week intervention, the contralateral more affected (untrained) limb showed a 22% to 24% increase in maximal strength. From pretest-posttest measurements, participants also performed significantly better on the clinical and functional secondary outcome measures. At the 12-week follow-up, the strength levels of the weaker untrained limb remained significantly superior to baseline levels in the majority (5 out of 8) of the outcome parameters. Considering the design used, the absence of a control group, and the sample size, these findings should be cautiously generalized and will need confirmation in a properly planned randomized controlled trial. The present proof-of-concept study shows, for the first time, the occurrence of the CST effect on muscle performance of ankle dorsiflexor muscles in people with MS. These preliminary findings reveal new potential implications for CST as a promising rehabilitation approach to those conditions where unilateral muscle weakness does not allow or makes difficult performing conventional strength training of the weaker limb. © 2016 American Physical Therapy Association.
Measures of Strength and Fitness for Older Populations.
ERIC Educational Resources Information Center
Osness, Wayne H.; Hiebert, Lujean M.
The overall strength of the musculature does not require testing of large numbers of muscle groups and can be accomplished from three or four tests. Small batteries of strength tests have been devised to predict total strength. The best combination of tests for males are thigh flexors, leg extensors, arm flexors, and pectoralis major. The battery…
Pradon, Didier; Roche, Nicolas; Enette, Lievyn; Zory, Raphaël
2013-01-01
The aim of this study was to determine if lower limb muscle strength and/or spasticity are related to performance in the 6-min walk test (6MWT) in stroke patients. A total of 24 patients (12 males and 12 females) participated in the study. Muscle strength (Medical Research Council (MRC) scale) and spasticity (modified Ashworth scale) were assessed prior to the 6MWT. Heart rate was recorded at rest and during the 6MWT. Subjects were divided into two groups: (i) those with a high MRC sum score, and (ii) those with a low MRC sum score. The relationship between the 6MWT distance and the other parameters was analysed using a Spearman's rank correlation coefficient. There was a significant and positive relationship between 6MWT distance and lower limb muscle strength (p = 0.001), whereas no significant correlations were found between the 6MWT distance and spasticity, resting heart rate and heart rate during the 6MWT. The 6MWT distance may be a good indicator of lower limb muscle strength, and lower limb strengthening may improve gait capacity in stroke patients.
Christiansen, Ingelise; Markvardsen, Lars H; Jakobsen, Johannes
2018-04-01
Variations in muscle strength and function have not been studied in patients with chronic inflammatory demyelinating polyneuropathy and multifocal motor neuropathy whose treatment regimen has been changed from intravenous to subcutaneous immunoglobulin (IVIg to SCIg). In a prospective, open-label study, patients were changed from monthly IVIg to weekly SCIg. The primary endpoint was variation in isokinetic muscle strength (cIKS). Secondary endpoints were variations in Medical Research Council (MRC) score, grip strength (GS), 9-hole-peg test (9-HPT), and 40-meter-walk test (40-MWT). The coefficient of variance of cIKS during the IVIg and SCIg treatment periods was unchanged (mean ± SD: 6.97 ± 4.83% vs. 5.50 ± 3.13%, P = 0.21). The variations in the 9-HPT and 40-MWT were significantly lower in the SCIg group (P = 0.01 and P = 0.005, respectively). When therapy was changed from IVIg to SCIg, fluctuation of muscle strength was unchanged, but performance fluctuations were diminished. Muscle Nerve 57: 610-614, 2018. © 2017 Wiley Periodicals, Inc.
Preventive strength training improves working ergonomics during welding.
Krüger, Karsten; Petermann, Carmen; Pilat, Christian; Schubert, Emil; Pons-Kühnemann, Jörn; Mooren, Frank C
2015-01-01
To investigate the effect of a preventive strength training program on cardiovascular, metabolic and muscular strains during welding. Welders are one of the occupation groups which typically have to work in extended forced postures which are known to be an important reason for musculoskeletal disorders. Subjects (exercise group) accomplished a 12-week strength training program, while another group served as controls (control group). Pre and post training examinations included the measurements of the one repetition maximum and an experimental welding test. Local muscle activities were analysed by surface electromyography. Furthermore, heart rate, blood pressure, lactate and rating of perceived exertion were examined. In the exercise group, strength training lead to a significant increase of one repetition maximum in all examined muscles (p<.05). During the experimental welding test muscle activities of trunk and shoulder muscles and arm muscles were significantly reduced in the exercise group after intervention (p<.05). While no changes of neither cardiovascular nor metabolic parameters were found, subjects of the exercise group rated a significantly decreased rate of perceived exertion welding (p<.05). Effects of strength training can be translated in an improved working ergonomics and tolerance against the exposure to high physical demands at work.
Park, Junhyuck; Yim, JongEun
2016-01-01
Aging is usually accompanied with deterioration of physical abilities, such as muscular strength, sensory sensitivity, and functional capacity. Recently, intervention methods with virtual reality have been introduced, providing an enjoyable therapy for elderly. The aim of this study was to investigate whether a 3-D virtual reality kayak program could improve the cognitive function, muscle strength, and balance of community-dwelling elderly. Importantly, kayaking involves most of the upper body musculature and needs the balance control. Seventy-two participants were randomly allocated into the kayak program group (n = 36) and the control group (n = 36). The two groups were well matched with respect to general characteristics at baseline. The participants in both groups performed a conventional exercise program for 30 min, and then the 3-D virtual reality kayak program was performed in the kayak program group for 20 min, two times a week for 6 weeks. Cognitive function was measured using the Montreal Cognitive Assessment. Muscle strength was measured using the arm curl and handgrip strength tests. Standing and sitting balance was measured using the Good Balance system. The post-test was performed in the same manner as the pre-test; the overall outcomes such as cognitive function (p < 0.05), muscle strength (p < 0.05), and balance (standing and sitting balance, p < 0.05) were significantly improved in kayak program group compared to the control group. We propose that the 3-D virtual reality kayak program is a promising intervention method for improving the cognitive function, muscle strength, and balance of elderly.
2012-01-01
Background Enzyme replacement therapy (ERT) in adults with Pompe disease, a progressive neuromuscular disorder, is of promising but variable efficacy. We investigated whether it alters the course of disease, and also identified potential prognostic factors. Methods Patients in this open-label single-center study were treated biweekly with 20 mg/kg alglucosidase alfa. Muscle strength, muscle function, and pulmonary function were assessed every 3–6 months and analyzed using repeated-measures ANOVA. Results Sixty-nine patients (median age 52.1 years) were followed for a median of 23 months. Muscle strength increased after start of ERT (manual muscle testing 1.4 percentage points per year (pp/y); hand-held dynamometry 4.0 pp/y; both p < 0.001). Forced vital capacity (FVC) remained stable when measured in upright, but declined in supine position (−1.1 pp/y; p = 0.03). Muscle function did not improve in all patients (quick motor function test 0.7 pp/y; p = 0.14), but increased significantly in wheelchair-independent patients and those with mild and moderate muscle weakness. Relative to the pre-treatment period (49 patients with 14 months pre-ERT and 22 months ERT median follow-up), ERT affected muscle strength positively (manual muscle testing +3.3 pp/y, p < 0.001 and hand-held dynamometry +7.9 pp/y, p < 0.001). Its effect on upright FVC was +1.8 pp/y (p = 0.08) and on supine FVC +0.8 (p = 0.38). Favorable prognostic factors were female gender for muscle strength, and younger age and better clinical status for supine FVC. Conclusions We conclude that ERT positively alters the natural course of Pompe disease in adult patients; muscle strength increased and upright FVC stabilized. Functional outcome is probably best when ERT intervention is timely. PMID:23013746
Effects of Different Environment Temperatures on Some Motor Characteristics and Muscle Strength
ERIC Educational Resources Information Center
Çakir, Ergün; Yüksek, Selami; Asma, Bülent; Arslanoglu, Erkal
2016-01-01
The aim of this study was determine the effects of different environment temperatures on motor characteristics and muscle strength. 15 athletes participated to study. Flexibility, vertical jump, hand grip-leg strength, 30m sprint, 20-meter shuttle run and coordination-agility tests were measured in five different environment temperatures. (22°C,…
Knutsen, Kirsten V; Madar, Ahmed A; Lagerløv, Per; Brekke, Mette; Raastad, Truls; Stene, Lars C; Meyer, Haakon E
2014-01-01
The effect of vitamin D on muscle strength in adults is not established. Our objective was to test whether vitamin D supplementation increases muscle strength and power compared with placebo. We conducted a randomized, double-blind, placebo-controlled trial. The setting was immigrants' activity centers. Two hundred fifty-one healthy adult males and females aged 18-50 years with non-Western immigrant background performed the baseline test and 86% returned to the follow-up test. Sixteen weeks of daily supplementation with 25 μg (1000 IU) vitamin D3, 10 μg (400 IU) vitamin D3, or placebo. Difference in jump height between pre- and postintervention. Secondary outcomes were differences in handgrip strength and chair-rising test. Percentage change in jump height did not differ between those receiving vitamin D (25 or 10 μg vitamin D3) and those receiving placebo (mean difference -1.4%, 95% confidence interval: -4.9% to 2.2%, P=.44). No significant effect was detected in the subgroup randomized to 25 μg vitamin D or in other preplanned subgroup analyses nor were there any significant differences in handgrip strength or the chair-rising test. Mean serum 25-hydroxyvitamin D3 concentration increased from 27 to 52 nmol/L and from 27 to 43 nmol/L in the 25 and 10 μg supplementation groups, respectively, whereas serum 25-hydroxyvitamin D3 did not change in the placebo group. Daily supplementation with 25 or 10 μg vitamin D3 for 16 weeks did not improve muscle strength or power measured by the jump test, handgrip test, or chair-rising test in this population with low baseline vitamin D status.
Eitzen, I; Eitzen, TJ; Holm, I; Snyder-Mackler, L; Risberg, MA
2011-01-01
Background Isokinetic muscle strength tests using the peak torque value is the most frequently included quadriceps muscle strength measurement for anterior cruciate ligament (ACL) injured subjects. Aims The purpose of this study was to investigate quadriceps muscle performance during the whole isokinetic curve in ACL deficient subjects classified as potential copers or non-copers, and investigate whether these curve profiles were associated with single-leg hop performance. We hypothesized that quadriceps muscle torque at other knee flexion angles than peak torque would give more information about quadriceps muscle strength deficits. Furthermore, we hypothesized that there would be significant torque differences between potential copers and non-copers, and a significant relationship between angle specific torque values and single-leg hop performance. Study Design Cross-sectional study; Level of evidence, 2 Methods Seventy-six individuals with a complete unilateral ACL rupture within the last 3 months were included. The subjects were classified into potential copers and non-copers according to the criteria from Fitzgerald et al12. Isokinetic quadriceps muscle tests were performed at 60°/sec (Biodex 6000). Mean torque values were calculated for peak torque as well as for specific knee flexion angles. The one-leg hop and the 6 meter timed hop tests were included and symmetry indices were used. Results The peak torque value did not identify the largest quadriceps muscle strength deficit. Rather, these were established at knee flexion angles of less than 40°. There were significant differences in angle specific torque values between potential copers and non-copers (p<0.05). Moderate to strong associations were disclosed between angle specific torque values and single-leg hop performance, but only for non-copers (r≥0.32– 0.58). Conclusions Angle specific quadriceps muscle torque values of less than 40° of knee flexion provide more information on the quadriceps strength deficits after ACL injury compared to the commonly used peak torque values. PMID:20110458
Brogårdh, Christina; Flansbjer, Ulla-Britt; Carlsson, Håkan; Lexell, Jan
2015-10-01
Muscle weakness in the upper limb is common in persons with late effects of polio. To be able to measure muscle strength and follow changes over time, reliable measurements are needed. To evaluate the intra-rater reliability of isometric and isokinetic arm and hand muscle strength measurements in persons with late effects of polio. A test-retest design. A university hospital outpatient clinic. Twenty-eight persons (mean age 68 years, SD 11 years) with late effects of polio in their upper limbs. Isometric shoulder abduction, isokinetic concentric elbow flexion and extension, isometric elbow flexion, and isometric grip strength were measured twice, 14 days apart. Reliability was evaluated with the intra-class correlation coefficient, the mean difference between the test sessions (d¯), together with the 95% confidence intervals for d¯ , the standard error of measurement (SEM and SEM%), the smallest real difference (SRD and SRD%), and Bland-Altman graphs. A fixed dynamometer (Biodex) was used to measure arm strength and an electronic dynamometer (GRIP-it) was used to measure grip strength. Intra-rater reliability was high, with intra-class correlation coefficients between 0.87 and 0.98. The SEM%, representing the smallest change for a group of persons, ranged from 7%-24% for all strength measurements, and the SRD%, representing the smallest change for an individual person, ranged from 20%-67%. Muscle strength in the upper limbs can be reliably measured in persons with late effects of polio. However, the measurement errors indicate that the method is more suitable to detect changes in muscle strength for a group of persons than for an individual person. Copyright © 2015 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Hansen, Andreas W; Beyer, Nina; Flensborg-Madsen, Trine; Grønbæk, Morten; Helge, Jørn W
2013-12-01
To describe associations of muscle strength, physical activity and self-rated health. Isometric muscle strength by maximal handgrip strength (HGS) or muscle strength by 30s repeated chair stand test (30s-CS) was combined with leisure time physical activity. Using logistic regression odds ratio was calculated for good self-rated health according to the combined associations among 16,539 participants (59.7% women), mean age 51.9 (SD: 13.8) years, from a cross-sectional study in Denmark 2007-2008. Good self-rated health was positively associated with higher levels of physical activity and greater muscle strength. Regarding HGS the highest OR for good self-rated health was in the moderate/vigorous physically active participants with high HGS (OR=6.84, 95% CI: 4.85-9.65 and OR=7.34, 95% CI: 5.42-9.96 for men and women, respectively). Similarly the highest OR for good self-rated health was in the moderate/vigorous physically active participants with high scores in the 30s-CS test (6.06, 95% CI: 4.32-8.50 and 13.38, 95% CI: 9.59-18.67 for men and women, respectively). The reference groups were sedentary participants with low strength (HGS or 30s-CS). The combined score for physical activity level with either HGS or 30s-CS was strongly positively associated with self-related health. © 2013.
Kim, Moon-Hwan; Oh, Jae-Seop
2015-01-01
[Purpose] The purpose of this study was to examine the effects of humeral head compression taping (HHCT) on the strength of the shoulder external rotator muscle in patients with rotator cuff tendinitis. [Subjects and Methods] Twenty patients with rotator cuff tendinitis were recruited. The shoulder external rotator strength was measured using a Biodex isokinetic dynamometer system. A paired t-test was performed to evaluate within-group differences in the strength of the shoulder external rotator muscle. [Results] Significantly higher shoulder external rotator peak torque and peak torque per body weight were found in the HHCT condition than in the no-taping condition. [Conclusion] HHCT may effectively increase the shoulder external rotator muscle strength in patients with rotator cuff tendinitis.
Walking performance and muscle strength in the later stage poststroke: a nonlinear relationship.
Carvalho, Cristiane; Sunnerhagen, Katharina S; Willén, Carin
2013-05-01
To evaluate the relation between muscle strength in the lower extremities and walking performance (speed and distance) in subjects in the later stage poststroke and to compare this with normative data. A cross-sectional observational study. University hospital department. Subjects poststroke (n=41; 31 men, 10 women) with a mean age of 59±5.8 years and a time from stroke onset of 52±36 months were evaluated. An urban sample (n=144) of 40- to 79-year-olds (69 men, 75 women) formed the healthy reference group. Not applicable. Muscle strength in the lower extremities was measured with an isokinetic dynamometer and combined into a strength index. Values for the 30-meter walk test for self-selected and maximum speed and the 6-minute walk test were measured. A nonlinear regression model was used. The average strength index was 730±309 in the subjects after stroke compared with 1112±362 in the healthy group. A nonlinear relation between walking performance and muscle strength was evident. The model explained 37% of the variance in self-selected speed in the stroke group and 20% in the healthy group, and 63% and 38%, respectively, in the maximum walking speed. For the 6-minute walk test, the model explained 44% of the variance in the stroke group. Subjects in the later stage poststroke were weaker than the healthy reference group, and their weakness was associated with walking performance. At the same strength index, subjects walked at lower speeds and shorter distances after stroke, indicating that there are multiple impairments that affect walking ability. Treatments focused on increasing muscle strength thus continue to hold promise. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Low Physical Fitness Levels in Older Adults with ID: Results of the HA-ID Study
ERIC Educational Resources Information Center
Hilgenkamp, Thessa I. M.; van Wijck, Ruud; Evenhuis, Heleen M.
2012-01-01
Physical fitness is as important to aging adults with ID as in the general population, but to date, the physical fitness levels of this group are unknown. Comfortable walking speed, muscle strength (grip strength), muscle endurance (30 s Chair stand) and cardiorespiratory endurance (10 m incremental shuttle walking test) were tested in a sample of…
Buehring, B; Siglinsky, E; Krueger, D; Evans, W; Hellerstein, M; Yamada, Y; Binkley, N
2018-03-01
DXA-measured lean mass is often used to assess muscle mass but has limitations. Thus, we compared DXA lean mass with two novel methods-bioelectric impedance spectroscopy and creatine (methyl-d3) dilution. The examined methodologies did not measure lean mass similarly and the correlation with muscle biomarkers/function varied. Muscle function tests predict adverse health outcomes better than lean mass measurement. This may reflect limitations of current mass measurement methods. Newer approaches, e.g., bioelectric impedance spectroscopy (BIS) and creatine (methyl-d3) dilution (D3-C), may more accurately assess muscle mass. We hypothesized that BIS and D3-C measured muscle mass would better correlate with function and bone/muscle biomarkers than DXA measured lean mass. Evaluations of muscle/lean mass, function, and serum biomarkers were obtained in older community-dwelling adults. Mass was assessed by DXA, BIS, and orally administered D3-C. Grip strength, timed up and go, and jump power were examined. Potential muscle/bone serum biomarkers were measured. Mass measurements were compared with functional and serum data using regression analyses; differences between techniques were determined by paired t tests. Mean (SD) age of the 112 (89F/23M) participants was 80.6 (6.0) years. The lean/muscle mass assessments were correlated (.57-.88) but differed (p < 0.0001) from one another with DXA total body less head being highest at 37.8 (7.3) kg, D3-C muscle mass at 21.1 (4.6) kg, and BIS total body intracellular water at 17.4 (3.5) kg. All mass assessment methods correlated with grip strength and jump power (R = 0.35-0.63, p < 0.0002), but not with gait speed or repeat chair rise. Lean mass measures were unrelated to the serum biomarkers measured. These three methodologies do not similarly measure muscle/lean mass and should not be viewed as being equivalent. Functional tests assessing maximal muscle strength/power (grip strength and jump power) correlated with all mass measures whereas gait speed was not. None of the selected serum measures correlated with mass. Efforts to optimize muscle mass assessment and identify their relationships with health outcomes are needed.
van der Stap, Djamilla K.D.; Rider, Lisa G.; Alexanderson, Helene; Huber, Adam M.; Gualano, Bruno; Gordon, Patrick; van der Net, Janjaap; Mathiesen, Pernille; Johnson, Liam G.; Ernste, Floranne C.; Feldman, Brian M.; Houghton, Kristin M.; Singh-Grewal, Davinder; Kutzbach, Abraham Garcia; Munters, Li Alemo; Takken, Tim
2015-01-01
OBJECTIVES Currently there are no evidence-based recommendations regarding which fitness and strength tests to use for patients with childhood or adult idiopathic inflammatory myopathies (IIM). This hinders clinicians and researchers in choosing the appropriate fitness- or muscle strength-related outcome measures for these patients. Through a Delphi survey, we aimed to identify a candidate core-set of fitness and strength tests for children and adults with IIM. METHODS Fifteen experts participated in a Delphi survey that consisted of five stages to achieve a consensus. Using an extensive search of published literature and through the expertise of the experts, a candidate core-set based on expert opinion and clinimetric properties was developed. Members of the International Myositis Assessment and Clinical Studies Group (IMACS) were invited to review this candidate core-set during the final stage, which led to a final candidate core-set. RESULTS A core-set of fitness- and strength-related outcome measures was identified for children and adults with IIM. For both children and adults, different tests were identified and selected for maximal aerobic fitness, submaximal aerobic fitness, anaerobic fitness, muscle strength tests and muscle function tests. CONCLUSIONS The core-set of fitness and strength-related outcome measures provided by this expert consensus process will assist practitioners and researchers in deciding which tests to use in IIM patients. This will improve the uniformity of fitness and strength tests across studies, thereby facilitating the comparison of study results and therapeutic exercise program outcomes among patients with IIM. PMID:26568594
Lindgren, Martin; Åberg, Maria; Schaufelberger, Maria; Åberg, David; Schiöler, Linus; Torén, Kjell; Rosengren, Annika
2017-05-01
Aims To investigate the association between cardiorespiratory fitness (CRF) and muscle strength in late adolescence and the long-term risk of heart failure (HF). Methods A cohort was created of Swedish men enrolled in compulsory military service between 1968 and 2005 with measurements for CRF and muscle strength ( n = 1,226,623; mean age 18.3 years). They were followed until 31 December 2014 for HF hospitalization as recorded in the Swedish national inpatient registry. Results During the follow-up period (median (interquartile range) 28.4 (22.0-37.0) years), 7656 cases of first HF hospitalization were observed (mean ± SD age at diagnosis 50.1 ± 7.9 years). CRF and muscle strength were estimated by maximum capacity cycle ergometer testing and strength exercises (knee extension, elbow flexion and hand grip). Inverse dose-response relationships were found between CRF and muscle strength with HF as a primary or contributory diagnosis with an adjusted hazards ratio (95% confidence interval) of 1.60 (1.44-1.77) for low CRF and 1.45 (1.32-1.58) for low muscle strength categories. The associations of incident HF with CRF and muscle strength persisted, regardless of adjustments for the other potential confounders. The highest risk was observed for HF associated with coronary heart disease, diabetes or hypertension. Conclusions In this longitudinal study of young men, we found inverse and mutually independent associations between CRF and muscle strength with risk of hospitalization for HF. If causal, these results may emphasize the importance of the promotion of CRF and muscle strength in younger populations.
Trudelle-Jackson, Elaine; Ferro, Emerenciana; Morrow, James R
2011-01-01
BACKGROUND: Reduction in muscle strength is strongly associated with functional decline in women, and women with lower quadriceps strength adjusted for body weight are more likely to develop knee osteoarthritis. OBJECTIVE: To compare body weight--adjusted strength among women of different age/racial groups. STUDY DESIGN: Cross-sectional study of muscle strength in 918 women aged 20--83 (M ± SD = 52 ± 13). METHODS: An orthopedic examination was conducted including measurement of handgrip and lower extremity strength (hip abductors/external rotators, knee flexors/extensors). Data were grouped into young (20--39 years, n = 139), middle (40--54 years, n = 300), and older (55+ years, n = 424) ages for white (n = 699) and African American (AA) (n = 164) women. Means and standard deviations for strength adjusted for body weight were calculated for each age and racial group and compared using 2-way multivariate analysis of variance and post hoc tests. RESULTS: No significant age-by-race interaction (P = .092) but significant main effects for age and race (P < .001). Pairwise comparisons revealed significant differences in knee extensor and flexor strength between all age groups. For grip and hip external rotator strength, significant differences were found between the middle and older groups. Differences in hip abductor strength were found between the young and middle-aged groups. AA women had lower strength than white women in all muscle groups (P < .05) except hip external rotators. CONCLUSIONS: Strength decreased with age in all muscle groups but magnitude of decrease varied by muscle. Strengthening programs should target different muscles, depending on a woman's age and race.
Gremeaux, Vincent; Renault, Julien; Pardon, Laurent; Deley, Gaelle; Lepers, Romuald; Casillas, Jean-Marie
2008-12-01
To assess the effects of low-frequency electric muscle stimulation associated with usual physiotherapy on functional outcome after total hip arthroplasty (THA) for hip osteoarthritis (OA) in elderly subjects. Randomized controlled trial; pre- and posttreatment measurements. Hospital rehabilitation department. Subjects (N=29) referred to the rehabilitation department after THA for hip OA. The intervention group (n=16; 78+/-8 y) received simultaneous low-frequency electric muscle stimulation of bilateral quadriceps and calf muscles (highest tolerated intensity, 1h session, 5 d/wk, for 5 weeks) associated with conventional physical therapy including resistance training. The control group (n=13; 76+/-10 y) received conventional physical therapy alone (25 sessions). Maximal isometric strength of knee extensors, FIM instrument, before and after; a six-minute walk test and a 200 m fast walk test, after; length of stay (LOS). Low-frequency electric muscle stimulation was well tolerated. It resulted in a greater improvement in strength of knee extensors on the operated side (77% vs 23%; P<.01), leading to a better balance of muscle strength between the operated and nonoperated limb. The low-frequency electric muscle stimulation group also showed a greater improvement in FIM scores, though improvements in the walk tests were similar for the 2 groups, as was LOS. Low-frequency electric muscle stimulation is a safe, well-tolerated therapy after THA for hip OA. It improves knee extensor strength, which is one of the factors leading to greater functional independence after THA.
Effect of muscle length on strength and dexterity after stroke.
Ada, L; Canning, C; Dwyer, T
2000-02-01
The effect of muscle length on strength and dexterity after stroke was investigated. The aim was to determine if poor function at a particular muscle length could be attributed solely to differential weakness at this joint angle or whether an additional problem of differential dexterity exists. This descriptive research study measured elbow flexor and extensor strength as well as dexterity at three elbow joint angles: 30 degrees , 60 degrees and 90 degrees flexion. Dexterity was measured independently of strength. Fifteen (seven female, eight male) chronic stroke patients (mean age 67 years) who could actively flex and extend their affected elbow participated. Ten neurologically normal control subjects (mean age 67 years) acted as controls. Strength was measured as peak elbow flexor and extensor torque at three angles; and dexterity was measured as coherence for slow and fast tracking also at three angles. Dexterity was not affected by muscle length but strength was and this finding was the same for both stroke and controls. While the magnitude of the torque-angle curves was not significantly different between stroke and controls, the shape of torque-angle curves was altered after stroke so that both the elbow flexors (p < 0.05) and extensors (p < 0.05) tested weaker in the testing position where they were shortest. Since there was no differential loss of dexterity, it appears that differential loss of strength, especially in the shortened range, may explain the clinical observation of poorer function at one muscle length than another after stroke. Specific training to strengthen the muscles in these ranges is therefore of clinical importance for rehabilitation.
Evaluation of rotator cuff muscle strength in healthy individuals
Cortez, Paulo José Oliveira; Tomazini, José Elias
2015-01-01
OBJECTIVE: To compare the strength generated by the rotator muscles of the shoulder joint between the right upper limb and left upper limb among healthy individuals. METHODS: To evaluate the muscle strength of upper limbs from isometric contractions in the horizontal direction (rotation) an isometric dynamometer was used, equipped with transducers, signal conditioning, a data acquisition board, and finally, a computer. Study participants were 22 male military subjects, aged between 18 and 19 years old, body mass between 57.7 and 93.0 kg (71.8 ± 9.45 kg) and height between 1.67 and 1.90 m (1.75 ± 0.06 m), healthy and without clinical diseases or any type of orthopedic injury in the muscle skeletal system. RESULTS: The internal rotation in the right upper limb (RUL) was higher than the average strength of internal rotation in the left upper limb (LUL) (p = 0.723). The external rotation strength in RUL was lower than the average strength of external rotation in the LUL (p=0.788). No statistical difference was observed by comparing the strength values of all isometric strength tests. CONCLUSION: For the sample and methodology used to assess muscle strength, there was no statistical difference between the strength generated by the muscles of the rotator cuff of the right and left upper limbs. Experimental Study. PMID:26207091
[Association of muscle strength with early markers of cardiovascular risk in sedentary adults].
Triana-Reina, Héctor Reynaldo; Ramírez-Vélez, Robinson
2013-10-01
To assess the association between muscle strength and early cardiovascular risk (CVR) markers in sedentary adults. A total of 176 sedentary subjects aged 18-30 years were enrolled. Body mass index and fat percentage were calculated, and waist circumference, grip strength by dynamometry, systolic blood pressure, diastolic blood pressure, mean arterial pressure, and maximal oxygen uptake by VO2max were measured as CVR markers. A multivariate logistic regression analysis was used to assess associations between muscle strength and CVR markers. Inverse correlations were found between muscle strength and adiposity (r=-.317; P=.001), waist circumference (r=-.309; P=.001), systolic blood pressure (r=-.401; P=.001), and mean arterial pressure (r=-.256; P=.001). Subjects with lower levels of muscle strength had a 5.79-fold (95% CI 1.57 to 9.34; P=.008) risk of having higher adiposity levels (≥25%) and a 9.67-fold (95% CI=3.86 to 19.22; P<.001) risk of having lower physical capacity values for VO2max (≤31.5mL/kg/min(-1)). In sedentary adults, muscle strength is associated to early manifestations of CVR. It is suggested that muscle strength testing is added to routine measurement of VO2max and traditional risk factors for prevention and treatment of cardiovascular risk. Copyright © 2012 SEEN. Published by Elsevier Espana. All rights reserved.
Kiriella, Jeevaka B; Araujo, Tamara; Vergara, Martin; Lopez-Hernandez, Laura; Cameron, Jill I; Herridge, Margaret; Gage, William H; Mathur, Sunita
2018-01-01
The path to recovery of muscle strength and mobility following discharge from the intensive care unit (ICU) has not been well described. The study objective was to quantify muscle function, gait, and postural control at 3 and 6 months after discharge in people who were recovering from critical illness and who were ventilated for 7 days or more. This was a nested longitudinal study with continuous inclusion of individuals over a 2-year period and with age- and sex-matched controls. Twenty-four people were tested at 3 months after ICU discharge; 16 of them (67%) were reevaluated at 6 months (post-ICU group). Healthy controls (n = 12) were tested at a single time point. Muscle function of the knee extensors (KEs), plantar flexors (PFs), and dorsiflexors (DFs) was assessed on a dynamometer. Gait was measured using an electronic walkway, and postural control was measured with 2 portable force plates. Muscle weakness was observed across all muscle groups at 3 months, with the greatest strength reductions in the ankle PFs (45%) and DFs (30%). Muscle power was reduced in the PFs and DFs but was not reduced in the KEs. Gait in the post-ICU group was characterized by a narrower step, longer stride, and longer double-support time than in the controls. Improvements were found in KE strength and in stride time and double-support time during gait at 6 months. Leg muscle strength and power had moderate associations with gait velocity, step width, and stride length (r = .44-.65). The small heterogeneous sample of people with a high level of function was a limitation of this study. Muscle strength and power were impaired at 6 months after ICU discharge and were associated with gait parameters. Future studies are needed to examine the role of muscle strength and power training in post-ICU rehabilitation programs to improve mobility. © 2017 American Physical Therapy Association
Lee, Dong Ryul; You, Joshua H; Lee, Nam Gi; Oh, Jin Hwan; Cha, You Jin
2009-01-01
This case study was conducted to determine Comprehensive Hand Repetitive Intensive Strengthening Training (CHRIST)-induced morphological changes in the commonly affected extensor carpi radialis (ECR) and triceps brachii (TRI) muscle and associated muscle strength and motor performance in a child with hemiparetic cerebral palsy (CP) using standardized clinical tests and ultrasound imaging. A single case study with pre-/post-test. A 4.9-year-old female, diagnosed with hemiparetic CP. The child received a 5-week course of CHRIST course, comprising of 60-minute periods a day, five times a week. A real-time ultrasound imaging was performed to determine the CHRIST-induced changes in cross-sectional area (CSA) of the ECR and TRI. Clinical tests including the modified Wolf Motor function test (WMFT), the modified Jebsen-taylor hand function test (Jebsen hand) and the modified Pediatric Motor Activity Log (PMAL) questionnaire were used to compare the intervention-related changes in motor performance in upper extremity. Ultrasound imaging data showed that the CSAs of both ECR and TRI muscles of the affected upper limb at relaxation and contraction states were enhanced and these therapy-induced morphological changes were associated with enhanced muscle strength and gross motor performance in reaching and grasping skills. Our results suggest that the CHRIST is effective in treating muscle weakness and motor function in a child with hemiparetic CP. This is the first evidence in literature that might shed light on the therapeutic efficacy of our novel intervention on muscle size, associated muscle strength and motor improvement.
Chronic Stimulation-Induced Changes in the Rodent Thyroarytenoid Muscle
ERIC Educational Resources Information Center
McMullen, Colleen A.; Butterfield, Timothy A.; Dietrich, Maria; Andreatta, Richard D.; Andrade, Francisco H.; Fry, Lisa; Stemple, Joseph C.
2011-01-01
Purpose: Therapies for certain voice disorders purport principles of skeletal muscle rehabilitation to increase muscle mass, strength, and endurance. However, applicability of limb muscle rehabilitation to the laryngeal muscles has not been tested. In this study, the authors examined the feasibility of the rat thyroarytenoid muscle to remodel as a…
2011-01-01
Background Several clinical measures of sensory and motor function are used alongside patient-rated questionnaires to assess outcomes of carpal tunnel decompression. However there is a lack of evidence regarding which clinical tests are most responsive to clinically important change over time. Methods In a prospective cohort study 63 patients undergoing carpal tunnel decompression were assessed using standardised clinician-derived and patient reported outcomes before surgery, at 4 and 8 months follow up. Clinical sensory assessments included: touch threshold with monofilaments (WEST), shape-texture identification (STI™ test), static two-point discrimination (Mackinnon-Dellon Disk-Criminator) and the locognosia test. Motor assessments included: grip and tripod pinch strength using a digital grip analyser (MIE), manual muscle testing of abductor pollicis brevis and opponens pollicis using the Rotterdam Intrinsic Handheld Myometer (RIHM). The Boston Carpal Tunnel Questionnaire (BCTQ) was used as a patient rated outcome measure. Results Relative responsiveness at 4 months was highest for the BCTQ symptom severity scale with moderate to large effects sizes (ES = -1.43) followed by the BCTQ function scale (ES = -0.71). The WEST and STI™ were the most responsive sensory tests at 4 months showing moderate effect sizes (WEST ES = 0.55, STI ES = 0.52). Grip and pinch strength had a relatively higher responsiveness compared to thenar muscle strength but effect sizes for all motor tests were very small (ES ≤0.10) or negative indicating a decline compared to baseline in some patients. Conclusions For clinical assessment of sensibility touch threshold assessed by monofilaments (WEST) and tactile gnosis measured with the STI™ test are the most responsive tests and are recommended for future studies. The use of handheld myometry (RIHM) for manual muscle testing, despite more specifically targeting thenar muscles, was less responsive than grip or tripod pinch testing using the digital grip analyser (MIE). When assessing power and pinch strength the effect of other concomitant conditions such as degenerative joint disease on strength needs to be considered. PMID:22032626
Relation between functional mobility and dynapenia in institutionalized frail elderly
Soares, Antonio Vinicius; Marcelino, Elessandra; Maia, Késsia Cristina; Borges, Noé Gomes
2017-01-01
ABSTRACT Objective To investigate the relation between functional mobility and dynapenia in institutionalized frail elderly. Methods A descriptive, correlational study involving 26 institutionalized elderly men and women, mean age 82.3±6 years. The instruments employed were the Mini Mental State Examination, the Geriatric Depression Scale, the International Physical Activity Questionnaire, the Timed Up and Go test, a handgrip dynamometer and a portable dynamometer for large muscle groups (shoulder, elbow and hip flexors, knee extensors and ankle dorsiflexors). Results Significant negative correlation between functional mobility levels assessed by the Timed Up and Go test and dynapenia was observed in all muscle groups evaluated, particularly in knee extensors (r -0.65). Conclusion A significant negative correlation between muscle strength, particularly knee extensor strength, and functional mobility was found in institutionalized elderly. Data presented indicate that the higher the muscle strength, the shorter the execution time, and this could demonstrate better performance in this functional mobility test. PMID:29091148
Wokke, B H; van den Bergen, J C; Versluis, M J; Niks, E H; Milles, J; Webb, A G; van Zwet, E W; Aartsma-Rus, A; Verschuuren, J J; Kan, H E
2014-05-01
The purpose of this study was to assess leg muscle quality and give a detailed description of leg muscle involvement in a series of Duchenne muscular dystrophy patients using quantitative MRI and strength measurements. Fatty infiltration, as well as total and contractile (not fatty infiltrated) cross sectional areas of various leg muscles were determined in 16 Duchenne patients and 11 controls (aged 8-15). To determine specific muscle strength, four leg muscle groups (quadriceps femoris, hamstrings, anterior tibialis and triceps surae) were measured and related to the amount of contractile tissue. In patients, the quadriceps femoris showed decreased total and contractile cross sectional area, attributable to muscle atrophy. The total, but not the contractile, cross sectional area of the triceps surae was increased in patients, corresponding to hypertrophy. Specific strength decreased in all four muscle groups of Duchenne patients, indicating reduced muscle quality. This suggests that muscle hypertrophy and fatty infiltration are two distinct pathological processes, differing between muscle groups. Additionally, the quality of remaining muscle fibers is severely reduced in the legs of Duchenne patients. The combination of quantitative MRI and quantitative muscle testing could be a valuable outcome parameter in longitudinal studies and in the follow-up of therapeutic effects. Copyright © 2014 Elsevier B.V. All rights reserved.
Andersen, Kasper; Rasmussen, Finn; Held, Claes; Neovius, Martin; Tynelius, Per; Sundström, Johan
2015-09-16
To investigate the associations of exercise capacity and muscle strength in late adolescence with risk of vascular disease and arrhythmia. Cohort study. General population in Sweden. 1.1 million men who participated in mandatory military conscription between 1 August 1972 and 31 December 1995, at a median age of 18.2 years. Participants were followed until 31 December 2010. Associations between exercise capacity and muscle strength with risk of vascular disease and subgroups (ischaemic heart disease, heart failure, stroke, and cardiovascular death) and risk of arrhythmia and subgroups (atrial fibrillation or flutter, bradyarrhythmia, supraventricular tachycardia, and ventricular arrhythmia or sudden cardiac death). Maximum exercise capacity was estimated by the ergometer bicycle test, and muscle strength was measured as handgrip strength by a hand dynamometer. High exercise capacity or muscle strength was deemed as above the median level. During a median follow-up of 26.3 years, 26 088 vascular disease events and 17 312 arrhythmia events were recorded. Exercise capacity was inversely associated with risk of vascular disease and its subgroups. Muscle strength was also inversely associated with vascular disease risk, driven by associations of higher muscle strength with lower risk of heart failure and cardiovascular death. Exercise capacity had a U shaped association with risk of arrhythmia, driven by a direct association with risk of atrial fibrillation and a U shaped association with bradyarrhythmia. Higher muscle strength was associated with lower risk of arrhythmia (specifically, lower risk of bradyarrhythmia and ventricular arrhythmia). The combination of high exercise capacity and high muscle strength was associated with a hazard ratio of 0.67 (95% confidence interval 0.65 to 0.70) for vascular events and 0.92 (0.88 to 0.97) for arrhythmia compared with the combination of low exercise capacity and low muscle strength. Exercise capacity and muscle strength in late adolescence are independently and jointly associated with long term risk of vascular disease and arrhythmia. The health benefit of lower risk of vascular events with higher exercise capacity was not outweighed by higher risk of arrhythmia. © Andersen et al 2015.
Myostatin deficiency partially rescues the bone phenotype of osteogenesis imperfecta model mice.
Oestreich, A K; Carleton, S M; Yao, X; Gentry, B A; Raw, C E; Brown, M; Pfeiffer, F M; Wang, Y; Phillips, C L
2016-01-01
Mice with osteogenesis imperfecta (+/oim), a disorder of bone fragility, were bred to mice with muscle over growth to test whether increasing muscle mass genetically would improve bone quality and strength. The results demonstrate that femora from mice carrying both mutations have greater mechanical integrity than their +/oim littermates. Osteogenesis imperfecta is a heritable connective tissue disorder due primarily to mutations in the type I collagen genes resulting in skeletal deformity and fragility. Currently, there is no cure, and therapeutic strategies encompass the use of antiresorptive pharmaceuticals and surgical bracing, with limited success and significant potential for adverse effects. Bone, a mechanosensing organ, can respond to high mechanical loads by increasing new bone formation and altering bone geometry to withstand increased forces. Skeletal muscle is a major source of physiological loading on bone, and bone strength is proportional to muscle mass. To test the hypothesis that congenic increases in muscle mass in the osteogenesis imperfecta murine model mouse (oim) will improve their compromised bone quality and strength, heterozygous (+/oim) mice were bred to mice deficient in myostatin (+/mstn), a negative regulator of muscle growth. The resulting adult offspring were evaluated for hindlimb muscle mass, and bone microarchitecture, physiochemistry, and biomechanical integrity. +/oim mice deficient in myostatin (+/mstn +/oim) were generated and demonstrated that myostatin deficiency increased body weight, muscle mass, and biomechanical strength in +/mstn +/oim mice as compared to +/oim mice. Additionally, myostatin deficiency altered the physiochemical properties of the +/oim bone but did not alter bone remodeling. Myostatin deficiency partially improved the reduced femoral bone biomechanical strength of adult +/oim mice by increasing muscle mass with concomitant improvements in bone microarchitecture and physiochemical properties.
Maurício, Sílvia Fernandes; Xiao, Jingjie; Prado, Carla M; Gonzalez, Maria Cristina; Correia, Maria Isabel Toulson Davisson
2017-09-04
Malnutrition in patients with colorectal cancer contributes to increased postoperative complications. The aim of the study was to evaluate the prognostic value of several nutritional assessment parameters: body mass index versus percentage of weight loss grading system (BMI/%WL); Patient-Generated Subjective Global Assessment (PG-SGA); standardized phase angle (SPA) by BIA; muscle strength by handgrip strength; muscle mass by computerized tomography; and the combination of muscle mass and strength in patients undergoing resection surgery. Patients diagnosed with cancer of the colon or rectum, who were over 18 years old and were scheduled to undergo surgical treatment were invited to participate. Postoperative complications were assessed from the first day post-surgery until discharge. Complications classified as Grade II or above according to the Clavien-Dindo classification were considered. Chi-square test or Fisher's exact test, bivariate analysis, Poisson regression and receiver operator characteristic (ROC) curve were utilized and p < 0.05 was considered significant. 84 patients were evaluated, with 28 (33.3%) presenting with Grade II postoperative complications. SPA showed no association with postoperative complications (p = 0.199). In multivariate analysis, low skeletal muscle mass showed a relative risk (RR) of 1.80 (CI: 1.02-3.17), BMI/%WL equal or higher than grade 3 had a RR of 1.90 (95% CI: 1.22-3.39). PG-SGA classified as malnutrition showed a RR of 2.08 (95% CI: 1.06-4.06); and low muscle mass plus low muscle strength showed a RR 2.13 (95% CI: 1.23-3.69). Low strength alone was not associated with postoperative complications after controlling for confounding factors (p = 0.16; 95% CI: 0.83-2.77). Low muscle mass in combination with low strength showed the highest predictive power for postoperative complications (AUC: 0.68; CI: 0.56-0.80). BMI/%WL > grade 3, PG-SGA defined malnutrition, low muscle mass and low muscle mass plus low strength were independent risk factors for complications controlling for confounding factors. However, low muscle mass in combination with low muscle strength were the strongest variables associated with complications. NCT02901132 (www.clinicaltrials.gov). Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Risberg, May A; Steffen, Kathrin; Nilstad, Agnethe; Myklebust, Grethe; Kristianslund, Eirik; Moltubakk, Marie M; Krosshaug, Tron
2018-05-23
Risberg, MA, Steffen, K, Nilstad, A, Myklebust, G, Kristianslund, E, Moltubakk, MM, and Krosshaug, T. Normative quadriceps and hamstring muscle strength values for female, healthy, elite handball and football players. J Strength Cond Res XX(X): 000-000, 2018-This study presents normative values for isokinetic knee extension and flexion muscle strength tests in 350 elite, female, handball (n = 150) and football (n = 200) players. Isokinetic concentric muscle strength tests at 60°·sec were recorded bilaterally using a dynamometer. Peak torque (in Newton meter [N·m]), body mass normalized peak torque (N·m·kg), and hamstring to quadriceps ratio (H:Q ratio) for dominant and nondominant legs were recorded. The female elite players were 20.9 ± 4.0 years, started playing at the elite level at the age of 18.2 ± 2.7 years, with a mean of 9.7 ± 2.2 hours of weekly in-season training. Handball players demonstrated greater quadriceps muscle strength compared with football players (11.0%) (p < 0.001), also when normalized to body mass (4.1%) (p = 0.012), but not for weight-adjusted hamstring muscle strength. The H:Q ratio was higher on the dominant compared with the nondominant leg for handball players only (p = 0.012).The H:Q ratio was significantly lower for handball players (0.58) compared with football players (0.60) (p < 0.02). These normative values for isokinetic knee extension and flexion torques of healthy, elite, female handball and football players can be used to set rehabilitation goals for muscle strength after injury and enable comparison with uninjured legs. Significantly greater quadriceps muscle strength was found for handball players compared with football players, also when normalized to body mass.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.
Identification of human skeletal muscle miRNA related to strength by high-throughput sequencing.
Mitchell, Cameron J; D'Souza, Randall F; Schierding, William; Zeng, Nina; Ramzan, Farha; O'Sullivan, Justin M; Poppitt, Sally D; Cameron-Smith, David
2018-06-01
The loss of muscle size, strength, and quality with aging is a major determinant of morbidity and mortality in the elderly. The regulatory pathways that impact the muscle phenotype include the translational regulation maintained by microRNAs (miRNA). Yet the miRNAs that are expressed in human skeletal muscle and relationship to muscle size, strength, and quality are unknown. Using next-generation sequencing, we selected the 50 most abundantly expressed miRNAs and then analyzed them in vastus lateralis muscle, obtained by biopsy from middle-aged males ( n = 48; 50.0 ± 4.3 yr). Isokinetic strength testing and midthigh computed tomography was undertaken for muscle phenotype analysis. Muscle attenuation was measured by computerized tomography and is inversely proportional to myofiber lipid content. miR-486-5p accounted for 21% of total miR sequence reads, with miR-10b-5p, miR-133a-3p, and miR-22-3p accounting for a further 15, 12, and 10%, respectively. Isokinetic knee extension strength and muscle cross-sectional area were positively correlated with miR-100-5p, miR-99b-5p, and miR-191-5p expression. Muscle attenuation was negatively correlated to let-7f-5p, miR-30d-5p, and miR-125b-5p expression. In silico analysis implicates miRNAs related to strength and muscle size in the regulation of mammalian target of rapamycin, while miRNAs related to muscle attenuation may have potential roles regulating the transforming growth factor-β/SMAD3 pathway.
Gonzalez, Brian D; Jim, Heather S L; Small, Brent J; Sutton, Steven K; Fishman, Mayer N; Zachariah, Babu; Heysek, Randy V; Jacobsen, Paul B
2016-05-01
The purpose of the study is to examine changes in muscle strength and self-reported physical functioning in men receiving androgen deprivation therapy (ADT) for prostate cancer compared to matched controls. Prostate cancer patients scheduled to begin ADT (n = 62) were assessed within 20 days of starting ADT and 6 and 12 months later. Age and geographically matched prostate cancer controls treated with prostatectomy only (n = 86) were assessed at similar time intervals. Grip strength measured upper body strength, the Chair Rise Test measured lower body strength, and the SF-12 Physical Functioning scale measured self-reported physical functioning. As expected, self-reported physical functioning and upper body muscle strength declined in ADT recipients but remained stable in prostate cancer controls. Contrary to expectations, lower body muscle strength remained stable in ADT recipients but improved in prostate cancer controls. Higher Gleason scores, more medical comorbidities, and less exercise at baseline predicted greater declines in physical functioning in ADT recipients. ADT is associated with declines in self-reported physical functioning and upper body muscle strength as well as worse lower body muscle strength relative to prostate cancer controls. These findings should be included in patient education regarding the risks and benefits of ADT. Findings also underscore the importance of conducting research on ways to prevent or reverse declines in physical functioning in this patient population.
Granacher, Urs; Lacroix, Andre; Muehlbauer, Thomas; Roettger, Katrin; Gollhofer, Albert
2013-01-01
Age-related postural misalignment, balance deficits and strength/power losses are associated with impaired functional mobility and an increased risk of falling in seniors. Core instability strength training (CIT) involves exercises that are challenging for both trunk muscles and postural control and may thus have the potential to induce benefits in trunk muscle strength, spinal mobility and balance performance. The objective was to investigate the effects of CIT on measures of trunk muscle strength, spinal mobility, dynamic balance and functional mobility in seniors. Thirty-two older adults were randomly assigned to an intervention group (INT; n = 16, aged 70.8 ± 4.1 years) that conducted a 9-week progressive CIT or to a control group (n = 16, aged 70.2 ± 4.5 years). Maximal isometric strength of the trunk flexors/extensors/lateral flexors (right, left)/rotators (right, left) as well as of spinal mobility in the sagittal and the coronal plane was measured before and after the intervention program. Dynamic balance (i.e. walking 10 m on an optoelectric walkway, the Functional Reach test) and functional mobility (Timed Up and Go test) were additionally tested. Program compliance was excellent with participants of the INT group completing 92% of the training sessions. Significant group × test interactions were found for the maximal isometric strength of the trunk flexors (34%, p < 0.001), extensors (21%, p < 0.001), lateral flexors (right: 48%, p < 0.001; left: 53%, p < 0.001) and left rotators (42%, p < 0.001) in favor of the INT group. Further, training-related improvements were found for spinal mobility in the sagittal (11%, p < 0.001) and coronal plane (11%, p = 0.06) directions, for stride velocity (9%, p < 0.05), the coefficient of variation in stride velocity (31%, p < 0.05), the Functional Reach test (20%, p < 0.05) and the Timed Up and Go test (4%, p < 0.05) in favor of the INT group. CIT proved to be a feasible exercise program for seniors with a high adherence rate. Age-related deficits in measures of trunk muscle strength, spinal mobility, dynamic balance and functional mobility can be mitigated by CIT. This training regimen could be used as an adjunct or even alternative to traditional balance and/or resistance training. Copyright © 2012 S. Karger AG, Basel.
Eckardt, Nils
2016-11-24
It is well documented that both balance and resistance training have the potential to mitigate intrinsic fall risk factors in older adults. However, knowledge about the effects of simultaneously executed balance and resistance training (i.e., resistance training conducted on unstable surfaces [URT]) on lower-extremity muscle strength, power and balance in older adults is insufficient. The objective of the present study was to compare the effects of machine-based stable resistance training (M-SRT) and two types of URT, i.e., machine-based (M-URT) and free-weight URT (F-URT), on measures of lower-extremity muscle strength, power and balance in older adults. Seventy-five healthy community-dwelling older adults aged 65-80 years, were assigned to three intervention groups: M-SRT, M-URT and F-URT. Over a period of ten weeks, all participants exercised two times per week with each session lasting ~60 min. Tests included assessment of leg muscle strength (e.g., maximal isometric leg extension strength), power (e.g., chair rise test) and balance (e.g., functional reach test), carried out before and after the training period. Furthermore, maximal training load of the squat-movement was assessed during the last training week. Maximal training load of the squat-movement was significantly lower in F-URT in comparison to M-SRT and M-URT. However, lower-extremity resistance training conducted on even and uneven surfaces meaningfully improved proxies of strength, power and balance in all groups. M-URT produced the greatest improvements in leg extension strength and F-URT in the chair rise test and functional reach test. Aside from two interaction effects, overall improvements in measures of lower-extremity muscle strength, power and balance were similar across training groups. Importantly, F-URT produced similar results with considerably lower training load as compared to M-SRT and M-URT. Concluding, F-URT seems an effective and safe alternative training program to mitigate intrinsic fall risk factors in older adults. This trial has been registered with clinicaltrials.gov ( NCT02555033 ) on 09/18/2015.
Conformity of modified O-ring test and maximal pinch strength for cross tape application direction.
Lee, Jung-Hoon; Choi, Hyun-Su
2018-06-01
Although cross tape has recently been used by clinicians for various musculoskeletal conditions, scientific studies on the direction of cross tape application are lacking. The present study aimed to investigate whether the direction of cross tape application affected the outcomes of the modified O-ring test and maximal pinch strength using a pinch gauge and the conformity between these 2 tests when cross tape was applied to the forearm muscles of individuals with no upper extremity pain and no restriction of joint range of motion.This study used a single-blinding crossover design. The subjects comprised 39 adults (16 men and 23 women). Cross tape was applied to the dominant hand so that the 4 rows were at an angle of 45° to the right or left of the direction of the flexor digitorum superficialis muscle fibers, and then the subjects underwent a modified O-ring test and a test of maximal pinch strength using a pinch gauge. Both tests were performed in both directions, and the order of the directions and tests was randomized. SPSS 18.0 was used for statistical analysis. Cohen's kappa coefficient was used to analyze the conformity of the results from the 2 tests. The statistical significance level was P < .05. A positive response in the modified O-ring test and maximal pinch strength were both affected by cross tape direction. The modified O-ring test and maximal pinch strength using pinch gauge results were in agreement (P < .00), and the kappa coefficient was significant at 1.00. The direction of cross tape application that produced a positive response in the modified O-ring test also produced greater maximal pinch strength. Thus, we propose that when applying cross tape to muscles, the direction of the 4 lines of the cross tape should be 45° relative to the direction of the muscle fibers, toward the side that produces a positive response in the modified O-ring test or produces the greatest maximal pinch strength using a pinch gauge.
García-Artero, Enrique; Ortega, Francisco B; Ruiz, Jonatan R; Mesa, José L; Delgado, Manuel; González-Gross, Marcela; García-Fuentes, Miguel; Vicente-Rodríguez, Germán; Gutiérrez, Angel; Castillo, Manuel J
2007-06-01
To determine whether the level of physical activity or physical fitness (i.e., aerobic capacity and muscle strength) in Spanish adolescents influences lipid and metabolic profiles. From a total of 2859 Spanish adolescents (age 13.0-18.5 years) taking part in the AVENA (Alimentación y Valoración del Estado Nutricional en Adolescentes) study, 460 (248 male, 212 female) were randomly selected for blood analysis. Their level of physical activity was determined by questionnaire. Aerobic capacity was assessed using the Course-Navette test. Muscle strength was evaluated using manual dynamometry, the long jump test, and the flexed arm hang test. A lipid-metabolic cardiovascular risk index was derived from the levels of triglycerides, low-density lipoprotein cholesterol (LDLC), high-density lipoprotein cholesterol (HDLC), and glucose. No relationship was found between the level of physical activity and lipid-metabolic index in either sex. In contrast, there was an inverse relationship between the lipid-metabolic index and aerobic capacity in males (P=.003) after adjustment for physical activity level and muscle strength. In females, a favorable lipid-metabolic index was associated with greater muscle strength (P=.048) after adjustment for aerobic capacity. These results indicate that, in adolescents, physical fitness, and not physical activity, is related to lipid and metabolic cardiovascular risk. Higher aerobic capacity in males and greater muscle strength in females were associated with lower lipid and metabolic risk factors for cardiovascular disease.
Abreu, Eduardo L; Cheng, An-Lin; Kelly, Patricia J; Chertoff, Keyna; Brotto, Leticia; Griffith, Elizabeth; Kinder, Glenda; Uridge, Tina; Zachow, Rob; Brotto, Marco
2014-01-01
Loss of muscle mass and strength (i.e., sarcopenia) in the older adults is a strong predictor of falls, with subsequent morbidity and inability to execute activities of daily living. Use of biomarkers may enhance assessment of effects of community-based exercise interventions aimed at improving muscle strength. The aim of this study was to investigate the use of troponin as a newly proposed biomarker of skeletal muscle health when determining the outcomes of strength-training programs designed for community-dwelling adults over the age of 65 years. Outcomes of two strength training programs ("Peer Exercise Program Promotes Independence" and "Stay Strong, Stay Healthy") were assessed using physical performance tests designed for senior fitness evaluation, grip strength, and changes in serum levels of skeletal muscle-specific troponin T (sTnT). Improvement in physical performance, including a significant increase in grip strength, was associated with a significant reduction in serum levels of sTnT. Findings from these studies suggest that, when "Peer Exercise Program Promotes Independence" and "Stay Strong, Stay Healthy" are implemented for at least 10 weeks, significant gains in strength are achieved. This strength improvement was associated with a reduction in serum levels of troponin, supporting the use of troponin as a novel biomarker of muscle health in the assessment of strength training programs for the older adults. Reduced sTnT after exercise intervention suggests that skeletal muscles become stronger and less susceptible to damage because of the exercise regimens.
[Physical exercise versus exercise program using electrical stimulation devices for home use].
Santos, F M; Rodrigues, R G S; Trindade-Filho, E M
2008-02-01
To evaluate the effects of electrical muscle stimulation with devices for home use on neuromuscular conditioning. The study sample comprised 20 sedentary, right-handed, voluntary women aged from 18 to 25 years in the city of Maceió, Northeastern Brazil, in 2006. Subjects were randomly divided into two groups: group A included women who underwent muscle stimulation using commercial electrical devices; group B included those women who performed physical activities with loads. The training program for both groups consisted of two weekly sessions for two months, in a total of 16 sessions. Comparisons of body weight, cirtometry, fleximetry, and muscle strength before and after exercise were determined using the paired t-test. For the comparisons between both groups, Student's t-test was used and a 5% significance level was adopted. Muscle strength subjectively assessed before and after each intervention was increased in both groups. Significant increases in muscle mass and strength were seen only in those subjects who performed voluntary physical activity. Resisted knee flexion and extension exercises effectively increased muscle mass and strength when compared to electrical stimulation at 87 Hz which did not produce a similar effect. The study results showed that electrical stimulation devices for passive physical exercising commercially available are less effective than voluntary physical exercise.
Relationship between agility and lower limb muscle strength, targeting university badminton players.
Sonoda, Takuya; Tashiro, Yuto; Suzuki, Yusuke; Kajiwara, Yu; Zeidan, Hala; Yokota, Yuki; Kawagoe, Mirei; Nakayama, Yasuaki; Bito, Tsubasa; Shimoura, Kanako; Tatsumi, Masataka; Nakai, Kengo; Nishida, Yuichi; Yoshimi, Soyoka; Aoyama, Tomoki
2018-02-01
[Purpose] Targeting university badminton players, this study investigated the relationship between agility, which is associated with performance in badminton, and lower limb muscle strength, and examined which muscles influence agility. [Subjects and Methods] A total of 23 male university badminton players were evaluated for side-shuffle test scores and lower limb strength. The relationships between agility, lower limb strength, and duration of experience playing badminton were evaluated using a correlation analysis. Moreover, the relationship between agility and lower limb strength was evaluated by partial correlation analysis, adjusting for the effects of experience of each badminton player. [Results] The agility score correlated with hip extension and ankle plantar flexion strength, with adjustment for badminton experience. [Conclusion] This study suggests that hip extension training and improvement in ankle plantar flexion strength may improve agility.
Lee, GyuChang
2013-01-01
[Purpose] The purpose of this study was to investigate the effects of training using video games played on the Xbox Kinect on the muscle strength, muscle tone, and activities of daily living of post-stroke patients. [Subjects] Fourteen stroke patients were recruited. They were randomly allocated into two groups; the experimental group (n=7) and the control group (n=7). [Methods] The experimental group performed training using video games played on the Xbox Kinect together with conventional occupational therapy for 6 weeks (1 hour/day, 3 days/week), and the control group received conventional occupational therapy only for 6 weeks (30 min/day, 3 days/week). Before and after the intervention, the participants were measured for muscle strength, muscle tone, and performance of activities of daily living. [Results] There were significant differences pre- and post-test in muscle strength of the upper extremities, except the wrist, and performance of activities of daily living in the experimental group. There were no significant differences between the two groups at post-test. [Conclusion] The training using video games played on the Xbox Kinect had a positive effect on the motor function and performance of activities of daily living. This study showed that training using video games played on the Xbox Kinect may be an effective intervention for the rehabilitation of stroke patients. PMID:24259810
Røren Nordén, Kristine; Dagfinrud, Hanne; Løvstad, Amund; Raastad, Truls
Introduction . The purpose of this study was to investigate body composition, muscle function, and muscle morphology in patients with spondyloarthritis (SpA). Methods . Ten male SpA patients (mean ± SD age 39 ± 4.1 years) were compared with ten healthy controls matched for sex, age, body mass index, and self-reported level of physical exercise. Body composition was measured by dual energy X-ray absorptiometry. Musculus quadriceps femoris (QF) strength was assessed by maximal isometric contractions prior to test of muscular endurance. Magnetic resonance imaging of QF was used to measure muscle size and calculate specific muscle strength. Percutaneous needle biopsy samples were taken from m. vastus lateralis . Results . SpA patients presented with significantly lower appendicular lean body mass (LBM) ( p = 0.02), but there was no difference in bone mineral density, fat mass, or total LBM. Absolute QF strength was significantly lower in SpA patients ( p = 0.03) with a parallel trend for specific strength ( p = 0.08). Biopsy samples from the SpA patients revealed significantly smaller cross-sectional area (CSA) of type II muscle fibers ( p = 0.04), but no difference in CSA type I fibers. Conclusions . Results indicate that the presence of SpA disease is associated with reduced appendicular LBM, muscle strength, and type II fiber CSA.
Wu, F; Callisaya, M; Laslett, L L; Wills, K; Zhou, Y; Jones, G; Winzenberg, T
2016-07-01
This was the first study investigating both linear associations between lower limb muscle strength and balance in middle-aged women and the potential for thresholds for the associations. There was strong evidence that even in middle-aged women, poorer LMS was associated with reduced balance. However, no evidence was found for thresholds. Decline in balance begins in middle age, yet, the role of muscle strength in balance is rarely examined in this age group. We aimed to determine the association between lower limb muscle strength (LMS) and balance in middle-aged women and investigate whether cut-points of LMS exist that might identify women at risk of poorer balance. Cross-sectional analysis of 345 women aged 36-57 years was done. Associations between LMS and balance tests (timed up and go (TUG), step test (ST), functional reach test (FRT), and lateral reach test (LRT)) were assessed using linear regression. Nonlinear associations were explored using locally weighted regression smoothing (LOWESS) and potential cut-points identified using nonlinear least-squares estimation. Segmented regression was used to estimate associations above and below the identified cut-points. Weaker LMS was associated with poorer performance on the TUG (β -0.008 (95 % CI: -0.010, -0.005) second/kg), ST (β 0.031 (0.011, 0.051) step/kg), FRT (β 0.071 (0.047, 0.096) cm/kg), and LRT (β 0.028 (0.011, 0.044) cm/kg), independent of confounders. Potential nonlinear associations were evident from LOWESS results; significant cut-points of LMS were identified for all balance tests (29-50 kg). However, excepting ST, cut-points did not persist after excluding potentially influential data points. In middle-aged women, poorer LMS is associated with reduced balance. Therefore, improving muscle strength in middle-age may be a useful strategy to improve balance and reduce falls risk in later life. Middle-aged women with low muscle strength may be an effective target group for future randomized controlled trials. Australian New Zealand Clinical Trials Registry (ANZCTR) NCT00273260.
PROGRESSIVE RESISTANCE VOLUNTARY WHEEL RUNNING IN THE mdx MOUSE
Call, Jarrod A.; McKeehen, James N.; Novotny, Susan A.; Lowe, Dawn A.
2012-01-01
Exercise training has been minimally explored as a therapy to mitigate the loss of muscle strength for individuals with Duchenne muscular dystrophy (DMD). Voluntary wheel running is known to elicit beneficial adaptations in the mdx mouse model for DMD. The aim of this study was to examine progressive resistance wheel running in mdx mice by comprehensively testing muscle function before, during, and after a 12-week training period. Male mdx mice at ~4 weeks age were randomized into three groups: Sedentary, Free Wheel, and Resist Wheel. Muscle strength was assessed via in vivo dorsiflexion torque, grip strength, and whole body tension intermittently throughout the training period. Contractility of isolated soleus muscles was analyzed at the study’s conclusion. Both Free and Resist Wheel mice had greater grip strength (~22%) and soleus muscle specific tetanic force (26%) compared with Sedentary mice. This study demonstrates that two modalities of voluntary exercise are beneficial to dystrophic muscle and may help establish parameters for an exercise prescription for DMD. PMID:21104862
Ozalp, Ozge; Inal-Ince, Deniz; Calik, Ebru; Vardar-Yagli, Naciye; Saglam, Melda; Savci, Sema; Arikan, Hulya; Bosnak-Guclu, Meral; Coplu, Lutfi
2012-06-11
There are limited number of studies investigating extrapulmonary manifestations of bronchiectasis. The purpose of this study was to compare peripheral muscle function, exercise capacity, fatigue, and health status between patients with bronchiectasis and healthy subjects in order to provide documented differences in these characteristics for individuals with and without bronchiectasis. Twenty patients with bronchiectasis (43.5 ± 14.1 years) and 20 healthy subjects (43.0 ± 10.9 years) participated in the study. Pulmonary function, respiratory muscle strength (maximal expiratory pressure - MIP - and maximal expiratory pressure - MEP), and dyspnea perception using the Modified Medical Research Council Dyspnea Scale (MMRC) were determined. A six-minute walk test (6MWT) was performed. Quadriceps muscle, shoulder abductor, and hand grip strength (QMS, SAS, and HGS, respectively) using a hand held dynamometer and peripheral muscle endurance by a squat test were measured. Fatigue perception and health status were determined using the Fatigue Severity Scale (FSS) and the Leicester Cough Questionnaire (LCQ), respectively. Number of squats, 6MWT distance, and LCQ scores as well as lung function testing values and respiratory muscle strength were significantly lower and MMRC and FSS scores were significantly higher in patients with bronchiectasis than those of healthy subjects (p < 0.05). In bronchiectasis patients, QMS was significantly associated with HGS, MIP and MEP (p < 0.05). The 6MWT distance was significantly correlated to LCQ psychological score (p < 0.05). The FSS score was significantly associated with LCQ physical and total and MMRC scores (p < 0.05). The LCQ psychological score was significantly associated with MEP and 6MWT distance (p < 0.05). Peripheral muscle endurance, exercise capacity, fatigue and health status were adversely affected by the presence of bronchiectasis. Fatigue was associated with dyspnea and health status. Respiratory muscle strength was related to peripheral muscle strength and health status, but not to fatigue, peripheral muscle endurance or exercise capacity. These findings may provide insight for outcome measures for pulmonary rehabilitation programs for patients with bronchiectasis.
Windelinckx, An; De Mars, Gunther; Huygens, Wim; Peeters, Maarten W.; Vincent, Barbara; Wijmenga, Cisca; Lambrechts, Diether; Aerssens, Jeroen; Vlietinck, Robert; Beunen, Gaston
2011-01-01
Muscle strength is an important determinant in elite sports performance as well as in the activities of daily living. Muscle metabolism also plays a role in the genesis, and therefore prevention, of common pathological conditions and chronic diseases. Even though heritability estimates between 31 and 78% suggest a significant genetic component in muscle strength, only a limited number of genes influencing muscle strength have been identified. This study aimed to identify and prioritize positional candidate genes within a skeletal muscle strength quantitative trait locus on chromosome 12q22-23 for follow-up. A two-staged gene-centered fine-mapping approach using 122 single nucleotide polymorphisms (SNPs) in stage 1 identified a familybased association (n = 500) between several tagSNPs located in the ATPase, Ca2+ transporting, cardiac muscle, slow twitch 2 (ATP2A2; rs3026468), the NUAK family, SNF1-like kinase, 1 (NUAK1; rs10861553 and rs3741886), and the protein phosphatase 1, catalytic subunit, gamma isoform (PPP1CC; rs1050587 and rs7901769) genes and knee torque production (P values up to 0.00092). In stage 2, family-based association tests on additional putatively functional SNPs (e.g., exonic SNPs, SNPs in transcription factor binding sites or in conserved regions) in an enlarged sample (n = 536; 464 individuals overlap with stage 1) did not identify additional associations with muscle strength characteristics. Further in-depth analyses will be necessary to elucidate the exact role of ATP2A2, PPP1CC, and NUAK1 in muscle strength and to find out which functional polymorphisms are at the base of the interindividual strength differences. PMID:21750233
Motor performance in children with Noonan syndrome.
Croonen, Ellen A; Essink, Marlou; van der Burgt, Ineke; Draaisma, Jos M; Noordam, Cees; Nijhuis-van der Sanden, Maria W G
2017-09-01
Although problems with motor performance in daily life are frequently mentioned in Noonan syndrome, the motor performance profile has never been systematically investigated. The aim of this study was to examine whether a specific profile in motor performance in children with Noonan syndrome was seen using valid norm-referenced tests. The study assessed motor performance in 19 children with Noonan syndrome (12 females, mean age 9 years 4 months, range 6 years 1 month to 11 years and 11 months, SDS 1 year and 11 months). More than 60% of the parents of the children reported pain, decreased muscle strength, reduced endurance, and/or clumsiness in daily functioning. The mean standard scores on the Visual Motor Integration (VMI) test and Movement Assessment Battery for Children 2, Dutch version (MABC-2-NL) items differed significantly from the reference scores. Grip strength, muscle force, and 6 min Walking Test (6 MWT) walking distance were significantly lower, and the presence of generalized hypermobility was significantly higher. All MABC-2-NL scores (except manual dexterity) correlated significantly with almost all muscle strength tests, VMI total score, and VMI visual perception score. The 6 MWT was only significantly correlated to grip strength. This is the first study that confirms that motor performance, strength, and endurance are significantly impaired in children with Noonan syndrome. Decreased functional motor performance seems to be related to decreased visual perception and reduced muscle strength. Research on causal relationships and the effectiveness of interventions is needed. Physical and/or occupational therapy guidance should be considered to enhance participation in daily life. © 2017 Wiley Periodicals, Inc.
Atay, Emrah; Başalan Iz, Fatma
2015-01-01
The aim of this study is the investigation of the effect of changes in muscle strength in gestational age upon fear of falling and quality of life. This longitudinal, descriptive study included a sample of 37 pregnant women who volunteered to participate. The research data were collected at 20 and 32 weeks of gestation. Data collection instruments included a newly developed questionnaire form, the Tinetti Falls Efficacy Scale, a visual analog scale, and the Turkish language version of the WHO Quality of Life Scale. Upper body flexibility was measured by the back scratch test, while muscle strength was measured by a handgrip dynamometer and balance by the unipedal stance test. It was found that, as pregnancy advanced, pregnant women had an increased fear of falling, as well as elevated systolic and diastolic blood pressure levels. Participants suffered significant impairments in their balance, handgrip strength, and quality of life within the physical, psychological, and environmental domains. As pregnancy advances, muscle strength decreases and the fear of falling experienced by pregnant women increases, which significantly impairs the quality of life in the domains of environment, physical, and mental health.
Ebner, Nicole; Elsner, Sebastian; Springer, Jochen; von Haehling, Stephan
2014-03-01
This article aims to describe molecular pathways involved in the development of muscle wasting and cachexia, diagnostic possibilities, and potential treatments that have seen clinical testing in recent heart failure trials. An understanding of the specific changes that cause an anabolic-catabolic imbalance is an essential first step in the development of pharmaceutical intervention strategies aimed at blocking muscle wasting. Skeletal muscle mass and muscle strength are the most important determinants of exercise capacity in patients with heart failure. In contrast to cachexia, muscle wasting is not usually associated with weight loss, implying the need for sophisticated assessment methods to correctly diagnose muscle wasting, for example the use of computed tomography, magnetic resonance imaging, or dual energy X-ray absorptiometry. Simpler techniques such as handgrip strength, exercise testing, or even a biomarker may help in determining patients with a high pre-test probability of muscle wasting. Despite intensive research efforts in the field of muscle wasting during the last couple of decades, no effective treatment of muscle wasting currently exists other than exercise training. This situation remains true even though study of the molecular pathways involved in muscle wasting suggests many therapeutic targets. Easily applicable diagnostic tools may help to identify patients at risk of developing muscle wasting.
Davison, Michael J; Maly, Monica R; Keir, Peter J; Hapuhennedige, Sandani M; Kron, Amie T; Adachi, Jonathan D; Beattie, Karen A
2017-01-01
Thigh lean muscle and intramuscular fat have been implicated in the impairment of physical function observed in people with knee osteoarthritis. We investigated the relationships of quadriceps and hamstrings intramuscular fat fraction and lean muscle volume with muscle power and strength, controlling for neuromuscular activation, and physical performance in women with knee OA. Women (n=20) 55years or older with symptomatic, radiographic knee osteoarthritis underwent a 3.0T magnetic resonance imaging scan of the thigh of their most symptomatic knee. Axial fat-separated images were analyzed using software to quantify intramuscular fat and lean muscle volumes of the quadriceps and hamstrings. To quantify strength and power of the knee extensors and flexors, participants performed maximum voluntary isometric contraction and isotonic knee extensions and flexions, respectively. Electromyography of the quadriceps and hamstrings was measured. Participants also completed five physical performance tests. Quadriceps and hamstrings lean muscle volumes were related to isotonic knee extensor (B=0.624; p=0.017) and flexor (B=1.518; p=0.032) power, but not knee extensor (B=0.001; p=0.615) or flexor (B=0.001; p=0.564) isometric strength. Intramuscular fat fractions were not related to isotonic knee extensor or flexor power, nor isometric strength. No relationships were found between intramuscular fat or lean muscle volume and physical performance. Muscle power may be more sensitive than strength to lean muscle mass in women with knee osteoarthritis. Thigh lean muscle mass, but neither intramuscular nor intermuscular fat, is related to knee extensor and flexor power in women with knee osteoarthritis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Vannebo, Katrine Tranaas; Iversen, Vegard Moe; Fimland, Marius Steiro; Mork, Paul Jarle
2018-03-02
There is a lack of test-retest reliability studies of measurements of cervical muscle strength, taking into account gender and possible learning effects. To investigate test-retest reliability of measurement of maximal isometric cervical muscle strength by handheld dynamometry. Thirty women (age 20-58 years) and 28 men (age 20-60 years) participated in the study. Maximal isometric strength (neck flexion, neck extension, and right/left lateral flexion) was measured on three separate days at least five days apart by one evaluator. Intra-rater consistency tended to improve from day 1-2 measurements to day 2-3 measurements in both women and men. In women, the intra-class correlation coefficients (ICC) for day 2 to day 3 measurements were 0.91 (95% confidence interval [CI], 0.82-0.95) for neck flexion, 0.88 (95% CI, 0.76-0.94) for neck extension, 0.84 (95% CI, 0.68-0.92) for right lateral flexion, and 0.89 (95% CI, 0.78-0.95) for left lateral flexion. The corresponding ICCs among men were 0.86 (95% CI, 0.72-0.93) for neck flexion, 0.93 (95% CI, 0.85-0.97) for neck extension, 0.82 (95% CI, 0.65-0.91) for right lateral flexion and 0.73 (95% CI, 0.50-0.87) for left lateral flexion. This study describes a reliable and easy-to-administer test for assessing maximal isometric cervical muscle strength.
Hill, Ethan C; Housh, Terry J; Keller, Joshua L; Smith, Cory M; Schmidt, Richard J; Johnson, Glen O
2018-06-22
Low-intensity venous blood flow restriction (vBFR) resistance training has been shown to promote increases in muscle strength and size. Eccentric-only muscle actions are typically a more potent stimulus to increase muscle strength and size than concentric-only muscle actions performed at the same relative intensities. Therefore, the purpose of this investigation was to examine the time-course of changes in muscle strength, hypertrophy, and neuromuscular adaptations following 4 weeks of unilateral forearm flexion low-intensity eccentric vBFR (Ecc-vBFR) vs. low-intensity concentric vBFR (Con-vBFR) resistance training performed at the same relative intensity. Thirty-six women were randomly assigned to either Ecc-vBFR (n = 12), Con-vBFR (n = 12) or control (no intervention, n = 12) group. Ecc-vBFR trained at 30% of eccentric peak torque and Con-vBFR trained at 30% of concentric peak torque. All training and testing procedures were performed at an isokinetic velocity of 120° s - ¹. Muscle strength increased similarly from 0 to 2 and 4 weeks of training as a result of Ecc-vBFR (13.9 and 35.0%) and Con-vBFR (13.4 and 31.2%), but there were no changes in muscle strength for the control group. Muscle thickness increased similarly from 0 to 2 and 4 weeks of training as a result of Ecc-vBFR (11.4 and 12.8%) and Con-vBFR (9.1 and 9.9%), but there were no changes for the control group. In addition, there were no changes in any of the neuromuscular responses. The Ecc-vBFR and Con-vBFR low-intensity training induced comparable increases in muscle strength and size. The increases in muscle strength, however, were not associated with neuromuscular adaptations.
Kim, Bokun; Tsujimoto, Takehiko; So, Rina; Zhao, Xiaoguang; Oh, Sechang; Tanaka, Kiyoji
2017-12-31
To date, there have been no reports on whether weight reduction causes decreases in muscle mass, muscle strength, or physical performance that could lead to health problems. Thus, in this pilot study, we investigated the appropriateness of the changes in muscle mass, muscle strength and physical performance after weight reduction. Obese men who completed a weight reduction program to decrease and maintain a body mass index (BMI) of less than 25 kg/m2 for one year were recruited for the study. One year after the completion of a weight reduction program, the participants' muscle mass, muscle strength, and physical performance were compared with those in a reference group composed of individuals whose BMI was less than 25 kg/m2. Whole-body scanning was performed using dual-energy X-ray absorptiometry to analyze muscle mass. Handgrip strength and knee extensor strength were measured to evaluate arm and leg muscle strength, respectively. For physical performance, a jump test was employed. The results showed that the biceps, triceps, subscapular, and suprailiac areas of professional fashion models were significantly thinner than those of women in general (p<.001), and that their waist size was also significantly smaller (p<.001). However, hip circumference showed no significant difference. Body mass index, waist-to-hip ratio, and body fat (%) in professional fashion models were significantly lower than those in women in general (p<.001), while the body density in professional fashion models was significantly greater (p<0.001). Weight reduction participants showed an average reduction in body weight of -16.47%. Normalized arm muscle mass and handgrip strength were significantly greater in the weight reduction group than in the reference group; however, no significant differences were detected between the two groups with respect to the other variables. After one year, there were no significant differences between the two groups. ©2017 The Korean Society for Exercise Nutrition
Costantino, Cosimo; Galuppo, Laura; Romiti, Davide
2017-02-01
In recent years, local muscle vibration received considerable attention as a useful method for muscle stimulation in clinical therapy. Some studies described specific vibration training protocol, and few of them were conducted on post-stroke patients. Therefore there is a general uncertainty regarding the vibrations protocol. The aim of this study was to evaluate the effects of local muscle high frequency mechano-acoustic vibratory treatment on grip muscle strength, muscle tonus, disability and pain in post-stroke individuals with upper limb spasticity. Single-blind randomized controlled trial. Outpatient rehabilitation center. Thirty-two chronic poststroke patients with upper-limb spasticity: 21 males, 11 females, mean age 61.59 years ±15.50, time passed from stroke 37.78±17.72 months. The protocol treatment consisted of the application of local muscle vibration, set to a frequency of 300 Hz, for 30 minutes 3 times per week, for 12 sessions, applied to the skin covering the venter of triceps brachii and extensor carpi radialis longus and brevis muscles during voluntary isometric contraction. All participants were randomized in two groups: group A treated with vibration protocol; group B with sham therapy. All participants were evaluated before and after 4-week treatment with Hand Grip Strength Test, Modified Ashworth Scale, QuickDASH score, FIM scale, Fugl-Meyer Assessment, Jebsen-Taylor Hand Function Test and Verbal Numerical Rating Scale of pain. Outcomes between groups was compared using a repeated-measures ANOVA. Over 4 weeks, the values recorded in group A when compared to group B demonstrated statistically significant improvement in grip muscle strength, pain and quality of life and decrease of spasticity; P-values were <0.05 in all tested parameters. Rehabilitation treatment with local muscle high frequency (300 Hz) vibration for 30 minutes, 3 times a week for 4 weeks, could significantly improve muscle strength and decrease muscle tonus, disability and pain in upper limb of hemiplegic post-stroke patients. Local muscle vibration treatment might be an additional and safe tool in the management of chronic poststroke patients, granted its high therapeutic efficiency, limited cost and short and repeatable protocol of use.
Wang, Lei
2016-07-01
[Purpose] The aim of this study was to examine the immediate effects of neuromuscular joint facilitation (NJF) on the functional activity level after rehabilitation of anterior cruciate ligament (ACL) reconstruction. [Subjects and Methods] Ten young subjects (8 males and 2 females) who underwent ACL reconstruction were included in the study. The subjects were divided into two groups, namely, knee joint extension muscle strength training (MST) group and knee joint extension outside rotation pattern of NJF group. Extension strength was measured in both groups before and after the experiment. Surface electromyography (sEMG) of the vastus medialis and vastus lateralis muscles and joint position error (JPE) test of the knee joint were also conducted. [Results] JPE test results and extension strength measurements in the NJF group were improved compared with those in the MST group. Moreover, the average discharge of the vastus medialis and vastus lateralis muscles on sEMG in the NJF group was significantly increased after MST and NJF treatments. [Conclusion] The obtained results suggest that NJF training in patients with ACL reconstruction can improve knee proprioception ability and muscle strength.
Marks, Wendie; Fournier, Neil M; Kalynchuk, Lisa E
2009-08-04
We have recently shown that repeated high dose injections of corticosterone (CORT) reliably increase depression-like behavior on a modified one-day version of the forced swim test. The main purpose of this experiment was to compare the effect of these CORT injections on our one-day version of the forced swim test and the more traditional two-day version of the test. A second purpose was to determine whether altered behavior in the forced swim test could be due to nonspecific changes in locomotor activity or muscle strength. Separate groups of rats received a high dose CORT injection (40 mg/kg) or a vehicle injection once per day for 21 consecutive days. Then, half the rats from each group were exposed to the traditional two-day forced swim test and the other half were exposed to our one-day forced swim test. After the forced swim testing, all the rats were tested in an open field and in a wire suspension grip strength test. The CORT injections significantly increased the time spent immobile and decreased the time spent swimming in both versions of the forced swim test. However, they had no significant effect on activity in the open field or grip strength in the wire suspension test. These results show that repeated CORT injections increase depression-like behavior regardless of the specific parameters of forced swim testing, and that these effects are independent of changes in locomotor activity or muscle strength.
From muscle wasting to sarcopenia and myopenia: update 2012.
von Haehling, Stephan; Morley, John E; Anker, Stefan D
2012-12-01
Human muscle undergoes constant changes. After about age 50, muscle mass decreases at an annual rate of 1-2 %. Muscle strength declines by 1.5 % between ages 50 and 60 and by 3 % thereafter. The reasons for these changes include denervation of motor units and a net conversion of fast type II muscle fibers into slow type I fibers with resulting loss in muscle power necessary for activities of daily living. In addition, lipids are deposited in the muscle, but these changes do not usually lead to a loss in body weight. Once muscle mass in elderly subjects falls below 2 standard deviations of the mean of a young control cohort and the gait speed falls below 0.8 m/s, a clinical diagnosis of sarcopenia can be reached. Assessment of muscle strength using tests such as the short physical performance battery test, the timed get-up-and-go test, or the stair climb power test may also be helpful in establishing the diagnosis. Serum markers may be useful when sarcopenia presence is suspected and may prompt further investigations. Indeed, sarcopenia is one of the four main reasons for loss of muscle mass. On average, it is estimated that 5-13 % of elderly people aged 60-70 years are affected by sarcopenia. The numbers increase to 11-50 % for those aged 80 or above. Sarcopenia may lead to frailty, but not all patients with sarcopenia are frail-sarcopenia is about twice as common as frailty. Several studies have shown that the risk of falls is significantly elevated in subjects with reduced muscle strength. Treatment of sarcopenia remains challenging, but promising results have been obtained using progressive resistance training, testosterone, estrogens, growth hormone, vitamin D, and angiotensin-converting enzyme inhibitors. Interesting nutritional interventions include high-caloric nutritional supplements and essential amino acids that support muscle fiber synthesis.
Su, Hsuan; Chang, Nai-Jen; Wu, Wen-Lan; Guo, Lan-Yuen; Chu, I-Hua
2017-11-01
Foam rolling has been proposed to improve muscle function, performance, and joint range of motion (ROM). However, whether a foam rolling protocol can be adopted as a warm-up to improve flexibility and muscle strength is unclear. To examine and compare the acute effects of foam rolling, static stretching, and dynamic stretching used as part of a warm-up on flexibility and muscle strength of knee flexion and extension. Crossover study. University research laboratory. 15 male and 15 female college students (age 21.43 ± 1.48 y, weight 65.13 ± 12.29 kg, height 166.90 ± 6.99 cm). Isokinetic peak torque was measured during knee extension and flexion at an angular velocity of 60°/second. Flexibility of the quadriceps was assessed by the modified Thomas test, while flexibility of the hamstrings was assessed using the sit-and-reach test. The 3 interventions were performed by all participants in random order on 3 days separated by 48-72 hours. The flexibility test scores improved significantly more after foam rolling as compared with static and dynamic stretching. With regard to muscle strength, only knee extension peak torque (pre vs. postintervention) improved significantly after the dynamic stretching and foam rolling, but not after static stretching. Knee flexion peak torque remained unchanged. Foam rolling is more effective than static and dynamic stretching in acutely increasing flexibility of the quadriceps and hamstrings without hampering muscle strength, and may be recommended as part of a warm-up in healthy young adults.
Deegan, Emily G; Stothers, Lynn; Kavanagh, Alex; Macnab, Andrew J
2018-01-01
There remains no gold standard for quantification of voluntary pelvic floor muscle (PFM) strength, despite international guidelines that recommend PFM assessment in females with urinary incontinence (UI). Methods currently reported for quantification of skeletal muscle strength across disciplines are systematically reviewed and their relevance for clinical and academic use related to the pelvic floor are described. A systematic review via Medline, PubMed, CINHAL, and the Cochrane database using key terms for pelvic floor anatomy and function were cross referenced with skeletal muscle strength quantification from 1946 to 2016. Full text peer-reviewed articles in English having female subjects with incontinence were identified. Each study was analyzed for use of controls, type of methodology as direct or indirect measures, benefits, and limitations of the technique. A total of 1586 articles were identified of which 50 met the inclusion criteria. Nine methodologies of determining PFM strength were described including: digital palpation, perineometer, dynamometry, EMG, vaginal cones, ultrasonography, magnetic resonance imaging, urine stream interruption test, and the Colpexin pull test. Thirty-two percent lacked a control group. Technical refinements in both direct and indirect instrumentation for PFM strength measurement are allowing for sensitivity. However, the most common methods of quantification remain digital palpation and perineometry; techniques that pose limitations and yield subjective or indirect measures of muscular strength. Dynamometry has potential as an accurate and sensitive tool, but is limited by inability to assess PFM strength during dynamic movements. © 2017 Wiley Periodicals, Inc.
Gomes, Matheus M; Reis, Júlia G; Carvalho, Regiane L; Tanaka, Erika H; Hyppolito, Miguel A; Abreu, Daniela C C
2015-01-01
muscle strength and power are two factors affecting balance. The impact of muscle strength and power on postural control has not been fully explored among different age strata over sixty. the aim of the present study was to assess the muscle strength and power of elderly women in different age groups and determine their correlation with postural control. eighty women were divided into four groups: the young 18-30 age group (n=20); the 60-64 age group (n=20); the 65-69 age group (n=20); and the 70-74 age group (n=20). The participants underwent maximum strength (one repetition maximum or 1-RM) and muscle power tests to assess the knee extensor and flexor muscles at 40%, 70%, and 90% 1-RM intensity. The time required by participants to recover their balance after disturbing their base of support was also assessed. the elderly women in the 60-64, 65-69, and 70-74 age groups exhibited similar muscle strength, power, and postural control (p>0.05); however, these values were lower than those of the young group (p<0.05) as expected. There was a correlation between muscle strength and power and the postural control performance (p<0.05). despite the age difference, elderly women aged 60 to 74 years exhibited similar abilities to generate strength and power with their lower limbs, and this ability could be one factor that explains the similar postural control shown by these women.
Rolighed, Lars; Rejnmark, Lars; Sikjaer, Tanja; Heickendorff, Lene; Vestergaard, Peter; Mosekilde, Leif; Christiansen, Peer
2015-05-01
Impairments of muscle function and strength in patients with primary hyperparathyroidism (PHPT) are rarely addressed, although decreased muscle function may contribute to increased fracture risk. We aimed to assess the changes in muscle strength, muscle function, postural stability, quality of life (QoL), and well-being during treatment with vitamin D or placebo before and after parathyroidectomy (PTX) in PHPT patients. A randomized placebo-controlled trial. We included 46 PHPT patients, mean age 58 (range 29-77) years and 35 (76%) were women. Daily treatment with 70 μg (2800 IU) cholecalciferol or placebo for 52 weeks. Treatment was administered 26 weeks before PTX and continued for 26 weeks after PTX. Changes in QoL and measures of muscle strength and function. Preoperatively, 25-hydroxyvitamin D (25OHD) increased significantly (50-94 nmol/l) compared with placebo (57-52 nmol/l). We did not measure any beneficial effects of supplementation with vitamin D compared with placebo regarding well-being, QoL, postural stability, muscle strength, or function. In all patients, we measured marked improvements in QoL, well-being (P<0.01), muscle strength in the knee flexion and extension (P<0.001), and muscle function tests (P<0.01) after surgical cure. Postural stability improved during standing with eyes closed (P<0.05), but decreased with eyes open (P<0.05). Patients with PHPT and 25OHD levels around 50 nmol/l did not benefit from vitamin D supplementation concerning muscle strength, muscle function, postural stability, well-being, or QoL. Independent of preoperative 25OHD levels, PTX improved these parameters. © 2015 European Society of Endocrinology.
Ozdemir, Filiz Ciledag; Pehlivan, Erkan; Melekoglu, Rauf
2017-01-01
To investigate the pelvic floor muscle strength of the women andevaluateits possible correlation with sexual dysfunction. In this cross-sectional type study, stratified clusters were used for the sampling method. Index of Female Sexual Function (IFSF) worksheetwere used for questions on sexual function. The pelvic floor muscle strength of subjects was assessed byperineometer. The chi-squared test, logistic regression and Pearson's correlation analysis were used for the statistical analysis. Four hundred thirty primiparous women, mean age 38.5 participated in this study. The average pelvic floor muscle strength value was found 31.4±9.6 cm H 2 O and the average Index of Female Sexual Function (IFSF) score was found 26.5±6.9. Parity (odds ratio OR=5.546) and age 40 or higher (OR=3.484) were found correlated with pelvic floor muscle weakness (p<0.05). The factors directly correlated with sexual dysfunction were found being overweight (OR=2.105) and age 40 or higher (OR=2.451) (p<0.05). Pearson's correlation analysis showed that there was a statistically significantlinear correlation between the muscular strength of the pelvic floor and sexual function (p=0.001). The results suggested subjects with decreased pelvic floor muscle strength value had higher frequency of sexual dysfunction.
Perron, Marc; Moffet, Hélène; Nadeau, Sylvie; Hébert, Luc J; Belzile, Sylvain
2014-12-01
The assessment of muscle function is a cornerstone in the management of subjects who have sustained a lateral ankle sprain. The ankle range of motion being relatively small, the use of preloading allows to measure maximal strength throughout the whole amplitude and therefore to better characterize ankle muscles weaknesses. This study aimed to assess muscle strength of the injured and uninjured ankles in subjects with a lateral ankle sprain, to document the timeline of strength recovery, and to determine the influence of sprain grade on strength loss. Maximal torque of the periarticular muscles of the ankle in a concentric mode using a protocol with maximal preloading was tested in 32 male soldiers at 8 weeks and 6 months post-injury. The evertor muscles of the injured ankles were weaker than the uninjured ones at 8 weeks and 6 months post-injury (P<0.0001, effect size=0.31-0.42). Muscle weaknesses also persisted in the plantarflexors of the injured ankles at 8 weeks (P=0.0014, effect size=0.52-0.58) while at 6 months, only the subjects with a grade II sprain displayed such weaknesses (P<0.0001, effect size 0.27-0.31). The strength of the invertor and dorsiflexor muscles did not differ between sides. The use of an isokinetic protocol with preloading demonstrates significant but small strength deficits in the evertor and plantarflexor muscles. These impairments may contribute to the high incidence of recurrence of lateral ankle sprain in very active individuals. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yu, JaeHo; Park, DaeSung; Lee, GyuChang
2013-01-01
The aim of this study was to investigate the effect of eccentric strengthening on pain, muscle strength, endurance, and functional fitness factors in Achilles tendinopathy patients. Thirty-two male patients with Achilles tendinopathy were assigned to either the experimental group that performed eccentric strengthening or the control group that performed concentric strengthening (n = 16, both groups) for 8 wks (50 mins per day, three times per week). A visual analog scale, an isokinetic muscle testing equipment, the side-step test, and the Sargent jump test were used to assess pain, muscle strength, endurance, and functional fitness factors before and after the intervention. In comparison with the control group, the experimental group showed significant improvement in pain, ankle dorsiflexion endurance, total balance index, and agility after the intervention (P < 0.05). However, there was no significant difference in dexterity between the two groups. Eccentric strengthening was more effective than concentric strengthening in reducing pain and improving function in patients with Achilles tendinopathy; therefore, regular eccentric strengthening is important for patients in a clinical setting.
Isometric muscle strength and mobility capacity in children with cerebral palsy.
Dallmeijer, Annet J; Rameckers, Eugene A; Houdijk, Han; de Groot, Sonja; Scholtes, Vanessa A; Becher, Jules G
2017-01-01
To determine the relationship between isometric leg muscle strength and mobility capacity in children with cerebral palsy (CP) compared to typically developing (TD) peers. Participants were 62 children with CP (6-13 years), able to walk with (n = 10) or without (n = 52) walking aids, and 47 TD children. Isometric muscle strength of five muscle groups of the leg was measured using hand-held dynamometry. Mobility capacity was assessed with the 1-min walk, the 10-m walk, sit-to-stand, lateral-step-up and timed-stair tests. Isometric strength of children with CP was reduced to 36-82% of TD. When adjusted for age and height, the percentage of variance in mobility capacity that was explained by isometric strength of the leg muscles was 21-24% (walking speed), 25% (sit-to-stand), 28% (lateral-step-up) and 35% (timed-stair) in children with CP. Hip abductors and knee flexors had the largest contribution to the explained variance, while knee extensors showed the weakest correlation. Weak or no associations were found between strength and mobility capacity in TD children. Isometric strength, especially hip abductor and knee flexor strength, is moderately related to mobility capacity in children with CP, but not in TD children. To what extent training of these muscle groups will lead to better mobility capacity needs further study. Implications for Rehabilitation Strength training in children with cerebral palsy (CP) may be targeted more specifically at hip abductors and knee flexors. The moderate associations imply that large improvements in mobility capacity may not be expected when strength increases.
Inspiratory Muscle Training and Functional Capacity in Patients Undergoing Cardiac Surgery.
Cordeiro, André Luiz Lisboa; de Melo, Thiago Araújo; Neves, Daniela; Luna, Julianne; Esquivel, Mateus Souza; Guimarães, André Raimundo França; Borges, Daniel Lago; Petto, Jefferson
2016-04-01
Cardiac surgery is a highly complex procedure which generates worsening of lung function and decreased inspiratory muscle strength. The inspiratory muscle training becomes effective for muscle strengthening and can improve functional capacity. To investigate the effect of inspiratory muscle training on functional capacity submaximal and inspiratory muscle strength in patients undergoing cardiac surgery. This is a clinical randomized controlled trial with patients undergoing cardiac surgery at Instituto Nobre de Cardiologia. Patients were divided into two groups: control group and training. Preoperatively, were assessed the maximum inspiratory pressure and the distance covered in a 6-minute walk test. From the third postoperative day, the control group was managed according to the routine of the unit while the training group underwent daily protocol of respiratory muscle training until the day of discharge. 50 patients, 27 (54%) males were included, with a mean age of 56.7±13.9 years. After the analysis, the training group had significant increase in maximum inspiratory pressure (69.5±14.9 vs. 83.1±19.1 cmH2O, P=0.0073) and 6-minute walk test (422.4±102.8 vs. 502.4±112.8 m, P=0.0031). We conclude that inspiratory muscle training was effective in improving functional capacity submaximal and inspiratory muscle strength in this sample of patients undergoing cardiac surgery.
Hammami, Raouf; Chaouachi, Anis; Makhlouf, Issam; Granacher, Urs; Behm, David G
2016-11-01
Balance, strength and power relationships may contain important information at various maturational stages to determine training priorities. The objective was to examine maturity-specific relationships of static/dynamic balance with strength and power measures in young male athletes. Soccer players (N = 130) aged 10-16 were assessed with the Stork and Y balance (YBT) tests. Strength/power measures included back extensor muscle strength, standing long jump (SLJ), countermovement jump (CMJ), and 3-hop jump tests. Associations between balance with strength/power variables were calculated according to peak-height-velocity (PHV). There were significant medium-large sized correlations between all balance measures with back extensor strength (r = .486-.791) and large associations with power (r = .511-.827). These correlation coefficients were significantly different between pre-PHV and circa PHV as well as pre-PHV and post-PHV with larger associations in the more mature groups. Irrespective of maturity-status, SLJ was the best strength/power predictor with the highest proportion of variance (12-47%) for balance (i.e., Stork eyes opened) and the YBT was the best balance predictor with the highest proportion of variance (43-78%) for all strength/power variables. The associations between balance and muscle strength/power measures in youth athletes that increase with maturity may imply transfer effects from balance to strength/power training and vice versa in youth athletes.
Barrett, Matthew D; McLoughlin, Terence F; Gallagher, Kieran R; Gatherer, Don; Parratt, Michael Tr; Perera, Jonathan R; Briggs, Tim Wr
2015-01-01
To investigate the effect of a tailored neck muscle conditioning program on neck muscle strength, neck muscle fatigue, and range of neck movement in 16-18-year-old male rugby players. Thirty-four male rugby players were divided into forward and back playing positions and randomized within these groups. Seventeen players were randomly assigned to each group. The test group was given a tailored 6-week exercise regime based on their baseline measurements to be performed three times a week in addition to their normal training and playing. The control group trained and played as normal. The outcome measures used were cervical spine range of movement, neck strength, and neck muscle fatigability. There were no clinically relevant statistically significant differences between the two groups. Trends identified between the two groups suggest that a tailored neck exercise program increases neck strength, particularly neck extension, and increases resistance to fatigue, as well as influencing right- and left-sided neck muscle balance. A reduction in range of movement was also demonstrated in the test group. There was a great deal of variability in range of movement and strength within this age group. No previously undiagnosed neck conditions were detected, and there were no adverse events reported. This study has shown that neck strength, range of movement, and susceptibility of the neck muscles to fatigue can be influenced using a focused neck training regime. It forms an important basis for a larger, multicenter study to ensure the neck is given due attention in rugby training and receives the same focus of conditioning as other parts of the body.
Knoop, J; Steultjens, M P M; Roorda, L D; Lems, W F; van der Esch, M; Thorstensson, C A; Twisk, J W R; Bierma-Zeinstra, S M A; van der Leeden, M; Dekker, J
2015-06-01
Although exercise therapy is effective for reducing pain and activity limitations in patients with knee osteoarthritis (OA), the underlying mechanisms are unclear. This study aimed to evaluate if improvements in neuromuscular factors (i.e. upper leg muscle strength and knee proprioception) underlie the beneficial effects of exercise therapy in patients with knee OA. Secondary analyses from a randomised controlled trial, with measurements at baseline, 6 weeks, 12 weeks and 38 weeks. Rehabilitation centre. One hundred and fifty-nine patients diagnosed with knee OA. Exercise therapy. Changes in pain [numeric rating scale (NRS)] and activity limitations [Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) physical function subscale and get-up-and-go test] during the study period. Independent variables were changes in upper leg muscle strength and knee joint proprioception (i.e. motion sense) during the study period. Longitudinal regression analyses (generalised estimating equation) were performed to analyse associations between changes in upper leg muscle strength and knee proprioception with changes in pain and activity limitations. Improved muscle strength was significantly associated with reductions in NRS pain {B coefficient -2.5 [95% confidence interval (CI) -3.7 to -1.4], meaning that every change of 1 unit of strength was linked to a change of -2.5 units of pain}, WOMAC physical function (-8.8, 95% CI -13.4 to -4.2) and get-up-and-go test (-1.7, 95% CI -2.4 to -1.0). Improved proprioception was not significantly associated with better outcomes of exercise therapy (P>0.05). Upper leg muscle strengthening is one of the mechanisms underlying the beneficial effects of exercise therapy in patients with knee OA. Copyright © 2014 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
Screen time viewing behaviors and isometric trunk muscle strength in youth.
Grøntved, Anders; Ried-Larsen, Mathias; Froberg, Karsten; Wedderkopp, Niels; Brage, Søren; Kristensen, Peter Lund; Andersen, Lars Bo; Møller, Niels Christian
2013-10-01
The objective of this study was to examine the association of screen time viewing behavior with isometric trunk muscle strength in youth. A cross-sectional study was carried out including 606 adolescents (14-16 yr old) participating in the Danish European Youth Heart Study, a population-based study with assessments conducted in either 1997/1998 or 2003/2004. Maximal voluntary contractions during isometric back extension and abdominal flexion were determined using a strain gauge dynamometer, and cardiorespiratory fitness (CRF) was obtained using a maximal cycle ergometer test. TV viewing time, computer use, and other lifestyle behaviors were obtained by self-report. Analyses of association of screen use behaviors with isometric trunk muscle strength were carried out using multivariable adjusted linear regression. The mean (SD) isometric strength was 0.87 (0.16) N·kg-1. TV viewing, computer use, and total screen time use were inversely associated with isometric trunk muscle strength in analyses adjusted for lifestyle and sociodemographic factors. After further adjustment for CRF and waist circumference, associations remained significant for computer use and total screen time, but TV viewing was only marginally associated with muscle strength after these additional adjustments (-0.05 SD (95% confidence interval, -0.11 to 0.005) difference in strength per 1 h·d-1 difference in TV viewing time, P = 0.08). Each 1 h·d-1 difference in total screen time use was associated with -0.09 SD (95% confidence interval, -0.14 to -0.04) lower isometric trunk muscle strength in the fully adjusted model (P = 0.001). There were no indications that the association of screen time use with isometric trunk muscle strength was attenuated among highly fit individuals (P = 0.91 for CRF by screen time interaction). Screen time use was inversely associated with isometric trunk muscle strength independent of CRF and other confounding factors.
NASA Technical Reports Server (NTRS)
English, K. L.; Loehr, J. A.; Lee, S. M. C.; Laughlin, M. S.; Hagan, R. D.
2008-01-01
Coupling concentric and eccentric muscle contractions appears to be important in the development of muscle strength and hypertrophy. The interim Resistive Exercise Device (iRED) currently used aboard the International Space Station does not seem to be as effective as free weight training in ambulatory subjects and has not completely protected against muscular deconditioning due to space flight. The lack of protection during space flight could be caused by iRED's proportionally lower eccentric resistance (60-70%) compared to concentric resistance. PURPOSE: To determine the effects of 8 wks of lower body resistive exercise training using five levels of eccentric resistance on muscle strength and lean tissue mass. METHODS: Forty untrained males (34.9 +/- 7 yrs, 80.9 +/- 9.8 kg, 178.2 +/- 7.1 cm; mean +/- SD) completed three 1-repetition maximum (1-RM) strength tests for both the supine leg press (LP) and supine heel raise (HR) prior to training; subjects were matched for LP strength and randomly assigned to one of five training groups. Concentric load (% 1-RM) was constant across groups during training, but each group trained with different levels of eccentric load (0%, 33%, 66%, 100%, or 138% of concentric). Subjects trained 3 d / wk for 8 wks using a periodized program for LP and HR based on percentages of the highest pre-training 1-RM. LP and HR 1-RM and leg lean mass (LLM; assessed by DEXA) were measured pre- and post-training. A two-way ANOVA was used to analyze all dependent measures. Tukey's post hoc tests were used to test significant main effects. Within group pre- to post-training changes were compared using paired t-tests with a Bonferroni adjustment. Statistical significance was set a priori at p 0.05. All data are expressed as mean +/- SE. RESULTS: LP 1-RM strength increased significantly in all groups pre- to post-training. The 138% group increase (20.1 +/- 3.7%) was significantly greater than the 0% (7.9 +/- 2.8%), 33% (7.7 +/- 4.6%), and 66% (7.5 +/- 4.3%) groups. All groups significantly increased HR strength pre- to posttraining (33%: 7.5 +/- 6.1%; 66%: 6.6 +/- 3.7%; 100%: 12.2 +/- 1.8%; 138%: 11.0 +/- 6.4%) except for the 0% (4.9 +/- 9.1%) group. There were no differences between groups. LLM increased significantly pre- to post-training in only the 138% group; there were no differences between groups. CONCLUSIONS: Eight wks of lower body resistive exercise training with eccentric overload resulted in greater increases in LP strength than training with eccentric loads of 66% or less. Post-training HR strength was not affected by eccentric training load, perhaps because of the predominance of Type I fibers typical in the gastrocnemius. Only 138% eccentric training significantly increased LLM. PRACTICAL APPLICATIONS: For athletes or others desiring to maximize muscle strength and hypertrophy gains, training with eccentric loads greater than 100% of concentric resistance will provide greater increases in muscle strength and lean tissue mass in some muscle groups. In a rehabilitation or geriatric exercise setting that places primary emphasis on program adherence and moderate strength gains, training with an eccentric underload may provide strength increases comparable to those of traditional 1:1 training but with less muscle soreness and physiologic insult to the patient, but this has yet to be proven.
Quadriceps intramuscular fat fraction rather than muscle size is associated with knee osteoarthritis
Kumar, Deepak; Karampinos, Dimitrios C.; MacLeod, Toran D.; Lin, Wilson; Nardo, Lorenzo; Li, Xiaojuan; Link, Thomas M; Majumdar, Sharmila; Souza, Richard B
2014-01-01
Objectives To compare thigh muscle intramuscular fat (intraMF) fractions and area between people with and without knee radiographic osteoarthritis (ROA); and to evaluate the relationships of quadriceps adiposity and area with strength, function and knee MRI lesions. Methods Ninety six subjects (ROA: KL >1; n = 30, control: KL = 0,1; n = 66) underwent 3-Tesla MRI of the thigh muscles using chemical shift-based water/fat MR imaging (fat fractions) and the knee (clinical grading). Subjects were assessed for isometric/isokinetic quadriceps/hamstrings strength, function (KOOS, stair climbing test [SCT], and 6-minute walk test [(6MWT]. Thigh muscle intraMF fractions, muscle area and strength, and function were compared between controls and ROA subjects, adjusting for age. Relationships between measures of muscle fat/area with strength, function, KL and lesion scores were assessed using regression and correlational analyses. Results The ROA group had worse KOOS scores but SCT and 6MWT were not different. The ROA group had greater quadriceps intraMF fraction but not for other muscles. Quadriceps strength was lower in ROA group but the area was not different. Quadriceps intraMF fraction but not area predicted self-reported disability. Aging, worse KL, and cartilage and meniscus lesions were associated with higher quadriceps intraMF fraction. Conclusion Quadriceps intraMF is higher in people with knee OA and is related to symptomatic and structural severity of knee OA, where as the quadriceps area is not. Quadriceps fat fraction from chemical shift-based water/fat MR imaging may have utility as a marker of structural and symptomatic severity of knee OA disease process. PMID:24361743
Nakamura, Yoshihiro; Yokoya, Shin; Harada, Yohei; Shiraishi, Katsunori; Adachi, Nobuo; Ochi, Mitsuo
2017-07-01
The purpose of this study was to evaluate the relationship of fatty infiltration in rotator cuff muscles and shoulder strength in rotator cuff tears and these changes during nonsurgical treatment. Fifty-three shoulders from 47 patients (mean age: 69.9 years) diagnosed with rotator cuff tears by magnetic resonance imaging (MRI) were treated nonsurgically. The degrees of fatty infiltration in supraspinatus (SSP) and infraspinatus (ISP) muscles were graded by the modified Goutallier classification (grade 0-1, grade 2-3, or grade 4). The isometric strength of the abductors (Abd) and external rotators (ER) were examined with a hand dynamometer. We analyzed the correlation of the modified Goutallier classification in SSP and ISP muscles with the strength of Abd and ER at initial visit. In addition, MRI and strength tests were repeated after 24 ± 6 months, and changes in fatty infiltration and strength were examined. Fatty infiltration of SSP and ISP muscles had a negative correlation with the strengths of Abd and ER at initial visit, respectively. Six of 45 shoulders (SSP grade: 0-3) and 7 of 43 shoulders (ISP grade: 0-3) had progression of fatty infiltration. Predictive factor of a progression of fatty infiltration during follow-up was decreased initial strength of Abd. There was no significant change in the strength of Abd, and the strength of ER showed significant improvement between the initial and post-treatment measurements. Even in the subgroup that had progression of fatty infiltration at follow-up, the strength of Abd and ER did not decrease significantly. Although fatty infiltration of the rotator cuff muscles exhibited a negative correlation with muscle strength, fatty infiltration and muscle weakness did not progress at the same rate. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.
Eckner, James T; Oh, Youkeun K; Joshi, Monica S; Richardson, James K; Ashton-Miller, James A
2014-03-01
Greater neck strength and activating the neck muscles to brace for impact are both thought to reduce an athlete's risk of concussion during a collision by attenuating the head's kinematic response after impact. However, the literature reporting the neck's role in controlling postimpact head kinematics is mixed. Furthermore, these relationships have not been examined in the coronal or transverse planes or in pediatric athletes. In each anatomic plane, peak linear velocity (ΔV) and peak angular velocity (Δω) of the head are inversely related to maximal isometric cervical muscle strength in the opposing direction (H1). Under impulsive loading, ΔV and Δω will be decreased during anticipatory cervical muscle activation compared with the baseline state (H2). Descriptive laboratory study. Maximum isometric neck strength was measured in each anatomic plane in 46 male and female contact sport athletes aged 8 to 30 years. A loading apparatus applied impulsive test forces to athletes' heads in flexion, extension, lateral flexion, and axial rotation during baseline and anticipatory cervical muscle activation conditions. Multivariate linear mixed models were used to determine the effects of neck strength and cervical muscle activation on head ΔV and Δω. Greater isometric neck strength and anticipatory activation were independently associated with decreased head ΔV and Δω after impulsive loading across all planes of motion (all P < .001). Inverse relationships between neck strength and head ΔV and Δω presented moderately strong effect sizes (r = 0.417 to r = 0.657), varying by direction of motion and cervical muscle activation. In male and female athletes across the age spectrum, greater neck strength and anticipatory cervical muscle activation ("bracing for impact") can reduce the magnitude of the head's kinematic response. Future studies should determine whether neck strength contributes to the observed sex and age group differences in concussion incidence. Neck strength and impact anticipation are 2 potentially modifiable risk factors for concussion. Interventions aimed at increasing athletes' neck strength and reducing unanticipated impacts may decrease the risk of concussion associated with sport participation.
Ramari, Cintia; Moraes, Andréa G; Tauil, Carlos B; von Glehn, Felipe; Motl, Robert; de David, Ana C
2018-02-01
Physiological factors such as muscle weakness and balance could explain declines in walking distance by multiple sclerosis (MS) patients. The purpose of this study was to characterize levels and examine associations among decline in walking distance, balance and muscular strength in women with mild MS. Participants included 28 women with mild relapsing-remitting MS and 21 women without MS. We executed the 6-min walk test (6MWT) to verify declines in walking distance. Isokinetic knee flexion (KF) and extension (KE) muscle strength was measured using a dynamometer. Balance was quantified using a force platform, with eyes open and closed, on a rigid and foam surface. The MS patients presented declines in walking, lower KF muscle strength, and worse balance than controls. KF strength and balance correlated with walking in the MS group. The KF strength explained differences between groups in walking. The KF strength and balance presented as predictors of walking slowing down in the 6MWT, in mild MS. Women with mild MS have strength impairment of knee flexor muscles and balance control impairment that may explain walking related motor fatigability during prolonged walking. Copyright © 2018 Elsevier B.V. All rights reserved.
The relation between knee muscle strength and performance tests in orienteering athletes.
Çinar-Medeni, Özge; Colakoglu, Fatma F; Yüce, Koray; Ipekoğlu, Gökhan; Baltaci, Gul
2016-11-01
The aim of this study was to analyze the effect of knee muscle strength on performance tests in orienteers. Thirty-seven orienteers were voluntarily included in this study. Isokinetic knee flexor and extensor muscles' strength was assessed at 120°/s velocity for both "dominant leg" (DL) and "non-dominant leg" (NDL). "Single-legged hop test" (SLHT), "flamingo balance test" (FBT), "star excursion balance test" (SEBT), vertical jump-and-reach test (for anaerobic power), T-drill test and 20-meter shuttle run test (for aerobic power) were carried out. Correlation and regression analyses were performed on the data. VO2max levels showed moderate correlations with DL's "flexor peak torque" (FPT) and NDL's "extensor peak torque" (EPT) and FPT values respectively (r=0.49, r=0.38, r=0.58). FPT of NDL was a predictor of VO2max level (R2=0.33). Anaerobic power has a relationship with EPT of NDL (r=0.43) and T-drill test with EPT and FPT values of both DL and NDL respectively (r=-0.35, r=-0.63, r=-0.53, r=-0.58). EPT of NDL was a predictor for anaerobic power (R2=0.19) and FPT of DL for agility (R2=0.40). Nonparametric linear regression results showed that EPT is a predictor in DL (median slope=-0.71, P=0.01), and FPT in NDL (median slope=-0.90, P=0.006) for FBT. FPT was a predictor of SEBT scores for both legs (0.13
Laboratory or field tests for evaluating firefighters' work capacity?
Lindberg, Ann-Sofie; Oksa, Juha; Malm, Christer
2014-01-01
Muscle strength is important for firefighters work capacity. Laboratory tests used for measurements of muscle strength, however, are complicated, expensive and time consuming. The aims of the present study were to investigate correlations between physical capacity within commonly occurring and physically demanding firefighting work tasks and both laboratory and field tests in full time (N = 8) and part-time (N = 10) male firefighters and civilian men (N = 8) and women (N = 12), and also to give recommendations as to which field tests might be useful for evaluating firefighters' physical work capacity. Laboratory tests of isokinetic maximal (IM) and endurance (IE) muscle power and dynamic balance, field tests including maximal and endurance muscle performance, and simulated firefighting work tasks were performed. Correlations with work capacity were analyzed with Spearman's rank correlation coefficient (rs). The highest significant (p<0.01) correlations with laboratory and field tests were for Cutting: IE trunk extension (rs = 0.72) and maximal hand grip strength (rs = 0.67), for Stairs: IE shoulder flexion (rs = -0.81) and barbell shoulder press (rs = -0.77), for Pulling: IE shoulder extension (rs = -0.82) and bench press (rs = -0.85), for Demolition: IE knee extension (rs = 0.75) and bench press (rs = 0.83), for Rescue: IE shoulder flexion (rs = -0.83) and bench press (rs = -0.82), and for the Terrain work task: IE trunk flexion (rs = -0.58) and upright barbell row (rs = -0.70). In conclusion, field tests may be used instead of laboratory tests. Maximal hand grip strength, bench press, chin ups, dips, upright barbell row, standing broad jump, and barbell shoulder press were strongly correlated (rs≥0.7) with work capacity and are therefore recommended for evaluating firefighters work capacity.
Evaluation of Skeletal Muscle Function in Lung Transplant Candidates.
Rozenberg, Dmitry; Singer, Lianne G; Herridge, Margaret; Goldstein, Roger; Wickerson, Lisa; Chowdhury, Noori A; Mathur, Sunita
2017-09-01
Lung transplantation (LTx) is offered to older and more complex patients who may be at higher risk of skeletal muscle dysfunction, but the clinical implications of this remain uncertain. The study aims were to characterize deficits in skeletal muscle mass, strength and physical performance, and examine the associations of these deficits with clinical outcomes. Fifty LTx candidates (58% men; age, 59 ± 9 years) were prospectively evaluated for skeletal muscle deficits: muscle mass using bioelectrical impedance, quadriceps, respiratory muscle and handgrip strength, and physical performance with the Short Physical Performance Battery. Comparisons between number of muscle deficits (low muscle mass, quadriceps strength and physical performance) and 6-minute walk distance (6MWD), London Chest Activity of Daily Living Questionnaire, and quality of life were assessed using one-way analysis of variance. Associations with pretransplant and posttransplant delisting/mortality, hospital duration, and 3-month posttransplant 6MWD were evaluated using Fisher exact test and Spearman correlation. Deficits in quadriceps strength (n = 27) and physical performance (n = 24) were more common than muscle mass (n = 8). LTx candidates with 2 or 3 muscle deficits (42%) compared with those without any deficits (26%) had worse 6MWD = -109 m (95% confidence interval [CI], -175 to -43), London Chest Activity of Daily Living Questionnaire = 18 (95% CI, 7-30), and St. George's Activity Domain = 12 (95% CI, 2-21). Number of muscle deficits was associated with posttransplant hospital stay (r = 0.34, P = 0.04), but not with delisting/mortality or posttransplant 6MWD. Deficits in quadriceps muscle strength and physical performance are common in LTx candidates and further research is needed to assess whether modifying muscle function pretransplant can lead to improved clinical outcomes.
Acute effects of static stretching on peak and end-range hamstring-to-quadriceps functional ratios.
Sekir, Ufuk; Arabaci, Ramiz; Akova, Bedrettin
2015-10-18
To evaluate if static stretching influences peak and end-range functional hamstring-to-quadriceps (H/Q) strength ratios in elite women athletes. Eleven healthy female athletes in an elite competitive level participated to the study. All the participants fulfilled the static stretching or non-stretching (control) intervention protocol in a randomized design on different days. Two static unassisted stretching exercises, one in standing and one in sitting position, were used to stretch both the hamstring and quadriceps muscles during these protocols. The total time for the static stretching was 6 ± 1 min. The isokinetic peak torque measurements for the hamstring and quadriceps muscles in eccentric and concentric modes and the calculations for the functional H/Q strength ratios at angular velocities of 60°/s and 180°/s were made before (pre) and after (post) the control or stretching intervention. The strength measurements and functional strength ratio calculations were based during the entire- and end-range of knee extension. The pre-test scores for quadriceps and hamstring peak torque and end range values were not significantly different between the groups (P > 0.05). Subsequently, although the control group did not exhibit significant changes in quadriceps and hamstring muscle strength (P > 0.05), static stretching decreased eccentric and concentric quadriceps muscle strength at both the 60°/s and 180°/s test speeds (P < 0.01). Similarly, static stretching also decreased eccentric and concentric hamstring muscle strength at both the 60°/s and 180°/s test speeds (P < 0.01). On the other hand, when the functional H/Q strength ratios were taken into consideration, the pre-intervention values were not significant different between the groups both during the entire and end range of knee extension (P > 0.05). Furthermore, the functional H/Q strength ratios exhibited no significant alterations during the entire and end ranges of knee extension both in the static stretching or the control intervention (P > 0.05). According to our results, static stretching routine does not influence functional H/Q ratio. Athletes can confidently perform static stretching during their warm-up routines.
Acute effects of static stretching on peak and end-range hamstring-to-quadriceps functional ratios
Sekir, Ufuk; Arabaci, Ramiz; Akova, Bedrettin
2015-01-01
AIM: To evaluate if static stretching influences peak and end-range functional hamstring-to-quadriceps (H/Q) strength ratios in elite women athletes. METHODS: Eleven healthy female athletes in an elite competitive level participated to the study. All the participants fulfilled the static stretching or non-stretching (control) intervention protocol in a randomized design on different days. Two static unassisted stretching exercises, one in standing and one in sitting position, were used to stretch both the hamstring and quadriceps muscles during these protocols. The total time for the static stretching was 6 ± 1 min. The isokinetic peak torque measurements for the hamstring and quadriceps muscles in eccentric and concentric modes and the calculations for the functional H/Q strength ratios at angular velocities of 60°/s and 180°/s were made before (pre) and after (post) the control or stretching intervention. The strength measurements and functional strength ratio calculations were based during the entire- and end-range of knee extension. RESULTS: The pre-test scores for quadriceps and hamstring peak torque and end range values were not significantly different between the groups (P > 0.05). Subsequently, although the control group did not exhibit significant changes in quadriceps and hamstring muscle strength (P > 0.05), static stretching decreased eccentric and concentric quadriceps muscle strength at both the 60°/s and 180°/s test speeds (P < 0.01). Similarly, static stretching also decreased eccentric and concentric hamstring muscle strength at both the 60°/s and 180°/s test speeds (P < 0.01). On the other hand, when the functional H/Q strength ratios were taken into consideration, the pre-intervention values were not significant different between the groups both during the entire and end range of knee extension (P > 0.05). Furthermore, the functional H/Q strength ratios exhibited no significant alterations during the entire and end ranges of knee extension both in the static stretching or the control intervention (P > 0.05). CONCLUSION: According to our results, static stretching routine does not influence functional H/Q ratio. Athletes can confidently perform static stretching during their warm-up routines. PMID:26495249
Cezarino, Raíssa Sudré; Cardoso, Jefferson Rosa; Rodrigues, Kedma Neves; Magalhães, Yasmin Santana; Souza, Talita Yokoy de; Mota, Lícia Maria Henrique da; Bonini-Rocha, Ana Clara; McVeigh, Joseph; Martins, Wagner Rodrigues
To determine the prevalence of Chronic Low Back Pain and predictors of Back Muscle Strength in patients with Systemic Lupus Erythematosus. Cross-sectional study. Ninety-six ambulatory patients with lupus were selected by non-probability sampling and interviewed and tested during medical consultation. The outcomes measurements were: Point prevalence of chronic low back pain, Oswestry Disability Index, Tampa Scale of Kinesiophobia, Fatigue Severity Scale and maximal voluntary isometric contractions of handgrip and of the back muscles. Correlation coefficient and multiple linear regression were used in statistical analysis. Of the 96 individuals interviewed, 25 had chronic low back pain, indicating a point prevalence of 26% (92% women). The correlation between the Oswestry Index and maximal voluntary isometric contraction of the back muscles was r=-0.4, 95% CI [-0.68; -0.01] and between the maximal voluntary isometric contraction of handgrip and of the back muscles was r=0.72, 95% CI [0.51; 0.88]. The regression model presented the highest value of R 2 being observed when maximal voluntary isometric contraction of the back muscles was tested with five independent variables (63%). In this model handgrip strength was the only predictive variable (β=0.61, p=0.001). The prevalence of chronic low back pain in individuals with systemic lupus erythematosus was 26%. The maximal voluntary isometric contraction of the back muscles was 63% predicted by five variables of interest, however, only the handgrip strength was a statistically significant predictive variable. The maximal voluntary isometric contraction of the back muscles presented a linear relation directly proportional to handgrip and inversely proportional to Oswestry Index i.e. stronger back muscles are associated with lower disability scores. Copyright © 2017. Published by Elsevier Editora Ltda.
Relationship between strength qualities and short track speed skating performance in young athletes.
Felser, S; Behrens, M; Fischer, S; Heise, S; Bäumler, M; Salomon, R; Bruhn, S
2016-02-01
This study analyzed the relationships between isometric as well as concentric maximum voluntary contraction (MVC) strength of the leg muscles and the times as well as speeds over different distances in 17 young short track speed skaters. Isometric as well as concentric single-joint MVC strength and multi-joint MVC strength in a stable (without skates) and unstable (with skates) condition were tested. Furthermore, time during maximum skating performances on ice was measured. Results indicate that maximum torques during eversion and dorsal flexion have a significant influence on skating speed. Concentric MVC strength of the knee extensors was higher correlated with times as well as speeds over the different distances than isometric MVC strength. Multi-joint MVC testing revealed that the force loss between measurements without and with skates amounts to 25%, while biceps femoris and soleus showed decreased muscle activity and peroneus longus, tibialis anterior, as well as rectus femoris exhibited increased muscle activity. The results of this study depict evidence that the skating times and speeds are primarily influenced by concentric MVC strength of the leg extensors. To be able to transfer the strength onto ice in an optimal way, it is necessary to stabilize the knee and ankle joints. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Murakami, Hiroki; Watanabe, Tsuneo; Fukuoka, Daisuke; Terabayashi, Nobuo; Hara, Takeshi; Muramatsu, Chisako; Fujita, Hiroshi
2016-04-01
The word "Locomotive syndrome" has been proposed to describe the state of requiring care by musculoskeletal disorders and its high-risk condition. Reduction of the knee extension strength is cited as one of the risk factors, and the accurate measurement of the strength is needed for the evaluation. The measurement of knee extension strength using a dynamometer is one of the most direct and quantitative methods. This study aims to develop a system for measuring the knee extension strength using the ultrasound images of the rectus femoris muscles obtained with non-invasive ultrasonic diagnostic equipment. First, we extract the muscle area from the ultrasound images and determine the image features, such as the thickness of the muscle. We combine these features and physical features, such as the patient's height, and build a regression model of the knee extension strength from training data. We have developed a system for estimating the knee extension strength by applying the regression model to the features obtained from test data. Using the test data of 168 cases, correlation coefficient value between the measured values and estimated values was 0.82. This result suggests that this system can estimate knee extension strength with high accuracy.
Relationship between strength, power and balance performance in seniors.
Muehlbauer, Thomas; Besemer, Carmen; Wehrle, Anja; Gollhofer, Albert; Granacher, Urs
2012-01-01
Deficits in strength, power and balance represent important intrinsic risk factors for falls in seniors. The purpose of this study was to investigate the relationship between variables of lower extremity muscle strength/power and balance, assessed under various task conditions. Twenty-four healthy and physically active older adults (mean age: 70 ± 5 years) were tested for their isometric strength (i.e. maximal isometric force of the leg extensors) and muscle power (i.e. countermovement jump height and power) as well as for their steady-state (i.e. unperturbed standing, 10-meter walk), proactive (i.e. Timed Up & Go test, Functional Reach Test) and reactive (i.e. perturbed standing) balance. Balance tests were conducted under single (i.e. standing or walking alone) and dual task conditions (i.e. standing or walking plus cognitive and motor interference task). Significant positive correlations were found between measures of isometric strength and muscle power of the lower extremities (r values ranged between 0.608 and 0.720, p < 0.01). Hardly any significant associations were found between variables of strength, power and balance (i.e. no significant association in 20 out of 21 cases). Additionally, no significant correlations were found between measures of steady-state, proactive and reactive balance or balance tests performed under single and dual task conditions (all p > 0.05). The predominately nonsignificant correlations between different types of balance imply that balance performance is task specific in healthy and physically active seniors. Further, strength, power and balance as well as balance under single and dual task conditions seem to be independent of each other and may have to be tested and trained complementarily. Copyright © 2012 S. Karger AG, Basel.
An Artificial Tendon with Durable Muscle Interface
Melvin, Alan; Litsky, Alan; Mayerson, Joel; Witte, David; Melvin, David; Juncosa-Melvin, Natalia
2010-01-01
A coupling mechanism that can permanently fix a forcefully contracting muscle to a bone anchor or any totally inert prosthesis would meet a serious need in orthopaedics. Our group developed the OrthoCoupler™ device to satisfy these demands. The objective of this study was to test OrthoCoupler’s performance in vitro and in vivo in the goat semitendinosus tendon model. For in vitro evaluation, 40 samples were fatigue-tested, cycling at 10 load levels, n=4 each. For in vivo evaluation, the semitendinosus tendon was removed bilaterally in 8 goats. Left sides were reattached with an OrthoCoupler, and right sides were reattached using the Krackow stitch with #5 braided polyester sutures. Specimens were harvested 60 days post-surgery and assigned for biomechanics and histology. Fatigue strength of the devices in vitro was several times the contractile force of the semitendinosus muscle. The in vivo devices were built equivalent to two of the in vitro devices, providing an additional safety factor. In strength testing at necropsy, suture controls pulled out at 120.5 ± 68.3 N, whereas each OrthoCoupler was still holding after the muscle tore, remotely, at 298±111.3N (mean ± SD)(p<0.0003). Muscle tear strength was reached with the fiber-muscle composite produced in healing still soundly intact. This technology may be of value for orthopaedic challenges in oncology, revision arthroplasty, tendon transfer, and sports-injury reconstruction. PMID:19639642
Cabrera, Daniel; Gutiérrez, Jaime; Cabello-Verrugio, Claudio; Morales, Maria Gabriela; Mezzano, Sergio; Fadic, Ricardo; Casar, Juan Carlos; Hancke, Juan L; Brandan, Enrique
2014-01-01
Duchenne muscular dystrophy (DMD) is characterized by the absence of the cytoskeletal protein dystrophin, muscle wasting, increased transforming growth factor type beta (TGF-β) signaling, and fibrosis. At the present time, the only clinically validated treatments for DMD are glucocorticoids. These drugs prolong muscle strength and ambulation of patients for a short term only and have severe adverse effects. Andrographolide, a bicyclic diterpenoid lactone, has traditionally been used for the treatment of colds, fever, laryngitis, and other infections with no or minimal side effects. We determined whether andrographolide treatment of mdx mice, an animal model for DMD, affects muscle damage, physiology, fibrosis, and efficiency of cell therapy. mdx mice were treated with andrographolide for three months and skeletal muscle histology, creatine kinase activity, and permeability of muscle fibers were evaluated. Fibrosis and TGF-β signaling were evaluated by indirect immunofluorescence and Western blot analyses. Muscle strength was determined in isolated skeletal muscles and by a running test. Efficiency of cell therapy was determined by grafting isolated skeletal muscle satellite cells onto the tibialis anterior of mdx mice. mdx mice treated with andrographolide exhibited less severe muscular dystrophy than untreated dystrophic mice. They performed better in an exercise endurance test and had improved muscle strength in isolated muscles, reduced skeletal muscle impairment, diminished fibrosis and a significant reduction in TGF-β signaling. Moreover, andrographolide treatment of mdx mice improved grafting efficiency upon intramuscular injection of dystrophin-positive satellite cells. These results suggest that andrographolide could be used to improve quality of life in individuals with DMD.
Comparison of a space shuttle flight (STS-78) and bed rest on human muscle function
NASA Technical Reports Server (NTRS)
Trappe, S. W.; Trappe, T. A.; Lee, G. A.; Widrick, J. J.; Costill, D. L.; Fitts, R. H.
2001-01-01
The purpose of this investigation was to assess muscle fiber size, composition, and in vivo contractile characteristics of the calf muscle of four male crew members during a 17-day spaceflight (SF; Life and Microgravity Sciences Spacelab Shuttle Transport System-78 mission) and eight men during a 17-day bed rest (BR). The protocols and timelines of these two investigations were identical, therefore allowing for direct comparisons between SF and the BR. The subjects' age, height, and weight were 43 +/- 2 yr, 183 +/- 4 cm, and 86 +/- 3 kg for SF and 43 +/- 2 yr, 182 +/- 3 cm, and 82 +/- 4 kg for BR, respectively. Calf muscle strength was examined before SF and BR; on days 2, 8, and 12 during SF and BR; and on days 2 and 8 of recovery. Muscle biopsies were obtained before and within 3 h after SF (gastrocnemius and soleus) and BR (soleus) before reloading. Maximal isometric calf strength and the force-velocity characteristics were unchanged with SF or BR. Additionally, neither SF nor BR had any effect on fiber composition or fiber size of the calf muscles studied. In summary, no changes in calf muscle strength and morphology were observed after the 17-day SF and BR. Because muscle strength is lost during unloading, both during spaceflight and on the ground, these data suggest that the testing sequence employed during the SF and BR may have served as a resistance training countermeasure to attenuate whole muscle strength loss.
Borges, Rodrigo Cerqueira; Soriano, Francisco Garcia
2018-05-11
To evaluate the association between the rectus femoris cross-sectional area (RFCSA) and the muscular strength obtained at the bedside in patients forwarded to the intensive care unit (ICU) for severe sepsis and septic shock. A prospective cohort study. RFCSA was assessed by ultrasound on the following day of the ICU admission and monitored during hospitalization. The patients performed clinical tests of muscle strength (Medical Research Council (MRC) scale and handgrip dynamometry), when they could understand the verbal commands of the examiners. In 37 patients hospitalized for sepsis there was a significant decline in RFCSA of 5.18 (4.49-5.96)cm on the 2nd day of ICU for 4.37 (3.71-5.02)cm at hospital discharge. Differently, the handgrip strength showed an increase from the awakening of 12.00 (7.00-20.00)Kgf to 19.00 (14.00-26.00)Kgf until hospital discharge. Patients in mechanical ventilation had a greater tendency to decline in the RFCSA compared to patients who did not receive mechanical ventilation, however without being significant (p = 0.08). There was a negative association between RFCSA delta (2nd day of ICU - ICU discharge) and handgrip strength (r = 0.51, p < 0.05), and a male and SOFA score positive association with the RFCSA delta. There was an association of RFCSA with clinical muscle strength tests. In addition, it has been shown that sepsis can lead to short-term muscle degradation, regardless of whether they are submitted to mechanical ventilation or not.
Longer Interset Rest Periods Enhance Muscle Strength and Hypertrophy in Resistance-Trained Men.
Schoenfeld, Brad J; Pope, Zachary K; Benik, Franklin M; Hester, Garrett M; Sellers, John; Nooner, Josh L; Schnaiter, Jessica A; Bond-Williams, Katherine E; Carter, Adrian S; Ross, Corbin L; Just, Brandon L; Henselmans, Menno; Krieger, James W
2016-07-01
Schoenfeld, BJ, Pope, ZK, Benik, FM, Hester, GM, Sellers, J, Nooner, JL, Schnaiter, JA, Bond-Williams, KE, Carter, AS, Ross, CL, Just, BL, Henselmans, M, and Krieger, JW. Longer interset rest periods enhance muscle strength and hypertrophy in resistance-trained men. J Strength Cond Res 30(7): 1805-1812, 2016-The purpose of this study was to investigate the effects of short rest intervals normally associated with hypertrophy-type training versus long rest intervals traditionally used in strength-type training on muscular adaptations in a cohort of young, experienced lifters. Twenty-one young resistance-trained men were randomly assigned to either a group that performed a resistance training (RT) program with 1-minute rest intervals (SHORT) or a group that employed 3-minute rest intervals (LONG). All other RT variables were held constant. The study period lasted 8 weeks with subjects performing 3 total body workouts a week comprised 3 sets of 8-12 repetition maximum (RM) of 7 different exercises per session. Testing was performed prestudy and poststudy for muscle strength (1RM bench press and back squat), muscle endurance (50% 1RM bench press to failure), and muscle thickness of the elbow flexors, triceps brachii, and quadriceps femoris by ultrasound imaging. Maximal strength was significantly greater for both 1RM squat and bench press for LONG compared to SHORT. Muscle thickness was significantly greater for LONG compared to SHORT in the anterior thigh, and a trend for greater increases was noted in the triceps brachii (p = 0.06) as well. Both groups saw significant increases in local upper body muscle endurance with no significant differences noted between groups. This study provides evidence that longer rest periods promote greater increases in muscle strength and hypertrophy in young resistance-trained men.
Ekstrand, Elisabeth; Lexell, Jan; Brogårdh, Christina
2015-09-01
To evaluate the test-retest reliability of isometric and isokinetic muscle strength measurements in the upper extremity after stroke. A test-retest design. Forty-five persons with mild to moderate paresis in the upper extremity > 6 months post-stroke. Isometric arm strength (shoulder abduction, elbow flexion), isokinetic arm strength (elbow extension/flexion) and isometric grip strength were measured with electronic dynamometers. Reliability was evaluated with intra-class correlation coefficients (ICC), changes in the mean, standard error of measurements (SEM) and smallest real differences (SRD). Reliability was high (ICCs: 0.92-0.97). The absolute and relative (%) SEM ranged from 2.7 Nm (5.6%) to 3.0 Nm (9.4%) for isometric arm strength, 2.6 Nm (7.4%) to 2.9 Nm (12.6%) for isokinetic arm strength, and 22.3 N (7.6%) to 26.4 N (9.2%) for grip strength. The absolute and relative (%) SRD ranged from 7.5 Nm (15.5%) to 8.4 Nm (26.1%) for isometric arm strength, 7.1 Nm (20.6%) to 8.0 Nm (34.8%) for isokinetic arm strength, and 61.8 N (21.0%) to 73.3 N (25.6%) for grip strength. Muscle strength in the upper extremity can be reliably measured in persons with chronic stroke. Isometric measurements yield smaller measurement errors than isokinetic measurements and might be preferred, but the choice depends on the research question.
Respiratory weakness in patients with chronic neck pain.
Dimitriadis, Zacharias; Kapreli, Eleni; Strimpakos, Nikolaos; Oldham, Jacqueline
2013-06-01
Respiratory muscle strength is one parameter that is currently proposed to be affected in patients with chronic neck pain. This study was aimed at examining whether patients with chronic neck pain have reduced respiratory strength and with which neck pain problems their respiratory strength is associated. In this controlled cross-sectional study, 45 patients with chronic neck pain and 45 healthy well-matched controls were recruited. Respiratory muscle strength was assessed through maximal mouth pressures. The subjects were additionally assessed for their pain intensity and disability, neck muscle strength, endurance of deep neck flexors, neck range of movement, forward head posture and psychological states. Paired t-tests showed that patients with chronic neck pain have reduced Maximal Inspiratory (MIP) (r = 0.35) and Maximal Expiratory Pressures (MEP) (r = 0.39) (P < 0.05). Neck muscle strength (r > 0.5), kinesiophobia (r < -0.3) and catastrophizing (r < -0.3) were significantly associated with maximal mouth pressures (P < 0.05), whereas MEP was additionally negatively correlated with neck pain and disability (r < -0.3, P < 0.05). Neck muscle strength was the only predictor that remained as significant into the prediction models of MIP and MEP. It can be concluded that patients with chronic neck pain present weakness of their respiratory muscles. This weakness seems to be a result of the impaired global and local muscle system of neck pain patients, and psychological states also appear to have an additional contribution. Clinicians are advised to consider the respiratory system of patients with chronic neck pain during their usual assessment and appropriately address their treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.
Gomes, Matheus M.; Reis, Júlia G.; Carvalho, Regiane L.; Tanaka, Erika H.; Hyppolito, Miguel A.; Abreu, Daniela C. C.
2015-01-01
BACKGROUND: muscle strength and power are two factors affecting balance. The impact of muscle strength and power on postural control has not been fully explored among different age strata over sixty. OBJECTIVES: the aim of the present study was to assess the muscle strength and power of elderly women in different age groups and determine their correlation with postural control. METHOD: eighty women were divided into four groups: the young 18-30 age group (n=20); the 60-64 age group (n=20); the 65-69 age group (n=20); and the 70-74 age group (n=20). The participants underwent maximum strength (one repetition maximum or 1-RM) and muscle power tests to assess the knee extensor and flexor muscles at 40%, 70%, and 90% 1-RM intensity. The time required by participants to recover their balance after disturbing their base of support was also assessed. RESULTS: the elderly women in the 60-64, 65-69, and 70-74 age groups exhibited similar muscle strength, power, and postural control (p>0.05); however, these values were lower than those of the young group (p<0.05) as expected. There was a correlation between muscle strength and power and the postural control performance (p<0.05). CONCLUSION: despite the age difference, elderly women aged 60 to 74 years exhibited similar abilities to generate strength and power with their lower limbs, and this ability could be one factor that explains the similar postural control shown by these women. PMID:25651132
Eckstein, F; Hitzl, W; Duryea, J; Kent Kwoh, C; Wirth, W
2013-05-01
To test whether cross-sectional or longitudinal measures of thigh muscle isometric strength differ between knees with and without subsequent radiographic progression of knee osteoarthritis (KOA), with particular focus on pre-osteoarthritic female knees (knees with risk factors but without definite radiographic KOA). Of 4,796 Osteoarthritis Initiative participants, 2,835 knees with Kellgren Lawrence grade (KLG) 0-3 had central X-ray readings, annual quantitative joint space width (JSW) and isometric muscle strength measurements (Good strength chair). Separate slope analysis of covariance (ANCOVA) models were used to determine differences in strength between "progressor" and "non-progressor" knees, after adjusting for age, body mass index, and pain. 466 participant knees exceeded the smallest detectable JSW change during each of two observation intervals (year 2→4 and year 1→3) and were classified as progressors (213 women, 253 men; 128 KLG0/1, 330 KLG2/3); 946 participant knees did not exceed this threshold in either interval and were classified as non-progressors (588 women, 358 from men; 288KLG0/1, 658KLG2/3). Female progressor knees, including those with KLG0/1, tended to have lower extensor and flexor strength at year 2 and at baseline than those without progression, but the difference was not significant after adjusting for confounders. No significant difference was observed in longitudinal change of muscle strength (baseline→year 2) prior to radiographic progression. No significant differences were found for muscle strength in men, and none for change in strength concomitant with progression. This study provides no strong evidence that (changes in) isometric muscle strength precedes or is associated with structural (radiographic) progression of KOA. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Eckstein, Felix; Hitzl, Wolfgang; Duryea, Jeff; Kwoh, C. Kent; Wirth, Wolfgang
2013-01-01
OBJECTIVE To test whether cross-sectional or longitudinal measures of thigh muscle isometric strength differ between knees with and without subsequent radiographic progression of knee osteoarthritis (KOA), with particular focus on pre-osteoarthritic female knees (knees with risk factors but without definite radiographic KOA). METHODS Of 4796 Osteoarthritis Initiative participants, 2835 knees with Kellgren Lawrence grade (KLG) 0–3 had central X-ray readings, annual quantitative joint space width (JSW) and isometric muscle strength measurements (Good strength chair). Separate slope ANCOVA models were used to determine differences in strength between “progressor” and “non- progressor” knees, after adjusting for age, body mass index, and pain. RESULTS 466 participant knees exceeded the smallest detectable JSW change during each of two observation intervals (year 2→4 and year 1→3) and were classified as progressors (213 women, 253 men; 128 KLG0/1, 330 KLG2/3); 946 participant knees did not exceed this threshold in either interval and were classified as non-progressors (588 women, 358 from men; 288KLG0/1, 658KLG2/3). Female progressor knees, including those with KLG0/1, tended to have lower extensor and flexor strength at year2 and at baseline than those without progression, but the difference was not significant after adjusting for confounders. No significant difference was observed in longitudinal change of muscle strength (baseline→year2) prior to radiographic progression. No significant differences were found for muscle strength in men, and none for change in strength concomitant with progression. CONCLUSION This study provides no strong evidence that (changes in) isometric muscle strength precedes or is associated with structural (radiographic) progression of KOA. PMID:23473978
Hall, Michelle; Wrigley, Tim V; Kasza, Jessica; Dobson, Fiona; Pua, Yong Hao; Metcalf, Ben R; Bennell, Kim L
2017-02-01
This study aimed to evaluate associations between strength of selected hip and knee muscles and self-reported physical function, and their clinical relevance, in men and women with hip osteoarthritis (OA). Cross-sectional data from 195 participants with symptomatic hip OA were used. Peak isometric torque of hip extensors, flexors, and abductors, and knee extensors were measured, along with physical function using the Western Ontario and McMaster Universities Osteoarthritis Index questionnaire. Separate linear regressions in men and women were used to determine the association between strength and physical function accounting for age, pain, and radiographic disease severity. Subsequently, magnitudes of strength associated with estimates of minimal clinically important improvement (MCII) in physical function were estimated according to severity of difficulty with physical function. For men, greater strength of the hip extensors, hip flexors and knee extensors were each associated with better physical function. For women, greater muscle strength of all tested muscles were each associated with better physical function. For men and women, increases in muscle strength between 17-32%, 133-223%, and 151-284% may be associated with estimates of MCII in physical function for those with mild, moderate, and severe physical dysfunction, respectively. Greater isometric strength of specific hip and thigh muscle groups may be associated with better self-reported physical function in men and women. In people with mild physical dysfunction, an estimate of MCII in physical function may be associated with attainable increases in strength. However, in patients with more severe dysfunction, greater and perhaps unattainable strength increases may be associated with an estimate of MCII in physical function. Longitudinal studies are required to validate these observations. Copyright © 2017 Elsevier Inc. All rights reserved.
Lee, Kyoungjin; Lee, Seungwon; Song, Changho
2013-12-01
Elderly patients with diabetes and peripheral neuropathy are more likely to experience falls. However, the information available on how such falls can be prevented is scarce. We investigated the effects of whole-body vibration (WBV) combined with a balance exercise program on balance, muscle strength, and glycosylated hemoglobin (HbA1c) in elderly patients with diabetic peripheral neuropathy. Fifty-five elderly patients with diabetic neuropathy were randomly assigned to WBV with balance exercise group, balance exercise (BE) group, and control group. The WBV and BE groups performed the balance exercise program for 60 min per day, 2 times per week, for 6 weeks. Further, the WBV group performed WBV training (up to 3 × 3 min, 3 times per week, for 6 weeks). The control group did not participate in any training. The main outcome measures were assessed at baseline and after 6 weeks of training; namely, we assessed the postural sway and one leg stance (OLS) for static balance; Berg balance scale (BBS), timed up-and-go (TUG) test, and functional reach test (FRT) for dynamic balance; five-times-sit-to-stand (FTSTS) test for muscle strength; and HbA1c for predicting the progression of diabetes. Significant improvements were noted in the static balance, dynamic balance, muscle strength, and HbA1c in the WBV group, compared to the BE and control groups (P < 0.05). Thus, in combination with the balance exercise program, the short-term WBV therapy is beneficial in improving balance, muscle strength and HbA1c, in elderly patients with diabetic neuropathy who are at high risk for suffering falls.
Zinner, Christoph; Sperlich, Billy; Krueger, Malte; Focke, Tim; Reed, Jennifer; Mester, Joachim
2015-01-01
The purpose of this study was threefold: 1) to assess the eggbeater kick and throwing performance using a number of water polo specific tests, 2) to explore the relation between the eggbeater kick and throwing performance, and 3) to investigate the relation between the eggbeater kick in the water and strength tests performed in a controlled laboratory setting in elite water polo players. Fifteen male water polo players of the German National Team completed dynamic and isometric strength tests for muscle groups (adductor, abductor, abdominal, pectoralis) frequently used during water polo. After these laboratory strength tests, six water polo specific in-water tests were conducted. The eggbeater kick assessed leg endurance and agility, maximal throwing velocity and jump height. A 400 m test and a sprint test examined aerobic and anaerobic performance. The strongest correlation was found between jump height and arm length (p < 0.001, r = 0.89). The laboratory diagnostics of important muscles showed positive correlations with the results of the in-water tests (p < 0.05, r = 0.52–0.70). Muscular strength of the adductor, abdominal and pectoralis muscles was positively related to in-water endurance agility as assessed by the eggbeater kick (p < 0.05; r = 0.53–0.66). Findings from the current study emphasize the need to assess indices of water polo performance both in and out of the water as well as the relation among these parameters to best assess the complex profile of water polo players. PMID:25964818
Crockett, K; Arnold, C M; Farthing, J P; Chilibeck, P D; Johnston, J D; Bath, B; Baxter-Jones, A D G; Kontulainen, S A
2015-10-01
Distal radius (wrist) fracture (DRF) in women over age 50 years is an early sign of bone fragility. Women with a recent DRF compared to women without DRF demonstrated lower bone strength, muscle density, and strength, but no difference in dual-energy x-ray absorptiometry (DXA) measures, suggesting DXA alone may not be a sufficient predictor for DRF risk. The objective of this study was to investigate differences in bone and muscle properties between women with and without a recent DRF. One hundred sixty-six postmenopausal women (50-78 years) were recruited. Participants were excluded if they had taken bone-altering medications in the past 6 months or had medical conditions that severely affected daily living or the upper extremity. Seventy-seven age-matched women with a fracture in the past 6-24 months (Fx, n = 32) and without fracture (NFx, n = 45) were measured for bone and muscle properties using the nondominant (NFx) or non-fractured limb (Fx). Peripheral quantitative computed tomography (pQCT) was used to estimate bone strength in compression (BSIc) at the distal radius and tibia, bone strength in torsion (SSIp) at the shaft sites, muscle density, and area at the forearm and lower leg. Areal bone mineral density at the ultradistal forearm, spine, and femoral neck was measured by DXA. Grip strength and the 30-s chair stand test were used as estimates of upper and lower extremity muscle strength. Limb-specific between-group differences were compared using multivariate analysis of variance (MANOVA). There was a significant group difference (p < 0.05) for the forearm and lower leg, with the Fx group demonstrating 16 and 19% lower BSIc, 3 and 6% lower muscle density, and 20 and 21% lower muscle strength at the upper and lower extremities, respectively. There were no differences between groups for DXA measures. Women with recent DRF had lower pQCT-derived estimated bone strength at the distal radius and tibia and lower muscle density and strength at both extremities.
ACTN3 R577X Polymorphism and Neuromuscular Response to Resistance Training
Gentil, Paulo; Pereira, Rinaldo W.; Leite, Tailce K.M.; Bottaro, Martim
2011-01-01
The R577X polymorphism at the ACTN3 gene has been associated with muscle strength, hypertrophy and athletic status. The X allele, which is associated with the absence of ACTN3 protein is supposed to impair performance of high force/velocity muscle contractions. The purpose of the present study was to investigate the association of the R577X polymorphism with the muscle response to resistance training in young men. One hundred forty one men performed two resistance training sessions per week for 11 weeks. Participants were tested for 1RM bench press, knee extensors peak torque, and knee extensors muscle thickness at baseline and after the training period. Genotyping was conducted using de DdeI restriction enzyme. Genotype distribution was 34.4% for RR, 47% for RX and 18.6% for the XX genotype. According to the results, the R577X polymorphism at the ACTN3 gene is not associated with baseline muscle strength or with the muscle strength response to resistance training. However, only carriers of the R allele showed increases in muscle thickness in response to training. Key points ACTN3 Genotype distribution in the present study was similar to others populations (34.4% for RR, 47% for RX, and 18.6% for the XX). The R577X polymorphism at the ACTN3 gene is not associated with baseline muscle strength or with the muscle strength response to resistance training. It appears that the R allele carriers respond better to muscle thickness gains in response to training. PMID:24149888
ACTN3 R577X Polymorphism and Neuromuscular Response to Resistance Training.
Gentil, Paulo; Pereira, Rinaldo W; Leite, Tailce K M; Bottaro, Martim
2011-01-01
The R577X polymorphism at the ACTN3 gene has been associated with muscle strength, hypertrophy and athletic status. The X allele, which is associated with the absence of ACTN3 protein is supposed to impair performance of high force/velocity muscle contractions. The purpose of the present study was to investigate the association of the R577X polymorphism with the muscle response to resistance training in young men. One hundred forty one men performed two resistance training sessions per week for 11 weeks. Participants were tested for 1RM bench press, knee extensors peak torque, and knee extensors muscle thickness at baseline and after the training period. Genotyping was conducted using de DdeI restriction enzyme. Genotype distribution was 34.4% for RR, 47% for RX and 18.6% for the XX genotype. According to the results, the R577X polymorphism at the ACTN3 gene is not associated with baseline muscle strength or with the muscle strength response to resistance training. However, only carriers of the R allele showed increases in muscle thickness in response to training. Key pointsACTN3 Genotype distribution in the present study was similar to others populations (34.4% for RR, 47% for RX, and 18.6% for the XX).The R577X polymorphism at the ACTN3 gene is not associated with baseline muscle strength or with the muscle strength response to resistance training.It appears that the R allele carriers respond better to muscle thickness gains in response to training.
Bonjorno Junior, José Carlos; de Oliveira, Cláudio Ricardo; Luporini, Rafael Luís; Mendes, Renata Gonçalves; Zangrando, Katiany Thais Lopes; Trimer, Renata; Arena, Ross
2015-01-01
Impaired cardiorespiratory fitness (CRF) is a hallmark characteristic in obese and lean sedentary young women. Peak oxygen consumption (VO2peak) prediction from the six-minute step test (6MST) has not been established for sedentary females. It is recognized that lower-limb muscle strength and power play a key role during functional activities. The aim of this study was to investigate cardiorespiratory responses during the 6MST and CPX and to develop a predictive equation to estimate VO2peak in both lean and obese subjects. Additionally we aim to investigate how muscle function impacts functional performance. Lean (LN = 13) and obese (OB = 18) women, aged 20–45, underwent a CPX, two 6MSTs, and isokinetic and isometric knee extensor strength and power evaluations. Regression analysis assessed the ability to predict VO2peak from the 6MST, age and body mass index (BMI). CPX and 6MST main outcomes were compared between LN and OB and correlated with strength and power variables. CRF, functional capacity, and muscle strength and power were lower in the OB compared to LN (<0.05). During the 6MST, LN and OB reached ~90% of predicted maximal heart rate and ~80% of the VO2peak obtained during CPX. BMI, age and number of step cycles (NSC) explained 83% of the total variance in VO2peak. Moderate to strong correlations between VO2peak at CPX and VO2peak at 6MST (r = 0.86), VO2peak at CPX and NSC (r = 0.80), as well as between VO2peak, NSC and muscle strength and power variables were found (p<0.05). These findings indicate the 6MST, BMI and age accurately predict VO2peak in both lean and obese young sedentary women. Muscle strength and power were related to measures of aerobic and functional performance. PMID:26717568
Beneka, Anastasia G; Malliou, Paraskevi K; Missailidou, Victoria; Chatzinikolaou, Athanasios; Fatouros, Ioannis; Gourgoulis, Vassilios; Georgiadis, Elias
2013-01-01
To determine the time course of performance responses after an acute bout of plyometric exercise combined with high and low intensity weight training, a 3-group (including a control group), repeated-measures design was employed. Changes in performance were monitored through jumping ability by measuring countermovement and squat jumping, and strength performance assessment through isometric and isokinetic testing of knee extensors (at two different velocities). Participants in both experimental groups performed a plyometric protocol consisting of 50 jumps over 50 cm hurdles and 50 drop jumps from a 50 cm plyometric box. Additionally, each group performed two basic weight exercises consisting of leg presses and leg extensions at 90-95% of maximum muscle strength for the high intensity group and 60% of maximum muscle strength for the low intensity group. The results of the study suggest that an acute bout of intense plyometric exercise combined with weight exercise induces time-dependent changes in performance, which are also dependent on the nature of exercise protocol and testing procedures. In conclusion, acute plyometric exercise with weight exercise may induce a substantial decline in jumping performance for as long as 72 hours but not in other forms of muscle strength.
Ciesla, Nancy; Dinglas, Victor; Fan, Eddy; Kho, Michelle; Kuramoto, Jill; Needham, Dale
2011-04-12
Survivors of acute respiratory distress syndrome (ARDS) and other causes of critical illness often have generalized weakness, reduced exercise tolerance, and persistent nerve and muscle impairments after hospital discharge. Using an explicit protocol with a structured approach to training and quality assurance of research staff, manual muscle testing (MMT) is a highly reliable method for assessing strength, using a standardized clinical examination, for patients following ARDS, and can be completed with mechanically ventilated patients who can tolerate sitting upright in bed and are able to follow two-step commands. (7, 8) This video demonstrates a protocol for MMT, which has been taught to ≥ 43 research staff who have performed >800 assessments on >280 ARDS survivors. Modifications for the bedridden patient are included. Each muscle is tested with specific techniques for positioning, stabilization, resistance, and palpation for each score of the 6-point ordinal Medical Research Council scale. Three upper and three lower extremity muscles are graded in this protocol: shoulder abduction, elbow flexion, wrist extension, hip flexion, knee extension, and ankle dorsiflexion. These muscles were chosen based on the standard approach for evaluating patients for ICU-acquired weakness used in prior publications. (1,2).
Rafiq, Rachida; Prins, Hendrik J; Boersma, Wim G; Daniels, Johannes Ma; den Heijer, Martin; Lips, Paul; de Jongh, Renate T
2017-01-01
Although vitamin D is well known for its function in calcium homeostasis and bone mineralization, several studies have shown positive effects on muscle strength and physical function. In addition, vitamin D has been associated with pulmonary function and the incidence of airway infections. As vitamin D deficiency is highly prevalent in chronic obstructive pulmonary disease (COPD) patients, supplementation might have a beneficial effect in these patients. To assess the effect of vitamin D supplementation on respiratory muscle strength and physical performance in vitamin D-deficient COPD patients. Secondary outcomes are pulmonary function, handgrip strength, exacerbation rate, and quality of life. We performed a randomized, double-blind, placebo-controlled pilot trial. Participants were randomly allocated to receive 1,200 IU vitamin D3 per day (n=24) or placebo (n=26) during 6 months. Study visits were conducted at baseline, and at 3 and 6 months after randomization. During the visits, blood was collected, respiratory muscle strength was measured (maximum inspiratory and expiratory pressure), physical performance and 6-minute walking tests were performed, and handgrip strength and pulmonary function were assessed. In addition, participants kept a diary card in which they registered respiratory symptoms. At baseline, the mean (standard deviation [SD]) serum 25-hydroxyvitamin D (25(OH)D) concentration (nmol/L) was 42.3 (15.2) in the vitamin D group and 40.6 (17.0) in the placebo group. Participants with vitamin D supplementation had a larger increase in serum 25(OH)D compared to the placebo group after 6 months (mean difference (SD): +52.8 (29.8) vs +12.3 (25.1), P <0.001). Primary outcomes, respiratory muscle strength and physical performance, did not differ between the groups after 6 months. In addition, no differences were found in the 6-minute walking test results, handgrip strength, pulmonary function, exacerbation rate, or quality of life. Vitamin D supplementation did not affect (respiratory) muscle strength or physical performance in this pilot trial in vitamin D-deficient COPD patients.
Beyer, Kyle S; Fukuda, David H; Boone, Carleigh H; Wells, Adam J; Townsend, Jeremy R; Jajtner, Adam R; Gonzalez, Adam M; Fragala, Maren S; Hoffman, Jay R; Stout, Jeffrey R
2016-05-01
Short-term unilateral resistance training results in cross education of strength without changes in muscle size, activation, or endocrine response. J Strength Cond Res 30(5): 1213-1223, 2016-The purpose of this study was to assess the cross education of strength and changes in the underlying mechanisms (muscle size, activation, and hormonal response) after a 4-week unilateral resistance training (URT) program. A group of 9 untrained men completed a 4-week URT program on the dominant leg (DOM), whereas cross education was measured in the nondominant leg (NON); and were compared with a control group (n = 8, CON). Unilateral isometric force (PKF), leg press (LP) and leg extension (LE) strength, muscle size (by ultrasonography) and activation (by electromyography) of the rectus femoris and vastus lateralis, and the hormonal response (testosterone, growth hormone, insulin, and insulin-like growth factor-1) were tested pretraining and posttraining. Group × time interactions were present for PKF, LP, LE, and muscle size in DOM and for LP in NON. In all interactions, the URT group improved significantly better than CON. There was a significant acute hormonal response to URT, but no chronic adaptation after the 4-week training program. Four weeks of URT resulted in an increase in strength and size of the trained musculature, and cross education of strength in the untrained musculature, which may occur without detectable changes in muscle size, activation, or the acute hormonal response.
Muscle strength at the trunk*.
Smidt, G L; Amundsen, L R; Dostal, W F
1980-01-01
The purpose of this study was to determine the strength of trunk flexors and extensors in normal male subjects during isometric, concentric, and eccentric contractions. Subjects were tested in the sidelying position to minimize the effects of gravity. The pelvis and lower extremities were measured on a custom built force table (lowa Force Table). Muscle strength was expressed as a moment of force (external force times the moment arm) in Newton-meter (Nm) units. Greater Nm were registered in the muscle-lengthened position than in the muscle-shortened position for all isometric contractions. The Nm registered for eccentric contractions always exceeded the Nm registered for concentric contractions of the same muscle group. The Nm registered during contractions of trunk extensors always exceeded the values obtained during corresponding modes of contractions (isometric, eccentric, and concentric) of trunk flexors.J Orthop Sports Phys Ther 1980;1(3):165-170.
Lee, Dong Ryul; Kim, Yun Hee; Kim, Dong A; Lee, Jung Ah; Hwang, Pil Woo; Lee, Min Jin; You, Sung Hyun
2014-01-01
In children with cerebral palsy (CP), the never-learned-to-use (NLTU) effect and underutilization suppress the normal development of cortical plasticity in the paretic limb, which further inhibits its functional use and increases associated muscle weakness. To highlight the effects of a novel comprehensive hand repetitive intensive strengthening training system on neuroplastic changes associated with upper extremity (UE) muscle strength and motor performance in children with spastic hemiplegic CP. Two children with spastic hemiplegic CP were recruited. Intervention with the comprehensive hand repetitive intensive strengthening training system was provided for 60 min a day, three times a week, for 10 weeks. Neuroplastic changes, muscle size, strength, and associated motor function were measured using functional magnetic resonance imaging (MRI), ultrasound imaging, and standardized motor tests, respectively. The functional MRI data showed that the comprehensive hand repetitive intensive strengthening training intervention produced measurable neuroplastic changes in the neural substrates associated with motor control and learning. These neuroplastic changes were associated with increased muscle size, strength and motor function. These results provide compelling evidence of neuroplastic changes and associated improvements in muscle size and motor function following innovative upper extremity strengthening exercise.
Andersen, Christoffer H.; Skotte, Jørgen H.; Suetta, Charlotte; Søgaard, Karen; Saltin, Bengt; Sjøgaard, Gisela
2014-01-01
Aim. This study investigates consequences of chronic neck pain on muscle function and the rehabilitating effects of contrasting interventions. Methods. Women with trapezius myalgia (MYA, n = 42) and healthy controls (CON, n = 20) participated in a case-control study. Subsequently MYA were randomized to 10 weeks of specific strength training (SST, n = 18), general fitness training (GFT, n = 16), or a reference group without physical training (REF, n = 8). Participants performed tests of 100 consecutive cycles of 2 s isometric maximal voluntary contractions (MVC) of shoulder elevation followed by 2 s relaxation at baseline and 10-week follow-up. Results. In the case-control study, peak force, rate of force development, and rate of force relaxation as well as EMG amplitude were lower in MYA than CON throughout all 100 MVC. Muscle fiber capillarization was not significantly different between MYA and CON. In the intervention study, SST improved all force parameters significantly more than the two other groups, to levels comparable to that of CON. This was seen along with muscle fiber hypertrophy and increased capillarization. Conclusion. Women with trapezius myalgia have lower strength capacity during repetitive MVC of the trapezius muscle than healthy controls. High-intensity strength training effectively improves strength capacity during repetitive MVC of the painful trapezius muscle. PMID:24707475
Sprouse, Courtney; Gordish-Dressman, Heather; Orkunoglu-Suer, E Funda; Lipof, Jason S; Moeckel-Cole, Stephanie; Patel, Ronak R; Adham, Kasra; Larkin, Justin S; Hubal, Monica J; Kearns, Amy K; Clarkson, Priscilla M; Thompson, Paul D; Angelopoulos, Theodore J; Gordon, Paul M; Moyna, Niall M; Pescatello, Linda S; Visich, Paul S; Zoeller, Robert F; Hoffman, Eric P; Tosi, Laura L; Devaney, Joseph M
2014-01-01
Genome-wide association studies have identified thousands of variants that are associated with numerous phenotypes. One such variant, rs13266634, a nonsynonymous single nucleotide polymorphism in the solute carrier family 30 (zinc transporter) member eight gene, is associated with a 53% increase in the risk of developing type 2 diabetes (T2D). We hypothesized that individuals with the protective allele against T2D would show a positive response to short-term and long-term resistance exercise. Two cohorts of young adults-the Eccentric Muscle Damage (EMD; n = 156) cohort and the Functional Single Nucleotide Polymorphisms Associated with Muscle Size and Strength Study (FAMuSS; n = 874)-were tested for association of the rs13266634 variant with measures of skeletal muscle response to resistance exercise. Our results were sexually dimorphic in both cohorts. Men in the EMD study with two copies of the protective allele showed less post-exercise bout strength loss, less soreness, and lower creatine kinase values. In addition, men in the FAMuSS, homozygous for the protective allele, showed higher pre-exercise strength and larger arm skeletal muscle volume, but did not show a significant difference in skeletal muscle hypertrophy or strength with resistance training.
Muehlbauer, Thomas; Gollhofer, Albert; Granacher, Urs
2015-12-01
It has frequently been reported that balance and lower-extremity muscle strength/power are associated with sports-related and everyday activities. Knowledge about the relationship between balance, strength, and power are important for the identification of at-risk individuals because deficits in these neuromuscular components are associated with an increased risk of sustaining injuries and falls. In addition, this knowledge is of high relevance for the development of specifically tailored health and skill-related exercise programs. The objectives of this systematic literature review and meta-analysis were to characterize and, if possible, quantify associations between variables of balance and lower-extremity muscle strength/power in healthy individuals across the lifespan. A computerized systematic literature search was performed in the electronic databases PubMed, Web of Science, and SPORTDiscus up to March 2015 to capture all relevant articles. A systematic approach was used to evaluate the 996 articles identified for initial review. Studies were included only if they investigated healthy individuals aged ≥6 years and tested at least one measure of static steady-state balance (e.g., center of pressure [CoP] displacement during one-legged stance), dynamic steady-state balance (e.g., gait speed), proactive balance (e.g., distance in the functional-reach-test), or reactive balance (e.g., CoP displacement during perturbed one-legged stance), and one measure of maximal strength (e.g., maximum voluntary contraction), explosive force (e.g., rate of force development), or muscle power (e.g., jump height). In total, 37 studies met the inclusionary criteria for review. The included studies were coded for the following criteria: age (i.e., children: 6-12 years, adolescents: 13-18 years, young adults: 19-44 years, middle-aged adults: 45-64 years, old adults: ≥65 years), sex (i.e., female, male), and test modality/outcome (i.e., test for the assessment of balance, strength, and power). Studies with athletes, patients, and/or people with diseases were excluded. Pearson's correlation coefficients were extracted, transformed (i.e., Fisher's z-transformed r z value), aggregated (i.e., weighted mean r z value), back-transformed to r values, classified according to their magnitude (i.e., small: r ≤ 0.69, medium: r ≤ 0.89, large: r ≥ 0.90), and, if possible, statistically compared. Heterogeneity between studies was assessed using I2 and Chi-squared (χ2) statistics. Three studies examined associations between balance and lower-extremity muscle strength/power in children, one study in adolescents, nine studies in young adults, three studies in middle-aged adults, and 23 studies in old adults. Overall, small-sized associations were found between variables of balance and lower-extremity muscle strength/power, irrespective of the age group considered. In addition, small-sized but significantly larger correlation coefficients were found between measures of dynamic steady-state balance and maximal strength in children (r = 0.57) compared with young (r = 0.09, z = 3.30, p = 0.001) and old adults (r = 0.35, z = 2.94, p = 0.002) as well as in old compared with young adults (z = 1.95, p = 0.03). Even though the reported results provided further insight into the associations between measures of balance and lower-extremity muscle strength/power, they did not allow us to deduce cause and effect relations. Further, the investigated associations could be biased by other variables such as joint flexibility, muscle mass, and/or auditory/visual acuity. Our systematic review and meta-analysis showed predominately small-sized correlations between measures of balance and lower-extremity muscle strength/power in children, adolescents, and young, middle-aged, and old adults. This indicates that these neuromuscular components are independent of each other and should therefore be tested and trained complementarily across the lifespan. Significantly larger but still small-sized associations were found between measures of dynamic steady-state balance and maximal strength in children compared with young and old adults as well as in old compared with young adults. These findings imply that age/maturation may have an impact on the association of selected components of balance and lower-extremity muscle strength.
Kim, Hyeyoung; Lee, Youngsun; Shin, Insik; Kim, Kitae; Moon, Jeheon
2014-01-01
[Purpose] For maximum efficiency and to prevent injury during javelin throwing, it is critical to maintain muscle balance and coordination of the rotator cuff and the glenohumeral joint. In this study, we investigated the change in the rotator cuff muscle strength, throw distance and technique of javelin throwers after they had performed a specific physical training that combined elements of weight training, function movement screen training, and core training. [Subjects] Ten javelin throwers participated in this study: six university athletes in the experimental group and four national-level athletes in the control group. [Methods] The experimental group performed 8 weeks of the specific physical training. To evaluate the effects of the training, measurements were performed before and after the training for the experimental group. Measurements comprised anthropometry, isokinetic muscle strength measurements, the function movement screen test, and movement analysis. [Results] After the specific physical training, the function movement screen score and external and internal rotator muscle strength showed statistically significant increases. Among kinematic factors, only pull distance showed improvement after training. [Conclusion] Eight weeks of specific physical training for dynamic stabilizer muscles enhanced the rotator cuff muscle strength, core stability, throw distance, and flexibility of javelin throwers. These results suggest that specific physical training can be useful for preventing shoulder injuries and improving the performance for javelin throwers. PMID:25364111
Kim, Hyeyoung; Lee, Youngsun; Shin, Insik; Kim, Kitae; Moon, Jeheon
2014-10-01
[Purpose] For maximum efficiency and to prevent injury during javelin throwing, it is critical to maintain muscle balance and coordination of the rotator cuff and the glenohumeral joint. In this study, we investigated the change in the rotator cuff muscle strength, throw distance and technique of javelin throwers after they had performed a specific physical training that combined elements of weight training, function movement screen training, and core training. [Subjects] Ten javelin throwers participated in this study: six university athletes in the experimental group and four national-level athletes in the control group. [Methods] The experimental group performed 8 weeks of the specific physical training. To evaluate the effects of the training, measurements were performed before and after the training for the experimental group. Measurements comprised anthropometry, isokinetic muscle strength measurements, the function movement screen test, and movement analysis. [Results] After the specific physical training, the function movement screen score and external and internal rotator muscle strength showed statistically significant increases. Among kinematic factors, only pull distance showed improvement after training. [Conclusion] Eight weeks of specific physical training for dynamic stabilizer muscles enhanced the rotator cuff muscle strength, core stability, throw distance, and flexibility of javelin throwers. These results suggest that specific physical training can be useful for preventing shoulder injuries and improving the performance for javelin throwers.
Impaired hip muscle strength in patients with femoroacetabular impingement syndrome.
Kierkegaard, Signe; Mechlenburg, Inger; Lund, Bent; Søballe, Kjeld; Dalgas, Ulrik
2017-12-01
Patients with femoroacetabular impingement (FAI) experience hip pain as well as decreased function and lowered quality of life. The aim was to compare maximal isometric and isokinetic muscle strength (MVC) during hip flexion and extension and rate of force development (RFD) during extension between patients with FAI and a matched reference group. Secondary, the aim was to compare patient hips and subgroups defined by gender and age as well as to investigate associations between hip muscle strength and self-reported outcomes. Design Cross-sectional, comparative study Methods Sixty patients (36±9 years, 63% females) and 30 age and gender matched reference persons underwent MVC tests in an isokinetic dynamometer. During hip flexion and extension, patients' affected hip showed a strength deficit of 15-21% (p<0.001) and 10-25% (p<0.03) compared with reference MVC, respectively. The affected hip of the patients was significantly weaker than their contralateral hip. RFD was significantly decreased for both patient hips compared to the reference group (p<0.05). While age had less effect on MVC, female patients were more affected than male patients. Self-reported measures were associated with isometric hip muscle strength. Patients with FAI demonstrate decreased hip flexion and extension strength when compared to (1) reference persons and (2) their contralateral hip. There seems to be a gender specific affection which should be investigated further and addressed when planning training protocols. Furthermore, self-reported measures were associated with isometric muscle strength, which underlines the clinical importance of the reduced muscle strength. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Shoulder muscle strength in paraplegics before and after kayak ergometer training.
Bjerkefors, Anna; Jansson, Anna; Thorstensson, Alf
2006-07-01
The purpose was to investigate if shoulder muscle strength in post-rehabilitated persons with spinal cord injury (SCI) was affected by kayak ergometer training and to compare shoulder strength in persons with SCI and able-bodied persons. Ten persons with SCI (7 males and 3 females, injury levels T3-T12) performed 60 min kayak ergometer training three times a week for 10 weeks with progressively increased intensity. Maximal voluntary concentric contractions were performed during six shoulder movements: flexion and extension (range of motion 65 degrees ), abduction and adduction (65 degrees ), and external and internal rotation (60 degrees ), with an angular velocity of 30 degrees s(-1). Position specific strength was assessed at three shoulder angles (at the beginning, middle and end of the range of motion) in the respective movements. Test-retests were performed for all measurements before the training and the mean intraclass correlation coefficient was 0.941 (95% CI 0.928-0.954). There was a main effect of kayak ergometer training with increased shoulder muscle strength after training in persons with SCI. The improvements were independent of shoulder movement, and occurred in the beginning and middle positions. A tendency towards lower shoulder muscle strength was observed in the SCI group compared to a matched reference group of able-bodied persons. Thus, it appears that post-rehabilitated persons with SCI have not managed to fully regain/maintain their shoulder muscle strength on a similar level as that of able-bodied persons, and are able to improve their shoulder muscle strength after a period of kayak ergometer training.
Factors that Explain the Cancer-Related Insomnia.
Galiano-Castillo, Noelia; Arroyo-Morales, Manuel; Ariza-Garcia, Angélica; Fernández-Lao, Carolina; Fernández-Fernández, Andrés J; Cantarero-Villanueva, Irene
2017-07-01
A better understanding of cancer related insomnia and its relationship with other associated factors is necessary to improve its management. To clarify the relationship between insomnia and treatment related variables, sociodemographic data, health related fitness, pain, anxiety, and depression in breast cancer patients. One hundred twenty-three patients participated in this cross-sectional study. As a primary variable was insomnia using The European Organization for Research and Treatment of Cancer Quality of Life Questionnaire Core 30 version. Other variables included: stage of treatment, type of treatment, multiple sit to stand test, trunk curl test, 6-min walk test, back muscle strength test, the Brief Pain Inventory short form and the Hospital Anxiety and Depression Scale. Insomnia was negatively associated with the treatment stage (p = 0.01), the 6-min walk test (p = 0.01) and the back muscle strength test (p = 0.01), while it was positively associated with the type of treatment (p = 0.01) and the multiple sit-to-stand test (p = 0.05). In addition, higher levels of insomnia were associated with higher scores on the Brief Pain Inventory short form (p = 0.01) and the Hospital Anxiety and Depression Scale (p = 0.01). Anxiety, type of treatment, back muscle strength, pain severity and stage of treatment were predictors of insomnia, and when they were combined they explained 51.2% of insomnia in our sample. The variability in insomnia related breast cancer is explained by anxiety, type of treatment, pain, treatment stage, and back muscle strength. Clinicians should take these results into account when generating cancer care programs to control pain and health-related-fitness (Registration of Trials NCT01801527). © 2017 Wiley Periodicals, Inc.
Bergamin, M; Gobbo, S; Bullo, V; Zanotto, T; Vendramin, B; Duregon, F; Cugusi, L; Camozzi, V; Zaccaria, M; Neunhaeuserer, D; Ermolao, A
2015-12-01
Participation in exercise programs is heartily recommended for older adults since the level of physical fitness directly influences functional independence. The aim of this present study was to investigate the effects of supervised Pilates exercise training on the physical function, hypothesizing that a period of Pilates exercise training (PET) can increase overall muscle strength, body composition, and balance, during single and dual-task conditions, in a group of post-menopausal women. Twenty-five subjects, aged 59 to 66 years old, were recruited. Eligible participants were assessed prior and after 3 months of PET performed twice per week. Muscular strength was evaluated with handgrip strength (HGS) test, 30-s chair sit-to-stand test (30CST), and abdominal strength (AST) test. Postural control and dual-task performance were measured through a stabilometric platform while dynamic balance with 8 ft up and go test. Finally, body composition was assessed by means of dual-energy X-ray absorptiometry. Statistically significant improvements were detected on HGS (+8.22%), 30CST (+23.41%), 8 ft up and go test (-5.95%), AST (+30.81%), medio-lateral oscillations in open eyes and dual-task condition (-22.03% and -10.37%). Pilates was effective in increasing upper body, lower body, and abdominal muscle strength. No changes on body composition were detected. Results on this investigation indicated also that 12-week of mat Pilates is not sufficient to determine a clinical meaningful improvement on static balance in single and dual-task conditions.
Casas-Herrero, Alvaro; Cadore, Eduardo L.; Zambom-Ferraresi, Fabricio; Idoate, Fernando; Millor, Nora; Martínez-Ramirez, Alicia; Gómez, Marisol; Rodriguez-Mañas, Leocadio; Marcellán, Teresa; de Gordoa, Ana Ruiz; Marques, Mário C.
2013-01-01
Abstract This study examined the neuromuscular and functional performance differences between frail oldest old with and without mild cognitive impairment (MCI). In addition, the associations between functional capacities, muscle mass, strength, and power output of the leg muscles were also examined. Forty-three elderly men and women (91.9±4.1 years) were classified into three groups—the frail group, the frail with MCI group (frail+MCI), and the non-frail group. Strength tests were performed for upper and lower limbs. Functional tests included 5-meter habitual gait, timed up-and-go (TUG), dual task performance, balance, and rise from a chair ability. Incidence of falls was assessed using questionnaires. The thigh muscle mass and attenuation were assessed using computed tomography. There were no differences between the frail and frail+MCI groups for all the functional variables analyzed, except in the cognitive score of the TUG with verbal task, which frail showed greater performance than the frail+MCI group. Significant associations were observed between the functional performance, incidence of falls, muscle mass, strength, and power in the frail and frail+MCI groups (r=−0.73 to r=0.83, p<0.01 to p<0.05). These results suggest that the frail oldest old with and without MCI have similar functional and neuromuscular outcomes. Furthermore, the functional outcomes and incidences of falls are associated with muscle mass, strength, and power in the frail elderly population. PMID:23822577
Calik-Kutukcu, Ebru; Savci, Sema; Saglam, Melda; Vardar-Yagli, Naciye; Inal-Ince, Deniz; Arikan, Hulya; Aribas, Zeynep; Ozer, Ozge; Bosnak-Guclu, Meral; Coplu, Lutfi
2014-01-27
Chronic obstructive pulmonary disease (COPD) has significant systemic effects that substantially impact quality of life and survival. The purpose of this study was to assess and compare peripheral muscle strength and endurance, exercise capacity, fatigue perception and quality of life between patients with COPD and healthy subjects. Twenty COPD patients (mean FEV1 49.3 ± 19.2%) and 20 healthy subjects were included in the study. Pulmonary function testing and six-minute walk test (6MWT) were performed. Peripheral muscle strength was measured with a hand-held dynamometer, peripheral muscle endurance was evaluated with sit-ups, squats and modified push-ups tests. Fatigue perception was assessed using the Fatigue Impact Scale (FIS) and Fatigue Severity Scale (FSS). General quality of life was determined with the Nottingham Health Profile (NHP), and cough-specific quality of life was evaluated with the Leicester Cough Questionnaire (LCQ). Pulmonary functions, strength of shoulder abductor and flexor muscles, numbers of sit-ups and squats, 6MWT distance and 6MWT% were significantly lower in COPD patients than in healthy subjects (p < 0.05). FIS psychosocial sub-dimension and total scores, NHP scores for all sub-dimensions except pain sub-dimension of the COPD group were significantly higher than those of healthy subjects (p < 0.05). The LCQ physical, psychological and social sub-dimensions and total scores were significantly lower in COPD patients than in healthy subjects (p < 0.05). Pulmonary functions, peripheral muscle strength and endurance, exercise capacity and quality of life were adversely affected in patients with COPD. There are greater effect of fatigue on psychosocial functioning and general daily life activities and effect of cough on the quality of life in patients with COPD. This study supports the idea that COPD patients must be evaluated in a comprehensive manner for planning pulmonary rehabilitation programs.
2014-01-01
Background Chronic obstructive pulmonary disease (COPD) has significant systemic effects that substantially impact quality of life and survival. The purpose of this study was to assess and compare peripheral muscle strength and endurance, exercise capacity, fatigue perception and quality of life between patients with COPD and healthy subjects. Methods Twenty COPD patients (mean FEV1 49.3 ± 19.2%) and 20 healthy subjects were included in the study. Pulmonary function testing and six-minute walk test (6MWT) were performed. Peripheral muscle strength was measured with a hand-held dynamometer, peripheral muscle endurance was evaluated with sit-ups, squats and modified push-ups tests. Fatigue perception was assessed using the Fatigue Impact Scale (FIS) and Fatigue Severity Scale (FSS). General quality of life was determined with the Nottingham Health Profile (NHP), and cough-specific quality of life was evaluated with the Leicester Cough Questionnaire (LCQ). Results Pulmonary functions, strength of shoulder abductor and flexor muscles, numbers of sit-ups and squats, 6MWT distance and 6MWT% were significantly lower in COPD patients than in healthy subjects (p < 0.05). FIS psychosocial sub-dimension and total scores, NHP scores for all sub-dimensions except pain sub-dimension of the COPD group were significantly higher than those of healthy subjects (p < 0.05). The LCQ physical, psychological and social sub-dimensions and total scores were significantly lower in COPD patients than in healthy subjects (p < 0.05). Conclusions Pulmonary functions, peripheral muscle strength and endurance, exercise capacity and quality of life were adversely affected in patients with COPD. There are greater effect of fatigue on psychosocial functioning and general daily life activities and effect of cough on the quality of life in patients with COPD. This study supports the idea that COPD patients must be evaluated in a comprehensive manner for planning pulmonary rehabilitation programs. PMID:24468029
Kogure, Gislaine S; Silva, Rafael C; Miranda-Furtado, Cristiana L; Ribeiro, Victor B; Pedroso, Daiana C C; Melo, Anderson S; Ferriani, Rui A; Reis, Rosana Maria Dos
2018-06-20
Kogure, GS, Silva, RC, Miranda-Furtado, CL, Ribeiro, VB, Pedroso, DCC, Melo, AS, Ferriani, RA, and Reis, RMd. Hyperandrogenism enhances muscle strength after progressive resistance training, independent of body composition, in women with polycystic ovary syndrome. J Strength Cond Res XX(X): 000-000, 2018-The effects of resistance exercise on muscle strength, body composition, and increase in cross-sectional area of skeletal muscle (hypertrophy) were evaluated in women with polycystic ovary syndrome (PCOS). This case-control study included 45 PCOS and 52 non-PCOS women, with age between 18-37 years and body mass index of 18-39.9 kg·m. Subjects performed a program of progressive resistance training (PRT), 3 times per week for 4 months. Biochemical characteristics were measured before and after PRT. Muscle strength evaluated by 1 maximum repetition test and body composition and hypertrophy indicator, evaluated by anthropometry, were measured at baseline, at 8 weeks, and at 16 weeks after PRT. Progressive resistance training produced an increase in maximum strength (bench press, p = 0.04; leg extension, p = 0.04) in the PCOS group; however, no changes were observed in body composition between groups. Concentration of testosterone decreased in both PCOS and non-PCOS groups (p < 0.01, both) after PRT, as well as glycemia (PCOS, p = 0.01; non-PCOS, p = 0.02) and body fat percentage (p < 0.01, both). An increase in hypertrophy indicators, lean body mass (LBM), and maximum strength on all exercises was observed in both PCOS and non-PCOS groups (p < 0.01). This training protocol promoted increases in muscle strength in PCOS women, and improved hyperandrogenism and body composition by decreasing body fat and increasing LBM and muscle strength in both PCOS and non-PCOS groups. Therefore, it is suggested that resistance exercise programs could promote health and fitness in women of reproductive age, especially functional capacity of strength those with PCOS.
Cardiopulmonary fitness and muscle strength in patients with osteogenesis imperfecta type I.
Takken, Tim; Terlingen, Heike C; Helders, Paul J M; Pruijs, Hans; Van der Ent, Cornelis K; Engelbert, Raoul H H
2004-12-01
To evaluate cardiopulmonary function, muscle strength, and cardiopulmonary fitness (VO 2 peak) in patients with osteogenesis imperfecta (OI). In 17 patients with OI type I (mean age 13.3 +/- 3.9 years) cardiopulmonary function was assessed at rest using spirometry, plethysmography, electrocardiography, and echocardiography. Exercise capacity was measured using a maximal exercise test on a bicycle ergometer and an expired gas analysis system. Muscle strength in shoulder abductors, hip flexors, ankle dorsal flexor, and grip strength were measured. All results were compared with reference values. Cardiopulmonary function at rest was within normal ranges, but when it was compared with normal height for age and sex, vital capacities were reduced. Mean absolute and relative VO 2 peak were respectively -1.17 (+/- 0.67) and -1.41 (+/- 1.52) standard deviations lower compared with reference values ( P < .01). Muscle strength also was significantly reduced in patients with OI, ranging from -1.24 +/- 1.40 to -2.88 +/- 2.67 standard deviations lower compared with reference values. In patients with OI type I, no pulmonary or cardiac abnormalities at rest were found. The exercise tolerance and muscle strength were significantly reduced in patients with OI, which might account for their increased levels of fatigue during activities of daily living.
Effects of trunk stability on isometric knee extension muscle strength measurement while sitting.
Hirano, Masahiro; Gomi, Masahiro; Katoh, Munenori
2016-09-01
[Purpose] This study aimed to investigate the effect of trunk stability on isometric knee extension muscle strength measurement while sitting by performing simultaneous measurements with a handheld dynamometer (HHD) and an isokinetic dynamometer (IKD) in the same seated condition. [Subjects and Methods] The subjects were 30 healthy volunteers. Isometric knee extension muscle strength was simultaneously measured with a HHD and an IKD by using an IKD-specific chair. The measurement was performed twice. Measurement instrument variables and the number of measurements were examined by using the analysis of variance and correlation tests. [Results] The measurement instrument variables and the number of measurements were not significantly different. The correlation coefficients between the HHD and IKD measurements were ≥0.96. [Conclusion] Isometric knee extension muscle strength measurement using the HHD in the sitting position resulted in a lower value than that using the IKD, presumably because of the effect of trunk stability on the measurement. In the same seated posture with trunk stability, no significant difference in measurement values was observed between the HHD and IKD. The present findings suggest that trunk stability while seated during isometric knee extension muscle strength measurement influenced the HHD measurement.
Analysis of Tests Evaluating Sport Climbers’ Strength and Isometric Endurance
Ozimek, Mariusz; Staszkiewicz, Robert; Rokowski, Robert
2016-01-01
Abstract The present study was designed to determine which types of specific tests provide an effective evaluation of strength and endurance in highly trained competitive sport climbers. The research process consisted of three basic components: the measurement of selected somatic characteristics of the climbers, the assessment of their physical conditioning, and a search for correlations between the anthropometric and “conditioning” variables on the one hand, and climber’s performance on the other. The sample of subjects consisted of 14 experienced volunteer climbers capable of handling 7a- 8a+/b on-sight rock climbing grades. The strongest correlations (Spearman’s rank) were found between climber’s competence and the relative results of the finger strength test (r = 0.7); much lower, but still statistically significant coefficients were found between the level of competence and the results of the muscle endurance tests (r = 0.53 – 0.57). Climbers aspiring to attain an elite level must have strong finger and forearm muscles, but most of all, they must be capable of releasing their potential during specific motor capability tests engaging these parts of the body. The forearm muscles of elite climbers must also be very resistant to fatigue. Since highly trained athletes vary only slightly in body mass, this variable does not have a major effect on their performance during strength and endurance tests. PMID:28149428
Patel, Kushang V.; Fried, Linda F.; Robinson-Cohen, Cassianne; de Boer, Ian H.; Harris, Tamara; Murphy, Rachel A.; Satterfield, Suzanne; Goodpaster, Bret H.; Shlipak, Michael; Newman, Anne B.; Kestenbaum, Bryan
2017-01-01
Background: Mobility limitation is highly prevalent among older adults and is central to the loss of functional independence. Dynamic isokinetic muscle fatigue testing may reveal increased vulnerability to disability and mortality beyond strength testing. Methods: We studied community-dwelling older adults enrolled in the Health Aging and Body Composition study (age range: 71–82) free of mobility disability and who underwent isokinetic muscle fatigue testing in 1999–2000 (n = 1,963). Isokinetic quadriceps work and fatigue index was determined over 30 repetitions and compared with isometric quadriceps maximum torque. Work was normalized to leg lean mass accounting for gender-specific differences (specific work). The primary outcome was incident persistent severe lower extremity limitation (PSLL), defined as two consecutive reports of either having a lot of difficulty or being unable to walk 1/4 mile or climb 10 steps without resting. The secondary outcome was all-cause mortality. Results: There were 608 (31%) occurrences of incident PSLL and 488 (25%) deaths during median follow-up of 9.3 years. After adjustment, lower isokinetic work was associated with significantly greater risks of PSLL and mortality across the full measured range. Hazard ratios per standard deviation lower specific isokinetic work were 1.22 (95% CI 1.12, 1.33) for PSLL and 1.21 (95% CI 1.13, 1.30) for mortality, respectively. Lower isometric strength was associated with PSLL, but not mortality. Fatigue index was not associated with PSLL or mortality. Conclusions: Muscle endurance, estimated by isokinetic work, is an indicator of muscle health associated with mobility limitation and mortality providing important insight beyond strength testing. PMID:27907890
Threshold values of physical performance tests for locomotive syndrome.
Muramoto, Akio; Imagama, Shiro; Ito, Zenya; Hirano, Kenichi; Tauchi, Ryoji; Ishiguro, Naoki; Hasegawa, Yukiharu
2013-07-01
Our previous study determined which physical performance tests were the most useful for evaluating locomotive syndrome. Our current study establishes reference values for these major physical performance tests with regards to diagnosing and assessing risk of locomotive syndrome (LS). We measured timed-up-and-go test, one-leg standing time, back muscle strength, grip strength, 10-m gait time and maximum stride in 406 individuals (167 men, 239 women) between the ages of 60-88 years (mean 68.8 ± 6.7 years) during Yakumo Study 2011-12. The LS was defined as having a score of >16 points on the 25-Question Geriatric Locomotive Function Scale (GLFS-25). The reference value of each physical test was determined using receiver operating characteristics analysis. Women had a significantly higher prevalence of LS than men did and also scored significantly higher on the GLFS-25: women, 9.2 ± 10.3 pts; men, 6.7 ± 8.0 pts. Both genders in the non-LS group performed significantly better in all physical performance test gender except for back muscle strength in men and grip strength in both genders than those in the LS group, even after adjusting for age. The results of all the physical performance tests correlated significantly with the GLFS-25 scores of both genders even after adjusting for age except for grip strength. Reference values for TUG, one-leg standing time, back muscle strength, 10-m gait time, maximum stride and grip strength in men were 6.7 s, 21 s, 78 kg, 5.5 s and, 119 cm and 34 kg, respectively, and those for women were 7.5 s, 15 s, 40 kg, 6.2 s, 104 cm, and 22 kg, respectively. We established reference values for major physical performance tests used when assessing locomotive syndrome as defined by the GLFS-25. Our results can be used to characterize physical function and to help tailor an anti-LS training program for each individual.
Testing the Hip Abductor Muscle Strength of Older Persons Using a Handheld Dynamometer.
Awwad, Daniel H; Buckley, Jonathan D; Thomson, Rebecca L; O'Connor, Matthew; Carbone, Tania A; Chehade, Mellick J
2017-09-01
To investigate the reliability of a clinically applicable method of dynamometry to assess and monitor hip abductor muscle strength in older persons. Bilateral isometric hip abductor muscle strength measured with a handheld dynamometer, patients supine with the contralateral hip positioned directly against a wall for stabilization. Reliability determined by comparing intra-assessor and inter-assessor results and comparison to a criterion standard (stabilized dynamometer with patients in the standing position). UniSA Nutritional Physiology Research Centre. Twenty-one patients older than 65 years were recruited from the Royal Adelaide Hospital. Intraclass correlation coefficients (ICCs), bias, and limits of agreement calculated to determine reliability. Intra-assessor and inter-assessor ICCs were high (0.94 and 0.92-0.94, respectively). There was no intra-assessor bias and narrow limits of agreement (±2.4%). There was a small inter-assessor bias but narrow limits of agreement (0.6%-0.9% and ± 2.3%, respectively). There was a wide variation comparing results to the criterion standard (±5.0%-5.2% limits of agreement), highlighting problems attributed to difficulties that the test population had with the standing position used in the criterion standard test. Testing older persons' hip abductor muscle strength while in the supine position with optimal pelvic stabilization using a handheld dynamometer is highly reliable. While further studies must be done to assess patients with specific pathologies, this test has potential application to monitor and evaluate the effects of surgical interventions and/or rehabilitation protocols for a variety of conditions affecting hip abductor function such as hip fractures and arthritis.
Respiratory muscle adaptations: a comparison between bodybuilders and endurance athletes.
Hackett, D A; Johnson, N; Chow, C
2013-04-01
The purpose of this study was to compare the respiratory muscle and lung function measures of bodybuilders (BB) and endurance athletes (EA). Forty-two male subjects (22 BB and 20 EA) aged 20-35 years underwent respiratory muscle strength measurements (MIP and MEP), lung function testing (FEV1, FVC, FEV1/FVC%, IC, ERV, FRC, RV, and TLC), hydrostatic weighing and VO2max testing. One-repetition maximum (1RM) for bench press, squat and deadlift was performed by BB. BB had significantly greater MIP and MEP compared to EA by 43% and 53% respectively (P<0.01). Moderate correlation was found for MEP and 1RM bench press (P<0.01), and weak correlations found for the squat and deadlift (P<0.01). Fat-free mass was significantly greater for BB compared with EA (P<0.01), while VO2max was significantly greater for EA compared with BB (P<0.01). No differences in lung function indices were observed between groups. When compared to EA, BB exhibited significantly greater respiratory muscle strength. The maximal load lifted for bench press predicted expiratory muscle strength gain. Lung function measures did not differ between the groups.
Luedke, Lace E; Heiderscheit, Bryan C; Williams, D S Blaise; Rauh, Mitchell J
2015-11-01
High school cross country runners have a high incidence of overuse injuries, particularly to the knee and shin. As lower extremity strength is modifiable, identification of strength attributes that contribute to anterior knee pain (AKP) and shin injuries may influence prevention and management of these injuries. To determine if a relationship existed between isometric hip abductor, knee extensor and flexor strength and the incidence of AKP and shin injury in high school cross country runners. Sixty-eight high school cross country runners (47 girls, 21 boys) participated in the study. Isometric strength tests of hip abductors, knee extensors and flexors were performed with a handheld dynamometer. Runners were prospectively followed during the 2014 interscholastic cross country season for occurrences of AKP and shin injury. Bivariate logistic regression was used to examine risk relationships between strength values and occurrence of AKP and shin injury. During the season, three (4.4%) runners experienced AKP and 13 (19.1%) runners incurred a shin injury. Runners in the tertiles indicating weakest hip abductor (chi-square = 6.140; p=0.046), knee extensor (chi-square = 6.562; p=0.038), and knee flexor (chi-square = 6.140; p=0.046) muscle strength had a significantly higher incidence of AKP. Hip and knee muscle strength was not significantly associated with shin injury. High school cross country runners with weaker hip abductor, knee extensor and flexor muscle strength had a higher incidence of AKP. Increasing hip and knee muscle strength may reduce the likelihood of AKP in high school cross country runners. 2b.
Effects of Strength vs. Ballistic-Power Training on Throwing Performance
Zaras, Nikolaos; Spengos, Konstantinos; Methenitis, Spyridon; Papadopoulos, Constantinos; Karampatsos, Giorgos; Georgiadis, Giorgos; Stasinaki, Aggeliki; Manta, Panagiota; Terzis, Gerasimos
2013-01-01
The purpose of the present study was to investigate the effects of 6 weeks strength vs. ballistic-power (Power) training on shot put throwing performance in novice throwers. Seventeen novice male shot-put throwers were divided into Strength (N = 9) and Power (n = 8) groups. The following measurements were performed before and after the training period: shot put throws, jumping performance (CMJ), Wingate anaerobic performance, 1RM strength, ballistic throws and evaluation of architectural and morphological characteristics of vastus lateralis. Throwing performance increased significantly but similarly after Strength and Power training (7.0-13.5% vs. 6.0-11.5%, respectively). Muscular strength in leg press increased more after Strength than after Power training (43% vs. 21%, respectively), while Power training induced an 8.5% increase in CMJ performance and 9.0 - 25.8% in ballistic throws. Peak power during the Wingate test increased similarly after Strength and Power training. Muscle thickness increased only after Strength training (10%, p < 0.05). Muscle fibre Cross Sectional Area (fCSA) increased in all fibre types after Strength training by 19-26% (p < 0.05), while only type IIx fibres hypertrophied significantly after Power training. Type IIx fibres (%) decreased after Strength but not after Power training. These results suggest that shot put throwing performance can be increased similarly after six weeks of either strength or ballistic power training in novice throwers, but with dissimilar muscular adaptations. Key points Ballistic-power training with 30% of 1RM is equally effective in increasing shot put performance as strength training, in novice throwers, during a short training cycle of six weeks. In novice shot putters with relatively low initial muscle strength/mass, short-term strength training might be more important since it can increase both muscle strength and shot put performance. The ballistic type of power training resulted in a significant increase of the mass of type IIx muscle fibres and no change in their proportion. Thus, this type of training might be used effectively during the last weeks before competition, when the strength training load is usually reduced, in order to increase muscle power and shot put performance in novice shot putters. PMID:24149736
Effects of Strength vs. Ballistic-Power Training on Throwing Performance.
Zaras, Nikolaos; Spengos, Konstantinos; Methenitis, Spyridon; Papadopoulos, Constantinos; Karampatsos, Giorgos; Georgiadis, Giorgos; Stasinaki, Aggeliki; Manta, Panagiota; Terzis, Gerasimos
2013-01-01
The purpose of the present study was to investigate the effects of 6 weeks strength vs. ballistic-power (Power) training on shot put throwing performance in novice throwers. Seventeen novice male shot-put throwers were divided into Strength (N = 9) and Power (n = 8) groups. The following measurements were performed before and after the training period: shot put throws, jumping performance (CMJ), Wingate anaerobic performance, 1RM strength, ballistic throws and evaluation of architectural and morphological characteristics of vastus lateralis. Throwing performance increased significantly but similarly after Strength and Power training (7.0-13.5% vs. 6.0-11.5%, respectively). Muscular strength in leg press increased more after Strength than after Power training (43% vs. 21%, respectively), while Power training induced an 8.5% increase in CMJ performance and 9.0 - 25.8% in ballistic throws. Peak power during the Wingate test increased similarly after Strength and Power training. Muscle thickness increased only after Strength training (10%, p < 0.05). Muscle fibre Cross Sectional Area (fCSA) increased in all fibre types after Strength training by 19-26% (p < 0.05), while only type IIx fibres hypertrophied significantly after Power training. Type IIx fibres (%) decreased after Strength but not after Power training. These results suggest that shot put throwing performance can be increased similarly after six weeks of either strength or ballistic power training in novice throwers, but with dissimilar muscular adaptations. Key pointsBallistic-power training with 30% of 1RM is equally effective in increasing shot put performance as strength training, in novice throwers, during a short training cycle of six weeks.In novice shot putters with relatively low initial muscle strength/mass, short-term strength training might be more important since it can increase both muscle strength and shot put performance.The ballistic type of power training resulted in a significant increase of the mass of type IIx muscle fibres and no change in their proportion. Thus, this type of training might be used effectively during the last weeks before competition, when the strength training load is usually reduced, in order to increase muscle power and shot put performance in novice shot putters.
Augustsson, Jesper
2016-08-01
Dynamic clinical tests of hip strength applicable on patients, non-athletes and athletes alike, are lacking. The aim of this study was therefore to develop and evaluate the reliability of a dynamic muscle function test of hip external rotation strength, using a novel device. A second aim was to determine if gender differences exist in absolute and relative hip strength using the new test. Fifty-three healthy sport science students (34 women and 19 men) were tested for hip external rotation strength using a device that consisted of a strap connected in series with an elastic resistance band loop, and a measuring tape connected in parallel with the elastic resistance band. The test was carried out with the subject side lying, positioned in 45 ° of hip flexion and the knees flexed to 90 ° with the device firmly fastened proximally across the knees. The subject then exerted maximal concentric hip external rotation force against the device thereby extending the elastic resistance band. The displacement achieved by the subject was documented by the tape measure and the corresponding force production was calculated. Both right and left hip strength was measured. Fifteen of the subjects were tested on repeated occasions to evaluate test-retest reliability. No significant test-retest differences were observed. Intra-class correlation coefficients ranged 0.93-0.94 and coefficients of variation 2.76-4.60%. In absolute values, men were significantly stronger in hip external rotation than women (right side 13.2 vs 11.0 kg, p = 0.001, left side 13.2 vs 11.5 kg, p = 0.002). There were no significant differences in hip external rotation strength normalized for body weight (BW) between men and women (right side 0.17 kg/BW vs 0.17 kg/BW, p = 0.675, left side 0.17 kg/BW vs 0.18 kg/BW, p = 0.156). The new muscle function test showed high reliability and thus could be useful for measuring dynamic hip external rotation strength in patients, non-athletes and athletes. The test is practical and easy to perform in any setting and could therefore provide additional information to the common clinical hip examination, in the rehabilitation or research setting, as well as when conducting on-the-field testing in sports. 3.
Cheung, W-H; Li, C-Y; Zhu, T Y; Leung, K-S
2016-03-01
To investigate the effects on muscle performance after one-year cessation of 18-month low-magnitude high-frequency vibration (LMHFV) intervention in the untrained community elderly. This is a case-control study with 59 community elderly women (25 control without any treatment; 34 received 18-month LMHFV but discontinued for 1 year from our previous clinical study). Muscle strength, balancing ability, occurrence of fall/fracture, quality of life (QoL) were assessed 1-year after cessation of intervention. The 30-month results were compared with baseline and 18-month treatment endpoint data between groups. At 30 months (i.e. one year post-intervention), the muscle strengths of dominant and non-dominant legs relative to baseline in treatment group were significantly better than those of control. In balancing ability test, reaction time, movement velocity and maximum excursion of treatment group (relative to baseline) remained significantly better than the control group. The muscle strength, balancing ability and quality of life at 30 months relative to 18 months did not show significant differences between the two groups. The benefits of LMHFV for balancing ability, muscle strength and risk of falling in elderly were retained 1 year after cessation of LMHFV.
Habets, Bas; Staal, J Bart; Tijssen, Marsha; van Cingel, Robert
2018-01-10
To determine the intrarater reliability of the Humac NORM isokinetic dynamometer for concentric and eccentric strength tests of knee and shoulder muscles. 54 participants (50% female, average age 20.9 ± 3.1 years) performed concentric and eccentric strength measures of the knee extensors and flexors, and the shoulder internal and external rotators on two different Humac NORM isokinetic dynamometers, which were situated at two different centers. The knee extensors and flexors were tested concentrically at 60° and 180°/s, and eccentrically at 60° s. Concentric strength of the shoulder internal and external rotators, and eccentric strength of the external rotators were measured at 60° and 120°/s. We calculated intraclass correlation coefficients (ICCs), standard error of measurement, standard error of measurement expressed as a %, and the smallest detectable change to determine reliability and measurement error. ICCs for the knee tests ranged from 0.74 to 0.89, whereas ICC values for the shoulder tests ranged from 0.72 to 0.94. Measurement error was highest for the concentric test of the knee extensors and lowest for the concentric test of shoulder external rotators.
Kamada, Yumi; Masuda, Takashi; Tanaka, Shinya; Akiyama, Ayako; Nakamura, Takeshi; Hamazaki, Nobuaki; Okubo, Michihito; Kobayashi, Naoyuki; Ako, Junya
2017-08-03
Autonomic imbalance in hypertension induces excessive blood pressure (BP) elevation during exercise, thereby increasing left ventricular mass (LVM). Although muscle weakness enhances autonomic imbalance by stimulating muscle sympathetic activity during exercise, it is unclear whether muscle weakness is associated with an increase of LVM in patients with hypertension. This study aimed to investigate the relationships between muscle weakness, BP elevation during exercise, and LVM in these patients. Eighty-six hypertensive patients aged 69 ± 8 years with controlled resting BP (ie, < 140/90 mmHg) were recruited. Plasma brain natriuretic peptide (BNP), left ventricular mass index (LVMI), and knee extension muscle strength were measured. Changes in plasma noradrenaline (NORA) and brachial-ankle pulse wave velocity (ba-PWV) were assessed before and after an ergometer exercise test performed at moderate intensity (ΔNORA and ΔPWV, respectively). A difference between baseline and peak systolic BP during the exercise test was defined as BP elevation during exercise (ΔSBP). Relationships between muscle strength, ΔNORA, ΔPWV, ΔSBP, BNP, and LVMI were analyzed, and significant factors increasing LVM were identified using univariate and multivariate regression analyses. Muscle strength was negatively correlated with ΔNORA (r = -0.202, P = 0.048), ΔPWV (r = -0.328, P = 0.002), ΔSBP (r = -0.230, P = 0.033), BNP (r = -0.265, P = 0.014), and LVMI (r = -0.233, P = 0.031). LVMI was positively correlated with ΔPWV (r = 0.246, P = 0.023) and ΔSBP (r = 0.307, P = 0.004). Muscle strength was a significant independent factor associated with LVMI (β = -0.331, P = 0.010). Our findings suggest that muscle weakness is associated with an increase of LVM through excessive BP elevation during exercise in patients with hypertension.
García-Pinillos, Felipe; Laredo-Aguilera, José A; Muñoz-Jiménez, Marcos; Latorre-Román, Pedro A
2017-03-13
This study aimed to analyse the effect of 12-week low-volume HIIT-based concurrent training programme on body composition, upper- and lower-body muscle strength, mobility and balance in older adults, as well as to compare it with a low- moderate-intensity continuous training. 90 active older adults were randomly assigned to experimental (EG, n=47), and control (CG, n=43) groups. Body composition and physical functioning were assessed before (pre-test) and after (post-test) a 12-week intervention. A 2-way repeated measures ANOVA was used to test for an interaction between training programme and groups. The time x group interaction revealed no significant between-group differences at pre-test (p≥0.05). The group x time interaction showed significant improvements for the EG in body composition parameters (p<0.05) and physical functioning (muscle strength: p<0.001; mobility: p<0.001; and balance: p<0.05); while the CG remained unchanged (p≥0.05). This HIIT-based concurrent training programme led to greater improvements in body composition, muscle strength, mobility and balance in healthy older people than a regular low- moderate-intensity continuous training, despite the reduction in overall training volume.
Test-Retest Reliability of Innovated Strength Tests for Hip Muscles
Meyer, Christophe; Corten, Kristoff; Wesseling, Mariska; Peers, Koen; Simon, Jean-Pierre; Jonkers, Ilse; Desloovere, Kaat
2013-01-01
The burden of hip muscles weakness and its relation to other impairments has been well documented. It is therefore a pre-requisite to have a reliable method for clinical assessment of hip muscles function allowing the design and implementation of a proper strengthening program. Motor-driven dynamometry has been widely accepted as the gold-standard for lower limb muscle strength assessment but is mainly related to the knee joint. Studies focusing on the hip joint are less exhaustive and somewhat discrepant with regard to optimal participants position, consequently influencing outcome measures. Thus, we aimed to develop a standardized test setup for the assessment of hip muscles strength, i.e. flexors/extensors and abductors/adductors, with improved participant stability and to define its psychometric characteristics. Eighteen participants performed unilateral isokinetic and isometric contractions of the hip muscles in the sagittal and coronal plane at two separate occasions. Peak torque and normalized peak torque were measured for each contraction. Relative and absolute measures of reliability were calculated using the intraclass correlation coefficient and standard error of measurement, respectively. Results from this study revealed higher levels of between-day reliability of isokinetic/isometric hip abduction/flexion peak torque compared to existing literature. The least reliable measures were found for hip extension and adduction, which could be explained by a less efficient stabilization technique. Our study additionally provided a first set of reference normalized data which can be used in future research. PMID:24260550
STRENGTH PROFILES IN HEALTHY INDIVIDUALS WITH AND WITHOUT SCAPULAR DYSKINESIS
Scibek, Jason S.; Carcia, Christopher R.
2017-01-01
Background Muscular weakness of the shoulder complex is commonly found in patients presenting with scapular dyskinesis; however, little is known regarding muscular performance in healthy individuals with scapular dyskinesis. Purpose To compare isometric strength measures of the shoulder complex between healthy individuals with and without scapular dyskinesis. It was hypothesized that healthy individuals with scapular dyskinesis would demonstrate decreased isometric strength of the scapular stabilizers and rotator cuff when compared to healthy individuals without scapular dyskinesis. Study Design Cross-sectional study. Methods Forty healthy, college-aged participants were recruited. Sixty-eight percent of subjects (27 of 40) presented with scapular dyskinesis. Thus, a matched-pairs analysis was conducted with 26 subjects (age: 22.00 ± 2.06 y; height: 168.77 ± 8.07 cm; mass: 70.98 ± 13.14 kg; BMI: 24.75 ± 3.04 kg/m2; 6 males; 20 females). The presence of scapular dyskinesis was determined visually using the scapular dyskinesis test with a dichotomous outcome (yes/no). Strength of the scapular stabilizers and rotator cuff was assessed via manual muscle testing using a handheld dynamometer. Force measures obtained with the handheld dynamometer were used to quantify strength. For each muscle tested, the mean peak force of three trials were normalized to body weight and used for data analysis. Additionally, strength ratios were calculated and analyzed. Differences in strength and strength ratios between those with and without scapular dyskinesis were compared using separate two-way mixed ANOVAs with repeated measures. Results No significant differences for either strength (F1.83,43.92 = 1.10, p = .34) or strength ratios (F1.83,44.02 = 1.93, p = .16) were observed between those with and without scapular dyskinesis. A significant main effect (F1.83,43.92 = 239.32, p < .01) for muscles tested was observed, and post-hoc analysis revealed significant trends resulting in a generalized order: the upper trapezius generated the greatest amount of force, followed by serratus anterior and middle trapezius, lower trapezius, supraspinatus, medial rotators, and lateral rotators. Conclusion The results of this study indicate that differences in shoulder muscle strength do not exist between healthy subjects with and without scapular dyskinesis. Additionally, scapular dyskinesis appears to be prevalent in healthy populations. Level of Evidence Level 3 PMID:28593084
Bergamin, Marco; Gobbo, Stefano; Bullo, Valentina; Vendramin, Barbara; Duregon, Federica; Frizziero, Antonio; Di Blasio, Andrea; Cugusi, Lucia; Zaccaria, Marco; Ermolao, Andrea
2017-01-01
Lower extremity muscle mass, strength, power, and physical performance are critical determinants of independent functioning in later life. Isokinetic dynamometers are becoming very common in assessing different features of muscle strength, in both research and clinical practice; however, reliability studies are still needed to support the extended use of those devices. The purpose of this study is to assess the test-retest reliability of knee and ankle isokinetic and isometric strength testing protocols in a sample of older healthy subjects, using a new and untested isokinetic multi-joint evaluation system. Sixteen male and fourteen female older adults (mean age 65.2 ± 4.6 years) were assessed in two testing sessions. Each participant performed a randomized testing procedure that includes different isometric and isokinetic tests for knee and ankle joints. All participants concluded the trial safety and no subject reported any discomfort throughout the overall assessment. Coefficients of correlation between measures were calculated showing moderate to strong effects among all test-retest assessments and paired-sample t test showed only one significant difference (p<0.05) in the maximal isokinetic bilateral knee flexion torque. The multi-joint evaluation system for the assessment of knee and ankle isokinetic and isometric strength provided reliable test-retest measures in healthy older adults. Ib.
Kirschner, J; Schorling, D; Hauschke, D; Rensing-Zimmermann, C; Wein, U; Grieben, U; Schottmann, G; Schara, U; Konrad, K; Müller-Felber, W; Thiele, S; Wilichowski, E; Hobbiebrunken, E; Stettner, G M; Korinthenberg, R
2014-02-01
In preclinical studies growth hormone and its primary mediator IGF-1 have shown potential to increase muscle mass and strength. A single patient with spinal muscular atrophy reported benefit after compassionate use of growth hormone. Therefore we evaluated the efficacy and safety of growth hormone treatment for spinal muscular atrophy in a multicenter, randomised, double-blind, placebo-controlled, crossover pilot trial. Patients (n = 19) with type II/III spinal muscular atrophy were randomised to receive either somatropin (0.03 mg/kg/day) or placebo subcutaneously for 3 months, followed by a 2-month wash-out phase before 3 months of treatment with the contrary remedy. Changes in upper limb muscle strength (megascore for elbow flexion and hand-grip in Newton) were assessed by hand-held myometry as the primary measure of outcome. Secondary outcome measures included lower limb muscle strength, motor function using the Hammersmith Functional Motor Scale and other functional tests for motor function and pulmonary function. Somatropin treatment did not significantly affect upper limb muscle strength (point estimate mean: 0.08 N, 95% confidence interval (CI:-3.79;3.95, p = 0.965), lower limb muscle strength (point estimate mean: 2.23 N, CI:-2.19;6.63, p = 0.302) or muscle and pulmonary function. Side effects occurring during somatropin treatment corresponded with well-known side effects of growth hormone substitution in patients with growth hormone deficiency. In this pilot study, growth hormone treatment did not improve muscle strength or function in patients with spinal muscular atrophy type II/III. Copyright © 2013 Elsevier B.V. All rights reserved.
Regular exercisers have stronger pelvic floor muscles than nonregular exercisers at midpregnancy.
Bø, Kari; Ellstrøm Engh, Marie; Hilde, Gunvor
2018-04-01
Today all healthy pregnant women are encouraged to be physically active throughout pregnancy, with recommendations to participate in at least 30 minutes of aerobic activity on most days of the week in addition to performing strength training of the major muscle groups 2-3 days per week and also pelvic floor muscle training. There is, however, an ongoing debate whether general physical activity enhances or declines pelvic floor muscle function. The objectives of the study were to compare vaginal resting pressure, pelvic floor muscle strength, and endurance in regular exercisers (exercise ≥30 minutes 3 or more times per week) and nonexercisers at midpregnancy. Furthermore, another objective was to assess whether regular general exercise or pelvic floor muscle strength was associated with urinary incontinence. This was a cross-sectional study at mean gestational week 20.9 (±1.4) including 218 nulliparous pregnant women, with a mean age of 28.6 years (range, 19-40 years) and prepregnancy body mass index of 23.9 kg/m 2 (SD, 4.0). Vaginal resting pressure, pelvic floor muscle strength, and pelvic floor muscle endurance were measured by a high-precision pressure transducer connected to a vaginal balloon. The International Consultation on Incontinence Questionnaire Urinary Incontinence Short Form was used to assess urinary incontinence. Differences between groups were analyzed using an independent-sample Student t test. Linear regression analysis was conducted to adjust for prepregnancy body mass index, age, smoking during pregnancy, and regular pelvic floor muscle training during pregnancy. The significance value was set to P ≤ .05. Regular exercisers had statistically significant stronger (mean 6.4 cm H 2 O [95% confidence interval, 1.7-11.2]) and more enduring (mean 39.9 cm H 2 Osec [95% confidence interval, 42.2-75.7]) pelvic floor muscles. Only pelvic floor muscle strength remained statistically significant, when adjusting for possible confounders. Pelvic floor muscle strength and not regular general exercise was associated with urinary continence (adjusted B, -6.4 [95% confidence interval, -11.5 to -1.4]). Regular exercisers at midpregnancy have stronger pelvic floor muscles than their sedentary counterparts. However, pelvic floor muscle strength and not regular general exercise was associated with urinary incontinence. There is a need for additional studies in elite athletes and women performing more strenuous exercise regimens. Copyright © 2017 Elsevier Inc. All rights reserved.
Leisure-time physical activity and physical fitness of male adolescents in Oman.
Khoo, Selina; Al-Shamli, Ali Khalifa
2012-01-01
This study investigated the relationship between leisure-time physical activity and physical fitness (cardiovascular fitness, body fat percentage, flexibility, muscle strength, and endurance) of 10th-grade male students in Oman. Data were collected from 330 students. All participants completed a descriptive questionnaire, a 1 mile walk/run test; a skinfold analysis of the chest, abdomen, and thigh; a sit and reach test; a hand grip test; and a 1-minute sit-up test. Students spent an average of 19.20 ± 6.77 hours on sedentary activities, 3.46 ± 2.11 hours on sports activities, and 11.22 ± 9.24 hours working per week. The students had an average body fat percentage of 6.38% ± 4.67%, muscle strength 38.04 ± 7.55 kg, flexibility 38.01 ± 7.41 cm, abdominal muscle endurance 38.85 ± 8.15 times/min, and cardiovascular endurance 8.10 ± 1.65 minutes.
Stock, Roland; Mork, Paul Jarle
2009-09-01
To investigate the effect of two weeks of intensive exercise on leg function in chronic stroke patients and to evaluate the feasibility of an intensive exercise programme in a group setting. Pilot study with one-group pre-test post-test design with two pre-tests and one-year follow-up. Inpatient rehabilitation hospital. Twelve hemiparetic patients completed the intervention. Ten patients participated at one-year follow-up. Six hours of daily intensive exercise for two weeks with focus on weight-shifting towards the affected side and increased use of the affected extremity during functional activities. An insole with nubs in the shoe of the non-paretic limb was used to reinforce weight-shift toward the affected side. Timed Up and Go, Four Square Step Test, gait velocity, gait symmetry and muscle strength in knee and ankle muscles. Maximal gait velocity (P = 0.002) and performance time (seconds) on Timed Up and Go (mean, SD; 12.2, 3.8 vs. 9.4, 3.2) and Four Square Step Test improved from pre- to post-test (P = 0.005). Improvements remained significant at follow-up. Preferred gait velocity and gait symmetry remained unchanged. Knee extensor (P<50.009) and flexor (P<50.001) strength increased bilaterally from pre- to post-test but only knee flexor strength remained significant at follow-up. Ankle dorsi flexor (P = 0.02) and plantar flexor (P<0.001) strength increased on paretic side only (not tested at follow-up). Intensive exercise for lower extremity is feasible in a group setting and was effective in improving ambulatory function, maximal gait velocity and muscle strength in chronic stroke patients. Most improvements persisted at the one-year follow-up.
ERIC Educational Resources Information Center
Mahony, Kate; Hunt, Adrienne; Daley, Deborah; Sims, Susan; Adams, Roger
2009-01-01
Reliability and measurement precision of manual muscle testing (MMT) and hand-held dynamometry (HHD) were compared for children with spina bifida. Strength measures were obtained of the hip flexors, hip abductors, and knee extensors of 20 children (10 males, 10 females; mean age 9 years 10 months; range: 5 to 15 years) by two experienced physical…
Kim, Mi-Kyoung; Lee, Jung Chul; Yoo, Kyung-Tae
2018-03-01
[Purpose] The purpose of this study was to analyze the effects of pectoralis minor stretching and shoulder strengthening with an elastic band on balance and maximal shoulder muscle strength in young adults with rounded shoulder posture. [Subjects and Methods] Nineteen subjects with rounded shoulder posture were randomly divided into 2 groups: a shoulder stabilization exercise group and a stretching exercise group. The groups performed each exercise for 40 minutes, 3 times a week, for 4 weeks. Static balance (eyes open and closed), dynamic balance (the limits of stability in 4 directions) and shoulder muscle strength in 5 directions were measure before and after the exercises. [Results] The stretching exercise demonstrated a significant difference between the pre- and post-exercise in the static balance with eyes closed and extension and horizontal abduction strength while the stabilization exercise demonstrated significant difference in the left and right directions between the pre- and post-exercise of the dynamic balance and flexion strength. The stabilization exercise demonstrated significant differences shown in the flexion between the pre- and post-test. [Conclusion] The shoulder stabilization and stretching exercises improved the static balance, dynamic balance, and muscle strength.
Ryman Augustsson, Sofia; Ageberg, Eva
2017-01-01
The role of lower extremity (LE) muscle strength for predicting traumatic knee injury in youth athletes is largely unknown. The aim was to investigate the influence of LE muscle strength on traumatic knee injury in youth female and male athletes. 225 athletes (40% females) from sport senior high schools in Sweden were included in this case-control study. The athletes recorded any traumatic knee injury that had occurred during their high-school period in a web-based injury form. A one repetition maximum (1RM) barbell squat test was used to measure LE muscle strength. The 1RM was dichotomised to analyse 'weak' versus 'strong' athletes according to the median (weak median vs strong median ). 63 traumatic knee injuries, including 18 ACL injuries, were registered. The majority of injured female athletes were in the weak group compared with the strong group (p=0.0001). The odds of sustaining a traumatic knee injury and an ACL injury was 9.5 times higher and 7 times higher, respectively, in the weak median group compared with the strong median group in females (p ≤0.011). A relative 1RM squat ≤1.05 kg (105% of bodyweight) was established as the best cut-off value to distinguish high versus low risk of injury in female athletes. No strength-injury relationships were observed for the male athletes (p ≥0.348). Weaker LE muscle strength predicted traumatic knee injury in youth female athletes, but not in males. This suggests that LE muscle strength should be included in injury screening in youth female athletes.
Wang, Xiuyang; Ma, Yixuan; Wang, Jiazhong; Han, Peipei; Dong, Renwei; Kang, Li; Zhang, Wen; Shen, Suxing; Wang, Jing; Li, Dongfang; Zhou, Maoran; Wang, Liancheng; Niu, Kaijun; Guo, Qi
2016-01-01
Falls are common in older adults and result in adverse outcomes. Impaired mobility and poor muscle strength have been consistently identified as the main contributors to falls. We choose three easy-to-perform tests (i.e. Timed Up and Go test (TUGT), walking speed (WS) and grip strength (GS)) in order to assess mobility and muscle strength to further define their relationship with falls. This study is cross-sectional, consisting of 1092 residents over 60-year-old; 589 were female. 204 (18.68%) participants reported falling at least once in the past year. It was found that, of the three tests evaluated independently, a TUGT < 9.1750 s had the strongest association with fewer falls. When evaluating these tests as pairs, the combination of a TUGT < 9.1750 s and a WS < 0.9963 m/s was the best protective indicator of falls after adjusting for age, sex and other variables. When evaluating all three tests in conjunction with each other, the combination of a TUGT < 9.1750 s, a WS < 0.9963 m/s, and a GS > 0.3816 was most correlated with less possibility of falls. The combination of a better TUGT performance, a stronger GS, and a slower WS is the most strongly correlated with less possibility of falls. PMID:27146721
Jorgensen, Martin G; Laessoe, Uffe; Hendriksen, Carsten; Nielsen, Ole Bruno Faurholt; Aagaard, Per
2013-07-01
Older adults show increased risk of falling and major risk factors include impaired lower extremity muscle strength and postural balance. However, the potential positive effect of biofeedback-based Nintendo Wii training on muscle strength and postural balance in older adults is unknown. This randomized controlled trial examined postural balance and muscle strength in community-dwelling older adults (75±6 years) pre- and post-10 weeks of biofeedback-based Nintendo Wii training (WII, n = 28) or daily use of ethylene vinyl acetate copolymer insoles (controls [CON], n = 30). Primary end points were maximal muscle strength (maximal voluntary contraction) and center of pressure velocity moment during bilateral static stance. Intention-to-treat analysis with adjustment for age, sex, and baseline level showed that the WII group had higher maximal voluntary contraction strength (18%) than the control group at follow up (between-group difference = 269 N, 95% CI = 122; 416, and p = .001). In contrast, the center of pressure velocity moment did not differ (1%) between WII and CON at follow-up (between-group difference = 0.23 mm(2)/s, 95% CI = -4.1; 4.6, and p = .92). For secondary end points, pre-to-post changes favoring the WII group were evident in the rate of force development (p = .03), Timed Up and Go test (p = .01), short Falls Efficacy Scale-International (p = .03), and 30-second repeated Chair Stand Test (p = .01). Finally, participants rated the Wii training highly motivating at 5 and 10 weeks into the intervention. Biofeedback-based Wii training led to marked improvements in maximal leg muscle strength (maximal voluntary contraction; rate of force development) and overall functional performance in community-dwelling older adults. Unexpectedly, static bilateral postural balance remained unaltered with Wii training. The high level of participant motivation suggests that biofeedback-based Wii exercise may ensure a high degree of compliance to home- and/or community-based training in community-dwelling older adults.
Goldberg, Allon; Alexander, Neil B.
2010-01-01
Background Bending down and kneeling are fundamental tasks of daily living, yet nearly a quarter of older adults report having difficulty performing or being unable to perform these movements. Older adults with stooping, crouching, or kneeling (SCK) difficulty have demonstrated an increased fall risk. Strength (force-generating capacity) measures may be useful for determining both SCK difficulty and fall risk. Objective The purposes of this study were: (1) to examine muscle strength differences in older adults with and without SCK difficulty and (2) to examine the relative contributions of trunk and leg muscle strength to SCK difficulty. Design This was a cross-sectional observational study. Methods Community-dwelling older adults (age [X̅±SD]=75.5±6.0 years) with SCK difficulty (n=27) or without SCK difficulty (n=21) were tested for leg and trunk strength and functional mobility. Isometric strength at the trunk, hip, knee, and ankle also was normalized by body weight and height. Results Compared with older adults with no SCK difficulty, those with SCK difficulty had significant decreases in normalized trunk extensor, knee extensor, and ankle dorsiflexor and plantar-flexor strength. In 2 separate multivariate analyses, raw ankle plantar-flexor strength (odds ratio [OR]=0.97, 95% confidence interval [CI]=0.95–0.99) and normalized knee extensor strength (OR=0.61, 95% CI=0.44–0.82) were significantly associated with SCK difficulty. Stooping, crouching, and kneeling difficulty also correlated with measures of functional balance and falls. Limitations Although muscle groups that were key to rising from SCK were examined, there are other muscle groups that may contribute to safe SCK performance. Conclusions Decreased muscle strength, particularly when normalized for body size, predicts SCK difficulty. These data emphasize the importance of strength measurement at multiple levels in predicting self-reported functional impairment. PMID:19942678
Kea, J; Kramer, J; Forwell, L; Birmingham, T
2001-08-01
Single group, test-retest. To determine: (1) hip abduction and adduction torques during concentric and eccentric muscle actions, (2) medial and lateral one-leg hop distances, (3) the test-retest reliability of these measurements, and (4) the relationship between isokinetic measures of hip muscle strength and hop distances in elite ice hockey players. The skating motion used in ice hockey requires strong contractions of the hip and knee musculature. However, baseline scores for hip strength and hop distances, their test-retest reliability, and measures of the extent to which these tests are related for this population are not available. The dominant leg of 27 men (mean age 20 +/- 3 yrs) was tested on 2 occasions. Hip abduction and adduction movements were completed at 60 degrees.s(-1) angular velocity, with the subject lying on the non-test side and the test leg moving vertically in the subject's coronal plane. One-leg hops requiring jumping from and landing on the same leg without losing balance were completed in the medial and lateral directions. Hip adduction torques were significantly greater than abduction torques during both concentric and eccentric muscle actions, while no significant difference was observed between medial and lateral hop distances. Although hop test scores produced excellent ICCs (> 0.75) when determined using scores on 1 occasion, torques needed to be averaged over 2 test occasions to reach this level. Correlations between the strength and hop tests ranged from slight to low (r = -0.26 to 0.27) and were characterized by wide 95% confidence intervals (-0.54 to 0.61). Isokinetic tests of hip abduction and adduction did not provide a strong indication of performance during sideways hop tests. Although isokinetic tests can provide a measure of muscular strength under specific test conditions, they should not be relied upon as a primary indicator of functional abilities or readiness to return to activity.
Complex strength performance in patients with haemophilia A. Method development and testing.
Runkel, B; Kappelhoff, M; Hilberg, T
2015-01-01
The aim of this study was to develop a complex strength measurement method and to apply this new method for the first time in patients with haemophilia (PwH). 20 PwH with severe haemophilia A and 20 controls were included into the study. All subjects completed ten measurements of maximum isometric strength. Furthermore, the 20 control subjects completed re-test-measurements to evaluate the method. As a result, the method showed a high reliability (ICC 0.764 to 0.934). Between the two groups significant reductions in PwH between -(19-35%) were detected, regarding the relative force of the M. triceps brachii (-19%; p = 0.008), M. biceps brachii (-19%; p = 0.031), M. latissimus dorsi (-17%; p = 0.019), M. biceps femoris right (-20%; p = 0.036) and M. quadriceps femoris (right: -29%; p = 0.004; left: -35%; p = 0.002). No differences were found for M. rectus abdominis and in the hand strength. Thus, there is no general deficit in the muscle strength in PwH. The most obvious deficits exist in the upper and lower extremities and in the back muscles. PwH should carry out complex muscle strength training and integrate it early into a comprehensive treatment concept.
EFFECTS OF DIFFERENT DURATION EXERCISE PROGRAMS IN CHILDREN WITH SEVERE BURNS
Clayton, Robert P.; Wurzer, Paul; Andersen, Clark R.; Mlcak, Ronald P.; Herndon, David N.; Suman, Oscar E.
2016-01-01
Introduction Burns lead to persistent and detrimental muscle breakdown and weakness. Standard treatment at our institution includes a voluntary 12-week rehabilitative exercise program to limit and reverse the effects of increased muscle catabolism. In the present work, we investigated if different durations of exercise, 6 or 12 weeks, produce comparable improvements in muscle strength, body composition, and cardiopulmonary fitness. Methods We prospectively enrolled and randomized patients with ≥30% total body surface area (TBSA) burned to receive 6- or 12-weeks of exercise rehabilitation. Patients were evaluated for muscle strength, oxygen consumption capacity, and lean body mass at discharge (n = 42) and post exercise. After 6 weeks (n = 18) or 12 weeks (n = 24) of exercise training, leg muscle strength was assessed as peak torque per body weight using a Biodex Isokinetic Dynamometer. Oxygen consumption capacity, measured as peak VO2, was studied using a standard treadmill-based test, and lean body mass was determined using dual-energy X-ray absorptiometry. Results Significant improvements in muscle strength, peak VO2, and lean body mass were seen after 6 weeks of exercise training (p<0.001), with only significant improvements in peak VO2 being seen after 6 weeks more of training. Conclusion These data suggest that a 6-week rehabilitative exercise program is sufficient for improving muscle strength, body composition, and cardiopulmonary fitness in pediatric burn patients. However, continuation of at- or near-home cardiopulmonary training following the 6 weeks of at-hospital rehabilitation may be useful. PMID:27908464
Isokinetic Extension Strength Is Associated With Single-Leg Vertical Jump Height.
Fischer, Felix; Blank, Cornelia; Dünnwald, Tobias; Gföller, Peter; Herbst, Elmar; Hoser, Christian; Fink, Christian
2017-11-01
Isokinetic strength testing is an important tool in the evaluation of the physical capacities of athletes as well as for decision making regarding return to sports after anterior cruciate ligament (ACL) reconstruction in both athletes and the lay population. However, isokinetic testing is time consuming and requires special testing equipment. A single-jump test, regardless of leg dominance, may provide information regarding knee extension strength through the use of correlation analysis of jump height and peak torque of isokinetic muscle strength. Cross-sectional study; Level of evidence, 3. A total of 169 patients who underwent ACL reconstruction were included in this study. Isokinetic testing was performed on the injured and noninjured legs. Additionally, a single-leg countermovement jump was performed to assess jump height using a jump accelerometer sensor. Extension strength values were used to assess the association between isokinetic muscle strength and jump height. The sample consisted of 60 female (mean age, 20.8 ± 8.3 years; mean weight, 61.7 ± 6.5 kg; mean height, 167.7 ± 5.3 cm) and 109 male (mean age, 23.2 ± 7.7 years; mean weight, 74.6 ± 10.2 kg; mean height, 179.9 ± 6.9 cm) patients. Bivariate correlation analysis showed an association ( r = 0.56, P < .001) between jump height and isokinetic extension strength on the noninvolved side as well as an association ( r = 0.52, P < .001) for the involved side. Regression analysis showed that in addition to jump height (beta = 0.49, P < .001), sex (beta = -0.17, P = .008) and body mass index (beta = 0.37, P < .001) affected isokinetic strength. The final model explained 51.1% of the variance in isokinetic muscle strength, with jump height having the strongest impact (beta = 0.49, P < .001) and explaining 31.5% of the variance. Initial analysis showed a strong association between isokinetic strength and jump height. The study population encompassed various backgrounds, skill levels, and activity profiles, which might have affected the outcome. Even after controlling for age and sex, isokinetic strength was still moderately associated with jump height. Therefore, the jump technique and type of sport should be considered in future research.
Reliability of doming and toe flexion testing to quantify foot muscle strength.
Ridge, Sarah Trager; Myrer, J William; Olsen, Mark T; Jurgensmeier, Kevin; Johnson, A Wayne
2017-01-01
Quantifying the strength of the intrinsic foot muscles has been a challenge for clinicians and researchers. The reliable measurement of this strength is important in order to assess weakness, which may contribute to a variety of functional issues in the foot and lower leg, including plantar fasciitis and hallux valgus. This study reports 3 novel methods for measuring foot strength - doming (previously unmeasured), hallux flexion, and flexion of the lesser toes. Twenty-one healthy volunteers performed the strength tests during two testing sessions which occurred one to five days apart. Each participant performed each series of strength tests (doming, hallux flexion, and lesser toe flexion) four times during the first testing session (twice with each of two raters) and two times during the second testing session (once with each rater). Intra-class correlation coefficients were calculated to test for reliability for the following comparisons: between raters during the same testing session on the same day (inter-rater, intra-day, intra-session), between raters on different days (inter-rater, inter-day, inter-session), between days for the same rater (intra-rater, inter-day, inter-session), and between sessions on the same day by the same rater (intra-rater, intra-day, inter-session). ICCs showed good to excellent reliability for all tests between days, raters, and sessions. Average doming strength was 99.96 ± 47.04 N. Average hallux flexion strength was 65.66 ± 24.5 N. Average lateral toe flexion was 50.96 ± 22.54 N. These simple tests using relatively low cost equipment can be used for research or clinical purposes. If repeated testing will be conducted on the same participant, it is suggested that the same researcher or clinician perform the testing each time for optimal reliability.
Promoting balance and strength in the middle-aged workforce.
Granacher, U; Wick, C; Rueck, N; Esposito, C; Roth, R; Zahner, L
2011-01-01
The prevalence of sustaining fall-related injuries is high in the middle-aged workforce. Deficits in postural control/muscle strength represent important fall-risk factors. The objective of this study was to examine the impact of balance and strength training followed by detraining on postural control and muscle strength in the workforce. Thirty-two adults with sedentary office work participated in this study and were assigned to an intervention (age 56.0 ± 3.7 yrs) or a control group (age 55.5 ± 3.4 yrs). The intervention group participated in 8 weeks of balance and strength training conducted at the worksite, followed by 8 weeks of detraining. Tests included the measurement of (a) total centre of pressure (COP) displacements during one-legged standing, (b) gait velocity and stride-to-stride variability, (c) peak isometric/isokinetic torque and rate of torque development (RTD) of the plantar flexors, and (d) jumping height. After training, significant improvements in COP displacements, gait velocity, peak isometric/isokinetic torque, RTD, and jumping height were observed. During detraining, muscle strength deteriorated, whereas postural control improved. This fall-preventive training program conducted at the worksite proved to be feasible and effective. It is suggested that this training program should be permanently conducted to maintain/improve muscle strength. © Georg Thieme Verlag KG Stuttgart · New York.
Hyngstrom, Allison S; Murphy, Spencer A; Nguyen, Jennifer; Schmit, Brian D; Negro, Francesco; Gutterman, David D; Durand, Matthew J
2018-05-01
Ischemic conditioning (IC) on the arm or leg has emerged as an intervention to improve strength and performance in healthy populations, but the effects on neurological populations are unknown. The purpose of this study was to quantify the effects of a single session of IC on knee extensor strength and muscle activation in chronic stroke survivors. Maximal knee extensor torque measurements and surface EMG were quantified in 10 chronic stroke survivors (>1 yr poststroke) with hemiparesis before and after a single session of IC or sham on the paretic leg. IC consisted of 5 min of compression with a proximal thigh cuff (inflation pressure = 225 mmHg for IC or 25 mmHg for sham) followed by 5 min of rest. This was repeated five times. Maximal knee extensor strength, EMG magnitude, and motor unit firing behavior were measured before and immediately after IC or sham. IC increased paretic leg strength by 10.6 ± 8.5 Nm, whereas no difference was observed in the sham group (change in sham = 1.3 ± 2.9 Nm, P = 0.001 IC vs. sham). IC-induced increases in strength were accompanied by a 31 ± 15% increase in the magnitude of muscle EMG during maximal contractions and a 5% decrease in motor unit recruitment thresholds during submaximal contractions. Individuals who had the most asymmetry in strength between their paretic and nonparetic legs had the largest increases in strength ( r 2 = 0.54). This study provides evidence that a single session of IC can increase strength through improved muscle activation in chronic stroke survivors. NEW & NOTEWORTHY Present rehabilitation strategies for chronic stroke survivors do not optimally activate paretic muscle, and this limits potential strength gains. Ischemic conditioning of a limb has emerged as an effective strategy to improve muscle performance in healthy individuals but has never been tested in neurological populations. In this study, we show that ischemic conditioning on the paretic leg of chronic stroke survivors can increase leg strength and muscle activation while reducing motor unit recruitment thresholds.
2014-01-01
Background The effects of protein supplementation on muscle thickness, strength and fatigue seem largely dependent on its composition. The current study compared the effects of soluble milk protein, micellar casein, and a placebo on strength and fatigue during and after a resistance training program. Methods Sixty-eight physically active men participated in this randomized controlled trial and underwent 10 weeks of lower-body resistance training. Participants were randomly assigned to the Placebo (PLA), Soluble Milk Protein (SMP, with fast digestion rate) or Micellar Casein (MC, with slow digestion rate) group. During the 10-week training period, participants were instructed to take 30 g of the placebo or protein twice a day, or three times on training days. Tests were performed on quadriceps muscles at inclusion (PRE), after 4 weeks (MID) and after 10 weeks (POST) of training. They included muscle endurance (maximum number of repetitions during leg extensions using 70% of the individual maximal load), fatigue (decrease in muscle power after the endurance test), strength, power and muscle thickness. Results Muscle fatigue was significantly lower (P < 0.05) in the SMP group at MID and POST (-326.8 ± 114.1 W and -296.6 ± 130.1 W, respectively) as compared with PLA (-439.2 ± 153.9 W and -479.2 ± 138.1 W, respectively) and MC (-415.1 ± 165.1 W and -413.7 ± 139.4 W, respectively). Increases in maximal muscle power, strength, endurance and thickness were not statistically different between groups. Conclusions The present study demonstrated that protein composition has a large influence on muscular performance after prolonged resistance training. More specifically, as compared with placebo or micellar casein, soluble milk protein (fast digestible) appeared to significantly reduce muscle fatigue induced by intense resistance exercise. PMID:25057266
Babault, Nicolas; Deley, Gaëlle; Le Ruyet, Pascale; Morgan, François; Allaert, François André
2014-01-01
The effects of protein supplementation on muscle thickness, strength and fatigue seem largely dependent on its composition. The current study compared the effects of soluble milk protein, micellar casein, and a placebo on strength and fatigue during and after a resistance training program. Sixty-eight physically active men participated in this randomized controlled trial and underwent 10 weeks of lower-body resistance training. Participants were randomly assigned to the Placebo (PLA), Soluble Milk Protein (SMP, with fast digestion rate) or Micellar Casein (MC, with slow digestion rate) group. During the 10-week training period, participants were instructed to take 30 g of the placebo or protein twice a day, or three times on training days. Tests were performed on quadriceps muscles at inclusion (PRE), after 4 weeks (MID) and after 10 weeks (POST) of training. They included muscle endurance (maximum number of repetitions during leg extensions using 70% of the individual maximal load), fatigue (decrease in muscle power after the endurance test), strength, power and muscle thickness. Muscle fatigue was significantly lower (P < 0.05) in the SMP group at MID and POST (-326.8 ± 114.1 W and -296.6 ± 130.1 W, respectively) as compared with PLA (-439.2 ± 153.9 W and -479.2 ± 138.1 W, respectively) and MC (-415.1 ± 165.1 W and -413.7 ± 139.4 W, respectively). Increases in maximal muscle power, strength, endurance and thickness were not statistically different between groups. The present study demonstrated that protein composition has a large influence on muscular performance after prolonged resistance training. More specifically, as compared with placebo or micellar casein, soluble milk protein (fast digestible) appeared to significantly reduce muscle fatigue induced by intense resistance exercise.
Alvarenga, Guilherme Medeiros de; Charkovski, Simone Arando; Santos, Larissa Kelin Dos; Silva, Mayara Alves Barbosa da; Tomaz, Guilherme Oliveira; Gamba, Humberto Remigio
2018-01-01
Aging is progressive, and its effects on the respiratory system include changes in the composition of the connective tissues of the lung that influence thoracic and lung compliance. The Powerbreathe® K5 is a device used for inspiratory muscle training with resistance adapted to the level of the inspiratory muscles to be trained. The Pilates method promotes muscle rebalancing exercises that emphasize the powerhouse. The aim of this study was to evaluate the influence of inspiratory muscle training combined with the Pilates method on lung function in elderly women. The participants were aged sixty years or older, were active women with no recent fractures, and were not gait device users. They were randomly divided into a Pilates with inspiratory training group (n=11), a Pilates group (n=11) and a control group (n=9). Spirometry, manovacuometry, a six-minute walk test, an abdominal curl-up test, and pulmonary variables were assessed before and after twenty intervention sessions. The intervention led to an increase in maximal inspiratory muscle strength and pressure and power pulmonary variables (p<0.0001), maximal expiratory muscle strength (p<0.0014), six-minute walk test performance (p<0.01), and abdominal curl-up test performance (p<0.00001). The control group showed no differences in the analyzed variables (p>0.05). The results of this study suggest inspiratory muscle training associated with the Pilates method provides an improvement in the lung function and physical conditioning of elderly patients.
Reimberg, Mariana Mazzuca; Castro, Rejane Agnelo Silva; Selman, Jessyca Pachi Rodrigues; Meneses, Aline Santos; Politti, Fabiano; Mallozi, Márcia Carvalho; Wandalsen, Gustavo Falbo; Solé, Dirceu; De Angelis, Kátia; Dal Corso, Simone; Lanza, Fernanda Cordoba
2015-08-13
Individuals with chronic lung disease are more susceptible to present reduction in exercise tolerance and muscles strength not only due to pulmonary limitations but also due systemic repercussions of the pulmonary disease. The aim of this study is to assess the physical capacity, peripheral muscle function, physical activity in daily life, and the inflammatory markers in children and adolescents with asthma after pulmonary rehabilitation program. This is a study protocol of randomized controlled trial in asthmatic patients between 6 to 18 years old. The assessments will be conducted in three different days and will be performed at the beginning and at the end of the protocol. First visit: quality of life questionnaire, asthma control questionnaire, pre- and post-bronchodilator spirometry (400 μcg salbutamol), inflammatory assessment (blood collection), and cardiopulmonary exercise test on a cycle ergometer to determine aerobic capacity. Second visit: assessment of strength and endurance of the quadriceps femoris and biceps brachii muscles with concomitant electromyography to assess peripheral muscle strength. Third visit: incremental shuttle walk test (ISWT) and accelerometer to evaluate functional capacity and physical activity in daily life during 7 days. Then, the volunteers will be randomized to receive pulmonary rehabilitation program (intervention group) or chest physiotherapy + stretching exercises (control group). Both groups will have a supervised session, twice a week, each session will have 60 minutes duration, with minimum interval of 24 hours, for a period of 8 weeks. Intervention group: aerobic training (35 minutes) intensity between 60 to 80 % of the maximum workload of cardiopulmonary exercise testing or of ISWT; strength muscle training will be applied to the quadriceps femoris, biceps brachii and deltoid muscles (intensity: 40 to 70 % of maximal repetition, 3 x 8 repetition); finally the oral high-frequency oscillation device (Flutter®) will be used for 5 minutes. The control group: oral high-frequency oscillation device (Flutter®) for 10 minutes followed by the stretching of upper and lower limbs for 40 minutes. It is expected to observe the improvement in aerobic capacity, physical activity in daily life, muscle strength and quality of life of patients in the intervention group, and reduction in inflammatory markers. NCT02383069. Data of registration: 03/03/2015.
Laboratory or Field Tests for Evaluating Firefighters' Work Capacity?
Lindberg, Ann-Sofie; Oksa, Juha; Malm, Christer
2014-01-01
Muscle strength is important for firefighters work capacity. Laboratory tests used for measurements of muscle strength, however, are complicated, expensive and time consuming. The aims of the present study were to investigate correlations between physical capacity within commonly occurring and physically demanding firefighting work tasks and both laboratory and field tests in full time (N = 8) and part-time (N = 10) male firefighters and civilian men (N = 8) and women (N = 12), and also to give recommendations as to which field tests might be useful for evaluating firefighters' physical work capacity. Laboratory tests of isokinetic maximal (IM) and endurance (IE) muscle power and dynamic balance, field tests including maximal and endurance muscle performance, and simulated firefighting work tasks were performed. Correlations with work capacity were analyzed with Spearman's rank correlation coefficient (rs). The highest significant (p<0.01) correlations with laboratory and field tests were for Cutting: IE trunk extension (rs = 0.72) and maximal hand grip strength (rs = 0.67), for Stairs: IE shoulder flexion (rs = −0.81) and barbell shoulder press (rs = −0.77), for Pulling: IE shoulder extension (rs = −0.82) and bench press (rs = −0.85), for Demolition: IE knee extension (rs = 0.75) and bench press (rs = 0.83), for Rescue: IE shoulder flexion (rs = −0.83) and bench press (rs = −0.82), and for the Terrain work task: IE trunk flexion (rs = −0.58) and upright barbell row (rs = −0.70). In conclusion, field tests may be used instead of laboratory tests. Maximal hand grip strength, bench press, chin ups, dips, upright barbell row, standing broad jump, and barbell shoulder press were strongly correlated (rs≥0.7) with work capacity and are therefore recommended for evaluating firefighters work capacity. PMID:24614596
Konrath, Jason M; Vertullo, Christopher J; Kennedy, Ben A; Bush, Hamish S; Barrett, Rod S; Lloyd, David G
2016-10-01
The hamstring tendon graft used in anterior cruciate ligament (ACL) reconstruction has been shown to lead to changes to the semitendinosus and gracilis musculature. We hypothesized that (1) loss of donor muscle size would significantly correlate with knee muscle strength deficits, (2) loss of donor muscle size would be greater for muscles that do not experience tendon regeneration, and (3) morphological adaptations would also be evident in nondonor knee muscles. Cross-sectional study; Level of evidence, 3. Twenty participants (14 men and 6 women, mean age 29 ± 7 years, mean body mass 82 ± 15 kg) who had undergone an ACL reconstruction with a hamstring tendon graft at least 2 years previously underwent bilateral magnetic resonance imaging and subsequent strength testing. Muscle and tendon volumes, peak cross-sectional areas (CSAs), and lengths were determined for 12 muscles and 6 functional muscle groups of the surgical and contralateral limbs. Peak isokinetic concentric strength was measured in knee flexion/extension and internal/external tibial rotation. Only 35% of the patients showed regeneration of both the semitendinosus and gracilis tendons. The regenerated tendons were longer with larger volume and CSA compared with the contralateral side. Deficits in semitendinosus and gracilis muscle size were greater for muscles in which tendons did not regenerate. In addition, combined hamstring muscles (semitendinosus, semimembranosus, and biceps femoris) and combined medial knee muscles (semitendinosus, semimembranosus, gracilis, vastus medialis, medial gastrocnemius, and sartorius) on the surgical side were reduced in volume by 12% and 10%, respectively. A 7% larger volume was observed in the surgical limb for the biceps femoris muscle and corresponded with a lower internal/external tibial rotation strength ratio. The difference in volume, peak CSA, and length of the semitendinosus and gracilis correlated significantly with the deficit in knee flexion strength, with Pearson correlations of 0.51, 0.57, and 0.61, respectively. The muscle-tendon properties of the semitendinosus and gracilis are substantially altered after harvesting, and these alterations may contribute to knee flexor weakness in the surgical limb. These deficits are more pronounced in knees with tendons that do not regenerate and are only partially offset by compensatory hypertrophy of other hamstring muscles. © 2016 The Author(s).
Chronic exercise preserves lean muscle mass in masters athletes.
Wroblewski, Andrew P; Amati, Francesca; Smiley, Mark A; Goodpaster, Bret; Wright, Vonda
2011-09-01
Aging is commonly associated with a loss of muscle mass and strength, resulting in falls, functional decline, and the subjective feeling of weakness. Exercise modulates the morbidities of muscle aging. Most studies, however, have examined muscle-loss changes in sedentary aging adults. This leaves the question of whether the changes that are commonly associated with muscle aging reflect the true physiology of muscle aging or whether they reflect disuse atrophy. This study evaluated whether high levels of chronic exercise prevents the loss of lean muscle mass and strength experienced in sedentary aging adults. A cross-section of 40 high-level recreational athletes ("masters athletes") who were aged 40 to 81 years and trained 4 to 5 times per week underwent tests of health/activity, body composition, quadriceps peak torque (PT), and magnetic resonance imaging of bilateral quadriceps. Mid-thigh muscle area, quadriceps area (QA), subcutaneous adipose tissue, and intramuscular adipose tissue were quantified in magnetic resonance imaging using medical image processing, analysis, and visualization software. One-way analysis of variance was used to examine age group differences. Relationships were evaluated using Spearman correlations. Mid-thigh muscle area (P = 0.31) and lean mass (P = 0.15) did not increase with age and were significantly related to retention of mid-thigh muscle area (P < 0.0001). This occurred despite an increase in total body fat percentage (P = 0.003) with age. Mid-thigh muscle area (P = 0.12), QA (P = 0.17), and quadriceps PT did not decline with age. Specific strength (strength per QA) did not decline significantly with age (P = 0.06). As muscle area increased, PT increased significantly (P = 0.008). There was not a significant relationship between intramuscular adipose tissue (P = 0.71) or lean mass (P = 0.4) and PT. This study contradicts the common observation that muscle mass and strength decline as a function of aging alone. Instead, these declines may signal the effect of chronic disuse rather than muscle aging. Evaluation of masters athletes removes disuse as a confounding variable in the study of lower-extremity function and loss of lean muscle mass. This maintenance of muscle mass and strength may decrease or eliminate the falls, functional decline, and loss of independence that are commonly seen in aging adults.
Quantitative muscle ultrasound and quadriceps strength in patients with post-polio syndrome.
Bickerstaffe, Alice; Beelen, Anita; Zwarts, Machiel J; Nollet, Frans; van Dijk, Johannes P
2015-01-01
We investigated whether muscle ultrasound can distinguish muscles affected by post-polio syndrome (PPS) from healthy muscles and whether severity of ultrasound abnormalities is associated with muscle strength. Echo intensity, muscle thickness, and isometric strength of the quadriceps muscles were measured in 48 patients with PPS and 12 healthy controls. Patients with PPS had significantly higher echo intensity and lower muscle thickness than healthy controls. In patients, both echo intensity and muscle thickness were associated independently with muscle strength. A combined measure of echo intensity and muscle thickness was more strongly related to muscle strength than either parameter alone. Quantitative ultrasound distinguishes healthy muscles from those affected by PPS, and measures of muscle quality and quantity are associated with muscle strength. Hence, ultrasound could be a useful tool for assessing disease severity and monitoring changes resulting from disease progression or clinical intervention in patients with PPS. © 2014 Wiley Periodicals, Inc.
Wang, Yao; Shao, Wei-bo; Gao, Li; Lu, Jie; Gu, Hao; Sun, Li-hua; Tan, Yan; Zhang, Ying-dong
2014-01-01
There have been limited comparative data regarding the investigations on pulmonary and respiratory muscle function in the patients with different parkinsonism disorders such as Parkinson's disease (PD) and multiple system atrophy (MSA) versus normal elderly. The present study is aiming to characterize the performance of pulmonary function and respiratory muscle strength in PD and MSA, and to investigate the association with severity of motor symptoms and disease duration. Pulmonary function and respiratory muscle strength tests were performed in 30 patients with PD, 27 with MSA as well as in 20 age-, sex-, height-, weight-matched normal elderly controls. All the patients underwent United Parkinson's disease rating scale (UPDRS) or united multiple system atrophy rating scale (UMSARS) separately as diagnosed. Vital capacity, forced expiratory volume in 1 second and forced vital capacity decreased, residual volume and ratio of residual volume to total lung capacity increased in both PD and MSA groups compared to controls (p<0.05). Diffusing capacity was decreased in the MSA group, compared with PD and normal elderly control groups (p<0.05). Respiratory muscle strength was lower in both PD and MSA groups than in controls (p<0.05). The values representing spirometry function and respiratory muscle strength were found to have a negative linear correlation with mean score of UPDRS-III in PD and mean score of UMSARS-I in MSA. Respiratory muscle strength showed a negative linear correlation with the mean score of UMSARS-II and disease duration in MSA patients. These findings suggest that respiratory dysfunction is involved in PD and MSA. Respiratory muscle strength is remarkably reduced, and some of the parameters correlate with disease duration and illness severity. The compromised respiratory function in neurodegenerative disorders should be the focus of further researches.
Muscle strength in breast cancer patients receiving different treatment regimes
Klassen, Oliver; Schmidt, Martina E.; Ulrich, Cornelia M.; Schneeweiss, Andreas; Potthoff, Karin; Steindorf, Karen
2016-01-01
Abstract Background Muscle dysfunction and sarcopenia have been associated with poor performance status, an increased mortality risk, and greater side effects in oncologic patients. However, little is known about how performance is affected by cancer therapy. We investigated muscle strength in breast cancer patients in different adjuvant treatment settings and also compared it with data from healthy individuals. Methods Breast cancer patients (N = 255) from two randomized controlled exercise trials, staged 0–III and aged 54.4 ± 9.4 years, were categorized into four groups according to their treatment status. In a cross‐sectional design, muscle function was assessed bilaterally by isokinetic dynamometry (0°, 60°, 180°/s) as maximal voluntary isometric contraction (MVIC) and maximal isokinetic peak torque (MIPT) in shoulder rotators and knee flexors and extensors. Additionally, muscular fatigue index (FI%) and shoulder flexibility were evaluated. Healthy women (N = 26), aged 53.3 ± 9.8 years, were tested using the same method. Analysis of covariance was used to estimate the impact of different cancer treatments on skeletal muscle function with adjustment for various clinical and socio‐demographic factors. Results Consistently, lower muscle strength was measured in shoulder and knee strength in patients after chemotherapy. On average, patients had up to 25% lower strength in lower extremities and 12–16% in upper extremities in MVIC and MIPT during cancer treatment compared with healthy women. No substantial difference between patient groups in shoulder strength, but significantly lower shoulder flexibility in patients with radical mastectomy was measured. Chemotherapy‐treated patients had consistently higher FI%. No serious adverse events were reported. Conclusions Breast cancer patients showed markedly impaired muscle strength and joint dysfunctions before and after anticancer treatment. The significant differences between patients and healthy individuals underline the need of exercise therapy as early as possible in order to prevent or counteract the loss of muscle function after curative surgery as well as the consequences of neo‐/adjuvant chemotherapy. PMID:27896952
Force-velocity property of leg muscles in individuals of different level of physical fitness
Cuk, Ivan; Mirkov, Dragan; Nedeljkovic, Aleksandar; Kukolj, Milos; Ugarkovic, Dusan; Jaric, Slobodan
2016-01-01
The present study explored the method of testing muscle mechanical properties through the linear force-velocity (F–V) relationships obtained from loaded vertical jumps. Specifically, we hypothesised that the F-V relationship parameters depicting the force, power, and velocity of the tested muscles will differ among individuals of different physical fitness. Strength trained, physically active, and sedentary male participants (N=10+10+10; age 20–29 years) were tested on maximum countermovement and squat jumps where manipulation of external loads provided a range of F and V data. The observed F–V relationships of the tested leg muscles were approximately linear and mainly strong (median correlation coefficients ranged from 0.77 to 0.92; all p < 0.05), independently of either the tested group or the jump type. The maximum power revealed higher values in the strength trained than in the physically active and sedentary participants. This difference originated from the differences in F-intercepts, rather than from the V-intercepts. We conclude that the observed parameters could be sensitive enough to detect the differences among both the individuals of different physical fitness and various jump types. The present findings support using loaded vertical jumps and, possibly, other maximum performance multi-joint movements for the assessment of mechanical properties of active muscles. PMID:27111493
Larivière, Christian; Gravel, Denis; Gagnon, Denis; Gardiner, Phillip; Bertrand Arsenault, A; Gaudreault, Nathaly
2006-11-01
Gender difference in the fatigability of muscles can be attributed to muscle mass (or strength) and associated level of vascular occlusion, substrate utilization, muscle composition, and neuromuscular activation patterns. The purpose of this study was to assess the role of neuromuscular activation patterns to explain gender differences in back muscle fatigability during intermittent isometric tasks. Sixteen males and 15 females performed maximal voluntary contractions (Strength) and a fatigue test to exhaustion (fatigue criterion=time to exhaustion), while standing in a static dynamometer measuring L5/S1 extension moment. The fatigue test consisted of repetitions of an 8-s cycle (1.5 s ramp to reach 40% of maximal voluntary contraction +5s plateau at 40% of maximal voluntary contraction +1.5s rest). Surface electromyography signals were collected bilaterally from 4 back muscles (multifidus at the L5 level, iliocostalis lumborum at L3, and longissimus at L1 and T10). Males were stronger (P<0.05) than females (316, SD 82>196, SD 25 Nm) but showed significantly shorter time-to-exhaustion values (7.1, SD 5.2<13.0, SD 6.1 min.), the latter result being corroborated by electromyographic indices of fatigue. However, the gender effect on time to exhaustion disappeared when accounting for Strength, thus supporting the muscle mass hypothesis. Among the various electromyographic indices computed to assess neuromuscular activation patterns, the amount of alternating activity between homolateral and between contralateral muscles showed a gender effect (females>males). These results support the muscle mass hypothesis as well as the neuromuscular activation hypothesis to explain gender differences in back muscle fatigability.
Borges, Daniel L; Silva, Mayara Gabrielle; Silva, Luan Nascimento; Fortes, João Vyctor; Costa, Erika Thalita; Assunção, Rebeca Pessoa; Lima, Carlos Magno; da Silva Nina, Vinícius José; Bernardo-Filho, Mário; Caputo, Danúbia Sá
2016-09-01
Physical activity is beneficial in several clinical situations and recommended for patients with ischemic heart disease, as well as for those undergoing cardiac surgery. In a randomized controlled trial, 34 patients underwent coronary artery bypass grafting. A randomized control group (n = 15) submitted to conventional physiotherapy. The intervention group (n = 19) received the same protocol plus additional aerobic exercise with cycle ergometer. Pulmonary function by spirometry, respiratory muscle strength by manovacuometry, and functional capacity through 6-minute walking test was assessed before surgery and at hospital discharge. There was significant reduction in pulmonary function in both groups. In both groups, inspiratory muscle strength was maintained while expiratory muscle strength significantly decreased. Functional capacity was maintained in the intervention group (364.5 [324.5 to 428] vs. 348 [300.7 to 413.7] meters, P = .06), but it decreased significantly in control group patients (320 [288.5 to 393.0] vs. 292 [237.0 to 336.0] meters, P = .01). A significant difference in functional capacity was also found in intergroup analyses at hospital discharge (P = .03). Aerobic exercise applied early on coronary artery bypass grafting patients may promote maintenance of functional capacity, with no impact on pulmonary function and respiratory muscle strength when compared with conventional physiotherapy.
Co-activation: its association with weakness and specific neurological pathology
Busse, Monica E; Wiles, Charles M; van Deursen, Robert WM
2006-01-01
Background Net agonist muscle strength is in part determined by the degree of antagonist co-activation. The level of co-activation might vary in different neurological disorders causing weakness or might vary with agonist strength. Aim This study investigated whether antagonist co-activation changed a) with the degree of muscle weakness and b) with the nature of the neurological lesion causing weakness. Methods Measures of isometric quadriceps and hamstrings strength were obtained. Antagonist (hamstring) co-activation during knee extension was calculated as a ratio of hamstrings over quadriceps activity both during an isometric and during a functional sit to stand (STS) task (using kinematics) in groups of patients with extrapyramidal (n = 15), upper motor neuron (UMN) (n = 12), lower motor neuron (LMN) with (n = 18) or without (n = 12) sensory loss, primary muscle or neuromuscular junction disorder (n = 17) and in healthy matched controls (n = 32). Independent t-tests or Mann Witney U tests were used to compare between the groups. Correlations between variables were also investigated. Results In healthy subjects mean (SD) co-activation of hamstrings during isometric knee extension was 11.8 (6.2)% and during STS was 20.5 (12.9)%. In patients, co-activation ranged from 7 to 17% during isometric knee extension and 15 to 25% during STS. Only the extrapyramidal group had lower co-activation levels than healthy matched controls (p < 0.05). Agonist isometric muscle strength and co-activation correlated only in muscle disease (r = -0.6, p < 0.05) and during STS in UMN disorders (r = -0.7, p < 0.5). Conclusion It is concluded that antagonist co-activation does not systematically vary with the site of neurological pathology when compared to healthy matched controls or, in most patient groups, with strength. The lower co-activation levels found in the extrapyramidal group require confirmation and further investigation. Co-activation may be relevant to individuals with muscle weakness. Within patient serial studies in the presence of changing muscle strength may help to understand these relationships more clearly. PMID:17116259
Dowman, Leona; McDonald, Christine F; Hill, Catherine J; Lee, Annemarie; Barker, Kathryn; Boote, Claire; Glaspole, Ian; Goh, Nicole; Southcott, Annemarie; Burge, Angela; Ndongo, Rebecca; Martin, Alicia; Holland, Anne E
2016-09-01
To evaluate the inter-rater and intra-rater reliability of the hand held dynamometer in measuring muscle strength in people with interstitial lung disease (ILD). Test retest reliability of hand-held dynamometry for elbow flexor and knee extensor strength between two independent raters and two testing sessions. Physiotherapy department within a tertiary hospital. Thirty participants with ILD of varying aetiology were included. Twenty participants completed the inter-rater reliability protocol (10 idiopathic pulmonary fibrosis, mean (SD) age 73 (10) years, 11 male) and 21 participants completed the intra-rater reliability protocol (10 idiopathic pulmonary fibrosis, mean age 71 (10) years, 11 male). Mean muscle strength (kg). Agreement between the two raters and testing sessions was analyzed using Bland-Altman plots and reliability was estimated using intraclass correlation coefficients (ICC). For elbow flexor strength there was a mean difference between raters of -0.6kg (limits of agreement (LOA) -5.6 to 4.4kg) and within raters of -0.3kg (LOA -2.8 to 2.3kg). The ICCs were 0.95 and 0.98, respectively. For knee extensor strength there was a mean difference between raters of -1.5kg (LOA -6.9 to 3.9kg) and within raters of -0.7kg (LOA -3.9 to 2.4kg). The ICCs were 0.95 and 0.97, respectively. Hand-held dynamometry is reliable in measuring elbow flexor and knee extensor strength in people with ILD. Copyright © 2015 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
Association Between Neuromuscular Tests and Kumite Performance on The Brazilian Karate National Team
Roschel, Hamilton; Batista, Mauro; Monteiro, Rodrigo; Bertuzzi, Romulo C.; Barroso, Renato; Loturco, Irineu; Ugrinowitsch, Carlos; Tricoli, Valmor; Franchini, Emerson
2009-01-01
The aim of this study was to verify the relationship of strength and power with performance on an international level karate team during official kumite simulations. Fourteen male black belt karate athletes were submitted to anthropometric data collection and then performed the following tests on two different days: vertical jump test, bench press and squat maximum dynamic strength (1RM) tests. We also tested power production for both exercises at 30 and 60%1RM and performed a kumite match simulation. Blood samples were obtained at rest and immediately after the kumite matches to measure blood lactate concentration. Karate players were separated by performance (winners vs. defeated) on the kumite matches. We found no significant differences between winners and defeated for strength, vertical jump height, anthropometric data and blood lactate concentration. Interestingly, winners were more powerful in the bench press and squat exercises at 30% 1RM. Maximum strength was correlated with absolute (30% 1RM r = 0.92; 60% 1RM r = 0.63) and relative power (30% 1RM r = 0.74; 60% 1RM r = 0.11, p > 0.05) for the bench press exercise. We concluded that international level karate players’ kumite match performance are influenced by higher levels of upper and lower limbs power production. Key Points Muscle power at low workloads seems to be a reasonable predictor of karate performance. There are differences in neuromuscular characteristics between winners and defeated karate players among an international level karate team. Karate players rely more on muscle power, rather than on muscle strength. PMID:24474882
Optimal sagittal motion axis for trunk extension and flexion tests in chronic low back trouble.
Rantanen, P; Nykvist, F
2000-11-01
To find the optimal height for sagittal motion axis for trunk strength test in chronic low back trouble. Cross-sectional study. The strength of trunk muscles of low back pain patients is decreased. The measured strength depends on the height of the sagittal motion axis but the differences between patients and controls are not known. 114 (67 female) patients with chronic low back trouble are classified according to Quebec Task Force, 50 (31 female) patients with rheumatic disorder, but without low back trouble, and 33 (22 female) healthy controls, no appreciable physical differences but clear differences in Oswestry score. Isometric trunk extension-flexion test with different heights for the pelvic fulcrum. Force decreased in extension, increased in flexion, and torque increased both in flexion and extension in every group (P<0.001) as the fulcrum was moved caudally. The male controls were stronger than patients with low back trouble (P<0.01). The female controls were stronger only if the fulcrum was set at the hip joint level (P<0.05). There were no differences between patients with rheumatic disorder and low back trouble, except in extension if the fulcrum was at the hip joint level (P<0.02). The rotation axis in trunk extension-flexion strength test should be set at the level of the hip joint. Trunk muscle weakness is a common sign of different rheumatic disorders. Proper setting of sagittal motion axis and concomitant measurement of trunk and hip extensor or flexor muscles increases the specificity of the strength test for low back trouble.
Gait, Balance, Leg Strength, and Sprint Speed After Bedrest with LBNP Exercise
NASA Technical Reports Server (NTRS)
Boda, Wanda L.; Watenbaugh, D. E.; Ballard, R. E.; Fortney, S. M.; Ertl, A. C.; Lee, S. M. C.; William, J. M.; Hargens, Alan R.
1997-01-01
Microgravity and bedrest (BR) result in similar physiological decrements such as loss of muscle mass, muscle strength and balance. Previous studies analyzing exercise within lower body negative pressure (LBNP) have found that gait is similar in LBNP on a vertical treadmill and overground exercise on a horizontal treadmill. Since treadmill exercise is known to increase muscular strength and endurance, we tested the hypothesis that LBNP exercise on a vertical treadmill would prevent or attenuate many of the physical decrements which occur during bedrest. Based on our positive results from diverse tests of post-BR function, we believe that exercise within LBNP is worth pursuing as a countermeasure for reducing the physical deterioration that occurs during bedrest and microgravity.
Forestieri, Patrícia; Guizilini, Solange; Peres, Monique; Bublitz, Caroline; Bolzan, Douglas W.; Rocco, Isadora S.; Santos, Vinícius B.; Moreira, Rita Simone L.; Breda, João R.; de Almeida, Dirceu R.; Carvalho, Antonio Carlos de C.; Arena, Ross; Gomes, Walter J.
2016-01-01
Objective The purpose of this study was to evaluate the effect of a cycle ergometer exercise program on exercise capacity and inspiratory muscle function in hospitalized patients with heart failure awaiting heart transplantation with intravenous inotropic support. Methods Patients awaiting heart transplantation were randomized and allocated prospectively into two groups: 1) Control Group (n=11) - conventional protocol; and 2) Intervention Group (n=7) - stationary cycle ergometer exercise training. Functional capacity was measured by the six-minute walk test and inspiratory muscle strength assessed by manovacuometry before and after the exercise protocols. Results Both groups demonstrated an increase in six-minute walk test distance after the experimental procedure compared to baseline; however, only the intervention group had a significant increase (P=0.08 and P=0.001 for the control and intervention groups, respectively). Intergroup comparison revealed a greater increase in the intervention group compared to the control (P<0.001). Regarding the inspiratory muscle strength evaluation, the intragroup analysis demonstrated increased strength after the protocols compared to baseline for both groups; statistical significance was only demonstrated for the intervention group, though (P=0.22 and P<0.01, respectively). Intergroup comparison showed a significant increase in the intervention group compared to the control (P<0.01). Conclusion Stationary cycle ergometer exercise training shows positive results on exercise capacity and inspiratory muscle strength in patients with heart failure awaiting cardiac transplantation while on intravenous inotropic support. PMID:27982348
Use It or Lose It: Skeletal Muscle Function and Performance Results from Space Shuttle
NASA Technical Reports Server (NTRS)
Ryder, Jeffrey
2011-01-01
The Space Shuttle Program provided a wealth of valuable information regarding the adaptations of skeletal muscle to weightlessness. Studies conducted during the Extended Duration Orbiter Medical Project (EDOMP) represented ground breaking work on the effects of spaceflight on muscle form and function from applied human research to cellular adaptations. Results from detailed supplementary objective (DSO) 477 demonstrated that muscle strength losses could occur rapidly in response to short-duration spaceflight. The effects of spaceflight-induced unloading were primarily restricted to postural muscles such as those of the back as well as the knee extensors. DSO 606 provided evidence from MRI that the observed strength losses were partially accounted for by a reduction in the size of the individual muscles. Muscle biopsy studies conducted during DSO 475 were able to show muscle atrophy in individual muscle fibers from the quadriceps muscles. Reduced quadriceps muscle size and strength was also observed during the 17-d Life and Microgravity Spacelab mission aboard STS-78. Multiple maximal strength tests were conducted in flight on the calf muscles and it has been hypothesized that these high force contractions may have acted as a countermeasure. Muscle fiber mechanics were studied on calf muscle samples pre- and postflight. While some responses were crewmember specific, the general trend was that muscle fiber force production dropped and shortening velocity increased. The increased shortening velocity helped to maintain muscle fiber power. Numerous rodent studies performed during Shuttle missions suggest that many of the effects reported in Shuttle crewmembers could be due to lesions in the cellular signaling pathways that stimulate protein synthesis as well as an increase in the mechanisms that up-regulate protein breakdown. The results have important implications regarding the overall health and performance capabilities of future crewmembers that will venture beyond low-Earth orbit. Learning Objective: Overview of the Space Shuttle Program regarding adaptive changes in skeletal muscle function and performance, including what was learned from research and what was implemented for countermeasures.
Cobian, Daniel G; Koch, Cameron M; Amendola, Annunziato; Williams, Glenn N
2017-12-01
Study Design Descriptive, prospective single-cohort longitudinal study. Background Though rapid torque development is essential in activities of daily living and sports, it hasn't been specifically tested by most physical therapists or incorporated into rehabilitation programs until late in the treatment process. Little evidence is available on quadriceps torque development capacity before and after arthroscopic knee surgery. Objectives To study knee extensor rate of torque development, contributing mechanisms, and associations with strength and patient-reported outcomes before and during the first 6 weeks after arthroscopic partial meniscectomy. Methods Twenty subjects (mean ± SD age, 42.3 ± 13.7 years; body mass index, 26.6 ± 3.1 kg/m 2 ) were tested before surgery, and at 2 and 5 weeks after surgery. Quadriceps muscle volume, strength, activation, rate of torque development, and patient-reported outcomes were evaluated across the study period. Results Significant side-to-side differences in quadriceps strength and voluntary rate of torque development were observed at each time point (P<.05). Changes in muscle activity were associated with changes in rapid torque development capacity. Side-to-side rate of torque development deficits after surgery were associated with lower patient-reported outcomes scores. Conclusion Diminished rapid torque development capacity is common in arthroscopic meniscal debridement patients. This reduced capacity is associated with an inability to quickly recruit and drive the quadriceps muscles (neural mechanisms) and not muscle atrophy or other peripheral factors tested. Patient-reported outcomes are associated with quadriceps rate of torque development, but not strength or muscle size. Rapid torque development warrants greater attention in rehabilitation. J Orthop Sports Phys Ther 2017;47(12):945-956. Epub 9 Oct 2017. doi:10.2519/jospt.2017.7310.
Caplan, Nicholas; Christian Gibbon, Karl; Howatson, Glyn; Grant Thompson, Kevin
2016-01-01
Abstract This study aimed to determine the effects of a short-term, strength training intervention, typically undertaken by club-standard rowers, on 2,000 m rowing performance and strength and power development. Twenty-eight male rowers were randomly assigned to intervention or control groups. All participants performed baseline testing involving assessments of muscle soreness, creatine kinase activity (CK), maximal voluntary contraction (leg-extensors) (MVC), static-squat jumps (SSJ), counter-movement jumps (CMJ), maximal rowing power strokes (PS) and a 2,000 m rowing ergometer time-trial (2,000 m) with accompanying respiratory-exchange and electromyography (EMG) analysis. Intervention group participants subsequently performed three identical strength training (ST) sessions, in the space of five days, repeating all assessments 24 h following the final ST. The control group completed the same testing procedure but with no ST. Following ST, the intervention group experienced significant elevations in soreness and CK activity, and decrements in MVC, SSJ, CMJ and PS (p < 0.01). However, 2,000 m rowing performance, pacing strategy and gas exchange were unchanged across trials in either condition. Following ST, significant increases occurred for EMG (p < 0.05), and there were non-significant trends for decreased blood lactate and anaerobic energy liberation (p = 0.063 – 0.086). In summary, club-standard rowers, following an intensive period of strength training, maintained their 2,000 m rowing performance despite suffering symptoms of muscle damage and disruption to muscle function. This disruption likely reflected the presence of acute residual fatigue, potentially in type II muscle fibres as strength and power development were affected. PMID:28149354
Multivisceral Transplantation Rehabilitation Program-Case Report.
Loschi, T M; Cinacchi, M P R G; Baccan, M D T A; Marques, F; Pedroso, P T; Meira Filho, S P; Scacchetti, T; Pavão, D N
2018-04-01
Multivisceral transplantation is the treatment for multiple abdominal organ failure. The patient experiences reduced food intake and absorption of nutrients, contributing to weight loss and decreased muscle mass, reducing functional capacity. A physical and nutritional rehabilitation program based on adequate caloric intake associated with supervised physical exercise seems to support a gain of muscle mass, re-establishing its capacity and functional independence. A rehabilitation program was carried out, consisting of low-intensity aerobic exercise on treadmill, exercises of global strengthening (50% of 1 maximum repetition [1RM], with progressive increase), and nutritional monitoring (oral hypercaloric diet, hyperproteic supplementation daily and after exercise). Initial and final evaluation included weight, muscle mass index, brachial circumference (BC), tricipital cutaneous fold (TCF), hand grip strength (HGS), 6-minute walk test (6MWT), 1RM, vital capacity (VC), and respiratory muscle strength. After the program, functional capacity was evaluated through the 6MWT (92%), 1RM test, VC (55%), respiratory muscle strength, HGS at 5 kg, weight gain (4.75%), increase of BC in 2 cm, and TCF in 2 mm. The program contributed to functional independence, improved quality of life, and social reintegration, suggesting the importance of a supervised physical activity program associated with adequate nutritional intake after multivisceral transplantation. Copyright © 2018 Elsevier Inc. All rights reserved.
Lacroix, André; Kressig, Reto W; Muehlbauer, Thomas; Gschwind, Yves J; Pfenninger, Barbara; Bruegger, Othmar; Granacher, Urs
2016-01-01
Losses in lower extremity muscle strength/power, muscle mass and deficits in static and particularly dynamic balance due to aging are associated with impaired functional performance and an increased fall risk. It has been shown that the combination of balance and strength training (BST) mitigates these age-related deficits. However, it is unresolved whether supervised versus unsupervised BST is equally effective in improving muscle power and balance in older adults. This study examined the impact of a 12-week BST program followed by 12 weeks of detraining on measures of balance and muscle power in healthy older adults enrolled in supervised (SUP) or unsupervised (UNSUP) training. Sixty-six older adults (men: 25, women: 41; age 73 ± 4 years) were randomly assigned to a SUP group (2/week supervised training, 1/week unsupervised training; n = 22), an UNSUP group (3/week unsupervised training; n = 22) or a passive control group (CON; n = 22). Static (i.e., Romberg Test) and dynamic (i.e., 10-meter walk test) steady-state, proactive (i.e., Timed Up and Go Test, Functional Reach Test), and reactive balance (e.g., Push and Release Test), as well as lower extremity muscle power (i.e., Chair Stand Test; Stair Ascent and Descent Test) were tested before and after the active training phase as well as after detraining. Adherence rates to training were 92% for SUP and 97% for UNSUP. BST resulted in significant group × time interactions. Post hoc analyses showed, among others, significant training-related improvements for the Romberg Test, stride velocity, Timed Up and Go Test, and Chair Stand Test in favor of the SUP group. Following detraining, significantly enhanced performances (compared to baseline) were still present in 13 variables for the SUP group and in 10 variables for the UNSUP group. Twelve weeks of BST proved to be safe (no training-related injuries) and feasible (high attendance rates of >90%). Deficits of balance and lower extremity muscle power can be mitigated by BST in healthy older adults. Additionally, supervised as compared to unsupervised BST was more effective. Thus, it is recommended to counteract intrinsic fall risk factors by applying supervised BST programs for older adults. © 2015 The Author(s) Published by S. Karger AG, Basel.
Cheung, W-H.; Li, C-Y.; Zhu, T.Y.; Leung, K-S.
2016-01-01
Objectives: To investigate the effects on muscle performance after one-year cessation of 18-month low-magnitude high-frequency vibration (LMHFV) intervention in the untrained community elderly. Methods: This is a case-control study with 59 community elderly women (25 control without any treatment; 34 received 18-month LMHFV but discontinued for 1 year from our previous clinical study). Muscle strength, balancing ability, occurrence of fall/fracture, quality of life (QoL) were assessed 1-year after cessation of intervention. The 30-month results were compared with baseline and 18-month treatment endpoint data between groups. Results: At 30 months (i.e. one year post-intervention), the muscle strengths of dominant and non-dominant legs relative to baseline in treatment group were significantly better than those of control. In balancing ability test, reaction time, movement velocity and maximum excursion of treatment group (relative to baseline) remained significantly better than the control group. The muscle strength, balancing ability and quality of life at 30 months relative to 18 months did not show significant differences between the two groups. Conclusion: The benefits of LMHFV for balancing ability, muscle strength and risk of falling in elderly were retained 1 year after cessation of LMHFV. PMID:26944817
Electromyostimulation, circuits and monitoring
NASA Technical Reports Server (NTRS)
Doerr, Donald F.
1994-01-01
One method to determine the benefit of electromyostimulation (EMS) requires an accurate strength assessment of the muscle of interest using a muscle force testing device. Several commercial devices are available. After a pre-EMS muscle assessment, a protocol with accurately controlled stimulation parameters must be applied and monitored. both the actual current and the resultant muscle force must be measured throughout the study. At the conclusion of the study, a reassessment of the muscle strength must be gathered. In our laboratory, electromyostimulation is being studied as a possible countermeasure to the muscle atrophy (degeneration) experienced in space. This muscle loss not only weakens the astronaut, but adversely affects his/her readaptation to 1-g upon return from space. Muscle atrophy is expected to have a more significant effect in long term space flight as anticipated in our space station. Our studies have concentrated on stimulating the four major muscle groups in the leg. These muscles were stimulated sequentially to allow individual muscle force quantification above the knee and ankle. The leg must be restrained in an instrumented brace to allow this measurement and preclude muscle cramping.
Hirschmüller, Anja; Andres, Tasja; Schoch, Wolfgang; Baur, Heiner; Konstantinidis, Lukas; Südkamp, Norbert P.; Niemeyer, Philipp
2017-01-01
Background: Recent studies have found a significant deficit of maximum quadriceps strength after autologous chondrocyte implantation (ACI) of the knee. However, it is unclear whether muscular strength deficits in patients with cartilage damage exist prior to operative treatment. Purpose: To isokinetically test maximum quadriceps muscle strength and quantify the impact of possible strength deficits on functional and clinical test results. Study Design: Cross-sectional study; Level of evidence, 3. Methods: To identify clinically relevant muscular strength deficits, 24 patients (5 females, 19 males; mean age, 34.5 years; body mass index, 25.9 kg/m2) with isolated cartilage defects (mean onset, 5.05 years; SD, 7.8 years) in the knee joint underwent isokinetic strength measurements. Maximal quadriceps strength was recorded in 3 different testing modes: pure concentric contraction (flexors and extensors alternating work; con1), concentric-eccentric (only the extensors work concentrically and eccentrically; con2), and eccentric contraction in the alternating mode (ecc). Results were compared for functional performance (single-leg hop test), pain scales (visual analog scale [VAS], numeric rating scale [NRS]), self-reported questionnaires (International Knee Documentation Committee [IKDC], Knee Injury and Osteoarthritis Outcome Scale [KOOS]), and defect size (cm2). Results: Compared with the uninjured leg, significantly lower quadriceps strength was detected in the injured leg in all isokinetic working modes (con1 difference, 27.76 N·m [SD 17.47; P = .003]; con2 difference, 21.45 N·m [SD, 18.45; P =.025]; ecc difference, 29.48 N·m [SD, 21.51; P = .001]), with the largest deficits found for eccentric muscle performance. Moderate negative correlations were observed for the subjective pain scales NRS and VAS. The results of the IKDC and KOOS questionnaires showed low, nonsignificant correlations with findings in the isokinetic measurement. Moreover, defect sizes (mean, 3.13 cm2) were of no importance regarding the prediction of the strength deficit. The quadriceps strength deficit between the injured and the uninjured leg was best predicted by the results of the single-leg hop test. Conclusion: Patients with isolated cartilage defects of the knee joint have significant deficits in quadriceps muscle strength of the injured leg compared with the uninjured leg. The single-leg hop test may be used to predict quadriceps strength deficits. Future research should address whether preoperative strength training in patients with cartilage defects of the knee could be effective and should be taken into consideration in addition to surgical treatment. PMID:28596973
Amaral, Josária F.; Alvim, Felipe C.; Castro, Eliane A.; Doimo, Leonice A.; Silva, Marcus V.; Novo, José M.
2014-01-01
Background Aging is a multifactorial process that leads to changes in the quantity and quality of skeletal muscle and contributes to decreased levels of muscle strength. Objective This study sought to investigate whether the isometric muscle strength, fat-free mass (FFM) and power of the electromyographic (EMG) signal of the upper and lower limbs of women are similarly affected by aging. Method The sample consisted of 63 women, who were subdivided into three groups (young (YO) n=33, 24.7±3.5 years; middle age (MA) n=15, 58.6±4.2 years; and older adults (OA). n=15, 72.0±4.2 years). Isometric strength was recorded simultaneously with the capture of the electrical activity of the flexor muscles of the fingers and the vastus lateralis during handgrip and knee extension tests, respectively. FFM was assessed using dual-energy X-ray absorptiometry. Results The handgrip strength measurements were similar among groups (p=0.523), whereas the FFM of the upper limbs was lower in group OA compared to group YO (p=0.108). The RMSn values of the hand flexors were similar among groups (p=0.754). However, the strength of the knee extensors, the FFM of the lower limbs and the RMSn values of the vastus lateralis were lower in groups MA (p=0.014, p=0.006 and p=0.013, respectively) and OA (p=0.000, p=0.000 and p<0.000, respectively) compared to group YO. Conclusions The results of this study demonstrate that changes in isometric muscle strength in MLG and electromyographic activity of the lower limbs are more pronounced with the aging process of the upper limb. PMID:24676705
Bergamin, Marco; Gobbo, Stefano; Bullo, Valentina; Vendramin, Barbara; Duregon, Federica; Frizziero, Antonio; Di Blasio, Andrea; Cugusi, Lucia; Zaccaria, Marco; Ermolao, Andrea
2017-01-01
Summary Background Lower extremity muscle mass, strength, power, and physical performance are critical determinants of independent functioning in later life. Isokinetic dynamometers are becoming very common in assessing different features of muscle strength, in both research and clinical practice; however, reliability studies are still needed to support the extended use of those devices. Objective The purpose of this study is to assess the test-retest reliability of knee and ankle isokinetic and isometric strength testing protocols in a sample of older healthy subjects, using a new and untested isokinetic multi-joint evaluation system. Methods Sixteen male and fourteen female older adults (mean age 65.2 ± 4.6 years) were assessed in two testing sessions. Each participant performed a randomized testing procedure that includes different isometric and isokinetic tests for knee and ankle joints. Results All participants concluded the trial safety and no subject reported any discomfort throughout the overall assessment. Coefficients of correlation between measures were calculated showing moderate to strong effects among all test-retest assessments and paired-sample t test showed only one significant difference (p<0.05) in the maximal isokinetic bilateral knee flexion torque. Conclusions The multi-joint evaluation system for the assessment of knee and ankle isokinetic and isometric strength provided reliable test-retest measures in healthy older adults. Level of evidence Ib. PMID:29264344
Gonadal status and physical performance in older men.
Maggio, Marcello; Ceda, Gian Paolo; Lauretani, Fulvio; Bandinelli, Stefania; Metter, Earl Jeffrey; Guralnik, Jack M; Basaria, Shehzad; Cattabiani, Chiara; Luci, Michele; Dall'Aglio, Elisabetta; Vignali, Alessandro; Volpi, Riccardo; Valenti, Giorgio; Ferrucci, Luigi
2011-03-01
To test the relationship between gonadal status and objective measures and determinants of physical performance in older men and their determinants. The study included 455 ≥ 65 year older men of InCHIANTI study, Italy, with complete data on testosterone levels, hand grip strength, cross-sectional muscle area (CSMA), short physical performance battery (SPPB). Linear models were used to test the relationship between gonadal status and determinants of physical performance. Three different groups of older men were created: (1) severely hypogonadal (N=23), total testosterone levels ≤ 230 ng /dl; (2) moderately hypogonadal (N=88), total testosterone >230 and < 350 ng/dl) and (3) eugonadal (N=344), testosterone levels ≥ 350 ng/dl. With increased severity of hypogonadal status, participants were significantly older while their BMI was substantially similar. In the age and BMI adjusted analysis, there was a significant difference in haemoglobin levels, hand grip strength and SPPB score (p for trend < 0.001) among three groups, with severely hypogonadal men having lower values of haemoglobin, muscle strength and physical performance. We found no association between testosterone group assignment and calf muscle mass and 4 m walking speed. In the multivariate analysis grip strength (p for trend = 0.004) and haemoglobin (p for trend < 0.0001) but not SPPB and other determinants of physical performance were significantly different between the three groups. In older men, gonadal status is independently associated with some determinants (haemoglobin and muscle strength) of physical performance.
Roemers, P; Mazzola, P N; De Deyn, P P; Bossers, W J; van Heuvelen, M J G; van der Zee, E A
2018-04-15
Voluntary strength training methods for rodents are necessary to investigate the effects of strength training on cognition and the brain. However, few voluntary methods are available. The current study tested functional and muscular effects of two novel voluntary strength training methods, burrowing (digging a substrate out of a tube) and unloaded tower climbing, in male C57Bl6 mice. To compare these two novel methods with existing exercise methods, resistance running and (non-resistance) running were included. Motor coordination, grip strength and muscle fatigue were measured at baseline, halfway through and near the end of a fourteen week exercise intervention. Endurance was measured by an incremental treadmill test after twelve weeks. Both burrowing and resistance running improved forelimb grip strength as compared to controls. Running and resistance running increased endurance in the treadmill test and improved motor skills as measured by the balance beam test. Post-mortem tissue analyses revealed that running and resistance running induced Soleus muscle hypertrophy and reduced epididymal fat mass. Tower climbing elicited no functional or muscular changes. As a voluntary strength exercise method, burrowing avoids the confounding effects of stress and positive reinforcers elicited in forced strength exercise methods. Compared to voluntary resistance running, burrowing likely reduces the contribution of aerobic exercise components. Burrowing qualifies as a suitable voluntary strength training method in mice. Furthermore, resistance running shares features of strength training and endurance (aerobic) exercise and should be considered a multi-modal aerobic-strength exercise method in mice. Copyright © 2017 Elsevier B.V. All rights reserved.
Dutra, Milena C; de Oliveira, Mônica L; Marin, Rosangela V; Kleine, Hellen C R; Silva, Orivaldo L; Lazaretti-Castro, Marise
2016-08-01
In this longitudinal, paired-control study, we developed special vibration platforms to evaluate the effects of low-intensity vibration on neuromuscular function and functional capacity in osteopenic postmenopausal women. Women in the platform group (PG; n = 62) stood still and barefoot on the platform for 20 minutes, 5 times a week for 12 months. Each platform vibrated with a frequency of 60 Hz, intensity of 0.6g, and amplitude of less than 1 mm. Women in the control group (CG; n = 60) were followed up and instructed not to modify their physical activity during the study. Every 3 months all volunteers were invited to a visit to check for any change in their lifestyle. Assessments were performed at baseline and at 12 months, and included isometric muscle strength in the hip flexors and back extensors, right handgrip strength, dynamic upper limb strength (arm curl test), upper trunk flexibility (reach test [RT]), mobility (timed up and go test), and static balance (unipedal stance test). Statistical analyses were performed using the intention-to-treat strategy. Both groups were similar for all variables at baseline. At the end of intervention, the PG was significantly better than CG in all parameters but in the RT. When compared with baseline, after 12 months of vibration the PG presented statistically significant improvements in isometric and dynamic muscle strength in the hip flexors (+36.7%), back extensors (+36.5%), handgrip strength (+4.4%), arm curl test (+22.8%), RT (+9.9%), unipedal stance test (+6.8%), and timed up and go test (-9.2%), whereas the CG showed no significant differences during the same period of time. As such, there were no side effects related to the study procedures during the 12 months of intervention. Low-intensity vibration improved balance, motility, and muscle strength in the upper and lower limbs in postmenopausal women.
Altubasi, Ibrahim M
2018-06-07
Knee osteoarthritis is a common and a disabling musculoskeletal disorder. Patients with knee osteoarthritis have activity limitations which are linked to the strength of the quadriceps muscle. Previous research reported that the relationship between quadriceps muscle strength and physical function is moderated by the level of knee joint frontal plane laxity. The purpose of the current study is to reexamine the moderation effect of the knee joint laxity as measured by stress radiographs on the relationship between quadriceps muscle strength and physical function. One-hundred and sixty osteoarthritis patients participated in this cross-sectional study. Isometric quadriceps muscle strength was measured using an isokinetic dynamometer. Self-rated and performance-based physical function were measured using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) physical function subscale and Get Up and Go test, respectively. Stress radiographs which were taken while applying varus and valgus loads to knee using the TELOS device. Knee joint laxity was determined by measuring the distance between joint surfaces on the medial and lateral sides. Hierarchical multiple regression models were constructed to study the moderation effect of laxity on the strength function relationship. Two regression models were constructed for self-rated and performance-based function. After controlling for demographics, strength contributed significantly in the models. The addition of laxity and laxity-strength interaction did not add significant contributions in the regression models. Frontal plane knee joint laxity measured by stress radiographs does not moderate the relationship between quadriceps muscle strength and physical function in patients with osteoarthritis. Copyright © 2018 Elsevier B.V. All rights reserved.
What Physical Fitness Component Is Most Closely Associated With Adolescents' Blood Pressure?
Nunes, Heloyse E G; Alves, Carlos A S; Gonçalves, Eliane C A; Silva, Diego A S
2017-12-01
This study aimed to determine which of four selected physical fitness variables, would be most associated with blood pressure changes (systolic and diastolic) in a large sample of adolescents. This was a descriptive and cross-sectional, epidemiological study of 1,117 adolescents aged 14-19 years from southern Brazil. Systolic and diastolic blood pressure were measured by a digital pressure device, and the selected physical fitness variables were body composition (body mass index), flexibility (sit-and-reach test), muscle strength/resistance (manual dynamometer), and aerobic fitness (Modified Canadian Aerobic Fitness Test). Simple and multiple linear regression analyses revealed that aerobic fitness and muscle strength/resistance best explained variations in systolic blood pressure for boys (17.3% and 7.4% of variance) and girls (7.4% of variance). Aerobic fitness, body composition, and muscle strength/resistance are all important indicators of blood pressure control, but aerobic fitness was a stronger predictor of systolic blood pressure in boys and of diastolic blood pressure in both sexes.
Muscle strength differ between patients with diabetes and controls following heart surgery.
Boban, Marko; Barisic, Mijana; Persic, Viktor; Zekanovic, Drazen; Medved, Igor; Zulj, Marinko; Vcev, Aleskandar
2016-01-01
The aim of our study was to analyze muscle strength in patients with recent surgical treatment for ischemic and combined ischemic-valvular heart disease, based on existence of diabetes mellitus. Connections existing between muscle strength and patient characteristics or conventional diagnostic tests were analyzed as well. Study prospectively included consecutive patients scheduled for cardiovascular rehabilitation 0-3months after heart surgery. Diagnostics covered drug utilization, anthropometrics, demographics, echocardiography, conventional laboratory, echocardiography, bioelectrical impedance analysis (BIA), and hand grip test (HGT). HGT was analyzed for dominant hand. Patients with diabetes had significantly weaker muscle strength on HGT than controls; 29.4±12.2kg vs. 38.2±14.7kg (p=0.029), respectively. ROC analysis for HGT and existence of diabetes mellitus were significant; ≤40kg had sensitivity of 89.7% (95%CI: 72.6-97.8), specificity 43.7% (31.9-56.0); AUC 0.669 (0.568-0.760); p=0.002. HGT significantly correlated with hematocrit (Rho CC=0.247; p=0.013), whilst other laboratory or echocardiographic parameters were insignificant (all p>0.05). HGT also correlated with body weight (Rho CC=0.510; p<0.001); height (Rho CC=0.632; p<0.001); waist circumference (Rho CC=0.388; p<0.001); waist-to-hip ratio (Rho CC=0.274; p=0.006) and BIA (Rho CC=-0.412; p<0.001). In postoperative recovery of patients with diabetes, muscle strength assessed by HGT is decreased and in relation with nutritional status. Clinically resourceful connections of HGT were also found to hematocrit and utilization of loop diuretics. Copyright © 2016 Elsevier Inc. All rights reserved.
Lin, Shu-Fen; Sung, Huei-Chuan; Li, Tzai-Li; Hsieh, Tsung-Cheng; Lan, Hsiao-Chin; Perng, Shoa-Jen; Smith, Graeme D
2015-05-01
The aim of this study was to investigate the effects of Tai-Chi in conjunction with thera-band resistance exercise on functional fitness and muscle strength in community-based older people. Tai-Chi is known to improve functional fitness in older people. Tai-Chi is usually performed with free hands without resistance training and usually focuses on training lower limbs. To date, no study has examined the use of Tai-Chi in conjunction with thera-band resistance exercise in this population. Cluster randomised trial design. Older people at six senior day care centres in Taiwan were assigned to thera-band resistance exercise or control group using a cluster randomisation. The thera-band resistance exercise group (n = 48) received sixty minute thera-band resistance exercise twice weekly for a period of 16 weeks. The control group (n = 47) underwent routine activities in the day care centre, receiving no Tai-Chi or resistance exercise. After receiving the thera-band resistance exercise, intervention participants displayed a significant increase in muscle strength of upper and lower extremities. Significant improvements were recorded on most measures of the Senior Fitness Test, with the exception of the chair-stand and back-scratch test. Thera-band resistance exercise has the potential to improve functional fitness and muscle strength in community-based older people. Thera-band resistance exercise potentially offers a safe and appropriate form of physical activity that nursing staff can easily incorporate into the daily routine of older people in day care centres, potentially improving functional performance and muscle strength. © 2015 John Wiley & Sons Ltd.
Coelho-Junior, Hélio José; Rodrigues, Bruno; Gonçalves, Ivan de Oliveira; Asano, Ricardo Yukio; Uchida, Marco Carlos; Marzetti, Emanuele
2018-04-01
Timed 'Up and Go' (TUG) has been widely used in research and clinical practice to evaluate physical function and mobility in older adults. However, the physical capabilities underlying TUG performance are not well elucidated. Therefore, the present study aimed at investigating a selection of physical capacities underlying TUG performance in community-dwelling older women. Four hundred and sixty-eight apparently healthy older women independent to perform the activities of daily living (mean age: 65.8 ± 6.0 years) were recruited from two specialized healthcare centers for older adults to participate in the study. Volunteers had their medical books reviewed and underwent evaluations of anthropometric data as well as physical and functional capacities. Pearson's correlation results indicate that TUG performance was significantly associated with upper (i.e., handgrip strength) and lower (i.e., sit-to-stand) limb muscle strength, balance (i.e., one-leg stand), lower limb muscle power (i.e., countermovement jump), aerobic capacity (i.e., 6-minute walk test), and mobility (i.e., usual and maximal walking speeds). When the analyses were performed based on TUG quartiles, a larger number of physical capabilities were associated with TUG >75% in comparison with TUG <25%. Multiple linear regression results indicate that the variability in TUG (~20%) was explained by lower limb muscle strength (13%) and power (1%), balance (4%), mobility (2%), and aerobic capacity (<1%), even after adjusted by age and age plus body mass index (BMI). However, when TUG results were added as quartiles, a decrease in the impact of physical capacities on TUG performance was determined. As a whole, our findings indicate that the contribution of physical capabilities to TUG performance is altered according to the time taken to perform the test, so that older women in the lower quartiles - indicating a higher performance - have an important contribution of lower limb muscle strength, while volunteers in the highest quartile demonstrate a decreased dependence on lower limb muscle strength and an increased contribution of other physical capabilities, such as lower limb muscle power and balance. Copyright © 2018 Elsevier Inc. All rights reserved.
Muscle Strength and Muscle Mass in Older Patients during Hospitalization: The EMPOWER Study
Van Ancum, Jeanine M.; Scheerman, Kira; Pierik, Vincent D.; Numans, Siger T.; Verlaan, Sjors; Smeenk, Hanne E.; Slee-Valentijn, Monique; Kruizinga, Roeliene C.; Meskers, Carel G.M.; Maier, Andrea B.
2017-01-01
Background Low muscle strength and muscle mass are associated with an increased length of hospital stay and higher mortality rate in inpatients. To what extent hospitalization affects muscle strength and muscle mass is unclear. Objective We aimed to assess muscle strength and muscle mass at admission and during hospitalization in older patients and its relation with being at risk of geriatric conditions. Methods The EMPOWER study included patients aged 70 years and older, admitted to 4 wards of the VU University Medical Center in the Netherlands between April and December 2015. At admission, patients were screened for being at risk of 4 geriatric conditions: delirium, falls, malnutrition, and functional disability. At admission and at discharge, muscle strength and muscle mass were assessed. Results A total of 373 patients (mean age, standard deviation [SD]: 79.6, 6.38 years) were included at admission, and 224 patients (mean age, SD: 80.1, 6.32 years) at discharge. At admission, lower muscle strength in both female and male patients and low muscle mass in male patients were associated with being at risk of a higher cumulative number of geriatric conditions. Muscle strength increased during hospitalization, but no change in muscle mass was observed. Changes in muscle measures were not associated with being at risk of geriatric conditions. Discussion Older patients with lower muscle strength and muscle mass at admission were at risk of a higher cumulative number of geriatric conditions. However, being at risk of geriatric conditions did not forecast further decrease in muscle strength and muscle mass during hospitalization PMID:28817825
Muscle Strength and Muscle Mass in Older Patients during Hospitalization: The EMPOWER Study.
Van Ancum, Jeanine M; Scheerman, Kira; Pierik, Vincent D; Numans, Siger T; Verlaan, Sjors; Smeenk, Hanne E; Slee-Valentijn, Monique; Kruizinga, Roeliene C; Meskers, Carel G M; Maier, Andrea B
2017-01-01
Low muscle strength and muscle mass are associated with an increased length of hospital stay and higher mortality rate in inpatients. To what extent hospitalization affects muscle strength and muscle mass is unclear. We aimed to assess muscle strength and muscle mass at admission and during hospitalization in older patients and its relation with being at risk of geriatric conditions. The EMPOWER study included patients aged 70 years and older, admitted to 4 wards of the VU University Medical Center in the Netherlands between April and December 2015. At admission, patients were screened for being at risk of 4 geriatric conditions: delirium, falls, malnutrition, and functional disability. At admission and at discharge, muscle strength and muscle mass were assessed. A total of 373 patients (mean age, standard deviation [SD]: 79.6, 6.38 years) were included at admission, and 224 patients (mean age, SD: 80.1, 6.32 years) at discharge. At admission, lower muscle strength in both female and male patients and low muscle mass in male patients were associated with being at risk of a higher cumulative number of geriatric conditions. Muscle strength increased during hospitalization, but no change in muscle mass was observed. Changes in muscle measures were not associated with being at risk of geriatric conditions. Older patients with lower muscle strength and muscle mass at admission were at risk of a higher cumulative number of geriatric conditions. However, being at risk of geriatric conditions did not forecast further decrease in muscle strength and muscle mass during hospitalization. © 2017 The Author(s) Published by S. Karger AG, Basel.
Buchwald-Werner, Sybille; Naka, Ioanna; Wilhelm, Manfred; Schütz, Elivra; Schoen, Christiane; Reule, Claudia
2018-01-01
Exhaustive exercise causes muscle damage accompanied by oxidative stress and inflammation leading to muscle fatigue and muscle soreness. Lemon verbena leaves, commonly used as tea and refreshing beverage, demonstrated antioxidant and anti-inflammatory properties. The aim of this study was to investigate the effects of a proprietary lemon verbena extract (Recoverben®) on muscle strength and recovery after exhaustive exercise in comparison to a placebo product. The study was performed as a randomized, placebo-controlled, double-blind study with parallel design. Forty-four healthy males and females, which were 22-50 years old and active in sports, were randomized to 400 mg lemon verbena extract once daily or placebo. The 15 days intervention was divided into 10 days supplementation prior to the exhaustive exercise day (intensive jump-protocol), one day during the test and four days after. Muscle strength (MVC), muscle damage (CK), oxidative stress (GPx), inflammation (IL6) and volunteer-reported muscle soreness intensity were assessed pre and post exercise. Participants in the lemon verbena group benefited from less muscle damage as well as faster and full recovery. Compared to placebo, lemon verbena extract receiving participants had significantly less exercise-related loss of muscle strength ( p = 0.0311) over all timepoints, improved glutathione peroxidase activity by trend ( p = 0.0681) and less movement induced pain ( p = 0.0788) by trend. Creatine kinase and IL-6 didn't show significant discrimmination between groups. Lemon verbena extract (Recoverben®) has been shown to be a safe and well-tolerated natural sports ingredient, by reducing muscle damage after exhaustive exercise. The trial was registered in the clinical trials registry (clinical trial.gov NCT02923102). Registered 28 September 2016.
Martín Lorenzo, T; Lerma Lara, S; Martínez-Caballero, I; Rocon, E
2015-10-01
Evaluation of muscle structure gives us a better understanding of how muscles contribute to force generation which is significantly altered in children with cerebral palsy (CP). While most muscle structure parameters have shown to be significantly correlated to different expressions of strength development in children with CP and typically developing (TD) children, conflicting results are found for muscle fascicle length. Muscle fascicle length determines muscle excursion and velocity, and contrary to what might be expected, correlations of fascicle length to rate of force development have not been found for children with CP. The lack of correlation between muscle fascicle length and rate of force development in children with CP could be due, on the one hand, to the non-optimal joint position adopted for force generation on the isometric strength tests as compared to the position of TD children. On the other hand, the lack of correlation could be due to the erroneous assumption that muscle fascicle length is representative of sarcomere length. Thus, the relationship between muscle architecture parameters reflecting sarcomere length, such as relative fascicle excursions and dynamic power generation, should be assessed. Understanding of the underlying mechanisms of weakness in children with CP is key for individualized prescription and assessment of muscle-targeted interventions. Findings could imply the detection of children operating on the descending limb of the sarcomere length-tension curve, which in turn might be at greater risk of developing crouch gait. Furthermore, relative muscle fascicle excursions could be used as a predictive variable of outcomes related to crouch gait prevention treatments such as strength training. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nedergaard, Anders; Sun, Shu; Karsdal, Morten A; Henriksen, Kim; Kjær, Michael; Lou, Yunyun; He, Yi; Zheng, Qinlong; Suetta, Charlotte
2013-12-01
Immobilization-induced loss of muscle mass is a complex phenomenon with several parallels to sarcopenic and cachectic muscle loss. Muscle is a large organ with a protein turnover that is orders of magnitude larger than most other tissues. Thus, we hypothesize that muscle loss and regain is reflected by peptide biomarkers derived from type VI collagen processing released in the circulation. In order to test this hypothesis, we set out to develop an ELISA assay against an type VI collagen N-terminal globular domain epitope (IC6) and measured the levels of IC6 and an MMP-generated degradation fragment of collagen 6, (C6M) in a human immobilization-remobilization study setup with young (n = 11) and old (n = 9) men. They were subjected to 2 weeks of unilateral lower limb immobilization followed by 4 weeks of remobilization including thrice weekly resistance training, using the contralateral leg as internal controls. Subjects were sampled for strength, quadriceps muscle volume and blood at baseline (PRE), post-immobilization (2W), and post-remobilization (4W). Blood were subsequently analyzed for levels of the C6M and IC6 biomarkers. We subsequently tested if there was any correlation between C6M, IC6, or the C6M/IC6 ratio and muscle mass or strength at baseline. We also tested whether there was any relation between these biomarkers and changes in muscle mass or strength with immobilization or remobilization. The model produced significant loss of muscle mass and strength in the immobilized leg. This loss was bigger in young subjects than in elderly, but whereas the young recovered almost fully, the elderly had limited regrowth of muscle. We found a significant correlation between IC6 and muscle mass at baseline in young subjects (R (2) = 0.6563, p = 0.0045), but none in the elderly. We also found a significant correlation between C6M measured at the 4W time point and the change in muscle mass during remobilization, again only manifesting in the young men(R (2) = 0.6523, p = 0.0085). This discrepancy between the young and the elderly may be caused in part by much smaller changes in muscle mass in the elderly and partly by the relative small sample size. While we cannot rule out the possibility that these biomarkers in part stem from other tissues, our results strongly indicate that these markers represent novel biomarkers of muscle mass or change in muscle mass in young men.
Effects of different duration exercise programs in children with severe burns.
Clayton, Robert P; Wurzer, Paul; Andersen, Clark R; Mlcak, Ronald P; Herndon, David N; Suman, Oscar E
2017-06-01
Burns lead to persistent and detrimental muscle breakdown and weakness. Standard treatment at our institution includes a voluntary 12-week rehabilitative exercise program to limit and reverse the effects of increased muscle catabolism. In the present work, we investigated if different durations of exercise, 6 or 12 weeks, produce comparable improvements in muscle strength, body composition, and cardiopulmonary fitness. We prospectively enrolled and randomized patients with ≥30% total body surface area (TBSA) burned to receive 6 or 12 weeks of exercise rehabilitation. Patients were evaluated for muscle strength, oxygen consumption capacity, and lean body mass at discharge (n=42) and after exercise. After 6 weeks (n=18) or 12 weeks (n=24) of exercise training, leg muscle strength was assessed as peak torque per body weight using a Biodex isokinetic dynamometer. Oxygen consumption capacity, measured as peak VO 2 , was studied using a standard treadmill-based test, and lean body mass was determined using dual-energy X-ray absorptiometry. Significant improvements in muscle strength, peak VO 2 , and lean body mass were seen after 6 weeks of exercise training (p<0.001), with only significant improvements in peak VO 2 being seen after 6 weeks more of training. These data suggest that a 6-week rehabilitative exercise program is sufficient for improving muscle strength, body composition, and cardiopulmonary fitness in pediatric burn patients. However, continuation of at- or near-home cardiopulmonary training following the 6 weeks of at-hospital rehabilitation may be useful. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.
Martinho, Natalia M; Silva, Valéria R; Marques, Joseane; Carvalho, Leonardo C; Iunes, Denise H; Botelho, Simone
2016-03-22
To evaluate the effectiveness of abdominopelvic training by virtual reality compared to pelvic floor muscle training (PFMT) using a gym ball (a previously tested and efficient protocol) on postmenopausal women's pelvic floor muscle (PFM) strength. A randomized controlled trial was conducted with 60 postmenopausal women, randomly allocated into two groups: Abdominopelvic training by virtual reality - APT_VR (n=30) and PFMT using a gym ball - PFMT_GB (n=30). Both types of training were supervised by the same physical therapist, during 10 sessions each, for 30 minutes. The participants' PFM strength was evaluated by digital palpation and vaginal dynamometry, considering three different parameters: maximum strength, average strength and endurance. An intention-to-treat approach was used to analyze the participants according to original groups. No significant between-group differences were observed in most analyzed parameters. The outcome endurance was higher in the APT_VR group (p=0.003; effect size=0.89; mean difference=1.37; 95% CI=0.46 to 2.28). Both protocols have improved the overall PFM strength, suggesting that both are equally beneficial and can be used in clinical practice. Muscle endurance was higher in patients who trained using virtual reality.
Martinho, Natalia M.; Silva, Valéria R.; Marques, Joseane; Carvalho, Leonardo C.; Iunes, Denise H.; Botelho, Simone
2016-01-01
ABSTRACT Objective To evaluate the effectiveness of abdominopelvic training by virtual reality compared to pelvic floor muscle training (PFMT) using a gym ball (a previously tested and efficient protocol) on postmenopausal women’s pelvic floor muscle (PFM) strength. Method A randomized controlled trial was conducted with 60 postmenopausal women, randomly allocated into two groups: Abdominopelvic training by virtual reality – APT_VR (n=30) and PFMT using a gym ball – PFMT_GB (n=30). Both types of training were supervised by the same physical therapist, during 10 sessions each, for 30 minutes. The participants’ PFM strength was evaluated by digital palpation and vaginal dynamometry, considering three different parameters: maximum strength, average strength and endurance. An intention-to-treat approach was used to analyze the participants according to original groups. Results No significant between-group differences were observed in most analyzed parameters. The outcome endurance was higher in the APT_VR group (p=0.003; effect size=0.89; mean difference=1.37; 95% CI=0.46 to 2.28). Conclusion Both protocols have improved the overall PFM strength, suggesting that both are equally beneficial and can be used in clinical practice. Muscle endurance was higher in patients who trained using virtual reality. PMID:27437716
The effects of pilates on balance, mobility and strength in patients with multiple sclerosis.
Guclu-Gunduz, Arzu; Citaker, Seyit; Irkec, Ceyla; Nazliel, Bijen; Batur-Caglayan, Hale Zeynep
2014-01-01
Although there are evidences as to Pilates developing dynamic balance, muscle strength and flexibility in healthy people, evidences related to its effects on Multiple Sclerosis patients are insufficient. The aims of this study were to investigate the effects of Pilates on balance, mobility, and strength in ambulatory patients with Multiple Sclerosis. Twenty six patients were divided into two groups as experimental (n = 18) and control (n = 8) groups for an 8-week treatment program. The experimental group underwent Pilates and the control group did abdominal breathing and active extremity exercises at home. Balance and mobility were measured with Berg Balance Scale and Timed up and go test, upper and lower muscle strength with hand-held dynamometer. Confidence in balance skills while performing daily activities was evaluated with Activities Specific Balance Confidence Scale. Improvements were observed in balance, mobility, and upper and lower extremity muscle strength in the Pilates group (p < 0.05). No significant differences in any outcome measures were observed in the control group (p > 0.05). Due to its structure which is made up of balance and strengthening exercises, Pilates training may develop balance, mobility and muscle strength of MS patients. For this reason, we think that, Pilates exercises which are appropriate for the disability level of the patient may be suggested.
Respiratory muscle involvement in sarcoidosis.
Schreiber, Tina; Windisch, Wolfram
2018-07-01
In sarcoidosis, muscle involvement is common, but mostly asymptomatic. Currently, little is known about respiratory muscle and diaphragm involvement and function in patients with sarcoidosis. Reduced inspiratory muscle strength and/or a reduced diaphragm function may contribute to exertional dyspnea, fatigue and reduced health-related quality of life. Previous studies using volitional and non-volitional tests demonstrated a reduced inspiratory muscle strength in sarcoidosis compared to control subjects, and also showed that respiratory muscle function may even be significantly impaired in a subset of patients. Areas covered: This review examines the evidence on respiratory muscle involvement and its implications in sarcoidosis with emphasis on pathogenesis, diagnosis and treatment of respiratory muscle dysfunction. The presented evidence was identified by a literature search performed in PubMed and Medline for articles about respiratory and skeletal muscle function in sarcoidosis through to January 2018. Expert commentary: Respiratory muscle involvement in sarcoidosis is an underdiagnosed condition, which may have an important impact on dyspnea and health-related quality of life. Further studies are needed to understand the etiology, pathogenesis and extent of respiratory muscle involvement in sarcoidosis.
The Effect of Electrical Stimulation in Improving Muscle Tone (Clinical)
NASA Astrophysics Data System (ADS)
Azman, M. F.; Azman, A. W.
2017-11-01
Electrical stimulation (ES) and also known as neuromuscular electrical stimulation (NMES) and transcutaneous electrical stimulation (TES) involves the use of electrical current to stimulate the nerves or nerve endings that innervate muscle beneath the skin. Electrical stimulation may be applied superficially on the skin (transcutaneously) or directly into a muscle or muscles (intramuscularly) for the primary purpose of enhancing muscle function. The basic theoretical premise is that if the peripheral nerve can be stimulated, the resulting excitation impulse will be transmitted along the nerve to the motor endplates in the muscle, producing a muscle contraction. In this work, the effect of mere electrical stimulation to the muscle bulk and strength are tested. This paper explains how electrical stimulation can affect the muscle bulk, muscle size, muscle tone, muscle atrophy and muscle strength. The experiment and data collection are performed on 5 subjects and the results obtained are analyzed. This research aims to understand the full potential of electrical stimulation and identifying its possible benefits or disadvantages to the muscle properties. The results indicated that electrical stimulation alone able to improve muscle properties but with certain limits and precautions which might be useful in rehabilitation programme.
Lee, Suhyun; Kim, Yumi; Lee, Byoung-Hee
2016-12-01
In the present study, we aimed to investigate the effect of virtual reality-based bilateral upper extremity training (VRBT) on paretic upper limb function and muscle strength in patients with stroke. Eighteen stroke survivors were assigned to either the VRBT group (n = 10) or the bilateral upper limb training group (BT, n = 8). Patients in the VRBT group performed bilateral upper extremity exercises in a virtual reality environment, whereas those in the BT group performed conventional bilateral upper extremity exercises. All training was conducted for 30 minutes day -1 , 3 days a week, for a period of 6 weeks. Patients were assessed for upper extremity function and hand strength. Compared with the BT group, the VRBT group exhibited significant improvements in upper extremity function and muscle strength (p < 0.05) after the 6-week training programme. The Box and Block test results revealed that upper extremity function and elbow flexion in hand strength were significantly improved in terms of group, time and interaction effect of group by time. Furthermore, the VRBT group demonstrated significant improvements in upper extremity function, as measured by the Jebsen Hand Function Test and Grooved Pegboard test, and in the hand strength test, as measured by elbow extension, grip, palmar pinch, lateral pinch and tip pinch, in both time and the interaction effect of group by time. These results suggest that VRBT is a feasible and beneficial means of improving upper extremity function and muscle strength in individuals following stroke. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
José, Anderson; Dal Corso, Simone
2016-04-01
Among people who are hospitalised for community-acquired pneumonia, does an inpatient exercise-based rehabilitation program improve functional outcomes, symptoms, quality of life and length of hospital stay more than a respiratory physiotherapy regimen? Randomised trial with concealed allocation, intention-to-treat analysis and blinding of some outcomes. Forty-nine adults hospitalised for community-acquired pneumonia. The experimental group (n=32) underwent a physical training program that included warm-up, stretching, peripheral muscle strength training and walking at a controlled speed for 15 minutes. The control group (n=17) underwent a respiratory physiotherapy regimen that included percussion, vibrocompression, respiratory exercises and free walking. The intervention regimens lasted 8 days. The primary outcome was the Glittre Activities of Daily Living test, which assesses the time taken to complete a series of functional tasks (eg, rising from a chair, walking, stairs, lifting and bending). Secondary outcomes were distance walked in the incremental shuttle walk test, peripheral muscle strength, quality of life, dyspnoea, lung function, C-reactive protein and length of hospital stay. Measures were taken 1 day before and 1 day after the intervention period. There was greater improvement in the experimental group than in the control group on the Glittre Activities of Daily Living test (mean between-group difference 39 seconds, 95% CI 20 to 59) and the incremental shuttle walk test (mean between-group difference 130 m, 95% CI 77 to 182). There were also significantly greater improvements in quality of life, dyspnoea and peripheral muscle strength in the experimental group than in the control group. There were no between-group differences in lung function, C-reactive protein or length of hospital stay. The improvement in functional outcomes after an inpatient rehabilitation program was greater than the improvement after standard respiratory physiotherapy. The exercise training program led to greater benefits in functional capacity, peripheral muscle strength, dyspnoea and quality of life. ClinicalTrials.gov, NCT02103400. Copyright © 2016 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.
Rossi, Ainsley; Blaustein, Sara; Brown, Joshua; Dieffenderfer, Kari; Ervin, Elaine; Griffin, Steven; Frierson, Elizabeth; Geist, Kathleen
2017-01-01
Background In addition to established interventions, dry needling may reduce impairments leading to greater functional abilities for individuals following ankle sprain. Hypothesis/Purpose The purpose of this study was to compare effects of spinal and peripheral dry needling (DN) with peripheral DN alone on impairments and functional performance among individuals with a history of lateral ankle sprain. Study Design Randomized controlled trial. Methods Twenty individuals with a history of lateral ankle sprain (18 bilateral, 2 unilateral) participated in this study (4 males, 16 females; mean age 28.9 + /- 9.2 years). During the first of two sessions, participants completed the Foot and Ankle Disability Index (FADI) and the Cumberland Ankle Instability Tool (CAIT) and their strength, unilateral balance, and unilateral hop test performance was assessed. Participants were randomly assigned to a spinal and peripheral DN group (SPDN), or a peripheral only DN group (PDN). Participants in the SPDN site group received DN to bilateral L5 multifidi and fibularis longus and brevis muscles on the involved lower extremity. Participants in the PDN group received DN to the fibularis muscles alone. Participants’ strength, balance and hop test performance were reassessed immediately following the intervention, and at follow-up 6-7 days later, all outcome measures were reassessed. Three-way mixed model ANOVAs and Mann-Whitney U tests assessed between group differences for outcome variables with normal distributions and non-normal distributions, respectively. Results ANOVAs showed significant group by time interaction (p<0.05) for invertor strength, significant side by group and time by group interactions (p<0.05) for plantarflexor-evertor strength, no significant findings for dorsiflexor-invertor strength, significant side by time interaction (p<0.05) for unilateral balance, significant main effect of time (p<0.05) for triple hop for distance test, and significant main effect of side (p<0.05) for the CAIT. Mann-Whitney U tests showed no significance (p>0.05) for the side hop test or FADI. Conclusion The results suggest that DN of the multifidi in addition to fibularis muscles does not result in improvements in strength, unilateral balance or unilateral hop test performance, compared to DN the fibularis muscles alone among individuals with a history of ankle sprain. PMID:29234555
Miyahara, M; Sleivert, G G; Gerrard, D F
1998-04-01
Wheelchair athletes are susceptible to injuries related to overuse of the shoulder, in particular shoulder impingement syndrome. The present study examined the relationship of shoulder pain to demographic details, isokinetic strength and muscle balance in 8 elite quadriplegic rugby players. Demographic data were collected using personal interviews and each subject was clinically examined for signs of impingement syndrome by a physician. In addition each subject underwent bilateral isokinetic strength testing of the shoulder at 60 and 180 deg/s for abduction/adduction and internal/external rotation. A series of step-wise multiple discriminant analysis successfully predicted clinical symptoms from demographic, muscular strength and balance data. In particular, there was a significant deficit in adductor strength and this was related to shoulder pain and wasting of the scapular muscles. This strength deficit may be due to the high level of spinal lesions in the quadriplegic population. The level of spinal lesion may contribute to the aetiology of shoulder pathology in quadriplegia, and differentiate it from that observed in able-bodied athletes who exhibit weak abductors.
Effect of muscle activity immediately after botulinum toxin injection for writer's cramp.
Chen, R; Karp, B I; Goldstein, S R; Bara-Jimenez, W; Yaseen, Z; Hallett, M
1999-03-01
Animal and human studies have shown that nerve stimulation enhances some effects of botulinum toxin (btx A) injection. Voluntary muscle activity might work similarly and would focus the effect of an injection into the active muscles. We studied the effects of exercise immediately after btx A injection in eight patients with writer's cramp with established response to btx A over two injection cycles with a single-blinded, randomized, crossover design. Immediately after the first study injection, they were randomly assigned to write continuously for 30 min or have their hand and forearm immobilized for 30 min. Following the second injection, they were assigned the alternate condition. Patients were assessed just before each injection, and at 2 weeks, 6 weeks, and 3 months post-injection. Assessment included objective strength testing, self-reported rating of benefit and weakness, and blinded evaluation of videotapes and writing samples of the patients writing a standard passage. Strength testing showed that the maximum weakness occurred at 2 weeks post-injection, but the benefit was maximum at 6 weeks post-injection. The "write" condition resulted in greater reduction in strength than the "rest" condition. Btx A treatment led to improvement in self-reported ratings, writer's cramp rating scale scores by blinded raters, and reduction in writing time, but the differences between the "write" and "rest" conditions were not significant. We conclude that voluntary muscle activity immediately after btx A injection leads to greater reduction in muscle strength. Our findings raise the possibility that voluntary muscle activation may allow reduction of btx A doses and favorably alter the balance of benefit and side effects of btx A injections.
de Alvarenga, Guilherme Medeiros; Charkovski, Simone Arando; dos Santos, Larissa Kelin; da Silva, Mayara Alves Barbosa; Tomaz, Guilherme Oliveira; Gamba, Humberto Remigio
2018-01-01
OBJECTIVE: Aging is progressive, and its effects on the respiratory system include changes in the composition of the connective tissues of the lung that influence thoracic and lung compliance. The Powerbreathe® K5 is a device used for inspiratory muscle training with resistance adapted to the level of the inspiratory muscles to be trained. The Pilates method promotes muscle rebalancing exercises that emphasize the powerhouse. The aim of this study was to evaluate the influence of inspiratory muscle training combined with the Pilates method on lung function in elderly women. METHODS: The participants were aged sixty years or older, were active women with no recent fractures, and were not gait device users. They were randomly divided into a Pilates with inspiratory training group (n=11), a Pilates group (n=11) and a control group (n=9). Spirometry, manovacuometry, a six-minute walk test, an abdominal curl-up test, and pulmonary variables were assessed before and after twenty intervention sessions. RESULTS: The intervention led to an increase in maximal inspiratory muscle strength and pressure and power pulmonary variables (p<0.0001), maximal expiratory muscle strength (p<0.0014), six-minute walk test performance (p<0.01), and abdominal curl-up test performance (p<0.00001). The control group showed no differences in the analyzed variables (p>0.05). CONCLUSION: The results of this study suggest inspiratory muscle training associated with the Pilates method provides an improvement in the lung function and physical conditioning of elderly patients. PMID:29924184
Farrokhi, Shawn; Voycheck, Carrie A.; Gustafson, Jonathan A.; Fitzgerald, G. Kelley; Tashman, Scott
2015-01-01
Objective The objective of this exploratory study was to evaluate tibiofemoral joint contact point excursions and velocities during downhill gait and assess the relationship between tibiofemoral joint contact mechanics with frontal-plane knee joint motion and lower extremity muscle weakness in patients with knee osteoarthritis (OA). Methods Dynamic stereo X-ray was used to quantify tibiofemoral joint contact mechanics and frontal-plane motion during the loading response phase of downhill gait in 11 patients with knee OA and 11 control volunteers. Quantitative testing of the quadriceps and the hip abductor muscles was also performed. Group differences in contact mechanics and frontal-plane motion excursions were compared using analysis of covariance with adjustments for body mass index. Differences in strength were compared using independent sample t-tests. Additionally, linear associations between contact mechanics with frontal-plane knee motion and muscle strength were evaluated using Pearson's correlation coefficients. Results Patients with knee OA demonstrated larger medial/lateral joint contact point excursions (p<0.02) and greater heel-strike joint contact point velocities (p<0.05) for the medial and lateral compartments compared to the control group. The peak medial/lateral joint contact point velocity of the medial compartment was also greater for patients with knee OA compared to their control counterparts (p=0.02). Additionally, patients with knee OA demonstrated significantly increased frontal-plane varus motion excursions (p<0.01) and greater quadriceps and hip abductor muscle weakness (p=0.03). In general, increased joint contact point excursions and velocities in patients with knee OA were linearly associated with greater frontal-plane varus motion excursions (p<0.04) but not with quadriceps or hip abductor strength. Conclusion Altered contact mechanics in patients with knee OA may be related to compromised frontal-plane joint stability but not with deficits in muscle strength. PMID:27030846
Yoshiko, Akito; Kaji, Takashi; Sugiyama, Hiroki; Koike, Teruhiko; Oshida, Yoshiharu; Akima, Hiroshi
2018-04-23
The ratio of fat within skeletal muscle is an important parameter that is indicative of muscle quality, and can be assessed using ultrasonography to measure echo intensity (EI). Muscle EI indicates muscle strength and risk of physical dysfunction; however, this observation was determined following examinations of only selected muscle. The purpose of this study was to investigate the EI characteristics of muscles in several regions in elderly men and women, using physical function tests and serum cholesterol levels. Twenty-two men and women (age 78 ± 8 years) participated in this study. The EIs were calculated from rectus femoris (RF), biceps femoris (BF) triceps brachii (TB) and multifidus (MF) using B-mode transverse ultrasound images. Seven functional tests (isometric knee-extension peak torque, functional reach, sit-to-stand, 5-m normal/maximal speed walking, handgrip strength and timed up-and-go) and blood lipid components including adipocytokines were measured in all participants. A statistically significant correlation between EI of the RF, TB and BF was observed (r = 0.46-0.50, P < 0.05), but not between EI of the MF and that of other muscles. EI of muscles of the limbs, which was averaged EI for RF, TB and BF, was negatively correlated with leptin levels (adjusted R 2 = 0.27, P < 0.01), and EI of the MF was correlated with muscle mass and performance in the timed up-and-go test (adjusted R 2 = 0.61, P < 0.01). These results suggest that EI might be influenced by specific parameters depending on the location of the muscle.
Rosenlund, Signe; Broeng, Leif; Overgaard, Søren; Jensen, Carsten; Holsgaard-Larsen, Anders
2016-11-01
The lateral and the posterior approach are the most commonly used procedures for total hip arthroplasty. Due to the detachment of the hip abductors, lateral approach is claimed to cause reduced hip muscle strength and altered gait pattern. However, this has not been investigated in a randomised controlled trial. The aim was to compare the efficacy of total hip arthroplasty performed by lateral or posterior approach on gait function and hip muscle strength up to 12months post-operatively. We hypothesised that posterior approach would be superior to lateral approach. Forty-seven patients with primary hip osteoarthritis were randomised to total hip arthroplasty with either posterior or lateral approach and evaluated pre-operatively, 3 and 12months post-operatively using 3-dimensional gait analyses as objective measures of gait function, including Gait Deviation Index, temporo-spatial parameters and range of motion. Isometric maximal hip muscle strength in abduction, flexion and extension was also tested. Post-operatively, no between-group difference in gait function was observed. However, both hip abductor and flexor muscle strength improved more in the posterior approach group: -0.20(Nm/kg)[95%CI:-0.4 to 0.0] and -0.20(Nm/kg)[95%CI:-0.4 to 0.0], respectively. Contrary to our first hypothesis, the overall gait function in the posterior approach group did not improve more than in the lateral approach group. However, in agreement with our second hypothesis, patients in the posterior approach group improved more in hip abductor and flexor muscle strength at 12months. Further investigation of the effect of reduced maximal hip muscle strength on functional capacity is needed. ClinicalTrials.gov. No.: NCT01616667. Copyright © 2016 Elsevier Ltd. All rights reserved.
Prieske, O; Muehlbauer, T; Borde, R; Gube, M; Bruhn, S; Behm, D G; Granacher, U
2016-01-01
Cross-sectional studies revealed that inclusion of unstable elements in core-strengthening exercises produced increases in trunk muscle activity and thus potential extra stimuli to induce more pronounced performance enhancements in youth athletes. Thus, the purpose of the study was to investigate changes in neuromuscular and athletic performance following core strength training performed on unstable (CSTU) compared with stable surfaces (CSTS) in youth soccer players. Thirty-nine male elite soccer players (age: 17 ± 1 years) were assigned to two groups performing a progressive core strength-training program for 9 weeks (2-3 times/week) in addition to regular in-season soccer training. CSTS group conducted core exercises on stable (i.e., floor, bench) and CSTU group on unstable (e.g., Thera-Band® Stability Trainer, Togu© Swiss ball) surfaces. Measurements included tests for assessing trunk muscle strength/activation, countermovement jump height, sprint time, agility time, and kicking performance. Statistical analysis revealed significant main effects of test (pre vs post) for trunk extensor strength (5%, P < 0.05, d = 0.86), 10-20-m sprint time (3%, P < 0.05, d = 2.56), and kicking performance (1%, P < 0.01, d = 1.28). No significant Group × test interactions were observed for any variable. In conclusion, trunk muscle strength, sprint, and kicking performance improved following CSTU and CSTS when conducted in combination with regular soccer training. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Grip strength and body composition in Turkana pastoralist children and adolescents.
Little, Michael A
2017-03-01
In an earlier study, age changes and sex differences in grip strength were documented for adult Turkana pastoralists of Kenya (Little and Johnson, 1986). The objective here is to characterize age changes and sex differences in grip strength of Turkana children and adolescents in the context of arm lean tissue composition, and in comparison with other African, African-American, and non-Western populations. Anthropometric measurements, derived body composition values, and grip strength measures (maximum voluntary contraction) were taken on a sample of 232 nomadic Turkana pastoralist children (94 boys and 138 girls) aged 3 to 21 years. Relationships were tested between grip strength (in Newtons) and mid-upper arm (brachium) lean tissue cross-sectional areas. Comparisons were made among several different ethnic groups. Turkana children and adolescents had low arm muscle (derived lean tissue) and grip strength values when compared with U.S. NHANES percentile references. Girls' percentile rankings were greater than boys' percentile rankings for muscle and for grip strength. Both boys and girls were intermediate when compared with other non-Western populations and U.S. strength grip reference values. Correlations between grip strength and arm lean tissue areas were highly significant for both boys and girls. The greater relative muscle size and grip strength values of late adolescent girls compared to boys is consistent with an earlier study of adults. The difference is likely to result from greater physical subsistence activity and greater access to food in girls than in boys. Several suggestions are given to explain why Turkana youths have relatively small muscle sizes. © 2016 Wiley Periodicals, Inc.
Tsang, William W. N.; Gao, Kelly L.; Chan, K. M.; Purves, Sheila; Macfarlane, Duncan J.; Fong, Shirley S. M.
2015-01-01
Objective. To investigate the effects of sitting Tai Chi on muscle strength, balance control, and quality of life (QOL) among survivors with spinal cord injuries (SCI). Methods. Eleven SCI survivors participated in the sitting Tai Chi training (90 minutes/session, 2 times/week for 12 weeks) and eight SCI survivors acted as controls. Dynamic sitting balance was evaluated using limits of stability test and a sequential weight shifting test in sitting. Handgrip strength was also tested using a hand-held dynamometer. QOL was measured using the World Health Organization's Quality of Life Scale. Results. Tai Chi practitioners achieved significant improvements in their reaction time (P = 0.042); maximum excursion (P = 0.016); and directional control (P = 0.025) in the limits of stability test after training. In the sequential weight shifting test, they significantly improved their total time to sequentially hit the 12 targets (P = 0.035). Significant improvement in handgrip strength was also found among the Tai Chi practitioners (P = 0.049). However, no significant within and between-group differences were found in the QOL outcomes (P > 0.05). Conclusions. Twelve weeks of sitting Tai Chi training could improve the dynamic sitting balance and handgrip strength, but not QOL, of the SCI survivors. PMID:25688276
Lilja, M; Mandić, M; Apró, W; Melin, M; Olsson, K; Rosenborg, S; Gustafsson, T; Lundberg, T R
2018-02-01
This study tested the hypothesis that high doses of anti-inflammatory drugs would attenuate the adaptive response to resistance training compared with low doses. Healthy men and women (aged 18-35 years) were randomly assigned to daily consumption of ibuprofen (IBU; 1200 mg; n = 15) or acetylsalicylic acid (ASA; 75 mg; n = 16) for 8 weeks. During this period, subjects completed supervised knee-extensor resistance training where one leg was subjected to training with maximal volitional effort in each repetition using a flywheel ergometer (FW), while the other leg performed conventional (work-matched across groups) weight-stack training (WS). Before and after training, muscle volume (MRI) and strength were assessed, and muscle biopsies were analysed for gene and protein expression of muscle growth regulators. The increase in m. quadriceps volume was similar between FW and WS, yet was (averaged across legs) greater in ASA (7.5%) compared with IBU (3.7%, group difference 34 cm 3 ; P = 0.029). In the WS leg, muscle strength improved similarly (11-20%) across groups. In the FW leg, increases (10-23%) in muscle strength were evident in both groups yet they were generally greater (interaction effects P < 0.05) for ASA compared with IBU. While our molecular analysis revealed several training effects, the only group interaction (P < 0.0001) arose from a downregulated mRNA expression of IL-6 in IBU. Maximal over-the-counter doses of ibuprofen attenuate strength and muscle hypertrophic adaptations to 8 weeks of resistance training in young adults. Thus, young individuals using resistance training to maximize muscle growth or strength should avoid excessive intake of anti-inflammatory drugs. © 2017 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Kvorning, Thue; Hansen, Mikkel R B; Jensen, Kurt
2017-07-01
Kvorning, T, Hansen, MRB, and Jensen, K. Strength and conditioning training by the Danish national handball team before an Olympic tournament. J Strength Cond Res 31(7): 1759-1765, 2017-The physical demands imposed on national team handball teams during the Olympics imply significant physical preparation to improve performance and reduce incidence of injuries. The purpose of this case report was to describe and analyze the strength and conditioning (S&C) training performed by the Danish national handball team before the Beijing Olympic Games. Eight weeks of S&C was divided into 5 weeks emphasizing muscle hypertrophy and long-interval running followed by 3 weeks emphasizing strength, power, and short-interval running. Body mass increased by 1.6% (p < 0.05), whereas body fat decreased by 1.0% (p < 0.05). No differences were seen in countermovement jump or jump-and-reach height (p > 0.05). Agility performance was evaluated by a T-test and improved by 2.5% (p < 0.05). Changes by 6% and 22% were seen in 1 repetition maximum (1RM) bench press and 1RM back squat, respectively. However, only the 1RM bench press increased significantly (p < 0.05). Running performance was tested by the Yo-Yo intermittent recovery test, level 2, and improved by 25% (p < 0.05). In conclusion, during 8 weeks of S&C training before the Beijing Olympics, body composition changed toward more muscle mass, better upper-body strength, better interval running, and agility performance, whereas no changes were seen in jumping or lower-body muscle strength. This case report may be used as a handy script for handball teams preparing for competition. Detailed and periodized S&C training programs for 8 weeks are provided and can be used by teams ranging from moderately to highly trained.
Duration Dependent Effect of Static Stretching on Quadriceps and Hamstring Muscle Force.
Alizadeh Ebadi, Leyla; Çetin, Ebru
2018-03-13
The aim of this study was to determine the acute effect of static stretching on hamstring and quadriceps muscles' isokinetic strength when applied for various durations to elite athletes, to investigate the effect of different static stretching durations on isokinetic strength, and finally to determine the optimal stretching duration. Fifteen elite male athletes from two different sport branches (10 football and five basketball) participated in this study. Experimental protocol was designed as 17 repetitive static stretching exercises for hamstring and quadriceps muscle groups according to the indicated experimental protocols; ((A) 5 min jogging; (B) 5 min jogging followed by 15 s static stretching; (C) 5 min jogging followed by 30 s static stretching; (D) 5 min jogging, followed by static stretching for 45 s). Immediately after each protocol, an isokinetic strength test consisting of five repetitions at 60°/s speed and 20 repetitions at 180°/s speed was recorded for the right leg by the Isomed 2000 device. Friedman variance analysis test was employed for data analysis. According to the analyzes, it was observed that 5 min jogging and 15 s stretching exercises increased the isokinetic strength, whereas 30 and 45 s stretching exercises caused a decrease.
Identification and treatment of older persons with sarcopenia.
Lauretani, Fulvio; Bautmans, Ivan; De Vita, Francesca; Nardelli, Anna; Ceda, Gian Paolo; Maggio, Marcello
2014-12-01
In the last decades, sarcopenia in older persons has been operationalized by the assessment of lean body mass, muscle strength and/or physical performance. Several definitions of sarcopenia, using different parameters and cut-offs, have been proposed. However, which is the best definition to describe and to assess this condition is still matter of debate. Hand grip strength has been suggested as better predictor of incident mobility impairment and mortality, than skeletal muscle mass. In the light of the current knowledge, we sought to propose an operative approach for identifying and treating sarcopenic older persons according to main categories of sarcopenia: the age-related or primary sarcopenia and disease-related or secondary sarcopenia. We suggest that a quantitative assessment of grip strength alone might be sufficient to identify patients with primary sarcopenia. When chronic diseases accompany the ageing process, the combined assessment of muscle strength plus a balance test could be more appropriate. The identification of tests and pathological relevant cut-offs that facilitates the entry of sarcopenia into the clinical practice, could step forward researchers and physicians. This could be important for planning multidisciplinary models to maximize the maintenance of locomotive abilities especially in older persons affected by chronic diseases such as Parkinson's disease.
Subtyping children with developmental coordination disorder based on physical fitness outcomes.
Aertssen, Wendy; Bonney, Emmanuel; Ferguson, Gillian; Smits-Engelsman, Bouwien
2018-05-28
Children with Developmental Coordination Disorder (DCD) are known to have poor physical fitness. However, differentiating homogenous subgroups of DCD using fitness performance has not yet been established. Therefore the purpose of this study was to identify subtypes in children with and without DCD using measures of physical fitness. Children (aged 6-10 years, n = 217) constituted the sample for this study. They were assessed on 1) aerobic fitness (20m Shuttle Run test), 2) anaerobic fitness (Muscle Power Sprint Test), 3) isometric muscle strength (handheld dynamometry) 4) functional upper and lower body strength (Functional Strength Measurement) and 5) motor coordination [Movement Assessment Battery for Children-2nd edition (MABC-2) test]. The Ward method was used to identify the various clusters. Five subtypes emerged in the entire sample. In the typically developing (TD) children mainly 2 subtypes (number 5 and 2) were found containing 89% of the TD children (n = 55), with the largest group demonstrating above average performance on all measures (cluster 5). Children in subtype 2 had just above average motor coordination and good aerobic fitness but lower muscle strength. Subtypes 1, 3 and 4 were clearly "DCD" clusters, however they showed difference in fitness performance. Subtype 1 contained children with DCD who showed poor performance on all fitness outcomes (n = 45). Children with DCD in subtype 3 had poor aerobic but average strength and anaerobic fitness (n = 48). Subtype 4 contained children with DCD (n = 45) who had good muscle strength and anaerobic fitness. Of these, 36% were at risk of DCD while 24% had definite motor coordination problems. Our findings indicate that children with and without DCD demonstrate heterogeneous physical fitness profiles. The majority of the children (66%) with DCD belonged to subtypes with lower fitness performance. Further studies are needed to confirm these findings in other samples of DCD children. Copyright © 2018 Elsevier B.V. All rights reserved.
Özcan Kahraman, Buse; Özsoy, İsmail; Acar, Serap; Özpelit, Ebru; Akdeniz, Bahri; Sevinç, Can; Savcı, Sema
2017-07-01
Pulmonary arterial hypertension (PAH) is a rare disease. Although muscle strength, exercise capacity, quality of life, and activities of daily living of patients with PAH are affected, it is not known how they are affected by disease severity. The purpose of the present study was to investigate effects of disease severity on upper extremity muscle strength, exercise capacity, and performance of activities of daily living in patients with PAH. Twenty-five patients with disease severity classified according to the New York Heart Association (NYHA) as functional class II (n=14) or class III (n=11) were included in the study. Upper-extremity exercise capacity and limitations in performing activities of daily living were assessed with 6-minute pegboard and ring test (6PBRT) and the Milliken activities of daily living scale (MAS), respectively. Shoulder flexion, elbow extension, elbow flexion muscle strength, and handgrip strength were measured with dynamometer. There were no significant differences in age, gender, body mass index, or mean pulmonary artery pressure between groups (p>0.05). The 6PBRT, MAS, and elbow flexion (right) and grip strength (right and left) results were significantly lower in NYHA III group than in NYHA II group (p=0.004, p=0.002, p=0.043, p=0.002 and p=0.003, respectively). There was no significant difference in shoulder flexion, elbow flexion (left), or elbow extension between groups (p>0.05). Results suggest that upper extremity exercise capacity, elbow flexion muscle strength (right), and handgrip strength decrease and that limitations in activities of daily living grow as disease severity increases in patients with PAH. When planning rehabilitation programs, disease severity should be considered and evaluations and treatments for the upper extremities should be included.
Supervised Versus Home Exercise Training Programs on Functional Balance in Older Subjects.
Youssef, Enas Fawzy; Shanb, Alsayed Abd Elhameed
2016-11-01
Aging is associated with a progressive decline in physical capabilities and a disturbance of both postural control and daily living activities. The aim of this study was to evaluate the effects of supervised versus home exercise programs on muscle strength, balance and functional activities in older participants. Forty older participants were equally assigned to a supervised exercise program (group-I) or a home exercise program (group-II). Each participant performed the exercise program for 35-45 minutes, two times per week for four months. Balance indices and isometric muscle strength were measured with the Biodex Balance System and Hand-Held Dynamometer. Functional activities were evaluated by the Berg Balance Scale (BBS) and the timed get-up-and-go test (TUG). The mean values of the Biodex balance indices and the BBS improved significantly after both the supervised and home exercise programs ( P < 0.05). However, the mean values of the TUG and muscle strength at the ankle, knee and hip improved significantly only after the supervised program. A comparison between the supervised and home exercise programs revealed there were only significant differences in the BBS, TUG and muscle strength. Both the supervised and home exercise training programs significantly increased balance performance. The supervised program was superior to the home program in restoring functional activities and isometric muscle strength in older participants.
Force-velocity property of leg muscles in individuals of different level of physical fitness.
Cuk, Ivan; Mirkov, Dragan; Nedeljkovic, Aleksandar; Kukolj, Milos; Ugarkovic, Dusan; Jaric, Slobodan
2016-06-01
The present study explored the method of testing muscle mechanical properties through the linear force-velocity (F-V) relationships obtained from loaded vertical jumps. Specifically, we hypothesised that the F-V relationship parameters depicting the force, power, and velocity of the tested muscles will differ among individuals of different physical fitness. Strength trained, physically active, and sedentary male participants (N = 10 + 10 + 10; age 20-29 years) were tested on maximum countermovement and squat jumps where manipulation of external loads provided a range of F and V data. The observed F-V relationships of the tested leg muscles were approximately linear and mainly strong (median correlation coefficients ranged from 0.77 to 0.92; all p < 0.05), independently of either the tested group or the jump type. The maximum power revealed higher values in the strength trained than in the physically active and sedentary participants. This difference originated from the differences in F-intercepts, rather than from the V-intercepts. We conclude that the observed parameters could be sensitive enough to detect the differences among both the individuals of different physical fitness and various jump types. The present findings support using loaded vertical jumps and, possibly, other maximum performance multi-joint movements for the assessment of mechanical properties of active muscles.
Isokinetic Extension Strength Is Associated With Single-Leg Vertical Jump Height
Fischer, Felix; Blank, Cornelia; Dünnwald, Tobias; Gföller, Peter; Herbst, Elmar; Hoser, Christian; Fink, Christian
2017-01-01
Background: Isokinetic strength testing is an important tool in the evaluation of the physical capacities of athletes as well as for decision making regarding return to sports after anterior cruciate ligament (ACL) reconstruction in both athletes and the lay population. However, isokinetic testing is time consuming and requires special testing equipment. Hypothesis: A single-jump test, regardless of leg dominance, may provide information regarding knee extension strength through the use of correlation analysis of jump height and peak torque of isokinetic muscle strength. Study Design: Cross-sectional study; Level of evidence, 3. Methods: A total of 169 patients who underwent ACL reconstruction were included in this study. Isokinetic testing was performed on the injured and noninjured legs. Additionally, a single-leg countermovement jump was performed to assess jump height using a jump accelerometer sensor. Extension strength values were used to assess the association between isokinetic muscle strength and jump height. Results: The sample consisted of 60 female (mean age, 20.8 ± 8.3 years; mean weight, 61.7 ± 6.5 kg; mean height, 167.7 ± 5.3 cm) and 109 male (mean age, 23.2 ± 7.7 years; mean weight, 74.6 ± 10.2 kg; mean height, 179.9 ± 6.9 cm) patients. Bivariate correlation analysis showed an association (r = 0.56, P < .001) between jump height and isokinetic extension strength on the noninvolved side as well as an association (r = 0.52, P < .001) for the involved side. Regression analysis showed that in addition to jump height (beta = 0.49, P < .001), sex (beta = –0.17, P = .008) and body mass index (beta = 0.37, P < .001) affected isokinetic strength. The final model explained 51.1% of the variance in isokinetic muscle strength, with jump height having the strongest impact (beta = 0.49, P < .001) and explaining 31.5% of the variance. Conclusion: Initial analysis showed a strong association between isokinetic strength and jump height. The study population encompassed various backgrounds, skill levels, and activity profiles, which might have affected the outcome. Even after controlling for age and sex, isokinetic strength was still moderately associated with jump height. Therefore, the jump technique and type of sport should be considered in future research. PMID:29147670
Association Between Sarcopenia-Related Phenotypes and Aerobic Capacity Indexes of Older Women
de Oliveira, Ricardo Jacó; Bottaro, Martim; Motta, Antonio Marco; Pitanga, Francisco; Guido, Marcelo; Leite, Tailce Kaley Moura; Bezerra, Lídia Mara Aguiar; Lima, Ricardo Moreno
2009-01-01
The purpose of the present study was to examine the association between fat-free mass (FFM), quadriceps strength and sarcopenia with aerobic fitness indexes of elderly women. A total of 189 volunteers (66.7 ± 5.46 years) underwent aerobic capacity measurement through a symptom-limited cardiopulmonary exercise test to determine their individual ventilatory thresholds (VT) and peak oxygen uptake (VO2 peak). Quadriceps muscle strength was assessed using an isokinetic dynamometer. Also, dual energy X-ray absorptiometry was used to assess FFM and cutoff values were used to classify subjects as sarcopenic or nonsarcopenic. Correlations, student t-test and analysis of variance were used to examine the data. Both FFM and quadriceps strength variables were positively and significantly correlated with the measured aerobic capacity indexes. These results were observed for peak exercise as well as for ventilatory thresholds. Individuals classified as sarcopenic presented significantly lower muscle strength and (VO2 peak) when compared to nonsarcopenic. It can be concluded that FFM and quadriceps strength are significantly related to aerobic capacity indexes in older women, and that besides presenting lower quadriceps strength, women classified as sarcopenic have lower peak oxygen consumption. Taken together, the present results indicate that both FFM and strength play a role in the age-related decline of aerobic capacity. Key points Maximal aerobic capacity, generally expressed as peak oxygen consumption (VO2 peak), declines with advancing age and this process is associated with an increased risk for cardiovascular diseases. Also, the aging process is associated with a progressive loss of muscle mass and strength and this phenomenon has been referred to as Sarcopenia. Sarcopenia has been described in both elderly men and women and has been linked to multiple negative clinical outcomes. The present study provide evidence that muscle-related phenotypes are associated with aerobic capacity of older individuals, thus suggesting that sarcopenia explains in part the decline in aerobic fitness observed with advancing age. PMID:24149995
Hashimoto, Rie; Sakai, Atsuko; Murayama, Masumi; Ochi, Arisa; Abe, Tomoki; Hirasaka, Katsuya; Ohno, Ayako; Teshima-Kondo, Shigetada; Yanagawa, Hiroaki; Yasui, Natsuo; Inatsugi, Mikiko; Doi, Daisuke; Takeda, Masanori; Mukai, Rie; Terao, Junji; Nikawa, Takeshi
2015-01-01
In recent years, the number of bedridden people is rapidly increasing due to aging or lack of exercise in Japan. This problem is becoming more serious, since there is no countermeasure against it. In the present study, we designed to investigate whether dietary proteins, especially soy, had beneficial effects on skeletal muscle in 59 volunteers with various physical activities. We subjected 59 volunteers with various physical activities to meal intervention examination. Persons with low and high physical activities were divided into two dietary groups, the casein diet group and the soy diet group. They ate daily meals supplemented with 7.8 g of powdered casein or soy protein isolate every day for 30 days. Bedridden patients in hospitals were further divided into three dietary groups: the no supplementation diet group, the casein diet group and the soy diet group. They were also subjected to a blood test, a urinalysis, magnetic resonance imaging analysis and muscle strength test of the knee before and after the meal intervention study. Thirty-day soy protein supplementation significantly increased skeletal muscle volume in participants with low physical activity, compared with 30-day casein protein supplementation. Both casein and soy protein supplementation increased the volume of quadriceps femoris muscle in bedridden patients. Consistently, soy protein significantly increased their extension power of the knee, compared with casein protein. Although casein protein increased skeletal muscle volume more than soy protein in bedridden patients, their muscle strength changes by soy protein supplementation were bigger than those by casein protein supplementation. The supplementation of soy protein would be one of the effective foods which prevent the skeletal muscle atrophy caused by immobilization or unloading.
Cushing's syndrome: a model for sarcopenic obesity.
Drey, Michael; Berr, Christina M; Reincke, Martin; Fazel, Julia; Seissler, Jochen; Schopohl, Jochen; Bidlingmaier, Martin; Zopp, Stefanie; Reisch, Nicole; Beuschlein, Felix; Osswald, Andrea; Schmidmaier, Ralf
2017-09-01
Obesity and its metabolic impairments are discussed as major risk factors for sarcopenia leading to sarcopenic obesity. Cushing's syndrome is known to be associated with obesity and muscle atrophy. We compared Cushing's syndrome with matched obese controls regarding body composition, physical performance, and biochemical markers to test the hypothesis that Cushing's syndrome could be a model for sarcopenic obesity. By propensity score matching, 47 controls were selected by body mass index and gender as obese controls. Fat mass and muscle mass were measured by bioelectrical impedance analysis. Muscle function was assessed by chair rising test and hand grip strength. Biochemical markers of glucose and lipid metabolism and inflammation (hsCRP) were measured in peripheral blood. Muscle mass did not differ between Cushing's syndrome and obese controls. However, Cushing's syndrome patients showed significantly greater chair rising time (9.5 s vs. 7.3 s, p = 0.008) and significantly lower hand grip strength (32.1 kg vs. 36.8 kg, p = 0.003). Cushing's syndrome patients with impaired fasting glucose have shown the highest limitations in hand grip strength and chair rising time. Similar to published data in ageing medicine, Cushing's syndrome patients show loss of muscle function that cannot be explained by loss of muscle mass. Impaired muscle quality due to fat infiltration may be the reason. This is supported by the observation that Cushing's syndrome patients with impaired glucose metabolism show strongest deterioration of muscle function. Research in sarcopenic obesity in elderly is hampered by confounding comorbidities and polypharmacy. As Cushing's syndrome patients are frequently free of comorbidities and as Cushing's syndrome is potentially curable we suggest Cushing's syndrome as a clinical model for further research in sarcopenic obesity.
[Fitness and quality of life in kidney transplant recipients: case-control study].
Hernández Sánchez, Sonsoles; Carrero, Juan J; García López, David; Herrero Alonso, Juan Azael; Menéndez Alegre, Héctor; Ruiz, Jonatan R
2016-04-15
We analyzed the levels of fitness, muscle structure and quality of life of adults after kidney transplant and healthy adults. A total of 16 kidney transplant patients and 21 healthy controls performed several fitness test, isokinetic evaluation of knee flexion and extension and ultrasonography muscle thickness assessment. They also completed the quality of life questionnaire SF-36. Physical fitness, muscle structure and quality of life of the kidney transplant recipients were significantly poorer than the controls. The transplant patients performed less well in the "get up and go" and "sit to stand" test (p<.001) as well as in assessments of muscle structure, strength and power. The patients had a poorer score in their quality of life assessments, differing from the controls in domains of physical function, physical role, general health and social function (p<.001). Fitness, strength and muscle mass are diminished in kidney transplant patients, resulting in a poorer quality of life which might entail an increased risk to their health. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.
Trampoline exercise vs. strength training to reduce neck strain in fighter pilots.
Sovelius, Roope; Oksa, Juha; Rintala, Harri; Huhtala, Heini; Ylinen, Jari; Siitonen, Simo
2006-01-01
Fighter pilots' muscular strength and endurance are subjected to very high demands. Pilots' fatigued muscles are at higher risk for injuries. The purpose of this study was to compare the effects of two different training methods in reducing muscular loading during in-flight and cervical loading testing (CLT). There were 16 volunteer Finnish Air Force cadets who were divided into 2 groups: a strength training group (STG) and a trampoline training group (TTG). During the 6-wk training period, the STG performed dynamic flexion and extension and isometric rotation exercises, and the TTG performed trampoline bouncing exercises. During in-flight and CLT, muscle strain from the sternocleidomastoid, cervical erector spinae, trapezius, and thoracic erector spinae muscles was recorded with EMG. In-flight muscle strain in the STG after the training period decreased in the sternocleidomastoid 50%, cervical erector spinae 3%, trapezius 4%, and thoracic erector spinae 8%. In the TTG, the decrease was 41%, 30%, 20%, and 6%, respectively. In CLT, the results were similar. After a 3-mo follow-up period with intensive high +Gz flying, EMG during CLT was still lower than in baseline measurements. Both training methods were found to be effective in reducing muscle strain during in-flight and CLT, especially in the cervical muscles. There was no statistically significant difference between the training groups. Introduced exercises expand muscles' capacities in different ways and the authors recommend both strength and trampoline training programs to be included in fighter pilots' physical education programs.
Farzinmehr, Azizeh; Moezy, Azar; Koohpayehzadeh, Jalil; Kashanian, Maryam
2015-11-01
To determine whether Whole Body Vibration Training (WBVT) is effective at improving pelvic floor muscles strength in women with Stress Urinary Incontinence (SUI). The study was designed as a randomized clinical trial. 43 women with SUI were randomly assigned in two groups; WBVT and Pelvic Floor Muscle Training (PFMT) and received interventions for four weeks. Pelvic floor muscle (PFM) strength, quality of life and incontinence intensity were evaluated. All measurements were conducted pre and post intervention and also after 3 months in all participants. The ANOVA and the independent sample t test were applied respectively to determine the differences in each group and between the groups. This study showed the WBVT protocol in this study was effective in pelvic floor muscles strength similar to PFMT, and also in reducing the severity of incontinence and increasing I-QOL questionnaire score. We found significant differences in each group pre and post intervention (p = 0.0001); but no significant difference in comparison of two groups' outcomes. Also after three-month follow up, there was no significant difference between groups. The findings of this study showed the beneficial effects of WBVT in improving pelvic floor muscles strength and quality of life in patients with urinary incontinence in four-week treatment period and after three months follow up.
Analysis of elbow muscle strength parameters in Brazilian jiu-jitsu practitioners.
Follmer, Bruno; Dellagrana, Rodolfo André; de Lima, Luis Antonio Pereira; Herzog, Walter; Diefenthaeler, Fernando
2017-12-01
Upper-body dynamic and isometric maximum strength are essential components for success in Brazilian jiu-jitsu (BJJ). This study was aimed at analysing strength parameters in the elbow flexor and extensor muscles of BJJ practitioners. Participants (n = 28) performed maximum isometric contractions of elbow flexors and extensors to determine peak torque (PT), rate of force development (RFD), and the torque-angle (T-A) relationship at elbow angles of 45°, 60°, 75°, 90°, 105°, and 120°. Additionally, concentric and eccentric PTs were measured at 1.04 rad·s -1 . Student t-test and ANOVA were performed using α = 0.05. Elbow flexors were stronger isometrically (P < 0.001, ES = 1.23) but weaker concentrically (P < 0.05, ES = 0.54) than extensor muscles, possibly because of the extensive grip disputes and pushing of opponents in BJJ. The T-A relationship had an inverted "U"-shape. Torque differences across elbow angles were moderate (ES = 0.62) for the extensor and large (ES = 0.92) for the flexor muscles. Isometric torque was greatest for elbow angles of 105° and 75° and smallest for 45° and 120° for extensor and flexor muscles, respectively. Elbow flexors had a greater RFD than extensors, regardless of elbow angle. The present study provides comprehensive results for elbow muscle strength in BJJ practitioners.
Ryman Augustsson, Sofia; Ageberg, Eva
2017-01-01
Background The role of lower extremity (LE) muscle strength for predicting traumatic knee injury in youth athletes is largely unknown. Aims The aim was to investigate the influence of LE muscle strength on traumatic knee injury in youth female and male athletes. Methods 225 athletes (40% females) from sport senior high schools in Sweden were included in this case–control study. The athletes recorded any traumatic knee injury that had occurred during their high-school period in a web-based injury form. A one repetition maximum (1RM) barbell squat test was used to measure LE muscle strength. The 1RM was dichotomised to analyse ‘weak’ versus ‘strong’ athletes according to the median (weakmedian vs strongmedian). Results 63 traumatic knee injuries, including 18 ACL injuries, were registered. The majority of injured female athletes were in the weak group compared with the strong group (p=0.0001). The odds of sustaining a traumatic knee injury and an ACL injury was 9.5 times higher and 7 times higher, respectively, in the weakmedian group compared with the strongmedian group in females (p ≤0.011). A relative 1RM squat ≤1.05 kg (105% of bodyweight) was established as the best cut-off value to distinguish high versus low risk of injury in female athletes. No strength–injury relationships were observed for the male athletes (p ≥0.348). Conclusions Weaker LE muscle strength predicted traumatic knee injury in youth female athletes, but not in males. This suggests that LE muscle strength should be included in injury screening in youth female athletes. PMID:29259807
Kuru Çolak, Tuğba; Kavlak, Bahar; Aydoğdu, Onur; Şahin, Emir; Acar, Gönül; Demirbüken, İlkşan; Sarı, Zübeyir; Çolak, İlker; Bulut, Güven; Polat, M Gülden
2017-03-01
The aim of the study was to compare the effects of low-intensity exercise programs for lower extremities, either supervised or at home, on pain, muscle strength, balance and the hemodynamic parameters of knee osteoarthritis (OA) patients. This randomized study included 78 patients with knee OA in 2 groups of supervised and home-based exercise program. Exercises were applied to the first group in the clinic as a group exercise program and were demonstrated to the second group to be performed at home. Before and after the 6-week exercise program, assessment was made of pain, quadriceps and hamstring muscle strengths, 6-min walk test (6MWT), and non-invasive hemodynamic parameters. Results of the 78 patients, 56 completed the study. Pain, muscle strength, and 6MWT scores showed significant improvements in both groups. There were also significant differences in the amount of change in pain and muscle strength (pain: p = 0.041, Rqdc: 0.009, Lqdc: 0.013, Rhms: 0.04) which indicated greater improvements in the supervised group. The balance scores of supervised group showed a significant improvement (p = 0.009). No significant change was determined in hemodynamic parameters of either group. Conclusion according to the results of this study showed that low-intensity lower extremity exercises conducted in a clinic under the supervision of a physiotherapist were more effective than home-based exercises in reducing post-activity pain levels and improving quadriceps and right hamstring muscle strength. Both the supervised and home exercise programs were seen to be effective in reducing rest pain and increasing 6 MW distance in knee osteoarthritis patients.
Chan, Ding-Cheng; Chang, Chirn-Bin; Han, Der-Sheng; Hong, Cian-Hui; Hwang, Jawl-Shan; Tsai, Keh-Sung; Yang, Rong-Sen
2017-10-26
The deterioration of the musculoskeletal system imposes significant impact on physical activity. Exercise is an important strategy which minimizes these changes. It is not clear which type of exercise provides better improvement on low physical performance, low muscle mass and low strength of sarcopenia. We aim to develop an integrated care (IC) model and compare its relative efficacy in limb fat free mass, muscle strength, and physical performance with low extremities exercise (LEE) in community dwelling older adults with high risk of fractures (Fracture Risk Assessment Tool (FRAX ® )) ≧3% for hip fracture, ≧20% for major osteoporotic fracture or 1-min osteoporosis risk test (≧1 point) or fall (≧2 falls in previous year). Patients were assigned randomized to participate in either IC or LEE group (n = 55 each) for 3 months. All participants received education including home-based exercise. The IC group consisted of different modalities of exercise while the LEE group performed machine-based low extremities exercise. Fat free mass, muscle strength, and physical performance were measured at their baseline and 3-months follow-up. Mean age was 73.8 ± 7 years with 69.1% women. Entire cohort demonstrated significant increment in fat free mass, muscle strength (4 indicators) and physical performance (3 indicators). However, between group differences were not significant. With regular supervise exercise; both groups are equally effective in decreasing fat mass and increasing physical performance, muscle mass and strength. However, the IC group required fewer resources and thus more financially feasible in a community setting. Copyright © 2017. Published by Elsevier B.V.
Dujardin, D; Fontanin, N; Geffrier, A; Morel, N; Mensa, C; Ohl, X
2015-09-01
Harvesting of a 4-strand semitendinosis (ST4) graft during anterior cruciate ligament (ACL) reconstruction can be performed through either a posterior or anterior approach. The objective of this study was to evaluate the recovery of the quadriceps and hamstring muscles as a function of the graft harvesting method. We hypothesized that posterior harvesting (PH) would lead to better recovery in hamstring strength than anterior harvesting (AH). In this prospective study, the semitendinosus was harvested through an anterior incision in the first group of patients and through a posterior one in the second group of patients. The patients were enrolled consecutively, without randomization. Isokinetic muscle testing was performed three and six months postoperative to determine the strength deficit in the quadriceps and hamstring muscles of the operated leg relative to the uninjured contralateral leg. Thirty-nine patients were included: 20 in the AH group and 19 in the PH group. The mean quadriceps strength deficit after three and six months was 42% and 26% for AH and 29% and 19% for the PH, respectively (P=0.01 after three months and P=0.16 after six months). The mean hamstring strength deficit after three and six months was 31% and 17% for AH and 23% and 15% for the PH, respectively (P=0.09 after three months and P=0.45 after six months). After three months, the PH group had recovered 12% more quadriceps muscle strength than the AH group (P=0.03). Our hypothesis was not confirmed. Harvesting of a ST4 graft for ACL reconstruction using a posterior approach led to better muscle strength recovery in the quadriceps only after three months. Level 3. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Fatigue is associated with muscle weakness in Ehlers-Danlos syndrome: an explorative study.
Voermans, N C; Knoop, H; Bleijenberg, G; van Engelen, B G
2011-06-01
Ehlers-Danlos syndrome (EDS) is a clinically and genetically heterogeneous group of inherited connective tissue disorders characterised by joint hypermobility, skin hyperextensibility and tissue fragility. It has recently been shown that muscle weakness occurs frequently in EDS, and that fatigue is a common and clinically important symptom. The aim of this study was to investigate the relationship between fatigue severity and subjective and objective measures of muscle weakness. Furthermore, the predictive value of muscle weakness for fatigue severity was determined, together with that of pain and physical activity. An explorative, cross-sectional, observational study. Thirty EDS patients, recruited from the Dutch patient association, were investigated at the neuromuscular outpatient department of a tertiary referral centre in The Netherlands. Muscle strength measured with manual muscle strength testing and hand-held dynamometry. Self-reported muscle weakness, pain, physical activity levels and fatigue were assessed with standardised questionnaires. Fatigue severity in EDS was significantly correlated with measured and self-reported muscle weakness (r=-0.408 for manual muscle strength, r=0.461 for hand-held dynamometry and r=0.603 for self-reported muscle weakness). Both muscle weakness and pain severity were significant predictors of fatigue severity in a multiple regression analysis. The results suggest a positive and direct relationship between fatigue severity and muscle weakness in EDS. Future research should focus on the relationship between fatigue, muscle weakness and objectively measured physical activity, preferably in a larger cohort of EDS patients. Copyright © 2010 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
Effects of Ramadan Fasting on Inspiratory Muscle Function.
Soori, Mohsen; Mohaghegh, Shahram; Hajain, Maryam; Moraadi, Behrooz
2016-09-01
Ramadan fasting is a major challenge for exercising Muslims especially in warm seasons. There is some evidence to indicate that Ramadan fasting causes higher subjective ratings of perceived exertion (RPE) in fasting Muslims. The mechanisms of this phenomenon are not known exactly. The role of respiratory muscle strength in this regard has not been studied yet. The aim of this study was investigation of the effects of Ramadan fasting on respiratory muscle strength. In a before-after study, from 35 fasting, apparently healthy, male adults who had fasted from the beginning of Ramadan, maximal inspiratory muscle pressure (MIP) and peak inspiratory flow (PIF) were measured in the last week of Ramadan month in summer. At the time of test, there was not any sleep problem in participants and all of them had good cooperation. Three months later, after exclusion of incompatible persons mainly because of change in their physical activity level, smoking behavior or drug consumption, the measurements were repeated in 12 individuals. Weight, MIP and PIF data had normal distribution (Kolmogorov-Smirnov Test). There was a significant increase in MIP (mean 8.3 cm H 2 O with 95% confidence interval of 2.2 - 14.3) and PIF (mean 0.55 lit/s with 95% confidence interval of 0.02 - 1.07) and weight (mean 3.4 Kg with 95% confidence interval of 2.2 - 4.5) after Ramadan (Paired t test with P < 0.05). When weight difference was used as a covariate in repeated measure ANOVA test, there was no further significant difference between MIP and PIF measurements. Ramadan fasting may cause reduction of respiratory muscle strength through reduction of body weight.
Ozaki, Kenichi; Kondo, Izumi; Hirano, Satoshi; Kagaya, Hitoshi; Saitoh, Eiichi; Osawa, Aiko; Fujinori, Yoichi
2017-11-01
To examine the efficacy of postural strategy training using a balance exercise assist robot (BEAR) as compared with conventional balance training for frail older adults. The present study was designed as a cross-over trial without a washout term. A total of 27 community-dwelling frail or prefrail elderly residents (7 men, 20 women; age range 65-85 years) were selected from a volunteer sample. Two exercises were prepared for interventions: robotic exercise moving the center of gravity by the balance exercise assist robot system; and conventional balance training combining muscle-strengthening exercise, postural strategy training and applied motion exercise. Each exercise was carried out twice a week for 6 weeks. Participants were allocated randomly to either the robotic exercise first group or the conventional balance exercise first group. preferred and maximal gait speeds, tandem gait speeds, timed up-and-go test, functional reach test, functional base of support, center of pressure, and muscle strength of the lower extremities were assessed before and after completion of each exercise program. Robotic exercise achieved significant improvements for tandem gait speed (P = 0.012), functional reach test (P = 0.002), timed up-and-go test (P = 0.023) and muscle strength of the lower extremities (P = 0.001-0.030) compared with conventional exercise. In frail or prefrail older adults, robotic exercise was more effective for improving dynamic balance and lower extremity muscle strength than conventional exercise. These findings suggest that postural strategy training with the balance exercise assist robot is effective to improve the gait instability and muscle weakness often seen in frail older adults. Geriatr Gerontol Int 2017; 17: 1982-1990. © 2017 The Authors. Geriatrics & Gerontology International published by John Wiley & Sons Australia, Ltd on behalf of Japan Geriatrics Society.
Pierik, Vincent D; Meskers, Carel G M; Van Ancum, Jeanine M; Numans, Siger T; Verlaan, Sjors; Scheerman, Kira; Kruizinga, Roeliene C; Maier, Andrea B
2017-06-05
Malnutrition, low muscle strength and muscle mass are highly prevalent in older hospitalized patients and associated with adverse outcomes. Malnutrition may be a risk factor for developing low muscle mass. We aimed to investigate the association between the risk of malnutrition and 1) muscle strength and muscle mass at admission and 2) the change of muscle strength and muscle mass during hospitalization in older patients. The EMPOWER study included 378 patients aged seventy years or older who were acutely or electively admitted to four different wards of an academic teaching hospital in Amsterdam. Patients were grouped into low risk of malnutrition and high risk of malnutrition based on the Short Nutritional Assessment Questionnaire (SNAQ) score and were assessed for hand grip strength and muscle mass using hand held dynamometry respectively bioelectrical impedance analysis (BIA) within 48 h after admission and at day seven, or earlier at the day of discharge. Muscle mass was expressed as skeletal muscle mass, appendicular lean mass, fat free mass and the skeletal muscle index. The mean age of the patients was 79.7 years (SD 6.39), 48.9% were female. At admission, being at high risk of malnutrition was significantly associated with lower muscle mass (Odds Ratio, 95% CI, 0.90, 0.85-0.96), but not with muscle strength. Muscle strength and muscle mass did not change significantly during hospitalization in both groups. In older hospitalized patients, a high risk of malnutrition is associated with lower muscle mass at admission, but not with muscle strength nor with change of either muscle strength or muscle mass during hospitalization.
Sekir, U; Arabaci, R; Akova, B; Kadagan, S M
2010-04-01
The aim of this study was to explore the effects of static and dynamic stretching of the leg flexors and extensors on concentric and eccentric peak torque (PT) and electromyography (EMG) amplitude of the leg extensors and flexors in women athletes. Ten elite women athletes completed the following intervention protocol in a randomized order on separate days: (a) non-stretching (control), (b) static stretching, and (c) dynamic stretching. Stretched muscles were the quadriceps and hamstring muscles. Before and after the stretching or control intervention, concentric and eccentric isokinetic PT and EMG activity of the leg extensors and flexors were measured at 60 and 180 degrees/s. Concentric and eccentric quadriceps and hamstring muscle strength at both test speeds displayed a significant decrease following static stretching (P<0.01-0.001). In contrast, a significant increase was observed after dynamic stretching for these strength parameters (P<0.05-0.001). Parallel to this, normalized EMG amplitude parameters exhibited significant decreases following static (P<0.05-0.001) and significant increases following dynamic stretching (P<0.05-0.001) during quadriceps and hamstring muscle actions at both concentric and eccentric testing modes. Our findings suggest that dynamic stretching, as opposed to static or no stretching, may be an effective technique for enhancing muscle performance during the pre-competition warm-up routine in elite women athletes.
Cervical Musculoskeletal Impairments and Temporomandibular Disorders
Magee, David
2012-01-01
ABSTRACT Objectives The study of cervical muscles and their significance in the development and perpetuation of Temporomandibular Disorders has not been elucidated. Thus this project was designed to investigate the association between cervical musculoskeletal impairments and Temporomandibular Disorders. Material and Methods A sample of 154 subjects participated in this study. All subjects underwent a series of physical tests and electromyographic assessment (i.e. head and neck posture, maximal cervical muscle strength, cervical flexor and extensor muscles endurance, and cervical flexor muscle performance) to determine cervical musculoskeletal impairments. Results A strong relationship between neck disability and jaw disability was found (r = 0.82). Craniocervical posture was statistically different between patients with myogenous Temporomandibular Disorders (TMD) and healthy subjects. However, the difference was too small (3.3º) to be considered clinically relevant. Maximal cervical flexor muscle strength was not statistically or clinically different between patients with TMD and healthy subjects. No statistically significant differences were found in electromyographic activity of the sternocleidomastoid or the anterior scalene muscles in patients with TMD when compared to healthy subjects while executing the craniocervical flexion test (P = 0.07). However, clinically important effect sizes (0.42 - 0.82) were found. Subjects with TMD presented with reduced cervical flexor as well as extensor muscle endurance while performing the flexor and extensor muscle endurance tests when compared to healthy individuals. Conclusions Subjects with Temporomandibular Disorders presented with impairments of the cervical flexors and extensors muscles. These results could help guide clinicians in the assessment and prescription of more effective interventions for individuals with Temporomandibular Disorders. PMID:24422022
Core strength and lower extremity alignment during single leg squats.
Willson, John D; Ireland, Mary Lloyd; Davis, Irene
2006-05-01
Muscles of the trunk, hip, and knee influence the orientation of the lower extremity during weight bearing activities. The purpose of this study was threefold: first, to compare the orientation of the lower extremity during a single leg (SL) squat among male and female athletes; second, to compare the strength of muscle groups in the trunk, hips, and knees between these individuals; and third, to evaluate the association between trunk, hip, and knee strength and the orientation of the knee joint during this activity. Twenty-four male and 22 female athletes participated in this study. Peak isometric torque was determined for the following muscle actions: trunk flexion, extension, and lateral flexion, hip abduction and external rotation, and knee flexion and extension. The frontal plane projection angle (FPPA) of the knee during a 45 degrees SL squat was determined using photo editing software. Males and females moved in opposite directions during the SL squat test (F(1,42) = 5.05, P = 0.03). Females typically moved toward more extreme FPPA during SL squats (P = 0.056), while males tended to move toward more neutral alignment (P = 0.066). Females also generated less torque in all muscle groups, with the exception of trunk extension. The projection angle of the knee during the SL squat test was most closely associated with hip external rotation strength. Using instruments suitable for a clinical setting, females were found to have greater FPPA and generally decreased trunk, hip, and knee isometric torque. Hip external rotation strength was most closely associated with the frontal plane projection angle.
Muscle strength and body composition are clinical indicators of osteoporosis.
Rikkonen, Toni; Sirola, Joonas; Salovaara, Kari; Tuppurainen, Marjo; Jurvelin, Jukka S; Honkanen, Risto; Kröger, Heikki
2012-08-01
We examined the role of muscle strength, lean tissue distribution, and overall body composition as indicators of osteoporosis (OP) in a pooled sample of 979 Finnish postmenopausal women (mean age 68.1 years) from the Kuopio Osteoporosis Risk Factor and Prevention study. Bone mineral density (BMD) at the femoral neck (FN) and total body composition were assessed by dual-energy X-ray absorptiometry scans. The women (n = 979) were divided into three groups according to WHO criteria, based on FN BMD T score: normal (n = 474), osteopenia (n = 468), and OP (n = 37). Soft tissue proportions, fat mass index (FMI, fat/height²), lean mass index (LMI, lean/height²), and appendicular skeletal muscle mass (ASM, (arms + legs)/height²) were calculated. Handgrip and knee extension strength measurements were made. OP subjects had significantly smaller LMI (p = 0.001), ASM (p = 0.001), grip strength (p < 0.0001), and knee extension strength (p < 0.05) but not FMI (p > 0.05) compared to other subjects. Grip and knee extension strength were 19 and 16 % weaker in OP women compared to others, respectively. The area under the receiver operating characteristic curve was 69 % for grip and 71 % for knee extension strength. In tissue proportions only LMI showed predictive power (63 %, p = 0.016). An overall linear association of LMI (R² = 0.007, p = 0.01) and FMI (R² = 0.028, p < 0.001) with FN BMD remained significant. In the multivariate model, after adjusting for age, grip strength, leg extension strength, FMI, LMI, number of medications, alcohol consumption, current smoking, dietary calcium intake, and hormone therapy, grip strength (adjusted OR = 0.899, 95 % CI 0.84-0.97, p < 0.01), leg extension strength (OR = 0.998, 95 % CI 0.99-1, p < 0.05), and years of hormone therapy (OR = 0.905, 95 % CI 0.82-1, p < 0.05) remained as significant determinants of OP. Muscle strength tests, especially grip strength, serve as an independent and useful tool for postmenopausal OP risk assessment. In addition, lean mass contributes to OP in this age group. Muscle strength and lean mass should be considered separately since both are independently associated with postmenopausal BMD.
Fitness Profiles and Activity Patterns of Entering College Students.
ERIC Educational Resources Information Center
Pierce, Edgar F.; And Others
1992-01-01
Entering college students were evaluated for performance on maximal oxygen consumption, body composition, muscle endurance, muscle strength, and joint flexibility tests to determine the relationship of physical activity patterns to fitness levels. Results supported previous research indicating reduced fitness levels in young adults. (SM)
Duval, G; Rolland, Y; Schott, A M; Blain, H; Dargent-Molina, P; Walrand, S; Duque, G; Annweiler, C
2018-05-01
Vitamin D affects physical performance in older adults. Its effects on muscles, notably on muscle strength, remain unclear. The objective of this cross-sectional study was to determine whether hypovitaminosis D is associated with triceps brachii muscle fatigability in community-dwelling older women. A randomized subset of 744 women aged ≥75years from the EPIDOS cohort was categorized into two groups according to triceps brachii muscle fatigability, defined as loss of strength >5% between two consecutive maximal isometric voluntary contractions. Hypovitaminosis D was defined using consensual threshold values (i.e., serum 25-hydroxyvitamin D concentration [25OHD] ≤10 ng/mL, ≤20 ng/mL, and ≤30 ng/mL). Age, body mass index, comorbidities, use psychoactive drugs, physical activity, first triceps strength measure, hyperparathyroidism, serum concentrations of calcium, albumin and creatinine, season and study centers were used as potential confounders. The prevalence of hypovitaminosis D ≤ 30 ng/mL was greater among women with muscle fatigability compared with the others (P = .009). There was no between-group difference using the other definitions of hypovitaminosis D. The serum 25OHD concentration was inversely associated with the between-test change in triceps strength (adjusted β = -0.09 N, P = .04). Hypovitaminosis D ≤ 30 ng/mL was positively associated with triceps fatigability (adjusted OR = 3.15, P = .02). Vitamin D concentration was inversely associated with the ability to maintain strength over time in this cohort of community-dwelling older women. This is a relevant new orientation of research toward understanding the involvement of vitamin D in muscle function. Copyright © 2018 Elsevier B.V. All rights reserved.
The impact of obesity on skeletal muscle strength and structure through adolescence to old age.
Tomlinson, D J; Erskine, R M; Morse, C I; Winwood, K; Onambélé-Pearson, Gladys
2016-06-01
Obesity is associated with functional limitations in muscle performance and increased likelihood of developing a functional disability such as mobility, strength, postural and dynamic balance limitations. The consensus is that obese individuals, regardless of age, have a greater absolute maximum muscle strength compared to non-obese persons, suggesting that increased adiposity acts as a chronic overload stimulus on the antigravity muscles (e.g., quadriceps and calf), thus increasing muscle size and strength. However, when maximum muscular strength is normalised to body mass, obese individuals appear weaker. This relative weakness may be caused by reduced mobility, neural adaptations and changes in muscle morphology. Discrepancies in the literature remain for maximal strength normalised to muscle mass (muscle quality) and can potentially be explained through accounting for the measurement protocol contributing to muscle strength capacity that need to be explored in more depth such as antagonist muscle co-activation, muscle architecture, a criterion valid measurement of muscle size and an accurate measurement of physical activity levels. Current evidence demonstrating the effect of obesity on muscle quality is limited. These factors not being recorded in some of the existing literature suggest a potential underestimation of muscle force either in terms of absolute force production or relative to muscle mass; thus the true effect of obesity upon skeletal muscle size, structure and function, including any interactions with ageing effects, remains to be elucidated.
Individual and combined influence of ACE and ACTN3 genes on muscle phenotypes in Polish athletes.
Orysiak, Joanna; Mazur-Różycka, Joanna; Busko, Krzysztof; Gajewski, Jan; Szczepanska, Beata; Malczewska-Lenczowska, Jadwiga
2017-02-08
The aim of this study was to examine the association between ACE and ACTN3 genes, independently or in combination, and muscle strength and power in male and female athletes. The study involved 398 young male (n=266) and female (n=132) athletes representing various sport disciplines (ice hockey, canoeing, swimming, volleyball). All were Caucasians. The following measurements were taken: height of jump and mechanical power in countermovement jump (CMJ) and spike jump (SPJ), and muscle strength of 10 muscle groups (flexors and extensors of the elbow, shoulder, hip, knee and trunk). The ID polymorphism of ACE and the R577X polymorphism of ACTN3 were typed using PCR (polymerase chain reaction) and PCR-RFLP (polymerase chain reaction - restriction fragment length polymorphism), respectively. The genotype distribution of the ACE and ACTN3 genes did not differ significantly between groups of athletes for either sex. There was no association between ACE and ACTN3 genotypes (alone or in combination) and sum of muscle strength, height of jump or mechanical power in both jump tests (CMJ and SPJ) for male and female athletes. These findings do not support an influential role of the ACE and ACTN3 genes in determining power/strength performance of elite athletes.
Six-minute walking test in children with ESRD: discrimination validity and construct validity.
Takken, Tim; Engelbert, Raoul; van Bergen, Monique; Groothoff, Jaap; Nauta, Jeroen; van Hoeck, Koen; Lilien, Marc; Helders, Paul
2009-11-01
The six-minute walking test (6MWT) may be a practical test for the evaluation functional exercise capacity in children with end-stage renal disease (ESRD). The aim of this study was to investigate the 6MWT performance in children with ESRD compared to reference values obtained in healthy children and, secondly, to study the relationship between 6MWT performance with anthropometric variables, clinical parameters, aerobic capacity and muscle strength. Twenty patients (13 boys and seven girls; mean age 14.1 +/- 3.4 years) on dialysis participated in this study. Anthropometrics were taken in a standardized manner. The 6MWT was performed in a 20-m-long track in a straight hallway. Aerobic fitness was measured using a cycle ergometer test to determine peak oxygen uptake (V O(2peak)), peak rate (W(peak)) and ventilatory threshold (VT). Muscle strength was measured using hand-held myometry. Children with ESRD showed a reduced 6MWT performance (83% of predicted, p < 0.0001), irrespective of the reference values used. The strongest predictors of 6MWT performance were haematocrit and height. Regression models explained 59% (haematocrit and height) to 60% (haematocrit) of the variance in 6MWT performance. 6MWT performance was not associated with V O(2peak), strength, or other anthropometric variables, but it was significantly associated with haematocrit and height. Children with ESRD scored lower on the 6MWT than healthy children. Based on these results, the 6MWT may be a useful instrument for monitoring clinical status in children with ESRD, however it cannot substitute for other fitness tests, such as a progressive exercise test to measure V O(2peak) or muscle strength tests.
Break-technique handheld dynamometry: relation between angular velocity and strength measurements.
Burns, Stephen P; Spanier, David E
2005-07-01
To determine whether the muscle strength, as measured with break-technique handheld dynamometry (HHD), is dependent on the angular velocity achieved during testing and to compare reliability at different angular velocities. Repeated-measures study. Participants underwent HHD by using make-technique (isometric) and break-technique (eccentric) dynamometry at 3 prespecified angular velocities. Elbow movement was recorded with an electrogoniometer. Inpatient spinal cord injury unit. Convenience sample of 20 persons with tetraplegia with weakness of elbow flexors or extensors. Not applicable. Elbow angular velocity and muscle strength recorded during HHD. With the break technique, angular velocities averaging 15 degrees , 33 degrees , and 55 degrees /s produced 16%, 30%, and 51% greater strength measurements, respectively, than velocities recorded by using the make technique (all P < .006 for comparisons between successive techniques). The intraclass correlation coefficient for intrarater reliability was .89 or greater for all testing techniques. Greater strength is recorded with faster angular velocities during HHD. Differences in angular velocity may explain the wide range previously reported for break- versus make-technique strength measurements. Variation in angular velocity is a potential source of variability in serial HHD strength measurements, and for this reason the make technique may be preferable.
Liu, Yali; Hong, Yuezhen; Ji, Linhong
2018-01-01
Patients with hemiplegia usually have weak muscle selectivity and usually perform strength at a secondary joint (secondary strength) during performing a strength at one joint (primary strength). The abnormal strength pattern between shoulder and elbow joint has been analyzed by the maximum value while the performing process with strength changing from 0 to maximum then to 0 was a dynamic process. The objective of this study was to develop a method to dynamically analyze the strength changing process. Ten patients were asked to perform four group asks (maximum and 50% maximum voluntary strength in shoulder abduction, shoulder adduction, elbow flexion, and elbow extension). Strength and activities from seven muscles were measured. The changes of secondary strength had significant correlation with those of primary strength in all tasks ( R > 0.76, p < 0.01). The antagonistic muscles were moderately influenced by the primary strength ( R > 0.4, p < 0.01). Deltoid muscles, biceps brachii, triceps brachii, and brachioradialis had significant influences on the abnormal strength pattern (all p < 0.01). The dynamic method was proved to be efficient to analyze the different influences of muscles on the abnormal strength pattern. The muscles, deltoid muscles, biceps brachii, triceps brachii, and brachioradialis, much influenced the stereotyped movement pattern between shoulder and elbow joint.
2018-01-01
Patients with hemiplegia usually have weak muscle selectivity and usually perform strength at a secondary joint (secondary strength) during performing a strength at one joint (primary strength). The abnormal strength pattern between shoulder and elbow joint has been analyzed by the maximum value while the performing process with strength changing from 0 to maximum then to 0 was a dynamic process. The objective of this study was to develop a method to dynamically analyze the strength changing process. Ten patients were asked to perform four group asks (maximum and 50% maximum voluntary strength in shoulder abduction, shoulder adduction, elbow flexion, and elbow extension). Strength and activities from seven muscles were measured. The changes of secondary strength had significant correlation with those of primary strength in all tasks (R > 0.76, p < 0.01). The antagonistic muscles were moderately influenced by the primary strength (R > 0.4, p < 0.01). Deltoid muscles, biceps brachii, triceps brachii, and brachioradialis had significant influences on the abnormal strength pattern (all p < 0.01). The dynamic method was proved to be efficient to analyze the different influences of muscles on the abnormal strength pattern. The muscles, deltoid muscles, biceps brachii, triceps brachii, and brachioradialis, much influenced the stereotyped movement pattern between shoulder and elbow joint. PMID:29610654
Effects of hyperthyroidism on hand grip strength and function.
Erkol İnal, Esra; Çarlı, Alparslan Bayram; Çanak, Sultan; Aksu, Oğuzhan; Köroğlu, Banu Kale; Savaş, Serpil
2015-01-01
Hyperthyroidism is a pathologic condition in which the body is exposed to excessive amounts of circulating thyroid hormones. Skeletal muscle is one of the major target organs of thyroid hormones. We evaluated hand grip strength and function in patients with overt hyperthyroidism. Fifty-one patients newly diagnosed with hyperthyroidism and 44 healthy controls participated in this study. Age, height, weight, and dominant hand of all participants were recorded. The diagnosis of hyperthyroidism was confirmed by clinical examination and laboratory tests. Hand grip strength was tested at the dominant hand with a Jamar hand dynamometer. The grooved pegboard test (PGT) was used to evaluate hand dexterity. The Duruöz Hand Index (DHI) was used to assess hand function. No significant differences were found in terms of clinical and demographic findings between the patients with hyperthyroidism and healthy controls (p > 0.05). Significant differences were found between the patients with hyperthyroidism and healthy controls regarding PGT and DHI scores (p < 0.05). Hyperthyroidism seemed to affect hand dexterity and function more than hand grip strength and seemed to be associated with reduced physical function more than muscle strength. This may also indicate that patients with hyperthyroidism should be evaluated by multidisplinary modalities.
de Medeiros, Ana Irene Carlos; Fuzari, Helen Kerlen Bastos; Rattesa, Catarina; Brandão, Daniella Cunha; de Melo Marinho, Patrícia Érika
2017-04-01
Does inspiratory muscle training improve respiratory muscle strength, functional capacity, lung function and quality of life of patients with chronic kidney disease? Does inspiratory muscle training improve these outcomes more than breathing exercises? Systematic review and meta-analysis of randomised trials. People with chronic kidney disease undergoing dialysis treatment. The primary outcomes were: maximal inspiratory pressure, maximal expiratory pressure, and distance covered on the 6-minute walk test. The secondary outcomes were: forced vital capacity, forced expiratory volume in the first second (FEV 1 ), and quality of life. The search identified four eligible studies. The sample consisted of 110 participants. The inspiratory muscle training used a Threshold ® or PowerBreathe ® device, with a load ranging from 30 to 60% of the maximal inspiratory pressure and lasting from 6 weeks to 6 months. The studies showed moderate to high risk of bias, and the quality of the evidence was rated low or very low, due to the studies' methodological limitations. The meta-analysis showed that inspiratory muscle training significantly improved maximal inspiratory pressure (MD 23 cmH 2 O, 95% CI 16 to 29) and the 6-minute walk test distance (MD 80m, 95% CI 41 to 119) when compared with controls. Significant benefits in lung function and quality of life were also identified. When compared to breathing exercises, significant benefits were identified in maximal expiratory pressure (MD 6 cmH 2 O, 95% CI 2 to 10) and FEV 1 (MD 0.24litres 95% CI 0.14 to 0.34), but not maximal inspiratory pressure or forced vital capacity. In patients with chronic renal failure on dialysis, inspiratory muscle training with a fixed load significantly improves respiratory muscle strength, functional capacity, lung function and quality of life. The evidence for these benefits may be influenced by some sources of bias. PROSPERO (CRD 42015029986). [de Medeiros AIC, Fuzari HKB, Rattesa C, Brandão DC, de Melo Marinho PÉ (2017) Inspiratory muscle training improves respiratory muscle strength, functional capacity and quality of life in patients with chronic kidney disease: a systematic review. Journal of Physiotherapy 63: 76-83]. Copyright © 2017 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.
Schoenfeld, Brad J; Contreras, Bret; Vigotsky, Andrew D; Peterson, Mark
2016-12-01
The purpose of the present study was to evaluate muscular adaptations between heavy- and moderate-load resistance training (RT) with all other variables controlled between conditions. Nineteen resistance-trained men were randomly assigned to either a strength-type RT routine (HEAVY) that trained in a loading range of 2-4 repetitions per set (n = 10) or a hypertrophy-type RT routine (MODERATE) that trained in a loading range of 8-12 repetitions per set (n = 9). Training was carried out 3 days a week for 8 weeks. Both groups performed 3 sets of 7 exercises for the major muscle groups of the upper and lower body. Subjects were tested pre- and post-study for: 1 repetition maximum (RM) strength in the bench press and squat, upper body muscle endurance, and muscle thickness of the elbow flexors, elbow extensors, and lateral thigh. Results showed statistically greater increases in 1RM squat strength favoring HEAVY compared to MODERATE. Alternatively, statistically greater increases in lateral thigh muscle thickness were noted for MODERATE versus HEAVY. These findings indicate that heavy load training is superior for maximal strength goals while moderate load training is more suited to hypertrophy-related goals when an equal number of sets are performed between conditions.
Building Muscles, Keeping Muscles: Protein Turnover During Space Flight
NASA Technical Reports Server (NTRS)
Ferrando, Arny; Bloomberg, Jacob; Lee, Angie (Technical Monitor)
2002-01-01
As we age we lose muscle mass and strength. The problem is a matter of use it or lose it and more - a fact to which any active senior can attest. An imbalance in the natural cycle of protein turnover may be a contributing factor to decreased muscle mass. But the answer is not so simple, since aging is associated with changes in hormones, activity levels, nutrition, and often, disease. The human body constantly uses amino acids to build muscle protein, which then breaks down and must be replaced. When protein turnover gets out of balance, so that more protein breaks down than the body can replace, the result is muscle loss. This is not just the bane of aging, however. Severely burned people may have difficulty building new muscle long after the burned skin has been repaired. Answers to why we lose muscle mass and strength - and how doctors can fix it - may come from space. Astronauts usually eat a well-balanced diet and maintain an exercise routine to stay in top health. During long-duration flight, they exercise regularly to reduce the muscle loss that results from being in a near-weightless environment. Despite these precautions, astronauts lose muscle mass and strength during most missions. They quickly recover after returning to Earth - this is a temporary condition in an otherwise healthy population. Members of the STS-107 crew are participating in a study of the effects of space flight, hormone levels, and stress on protein turnover. When we are under stress, the body responds with a change in hormone levels. Researchers hypothesize that this stress-induced change in hormones along with the near-weightlessness might result in the body synthesizing less muscle protein, causing muscles to lose their strength and size. Astronauts, who must perform numerous duties in a confined and unusual environment, experience some stress during their flight, making them excellent candidates for testing the researchers' hypothesis.
Figueroa, Arturo; Park, Song Y; Seo, Dae Y; Sanchez-Gonzalez, Marcos A; Baek, Yeong H
2011-09-01
Menopause is associated with increased arterial stiffness and reduced muscle strength. Combined resistance (RE) and endurance (EE) exercise training can decrease brachial-ankle pulse wave velocity (baPWV), an index of arterial stiffness, in young men. We tested the hypothesis that combined circuit RE and EE training would improve baPWV, blood pressure (BP), and muscle strength in postmenopausal women. Twenty-four postmenopausal women (age 47-68 y) were randomly assigned to a "no exercise" control (n = 12) or to combined exercise training (EX; n = 12) group. The EX group performed concurrent circuit RE training followed by EE training at 60% of the predicted maximal heart rate (HR) 3 days per week. Brachial systolic BP, diastolic BP, mean arterial pressure, baPWV, HR, and dynamic and isometric muscle strength were measured before and after the 12-week study. Mean ± SE baPWV (-0.8 ± 0.2 meters/s), systolic BP (-6.0 ± 1.9 mm Hg), diastolic BP (-4.8 ± 1.7 mm Hg), HR (-4.0 ± 1.0 beats/min), and mean arterial pressure (-5.1 ± 1.6 mm Hg) decreased (P < 0.05), whereas dynamic leg strength (5.1 ± 1.0 vs 0.6 ± 1.0 kg for the EX and control groups, respectively) and isometric handgrip strength (2.8 ± 0.7 vs -0.6 ± 1.2 kg) increased (P < 0.05) in the EX group but not in the control group. Our findings indicate that a 12-week moderate-intensity combined circuit RE and EE training improves arterial stiffness, hemodynamics, and muscle strength in previously sedentary postmenopausal women. This study provides evidence that combined training may have important health implications for the prevention of hypertension and frailty in postmenopausal women.
Takenaka, Shota; Aono, Hiroyuki
2017-03-01
Drop foot resulting from degenerative lumbar diseases can impair activities of daily living. Therefore, predictors of recovery of this symptom have been investigated using univariate or/and multivariate analyses. However, the conclusions have been somewhat controversial. Bayesian network models, which are graphic and intuitive to the clinician, may facilitate understanding of the prognosis of drop foot resulting from degenerative lumbar diseases. (1) To show a layered correlation among predictors of recovery from drop foot resulting from degenerative lumbar diseases; and (2) to develop support tools for clinical decisions to treat drop foot resulting from lumbar degenerative diseases. Between 1993 and 2013, we treated 141 patients with decompressive lumbar spine surgery who presented with drop foot attributable to degenerative diseases. Of those, 102 (72%) were included in this retrospective study because they had drop foot of recent development and had no diseases develop that affect evaluation of drop foot after surgery. Specifically, 28 (20%) patients could not be analyzed because their records were not available at a minimum of 2 years followup after surgery and 11 (8%) were lost owing to postoperative conditions that affect the muscle strength evaluation. Eight candidate variables were sex, age, herniated soft disc, duration of the neurologic injury (duration), preoperative tibialis anterior muscle strength (pretibialis anterior), leg pain, cauda equina syndrome, and number of involved levels. Manual muscle testing was used to assess the tibialis anterior muscle strength. Drop foot was defined as a tibialis anterior muscle strength score of less than 3 of 5 (5 = movement against gravity and full resistance, 4 = movement against gravity and moderate resistance, 3 = movement against gravity through full ROM, 3- = movement against gravity through partial ROM, 2 = movement with gravity eliminated through full ROM, 1 = slight contraction but no movement, and 0 = no contraction). The two outcomes of interest were postoperative tibialis anterior muscle strength (posttibialis anterior) of 3 or greater and posttibialis anterior strength of 4 or greater at 2 years after surgery. We developed two separate Bayesian network models with outcomes of interest for posttibialis anterior strength of 3 or greater and posttibialis anterior strength of 4 or greater. The two outcomes correspond to "good" and "excellent" results based on previous reports, respectively. Direct predictors are defined as variables that have the tail of the arrow connecting the outcome of interest, whereas indirect predictors are defined as variables that have the tail of the arrow connecting either direct predictors or other indirect predictors that have the tail of the arrow connecting direct predictors. Sevenfold cross validation and receiver-operating characteristic (ROC) curve analyses were performed to evaluate the accuracy and robustness of the Bayesian network models. Both of our Bayesian network models showed that weaker muscle power before surgery (pretibialis anterior ≤ 1) and longer duration of neurologic injury before treatment (> 30 days) were associated with a decreased likelihood of return of function by 2 years. The models for posttibialis anterior muscle strength of 3 or greater and posttibialis anterior muscle strength of 4 or greater were the same in terms of the graphs, showing that the two direct predictors were pretibialis anterior muscle strength (score ≤ 1 or ≥ 2) and duration (≤ 30 days or > 30 days). Age, herniated soft disc, and leg pain were identified as indirect predictors. We developed a decision-support tool in which the clinician can enter pretibialis anterior muscle strength and duration, and from this obtain the probability estimates of posttibialis anterior muscle strength. The probability estimates of posttibialis anterior muscle strength of 3 or greater and posttibialis anterior muscle strength of 4 or greater were 94% and 85%, respectively, in the most-favorable conditions (pretibialis anterior ≥ 2; duration ≤ 30 days) and 18% and 14%, respectively, in the least-favorable conditions (pretibialis anterior ≤ 1; duration > 30 days). On the sevenfold cross validation, the area under the ROC curve yielded means of 0.78 (95% CI, 0.68-0.87) and 0.74 (95% CI, 0.64-0.84) for posttibialis anterior muscle strength of 3 or greater and posttibialis anterior muscle strength of 4 or greater, respectively. The results of this study suggest that the clinician can understand intuitively the layered correlation among predictors by Bayesian network models. Based on the models, the decision-support tool successfully provided the probability estimates of posttibialis anterior muscle strength to treat drop foot attributable to lumbar degenerative diseases. These models were shown to be robust on the internal validation but should be externally validated in other populations. Level III, therapeutic study.
Gorshunova, N K; Medvedev, N V
2016-01-01
To determine the pathogenic role of insulin resistance in the formation of involutive sarcopenia and chronic heart failure (CHF) were examined 88 elderly patients with arterial hypertension (AH) and 32 elderly patients without cardiovascular disease by methods of carbohydrate metabolism and the level of brain natriuretic peptide precursor evaluation, muscle mass and strength measuring, echocardiography, 6 minute walking test. It was found that in the group of hypertensive patients with low mass and muscle strength significantly increased indices of insulin resistance and more expressed signs of the left ventricle myocardial dysfunction and functional class of heart failure, probably as a result of disorders of energy homeostasis, resulting from the deterioration of glucose into the muscle cells of the heart and skeletal muscles.
Mazini Filho, Mauro L; Aidar, Felipe J; Gama de Matos, Dihogo; Costa Moreira, Osvaldo; Patrocínio de Oliveira, Cláudia E; de Oliveira Venturini, Gabriela R; Magalhães Curty, Victor; Menezes Touguinha, Henrique; Caputo Ferreira, Maria E
2017-04-26
This study aimed to investigate the effects of circuit strength training on the muscle strength, functional autonomy and anthropometric indicators of the elderly. Were included 65 women divided in two groups: strength training (TG, n= 34) and control group (CG, n = 31). The strength-training group was subjected to a circuit shaped training program, three days per week, for a period of 12 weeks. In each training session, the circuit was repeated three times. In each circuit, all exercises wereperformed once, with 8 to 12 repetitions per exercise, with 30-seconds intervals between each exercise. TG showed significantly changes in body composition post 12 weeks, as decreases in body weight (Δ -1.5±1.8 kg) and BMI (Δ-0.57 ±0.74 kg/m²), and decreases in abdominal (Δ -3±1.61 cm), waist (Δ -1 ± 1.61 cm), hip (Δ -2.75±1.44 cm) and waist hip ratio circumference (Δ -0.02 ± 0.15 cm). For functional autonomy, TG showed increases post 12 weeks by 30-second chair stand (Δ 3.5±0.4 reps), six minute walk (Δ60.95±7.91 m), back scratch (Δ 3.2 ± 1.36 cm), and time up and go tests (Δ -1,62 ±0,15s). TG also showed increases in muscle strength post 12 weeks in both leg press (Δ 11±1,29 kg) and lat pulldown (Δ11 ±0,75 Kg). For CG, Body composition, functional autonomy and muscle strength did not improved in any moment. Hence, circuit strength training provides significant improvements inmuscle strength, functional performance and anthropometric indicators in sedentary elderly women.
Toma, Renata Luri; Vassão, Patrícia Gabrielli; Assis, Livia; Antunes, Hanna Karen Moreira; Renno, Ana Claudia Muniz
2016-08-01
The aging process leads to a gradual loss of muscle mass and muscle performance, leading to a higher functional dependence. Within this context, many studies have demonstrated the benefits of a combination of physical exercise and low level laser therapy (LLLT) as an intervention that enhances muscle performance in young people and athletes. The aim of this study was to evaluate the effects of combination of LLLT and strength training on muscle performance in elderly women. For this, a hundred elderly women were screened, and 48 met all inclusion criteria to participate in this double-blind placebo-controlled trial. Volunteers were divided in three groups: control (CG = 15), strength training associated with placebo LLLT (TG = 17), and strength training associated with active LLLT (808 nm, 100 mW, 7 J) (TLG = 16). The strength training consisted of knee flexion-extension performed with 80 % of 1-repetition maximum (1-RM) during 8 weeks. Several outcomes related to muscle performance were analyzed through the 6-min walk test (6-MWT), isokinetic dynamometry, surface electromyography (SEMG), lactate concentration, and 1-RM. The results revealed that a higher work (p = 0.0162), peak torque (p = 0.0309), and power (p = 0.0223) were observed in TLG compared to CG. Furthermore, both trained groups increased the 1-RM load (TG vs CG: p = 0.0067 and TLG vs CG: p < 0.0001) and decreased the lactate concentration in the third minute after isokinetic protocol (CG vs TLG: p = 0.0289 and CG vs TG: p = 0.0085). No difference in 6-MWT and in fatigue levels were observed among the groups. The present findings suggested that LLLT in combination with strength training was able to improve muscle performance in elderly people.
Kinematic And Neuromuscular Measures Of Intensity During Plyometric Jumps.
Andrade, David Cristóbal; Manzo, Oscar; Beltrán, Ana Rosa; Álvarez, Cristian; Del Rio, Rodrigo; Toledo, Camilo; Moran, Jason; Ramirez-Campillo, Rodrigo
2017-08-15
The aim of this study was to assess jumping performance and neuromuscular activity in lower limb muscles after drop jumps (DJ) from different drop heights (intensity) and during continuous jumping (fatigue), using markers such as reactive strength, jump height, mechanical power and surface electromyography (sEMG). The eccentric (EC) and concentric (CON) sEMG from the medial gastrocnemius (MG), biceps femoris (BF) and rectus (R) muscles were assessed during all tests. In a cross-sectional, randomized study, eleven volleyball players (age 24.4±3.2 years) completed 20 to 90-cm (DJ20 to DJ90) drop jumps and a 60-s continuous jump test. A one-way ANOVA test was used for comparisons, with Sidak post-hoc. The α level was <0.05. Reactive strength was greater for DJ40 compared to DJ90 (p<0.05; ES: 1.27). Additionally jump height was greater for DJ40 and DJ60 compared to DJ20 (p<0.05; ES: 1.26 and 1.27, respectively). No clear pattern of neuromuscular activity appeared during DJ20 to DJ90: some muscles showed greater, lower, or no change with increasing heights for both agonist and antagonist muscles, as well as for eccentric and concentric activity. Mechanical power, but not reactive strength, was reduced in the 60-s jump test (p<0.05; ES: 3.46). No changes were observed in sEMG for any muscle during the eccentric phase nor for the R muscle during the concentric phase of the 60-s jump test. However, for both MG and BF, concentric sEMG was reduced during the 60-s jump test (p<0.05; ES: 5.10 and 4.61, respectively). In conclusion, jumping performance and neuromuscular markers are sensitive to DJ height (intensity), although not in a clear dose-response fashion. In addition, markers such as mechanical power and sEMG are especially sensitive to the effects of continuous jumping (fatigue). Therefore, increasing the drop height during DJ does not ensure a greater training intensity and a combination of different drop heights may be required to elicit adaptations.
Reliability of isometric subtalar pronator and supinator strength testing.
Hagen, Marco; Lahner, Matthias; Winhuysen, Martin; Maiwald, Christian
2015-01-01
Due to the specific anatomy of the subtalar joint with its oblique axis, isometric pronator and supinator strength is not well documented. The purpose of this study was to determine intra- and between-session reliability of pronator and supinator strength and lower leg muscle activity measurements during maximum voluntary isometric contractions (MVIC). Pronator and supinator peak torques (PT), with and without supplementary visual muscle strength biofeedback (FB), and muscular activities of peroneus longus (PL) and tibialis anterior (TA) were assessed twice 3 days apart by the same examiner in 21 healthy young male adults (mean age: 27.6 years; SD = 3.9). Limits of agreement (LoA) and minimum detectable change (MDC) were evaluated. By applying FB, reliability of both pronator and supinator PT was improved: LoA were reduced from 32% to 26% and from 20% to 18% and MDC from 20% to 15% and from 16% to 12% in supinator and pronator PT, respectively. Learning effects in pronator and supinator PT (p < 0.05), which were present without FB, were eliminated using FB. Except for TA during pronation, muscle activities showed low reliability indicated by LoA of 51% to 79%. Using supplementary biofeedback, isometric subtalar pronator and supinator strength testing is reliable in healthy subjects. LoA of 18% and 26% have to be exceeded for pronator and supinator PT, respectively, to detect relevant effects in repeated measures.
Effects of an Elastic Hamstring Assistance Device During Downhill Running
Aldret, Randy L; Trahan, Brittany A; Davis, Greggory; Campbell, Brian; Bellar, David M
2017-01-01
Abstract The purpose of this study was to determine the appropriateness of using an elastic hamstring assistance device to reduce perceived levels of soreness, increase isometric strength, increase passive range of motion, and decrease biomarkers of muscle damage after eccentric exercise, specifically, downhill running This study was conducted in a university exercise physiology laboratory placing sixteen apparently healthy males (X = 21.6 ± 2.5 years) into two groups using a pre-test/post-test design. Pre-intervention measures taken included participants’ body height, body mass, body fat, capillary blood samples, VO2max, isometric hamstring strength at 45 and 90 degrees of flexion and passive hamstring range of motion. Post-intervention measures included blood biomarkers, passive range of motion, the perceived level of soreness and isometric strength. An analysis of normality of data was initially conducted followed by multivariate analysis of variance (MANOVA) of hamstring strength at 45 and 90 degrees of flexion, blood myoglobin and passive range of motion of the hamstrings. Statistically significant changes were noted in subject-perceived muscle soreness and isometric strength at 90 degrees at the 24-hour post-exercise trial measure between the two groups. Results would suggest the findings could be explained by the decrease in muscle soreness from utilizing the device during the exercise trial. Further research should be conducted to address sample size issues and to determine if the results are comparable on different surfaces. PMID:28713460
Allometric scaling of biceps strength before and after resistance training in men.
Zoeller, Robert F; Ryan, Eric D; Gordish-Dressman, Heather; Price, Thomas B; Seip, Richard L; Angelopoulos, Theodore J; Moyna, Niall M; Gordon, Paul M; Thompson, Paul D; Hoffman, Eric P
2007-06-01
The purposes of this study were 1) derive allometric scaling models of isometric biceps muscle strength using pretraining body mass (BM) and muscle cross-sectional area (CSA) as scaling variables in adult males, 2) test model appropriateness using regression diagnostics, and 3) cross-validate the models before and after 12 wk of resistance training. A subset of FAMuSS (Functional SNP Associated with Muscle Size and Strength) study data (N=136) were randomly split into two groups (A and B). Allometric scaling models using pretraining BM and CSA were derived and tested for group A. The scaling exponents determined from these models were then applied to and tested on group B pretraining data. Finally, these scaling exponents were applied to and tested on group A and B posttraining data. BM and CSA models produced scaling exponents of 0.64 and 0.71, respectively. Regression diagnostics determined both models to be appropriate. Cross-validation of the models to group B showed that the BM model, but not the CSA model, was appropriate. Removal of the largest six subjects (CSA>30 cm) from group B resulted in an appropriate fit for the CSA model. Application of the models to group A posttraining data showed that both models were appropriate, but only the body mass model was successful for group B. These data suggest that the application of scaling exponents of 0.64 and 0.71, using BM and CSA, respectively, are appropriate for scaling isometric biceps strength in adult males. However, the scaling exponent using CSA may not be appropriate for individuals with biceps CSA>30 cm. Finally, 12 wk of resistance training does not alter the relationship between BM, CSA, and muscular strength as assessed by allometric scaling.
ACTN3 genotype does not influence muscle power.
Hanson, E D; Ludlow, A T; Sheaff, A K; Park, J; Roth, S M
2010-11-01
The R577X polymorphism within the ACTN3 gene has been associated with elite athletic performance, strength, power, fat free mass, and adaptations to strength training, though inconsistencies exist in the literature. The specific muscle power phenotypes most influenced by the polymorphism are uncertain. The purpose of this study was to examine the association between ACTN3 R577X genotype and muscle power phenotypes. Recreationally active young men and women (N=57) were selected to complete 2 muscle performance assessments, an isokinetic fatigue protocol at testing speeds of 180° s (-1) and 250° s (-1) and a 30 s Wingate test. Isokinetic torque and Wingate power significantly decreased over the duration of each test, but no differences in the rate of decline were observed among ACTN3 genotype groups. Similarly, no significant genotype differences were observed for isokinetic peak torque, Wingate absolute or relative peak power, or fatigue index. These results indicate that in recreationally active individuals the ACTN3 R577X polymorphism is not associated with muscle performance phenotypes, supporting recent findings that R577X may only be important for predicting performance in elite athletes. Our data also indicate that using this polymorphism for genetic screening in the lay population is scientifically questionable.
NASA Astrophysics Data System (ADS)
Zhang, Zengmeng; Hou, Jiaoyi; Ning, Dayong; Gong, Xiaofeng; Gong, Yongjun
2017-05-01
Fluidic artificial muscles are popular in robotics and function as biomimetic actuators. Their pneumatic version has been widely investigated. A novel water hydraulic artificial muscle (WHAM) with high strength is developed in this study. WHAMs can be applied to underwater manipulators widely used in ocean development because of their environment-friendly characteristics, high force-to-weight ratio, and good bio-imitability. Therefore, the strength of WHAMs has been improved to fit the requirements of underwater environments and the work pressure of water hydraulic components. However, understanding the mechanical behaviors of WHAMs is necessary because WHAMs use work media and pressure control that are different from those used by pneumatic artificial muscles. This paper presents the static and dynamic characteristics of the WHAM system, including the water hydraulic pressure control circuit. A test system is designed and built to analyze the drive characteristics of the developed WHAM. The theoretical relationships among the amount of contraction, pressure, and output drawing force of the WHAM are tested and verified. A linearized transfer function is proposed, and the dynamic characteristics of the WHAM are investigated through simulation and inertia load experiments. Simulation results agree with the experimental results and show that the proposed model can be applied to the control of WHAM actuators.
2013-01-01
Background To date, in Myotonic Dystrophy type 1 (DM1) the rehabilitative interventions have always been aimed at muscle strengthening, increasing of fatigue resistance and improving of aerobic metabolism efficiency whereas the electrical membrane fault has always been addressed pharmacologically. Neuromuscular electrical stimulation (NMES) is a useful therapeutic tool in sport medicine and in the rehabilitation of many clinical conditions characterized by motor impairment such as stroke, cerebral palsy and spinal cord injury. The aim of our pilot study was to evaluate the effects of chronic electrical stimulation both on functional and electrical properties of muscle in a small group of DM1 patients. Methods Five DM1 patients and one patient with Congenital Myotonia (CM) performed a home electrical stimulation of the tibialis anterior muscle lasting 15 days with a frequency of two daily sessions of 60 minutes each. Muscle strength was assessed according to the MRC scale (Medical Research Council) and functional tests (10 Meter Walking Test, 6 Minutes Walking Test and Timed Up and Go Test) were performed. We analyzed the average rectified value of sEMG signal amplitude (ARV) to characterize the sarcolemmal excitability. Results After the treatment an increase of muscle strength in those DM1 patients with a mild strength deficit was observed. In all subjects an improvement of 10MWT was recorded. Five patients improved their performance in the 6MWT. In TUG test 4 out of 6 patients showed a slight reduction in execution time. All patients reported a subjective improvement when walking. A complete recovery of the normal increasing ARV curve was observed in 4 out of 5 DM1 patients; the CM patient didn’t show modification of the ARV pattern. Conclusions NMES determined a clear-cut improvement of both the muscular weakness and the sarcolemmal excitability alteration in our small group of DM1 patients. Therefore this rehabilitative approach, if confirmed by further extensive studies, could be considered early in the management of muscular impairment in these patients. An attractive hypothesis to explain our encouraging result could be represented by a functional inhibition of SK3 channels expressed in muscle of DM1 subjects. PMID:23938156
Relationship between muscle strength and fall episodes among the elderly: the Yilan study, Taiwan.
Yang, Nan-Ping; Hsu, Nai-Wei; Lin, Ching-Heng; Chen, Hsi-Chung; Tsao, Hsuan-Ming; Lo, Su-Shun; Chou, Pesus
2018-04-13
Fall episodes are not unusual among community residents, especially the elderly, and lower muscle strength is an important issue to address in order to prevent falls. A community health survey was conducted in a suburban area of Taiwan, and 1067 older adults were selected for enrollment in the present study. All the enrolled subjects had been visited at their homes; the subjects' strength of both hands and muscle mass of both legs were measured and well-established questionnaires were finished by certificated paramedic staffs. The incidence of fall episodes in the previous 1 year in the Yilan elderly population was 15.1%, and the female predominance was significant. A significantly higher prevalence of cataracts was found in group who experienced a fall in the past year (64% vs. 54.9% in the non-fall group). Mild or more severe dementia was much more prevalent in the group who experienced a recent fall (33.8% vs. 25.7% in the non-fall group). The strength of both hands tested as the physical function was 17.6 ± 8.0 kg in the recent fall group, significantly weaker than that in the non-fall group (20.7 ± 8.7 kg). Multivariate regression analysis revealed a greater weekly exercise duration and greater strength of both hands reduced the occurrence of falls among the whole and the female population. The standardized effect sizes of hand grip strength between both groups, not trivial, were 0.29 and 0.37 for the total population and the female subpopulation respectively. Less weekly exercise duration and weaker muscle strength were f ound to be independent risk factors of fall episode(s) in an elderly Taiwanese population, especially in the female sub-population. Muscle strength, measured by average of both hands grip strength, was the most significantly factor of one-year fall episode(s) accessed retrospectively.
Kılınç, Muhammed; Yıldırım, Sibel A.; Tan, Ersin
2015-01-01
Objective: To evaluate and compare the effects of exercise therapy and electrical stimulation on muscle strength and functional activities in patients with limb-girdle muscular dystrophy (LGMD). Methods: This controlled clinical trial included 24 subjects who were diagnosed with LGMD by the Neurology Department of the Hacettepe University Hospital, Ankara, Turkey and were referred to the Physical Therapy Department between May 2013 and December 2014. Subjects were enrolled into an electrical stimulation (11 patients) group, or an exercise therapy (13 patients) group. Results: The mean age of patients was 31.62 years in the electrical stimulation group, and 30.14 years in the exercise therapy group. The most important results in this controlled clinical study were that the muscle strength in both groups was significantly decreased and post-treatment evaluation results indicated that muscle strength of the Deltoideus was higher in the electrical stimulation group, and the difference between the groups was maintained in the follow-up period (p<0.05). However, the muscle strength of quadriceps was similar in both groups, according to the post-treatment and follow-up evaluation results (p>0.05). Additionally, the electrical stimulation group presented more obvious overall improvements than the exercise therapy group according to muscle strength, endurance, and timed performance tests. Conclusions: Since no definitive treatments currently exist for patients with LGMD, these results provide important information on the role of exercise therapy and electrical stimulation for clinicians working in rehabilitation. PMID:26166595
Eyigör, Sibel; Karapolat, Hale; Ibisoğlu, Uğur; Durmaz, Berrin
2008-01-01
The aim of this study was to determine if transcutaneous electrical nerve stimulation (TENS) or therapeutic ultrasound (US) increase the effectiveness of exercise on pain, function, muscle strength and quality of life for knee osteoarthritis (OA). Forty-five patients with primary knee OA diagnosis according to American College Rheumatology criteria were sequentially divided into 3 random groups. The patients in group 1 received TENS (with superficial heat and exercise), group 2 received US (with superficial heat and exercise), and group 3 acted as controls (superficial heat and exercise). Outcome measures were included as visual analog scale (VAS), a 20-meter walking test, Lequesne index, WOMAC scores, isokinetic muscle testing, and the Short Form 36 (SF 36). All treatment groups, physical modalities were carried out for a total fifteen sessions. All of the patients were subjected to six weeks of exercise program. All of the treatment groups had significant improvement on activity VAS, 20 meter walking test, Lequesne index, WOMAC scores, and most of the sub-scores of SF36 when compared with their initial status (p<0.05). All of the treatment groups, a significant muscle strength gain in most of the angular velocity in knee extensor PT values after the treatment (p<0.05). However there was no statistically significant difference after the treatment between the all treatment groups (p>0.05). All of the treatment groups were effective on pain, function, muscle strength and quality of life in patients with knee OA. Statistically significant differences could not be found between the treatment groups. The exercise program, as it is cheaper, more easily performed and efficient, may be preferable for the treatment of knee OA. It is difficult to say, TENS or US could increase the effectiveness of isokinetic exercise for pain, function, muscle strength and quality of life of knee OA in this study.
Body weight-supported training in Becker and limb girdle 2I muscular dystrophy.
Jensen, Bente R; Berthelsen, Martin P; Husu, Edith; Christensen, Sofie B; Prahm, Kira P; Vissing, John
2016-08-01
We studied the functional effects of combined strength and aerobic anti-gravity training in severely affected patients with Becker and Limb-Girdle muscular dystrophies. Eight patients performed 10-week progressive combined strength (squats, calf raises, lunges) and aerobic (walk/run, jogging in place or high knee-lift) training 3 times/week in a lower-body positive pressure environment. Closed-kinetic-chain leg muscle strength, isometric knee strength, rate of force development (RFD), and reaction time were evaluated. Baseline data indicated an intact neural activation pattern but showed compromised muscle contractile properties. Training (compliance 91%) improved functional leg muscle strength. Squat series performance increased 30%, calf raises 45%, and lunges 23%. Anti-gravity training improved closed-kinetic-chain leg muscle strength despite no changes in isometric knee extension strength and absolute RFD. The improved closed-kinetic-chain performance may relate to neural adaptation involving motor learning and/or improved muscle strength of other muscles than the weak knee extensors. Muscle Nerve 54: 239-243, 2016. © 2016 Wiley Periodicals, Inc.
Scapular-Muscle Performance: Two Training Programs in Adolescent Swimmers
Van de Velde, Annemie; De Mey, Kristof; Maenhout, Annelies; Calders, Patrick; Cools, Ann M.
2011-01-01
Abstract Context: Swimming requires well-balanced scapular-muscle performance. An additional strength-training program for the shoulders is pursued by swimmers, but whether these muscle-training programs need to be generic or specific for endurance or strength is unknown. Objective: To evaluate isokinetic scapular-muscle performance in a population of adolescent swimmers and to compare the results of training programs designed for strength or muscle endurance. Design: Controlled laboratory study. Setting: University human research laboratory. Patients or Other Participants: Eighteen adolescent swimmers. Intervention(s): Each participant pursued a 12-week scapular-training program designed to improve either muscle strength or muscle endurance. Main Outcome Measure(s): Bilateral peak force, fatigue index, and protraction/retraction strength ratios before and after the scapular-training program. Results: Scapular protraction/retraction ratios were slightly higher than 1 (dominant side = 1.08, nondominant side = 1.25, P = .006). Side-to-side differences in retraction strength were apparent both before and after the training program (P = .03 and P = .05, respectively). After the training program, maximal protraction (P < .05) and retraction (P < .01) strength improved on the nondominant side. Peak force and fatigue index were not different between the training groups. The fatigue indexes for protraction on both sides (P < .05) and retraction on the nondominant side (P = .009) were higher after the training program. Conclusions: We describe the scapular-muscle characteristics of a group of adolescent swimmers. Both muscle-strength and muscle-endurance programs improved absolute muscle strength. Neither of the strength programs had a positive effect on scapular-muscle endurance. Our results may be valuable for coaches and physiotherapists when they are designing exercise programs for swimmers. PMID:21391801
Relationship Between Muscle Strength Asymmetry and Body Sway in Older Adults.
Koda, Hitoshi; Kai, Yoshihiro; Murata, Shin; Osugi, Hironori; Anami, Kunihiko; Fukumoto, Takahiko; Imagita, Hidetaka
2018-05-31
The purpose of this study was to investigate the relationship between muscle strength asymmetry and body sway while walking. We studied 63 older adult women. Strong side and weak side of knee extension strength, toe grip strength, hand grip strength, and body sway while walking were measured. The relationship between muscle strength asymmetry for each muscle and body sway while walking was evaluated using Pearson's correlation coefficient. Regarding the muscles recognized to have significant correlation with body sway, the asymmetry cutoff value causing an increased sway was calculated. Toe grip strength asymmetry was significantly correlated with body sway. Toe grip strength asymmetry causing an increased body sway had a cutoff value of 23.5%. Our findings suggest toe grip strength asymmetry may be a target for improving gait stability.
Dos Santos, Núbia Tomain Otoni; Raimundo, Karoline Cipriano; da Silva, Sheila Aparecida; Souza, Lara Andrade; Ferreira, Karoline Carregal; Borges Santo Urbano, Zuleika Ferreira; Gasparini, Andréa Licre Pessina; Bertoncello, Dernival
2017-01-01
The aim of this work was to analyze muscle strength in Pilates novices who used the Reformer equipment during twelve training sessions. Twenty-four healthy young female volunteers, who were non-smokers and did not exercise regularly, were split into a control group (mean age 28 ± 4 years and BMI 24.55 ± 3.21 kg/m 2 ) and a training group (mean age 29 ± 4 years and BMI 22.69 ± 2.87 kgm 2 ). The data were checked for normality using the Kolmogorov-Smirnov test, and were then analyzed using the t-test (p < 0.05). After the training sessions, there were statistically significant differences between the groups for the scapular stabilizer muscles (p = 0.0263) and the lumbar muscles (p = 0.0001). For the scapular stabilizers, the initial/final values were 14.69 ± 2.80/14.79 ± 2.89 (control group) and 15.99 ± 3.54/17.44 ± 2.88 (Pilates group). The corresponding values for the lumbar muscles were 53.83 ± 11.66/53.28 ± 11.14 (control group) and 54.75 ± 10.27/64.80 ± 10.20 (Pilates group). After twelve sessions of Pilates with the Reformer equipment, there were improvements in lumbar extensor and scapular stabilizer strength. Several benefits are reported by practitioners of Pilates, but until now, there has been limited scientific evidence of the improvement of strength in the trunk and limbs after application of the technique. Published by Elsevier Ltd.
Walsh, Gregory S
2017-10-01
The importance of warm up procedures prior to athletic performance is well established. A common component of such procedures is muscle stretching. There is conflicting evidence regarding the effect of static stretching (SS) as part of warm up procedures on knee joint position sense (KJPS) and the effect of dynamic stretching (DS) on KJPS is currently unknown. The aim of this study was to determine the effect of dynamic and static stretching as part warm up procedures on KJPS and knee extension and flexion strength. This study had a randomised cross-over design and ten healthy adults (20±1years) attended 3 visits during which baseline KJPS, at target angles of 20° and 45°, and knee extension and flexion strength tests were followed by 15min of cycling and either a rest period (CON), SS, or DS and repeat KJPS and strength tests. All participants performed all conditions, one condition per visit. There were warm up×stretching type interactions for KJPS at 20° (p=0.024) and 45° (p=0.018), and knee flexion (p=0.002) and extension (p<0.001) strength. The SS and DS improved KJPS but CON condition did not and SS decreased strength. No change in strength was present for DS or CON. Both SS and DS improve KJPS as part of pre-exercise warm up procedures. However, the negative impact of SS on muscle strength limits the utility of SS before athletic performance. If stretching is to be performed as part of a warm up, DS should be favoured over SS. Copyright © 2017 Elsevier B.V. All rights reserved.
Chiu, Shu-Ching; Yang, Rong-Sen; Yang, Rea-Jeng; Chang, Shu-Fang
2018-01-22
Aging-related loss of muscle and strength with increased adiposity is prevalent among older people in long-term care (LTC) facilities. Studies have shown that people with sarcopenic obesity (SO) are at high risk of declining physical performance. At present, no interventional studies on residents with SO in nursing homes have been conducted in the literature. The objectives of this study include appraising the changes in body composition and physical performance following resistance training among residents with SO in LTC facilities. This study used a quasiexperimental research design. Residents who are 60 years of age or above and have been living a sedentary lifestyle in LTC facilities for the past 3 months will be eligible for inclusion. The intervention group engaged in chair muscle strength training twice a week for 12 weeks, whereas the control group underwent the usual care. The main variables were physical parameters of being lean and fat, the strength of grip and pinch, and a functional independence measure using descriptive analysis, chi-squared test, t-test, and generalized estimating equation for statistical analysis through SPSS. A total of 64 respondents with SO completed the study. After training, total grip strength (p = 0.001) and total pinch strength (p = 0.014) of the intervention group differed significantly from those of the control group. The right grip strength of the intervention group increased by 1.71 kg (p = 0.003) and the left grip strength improved by 1.35 kg (p = 0.028) compared with baseline values. The self-care scores of the intervention group increased by 2.76 points over baseline scores, particularly for the action of dressing oneself. Although grip strength and self-care scores improved more among those in the intervention group, body fat and skeletal muscle percentages did not differ significantly between the groups after training (p > 0.05). Resistance exercises for elderly residents in LTC facilities may play an important role in helping them maintain physical well-being and improve muscle strength. Clinicaltrials.gov, number NCT02912338 . Retrospectively registered on 09/21/2016.
Wu, Christina; Kato, Tomoko S; Ji, Ruiping; Zizola, Cynthia; Brunjes, Danielle L; Deng, Yue; Akashi, Hirokazu; Armstrong, Hilary F; Kennel, Peter J; Thomas, Tiffany; Forman, Daniel E; Hall, Jennifer; Chokshi, Aalap; Bartels, Matthew N; Mancini, Donna; Seres, David; Schulze, P Christian
2015-11-01
Skeletal muscle dysfunction and exercise intolerance are clinical hallmarks of patients with heart failure. These have been linked to a progressive catabolic state, skeletal muscle inflammation, and impaired oxidative metabolism. Previous studies suggest beneficial effects of ω-3 polyunsaturated fatty acids and glutamine on exercise performance and muscle protein balance. In a randomized double-blind, placebo-controlled trial, 31 patients with heart failure were randomized to either l-alanyl-l-glutamine (8 g/d) and polyunsaturated fatty acid (6.5 g/d) or placebo (safflower oil and milk powder) for 3 months. Cardiopulmonary exercise testing, dual-energy x-ray absorptiometry, 6-minute walk test, hand grip strength, functional muscle testing, echocardiography, and quality of life and lateral quadriceps muscle biopsy were performed at baseline and at follow-up. Oxidative capacity and metabolic gene expression were analyzed on muscle biopsies. No differences in muscle function, echocardiography, 6-minute walk test, or hand grip strength and a nonsignificant increase in peak VO2 in the treatment group were found. Lean body mass increased and quality of life improved in the active treatment group. Molecular analysis revealed no differences in muscle fiber composition, fiber cross-sectional area, gene expression of metabolic marker genes (PGC1α, CPT1, PDK4, and GLUT4), and skeletal muscle oxidative capacity. The combined supplementation of l-alanyl-l-glutamine and polyunsaturated fatty acid did not improve exercise performance or muscle function but increased lean body mass and quality of life in patients with chronic stable heart failure. These findings suggest potentially beneficial effects of high-dose nutritional polyunsaturated fatty acids and amino acid supplementations in patients with chronic stable heart failure. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01534663. © 2015 American Heart Association, Inc.
Lin, I-Hsien; Chang, Kwang-Hwa; Liou, Tsan-Hon; Tsou, Chih-Min; Huang, Yi-Ching
2018-02-01
Although neck pain is a common musculoskeletal disorder, there is no consensus on suitable exercise methods for middle-aged and senior patients with chronic neck pain. Therefore, this study investigated the effectiveness of a 6-week shoulder-neck exercise intervention program on cervical muscle function improvement in patients aged 45 years or older with chronic neck pain. The aim of the present study was to evaluate the effects of progressive shoulder-neck exercise on cervical muscle functions of middle-aged and senior patients with chronic neck pain. A randomized controlled single-blind trial. Rehabilitation department of a hospital. A total of 72 subjects aged ≥45 years with chronic neck pain were randomly allocated to either an experimental group (N.=36; age 57.3±8.74 years) or a control group (N.=36; age 58.15±8.17 years). The control group received only traditional physiotherapy, whereas the experimental group participated in a 6-week shoulder-neck exercise program consisting of cranio-cervical flexion and progressive resistance exercises in addition to receiving traditional physiotherapy. The muscle functions of subjects in both groups were tested before the experiment and also after the intervention program. The pretest and posttest measured the cranio-cervical flexion test (CCFT) and the superficial cervical muscle strength. After the intervention, the experimental group had a 56.48 point improvement in the performance index of the CCFT (P<0.001), a 1.71-kg improvement in superficial neck flexor strength (P<0.001), and a 2.52-kg improvement in superficial neck extensor strength (P<0.001), indicating that in 6-week intervention significantly influenced the improvement of cervical muscle functions. This study confirmed that the 6-week progressive shoulder-neck exercise program can effectively improve cervical muscle function in middle-aged and senior patients with chronic neck pain. Progressive shoulder-neck exercise might provide positive effect on deep and superficial neck muscle strength in patients with chronic neck pain. Therefore, this study may serve as a reference for the clinical rehabilitation of patients with chronic neck pain.
Véras, Larissa Sales Téles; Vale, Rodrigo Gomesde Souza; Mello, Danielli Braga de; Castro, José Adail Fonseca de; Lima, Vicente; Silva, Kelson Nonato Gomes da; Trott, Alexis; Dantas, Estélio Henrique Martin
2012-06-01
This study evaluated the degree of disability, pain levels, muscle strength, and electromyographic function (RMS) in individuals with leprosy. We assessed 29 individuals with leprosy showing common peroneal nerve damage and grade 1 or 2 disability who were referred for physiotherapeutic treatment, as well as a control group of 19 healthy participants without leprosy. All subjects underwent analyses of degree of disability, electromyographic tests, voluntary muscle force, and the Visual Analog Pain Scale. McNemar's test found higher levels of grade 2 of disability (Δ = 75.9%; p = 0.0001) among individuals with leprosy. The Mann-Whitney test showed greater pain levels (Δ = 5.0; p = 0.0001) in patients with leprosy who had less extension strength in the right and left extensor hallucis longus muscles (Δ = 1.28, p = 0.0001; Δ = 1.55, p = 0.0001, respectively) and dorsiflexion of the right and left feet (Δ = 1.24, p = 0.0001; Δ = 1.45, p = 0.0001, respectively) than control subjects. The Kruskal-Wallis test showed that the RMS score for dorsiflexion of the right (Δ = 181.66 m·s-2, p = 0.001) and left (Δ = 102.57m·s-2, p = 0.002) feet was lower in patients with leprosy than in control subjects, but intragroup comparisons showed no difference. Leprosy had a negative influence on all of the study variables, indicating the need for immediate physiotherapeutic intervention in individuals with leprosy. This investigation opens perspectives for future studies that analyze leprosy treatment with physical therapeutic intervention.
Clague, J E; Wu, F C; Horan, M A
1999-08-01
Muscle wasting in older men may be related to androgen deficiency. We have assessed the effect of testosterone replacement therapy on muscle function in the upper and lower limbs of older (age > 60 years) men with blood testosterone levels < 14 nmol/L. Subjects (n = 7 per group) received testosterone enanthate 200 mg i.m. or placebo every 2 weeks in a double blind study over a 12-week period and underwent muscle testing every 4 weeks. A significant increase in blood levels of testosterone and a reduction in levels of sex hormone binding globulin occurred in the treatment group. Total body mass, haemoglobin and packed cell volume also increased significantly (p < 0.05). No improvements in handgrip strength, isometric strength of knee flexors and extensors or leg extensor power were seen in either group. Wide variability in all measures of muscle function were observed in these elderly men suggesting that very large study groups would be required to determine potential treatment benefits on muscle function.
Locke, Melissa; Hill, Bridget; Wells, Cherie; Bialocerkowski, Andrea
2017-01-01
Background Clinicians and researchers require sound neurological tests to measure changes in neurological impairments necessary for clinical decision-making. Little evidence-based guidance exists for selecting and interpreting an appropriate, paediatric-specific lower limb neurological test aimed at the impairment level. Objective To determine the clinimetric evidence underpinning neurological impairment tests currently used in paediatric rehabilitation to evaluate muscle strength, tactile sensitivity, and deep tendon reflexes of the lower limb in children and young people with a neurological condition. Methods Thirteen databases were systematically searched in two phases, from the date of database inception to 16 February 2017. Lower limb neurological impairment tests were first identified which evaluated muscle strength, tactile sensitivity or deep tendon reflexes in children or young people under 18 years of age with a neurological condition. Papers containing clinimetric evidence of these tests were then identified. The methodological quality of each paper was critically appraised using standardised tools and clinimetric evidence synthesised for each test. Results Thirteen papers were identified, which provided clinimetric evidence on six neurological tests. Muscle strength tests had the greatest volume of clinimetric evidence, however this evidence focused on reliability. Studies were variable in quality with inconsistent results. Clinimetric evidence for tactile sensitivity impairment tests was conflicting and difficult to extrapolate. No clinimetric evidence was found for impairment tests of deep tendon reflexes. Conclusions Limited high-quality clinimetric evidence exists for lower limb neurological impairment tests in children and young people with a neurological condition. Results of currently used neurological tests, therefore, should be interpreted with caution. Robust clinimetric evidence on these tests is required for clinicians and researchers to effectively select and evaluate rehabilitation interventions. PMID:28671957
Intra-rater reliability of hallux flexor strength measures using the Nintendo Wii Balance Board.
Quek, June; Treleaven, Julia; Brauer, Sandra G; O'Leary, Shaun; Clark, Ross A
2015-01-01
The purpose of this study was to investigate the intra-rater reliability of a new method in combination with the Nintendo Wii Balance Board (NWBB) to measure the strength of hallux flexor muscle. Thirty healthy individuals (age: 34.9 ± 12.9 years, height: 170.4 ± 10.5 cm, weight: 69.3 ± 15.3 kg, female = 15) participated. Repeated testing was completed within 7 days. Participants performed strength testing in sitting using a wooden platform in combination with the NWBB. This new method was set up to selectively recruit an intrinsic muscle of the foot, specifically the flexor hallucis brevis muscle. Statistical analysis was performed using intra-class coefficients and ordinary least product analysis. To estimate measurement error, standard error of measurement (SEM), minimal detectable change (MDC) and percentage error were calculated. Results indicate excellent intra-rater reliability (ICC = 0.982, CI = 0.96-0.99) with an absence of systematic bias. SEM, MDC and percentage error value were 0.5, 1.4 and 12 % respectively. This study demonstrates that a new method in combination with the NWBB application is reliable to measure hallux flexor strength and has potential to be used for future research and clinical application.
A Novel Application of Eddy Current Braking for Functional Strength Training during Gait
Washabaugh, Edward P.; Claflin, Edward S.; Gillespie, R. Brent; Krishnan, Chandramouli
2016-01-01
Functional strength training is becoming increasingly popular when rehabilitating individuals with neurological injury such as stroke or cerebral palsy. Typically, resistance during walking is provided using cable robots or weights that are secured to the distal shank of the subject. However, there exists no device that is wearable and capable of providing resistance across the joint, allowing over ground gait training. In this study, we created a lightweight and wearable device using eddy current braking to provide resistance to the knee. We then validated the device by having subjects wear it during a walking task through varying resistance levels. Electromyography and kinematics were collected to assess the biomechanical effects of the device on the wearer. We found that eddy current braking provided resistance levels suitable for functional strength training of leg muscles in a package that is both lightweight and wearable. Applying resistive forces at the knee joint during gait resulted in significant increases in muscle activation of many of the muscles tested. A brief period of training also resulted in significant aftereffects once the resistance was removed. These results support the feasibility of the device for functional strength training during gait. Future research is warranted to test the clinical potential of the device in an injured population. PMID:26817456
A Novel Application of Eddy Current Braking for Functional Strength Training During Gait.
Washabaugh, Edward P; Claflin, Edward S; Gillespie, R Brent; Krishnan, Chandramouli
2016-09-01
Functional strength training is becoming increasingly popular when rehabilitating individuals with neurological injury such as stroke or cerebral palsy. Typically, resistance during walking is provided using cable robots or weights that are secured to the distal shank of the subject. However, there exists no device that is wearable and capable of providing resistance across the joint, allowing over ground gait training. In this study, we created a lightweight and wearable device using eddy current braking to provide resistance to the knee. We then validated the device by having subjects wear it during a walking task through varying resistance levels. Electromyography and kinematics were collected to assess the biomechanical effects of the device on the wearer. We found that eddy current braking provided resistance levels suitable for functional strength training of leg muscles in a package that is both lightweight and wearable. Applying resistive forces at the knee joint during gait resulted in significant increases in muscle activation of many of the muscles tested. A brief period of training also resulted in significant aftereffects once the resistance was removed. These results support the feasibility of the device for functional strength training during gait. Future research is warranted to test the clinical potential of the device in an injured population.
Freckleton, Grant; Cook, Jill; Pizzari, Tania
2014-04-01
Hamstring muscle strain injuries (HMSI) are the greatest injury problem in kicking sports such as Australian Rules Football. Reduced hamstring muscle strength is commonly perceived to be a risk factor for hamstring injury; however, evidence is inconclusive. Testing hamstring strength with the hip and knee at functional angles and assessing endurance parameters may be more relevant for examining the risk of hamstring injury. The primary aim of this prospective study was to examine if reduced hamstring muscle strength assessed with the single leg hamstring bridge (SLHB) was a risk factor for hamstring injury. Hamstring muscle strength of 482 amateur and semielite players from 16 football clubs, mean age 20.7 (range 16-34 years), was tested during the 2011 preseason. Players were then monitored throughout the 2011 playing season for HMSI. A total of 28 hamstring injuries, 16 right and 12 left, were recorded. Players who sustained a right HMSI during the season had a significantly lower mean right SLHB score (p=0.029), were older (p=0.002) and were more likely to have sustained a past right hamstring injury (p=0.02) or right knee injury (p=0.035). For left-sided hamstring injury, the injured group was more likely to be left leg dominant (p=0.001), older athletes (p=0.002) and there was a trend towards a history of left hamstring injury (p=0.07). This study demonstrated a significant deficit in preseason SLHB scores on the right leg of players that subsequently sustained a right-sided hamstring injury. Age, previous knee injury and a history of hamstring injury were other risk factors supported in this study. Low hamstring strength appears to be a risk factor for hamstring injury; however, due to the confounding variables and low injury rate in this study, further studies are required.
The ICM research agenda on intensive care unit-acquired weakness.
Latronico, Nicola; Herridge, Margaret; Hopkins, Ramona O; Angus, Derek; Hart, Nicholas; Hermans, Greet; Iwashyna, Theodore; Arabi, Yaseen; Citerio, Giuseppe; Wesley Ely, E; Hall, Jesse; Mehta, Sangeeta; Puntillo, Kathleen; Van den Hoeven, Johannes; Wunsch, Hannah; Cook, Deborah; Dos Santos, Claudia; Rubenfeld, Gordon; Vincent, Jean-Louis; Van den Berghe, Greet; Azoulay, Elie; Needham, Dale M
2017-09-01
We present areas of uncertainty concerning intensive care unit-acquired weakness (ICUAW) and identify areas for future research. Age, pre-ICU functional and cognitive state, concurrent illness, frailty, and health trajectories impact outcomes and should be assessed to stratify patients. In the ICU, early assessment of limb and diaphragm muscle strength and function using nonvolitional tests may be useful, but comparison with established methods of global and specific muscle strength and physical function and determination of their reliability and normal values would be important to advance these techniques. Serial measurements of limb and respiratory muscle strength, and systematic screening for dysphagia, would be helpful to clarify if and how weakness of these muscle groups is independently associated with outcome. ICUAW, delirium, and sedatives and analgesics may interact with each other, amplifying the effects of each individual factor. Reduced mobility in patients with hypoactive delirium needs investigations into dysfunction of central and peripheral nervous system motor pathways. Interventional nutritional studies should include muscle mass, strength, and physical function as outcomes, and prioritize elucidation of mechanisms. At follow-up, ICU survivors may suffer from prolonged muscle weakness and wasting and other physical impairments, as well as fatigue without demonstrable weakness on examination. Further studies should evaluate the prevalence and severity of fatigue in ICU survivors and define its association with psychiatric disorders, pain, cognitive impairment, and axonal loss. Finally, methodological issues, including accounting for baseline status, handling of missing data, and inclusion of patient-centered outcome measures should be addressed in future studies.
Beauchet, Olivier; Launay, Cyrille P; Fantino, Bruno; Allali, Gilles; Annweiler, Cédric
2015-01-01
Respective and combined effects of impairments in sensorimotor systems and cognition on gait performance have not been fully studied. This study aims to describe the respective effects of impairments in muscle strength, distance vision, lower-limb proprioception and cognition on the Timed Up & Go (TUG) scores (i.e., performed TUG [pTUG], imagined TUG [iTUG] and the time difference between these two tests [delta TUG]) in older community-dwellers; and to examine their combined effects on TUG scores. Based on a cross-sectional design, 1792 community-dwellers (70.2 ± 4.8 years; 53.6% female) were recruited. Gait performance was assessed using pTUG, iTUG and delta TUG. Participants were divided into healthy individuals and 15 subgroups of individuals according to the presence of impairment in one or more subsystems involved in gait control (i.e., muscle strength and/or distance vision and/or lower-limb proprioception and/or cognition [episodic memory and executive performance]). Impairment in muscle strength, distance vision and lower-limb proprioception was defined as being in the lowest tertile of performance. Impairment in cognition was defined as abnormal episodic memory and executive tests. A total of 191 (10.7%) exhibited impairment in muscle strength, 188 (10.5%) in distance vision, 302 (16.9%) in lower-limb proprioception, and 42 (2.3%) in cognition. Linear regressions showed that cognitive impairment as well as dual combinations of impairments were associated with increased pTUG (P<0.02). Impairment in lower-limb proprioception was associated with decreased iTUG (P=0.015). All combinations of impairments, except those including muscle strength and the combinations of the 4 subsystems, were associated with increased delta TUG (P<0.04). Cognitive integrity is central for efficient gait control and stability, whereas lower-limb proprioception seems to be central for gait imagery.
De, A. K.; Debnath, P. K.; Dey, N. K.; Nagchaudhuri, J.
1980-01-01
Physical efficiency tests were performed on urban school boys drawn from high socio-economic status in comparison to rural school boys. The height and weight records of the subjects indicating growing process showed that the rural boys attained less physical growth than their urban counterparts. The Vital Capacity and Peak Expiratory Flow Rate data expressed either per unit of height or body surface area were significantly lower in rual boys. these findings indicated a poor development of the thorax in the rural group. However, the determined grip strengths for both the group were similar. The grip test might reflect improvement of muscle mass in case of rural boys as a result of regular physical activity employing the arm muscles. Images p145-a p145-b PMID:7407454
Yoo, Yong-Kwon; Kim, Soo-Keun; Song, Min-Sun
2013-01-01
The purpose of this study was to investigate the effects of muscle strengthening exercise using elastic thera-band and aquatic aerobic combined exercise on metabolic syndrome index in elderly with metabolic syndrome. Fifty-four were assigned to muscle strengthening exercise group (n = 19), aquatic aerobic exercise group (n = 19), and combined exercise group (n = 16). The muscle strength exercise, aquatic aerobic exercise and combined exercise were provided three times a week for 12 weeks. Metabolic syndrome indices[Fasting blood glucose, triglyceride, high density lipoprotein cholesterol (HDL-C), systolic blood pressure, diastolic blood pressure and waist circumference] were measured before and after the program. One-way ANOVA, paired t-test and two-way repeated ANOVA were used with the SPSS program for data analysis. There was a significant difference in triglyceride (p < .001), HDL-C (p = .010) and waist circumference (p = .016). Triglyceride and waist circumference was significantly decreased in combined group than muscle strength exercise group and aquatic exercise group. HDL-C was significantly increased in combined group than muscle strength exercise group. The results indicate that combined exercise was more effective in the improvement of dyslipidemia and abdominal obesity. PMID:25566424
Yoo, Yong-Kwon; Kim, Soo-Keun; Song, Min-Sun
2013-12-01
The purpose of this study was to investigate the effects of muscle strengthening exercise using elastic thera-band and aquatic aerobic combined exercise on metabolic syndrome index in elderly with metabolic syndrome. Fifty-four were assigned to muscle strengthening exercise group (n = 19), aquatic aerobic exercise group (n = 19), and combined exercise group (n = 16). The muscle strength exercise, aquatic aerobic exercise and combined exercise were provided three times a week for 12 weeks. Metabolic syndrome indices[Fasting blood glucose, triglyceride, high density lipoprotein cholesterol (HDL-C), systolic blood pressure, diastolic blood pressure and waist circumference] were measured before and after the program. One-way ANOVA, paired t-test and two-way repeated ANOVA were used with the SPSS program for data analysis. There was a significant difference in triglyceride (p < .001), HDL-C (p = .010) and waist circumference (p = .016). Triglyceride and waist circumference was significantly decreased in combined group than muscle strength exercise group and aquatic exercise group. HDL-C was significantly increased in combined group than muscle strength exercise group. The results indicate that combined exercise was more effective in the improvement of dyslipidemia and abdominal obesity.
Near infrared laser-tissue welding using nanoshells as an exogenous absorber.
Gobin, Andre M; O'Neal, D Patrick; Watkins, Daniel M; Halas, Naomi J; Drezek, Rebekah A; West, Jennifer L
2005-08-01
Gold nanoshells are a new class of nanoparticles that can be designed to strongly absorb light in the near infrared (NIR). These particles provide much larger absorption cross-sections and efficiency than can be achieved with currently used chemical chromophores without photobleaching. In these studies, we have investigated the use of gold nanoshells as exogenous NIR absorbers to facilitate NIR laser-tissue welding. Gold nanoshells with peak extinction matching the NIR wavelength of the laser being used were manufactured and suspended in an albumin solder. Optimization work was performed on ex vivo muscle samples and then translated into testing in an in vivo rat skin wound-healing model. Mechanical testing of the muscle samples was immediately performed and compared to intact tissue mechanical properties. In the in vivo study, full thickness incisions in the dorsal skin of rats were welded, and samples of skin were excised at 0, 5, 10, 21, and 32 days for analysis of strength and wound healing response. Mechanical testing of nanoshell-solder welds in muscle revealed successful fusion of tissues with tensile strengths of the weld site equal to the uncut tissue. No welding was accomplished with this light source when using solder formulations without nanoshells. Mechanical testing of the skin wounds showed sufficient strength for closure and strength increased over time. Histological examination showed good wound-healing response in the soldered skin. The use of nanoshells as an exogenous absorber allows the usage of light sources that are minimally absorbed by tissue components, thereby, minimizing damage to surrounding tissue and allowing welding of thicker tissues. (c) 2005 Wiley-Liss, Inc.
Muscle fatigue caused by repeated aerial combat maneuvering exercises.
Oksa, J; Hämäläinen, O; Rissanen, S; Salminen, M; Kuronen, P
1999-06-01
Little is known about the development of in-flight muscular fatigue during repeated flights. This study was conducted to evaluate muscular fatigue in different upper body and neck muscles during repeated aerial combat maneuvering exercises. Six pilots volunteered as test subjects. They performed one-to-one dog fight exercise three times (1 pilot, four times) in one day. During the flights, the pilots' electromyographic activity (EMG) was measured from the abdomen, back, neck and lateral neck. The mean muscular strain for each muscle was calculated. Before the first flight and after each flight, the maximal isometric strength of each muscle was measured. The results showed that maximal isometric strength between the first and last measurement decreased in the back, neck (p < 0.05) and lateral neck muscles. While the G-stress remained the same, the muscular strain during exercises increased in every muscle, but was significant only in neck and lateral neck (p < 0.05-0.01). Due to these changes, the fatigue index in the neck and lateral neck muscles was 2.0-2.1, and 1.3-1.4 (1.0 = no fatigue) in the abdomen and back muscles. Repeated aerial combat maneuvering exercises caused fatigue in every muscle studied. The fatigue was greater in the neck area, which may increase the risk for neck injuries, and may reduce mission effectiveness. The fighter pilots' muscular strength and endurance in the neck area are subjected to very high demands, especially if exercises are repeated several times. The recovery of the neck muscles from fatigue after repetitive exercises should receive special attention.
Strength Training for Skeletal Muscle Endurance after Stroke
Ivey, Frederick M.; Prior, Steven J.; Hafer-Macko, Charlene E.; Katzel, Leslie I.; Macko, Richard F.; Ryan, Alice S.
2018-01-01
Background and Purpose Initial studies support the use of strength training (ST) as a safe and effective intervention after stroke. Our previous work shows that relatively aggressive, higher intensity ST translates into large effect sizes for paretic and non-paretic leg muscle volume, myostatin expression, and maximum strength post-stroke. An unanswered question pertains to how our unique ST model for stroke impacts skeletal muscle endurance (SME). Thus, we now report on ST-induced adaptation in the ability to sustain isotonic muscle contraction. Methods Following screening and baseline testing, hemiparetic stroke participants were randomized to either ST or an attention-matched stretch control group (SC). Those in the ST group trained each leg individually to muscle failure (20 repetition sets, 3× per week for 3 months) on each of three pneumatic resistance machines (leg press, leg extension, and leg curl). Our primary outcome measure was SME, quantified as the number of submaximal weight leg press repetitions possible at a specified cadence. The secondary measures included one-repetition maximum strength, 6-minute walk distance (6MWD), 10-meter walk speeds, and peak aerobic capacity (VO2 peak). Results ST participants (N = 14) had significantly greater SME gains compared with SC participants (N = 16) in both the paretic (178% versus 12%, P < .01) and non-paretic legs (161% versus 12%, P < .01). These gains were accompanied by group differences for 6MWD (P < .05) and VO2 peak (P < .05). Conclusion Our ST regimen had a large impact on the capacity to sustain submaximal muscle contraction, a metric that may carry more practical significance for stroke than the often reported measures of maximum strength. PMID:27865696
Influence of Ovarian Hormones on Strength Loss in Healthy and Dystrophic Female Mice
Kosir, Allison M.; Mader, Tara L.; Greising, Angela G.; Novotny, Susan A.; Baltgalvis, Kristen A.; Lowe, Dawn A.
2014-01-01
Purpose The primary objective of this study was to determine if strength loss and recovery following eccentric contractions is impaired in healthy and dystrophic female mice with low levels of ovarian hormones. Methods Female C57BL/6 (wildtype) or mdx mice were randomly assigned to ovarian-intact (Sham) and ovariectomized (Ovx) groups. Anterior crural muscles were tested for susceptibility to injury from 150 or 50 eccentric contractions in wildtype and mdx mice, respectively. An additional experiment challenged mdx mice with a 2-wk treadmill running protocol followed by an eccentric contraction injury to posterior crural muscles. Functional recovery from injury was evaluated in wildtype mice by measuring isometric torque 3, 7, 14, or 21 days following injury. Results Ovarian hormone deficiency in wildtype mice did not impact susceptibility to injury as the ~50% isometric torque loss following eccentric contractions did not differ between Sham and Ovx mice (p=0.121). Similarly in mdx mice, hormone deficiency did not affect percent of pre injury isometric torque lost by anterior crural muscles following eccentric contractions (p=0.952), but the percent of pre injury torque in posterior crural muscles was lower in Ovx compared to Sham mice (p=0.014). Recovery from injury in wildtype mice was affected by hormone deficiency. Sham mice recovered pre injury isometric strength by 14 days (96 ± 2%) while Ovx mice maintained deficits at 14 and 21 days post injury (80 ± 3% and 84 ± 2%; p<0.001) Conclusion Ovarian hormone status did not impact the vulnerability of skeletal muscle to strength loss following eccentric contractions. However, ovarian hormone deficiency did impair the recovery of muscle strength in female mice. PMID:25255128
Resistin polymorphisms are associated with muscle, bone, and fat phenotypes in white men and women.
Pistilli, Emidio E; Gordish-Dressman, Heather; Seip, Richard L; Devaney, Joseph M; Thompson, Paul D; Price, Thomas B; Angelopoulos, Theodore J; Clarkson, Priscilla M; Moyna, Niall M; Pescatello, Linda S; Visich, Paul S; Zoeller, Robert F; Hoffman, Eric P; Gordon, Paul M
2007-02-01
The biological function of resistin (RST) is unknown, although it may have roles in obesity, diabetes, and insulin resistance. The objective of this study was to examine the effects of single nucleotide polymorphisms (SNPs) in the human RST gene on muscle, bone, and adipose tissue phenotypes and in response to resistance training (RT). Subjects were white and consisted of strength (n = 482) and size (n = 409) cohorts who had not performed RT in the previous year. Subjects completed 12 weeks of structured, unilateral upper arm RT aimed at increasing the size and strength of the non-dominant arm, using their dominant arm as an untrained control. Strength measurements were taken pre- and post-12-week RT and consisted of elbow flexor isometric strength and one-repetition maximum during a biceps curl using free weights. Whole muscle, subcutaneous fat, and cortical bone volumes were measured by magnetic resonance imaging. Six RST SNPs were identified. Analysis of covariance was used to test for effects of the SNPs on pre- and post-muscle strength and whole muscle, fat, and bone volumes independent of gender, age, and body weight. Five RST SNPs (-537 A>C, -420 C>G, 398 C>T, 540 G>A, 980 C>G) were associated with measured phenotypes among subjects when stratified by BMI (<25, >/ or = 25 kg/m(2)). Several gender-specific associations were observed between RST SNPs and phenotypes among individuals with a BMI > or = 25. Conversely, only two associations were observed among individuals with a BMI < 25. These data support previous identified associations of RST with adipose tissue and demonstrate additional associations with bone and skeletal muscle that warrant further investigation.
Gil, Ana L S; Neto, Gabriel R; Sousa, Maria S C; Dias, Ingrid; Vianna, Jeferson; Nunes, Rodolfo A M; Novaes, Jefferson S
2017-03-01
Blood flow restriction (BFR) training stimulates muscle size and strength by increasing muscle activation, accumulation of metabolites and muscle swelling. This method has been used in different populations, but no studies have evaluated the effects of training on muscle power and submaximal strength (SS) in accounted for the menstrual cycle. The aim of this study was to analyse the effect of strength training (ST) with BFR on the muscle power and SS of upper and lower limbs in eumenorrheic women. Forty untrained women (18-40 years) were divided randomly and proportionally into four groups: (i) high-intensity ST at 80% of 1RM (HI), (ii) low-intensity ST at 20% of 1RM combined with partial blood flow restriction (LI + BFR), (iii) low-intensity ST at 20% of 1RM (LI) and d) control group (CG). Each training group performed eight training sessions. Tests with a medicine ball (MB), horizontal jump (HJ), vertical jump (VJ), biceps curls (BC) and knee extension (KE) were performed during the 1st day follicular phase (FP), 14th day (ovulatory phase) and 26-28th days (luteal phase) of the menstrual cycle. There was no significant difference among groups in terms of the MB, HJ, VJ or BC results at any time point (P>0·05). SS in the KE exercise was significantly greater in the LI + BFR group compared to the CG group (P = 0·014) during the LP. Therefore, ST with BFR does not appear to improve the power of upper and lower limbs and may be an alternative to improve the SS of lower limbs of eumenorrheic women. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Gonzalez-Correa, C. H.; Caicedo-Eraso, J. C.; Varon-Serna, D. R.
2013-04-01
The mechanical function and size of a muscle may be closely linked. Handgrip strength (HGS) has been used as a predictor of functional performing. Anthropometric measurements have been made to estimate arm muscle area (AMA) and physical muscle mass volume of upper limb (ULMMV). Electrical volume estimation is possible by segmental BIA measurements of fat free mass (SBIA-FFM), mainly muscle-mass. Relationship among these variables is not well established. We aimed to determine if physical and electrical muscle mass estimations relate to each other and to what extent HGS is to be related to its size measured by both methods in normal or overweight young males. Regression analysis was used to determine association between these variables. Subjects showed a decreased HGS (65.5%), FFM, (85.5%) and AMA (74.5%). It was found an acceptable association between SBIA-FFM and AMA (r2 = 0.60) and poorer between physical and electrical volume (r2 = 0.55). However, a paired Student t-test and Bland and Altman plot showed that physical and electrical models were not interchangeable (pt<0.0001). HGS showed a very weak association with anthropometric (r2 = 0.07) and electrical (r2 = 0.192) ULMMV showing that muscle mass quantity does not mean muscle strength. Other factors influencing HGS like physical training or nutrition require more research.
Nimphius, Sophia; McGuigan, Michael R; Newton, Robert U
2012-10-01
The purpose of this research was (a) to examine the performance changes that occur in elite female softball players during 20 weeks of softball training (that included 14 weeks of periodized resistance training [RT]) and (b) to examine the relationship between percent change (%change) in muscle architecture variables and %change in strength, speed, and change of direction performance. Ten female softball players (age = 18.1 ± 1.6 years, height = 166.5 ± 8.9 cm, weight = 72.4 ± 10.8 kg) from a state Australian Institute of Sport softball team were tested for maximal lower-body strength using a 3 repetition maximum for a predicted 1 repetition maximum (1RM) and peak force, peak velocity (PV), and peak power (PP) were measured during jump squats (JS) unloaded and loaded. In addition, the first base (1B) and the second base (2B) sprint performance, change of direction (505) on dominant (D) and nondominant (ND) sides, aerobic capacity, and muscle architecture characteristics of vastus lateralis (VL) including muscle thickness (MT), fascicle length (FL), and pennation angle (θp) were examined. The testing sessions occurred pre, mid, and post training (total 20 week pre- and in-season training period). Changes over time were analyzed by repeated-measures analysis of variance. The relationship between %change in muscle architecture variables and strength, speed, and change of direction variables from pre to post were assessed by Pearson product-moment correlation coefficient. Significant improvements in PV and PP occurred at all JS loads pre- to mid-testing and pre- to post-testing. Significant increases occurred pre-post in absolute 1RM, relative 1RM, 505 ND, and 2B sprint. The strongest relationships were found between %change in VL MT and 1B sprint (r = -0.80, p = 0.06), %change in VL FL and 2B sprint (r = -0.835, p = 0.02), and %change in relative 1RM and 505 D (r = -0.70, p = 0.04). In conclusion, gains in strength, power, and performance can occur during the season in elite softball players who are also engaged in a periodized RT program. Furthermore, changes in performance measures are associated with changes in muscle architecture.
NASA Technical Reports Server (NTRS)
2002-01-01
Dramatic losses of bone mineral density (BMD) and muscle strength are two of the best documented changes observed in humans after prolonged exposure to microgravity. Recovery of muscle upon return to a 1-G environment is well studied, however, far less is known about the rate and completeness of BMD recovery to pre-flight values. Using the mature tail-suspended adult rat model, this proposal will focus on the temporal course of recovery in tibial bone following a 28-d period of skeletal unloading. Through the study of bone density and muscle strength in the same animal, time-points during recovery from simulated microgravity will be identified when bone is at an elevated risk for fracture. These will occur due to the rapid recovery of muscle strength coupled with a slower recovery of bone, producing a significant mismatch in functional strength of these two tissues. Once the time-point of maximal mismatch is defined, various mechanical and pharmacological interventions will be tested at and around this time-point in attempt to minimize the functional difference of bone and muscle. The outcomes of this research will have high relevance for optimizing the rehabilitation of astronauts upon return to Earth, as well as upon landing on the Martian surface before assuming arduous physical tasks. Further. it will impact significantly on rehabilitation issues common to patients experiencing long periods of limb immobilization or bed rest.
Molino-Lova, R; Sofi, F; Pasquini, G; Vannetti, F; Del Ry, S; Vassalle, C; Clerici, M; Sorbi, S; Macchi, C
2017-06-01
Sarcopenia is the progressive loss of muscle mass and strength that occurs with advancing age and plays a pivotal role in the causal pathway leading to frailty, disability and, eventually, to death among older persons. As oxidative damage of muscle proteins has been shown to be a relevant contributory factor, in this study we hypothesized that uric acid (UA), a powerful endogenous antioxidant, might exert a protective effect on muscle function in the oldest old and we tested our hypothesis in a group of nonagenarians who participated in the Mugello Study. 239 subjects, 73 men and 166 women, mean age 92.8years±SD 3.1, underwent the assessment of UA serum level and isometric handgrip strength, a widely used clinical measure of sarcopenia. Mean UA serum level was 5.69mg/dL±SD 1.70 and mean handgrip strength was 15.0kg±SD 6.9. After adjusting for relevant confounders, higher UA serum levels remained independent positive predictors of isometric handgrip strength (β 1.24±SE(β) 0.43, p=0.005). Our results show that higher UA serum levels are associated with better muscle function in the oldest old and, accordingly, might slow down the progression of sarcopenia. Copyright © 2017 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.
Tatem, Kathleen S; Quinn, James L; Phadke, Aditi; Yu, Qing; Gordish-Dressman, Heather; Nagaraju, Kanneboyina
2014-09-29
The open field activity monitoring system comprehensively assesses locomotor and behavioral activity levels of mice. It is a useful tool for assessing locomotive impairment in animal models of neuromuscular disease and efficacy of therapeutic drugs that may improve locomotion and/or muscle function. The open field activity measurement provides a different measure than muscle strength, which is commonly assessed by grip strength measurements. It can also show how drugs may affect other body systems as well when used with additional outcome measures. In addition, measures such as total distance traveled mirror the 6 min walk test, a clinical trial outcome measure. However, open field activity monitoring is also associated with significant challenges: Open field activity measurements vary according to animal strain, age, sex, and circadian rhythm. In addition, room temperature, humidity, lighting, noise, and even odor can affect assessment outcomes. Overall, this manuscript provides a well-tested and standardized open field activity SOP for preclinical trials in animal models of neuromuscular diseases. We provide a discussion of important considerations, typical results, data analysis, and detail the strengths and weaknesses of open field testing. In addition, we provide recommendations for optimal study design when using open field activity in a preclinical trial.
Madhanagopal, Jagannathan; Singh, Om Prakash; Mohan, Vikram; Sathasivam, Kathiresan V; Omar, Abdul Hafidz; Abdul Kadir, Mohammed Rafiq
2017-01-01
An accurate measurement of intrinsic hand muscle strength (IHMS) is required by clinicians for effective clinical decision-making, diagnosis of certain diseases, and evaluation of the outcome of treatment. In practice, the clinicians use Intrins-o-meter and Rotterdam Intrinsic Hand Myometer for IHMS measurement. These are quite bulky, expensive, and possess poor interobserver reliability (37-52%) and sensitivity. The purpose of this study was to develop an alternative lightweight, accurate, cost-effective force measurement device with a simple electronic circuit and test its suitability for IHMS measurement. The device was constructed with ketjenblack/deproteinized natural rubber sensor, 1-MΩ potential divider, and Arduino Uno through the custom-written software. Then, the device was calibrated and tested for accuracy and repeatability within the force range of finger muscles (100 N). The 95% limit of agreement in accuracy from -1.95 N to 2.06 N for 10 to 100 N applied load and repeatability coefficient of ±1.91 N or 6.2% was achieved. Furthermore, the expenditure for the device construction was around US$ 53. For a practical demonstration, the device was tested among 16 participants for isometric strength measurement of the ulnar abductor and dorsal interossei. The results revealed that the performance of the device was suitable for IHMS measurement.
The effect of Nordic hamstring strength training on muscle architecture, stiffness, and strength.
Seymore, Kayla D; Domire, Zachary J; DeVita, Paul; Rider, Patrick M; Kulas, Anthony S
2017-05-01
Hamstring strain injury is a frequent and serious injury in competitive and recreational sports. While Nordic hamstring (NH) eccentric strength training is an effective hamstring injury-prevention method, the protective mechanism of this exercise is not understood. Strength training increases muscle strength, but also alters muscle architecture and stiffness; all three factors may be associated with reducing muscle injuries. The purpose of this study was to examine the effects of NH eccentric strength training on hamstring muscle architecture, stiffness, and strength. Twenty healthy participants were randomly assigned to an eccentric training group or control group. Control participants performed static stretching, while experimental participants performed static stretching and NH training for 6 weeks. Pre- and post-intervention measurements included: hamstring muscle architecture and stiffness using ultrasound imaging and elastography, and maximal hamstring strength measured on a dynamometer. The experimental group, but not the control group, increased volume (131.5 vs. 145.2 cm 3 , p < 0.001) and physiological cross-sectional area (16.1 vs. 18.1 cm 2 , p = 0.032). There were no significant changes to muscle fascicle length, stiffness, or eccentric hamstring strength. The NH intervention was an effective training method for muscle hypertrophy, but, contrary to common literature findings for other modes of eccentric training, did not increase fascicle length. The data suggest that the mechanism behind NH eccentric strength training mitigating hamstring injury risk could be increasing volume rather than increasing muscle length. Future research is, therefore, warranted to determine if muscle hypertrophy induced by NH training lowers future hamstring strain injury risk.
Andrade, Marília S.; Lira, Claudio A. B.; Vancini, Rodrigo L.; Nakamoto, Fernanda P.; Cohen, Moisés; Silva, Antonio C.
2014-01-01
Objectives To investigate whether the muscle strength decrease that follows anterior cruciate ligament (ACL) reconstruction would lead to different cardiorespiratory adjustments during dynamic exercise. Method Eighteen active male subjects were submitted to isokinetic evaluation of knee flexor and extensor muscles four months after ACL surgery. Thigh circumference was also measured and an incremental unilateral cardiopulmonary exercise test was performed separately for both involved and uninvolved lower limbs in order to compare heart rate, oxygen consumption, minute ventilation, and ventilatory pattern (breath rate, tidal volume, inspiratory time, expiratory time, tidal volume/inspiratory time) at three different workloads (moderate, anaerobic threshold, and maximal). Results There was a significant difference between isokinetic extensor peak torque measured in the involved (116.5±29.1 Nm) and uninvolved (220.8±40.4 Nm) limbs, p=0.000. Isokinetic flexor peak torque was also lower in the involved limb than in the uninvolved limb (107.8±15.4 and 132.5±26.3 Nm, p=0.004, respectively). Lower values were also found in involved thigh circumference as compared with uninvolved limb (46.9±4.3 and 48.5±3.9 cm, p=0.005, respectively). No differences were found between the lower limbs in any of the variables of the incremental cardiopulmonary tests at all exercise intensities. Conclusions Our findings indicate that, four months after ACL surgery, there is a significant deficit in isokinetic strength in the involved limb, but these differences in muscle strength requirement do not produce differences in the cardiorespiratory adjustments to exercise. Based on the hypotheses from the literature which explain the differences in the physiological responses to exercise for different muscle masses, we can deduce that, after 4 months of a rehabilitation program after an ACL reconstruction, individuals probably do not present differences in muscle oxidative and peripheral perfusion capacities that could elicit higher levels of peripheral cardiorepiratory stimulus during exercise. PMID:24838811
Rider, Lisa G.; Koziol, Deloris; Giannini, Edward H.; Jain, Minal S.; Smith, Michaele R.; Whitney-Mahoney, Kristi; Feldman, Brian M.; Wright, Susan J.; Lindsley, Carol B.; Pachman, Lauren M.; Villalba, Maria L.; Lovell, Daniel J.; Bowyer, Suzanne L.; Plotz, Paul H.; Miller, Frederick W.; Hicks, Jeanne E.
2010-01-01
Objective To validate manual muscle testing (MMT) for strength assessment in juvenile and adult dermatomyositis (DM) and polymyositis (PM). Methods Seventy-three children and 45 adult DM/PM patients were assessed at baseline and reevaluated 6–9 months later. We compared Total MMT (a group of 24 proximal, distal, and axial muscles) and Proximal MMT (7 proximal muscle groups) tested bilaterally on a 0–10 scale with 144 subsets of six and 96 subsets of eight muscle groups tested unilaterally. Expert consensus was used to rank the best abbreviated MMT subsets for face validity and ease of assessment. Results The Total, Proximal and best MMT subsets had excellent internal reliability (rs:Total MMT 0.91–0.98), and consistency (Cronbach’s α 0.78–0.97). Inter- and intra-rater reliability were acceptable (Kendall’s W 0.68–0.76; rs 0.84–0.95). MMT subset scores correlated highly with Total and Proximal MMT scores and with the Childhood Myositis Assessment Scale, and correlated moderately with physician global activity, functional disability, magnetic resonance imaging, axial and distal MMT scores and, in adults, with creatine kinase. The standardized response mean for Total MMT was 0.56 in juveniles and 0.75 in adults. Consensus was reached to use a subset of eight muscles (neck flexors, deltoids, biceps, wrist extensors, gluteus maximus and medius, quadriceps and ankle dorsiflexors) that performed as well as the Total and Proximal MMT, and had good face validity and ease of assessment. Conclusions These findings aid in standardizing the use of MMT for assessing strength as an outcome measure for myositis. PMID:20391500
Jówko, Ewa; Sacharuk, Jaroslaw; Balasinska, Bozena; Wilczak, Jacek; Charmas, Malgorzata; Ostaszewski, Piotr; Charmas, Robert
2012-12-01
To evaluate the effect of acute ingestion of green tea polyphenols (GTP) on blood markers of oxidative stress and muscle damage in soccer players exposed to intense exercise. This randomized, double-blinded study was conducted on 16 players during a general preparation period, when all athletes participated in a strength-training program focused on the development of strength endurance. After ingestion of a single dose of GTP (640 mg) or placebo, all athletes performed an intense muscle-endurance test consisting of 3 sets of 2 strength exercises (bench press, back squat) performed to exhaustion, with a load at 60% 1-repetition maximum and 1-min rests between sets. Blood samples were collected preexercise, 5 min after the muscle-endurance test, and after 24 hr of recovery. Blood plasma was analyzed for the concentrations of thiobarbituric acid-reacting substances (TBARS), uric acid (UA), total catechins, total antioxidant status (TAS), and activity of creatine kinase (CK); at the same time, erythrocytes were assayed for the activity of superoxide dismutase (SOD). In both groups, plasma TBARS, UA, and TAS increased significantly postexercise and remained elevated after a 24-hr recovery period. SOD activity in erythrocytes did not change significantly in response to the muscle-endurance test, whereas in both groups plasma CK activity increased significantly after 24 hr of recovery. Acute intake of GTP cased a slight but significant increase in total plasma catechins. However, GTP was found not to exert a significant effect on measured parameters. Acute ingestion of GTP (640 mg) does not attenuate exercise-induced oxidative stress and muscle damage.
Muscle Strength Is Protective Against Osteoporosis in an Ethnically Diverse Sample of Adults.
McGrath, Ryan P; Kraemer, William J; Vincent, Brenda M; Hall, Orman T; Peterson, Mark D
2017-09-01
McGrath, RP, Kraemer, WJ, Vincent, BM, Hall, OT, and Peterson, MD. Muscle strength is protective against osteoporosis in an ethnically diverse sample of adults. J Strength Cond Res 31(9): 2586-2589, 2017-The odds of developing osteoporosis may be affected by modifiable and nonmodifiable factors such as muscle strength and ethnicity. This study sought to (a) determine whether increased muscle strength was associated with decreased odds of osteoporosis and (b) identify whether the odds of osteoporosis differed by ethnicity. Data from the 2013 to 2014 National Health and Nutrition Examination Survey were analyzed. Muscle strength was measured with a hand-held dynamometer, and dual-energy x-ray absorptiometry was used to assess femoral neck bone mineral density. A T-score of ≤2.5 was used to define osteoporosis. Separate covariate-adjusted logistic regression models were performed on each sex to determine the association between muscle strength and osteoporosis. Odds ratios (ORs) were also generated to identify if the association between muscle strength and osteoporosis differed by ethnicity using non-Hispanic blacks as the reference group. There were 2,861 participants included. Muscle strength was shown to be protective against osteoporosis for men (OR: 0.94; 95% confidence interval [CI]: 0.94-0.94) and women (OR: 0.90; CI: 0.90-0.90). Although ORs varied across ethnicities, non-Hispanic Asian men (OR: 6.62; CI: 6.51-6.72) and women (OR: 6.42; CI: 6.37-6.48) were at highest odds of osteoporosis. Increased muscle strength reduced the odds of osteoporosis among both men and women in a nationally representative, ethnically diverse sample of adults. Non-Hispanic Asians had the highest odds of developing osteoporosis. Irrespective of sex or ethnicity, increased muscle strength may help protect against the odds of developing osteoporosis.
Paleckis, Vidas; Mickevičius, Mantas; Snieckus, Audrius; Streckis, Vytautas; Pääsuke, Mati; Rutkauskas, Saulius; Steponavičiūtė, Rasa; Skurvydas, Albertas; Kamandulis, Sigitas
2015-01-01
The aim of this study was to assess changes in indirect markers of muscle damage and type I collagen degradation, as well as, patellar and Achilles tendon morphological differences during nine daily drop-jumps sessions with constant load alternated with rapid increases in load to test the hypothesis that frequent drop-jump training results in negative muscular and tendon adaptation. Young men (n = 9) performed daily drop jump workouts with progression every 3 days in terms of number of jumps, platform height and squat amplitude. Voluntary and electrically evoked knee extensor torque, muscle soreness, blood plasma creatine kinase (CK) activity and carboxyterminal cross-linked telopeptide (ICTP), patellar and Achilles tendon thickness and cross-sectional area (CSA) were assessed at different time points during the training period and again on days 1, 3, 10 and 17 after the training. The findings were as follows: (1) steady decline in maximal muscle strength with major recovery within 24 hours after the first six daily training sessions; (2) larger decline in electrically induced muscle torque and prolonged recovery during last three training sessions; (3) increase in patellar and Achilles tendons CSA without change in thickness towards the end of training period; (4) increase in jump height but not in muscle strength after whole training period. Our findings suggest that frequent drop-jump sessions with constant load alternated with rapid increases in load do not induce severe muscle damage or major changes in tendons, nonetheless, this type of loading is not advisable for muscle strength improvement. Key points Frequent drop jump training induces activation mode dependent muscle torque depression late in the training period. No significant changes in the thickness of patellar and Achilles tendons are observed during frequent training, while CSA increases towards the end of training period. Longitudinal effect for jump height but not for muscle strength is evident after the whole training period. PMID:26664280
Larsson, Helena; Tegern, Matthias; Monnier, Andreas; Skoglund, Jörgen; Helander, Charlotte; Persson, Emelie; Malm, Christer; Broman, Lisbet; Aasa, Ulrika
2015-01-01
The objective of this study was to examine the content validity of commonly used muscle performance tests in military personnel and to investigate the reliability of a proposed test battery. For the content validity investigation, thirty selected tests were those described in the literature and/or commonly used in the Nordic and North Atlantic Treaty Organization (NATO) countries. Nine selected experts rated, on a four-point Likert scale, the relevance of these tests in relation to five different work tasks: lifting, carrying equipment on the body or in the hands, climbing, and digging. Thereafter, a content validity index (CVI) was calculated for each work task. The result showed excellent CVI (≥0.78) for sixteen tests, which comprised of one or more of the military work tasks. Three of the tests; the functional lower-limb loading test (the Ranger test), dead-lift with kettlebells, and back extension, showed excellent content validity for four of the work tasks. For the development of a new muscle strength/endurance test battery, these three tests were further supplemented with two other tests, namely, the chins and side-bridge test. The inter-rater reliability was high (intraclass correlation coefficient, ICC2,1 0.99) for all five tests. The intra-rater reliability was good to high (ICC3,1 0.82–0.96) with an acceptable standard error of mean (SEM), except for the side-bridge test (SEM%>15). Thus, the final suggested test battery for a valid and reliable evaluation of soldiers’ muscle performance comprised the following four tests; the Ranger test, dead-lift with kettlebells, chins, and back extension test. The criterion-related validity of the test battery should be further evaluated for soldiers exposed to varying physical workload. PMID:26177030
Diurnal and day-to-day variation of isometric muscle strength in myasthenia gravis.
Vinge, Lotte; Jakobsen, Johannes; Pedersen, Asger Roer; Andersen, Henning
2016-01-01
In patients with myasthenia gravis (MG), muscle strength is expected to decrease gradually during the day due to physical activities. Isometric muscle strength at the shoulder, knee, and ankle was determined in 10 MG patients (MGFA class II-IV) who were receiving usual medical treatment and in 10 control subjects. To determine diurnal and day-to-day variation, muscle strength was measured 4 times during day 1 and once at day 2. Knee extension strength decreased during the day in both patients and controls. Neither diurnal nor day-to-day variation of muscle strength was higher in patients compared with controls. Patients with mild to moderate MG did not have increased variation of isometric muscle strength during the day or from day-to-day compared with controls. This suggests that isometric muscle performance can be determined with high reproducibility in similar groups of MG patients without regard to time of day. © 2015 Wiley Periodicals, Inc.
Mascarin, Naryana Cristina; de Lira, Claudio Andre Barbosa; Vancini, Rodrigo Luiz; de Castro Pochini, Alberto; da Silva, Antonio Carlos; Dos Santos Andrade, Marilia
2017-05-01
Imbalance in shoulder-rotator muscles has been considered a risk factor for injuries in handball. Strength training programs (STPs) may play an important preventive role. To verify the effects of an STP using elastic bands on shoulder muscles and ball-throwing speed. Randomized and prospective controlled trial. Exercise physiology laboratory. Thirty-nine female handball players were randomly assigned to an experimental (EG, n = 21, 15.3 ± 1.1 y) or a control (CG, n = 18, 15.0 ± 0.8 y) group. The EG performed the STP with elastic-band progressive exercises for 6 wk before regular handball training, and the CG underwent only their regular training. Before and after the STP, both groups underwent a ball-throwing-speed test and isokinetic test to assess shoulder internal- (IR) and external-rotator muscle performance. Average power values for IR muscles presented a significant group-vs-time interaction effect (F = 3.9, P = .05); EG presented significantly higher values after the STP (P = .03). Ball speed presented higher values in EG after the STP in standing (P = .04) and jumping (P = .03) throws. IR peak-torque values and balance in shoulder-rotator muscles presented no group-vs-time interaction effect. STP using elastic bands performed for 6 wk was effective to improve muscle power and ball speed for young female handball players.
Using 4+ to grade near-normal muscle strength does not improve agreement.
O'Neill, Søren; Jaszczak, Sofie Louise Thomsen; Steffensen, Anne Katrine Søndergaard; Debrabant, Birgit
2017-01-01
Manual assessment of muscle strength is often graded using the ordinal Medical Research Council (MRC) scale. The scale has a number of inherent weaknesses, including poorly defined limits between grades '4' and '5' and very large differences in the span of muscle strength encompassed by each of the six grades. It is not necessarily obvious how to convert a manual muscle test finding into an MRC grade. Several modifications which include intermediate grades have been suggested to improve the MRC scale and the current study examines whether agreement improves and variation in ratings decrease, with an intermediate grade between '4' and '5', in circumstances where such a grade would seem appropriate. The present study examined the hypothesis, that a modified MRC-scale which included the commonly used '4+' option, resulted in greater agreement between clinicians compared to the standard MRC-scale. A questionnaire containing five simple clinical cases were distributed to a large convenience sample of chiropractors in Northern Europe, with instructions to grade the described muscle strength findings using the MRC scale. The scale was adapted (with/without an intermediate '4+' grade) depending on the preference of the individual respondent. The cases were designed in such a way as to suggest a muscle weakness in the grey area between '4' and '5', i.e. grade '4+' on the modified MRC scale. A total of 225 questionnaires were returned (7% response rate). The average percentage agreement (across cases) in the standard MRC group was 64% [range 51%: 73%] (grade '4' in all cases). In the modified MRC group, the corresponding findings was 48% [38%: 74%] (grade '4' or '4+' in all cases). The mean average deviation analogue in the standard MRC group was 0.34 (range 0.34: 0.40), compared to 0.51 (range 0.39: 0.73) in the modified MRC group, indicating greater dispersion of scores in the modified MRC group. The Fleiss kappa was 0.02 ( p < 0.001) and 0.13 ( p < 0.001), respectively. Contrary to the original hypothesis, introduction of a '4+' grade did not clearly improve agreement or variability of ratings, despite eliminating the physical muscle testing by providing written descriptions of test findings and specifically designing these to suggest a weakness of grade '4+'.
Muscle volume, strength, endurance, and exercise loads during 6-month missions in space.
Gopalakrishnan, Raghavan; Genc, Kerim O; Rice, Andrea J; Lee, Stuart M C; Evans, Harlan J; Maender, Christian C; Ilaslan, Hakan; Cavanagh, Peter R
2010-02-01
Decrements in muscular strength during long-duration missions in space could be mission-critical during construction and exploration activities. The purpose of this study was to quantify changes in muscle volume, strength, and endurance of crewmembers on the International Space Station (ISS) in the context of new measurements of loading during exercise countermeasures. Strength and muscle volumes were measured from four male ISS crewmembers (49.5 +/- 4.7 yr, 179.3 +/- 7.1 cm, 85.2 +/- 10.4 kg) before and after long-duration spaceflight (181 +/- 15 d). Preflight and in-flight measurements of forces between foot and shoe allowed comparisons of loading from 1-g exercise and exercise countermeasures on ISS. Muscle volume change was greater in the calf (-10 to 16%) than the thigh (-4% to -7%), but there was no change in the upper arm (+0.4 to -0.8%). Isometric and isokinetic strength changes at the knee (range -10.4 to -24.1%), ankle (range -4 to -22.3%), and elbow (range -7.5 to -16.7%) were observed. Although there was an overall postflight decline in total work (-14%) during the endurance test, an increase in postflight resistance to fatigue was observed. The peak in-shoe forces during running and cycling on ISS were approximately 46% and 50% lower compared to 1-g values. Muscle volume and strength were decreased in the lower extremities of crewmembers during long-duration spaceflight on ISS despite the use of exercise countermeasures. in-flight countermeasures were insufficient to replicate the daily mechanical loading experienced by the crewmembers before flight. Future exercise protocols need careful assessment both in terms of intensity and duration to maximize the "dose" of exercise and to increase loads compared to the measured levels.
Citaker, Seyit; Guclu-Gunduz, Arzu; Yazici, Gokhan; Bayraktar, Deniz; Nazliel, Bijen; Irkec, Ceyla
2013-01-01
Muscle strength and standing balance decrease in patients with Multiple Sclerosis (MS). The aim of the present study was to investigate the relationship between the lower extremity isometric muscle strength and standing balance in patients with MS. Forty-seven patients with MS and 10 healthy volunteers were included. Neurological disability level was assessed using Expanded Disability Status Scale (EDSS). Isometric strength of seven lower extremity muscles (hip flexor-extensor-abductor-adductor, knee flexor-extensor, and ankle dorsal flexor) was assessed using hand-held dynamometer. Duration of static one-leg standing balance was measured using digital chronometer. Hip flexor-extensor-abductor-adductor, knee flexor-extensor, and ankle dorsal flexor isometric muscle strength, and duration of one-leg standing balance were decreased in patients with MS when compared with controls (p < 0.05). All assessed lower extremity isometric muscle strength and EDSS level was related duration of one-leg standing balance in patients with MS. All assessed lower extremity isometric muscle strength (except ankle dorsal flexor) was related with EDSS. Hip flexor-extensor-abductor-adductor, knee flexor-extensor, and ankle dorsal flexor isometric muscle strength decreases in ambulatory MS patients. Lower extremity muscle weakness and neurological disability level are related with imbalance in MS population. Hip and knee region muscles weakness increases the neurological disability level. For the better balance and decrease neurological disability level whole lower extremity muscle strengthening should be included in rehabilitation programs.
Hanna, Chris M; Fulcher, Mark L; Elley, C Raina; Moyes, Simon A
2010-05-01
Chronic groin pain is a common problem in association football players. Normative values for the strength of hip muscles, measured in an accurate and accessible manner, are needed to gauge strength and inform return to play decisions in this group. The purpose of this study was to define normative values of hip muscle strength using handheld dynamometry. A series of reliable clinical tests that are commonly used when making return to sport decisions in athletes with chronic adductor related groin pain have been selected. One hundred and twenty adult male association football players, free from injury, were recruited. Isometric strength of the hip flexors and adductor muscles was measured using a handheld dynamometer. Mean age was 24.9 years (SD 5.9). Eighty participants (67%) had experienced groin pain in the past. Mean strength for dominant leg hip flexion was 47.3 kg (95% confidence interval 45.6-49.0), non-dominant leg hip flexion was 42.5 kg (41.1-43.9), adduction at 0 degrees hip flexion was 35.6 kg (34.1-37.1), adduction at 45 degrees was 32.0 kg (30.9-33.1), and adduction at 90 degrees was 25.5 kg (24.4-26.5). This study establishes reference ranges and predictive equations for maximal isometric contraction strength of the hip muscles in non-injured adult male association football players. This information will assist assessment and management of an athlete's return to play following injury. 2009 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Andrade, Marilia Dos Santos; Fleury, Anna Maria; de Lira, Claudio Andre Barbosia; Dubas, Joao Paulo; da Silva, Antonio Carlos
2010-05-01
The purpose of this study was to establish the isokinetic profile of shoulder rotator muscles strength in female handball players. Twenty-seven handball players performed concentric and eccentric strength tests of both dominant and non-dominant upper limbs on an isokinetic dynamometer. Internal and external rotator muscles peak torque was assessed at 1.05, 3.14, and 5.23 rad . s(-1) in concentric mode and at 3.14 and 5.23 rad . s(-1) in eccentric mode. Concentric balance ratio and functional ratio were obtained. Bi-lateral deficiency was compared. Concentric strength for internal and external rotation was significantly greater for the dominant than for the non-dominant limb for all speeds (P < or = 0.0001). For eccentric actions, internal rotator muscles were stronger in the dominant than the non-dominant limb (P < or = 0.0001) at both speeds. Concentric balance and functional balance ratios did not differ between sides at 3.14 rad . s(-1) (P = 0.1631), but at 5.23 rad . s(-1) the functional balance ratio in the dominant limb was lower than for the non-dominant limb (P = 0.0500). Although the dominant side was stronger than the non-dominant side, balance concentric ratios remained the same, with only the functional strength ratio different at 5.23 rad . s(-1). Our results suggest that concentric strength exercises be used for internal and external rotators on the non-dominant side, and functional exercise that improves eccentric rotation strength for prevention programmes.
Donnelly, Lindsy; Donovan, Luke; Hart, Joseph M; Hertel, Jay
2017-07-01
Individuals with chronic ankle instability (CAI) have demonstrated strength deficits compared to healthy controls; however, the influence of ankle position on force measures and surface electromyography (sEMG) activation of the peroneus longus and brevis has not been investigated. The purpose of this study was to compare sEMG amplitudes of the peroneus longus and brevis and eversion force measures in 2 testing positions, neutral and plantarflexion, in groups with and without CAI. Twenty-eight adults (19 females, 9 males) with CAI and 28 healthy controls (19 females, 9 males) participated. Hand-held dynamometer force measures were assessed during isometric eversion contractions in 2 testing positions (neutral, plantarflexion) while surface sEMG amplitudes of the peroneal muscles were recorded. Force measures were normalized to body mass, and sEMG amplitudes were normalized to a resting period. The group with CAI demonstrated less force when compared to the control group ( P < .001) in both the neutral and plantarflexion positions: neutral position, CAI: 1.64 Nm/kg and control: 2.10 Nm/kg) and plantarflexion position, CAI: 1.40 Nm/kg and control: 1.73 Nm/kg). There were no differences in sEMG amplitudes between the groups or muscles ( P > .05). Force measures correlated with both muscles' sEMG amplitudes in the healthy group (neutral peroneus longus: r = 0.42, P = .03; plantarflexion peroneus longus: r = 0.56, P = .002; neutral peroneus brevis: r = 0.38, P = .05; plantarflexion peroneus longus: r = 0.40, P = .04), but not in the group with CAI ( P > .05). The group with CAI generated less force when compared to the control group during both testing positions. There was no selective activation of the peroneal muscles with testing in both positions, and force output and sEMG activity was only related in the healthy group. Clinicians should assess eversion strength and implement strength training exercises in different sagittal plane positions and evaluate for other pathologies that may contribute to reduced eversion strength in patients with CAI. Level III, cross-sectional.
Relative strengths of the calf muscles based on MRI volume measurements.
Jeng, Clifford L; Thawait, Gaurav K; Kwon, John Y; Machado, Antonio; Boyle, James W; Campbell, John; Carrino, John A
2012-05-01
In 1985, Silver et al. published a cadaver study which determined the relative order of strength of the muscles in the calf. Muscle strength, which is proportional to volume, was obtained by dissecting out the individual muscles, weighing them, and then multiplying by the specific gravity. No similar studies have been performed using {\\it in vivo} measurements of muscle volume. Ten normal subjects underwent 3-Tesla MRI's of both lower extremities using non-fat-saturated T2 SPACE sequences. The volume for each muscle was determined by tracing the muscle contour on sequential axial images and then interpolating the volume using imaging software. The results from this study differ from Silver's original article. The lateral head of the gastrocnemius was found to be stronger than the tibialis anterior muscle. The FHL and EDL muscles were both stronger than the peroneus longus. There was no significant difference in strength between the peroneus longus and brevis muscles. This revised order of muscle strengths in the calf based on in vivo MRI findings may assist surgeons in determining the optimal tendons to transfer in order to address muscle weakness and deformity.
Nakagawa, Kazumasa; Maeda, Misako
2017-03-01
[Purpose] From the viewpoint of prevention of knee osteoarthritis, the aim of this study was to verify how muscle strength and joint laxity are related to knee osteoarthritis. [Subjects and Methods] The study subjects consisted of 90 community-dwelling elderly people aged more than 60 years (22 males, 68 females). Femorotibial angle alignment, knee joint laxity, knee extensors and flexor muscle strengths were measured in all subjects. In addition, the subjects were divided into four groups based on the presence of laxity and knee joint deformation, and the muscle strength values were compared. [Results] There was no significant difference in knee extensor muscle strength among the four groups. However, there was significant weakness of the knee flexor muscle in the group with deformation and laxity was compared with the group without deformation and laxity. [Conclusion] Decreased knee flexor muscle strengths may be involved in knee joint deformation. The importance of muscle strength balance was also considered.
Cho, Chunhee; Hwang, Wonjeong; Hwang, Sujin; Chung, Yijung
2016-03-01
Independent walking is an important goal of clinical and community-based rehabilitation for children with cerebral palsy (CP). Virtual reality-based rehabilitation therapy is effective in motivating children with CP. This study investigated the effects of treadmill training with virtual reality on gait, balance, muscular strength, and gross motor function in children with CP. Eighteen children with spastic CP were randomly divided into the virtual reality treadmill training (VRTT) group (9 subjects, mean age, 10.2 years) and treadmill training (TT) group (9 subjects, mean age, 9.4 years). The groups performed their respective programs as well as conventional physical therapy 3 times/week for 8 weeks. Muscle strength was assessed using a digitalized manual muscle tester. Gross motor function was assessed using the Gross Motor Functional Measure (GMFM). Balance was assessed using the Pediatric Balance Scale (PBS). Gait speed was assessed using the 10-meter walk test (10MWT), and gait endurance was assessed using the 2-minute walk test (2MWT). After training, gait and balance was improved in the VRTT compared to the TT group (P < 0.05). Muscular strength was significantly greater in the VRTT group than the TT group, except for right hamstring strength. The improvements in GMFM (standing) and PBS scores were greater in the VRTT group than the TT group (P < 0.05). Furthermore, the VRTT group showed the higher values of 10MWT and 2MWT compared to the TT group (P < 0.05). In conclusion, VRTT programs are effective for improving gait, balance, muscular strength, and gross motor function in children with CP.
Hausswirth, Christophe; Louis, Julien; Bieuzen, François; Pournot, Hervé; Fournier, Jean; Filliard, Jean-Robert; Brisswalter, Jeanick
2011-01-01
Enhanced recovery following physical activity and exercise-induced muscle damage (EIMD) has become a priority for athletes. Consequently, a number of post-exercise recovery strategies are used, often without scientific evidence of their benefits. Within this framework, the purpose of this study was to test the efficacy of whole body cryotherapy (WBC), far infrared (FIR) or passive (PAS) modalities in hastening muscular recovery within the 48 hours after a simulated trail running race. In 3 non-adjoining weeks, 9 well-trained runners performed 3 repetitions of a simulated trail run on a motorized treadmill, designed to induce muscle damage. Immediately (post), post 24 h, and post 48 h after exercise, all participants tested three different recovery modalities (WBC, FIR, PAS) in a random order over the three separate weeks. Markers of muscle damage (maximal isometric muscle strength, plasma creatine kinase [CK] activity and perceived sensations [i.e. pain, tiredness, well-being]) were recorded before, immediately after (post), post 1 h, post 24 h, and post 48 h after exercise. In all testing sessions, the simulated 48 min trail run induced a similar, significant amount of muscle damage. Maximal muscle strength and perceived sensations were recovered after the first WBC session (post 1 h), while recovery took 24 h with FIR, and was not attained through the PAS recovery modality. No differences in plasma CK activity were recorded between conditions. Three WBC sessions performed within the 48 hours after a damaging running exercise accelerate recovery from EIMD to a greater extent than FIR or PAS modalities.
Hausswirth, Christophe; Louis, Julien; Bieuzen, François; Pournot, Hervé; Fournier, Jean; Filliard, Jean-Robert; Brisswalter, Jeanick
2011-01-01
Enhanced recovery following physical activity and exercise-induced muscle damage (EIMD) has become a priority for athletes. Consequently, a number of post-exercise recovery strategies are used, often without scientific evidence of their benefits. Within this framework, the purpose of this study was to test the efficacy of whole body cryotherapy (WBC), far infrared (FIR) or passive (PAS) modalities in hastening muscular recovery within the 48 hours after a simulated trail running race. In 3 non-adjoining weeks, 9 well-trained runners performed 3 repetitions of a simulated trail run on a motorized treadmill, designed to induce muscle damage. Immediately (post), post 24 h, and post 48 h after exercise, all participants tested three different recovery modalities (WBC, FIR, PAS) in a random order over the three separate weeks. Markers of muscle damage (maximal isometric muscle strength, plasma creatine kinase [CK] activity and perceived sensations [i.e. pain, tiredness, well-being]) were recorded before, immediately after (post), post 1 h, post 24 h, and post 48 h after exercise. In all testing sessions, the simulated 48 min trail run induced a similar, significant amount of muscle damage. Maximal muscle strength and perceived sensations were recovered after the first WBC session (post 1 h), while recovery took 24 h with FIR, and was not attained through the PAS recovery modality. No differences in plasma CK activity were recorded between conditions. Three WBC sessions performed within the 48 hours after a damaging running exercise accelerate recovery from EIMD to a greater extent than FIR or PAS modalities. PMID:22163272
Cross-education after high-frequency versus low-frequency volume-matched handgrip training.
Boyes, Natasha G; Yee, Peter; Lanovaz, Joel L; Farthing, Jonathan P
2017-10-01
Cross-education training programs cause interlimb asymmetry of strength and hypertrophy. We examined the cross-education effects from a high-frequency (HF) versus a low-frequency (LF) volume-matched handgrip training program on interlimb asymmetry. Right-handed participants completed either HF (n = 10; 2 × 6 repetitions 10 times per week) or LF (n = 9; 5 × 8 repetitions 3 times per week) training. Testing occurred twice before and once after 4 weeks of right-handed isometric handgrip training totaling 120 weekly repetitions. Measures were maximal isometric handgrip and wrist flexion torque, muscle thickness, and muscle activation (electromyography; EMG). Grip strength was greater in both limbs posttraining, pooled across groups (P < 0.001). Trained limb muscle thickness increased in both groups (P < 0.05; untrained, P = 0.897). EMG and wrist flexion torque did not change (all P > 0.103). Both LF and HF induced cross-education of grip strength to the untrained limb, but HF did not reduce asymmetry. These findings have implications for injury rehabilitation. Muscle Nerve 56: 689-695, 2017. © 2017 Wiley Periodicals, Inc.
Sørensen, T J; Langberg, H; Hodges, P W; Bliddal, H; Henriksen, M
2012-01-01
Knee joint pain and reduced quadriceps strength are cardinal symptoms in many knee pathologies. In people with painful knee pathologies, quadriceps exercise reduces pain, improves physical function, and increases muscle strength. A general assumption is that pain compromises muscle function and thus may prevent effective rehabilitation. This study evaluated the effects of experimental knee joint pain during quadriceps strength training on muscle strength gain in healthy individuals. Twenty-seven healthy untrained volunteers participated in a randomized controlled trial of quadriceps strengthening (3 times per week for 8 weeks). Participants were randomized to perform resistance training either during pain induced by injections of painful hypertonic saline (pain group, n = 13) or during a nonpainful control condition with injection of isotonic saline (control group, n = 14) into the infrapatellar fat pad. The primary outcome measure was change in maximal isokinetic muscle strength in knee extension/flexion (60, 120, and 180 degrees/second). The group who exercised with pain had a significantly larger improvement in isokinetic muscle strength at all angular velocities of knee extension compared to the control group. In knee flexion there were improvements in isokinetic muscle strength in both groups with no between-group differences. Experimental knee joint pain improved the training-induced gain in muscle strength following 8 weeks of quadriceps training. It remains to be studied whether knee joint pain has a positive effect on strength gain in patients with knee pathology. Copyright © 2012 by the American College of Rheumatology.
Hamstring Strength and Morphology Progression after Return to Sport from Injury
Sanfilippo, Jennifer; Silder, Amy; Sherry, Marc A; Tuite, Michael J; Heiderscheit, Bryan C
2012-01-01
Hamstring strain re-injury rates can reach 30% within the initial two weeks following return to sport (RTS). Incomplete recovery of strength may be a contributing factor. However, relative strength of the injured and unaffected limbs at RTS is currently unknown. PURPOSE: Characterize hamstring strength and morphology at the time of RTS and six months later. METHODS: Twenty-five athletes that experienced an acute hamstring strain injury participated, following completion of a controlled rehabilitation program. Bilateral isokinetic strength testing and magnetic resonance imaging (MRI) were performed at RTS and 6-months later. Strength (knee flexion peak torque, work, angle of peak torque) and MRI (muscle and tendon volumes) measures were compared between limbs and over time using repeated measures ANOVA. RESULTS: The injured limb showed a peak torque deficit of 9.6% compared to the uninjured limb at RTS (60°/s, p<0.001), but not 6-months following. The knee flexion angle of peak torque decreased over time for both limbs (60°/s, p<0.001). MRI revealed that 20.4% of the muscle cross-sectional area showed signs of edema at RTS with full resolution by the 6-month follow-up. Tendon volume of the injured limb tended to increase over time (p=0.108), while muscle volume decreased 4–5% in both limbs (p<0.001). CONCLUSION: Residual edema and deficits in isokinetic knee flexion strength were present at RTS, but resolved during the subsequent six months. This occurred despite MRI evidence of scar tissue formation (increased tendon volume) and muscle atrophy, suggesting that neuromuscular factors may contribute to the return of strength. PMID:23059864
ERIC Educational Resources Information Center
Ferland, Chantale; Lepage, Celine; Moffet, Helene; Maltais, Desiree B.
2012-01-01
This study aimed to quantify relationships between lower limb muscle strength and locomotor capacity for children and adolescents with cerebral palsy (CP) to identify key muscle groups for strength training. Fifty 6- to 16-year-olds with CP (Gross Motor Function Classification System level I or II) participated. Isometric muscle strength of hip…
Cegielski, Jessica; Brook, Matthew S; Quinlan, Jonathan I; Wilkinson, Daniel J; Smith, Kenneth; Atherton, Philip J; Phillips, Bethan E
2017-01-01
Developing alternative exercise programmes that can alleviate certain barriers to exercise such as psychological, environmental or socio-economical barriers, but provide similar physiological benefits e.g. increases in muscle mass and strength, is of grave importance. This pilot study aimed to assess the efficacy of an unsupervised, 4-week, whole-body home-based exercise training (HBET) programme, incorporated into daily living activities, on skeletal muscle mass, power and strength. Twelve healthy older volunteers (63±3 years, 7 men: 5 women, BMI: 29±1 kg/m²) carried out the 4-week "lifestyle-integrated" HBET of 8 exercises, 3x12 repetitions each, every day. Before and after HBET, a number of physical function tests were carried out: unilateral leg extension 1-RM (one- repetition maximum), MVC (maximal voluntary contraction) leg extension, lower leg muscle power (via Nottingham Power Rig), handgrip strength and SPPBT (short physical performance battery test). A D 3 -Creatine method was used for assessment of whole-body skeletal muscle mass, and ultrasound was used to measure the quadriceps cross-sectional area (CSA) and vastus lateralis muscle thickness. Four weeks HBET elicited significant (p<0.05) improvements in leg muscle power (276.7±38.5 vs. 323.4±43.4 W), maximal voluntary contraction (60°: 154.2±18.4 vs. 168.8±15.2 Nm, 90°: 152.1±10.5 vs. 159.1±11.4 Nm) and quadriceps CSA (57.5±5.4 vs. 59.0±5.3 cm 2 ), with a trend for an increase in leg strength (1-RM: 45.7±5.9 vs. 49.6±6.0 kg, P=0.08). This was despite there being no significant differences in whole-body skeletal muscle mass, as assessed via D 3 -Creatine. This study demonstrates that increases in multiple aspects of muscle function can be achieved in older adults with just 4-weeks of "lifestyle-integrated" HBET, with a cost-effective means. This training mode may prove to be a beneficial alternative for maintaining and/or improving muscle mass and function in older adults.
Calatayud, Joaquin; Vinstrup, Jonas; Jakobsen, Markus D; Sundstrup, Emil; Colado, Juan Carlos; Andersen, Lars L
2017-07-01
To investigate the effect of different attentional focus conditions on muscle activity during the push-up exercise and to assess the possible influence of muscle strength and training experience. Eighteen resistance-trained men performed 1RM bench press testing and were familiarized with the procedure during the first session. In the second session, three different conditions were randomly performed: regular push-up and push-up focusing on using the pectoralis major and triceps brachii muscles, respectively. Surface electromyography (EMG) was recorded and analyzed (EMG normalized to max; nEMG) for the triceps brachii and pectoralis major muscles. Participants had on average 8 (SD 6) years of training experience and 1RM of 1.25 (SD 0.28) kg per kg bodyweight. Focusing on using pectoralis major increased activity in this muscle by 9% nEMG (95% CI 5-13; Cohen's d 0.60) compared with the regular condition. Triceps activity was not significantly influenced by triceps focus although borderline significant, with a mean difference of 5% nEMG (95% CI 0-10; Cohen's d 0.30). However, years of training experience was positively associated with the ability to selectively activate the triceps (β = 0.41, P = 0.04), but not the pectoralis. Bench press 1RM was not significantly associated with the ability to selectively activate the muscles. Pectoralis activity can be increased when focusing on using this muscle during push-ups, whereas the ability to do this for the triceps is dependent on years of training experience. Maximal muscle strength does not appear to be a decisive factor for the ability to selectively activate these muscles.
Age at spinal cord injury determines muscle strength
Thomas, Christine K.; Grumbles, Robert M.
2014-01-01
As individuals with spinal cord injury (SCI) age they report noticeable deficits in muscle strength, endurance and functional capacity when performing everyday tasks. These changes begin at ~45 years. Here we present a cross-sectional analysis of paralyzed thenar muscle and motor unit contractile properties in two datasets obtained from different subjects who sustained a cervical SCI at different ages (≤46 years) in relation to data from uninjured age-matched individuals. First, completely paralyzed thenar muscles were weaker when C6 SCI occurred at an older age. Muscles were also significantly weaker if the injury was closer to the thenar motor pools (C6 vs. C4). More muscles were strong (>50% uninjured) in those injured at a younger (≤25 years) vs. young age (>25 years), irrespective of SCI level. There was a reduction in motor unit numbers in all muscles tested. In each C6 SCI, only ~30 units survived vs. 144 units in uninjured subjects. Since intact axons only sprout 4–6 fold, the limits for muscle reinnervation have largely been met in these young individuals. Thus, any further reduction in motor unit numbers with time after these injuries will likely result in chronic denervation, and may explain the late-onset muscle weakness routinely described by people with SCI. In a second dataset, paralyzed thenar motor units were more fatigable than uninjured units. This gap widened with age and will reduce functional reserve. Force declines were not due to electromyographic decrements in either group so the site of failure was beyond excitation of the muscle membrane. Together, these results suggest that age at SCI is an important determinant of long-term muscle strength, and fatigability, both of which influence functional capacity. PMID:24478643
Physical fitness assessment: an update.
Wilder, Robert P; Greene, Jill Amanda; Winters, Kathryne L; Long, William B; Gubler, K; Edlich, Richard F
2006-01-01
The American College of Sports Medicine (ACSM) gives the following definition of health-related physical fitness: Physical fitness is defined as a set of attributes that people have or achieve that relates to the ability to perform physical activity. It is also characterized by (1) an ability to perform daily activities with vigor, and (2) a demonstration of traits and capacities that are associated with a low risk of premature development of hypokinetic diseases (e.g., those associated with physical inactivity). Information from an individual's health and medical records can be combined with information from physical fitness assessment to meet the specific health goals and rehabilitative needs of that individual. Attaining adequate informed consent from participants prior to exercise testing is mandatory because of ethical and legal considerations.A physical fitness assessment includes measures of body composition, cardiorespiratory endurance, muscular fitness, and musculoskeletal flexibility. The three common techniques for assessing body composition are hydrostatic weighing, and skinfold measurements, and anthropometric measurements. Cardiorespiratory endurance is a crucial component of physical fitness assessment because of its strong correlation with health and health risks. Maximal oxygen uptake (VO2max) is the traditionally accepted criterion for measuring cardiorespiratory endurance. Although maximal-effort tests must be used to measure VO2max, submaximal exercise can be used to estimate this value. Muscular fitness has historically been used to describe an individual's integrated status of muscular strength and muscular endurance. An individual's muscular strength is specific to a particular muscle or muscle group and refers to the maximal force (N or kg) that the muscle or muscle group can generate. Dynamic strength can be assessed by measuring the movement of an individual's body against an external load. Isokinetic testing may be performed by assessing the muscle tension generated throughout a range of motion at a constant angular velocity. The ability of a muscle group to perform repeated contractions over a specific period of time that is sufficient to cause fatigue is termed muscular endurance. Musculoskeletal flexibility evaluations focus on the joints and associated structures, ligaments, and muscles that cross the joints. The sit-and-reach test and the behind-the-back reach test satisfy many of the criteria for physical assessment of musculoskeletal flexibility. A physical fitness assessment must be integrated into all activities of daily living, as well as the physician's examination, to assess and promote health.
Shiotsu, Yoko; Yanagita, Masahiko
2018-06-01
This study aimed to examine the effects of exercise order of combined aerobic and low- or moderate-intensity resistance training into the same session on body composition, functional performance, and muscle strength in healthy older women. Furthermore, this study compared the effects of different (low- vs moderate-) intensity combined training. A total of 60 healthy older women (age 61-81 y) were randomly assigned to five groups that performed aerobic exercise before low-intensity resistance training (AR-L, n = 12) or after resistance training (RA-L, n = 12), performed aerobic exercise before moderate-intensity resistance training (AR-M, n = 12) or after resistance training (RA-M, n = 12), or nonintervention control conditions (CON, n = 12). Body composition, functional performance, and muscle strength were evaluated before and after the 10-week training. No effects of exercise order of combined aerobic and low- or moderate-intensity resistance training (AR-L vs RA-L, AR-M vs RA-M) were observed in body composition, functional performance, or muscle strength, whereas the effects of training intensity of combined training (AR-L vs AR-M, RA-L vs RA-M) were observed on functional performance. All combined trainings significantly increased muscle strength and gait ability (P < 0.01, respectively). Functional reach test significantly increased in the AR-M and RA-M groups (P < 0.01, respectively), and there were significant group differences between AR-L and AR-M (P = 0.002), RA-L and RA-M (P = 0.014). Preliminary findings suggest that combined aerobic and low- or moderate-intensity resistance training increases muscle strength and improves gait ability, regardless of the exercise order. Also, greater improvement in dynamic balance capacity, a risk factor associated with falling, is observed in moderate-intensity combined training.
Tseng, Shiuan-Yu; Lai, Chung-Liang; Chang, Kai-Ling; Hsu, Pi-Shan; Lee, Meng-Chih; Wang, Chun-Hou
2016-02-01
The purpose of this study was to investigate the influence of whole-body vibration (WBV) training without visual feedback on balance and lower-extremity muscle strength in the elderly.Elderly subjects who did not exercise regularly participated in this study. Subjects were randomly divided into a WBV with eyes open group, a visual feedback-deprived plus WBV (VFDWBV) group, and a control group (0 Hz, eyes open). WBV training was provided over a 3-month period, 3 times per week for 5 min each session. Balance performance was measured with the limits of stability test, and muscle strength was measured with an isokinetic dynamometer.A total of 45 elderly subjects with an average age of 69.22 ± 3.97 years, divided into a WBV group (n = 14), a VFDWBV group (n = 17), and a control group (n = 14), completed the trial. Statistically significant differences were found in the balance performance of the 3 groups at different time points (time × group interaction: F = 13.213, P < 0.001), and the VFDWBV group had more improvement in balance than the WBV and control groups. The strength of the knee extensor and flexor muscles had time × group interactions: F = 29.604, P < 0.001 and F = 4.684, P = 0.015, respectively; the VFDWBV group had more improvement on lower-extremity muscle strength than the WBV and control groups. The 6-month follow-up showed that the rates of hospital visits for medical services due to falls were 0% in the WBV group (0/14), 0% in the VFDWBV group (0/17), and 28.57% in the control group (4/14).Results showed that WBV training at 20 Hz without visual feedback can significantly improve the balance performance and lower-extremity muscle strength of the elderly.
Dynapenia and Aging: An Update
Clark, Brian C.
2012-01-01
In 2008, we published an article arguing that the age-related loss of muscle strength is only partially explained by the reduction in muscle mass and that other physiologic factors explain muscle weakness in older adults (Clark BC, Manini TM. Sarcopenia =/= dynapenia. J Gerontol A Biol Sci Med Sci. 2008;63:829–834). Accordingly, we proposed that these events (strength and mass loss) be defined independently, leaving the term “sarcopenia” to be used in its original context to describe the age-related loss of muscle mass. We subsequently coined the term “dynapenia” to describe the age-related loss of muscle strength and power. This article will give an update on both the biological and clinical literature on dynapenia—serving to best synthesize this translational topic. Additionally, we propose a working decision algorithm for defining dynapenia. This algorithm is specific to screening for and defining dynapenia using age, presence or absence of risk factors, a grip strength screening, and if warranted a test for knee extension strength. A definition for a single risk factor such as dynapenia will provide information in building a risk profile for the complex etiology of physical disability. As such, this approach mimics the development of risk profiles for cardiovascular disease that include such factors as hypercholesterolemia, hypertension, hyperglycemia, etc. Because of a lack of data, the working decision algorithm remains to be fully developed and evaluated. However, these efforts are expected to provide a specific understanding of the role that dynapenia plays in the loss of physical function and increased risk for disability among older adults. PMID:21444359
Englund, Davis A; Sharp, Rick L; Selsby, Joshua T; Ganesan, Shanthi S; Franke, Warren D
2017-05-01
The purpose of this study was to compare the effects of high and low velocity knee extension training on changes in muscle strength and mobility status in high-functioning older adults. Twenty-six (16 female, 10 male) older adults (mean age of 65) were randomized to either 6weeks of low velocity resistance training (LVRT) performed at 75°/s or high velocity resistance training (HVRT) performed at 240°/s. Both groups performed 3 sets of knee extension exercises at maximal effort, 3 times a week. Muscle strength was assessed through a range of testing velocities on an isokinetic dynamometer. Mobility status was assessed with the short physical performance battery (SPPB) and myosin heavy chain (MyHC) transcript levels were quantified via qRT-PCR. From baseline to post-training, there were several significant (P<0.05) differences in muscle strength and functional characteristics in LVRT (n=13) and HVRT (n=13) groups. From baseline to post-training, MyHC-α mRNA and MyHC-IIa mRNA showed a significant (P<0.05) increase within HVRT but MyHC-IIx mRNA did not change significantly. Our results demonstrate HVRT provides a greater number of muscular enhancements when compared to LVRT, particularly under conditions of high velocity muscle contraction. HVRT is emerging as the optimal training stimulus for the older adult. The present study demonstrates, in addition to increased strength and functional outcomes, HVRT elicits a potentially therapeutic (i.e., slow to fast) transcriptional response in MyHC. Copyright © 2017 Elsevier Inc. All rights reserved.
Effect of spa physiotherapy on the range of motion and muscle strength in women with gonarthrosis.
Lizis, Paweł
2013-01-01
Degeneration arthritis is a chronic disease of undetermined progressiveness and unknown pathogenesis. It can affect one or more joints. It reveals itself most frequently between 40 - 60 years of age, and affects the lives of professionally active individuals. The aim of the presented study was to assess the impact of a 21-day stay at a rehabilitation facility on the range of motion and muscle strength of the knee in women with gonarthrosis. The study group consisted of 30 women aged 50-74 years diagnosed with degeneration of the knee joint. The average age of the study group was 65.9 ± 7.2 years. Patients remained in the 21-day rehabilitation facility of Rehabilitational Hospital No. 21 in Busko Zdrój SP ZOZ, Poland. We measured with the help of protractor in SFTR range the motion bending and straightening of the knee with an accuracy of 1°. The Lovett strength test was assessed of the ischio-tibial muscles, quadriceps, sartorius--acting on the knee joint of the patient. The study was carried out on the first and the last day of the stay in the rehabilitation facility. There was improvement in the range of flexion and strength of muscles acting on the knee joint of the afflicted women. The study showed that 21-day rehabilitation holiday improved the range and strength of the muscles acting on the knee joint of the afflicted women. This proved that comprehensive rehabilitation improves the function of the knee joint with gonarthrosis, prevents disease progression and is an alternative to drug therapy.
Dynapenia and aging: an update.
Manini, Todd M; Clark, Brian C
2012-01-01
In 2008, we published an article arguing that the age-related loss of muscle strength is only partially explained by the reduction in muscle mass and that other physiologic factors explain muscle weakness in older adults (Clark BC, Manini TM. Sarcopenia =/= dynapenia. J Gerontol A Biol Sci Med Sci. 2008;63:829-834). Accordingly, we proposed that these events (strength and mass loss) be defined independently, leaving the term "sarcopenia" to be used in its original context to describe the age-related loss of muscle mass. We subsequently coined the term "dynapenia" to describe the age-related loss of muscle strength and power. This article will give an update on both the biological and clinical literature on dynapenia-serving to best synthesize this translational topic. Additionally, we propose a working decision algorithm for defining dynapenia. This algorithm is specific to screening for and defining dynapenia using age, presence or absence of risk factors, a grip strength screening, and if warranted a test for knee extension strength. A definition for a single risk factor such as dynapenia will provide information in building a risk profile for the complex etiology of physical disability. As such, this approach mimics the development of risk profiles for cardiovascular disease that include such factors as hypercholesterolemia, hypertension, hyperglycemia, etc. Because of a lack of data, the working decision algorithm remains to be fully developed and evaluated. However, these efforts are expected to provide a specific understanding of the role that dynapenia plays in the loss of physical function and increased risk for disability among older adults.
Oyama, Sakiko; Waldhelm, Andrew G; Sosa, Araceli R; Patel, Ravina R; Kalinowski, Derick L
2017-09-01
Pitching technique is one of many factors that affect injury risk. Exhibiting excessive contralateral trunk tilt (CLT) during pitching has been linked to higher ball speed but also to increased joint loading. Deficit in trunk muscle strength has been suggested as an underlying cause of this movement pattern. The purpose of the study was to compare trunk muscle strength between youth baseball pitchers with varying degree of CLT during pitching. Cross-sectional study. Baseball practice fields. Twenty-eight youth baseball pitchers. Pitching technique was captured using a video camera. Based on the 2-dimensional trunk contralateral flexion angle, pitchers were categorized into low (<15 degrees), moderate (15-30 degrees), or high (>30 degrees) CLT groups. Maximum isometric strength tests for trunk flexion, extension, and bilateral rotation, measured using a dynamometer. The pitchers with high CLT (n = 10) had longer pitching experience (P = 0.014), produced higher ball speed (P = 0.003) compared with the pitchers with moderate (n = 10) and low (n = 8) CLT, but demonstrated greater asymmetry in trunk rotation strength (relative weakness in rotation strength toward dominant side) compared with the pitchers with low CLT (P = 0.015). Excessive CLT may be a strategy that young pitchers learn to achieve higher ball velocity but also may be associated with imbalance between the oblique muscles on dominant and nondominant side, which may be acquired from repetitive pitching. Strengthening and emphasizing the use of dominant side oblique muscles may keep pitchers from leaning excessively during pitching and thus decrease joint loading.
Potter-Baker, Kelsey A; Janini, Daniel P; Lin, Yin-Liang; Sankarasubramanian, Vishwanath; Cunningham, David A; Varnerin, Nicole M; Chabra, Patrick; Kilgore, Kevin L; Richmond, Mary Ann; Frost, Frederick S; Plow, Ela B
2017-08-07
Objective Our goal was to determine if pairing transcranial direct current stimulation (tDCS) with rehabilitation for two weeks could augment adaptive plasticity offered by these residual pathways to elicit longer-lasting improvements in motor function in incomplete spinal cord injury (iSCI). Design Longitudinal, randomized, controlled, double-blinded cohort study. Setting Cleveland Clinic Foundation, Cleveland, Ohio, USA. Participants Eight male subjects with chronic incomplete motor tetraplegia. Interventions Massed practice (MP) training with or without tDCS for 2 hrs, 5 times a week. Outcome Measures We assessed neurophysiologic and functional outcomes before, after and three months following intervention. Neurophysiologic measures were collected with transcranial magnetic stimulation (TMS). TMS measures included excitability, representational volume, area and distribution of a weaker and stronger muscle motor map. Functional assessments included a manual muscle test (MMT), upper extremity motor score (UEMS), action research arm test (ARAT) and nine hole peg test (NHPT). Results We observed that subjects receiving training paired with tDCS had more increased strength of weak proximal (15% vs 10%), wrist (22% vs 10%) and hand (39% vs. 16%) muscles immediately and three months after intervention compared to the sham group. Our observed changes in muscle strength were related to decreases in strong muscle map volume (r=0.851), reduced weak muscle excitability (r=0.808), a more focused weak muscle motor map (r=0.675) and movement of weak muscle motor map (r=0.935). Conclusion Overall, our results encourage the establishment of larger clinical trials to confirm the potential benefit of pairing tDCS with training to improve the effectiveness of rehabilitation interventions for individuals with SCI. Trial Registration NCT01539109.
Relationships Among Lower Body Strength, Power, and Performance of Functional Tasks
NASA Technical Reports Server (NTRS)
Ploutz-Snyder, Lori; Ryder, J.; Hackney, K.; Scott-Pandorf, M.; Redd, E.; Buxton, R.; Bloomberg, J.
2010-01-01
There is a large degree of variability among crewmembers with respect to decrements in muscle strength and power following long duration spaceflight, ranging from 0 to approx.30% reductions. The purpose of this study was to investigate the influence of varying decrements in lower body muscle strength and power (relative to body weight) on the performance of 2 occupationally relevant tasks (ladder climb and supine egress & walk). Seventeen participants with leg strength similar to US crewmembers performed a leg press power test, an isokinetic knee extension strength test and they were asked to complete the 2 functional tasks as quickly as possible. On additional test days the participants were asked to repeat the functional tasks under 3 conditions where a different external load was applied each time using a weighted suit in order to experimentally manipulate participants strength/body weight and power/body weight ratios. The weight in the suit ranged from 20-120% of body weight and was distributed in proportion to limb segment weights to minimize changes in center of gravity. The ladder task consisted of climbing 40 rungs on a ladder treadmill as fast as possible. The supine egress & walk task consisted of rising from a supine position and walking through an obstacle course. Results show a relatively linear relationship between strength/body weight and task time and power/body weight with task time such that the fastest performance times are associated with higher strength and power with about half the variance in task time is accounted for by a single variable (either strength or power). For the average person, a 20% reduction in power/body weight (from 18 to 14.4 W/kg) induces an increase (slowing) of about 10 seconds in the ladder climb task from 14 to 24 seconds (approx.70%) and a slowing of the supine egress & walk task from 14 to 21 seconds (approx.50%). Similar relationships were observed with strength/body weight and task performance. For the average person, a 20% reduction in strength/body weight (from 2.1 to 1.7 Nm/kg) resulted in a slowing of the ladder climb from 10.5 to 24 seconds (approx.128%) and a slowing of the supine egress & walk from 11 to 20 seconds (approx.82%). These data suggest that the single variable of either low body muscle strength or power, relative to body weight is predictive of about 50% of the variance in task performance time, and that considerable slowing in task performance is associated with relatively typical decrements in muscle performance seen with long duration spaceflight. The observation of a relatively linear relationship between strength/power and task time suggests that across the full spectrum of initial crew strengths and typical decrements in strength previously observed, that task performance would be expected to be slowed following long duration spaceflight. These data will be confirmed in actual spaceflight with subsequent studies.
Cardiorespiratory fitness and muscle strength in pancreatic cancer patients.
Clauss, Dorothea; Tjaden, Christine; Hackert, Thilo; Schneider, Lutz; Ulrich, Cornelia M; Wiskemann, Joachim; Steindorf, Karen
2017-09-01
Cancer patients frequently experience reduced physical fitness due to the disease itself as well as treatment-related side effects. However, studies on physical fitness in pancreatic cancer patients are missing. Therefore, we assessed cardiorespiratory fitness and muscle strength of pancreatic cancer patients. We included 65 pancreatic cancer patients, mostly after surgical resection. Cardiorespiratory fitness was assessed using cardiopulmonary exercise testing (CPET) and 6-min walk test (6MWT). Hand-held dynamometry was used to evaluate isometric muscle strength. Physical fitness values were compared to reference values of a healthy population. Associations between sociodemographic and clinical variables with patients' physical fitness were analyzed using multiple regression models. Cardiorespiratory fitness (VO 2 peak, 20.5 ± 6.9 ml/min/kg) was significantly lower (-24%) compared to healthy reference values. In the 6MWT pancreatic cancer patients nearly reached predicted values (555 vs. 562 m). Maximal voluntary isometric contraction (MVIC) of the upper (-4.3%) and lower extremities (-13.8%) were significantly lower compared to reference values. Overall differences were larger in men than those in women. Participating in regular exercise in the year before diagnosis was associated with greater VO 2 peak (p < .05) and MVIC of the knee extensors (p < .05). Pancreatic cancer patients had significantly impaired physical fitness with regard to both cardiorespiratory function and isometric muscle strength, already in the early treatment phase (median 95 days after surgical resection). Our findings underline the need to investigate exercise training in pancreatic cancer patients to counteract the loss of physical fitness.
Ahn, Hyeong-Sik; Lee, Dae-Hee
2016-01-01
This meta-analysis was performed to analyze serial changes in thigh muscles, including quadriceps and hamstring muscles, from before to one year after total knee arthroplasty (TKA). All studies sequentially comparing isokinetic quadriceps and hamstring muscle strengths between the TKA side and the contralateral uninjured limb were included in this meta-analysis. Five studies with 7 cohorts were included in this meta-analysis. The mean differences in the strengths of quadriceps and hamstring muscles between the TKA and uninjured sides were greatest three months after surgery (26.8 N∙m, 12.8 N∙m, P<0.001), but were similar to preoperative level at six months (18.4 N∙m, 7.4 N∙m P<0.001) and were maintained for up to one year (15.9 N∙m, 4.1 N∙m P<0.001). The pooled mean differences in changes in quadriceps and hamstring strengths relative to preoperative levels were 9.2 N∙m and 4.9 N∙m, respectively, three months postoperatively (P = 0.041), but were no longer significant after six months and one year. During the year after TKA, quadriceps and hamstring muscle strengths were lowest after 3 months, recovering to preoperative level after six months, but not reaching the muscle strength on the contralateral side. Relative to preoperative levels, the difference in muscle strength between the TKA and contralateral knees was only significant at three months. Because decrease of strength of the quadriceps was significantly greater than decrease in hamstring muscle strength at postoperative three months, early rehabilitation after TKA should focus on recovery of quadriceps muscle strength. PMID:26849808
Walker, Simon; Blazevich, Anthony J.; Haff, G. Gregory; Tufano, James J.; Newton, Robert U.; Häkkinen, Keijo
2016-01-01
As training experience increases it becomes more challenging to induce further neuromuscular adaptation. Consequently, strength trainers seek alternative training methods in order to further increase strength and muscle mass. One method is to utilize accentuated eccentric loading, which applies a greater external load during the eccentric phase of the lift as compared to the concentric phase. Based upon this practice, the purpose of this study was to determine the effects of 10 weeks of accentuated eccentric loading vs. traditional isoinertial resistance training in strength-trained men. Young (22 ± 3 years, 177 ± 6 cm, 76 ± 10 kg, n = 28) strength-trained men (2.6 ± 2.2 years experience) were allocated to concentric-eccentric resistance training in the form of accentuated eccentric load (eccentric load = concentric load + 40%) or traditional resistance training, while the control group continued their normal unsupervised training program. Both intervention groups performed three sets of 6-RM (session 1) and three sets of 10-RM (session 2) bilateral leg press and unilateral knee extension exercises per week. Maximum force production was measured by unilateral isometric (110° knee angle) and isokinetic (concentric and eccentric 30°.s−1) knee extension tests, and work capacity was measured by a knee extension repetition-to-failure test. Muscle mass was assessed using panoramic ultrasonography and dual-energy x-ray absorptiometry. Surface electromyogram amplitude normalized to maximum M-wave and the twitch interpolation technique were used to examine maximal muscle activation. After training, maximum isometric torque increased significantly more in the accentuated eccentric load group than control (18 ± 10 vs. 1 ± 5%, p < 0.01), which was accompanied by an increase in voluntary activation (3.5 ± 5%, p < 0.05). Isokinetic eccentric torque increased significantly after accentuated eccentric load training only (10 ± 9%, p < 0.05), whereas concentric torque increased equally in both the accentuated eccentric load (10 ± 9%, p < 0.01) and traditional (9 ± 6%, p < 0.01) resistance training groups; however, the increase in the accentuated eccentric load group was significantly greater (p < 0.05) than control (1 ± 7%). Knee extension repetition-to-failure improved in the accentuated eccentric load group only (28%, p < 0.05). Similar increases in muscle mass occurred in both intervention groups. In summary, accentuated eccentric load training led to greater increases in maximum force production, work capacity and muscle activation, but not muscle hypertrophy, in strength-trained individuals. PMID:27199764
Surface Electromyography of the Forearm Musculature During the Windmill Softball Pitch
Remaley, D. Trey; Fincham, Bryce; McCullough, Bryan; Davis, Kirk; Nofsinger, Charles; Armstrong, Charles; Stausmire, Julie M.
2015-01-01
Background: Previous studies investigating the windmill softball pitch have focused primarily on shoulder musculature and function, collecting limited data on elbow and forearm musculature. Little information is available in the literature regarding the forearm. This study documents forearm muscle electromyographic (EMG) activity that has not been previously published. Purpose: Elbow and upper extremity overuse injuries are on the rise in fast-pitch softball pitchers. This study attempts to describe forearm muscle activity in softball pitchers during the windmill softball pitch. Overuse injuries can be prevented if a better understanding of mechanics is defined. Study Design: Descriptive laboratory study. Methods: Surface EMG and high-speed videography was used to study forearm muscle activation patterns during the windmill softball pitch on 10 female collegiate-level pitchers. Maximum voluntary isometric contraction of each muscle was used as a normalizing value. Each subject was tested during a single laboratory session per pitcher. Data included peak muscle activation, average muscle activation, and time to peak activation for 6 pitch types: fastball, changeup, riseball, curveball, screwball, and dropball. Results: During the first 4 phases, muscle activity (seen as signal strength on the EMG recordings) was limited and static in nature. The greatest activation occurred in phases 5 and 6, with increased signal strength, evidence of stretch-shortening cycle, and different muscle characteristics with each pitch style. These 2 phases of the windmill pitch are where the arm is placed in the 6 o’clock position and then at release of the ball. The flexor carpi ulnaris signal strength was significantly greater than the other forearm flexors. Timing of phases 1 through 5 was successively shorter for each pitch. There was a secondary pattern of activation in the flexor carpi ulnaris in phase 4 for all pitches except the fastball and riseball. Conclusion: During the 6 pitches, the greatest muscular activity was in phases 5 and 6. Flexor carpi ulnaris activity was greatest among the muscles tested. The riseball had the highest peak activity, but the curveball and dropball had the highest average signal strength. This muscle activity correlates with increasing distraction in the elbow, suggesting that flexor muscles act to counterdistract the elbow as they do for the baseball pitch. Clinical Relevance: Windmill pitchers are unique among overhead athletes as they throw, on average, more pitches per overhead athlete. Understanding the mechanics and physiology of the elbow in windmill pitchers is crucial to prevention and treatment of these increasingly common elbow injuries. This study establishes baseline data that will be useful to further prevent windmill pitch elbow injury. PMID:26535372
Gariballa, Salah; Alessa, Awad
2018-04-01
Although low muscle function/strength is an important predictor of poor clinical outcome in older patients, information on its impact on mental health in clinical practice is still lacking. The aim of this report is to measure the impact of low muscle function measured by handgrip strength on mental health of older people during both acute illness and recovery. Four hundred and thirty-two randomly selected hospitalized older patients had their baseline demographic and clinical characteristics assessed within 72 h of admission, at 6 weeks and at 6 months. Low muscle strength-handgrip was defined using the European Working Group criteria. Mental health outcome measures including cognitive state, depression symptoms and quality of life were also measured. Among the 432 patients recruited, 308 (79%) had low muscle strength at baseline. Corresponding figures at 6 weeks and at 6 months were 140 (73%) and 158 (75%). Patients with poor muscle strength were significantly older with increased disability and poor nutritional status compared with those with normal muscle strength. After adjustment for age, gender, disability, comorbidity including severity of acute illness and body mass index patients with low muscle strength had worse cognitive function, quality of life and higher depression symptoms compared with those with normal muscle strength over a 6-month period (p < 0.05). Poor muscle strength in older people is associated with poor cognitive state and quality of life and increased depression symptoms during both acute illness and recovery.
Hagen, Marco; Asholt, Johannes; Lemke, Martin; Lahner, Matthias
2016-05-18
It is currently unclear how participation in different sports affects the angle-specific subtalar pronator and supinator muscle strength and pronator-to-supinator strength ratio (PSR). Based on the hypothesis that both differences sport-related patterns of play and foot-ground interaction may lead to sport-specific muscle adaptations, this study compared the angle specific pronator and supinator strength capacity of handball and soccer players. Eighteen healthy male handball and 19 soccer players performed maximum isometric voluntary isometric contractions using a custom-made testing apparatus. Peak pronator (PPT) and supinator torques (PST), pronator and supinator strength curves (normalised to the peak torque across all joint angles) and PSR were measured in five anatomical joint angles across the active subtalar range of motion (ROM). All analysed parameters were dependent on the subtalar joint angle. The ANOVA revealed significant `joint angle' × `group' interactions on PPT, pronator strength curves and PSR. No group differences were found for active subtalar ROM. In previously uninjured handball and soccer athletes, there were intrinsic differences in angle-specific subtalar pronator muscle strength. The lower PSR, which was found in the most supinated angle, can be seen as a risk factor for sustaining an ankle sprain.
Pilates: Build Strength in Your Core Muscles
... an accessible way to build strength in your core muscles for better posture, balance and flexibility. By ... an accessible way to build strength in your core muscles for better posture, balance and flexibility. If ...
Hu, Chunying; Huang, Qiuchen; Yu, Lili; Ye, Miao
2016-07-01
[Purpose] The purpose of this study was to examine the immediate effects of robot-assisted therapy on functional activity level after anterior cruciate ligament reconstruction. [Subjects and Methods] Participants included 10 patients (8 males and 2 females) following anterior cruciate ligament reconstruction. The subjects participated in robot-assisted therapy and treadmill exercise on different days. The Timed Up-and-Go test, Functional Reach Test, surface electromyography of the vastus lateralis and vastus medialis, and maximal extensor strength of isokinetic movement of the knee joint were evaluated in both groups before and after the experiment. [Results] The results for the Timed Up-and-Go Test and the 10-Meter Walk Test improved in the robot-assisted rehabilitation group. Surface electromyography of the vastus medialis muscle showed significant increases in maximum and average discharge after the intervention. [Conclusion] The results suggest that walking ability and muscle strength can be improved by robotic training.
Association of plasma 25-hydroxyvitamin D with physical performance in physically active children.
Bezrati, Ikram; Hammami, Raouf; Ben Fradj, Mohamed Kacem; Martone, Domenico; Padulo, Johnny; Feki, Moncef; Chaouachi, Anis; Kaabachi, Naziha
2016-11-01
Vitamin D is thought to regulate skeletal muscle function and boost physical performance. The aim of this study was to assess the relationship between vitamin D and physical performance in physically active children. This cross-sectional study included 125 children who practice football as a leisure activity. Plasma 25-hydroxyvitamin D (25-OHD) was assessed using a chemiluminescence immunoassay method. Vitamin D inadequacy was defined as 25-OHD < 20 ng/mL. Physical performance testing included measurements of muscle strength (maximal isometric contraction), jumping ability (vertical jump, standing broad jump, triple hop test), linear sprint (10 m and 20 m), and agility (9 × 4-m shuttle run). Plasma 25-OHD concentrations were positively correlated with muscle strength (r = 0.539; p < 0.001), vertical jump (r = 0.528; p < 0.001), and standing broad jump (r = 0.492; p < 0.001) but inversely correlated with sprint performance (r = -0.539; p < 0.001). In multivariate analysis models, plasma 25-OHD concentrations were associated with each physical performance parameter independently of age, maturity status, body mass index, fat mass, and protein and calcium intakes. In conclusion, a low plasma 25-OHD level was associated with decreased muscle strength, agility, and jumping and sprinting abilities in physically active children. Vitamin D inadequacy may limit exercise performance. Further research should verify whether correction of vitamin D deficiency enhances physical performance.
Evans, Malkanthi; Guthrie, Najla; Pezzullo, John; Sanli, Toran; Fielding, Roger A; Bellamine, Aouatef
2017-01-01
Progressive decline in skeletal muscle mass and function are growing concerns in an aging population. Diet and physical activity are important for muscle maintenance but these requirements are not always met. This highlights the potential for nutritional supplementation. As a primary objective, we sought to assess the effect of a novel combination of L-Carnitine, creatine and leucine on muscle mass and performance in older subjects. Forty-two healthy older adults aged 55-70 years were randomized to receive either a novel L-Carnitine (1500 mg), L-leucine (2000 mg), creatine (3000 mg), Vitamin D3 (10 μg) (L-Carnitine-combination) product ( n = 14), L-Carnitine (1500 mg) ( n = 14), or a placebo ( n = 14) for eight weeks. We evaluated body mass by DXA, upper and lower strength by dynamometry, and walking distance by a 6-min walk test at baseline and after eight weeks of intervention. These measures, reflecting muscle mass, functional strength and mobility have been combined to generate a primary composite score. Quality of life, blood safety markers, and muscle biopsies for protein biomarker analysis were also conducted at baseline and the end of the study. The primary composite outcome improved by 63.5 percentage points in the L-Carnitine-combination group vs. placebo ( P = 0.013). However, this composite score did not change significantly in the L-Carnitine group ( P = 0.232), and decreased slightly in the placebo group ( P = 0.534). Participants supplemented with the L-Carnitine-combination showed a 1.0 kg increase in total lean muscle mass ( P = 0.013), leg lean muscle mass (0.35 kg, P = 0.005), and a 1.0 kg increase in lower leg strength ( P = 0.029) at week 8. In addition, these increases were significant when compared to the placebo group (P = 0.034, P = 0.026, and P = 0.002, respectively). Total mTOR protein expression was increased in participants in the L-Carnitine-combination group at the end of the study compared to the baseline ( P = 0.017). This increase was also significant when compared to the placebo ( P = 0.039), suggesting that the increase in muscle mass and strength was due to new protein synthesis and mTOR pathway activation. The trial did reach its primary objective. L-Carnitine combined with creatine and L-leucine significantly improved the composite score which reflects muscle mass and strength, at the end of the study compared to placebo. The combination showed an increase in mTOR protein level, a driver for increased muscle mass which translated to an improvement in muscle strength. This new combination may provide a potential nutritional intervention to promote muscle growth and improved physical functioning in older adults.
2012-01-01
The purpose of this review was to determine whether past research provides conclusive evidence about the effects of type and timing of ingestion of specific sources of protein by those engaged in resistance weight training. Two essential, nutrition-related, tenets need to be followed by weightlifters to maximize muscle hypertrophy: the consumption of 1.2-2.0 g protein.kg -1 of body weight, and ≥44-50 kcal.kg-1 of body weight. Researchers have tested the effects of timing of protein supplement ingestion on various physical changes in weightlifters. In general, protein supplementation pre- and post-workout increases physical performance, training session recovery, lean body mass, muscle hypertrophy, and strength. Specific gains, differ however based on protein type and amounts. Studies on timing of consumption of milk have indicated that fat-free milk post-workout was effective in promoting increases in lean body mass, strength, muscle hypertrophy and decreases in body fat. The leucine content of a protein source has an impact on protein synthesis, and affects muscle hypertrophy. Consumption of 3–4 g of leucine is needed to promote maximum protein synthesis. An ideal supplement following resistance exercise should contain whey protein that provides at least 3 g of leucine per serving. A combination of a fast-acting carbohydrate source such as maltodextrin or glucose should be consumed with the protein source, as leucine cannot modulate protein synthesis as effectively without the presence of insulin. Such a supplement post-workout would be most effective in increasing muscle protein synthesis, resulting in greater muscle hypertrophy and strength. In contrast, the consumption of essential amino acids and dextrose appears to be most effective at evoking protein synthesis prior to rather than following resistance exercise. To further enhance muscle hypertrophy and strength, a resistance weight- training program of at least 10–12 weeks with compound movements for both upper and lower body exercises should be followed. PMID:23241341
Weiss, Edward P.; Racette, Susan B.; Villareal, Dennis T.; Fontana, Luigi; Steger-May, Karen; Schechtman, Kenneth B.; Klein, Samuel; Ehsani, Ali A.; Holloszy, John O.
2015-01-01
Caloric restriction (CR) results in fat loss; however, it may also result in loss of muscle and thereby reduce strength and aerobic capacity (V̇O2 max). These effects may not occur with exercise-induced weight loss (EX) because of the anabolic effects of exercise on heart and skeletal muscle. We tested the hypothesis that CR reduces muscle size and strength and V̇O2 max, whereas EX preserves or improves these parameters. Healthy 50- to 60-yr-old men and women (body mass index of 23.5–29.9 kg/m2) were studied before and after 12 mo of weight loss by CR (n = 18) or EX (n = 16). Lean mass was assessed by dual-energy X-ray absorptiometry, thigh muscle volume by MRI, isometric and isokinetic knee flexor strength by dynamometry, and treadmill V̇O2 max by indirect calorimetry. Both interventions caused significant decreases in body weight (CR: −10.7 ± 1.4%, EX: −9.5 ± 1.5%) and lean mass (CR: −3.5 ± 0.7%, EX: −2.2 ± 0.8%), with no significant differences between groups. Significant decreases in thigh muscle volume (−6.9 ± 0.8%) and composite knee flexion strength (−7.2 ± 3%) occurred in the CR group only. Absolute V̇O2 max decreased significantly in the CR group (−6.8 ± 2.3%), whereas the EX group had significant increases in both absolute (+15.5 ± 2.4%) and relative (+28.3 ± 3.0%) V̇O2 max. These data provide evidence that muscle mass and absolute physical work capacity decrease in response to 12 mo of CR but not in response to a similar weight loss induced by exercise. These findings suggest that, during EX, the body adapts to maintain or even enhance physical performance capacity. PMID:17095635
Gürşen, Ceren; İnanoğlu, Deniz; Kaya, Serap; Akbayrak, Türkan; Baltacı, Gül
2016-03-01
Abdominal muscle strength decreases and fat ratio in the waist region increases following cesarean section. Kinesio taping (KT) is an easily applicable method and stimulates muscle activation. The aim of this pilot randomized controlled trial (RCT) was to investigate the effects of KT combined with exercise in women with cesarean section on abdominal recovery compared to the exercise alone. Twenty-four women in between the fourth and sixth postnatal months who had cesarean section were randomly assigned to KT + exercise (n = 12) group or exercise group (n = 12). KT was applied twice a week for 4 weeks on rectus abdominis, oblique abdominal muscles and cesarean incision. All women were instructed to carry out posterior pelvic tilt, core stabilization and abdominal correction exercises. Outcome measures were evaluated with the manual muscle test, sit-up test, abdominal endurance test, Visual Analog Scale (VAS), circumference measurements and Roland Morris Disability Questionnaire (RMDQ). Mann-Whitney U and Wilcoxon tests were used to analyze data. p < 0.05 was considered as statistically significant. The improvement observed in the KT + exercise group was significantly greater compared to the exercise group in terms of the strength of the rectus abdominis muscle, sit-up test, VAS, measurements of the waist circumference and RMDQ (p < 0.05). It appears that the addition of KT to abdominal exercises in the postnatal physiotherapy program provides greater benefit for the abdominal recovery in women with cesarean section. Further studies with larger sample sizes and long-term follow-up are needed to verify these results.
Myotonometry as a Surrogate Measure of Muscle Strength
NASA Technical Reports Server (NTRS)
Ang, B. S.; Feeback, D. L.; Leonard, C. T.; Sykes, J.; Kruger, E.; Clarke, M. S. F.
2007-01-01
Space flight-induced muscle atrophy/neuromuscular degradation and the consequent decrements in crew-member performance are of increasing concern as mission duration lengthens, and planetary exploration after extended space flight is planned. Pre- to post-flight strength measures have demonstrated that specific countermeasures, such as resistive exercise, are effective at countering microgravity-induced muscle atrophy and preventing decrements in muscle strength. However, in-flight assessment/monitoring of exercise countermeasure effectiveness will be essential during exploration class missions due to their duration. The ability to modify an exercise countermeasure prescription based on such real-time information will allow each individual crew member to perform the optimal amount and type of exercise countermeasure to maintain performance. In addition, such measures can be used to determine if a crew member is physically capable of performing a particular mission-related task during exploration class missions. The challenges faced in acquiring such data are those common to all space operations, namely the requirement for light-weight, low power, mechanically reliable technologies that make valid measurements in microgravity, in this case of muscle strength/neuromuscular function. Here we describe a simple, light-weight, low power, non-invasive device, known as the Myotonometer, that measures tissue stiffness as an indirect measure of muscle contractile state and muscle force production. Repeat myotonometer measurements made at the same location on the surface of the rectis femoris muscle (as determined using a 3D locator device, SEM plus or minus 0.34 mm) were shown to be reproducible over time at both maximal voluntary contraction (MVC) and at rest in a total of 17 sedentary subjects assessed three times over a period of seven days. In addition, graded voluntary isometric force production (i.e. 20%, 40%, 60%, 80% & 100% of MVC) during knee extension was shown to be significantly (p less than 0.01) correlated with contemporaneous myotonometer measurements made on the rectis femoris muscle in a total of 16 healthy subjects (8 males, 8 females). Further-more, this device has been operationally tested during parabolic flight demonstrating its suitability for use in a microgravity environment. Our data indicates that the Myotonometer is a viable surrogate measure of muscle contractile state/tone and of muscle strength/force production. Additional studies are required to assess the suitability of this technique for assessing these measures in de-conditioned subjects such as crew-members.
Yang, Eun Joo; Lim, Soo; Lim, Jae-Young; Kim, Ki Woong; Jang, Hak Chul; Paik, Nam-Jong
2012-03-01
The objective of the study was to investigate the association between metabolic syndrome (MS) and muscle strength in community-dwelling older men and women in Korea. Korean men and women 65 years and older living in a single, typical South Korean city (n = 647) were enrolled in the Korean Longitudinal Study on Health and Aging study. The diagnosis of MS was evaluated according to the definition of the National Cholesterol Education Program Adult Treatment Panel III. Isokinetic muscle strength of the knee extensors, as determined by peak torque per body weight (newton meter per kilogram) and hand-grip strength per body weight (newton per kilogram), was measured. Participants without MS had greater leg muscle strength and grip strength per weight. The effect of MS on muscle strength was more prominent in men than in women in our study population. Only men showed a significant interaction between MS and age for muscle strength (P = .014), and the effect was greater in men aged 65 to 74 years compared with those older than 75 years (119.2 ± 31.2 vs 134.5 ± 24.3 N m/kg). Participants with MS had weaker knee extensor strength after controlling the covariates (β = -90.80, P = .003), and the interaction term (age × MS × male sex) was significant (β = 1.00, P = .017). Metabolic syndrome is associated with muscle weakness, and this relationship is particularly pronounced in men. Age can modify the impact of MS on muscle strength. Men aged 65 to 74 years with MS need a thorough assessment of muscle strength to prevent disability. Copyright © 2012 Elsevier Inc. All rights reserved.
Anabolic and catabolic biomarkers as predictors of muscle strength decline: the InCHIANTI study.
Stenholm, Sari; Maggio, Marcello; Lauretani, Fulvio; Bandinelli, Stefania; Ceda, Gian Paolo; Di Iorio, Angelo; Giallauria, Francesco; Guralnik, Jack M; Ferrucci, Luigi
2010-02-01
Poor muscle strength is a major public health concern in older persons, predisposing to functional limitations, increased fall risk, and higher mortality. Understanding risk factors for muscle strength decline may offer opportunities for prevention and treatment. One of the possible causes of muscle strength decline is imbalance between catabolic and anabolic signaling. This study aims to examine whether high levels of multiple catabolic and low levels of multiple anabolic biomarkers predict accelerated decline of muscle strength. In a representative sample of 716 men and women aged >or=65 years in the InCHIANTI study we measured C-reactive protein, interleukin-6 (IL-6), IL-1 receptor antagonist (IL-1RA), tumor necrosis factor-alpha receptor 1 as well as dehydroepiandrosterone sulfate (DHEA-S), insulin-like growth factor-1, and bioavailable testosterone. Biomarker values were divided into tertiles and the numbers of catabolic/anabolic biomarkers in the highest/lowest tertile were calculated. Hand-grip strength was measured at baseline and 3- and 6-year follow up. In adjusted linear mixed models, higher concentration of IL-6 (p = 0.02) and IL-1RA (p = 0.04) as well as lower levels of DHEA-S (p = 0.01) predicted muscle strength decline. After combining all inflammatory markers, the rate of decline in grip strength was progressively greater with the increasing number of dysregulated catabolic biomarkers (p = 0.01). No effect on accelerated muscle strength decline was seen according to number of dysregulated anabolic hormones. Having multiple elevated catabolic biomarkers is a better predictor of muscle strength decline than a single biomarker alone, suggesting that a catabolic dysregulation is at the core of the mechanism leading to muscle strength decline with aging.
Anabolic and Catabolic Biomarkers As Predictors of Muscle Strength Decline: The InCHIANTI Study
Maggio, Marcello; Lauretani, Fulvio; Bandinelli, Stefania; Ceda, Gian Paolo; Di Iorio, Angelo; Giallauria, Francesco; Guralnik, Jack M.; Ferrucci, Luigi
2010-01-01
Abstract Background Poor muscle strength is a major public health concern in older persons, predisposing to functional limitations, increased fall risk, and higher mortality. Understanding risk factors for muscle strength decline may offer opportunities for prevention and treatment. One of the possible causes of muscle strength decline is imbalance between catabolic and anabolic signaling. This study aims to examine whether high levels of multiple catabolic and low levels of multiple anabolic biomarkers predict accelerated decline of muscle strength. Methods In a representative sample of 716 men and women aged ≥65 years in the InCHIANTI study we measured C-reactive protein, interleukin-6 (IL-6), IL-1 receptor antagonist (IL-1RA), tumor necrosis factor-α receptor 1 as well as dehydroepiandrosterone sulfate (DHEA-S), insulin-like growth factor-1, and bioavailable testosterone. Biomarker values were divided into tertiles and the numbers of catabolic/anabolic biomarkers in the highest/lowest tertile were calculated. Hand-grip strength was measured at baseline and 3- and 6-year follow up. Results In adjusted linear mixed models, higher concentration of IL-6 (p = 0.02) and IL-1RA (p = 0.04) as well as lower levels of DHEA-S (p = 0.01) predicted muscle strength decline. After combining all inflammatory markers, the rate of decline in grip strength was progressively greater with the increasing number of dysregulated catabolic biomarkers (p = 0.01). No effect on accelerated muscle strength decline was seen according to number of dysregulated anabolic hormones. Conclusions Having multiple elevated catabolic biomarkers is a better predictor of muscle strength decline than a single biomarker alone, suggesting that a catabolic dysregulation is at the core of the mechanism leading to muscle strength decline with aging. PMID:20230273
Ferraresi, Cleber; Bertucci, Danilo; Schiavinato, Josiane; Reiff, Rodrigo; Araújo, Amélia; Panepucci, Rodrigo; Matheucci, Euclides; Cunha, Anderson Ferreira; Arakelian, Vivian Maria; Hamblin, Michael R; Parizotto, Nivaldo; Bagnato, Vanderlei
2016-10-01
The aim of this study was to verify how a pair of monozygotic twins would respond to light-emitting diode therapy (LEDT) or placebo combined with a strength-training program during 12 weeks. This case-control study enrolled a pair of male monozygotic twins, allocated randomly to LEDT or placebo therapies. Light-emitting diode therapy or placebo was applied from a flexible light-emitting diode array (λ = 850 nm, total energy = 75 J, t = 15 seconds) to both quadriceps femoris muscles of each twin immediately after each strength training session (3 times/wk for 12 weeks) consisting of leg press and leg extension exercises with load of 80% and 50% of the 1-repetition maximum test, respectively. Muscle biopsies, magnetic resonance imaging, maximal load, and fatigue resistance tests were conducted before and after the training program to assess gene expression, muscle hypertrophy and performance, respectively. Creatine kinase levels in blood and visual analog scale assessed muscle damage and delayed-onset muscle soreness, respectively, during the training program. Compared with placebo, LEDT increased the maximal load in exercise and reduced fatigue, creatine kinase, and visual analog scale. Gene expression analyses showed decreases in markers of inflammation (interleukin 1β) and muscle atrophy (myostatin) with LEDT. Protein synthesis (mammalian target of rapamycin) and oxidative stress defense (SOD2 [mitochondrial superoxide dismutase]) were up-regulated with LEDT, together with increases in thigh muscle hypertrophy. Light-emitting diode therapy can be useful to reduce muscle damage, pain, and atrophy, as well as to increase muscle mass, recovery, and athletic performance in rehabilitation programs and sports medicine.
Relationships between muscular strength and the level of energy sources in the muscle.
Wit, A; Juskiak, R; Wit, B; Zieliński, J R
1978-01-01
Relationships between muscular strength and the level of energy sources in the muscle. Acta Physiol. Pol., 1978, 29 (2): 139--151. An attempt was made to establish a relationship between the post-excercise changes in the level of anaerobic energy sources and changes in the muscular strength. The gastrocnemius muscle of Wistar rats was examined. The muscle strength was measured by the resistance tensometry. In muscle specimens ATP, CP and glycogen contents were determined. It was demonstrated that changes in the post-excersise muscle response to electric stimulus have a phasic character resembling the overcompensation curve. The percent changes in the content of anaerobic energy sources in the muscle after contractions varying in duration suggests also overcompensation the muscle content of these substances. The parallelity between the time of appearance of peak overcompensation phase in the muscle strength and in the post-exercise level of musclar ATP, CP and glycogen contents suggest a casual relationship between these changes.
Longitudinal in vivo muscle function analysis of the DMSXL mouse model of myotonic dystrophy type 1.
Decostre, Valérie; Vignaud, Alban; Matot, Béatrice; Huguet, Aline; Ledoux, Isabelle; Bertil, Emilie; Gjata, Bernard; Carlier, Pierre G; Gourdon, Geneviève; Hogrel, Jean-Yves
2013-12-01
Myotonic dystrophy is the most common adult muscle dystrophy. In view of emerging therapies, which use animal models as a proof of principle, the development of reliable outcome measures for in vivo longitudinal study of mouse skeletal muscle function is becoming crucial. To satisfy this need, we have developed a device to measure ankle dorsi- and plantarflexion torque in rodents. We present an in vivo 8-month longitudinal study of the contractile properties of the skeletal muscles of the DMSXL mouse model of myotonic dystrophy type 1. Between 4 and 12 months of age, we observed a reduction in muscle strength in the ankle dorsi- and plantarflexors of DMSXL compared to control mice although the strength per muscle cross-section was normal. Mild steady myotonia but no abnormal muscle fatigue was also observed in the DMSXL mice. Magnetic resonance imaging and histological analysis performed at the end of the study showed respectively reduced muscle cross-section area and smaller muscle fibre diameter in DMSXL mice. In conclusion, our study demonstrates the feasibility of carrying out longitudinal in vivo studies of muscle function over several months in a mouse model of myotonic dystrophy confirming the feasibility of this method to test preclinical therapeutics. Copyright © 2013 Elsevier B.V. All rights reserved.
Harris-Love, M. O.; Shrader, J. A.; Koziol, D.; Pahlajani, N.; Jain, M.; Smith, M.; Cintas, H. L.; McGarvey, C. L.; James-Newton, L.; Pokrovnichka, A.; Moini, B.; Cabalar, I.; Lovell, D. J.; Wesley, R.; Plotz, P. H.; Miller, F. W.; Hicks, J. E.
2009-01-01
Objective. To describe the distribution and severity of muscle weakness using manual muscle testing (MMT) in 172 patients with PM, DM and juvenile DM (JDM). The secondary objectives included characterizing individual muscle group weakness and determining associations of weakness with functional status and myositis characteristics in this large cohort of patients with myositis. Methods. Strength was assessed for 13 muscle groups using the 10-point MMT and expressed as a total score, subscores based on functional and anatomical regions, and grades for individual muscle groups. Patient characteristics and secondary outcomes, such as clinical course, muscle enzymes, corticosteroid dosage and functional status were evaluated for association with strength using univariate and multivariate analyses. Results. A gradient of proximal weakness was seen, with PM weakest, DM intermediate and JDM strongest among the three myositis clinical groups (P ≤ 0.05). Hip flexors, hip extensors, hip abductors, neck flexors and shoulder abductors were the muscle groups with the greatest weakness among all three clinical groups. Muscle groups were affected symmetrically. Conclusions. Axial and proximal muscle impairment was reflected in the five weakest muscles shared by our cohort of myositis patients. However, differences in the pattern of weakness were observed among all three clinical groups. Our findings suggest a greater severity of proximal weakness in PM in comparison with DM. PMID:19074186
Karavirta, L; Häkkinen, A; Sillanpää, E; García-López, D; Kauhanen, A; Haapasaari, A; Alen, M; Pakarinen, A; Kraemer, W J; Izquierdo, M; Gorostiaga, E; Häkkinen, K
2011-06-01
Both strength and endurance training have several positive effects on aging muscle and physical performance of middle-aged and older adults, but their combination may compromise optimal adaptation. This study examined the possible interference of combined strength and endurance training on neuromuscular performance and skeletal muscle hypertrophy in previously untrained 40-67-year-old men. Maximal strength and muscle activation in the upper and lower extremities, maximal concentric power, aerobic capacity and muscle fiber size and distribution in the vastus lateralis muscle were measured before and after a 21-week training period. Ninety-six men [mean age 56 (SD 7) years] completed high-intensity strength training (S) twice a week, endurance training (E) twice a week, combined training (SE) four times per week or served as controls (C). SE and S led to similar gains in one repetition maximum strength of the lower extremities [22 (9)% and 21 (8)%, P<0.001], whereas E and C showed minor changes. Cross-sectional area of type II muscle fibers only increased in S [26 (22)%, P=0.002], while SE showed an inconsistent, non-significant change [8 (35)%, P=0.73]. Combined training may interfere with muscle hypertrophy in aging men, despite similar gains in maximal strength between the strength and the combined training groups. © 2009 John Wiley & Sons A/S.
Kanada, Yoshikiyo; Sakurai, Hiroaki; Sugiura, Yoshito; Arai, Tomoaki; Koyama, Soichiro; Tanabe, Shigeo
2017-11-01
[Purpose] To create a regression formula in order to estimate 1RM for knee extensors, based on the maximal isometric muscle strength measured using a hand-held dynamometer and data regarding the body composition. [Subjects and Methods] Measurement was performed in 21 healthy males in their twenties to thirties. Single regression analysis was performed, with measurement values representing 1RM and the maximal isometric muscle strength as dependent and independent variables, respectively. Furthermore, multiple regression analysis was performed, with data regarding the body composition incorporated as another independent variable, in addition to the maximal isometric muscle strength. [Results] Through single regression analysis with the maximal isometric muscle strength as an independent variable, the following regression formula was created: 1RM (kg)=0.714 + 0.783 × maximal isometric muscle strength (kgf). On multiple regression analysis, only the total muscle mass was extracted. [Conclusion] A highly accurate regression formula to estimate 1RM was created based on both the maximal isometric muscle strength and body composition. Using a hand-held dynamometer and body composition analyzer, it was possible to measure these items in a short time, and obtain clinically useful results.
Fujita, Remi; Matsui, Yasumoto; Harada, Atsushi; Takemura, Marie; Kondo, Izumi; Nemoto, Tetsuya; Sakai, Tadahiro; Hiraiwa, Hideki; Ota, Susumu
2016-12-01
[Purpose] The purpose of this study was to elucidate the relationship between knee muscle strength and knee pain in activities of daily living, based on consideration of the difference between extension and flexion strength (Q - H) and the hamstring:quadriceps (H:Q) ratio in patients with knee osteoarthritis. [Subjects and Methods] The participants were 78 females with knee osteoarthritis, and a total of 133 knees that had not been treated surgically were the targets of this research. The legs were divided according to dominance. Isometric knee extension and flexion muscle strength and knee pain during activities of daily living were measured. The H:Q ratio (flexion/extension muscle strength) and the difference between extension and flexion strength, (extension muscle strength/weight) minus (flexion muscle strength/weight), that is, Q - H, were calculated. The correlation between these indices and the knee pain score during activities of daily living was investigated. [Results] Greater knee pain during activities of daily living was related to lower knee extension muscle strength and Q - H in both the dominant and nondominant legs. Knee flexion muscle strength and the H:Q ratio were not significantly correlated with knee pain during any activities of daily living. [Conclusion] Knee extension muscle strength and Q - H were found to be significantly correlated with knee pain during activities of daily living, whereas the H:Q ratio was not.
Harmon, Brennan T; Orkunoglu-Suer, E Funda; Adham, Kasra; Larkin, Justin S; Gordish-Dressman, Heather; Clarkson, Priscilla M; Thompson, Paul D; Angelopoulos, Theodore J; Gordon, Paul M; Moyna, Niall M; Pescatello, Linda S; Visich, Paul S; Zoeller, Robert F; Hubal, Monica J; Tosi, Laura L; Hoffman, Eric P; Devaney, Joseph M
2010-12-01
Baseline muscle size and muscle adaptation to exercise are traits with high variability across individuals. Recent research has implicated several chemokines and their receptors in the pathogenesis of many conditions that are influenced by inflammatory processes, including muscle damage and repair. One specific chemokine, chemokine (C-C motif) ligand 2 (CCL2), is expressed by macrophages and muscle satellite cells, increases expression dramatically following muscle damage, and increases expression further with repeated bouts of exercise, suggesting that CCL2 plays a key role in muscle adaptation. The present study hypothesizes that genetic variations in CCL2 and its receptor (CCR2) may help explain muscle trait variability. College-aged subjects [n = 874, Functional Single-Nucleotide Polymorphisms Associated With Muscle Size and Strength (FAMUSS) cohort] underwent a 12-wk supervised strength-training program for the upper arm muscles. Muscle size (via MR imaging) and elbow flexion strength (1 repetition maximum and isometric) measurements were taken before and after training. The study participants were then genotyped for 11 genetic variants in CCL2 and five variants in CCR2. Variants in the CCL2 and CCR2 genes show strong associations with several pretraining muscle strength traits, indicating that inflammatory genes in skeletal muscle contribute to the polygenic system that determines muscle phenotypes. These associations extend across both sexes, and several of these genetic variants have been shown to influence gene regulation.
Evidence for ACTN3 as a genetic modifier of Duchenne muscular dystrophy
Hogarth, Marshall W.; Houweling, Peter J.; Thomas, Kristen C.; Gordish-Dressman, Heather; Bello, Luca; Vishwanathan, V.; Chidambaranathan, S.; Douglas Biggar, W.; McAdam, Laura C.; Mah, Jean K.; Tulinius, Mar; Cnaan, Avital; Morgenroth, Lauren P.; Leshner, Robert; Tesi-Rocha, Carolina; Thangarajh, Mathula; Duong, Tina; Kornberg, Andrew; Ryan, Monique; Nevo, Yoram; Dubrovsky, Alberto; Clemens, Paula R.; Abdel-Hamid, Hoda; Connolly, Anne M.; Pestronk, Alan; Teasley, Jean; Bertorini, Tulio E.; Webster, Richard; Kolski, Hanna; Kuntz, Nancy; Driscoll, Sherilyn; Bodensteiner, John B.; Carlo, Jose; Gorni, Ksenija; Lotze, Timothy; Day, John W.; Karachunski, Peter; Henricson, Erik K.; Abresch, Richard T.; McDonald, Craig M.; Pegoraro, Elena; Hoffman, Eric P.; Head, Stewart I.; North, Kathryn N.
2017-01-01
Duchenne muscular dystrophy (DMD) is characterized by muscle degeneration and progressive weakness. There is considerable inter-patient variability in disease onset and progression, which can confound the results of clinical trials. Here we show that a common null polymorphism (R577X) in ACTN3 results in significantly reduced muscle strength and a longer 10 m walk test time in young, ambulant patients with DMD; both of which are primary outcome measures in clinical trials. We have developed a double knockout mouse model, which also shows reduced muscle strength, but is protected from stretch-induced eccentric damage with age. This suggests that α-actinin-3 deficiency reduces muscle performance at baseline, but ameliorates the progression of dystrophic pathology. Mechanistically, we show that α-actinin-3 deficiency triggers an increase in oxidative muscle metabolism through activation of calcineurin, which likely confers the protective effect. Our studies suggest that ACTN3 R577X genotype is a modifier of clinical phenotype in DMD patients. PMID:28139640
Muscle strength and kinetic gait pattern in children with bilateral spastic CP.
Eek, Meta Nyström; Tranberg, Roy; Beckung, Eva
2011-03-01
Cerebral palsy is often associated with an abnormal gait pattern. This study put focus on relation between muscle strength and kinetic gait pattern in children with bilateral spastic cerebral palsy and compares them with a reference group. In total 20 children with CP and 20 typically developing children participated. They were all assessed with measurement of muscle strength in eight muscle groups in the legs and a 3-dimensional gait analysis including force data. It was found that children with CP were not only significantly weaker in all muscle groups but also walked with slower velocity and shorter stride length when compared with the reference group. Gait moments differed at the ankle level with significantly lower moments in children with CP. Gait moments were closer to the maximal muscle strength in the group of children with CP. Furthermore a correlation between plantarflexing gait moment and muscle strength was observed in six of the eight muscle groups in children with CP, a relation not found in the reference group. A similar pattern was seen between muscle strength and generating ankle power with a rho=0.582-0.766. The results of this study state the importance of the relationship of the overall muscle strength pattern in the lower extremity, not only the plantarflexors. Copyright © 2010 Elsevier B.V. All rights reserved.
van Dyk, Nicol; Bahr, Roald; Burnett, Angus F; Whiteley, Rod; Bakken, Arnhild; Mosler, Andrea; Farooq, Abdulaziz; Witvrouw, Erik
2017-12-01
Hamstring injuries remain prevalent across a number of professional sports. In football, the incidence has even increased by 4% per year at the Champions League level over the last decade. The role of muscle strength or strength ratios and their association with risk of hamstring injury remain restricted by small sample sizes and inconclusive results. The purpose of this study is to identify risk factors for hamstring injury in professional football players in an adequately powered, prospective cohort study. Using both established (isokinetic) and novel (eccentric hamstring test device) measures of muscle strength, we aimed to investigate the relationship between these strength characteristics over the entire range of motion with risk of hamstring injury. All teams (n=18) eligible to compete in the premier football league in Qatar underwent a comprehensive strength assessment during their annual periodic health evaluation at Aspetar Orthopaedic and Sports Medicine Hospital in Doha, Qatar. Variables included isokinetic strength, Nordic hamstring exercise strength and dynamic hamstring: quadriceps ratios. Of the 413 players included (68.2% of all league players), 66 suffered a hamstring injury over the two seasons. Only isokinetic quadriceps concentric at 300°/s (adjusted for bodyweight) was associated with risk of hamstring injury when considered categorically. Age, body mass and playing position were also associated with risk of hamstring injury. None of the other 23 strength variables examined were found to be associated with hamstring injury. The clinical value of isolated strength testing is limited, and its use in musculoskeletal screening to predict future hamstring injury is unfounded. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Bieler, Theresa; Magnusson, Stig Peter; Christensen, Helle Elisabeth; Kjaer, Michael; Beyer, Nina
2017-07-01
To investigate between-leg differences in hip and thigh muscle strength and leg extensor power in patients with unilateral hip osteoarthritis. Further, to compare between-leg differences in knee extensor strength and leg extensor power between patients and healthy peers. Seventy-two patients (60-87 years) with radiographic and symptomatic hip osteoarthritis not awaiting hip replacement and 35 healthy peers (63-82 years) were included. Hip and thigh muscle strength and leg extensor power were measured in patients and knee extensor strength and leg extensor power in healthy. The symptomatic extremity in patients was significantly (p < 0.05, paired t-test) weaker compared with the non-symptomatic extremity for five hip muscles (8-17%), knee extensors (11%) and leg extensor power (19%). Healthy older adults had asymmetry in knee extensor strength (6%, p < 0.05) comparable to that found in patients, but had no asymmetry in leg extensor power. Patients had generalized weakening of the affected lower extremity and numerically the largest asymmetry was evident for leg extensor power. In contrast, healthy peers had no asymmetry in leg extensor power. These results indicate that exercise interventions focusing on improving leg extensor power of the symptomatic lower extremity and reducing asymmetry may be beneficial for patients with hip osteoarthritis. Implications for Rehabilitation Even in patients with mild symptoms not awaiting hip replacement a generalized muscle weakening of the symptomatic lower extremity seems to be present. Between-leg differences in leg extensor power (force × velocity) appears to be relatively large (19%) in patients with unilateral hip osteoarthritis in contrast to healthy peers who show no asymmetry. Compared to muscle strength the relationship between functional performance and leg extensor power seems to be stronger, and more strongly related to power of the symptomatic lower extremity. Our results indicate that exercise interventions focusing on improving leg extensor power of the symptomatic lower extremity and reducing asymmetry may be beneficial for patients with mild symptoms not awaiting hip replacement.
Rosique-Esteban, Nuria; Babio, Nancy; Díaz-López, Andrés; Romaguera, Dora; Alfredo Martínez, J; Sanchez, Vicente Martin; Schröder, Helmut; Estruch, Ramón; Vidal, Josep; Buil-Cosiales, Pilar; Konieczna, Jadwiga; Abete, Itziar; Salas-Salvadó, Jordi
2018-06-06
We aimed to examine the associations of leisure-time physical activity (PA) and sedentary behavior (SB) with the prevalence of sarcopenia, body composition and muscle strength among older adults having overweight/obesity and metabolic syndrome, from the PREDIMED-Plus trial. Cross-sectional baseline analysis including 1539 men and women (65 ± 5 y). Sarcopenia was defined as low muscle mass (according to FNIH cut-offs) plus low muscle strength (lowest sex-specific tertile for 30-s chair-stand test). We applied multivariable-adjusted Cox regression with robust variance and constant time (given the cross-sectional design) for the associations of self-reported leisure-time PA and SB with sarcopenia; and multivariable-linear regression for the associations with dual-energy X-ray absorptiometry (DXA)-derived bone mass, fat mass, lean mass and lower-limb muscle strength. Inverse associations were observed between sarcopenia and each hourly increment in total [prevalence ratio 0.81 (95% confidence interval, 0.70, 0.93)], moderate [0.80 (0.66, 0.97)], vigorous [0.51 (0.32, 0.84)], and moderate-vigorous PA (MVPA) [0.74 (0.62, 0.89)]. Incrementing 1-h/day total-PA and MVPA was inversely associated with body-mass-index, waist circumference (WC), fat mass, and positively associated with bone mass and lower-limb muscle strength (all P <.05). One h/day increase in total SB, screen-based SB and TV-viewing was positively associated with body-mass-index, WC and fat mass. Light-PA was not significantly associated with any outcome. Total-PA and PA at moderate and high intensities may protect against the prevalence of sarcopenia, have a beneficial role on body composition and prevent loss of muscle strength. SB, particularly TV-viewing, may have detrimental effects on body composition in older adults at high cardiovascular risk. Copyright © 2018 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Chen, C-L; Lin, K-C; Wu, C-Y; Ke, J-Y; Wang, C-J; Chen, C-Y
2012-02-01
This work explores the relationships of muscle strength and areal bone mineral density (aBMD) in ambulatory children with cerebral palsy (CP). The knee extensor strength, but not motor function, was related to aBMD. Thus, muscle strength, especially antigravity muscle strength, was more associated with aBMD in these children than motor function. Muscle strength is related to bone density in normal children. However, no studies have examined these relationships in ambulatory children with CP. This work explores the relationships of muscle strength and aBMD in ambulatory children with CP. Forty-eight ambulatory children with spastic CP, aged 5-15 years, were classified into two groups based on Gross Motor Function Classification System levels: I (n = 28) and II (n = 20). Another 31 normal development (ND) children were recruited as the comparison group for the aBMD. Children with CP underwent assessments of growth, lumbar and distal femur aBMD, Gross Motor Function Measure-66 (GMFM-66), and muscle strength of knee extensor and flexor by isokinetic dynamometer. The distal femur aBMD, but not lumbar aBMD, was lower in children with CP than in ND children (p < 0.05). Children with level I had greater knee flexor strength and GMFM-66 scores than those with level II (p < 0.001). However, the knee extensor strength and distal femur and lumbar aBMD did not differ between two groups. Regression analysis revealed the weight and knee extensor strength, but not GMFM-66 scores, were related positively to the distal femur and lumbar aBMD (adjusted r (2) = 0.56-0.65, p < 0.001). These results suggest the muscle strength, especially antigravity muscle strength, were more associated with the bone density of ambulatory children with CP than motor function. The data may allow clinicians for early identifying the ambulatory CP children of potential low bone density.
Dankel, Scott J; Loenneke, Jeremy P; Loprinzi, Paul D
2018-02-01
Skeletal muscle strength and engagement in muscle-strengthening activities are each inversely associated with all-cause mortality; however, less is known on their relationship with cancer-specific mortality. Data from the 1999-2002 National Health and Nutrition Examination Survey were used assessing 2773 individuals aged 50 years or older. Individuals being dichotomized at the 75th percentile for knee extensor strength, and engagement in muscle-strengthening activities was acquired through self-report with ≥2 sessions per week were classified as meeting guidelines. With respect to cancer-specific mortality, individuals in the upper quartile for muscle strength were at a 50% reduced risk (hazard ratio = 0.50; 95% confidence interval, 0.29-0.85; P = .01) and those meeting muscle-strengthening activities were at a nonsignificant 8% reduced risk (hazard ratio = 0.92; 95% confidence interval, 0.45-1.86, P = .81) of cancer-specific mortality after adjusting for covariates. Clinicians should routinely assess lower extremity strength and promote engagement in muscle-strengthening activities aimed at increasing muscle strength.
Quadriceps muscle strength and voluntary activation after polio.
Beelen, Anita; Nollet, Frans; de Visser, Marianne; de Jong, Bareld A; Lankhorst, Gustaaf J; Sargeant, Anthony J
2003-08-01
Quadriceps strength, maximal anatomical cross-sectional area (CSA), maximal voluntary activation (MVA), and maximal relaxation rate (MRR) were studied in 48 subjects with a past history of polio, 26 with and 22 without postpoliomyelitis syndrome (PPS), and in 13 control subjects. It was also investigated whether, apart from CSA, MVA and MRR were determinants of muscle strength. Polio subjects had significantly less strength, CSA, and MRR in the more-affected quadriceps than control subjects. MVA was reduced in 18 polio subjects and normal in all controls. PPS subjects differed from non-PPS subjects only in that the MVA of the more-affected quadriceps was significantly lower. Both CSA and MVA were found to be associated with muscle strength. Quadriceps strength in polio subjects was dependent not only on muscle mass, but also on the ability to activate the muscles. Since impaired activation was more pronounced in PPS subjects, the new muscle weakness and functional decline in PPS may be due not only to a gradual loss of muscle fibers, but also to an increasing inability to activate the muscles.
Motalebi, Seyedeh Ameneh; Cheong, Loke Seng; Iranagh, Jamileh Amirzadeh; Mohammadi, Fatemeh
2018-01-01
Background/Study Context: Given the rapid increase in the aging population worldwide, fall prevention is of utmost importance. It is essential to establish an efficient, simple, safe, and low-cost intervention method for reducing the risk of falls. This study examined the effect of 12 weeks of progressive elastic resistance training on lower-limb muscle strength and balance in seniors living in the Rumah Seri Kenangan, social welfare home in Cheras, Malaysia. A total of 51 subjects qualified to take part in this quasi-experimental study. They were assigned to either the resistance exercise group (n = 26) or control group (n = 25). The mean age of the 45 participants who completed the program was 70.7 (SD = 6.6). The exercise group met twice per week and performing one to three sets of 8 to 10 repetitions for each of nine lower-limb elastic resistance exercises. All exercises were conducted at low to moderate intensities in sitting or standing positions. The subjects were tested at baseline and 6 and 12 weeks into the program. The results showed statistically significant improvements in lower-limb muscle strength as measured by five times sit-to-stand test (%Δ = 22.6) and dynamic balance quantified by the timed up-and-go test (%Δ = 18.7), four-square step test (%Δ = 14.67), and step test for the right (%Δ = 18.36) and left (%Δ = 18.80) legs. No significant changes were observed in static balance as measured using the tandem stand test (%Δ = 3.25), and one-leg stand test with eyes opened (%Δ = 9.58) and eyes closed (%Δ = -0.61) after completion of the program. The findings support the feasibility and efficacy of a simple and inexpensive resistance training program to improve lower-limb muscle strength and dynamic balance among the institutionalized older adults.
The Correlation of Skeletal and Cardiac Muscle Dysfunction in Duchenne Muscular Dystrophy.
Posner, Andrew D; Soslow, Jonathan H; Burnette, W Bryan; Bian, Aihua; Shintani, Ayumi; Sawyer, Douglas B; Markham, Larry W
2016-01-01
Duchenne muscular dystrophy (DMD) is characterized by progressive skeletal muscle and cardiac dysfunction. While skeletal muscle dysfunction precedes cardiomyopathy, the relationship between the progressive decline in skeletal and cardiac muscle function is unclear. This relationship is especially important given that the myocardial effects of many developing DMD therapies are largely unknown. Our objective was to assess the relationship between progression of skeletal muscle weakness and onset of cardiac dysfunction in DMD. A total of 77 DMD subjects treated at a single referral center were included. Demographic information, quantitative muscle testing (QMT), subjective muscle strength, cardiac function, and current and retrospective medications were collected. A Spearman rank correlation was used to evaluate for an association between subjective strength and fractional shortening. The effects of total QMT and arm QMT on fractional shortening were examined in generalized least square with and without adjustments for age, ambulatory status, and duration of corticosteroids and cardiac specific medications. We found a significant correlation between maintained subjective skeletal muscle arm and leg strength and maintained cardiac function as defined by fractional shortening (rho=0.47, p=0.004 and rho=0.48, p=0.003, respectively). We also found a significant association between QMT and fractional shortening among non-ambulatory DMD subjects (p=0.03), while this association was not significant in ambulatory subjects. Our findings allow us to conclude that in this population, there exists a significant relationship between skeletal muscle and cardiac function in non-ambulatory DMD patients. While this does not imply a causal relationship, a possible association between skeletal and cardiac muscle function suggests that researchers should carefully monitor cardiac function, even when the primary outcome measures are not cardiac in nature.
Moreira, Linda Denise Fernandes; Fronza, Fernanda Cerveira Abuana Osorio; dos Santos, Rodrigo Nolasco; Teixeira, Luzimar Raimundo; Kruel, Luis Fernando Martins; Lazaretti-Castro, Marise
2013-10-01
This study aims to investigate the effects of an aquatic exercise program (HydrOS) on neuromuscular function and falls among postmenopausal women. One hundred eight postmenopausal women (mean [SD] age, 58.8 [6.4] y) were randomly divided into the control group (CG; n = 44) and the aquatic exercise group (AEG; n = 64). Both groups received elementary calcium 500 mg/day and cholecalciferol 1,000 IU/day. For 24 weeks, the AEG participated in the aquatic exercise program, whereas the CG remained sedentary. The following variables were measured before and after the program: number of falls and fallers (7 mo before and after the intervention); flexibility, using Wells' Sit-and-Reach Test (FLEX); static balance, using the Unipedal Stance Test (UST); mobility, using the Timed-Up-and-Go test (TUG); handgrip strength of the dominant hand (HGS); and maximal isometric strength of back extensor muscles (SBE), strength of hip flexor muscles (SHF), and strength of knee extensor muscles (SKE). The muscle strength tests were considered the primary outcome, whereas the other neuromuscular tests, together with falls, were considered secondary outcomes. Results were significant when P ≤ 0.05. Serum 25-hydroxyvitamin D significantly increased by 21% in the CG and by 23% in the AEG (P < 0.001). The number of falls and fallers after the program remained unchanged in the CG; in the AEG, the mean number of falls decreased from 2.00 to 0.29 (P < 0.0001), and the number of fallers decreased by 44% (P < 0.0001). All neuromuscular variables significantly improved in the AEG: FLEX (26.6%; P < 0.0001), UST (14.1%; P < 0.001), TUG (23.7%; P < 0.001), HGS (13.4%; P < 0.001), SBE (26.2%; P < 0.001), SHF (18.5%; P = 0.039), and SKE (7.7%; P < 0.001). In the CG, significant improvements in FLEX (12.2%; P = 0.009), UST (4.5%; P < 0.001), TUG (10%; P < 0.001), and SHF (5.7%; P = 0.039) were observed and could be explained by increasing serum 25-hydroxyvitamin D level attributable to supplementation. The aquatic exercise program HydrOS is a safe and efficient way to improve physical function and to reduce falls among postmenopausal women.
Chen, Yoa; Yu, Yong; He, Cheng-qi
2015-11-01
To establish correlations between joint proprioception, muscle flexion and extension peak torque, and functional ability in patients with knee osteoarthritis (OA). Fifty-six patients with symptomatic knee OA were recruited in this study. Both proprioceptive acuity and muscle strength were measured using the isomed-2000 isokinetic dynamometer. Proprioceptive acuity was evaluated by establishing the joint motion detection threshold (JMDT). Muscle strength was evaluated by Max torque (Nm) and Max torque/weight (Nm/ kg). Functional ability was assessed by the Western Ontario and McMaster Universities Osteoarthritis Index physical function (WOMAC-PF) questionnaire. Correlational analyses were performed between proprioception, muscle strength, and functional ability. A multiple stepwise regression model was established, with WOMAC-PF as dependent variable and patient age, body mass index (BMI), visual analogue scale (VAS)-score, mean grade for Kellgren-Lawrance of both knees, mean strength for quadriceps and hamstring muscles of both knees, and mean JMDT of both knees as independent variables. Poor proprioception (high JMDT) was negatively correlated with muscle strength (P<0.05). There was no significant correlation between knee proprioception (high JMDT) and joint pain (WOMAC pain score), and between knee proprioception (high JMDT) and joint stiffness (WOMAC stiffness score). Poor proprioception (high JMDT) was correlated with limitation in functional ability (WOMAC physical function score r=0.659, P<0.05). WOMAC score was correlated with poor muscle strength (quadriceps muscle strength r = -0.511, P<0.05, hamstring muscle strength r = -0.408, P<0.05). The multiple stepwise regression model showed that high JMDT C standard partial regression coefficient (B) = 0.385, P<0.50 and high VAS-scale score (B=0.347, P<0.05) were significant predictors of WOMAC-PF score. Patients with poor proprioception is associated with poor muscle strength and limitation in functional ability. Patients with symptomatic OA of knees commonly endure with moderate to considerable dysfunction, which is associated with poor proprioception (high JMDT) and high VAS-scale score.
Cycle training induces muscle hypertrophy and strength gain: strategies and mechanisms.
Ozaki, Hayao; Loenneke, J P; Thiebaud, R S; Abe, T
2015-03-01
Cycle training is widely performed as a major part of any exercise program seeking to improve aerobic capacity and cardiovascular health. However, the effect of cycle training on muscle size and strength gain still requires further insight, even though it is known that professional cyclists display larger muscle size compared to controls. Therefore, the purpose of this review is to discuss the effects of cycle training on muscle size and strength of the lower extremity and the possible mechanisms for increasing muscle size with cycle training. It is plausible that cycle training requires a longer period to significantly increase muscle size compared to typical resistance training due to a much slower hypertrophy rate. Cycle training induces muscle hypertrophy similarly between young and older age groups, while strength gain seems to favor older adults, which suggests that the probability for improving in muscle quality appears to be higher in older adults compared to young adults. For young adults, higher-intensity intermittent cycling may be required to achieve strength gains. It also appears that muscle hypertrophy induced by cycle training results from the positive changes in muscle protein net balance.
Exercise training in adults with Pompe disease: the effects on pain, fatigue, and functioning.
Favejee, Marein M; van den Berg, Linda E M; Kruijshaar, Michelle E; Wens, Stephan C A; Praet, Stephan F E; Pim Pijnappel, W W M; van Doorn, Pieter A; Bussmann, Johannes B J; van der Ploeg, Ans T
2015-05-01
To assess if a 12-week exercise intervention to improve aerobic fitness, muscle strength, and core stability also had an impact on fatigue, pain, activity, and participation in adults with Pompe disease, an inherited neuromuscular disorder. Open-label trial. Change was assessed by the chi-square test and Wilcoxon signed-rank test. Physiotherapy practices. Mildly affected adult patients with Pompe disease who were not dependent on ventilators and/or walking devices and were receiving enzyme replacement therapy. Patients participated in a 12-week exercise program, which included 36 sessions of standardized aerobic, resistance, and core stability exercises. Before and after the training program we evaluated fatigue (Fatigue Severity Scale), pain (yes/no), motor function (Quantitative Muscle Function Test, Rasch-built Pompe-specific Activity Scale), amount of physical activity (activity monitor), and health status (Medical Outcomes Study 36-Item Short-Form Health Survey). Of the 25 patients enrolled, 23 completed the program. At the end of the program, levels of fatigue (median, 5.33 to 4.78, P=.01) and pain (56.5% to 21.7%, P=.04) improved. The quality of motor function and the amount of physical activity patients engaged in did not change. Changes in pain and fatigue were not related to improvements in aerobic fitness or muscle strength. This study in mildly affected adult patients with Pompe disease suggests that a combined training program aiming to increase aerobic fitness, muscle strength, and core stability also leads to improvements in fatigue and pain. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Subclinical Hypothyroidism has Little Influences on Muscle Mass or Strength in Elderly People
Moon, Min Kyong; Lee, You Jin; Choi, Sung Hee; Lim, Soo; Yang, Eun Joo; Lim, Jae-Young; Paik, Nam-Jong; Kim, Ki Woong; Park, Kyong Soo; Jang, Hak C.
2010-01-01
Sarcopenia, the age-related decline in muscle mass, affects the muscle strength and muscle quality, and these changes decrease functional capacity. The prevalence of thyroid dysfunction increases with age, and changes in thyroid hormone level lead to neuromuscular deficits. We investigated the effects of subclinical hypothyroidism on the muscle mass, strength or quality in elderly people. One thousand one hundred eighteen subjects aged ≥65 yr were randomly selected from a local population and classified into a euthyroid (280 men and 358 women), subclinically hypothyroid (61 men and 75 women), or overtly hypothyroid (7 men and 16 women) group. Although women with subclinical hypothyroidism had a higher prevalence of sarcopenia, defined according to the ratio of appendicular skeletal muscle mass to the square of height, muscle mass, strength or quality did not differ in relation to thyroid status in men or in women. Multivariate analysis including age, diabetes, hypertension, acute coronary event, alcohol, smoking, presence of pain, physical activity score, and lipid profile, showed that thyroid-stimulating hormone level was not associated with muscle mass, strength or quality. In conclusion, subclinical hypothyroidism has little influences on muscle mass, strength or quality, and may not be associated with sarcopenia. PMID:20676329
Subclinical hypothyroidism has little influences on muscle mass or strength in elderly people.
Moon, Min Kyong; Lee, You Jin; Choi, Sung Hee; Lim, Soo; Yang, Eun Joo; Lim, Jae-Young; Paik, Nam-Jong; Kim, Ki Woong; Park, Kyong Soo; Jang, Hak C; Cho, Bo Youn; Park, Young Joo
2010-08-01
Sarcopenia, the age-related decline in muscle mass, affects the muscle strength and muscle quality, and these changes decrease functional capacity. The prevalence of thyroid dysfunction increases with age, and changes in thyroid hormone level lead to neuromuscular deficits. We investigated the effects of subclinical hypothyroidism on the muscle mass, strength or quality in elderly people. One thousand one hundred eighteen subjects aged > or = 65 yr were randomly selected from a local population and classified into a euthyroid (280 men and 358 women), subclinically hypothyroid (61 men and 75 women), or overtly hypothyroid (7 men and 16 women) group. Although women with subclinical hypothyroidism had a higher prevalence of sarcopenia, defined according to the ratio of appendicular skeletal muscle mass to the square of height, muscle mass, strength or quality did not differ in relation to thyroid status in men or in women. Multivariate analysis including age, diabetes, hypertension, acute coronary event, alcohol, smoking, presence of pain, physical activity score, and lipid profile, showed that thyroid-stimulating hormone level was not associated with muscle mass, strength or quality. In conclusion, subclinical hypothyroidism has little influences on muscle mass, strength or quality, and may not be associated with sarcopenia.
Association of postural balance and isometric muscle strength in early- and middle-school-age boys.
Ibrahim, Alaa I; Muaidi, Qassim I; Abdelsalam, Mohammed S; Hawamdeh, Ziad M; Alhusaini, Adel A
2013-01-01
The purpose of this study was to evaluate the isometric muscle strength (IMS) and dynamic balance in early- and middle-school-age boys and to assess the strength of association between the dynamic balance scores and 6 different IMS indexes. This is a cross-sectional study of a convenience sample of 94 boys who were 6 to 10 years of age and classified into an early school age (6-8 years) group (n = 50) and a middle school age (8-10 years) group (n = 44). Balance was tested using a Biodex Balance System. Anteroposterior Stability Index, Mediolateral Stability Index, and Overall Stability Index were recorded. IMS of 11 muscle groups was measured with a handheld dynamometer and categorized into 6 different muscle strength indices. The mean (SD) values of anteroposterior, mediolateral, and overall stability indexes observed for all study boys were 1.9 ± 1.0, 1.2 ± 0.7, and 2.5 ± 1.2 respectively. In the middle school age group, strong positive relationships were detected between the overall stability index and trunk, lower limb, anti-gravity, pro-gravity, and total strength indexes (r = -0.86/P < .001, r = -0.91/P < .001, r = -0.88/P < .001, r = -0.83/P < .001, and r = -0.84/P < .001 respectively), while no significant relationship was detected with the upper limb strength index (r = 0.159/P = .303). In the early school age group, moderate positive relationships were detected between the overall stability index and anti-gravity, lower limb, and total strength indexes (r = -0.404/P = .004, r = -0.356/P = .011, and r = -0.350/P = .013 respectively). Dynamic balance did not appear to be mature by the age of 10 years. Better balance skills were recorded in the mediolateral direction than in the anteroposterior direction. In the middle school age group, the overall stability index had positive relationships with almost all examined muscle strength indexes excepting the upper limb strength index. © 2013. Published by National University of Health Sciences All rights reserved.
Shin, Hyung-Ik; Sung, Ki Hyuk; Chung, Chin Youb; Lee, Kyoung Min; Lee, Seung Yeol; Lee, In Hyeok
2016-01-01
Purpose This study investigated the correlation between isometric muscle strength, gross motor function, and gait parameters in patients with spastic cerebral palsy and to find which muscle groups play an important role for gait pattern in a flexed knee gait. Materials and Methods Twenty-four ambulatory patients (mean age, 10.0 years) with spastic cerebral palsy who were scheduled for single event multilevel surgery, including distal hamstring lengthening, were included. Preoperatively, peak isometric muscle strength was measured for the hip flexor, hip extensor, knee flexor, and knee extensor muscle groups using a handheld dynamometer, and three-dimensional (3D) gait analysis and gross motor function measure (GMFM) scoring were also performed. Correlations between peak isometric strength and GMFM, gait kinematics, and gait kinetics were analyzed. Results Peak isometric muscle strength of all muscle groups was not related to the GMFM score and the gross motor function classification system level. Peak isometric strength of the hip extensor and knee extensor was significantly correlated with the mean pelvic tilt (r=-0.588, p=0.003 and r=-0.436, p=0.033) and maximum pelvic obliquity (r=-0.450, p=0.031 and r=-0.419, p=0.041). There were significant correlations between peak isometric strength of the knee extensor and peak knee extensor moment in early stance (r=0.467, p=0.021) and in terminal stance (r=0.416, p=0.043). Conclusion There is no correlation between muscle strength and gross motor function. However, this study showed that muscle strength, especially of the extensor muscle group of the hip and knee joints, might play a critical role in gait by stabilizing pelvic motion and decreasing energy consumption in a flexed knee gait. PMID:26632404
Shin, Hyung Ik; Sung, Ki Hyuk; Chung, Chin Youb; Lee, Kyoung Min; Lee, Seung Yeol; Lee, In Hyeok; Park, Moon Seok
2016-01-01
This study investigated the correlation between isometric muscle strength, gross motor function, and gait parameters in patients with spastic cerebral palsy and to find which muscle groups play an important role for gait pattern in a flexed knee gait. Twenty-four ambulatory patients (mean age, 10.0 years) with spastic cerebral palsy who were scheduled for single event multilevel surgery, including distal hamstring lengthening, were included. Preoperatively, peak isometric muscle strength was measured for the hip flexor, hip extensor, knee flexor, and knee extensor muscle groups using a handheld dynamometer, and three-dimensional (3D) gait analysis and gross motor function measure (GMFM) scoring were also performed. Correlations between peak isometric strength and GMFM, gait kinematics, and gait kinetics were analyzed. Peak isometric muscle strength of all muscle groups was not related to the GMFM score and the gross motor function classification system level. Peak isometric strength of the hip extensor and knee extensor was significantly correlated with the mean pelvic tilt (r=-0.588, p=0.003 and r=-0.436, p=0.033) and maximum pelvic obliquity (r=-0.450, p=0.031 and r=-0.419, p=0.041). There were significant correlations between peak isometric strength of the knee extensor and peak knee extensor moment in early stance (r=0.467, p=0.021) and in terminal stance (r=0.416, p=0.043). There is no correlation between muscle strength and gross motor function. However, this study showed that muscle strength, especially of the extensor muscle group of the hip and knee joints, might play a critical role in gait by stabilizing pelvic motion and decreasing energy consumption in a flexed knee gait.
Haerer, W; Delbaere, K; Bartlett, H; Lord, S R; Rowland, J
2012-12-01
To investigate associations between HMG-CoA reductase inhibitor (statin) use and muscle strength, balance, mobility and falls in older people. Five hundred community-dwelling people aged 70-90 years provided information about their medication use and undertook tests of lower limb strength, postural sway, leaning balance (maximal balance range and coordinated stability tests) and functional mobility. Participants were then followed up for 12 months with respect to falls. After adjusting for general health in analyses of covariance procedures, statin users had poorer maximal balance range than non-statin users (P = 0.017). Statin and non-statin users did not differ with respect to strength, postural sway, mobility or falls experienced in the follow-up year. In a sample of healthy older people, statin use was not associated with muscle weakness, postural sway, reduced mobility or falls. Statin users, however, had poorer leaning balance which may potentially increase fall risk in this group. © 2011 The Authors; Internal Medicine Journal © 2011 Royal Australasian College of Physicians.
Moodie, Lisa; Reeve, Julie; Elkins, Mark
2011-01-01
Does inspiratory muscle training improve inspiratory muscle strength and endurance, facilitate weaning, improve survival, and reduce the rate of reintubation and tracheostomy in adults receiving mechanical ventilation? Systematic review of randomised or quasi-randomised controlled trials. Adults over 16 years of age receiving mechanical ventilation. Inspiratory muscle training versus sham or no inspiratory muscle training. Data were extracted regarding inspiratory muscle strength and endurance, the duration of unassisted breathing periods, weaning success and duration, reintubation and tracheostomy, survival, adverse effects, and length of stay. Three studies involving 150 participants were included in the review. The studies varied in time to commencement of the training, the device used, the training protocol, and the outcomes measured. Inspiratory muscle training significantly increased inspiratory muscle strength over sham or no training (weighted mean difference 8 cmH(2)O, 95% CI 6 to 9). There were no statistically significant differences between the groups in weaning success or duration, survival, reintubation, or tracheostomy. Inspiratory muscle training was found to significantly increase inspiratory muscle strength in adults undergoing mechanical ventilation. Despite data from a substantial pooled cohort, it is not yet clear whether the increase in inspiratory muscle strength leads to a shorter duration of mechanical ventilation, improved weaning success, or improved survival. Further large randomised studies are required to clarify the impact of inspiratory muscle training on patients receiving mechanical ventilation. PROSPERO CRD42011001132. Copyright © 2011 Australian Physiotherapy Association. Published by .. All rights reserved.
Finatto, Paula; Silva, Edson Soares Da; Okamura, Alexandre B.; Almada, Bruna P.; Oliveira, Henrique B.
2018-01-01
Purpose Strength training improves distance running economy and performance. This finding is based predominantly on maximal and explosive strength programmes applied to locomotor muscles, particularly on the lower limbs. It is not certain whether a minimization of metabolic cost (Cmet) and an improvement in running performance is feasible with strength training of the postural and trunk muscles. Methods Using kinematic, neuromuscular and metabolic measurements of running at two different speeds before and after a 12-week Pilates training programme, we tested the hypothesis that core training might improve the running Cmet and performance of trained runners. Thirty-two individuals were randomly assigned to the control group (CG, n = 16) or the Pilates group (PG, n = 16). Results Confirming our hypothesis, a significant improvement (p<0.05) was observed for running performance in the PG (pre: 25.65±0.4 min; post: 23.23±0.4 min) compared to the CG (pre: 25.33±0.58 min; post: 24.61±0.52 min). Similarly, the PG (4.33±0.07 J.kg-1.m-1) had better responses than the CG (4.71±0.11 J.kg-1.m-1) during post-training for Cmet. These findings were accompanied by decreased electromyographic activity of the postural muscles at submaximal running intensities in the PG. Conclusions Overall, these results provide a rationale for selecting strength training strategies that target adaptations on specific postural and locomotor muscles for trained distance runners. PMID:29561907
Finatto, Paula; Silva, Edson Soares Da; Okamura, Alexandre B; Almada, Bruna P; Oliveira, Henrique B; Peyré-Tartaruga, Leonardo A
2018-01-01
Strength training improves distance running economy and performance. This finding is based predominantly on maximal and explosive strength programmes applied to locomotor muscles, particularly on the lower limbs. It is not certain whether a minimization of metabolic cost (Cmet) and an improvement in running performance is feasible with strength training of the postural and trunk muscles. Using kinematic, neuromuscular and metabolic measurements of running at two different speeds before and after a 12-week Pilates training programme, we tested the hypothesis that core training might improve the running Cmet and performance of trained runners. Thirty-two individuals were randomly assigned to the control group (CG, n = 16) or the Pilates group (PG, n = 16). Confirming our hypothesis, a significant improvement (p<0.05) was observed for running performance in the PG (pre: 25.65±0.4 min; post: 23.23±0.4 min) compared to the CG (pre: 25.33±0.58 min; post: 24.61±0.52 min). Similarly, the PG (4.33±0.07 J.kg-1.m-1) had better responses than the CG (4.71±0.11 J.kg-1.m-1) during post-training for Cmet. These findings were accompanied by decreased electromyographic activity of the postural muscles at submaximal running intensities in the PG. Overall, these results provide a rationale for selecting strength training strategies that target adaptations on specific postural and locomotor muscles for trained distance runners.
Cawthon, Peggy Mannen; Fox, Kathleen M; Gandra, Shravanthi R; Delmonico, Matthew J; Chiou, Chiun-Fang; Anthony, Mary S; Sewall, Ase; Goodpaster, Bret; Satterfield, Suzanne; Cummings, Steven R; Harris, Tamara B
2009-08-01
To examine the association between strength, function, lean mass, muscle density, and risk of hospitalization. Prospective cohort study. Two U.S. clinical centers. Adults aged 70 to 80 (N=3,011) from the Health, Aging and Body Composition Study. Measurements were of grip strength, knee extension strength, lean mass, walking speed, and chair stand pace. Thigh computed tomography scans assessed muscle area and density (a proxy for muscle fat infiltration). Hospitalizations were confirmed by local review of medical records. Negative binomial regression models estimated incident rate ratios (IRRs) of hospitalization for race- and sex-specific quartiles of each muscle and function parameter separately. Multivariate models adjusted for age, body mass index, health status, and coexisting medical conditions. During an average 4.7 years of follow-up, 1,678 (55.7%) participants experienced one or more hospitalizations. Participants in the lowest quartile of muscle density were more likely to be subsequently hospitalized (multivariate IRR=1.47, 95% confidence interval (CI)=1.24-1.73) than those in the highest quartile. Similarly, participants with the weakest grip strength were at greater risk of hospitalization (multivariate IRR=1.52, 95% CI=1.30-1.78, Q1 vs. Q4). Comparable results were seen for knee strength, walking pace, and chair stands pace. Lean mass and muscle area were not associated with risk of hospitalization. Weak strength, poor function, and low muscle density, but not muscle size or lean mass, were associated with greater risk of hospitalization. Interventions to reduce the disease burden associated with sarcopenia should focus on increasing muscle strength and improving physical function rather than simply increasing lean mass.
Jiménez S, Christian Edgardo; Fernández G, Rubén; Zurita O, Félix; Linares G, Daniel; Farías M, Ariel
2014-04-01
Hip and knee osteoarthritis are important causes of pain and disability among older people. Education and strength training can alleviate symptoms and avoid functional deterioration. To assess muscle strength, fall risk and quality of life of older people with osteoarthritis and the effects of physiotherapy education and strength training on these variables. Thirty participants aged 78 ± 5 years (63% women) were randomly assigned to receive physiotherapy (Controls), physiotherapy plus education (Group 1) and physiotherapy plus strength training (group 2). At baseline and after 16 weeks of intervention, patients were evaluated with the Senior Fitness Test, Timed Up and Go and Quality of Life score short form (SF-36). During the intervention period, Senior Fitness Test and Timed Up and Go scores improved in all groups and SF-36 did not change. The improvement in Senior Fitness Test and Timed Up and Go was more marked in Groups 1 and 2 than in the control group. Education and strength training improve functional tests among older people with osteoarthritis.
Strength Training Following Hematopoietic Stem Cell Transplantation
Hacker, Eileen Danaher; Larson, Janet; Kujath, Amber; Peace, David; Rondelli, Damiano; Gaston, Lisa
2010-01-01
Background Patients receiving high-dose chemotherapy and hematopoietic stem cell transplantation (HSCT) experience considerable reductions in physical activity and deterioration of their health status. Objective The purpose of this pilot study was to test the effects of strength training compared to usual activity on physical activity, muscle strength, fatigue, health status perceptions, and quality of life following HSCT. Interventions/Methods Nineteen subjects were randomized to the exercise or control group. Moderate intensity strength training began following discharge from the hospital. Dependent variables included physical activity, muscle strength, fatigue, health status perceptions and quality of life. Variables were measured prior to admission to the hospital for HSCT, day 8 following HSCT, and six weeks following discharge from the hospital. Results Significant time effects were noted for many variables with anticipated declines in physical activity, muscle strength, fatigue, and health status perceptions immediately after HSCT with subsequent improvements six weeks following hospital discharge. One group effect was noted with subjects in the exercise group reporting less fatigue than subjects in the control group. Although no significant interactions were detected, the trends suggest that the exercise group may be more physically active following the intervention compared to the usual activity group. Conclusions This study demonstrates the potential positive effects of strength training on physical activity, fatigue, and quality of life in people receiving high-dose chemotherapy and HSCT. Implications for Practice Preliminary evidence is provided for using strength training to enhance early recovery following HSCT. Elastic resistance bands are easy to use and relatively inexpensive. PMID:21116175
Sex comparisons of non-local muscle fatigue in human elbow flexors and knee extensors
Ye, Xin; Beck, Travis W.; Wages, Nathan P.; Carr, Joshua C.
2018-01-01
Objectives: To examine non-local muscle fatigue (NLMF) in both contralateral homologous and non-related heterogonous muscles for both sexes. Methods: Ten men and nine women participated in this study. After the familiarization visit, subjects completed four separate randomly sequenced experimental visits, during which the fatiguing interventions (six sets of 30-second maximal isometric contractions) were performed on either their right elbow flexors or knee extensors. Before (Pre-) and after (Post-) the fatiguing interventions, the isometric strength and the corresponding surface electromyographic (EMG) amplitude were measured for the non-exercised left elbow flexors or knee extensors. Results: For the non-exercised elbow flexors, the isometric strength decreased for both sexes (sex combined mean±SE: Pre vs. Post=339.67±18.02 N vs. 314.41±16.37 N; p<0.001). For the non-exercised knee extensors, there is a time ´ sex interaction (p=0.025), showing a decreased isometric knee extension strength for men (Pre vs. Post =845.02±66.26 N vs. 817.39±67.64 N; p=0.019), but not for women. Conclusions: The presence of NMLF can be affected by factors such as sex and muscle being tested. Women are less likely to demonstrate NLMF in lower body muscle groups. PMID:29504584
Sung, Dong-Hun; Yoon, Seong-Deok; Park, Gi Duck
2015-03-01
[Purpose] It is important for patients with incomplete spinal cord injury (SCI) to strengthen their muscle strength and return to the work force one of the ultimate objectives of rehabilitation. This study reports how a single patient with SCI became stabilized in terms of abdominal muscles and back extension muscles, as well as returning the back to the neutral position from spinal deformation, as result of complex exercises performed for 12 weeks. [Subjects] The degree of damage of the subject was rated as C grade. The subject of this study had unstable posture due to paralysis in the lower extremities of the left side after removal of a malignant tumor by surgical operation, and tilting and torsion in the pelvis increased followed by increase of kyphosis in the thoracolumbar spine. The subject was more than two years since diagnosis of incomplete SCI after surgery. [Methods] Using isokinetic lumbar muscle strength measurement equipment, peak torque/weight, total work and average power in flexion and extension of the lumbar region were measured. A trunk measurement system (Formetric 4D, DIERS, Germany), which is a 3D image processing apparatus with high resolution for vertebrae, was used in order to measure 3D vertebrae and pelvis deformation as well as static balance abilities. As an exercise method, a foam roller was used to conduct fascia relaxation massage for warming-up, and postural kyphosis was changed into postural lordosis by lat pull-down using equipment, performed in 5 sets of 15 times preset at 60% intensity of 1RM 4 set of 10 crunch exercises per set using Togu's were done while sitting at the end of Balance pad, and 4 sets of 15 bridge exercises. [Results] All angular speed tests showed a gradual increase in muscle strength. Flexion and extension showed 10% and 3% improvements, respectively. The spine deformation test showed that isokinetic exercise and lat pull-down exercise for 12 weeks resulted in improved spinal shape. [Conclusion] In this study, core stability exercise for deep muscle training and lat pull-down exercise had positive effects on lower extremity muscle strength and the spinal shape of a patient with SCI.
Respiratory muscle strength is not decreased in patients undergoing cardiac surgery.
Urell, Charlotte; Emtner, Margareta; Hedenstrom, Hans; Westerdahl, Elisabeth
2016-03-31
Postoperative pulmonary impairments are significant complications after cardiac surgery. Decreased respiratory muscle strength could be one reason for impaired lung function in the postoperative period. The primary aim of this study was to describe respiratory muscle strength before and two months after cardiac surgery. A secondary aim was to describe possible associations between respiratory muscle strength and lung function. In this prospective observational study 36 adult cardiac surgery patients (67 ± 10 years) were studied. Respiratory muscle strength and lung function were measured before and two months after surgery. Pre- and postoperative respiratory muscle strength was in accordance with predicted values; MIP was 78 ± 24 cmH2O preoperatively and 73 ± 22 cmH2O at two months follow-up (p = 0.19). MEP was 122 ± 33 cmH2O preoperatively and 115 ± 38 cmH2O at two months follow-up (p = 0.18). Preoperative lung function was in accordance with predicted values, but was significantly decreased postoperatively. At two-months follow-up there was a moderate correlation between MIP and FEV1 (r = 0.43, p = 0.009). Respiratory muscle strength was not impaired, either before or two months after cardiac surgery. The reason for postoperative lung function alteration is not yet known. Interventions aimed at restore an optimal postoperative lung function should focus on other interventions then respiratory muscle strength training.
Gonzalez, Adam M; Sell, Katie M; Ghigiarelli, Jamie J; Kelly, Christopher F; Shone, Edward W; Accetta, Matthew R; Baum, Jamie B; Mangine, Gerald T
2017-04-01
The purpose of this study was to investigate the effects of phosphatidic acid (PA) supplementation on muscle thickness and strength following an 8 week supervised resistance-training program. Fifteen resistance trained men (22.8 ± 3.5 years; 80.6 ± 8.7 kg; 178.1 ± 5.6 cm; 14.6% ± 8.8% body fat) were randomly assigned to a group that either consumed 750 mg of PA or a placebo (PL). Testing was carried out before (PRE) and after (POST) training/supplementation for muscle thickness and strength. Muscle thickness of the rectus femoris (RF), vastus lateralis (VL), biceps brachii (BB), and triceps brachii (TB) muscles were measured via ultrasonography, along with 1 repetition maximum (1RM) of squat, deadlift, and bench press. Analysis of covariance (ANCOVA), using PRE values as the covariate, did not reveal any group differences for measures of muscle thickness in the RF (PA: 3.6% ± 5.2%; PL: 3.2% ± 4.2%, p = 0.97), VL (PA: 23.4% ± 18.1%, PL: 12.5% ± 15.4%, p = 0.37), BB (PA: 3.7% ± 6.4%, PL: 9.6% ± 12.4%, p = 0.86), or TB (PA: 15.1% ± 17.9%, PL: 10.7% ± 19.3%, p = 0.79). Likewise, no group differences were observed in changes in squat (PA: 8.4% ± 4.1%, PL: 8.1% ± 4.2%, p = 0.79), deadlift (PA: 10.1% ± 10.1%, PL: 8.9% ± 9.5%, p = 0.66), or bench press (PA: 5.7% ± 5.5%, PL: 5.1% ± 3.0%, p = 0.76) exercises. Collectively, however, all participants experienced significant (p < 0.05) improvements in each measure of muscle thickness and strength. Results of this study suggest that PA supplementation, in combination with a 3 days·week -1 resistance-training program for 8 weeks, did not have a differential effect compared with PL on changes in muscle thickness or 1RM strength.
Rocha-Estrada, J G; Córdova-Murueta, J H; García-Carreño, F L
2010-10-01
Functional properties of protein from mantle and fin of the jumbo squid Dosidicus gigas were explained based on microscopic muscle fiber and protein fractions profiles as observed in SDS-PAGE. Fin has higher content of connective tissue and complex fiber arrangement, and we observed higher hardness of fin gels as expected. Myosin heavy chain (MHC) was found in sarcoplasmic, myofibril and soluble-in-alkali fractions of mantle and only in sarcoplasmic and soluble-in-alkali fractions of fin. An additive effect of salt concentration and pH affected the solubility and foaming properties. Fin and mantle proteins yielded similar results in solubility tests, but significant differences occurred for specific pH and concentrations of salt. Foaming capacity was proportional to solubility; foam stability was also affected by pH and salt concentration. Hardness and fracture strength of fin gels were significantly higher than mantle gels; gels from proteins of both tissues reached the highest level in the folding test. Structural and molecular properties, such as MHC and paramyosin solubility, arrangement of muscle fibers and the content of connective tissue were useful to explain the differences observed in these protein properties. High-strength gels can be formed from squid mantle or fin muscle. Fin displayed similar or better properties than mantle in all tests.
Plaster, Ralph; Vieira, Wellington Bueno; Alencar, Flávia Alves Duarte; Nakano, Eduardo Yoshio; Liebano, Richard Eloin
2014-06-01
To compare the immediate effects of electroacupuncture and manual acupuncture on pain, mobility and muscle strength in patients with knee osteoarthritis. Sixty patients with knee osteoarthritis, with a pain intensity of ≥2 on the pain Numerical Rating Scale, were included. The patients were randomised into two groups: manual acupuncture and electroacupuncture. Pain intensity, degree of dysfunction (Timed Up and Go (TUG) test), maximal voluntary isometric contraction and pressure pain threshold were assessed before and after a single session of manual acupuncture or electroacupuncture treatments. Both groups showed a significant reduction in pain intensity (p<0.001) and time to run the TUG test after the acupuncture treatment (p=0.005 for the manual acupuncture group and p=0.002 for the electroacupuncture group). There were no differences between the groups regarding pain intensity (p=0.25), TUG test (p=0.70), maximum voluntary isometric contraction (p=0.43) or pressure pain threshold (p=0.27). This study found no difference between the immediate effects of a single session of manual acupuncture and electroacupuncture on pain, muscle strength and mobility in patients with knee osteoarthritis. RBR-9TCN2X. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Rogerson, Shane; Riches, Christopher J; Jennings, Carl; Weatherby, Robert P; Meir, Rudi A; Marshall-Gradisnik, Sonya M
2007-05-01
Tribulus terrestris is an herbal nutritional supplement that is promoted to produce large gains in strength and lean muscle mass in 5-28 days (15, 18). Although some manufacturers claim T. terrestris will not lead to a positive drug test, others have suggested that T. terrestris may increase the urinary testosterone/epitestosterone (T/E) ratio, which may place athletes at risk of a positive drug test. The purpose of the study was to determine the effect of T. terrestris on strength, fat free mass, and the urinary T/E ratio during 5 weeks of preseason training in elite rugby league players. Twenty-two Australian elite male rugby league players (mean +/- SD; age = 19.8 +/- 2.9 years; weight = 88.0 +/- 9.5 kg) were match-paired and randomly assigned in a double-blind manner to either a T. terrestris (n = 11) or placebo (n = 11) group. All subjects performed structured heavy resistance training as part of the club's preseason preparations. A T. terrestris extract (450 mg.d(-1)) or placebo capsules were consumed once daily for 5 weeks. Muscular strength, body composition, and the urinary T/E ratio were monitored prior to and after supplementation. After 5 weeks of training, strength and fat free mass increased significantly without any between-group differences. No between-group differences were noted in the urinary T/E ratio. It was concluded that T. terrestris did not produce the large gains in strength or lean muscle mass that many manufacturers claim can be experienced within 5-28 days. Furthermore, T. terrestris did not alter the urinary T/E ratio and would not place an athlete at risk of testing positive based on the World Anti-Doping Agency's urinary T/E ratio limit of 4:1.