Science.gov

Sample records for muscular atrophy gene

  1. Gene therapy: a promising approach to treating spinal muscular atrophy.

    PubMed

    Mulcahy, Pádraig J; Iremonger, Kayleigh; Karyka, Evangelia; Herranz-Martín, Saúl; Shum, Ka-To; Tam, Janice Kal Van; Azzouz, Mimoun

    2014-07-01

    Spinal muscular atrophy (SMA) is a severe autosomal recessive disease caused by a genetic defect in the survival motor neuron 1 (SMN1) gene, which encodes SMN, a protein widely expressed in all eukaryotic cells. Depletion of the SMN protein causes muscle weakness and progressive loss of movement in SMA patients. The field of gene therapy has made major advances over the past decade, and gene delivery to the central nervous system (CNS) by in vivo or ex vivo techniques is a rapidly emerging field in neuroscience. Despite Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis being among the most common neurodegenerative diseases in humans and attractive targets for treatment development, their multifactorial origin and complicated genetics make them less amenable to gene therapy. Monogenic disorders resulting from modifications in a single gene, such as SMA, prove more favorable and have been at the fore of this evolution of potential gene therapies, and results to date have been promising at least. With the estimated number of monogenic diseases standing in the thousands, elucidating a therapeutic target for one could have major implications for many more. Recent progress has brought about the commercialization of the first gene therapies for diseases, such as pancreatitis in the form of Glybera, with the potential for other monogenic disease therapies to follow suit. While much research has been carried out, there are many limiting factors that can halt or impede translation of therapies from the bench to the clinic. This review will look at both recent advances and encountered impediments in terms of SMA and endeavor to highlight the promising results that may be applicable to various associated diseases and also discuss the potential to overcome present limitations. PMID:24845847

  2. Congenital neurogenic muscular atrophy in megaconial myopathy due to a mutation in CHKB gene.

    PubMed

    Castro-Gago, Manuel; Dacruz-Alvarez, David; Pintos-Martínez, Elena; Beiras-Iglesias, Andrés; Arenas, Joaquín; Martín, Miguel Ángel; Martínez-Azorín, Francisco

    2016-01-01

    Choline kinase beta gene (CHKB) mutations have been identified in Megaconial Congenital Muscular Dystrophy (MDCMC) patients, a very rare inborn error of metabolism with 21 cases reported worldwide. We report the case of a Spanish boy of Caucasian origin who presented a generalized congenital muscular hypotonia, more intense at lower limb muscles, mildly elevated creatine kinase (CK), serum aspartate transaminase (AST) and lactate. Electromyography (EMG) showed neurogenic potentials in the proximal muscles. Histological studies of a muscle biopsy showed neurogenic atrophy with enlarged mitochondria in the periphery of the fibers, and complex I deficiency. Finally, genetic analysis showed the presence of a homozygous mutation in the gene for choline kinase beta (CHKB: NM_005198.4:c.810T>A, p.Tyr270(∗)). We describe here the second Spanish patient whit mutation in CHKB gene, who despite having the same mutation, presented an atypical aspect: congenital neurogenic muscular atrophy progressing to a combined neuropathic and myopathic phenotype (mixed pattern).

  3. Bed Rest Muscular Atrophy

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.

    2000-01-01

    A major debilitating response from prolonged bed rest (BR) is muscle atrophy, defined as a "decrease in size of a part of tissue after full development has been attained: a wasting away of tissue as from disuse, old age, injury or disease". Part of the complicated mechanism for the dizziness, increased body instability, and exaggerated gait in patients who arise immediately after BR may be a result of not only foot pain, but also of muscular atrophy and associated reduction in lower limb strength. Also, there seems to be a close association between muscle atrophy and bone atrophy. A discussion of many facets of the total BR homeostatic syndrome has been published. The old adage that use determines form which promotes function of bone (Wolff's law) also applies to those people exposed to prolonged BR (without exercise training) in whom muscle atrophy is a consistent finding. An extreme case involved a 16-year-old boy who was ordered to bed by his mother in 1932: after 50 years in bed he had "a lily-white frame with limbs as thin as the legs of a ladder-back chair". These findings emphasize the close relationship between muscle atrophy and bone atrophy. In addition to loss of muscle mass during deconditioning, there is a significant loss of muscle strength and a decrease in protein synthesis. Because the decreases in force (strength) are proportionately greater than those in fiber size or muscle cross-sectional area, other contributory factors must be involved; muscle fiber dehydration may be important.

  4. Isolation of cDNA clones from within the spinal muscular atrophy (SMA) disease gene region

    SciTech Connect

    McLean, M.; Roy, N.; Tamai, K.

    1994-09-01

    Spinal muscular atrophy (SMA) is a recessive neuromuscular disease characterized by death of spinal cord {alpha} motor neurons, resulting in skeletal muscle atrophy. The critical SMA disease gene region on 5q13.1 contains families of microsatellite repeat sequences which exist at multiple subloci that are dispersed over a 100 to 200 kbp region. We have detected significant linkage disequilibrium between SMA type 1, the most severe form of the disorder, and two subloci of one such microsatellite, the CATT-1 family of microsatellites. Furthermore, a recombination event in a chromosome of an individual with SMA type 1 mapping between the members of two other extended microsatellite families, including CMS-1, has been observed. Combining this with previously reported recombinants refines the critical SMA region to approximately 300 kbp. P1 artificial chromosome (PAC), YAC and cosmid clones which possess both CMS-1 alleles which bracket this recombination event, as well as CATT-1 alleles showing linkage disequilibrium with SMA, have been used to probe cDNA libraries from human and other mammalian sources in search of genes within this interval; three of these cDNAs are currently being tested as candidates for the SMA gene.

  5. Construction of a yeast artifical chromosome contig spanning the spinal muscular atrophy disease gene region

    SciTech Connect

    Kleyn, P.W.; Wang, C.H.; Vitale, E.; Pan, J.; Ross, B.M.; Grunn, A.; Palmer, D.A.; Warburton, D.; Brzustowicz, L.M.; Gilliam, T.G. ); Lien, L.L.; Kunkel, L.M. )

    1993-07-15

    The childhood spinal muscular atrophies (SMAs) are the most common, serious neuromuscular disorders of childhood second to Duchenne muscular dystrophy. A single locus for these disorders has been mapped by recombination events to a region of 0.7 centimorgan (range, 0.1-2.1 centimorgans) between loci D5S435 and MAP1B on chromosome 5q11.2-13.3. By using PCR amplification to screen yeast artificial chromosome (YAC) DNA pools and the PCR-vectorette method to amplify YAC ends, a YAC contig was constructed across the disease gene region. Nine walk steps identified 32 YACs, including a minimum of seven overlapping YAC clones (average size, 460 kb) that span the SMA region. The contig is characterized by a collection of 30 YAC-end sequence tag sites together with seven genetic markers. The entire YAC contig spans a minimum of 3.2 Mb; the SMA locus is confined to roughly half of this region. Microsatellite markers generated along the YAC contig segregate with the SMA locus in all families where the flanking markers (D5S435 and MAP1B) recombine. Construction of a YAC contig across the disease gene region is an essential step in isolation of the SMA-encoding gene. 26 refs., 3 figs., 1 tab.

  6. Deletions of the survival motor neuron gene in unaffected siblings of patients with spinal muscular atrophy

    SciTech Connect

    Cobben, J.M.; Steege, G. van der; Grootscholten, P.

    1995-10-01

    DNA studies in 103 spinal muscular atrophy (SMA) patients from The Netherlands revealed homozygosity for a survival motor neuron (SMN) deletion in 96 (93%) of 103. Neuronal apoptosis inhibitory protein deletions were found in 38 (37%) of 103 and occurred most frequently in SMA type 1. SMN deletions have not yet been described to occur in healthy subjects. In this study, however, four unaffected sibs from two SMA families showed homozygosity for SMN deletions. Homozygosity for an SMN deletion in unaffected persons seems to be very rare. Therefore, demonstration of a homozygous SMN deletion in a clinically presumed SMA patient should be considered as a confirmation of the diagnosis, whether or not SMN is in fact the causal gene for SMA. 19 refs., 2 figs.

  7. Peripheral androgen receptor gene suppression rescues disease in mouse models of spinal and bulbar muscular atrophy.

    PubMed

    Lieberman, Andrew P; Yu, Zhigang; Murray, Sue; Peralta, Raechel; Low, Audrey; Guo, Shuling; Yu, Xing Xian; Cortes, Constanza J; Bennett, C Frank; Monia, Brett P; La Spada, Albert R; Hung, Gene

    2014-05-01

    Spinal and bulbar muscular atrophy (SBMA) is caused by the polyglutamine androgen receptor (polyQ-AR), a protein expressed by both lower motor neurons and skeletal muscle. Although viewed as a motor neuronopathy, data from patients and mouse models suggest that muscle contributes to disease pathogenesis. Here, we tested this hypothesis using AR113Q knockin and human bacterial artificial chromosome/clone (BAC) transgenic mice that express the full-length polyQ-AR and display androgen-dependent weakness, muscle atrophy, and early death. We developed antisense oligonucleotides that suppressed AR gene expression in the periphery but not the CNS after subcutaneous administration. Suppression of polyQ-AR in the periphery rescued deficits in muscle weight, fiber size, and grip strength, reversed changes in muscle gene expression, and extended the lifespan of mutant males. We conclude that polyQ-AR expression in the periphery is an important contributor to pathology in SBMA mice and that peripheral administration of therapeutics should be explored for SBMA patients. PMID:24746732

  8. Peripheral androgen receptor gene suppression rescues disease in mouse models of spinal and bulbar muscular atrophy.

    PubMed

    Lieberman, Andrew P; Yu, Zhigang; Murray, Sue; Peralta, Raechel; Low, Audrey; Guo, Shuling; Yu, Xing Xian; Cortes, Constanza J; Bennett, C Frank; Monia, Brett P; La Spada, Albert R; Hung, Gene

    2014-05-01

    Spinal and bulbar muscular atrophy (SBMA) is caused by the polyglutamine androgen receptor (polyQ-AR), a protein expressed by both lower motor neurons and skeletal muscle. Although viewed as a motor neuronopathy, data from patients and mouse models suggest that muscle contributes to disease pathogenesis. Here, we tested this hypothesis using AR113Q knockin and human bacterial artificial chromosome/clone (BAC) transgenic mice that express the full-length polyQ-AR and display androgen-dependent weakness, muscle atrophy, and early death. We developed antisense oligonucleotides that suppressed AR gene expression in the periphery but not the CNS after subcutaneous administration. Suppression of polyQ-AR in the periphery rescued deficits in muscle weight, fiber size, and grip strength, reversed changes in muscle gene expression, and extended the lifespan of mutant males. We conclude that polyQ-AR expression in the periphery is an important contributor to pathology in SBMA mice and that peripheral administration of therapeutics should be explored for SBMA patients.

  9. Severe spinal muscular atrophy variant associated with congenital bone fractures.

    PubMed

    Felderhoff-Mueser, Ursula; Grohmann, Katja; Harder, Anja; Stadelmann, Christine; Zerres, Klaus; Bührer, Christoph; Obladen, Michael

    2002-09-01

    Infantile autosomal recessive spinal muscular atrophy (type I) represents a lethal disorder leading to progressive symmetric muscular atrophy of limb and trunk muscles. Ninety-six percent cases of spinal muscular atrophy type I are caused by deletions or mutations in the survival motoneuron gene (SMNI) on chromosome 5q11.2-13.3. However, a number of chromosome 5q-negative patients with additional clinical features (respiratory distress, cerebellar hypoplasia) have been designated in the literature as infantile spinal muscular atrophy plus forms. In addition, the combination of severe spinal muscular atrophy and neurogenic arthrogryposis has been described. We present clinical, molecular, and autopsy findings of a newborn boy presenting with generalized muscular atrophy in combination with congenital bone fractures and extremely thin ribs but without contractures.

  10. Complex repetitive arrangements of gene sequence in the candidate region of the spinal muscular atrophy gene in 5q13

    SciTech Connect

    Theodosiou, A.M.; Nesbit, A.M.; Daniels, R.J.; Campbell, L.; Francis, M.J.; Christodoulou, Z.; Morrison, K.E.; Davies, K.E. |

    1994-12-01

    Childhood-onset proximal spinal muscular atrophy (SMA) is a heritable neurological disorder, which has been mapped by genetic linkage analysis to chromosome 5q13, in the interval between markers D5S435 and D5S557. Here, we present gene sequences that have been isolated from this interval, several of which show sequence homologies to exons of {beta}-glucuronidase. These gene sequences are repeated several times across the candidate region and are also present on chromosome 5p. The arrangement of these repetitive gene motifs is polymorphic between individuals. The high degree of variability observed may have some influence on the expression of the genes in the region. Since SMA is not inherited as a classical autosomal recessive disease, novel genomic rearrangements arising from aberrant recombination events between the complex repeats may be associated with the phenotype observed.

  11. Apparent gene conversions involving the SMN gene in the region of the spinal muscular atrophy locus on chromosome 5

    SciTech Connect

    Steege, G. van der; Grootscholten, P.M.; Cobben, J.M.; Scheffer, H.; Buys, C.H.C.M.

    1996-10-01

    The survival motor neuron (SMN) gene has been described as a determining gene for spinal muscular atrophy (SMA). SMN has a closely flanking, nearly identical copy ({sup C}BCD541). Gene and copy gene can be discriminated by sequence differences in exons 7 and 8. The large majority of SMA patients show homozygous deletions of at least exons 7 and 8 of the SMN gene. A minority of patients show absence of SMN exon 7 but retention of exon 8. This is explained by results of our present analysis of 13 such patients providing evidence for apparent gene-conversion events between SMN and the centromeric copy gene. Instead of applying a separate analysis for absence or presence of SMN exons 7 and 8, we used a contiguous PCR from intron 6 to exon 8. In every case we found a chimeric gene with a fusion of exon 7 of the copy gene and exon 8 of SMN and absence of a normal SMN gene. Similar events, including the fusion counterpart, were observed in a group of controls, although in the presence of a normal SMN gene. Chimeric genes as the result of fusions of parts of SMN and {sup C}BCD541 apparently are far from rare and may partly explain the frequently observed SMN deletions in SMA patients. 23 refs., 4 figs.

  12. Spinal Muscular Atrophy

    MedlinePlus

    ... or missing gene known as the survival motor neuron gene 1 (SMN1), which is responsible for the production of a protein essential to motor neurons. Without this protein, lower motor neurons in the ...

  13. Oxidative Stress Triggers Body-Wide Skipping of Multiple Exons of the Spinal Muscular Atrophy Gene

    PubMed Central

    Seo, Joonbae; Singh, Natalia N.; Ottesen, Eric W.; Sivanesan, Senthilkumar; Shishimorova, Maria; Singh, Ravindra N.

    2016-01-01

    Humans carry two nearly identical copies of Survival Motor Neuron gene: SMN1 and SMN2. Loss of SMN1 leads to spinal muscular atrophy (SMA), the most frequent genetic cause of infant mortality. While SMN2 cannot compensate for the loss of SMN1 due to predominant skipping of exon 7, correction of SMN2 exon 7 splicing holds the promise of a cure for SMA. Previously, we used cell-based models coupled with a multi-exon-skipping detection assay (MESDA) to demonstrate the vulnerability of SMN2 exons to aberrant splicing under the conditions of oxidative stress (OS). Here we employ a transgenic mouse model and MESDA to examine the OS-induced splicing regulation of SMN2 exons. We induced OS using paraquat that is known to trigger production of reactive oxygen species and cause mitochondrial dysfunction. We show an overwhelming co-skipping of SMN2 exon 5 and exon 7 under OS in all tissues except testis. We also show that OS increases skipping of SMN2 exon 3 in all tissues except testis. We uncover several new SMN2 splice isoforms expressed at elevated levels under the conditions of OS. We analyze cis-elements and transacting factors to demonstrate the diversity of mechanisms for splicing misregulation under OS. Our results of proteome analysis reveal downregulation of hnRNP H as one of the potential consequences of OS in brain. Our findings suggest SMN2 as a sensor of OS with implications to SMA and other diseases impacted by low levels of SMN protein. PMID:27111068

  14. Spinal Muscular Atrophy

    PubMed Central

    Kolb, Stephen J.; Kissel, John T.

    2015-01-01

    Incidence The incidence of SMA is 1:11,000 live births [1]. Prevalence The prevalence of the carrier state is approximately 1 in 54 [1]. Severity The clinical severity of SMA correlates inversely with SMN2 gene copy number and varies from an extreme weakness and paraplegia of infancy to a mild proximal weakness of adulthood. Natural History The natural history of SMA is complex and variable. For this reason, clinical subgroups have been defined based upon best motor function attainment during development. Type 1 SMA infants never sit independently. Type 2 SMA children sit at some point during their childhood, but never walk independently. And Type 3 SMA children and adults are able to walk independently at some point in their childhood. PMID:26515624

  15. Copy Number Variations in the Survival Motor Neuron Genes: Implications for Spinal Muscular Atrophy and Other Neurodegenerative Diseases

    PubMed Central

    Butchbach, Matthew E. R.

    2016-01-01

    Proximal spinal muscular atrophy (SMA), a leading genetic cause of infant death worldwide, is an early-onset, autosomal recessive neurodegenerative disease characterized by the loss of spinal α-motor neurons. This loss of α-motor neurons is associated with muscle weakness and atrophy. SMA can be classified into five clinical grades based on age of onset and severity of the disease. Regardless of clinical grade, proximal SMA results from the loss or mutation of SMN1 (survival motor neuron 1) on chromosome 5q13. In humans a large tandem chromosomal duplication has lead to a second copy of the SMN gene locus known as SMN2. SMN2 is distinguishable from SMN1 by a single nucleotide difference that disrupts an exonic splice enhancer in exon 7. As a result, most of SMN2 mRNAs lack exon 7 (SMNΔ7) and produce a protein that is both unstable and less than fully functional. Although only 10–20% of the SMN2 gene product is fully functional, increased genomic copies of SMN2 inversely correlates with disease severity among individuals with SMA. Because SMN2 copy number influences disease severity in SMA, there is prognostic value in accurate measurement of SMN2 copy number from patients being evaluated for SMA. This prognostic value is especially important given that SMN2 copy number is now being used as an inclusion criterion for SMA clinical trials. In addition to SMA, copy number variations (CNVs) in the SMN genes can affect the clinical severity of other neurological disorders including amyotrophic lateral sclerosis (ALS) and progressive muscular atrophy (PMA). This review will discuss how SMN1 and SMN2 CNVs are detected and why accurate measurement of SMN1 and SMN2 copy numbers is relevant for SMA and other neurodegenerative diseases. PMID:27014701

  16. Bone and Spinal Muscular Atrophy.

    PubMed

    Vai, Silvia; Bianchi, Maria Luisa; Moroni, Isabella; Mastella, Chiara; Broggi, Francesca; Morandi, Lucia; Arnoldi, Maria Teresa; Bussolino, Chiara; Baranello, Giovanni

    2015-10-01

    Spinal Muscular Atrophy (SMA) is an autosomal recessive neuromuscular disease, leading to progressive denervation atrophy in the involved skeletal muscles. Bone status has been poorly studied. We assessed bone metabolism, bone mineral density (BMD) and fractures in 30 children (age range 15-171 months) affected by SMA types 2 and 3. Eighteen children (60%) had higher than normal levels of CTx (bone resorption marker); 25-OH vitamin D was in the lower range of normal (below 20 ng/ml in 9 children and below 12 ng/ml in 2). Lumbar spine BMAD (bone mineral apparent density) Z-score was below -1.5 in 50% of children. According to clinical records, four children had sustained four peripheral fractures; on spine X-rays, we observed 9 previously undiagnosed vertebral fractures in 7 children. There was a significant inverse regression between PTH and 25-OH D levels, and a significant regression between BMC and BMAD values and the scores of motor-functional tests. Even if this study could not establish the pathogenesis of bone derangements in SMA, its main findings - reduced bone density, low 25OH vitamin D levels, increased bone resorption markers and asymptomatic vertebral fractures also in very young patients - strongly suggest that even young subjects affected by SMA should be considered at risk of osteopenia and even osteoporosis and fractures. PMID:26055105

  17. Spinal and Bulbar Muscular Atrophy Overview

    PubMed Central

    Fischbeck, Kenneth H.

    2016-01-01

    Spinal and bulbar muscular atrophy is an X-linked neuromuscular disease caused by an expanded repeat in the androgen receptor gene. The mutant protein is toxic to motor neurons and muscle. The toxicity is ligand-dependent and likely involves aberrant interaction of the mutant androgen receptor with other nuclear factors leading to transcriptional dysregulation. Various therapeutic strategies have been effective in transgenic animal models, and the challenge now is to translate these strategies into safe and effective treatment in patients. PMID:26547319

  18. Spinal muscular atrophy, John Griffin, and mentorship.

    PubMed

    Sumner, Charlotte J

    2012-12-01

    Hereditary canine spinal muscular atrophy is an inherited motor neuron disease that occurs in Brittany Spaniels and has remarkable similarities with human spinal muscular atrophy. Both disorders are characterized by proximal limb and truncal muscle weakness of variable severity. Detailed pathological studies indicate that there is early dysfunction of motor neuron synapses, particularly the neuromuscular junction synapse, prior to motor neuron death. This period of synaptic dysfunction may define a critical window of opportunity for disease reversibility in motor neuron disease.

  19. Proximal spinal muscular atrophy: current orthopedic perspective

    PubMed Central

    Haaker, Gerrit; Fujak, Albert

    2013-01-01

    Spinal muscular atrophy (SMA) is a hereditary neuromuscular disease of lower motor neurons that is caused by a defective “survival motor neuron” (SMN) protein that is mainly associated with proximal progressive muscle weakness and atrophy. Although SMA involves a wide range of disease severity and a high mortality and morbidity rate, recent advances in multidisciplinary supportive care have enhanced quality of life and life expectancy. Active research for possible treatment options has become possible since the disease-causing gene defect was identified in 1995. Nevertheless, a causal therapy is not available at present, and therapeutic management of SMA remains challenging; the prolonged survival is increasing, especially orthopedic, respiratory and nutritive problems. This review focuses on orthopedic management of the disease, with discussion of key aspects that include scoliosis, muscular contractures, hip joint disorders, fractures, technical devices, and a comparative approach of conservative and surgical treatment. Also emphasized are associated complications including respiratory involvement, perioperative care and anesthesia, nutrition problems, and rehabilitation. The SMA disease course can be greatly improved with adequate therapy with established orthopedic procedures in a multidisciplinary therapeutic approach. PMID:24399883

  20. An Integrative Transcriptomic Analysis for Identifying Novel Target Genes Corresponding to Severity Spectrum in Spinal Muscular Atrophy

    PubMed Central

    Yang, Chung-Wei; Chen, Chien-Lin; Chou, Wei-Chun; Lin, Ho-Chen; Jong, Yuh-Jyh; Tsai, Li-Kai; Chuang, Chun-Yu

    2016-01-01

    Spinal muscular atrophy (SMA) is an inherited neuromuscular disease resulting from a recessive mutation in the SMN1 gene. This disease affects multiple organ systems with varying degrees of severity. Exploration of the molecular pathological changes occurring in different cell types in SMA is crucial for developing new therapies. This study collected 39 human microarray datasets from ArrayExpress and GEO databases to build an integrative transcriptomic analysis for recognizing novel SMA targets. The transcriptomic analysis was conducted through combining weighted correlation network analysis (WGCNA) for gene module detection, gene set enrichment analysis (GSEA) for functional categorization and filtration, and Cytoscape (visual interaction gene network analysis) for target gene identification. Seven novel target genes (Bmp4, Serpine1, Gata6, Ptgs2, Bcl2, IL6 and Cntn1) of SMA were revealed, and are all known in the regulation of TNFα for controlling neural, cardiac and bone development. Sequentially, the differentially expressed patterns of these 7 target genes in mouse tissues (e.g., spinal cord, heart, muscles and bone) were validated in SMA mice of different severities (pre-symptomatic, mildly symptomatic, and severely symptomatic). In severely symptomatic SMA mice, TNFα was up-regulated with attenuation of Bmp4 and increase of Serpine1 and Gata6 (a pathway in neural and cardiac development), but not in pre-symptomatic and mildly symptomatic SMA mice. The severely symptomatic SMA mice also had the elevated levels of Ptgs2 and Bcl2 (a pathway in skeletal development) as well as IL6 and Cntn1 (a pathway in nervous system development). Thus, the 7 genes identified in this study might serve as potential target genes for future investigations of disease pathogenesis and SMA therapy. PMID:27331400

  1. Genetics Home Reference: spinal muscular atrophy with progressive myoclonic epilepsy

    MedlinePlus

    ... myoclonic epilepsy spinal muscular atrophy with progressive myoclonic epilepsy Enable Javascript to view the expand/collapse boxes. ... All Description Spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME) is a neurological condition that causes ...

  2. Congenital contractural arachnodactyly with neurogenic muscular atrophy: case report.

    PubMed

    Scola, R H; Werneck, L C; Iwamoto, F M; Ribas, L C; Raskin, S; Correa Neto, Y

    2001-06-01

    We report the case of a 3-(1/2)-year-old girl with hypotonia, multiple joint contractures, hip luxation, arachnodactyly, adducted thumbs, dolichostenomelia, and abnormal external ears suggesting the diagnosis of congenital contractural arachnodactyly (CCA). The serum muscle enzymes were normal and the needle electromyography showed active and chronic denervation. The muscle biopsy demonstrated active and chronic denervation compatible with spinal muscular atrophy. Analysis of exons 7 and 8 of survival motor neuron gene through polymerase chain reaction did not show deletions. Neurogenic muscular atrophy is a new abnormality associated with CCA, suggesting that CCA is clinically heterogeneous.

  3. Spinal Muscular Atrophy: Current Therapeutic Strategies

    NASA Astrophysics Data System (ADS)

    Kiselyov, Alex S.; Gurney, Mark E.

    Proximal spinal muscular atrophy (SMA) is an autosomal recessive disorder characterized by death of motor neurons in the spinal cord. SMA is caused by deletion and/or mutation of the survival motor neuron gene (SMN1) on chromosome 5q13. There are variable numbers of copies of a second, related gene named SMN2 located in the proximity to SMN1. Both genes encode the same protein (Smn). Loss of SMN1 and incorrect splicing of SMN2 affect cellular levels of Smn triggering death of motor neurons. The severity of SMA is directly related to the normal number of copies of SMN2 carried by the patient. A considerable effort has been dedicated to identifying modalities including both biological and small molecule agents that increase SMN2 promoter activity to upregulate gene transcription and produce increased quantities of full-length Smn protein. This review summarizes recent progress in the area and suggests potential target product profile for an SMA therapeutic.

  4. [Fractures in spinal muscular atrophy].

    PubMed

    Febrer, Anna; Vigo, Meritxell; Rodríguez, Natalia; Medina, Julita; Colomer, Jaume; Nascimento, Andrés

    2013-09-01

    Objetivo. Determinar la frecuencia de fracturas en pacientes con atrofia muscular espinal, mecanismo de produccion, edad de aparicion y repercusion funcional. Pacientes y metodos. Se estudian 65 pacientes con atrofia muscular espinal. Se recogen las fracturas diagnosticadas mediante radiografia y se analizan los siguientes parametros: tipo de atrofia muscular espinal, marcha, edad en el momento de la fractura, mecanismo de produccion, localizacion, tratamiento aplicado y repercusion funcional. Resultados. Presentaron fracturas 13 pacientes (20%), con un total de 20 (cuatro presentaron dos o mas fracturas). La edad media fue de 6,35 años. La localizacion fue en su mayoria en el femur y el mecanismo de produccion, en 12 casos por caidas y en 8 por traumatismo menor. No detectamos ninguna fractura vertebral. Todas se trataron de manera conservadora. El unico paciente ambulante que presento una fractura dejo de caminar despues de la inmovilizacion. Conclusiones. La existencia de fracturas en estos pacientes interfiere en su calidad de vida y en el nivel funcional. Es importante la prevencion de las mismas en el manejo del paciente y vigilando la correcta postura en la silla de ruedas con sistemas de sujecion Deberian emprenderse mas estudios sobre la perdida de densidad mineral osea en estos pacientes y su posible relacion con las fracturas.

  5. In vivo selection reveals combinatorial controls that define a critical exon in the spinal muscular atrophy genes

    PubMed Central

    SINGH, NATALIA N.; ANDROPHY, ELLIOT J.; SINGH, RAVINDRA N.

    2004-01-01

    Humans have two near identical copies of the survival of motor neuron (SMN) gene, SMN1 and SMN2. In spinal muscular atrophy (SMA), SMN2 is not able to compensate for the loss of SMN1 due to an inhibitory mutation at position 6 (C6U mutation in transcript) of exon 7. We have recently shown that C6U creates an extended inhibitory context (Exinct) that causes skipping of exon 7 in SMN2. Previous studies have shown that an exonic splicing enhancer associated with Tra2 (Tra2-ESE) is required for exon 7 inclusion in both SMN1 and SMN2. Here we describe the method of in vivo selection that determined the position-specific role of wild-type nucleotides within the entire exon 7. Our results confirmed the existence of Exinct and revealed the presence of an additional inhibitory tract (3′-Cluster) near the 3′-end of exon 7. We also demonstrate that a single nucleotide substitution at the last position of exon 7 improves the 5′ splice site (ss) such that the presence of inhibitory elements (Exinct as well as the 3′-Cluster) and the absence of Tra2-ESE no longer determined exon 7 usage. Our results suggest that the evolutionary conserved weak 5′ ss may serve as a mechanism to regulate exon 7 splicing under different physiological contexts. This is the first report in which a functional selection method has been applied to analyze the entire exon. This method offers unparallel advantage for determining the relative strength of splice sites, as well as for identifying the novel exonic cis-elements. PMID:15272122

  6. Neuronal involvement in muscular atrophy

    PubMed Central

    Cisterna, Bruno A.; Cardozo, Christopher; Sáez, Juan C.

    2014-01-01

    The innervation of skeletal myofibers exerts a crucial influence on the maintenance of muscle tone and normal operation. Consequently, denervated myofibers manifest atrophy, which is preceded by an increase in sarcolemma permeability. Recently, de novo expression of hemichannels (HCs) formed by connexins (Cxs) and other none selective channels, including P2X7 receptors (P2X7Rs), and transient receptor potential, sub-family V, member 2 (TRPV2) channels was demonstrated in denervated fast skeletal muscles. The denervation-induced atrophy was drastically reduced in denervated muscles deficient in Cxs 43 and 45. Nonetheless, the transduction mechanism by which the nerve represses the expression of the above mentioned non-selective channels remains unknown. The paracrine action of extracellular signaling molecules including ATP, neurotrophic factors (i.e., brain-derived neurotrophic factor (BDNF)), agrin/LDL receptor-related protein 4 (Lrp4)/muscle-specific receptor kinase (MuSK) and acetylcholine (Ach) are among the possible signals for repression for connexin expression. This review discusses the possible role of relevant factors in maintaining the normal functioning of fast skeletal muscles and suppression of connexin hemichannel expression. PMID:25540609

  7. [Spinal muscular atrophy in Braunvieh calves].

    PubMed

    Stocker, H; Ossent, P; Heckmann, R; Oertle, C

    1992-01-01

    Clinical, neurophysiological and histopathological findings of sixteen cases of spinal muscular atrophy in calves are described. The first clinical signs usually were noticed at 2-6 weeks of age. The animals showed weakness in the hindquarters, trembling and ultimate recumbency. There was a marked muscular atrophy in all four extremities. In addition, secondary bronchopneumonia was evident in 11 cases. Histopathological lesions consisted of degenerative changes in the neurons of the ventral horns and the axons of the spinal cord as well as degeneration of nerve axons in the extremities. Neurophysiological measurements revealed spontaneous activity in the muscles of the limbs. The conditions is autosomal recessive. So far 11 bulls have been identified and excluded from breeding.

  8. Neuroprotective Effect of Non-viral Gene Therapy Treatment Based on Tetanus Toxin C-fragment in a Severe Mouse Model of Spinal Muscular Atrophy

    PubMed Central

    Oliván, Sara; Calvo, Ana C.; Rando, Amaya; Herrando-Grabulosa, Mireia; Manzano, Raquel; Zaragoza, Pilar; Tizzano, Eduardo F.; Aquilera, Jose; Osta, Rosario

    2016-01-01

    Spinal muscular atrophy (SMA) is a hereditary childhood disease that causes paralysis and progressive degeneration of skeletal muscles and spinal motor neurons. SMA is associated with reduced levels of full-length Survival of Motor Neuron (SMN) protein, due to mutations in the Survival of Motor Neuron 1 gene. Nowadays there are no effective therapies available to treat patients with SMA, so our aim was to test whether the non-toxic carboxy-terminal fragment of tetanus toxin heavy chain (TTC), which exhibits neurotrophic properties, might have a therapeutic role or benefit in SMA. In this manuscript, we have demonstrated that TTC enhance the SMN expression in motor neurons “in vitro” and evaluated the effect of intramuscular injection of TTC-encoding plasmid in the spinal cord and the skeletal muscle of SMNdelta7 mice. For this purpose, we studied the weight and the survival time, as well as, the survival and cell death pathways and muscular atrophy. Our results showed that TTC treatment reduced the expression of autophagy markers (Becn1, Atg5, Lc3, and p62) and pro-apoptotic genes such as Bax and Casp3 in spinal cord. In skeletal muscle, TTC was able to downregulate the expression of the main marker of autophagy, Lc3, to wild-type levels and the expression of the apoptosis effector protein, Casp3. Regarding the genes related to muscular atrophy (Ankrd1, Calm1, Col19a1, Fbox32, Mt2, Myod1, NogoA, Pax7, Rrad, and Sln), TTC suggest a compensatory effect for muscle damage response, diminished oxidative stress and modulated calcium homeostasis. These preliminary findings suggest the need for further experiments to depth study the effect of TTC in SMA disease. PMID:27605908

  9. Neuroprotective Effect of Non-viral Gene Therapy Treatment Based on Tetanus Toxin C-fragment in a Severe Mouse Model of Spinal Muscular Atrophy.

    PubMed

    Oliván, Sara; Calvo, Ana C; Rando, Amaya; Herrando-Grabulosa, Mireia; Manzano, Raquel; Zaragoza, Pilar; Tizzano, Eduardo F; Aquilera, Jose; Osta, Rosario

    2016-01-01

    Spinal muscular atrophy (SMA) is a hereditary childhood disease that causes paralysis and progressive degeneration of skeletal muscles and spinal motor neurons. SMA is associated with reduced levels of full-length Survival of Motor Neuron (SMN) protein, due to mutations in the Survival of Motor Neuron 1 gene. Nowadays there are no effective therapies available to treat patients with SMA, so our aim was to test whether the non-toxic carboxy-terminal fragment of tetanus toxin heavy chain (TTC), which exhibits neurotrophic properties, might have a therapeutic role or benefit in SMA. In this manuscript, we have demonstrated that TTC enhance the SMN expression in motor neurons "in vitro" and evaluated the effect of intramuscular injection of TTC-encoding plasmid in the spinal cord and the skeletal muscle of SMNdelta7 mice. For this purpose, we studied the weight and the survival time, as well as, the survival and cell death pathways and muscular atrophy. Our results showed that TTC treatment reduced the expression of autophagy markers (Becn1, Atg5, Lc3, and p62) and pro-apoptotic genes such as Bax and Casp3 in spinal cord. In skeletal muscle, TTC was able to downregulate the expression of the main marker of autophagy, Lc3, to wild-type levels and the expression of the apoptosis effector protein, Casp3. Regarding the genes related to muscular atrophy (Ankrd1, Calm1, Col19a1, Fbox32, Mt2, Myod1, NogoA, Pax7, Rrad, and Sln), TTC suggest a compensatory effect for muscle damage response, diminished oxidative stress and modulated calcium homeostasis. These preliminary findings suggest the need for further experiments to depth study the effect of TTC in SMA disease. PMID:27605908

  10. Neuroprotective Effect of Non-viral Gene Therapy Treatment Based on Tetanus Toxin C-fragment in a Severe Mouse Model of Spinal Muscular Atrophy.

    PubMed

    Oliván, Sara; Calvo, Ana C; Rando, Amaya; Herrando-Grabulosa, Mireia; Manzano, Raquel; Zaragoza, Pilar; Tizzano, Eduardo F; Aquilera, Jose; Osta, Rosario

    2016-01-01

    Spinal muscular atrophy (SMA) is a hereditary childhood disease that causes paralysis and progressive degeneration of skeletal muscles and spinal motor neurons. SMA is associated with reduced levels of full-length Survival of Motor Neuron (SMN) protein, due to mutations in the Survival of Motor Neuron 1 gene. Nowadays there are no effective therapies available to treat patients with SMA, so our aim was to test whether the non-toxic carboxy-terminal fragment of tetanus toxin heavy chain (TTC), which exhibits neurotrophic properties, might have a therapeutic role or benefit in SMA. In this manuscript, we have demonstrated that TTC enhance the SMN expression in motor neurons "in vitro" and evaluated the effect of intramuscular injection of TTC-encoding plasmid in the spinal cord and the skeletal muscle of SMNdelta7 mice. For this purpose, we studied the weight and the survival time, as well as, the survival and cell death pathways and muscular atrophy. Our results showed that TTC treatment reduced the expression of autophagy markers (Becn1, Atg5, Lc3, and p62) and pro-apoptotic genes such as Bax and Casp3 in spinal cord. In skeletal muscle, TTC was able to downregulate the expression of the main marker of autophagy, Lc3, to wild-type levels and the expression of the apoptosis effector protein, Casp3. Regarding the genes related to muscular atrophy (Ankrd1, Calm1, Col19a1, Fbox32, Mt2, Myod1, NogoA, Pax7, Rrad, and Sln), TTC suggest a compensatory effect for muscle damage response, diminished oxidative stress and modulated calcium homeostasis. These preliminary findings suggest the need for further experiments to depth study the effect of TTC in SMA disease.

  11. Neuroprotective Effect of Non-viral Gene Therapy Treatment Based on Tetanus Toxin C-fragment in a Severe Mouse Model of Spinal Muscular Atrophy

    PubMed Central

    Oliván, Sara; Calvo, Ana C.; Rando, Amaya; Herrando-Grabulosa, Mireia; Manzano, Raquel; Zaragoza, Pilar; Tizzano, Eduardo F.; Aquilera, Jose; Osta, Rosario

    2016-01-01

    Spinal muscular atrophy (SMA) is a hereditary childhood disease that causes paralysis and progressive degeneration of skeletal muscles and spinal motor neurons. SMA is associated with reduced levels of full-length Survival of Motor Neuron (SMN) protein, due to mutations in the Survival of Motor Neuron 1 gene. Nowadays there are no effective therapies available to treat patients with SMA, so our aim was to test whether the non-toxic carboxy-terminal fragment of tetanus toxin heavy chain (TTC), which exhibits neurotrophic properties, might have a therapeutic role or benefit in SMA. In this manuscript, we have demonstrated that TTC enhance the SMN expression in motor neurons “in vitro” and evaluated the effect of intramuscular injection of TTC-encoding plasmid in the spinal cord and the skeletal muscle of SMNdelta7 mice. For this purpose, we studied the weight and the survival time, as well as, the survival and cell death pathways and muscular atrophy. Our results showed that TTC treatment reduced the expression of autophagy markers (Becn1, Atg5, Lc3, and p62) and pro-apoptotic genes such as Bax and Casp3 in spinal cord. In skeletal muscle, TTC was able to downregulate the expression of the main marker of autophagy, Lc3, to wild-type levels and the expression of the apoptosis effector protein, Casp3. Regarding the genes related to muscular atrophy (Ankrd1, Calm1, Col19a1, Fbox32, Mt2, Myod1, NogoA, Pax7, Rrad, and Sln), TTC suggest a compensatory effect for muscle damage response, diminished oxidative stress and modulated calcium homeostasis. These preliminary findings suggest the need for further experiments to depth study the effect of TTC in SMA disease.

  12. Late onset GM2 gangliosidosis mimicking spinal muscular atrophy.

    PubMed

    Jamrozik, Z; Lugowska, A; Gołębiowski, M; Królicki, L; Mączewska, J; Kuźma-Kozakiewicz, M

    2013-09-25

    A case of late onset GM2 gangliosidodis with spinal muscular atrophy phenotype followed by cerebellar and extrapyramidal symptoms is presented. Genetic analysis revealed compound heterozygous mutation in exon 10 of the HEXA gene. Patient has normal intelligence and emotional reactivity. Neuroimaging tests of the brain showed only cerebellar atrophy consistent with MR spectroscopy (MRS) abnormalities. (18)F-fluorodeoxyglucose positron emission tomography (18)F-FDG PET/CT of the brain revealed glucose hypometabolism in cerebellum and in temporal and occipital lobes bilaterally. PMID:23820084

  13. Clinical and genetic diversity of SMN1-negative proximal spinal muscular atrophies

    PubMed Central

    Jordanova, Albena

    2014-01-01

    Hereditary spinal muscular atrophy is a motor neuron disorder characterized by muscle weakness and atrophy due to degeneration of the anterior horn cells of the spinal cord. Initially, the disease was considered purely as an autosomal recessive condition caused by loss-of-function SMN1 mutations on 5q13. Recent developments in next generation sequencing technologies, however, have unveiled a growing number of clinical conditions designated as non-5q forms of spinal muscular atrophy. At present, 16 different genes and one unresolved locus are associated with proximal non-5q forms, having high phenotypic variability and diverse inheritance patterns. This review provides an overview of the current knowledge regarding the phenotypes, causative genes, and disease mechanisms associated with proximal SMN1-negative spinal muscular atrophies. We describe the molecular and cellular functions enriched among causative genes, and discuss the challenges in the post-genomics era of spinal muscular atrophy research. PMID:24970098

  14. Association of copy numbers of survival motor neuron gene 2 and neuronal apoptosis inhibitory protein gene with the natural history in a Chinese spinal muscular atrophy cohort.

    PubMed

    Qu, Yu-jin; Ge, Xiu-shan; Bai, Jin-li; Wang, Li-wen; Cao, Yan-yan; Lu, Yan-yu; Jin, Yu-wei; Wang, Hong; Song, Fang

    2015-03-01

    We evaluated survival motor neuron 2 (SMN2) and neuronal apoptosis inhibitory protein (NAIP) gene copy distribution and the association of copy number with survival in 232 Chinese spinal muscular atrophy (SMA) patients. The SMN2 and NAIP copy numbers correlated positively with the median onset age (r = 0.72 and 0.377). The risk of death for patients with fewer copies of SMN2 or NAIP was much higher than for those with more copies (P < .01). The survival probabilities at 5 years were 5.1%, 90.7%, and 100% for 2, 3, and 4 SMN2 copies and 27.9%, 66.7%, and 87.2% for 0, 1, and 2 NAIP copies, respectively. Our results indicated that combined SMN1-SMN2-NAIP genotypes with fewer copies were associated with earlier onset age and poorer survival probability. Better survival status for Chinese type I SMA might due to a higher proportion of 3 SMN2 and a lower rate of zero NAIP. PMID:25330799

  15. Association of copy numbers of survival motor neuron gene 2 and neuronal apoptosis inhibitory protein gene with the natural history in a Chinese spinal muscular atrophy cohort.

    PubMed

    Qu, Yu-jin; Ge, Xiu-shan; Bai, Jin-li; Wang, Li-wen; Cao, Yan-yan; Lu, Yan-yu; Jin, Yu-wei; Wang, Hong; Song, Fang

    2015-03-01

    We evaluated survival motor neuron 2 (SMN2) and neuronal apoptosis inhibitory protein (NAIP) gene copy distribution and the association of copy number with survival in 232 Chinese spinal muscular atrophy (SMA) patients. The SMN2 and NAIP copy numbers correlated positively with the median onset age (r = 0.72 and 0.377). The risk of death for patients with fewer copies of SMN2 or NAIP was much higher than for those with more copies (P < .01). The survival probabilities at 5 years were 5.1%, 90.7%, and 100% for 2, 3, and 4 SMN2 copies and 27.9%, 66.7%, and 87.2% for 0, 1, and 2 NAIP copies, respectively. Our results indicated that combined SMN1-SMN2-NAIP genotypes with fewer copies were associated with earlier onset age and poorer survival probability. Better survival status for Chinese type I SMA might due to a higher proportion of 3 SMN2 and a lower rate of zero NAIP.

  16. [SMN1 Gene Point Mutations in Type I-IV Proximal Spinal Muscular Atrophy Patients with a Single Copy of SMN1].

    PubMed

    2015-09-01

    Type I-IV proximal spinal muscular atrophy (SMA) is one of the most common autosomal-recessive diseas- es, which are characterized in the majority of cases by a severely disabling course. Proximal SMA results from mutations in the telomeric copy of SMN-SMN1 gene. Major SMN1 gene mutation types are deletions in the exons 7 and/or 8, which were revealed to be in the homozygous state in 95% of patients. Deletions in the in- dicated exons of SMN1 gene were revealed in a compound-heterozygous state in combination with intragenic point mutations in the remainder 5% of proximal SMA cases. In the present study, we conducted an analysis of point mutations in eight patients with type I-III proximal SMA phenotype, which had a deletion in 7-8- exons of SMN1 gene in the heterozygous state. We revealed seven different mutations, two of which (c.824G > C (p.Gly275A1a) and c.825-2A > T) are described here for the first time. In addition, mutation c.824G > C (p.Gly275A1a) was observed twice in the examined sample. In seven cases a heterozygous carrier of point mutations was one of the parents of the affected children (in six cases, the father; in one case, the mother). Only one mutation, c.43C > T (p.Gln15X), emerged de novo in a genital cell of the child's father. PMID:26606804

  17. Molecular analysis of SMN1, SMN2, NAIP, GTF2H2, and H4F5 genes in 157 Chinese patients with spinal muscular atrophy.

    PubMed

    He, Jin; Zhang, Qi-Jie; Lin, Qi-Fang; Chen, Ya-Fang; Lin, Xiao-Zhen; Lin, Min-Ting; Murong, Shen-Xing; Wang, Ning; Chen, Wan-Jin

    2013-04-15

    Spinal muscular atrophy (SMA) is a common and lethal autosomal recessive neurodegenerative disorder, which is caused by mutations of the survival motor neuron 1 (SMN1) gene. Additionally, the phenotype is modified by several genes nearby SMN1 in the 5q13 region. In this study, we analyzed mutations in SMN1 and quantified the modifying genes, including SMN2, NAIP, GTF2H2, and H4F5 by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), multiplex ligation-dependent probe amplification (MLPA), TA cloning, allele-specific long-range PCR, and Sanger sequencing in 157 SMA patients. Most SMA patients (94.90%) possessed a homozygous SMN1 deletion, while 10 patients demonstrated only the absence of exon 7, but the presence of exon 8. Two missense mutations (c.689 C>T and c.844 C>T) were identified in 2 patients who both carried a single copy of SMN1. We found inverse correlations between SMN2, the NAIP copy number, and the clinical severity of the disease. Furthermore, 7 severe type I patients possessed large-scale deletions, including SMN1, NAIP, and GTF2H2. We conclude that SMN1 gene conversion, SMN1 subtle mutations, SMN2 copy number, and the extent of deletion in the 5q13 region should all be considered in the genotype-phenotype analysis of SMA. PMID:23352792

  18. Hybrid survival motor neuron genes in patients with autosomal recessive spinal muscular atrophy: New insights into molecular mechanisms responsible for the disease

    SciTech Connect

    Hahnen, E.; Schoenling, J.; Zerres, K.

    1996-11-01

    Spinal muscular atrophy (SMA) is a frequent autosomal recessive neurodegenerative disorder leading to weakness and atrophy of voluntary muscles. The survival motor-neuron gene (SMN), a strong candidate for SMA, is present in two highly homologous copies (telSMN and cenSMN) within the SMA region. Only five nucleotide differences within the region between intron 6 and exon 8 distinguish these homologues. Independent of the severity of the disease, 90%-98% of all SMA patients carry homozygous deletions in telSMN, affecting either exon 7 or both exons 7 and 8. We present the molecular analysis of 42 SMA patients who carry homozygous deletions of telSMN exon 7 but not of exon 8. The question arises whether in these cases the telSMN is truncated upstream of exon 8 or whether hybrid SMN genes exist that are composed of centromeric and telomeric sequences. By a simple PCR-based assay we demonstrate that in each case the remaining telSMN exon 8 is part of a hybrid SMN gene. Sequencing of cloned hybrid SMN genes from seven patients revealed the same composition in all but two patients: the base-pair differences in introns 6 and 7 and exon 7 are of centromeric origin whereas exon 8 is of telomeric origin. Nonetheless, haplotype analysis with polymorphic multicopy markers, Ag1-CA and C212, localized at the 5{prime} end of the SMN genes, suggests different mechanisms of occurrence, unequal rearrangements, and gene conversion involving both copies of the SMN genes. In approximately half of all patients, we identified a consensus haplotype, suggesting a common origin. Interestingly, we identified a putative recombination hot spot represented by recombination-simulating elements (TGGGG and TGAGGT) in exon 8 that is homologous to the human deletion-hot spot consensus sequence in the immunoglobulin switch region, the {alpha}-globin cluster, and the polymerase {alpha} arrest sites. This may explain why independent hybrid SMN genes show identical sequences. 35 refs., 4 figs., 1 tab.

  19. Prenatal Carrier Screening for Spinal Muscular Atrophy.

    PubMed

    Wood, S Lindsay; Brewer, Fallon; Ellison, Rebecca; Biggio, Joseph R; Edwards, Rodney K

    2016-10-01

    Introduction Spinal muscular atrophy (SMA), a neurodegenerative genetic disorder, affects 1:5,000 to 1:10,000 infants. Carrier rates are 1:25 to 1:50. We implemented ACOG-endorsed prenatal SMA screening in mid-2014 and sought to assess uptake, observed carrier rate, and providers' knowledge and attitudes toward genetic conditions and carrier screening. Methods Retrospective cohort study of all patients receiving prenatal genetic counseling at our institution from August 2014 to April 2015. Factors associated with screening uptake were assessed. Proportions who accepted screening, were screen-positive, had partners tested, had partners who were screen-positive, and had fetuses tested were calculated. Providers' knowledge and attitudes were assessed using a validated questionnaire. Results Of 1,158 patients offered SMA screening, 224 accepted (19.3%, 95% CI 17.2-21.7). Uptake differed by race, parity, religion, and genetic counselor seen. Five (2.2% or 1:45, 95% CI 0.8-5.3 or 1:19-1:125) women were identified as carriers. Of 3 partners screened, none screened positive (0%, 95% CI 0-5.3). There were no prenatal SMA diagnoses (0%, 95% CI 0-1.4). Of 90 survey respondents, 42% incorrectly answered 1 of 9 knowledge questions. Provider attitudes toward screening were contradictory. Conclusion Despite significant resources utilized, prenatal SMA carrier screening identified no fetal cases. Cost-effectiveness and other barriers should be considered prior to large-scale adoption of more comprehensive genetic screening. PMID:27611803

  20. Refined physical map of the Spinal Muscular Atrophy gene (SMA) region at 5q13 based on YAC and cosmid contiguous arrays

    SciTech Connect

    Roy, N.; Yaraghi, Z.; McLean, M.D.

    1995-04-10

    The gene for the autosomal recessive neurodegenerative disorder spinal muscular atrophy has been mapped to a region of 5q13 flanked proximally by CMS-1 and distally by D5S557. We present a 2-Mb yeast artificial chromosome (YAC) contig constructed from three libraries encompassing the D5S435/D5S629/CMS-1-SMA-D5S557/D5S112 interval. The D5S629/CMS-1-SMA-D5S557 interval is unusual insofar as chromosome 5-specific repetitive sequences are present and many of the simple tandem repeats (STR) are located at multiple loci that are unstable in our YAC clones. A long-range restriction map that demonstrates the SMA-containing interval to be 550 kb is presented. Moreover, a 210-kb cosmid array from both a YAC-specific and a chromosome 5-specific cosmid library encompassing the multilocus STRs CATT-1, CMS-1, D5F149, D5F150, and D5F153 has been assembled. We have recently reported strong linkage disequilibrium with Type I SMA for two of these STRs, indicating that the gene is located in close proximity to or within our cosmid clone array. 39 refs., 5 figs., 2 tabs.

  1. Intrathecal Injections in Children With Spinal Muscular Atrophy

    PubMed Central

    Swoboda, Kathryn J.; Sethna, Navil; Farrow-Gillespie, Alan; Khandji, Alexander; Xia, Shuting; Bishop, Kathie M.

    2016-01-01

    Nusinersen (ISIS-SMNRx or ISIS 396443) is an antisense oligonucleotide drug administered intrathecally to treat spinal muscular atrophy. We summarize lumbar puncture experience in children with spinal muscular atrophy during a phase 1 open-label study of nusinersen and its extension. During the studies, 73 lumbar punctures were performed in 28 patients 2 to 14 years of age with type 2/3 spinal muscular atrophy. No complications occurred in 50 (68%) lumbar punctures; in 23 (32%) procedures, adverse events were attributed to lumbar puncture. Most common adverse events were headache (n = 9), back pain (n = 9), and post–lumbar puncture syndrome (n = 8). In a subgroup analysis, adverse events were more frequent in older children, children with type 3 spinal muscular atrophy, and with a 21- or 22-gauge needle compared to a 24-gauge needle or smaller. Lumbar punctures were successfully performed in children with spinal muscular atrophy; lumbar puncture–related adverse event frequency was similar to that previously reported in children. PMID:26823478

  2. Joint effect of the SMN2 and SERF1A genes on childhood-onset types of spinal muscular atrophy in Serbian patients.

    PubMed

    Brkušanin, Miloš; Kosać, Ana; Jovanović, Vladimir; Pešović, Jovan; Brajušković, Goran; Dimitrijević, Nikola; Todorović, Slobodanka; Romac, Stanka; Milić Rašić, Vedrana; Savić-Pavićević, Dušanka

    2015-11-01

    Spinal muscular atrophy (SMA) is caused by functional loss of the survival of motor neuron 1 (SMN1) gene. Despite genetic homogeneity, phenotypic variability indicates the involvement of disease modifiers. SMN1 is located in 5q13.2 segmental duplication, enriched in genes and prone to unequal rearrangements, which results in copy number polymorphism (CNP). We examined the influence of CNP of 5q13.2 genes and their joint effect on childhood-onset SMA phenotype. Multiplex ligation-dependent probe amplification (MLPA) was used to construct 5q13.2 alleles and assess copy number of the SMN2, small EDRK-rich factor 1A (SERF1A) and NLR family apoptosis inhibitory protein (NAIP) genes in 99 Serbian patients with SMN1 homozygous absence (23-type I, 37-type II and 39-mild type III) and 122 patients' parents. Spearman rank test was performed to test correlation of individual genes and SMA type. Generalized linear models and backward selection were performed to obtain a model explaining phenotypic variation with the smallest set of variables. 5q13.2 alleles most commonly associated with type I harbored large-scale deletions, while those detected in types II and III originated from conversion of SMN1 to SMN2. Inverse correlation was observed between SMN2, SERF1A and NAIP CNP and SMA type (P=2.2e-16, P=4.264e-10, P=2.722e-8, respectively). The best minimal model describing phenotypic variability included SMN2 (P<2e-16), SERF1A (P<2e-16) and their interaction (P=0.02628). SMN2 and SERF1A have a joint modifying effect on childhood-onset SMA phenotype. PMID:26311540

  3. Molecular Mechanisms of Neurodegeneration in Spinal Muscular Atrophy

    PubMed Central

    Ahmad, Saif; Bhatia, Kanchan; Kannan, Annapoorna; Gangwani, Laxman

    2016-01-01

    Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disease with a high incidence and is the most common genetic cause of infant mortality. SMA is primarily characterized by degeneration of the spinal motor neurons that leads to skeletal muscle atrophy followed by symmetric limb paralysis, respiratory failure, and death. In humans, mutation of the Survival Motor Neuron 1 (SMN1) gene shifts the load of expression of SMN protein to the SMN2 gene that produces low levels of full-length SMN protein because of alternative splicing, which are sufficient for embryonic development and survival but result in SMA. The molecular mechanisms of the (a) regulation of SMN gene expression and (b) degeneration of motor neurons caused by low levels of SMN are unclear. However, some progress has been made in recent years that have provided new insights into understanding of the cellular and molecular basis of SMA pathogenesis. In this review, we have briefly summarized recent advances toward understanding of the molecular mechanisms of regulation of SMN levels and signaling mechanisms that mediate neurodegeneration in SMA. PMID:27042141

  4. Disease Mechanisms and Therapeutic Approaches in Spinal Muscular Atrophy

    PubMed Central

    Tisdale, Sarah

    2015-01-01

    Motor neuron diseases are neurological disorders characterized primarily by the degeneration of spinal motor neurons, skeletal muscle atrophy, and debilitating and often fatal motor dysfunction. Spinal muscular atrophy (SMA) is an autosomal-recessive motor neuron disease of high incidence and severity and the most common genetic cause of infant mortality. SMA is caused by homozygous mutations in the survival motor neuron 1 (SMN1) gene and retention of at least one copy of the hypomorphic gene paralog SMN2. Early studies established a loss-of-function disease mechanism involving ubiquitous SMN deficiency and suggested SMN upregulation as a possible therapeutic approach. In recent years, greater knowledge of the central role of SMN in RNA processing combined with deep characterization of animal models of SMA has significantly advanced our understanding of the cellular and molecular basis of the disease. SMA is emerging as an RNA disease not limited to motor neurons, but one that involves dysfunction of motor circuits that comprise multiple neuronal subpopulations and possibly other cell types. Advances in SMA research have also led to the development of several potential therapeutics shown to be effective in animal models of SMA that are now in clinical trials. These agents offer unprecedented promise for the treatment of this still incurable neurodegenerative disease. PMID:26063904

  5. Genetic findings of Cypriot spinal muscular atrophy patients.

    PubMed

    Theodorou, L; Nicolaou, P; Koutsou, P; Georghiou, A; Anastasiadou, V; Tanteles, G; Kyriakides, T; Zamba-Papanicolaou, E; Christodoulou, K

    2015-10-01

    Spinal muscular atrophy (SMA) is an autosomal recessive, neurodegenerative disorder characterised commonly by proximal muscle weakness and wasting in the absence of sensory signs. Deletion or disruption of the SMN1 gene causes the disease. The SMN1 gene is located within an inverted duplication on chromosome 5q13 with the genes SMN2, NAIP and GTF2H2. MLPA analysis of 13 Cypriot SMA patients revealed that, 12 patients carried a homozygous SMN1 gene deletion and one patient carried two copies of the SMN1 gene. Two of 13 cases were a consequence of a paternally originating de novo mutation. Five genotypes were identified within the population, with the most frequent being a homozygous SMN1 and NAIP genes deletion. In conclusion, genotype-phenotype correlation revealed that SMN2 is inversely related to disease severity and that NAIP and GTF2H2 act as negative modifiers. This study provided, for the first time, a comprehensive overview of gene copy numbers and inheritance patterns within Cypriot SMA families. PMID:26017350

  6. Genetics Home Reference: spinal muscular atrophy

    MedlinePlus

    ... a loss of specialized nerve cells, called motor neurons , in the spinal cord and the part of ... spinal cord ( the brainstem ). The loss of motor neurons leads to weakness and wasting ( atrophy ) of muscles ...

  7. Chronic generalized spinal muscular atrophy of infancy and childhood

    PubMed Central

    Pearn, J. H.; Wilson, J.

    1973-01-01

    Recent studies have shown that the acute fatal form of infantile spinal muscular atrophy (acute Werdnig-Hoffmann disease or spinal muscular atrophy Type I) is a distinct genetic and clinical entity. This has prompted clinical re-examination of the disease known as `arrested Werdnig-Hoffmann disease' which hitherto was thought to be a spectrum variant of the acute fatal form. A total of 18 such patients with the chronic generalized form of spinal muscular atrophy has been known to The Hospital for Sick Children over the past 10 years. Patients with this characteristic clinical syndrome comprise approximately one-fifth of children with chronic spinal muscular atrophy. Clinically, no patient was even able to crawl normally or progress further with motor milestones. Median age of clinical onset is 6 months of age, and life expectancy ranges from 2 years to the third decade. Inevitable spinal and joint deformities occur by the second decade of life. Management should be based on vigorous antibiotic therapy, orthopaedic and neurological surveillance, and a carefully planned educational programme aimed at realistic employment in late adolescence. ImagesFIG. 4p772-b PMID:4749680

  8. GEMINs: potential therapeutic targets for spinal muscular atrophy?

    PubMed Central

    Borg, Rebecca; Cauchi, Ruben J.

    2014-01-01

    The motor neuron degenerative disease spinal muscular atrophy (SMA) remains one of the most frequently inherited causes of infant mortality. Afflicted patients loose the survival motor neuron 1 (SMN1) gene but retain one or more copies of SMN2, a homolog that is incorrectly spliced. Primary treatment strategies for SMA aim at boosting SMN protein levels, which are insufficient in patients. SMN is known to partner with a set of diverse proteins collectively known as GEMINs to form a macromolecular complex. The SMN-GEMINs complex is indispensible for chaperoning the assembly of small nuclear ribonucleoproteins (snRNPs), which are key for pre-mRNA splicing. Pharmaceutics that alleviate the neuromuscular phenotype by restoring the fundamental function of SMN without augmenting its levels are also crucial in the development of an effective treatment. Their use as an adjunct therapy is predicted to enhance benefit to patients. Inspired by the surprising discovery revealing a premier role for GEMINs in snRNP biogenesis together with in vivo studies documenting their requirement for the correct function of the motor system, this review speculates on whether GEMINs constitute valid targets for SMA therapeutic development. PMID:25360080

  9. [A case of spinal muscular atrophy type 0 in Japan].

    PubMed

    Okamoto, Kentaro; Saito, Kayoko; Sato, Takatoshi; Ishigaki, Keiko; Funatsuka, Makoto; Osawa, Makiko

    2012-09-01

    The patient was a 2-month-old female infant born at 41 weeks and 2 days of gestation presenting multiple arthrogryposis, severe muscle hypotonia and respiratory distress with difficulty in feeding. She suffered from repeated complications with aspiration pneumonia. On admission to our hospital, she exhibited fasciculation and absence of deep tendon reflexes. Examination of the motor nerve conduction velocity (MCV) revealed no muscle contraction. Deletions of the SMN and NAIP genes were noted. Based on severe clinical course and disease development in utero, she was given a diagnosis of spinal muscular atrophy (SMA) type 0 (very severe type). Arthrogryposis and disappearance of MCV are exclusion criteria for SMA. However, the clinical course of the infant was very severe and included such exclusion items. Consequently, when an infant presents muscle hypotonia and respiratory distress, SMA must be considered as one of the differential diagnoses, even though arthrogryposis is an exclusion criterion for SMA. We discuss this case in relation to the few extant reports on SMA type 0 in Japanese infants in the literature. PMID:23012868

  10. AB033. Preimplantation genetic diagnosis of spinal muscular atrophy in Vietnam

    PubMed Central

    Khoa, Tran Van; Nga, Nguyen Thi Thanh; Tao, Nguyen Dinh; Sang, Trieu Tien; Giang, Ngo Truong; Dung, Vu Chi

    2015-01-01

    Objective Spinal muscular atrophy (SMA) is a severe neurodegenerative autosomal recessive disorder. Most of patients are caused by the homozygous absence of exon 7 of the telomeric copy of the SMN gene (SMNt) on chromosome 5. Setting up a molecular diagnostic protocol for detecting exon 7 gen SMNT homozygous deletion in single cell is basic to preimplantation genetic diagnosis of spinal muscular atrophy. Methods This study was carried out on 17 patients and their parents. Firstly, lymphocytes of patients and their parents were isolated from fresh blood by ficoll. Taking a lymphocyte on stereoscopic microscope, lysing the cell, amplifying whole genome, then amplifying exon 7 of SMNT gene by using a polymerase chain reaction, followed by HinfI restriction digest enzyme of the PCR enabling the important SMNT gene to be distinguished from the centromic SMN gene (SMNc) which has no clinical phenotype to detect mutation. Electrophoresis PCR products after digesting by restriction enzyme and analysis. Besides, the minisequencing technique has also been used to detect the absence of exon 7 of SMNT gene based on the difference of one nucleotide at 214-position in exon 7 (C-SMNT, T-SMNc). Secondly, the application of the protocol was set up on one lymphocyte to preimplantation genetic diagnosis of spinal muscular atrophy on biopsied blastomeres. Results Two different protocols which were PCR-RFLP and minisequencing, were set up on 200 lymphocytes from 17 patients and their parents to screen the homozygous deletion in exon 7 SMNT gene with the PCR efficiency in 96%. The results were similar with the gene diagnosed from fresh blood. The methods were also efficient, providing interpretable result in 96.55% (28/29) of the blastomeres tested. Three couples were treated using this method. Three normal embryos were transfer which resulted in one clinical pregnancy. Conclusions We have successfully applied the technique of PCR-RFLP and minisequencing for the preimplantation genetic

  11. Differential induction of muscle atrophy pathways in two mouse models of spinal muscular atrophy

    PubMed Central

    Deguise, Marc-Olivier; Boyer, Justin G.; McFall, Emily R.; Yazdani, Armin; De Repentigny, Yves; Kothary, Rashmi

    2016-01-01

    Motor neuron loss and neurogenic atrophy are hallmarks of spinal muscular atrophy (SMA), a leading genetic cause of infant deaths. Previous studies have focused on deciphering disease pathogenesis in motor neurons. However, a systematic evaluation of atrophy pathways in muscles is lacking. Here, we show that these pathways are differentially activated depending on severity of disease in two different SMA model mice. Although proteasomal degradation is induced in skeletal muscle of both models, autophagosomal degradation is present only in Smn2B/− mice but not in the more severe Smn−/−; SMN2 mice. Expression of FoxO transcription factors, which regulate both proteasomal and autophagosomal degradation, is elevated in Smn2B/− muscle. Remarkably, administration of trichostatin A reversed all molecular changes associated with atrophy. Cardiac muscle also exhibits differential induction of atrophy between Smn2B/− and Smn−/−; SMN2 mice, albeit in the opposite direction to that of skeletal muscle. Altogether, our work highlights the importance of cautious analysis of different mouse models of SMA as distinct patterns of atrophy induction are at play depending on disease severity. We also revealed that one of the beneficial impacts of trichostatin A on SMA model mice is via attenuation of muscle atrophy through reduction of FoxO expression to normal levels. PMID:27349908

  12. Dominant spinal muscular atrophy with lower extremity predominance

    PubMed Central

    Harms, M.B.; Allred, P.; Gardner, R.; Fernandes Filho, J.A.; Florence, J.; Pestronk, A.; Al-Lozi, M.; Baloh, R.H.

    2010-01-01

    Objective: Spinal muscular atrophies (SMAs) are hereditary disorders characterized by weakness from degeneration of spinal motor neurons. Although most SMA cases with proximal weakness are recessively inherited, rare families with dominant inheritance have been reported. We aimed to clinically, pathologically, and genetically characterize a large North American family with an autosomal dominant proximal SMA. Methods: Affected family members underwent clinical and electrophysiologic evaluation. Twenty family members were genotyped on high-density genome-wide SNP arrays and linkage analysis was performed. Results: Ten affected individuals (ages 7–58 years) showed prominent quadriceps atrophy, moderate to severe weakness of quadriceps and hip abductors, and milder degrees of weakness in other leg muscles. Upper extremity strength and sensation was normal. Leg weakness was evident from early childhood and was static or very slowly progressive. Electrophysiology and muscle biopsies were consistent with chronic denervation. SNP-based linkage analysis showed a maximum 2-point lod score of 5.10 (θ = 0.00) at rs17679127 on 14q32. A disease-associated haplotype spanning from 114 cM to the 14q telomere was identified. A single recombination narrowed the minimal genomic interval to Chr14: 100,220,765–106,368,585. No segregating copy number variations were found within the disease interval. Conclusions: We describe a family with an early onset, autosomal dominant, proximal SMA with a distinctive phenotype: symptoms are limited to the legs and there is notable selectivity for the quadriceps. We demonstrate linkage to a 6.1-Mb interval on 14q32 and propose calling this disorder spinal muscular atrophy–lower extremity, dominant. GLOSSARY lod = logarithm of the odds; SMA = spinal muscular atrophy; SMA-LED = spinal muscular atrophy–lower extremity, dominant; SNP = single-nucleotide polymorphism. PMID:20697106

  13. Electrophysiological biomarkers in spinal muscular atrophy: proof of concept

    PubMed Central

    David Arnold, W; Porensky, Paul N; McGovern, Vicki L; Iyer, Chitra C; Duque, Sandra; Li, Xiaobai; Meyer, Kathrin; Schmelzer, Leah; Kaspar, Brian K; Kolb, Stephen J; Kissel, John T; Burghes, Arthur H M

    2014-01-01

    Objective Preclinical therapies that restore survival motor neuron (SMN) protein levels can dramatically extend survival in spinal muscular atrophy (SMA) mouse models. Biomarkers are needed to effectively translate these promising therapies to clinical trials. Our objective was to investigate electrophysiological biomarkers of compound muscle action potential (CMAP), motor unit number estimation (MUNE) and electromyography (EMG) using an SMA mouse model. Methods Sciatic CMAP, MUNE, and EMG were obtained in SMNΔ7 mice at ages 3–13 days and at 21 days in mice with SMN selectively reduced in motor neurons (ChATCre). To investigate these measures as biomarkers of treatment response, measurements were obtained in SMNΔ7 mice treated with antisense oligonucleotide (ASO) or gene therapy. Results CMAP was significantly reduced in SMNΔ7 mice at days 6–13 (P < 0.01), and MUNE was reduced at days 7–13 (P < 0.01). Fibrillations were present on EMG in SMNΔ7 mice but not controls (P = 0.02). Similar findings were seen at 21 days in ChATCre mice. MUNE in ASO-treated SMNΔ7 mice were similar to controls at day 12 and 30. CMAP reduction persisted in ASO-treated SMNΔ7 mice at day 12 but was corrected at day 30. Similarly, CMAP and MUNE responses were corrected with gene therapy to restore SMN. Interpretation These studies confirm features of preserved neuromuscular function in the early postnatal period and subsequent motor unit loss in SMNΔ7 mice. SMN restoring therapies result in preserved MUNE and gradual repair of CMAP responses. This provides preclinical evidence for the utilization of CMAP and MUNE as biomarkers in future SMA clinical trials. PMID:24511555

  14. Evidence for a chronic axonal atrophy in oculopharyngeal "muscular dystrophy".

    PubMed

    Probst, A; Tackmann, W; Stoeckli, H R; Jerusalem, F; Ulrich, J

    1982-01-01

    We report on morphometric investigations of peripheral nerves in a woman, who died at the age of 69, presenting the classical symptoms of oculopharyngeal muscular dystrophy (OPMD) and a typical family history with several members (males and females) affected over three generations. Evidence for chronic axonal atrophy was found in peripheral nerves and especially in oculomotor nerves with severe axon loss in endomysial nerve twigs of extraocular, laryngeal, and tongue muscles. Whereas limb muscles presented features of neurogenic atrophy, severe changes of "myopathic" type were evident in extrinsic eye muscles, laryngeal constrictor, tongue, and diaphragma. However, we interpreted these changes as neurogenic in origin in view of the severe denervation found in those muscles. Our findings suggest that OPMD is a disease of primary neurogenic origin rather than a primary myopathic disorder. PMID:7124348

  15. Fasciculations masquerading as minipolymyoclonus in bulbospinal muscular atrophy

    PubMed Central

    Bhat, Sushanth; Ma, Wei; Kozochonok, Elena; Chokroverty, Sudhansu

    2015-01-01

    Minipolymyoclonus has been described in both anterior horn cell disorders and central nervous system degenerative conditions. While its etiology remains unclear and speculative, a central generator has been previously proposed. We describe a case of bulbospinal muscular atrophy (Kennedy's disease), where minipolymyoclonus-like movements corresponded to fasciculations in neurophysiological studies. Our novel finding suggests that the etiologies of minipolymyoclonus in central and peripheral nervous system disorders are distinct, despite outward clinical similarity. The term “minipolyfasciculations” may be more reflective of the underlying process causing minipolymyoclonus-like movements in lower motor neuron disorders. PMID:26019432

  16. Fasciculations masquerading as minipolymyoclonus in bulbospinal muscular atrophy.

    PubMed

    Bhat, Sushanth; Ma, Wei; Kozochonok, Elena; Chokroverty, Sudhansu

    2015-01-01

    Minipolymyoclonus has been described in both anterior horn cell disorders and central nervous system degenerative conditions. While its etiology remains unclear and speculative, a central generator has been previously proposed. We describe a case of bulbospinal muscular atrophy (Kennedy's disease), where minipolymyoclonus-like movements corresponded to fasciculations in neurophysiological studies. Our novel finding suggests that the etiologies of minipolymyoclonus in central and peripheral nervous system disorders are distinct, despite outward clinical similarity. The term "minipolyfasciculations" may be more reflective of the underlying process causing minipolymyoclonus-like movements in lower motor neuron disorders. PMID:26019432

  17. Spinal muscular atrophy: from tissue specificity to therapeutic strategies

    PubMed Central

    Iascone, Daniel M.; Lee, Justin C.

    2015-01-01

    Spinal muscular atrophy (SMA) is the most frequent genetic cause of death in infants and toddlers. All cases of spinal muscular atrophy result from reductions in levels of the survival motor neuron (SMN) protein, and so SMN upregulation is a focus of many preclinical and clinical studies. We examine four issues that may be important in planning for therapeutic success. First, neuromuscular phenotypes in the SMNΔ7 mouse model closely match those in human patients but peripheral disease manifestations differ, suggesting that endpoints other than mouse lifespan may be more useful in predicting clinical outcome. Second, SMN plays important roles in multiple central and peripheral cell types, not just motor neurons, and it remains unclear which of these cell types need to be targeted therapeutically. Third, should SMN-restoration therapy not be effective in all patients, blocking molecular changes downstream of SMN reduction may confer significant benefit, making it important to evaluate therapeutic targets other than SMN. Lastly, for patients whose disease progression is slowed, but who retain significant motor dysfunction, additional approaches used to enhance regeneration of the neuromuscular system may be of value. PMID:25705387

  18. Mutations in the tail domain of DYNC1H1 cause dominant spinal muscular atrophy

    PubMed Central

    Harms, M.B.; Ori-McKenney, K.M.; Scoto, M.; Tuck, E.P.; Bell, S.; Ma, D.; Masi, S.; Allred, P.; Al-Lozi, M.; Reilly, M.M.; Miller, L.J.; Jani-Acsadi, A.; Pestronk, A.; Shy, M.E.; Muntoni, F.; Vallee, R.B.

    2012-01-01

    Objective: To identify the gene responsible for 14q32-linked dominant spinal muscular atrophy with lower extremity predominance (SMA-LED, OMIM 158600). Methods: Target exon capture and next generation sequencing was used to analyze the 73 genes in the 14q32 linkage interval in 3 SMA-LED family members. Candidate gene sequencing in additional dominant SMA families used PCR and pooled target capture methods. Patient fibroblasts were biochemically analyzed. Results: Regional exome sequencing of all candidate genes in the 14q32 interval in the original SMA-LED family identified only one missense mutation that segregated with disease state—a mutation in the tail domain of DYNC1H1 (I584L). Sequencing of DYNC1H1 in 32 additional probands with lower extremity predominant SMA found 2 additional heterozygous tail domain mutations (K671E and Y970C), confirming that multiple different mutations in the same domain can cause a similar phenotype. Biochemical analysis of dynein purified from patient-derived fibroblasts demonstrated that the I584L mutation dominantly disrupted dynein complex stability and function. Conclusions: We demonstrate that mutations in the tail domain of the heavy chain of cytoplasmic dynein (DYNC1H1) cause spinal muscular atrophy and provide experimental evidence that a human DYNC1H1 mutation disrupts dynein complex assembly and function. DYNC1H1 mutations were recently found in a family with Charcot-Marie-Tooth disease (type 2O) and in a child with mental retardation. Both of these phenotypes show partial overlap with the spinal muscular atrophy patients described here, indicating that dynein dysfunction is associated with a range of phenotypes in humans involving neuronal development and maintenance. PMID:22459677

  19. Mapping of the bovine spinal muscular atrophy locus to Chromosome 24.

    PubMed

    Medugorac, Ivica; Kemter, Juliane; Russ, Ingolf; Pietrowski, Detlef; Nüske, Stefan; Reichenbach, Horst-Dieter; Schmahl, Wolfgang; Förster, Martin

    2003-06-01

    A hereditary form of spinal muscular atrophy (SMA) caused by an autosomal recessive gene has been reported for American Brown-Swiss cattle and in advanced backcrosses between American Brown-Swiss and many European brown cattle breeds. Bovine SMA (bovSMA) bears remarkable resemblance to the human SMA (SMA1). Affected homozygous calves also show progressive symmetric weakness and neurogenic atrophy of proximal muscles. The condition is characterized by severe muscle atrophy, quadriparesis, and sternal recumbency as result of neurogenic atrophy. We report on the localization of the gene causing bovSMA within a genomic interval between the microsatellite marker URB031 and the telomeric end of bovine Chromosome (Chr) 24 (BTA24). Linkage analysis of a complex pedigree of German Braunvieh cattle revealed a recombination fraction of 0.06 and a three-point lod score of 11.82. The results of linkage and haplotyping analysis enable a marker-assisted selection against bovSMA based on four microsatellite markers most telomeric on BTA24 to a moderate accuracy of 89-94%. So far, this region is not orthologous to any human chromosome segments responsible for twelve distinct disease phenotypes of autosomal neuropathies. Our results indicate the apoptosis-inhibiting protein BCL2 as the most promising positional candidate gene causing bovSMA. Our findings offer an attractive animal model for a better understanding of human forms of SMA and for a probable anti-apoptotic synergy of SMN-BCL2 aggregates in mammals.

  20. Isolated exon 8 deletion in type 1 spinal muscular atrophy with bilateral optic atrophy: unusual genetic mutation leading to unusual manifestation?

    PubMed

    Maiti, D; Bhattacharya, M; Yadav, S

    2012-01-01

    Proximal spinal muscular atrophy (SMA) or type 1 SMA is a fatal autosomal recessive disorder usually caused by homozygous deletion of exons 7 and 8 in the survivor motor neuron (SMN) gene. Additional deletion of the neuronal apotosis inhibitory protein (NAIP) gene exacerbates the clinical severity. Isolated exon 8 deletion has been reported in a single case series of SMA types 2 and 3 and never with SMA type 1. While extraocular muscles are typically spared, there are a few case reports documenting associated external ophthalmoplegia. Optic atrophy is a hitherto unreported association of SMA. We report a 10-month-old male infant with SMA type 1 with optic atrophy due to isolated deletion of exon 8 of the SMN gene with intact exon 7 and NAIP gene. PMID:23298926

  1. Establishing a standardized therapeutic testing protocol for spinal muscular atrophy.

    PubMed

    Tsai, Li-Kai; Tsai, Ming-Shung; Lin, Tzer-Bin; Hwu, Wuh-Liang; Li, Hung

    2006-11-01

    Several mice models have been created for spinal muscular atrophy (SMA); however, there is still no standard preclinical testing system for the disease. We previously generated type III-specific SMA model mice, which might be suitable for use as a preclinical therapeutic testing system for SMA. To establish such a system and test its applicability, we first created a testing protocol and then applied it as a means to investigate the use of valproic acid (VPA) as a possible treatment for SMA. These SMA mice revealed tail/ear/foot deformity, muscle atrophy, poorer motor performances, smaller compound muscle action potential and lower spinal motoneuron density at the age of 9 to 12 months in comparison with age-matched wild-type littermate mice. In addition, VPA attenuates motoneuron death, increases spinal SMN protein level and partially normalizes motor function in SMA mice. These results suggest that the testing protocol developed here is well suited for use as a standardized preclinical therapeutic testing system for SMA.

  2. Independent mobility after early introduction of a power wheelchair in spinal muscular atrophy.

    PubMed

    Dunaway, Sally; Montes, Jacqueline; O'Hagen, Jessica; Sproule, Douglas M; Vivo, Darryl C De; Kaufmann, Petra

    2013-05-01

    Weakness resulting from spinal muscular atrophy causes severe limitations in functional mobility. The early introduction of power mobility has potential to enhance development and mitigate disability. These outcomes are achieved by simulating normal skill acquisition and by promoting motor learning, visuospatial system development, self-exploration, cognition, and social development. There are few reports on early power mobility in spinal muscular atrophy, and it is typically not prescribed until school age. The authors evaluated 6 children under age 2 years with neuromuscular disease (5 spinal muscular atrophy, 1 congenital muscular dystrophy) for power mobility. Parents recorded the practice hours necessary to achieve independence using the Power Mobility Skills Checklist. Four children achieved independence in all items on the checklist by 7.9 months (range: 73-458 days). Introduction of early power mobility is feasible in spinal muscular atrophy patients under age 2 years and should be introduced in late infancy when children typically acquire locomotor skills.

  3. Fibrosis, adipogenesis, and muscle atrophy in congenital muscular torticollis.

    PubMed

    Chen, Huan-Xiong; Tang, Sheng-Ping; Gao, Fu-Tang; Xu, Jiang-Long; Jiang, Xian-Ping; Cao, Juan; Fu, Gui-Bing; Sun, Ke; Liu, Shi-Zhe; Shi, Wei

    2014-11-01

    In the traditional view, muscle atrophy and interstitial fibrosis were regarded as the basic pathological features of congenital muscular torticollis (CMT). But in the ultrastructure study, the mesenchyme-like cells, myoblasts, myofibroblasts, and fibroblasts were found in the proliferation of interstitium of CMT. To investigate the characteristics of pathological features and the mechanisms of muscle atrophy in CMT, we retrospectively reviewed the medical records of 185 CMT patients from July 2009 to July 2011 in Shenzhen Children's Hospital in China and performed pathological studies. According to age, the 185 CMT patients were divided into 4 groups. All resected surgical specimens were processed for hematoxylin and eosin staining and Masson trichromic staining. Sudan III staining was used for frozen sections, whereas immunohistochemical staining for S-100, calpain-1, ubiquitin, and 20S proteasome was carried out on 40 CMT specimens. Eight adductor muscle specimens from 8 patients with development dysplasia of the hip were taken as control group in the immunohistochemical staining. By Masson trichromic staining, the differences in the percent area of fibrous tissue in each CMT groups were significant. In Sudan III staining and immunostaining for S-100, adipocyte hyperplasia was the pathological feature of CMT. Moreover, compared with controls, most atrophic muscle fibers in CMT specimens were found to show strong immunoreactivity for calpain-1, ubiquitin, and 20S proteasome. With increasing age, fibrosis peaked at both sides and it was low in middle age group. Adipocytes increased with age. The characteristics of pathological features in CMT are changeable with age. The calpain and the ubiquitin-proteasome system may play a role in muscle atrophy of CMT. In the CMT, adipogenesis, fibrogenesis, and myogenesis may be the results of mesenchyme-like cells in SCM (sternocleidomastoid muscle). In conclusion, the present study furthermore supports maldevelopment of the

  4. Fibrosis, Adipogenesis, and Muscle Atrophy in Congenital Muscular Torticollis

    PubMed Central

    Chen, Huan-xiong; Tang, Sheng-ping; Gao, Fu-tang; Xu, Jiang-Long; Jiang, Xian-ping; Cao, Juan; Fu, Gui-bing; Sun, Ke; Liu, Shi-zhe; Shi, Wei

    2014-01-01

    Abstract In the traditional view, muscle atrophy and interstitial fibrosis were regarded as the basic pathological features of congenital muscular torticollis (CMT). But in the ultrastructure study, the mesenchyme-like cells, myoblasts, myofibroblasts, and fibroblasts were found in the proliferation of interstitium of CMT. To investigate the characteristics of pathological features and the mechanisms of muscle atrophy in CMT, we retrospectively reviewed the medical records of 185 CMT patients from July 2009 to July 2011 in Shenzhen Children's Hospital in China and performed pathological studies. According to age, the 185 CMT patients were divided into 4 groups. All resected surgical specimens were processed for hematoxylin and eosin staining and Masson trichromic staining. Sudan III staining was used for frozen sections, whereas immunohistochemical staining for S-100, calpain-1, ubiquitin, and 20S proteasome was carried out on 40 CMT specimens. Eight adductor muscle specimens from 8 patients with development dysplasia of the hip were taken as control group in the immunohistochemical staining. By Masson trichromic staining, the differences in the percent area of fibrous tissue in each CMT groups were significant. In Sudan III staining and immunostaining for S-100, adipocyte hyperplasia was the pathological feature of CMT. Moreover, compared with controls, most atrophic muscle fibers in CMT specimens were found to show strong immunoreactivity for calpain-1, ubiquitin, and 20S proteasome. With increasing age, fibrosis peaked at both sides and it was low in middle age group. Adipocytes increased with age. The characteristics of pathological features in CMT are changeable with age. The calpain and the ubiquitin–proteasome system may play a role in muscle atrophy of CMT. In the CMT, adipogenesis, fibrogenesis, and myogenesis may be the results of mesenchyme-like cells in SCM (sternocleidomastoid muscle). In conclusion, the present study furthermore supports

  5. YAC contigs of the Rab1 and wobbler (wr) spinal muscular atrophy gene region on proximal mouse chromosome 11 and of the homologous region on human chromosome 2p

    SciTech Connect

    Wedemeyer, N.; Lengeling, A.; Ronsiek, M.

    1996-03-05

    Despite rapid progress in the physical characterization of murine and human genomes, little molecular information is available on certain regions, e.g., proximal mouse chromosome 11 (Chr 11) and human chromosome 2p (Chr2p). We have localized the wobbler spinal atrophy gene wr to proximal mouse Chr 11, tightly linked to Rab1, a gene coding for a small GTP-binding protein, and Glns-ps1, an intronless pseudogene of the glutamine synthetase gene. We have not used these markers to construct a 1.3-Mb yeast artificial chromosome (YAC) contig of the Rab1 region on mouse Chr 11. Four YAC clones isolated from two independent YAC libraries were characterized by rare-cutting analysis, fluorescence in situ hybridization (FISH), and sequence-tagged site (STS) isolation and mapping. Rab1 and Glns-ps1 were found to be only 200 kb apart. A potential CpG island near a methylated NarI site and a trapped exon, ETG1.1, were found over 250 kb from Rab1. Two overlapping YACs were identified that contained a 150-kb region of human Chr 2p, comprising the RAB1 locus, AHY1.1, and the human homologue of ETG1.1, indicating a high degree of conservation of this region in the two species. We mapped AHY1.1 and thus human RAB1 on Chr 2p13.4-p14 using somatic cell hybrids and a radiation hybrid panel, thus extending a known region of conserved synteny between mouse Chr 11 and human Chr 2p. Recently, the gene LMGMD2B for a human recessive neuromuscular disease, limb girdle muscular dystrophy type 2B, has been mapped to 2p13-p16. The conservation between the mouse Rab1 and human RAB1 regions will be helpful in identifying candidate genes for the wobbler spinal muscular atrophy and in clarifying a possible relationship between wr and LMGMD2B. 33 refs., 7 figs., 3 tabs.

  6. Silencing neuronal mutant androgen receptor in a mouse model of spinal and bulbar muscular atrophy.

    PubMed

    Sahashi, Kentaro; Katsuno, Masahisa; Hung, Gene; Adachi, Hiroaki; Kondo, Naohide; Nakatsuji, Hideaki; Tohnai, Genki; Iida, Madoka; Bennett, C Frank; Sobue, Gen

    2015-11-01

    Spinal and bulbar muscular atrophy (SBMA), an adult-onset neurodegenerative disease that affects males, results from a CAG triplet repeat/polyglutamine expansions in the androgen receptor (AR) gene. Patients develop progressive muscular weakness and atrophy, and no effective therapy is currently available. The tissue-specific pathogenesis, especially relative pathological contributions between degenerative motor neurons and muscles, remains inconclusive. Though peripheral pathology in skeletal muscle caused by toxic AR protein has been recently reported to play a pivotal role in the pathogenesis of SBMA using mouse models, the role of motor neuron degeneration in SBMA has not been rigorously investigated. Here, we exploited synthetic antisense oligonucleotides to inhibit the RNA levels of mutant AR in the central nervous system (CNS) and explore its therapeutic effects in our SBMA mouse model that harbors a mutant AR gene with 97 CAG expansions and characteristic SBMA-like neurogenic phenotypes. A single intracerebroventricular administration of the antisense oligonucleotides in the presymptomatic phase efficiently suppressed the mutant gene expression in the CNS, and delayed the onset and progression of motor dysfunction, improved body weight gain and survival with the amelioration of neuronal histopathology in motor units such as spinal motor neurons, neuromuscular junctions and skeletal muscle. These findings highlight the importance of the neurotoxicity of mutant AR protein in motor neurons as a therapeutic target.

  7. Systemic delivery of scAAV9 expressing SMN prolongs survival in a model of spinal muscular atrophy.

    PubMed

    Valori, Chiara F; Ning, Ke; Wyles, Matthew; Mead, Richard J; Grierson, Andrew J; Shaw, Pamela J; Azzouz, Mimoun

    2010-06-01

    Spinal muscular atrophy is one of the most common genetic causes of death in childhood, and there is currently no effective treatment. The disease is caused by mutations in the survival motor neuron gene. Gene therapy aimed at restoring the protein encoded by this gene is a rational therapeutic approach to ameliorate the disease phenotype. We previously reported that intramuscular delivery of a lentiviral vector expressing survival motor neuron increased the life expectancy of transgenic mice with spinal muscular atrophy. The marginal efficacy of this therapeutic approach, however, prompted us to explore different strategies for gene therapy delivery to motor neurons to achieve a more clinically relevant effect. Here, we report that a single injection of self-complementary adeno-associated virus serotype 9 expressing green fluorescent protein or of a codon-optimized version of the survival motor neuron protein into the facial vein 1 day after birth in mice carrying a defective survival motor neuron gene led to widespread gene transfer. Furthermore, this gene therapy resulted in a substantial extension of life span in these animals. These data demonstrate a significant increase in survival in a mouse model of spinal muscular atrophy and provide evidence for effective therapy.

  8. Clinical and molecular features and therapeutic perspectives of spinal muscular atrophy with respiratory distress type 1

    PubMed Central

    Vanoli, Fiammetta; Rinchetti, Paola; Porro, Francesca; Parente, Valeria; Corti, Stefania

    2015-01-01

    Spinal muscular atrophy with respiratory distress (SMARD1) is an autosomal recessive neuromuscular disease caused by mutations in the IGHMBP2 gene, encoding the immunoglobulin μ-binding protein 2, leading to motor neuron degeneration. It is a rare and fatal disease with an early onset in infancy in the majority of the cases. The main clinical features are muscular atrophy and diaphragmatic palsy, which requires prompt and permanent supportive ventilation. The human disease is recapitulated in the neuromuscular degeneration (nmd) mouse. No effective treatment is available yet, but novel therapeutical approaches tested on the nmd mouse, such as the use of neurotrophic factors and stem cell therapy, have shown positive effects. Gene therapy demonstrated effectiveness in SMA, being now at the stage of clinical trial in patients and therefore representing a possible treatment for SMARD1 as well. The significant advancement in understanding of both SMARD1 clinical spectrum and molecular mechanisms makes ground for a rapid translation of pre-clinical therapeutic strategies in humans. PMID:26095024

  9. Resistance Strength Training Exercise in Children with Spinal Muscular Atrophy

    PubMed Central

    Lewelt, Aga; Krosschell, Kristin J.; Stoddard, Gregory J.; Weng, Cindy; Xue, Mei; Marcus, Robin L.; Gappmaier, Eduard; Viollet, Louis; Johnson, Barbara A.; White, Andrea T.; Viazzo-Trussell, Donata; Lopes, Philippe; Lane, Robert H.; Carey, John C.; Swoboda, Kathryn J.

    2015-01-01

    Introduction Preliminary evidence in adults with spinal muscular atrophy (SMA) and in SMA animal models suggests exercise has potential benefits in improving or stabilizing muscle strength and motor function. Methods We evaluated feasibility, safety, and effects on strength and motor function of a home-based, supervised progressive resistance strength training exercise program in children with SMA types II and III. Up to 14 bilateral proximal muscles were exercised 3 times weekly for 12 weeks. Results Nine children with SMA, aged 10.4±3.8 years, completed the resistance training exercise program. Ninety percent of visits occurred per protocol. Training sessions were pain-free (99.8%), and no study-related adverse events occurred. Trends in improved strength and motor function were observed. Conclusions A 12-week supervised, home-based, 3 days/week progressive resistance training exercise program is feasible, safe, and well tolerated in children with SMA. These findings can inform future studies of exercise in SMA. PMID:25597614

  10. Riluzole pharmacokinetics in young patients with spinal muscular atrophy

    PubMed Central

    Abbara, Chadi; Estournet, Brigitte; Lacomblez, Lucette; Lelièvre, Benedicte; Ouslimani, Amal; Lehmann, Blandine; Viollet, Louis; Barois, Annie; Diquet, Bertrand

    2011-01-01

    AIMS The objective of the present study was to assess the pharmacokinetics of riluzole in patients with spinal muscular atrophy (SMA). METHODS Fourteen patients were enrolled in an open-label, nonrandomized and repeat-dose pharmacokinetic study. All participants were assigned to receive 50 mg riluzole orally for 5 days. Riluzole plasma concentrations were determined from samples obtained at day 5. RESULTS The pharmacokinetic analysis demonstrated that a dose of 50 mg once a day was sufficient to obtain a daily total exposure [AUC(0,24 h) = 2257 ng ml−1 h] which was comparable with results obtained in adult healthy volunteers or ALS patients in whom a dose of 50 mg twice a day is recommended. The pharmacokinetic simulation demonstrated that the administration of 50 mg twice a day could result in higher concentrations, hence reduced safety margin. CONCLUSION The dose of 50 mg once a day was chosen for the clinical trial evaluating the efficacy of riluzole in SMA patients. PMID:21284699

  11. Optimization of Spinal Muscular Atrophy subject's muscle activity during gait

    NASA Astrophysics Data System (ADS)

    Umat, Gazlia; Rambely, Azmin Sham

    2014-06-01

    Spinal Muscular Atrophy (SMA) is a hereditary disease related muscle nerve disorder caused by degeneration of the anterior cells of the spinal cord. SMA is divided into four types according to the degree of seriousness. SMA patients show different gait with normal people. Therefore, this study focused on the effects of SMA patient muscle actions and the difference that exists between SMA subjects and normal subjects. Therefore, the electromyography (EMG) test will be used to track the behavior of muscle during walking and optimization methods are used to get the muscle stress that is capable of doing the work while walking. Involved objective function is non-linear function of the quadratic and cubic functions. The study concludes with a comparison of the objective function using the force that sought to use the moment of previous studies and the objective function using the data obtained from EMG. The results shows that the same muscles, peroneus longus and bisepsfemoris, were used during walking activity by SMA subjects and control subjects. Muscle stress force best solution achieved from part D in simulation carried out.

  12. Atrophy, fibrosis, and increased PAX7-positive cells in pharyngeal muscles of oculopharyngeal muscular dystrophy patients.

    PubMed

    Gidaro, Teresa; Negroni, Elisa; Perié, Sophie; Mirabella, Massimiliano; Lainé, Jeanne; Lacau St Guily, Jean; Butler-Browne, Gillian; Mouly, Vincent; Trollet, Capucine

    2013-03-01

    Oculopharyngeal muscular dystrophy (OPMD) is a late-onset autosomal dominant inherited dystrophy caused by an abnormal trinucleotide repeat expansion in the poly(A)-binding-protein-nuclear 1 (PABPN1) gene. Primary muscular targets of OPMD are the eyelid elevator and pharyngeal muscles, including the cricopharyngeal muscle (CPM), the progressive involution of which leads to ptosis and dysphagia, respectively. To understand the consequences of PABPN1 polyalanine expansion in OPMD, we studied muscle biopsies from 14 OPMD patients, 3 inclusion body myositis patients, and 9 healthy controls. In OPMD patient CPM (n = 6), there were typical dystrophic features with extensive endomysial fibrosis and marked atrophy of myosin heavy-chain IIa fibers. There were more PAX7-positive cells in all CPM versus other muscles (n = 5, control; n = 3, inclusion body myositis), and they were more numerous in OPMD CPM versus control normal CPM without any sign of muscle regeneration. Intranuclear inclusions were present in all OPMD muscles but unaffected OPMD patient muscles (i.e. sternocleidomastoid, quadriceps, or deltoid; n = 14) did not show evidence of fibrosis, atrophy, or increased PAX7-positive cell numbers. These results suggest that the specific involvement of CPM in OPMD might be caused by failure of the regenerative response with dysfunction of PAX7-positive cells and exacerbated fibrosis that does not correlate with the presence of PABPN1 inclusions.

  13. TRPV4 related scapuloperoneal spinal muscular atrophy: Report of an Italian family and review of the literature.

    PubMed

    Biasini, F; Portaro, S; Mazzeo, A; Vita, G; Fabrizi, G M; Taioli, F; Toscano, A; Rodolico, C

    2016-01-01

    Scapuloperoneal spinal muscular atrophy (SPSMA) is a rare autosomal dominant disorder caused by heterozygous mutations in the transient receptor potential cation channel (TRPV4) gene, characterized by progressive scapuloperoneal atrophy and weakness. Additional features, such as vocal cord paralysis, scoliosis and/or arthrogryposis, are likely to occur. We report the first Italian family with SPSMA, harboring the c.806G>A mutation in TRPV4 gene (p. R269H). The pattern of expression was variable: the father showed a mild muscular involvement, while the son presented at birth skeletal dysplasia and a progressive course. We reinforce the concept that the disease can be more severe in the following generations. The disorder should be considered in scapuloperoneal syndromes with autosomal dominant inheritance and a neurogenic pattern. The presence of skeletal deformities strongly supports this suspicion. An early diagnosis of SPSMA may be crucial in order to prevent the more severe congenital form. PMID:26948711

  14. Onset Manifestations of Spinal and Bulbar Muscular Atrophy (Kennedy's Disease).

    PubMed

    Finsterer, Josef; Soraru, Gianni

    2016-03-01

    Spinal and bulbar muscular atrophy (SBMA) is regarded as a disorder with adult onset between third and fifth decade of life. However, there is increasing evidence that SBMA may start already before adulthood. The present study investigated the following: (1) Which clinical manifestations have been described so far in the literature as initial manifestations? (2) Which was the age at onset of these manifestations? and (3) Is age at onset dependent on the CAG-repeat length if non-motor manifestations are additionally considered? Data for this review were identified by searches of MEDLINE using appropriate search terms. Onset manifestations in SBMA can be classified as frequent, rare, motor, non-motor, or questionable. Frequent are muscle weakness, cramps, fasciculations/twitching, tremor, dysarthria, dysphagia, or gynecomastia. Rare are myalgia, easy fatigability, exercise intolerance, polyneuropathy, hyper-CKemia, under-masculinized genitalia, scrotal hypospadias, microphallus, laryngospasm, or oligospermia. Questionable manifestations include sensory disturbances, cognitive impairment, increased pituitary volume, diabetes, reduced tongue pressure, elevated creatine-kinase, or low androgens/high estrogens. Age at onset is highly variable ranging from 4-76 years. Non-motor manifestations develop usually before motor manifestations. Age at onset depends on what is considered as an onset manifestation. Considering non-motor onset manifestations, age at onset is independent of the CAG-repeat size. In conclusion, age at onset of SBMA depends on what is regarded as onset manifestation. If non-motor manifestations are additionally considered, age at onset is independent of the CAG-repeat length. Since life expectancy is hardly reduced in SBMA, re-investigation of patients from published studies with regard to their initial disease profiles is recommended. PMID:26482145

  15. SMN-inducing compounds for the treatment of spinal muscular atrophy

    PubMed Central

    Lorson, Monique A; Lorson, Christian L

    2013-01-01

    Spinal muscular atrophy (SMA) is a leading genetic cause of infant mortality. A neurodegenerative disease, it is caused by loss of SMN1, although low, but essential, levels of SMN protein are produced by the nearly identical gene SMN2. While no effective treatment or therapy currently exists, a new wave of therapeutics has rapidly progressed from cell-based and preclinical animal models to the point where clinical trials have initiated for SMA-specific compounds. There are several reasons why SMA has moved relatively rapidly towards novel therapeutics, including: SMA is monogenic; the molecular understanding of SMN gene regulation has been building for nearly 20 years; and all SMA patients retain one or more copies of SMN2 that produces low levels of full-length, fully functional SMN protein. This review primarily focuses upon the biology behind the disease and examines SMN1- and SMN2-targeted therapeutics. PMID:23157239

  16. Spinal muscular atrophy type III: Molecular genetic characterization of Turkish patients.

    PubMed

    Bora-Tatar, Gamze; Yesbek-Kaymaz, Ayse; Bekircan-Kurt, Can Ebru; Erdem-Özdamar, Sevim; Erdem-Yurter, Hayat

    2015-12-01

    Spinal Muscular Atrophy (SMA) is a neurodegenerative disease with autosomal recessive inheritance. Homozygous loss of exon 7 of the Survival of motor neuron 1 (SMN1) gene is the main cause of SMA. Although progressive muscle weakness and atrophy are common symptoms, disease severity varies from severe to mild. Type III is one of the milder and less frequent forms of SMA. In this study, we report molecular genetic characteristics of 24 Turkish type III SMA patients. Homozygous loss of SMN1 exon 7 and 8 was analysed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and multiplex ligation dependent probe amplification (MLPA). SMN2, homologue of SMN1, and Neuronal apoptosis inhibitory protein (NAIP) genes were also evaluated considering their influence on disease severity. We determined that male patients who were born in consanguineous families were predominant in our cohort and these patients mostly carry the homozygous loss of SMN1 exon 7 and 8 and four copies of SMN2 gene without NAIP deletions. PMID:26548498

  17. Impaired Muscle Mitochondrial Biogenesis and Myogenesis in Spinal Muscular Atrophy

    PubMed Central

    Ripolone, Michela; Ronchi, Dario; Violano, Raffaella; Vallejo, Dionis; Fagiolari, Gigliola; Barca, Emanuele; Lucchini, Valeria; Colombo, Irene; Villa, Luisa; Berardinelli, Angela; Balottin, Umberto; Morandi, Lucia; Mora, Marina; Bordoni, Andreina; Fortunato, Francesco; Corti, Stefania; Parisi, Daniela; Toscano, Antonio; Sciacco, Monica; DiMauro, Salvatore; Comi, Giacomo P.; Moggio, Maurizio

    2016-01-01

    IMPORTANCE The important depletion of mitochondrial DNA (mtDNA) and the general depression of mitochondrial respiratory chain complex levels (including complex II) have been confirmed, implying an increasing paucity of mitochondria in the muscle from patients with types I, II, and III spinal muscular atrophy (SMA-I, -II, and -III, respectively). OBJECTIVE To investigate mitochondrial dysfunction in a large series of muscle biopsy samples from patients with SMA. DESIGN, SETTING, AND PARTICIPANTS We studied quadriceps muscle samples from 24 patients with genetically documented SMA and paraspinal muscle samples from 3 patients with SMA-II undergoing surgery for scoliosis correction. Postmortem muscle samples were obtained from 1 additional patient. Age-matched controls consisted of muscle biopsy specimens from healthy children aged 1 to 3 years who had undergone analysis for suspected myopathy. Analyses were performed at the Neuromuscular Unit, Istituto di Ricovero e Cura a Carattere Scientifico Foundation Ca’ Granda Ospedale Maggiore Policlinico-Milano, from April 2011 through January 2015. EXPOSURES We used histochemical, biochemical, and molecular techniques to examine the muscle samples. MAIN OUTCOMES AND MEASURES Respiratory chain activity and mitochondrial content. RESULTS Results of histochemical analysis revealed that cytochrome-c oxidase (COX) deficiency was more evident in muscle samples from patients with SMA-I and SMA-II. Residual activities for complexes I, II, and IV in muscles from patients with SMA-I were 41%, 27%, and 30%, respectively, compared with control samples (P < .005). Muscle mtDNA content and cytrate synthase activity were also reduced in all 3 SMA types (P < .05). We linked these alterations to downregulation of peroxisome proliferator–activated receptor coactivator 1α, the transcriptional activators nuclear respiratory factor 1 and nuclear respiratory factor 2, mitochondrial transcription factor A, and their downstream targets

  18. De novo and inherited deletions of the 5q13 region in spinal muscular atrophies

    SciTech Connect

    Melki, J.; Lefebvre, S.; Burglen, L.; Burlet, P.; Clermont, O.; Reboullet, S.; Benichou, B.; Zeviani, M. ); Millasseau, P. ); Le Paslier, D. )

    1994-06-03

    Spinal muscular atrophies (SMAs) represent the second most common fatal autosomal recessive disorder after cystic fibrosis. Childhood spinal muscular atrophies are divided into severe (type I) and mild forms (types II and III). By a combination of genetic and physical mapping, a yeast artificial chromosome contig of the 5q13 region spanning the disease locus was constructed that showed the presence of low copy repeats in this region. Allele segregation was analyzed at the closest genetic loci detected by markers C212 and C272 in 201 SMA families. Inherited and de novo deletions were observed in nine unrelated SMA patients. Moreover, deletions were strongly suggested in at least 18 percent of SMA type I patients by the observation of marked heterozygosity deficiency for the loci studied. These results indicate that deletion events are statistically associated with the severe form of spinal muscular atrophy. 25 refs., 5 figs.

  19. Molecular and phenotypic characterization of a mouse model of oculopharyngeal muscular dystrophy reveals severe muscular atrophy restricted to fast glycolytic fibres.

    PubMed

    Trollet, Capucine; Anvar, Seyed Yahya; Venema, Andrea; Hargreaves, Iain P; Foster, Keith; Vignaud, Alban; Ferry, Arnaud; Negroni, Elisa; Hourde, Christophe; Baraibar, Martin A; 't Hoen, Peter A C; Davies, Janet E; Rubinsztein, David C; Heales, Simon J; Mouly, Vincent; van der Maarel, Silvère M; Butler-Browne, Gillian; Raz, Vered; Dickson, George

    2010-06-01

    Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset disorder characterized by ptosis, dysphagia and proximal limb weakness. Autosomal-dominant OPMD is caused by a short (GCG)(8-13) expansions within the first exon of the poly(A)-binding protein nuclear 1 gene (PABPN1), leading to an expanded polyalanine tract in the mutated protein. Expanded PABPN1 forms insoluble aggregates in the nuclei of skeletal muscle fibres. In order to gain insight into the different physiological processes affected in OPMD muscles, we have used a transgenic mouse model of OPMD (A17.1) and performed transcriptomic studies combined with a detailed phenotypic characterization of this model at three time points. The transcriptomic analysis revealed a massive gene deregulation in the A17.1 mice, among which we identified a significant deregulation of pathways associated with muscle atrophy. Using a mathematical model for progression, we have identified that one-third of the progressive genes were also associated with muscle atrophy. Functional and histological analysis of the skeletal muscle of this mouse model confirmed a severe and progressive muscular atrophy associated with a reduction in muscle strength. Moreover, muscle atrophy in the A17.1 mice was restricted to fast glycolytic fibres, containing a large number of intranuclear inclusions (INIs). The soleus muscle and, in particular, oxidative fibres were spared, even though they contained INIs albeit to a lesser degree. These results demonstrate a fibre-type specificity of muscle atrophy in this OPMD model. This study improves our understanding of the biological pathways modified in OPMD to identify potential biomarkers and new therapeutic targets.

  20. Mechanistic principles of antisense targets for the treatment of spinal muscular atrophy.

    PubMed

    Singh, Natalia N; Lee, Brian M; DiDonato, Christine J; Singh, Ravindra N

    2015-01-01

    Spinal muscular atrophy (SMA) is a major neurodegenerative disorder of children and infants. SMA is primarily caused by low levels of SMN protein owing to deletions or mutations of the SMN1 gene. SMN2, a nearly identical copy of SMN1, fails to compensate for the loss of the production of the functional SMN protein due to predominant skipping of exon 7. Several compounds, including antisense oligonucleotides (ASOs) that elevate SMN protein from SMN2 hold the promise for treatment. An ASO-based drug currently under Phase III clinical trial employs intronic splicing silencer N1 (ISS-N1) as its target. Cumulative studies on ISS-N1 reveal a wealth of information with significance to the overall therapeutic development for SMA. Here, the authors summarize the mechanistic principles behind various antisense targets currently available for SMA therapy.

  1. Mechanistic principles of antisense targets for the treatment of Spinal Muscular Atrophy

    PubMed Central

    Singh, Natalia N.; Lee, Brian M.; DiDonato, Christine J.; Singh, Ravindra N.

    2015-01-01

    Spinal muscular atrophy (SMA) is a major neurodegenerative disorder of children and infants. SMA is primarily caused by low levels of SMN protein owing to deletions or mutations of the survival motor neuron 1 (SMN1) gene. SMN2, a nearly identical copy of SMN1, fails to compensate for the loss of the production of the functional SMN protein due to predominant skipping of exon 7. Several compounds, including antisense oligonucleotides (ASOs) that elevate SMN protein from SMN2 hold the promise for treatment. An ASO-based drug currently under phase 3 clinical trial employs intronic splicing silencer N1 (ISS-N1) as its target. Cumulative studies on the ISS-N1 reveal a wealth of information with significance to the overall therapeutic development for SMA. Here we summarize the mechanistic principles behind various antisense targets currently available for SMA therapy. PMID:26381381

  2. Outcome and experience of implementing spinal muscular atrophy carrier screening on sperm donors.

    PubMed

    Callum, Pamela; Iger, Jennifer; Ray, Marilyn; Sims, Charles A; Falk, Rena E

    2010-10-01

    Spinal muscular atrophy (SMA) carrier screening was performed on 277 active semen donors and new semen donor applicants; five men tested positive as carriers for SMA. The risk for specific medical problems in donor offspring can be significantly reduced by incorporating new genetic tests, such as spinal muscular atrophy carrier screening, into donor screening practices; however, future efforts should focus on communicating the limitations of genetic screening to donor gamete recipients and on the development of guidelines for implementing new genetic tests on donors. PMID:20152968

  3. Fasudil improves survival and promotes skeletal muscle development in a mouse model of spinal muscular atrophy

    PubMed Central

    2012-01-01

    Background Spinal muscular atrophy (SMA) is the leading genetic cause of infant death. It is caused by mutations/deletions of the survival motor neuron 1 (SMN1) gene and is typified by the loss of spinal cord motor neurons, muscular atrophy, and in severe cases, death. The SMN protein is ubiquitously expressed and various cellular- and tissue-specific functions have been investigated to explain the specific motor neuron loss in SMA. We have previously shown that the RhoA/Rho kinase (ROCK) pathway is misregulated in cellular and animal SMA models, and that inhibition of ROCK with the chemical Y-27632 significantly increased the lifespan of a mouse model of SMA. In the present study, we evaluated the therapeutic potential of the clinically approved ROCK inhibitor fasudil. Methods Fasudil was administered by oral gavage from post-natal day 3 to 21 at a concentration of 30 mg/kg twice daily. The effects of fasudil on lifespan and SMA pathological hallmarks of the SMA mice were assessed and compared to vehicle-treated mice. For the Kaplan-Meier survival analysis, the log-rank test was used and survival curves were considered significantly different at P < 0.05. For the remaining analyses, the Student's two-tail t test for paired variables and one-way analysis of variance (ANOVA) were used to test for differences between samples and data were considered significantly different at P < 0.05. Results Fasudil significantly improves survival of SMA mice. This dramatic phenotypic improvement is not mediated by an up-regulation of Smn protein or via preservation of motor neurons. However, fasudil administration results in a significant increase in muscle fiber and postsynaptic endplate size, and restores normal expression of markers of skeletal muscle development, suggesting that the beneficial effects of fasudil could be muscle-specific. Conclusions Our work underscores the importance of muscle as a therapeutic target in SMA and highlights the beneficial potential of ROCK

  4. Exercise training prevents hyperinsulinemia, muscular glycogen loss and muscle atrophy induced by dexamethasone treatment.

    PubMed

    Barel, Matheus; Perez, Otávio André Brogin; Giozzet, Vanessa Aparecida; Rafacho, Alex; Bosqueiro, José Roberto; do Amaral, Sandra Lia

    2010-03-01

    This study investigated whether exercise training could prevent the negative side effects of dexamethasone. Rats underwent a training period and were either submitted to a running protocol (60% physical capacity, 5 days/week for 8 weeks) or kept sedentary. After this training period, the animals underwent dexamethasone treatment (1 mg/kg per day, i.p., 10 days). Glycemia, insulinemia, muscular weight and muscular glycogen were measured from blood and skeletal muscle. Vascular endothelial growth factor (VEGF) protein was analyzed in skeletal muscles. Dexamethasone treatment evoked body weight loss (-24%), followed by muscular atrophy in the tibialis anterior (-25%) and the extensor digitorum longus (EDL, -15%). Dexamethasone also increased serum insulin levels by 5.7-fold and glucose levels by 2.5-fold compared to control. The exercise protocol prevented atrophy of the EDL and insulin resistance. Also, dexamethasone-treated rats showed decreased muscular glycogen (-41%), which was further attenuated by the exercise protocol. The VEGF protein expression decreased in the skeletal muscles of dexamethasone-treated rats and was unaltered by the exercise protocol. These data suggest that exercise attenuates hyperglycemia and may also prevent insulin resistance, muscular glycogen loss and muscular atrophy, thus suggesting that exercise may have some benefits during glucocorticoid treatment.

  5. Clinical and Genetic Study of Algerian Patients with Spinal Muscular Atrophy.

    PubMed

    Sifi, Y; Sifi, K; Boulefkhad, A; Abadi, N; Bouderda, Z; Cheriet, R; Magen, M; Bonnefont, J P; Munnich, A; Benlatreche, C; Hamri, A

    2013-01-01

    Spinal muscular atrophy (SMA) is the second most common lethal autosomal recessive disorder. It is divided into the acute Werdnig-Hoffmann disease (type I), the intermediate form (type II), the Kugelberg-Welander disease (type III), and the adult form (type IV). The gene involved in all four forms of SMA, the so-called survival motor neuron (SMN) gene, is duplicated, with a telomeric (tel SMN or SMN1) and a centromeric copy (cent SMN or SMN2). SMN1 is homozygously deleted in over 95% of SMA patients. Another candidate gene in SMA is the neuronal apoptosis inhibitory protein (NAIP) gene; it shows homozygous deletions in 45-67% of type I and 20-42% of type II/type III patients. Here we studied the SMN and NAIP genes in 92 Algerian SMA patients (20 type I, 16 type II, 53 type III, and 3 type IV) from 57 unrelated families, using a semiquantitative PCR approach. Homozygous deletions of SMN1 exons 7 and/or 8 were found in 75% of the families. Deletions of exon 4 and/or 5 of the NAIP gene were found in around 25%. Conversely, the quantitative analysis of SMN2 copies showed a significant correlation between SMN2 copy number and the type of SMA. PMID:26317002

  6. Molecular prenatal diagnosis of autosomal recessive childhood spinal muscular atrophies (SMAs).

    PubMed

    Essawi, Mona L; Al-Attribi, Ghada M; Gaber, Khaled R; El-Harouni, Ashraf A

    2012-11-01

    Autosomal recessive childhood spinal muscular atrophy (SMAs) is the second most common neuromuscular disorder and a common cause of infant disability and mortality. SMA patients are classified into three clinical types based on age of onset, and severity of symptoms. About 94% of patients have homozygous deletion of exon 7 in survival motor neuron (SMN1) gene. The neuronal apoptosis inhibitory protein (NAIP) gene was found to be more frequently deleted in the severest form of the disease. This study aimed to comment on the implementation of genetic counseling and prenatal diagnosis of SMAs for 85 fetuses from 75 Egyptian couples at risk of having an affected child. The homozygous deletion of exon 7 in SMN1 gene and the deletion of exon 5 of the NAIP gene were detected using PCR-REFLP and multiplex PCR methods respectively. Eighteen fetuses showed homozygous deletion of exon 7 in SMN1 gene and deletion of exon 5 in NAIP gene. In conclusion prenatal diagnosis is an important tool for accurate diagnosis and genetic counseling that help decision making in high risk families. PMID:22921322

  7. Assays for the Identification and Prioritization of Drug Candidates for Spinal Muscular Atrophy

    PubMed Central

    Cherry, Jonathan J.; Kobayashi, Dione T.; Lynes, Maureen M.; Naryshkin, Nikolai N.; Tiziano, Francesco Danilo; Zaworski, Phillip G.; Rubin, Lee L.

    2014-01-01

    Abstract Spinal muscular atrophy (SMA) is an autosomal recessive genetic disorder resulting in degeneration of α-motor neurons of the anterior horn and proximal muscle weakness. It is the leading cause of genetic mortality in children younger than 2 years. It affects ∼1 in 11,000 live births. In 95% of cases, SMA is caused by homozygous deletion of the SMN1 gene. In addition, all patients possess at least one copy of an almost identical gene called SMN2. A single point mutation in exon 7 of the SMN2 gene results in the production of low levels of full-length survival of motor neuron (SMN) protein at amounts insufficient to compensate for the loss of the SMN1 gene. Although no drug treatments are available for SMA, a number of drug discovery and development programs are ongoing, with several currently in clinical trials. This review describes the assays used to identify candidate drugs for SMA that modulate SMN2 gene expression by various means. Specifically, it discusses the use of high-throughput screening to identify candidate molecules from primary screens, as well as the technical aspects of a number of widely used secondary assays to assess SMN messenger ribonucleic acid (mRNA) and protein expression, localization, and function. Finally, it describes the process of iterative drug optimization utilized during preclinical SMA drug development to identify clinical candidates for testing in human clinical trials. PMID:25147906

  8. Aquatic Therapy for a Child with Type III Spinal Muscular Atrophy: A Case Report

    ERIC Educational Resources Information Center

    Salem, Yasser; Gropack, Stacy Jaffee

    2010-01-01

    Spinal muscular atrophy (SMA) is a neuromuscular disorder characterized by degeneration of alpha motor neurons. This case report describes an aquatic therapy program and the outcomes for a 3-year-old girl with type III SMA. Motor skills were examined using the 88-item Gross Motor Function Measure (GMFM), the Peabody Developmental Motor Scales…

  9. Infantile spinal muscular atrophy (morbus Werdnig-Hoffmann) causing neonatal asphyxia.

    PubMed

    Kyllerman, M

    1977-02-01

    A case of infantile spinal muscular atrophy (Werdnig-Hoffmann's disease) with complete proximal pareses obvious at birth giving rise to neonatal asphyxia is reported. Reduction of fetal movements was noted from the 32nd week of pregnancy. The infant was extremely floppy at birth and spontaneous movements were restricted to hands, feet and face. Fibrillations of the tongue, diaphragmatic hemiparesis and dysphagia were observed. Unassisted ventilation was not compatible with survival and the infant succumbed to the disease in the neonatal period. Muscle biopsy and autopsy confirmed the clinical diagnosis. Infantile spinal muscular atrophy causing neonatal asphyxia seems to be unusual and not earlier described. Constant muscular hypotonus in an asphyctic newborn should raise suspicion of a neuromuscular disorder.

  10. Proximal muscular atrophy and weakness: An unusual adverse effect of deferasirox iron chelation therapy.

    PubMed

    Vill, K; Müller-Felber, W; Teusch, V; Blaschek, A; Gerstl, L; Huetker, S; Albert, M H

    2016-01-01

    Deferasirox is a standard treatment for chronic transfusional iron overload. Adverse effects of deferasirox have been reported in large prospective studies. We report two cases of monozygotic twins manifesting with proximal muscular atrophy and weakness under deferasirox. Discontinuation of deferasirox resulted in symptom improvement and ultimately in complete remission five months after successful haematopoietic stem cell transplantation. Broad diagnostic work-up could not bring evidence of another aetiology of muscular weakness. Iron overload or beta thalassemia itself as a cause is considered unlikely in our patients because the chronological coincidence of muscular symptoms was contra-directional to serum ferritin levels and significant clinical improvement was observed promptly after cessation of deferasirox even before transplantation. These observations suggest that the development of muscular weakness in patients on deferasirox should be recognised as a possible adverse effect of the drug.

  11. Reduced survival of motor neuron (SMN) protein in motor neuronal progenitors functions cell autonomously to cause spinal muscular atrophy in model mice expressing the human centromeric (SMN2) gene.

    PubMed

    Park, Gyu-Hwan; Maeno-Hikichi, Yuka; Awano, Tomoyuki; Landmesser, Lynn T; Monani, Umrao R

    2010-09-01

    Spinal muscular atrophy (SMA) is a common (approximately 1:6400) autosomal recessive neuromuscular disorder caused by a paucity of the survival of motor neuron (SMN) protein. Although widely recognized to cause selective spinal motor neuron loss when deficient, the precise cellular site of action of the SMN protein in SMA remains unclear. In this study we sought to determine the consequences of selectively depleting SMN in the motor neurons of model mice. Depleting but not abolishing the protein in motor neuronal progenitors causes an SMA-like phenotype. Neuromuscular weakness in the model mice is accompanied by peripheral as well as central synaptic defects, electrophysiological abnormalities of the neuromuscular junctions, muscle atrophy, and motor neuron degeneration. However, the disease phenotype is more modest than that observed in mice expressing ubiquitously low levels of the SMN protein, and both symptoms as well as early electrophysiological abnormalities that are readily apparent in neonates were attenuated in an age-dependent manner. We conclude that selective knock-down of SMN in motor neurons is sufficient but may not be necessary to cause a disease phenotype and that targeting these cells will be a requirement of any effective therapeutic strategy. This realization is tempered by the relatively mild SMA phenotype in our model mice, one explanation for which is the presence of normal SMN levels in non-neuronal tissue that serves to modulate disease severity.

  12. Systemic peptide-mediated oligonucleotide therapy improves long-term survival in spinal muscular atrophy.

    PubMed

    Hammond, Suzan M; Hazell, Gareth; Shabanpoor, Fazel; Saleh, Amer F; Bowerman, Melissa; Sleigh, James N; Meijboom, Katharina E; Zhou, Haiyan; Muntoni, Francesco; Talbot, Kevin; Gait, Michael J; Wood, Matthew J A

    2016-09-27

    The development of antisense oligonucleotide therapy is an important advance in the identification of corrective therapy for neuromuscular diseases, such as spinal muscular atrophy (SMA). Because of difficulties of delivering single-stranded oligonucleotides to the CNS, current approaches have been restricted to using invasive intrathecal single-stranded oligonucleotide delivery. Here, we report an advanced peptide-oligonucleotide, Pip6a-morpholino phosphorodiamidate oligomer (PMO), which demonstrates potent efficacy in both the CNS and peripheral tissues in severe SMA mice following systemic administration. SMA results from reduced levels of the ubiquitously expressed survival motor neuron (SMN) protein because of loss-of-function mutations in the SMN1 gene. Therapeutic splice-switching oligonucleotides (SSOs) modulate exon 7 splicing of the nearly identical SMN2 gene to generate functional SMN protein. Pip6a-PMO yields SMN expression at high efficiency in peripheral and CNS tissues, resulting in profound phenotypic correction at doses an order-of-magnitude lower than required by standard naked SSOs. Survival is dramatically extended from 12 d to a mean of 456 d, with improvement in neuromuscular junction morphology, down-regulation of transcripts related to programmed cell death in the spinal cord, and normalization of circulating insulin-like growth factor 1. The potent systemic efficacy of Pip6a-PMO, targeting both peripheral as well as CNS tissues, demonstrates the high clinical potential of peptide-PMO therapy for SMA. PMID:27621445

  13. Clinical applications of MARSALA for preimplantation genetic diagnosis of spinal muscular atrophy.

    PubMed

    Ren, Yixin; Zhi, Xu; Zhu, Xiaohui; Huang, Jin; Lian, Ying; Li, Rong; Jin, Hongyan; Zhang, Yan; Zhang, Wenxin; Nie, Yanli; Wei, Yuan; Liu, Zhaohui; Song, Donghong; Liu, Ping; Qiao, Jie; Yan, Liying

    2016-09-20

    Conventional PCR methods combined with linkage analysis based on short tandem repeats (STRs) or Karyomapping with single nucleotide polymorphism (SNP) arrays, have been applied to preimplantation genetic diagnosis (PGD) for spinal muscular atrophy (SMA), an autosome recessive disorder. However, it has limitations in SMA diagnosis by Karyomapping, and these methods are unable to distinguish wild-type embryos with carriers effectively. Mutated allele revealed by sequencing with aneuploidy and linkage analyses (MARSALA) is a new method allowing embryo selection by a one-step next-generation sequencing (NGS) procedure, which has been applied in PGD for both autosome dominant and X-linked diseases in our group previously. In this study, we carried out PGD based on MARSALA for two carrier families with SMA affected children. As a result, one of the couples has given birth to a healthy baby free of mutations in SMA-causing gene. It is the first time that MARSALA was applied to PGD for SMA, and we can distinguish the embryos with heterozygous deletion (carriers) from the wild-type (normal) ones accurately through this NGS-based method. In addition, direct mutation detection allows us to identify the affected embryos (homozygous deletion), which can be regarded as probands for linkage analysis, in case that the affected family member is absent. In the future, the NGS-based MARSALA method is expected to be used in PGD for all monogenetic disorders with known pathogenic gene mutation. PMID:27599922

  14. Dominant spinal muscular atrophy is caused by mutations in BICD2, an important golgin protein

    PubMed Central

    Martinez-Carrera, Lilian A.; Wirth, Brunhilde

    2015-01-01

    Spinal muscular atrophies (SMAs) are characterized by degeneration of spinal motor neurons and muscle weakness. Autosomal recessive SMA is the most common form and is caused by homozygous deletions/mutations of the SMN1 gene. However, families with dominant inherited SMA have been reported, for most of them the causal gene remains unknown. Recently, we and others have identified heterozygous mutations in BICD2 as causative for autosomal dominant SMA, lower extremity-predominant, 2 (SMALED2) and hereditary spastic paraplegia (HSP). BICD2 encodes the Bicaudal D2 protein, which is considered to be a golgin, due to its coiled-coil (CC) structure and interaction with the small GTPase RAB6A located at the Golgi apparatus. Golgins are resident proteins in the Golgi apparatus and form a matrix that helps to maintain the structure of this organelle. Golgins are also involved in the regulation of vesicle transport. In vitro overexpression experiments and studies of fibroblast cell lines derived from patients, showed fragmentation of the Golgi apparatus. In the current review, we will discuss possible causes for this disruption, and the consequences at cellular level, with a view to better understand the pathomechanism of this disease. PMID:26594138

  15. Nemo-like kinase is a novel regulator of spinal and bulbar muscular atrophy

    PubMed Central

    Todd, Tiffany W; Kokubu, Hiroshi; Miranda, Helen C; Cortes, Constanza J; La Spada, Albert R; Lim, Janghoo

    2015-01-01

    Spinal and bulbar muscular atrophy (SBMA) is a progressive neuromuscular disease caused by polyglutamine expansion in the androgen receptor (AR) protein. Despite extensive research, the exact pathogenic mechanisms underlying SBMA remain elusive. In this study, we present evidence that Nemo-like kinase (NLK) promotes disease pathogenesis across multiple SBMA model systems. Most remarkably, loss of one copy of Nlk rescues SBMA phenotypes in mice, including extending lifespan. We also investigated the molecular mechanisms by which NLK exerts its effects in SBMA. Specifically, we have found that NLK can phosphorylate the mutant polyglutamine-expanded AR, enhance its aggregation, and promote AR-dependent gene transcription by regulating AR-cofactor interactions. Furthermore, NLK modulates the toxicity of a mutant AR fragment via a mechanism that is independent of AR-mediated gene transcription. Our findings uncover a crucial role for NLK in controlling SBMA toxicity and reveal a novel avenue for therapy development in SBMA. DOI: http://dx.doi.org/10.7554/eLife.08493.001 PMID:26308581

  16. Apparent autosomal recessive inheritance in families with proximal spinal muscular atrophy affecting individuals in two generations

    SciTech Connect

    Rudnik-Schoeneborn, S.; Zerres, K.; Hahnen, E.

    1996-11-01

    With the evidence that deletions in the region responsible for childhood- and juvenile-onset proximal spinal muscular atrophy (SMA) are on chromosome 5 it is now possible to confirm autosomal recessive inheritance in most patients (denoted {open_quotes}SMA 5q{close_quotes}). Homozygous deletions in the telomeric copy of the survival motor neuron (SMN) gene can be detected in 95%-98% of patients with early-onset SMA (types I and II), whereas as many as 10%-20% of patients with the milder, juvenile-onset form (type III SMA) do not show deletions. In families with affected subjects in two generations, it is difficult to decide whether they are autosomal dominantly inherited or caused by three independent recessive mutations (pseudodominant inheritance). Given an incidence of >1/10,000 of SMA 5q, patients with autosomal recessive SMA have an {approximately}1% recurrence risk to their offspring. Although the dominant forms are not linked to chromosome 5q, pseudodominant families can now be identified by the presence of homozygous deletions in the SMN gene. 5 refs., 1 fig., 1 tab.

  17. Systemic peptide-mediated oligonucleotide therapy improves long-term survival in spinal muscular atrophy

    PubMed Central

    Hazell, Gareth; Shabanpoor, Fazel; Saleh, Amer F.; Bowerman, Melissa; Meijboom, Katharina E.; Zhou, Haiyan; Muntoni, Francesco; Talbot, Kevin; Gait, Michael J.; Wood, Matthew J. A.

    2016-01-01

    The development of antisense oligonucleotide therapy is an important advance in the identification of corrective therapy for neuromuscular diseases, such as spinal muscular atrophy (SMA). Because of difficulties of delivering single-stranded oligonucleotides to the CNS, current approaches have been restricted to using invasive intrathecal single-stranded oligonucleotide delivery. Here, we report an advanced peptide-oligonucleotide, Pip6a-morpholino phosphorodiamidate oligomer (PMO), which demonstrates potent efficacy in both the CNS and peripheral tissues in severe SMA mice following systemic administration. SMA results from reduced levels of the ubiquitously expressed survival motor neuron (SMN) protein because of loss-of-function mutations in the SMN1 gene. Therapeutic splice-switching oligonucleotides (SSOs) modulate exon 7 splicing of the nearly identical SMN2 gene to generate functional SMN protein. Pip6a-PMO yields SMN expression at high efficiency in peripheral and CNS tissues, resulting in profound phenotypic correction at doses an order-of-magnitude lower than required by standard naked SSOs. Survival is dramatically extended from 12 d to a mean of 456 d, with improvement in neuromuscular junction morphology, down-regulation of transcripts related to programmed cell death in the spinal cord, and normalization of circulating insulin-like growth factor 1. The potent systemic efficacy of Pip6a-PMO, targeting both peripheral as well as CNS tissues, demonstrates the high clinical potential of peptide-PMO therapy for SMA. PMID:27621445

  18. Postural leg tremor in X-linked spinal and bulbar muscular atrophy.

    PubMed

    Nishiyama, Ayumi; Sugeno, Naoto; Tateyama, Maki; Nishiyama, Shuhei; Kato, Masaaki; Aoki, Masashi

    2014-05-01

    X-linked spinal and bulbar muscular atrophy (SBMA) is an adult-onset neuromuscular disorder caused by a CAG repeat expansion in the androgen receptor gene. Postural hand tremor is well known as a non-motor neuron sign, but to our knowledge postural leg tremor has not been reported. We studied the occurrence and physiological features of postural leg tremor in 12 male patients (38-64 years old) with genetically proven SBMA. Three patients had postural leg tremor with a frequency of 4-7Hz. In these patients, sensory nerve action potential (SNAP) was not detected in the lower limbs. There were significant differences between the patients with postural leg tremor and those without postural leg tremor in both the SNAP of the sural nerve and the length of the CAG repeat. Phenotypical differences between shorter CAG repeats, which indicate a sensory-dominant phenotype, and longer CAG repeats, which indicate a motor-dominant phenotype, have been previously reported. In the present study, 60% of patients with shorter CAG repeats (<47) showed leg tremor and none of the patients with longer CAG repeats (≥47) did. Postural leg tremor could be a clinical feature that predicts shorter CAG repeats of the androgen receptor gene.

  19. SAM68 is a physiological regulator of SMN2 splicing in spinal muscular atrophy

    PubMed Central

    Pagliarini, Vittoria; Pelosi, Laura; Bustamante, Maria Blaire; Nobili, Annalisa; Berardinelli, Maria Grazia; D’Amelio, Marcello; Musarò, Antonio

    2015-01-01

    Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by loss of motor neurons in patients with null mutations in the SMN1 gene. The almost identical SMN2 gene is unable to compensate for this deficiency because of the skipping of exon 7 during pre–messenger RNA (mRNA) processing. Although several splicing factors can modulate SMN2 splicing in vitro, the physiological regulators of this disease-causing event are unknown. We found that knockout of the splicing factor SAM68 partially rescued body weight and viability of SMAΔ7 mice. Ablation of SAM68 function promoted SMN2 splicing and expression in SMAΔ7 mice, correlating with amelioration of SMA-related defects in motor neurons and skeletal muscles. Mechanistically, SAM68 binds to SMN2 pre-mRNA, favoring recruitment of the splicing repressor hnRNP A1 and interfering with that of U2AF65 at the 3′ splice site of exon 7. These findings identify SAM68 as the first physiological regulator of SMN2 splicing in an SMA mouse model. PMID:26438828

  20. Upper limb module in non-ambulant patients with spinal muscular atrophy: 12 month changes.

    PubMed

    Sivo, Serena; Mazzone, Elena; Antonaci, Laura; De Sanctis, Roberto; Fanelli, Lavinia; Palermo, Concetta; Montes, Jacqueline; Pane, Marika; Mercuri, Eugenio

    2015-03-01

    Recent studies have suggested that in non-ambulant patients affected by spinal muscular atrophy the Upper Limb Module can increase the range of activities assessed by the Hammersmith Functional Motor Scale Expanded. The aim of this study was to establish 12-month changes in the Upper Limb Module in a cohort of non-ambulant spinal muscular atrophy patients and their correlation with changes on the Hammersmith Functional Motor Scale Expanded. The Upper Limb Module scores ranged between 0 and 17 (mean 10.23, SD 4.81) at baseline and between 1 and 17 at 12 months (mean 10.27, SD 4.74). The Hammersmith Functional Motor Scale Expanded scores ranged between 0 and 34 (mean 12.43, SD 9.13) at baseline and between 0 and 34 at 12 months (mean 12.08, SD 9.21). The correlation betweeen the two scales was 0.65 at baseline and 0.72 on the 12 month changes. Our results confirm that the Upper Limb Module can capture functional changes in non-ambulant spinal muscular atrophy patients not otherwise captured by the other scale and that the combination of the two measures allows to capture changes in different subgroups of patients in whom baseline scores and functional changes may be influenced by several variables such as age.

  1. Evidence of autosomal dominant mutations in childhood-onset proximal spinal muscular atrophy

    SciTech Connect

    Rudnik-Schoeneborn, S.; Wirth, B.; Zerres, K. )

    1994-07-01

    Autosomal recessive and dominant inheritance of proximal spinal muscular atrophy (SMA) are well documented. Several genetic studies found a significant deviation from the assumption of recessive inheritance in SMA, with affected children in one generation. The existence of new autosomal dominant mutations has been assumed as the most suitable explanation, which is supported by three observations of this study: (1) The segregation ratio calculated in 333 families showed a significant deviation from autosomal recessive inheritance in the milder forms of SMA (= .09[+-].06 for onset at 10-36 mo and .13[+-].07 for onset at >36 mo; and P = .09[+-]0.7 for SMA IIIa and .12[+-].07 for SMA IIIb). (2) Three families with affected subjects in two generations are reported, in whom the disease could have started as an autosomal dominant mutation. (3) Linkage studies with chromosome 5q markers showed that in 5 (5.4%) of 93 informative families the patient shared identical haplotypes with at least one healthy sib. Other mechanisms, such as the existence of phenocopies, pseudodominance, or a second autosomal recessive gene locus, cannot be excluded in single families. The postulation of spontaneous mutations, however, is a suitable explanation for all three observations. Estimated risk figures for genetic counseling are given. 29 refs., 2 figs., 5 tabs.

  2. Is Spinal Muscular Atrophy a disease of the motor neurons only: pathogenesis and therapeutic implications?

    PubMed Central

    Simone, Chiara; Ramirez, Agnese; Bucchia, Monica; Rinchetti, Paola; Rideout, Hardy; Papadimitriou, Dimitra; Re, Diane B.; Corti, Stefania

    2016-01-01

    Spinal Muscular Atrophy (SMA) is a genetic neurological disease that causes infant mortality; no effective therapies are currently available. SMA is due to homozygous mutations and/or deletions in the Survival Motor Neuron 1 (SMN1) gene and subsequent reduction of the SMN protein, leading to the death of motor neurons. However, there is increasing evidence that in addition to motor neurons, other cell types are contributing to SMA pathology. In this review, we will discuss the involvement of non-motor neuronal cells, located both inside and outside the central nervous system, in disease onset and progression. These contribution of non-motor neuronal cells to disease pathogenesis has important therapeutic implications: in fact, even if SMN restoration in motor neurons is needed, it has been shown that optimal phenotypic amelioration in animal models of SMA requires a more widespread SMN correction. It will be crucial to take this evidence into account before clinical translation of the novel therapeutic approaches that are currently under development. PMID:26681261

  3. Systemic restoration of UBA1 ameliorates disease in spinal muscular atrophy

    PubMed Central

    Powis, Rachael A.; Karyka, Evangelia; Boyd, Penelope; Côme, Julien; Jones, Ross A.; Zheng, Yinan; Szunyogova, Eva; Groen, Ewout J.N.; Hunter, Gillian; Thomson, Derek; Wishart, Thomas M.; Becker, Catherina G.; Parson, Simon H.; Martinat, Cécile; Azzouz, Mimoun; Gillingwater, Thomas H.

    2016-01-01

    The autosomal recessive neuromuscular disease spinal muscular atrophy (SMA) is caused by loss of survival motor neuron (SMN) protein. Molecular pathways that are disrupted downstream of SMN therefore represent potentially attractive therapeutic targets for SMA. Here, we demonstrate that therapeutic targeting of ubiquitin pathways disrupted as a consequence of SMN depletion, by increasing levels of one key ubiquitination enzyme (ubiquitin-like modifier activating enzyme 1 [UBA1]), represents a viable approach for treating SMA. Loss of UBA1 was a conserved response across mouse and zebrafish models of SMA as well as in patient induced pluripotent stem cell–derive motor neurons. Restoration of UBA1 was sufficient to rescue motor axon pathology and restore motor performance in SMA zebrafish. Adeno-associated virus serotype 9–UBA1 (AAV9-UBA1) gene therapy delivered systemic increases in UBA1 protein levels that were well tolerated over a prolonged period in healthy control mice. Systemic restoration of UBA1 in SMA mice ameliorated weight loss, increased survival and motor performance, and improved neuromuscular and organ pathology. AAV9-UBA1 therapy was also sufficient to reverse the widespread molecular perturbations in ubiquitin homeostasis that occur during SMA. We conclude that UBA1 represents a safe and effective therapeutic target for the treatment of both neuromuscular and systemic aspects of SMA. PMID:27699224

  4. Systemic restoration of UBA1 ameliorates disease in spinal muscular atrophy

    PubMed Central

    Powis, Rachael A.; Karyka, Evangelia; Boyd, Penelope; Côme, Julien; Jones, Ross A.; Zheng, Yinan; Szunyogova, Eva; Groen, Ewout J.N.; Hunter, Gillian; Thomson, Derek; Wishart, Thomas M.; Becker, Catherina G.; Parson, Simon H.; Martinat, Cécile; Azzouz, Mimoun; Gillingwater, Thomas H.

    2016-01-01

    The autosomal recessive neuromuscular disease spinal muscular atrophy (SMA) is caused by loss of survival motor neuron (SMN) protein. Molecular pathways that are disrupted downstream of SMN therefore represent potentially attractive therapeutic targets for SMA. Here, we demonstrate that therapeutic targeting of ubiquitin pathways disrupted as a consequence of SMN depletion, by increasing levels of one key ubiquitination enzyme (ubiquitin-like modifier activating enzyme 1 [UBA1]), represents a viable approach for treating SMA. Loss of UBA1 was a conserved response across mouse and zebrafish models of SMA as well as in patient induced pluripotent stem cell–derive motor neurons. Restoration of UBA1 was sufficient to rescue motor axon pathology and restore motor performance in SMA zebrafish. Adeno-associated virus serotype 9–UBA1 (AAV9-UBA1) gene therapy delivered systemic increases in UBA1 protein levels that were well tolerated over a prolonged period in healthy control mice. Systemic restoration of UBA1 in SMA mice ameliorated weight loss, increased survival and motor performance, and improved neuromuscular and organ pathology. AAV9-UBA1 therapy was also sufficient to reverse the widespread molecular perturbations in ubiquitin homeostasis that occur during SMA. We conclude that UBA1 represents a safe and effective therapeutic target for the treatment of both neuromuscular and systemic aspects of SMA.

  5. Opening the window: The case for carrier and perinatal screening for spinal muscular atrophy.

    PubMed

    Burns, Joseph K; Kothary, Rashmi; Parks, Robin J

    2016-09-01

    Spinal muscular atrophy (SMA) is the most common genetically inherited neurodegenerative disease that leads to infant mortality worldwide. SMA is caused by genetic deletion or mutation in the survival of motor neuron 1 (SMN1) gene, which results in a deficiency in SMN protein. For reasons that are still unclear, SMN protein deficiency predominantly affects α-motor neurons, resulting in their degeneration and subsequent paralysis of limb and trunk muscles, progressing to death in severe cases. Emerging evidence suggests that SMN protein deficiency also affects the heart, autonomic nervous system, skeletal muscle, liver, pancreas and perhaps many other organs. Currently, there is no cure for SMA. Patient treatment includes respiratory care, physiotherapy, and nutritional management, which can somewhat ameliorate disease symptoms and increase life span. Fortunately, several novel therapies have advanced to human clinical trials. However, data from studies in animal models of SMA indicate that the greatest therapeutic benefit is achieved through initiating treatment as early as possible, before widespread loss of motor neurons has occurred. In this review, we discuss the merit of carrier and perinatal patient screening for SMA considering the efficacy of emerging therapeutics and the physical, emotional and financial burden of the disease on affected families and society. PMID:27460292

  6. An investigation of genetic heterogeneity and linkage disequilibrium in 161 families with spinal muscular atrophy

    SciTech Connect

    Merette, C.; Gilliam, T.C.; Brzustowicz, L.M. ); Daniels, R.J.; Davies, K.E. ); Melki, J.; Munnich, A. ); Pericak-Vance, M.A. ); Siddique, T. ); Voosen, B. )

    1994-05-01

    The authors performed linkage analysis of 161 families with spinal muscular atrophy (SMA) in which affected individuals suffer from the intermediate or mild form of the disease (Types II or III). Markers for six loci encompassing the chromosome 5q11.2-q13.3 region were typed. The best map location for the disease locus was found to be between D5S6 and MAP1B. The corresponding 1 lod unit support interval is confined to this interval and spans 0.5 cM. The data strongly support the hypothesis of linkage heterogeneity (likelihood ratio, 1.14 [times] 10[sup 4]), with 5% of the families unlinked. Four families have a probability of less than 50% of segregating the SMA gene linked to the region 5q11.2-q13.3. A likelihood approach to test for linkage disequilibrium revealed no significant departure from Hardy-Weinberg equilibrium with any marker under study. 28 refs., 4 figs., 3 tabs.

  7. Defects in neuromuscular junction remodelling in the Smn(2B/-) mouse model of spinal muscular atrophy.

    PubMed

    Murray, Lyndsay M; Beauvais, Ariane; Bhanot, Kunal; Kothary, Rashmi

    2013-01-01

    Spinal muscular atrophy (SMA) is a devastating childhood motor neuron disease caused by mutations and deletions within the survival motor neuron 1 (SMN1) gene. Although other tissues may be involved, motor neurons remain primary pathological targets, with loss of neuromuscular junctions (NMJs) representing an early and significant event in pathogenesis. Although defects in axonal outgrowth and pathfinding have been observed in cell culture and in lower organisms upon Smn depletion, developmental defects in mouse models have been less obvious. Here, we have employed the Smn(2B/-) mouse model to investigate NMJ remodelling during SMA pathology, induced reinnervation, and paralysis. We show that whilst NMJs are capable of remodelling during pathogenesis, there is a marked reduction in paralysis-induced remodelling and in the nerve-directed re-organisation of acetylcholine receptors. This reduction in remodelling potential could not be attributed to a decreased rate of axonal growth. Finally, we have identified a loss of terminal Schwann cells which could contribute to the defects in remodelling/maintenance observed. Our work demonstrates that there are specific defects in NMJ remodelling in an intermediate SMA mouse model, which could contribute to or underlie pathogenesis in SMA. The development of strategies that can promote the remodelling potential of NMJs may therefore be of significant benefit to SMA patients. PMID:22960106

  8. Coilin forms the bridge between Cajal bodies and SMN, the Spinal Muscular Atrophy protein

    PubMed Central

    Hebert, Michael D.; Szymczyk, Piotr W.; Shpargel, Karl B.; Matera, A. Gregory

    2001-01-01

    Spinal muscular atrophy (SMA) is a genetic disorder caused by mutations in the human survival of motor neuron 1 gene, SMN1. SMN protein is part of a large complex that is required for biogenesis of various small nuclear ribonucleoproteins (snRNPs). Here, we report that SMN interacts directly with the Cajal body signature protein, coilin, and that this interaction mediates recruitment of the SMN complex to Cajal bodies. Mutation or deletion of specific RG dipeptide residues within coilin inhibits the interaction both in vivo and in vitro. Interestingly, GST-pulldown experiments show that coilin also binds directly to SmB′. Competition studies show that coilin competes with SmB′ for binding sites on SMN. Ectopic expression of SMN and coilin constructs in mouse embryonic fibroblasts lacking endogenous coilin confirms that recruitment of SMN and splicing snRNPs to Cajal bodies depends on the coilin C-terminal RG motif. A cardinal feature of SMA patient cells is a defect in the targeting of SMN to nuclear foci; our results uncover a role for coilin in this process. PMID:11641277

  9. Plastin 3 Expression Does Not Modify Spinal Muscular Atrophy Severity in the ∆7 SMA Mouse

    PubMed Central

    Wang, Xueyong; Le, Thanh T.; Le, Hao T.; Beattie, Christine E.; Rich, Mark M.; Burghes, Arthur H. M.

    2015-01-01

    Spinal muscular atrophy is caused by loss of the SMN1 gene and retention of SMN2. The SMN2 copy number inversely correlates with phenotypic severity and is a modifier of disease outcome. The SMN2 gene essentially differs from SMN1 by a single nucleotide in exon 7 that modulates the incorporation of exon 7 into the final SMN transcript. The majority of the SMN2 transcripts lack exon 7 and this leads to a SMN protein that does not effectively oligomerize and is rapidly degraded. However the SMN2 gene does produce some full-length SMN and the SMN2 copy number along with how much full-length SMN the SMN2 gene makes correlates with severity of the SMA phenotype. However there are a number of discordant SMA siblings that have identical haplotypes and SMN2 copy number yet one has a milder form of SMA. It has been suggested that Plastin3 (PLS3) acts as a sex specific phenotypic modifier where increased expression of PLS3 modifies the SMA phenotype in females. To test the effect of PLS3 overexpression we have over expressed full-length PLS3 in SMA mice. To ensure no disruption of functionality or post-translational processing of PLS3 we did not place a tag on the protein. PLS3 protein was expressed under the Prion promoter as we have shown previously that SMN expression under this promoter can rescue SMA mice. High levels of PLS3 mRNA were expressed in motor neurons along with an increased level of PLS3 protein in total spinal cord, yet there was no significant beneficial effect on the phenotype of SMA mice. Specifically, neither survival nor the fundamental electrophysiological aspects of the neuromuscular junction were improved upon overexpression of PLS3 in neurons. PMID:26134627

  10. Association between Ag1-CA Alleles and Severity of Autosomal Recessive Proximal Spinal Muscular Atrophy

    PubMed Central

    DiDonato, Christine J.; Morgan, Kenneth; Carpten, John D.; Fuerst, Paul; Ingraham, Susan E.; Prescott, Gary; McPherson, John D.; Wirth, Brunhilde; Zerres, Klaus; Hurko, Orest; Wasmuth, John J.; Mendell, Jerry R.; Burghes, Arthur H. M.; Simard, Louise R.

    1994-01-01

    The gene for autosomal recessive proximal spinal muscular atrophy (SMA) has been mapped to an 850-kb interval on 5q11.2-q13.3, between the centromeric D5S823 and telomeric D5S557 markers. We report a new complex marker, Ag1-CA, that lies in this interval, whose primers produce one, two, or rarely three amplification-fragment-length variants (AFLVs) per allele. Class I chromosomes are those which amplify a single AFLV allele, and class II chromosomes are those which amplify an allele with two or three AFLVs. Ag1-CA shows highly significant allelic association with type I SMA in both the French Canadian (Hôpital Sainte-Justine [HSJ]) and American (Ohio State University [OSU]) populations (P<.0001). Significant association between the Ag1-CA genotype and disease severity was also observed. Type I patients were predominantly homozygous for class I chromosomes (P=.0003 OSU; P=.0012 HSJ), whereas the majority of type II patients were heterozygous for class I and II chromosomes (P=.0014 OSU; P=.001 HSJ). There was no significant difference in Ag1-CA genotype frequencies between type III patients (P=.5 OSU; P=.25 HSJ) and the paired normal chromosomes from both carrier parents. Our results indicate that Ag1-CA is the most closely linked marker to SMA and defines the critical candidate-gene region. Finally, we have proposed a model that should be taken into consideration when screening candidate SMA genes. ImagesFigure 1Figure 2 PMID:7977383

  11. Quantifiable diagnosis of muscular dystrophies and neurogenic atrophies through network analysis

    PubMed Central

    2013-01-01

    Background The diagnosis of neuromuscular diseases is strongly based on the histological characterization of muscle biopsies. However, this morphological analysis is mostly a subjective process and difficult to quantify. We have tested if network science can provide a novel framework to extract useful information from muscle biopsies, developing a novel method that analyzes muscle samples in an objective, automated, fast and precise manner. Methods Our database consisted of 102 muscle biopsy images from 70 individuals (including controls, patients with neurogenic atrophies and patients with muscular dystrophies). We used this to develop a new method, Neuromuscular DIseases Computerized Image Analysis (NDICIA), that uses network science analysis to capture the defining signature of muscle biopsy images. NDICIA characterizes muscle tissues by representing each image as a network, with fibers serving as nodes and fiber contacts as links. Results After a ‘training’ phase with control and pathological biopsies, NDICIA was able to quantify the degree of pathology of each sample. We validated our method by comparing NDICIA quantification of the severity of muscular dystrophies with a pathologist’s evaluation of the degree of pathology, resulting in a strong correlation (R = 0.900, P <0.00001). Importantly, our approach can be used to quantify new images without the need for prior ‘training’. Therefore, we show that network science analysis captures the useful information contained in muscle biopsies, helping the diagnosis of muscular dystrophies and neurogenic atrophies. Conclusions Our novel network analysis approach will serve as a valuable tool for assessing the etiology of muscular dystrophies or neurogenic atrophies, and has the potential to quantify treatment outcomes in preclinical and clinical trials. PMID:23514382

  12. Alternative splicing in spinal muscular atrophy underscores the role of an intron definition model.

    PubMed

    Singh, Natalia N; Singh, Ravindra N

    2011-01-01

    Humans have two nearly identical copies of the Survival Motor Neuron (SMN) gene: SMN1 and SMN2. The two SMN genes code for identical proteins; however, SMN2 predominantly generates a shorter transcript due to skipping of exon 7, the last coding exon. Skipping of SMN2 exon 7 leads to production of a truncated SMN protein that is highly unstable. The inability of SMN2 to compensate for the loss of SMN1 results in spinal muscular atrophy (SMA), the second most prevalent genetic cause of infant mortality. Since SMN2 is almost universally present in SMA patients, correction of SMN2 exon 7 splicing holds the promise for cure. Consistently, SMN2 exon 7 splicing has emerged as one of the best studied splicing systems in humans. The vast amount of recent literature provides a clue that SMN2 exon 7 splicing is regulated by an intron definition mechanism, which does not require cross-exon communication as prerequisite for exon inclusion. Our conclusion is based on the prominent role of intronic cis-elements, some of them have emerged as the frontrunners among potential therapeutic targets of SMA. Further, the widely expressed T-cell-restricted intracellular antigen-1 (TIA1), a member of the Q-rich domain containing RNA-binding proteins, has recently been found to regulate SMN exon 7 splicing by binding to intron 7 sequences away from the 5′ ss. These findings make a strong argument for an "intron definition model", according to which regulatory sequences within a downstream intron are capable of enforcing exon inclusion even in the absence of a defined upstream 3′ ss of an alternatively spliced exon.

  13. [Sporadic case of non-progressive neurogenic muscular atrophy localized in both calf muscles].

    PubMed

    Hara, Kenju; Tateyama, Maki; Suzuki, Naoki; Shibano, Ken; Tanaka, Keiko; Ishiguro, Hideaki

    2013-01-01

    A 60-year-old woman was admitted to our hospital because of difficulty in standing on her toes. Neurological examination showed muscle weakness in both calf muscles. Her serum creatine kinase (CK) level was slightly elevated. MRI revealed hyper-intense signals localized in both the gastrocnemius and soleus muscles. Histological examinations of biopsied muscle specimens showed a marked variation in fiber size, small angular fibers, and hypertrophic and splitting fibers, but no muscle fiber necrosis or regeneration or inflammatory cell infiltration. ATPase stained sections showed small grouped atrophy of type 1 fibers. NADH-TR stained sections showed target/targetoid fibers predominantly in type 1 fibers. Dysferlin immunoreactivity was normal. Follow-up clinical evaluation for one year showed no progression. This patient was diagnosed as having an unknown type of spinal muscular atrophy or benign calf amyotrophy. Sporadic cases characterized by elderly-onset, neurogenic muscular atrophy localized in both calf muscles, and non-progressive course are extremely rare in Japan.

  14. Lung clearance in children with Duchenne muscular dystrophy or spinal muscular atrophy with and without CPAP (continuous positive airway pressure).

    PubMed

    Klefbeck, B; Svartengren, K; Camner, P; Philipson, K; Svartengren, M; Sejersen, T; Mattsson, E

    2001-09-01

    Bronchiolar clearance was studied in 7 boys in the age range of 8 to 17 years, 6 with Duchenne muscular dystrophy (DMD) and 1 with spinal muscular atrophy type II (SMA-II). These boys had healthy lungs but a severely reduced muscular strength (wheelchair dependent). In 6 of the boys, clearance was studied twice, at one occasion as a control and at the other occasion following treatment with continuous positive airway pressure (CPAP). A control group of healthy adults was used. In the clearance examinations, 6-microm Teflon particles, labeled with III In was inhaled extremely slowly, 0.05 L/s. This gives a deposition mainly in the bronchioles. Lung retention was measured after 0,24,48, and 72 hours. A model for deposition of particles in the adult lung was scaled down to represent the children in this study. Deposition in various airway generations was calculated to be similar in children and adults. Also the measured retentions were similar in the boys and the adults. In the clearance experiments during CPAP treatment, there was a significantly lower retention after 72 hours (but not after 24 and 48 hours) than in the control experiments. Theresults indicate that a severe reduction of muscular strength, and thereby a reduction of mechanical movement of the lung, does not affect clearance from large and small airways. However, some effect of clearance from small airways cannot be excluded due to the short measuring period. The small but significant effect of the CPAP treatment might have potential clinical importance and suggest that bronchiolar clearance can be affected by some form of mechanical force. PMID:11558965

  15. Motor neuron disease. SMN2 splicing modifiers improve motor function and longevity in mice with spinal muscular atrophy.

    PubMed

    Naryshkin, Nikolai A; Weetall, Marla; Dakka, Amal; Narasimhan, Jana; Zhao, Xin; Feng, Zhihua; Ling, Karen K Y; Karp, Gary M; Qi, Hongyan; Woll, Matthew G; Chen, Guangming; Zhang, Nanjing; Gabbeta, Vijayalakshmi; Vazirani, Priya; Bhattacharyya, Anuradha; Furia, Bansri; Risher, Nicole; Sheedy, Josephine; Kong, Ronald; Ma, Jiyuan; Turpoff, Anthony; Lee, Chang-Sun; Zhang, Xiaoyan; Moon, Young-Choon; Trifillis, Panayiota; Welch, Ellen M; Colacino, Joseph M; Babiak, John; Almstead, Neil G; Peltz, Stuart W; Eng, Loren A; Chen, Karen S; Mull, Jesse L; Lynes, Maureen S; Rubin, Lee L; Fontoura, Paulo; Santarelli, Luca; Haehnke, Daniel; McCarthy, Kathleen D; Schmucki, Roland; Ebeling, Martin; Sivaramakrishnan, Manaswini; Ko, Chien-Ping; Paushkin, Sergey V; Ratni, Hasane; Gerlach, Irene; Ghosh, Anirvan; Metzger, Friedrich

    2014-08-01

    Spinal muscular atrophy (SMA) is a genetic disease caused by mutation or deletion of the survival of motor neuron 1 (SMN1) gene. A paralogous gene in humans, SMN2, produces low, insufficient levels of functional SMN protein due to alternative splicing that truncates the transcript. The decreased levels of SMN protein lead to progressive neuromuscular degeneration and high rates of mortality. Through chemical screening and optimization, we identified orally available small molecules that shift the balance of SMN2 splicing toward the production of full-length SMN2 messenger RNA with high selectivity. Administration of these compounds to Δ7 mice, a model of severe SMA, led to an increase in SMN protein levels, improvement of motor function, and protection of the neuromuscular circuit. These compounds also extended the life span of the mice. Selective SMN2 splicing modifiers may have therapeutic potential for patients with SMA.

  16. Spinal and bulbar muscular atrophy and Charcot-Marie-Tooth type 1A: Co-existence of two rare neuromuscular genetic diseases in the same patient.

    PubMed

    Sagnelli, Anna; Scaioli, Vidmer; Piscosquito, Giuseppe; Salsano, Ettore; Dalla Bella, Eleonora; Gellera, Cinzia; Pareyson, Davide

    2015-10-01

    Spinal and bulbar muscular atrophy is an X-linked neuromuscular disease caused by a trinucleotide CAG repeat expansion in the androgen receptor gene; it is clinically characterized by adult-onset, slowly progressive weakness and atrophy mainly affecting proximal limb and bulbar muscles. Charcot-Marie-Tooth disease type 1A is an autosomal dominant polyneuropathy due to peripheral myelin protein 22 gene duplication and characterized by slowly progressive distal limb muscle weakness, atrophy and sensory loss with foot deformities. Here we report the co-occurrence of both neuromuscular genetic diseases in the same male patient. Difficulties in climbing stairs and jaw weakness were presenting symptoms consistent with SBMA. However, predominant distal weakness and bilateral pes cavus were rather suggestive of a hereditary polyneuropathy. The combination of two diseases, even if extremely rare, should be considered in the presence of atypical symptoms; in the case of genetic diseases this event may have important implications on family members' counseling.

  17. Six-Minute Walk Test demonstrates motor fatigue in spinal muscular atrophy

    PubMed Central

    Montes, J.; McDermott, M. P.; Martens, W. B.; Dunaway, S.; Glanzman, A. M.; Riley, S.; Quigley, J.; Montgomery, M. J.; Sproule, D.; Tawil, R.; Chung, W. K.; Darras, B. T.; De Vivo, D. C.; Kaufmann, P.; Finkel, R. S.

    2010-01-01

    Background: In spinal muscular atrophy (SMA), weakness, decreased endurance, and fatigue limit mobility. Scales have been developed to measure function across the wide spectrum of disease severity. However, these scales typically are observer dependent, and scores are based on sums across Likert-scaled items. The Six-Minute Walk Test (6MWT) is an objective, easily administered, and standardized evaluation of functional exercise capacity that has been proven reliable in other neurologic disorders and in children. Methods: To study the performance of the 6MWT in SMA, 18 ambulatory participants were evaluated in a cross-sectional study. Clinical measures were 6MWT, 10-m walk/run, Hammersmith Functional Motor Scale–Expanded (HFMSE), forced vital capacity, and handheld dynamometry. Associations between the 6MWT total distance and other outcomes were analyzed using Spearman correlation coefficients. A paired t test was used to compare the mean distance walked in the first and sixth minutes. Results: The 6MWT was associated with the HFMSE score (r = 0.83, p < 0.0001), 10-m walk/run (r = −0.87, p < 0.0001), and knee flexor strength (r = 0.62, p = 0.01). Gait velocity decreased during successive minutes in nearly all participants. The average first minute distance (57.5 m) was significantly more than the sixth minute distance (48 m) (p = 0.0003). Conclusion: The Six-Minute Walk Test (6MWT) can be safely performed in ambulatory patients with spinal muscular atrophy (SMA), correlates with established outcome measures, and is sensitive to fatigue-related changes. The 6MWT is a promising candidate outcome measure for clinical trials in ambulatory subjects with SMA. GLOSSARY FVC = forced vital capacity; HFMSE = Hammersmith Functional Motor Scale–Expanded; HHD = handheld dynamometry; 6MWT = Six-Minute Walk Test; SMA = spinal muscular atrophy. PMID:20211907

  18. Spinal muscular atrophy: a motor neuron disorder or a multi-organ disease?

    PubMed

    Shababi, Monir; Lorson, Christian L; Rudnik-Schöneborn, Sabine S

    2014-01-01

    Spinal muscular atrophy (SMA) is an autosomal recessive disorder that is the leading genetic cause of infantile death. SMA is characterized by loss of motor neurons in the ventral horn of the spinal cord, leading to weakness and muscle atrophy. SMA occurs as a result of homozygous deletion or mutations in Survival Motor Neuron-1 (SMN1). Loss of SMN1 leads to a dramatic reduction in SMN protein, which is essential for motor neuron survival. SMA disease severity ranges from extremely severe to a relatively mild adult onset form of proximal muscle atrophy. Severe SMA patients typically die mostly within months or a few years as a consequence of respiratory insufficiency and bulbar paralysis. SMA is widely known as a motor neuron disease; however, there are numerous clinical reports indicating the involvement of additional peripheral organs contributing to the complete picture of the disease in severe cases. In this review, we have compiled clinical and experimental reports that demonstrate the association between the loss of SMN and peripheral organ deficiency and malfunction. Whether defective peripheral organs are a consequence of neuronal damage/muscle atrophy or a direct result of SMN loss will be discussed.

  19. Spinal muscular atrophy: a motor neuron disorder or a multi-organ disease?

    PubMed Central

    Shababi, Monir; Lorson, Christian L; Rudnik-Schöneborn, Sabine S

    2014-01-01

    Spinal muscular atrophy (SMA) is an autosomal recessive disorder that is the leading genetic cause of infantile death. SMA is characterized by loss of motor neurons in the ventral horn of the spinal cord, leading to weakness and muscle atrophy. SMA occurs as a result of homozygous deletion or mutations in Survival Motor Neuron-1 (SMN1). Loss of SMN1 leads to a dramatic reduction in SMN protein, which is essential for motor neuron survival. SMA disease severity ranges from extremely severe to a relatively mild adult onset form of proximal muscle atrophy. Severe SMA patients typically die mostly within months or a few years as a consequence of respiratory insufficiency and bulbar paralysis. SMA is widely known as a motor neuron disease; however, there are numerous clinical reports indicating the involvement of additional peripheral organs contributing to the complete picture of the disease in severe cases. In this review, we have compiled clinical and experimental reports that demonstrate the association between the loss of SMN and peripheral organ deficiency and malfunction. Whether defective peripheral organs are a consequence of neuronal damage/muscle atrophy or a direct result of SMN loss will be discussed. PMID:23876144

  20. A large animal model of Spinal Muscular Atrophy and correction of phenotype

    PubMed Central

    Duque, Sandra I.; Arnold, W. David; Odermatt, Philipp; Li, Xiaohui; Porensky, Paul N.; Schmelzer, Leah; Meyer, Kathrin; Kolb, Stephen J.; Schümperli, Daniel; Kaspar, Brian K.; Burghes, Arthur H. M.

    2015-01-01

    Objectives Spinal muscular atrophy (SMA) is caused by reduced levels of SMN which results in motoneuron loss. Therapeutic strategies to increase SMN levels including drug compounds, antisense oligonucleotides or scAAV9 gene therapy have proved effective in mice. We wished to determine whether reduction of SMN in postnatal motoneurons resulted in SMA in a large animal model, whether SMA could be corrected after development of muscle weakness and the response of clinically relevant biomarkers. Methods Using intrathecal delivery of scAAV9 expressing a shRNA targeting pig SMN1, SMN was knocked down in motoneurons postnatally to SMA levels. This resulted in an SMA phenotype representing the first large animal model of SMA. Restoration of SMN was performed at different time points with scAAV9 expressing human SMN (scAAV9-SMN) and electrophysiology measures and pathology were performed. Results Knockdown of SMN in postnatal motoneurons results in overt proximal weakness, fibrillations on electromyography (EMG) indicating active denervation, and reduced compound muscle action potential (CMAP) and motor unit number estimates (MUNE), like human SMA. Neuropathology showed loss of motoneurons and motor axons. Pre-symptomatic delivery of scAAV9-SMN prevented SMA symptoms indicating all changes are SMN dependent. Delivery of scAAV9-SMN after symptom onset had a marked impact on phenotype, electrophysiological measures and pathology. Interpretation High SMN levels are critical in postnatal motoneurons and reduction of SMN results in a SMA phenotype which is SMN dependent. Importantly, clinically relevant biomarkers including CMAP and MUNE are responsive to SMN restoration and abrogation of phenotype can be achieved even after symptom onset. PMID:25516063

  1. Spinal Muscular Atrophy Associated with Progressive Myoclonic Epilepsy Is Caused by Mutations in ASAH1

    PubMed Central

    Zhou, Jie; Tawk, Marcel; Tiziano, Francesco Danilo; Veillet, Julien; Bayes, Monica; Nolent, Flora; Garcia, Virginie; Servidei, Serenella; Bertini, Enrico; Castro-Giner, Francesc; Renda, Yavuz; Carpentier, Stéphane; Andrieu-Abadie, Nathalie; Gut, Ivo; Levade, Thierry; Topaloglu, Haluk; Melki, Judith

    2012-01-01

    Spinal muscular atrophy (SMA) is a clinically and genetically heterogeneous disease characterized by the degeneration of lower motor neurons. The most frequent form is linked to mutations in SMN1. Childhood SMA associated with progressive myoclonic epilepsy (SMA-PME) has been reported as a rare autosomal-recessive condition unlinked to mutations in SMN1. Through linkage analysis, homozygosity mapping, and exome sequencing in three unrelated SMA-PME-affected families, we identified a homozygous missense mutation (c.125C>T [p.Thr42Met]) in exon 2 of ASAH1 in the affected children of two families and the same mutation associated with a deletion of the whole gene in the third family. Expression studies of the c.125C>T mutant cDNA in Farber fibroblasts showed that acid-ceramidase activity was only 32% of that generated by normal cDNA. This reduced activity was able to normalize the ceramide level in Farber cells, raising the question of the pathogenic mechanism underlying the CNS involvement in deficient cells. Morpholino knockdown of the ASAH1 ortholog in zebrafish led to a marked loss of motor-neuron axonal branching, a loss that is associated with increased apoptosis in the spinal cord. Our results reveal a wide phenotypic spectrum associated with ASAH1 mutations. An acid-ceramidase activity below 10% results in Farber disease, an early-onset disease starting with subcutaneous lipogranulomata, joint pain, and hoarseness of the voice, whereas a higher residual activity might be responsible for SMA-PME, a later-onset phenotype restricted to the CNS and starting with lower-motor-neuron disease. PMID:22703880

  2. Clearance of the mutant androgen receptor in motoneuronal models of spinal and bulbar muscular atrophy.

    PubMed

    Rusmini, Paola; Crippa, Valeria; Giorgetti, Elisa; Boncoraglio, Alessandra; Cristofani, Riccardo; Carra, Serena; Poletti, Angelo

    2013-11-01

    Spinal and bulbar muscular atrophy (SBMA) is an X-linked motoneuron disease caused by an abnormal expansion of a tandem CAG repeat in exon 1 of the androgen receptor (AR) gene that results in an abnormally long polyglutamine tract (polyQ) in the AR protein. As a result, the mutant AR (ARpolyQ) misfolds, forming cytoplasmic and nuclear aggregates in the affected neurons. Neurotoxicity only appears to be associated with the formation of nuclear aggregates. Thus, improved ARpolyQ cytoplasmic clearance, which indirectly decreases ARpolyQ nuclear accumulation, has beneficial effects on affected motoneurons. In addition, increased ARpolyQ clearance contributes to maintenance of motoneuron proteostasis and viability, preventing the blockage of the proteasome and autophagy pathways that might play a role in the neuropathy in SBMA. The expression of heat shock protein B8 (HspB8), a member of the small heat shock protein family, is highly induced in surviving motoneurons of patients affected by motoneuron diseases, where it seems to participate in the stress response aimed at cell protection. We report here that HspB8 facilitates the autophagic removal of misfolded aggregating species of ARpolyQ. In addition, though HspB8 does not influence p62 and LC3 (two key autophagic molecules) expression, it does prevent p62 bodies formation, and restores the normal autophagic flux in these cells. Interestingly, trehalose, a well-known autophagy stimulator, induces HspB8 expression, suggesting that HspB8 might act as one of the molecular mediators of the proautophagic activity of trehalose. Collectively, these data support the hypothesis that treatments aimed at restoring a normal autophagic flux that result in the more efficient clearance of mutant ARpolyQ might produce beneficial effects in SBMA patients.

  3. A single administration of morpholino antisense oligomer rescues spinal muscular atrophy in mouse

    PubMed Central

    Porensky, Paul N.; Mitrpant, Chalermchai; McGovern, Vicki L.; Bevan, Adam K.; Foust, Kevin D.; Kaspar, Brain K.; Wilton, Stephen D.; Burghes, Arthur H.M.

    2012-01-01

    Spinal muscular atrophy (SMA) is an autosomal-recessive disorder characterized by α-motor neuron loss in the spinal cord anterior horn. SMA results from deletion or mutation of the Survival Motor Neuron 1 gene (SMN1) and retention of SMN2. A single nucleotide difference between SMN1 and SMN2 results in exclusion of exon 7 from the majority of SMN2 transcripts, leading to decreased SMN protein levels and development of SMA. A series of splice enhancers and silencers regulate incorporation of SMN2 exon 7; these splice motifs can be blocked with antisense oligomers (ASOs) to alter SMN2 transcript splicing. We have evaluated a morpholino (MO) oligomer against ISS-N1 [HSMN2Ex7D(−10,−29)], and delivered this MO to postnatal day 0 (P0) SMA pups (Smn−/−, SMN2+/+, SMN▵7+/+) by intracerebroventricular (ICV) injection. Survival was increased markedly from 15 days to >100 days. Delayed CNS MO injection has moderate efficacy, and delayed peripheral injection has mild survival advantage, suggesting that early CNS ASO administration is essential for SMA therapy consideration. ICV treatment increased full-length SMN2 transcript as well as SMN protein in neural tissue, but only minimally in peripheral tissue. Interval analysis shows a decrease in alternative splice modification over time. We suggest that CNS increases of SMN will have a major impact on SMA, and an early increase of the SMN level results in correction of motor phenotypes. Finally, the early introduction by intrathecal delivery of MO oligomers is a potential treatment for SMA patients. PMID:22186025

  4. Effects of Electromagnetic Fields in Spinal Muscular Atrophy: A Case Report

    NASA Astrophysics Data System (ADS)

    Cañedo, L.; Martínez-Mata, J.; Serrano-Luna, G.

    2004-09-01

    Spinal Muscular Atrophy Type I is a disease that rapidly progress to death in early infancy. A case report of a child with Werdnig-Hoffmann disease Type I that recovered at three years of age after two years exposure to electromagnetic fields (ELF) is presented. The child is now eleven years old and with the exception of slightly abnormal gait, the muscle mass of tights and gluteus, high, weight and his everyday activities correspond to those of a normal child his age. Hypothetical explanations for the effects of the electromagnetic fields are discussed.

  5. Very severe spinal muscular atrophy: Type 0 with Dandy-Walker variant

    PubMed Central

    Gathwala, Geeta; Silayach, Joginder; Bhakhari, Bhanu Kiran; Narwal, Varun

    2014-01-01

    Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease characterized by degeneration of alpha motor neurons in the spinal cord, resulting in progressive proximal muscle weakness and paralysis. In addition to the three classical SMA types, a new form known as type 0 with intrauterine onset, profound hypotonia and a progressive and early fatal course has been described. Herein we report a case of type 0 SMA with a Dandy Walker variant anomaly, which has not hitherto been reported in the world literature. PMID:24891907

  6. Very severe spinal muscular atrophy: Type 0 with Dandy-Walker variant.

    PubMed

    Gathwala, Geeta; Silayach, Joginder; Bhakhari, Bhanu Kiran; Narwal, Varun

    2014-01-01

    Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease characterized by degeneration of alpha motor neurons in the spinal cord, resulting in progressive proximal muscle weakness and paralysis. In addition to the three classical SMA types, a new form known as type 0 with intrauterine onset, profound hypotonia and a progressive and early fatal course has been described. Herein we report a case of type 0 SMA with a Dandy Walker variant anomaly, which has not hitherto been reported in the world literature. PMID:24891907

  7. Phenotypic and molecular insights into spinal muscular atrophy due to mutations in BICD2

    PubMed Central

    Rossor, Alexander M.; Oates, Emily C.; Salter, Hannah K.; Liu, Yang; Murphy, Sinead M.; Schule, Rebecca; Gonzalez, Michael A.; Scoto, Mariacristina; Phadke, Rahul; Sewry, Caroline A.; Houlden, Henry; Jordanova, Albena; Tournev, Iyailo; Chamova, Teodora; Litvinenko, Ivan; Zuchner, Stephan; Herrmann, David N.; Blake, Julian; Sowden, Janet E.; Acsadi, Gyuda; Rodriguez, Michael L.; Menezes, Manoj P.; Clarke, Nigel F.; Auer Grumbach, Michaela; Bullock, Simon L.; Muntoni, Francesco; North, Kathryn N.

    2015-01-01

    Spinal muscular atrophy is a disorder of lower motor neurons, most commonly caused by recessive mutations in SMN1 on chromosome 5q. Cases without SMN1 mutations are subclassified according to phenotype. Spinal muscular atrophy, lower extremity-predominant, is characterized by lower limb muscle weakness and wasting, associated with reduced numbers of lumbar motor neurons and is caused by mutations in DYNC1H1, which encodes a microtubule motor protein in the dynein-dynactin complex and one of its cargo adaptors, BICD2. We have now identified 32 patients with BICD2 mutations from nine different families, providing detailed insights into the clinical phenotype and natural history of BICD2 disease. BICD2 spinal muscular atrophy, lower extremity predominant most commonly presents with delayed motor milestones and ankle contractures. Additional features at presentation include arthrogryposis and congenital dislocation of the hips. In all affected individuals, weakness and wasting is lower-limb predominant, and typically involves both proximal and distal muscle groups. There is no evidence of sensory nerve involvement. Upper motor neuron signs are a prominent feature in a subset of individuals, including one family with exclusively adult-onset upper motor neuron features, consistent with a diagnosis of hereditary spastic paraplegia. In all cohort members, lower motor neuron features were static or only slowly progressive, and the majority remained ambulant throughout life. Muscle MRI in six individuals showed a common pattern of muscle involvement with fat deposition in most thigh muscles, but sparing of the adductors and semitendinosus. Muscle pathology findings were highly variable and included pseudomyopathic features, neuropathic features, and minimal change. The six causative mutations, including one not previously reported, result in amino acid changes within all three coiled-coil domains of the BICD2 protein, and include a possible ‘hot spot’ mutation, p.Ser107

  8. Air stacking: effects on pulmonary function in patients with spinal muscular atrophy and in patients with congenital muscular dystrophy*,**

    PubMed Central

    Marques, Tanyse Bahia Carvalho; Neves, Juliana de Carvalho; Portes, Leslie Andrews; Salge, João Marcos; Zanoteli, Edmar; Reed, Umbertina Conti

    2014-01-01

    OBJECTIVE: Respiratory complications are the main causes of morbidity and mortality in patients with neuromuscular disease (NMD). The objectives of this study were to determine the effects that routine daily home air-stacking maneuvers have on pulmonary function in patients with spinal muscular atrophy (SMA) and in patients with congenital muscular dystrophy (CMD), as well as to identify associations between spinal deformities and the effects of the maneuvers. METHODS: Eighteen NMD patients (ten with CMD and eight with SMA) were submitted to routine daily air-stacking maneuvers at home with manual resuscitators for four to six months, undergoing pulmonary function tests before and after that period. The pulmonary function tests included measurements of FVC; PEF; maximum insufflation capacity (MIC); and assisted and unassisted peak cough flow (APCF and UPCF, respectively) with insufflations. RESULTS: After the use of home air-stacking maneuvers, there were improvements in the APCF and UPCF. In the patients without scoliosis, there was also a significant increase in FVC. When comparing patients with and without scoliosis, the increases in APCF and UPCF were more pronounced in those without scoliosis. CONCLUSIONS: Routine daily air-stacking maneuvers with a manual resuscitator appear to increase UPCF and APCF in patients with NMD, especially in those without scoliosis. PMID:25410841

  9. The Muscular Dystrophies: From Genes to Therapies

    PubMed Central

    Porter, Neil C; Bloch, Robert J

    2015-01-01

    The genetic basis of many muscular disorders, including many of the more common muscular dystrophies, is now known. Clinically, the recent genetic advances have improved diagnostic capabilities, but they have not yet provided clues about treatment or management. Thanks to better management strategies and therapeutic interventions, however, many patients with a muscular dystrophy are more active and are living longer. Physical therapists, therefore, are more likely to see a patient with a muscular dystrophy, so understanding these muscle disorders and their management is essential. Physical therapy offers the most promise in caring for the majority of patients with these conditions, because it is unlikely that advances in gene therapy will significantly alter their clinical treatment in the near future. This perspective covers some of the basic molecular biological advances together with the clinical manifestations of the muscular dystrophies and the latest approaches to their management. PMID:16305275

  10. Biomarker for Spinal Muscular Atrophy: Expression of SMN in Peripheral Blood of SMA Patients and Healthy Controls

    PubMed Central

    Czech, Christian; Tang, Wakana; Bugawan, Teodorica; Mano, Calvin; Horn, Carsten; Iglesias, Victor Alejandro; Fröhner, Stefanie; Zaworski, Phillip G.; Paushkin, Sergey; Chen, Karen; Kremer, Thomas

    2015-01-01

    Spinal muscular atrophy is caused by a functional deletion of SMN1 on Chromosome 5, which leads to a progressive loss of motor function in affected patients. SMA patients have at least one copy of a similar gene, SMN2, which produces functional SMN protein, although in reduced quantities. The severity of SMA is variable, partially due to differences in SMN2 copy numbers. Here, we report the results of a biomarker study characterizing SMA patients of varying disease severity. SMN copy number, mRNA and Protein levels in whole blood of patients were measured and compared against a cohort of healthy controls. The results show differential regulation of expression of SMN2 in peripheral blood between patients and healthy subjects. PMID:26468953

  11. Spinal muscular atrophy: classification, diagnosis, management, pathogenesis, and future research directions.

    PubMed

    Kostova, Felina V; Williams, Virginia C; Heemskerk, Jill; Iannaccone, Susan; Didonato, Christine; Swoboda, Kathryn; Maria, Bernard L

    2007-08-01

    Spinal muscular atrophy is an autosomal recessive neurodegenerative disorder that affects the motor neurons responsible for movement of the proximal muscles of the trunk and body. To date, the disease can be classified into 3 main categories based on severity and age of onset. During the October 18th symposium held in Pittsburgh, Pennsylvania, researchers met to (1) describe current diagnostic strategies, (2) discuss recent thoughts on pathogenesis, (3) review current therapies and clinical trials, and (4) define future research directions. In her opening remarks, Dr Story Landis, director of the National Institute of Neurological Disorders and Stroke, emphasized the degree to which the Neurobiology of Disease in Children conference series has broadened awareness of the many rare diseases affecting children, not only through the advancement of research but also by educating practitioners about diagnostic strategies. Dr Landis also discussed the role this conference may play in fostering research that seeks to develop a single mechanism of therapy for spinal muscular atrophy. She also discussed the current funding situation at the National Institutes of Health and addressed the crucial function of volunteer research organizations that sponsor research in further improving management of this condition. This article summarizes the presentations and includes the verbatim edited transcript of question-and-answer sessions.

  12. Subcellular transcriptome alterations in a cell culture model of spinal muscular atrophy point to widespread defects in axonal growth and presynaptic differentiation

    PubMed Central

    Saal, Lena; Briese, Michael; Kneitz, Susanne; Glinka, Michael

    2014-01-01

    Neuronal function critically depends on coordinated subcellular distribution of mRNAs. Disturbed mRNA processing and axonal transport has been found in spinal muscular atrophy and could be causative for dysfunction and degeneration of motoneurons. Despite the advances made in characterizing the transport mechanisms of several axonal mRNAs, an unbiased approach to identify the axonal repertoire of mRNAs in healthy and degenerating motoneurons has been lacking. Here we used compartmentalized microfluidic chambers to investigate the somatodendritic and axonal mRNA content of cultured motoneurons by microarray analysis. In axons, transcripts related to protein synthesis and energy production were enriched relative to the somatodendritic compartment. Knockdown of Smn, the protein deficient in spinal muscular atrophy, produced a large number of transcript alterations in both compartments. Transcripts related to immune functions, including MHC class I genes, and with roles in RNA splicing were up-regulated in the somatodendritic compartment. On the axonal side, transcripts associated with axon growth and synaptic activity were down-regulated. These alterations provide evidence that subcellular localization of transcripts with axonal functions as well as regulation of specific transcripts with nonautonomous functions is disturbed in Smn-deficient motoneurons, most likely contributing to the pathophysiology of spinal muscular atrophy. PMID:25246652

  13. [Susceptibility gene in multiple system atrophy (MSA)].

    PubMed

    Tsuji, Shoji

    2014-01-01

    To elucidate molecular bases of multiple system atrophy (MSA), we first focused on recently identified MSA multiplex families. Though linkage analyses followed by whole genome resequencing, we have identified a causative gene, COQ2, for MSA. We then conducted comprehensive nucleotide sequence analysis of COQ2 of sporadic MSA cases and controls, and found that functionally deleterious COQ2 variants confer a strong risk for developing MSA. COQ2 encodes an enzyme in the biosynthetic pathway of coenzyme Q10. Decreased synthesis of coenzyme Q10 is considered to be involved in the pathogenesis of MSA through decreased electron transport in mitochondria and increased vulnerability to oxidative stress. PMID:25672683

  14. Advances in gene therapy for muscular dystrophies

    PubMed Central

    Abdul-Razak, Hayder; Malerba, Alberto; Dickson, George

    2016-01-01

    Duchenne muscular dystrophy (DMD) is a recessive lethal inherited muscular dystrophy caused by mutations in the gene encoding dystrophin, a protein required for muscle fibre integrity. So far, many approaches have been tested from the traditional gene addition to newer advanced approaches based on manipulation of the cellular machinery either at the gene transcription, mRNA processing or translation levels. Unfortunately, despite all these efforts, no efficient treatments for DMD are currently available. In this review, we highlight the most advanced therapeutic strategies under investigation as potential DMD treatments.

  15. Advances in gene therapy for muscular dystrophies

    PubMed Central

    Abdul-Razak, Hayder; Malerba, Alberto; Dickson, George

    2016-01-01

    Duchenne muscular dystrophy (DMD) is a recessive lethal inherited muscular dystrophy caused by mutations in the gene encoding dystrophin, a protein required for muscle fibre integrity. So far, many approaches have been tested from the traditional gene addition to newer advanced approaches based on manipulation of the cellular machinery either at the gene transcription, mRNA processing or translation levels. Unfortunately, despite all these efforts, no efficient treatments for DMD are currently available. In this review, we highlight the most advanced therapeutic strategies under investigation as potential DMD treatments. PMID:27594988

  16. Advances in gene therapy for muscular dystrophies.

    PubMed

    Abdul-Razak, Hayder; Malerba, Alberto; Dickson, George

    2016-01-01

    Duchenne muscular dystrophy (DMD) is a recessive lethal inherited muscular dystrophy caused by mutations in the gene encoding dystrophin, a protein required for muscle fibre integrity. So far, many approaches have been tested from the traditional gene addition to newer advanced approaches based on manipulation of the cellular machinery either at the gene transcription, mRNA processing or translation levels. Unfortunately, despite all these efforts, no efficient treatments for DMD are currently available. In this review, we highlight the most advanced therapeutic strategies under investigation as potential DMD treatments. PMID:27594988

  17. Insulinlike growth factor (IGF)-1 administration ameliorates disease manifestations in a mouse model of spinal and bulbar muscular atrophy.

    PubMed

    Rinaldi, Carlo; Bott, Laura C; Chen, Ke-lian; Harmison, George G; Katsuno, Masahisa; Sobue, Gen; Pennuto, Maria; Fischbeck, Kenneth H

    2012-12-06

    Spinal and bulbar muscular atrophy is an X-linked motor neuron disease caused by polyglutamine expansion in the androgen receptor. Patients develop slowly progressive proximal muscle weakness, muscle atrophy and fasciculations. Affected individuals often show gynecomastia, testicular atrophy and reduced fertility as a result of mild androgen insensitivity. No effective disease-modifying therapy is currently available for this disease. Our recent studies have demonstrated that insulinlike growth factor (IGF)-1 reduces the mutant androgen receptor toxicity through activation of Akt in vitro, and spinal and bulbar muscular atrophy transgenic mice that also overexpress a noncirculating muscle isoform of IGF-1 have a less severe phenotype. Here we sought to establish the efficacy of daily intraperitoneal injections of mecasermin rinfabate, recombinant human IGF-1 and IGF-1 binding protein 3, in a transgenic mouse model expressing the mutant androgen receptor with an expanded 97 glutamine tract. The study was done in a controlled, randomized, blinded fashion, and, to reflect the clinical settings, the injections were started after the onset of disease manifestations. The treatment resulted in increased Akt phosphorylation and reduced mutant androgen receptor aggregation in muscle. In comparison to vehicle-treated controls, IGF-1-treated transgenic mice showed improved motor performance, attenuated weight loss and increased survival. Our results suggest that peripheral tissue can be targeted to improve the spinal and bulbar muscular atrophy phenotype and indicate that IGF-1 warrants further investigation in clinical trials as a potential treatment for this disease.

  18. Insulinlike Growth Factor (IGF)-1 Administration Ameliorates Disease Manifestations in a Mouse Model of Spinal and Bulbar Muscular Atrophy

    PubMed Central

    Rinaldi, Carlo; Bott, Laura C; Chen, Ke-lian; Harmison, George G; Katsuno, Masahisa; Sobue, Gen; Pennuto, Maria; Fischbeck, Kenneth H

    2012-01-01

    Spinal and bulbar muscular atrophy is an X-linked motor neuron disease caused by polyglutamine expansion in the androgen receptor. Patients develop slowly progressive proximal muscle weakness, muscle atrophy and fasciculations. Affected individuals often show gynecomastia, testicular atrophy and reduced fertility as a result of mild androgen insensitivity. No effective disease-modifying therapy is currently available for this disease. Our recent studies have demonstrated that insulinlike growth factor (IGF)-1 reduces the mutant androgen receptor toxicity through activation of Akt in vitro, and spinal and bulbar muscular atrophy transgenic mice that also overexpress a noncirculating muscle isoform of IGF-1 have a less severe phenotype. Here we sought to establish the efficacy of daily intraperitoneal injections of mecasermin rinfabate, recombinant human IGF-1 and IGF-1 binding protein 3, in a transgenic mouse model expressing the mutant androgen receptor with an expanded 97 glutamine tract. The study was done in a controlled, randomized, blinded fashion, and, to reflect the clinical settings, the injections were started after the onset of disease manifestations. The treatment resulted in increased Akt phosphorylation and reduced mutant androgen receptor aggregation in muscle. In comparison to vehicle-treated controls, IGF-1–treated transgenic mice showed improved motor performance, attenuated weight loss and increased survival. Our results suggest that peripheral tissue can be targeted to improve the spinal and bulbar muscular atrophy phenotype and indicate that IGF-1 warrants further investigation in clinical trials as a potential treatment for this disease. PMID:22952056

  19. [A Case of General Anesthesia in a Patient with Spinal and Bulbar Muscular Atrophy].

    PubMed

    Kumakura, Mika; Hara, Koji; Obara, Goh; Sata, Takeyoshi

    2015-12-01

    We report a successful management of anesthesia in a 55-year-old male patient with spinal and bulbar muscular atrophy (SBMA). His respiratory and swallowing functions were preserved preoperatively. He underwent an osteosynthesis for a femoral neck fracture under general anesthesia using nondepolarizing muscle relaxant. The anesthetic concerns in patients with SBMA are the possibility of postoperative respiratory dysfunction due to anesthetics or muscle relaxants and that of postoperative neurological deterioration due to spinal or epidural anesthesia. In this case, the effect of an intubating dose of rocuronium (0.5 mg · kg(-1)) was markedly prolonged, but it was completely reversed by sugammadex (2 mg · kg(-1)). Postoperative course was uneventful and clinical symptoms of SBMA did not become exacerbated. PMID:26790333

  20. Soluble androgen receptor oligomers underlie pathology in a mouse model of spinobulbar muscular atrophy.

    PubMed

    Li, Mei; Chevalier-Larsen, Erica S; Merry, Diane E; Diamond, Marc I

    2007-02-01

    In polyglutamine diseases such as X-linked spinobulbar muscular atrophy (SBMA), it is unknown whether the toxic form of the protein is an insoluble or soluble aggregate or a monomer. We have addressed this question by studying a full-length androgen receptor (AR) mouse model of SBMA. We used biochemistry and atomic force microscopy to immunopurify oligomers soluble after ultracentrifugation that are comprised of a single approximately 50-kDa N-terminal polyglutamine-containing AR fragment. AR oligomers appeared several weeks prior to symptom onset, were distinct and temporally dissociated from intranuclear inclusions, and disappeared rapidly after castration, which halts disease. This is the first demonstration of soluble AR oligomers in vivo and suggests that they underlie neurodegeneration in SBMA. PMID:17121819

  1. Neuromuscular Junctions as Key Contributors and Therapeutic Targets in Spinal Muscular Atrophy

    PubMed Central

    Boido, Marina; Vercelli, Alessandro

    2016-01-01

    Spinal muscular atrophy (SMA) is a recessive autosomal neuromuscular disease, representing the most common fatal pediatric pathology. Even though, classically and in a simplistic way, it is categorized as a motor neuron (MN) disease, there is an increasing general consensus that its pathogenesis is more complex than expected. In particular, neuromuscular junctions (NMJs) are affected by dramatic alterations, including immaturity, denervation and neurofilament accumulation, associated to impaired synaptic functions: these abnormalities may in turn have a detrimental effect on MN survival. Here, we provide a description of NMJ development/maintenance/maturation in physiological conditions and in SMA, focusing on pivotal molecules and on the time-course of pathological events. Moreover, since NMJs could represent an important target to be exploited for counteracting the pathology progression, we also describe several therapeutic strategies that, directly or indirectly, aim at NMJs. PMID:26869891

  2. Spinal muscular atrophy with respiratory distress syndrome (SMARD1): Case report and review of literature.

    PubMed

    Lingappa, Lokesh; Shah, Nikit; Motepalli, Ananth Sagar; Shaik, Farhan

    2016-01-01

    Spinal muscular atrophy with respiratory distress syndrome (SMARD1) is a rare cause of early infantile respiratory failure and death. No cases have been currently described from India. Two low-birth-weight infants presented prior to 6 months of age with recurrent apnea and respiratory distress. Both required prolonged ventilation, and had distal arthrogryposis and diaphragmatic eventration. Nerve conduction study revealed motor sensory axonopathy. Genetic testing confirmed mutations in immunoglobulin mu binding protein (IGHMBP2). These two cases establish presence of SMARD1 in our population. Both infants died on discontinuation of ventilation. Antenatal diagnoses done in one pregnancy. Though rare, high index of suspicion is essential in view of poor outcome and aid antenatal counseling. PMID:27570397

  3. Perceptions of Equine Assisted Activities and Therapies by Parents and Children with Spinal Muscular Atrophy

    PubMed Central

    Lemke, Danielle; Rothwell, Erin; Newcomb, Tara M.; Swoboda, Kathryn J.

    2014-01-01

    Purpose To identify the physical and psychosocial effects of equine assisted activities and therapies (EAAT) on children with Spinal Muscular Atrophy (SMA) from the perspective of the child and their parents. Methods The families of all eligible children with SMA, who reported participation in EAAT, from a western metropolitan academic center were contacted and invited to participate. This study implemented qualitative, semi-structured interviews of children with SMA and their parents. Results Three themes emerged from the qualitative content analysis: physical/psychosocial benefits; relationship development with the horses, instructors, and children; and barriers to continued EAAT engagement. Conclusions The data suggest the overall EAAT experience was a source of enjoyment, self-confidence, and normalcy for the children with SMA. The results of this study provide preliminary support for the use of EAAT among children with SMA. PMID:24675128

  4. Spinal muscular atrophy with respiratory distress syndrome (SMARD1): Case report and review of literature

    PubMed Central

    Lingappa, Lokesh; Shah, Nikit; Motepalli, Ananth Sagar; Shaik, Farhan

    2016-01-01

    Spinal muscular atrophy with respiratory distress syndrome (SMARD1) is a rare cause of early infantile respiratory failure and death. No cases have been currently described from India. Two low-birth-weight infants presented prior to 6 months of age with recurrent apnea and respiratory distress. Both required prolonged ventilation, and had distal arthrogryposis and diaphragmatic eventration. Nerve conduction study revealed motor sensory axonopathy. Genetic testing confirmed mutations in immunoglobulin mu binding protein (IGHMBP2). These two cases establish presence of SMARD1 in our population. Both infants died on discontinuation of ventilation. Antenatal diagnoses done in one pregnancy. Though rare, high index of suspicion is essential in view of poor outcome and aid antenatal counseling. PMID:27570397

  5. Gene discovery for facioscapulohumeral muscular dystrophy by machine learning techniques.

    PubMed

    González-Navarro, Félix F; Belanche-Muñoz, Lluís A; Gámez-Moreno, María G; Flores-Ríos, Brenda L; Ibarra-Esquer, Jorge E; López-Morteo, Gabriel A

    2016-04-28

    Facioscapulohumeral muscular dystrophy (FSHD) is a neuromuscular disorder that shows a preference for the facial, shoulder and upper arm muscles. FSHD affects about one in 20-400,000 people, and no effective therapeutic strategies are known to halt disease progression or reverse muscle weakness or atrophy. Many genes may be incorrectly regulated in affected muscle tissue, but the mechanisms responsible for the progressive muscle weakness remain largely unknown. Although machine learning (ML) has made significant inroads in biomedical disciplines such as cancer research, no reports have yet addressed FSHD analysis using ML techniques. This study explores a specific FSHD data set from a ML perspective. We report results showing a very promising small group of genes that clearly separates FSHD samples from healthy samples. In addition to numerical prediction figures, we show data visualizations and biological evidence illustrating the potential usefulness of these results. PMID:26960968

  6. A missense mutation in the 3-ketodihydrosphingosine reductase FVT1 as candidate causal mutation for bovine spinal muscular atrophy

    PubMed Central

    Krebs, Stefan; Medugorac, Ivica; Röther, Susanne; Strässer, Katja; Förster, Martin

    2007-01-01

    The bovine form of the autosomal recessive neurodegenerative disease spinal muscular atrophy (SMA) shows striking similarity to the human form of the disease. It has, however, been mapped to a genomic region not harboring the bovine orthologue of the SMN gene, mutation of which causes human SMA. After refinement of the mapping results we analyzed positional and functional candidate genes. One of three candidate genes, FVT1, encoding 3-ketodihydrosphingosine reductase, which catalyzes a crucial step in the glycosphingolipid metabolism, showed a G-to-A missense mutation that changes Ala-175 to Thr. The identified mutation is limited to SMA-affected animals and carriers and always appears in context of the founder haplotype. The Ala variant found in healthy animals showed the expected 3-ketodihydrosphingosine reductase activity in an in vitro enzyme assay. Importantly, the Thr variant found in SMA animals showed no detectable activity. Surprisingly, in an in vivo assay the mutated gene complements the growth defect of a homologous yeast knockout strain as well as the healthy variant. This finding explains the viability of affected newborn calves and the later neuron-specific onset of the disease, which might be due to the high sensitivity of these neurons to changes in housekeeping functions. Taken together, the described mutation in FVT1 is a strong candidate for causality of SMA in cattle. This result provides an animal model for understanding the underlying mechanisms of the development of SMA and will allow efficient selection against the disease in cattle. PMID:17420465

  7. Transcriptional activator TAp63 is upregulated in muscular atrophy during ALS and induces the pro-atrophic ubiquitin ligase Trim63

    PubMed Central

    von Grabowiecki, Yannick; Abreu, Paula; Blanchard, Orphee; Palamiuc, Lavinia; Benosman, Samir; Mériaux, Sophie; Devignot, Véronique; Gross, Isabelle; Mellitzer, Georg; Gonzalez de Aguilar, José L; Gaiddon, Christian

    2016-01-01

    Mechanisms of muscle atrophy are complex and their understanding might help finding therapeutic solutions for pathologies such as amyotrophic lateral sclerosis (ALS). We meta-analyzed transcriptomic experiments of muscles of ALS patients and mouse models, uncovering a p53 deregulation as common denominator. We then characterized the induction of several p53 family members (p53, p63, p73) and a correlation between the levels of p53 family target genes and the severity of muscle atrophy in ALS patients and mice. In particular, we observed increased p63 protein levels in the fibers of atrophic muscles via denervation-dependent and -independent mechanisms. At a functional level, we demonstrated that TAp63 and p53 transactivate the promoter and increased the expression of Trim63 (MuRF1), an effector of muscle atrophy. Altogether, these results suggest a novel function for p63 as a contributor to muscular atrophic processes via the regulation of multiple genes, including the muscle atrophy gene Trim63. DOI: http://dx.doi.org/10.7554/eLife.10528.001 PMID:26919175

  8. Enhanced aggregation of androgen receptor in induced pluripotent stem cell-derived neurons from spinal and bulbar muscular atrophy.

    PubMed

    Nihei, Yoshihiro; Ito, Daisuke; Okada, Yohei; Akamatsu, Wado; Yagi, Takuya; Yoshizaki, Takahito; Okano, Hideyuki; Suzuki, Norihiro

    2013-03-22

    Spinal and bulbar muscular atrophy (SBMA) is an X-linked motor neuron disease caused by a CAG repeat expansion in the androgen receptor (AR) gene. Ligand-dependent nuclear accumulation of mutant AR protein is a critical characteristic of the pathogenesis of SBMA. SBMA has been modeled in AR-overexpressing animals, but precisely how the polyglutamine (polyQ) expansion leads to neurodegeneration is unclear. Induced pluripotent stem cells (iPSCs) are a new technology that can be used to model human diseases, study pathogenic mechanisms, and develop novel drugs. We established SBMA patient-derived iPSCs, investigated their cellular biochemical characteristics, and found that SBMA-iPSCs can differentiate into motor neurons. The CAG repeat numbers in the AR gene of SBMA-iPSCs and also in the atrophin-1 gene of iPSCs derived from another polyQ disease, dentato-rubro-pallido-luysian atrophy (DRPLA), remain unchanged during reprogramming, long term passage, and differentiation, indicating that polyQ disease-associated CAG repeats are stable during maintenance of iPSCs. The level of AR expression is up-regulated by neuronal differentiation and treatment with the AR ligand dihydrotestosterone. Filter retardation assays indicated that aggregation of ARs following dihydrotestosterone treatment in neurons derived from SBMA-iPSCs increases significantly compared with neurological control iPSCs, easily recapitulating the pathological feature of mutant ARs in SBMA-iPSCs. This phenomenon was not observed in iPSCs and fibroblasts, thereby showing the neuron-dominant phenotype of this disease. Furthermore, the HSP90 inhibitor 17-allylaminogeldanamycin sharply decreased the level of aggregated AR in neurons derived from SBMA-iPSCs, indicating a potential for discovery and validation of candidate drugs. We found that SBMA-iPSCs possess disease-specific biochemical features and could thus open new avenues of research into not only SBMA, but also other polyglutamine diseases.

  9. Linkage disequilibrium and haplotype analysis among Polish families with spinal muscular atrophy

    SciTech Connect

    Brzustowicz, L.M.; Wang, C.H.; Matseoane, D.; Kleyn, P.W.; Vitale, E.; Das, K.; Penchaszadeh, G.K.; Gilliam, T.C.; Munsat, T.L.; Hausmanowa-Petrusewicz, I.

    1995-01-01

    Spinal muscular atrophy (SMA) is an inherited degenerative disorder of anterior horn cells that results in progressive muscle weakness and atrophy. The autosomal recessive forms of childhood-onset SMA have been mapped to chromosome 5q11.2-13.3, in a number of studies examining different populations. A total of 9 simple sequence repeat markers were genotyped against 32 Polish families with SMA. The markers span an {approximately}0.7 cM region defined by the SMA flanking markers D5S435 and MAP1B. Significant linkage disequilibrium (corrected P<0.5) was detected at four of these markers, with D/D{sub max} values of {le}.89. Extended haplotype analysis revealed a predominant haplotype associated with SMA. The apparently high mutation rate of some of the markers has resulted in a number of haplotypes that vary slightly from this predominant haplotype. The predominant haplotype and these closely related patterns represent 25% of the disease chromosomes and none of the nontransmitted parental chromosomes. This predominant haplotype is present both in patients with acute (type I) and in chronic (types II and III) forms of SMA and occurs twice in a homozygous state, both times in children with chronic SMA. 34 refs., 2 figs., 2 tabs.

  10. Enhancement of SMN protein levels in a mouse model of spinal muscular atrophy using novel drug-like compounds

    PubMed Central

    Cherry, Jonathan J; Osman, Erkan Y; Evans, Matthew C; Choi, Sungwoon; Xing, Xuechao; Cuny, Gregory D; Glicksman, Marcie A; Lorson, Christian L; Androphy, Elliot J

    2013-01-01

    Spinal muscular atrophy (SMA) is a neurodegenerative disease that causes progressive muscle weakness, which primarily targets proximal muscles. About 95% of SMA cases are caused by the loss of both copies of the SMN1 gene. SMN2 is a nearly identical copy of SMN1, which expresses much less functional SMN protein. SMN2 is unable to fully compensate for the loss of SMN1 in motor neurons but does provide an excellent target for therapeutic intervention. Increased expression of functional full-length SMN protein from the endogenous SMN2 gene should lessen disease severity. We have developed and implemented a new high-throughput screening assay to identify small molecules that increase the expression of full-length SMN from a SMN2 reporter gene. Here, we characterize two novel compounds that increased SMN protein levels in both reporter cells and SMA fibroblasts and show that one increases lifespan, motor function, and SMN protein levels in a severe mouse model of SMA. PMID:23740718

  11. Use of genetic and physical mapping to locate the spinal muscular atrophy locus between two new highly polymorphic DNA markers

    SciTech Connect

    Clermont, O.; Burlet, P.; Burglen, L.; Lefebvre, S.; Pascal, F.; McPherson, J.; Wasmuth, J.J.; Cohen, D.; Le Paslier, D.; Weissenbach, J.

    1994-04-01

    The gene for autosomal recessive forms of spinal muscular atrophy (SMA) has recently been mapped to chromosome 5q13, within a 4-cM region between the blocks D5S465/D5S125 and MAP-1B/D5S112. The authors identified two new highly polymorphic microsatellite DNA markers - namely, AFM265wf5 (D5S629) and AFM281yh9 (D5S637) - which are the closest markers to the SMA locus. Multilocus analysis by the location-score method was used to establish the best estimate of the SMA gene location. The data suggest that the most likely location for SMA is between locus D5S629 and the block D5S637/D5S351/MAP-1B/D5S112/D5S357. Genetic analysis of inbred SMA families, based on homozygosity by descent and physical mapping using meta-YACs, gave additional information for the loci order as follows: cen-D5S6-D5S125/D5S465-D5S435-D5S629-SMA-D5S637-D5S351-MAP-1B/D5S112-D5S357-D5S39-tel. These data give the direction for bidirectional walking in order to clone this interval and isolate the SMA gene. 16 refs., 4 figs., 2 tabs.

  12. An ~140-kb deletion associated with feline spinal muscular atrophy implies an essential LIX1 function for motor neuron survival

    PubMed Central

    Fyfe, John C.; Menotti-Raymond, Marilyn; David, Victor A.; Brichta, Lars; Schäffer, Alejandro A.; Agarwala, Richa; Murphy, William J.; Wedemeyer, William J.; Gregory, Brittany L.; Buzzell, Bethany G.; Drummond, Meghan C.; Wirth, Brunhilde; O'Brien, Stephen J.

    2006-01-01

    The leading genetic cause of infant mortality is spinal muscular atrophy (SMA), a clinically and genetically heterogeneous group of disorders. Previously we described a domestic cat model of autosomal recessive, juvenile-onset SMA similar to human SMA type III. Here we report results of a whole-genome scan for linkage in the feline SMA pedigree using recently developed species-specific and comparative mapping resources. We identified a novel SMA gene candidate, LIX1, in an ~140-kb deletion on feline chromosome A1q in a region of conserved synteny to human chromosome 5q15. Though LIX1 function is unknown, the predicted secondary structure is compatible with a role in RNA metabolism. LIX1 expression is largely restricted to the central nervous system, primarily in spinal motor neurons, thus offering explanation of the tissue restriction of pathology in feline SMA. An exon sequence screen of 25 human SMA cases, not otherwise explicable by mutations at the SMN1 locus, failed to identify comparable LIX1 mutations. Nonetheless, a LIX1-associated etiology in feline SMA implicates a previously undetected mechanism of motor neuron maintenance and mandates consideration of LIX1 as a candidate gene in human SMA when SMN1 mutations are not found. PMID:16899656

  13. Chondrolectin affects cell survival and neuronal outgrowth in in vitro and in vivo models of spinal muscular atrophy.

    PubMed

    Sleigh, James N; Barreiro-Iglesias, Antón; Oliver, Peter L; Biba, Angeliki; Becker, Thomas; Davies, Kay E; Becker, Catherina G; Talbot, Kevin

    2014-02-15

    Spinal muscular atrophy (SMA) is characterized by the selective loss of spinal motor neurons owing to reduced levels of survival motor neuron (Smn) protein. In addition to its well-established role in assembling constituents of the spliceosome, diverse cellular functions have been proposed for Smn, but the reason why low levels of this widely expressed protein result in selective motor neuron pathology is still debated. In longitudinal studies of exon-level changes in SMA mouse model tissues, designed to determine the contribution of splicing dysfunction to the disease, we have previously shown that a generalized defect in splicing is unlikely to play a causative role in SMA. Nevertheless, we identified a small subset of genes that were alternatively spliced in the spinal cord compared with control mice before symptom onset, indicating a possible mechanistic role in disease. Here, we have performed functional studies of one of these genes, chondrolectin (Chodl), known to be highly expressed in motor neurons and important for correct motor axon outgrowth in zebrafish. Using in vitro and in vivo models of SMA, we demonstrate altered expression of Chodl in SMA mouse spinal motor neurons, show that Chodl has distinct effects on cell survival and neurite outgrowth and that increasing the expression of chodl can rescue motor neuron outgrowth defects in Smn-depleted zebrafish. Our findings thus link the dysregulation of Chodl to the pathophysiology of motor neuron degeneration in SMA.

  14. Spinal muscular atrophy phenotype is ameliorated in human motor neurons by SMN increase via different novel RNA therapeutic approaches.

    PubMed

    Nizzardo, Monica; Simone, Chiara; Dametti, Sara; Salani, Sabrina; Ulzi, Gianna; Pagliarani, Serena; Rizzo, Federica; Frattini, Emanuele; Pagani, Franco; Bresolin, Nereo; Comi, Giacomo; Corti, Stefania

    2015-01-01

    Spinal muscular atrophy (SMA) is a primary genetic cause of infant mortality due to mutations in the Survival Motor Neuron (SMN) 1 gene. No cure is available. Antisense oligonucleotides (ASOs) aimed at increasing SMN levels from the paralogous SMN2 gene represent a possible therapeutic strategy. Here, we tested in SMA human induced pluripotent stem cells (iPSCs) and iPSC-differentiated motor neurons, three different RNA approaches based on morpholino antisense targeting of the ISSN-1, exon-specific U1 small nuclear RNA (ExSpeU1), and Transcription Activator-Like Effector-Transcription Factor (TALE-TF). All strategies act modulating SMN2 RNA: ASO affects exon 7 splicing, TALE-TF increase SMN2 RNA acting on the promoter, while ExSpeU1 improves pre-mRNA processing. These approaches induced up-regulation of full-length SMN mRNA and differentially affected the Delta-7 isoform: ASO reduced this isoform, while ExSpeU1 and TALE-TF increased it. All approaches upregulate the SMN protein and significantly improve the in vitro SMA motor neurons survival. Thus, these findings demonstrate that therapeutic tools that act on SMN2 RNA are able to rescue the SMA disease phenotype. Our data confirm the feasibility of SMA iPSCs as in vitro disease models and we propose novel RNA approaches as potential therapeutic strategies for treating SMA and other genetic neurological disorders. PMID:26123042

  15. High-frequency chest-wall oscillation in a noninvasive-ventilation-dependent patient with type 1 spinal muscular atrophy.

    PubMed

    Keating, Joanna M; Collins, Nicola; Bush, Andrew; Chatwin, Michelle

    2011-11-01

    With the recent increased use of noninvasive ventilation, the prognoses of children with neuromuscular disease has improved significantly. However, children with muscle weakness remain at risk for recurrent respiratory infection and atelectasis. We report the case of a young girl with type 1 spinal muscular atrophy who was dependent on noninvasive ventilation, and in whom conventional secretion-clearance physiotherapy became insufficient to clear secretions. We initiated high-frequency chest-wall oscillation (HFCWO) as a rescue therapy, and she had improved self-ventilation time. This is the first case report of HFCWO for secretion clearance in a severely weak child with type 1 spinal muscular atrophy. In a patient with neuromuscular disease and severe respiratory infection and compromise, HFCWO can be used safely in combination with conventional secretion-clearance physiotherapy.

  16. Muscle expression of mutant androgen receptor protein accounts for systemic and motor neuron disease phenotypes in Spinal & Bulbar Muscular Atrophy

    PubMed Central

    Cortes, Constanza J.; Ling, Shuo-Chien; Guo, Ling T.; Hung, Gene; Tsunemi, Taiji; Ly, Linda; Tokunaga, Seiya; Lopez, Edith; Sopher, Bryce L.; Bennett, C. Frank; Shelton, G. Diane; Cleveland, Don W.; La Spada, Albert R.

    2014-01-01

    X-linked spinal & bulbar muscular atrophy (SBMA) is characterized by adult-onset muscle weakness and lower motor neuron degeneration. SBMA is caused by CAG-polyglutamine (polyQ) repeat expansions in the androgen receptor (AR) gene. Pathological findings include motor neuron loss, with polyQ-AR accumulation in intranuclear inclusions. SBMA patients exhibit myopathic features, suggesting a role for muscle in disease pathogenesis. To determine the contribution of muscle, we developed a BAC mouse model featuring a floxed first exon to permit cell-type-specific excision of human AR121Q. BAC fxAR121 mice develop systemic and neuromuscular phenotypes, including shortened survival. After validating termination of AR121 expression and full rescue with ubiquitous Cre, we crossed BAC fxAR121 mice with Human Skeletal Actin-Cre mice. Muscle-specific excision prevented weight loss, motor phenotypes, muscle pathology, and motor neuronopathy, and dramatically extended survival. Our results reveal a crucial role for muscle expression of polyQ-AR in SBMA, and suggest muscle-directed therapies as effective treatments. PMID:24742458

  17. [The role of RNA splicing in the pathogenesis of spinal muscular atrophy and development of its therapeutics].

    PubMed

    Sahashi, Kentaro; Sobue, Gen

    2014-12-01

    Loss-of-function mutations in SMN1 cause spinal muscular atrophy (SMA), a leading genetic cause of infant mortality. Degeneration of alpha-motor neurons that results in progressive paralysis is a pathological hallmark of SMA. Recently, peripheral-tissue involvement has also been reported in SMA. Patients have low levels of functional SMN which is attributed to alternative splicing in SMN2, a gene closely-related to SMN1. This decrease in the expression of SMN, a ubiquitously expressed protein involved in promoting snRNP assembly required for splicing, is responsible for SMA. However, the mechanism through which decrease in SMN levels causes SMA remains unclear. Currently, no curative treatment is available for SMA, but SMN restoration is thought to be necessary and sufficient for cure. Antisense oligonucleotides (ASOs) can be designed to specifically alter splicing patterns of target pre-mRNAs. We identified an ASO that redirects SMN2 splicing and is currently in clinical trials for use as RNA-targeting therapeutics. Further, we have also reported a novel application of splicing-modulating ASOs--creation of animal phenocopy models of diseases by inducing mis-splicing. Exploring the relationship between the spatial and temporal effects of therapeutic and pathogenic ASOs yields relevant insights into the roles of SMN in SMA pathogenesis and into its normal physiological functions. This knowledge, in turn, contributes to the ongoing development of targeted therapeutics.

  18. Postsymptomatic restoration of SMN rescues the disease phenotype in a mouse model of severe spinal muscular atrophy

    PubMed Central

    Lutz, Cathleen M.; Kariya, Shingo; Patruni, Sunita; Osborne, Melissa A.; Liu, Don; Henderson, Christopher E.; Li, Darrick K.; Pellizzoni, Livio; Rojas, José; Valenzuela, David M.; Murphy, Andrew J.; Winberg, Margaret L.; Monani, Umrao R.

    2011-01-01

    Spinal muscular atrophy (SMA) is a common neuromuscular disorder in humans. In fact, it is the most frequently inherited cause of infant mortality, being the result of mutations in the survival of motor neuron 1 (SMN1) gene that reduce levels of SMN protein. Restoring levels of SMN protein in individuals with SMA is perceived to be a viable therapeutic option, but the efficacy of such a strategy once symptoms are apparent has not been determined. We have generated mice harboring an inducible Smn rescue allele and used them in a model of SMA to investigate the effects of turning on SMN expression at different time points during the course of the disease. Restoring SMN protein even after disease onset was sufficient to reverse neuromuscular pathology and effect robust rescue of the SMA phenotype. Importantly, our findings also indicated that there was a therapeutic window of opportunity from P4 through P8 defined by the extent of neuromuscular synapse pathology and the ability of motor neurons to respond to SMN induction, following which restoration of the protein to the organism failed to produce therapeutic benefit. Nevertheless, our results suggest that even in severe SMA, timely reinstatement of the SMN protein may halt the progression of the disease and serve as an effective postsymptomatic treatment. PMID:21785219

  19. PTEN Depletion Decreases Disease Severity and Modestly Prolongs Survival in a Mouse Model of Spinal Muscular Atrophy

    PubMed Central

    Little, Daniel; Valori, Chiara F; Mutsaers, Chantal A; Bennett, Ellen J; Wyles, Matthew; Sharrack, Basil; Shaw, Pamela J; Gillingwater, Thomas H; Azzouz, Mimoun; Ning, Ke

    2015-01-01

    Spinal muscular atrophy (SMA) is the second most common genetic cause of death in childhood. However, no effective treatment is available to halt disease progression. SMA is caused by mutations in the survival motor neuron 1 (SMN1) gene. We previously reported that PTEN depletion leads to an increase in survival of SMN-deficient motor neurons. Here, we aimed to establish the impact of PTEN modulation in an SMA mouse model in vivo. Initial experiments using intramuscular delivery of adeno-associated vector serotype 6 (AAV6) expressing shRNA against PTEN in an established mouse model of severe SMA (SMNΔ7) demonstrated the ability to ameliorate the severity of neuromuscular junction pathology. Subsequently, we developed self-complementary AAV9 expressing siPTEN (scAAV9-siPTEN) to allow evaluation of the effect of systemic suppression of PTEN on the disease course of SMA in vivo. Treatment with a single injection of scAAV9-siPTEN at postnatal day 1 resulted in a modest threefold extension of the lifespan of SMNΔ7 mice, increasing mean survival to 30 days, compared to 10 days in untreated mice. Our data revealed that systemic PTEN depletion is an important disease modifier in SMNΔ7 mice, and therapies aimed at lowering PTEN expression may therefore offer a potential therapeutic strategy for SMA. PMID:25369768

  20. Small Molecule Suppressors of Drosophila Kinesin Deficiency Rescue Motor Axon Development in a Zebrafish Model of Spinal Muscular Atrophy

    PubMed Central

    Gassman, Andrew; Hao, Le T.; Bhoite, Leena; Bradford, Chad L.; Chien, Chi-Bin; Beattie, Christine E.; Manfredi, John P.

    2013-01-01

    Proximal spinal muscular atrophy (SMA) is the most common inherited motor neuropathy and the leading hereditary cause of infant mortality. Currently there is no effective treatment for the disease, reflecting a need for pharmacologic interventions that restore performance of dysfunctional motor neurons or suppress the consequences of their dysfunction. In a series of assays relevant to motor neuron biology, we explored the activities of a collection of tetrahydroindoles that were reported to alter the metabolism of amyloid precursor protein (APP). In Drosophila larvae the compounds suppressed aberrant larval locomotion due to mutations in the Khc and Klc genes, which respectively encode the heavy and light chains of kinesin-1. A representative compound of this class also suppressed the appearance of axonal swellings (alternatively termed axonal spheroids or neuritic beads) in the segmental nerves of the kinesin-deficient Drosophila larvae. Given the importance of kinesin-dependent transport for extension and maintenance of axons and their growth cones, three members of the class were tested for neurotrophic effects on isolated rat spinal motor neurons. Each compound stimulated neurite outgrowth. In addition, consistent with SMA being an axonopathy of motor neurons, the three axonotrophic compounds rescued motor axon development in a zebrafish model of SMA. The results introduce a collection of small molecules as pharmacologic suppressors of SMA-associated phenotypes and nominate specific members of the collection for development as candidate SMA therapeutics. More generally, the results reinforce the perception of SMA as an axonopathy and suggest novel approaches to treating the disease. PMID:24023935

  1. A Mutation in the Vesicle-Trafficking Protein VAPB Causes Late-Onset Spinal Muscular Atrophy and Amyotrophic Lateral Sclerosis

    PubMed Central

    Nishimura, Agnes L.; Mitne-Neto, Miguel; Silva, Helga C. A.; Richieri-Costa, Antônio; Middleton, Susan; Cascio, Duilio; Kok, Fernando; Oliveira, João R. M.; Gillingwater, Tom; Webb, Jeanette; Skehel, Paul; Zatz, Mayana

    2004-01-01

    Motor neuron diseases (MNDs) are a group of neurodegenerative disorders with involvement of upper and/or lower motor neurons, such as amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), progressive bulbar palsy, and primary lateral sclerosis. Recently, we have mapped a new locus for an atypical form of ALS/MND (atypical amyotrophic lateral sclerosis [ALS8]) at 20q13.3 in a large white Brazilian family. Here, we report the finding of a novel missense mutation in the vesicle-associated membrane protein/synaptobrevin-associated membrane protein B (VAPB) gene in patients from this family. Subsequently, the same mutation was identified in patients from six additional kindreds but with different clinical courses, such as ALS8, late-onset SMA, and typical severe ALS with rapid progression. Although it was not possible to link all these families, haplotype analysis suggests a founder effect. Members of the vesicle-associated proteins are intracellular membrane proteins that can associate with microtubules and that have been shown to have a function in membrane transport. These data suggest that clinically variable MNDs may be caused by a dysfunction in intracellular membrane trafficking. PMID:15372378

  2. Modeling the Early Phenotype at the Neuromuscular Junction of Spinal Muscular Atrophy Using Patient-Derived iPSCs

    PubMed Central

    Yoshida, Michiko; Kitaoka, Shiho; Egawa, Naohiro; Yamane, Mayu; Ikeda, Ryunosuke; Tsukita, Kayoko; Amano, Naoki; Watanabe, Akira; Morimoto, Masafumi; Takahashi, Jun; Hosoi, Hajime; Nakahata, Tatsutoshi; Inoue, Haruhisa; Saito, Megumu K.

    2015-01-01

    Summary Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by mutations of the survival of motor neuron 1 (SMN1) gene. In the pathogenesis of SMA, pathological changes of the neuromuscular junction (NMJ) precede the motor neuronal loss. Therefore, it is critical to evaluate the NMJ formed by SMA patients’ motor neurons (MNs), and to identify drugs that can restore the normal condition. We generated NMJ-like structures using MNs derived from SMA patient-specific induced pluripotent stem cells (iPSCs), and found that the clustering of the acetylcholine receptor (AChR) is significantly impaired. Valproic acid and antisense oligonucleotide treatment ameliorated the AChR clustering defects, leading to an increase in the level of full-length SMN transcripts. Thus, the current in vitro model of AChR clustering using SMA patient-derived iPSCs is useful to dissect the pathophysiological mechanisms underlying the development of SMA, and to evaluate the efficacy of new therapeutic approaches. PMID:25801509

  3. Muscle expression of mutant androgen receptor accounts for systemic and motor neuron disease phenotypes in spinal and bulbar muscular atrophy.

    PubMed

    Cortes, Constanza J; Ling, Shuo-Chien; Guo, Ling T; Hung, Gene; Tsunemi, Taiji; Ly, Linda; Tokunaga, Seiya; Lopez, Edith; Sopher, Bryce L; Bennett, C Frank; Shelton, G Diane; Cleveland, Don W; La Spada, Albert R

    2014-04-16

    X-linked spinal and bulbar muscular atrophy (SBMA) is characterized by adult-onset muscle weakness and lower motor neuron degeneration. SBMA is caused by CAG-polyglutamine (polyQ) repeat expansions in the androgen receptor (AR) gene. Pathological findings include motor neuron loss, with polyQ-AR accumulation in intranuclear inclusions. SBMA patients exhibit myopathic features, suggesting a role for muscle in disease pathogenesis. To determine the contribution of muscle, we developed a BAC mouse model featuring a floxed first exon to permit cell-type-specific excision of human AR121Q. BAC fxAR121 mice develop systemic and neuromuscular phenotypes, including shortened survival. After validating termination of AR121 expression and full rescue with ubiquitous Cre, we crossed BAC fxAR121 mice with Human Skeletal Actin-Cre mice. Muscle-specific excision prevented weight loss, motor phenotypes, muscle pathology, and motor neuronopathy and dramatically extended survival. Our results reveal a crucial role for muscle expression of polyQ-AR in SBMA and suggest muscle-directed therapies as effective treatments.

  4. Severe neuromuscular denervation of clinically relevant muscles in a mouse model of spinal muscular atrophy.

    PubMed

    Ling, Karen K Y; Gibbs, Rebecca M; Feng, Zhihua; Ko, Chien-Ping

    2012-01-01

    Spinal muscular atrophy (SMA), a motoneuron disease caused by a deficiency of the survival of motor neuron (SMN) protein, is characterized by motoneuron loss and muscle weakness. It remains unclear whether widespread loss of neuromuscular junctions (NMJs) is involved in SMA pathogenesis. We undertook a systematic examination of NMJ innervation patterns in >20 muscles in the SMNΔ7 SMA mouse model. We found that severe denervation (<50% fully innervated endplates) occurs selectively in many vulnerable axial muscles and several appendicular muscles at the disease end stage. Since these vulnerable muscles were located throughout the body and were comprised of varying muscle fiber types, it is unlikely that muscle location or fiber type determines susceptibility to denervation. Furthermore, we found a similar extent of neurofilament accumulation at NMJs in both vulnerable and resistant muscles before the onset of denervation, suggesting that neurofilament accumulation does not predict subsequent NMJ denervation. Since vulnerable muscles were initially innervated, but later denervated, loss of innervation in SMA may be attributed to defects in synapse maintenance. Finally, we found that denervation was amendable by trichostatin A (TSA) treatment, which increased innervation in clinically relevant muscles in TSA-treated SMNΔ7 mice. Our findings suggest that neuromuscular denervation in vulnerable muscles is a widespread pathology in SMA, and can serve as a preparation for elucidating the biological basis of synapse loss, and for evaluating therapeutic efficacy.

  5. Mechanisms involved in spinal cord central synapse loss in a mouse model of spinal muscular atrophy.

    PubMed

    Tarabal, Olga; Caraballo-Miralles, Víctor; Cardona-Rossinyol, Andrea; Correa, Francisco J; Olmos, Gabriel; Lladó, Jerònia; Esquerda, Josep E; Calderó, Jordi

    2014-06-01

    Motoneuron (MN) cell death is the histopathologic hallmark of spinal muscular atrophy (SMA), although MN loss seems to be a late event. Conversely, disruption of afferent synapses on MNs has been shown to occur early in SMA. Using a mouse model of severe SMA (SMNΔ7), we examined the mechanisms involved in impairment of central synapses. We found that MNs underwent progressive degeneration in the course of SMA, with MN loss still occurring at late stages. Loss of afferent inputs to SMA MNs was detected at embryonic stages, long before MN death. Reactive microgliosis and astrogliosis were present in the spinal cord of diseased animals after the onset of MN loss. Ultrastructural observations indicate that dendrites and microglia phagocytose adjacent degenerating presynaptic terminals. Neuronal nitric oxide synthase was upregulated in SMNΔ7 MNs, and there was an increase in phosphorylated myosin light chain expression in synaptic afferents on MNs; these observations implicate nitric oxide in MN deafferentation and suggest that the RhoA/ROCK pathway is activated. Together, our observations suggest that the earliest change occurring in SMNΔ7 mice is the loss of excitatory glutamatergic synaptic inputs to MNs; reduced excitability may enhance their vulnerability to degeneration and death.

  6. MiR-298 Counteracts Mutant Androgen Receptor Toxicity in Spinal and Bulbar Muscular Atrophy

    PubMed Central

    Pourshafie, Naemeh; Lee, Philip R; Chen, Ke-lian; Harmison, George G; Bott, Laura C; Katsuno, Masahisa; Sobue, Gen; Burnett, Barrington G; Fischbeck, Kenneth H; Rinaldi, Carlo

    2016-01-01

    Spinal and bulbar muscular atrophy (SBMA) is a currently untreatable adult-onset neuromuscular disease caused by expansion of a polyglutamine repeat in the androgen receptor (AR). In SBMA, as in other polyglutamine diseases, a toxic gain of function in the mutant protein is an important factor in the disease mechanism; therefore, reducing the mutant protein holds promise as an effective treatment strategy. In this work, we evaluated a microRNA (miRNA) to reduce AR expression. From a list of predicted miRNAs that target human AR, we selected microRNA-298 (miR-298) for its ability to downregulate AR mRNA and protein levels when transfected in cells overexpressing wild-type and mutant AR and in SBMA patient-derived fibroblasts. We showed that miR-298 directly binds to the 3'-untranslated region of the human AR transcript, and counteracts AR toxicity in vitro. Intravenous delivery of miR-298 with adeno-associated virus serotype 9 vector resulted in efficient transduction of muscle and spinal cord and amelioration of the disease phenotype in SBMA mice. Our findings support the development of miRNAs as a therapeutic strategy for SBMA and other neurodegenerative disorders caused by toxic proteins. PMID:26755334

  7. Neurodegeneration in spinal muscular atrophy: from disease phenotype and animal models to therapeutic strategies and beyond

    PubMed Central

    Monani, Umrao R; De Vivo, Darryl C

    2014-01-01

    Of the numerous inherited diseases known to afflict the pediatric population, spinal muscular atrophy (SMA) is among the most common. It has an incidence of approximately one in 10,000 newborns and a carrier frequency of one in 50. Despite its relatively high incidence, SMA remains somewhat obscure among the many neurodegenerative diseases that affect humans. Nevertheless, the last two decades have witnessed remarkable progress in our understanding of the pathology, underlying biology and especially the molecular genetics of SMA. This has led to a genuine expectation within the scientific community that a robust treatment will be available to patients before the end of the decade. The progress made in our understanding of SMA and, therefore, towards a viable therapy for affected individuals is in large measure a consequence of the simple yet fascinating genetics of the disease. Nevertheless, important questions remain. Addressing these questions promises not only to accelerate the march towards a cure for SMA, but also to uncover novel therapies for related neurodegenerative disorders. This review discusses our current understanding of SMA, considers the challenges ahead, describes existing treatment options and highlights state-of-the-art research being conducted as a means to a better, safer and more effective treatment for the disease. PMID:24648831

  8. Diverting colostomy induces mucosal and muscular atrophy in rat distal colon.

    PubMed Central

    Kissmeyer-Nielsen, P; Christensen, H; Laurberg, S

    1994-01-01

    The progress of adaptive changes in the left colon after diverting colostomy was studied in rats using stereological techniques. Standardised segments of left colon proximal and distal to the colostomy was examined after 0, 1, 2, 4, or 12 weeks. In excluded colon the mucosal weight was reduced by 37% (p < 0.01) and the luminal surface area by 47% (p < 0.01) after four weeks and reached a steady state at this point of time, as no further reduction was seen from 4 to 12 weeks. The number of proliferating crypt cells was determined immunohistochemically after in vivo labelling with bromodeoxyuridine and was compared with the total number of colonocytes. Total bowel rest leads to a reduction in the number of proliferating epithelial cells and not to a reduced average life span. The weight of the muscularis propria decreased by 32% after four weeks (p < 0.01) and by 48% after 12 weeks (p < 0.001), whereas the weight of the submucosa was unchanged. No adaptive changes were found in segments proximal to the colostomy. These results show that the wall composition of defunctioned colon in rats is radically changed resulting from a mucosal and muscular atrophy, and from a reduction in luminal surface area. Images Figure 2 Figure 3 Figure 4 PMID:7959237

  9. Contractile dysfunction in muscle may underlie androgen-dependent motor dysfunction in spinal bulbar muscular atrophy

    PubMed Central

    Oki, Kentaro; Halievski, Katherine; Vicente, Laura; Xu, Youfen; Zeolla, Donald; Poort, Jessica; Katsuno, Masahisa; Adachi, Hiroaki; Sobue, Gen; Wiseman, Robert W.; Breedlove, S. Marc

    2015-01-01

    Spinal and bulbar muscular atrophy (SBMA) is characterized by progressive muscle weakness linked to a polyglutamine expansion in the androgen receptor (AR). Current evidence indicates that mutant AR causes SBMA by acting in muscle to perturb its function. However, information about how muscle function is impaired is scant. One fundamental question is whether the intrinsic strength of muscles, an attribute of muscle independent of its mass, is affected. In the current study, we assess the contractile properties of hindlimb muscles in vitro from chronically diseased males of three different SBMA mouse models: a transgenic (Tg) model that broadly expresses a full-length human AR with 97 CAGs (97Q), a knock-in (KI) model that expresses a humanized AR containing a CAG expansion in the first exon, and a Tg myogenic model that overexpresses wild-type AR only in skeletal muscle fibers. We found that hindlimb muscles in the two Tg models (97Q and myogenic) showed marked losses in their intrinsic strength and resistance to fatigue, but were minimally affected in KI males. However, diseased muscles of all three models showed symptoms consistent with myotonic dystrophy type 1, namely, reduced resting membrane potential and deficits in chloride channel mRNA. These data indicate that muscle dysfunction is a core feature of SBMA caused by at least some of the same pathogenic mechanisms as myotonic dystrophy. Thus mechanisms controlling muscle function per se independent of mass are prime targets for SBMA therapeutics. PMID:25663674

  10. Survival motor neuron protein in motor neurons determines synaptic integrity in spinal muscular atrophy.

    PubMed

    Martinez, Tara L; Kong, Lingling; Wang, Xueyong; Osborne, Melissa A; Crowder, Melissa E; Van Meerbeke, James P; Xu, Xixi; Davis, Crystal; Wooley, Joe; Goldhamer, David J; Lutz, Cathleen M; Rich, Mark M; Sumner, Charlotte J

    2012-06-20

    The inherited motor neuron disease spinal muscular atrophy (SMA) is caused by deficient expression of survival motor neuron (SMN) protein and results in severe muscle weakness. In SMA mice, synaptic dysfunction of both neuromuscular junctions (NMJs) and central sensorimotor synapses precedes motor neuron cell death. To address whether this synaptic dysfunction is due to SMN deficiency in motor neurons, muscle, or both, we generated three lines of conditional SMA mice with tissue-specific increases in SMN expression. All three lines of mice showed increased survival, weights, and improved motor behavior. While increased SMN expression in motor neurons prevented synaptic dysfunction at the NMJ and restored motor neuron somal synapses, increased SMN expression in muscle did not affect synaptic function although it did improve myofiber size. Together these data indicate that both peripheral and central synaptic integrity are dependent on motor neurons in SMA, but SMN may have variable roles in the maintenance of these different synapses. At the NMJ, it functions at the presynaptic terminal in a cell-autonomous fashion, but may be necessary for retrograde trophic signaling to presynaptic inputs onto motor neurons. Importantly, SMN also appears to function in muscle growth and/or maintenance independent of motor neurons. Our data suggest that SMN plays distinct roles in muscle, NMJs, and motor neuron somal synapses and that restored function of SMN at all three sites will be necessary for full recovery of muscle power.

  11. Prospective cohort study of spinal muscular atrophy types 2 and 3

    PubMed Central

    Kaufmann, Petra; McDermott, Michael P.; Darras, Basil T.; Finkel, Richard S.; Sproule, Douglas M.; Kang, Peter B.; Oskoui, Maryam; Constantinescu, Andrei; Gooch, Clifton L.; Foley, A. Reghan; Yang, Michele L.; Tawil, Rabi; Chung, Wendy K.; Martens, William B.; Montes, Jacqueline; Battista, Vanessa; O'Hagen, Jessica; Dunaway, Sally; Flickinger, Jean; Quigley, Janet; Riley, Susan; Glanzman, Allan M.; Benton, Maryjane; Ryan, Patricia A.; Punyanitya, Mark; Montgomery, Megan J.; Marra, Jonathan; Koo, Benjamin

    2012-01-01

    Objective: To characterize the natural history of spinal muscular atrophy type 2 and type 3 (SMA 2/3) beyond 1 year and to report data on clinical and biological outcomes for use in trial planning. Methods: We conducted a prospective observational cohort study of 79 children and young adults with SMA 2/3 who participated in evaluations for up to 48 months. Clinically, we evaluated motor and pulmonary function, quality of life, and muscle strength. We also measured SMN2 copy number, hematologic and biochemical profiles, muscle mass by dual x-ray absorptiometry (DXA), and the compound motor action potential (CMAP) in a hand muscle. Data were analyzed for associations between clinical and biological/laboratory characteristics cross-sectionally, and for change over time in outcomes using all available data. Results: In cross-sectional analyses, certain biological measures (specifically, CMAP, DXA fat-free mass index, and SMN2 copy number) and muscle strength measures were associated with motor function. Motor and pulmonary function declined over time, particularly at time points beyond 12 months of follow-up. Conclusion: The intermediate and mild phenotypes of SMA show slow functional declines when observation periods exceed 1 year. Whole body muscle mass, hand muscle compound motor action potentials, and muscle strength are associated with clinical measures of motor function. The data from this study will be useful for clinical trial planning and suggest that CMAP and DXA warrant further evaluation as potential biomarkers. PMID:23077013

  12. A mixed methods exploration of families' experiences of the diagnosis of childhood spinal muscular atrophy.

    PubMed

    Lawton, Sally; Hickerton, Chriselle; Archibald, Alison D; McClaren, Belinda J; Metcalfe, Sylvia A

    2015-05-01

    Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease with a carrier frequency of 1 in 41 in Australia. Childhood SMA is classified into three types based on the age at which children present with symptoms and the clinical severity. Families' experiences leading up to the diagnosis have not been described, but are important when considering the potential for a diagnostic odyssey. Using a mixed methods approach, data were collected from interviews and a national survey of families of children with SMA to explore their experiences of this journey. The combined findings (n=28) revealed that the journey to receiving a diagnosis was protracted. The time from first noticing symptoms to finally receiving a diagnosis was emotional and frustrating. Once parents or other family members became aware of symptoms, almost all had consulted with multiple different health professionals before the diagnosis was ultimately made. Not surprisingly, receiving the diagnosis was devastating to the families. The nature of the information and the way it was given to them was not always optimal, particularly because of the difficulties predicting clinical severity. Most felt that their child could have been diagnosed earlier and, although there were mixed views around the benefit of this for their child, they felt it may have reduced the emotional impact on families. Overall, families were more in favour of population carrier screening for SMA when compared with newborn screening of the population. Despite an increasing awareness of SMA, the diagnostic delay continues to have negative impacts on families. PMID:25074464

  13. Contractile dysfunction in muscle may underlie androgen-dependent motor dysfunction in spinal bulbar muscular atrophy.

    PubMed

    Oki, Kentaro; Halievski, Katherine; Vicente, Laura; Xu, Youfen; Zeolla, Donald; Poort, Jessica; Katsuno, Masahisa; Adachi, Hiroaki; Sobue, Gen; Wiseman, Robert W; Breedlove, S Marc; Jordan, Cynthia L

    2015-04-01

    Spinal and bulbar muscular atrophy (SBMA) is characterized by progressive muscle weakness linked to a polyglutamine expansion in the androgen receptor (AR). Current evidence indicates that mutant AR causes SBMA by acting in muscle to perturb its function. However, information about how muscle function is impaired is scant. One fundamental question is whether the intrinsic strength of muscles, an attribute of muscle independent of its mass, is affected. In the current study, we assess the contractile properties of hindlimb muscles in vitro from chronically diseased males of three different SBMA mouse models: a transgenic (Tg) model that broadly expresses a full-length human AR with 97 CAGs (97Q), a knock-in (KI) model that expresses a humanized AR containing a CAG expansion in the first exon, and a Tg myogenic model that overexpresses wild-type AR only in skeletal muscle fibers. We found that hindlimb muscles in the two Tg models (97Q and myogenic) showed marked losses in their intrinsic strength and resistance to fatigue, but were minimally affected in KI males. However, diseased muscles of all three models showed symptoms consistent with myotonic dystrophy type 1, namely, reduced resting membrane potential and deficits in chloride channel mRNA. These data indicate that muscle dysfunction is a core feature of SBMA caused by at least some of the same pathogenic mechanisms as myotonic dystrophy. Thus mechanisms controlling muscle function per se independent of mass are prime targets for SBMA therapeutics.

  14. MiR-298 Counteracts Mutant Androgen Receptor Toxicity in Spinal and Bulbar Muscular Atrophy.

    PubMed

    Pourshafie, Naemeh; Lee, Philip R; Chen, Ke-Lian; Harmison, George G; Bott, Laura C; Katsuno, Masahisa; Sobue, Gen; Burnett, Barrington G; Fischbeck, Kenneth H; Rinaldi, Carlo

    2016-05-01

    Spinal and bulbar muscular atrophy (SBMA) is a currently untreatable adult-onset neuromuscular disease caused by expansion of a polyglutamine repeat in the androgen receptor (AR). In SBMA, as in other polyglutamine diseases, a toxic gain of function in the mutant protein is an important factor in the disease mechanism; therefore, reducing the mutant protein holds promise as an effective treatment strategy. In this work, we evaluated a microRNA (miRNA) to reduce AR expression. From a list of predicted miRNAs that target human AR, we selected microRNA-298 (miR-298) for its ability to downregulate AR mRNA and protein levels when transfected in cells overexpressing wild-type and mutant AR and in SBMA patient-derived fibroblasts. We showed that miR-298 directly binds to the 3'-untranslated region of the human AR transcript, and counteracts AR toxicity in vitro. Intravenous delivery of miR-298 with adeno-associated virus serotype 9 vector resulted in efficient transduction of muscle and spinal cord and amelioration of the disease phenotype in SBMA mice. Our findings support the development of miRNAs as a therapeutic strategy for SBMA and other neurodegenerative disorders caused by toxic proteins.

  15. Inhibition of myostatin does not ameliorate disease features of severe spinal muscular atrophy mice

    PubMed Central

    Sumner, Charlotte J.; Wee, Claribel D.; Warsing, Leigh C.; Choe, Dong W.; Ng, Andrew S.; Lutz, Cathleen; Wagner, Kathryn R.

    2009-01-01

    There is currently no treatment for the inherited motor neuron disease, spinal muscular atrophy (SMA). Severe SMA causes lower motor neuron loss, impaired myofiber development, profound muscle weakness and early mortality. Myostatin is a transforming growth factor-β family member that inhibits muscle growth. Loss or blockade of myostatin signaling increases muscle mass and improves muscle strength in mouse models of primary muscle disease and in the motor neuron disease, amyotrophic lateral sclerosis. In this study, we evaluated the effects of blocking myostatin signaling in severe SMA mice (hSMN2/delta7SMN/mSmn−/−) by two independent strategies: (i) transgenic overexpression of the myostatin inhibitor follistatin and (ii) post-natal administration of a soluble activin receptor IIB (ActRIIB-Fc). SMA mice overexpressing follistatin showed little increase in muscle mass and no improvement in motor function or survival. SMA mice treated with ActRIIB-Fc showed minimal improvement in motor function, and no extension of survival compared with vehicle-treated mice. Together these results suggest that inhibition of myostatin may not be a promising therapeutic strategy in severe forms of SMA. PMID:19477958

  16. Polyethylene glycol-coupled IGF1 delays motor function defects in a mouse model of spinal muscular atrophy with respiratory distress type 1.

    PubMed

    Krieger, Frank; Elflein, Nicole; Saenger, Stefanie; Wirthgen, Elisa; Rak, Kristen; Frantz, Stefan; Hoeflich, Andreas; Toyka, Klaus V; Metzger, Friedrich; Jablonka, Sibylle

    2014-05-01

    Spinal muscular atrophy with respiratory distress type 1 is a neuromuscular disorder characterized by progressive weakness and atrophy of the diaphragm and skeletal muscles, leading to death in childhood. No effective treatment is available. The neuromuscular degeneration (Nmd(2J)) mouse shares a crucial mutation in the immunoglobulin mu-binding protein 2 gene (Ighmbp2) with spinal muscular atrophy with respiratory distress type 1 patients and also displays some basic features of the human disease. This model serves as a promising tool in understanding the complex mechanisms of the disease and in exploring novel treatment modalities such as insulin-like growth factor 1 (IGF1) which supports myogenic and neurogenic survival and stimulates differentiation during development. Here we investigated the treatment effects with polyethylene glycol-coupled IGF1 and its mechanisms of action in neurons and muscles. Polyethylene glycol-coupled IGF1 was applied subcutaneously every second day from post-natal Day 14 to post-natal Day 42 and the outcome was assessed by morphology, electromyography, and molecular studies. We found reduced IGF1 serum levels in Nmd(2J) mice 2 weeks after birth, which was normalized by polyethylene glycol-coupled IGF1 treatment. Nmd(2J) mice showed marked neurogenic muscle fibre atrophy in the gastrocnemius muscle and polyethylene glycol-coupled IGF1 treatment resulted in muscle fibre hypertrophy and slowed fibre degeneration along with significantly higher numbers of functionally active axonal sprouts. In the diaphragm with predominant myogenic changes a profound protection from muscle fibre degeneration was observed under treatment. No effects of polyethylene glycol-coupled IGF1 were monitored at the level of motor neuron survival. The beneficial effects of polyethylene glycol-coupled IGF1 corresponded to a marked activation of the IGF1 receptor, resulting in enhanced phosphorylation of Akt (protein kinase B) and the ribosomal protein S6 kinase in

  17. Pharmacokinetics, pharmacodynamics, and efficacy of a small-molecule SMN2 splicing modifier in mouse models of spinal muscular atrophy

    PubMed Central

    Zhao, Xin; Feng, Zhihua; Ling, Karen K. Y.; Mollin, Anna; Sheedy, Josephine; Yeh, Shirley; Petruska, Janet; Narasimhan, Jana; Dakka, Amal; Welch, Ellen M.; Karp, Gary; Chen, Karen S.; Metzger, Friedrich; Ratni, Hasane; Lotti, Francesco; Tisdale, Sarah; Naryshkin, Nikolai A.; Pellizzoni, Livio; Paushkin, Sergey; Ko, Chien-Ping; Weetall, Marla

    2016-01-01

    Spinal muscular atrophy (SMA) is caused by the loss or mutation of both copies of the survival motor neuron 1 (SMN1) gene. The related SMN2 gene is retained, but due to alternative splicing of exon 7, produces insufficient levels of the SMN protein. Here, we systematically characterize the pharmacokinetic and pharmacodynamics properties of the SMN splicing modifier SMN-C1. SMN-C1 is a low-molecular weight compound that promotes the inclusion of exon 7 and increases production of SMN protein in human cells and in two transgenic mouse models of SMA. Furthermore, increases in SMN protein levels in peripheral blood mononuclear cells and skin correlate with those in the central nervous system (CNS), indicating that a change of these levels in blood or skin can be used as a non-invasive surrogate to monitor increases of SMN protein levels in the CNS. Consistent with restored SMN function, SMN-C1 treatment increases the levels of spliceosomal and U7 small-nuclear RNAs and corrects RNA processing defects induced by SMN deficiency in the spinal cord of SMNΔ7 SMA mice. A 100% or greater increase in SMN protein in the CNS of SMNΔ7 SMA mice robustly improves the phenotype. Importantly, a ∼50% increase in SMN leads to long-term survival, but the SMA phenotype is only partially corrected, indicating that certain SMA disease manifestations may respond to treatment at lower doses. Overall, we provide important insights for the translation of pre-clinical data to the clinic and further therapeutic development of this series of molecules for SMA treatment. PMID:26931466

  18. Protective effects of butyrate-based compounds on a mouse model for spinal muscular atrophy.

    PubMed

    Butchbach, Matthew E R; Lumpkin, Casey J; Harris, Ashlee W; Saieva, Luciano; Edwards, Jonathan D; Workman, Eileen; Simard, Louise R; Pellizzoni, Livio; Burghes, Arthur H M

    2016-05-01

    Proximal spinal muscular atrophy (SMA) is a childhood-onset degenerative disease resulting from the selective loss of motor neurons in the spinal cord. SMA is caused by the loss of SMN1 (survival motor neuron 1) but retention of SMN2. The number of copies of SMN2 modifies disease severity in SMA patients as well as in mouse models, making SMN2 a target for therapeutics development. Sodium butyrate (BA) and its analog (4PBA) have been shown to increase SMN2 expression in SMA cultured cells. In this study, we examined the effects of BA, 4PBA as well as two BA prodrugs-glyceryl tributyrate (BA3G) and VX563-on the phenotype of SMNΔ7 SMA mice. Treatment with 4PBA, BA3G and VX563 but not BA beginning at PND04 significantly improved the lifespan and delayed disease end stage, with administration of VX563 also improving the growth rate of these mice. 4PBA and VX563 improved the motor phenotype of SMNΔ7 SMA mice and prevented spinal motor neuron loss. Interestingly, neither 4PBA nor VX563 had an effect on SMN expression in the spinal cords of treated SMNΔ7 SMA mice; however, they inhibited histone deacetylase (HDAC) activity and restored the normal phosphorylation states of Akt and glycogen synthase kinase 3β, both of which are altered by SMN deficiency in vivo. These observations show that BA-based compounds with favorable pharmacokinetics ameliorate SMA pathology possibly by modulating HDAC and Akt signaling.

  19. Myocardial atrophy in children with mitochondrial disease and Duchenne muscular dystrophy

    PubMed Central

    Lee, Tae Ho; Choi, Jae Young; Kwon, Hye Eun; Lee, Young-Mock; Kim, Heung Dong; Kang, Seong-Woong

    2014-01-01

    Purpose Mitochondrial disease (MD) and Duchenne muscular dystrophy (DMD) are often associated with cardiomyopathy, but the myocardial variability has not been isolated to a specific characteristic. We evaluated the left ventricular (LV) mass by echocardiography to identify the general distribution and functional changes of the myocardium in patients with MD or DMD. Methods We retrospectively evaluated the echocardiographic data of 90 children with MD and 42 with DMD. Using two-dimensional echocardiography, including time-motion (M) mode and Doppler measurements, we estimated the LV mass, ratio of early to late mitral filling velocities (E/A), ratio of early mitral filling velocity to early diastolic mitral annular velocity (E/Ea), stroke volume, and cardiac output. A "z score" was generated using the lambda-mu-sigma method to standardize the LV mass with respect to body size. Results The LV mass-for-height z scores were significantly below normal in children with MD (-1.02±1.52, P<0.001) or DMD (-0.82±1.61, P=0.002), as were the LV mass-for-lean body-mass z scores. The body mass index (BMI)-for-age z scores were far below normal and were directly proportional to the LV mass-for-height z scores in both patients with MD (R=0.377, P<0.001) and those with DMD (R=0.330, P=0.033). The LV mass-for-height z score correlated positively with the stroke volume index (R=0.462, P<0.001) and cardiac index (R=0.358, P<0.001). Conclusion LV myocardial atrophy is present in patients with MD and those with DMD and may be closely associated with low BMI. The insufficient LV mass for body size might indicate deterioration of systolic function in these patients. PMID:25045366

  20. A randomized controlled trial of exercise in spinal and bulbar muscular atrophy

    PubMed Central

    Shrader, Joseph A; Kats, Ilona; Kokkinis, Angela; Zampieri, Cris; Levy, Ellen; Joe, Galen O; Woolstenhulme, Joshua G; Drinkard, Bart E; Smith, Michaele R; Ching, Willie; Ghosh, Laboni; Fox, Derrick; Auh, Sungyoung; Schindler, Alice B; Fischbeck, Kenneth H; Grunseich, Christopher

    2015-01-01

    Objective To determine the safety and efficacy of a home-based functional exercise program in spinal and bulbar muscular atrophy (SBMA). Methods Subjects were randomly assigned to participate in 12 weeks of either functional exercises (intervention) or a stretching program (control) at the National Institutes of Health in Bethesda, MD. A total of 54 subjects enrolled, and 50 completed the study with 24 in the functional exercise group and 26 in the stretching control group. The primary outcome measure was the Adult Myopathy Assessment Tool (AMAT) total score, and secondary measures included total activity by accelerometry, muscle strength, balance, timed up and go, sit-to-stand test, health-related quality of life, creatine kinase, and insulin-like growth factor-1. Results Functional exercise was well tolerated but did not lead to significant group differences in the primary outcome measure or any of the secondary measures. The functional exercise did not produce significantly more adverse events than stretching, and was not perceived to be difficult. To determine whether a subset of the subjects may have benefited, we divided them into high and low functioning based on baseline AMAT scores and performed a post hoc subgroup analysis. Low-functioning individuals receiving the intervention increased AMAT functional subscale scores compared to the control group. Interpretation Although these trial results indicate that functional exercise had no significant effect on total AMAT scores or on mobility, strength, balance, and quality of life, post hoc findings indicate that low-functioning men with SBMA may respond better to functional exercises, and this warrants further investigation with appropriate exercise intensity. PMID:26273686

  1. Observational study of spinal muscular atrophy type I and implications for clinical trials

    PubMed Central

    McDermott, Michael P.; Kaufmann, Petra; Darras, Basil T.; Chung, Wendy K.; Sproule, Douglas M.; Kang, Peter B.; Foley, A. Reghan; Yang, Michelle L.; Martens, William B.; Oskoui, Maryam; Glanzman, Allan M.; Flickinger, Jean; Montes, Jacqueline; Dunaway, Sally; O'Hagen, Jessica; Quigley, Janet; Riley, Susan; Benton, Maryjane; Ryan, Patricia A.; Montgomery, Megan; Marra, Jonathan; Gooch, Clifton; De Vivo, Darryl C.

    2014-01-01

    Objectives: Prospective cohort study to characterize the clinical features and course of spinal muscular atrophy type I (SMA-I). Methods: Patients were enrolled at 3 study sites and followed for up to 36 months with serial clinical, motor function, laboratory, and electrophysiologic outcome assessments. Intervention was determined by published standard of care guidelines. Palliative care options were offered. Results: Thirty-four of 54 eligible subjects with SMA-I (63%) enrolled and 50% of these completed at least 12 months of follow-up. The median age at reaching the combined endpoint of death or requiring at least 16 hours/day of ventilation support was 13.5 months (interquartile range 8.1–22.0 months). Requirement for nutritional support preceded that for ventilation support. The distribution of age at reaching the combined endpoint was similar for subjects with SMA-I who had symptom onset before 3 months and after 3 months of age (p = 0.58). Having 2 SMN2 copies was associated with greater morbidity and mortality than having 3 copies. Baseline electrophysiologic measures indicated substantial motor neuron loss. By comparison, subjects with SMA-II who lost sitting ability (n = 10) had higher motor function, motor unit number estimate and compound motor action potential, longer survival, and later age when feeding or ventilation support was required. The mean rate of decline in The Children's Hospital of Philadelphia Infant Test for Neuromuscular Disorders motor function scale was 1.27 points/year (95% confidence interval 0.21–2.33, p = 0.02). Conclusions: Infants with SMA-I can be effectively enrolled and retained in a 12-month natural history study until a majority reach the combined endpoint. These outcome data can be used for clinical trial design. PMID:25080519

  2. Differences in F-Wave Characteristics between Spinobulbar Muscular Atrophy and Amyotrophic Lateral Sclerosis.

    PubMed

    Fang, Jia; Cui, Liying; Liu, Mingsheng; Guan, Yuzhou; Li, Xiaoguang; Li, Dawei; Cui, Bo; Shen, Dongchao; Ding, Qingyun

    2016-01-01

    There is limited data on the differences in F-wave characteristics between spinobulbar muscular atrophy (SBMA) and lower motor neuron dominant (LMND) amyotrophic lateral sclerosis (ALS). We compared the parameters of F-waves recorded bilaterally from the median, ulnar, tibial, and deep peroneal nerves in 32 SBMA patients, 37 patients with LMND ALS, and 30 normal controls. The maximum F-wave amplitudes, frequencies of giant F-waves, and frequencies of patients with giant F-waves in all nerves examined were significantly higher in the SBMA patients than in the ALS patients and the normal controls. The mean F-wave amplitude, maximum F-wave amplitude, frequency of giant F-waves, and frequency of patients with giant F-waves in the median and deep peroneal nerves were comparable between the ALS patients and normal controls. Giant F-waves were detected in multiple nerves and were often symmetrical in the SBMA patients compared with the ALS patients. The number of nerves with giant F-waves seems to be the most robust variable for differentiation of SBMA from ALS, with an area under the curve of 0.908 (95% CI: 0.835-0.982). A cut-off value of the number of nerves with giant F-waves (≥3) for diagnosing SBMA showed high sensitivity and specificity: 85% sensitivity and 81% specificity vs. ALS patients. No significant correlations were found between the pooled frequency of giant F-waves and disease duration in the SBMA (r = 0.162, P = 0.418) or ALS groups (r = 0.107, P = 0.529). Our findings suggested that F-waves might be used to discriminate SBMA from ALS, even at early stages of disease.

  3. Differences in F-Wave Characteristics between Spinobulbar Muscular Atrophy and Amyotrophic Lateral Sclerosis

    PubMed Central

    Fang, Jia; Cui, Liying; Liu, Mingsheng; Guan, Yuzhou; Li, Xiaoguang; Li, Dawei; Cui, Bo; Shen, Dongchao; Ding, Qingyun

    2016-01-01

    There is limited data on the differences in F-wave characteristics between spinobulbar muscular atrophy (SBMA) and lower motor neuron dominant (LMND) amyotrophic lateral sclerosis (ALS). We compared the parameters of F-waves recorded bilaterally from the median, ulnar, tibial, and deep peroneal nerves in 32 SBMA patients, 37 patients with LMND ALS, and 30 normal controls. The maximum F-wave amplitudes, frequencies of giant F-waves, and frequencies of patients with giant F-waves in all nerves examined were significantly higher in the SBMA patients than in the ALS patients and the normal controls. The mean F-wave amplitude, maximum F-wave amplitude, frequency of giant F-waves, and frequency of patients with giant F-waves in the median and deep peroneal nerves were comparable between the ALS patients and normal controls. Giant F-waves were detected in multiple nerves and were often symmetrical in the SBMA patients compared with the ALS patients. The number of nerves with giant F-waves seems to be the most robust variable for differentiation of SBMA from ALS, with an area under the curve of 0.908 (95% CI: 0.835–0.982). A cut-off value of the number of nerves with giant F-waves (≥3) for diagnosing SBMA showed high sensitivity and specificity: 85% sensitivity and 81% specificity vs. ALS patients. No significant correlations were found between the pooled frequency of giant F-waves and disease duration in the SBMA (r = 0.162, P = 0.418) or ALS groups (r = 0.107, P = 0.529). Our findings suggested that F-waves might be used to discriminate SBMA from ALS, even at early stages of disease. PMID:27014057

  4. Synergic prodegradative activity of Bicalutamide and trehalose on the mutant androgen receptor responsible for spinal and bulbar muscular atrophy

    PubMed Central

    Giorgetti, Elisa; Rusmini, Paola; Crippa, Valeria; Cristofani, Riccardo; Boncoraglio, Alessandra; Cicardi, Maria E.; Galbiati, Mariarita; Poletti, Angelo

    2015-01-01

    Spinal and bulbar muscular atrophy (SBMA) is an X-linked motoneuron disease due to a CAG triplet-repeat expansion in the androgen receptor (AR) gene, which is translated into an elongated polyglutamine (polyQ) tract in AR protein (ARpolyQ). ARpolyQ toxicity is activated by the AR ligand testosterone (or dihydrotestosterone), and the polyQ triggers ARpolyQ misfolding and aggregation in spinal cord motoneurons and muscle cells. In motoneurons, testosterone triggers nuclear toxicity by inducing AR nuclear translocation. Thus, (i) prevention of ARpolyQ nuclear localization, combined with (ii) an increased ARpolyQ cytoplasmic clearance, should reduce its detrimental activity. Using the antiandrogen Bicalutamide (Casodex®), which slows down AR activation and nuclear translocation, and the disaccharide trehalose, an autophagy activator, we found that, in motoneurons, the two compounds together reduced ARpolyQ insoluble forms with higher efficiency than that obtained with single treatments. The ARpolyQ clearance was mediated by trehalose-induced autophagy combined with the longer cytoplasmic retention of ARpolyQ bound to Bicalutamide. This allows an increased recognition of misfolded species by the autophagic system prior to their migration into the nucleus. Interestingly, the combinatory use of trehalose and Bicalutamide was also efficient in the removal of insoluble species of AR with a very long polyQ (Q112) tract, which typically aggregates into the cell nuclei. Collectively, these data suggest that the combinatory use of Bicalutamide and trehalose is a novel approach to facilitate ARpolyQ clearance that has to be tested in other cell types target of SBMA (i.e. muscle cells) and in vivo in animal models of SBMA. PMID:25122660

  5. Synergic prodegradative activity of Bicalutamide and trehalose on the mutant androgen receptor responsible for spinal and bulbar muscular atrophy.

    PubMed

    Giorgetti, Elisa; Rusmini, Paola; Crippa, Valeria; Cristofani, Riccardo; Boncoraglio, Alessandra; Cicardi, Maria E; Galbiati, Mariarita; Poletti, Angelo

    2015-01-01

    Spinal and bulbar muscular atrophy (SBMA) is an X-linked motoneuron disease due to a CAG triplet-repeat expansion in the androgen receptor (AR) gene, which is translated into an elongated polyglutamine (polyQ) tract in AR protein (ARpolyQ). ARpolyQ toxicity is activated by the AR ligand testosterone (or dihydrotestosterone), and the polyQ triggers ARpolyQ misfolding and aggregation in spinal cord motoneurons and muscle cells. In motoneurons, testosterone triggers nuclear toxicity by inducing AR nuclear translocation. Thus, (i) prevention of ARpolyQ nuclear localization, combined with (ii) an increased ARpolyQ cytoplasmic clearance, should reduce its detrimental activity. Using the antiandrogen Bicalutamide (Casodex(®)), which slows down AR activation and nuclear translocation, and the disaccharide trehalose, an autophagy activator, we found that, in motoneurons, the two compounds together reduced ARpolyQ insoluble forms with higher efficiency than that obtained with single treatments. The ARpolyQ clearance was mediated by trehalose-induced autophagy combined with the longer cytoplasmic retention of ARpolyQ bound to Bicalutamide. This allows an increased recognition of misfolded species by the autophagic system prior to their migration into the nucleus. Interestingly, the combinatory use of trehalose and Bicalutamide was also efficient in the removal of insoluble species of AR with a very long polyQ (Q112) tract, which typically aggregates into the cell nuclei. Collectively, these data suggest that the combinatory use of Bicalutamide and trehalose is a novel approach to facilitate ARpolyQ clearance that has to be tested in other cell types target of SBMA (i.e. muscle cells) and in vivo in animal models of SBMA.

  6. Defects in Neuromuscular Transmission May Underlie Motor Dysfunction in Spinal and Bulbar Muscular Atrophy

    PubMed Central

    Xu, Youfen; Halievski, Katherine; Henley, Casey; Atchison, William D.; Katsuno, Masahisa; Adachi, Hiroaki; Sobue, Gen; Breedlove, S. Marc

    2016-01-01

    Spinal and bulbar muscular atrophy (SBMA) in men is an androgen-dependent neuromuscular disease caused by expanded CAG repeats in the androgen receptor (AR). Whether muscle or motor neuron dysfunction or both underlies motor impairment in SBMA is unknown. Muscles of SBMA mice show significant contractile dysfunction, implicating them as a likely source of motor dysfunction, but whether disease also impairs neuromuscular transmission is an open question. Thus, we examined synaptic function in three well-studied SBMA mouse models—the AR97Q, knock-in (KI), and myogenic141 models—by recording in vitro miniature and evoked end-plate potentials (MEPPs and EPPs, respectively) intracellularly from adult muscle fibers. We found striking defects in neuromuscular transmission suggesting that toxic AR in SBMA impairs both presynaptic and postsynaptic mechanisms. Notably, SBMA causes neuromuscular synapses to become weak and muscles to become hyperexcitable in all three models. Presynaptic defects included deficits in quantal content, reduced size of the readily releasable pool, and impaired short-term facilitation. Postsynaptic defects included prolonged decay times for both MEPPs and EPPs, marked resistance to μ-conotoxin (a sodium channel blocker), and enhanced membrane excitability. Quantitative PCR revealed robust upregulation of mRNAs encoding neonatal isoforms of the AChR (γ-subunit) and the voltage-gated sodium channel (NaV1.5) in diseased adult muscles of all three models, consistent with the observed slowing of synaptic potentials and resistance to μ-conotoxin. These findings suggest that muscles of SBMA patients regress to an immature state that impairs neuromuscular function. SIGNIFICANCE STATEMENT We have discovered that SBMA is accompanied by marked defects in neuromuscular synaptic transmission involving both presynaptic and postsynaptic mechanisms. For three different mouse models, we find that diseased synapses are weak, having reduced quantal content

  7. SMN1 and SMN2 copy numbers in cell lines derived from patients with spinal muscular atrophy as measured by array digital PCR

    PubMed Central

    Stabley, Deborah L; Harris, Ashlee W; Holbrook, Jennifer; Chubbs, Nicholas J; Lozo, Kevin W; Crawford, Thomas O; Swoboda, Kathryn J; Funanage, Vicky L; Wang, Wenlan; Mackenzie, William; Scavina, Mena; Sol-Church, Katia; Butchbach, Matthew E R

    2015-01-01

    Proximal spinal muscular atrophy (SMA) is an early-onset motor neuron disease characterized by loss of α-motor neurons and associated muscle atrophy. SMA is caused by deletion or other disabling mutation of survival motor neuron 1 (SMN1). In the human genome, a large duplication of the SMN-containing region gives rise to a second copy of this gene (SMN2) that is distinguishable by a single nucleotide change in exon 7. Within the SMA population, there is substantial variation in SMN2 copy number; in general, those individuals with SMA who have a high SMN2 copy number have a milder disease. Because SMN2 functions as a disease modifier, its accurate copy number determination may have clinical relevance. In this study, we describe the development of an assay to assess SMN1 and SMN2 copy numbers in DNA samples using an array-based digital PCR (dPCR) system. This dPCR assay can accurately and reliably measure the number of SMN1 and SMN2 copies in DNA samples. In a cohort of SMA patient-derived cell lines, the assay confirmed a strong inverse correlation between SMN2 copy number and disease severity. Array dPCR is a practical technique to determine, accurately and reliably, SMN1 and SMN2 copy numbers from SMA samples. PMID:26247043

  8. Discovery and Optimization of Small Molecule Splicing Modifiers of Survival Motor Neuron 2 as a Treatment for Spinal Muscular Atrophy.

    PubMed

    Woll, Matthew G; Qi, Hongyan; Turpoff, Anthony; Zhang, Nanjing; Zhang, Xiaoyan; Chen, Guangming; Li, Chunshi; Huang, Song; Yang, Tianle; Moon, Young-Choon; Lee, Chang-Sun; Choi, Soongyu; Almstead, Neil G; Naryshkin, Nikolai A; Dakka, Amal; Narasimhan, Jana; Gabbeta, Vijayalakshmi; Welch, Ellen; Zhao, Xin; Risher, Nicole; Sheedy, Josephine; Weetall, Marla; Karp, Gary M

    2016-07-14

    The underlying cause of spinal muscular atrophy (SMA) is a deficiency of the survival motor neuron (SMN) protein. Starting from hits identified in a high-throughput screening campaign and through structure-activity relationship investigations, we have developed small molecules that potently shift the alternative splicing of the SMN2 exon 7, resulting in increased production of the full-length SMN mRNA and protein. Three novel chemical series, represented by compounds 9, 14, and 20, have been optimized to increase the level of SMN protein by >50% in SMA patient-derived fibroblasts at concentrations of <160 nM. Daily administration of these compounds to severe SMA Δ7 mice results in an increased production of SMN protein in disease-relevant tissues and a significant increase in median survival time in a dose-dependent manner. Our work supports the development of an orally administered small molecule for the treatment of patients with SMA.

  9. [Heart involvement in progressive spinal muscular atrophy. A review of the literature and case histories in childhood].

    PubMed

    Distefano, G; Sciacca, P; Parisi, M G; Parano, E; Smilari, P; Marletta, M; Fiumara, A

    1994-01-01

    There are few cardiological studies in progressive spinal muscular atrophy and mainly concern subjects affected by the juvenile form (Kugelberg-Welander disease). The presence of a cardiomyopathy has been reported in these patients but the cardiac involvement is often secondary to the chronic respiratory insufficiency typical of the disease. We performed a retrospective study in our Institute on 43 patients, age range 3 months to 3 years, 37 of which presented type I (Werdnig-Hoffmann disease) and 6 type II (intermediate form) of the disease. No clinical nor instrumental signs of cardiomyopathy were observed. However, ECG revealed signs of right ventricular overload in 37.3% of the patients, probably provoked by pulmonary hypertension due to respiration anomalies. The authors underline the importance of correct respiratory assistance to prevent onset of cardiological alterations.

  10. Protein arginine methyltransferase 6 enhances polyglutamine-expanded androgen receptor function and toxicity in spinal and bulbar muscular atrophy.

    PubMed

    Scaramuzzino, Chiara; Casci, Ian; Parodi, Sara; Lievens, Patricia M J; Polanco, Maria J; Milioto, Carmelo; Chivet, Mathilde; Monaghan, John; Mishra, Ashutosh; Badders, Nisha; Aggarwal, Tanya; Grunseich, Christopher; Sambataro, Fabio; Basso, Manuela; Fackelmayer, Frank O; Taylor, J Paul; Pandey, Udai Bhan; Pennuto, Maria

    2015-01-01

    Polyglutamine expansion in androgen receptor (AR) is responsible for spinobulbar muscular atrophy (SBMA) that leads to selective loss of lower motor neurons. Using SBMA as a model, we explored the relationship between protein structure/function and neurodegeneration in polyglutamine diseases. We show here that protein arginine methyltransferase 6 (PRMT6) is a specific co-activator of normal and mutant AR and that the interaction of PRMT6 with AR is significantly enhanced in the AR mutant. AR and PRMT6 interaction occurs through the PRMT6 steroid receptor interaction motif, LXXLL, and the AR activating function 2 surface. AR transactivation requires PRMT6 catalytic activity and involves methylation of arginine residues at Akt consensus site motifs, which is mutually exclusive with serine phosphorylation by Akt. The enhanced interaction of PRMT6 and mutant AR leads to neurodegeneration in cell and fly models of SBMA. These findings demonstrate a direct role of arginine methylation in polyglutamine disease pathogenesis.

  11. Gene Regions Responding to Skeletal Muscle Atrophy

    NASA Technical Reports Server (NTRS)

    Booth, Frank W.

    1997-01-01

    Our stated specific aims for this project were: 1) Identify the region(s) of the mouse IIb myosin heavy chain (MHC) promoter necessary for in vivo expression in mouse fast-twitch muscle, and 2) Identify the region(s) of the mouse IIb MHC promoter responsive to immobilization in mouse slow-twitch muscle in vivo. We sought to address these specific aims by introducing various MHC IIb promoter/reporter gene constructs directly into the tibialis anterior and gastrocnemius muscles of living mice. Although the method of somatic gene transfer into skeletal muscle by direct injection has been successfully used in our laboratory to study the regulation of the skeletal alpha actin gene in chicken skeletal muscle, we had many difficulties utilizing this procedure in the mouse. Because of the small size of the mouse soleus and the difficulty in obtaining consistent results, we elected not to study this muscle as first proposed. Rather, our MHC IIb promoter deletion experiments were performed in the gastrocnemius. Further, we decided to use hindlimb unloading via tail suspension to induce an upregulation of the MHC IIb gene, rather than immobilization of the hindlimbs via plaster casts. This change was made because tail suspension more closely mimics spaceflight, and this procedure in our lab results in a smaller loss of overall body mass than the mouse hindlimb immobilization procedure. This suggests that the stress level during tail suspension is less than during immobilization. This research has provided an important beginning point towards understanding the molecular regulation of the MHC lIb gene in response to unweighting of skeletal muscle Future work will focus on the regulation of MHC IIb mRNA stability in response to altered loading of skeletal muscle

  12. Aberrant Autophagic Response in The Muscle of A Knock-in Mouse Model of Spinal and Bulbar Muscular Atrophy

    PubMed Central

    Rusmini, Paola; Polanco, Maria Josefa; Cristofani, Riccardo; Cicardi, Maria Elena; Meroni, Marco; Galbiati, Mariarita; Piccolella, Margherita; Messi, Elio; Giorgetti, Elisa; Lieberman, Andrew P.; Milioto, Carmelo; Rocchi, Anna; Aggarwal, Tanya; Pennuto, Maria; Crippa, Valeria; Poletti, Angelo

    2015-01-01

    Spinal and bulbar muscular atrophy (SBMA) is characterized by loss of motoneurons and sensory neurons, accompanied by atrophy of muscle cells. SBMA is due to an androgen receptor containing a polyglutamine tract (ARpolyQ) that misfolds and aggregates, thereby perturbing the protein quality control (PQC) system. Using SBMA AR113Q mice we analyzed proteotoxic stress-induced alterations of HSPB8-mediated PQC machinery promoting clearance of misfolded proteins by autophagy. In muscle of symptomatic AR113Q male mice, we found expression upregulation of Pax-7, myogenin, E2-ubiquitin ligase UBE2Q1 and acetylcholine receptor (AchR), but not of MyoD, and of two E3-ligases (MuRF-1 and Cullin3). TGFβ1 and PGC-1α were also robustly upregulated. We also found a dramatic perturbation of the autophagic response, with upregulation of most autophagic markers (Beclin-1, ATG10, p62/SQSTM1, LC3) and of the HSPB8-mediated PQC response. Both HSPB8 and its co-chaperone BAG3 were robustly upregulated together with other specific HSPB8 interactors (HSPB2 and HSPB3). Notably, the BAG3:BAG1 ratio increased in muscle suggesting preferential misfolded proteins routing to autophagy rather than to proteasome. Thus, mutant ARpolyQ induces a potent autophagic response in muscle cells. Alteration in HSPB8-based PQC machinery may represent muscle-specific biomarkers useful to assess SBMA progression in mice and patients in response to pharmacological treatments. PMID:26490709

  13. IPLEX Administration Improves Motor Neuron Survival and Ameliorates Motor Functions in a Severe Mouse Model of Spinal Muscular Atrophy

    PubMed Central

    Murdocca, Michela; Malgieri, Arianna; Luchetti, Andrea; Saieva, Luciano; Dobrowolny, Gabriella; de Leonibus, Elvira; Filareto, Antonio; Quitadamo, Maria Chiara; Novelli, Giuseppe; Musarò, Antonio; Sangiuolo, Federica

    2012-01-01

    Spinal muscular atrophy (SMA) is an inherited neurodegenerative disorder and the first genetic cause of death in childhood. SMA is caused by low levels of survival motor neuron (SMN) protein that induce selective loss of α-motor neurons (MNs) in the spinal cord, resulting in progressive muscle atrophy and consequent respiratory failure. To date, no effective treatment is available to counteract the course of the disease. Among the different therapeutic strategies with potential clinical applications, the evaluation of trophic and/or protective agents able to antagonize MNs degeneration represents an attractive opportunity to develop valid therapies. Here we investigated the effects of IPLEX (recombinant human insulinlike growth factor 1 [rhIGF-1] complexed with recombinant human IGF-1 binding protein 3 [rhIGFBP-3]) on a severe mouse model of SMA. Interestingly, molecular and biochemical analyses of IGF-1 carried out in SMA mice before drug administration revealed marked reductions of IGF-1 circulating levels and hepatic mRNA expression. In this study, we found that perinatal administration of IPLEX, even if does not influence survival and body weight of mice, results in reduced degeneration of MNs, increased muscle fiber size and in amelioration of motor functions in SMA mice. Additionally, we show that phenotypic changes observed are not SMN-dependent, since no significant SMN modification was addressed in treated mice. Collectively, our data indicate IPLEX as a good therapeutic candidate to hinder the progression of the neurodegenerative process in SMA. PMID:22669476

  14. Nosology of Juvenile Muscular Atrophy of Distal Upper Extremity: From Monomelic Amyotrophy to Hirayama Disease—Indian Perspective

    PubMed Central

    Hassan, Kaukab Maqbool; Sahni, Hirdesh

    2013-01-01

    Since its original description by Keizo Hirayama in 1959, “juvenile muscular atrophy of the unilateral upper extremity” has been described under many nomenclatures from the east. Hirayama disease (HD), also interchangeably referred to as monomelic amyotrophy, has been more frequently recognised in the west only in the last two decades. HD presents in adolescence and young adulthood with insidious onset unilateral or bilateral asymmetric atrophy of hand and forearm with sparing of brachioradialis giving the characteristic appearance of oblique amyotrophy. Symmetrically bilateral disease has also been recognized. Believed to be a cervical flexion myelopathy, HD differs from motor neuron diseases because of its nonprogressive course and pathologic findings of chronic microcirculatory changes in the lower cervical cord. Electromyography shows features of acute and/or chronic denervation in C7, C8, and T1 myotomes in clinically affected limb and sometimes also in clinically unaffected contralateral limb. Dynamic forward displacement of dura in flexion causes asymmetric flattening of lower cervical cord. While dynamic contrast magnetic resonance imaging is diagnostic, routine study has high predictive value. There is a need to lump all the nomenclatures under the rubric of HD as prognosis in this condition is benign and prompt diagnosis is important to institute early collar therapy. PMID:24063005

  15. Efficacy and biodistribution analysis of intracerebroventricular administration of an optimized scAAV9-SMN1 vector in a mouse model of spinal muscular atrophy

    PubMed Central

    Armbruster, Nicole; Lattanzi, Annalisa; Jeavons, Matthieu; Van Wittenberghe, Laetitia; Gjata, Bernard; Marais, Thibaut; Martin, Samia; Vignaud, Alban; Voit, Thomas; Mavilio, Fulvio; Barkats, Martine; Buj-Bello, Ana

    2016-01-01

    Spinal muscular atrophy (SMA) is an autosomal recessive disease of variable severity caused by mutations in the SMN1 gene. Deficiency of the ubiquitous SMN function results in spinal cord α-motor neuron degeneration and proximal muscle weakness. Gene replacement therapy with recombinant adeno-associated viral (AAV) vectors showed therapeutic efficacy in several animal models of SMA. Here, we report a study aimed at analyzing the efficacy and biodistribution of a serotype-9, self-complementary AAV vector expressing a codon-optimized human SMN1 coding sequence (coSMN1) under the control of the constitutive phosphoglycerate kinase (PGK) promoter in neonatal SMNΔ7 mice, a severe animal model of the disease. We administered the scAAV9-coSMN1 vector in the intracerebroventricular (ICV) space in a dose-escalating mode, and analyzed survival, vector biodistribution and SMN protein expression in the spinal cord and peripheral tissues. All treated mice showed a significant, dose-dependent rescue of lifespan and growth with a median survival of 346 days. Additional administration of vector by an intravenous route (ICV+IV) did not improve survival, and vector biodistribution analysis 90 days postinjection indicated that diffusion from the cerebrospinal fluid to the periphery was sufficient to rescue the SMA phenotype. These results support the preclinical development of SMN1 gene therapy by CSF vector delivery. PMID:27652289

  16. Efficacy and biodistribution analysis of intracerebroventricular administration of an optimized scAAV9-SMN1 vector in a mouse model of spinal muscular atrophy

    PubMed Central

    Armbruster, Nicole; Lattanzi, Annalisa; Jeavons, Matthieu; Van Wittenberghe, Laetitia; Gjata, Bernard; Marais, Thibaut; Martin, Samia; Vignaud, Alban; Voit, Thomas; Mavilio, Fulvio; Barkats, Martine; Buj-Bello, Ana

    2016-01-01

    Spinal muscular atrophy (SMA) is an autosomal recessive disease of variable severity caused by mutations in the SMN1 gene. Deficiency of the ubiquitous SMN function results in spinal cord α-motor neuron degeneration and proximal muscle weakness. Gene replacement therapy with recombinant adeno-associated viral (AAV) vectors showed therapeutic efficacy in several animal models of SMA. Here, we report a study aimed at analyzing the efficacy and biodistribution of a serotype-9, self-complementary AAV vector expressing a codon-optimized human SMN1 coding sequence (coSMN1) under the control of the constitutive phosphoglycerate kinase (PGK) promoter in neonatal SMNΔ7 mice, a severe animal model of the disease. We administered the scAAV9-coSMN1 vector in the intracerebroventricular (ICV) space in a dose-escalating mode, and analyzed survival, vector biodistribution and SMN protein expression in the spinal cord and peripheral tissues. All treated mice showed a significant, dose-dependent rescue of lifespan and growth with a median survival of 346 days. Additional administration of vector by an intravenous route (ICV+IV) did not improve survival, and vector biodistribution analysis 90 days postinjection indicated that diffusion from the cerebrospinal fluid to the periphery was sufficient to rescue the SMA phenotype. These results support the preclinical development of SMN1 gene therapy by CSF vector delivery.

  17. Efficacy and biodistribution analysis of intracerebroventricular administration of an optimized scAAV9-SMN1 vector in a mouse model of spinal muscular atrophy.

    PubMed

    Armbruster, Nicole; Lattanzi, Annalisa; Jeavons, Matthieu; Van Wittenberghe, Laetitia; Gjata, Bernard; Marais, Thibaut; Martin, Samia; Vignaud, Alban; Voit, Thomas; Mavilio, Fulvio; Barkats, Martine; Buj-Bello, Ana

    2016-01-01

    Spinal muscular atrophy (SMA) is an autosomal recessive disease of variable severity caused by mutations in the SMN1 gene. Deficiency of the ubiquitous SMN function results in spinal cord α-motor neuron degeneration and proximal muscle weakness. Gene replacement therapy with recombinant adeno-associated viral (AAV) vectors showed therapeutic efficacy in several animal models of SMA. Here, we report a study aimed at analyzing the efficacy and biodistribution of a serotype-9, self-complementary AAV vector expressing a codon-optimized human SMN1 coding sequence (coSMN1) under the control of the constitutive phosphoglycerate kinase (PGK) promoter in neonatal SMNΔ7 mice, a severe animal model of the disease. We administered the scAAV9-coSMN1 vector in the intracerebroventricular (ICV) space in a dose-escalating mode, and analyzed survival, vector biodistribution and SMN protein expression in the spinal cord and peripheral tissues. All treated mice showed a significant, dose-dependent rescue of lifespan and growth with a median survival of 346 days. Additional administration of vector by an intravenous route (ICV+IV) did not improve survival, and vector biodistribution analysis 90 days postinjection indicated that diffusion from the cerebrospinal fluid to the periphery was sufficient to rescue the SMA phenotype. These results support the preclinical development of SMN1 gene therapy by CSF vector delivery. PMID:27652289

  18. Dexamethasone-induced muscular atrophy is mediated by functional expression of connexin-based hemichannels.

    PubMed

    Cea, Luis A; Balboa, Elisa; Puebla, Carlos; Vargas, Aníbal A; Cisterna, Bruno A; Escamilla, Rosalba; Regueira, Tomás; Sáez, Juan C

    2016-10-01

    Long-term treatment with high glucocorticoid doses induces skeletal muscle atrophy. However, the molecular mechanism of such atrophy remains unclear. We evaluated the possible involvement of connexin-based hemichannels (Cx HCs) in muscle atrophy induced by dexamethasone (DEX), a synthetic glucocorticoid, on control (Cx43(fl/fl)Cx45(fl/fl)) and Cx43/Cx45 expression-deficient (Cx43(fl/fl)Cx45(fl/fl):Myo-Cre) skeletal myofibers. Myofibers of Cx43(fl/fl)Cx45(fl/fl) mice treated with DEX (5h) expressed several proteins that form non-selective membrane channels (Cx39, Cx43, Cx45, Panx1, P2X7 receptor and TRPV2). After 5h DEX treatment in vivo, myofibers of Cx43(fl/fl)Cx45(fl/fl) mice showed Evans blue uptake, which was absent in myofibers of Cx43(fl/fl)Cx45(fl/fl):Myo-Cre mice. Similar results were obtained in vitro using ethidium as an HC permeability probe, and DEX-induced dye uptake in control myofibers was blocked by P2X7 receptor inhibitors. DEX also induced a significant increase in basal intracellular Ca(2+) signal and a reduction in resting membrane potential in Cx43(fl/fl)Cx45(fl/fl) myofibers, changes that were not elicited by myofibers deficient in Cx43/Cx45 expression. Moreover, treatment with DEX induced NFκB activation and increased mRNA levels of TNF-α in control but not in Cx43/Cx45 expression-deficient myofibers. Finally, a prolonged DEX treatment (7days) increased atrogin-1 and Murf-1 and reduced the cross sectional area of Cx43(fl/fl)Cx45(fl/fl) myofibers, but these parameters remained unaffected in Cx43(fl/fl)Cx45(fl/fl):Myo-Cre myofibers. Therefore, DEX-induced expression of Cx43 and Cx45 plays a critical role in early sarcolemma changes that lead to atrophy. Consequently, this side effect of chronic glucocorticoid treatment might be avoided by co-administration with a Cx HC blocker.

  19. Neurocognitive Profiles in Duchenne Muscular Dystrophy and Gene Mutation Site

    PubMed Central

    D’Angelo, Maria Grazia; Lorusso, Maria Luisa; Civati, Federica; Comi, Giacomo Pietro; Magri, Francesca; Del Bo, Roberto; Guglieri, Michela; Molteni, Massimo; Turconi, Anna Carla; Bresolin, Nereo

    2011-01-01

    The presence of nonprogressive cognitive impairment is recognized as a common feature in a substantial proportion of patients with Duchenne muscular dystrophy. To investigate the possible role of mutations along the dystrophin gene affecting different brain dystrophin isoforms and specific cognitive profiles, 42 school-age children affected with Duchenne muscular dystrophy, subdivided according to sites of mutations along the dystrophin gene, underwent a battery of tests tapping a wide range of intellectual, linguistic, and neuropsychologic functions. Full-scale intelligence quotient was approximately 1 S.D. below the population average in the whole group of dystrophic children. Patients with Duchenne muscular dystrophy and mutations located in the distal portion of the dystrophin gene (involving the 140-kDa brain protein isoform, called Dp140) were generally more severely affected and expressed different patterns of strengths and impairments, compared with patients with Duchenne muscular dystrophy and mutations located in the proximal portion of the dystrophin gene (not involving Dp140). Patients with Duchenne muscular dystrophy and distal mutations demonstrated specific impairments in visuospatial functions and visual memory (which seemed intact in proximally mutated patients) and greater impairment in syntactic processing. PMID:22000308

  20. Non-neural phenotype of spinal and bulbar muscular atrophy: results from a large cohort of Italian patients

    PubMed Central

    Querin, Giorgia; Bertolin, Cinzia; Da Re, Elisa; Volpe, Marco; Zara, Gabriella; Pegoraro, Elena; Caretta, Nicola; Foresta, Carlo; Silvano, Maria; Corrado, Domenico; Iafrate, Massimo; Angelini, Lorenzo; Sartori, Leonardo; Pennuto, Maria; Gaiani, Alessandra; Bello, Luca; Semplicini, Claudio; Pareyson, Davide; Silani, Vincenzo; Ermani, Mario; Ferlin, Alberto; Sorarù, Gianni

    2016-01-01

    Objective To carry out a deep characterisation of the main androgen-responsive tissues involved in spinal and bulbar muscular atrophy (SBMA). Methods 73 consecutive Italian patients underwent a full clinical protocol including biochemical and hormonal analyses, genitourinary examination, bone metabolism and densitometry, cardiological evaluation and muscle pathology. Results Creatine kinase levels were slightly to markedly elevated in almost all cases (68 of the 73; 94%). 30 (41%) patients had fasting glucose above the reference limit, and many patients had total cholesterol (40; 54.7%), low-density lipoproteins cholesterol (29; 39.7%) and triglyceride (35; 48%) levels above the recommended values. Although testosterone, luteinising hormone and follicle-stimulating hormone values were generally normal, in one-third of cases we calculated an increased Androgen Sensitivity Index reflecting the presence of androgen resistance in these patients. According to the International Prostate Symptom Score (IPSS), 7/70 (10%) patients reported severe lower urinal tract symptoms (IPSS score >19), and 21/73 (30%) patients were moderately symptomatic (IPSS score from 8 to 19). In addition, 3 patients were carriers of an indwelling bladder catheter. Videourodynamic evaluation indicated that 4 of the 7 patients reporting severe urinary symptoms had an overt prostate-unrelated bladder outlet obstruction. Dual-energy X-ray absorptiometry scan data were consistent with low bone mass in 25/61 (41%) patients. Low bone mass was more frequent at the femoral than at the lumbar level. Skeletal muscle biopsy was carried out in 20 patients and myogenic changes in addition to the neurogenic atrophy were mostly observed. Conclusions Our study provides evidence of a wide non-neural clinical phenotype in SBMA, suggesting the need for comprehensive multidisciplinary protocols for these patients. PMID:26503015

  1. A Perturbed MicroRNA Expression Pattern Characterizes Embryonic Neural Stem Cells Derived from a Severe Mouse Model of Spinal Muscular Atrophy (SMA).

    PubMed

    Luchetti, Andrea; Ciafrè, Silvia Anna; Murdocca, Michela; Malgieri, Arianna; Masotti, Andrea; Sanchez, Massimo; Farace, Maria Giulia; Novelli, Giuseppe; Sangiuolo, Federica

    2015-01-01

    Spinal muscular atrophy (SMA) is an inherited neuromuscular disorder and the leading genetic cause of death in infants. Despite the disease-causing gene, survival motor neuron (SMN1), encodes a ubiquitous protein, SMN1 deficiency preferentially affects spinal motor neurons (MNs), leaving the basis of this selective cell damage still unexplained. As neural stem cells (NSCs) are multipotent self-renewing cells that can differentiate into neurons, they represent an in vitro model for elucidating the pathogenetic mechanism of neurodegenerative diseases such as SMA. Here we characterize for the first time neural stem cells (NSCs) derived from embryonic spinal cords of a severe SMNΔ7 SMA mouse model. SMNΔ7 NSCs behave as their wild type (WT) counterparts, when we consider neurosphere formation ability and the expression levels of specific regional and self-renewal markers. However, they show a perturbed cell cycle phase distribution and an increased proliferation rate compared to wild type cells. Moreover, SMNΔ7 NSCs are characterized by the differential expression of a limited number of miRNAs, among which miR-335-5p and miR-100-5p, reduced in SMNΔ7 NSCs compared to WT cells. We suggest that such miRNAs may be related to the proliferation differences characterizing SMNΔ7 NSCs, and may be potentially involved in the molecular mechanisms of SMA. PMID:26258776

  2. Altered Levels of MicroRNA-9, -206, and -132 in Spinal Muscular Atrophy and Their Response to Antisense Oligonucleotide Therapy

    PubMed Central

    Catapano, Francesco; Zaharieva, Irina; Scoto, Mariacristina; Marrosu, Elena; Morgan, Jennifer; Muntoni, Francesco; Zhou, Haiyan

    2016-01-01

    The identification of noninvasive biomarkers to monitor the disease progression in spinal muscular atrophy (SMA) is becoming increasingly important. MicroRNAs (miRNAs) regulate gene expression and are implicated in the pathogenesis of neuromuscular diseases, including motor neuron degeneration. In this study, we selectively characterized the expression of miR-9, miR-206, and miR-132 in spinal cord, skeletal muscle, and serum from SMA transgenic mice, and in serum from SMA patients. A systematic analysis of miRNA expression was conducted in SMA mice with different disease severities (severe type I-like and mild type III-like) at different disease stages (pre-, mid-, and late-symptomatic stages), and in morpholino antisense oligonucleotide-treated mice. There was differential expression of all three miRNAs in spinal cord, skeletal muscle and serum samples in SMA mice. Serum miRNAs were altered prior to the changes in spinal cord and skeletal muscle at the presymptomatic stage. The altered miR-132 levels in spinal cord, muscle, and serum transiently reversed to normal level after a single-dose morpholino antisense oligomer PMO25 treatment in SMA mice. We also confirmed a significant alteration of miR-9 and miR-132 level in serum samples from SMA patients. Our study indicates the potential of developing miRNAs as noninvasive biomarkers in SMA. PMID:27377135

  3. A Perturbed MicroRNA Expression Pattern Characterizes Embryonic Neural Stem Cells Derived from a Severe Mouse Model of Spinal Muscular Atrophy (SMA).

    PubMed

    Luchetti, Andrea; Ciafrè, Silvia Anna; Murdocca, Michela; Malgieri, Arianna; Masotti, Andrea; Sanchez, Massimo; Farace, Maria Giulia; Novelli, Giuseppe; Sangiuolo, Federica

    2015-08-06

    Spinal muscular atrophy (SMA) is an inherited neuromuscular disorder and the leading genetic cause of death in infants. Despite the disease-causing gene, survival motor neuron (SMN1), encodes a ubiquitous protein, SMN1 deficiency preferentially affects spinal motor neurons (MNs), leaving the basis of this selective cell damage still unexplained. As neural stem cells (NSCs) are multipotent self-renewing cells that can differentiate into neurons, they represent an in vitro model for elucidating the pathogenetic mechanism of neurodegenerative diseases such as SMA. Here we characterize for the first time neural stem cells (NSCs) derived from embryonic spinal cords of a severe SMNΔ7 SMA mouse model. SMNΔ7 NSCs behave as their wild type (WT) counterparts, when we consider neurosphere formation ability and the expression levels of specific regional and self-renewal markers. However, they show a perturbed cell cycle phase distribution and an increased proliferation rate compared to wild type cells. Moreover, SMNΔ7 NSCs are characterized by the differential expression of a limited number of miRNAs, among which miR-335-5p and miR-100-5p, reduced in SMNΔ7 NSCs compared to WT cells. We suggest that such miRNAs may be related to the proliferation differences characterizing SMNΔ7 NSCs, and may be potentially involved in the molecular mechanisms of SMA.

  4. A Perturbed MicroRNA Expression Pattern Characterizes Embryonic Neural Stem Cells Derived from a Severe Mouse Model of Spinal Muscular Atrophy (SMA)

    PubMed Central

    Luchetti, Andrea; Ciafrè, Silvia Anna; Murdocca, Michela; Malgieri, Arianna; Masotti, Andrea; Sanchez, Massimo; Farace, Maria Giulia; Novelli, Giuseppe; Sangiuolo, Federica

    2015-01-01

    Spinal muscular atrophy (SMA) is an inherited neuromuscular disorder and the leading genetic cause of death in infants. Despite the disease-causing gene, survival motor neuron (SMN1), encodes a ubiquitous protein, SMN1 deficiency preferentially affects spinal motor neurons (MNs), leaving the basis of this selective cell damage still unexplained. As neural stem cells (NSCs) are multipotent self-renewing cells that can differentiate into neurons, they represent an in vitro model for elucidating the pathogenetic mechanism of neurodegenerative diseases such as SMA. Here we characterize for the first time neural stem cells (NSCs) derived from embryonic spinal cords of a severe SMNΔ7 SMA mouse model. SMNΔ7 NSCs behave as their wild type (WT) counterparts, when we consider neurosphere formation ability and the expression levels of specific regional and self-renewal markers. However, they show a perturbed cell cycle phase distribution and an increased proliferation rate compared to wild type cells. Moreover, SMNΔ7 NSCs are characterized by the differential expression of a limited number of miRNAs, among which miR-335-5p and miR-100-5p, reduced in SMNΔ7 NSCs compared to WT cells. We suggest that such miRNAs may be related to the proliferation differences characterizing SMNΔ7 NSCs, and may be potentially involved in the molecular mechanisms of SMA. PMID:26258776

  5. p62/SQSTM1 differentially removes the toxic mutant androgen receptor via autophagy and inclusion formation in a spinal and bulbar muscular atrophy mouse model.

    PubMed

    Doi, Hideki; Adachi, Hiroaki; Katsuno, Masahisa; Minamiyama, Makoto; Matsumoto, Shinjiro; Kondo, Naohide; Miyazaki, Yu; Iida, Madoka; Tohnai, Genki; Qiang, Qiang; Tanaka, Fumiaki; Yanagawa, Toru; Warabi, Eiji; Ishii, Tetsuro; Sobue, Gen

    2013-05-01

    Polyglutamine (polyQ) diseases are inherited neurodegenerative disorders that are caused by the expansion of trinucleotide CAG repeats in the causative genes. Spinal and bulbar muscular atrophy (SBMA) is an inherited motor neuron disease that is caused by the expansion of a polyQ tract within the androgen receptor (AR). p62 is a ubiquitin- and light-chain 3-binding protein that is known to regulate the degradation of targeted proteins via autophagy and inclusion formation. In this study, we examined the effects of p62 depletion and overexpression on cultured cells and in a transgenic mouse model that overexpressed the mutant AR. Here, we demonstrate that depletion of p62 significantly exacerbated motor phenotypes and the neuropathological outcome, whereas overexpression of p62 protected against mutant AR toxicity in SBMA mice. Depletion of p62 significantly increased the levels of monomeric mutant AR and mutant AR protein complexes in an SBMA mouse model via the impairment of autophagic degradation. In addition, p62 overexpression improved SBMA mouse phenotypes by inducing cytoprotective inclusion formation. Our results demonstrate that p62 provides two different therapeutic targets in SBMA pathogenesis: (1) autophagy-dependent degradation and (2) benevolent inclusion formation of the mutant AR.

  6. Severe impairment of male reproductive organ development in a low SMN expressing mouse model of spinal muscular atrophy

    PubMed Central

    Ottesen, Eric W.; Howell, Matthew D.; Singh, Natalia N.; Seo, Joonbae; Whitley, Elizabeth M.; Singh, Ravindra N.

    2016-01-01

    Spinal muscular atrophy (SMA) is caused by low levels of survival motor neuron (SMN), a multifunctional protein essential for higher eukaryotes. While SMN is one of the most scrutinized proteins associated with neurodegeneration, its gender-specific role in vertebrates remains unknown. We utilized a mild SMA model (C/C model) to examine the impact of low SMN on growth and development of mammalian sex organs. We show impaired testis development, degenerated seminiferous tubules, reduced sperm count and low fertility in C/C males, but no overt sex organ phenotype in C/C females. Underscoring an increased requirement for SMN expression, wild type testis showed extremely high levels of SMN protein compared to other tissues. Our results revealed severe perturbations in pathways critical to C/C male reproductive organ development and function, including steroid biosynthesis, apoptosis, and spermatogenesis. Consistent with enhanced apoptosis in seminiferous tubules of C/C testes, we recorded a drastic increase in cells with DNA fragmentation. SMN was expressed at high levels in adult C/C testis due to an adult-specific splicing switch, but could not compensate for low levels during early testicular development. Our findings uncover novel hallmarks of SMA disease progression and link SMN to general male infertility. PMID:26830971

  7. A common spinal muscular atrophy deletion mutation is present on a single founder haplotype in the US Hutterites

    PubMed Central

    Chong, Jessica X; Oktay, A Afşin; Dai, Zunyan; Swoboda, Kathryn J; Prior, Thomas W; Ober, Carole

    2011-01-01

    Spinal muscular atrophy (SMA) is an autosomal recessive (AR) neuromuscular disease that is one of the most common lethal genetic disorders in children, with carrier frequencies as high as ∼1 in 35 in US Whites. As part of our genetic studies in the Hutterites from South Dakota, we identified a large 22 Mb run of homozygosity, spanning the SMA locus in an affected child, of which 10 Mb was also homozygous in three affected Hutterites from Montana, supporting a single founder origin for the mutation. We developed a haplotype-based method for identifying carriers of the SMN1 deletion that leveraged existing genome-wide SNP genotype data for ∼1400 Hutterites. In combination with two direct PCR-based assays, we identified 176 carriers of the SMN1 deletion, one asymptomatic homozygous adult and three carriers of a de novo deletion. This corresponds to a carrier frequency of one in eight (12.5%) in the South Dakota Hutterites, representing the highest carrier frequency reported to date for SMA and for an AR disease in the Hutterite population. Lastly, we show that 26 SNPs can be used to predict SMA carrier status in the Hutterites, with 99.86% specificity and 99.71% sensitivity. PMID:21610747

  8. DNA Damage Response and DNA Repair in Skeletal Myocytes From a Mouse Model of Spinal Muscular Atrophy.

    PubMed

    Fayzullina, Saniya; Martin, Lee J

    2016-09-01

    We studied DNA damage response (DDR) and DNA repair capacities of skeletal muscle cells from a mouse model of infantile spinal muscular atrophy (SMA) caused by loss-of-function mutation of survival of motor neuron (Smn). Primary myocyte cultures derived from skeletal muscle satellite cells of neonatal control and mutant SMN mice had similar myotube length, myonuclei, satellite cell marker Pax7 and differentiated myotube marker myosin, and acetylcholine receptor clustering. DNA damage was induced in differentiated skeletal myotubes by γ-irradiation, etoposide, and methyl methanesulfonate (MMS). Unexposed control and SMA myotubes had stable genome integrity. After γ-irradiation and etoposide, myotubes repaired most DNA damage equally. Control and mutant myotubes exposed to MMS exhibited equivalent DNA damage without repair. Control and SMA myotube nuclei contained DDR proteins phospho-p53 and phospho-H2AX foci that, with DNA damage, dispersed and then re-formed similarly after recovery. We conclude that mouse primary satellite cell-derived myotubes effectively respond to and repair DNA strand-breaks, while DNA alkylation repair is underrepresented. Morphological differentiation, genome stability, genome sensor, and DNA strand-break repair potential are preserved in mouse SMA myocytes; thus, reduced SMN does not interfere with myocyte differentiation, genome integrity, and DNA repair, and faulty DNA repair is unlikely pathogenic in SMA. PMID:27452406

  9. Motoneuron development influences dorsal root ganglia survival and Schwann cell development in a vertebrate model of spinal muscular atrophy.

    PubMed

    Hao, Le Thi; Duy, Phan Q; Jontes, James D; Beattie, Christine E

    2015-01-15

    Low levels of the survival motor neuron protein (SMN) cause the disease spinal muscular atrophy. A primary characteristic of this disease is motoneuron dysfunction and paralysis. Understanding why motoneurons are affected by low levels of SMN will lend insight into this disease and to motoneuron biology in general. Motoneurons in zebrafish smn mutants develop abnormally; however, it is unclear where Smn is needed for motoneuron development since it is a ubiquitously expressed protein. We have addressed this issue by expressing human SMN in motoneurons in zebrafish maternal-zygotic (mz) smn mutants. First, we demonstrate that SMN is present in axons, but only during the period of robust motor axon outgrowth. We also conclusively demonstrate that SMN acts cell autonomously in motoneurons for proper motoneuron development. This includes the formation of both axonal and dendritic branches. Analysis of the peripheral nervous system revealed that Schwann cells and dorsal root ganglia (DRG) neurons developed abnormally in mz-smn mutants. Schwann cells did not wrap axons tightly and had expanded nodes of Ranvier. The majority of DRG neurons had abnormally short peripheral axons and later many of them failed to divide and died. Expressing SMN just in motoneurons rescued both of these cell types showing that their failure to develop was secondary to the developmental defects in motoneurons. Driving SMN just in motoneurons did not increase survival of the animal, suggesting that SMN is needed for motoneuron development and motor circuitry, but that SMN in other cells types factors into survival.

  10. Spinal Muscular Atrophy Patient iPSC-Derived Motor Neurons Have Reduced Expression of Proteins Important in Neuronal Development

    PubMed Central

    Fuller, Heidi R.; Mandefro, Berhan; Shirran, Sally L.; Gross, Andrew R.; Kaus, Anjoscha S.; Botting, Catherine H.; Morris, Glenn E.; Sareen, Dhruv

    2016-01-01

    Spinal muscular atrophy (SMA) is an inherited neuromuscular disease primarily characterized by degeneration of spinal motor neurons, and caused by reduced levels of the SMN protein. Previous studies to understand the proteomic consequences of reduced SMN have mostly utilized patient fibroblasts and animal models. We have derived human motor neurons from type I SMA and healthy controls by creating their induced pluripotent stem cells (iPSCs). Quantitative mass spectrometry of these cells revealed increased expression of 63 proteins in control motor neurons compared to respective fibroblasts, whereas 30 proteins were increased in SMA motor neurons vs. their fibroblasts. Notably, UBA1 was significantly decreased in SMA motor neurons, supporting evidence for ubiquitin pathway defects. Subcellular distribution of UBA1 was predominantly cytoplasmic in SMA motor neurons in contrast to nuclear in control motor neurons; suggestive of neurodevelopmental abnormalities. Many of the proteins that were decreased in SMA motor neurons, including beta III-tubulin and UCHL1, were associated with neurodevelopment and differentiation. These neuron-specific consequences of SMN depletion were not evident in fibroblasts, highlighting the importance of iPSC technology. The proteomic profiles identified here provide a useful resource to explore the molecular consequences of reduced SMN in motor neurons, and for the identification of novel biomarker and therapeutic targets for SMA. PMID:26793058

  11. Sensory neurons do not induce motor neuron loss in a human stem cell model of spinal muscular atrophy.

    PubMed

    Schwab, Andrew J; Ebert, Allison D

    2014-01-01

    Spinal muscular atrophy (SMA) is an autosomal recessive disorder leading to paralysis and early death due to reduced SMN protein. It is unclear why there is such a profound motor neuron loss, but recent evidence from fly and mouse studies indicate that cells comprising the whole sensory-motor circuit may contribute to motor neuron dysfunction and loss. Here, we used induced pluripotent stem cells derived from SMA patients to test whether sensory neurons directly contribute to motor neuron loss. We generated sensory neurons from SMA induced pluripotent stem cells and found no difference in neuron generation or survival, although there was a reduced calcium response to depolarizing stimuli. Using co-culture of SMA induced pluripotent stem cell derived sensory neurons with control induced pluripotent stem cell derived motor neurons, we found no significant reduction in motor neuron number or glutamate transporter boutons on motor neuron cell bodies or neurites. We conclude that SMA sensory neurons do not overtly contribute to motor neuron loss in this human stem cell system.

  12. Analysis of the conformation of the androgen receptor in spinal bulbar muscular atrophy by atomic force microscopy.

    PubMed

    Jochum, Tobias; Cato, Andrew C B

    2014-01-01

    Spinal bulbar muscular atrophy (SBMA) (also known as Kennedy's disease) is a motor degenerative disease caused by an amplification of the polyglutamine stretch at the N-terminus of the human androgen receptor (AR). Amplifications larger than 40 glutamine residues are thought to lead to the disease. A characteristic feature of this disease is a ligand-dependent misfolding and aggregation of the mutant receptor that lead to the death of motor neurons. Initially, large cytoplasmic and nuclear aggregates reaching sizes of 6 μm were thought to be the pathogenic agents. Later studies have suggested that oligomeric species with sizes of less than 1 μm that occur prior to the formation of the larger aggregates are the toxic agents. However, there have been disagreements regarding the shape of these oligomers, as most studies have been carried out with peptide fragments of the androgen receptor containing different lengths of polyglutamine stretch. We have isolated the wild-type AR with a polyglutamine stretch of 22 (ARQ22) and a mutant receptor with a stretch of 65 (ARQ65) using a baculovirus system and have analyzed the oligomeric structures formed by these receptors with atomic force microscopy. This method has allowed us to determine the conformations of the full-length wild-type and mutant AR and revealed the conformation of the mutant AR that causes SBMA.

  13. Histopathological Defects in Intestine in Severe Spinal Muscular Atrophy Mice Are Improved by Systemic Antisense Oligonucleotide Treatment

    PubMed Central

    Sintusek, Palittiya; Catapano, Francesco; Angkathunkayul, Napat; Marrosu, Elena; Parson, Simon H.; Morgan, Jennifer E.; Muntoni, Francesco; Zhou, Haiyan

    2016-01-01

    Gastrointestinal (GI) defects, including gastroesophageal reflux, constipation and delayed gastric emptying, are common in patients with spinal muscular atrophy (SMA). Similar GI dysmotility has been identified in mouse models with survival of motor neuron (SMN) protein deficiency. We previously described vascular defects in skeletal muscle and spinal cord of SMA mice and we hypothesized that similar defects could be involved in the GI pathology observed in these mice. We therefore investigated the gross anatomical structure, enteric vasculature and neurons in the small intestine in a severe mouse model of SMA. We also assessed the therapeutic response of GI histopathology to systemic administration of morpholino antisense oligonucleotide (AON) designed to increase SMN protein expression. Significant anatomical and histopathological abnormalities, with striking reduction of vascular density, overabundance of enteric neurons and increased macrophage infiltration, were detected in the small intestine in SMA mice. After systemic AON treatment in neonatal mice, all the abnormalities observed were significantly restored to near-normal levels. We conclude that the observed GI histopathological phenotypes and functional defects observed in these SMA mice are strongly linked to SMN deficiency which can be rescued by systemic administration of AON. This study on the histopathological changes in the gastrointestinal system in severe SMA mice provides further indication of the complex role that SMN plays in multiple tissues and suggests that at least in SMA mice restoration of SMN production in peripheral tissues is essential for optimal outcome. PMID:27163330

  14. Modifier Genes and their effect on Duchenne Muscular Dystrophy

    PubMed Central

    Vo, Andy H.; McNally, Elizabeth M.

    2015-01-01

    Purpose of Review Recently, genetic pathways that modify the clinical severity of Duchenne Muscular Dystrophy have been identified. The pathways uncovered as modifiers are useful to predict prognosis and also elucidate molecular signatures that can be manipulated therapeutically. Recent Findings Modifiers have been identified using combinations of transcriptome and genome profiling. Osteopontin, encoded by the SPP1 gene, was found using gene expression profiling. LTBP4, encoding latent transforming growth factor β binding protein 4 was initially discovered using a genomewide screen in mice and then validated in cohorts of Duchenne Muscular Dystrophy patients. These two pathways converge in that they both regulate TGFβ. A third modifier, Anxa6 that specifies annexin A6, is a calcium binding protein has been identified using mouse models, and regulates the injury pathway and sarcolemmal resealing. Summary Genetic modifiers can serve as biomarkers for outcomes in Duchenne Muscular Dystrophy. Modifiers can alter strength and ambulation in muscular dystrophy, and these same features can be used as endpoints used in clinical trials. Moreover, because genetic modifiers can influence outcomes, these genetic markers should be considered when stratifying results in muscular dystrophy. PMID:26263473

  15. Mutations in Subunits of the Activating Signal Cointegrator 1 Complex Are Associated with Prenatal Spinal Muscular Atrophy and Congenital Bone Fractures.

    PubMed

    Knierim, Ellen; Hirata, Hiromi; Wolf, Nicole I; Morales-Gonzalez, Susanne; Schottmann, Gudrun; Tanaka, Yu; Rudnik-Schöneborn, Sabine; Orgeur, Mickael; Zerres, Klaus; Vogt, Stefanie; van Riesen, Anne; Gill, Esther; Seifert, Franziska; Zwirner, Angelika; Kirschner, Janbernd; Goebel, Hans Hilmar; Hübner, Christoph; Stricker, Sigmar; Meierhofer, David; Stenzel, Werner; Schuelke, Markus

    2016-03-01

    Transcriptional signal cointegrators associate with transcription factors or nuclear receptors and coregulate tissue-specific gene transcription. We report on recessive loss-of-function mutations in two genes (TRIP4 and ASCC1) that encode subunits of the nuclear activating signal cointegrator 1 (ASC-1) complex. We used autozygosity mapping and whole-exome sequencing to search for pathogenic mutations in four families. Affected individuals presented with prenatal-onset spinal muscular atrophy (SMA), multiple congenital contractures (arthrogryposis multiplex congenita), respiratory distress, and congenital bone fractures. We identified homozygous and compound-heterozygous nonsense and frameshift TRIP4 and ASCC1 mutations that led to a truncation or the entire absence of the respective proteins and cosegregated with the disease phenotype. Trip4 and Ascc1 have identical expression patterns in 17.5-day-old mouse embryos with high expression levels in the spinal cord, brain, paraspinal ganglia, thyroid, and submandibular glands. Antisense morpholino-mediated knockdown of either trip4 or ascc1 in zebrafish disrupted the highly patterned and coordinated process of α-motoneuron outgrowth and formation of myotomes and neuromuscular junctions and led to a swimming defect in the larvae. Immunoprecipitation of the ASC-1 complex consistently copurified cysteine and glycine rich protein 1 (CSRP1), a transcriptional cofactor, which is known to be involved in spinal cord regeneration upon injury in adult zebrafish. ASCC1 mutant fibroblasts downregulated genes associated with neurogenesis, neuronal migration, and pathfinding (SERPINF1, DAB1, SEMA3D, SEMA3A), as well as with bone development (TNFRSF11B, RASSF2, STC1). Our findings indicate that the dysfunction of a transcriptional coactivator complex can result in a clinical syndrome affecting the neuromuscular system. PMID:26924529

  16. Mutations in Subunits of the Activating Signal Cointegrator 1 Complex Are Associated with Prenatal Spinal Muscular Atrophy and Congenital Bone Fractures.

    PubMed

    Knierim, Ellen; Hirata, Hiromi; Wolf, Nicole I; Morales-Gonzalez, Susanne; Schottmann, Gudrun; Tanaka, Yu; Rudnik-Schöneborn, Sabine; Orgeur, Mickael; Zerres, Klaus; Vogt, Stefanie; van Riesen, Anne; Gill, Esther; Seifert, Franziska; Zwirner, Angelika; Kirschner, Janbernd; Goebel, Hans Hilmar; Hübner, Christoph; Stricker, Sigmar; Meierhofer, David; Stenzel, Werner; Schuelke, Markus

    2016-03-01

    Transcriptional signal cointegrators associate with transcription factors or nuclear receptors and coregulate tissue-specific gene transcription. We report on recessive loss-of-function mutations in two genes (TRIP4 and ASCC1) that encode subunits of the nuclear activating signal cointegrator 1 (ASC-1) complex. We used autozygosity mapping and whole-exome sequencing to search for pathogenic mutations in four families. Affected individuals presented with prenatal-onset spinal muscular atrophy (SMA), multiple congenital contractures (arthrogryposis multiplex congenita), respiratory distress, and congenital bone fractures. We identified homozygous and compound-heterozygous nonsense and frameshift TRIP4 and ASCC1 mutations that led to a truncation or the entire absence of the respective proteins and cosegregated with the disease phenotype. Trip4 and Ascc1 have identical expression patterns in 17.5-day-old mouse embryos with high expression levels in the spinal cord, brain, paraspinal ganglia, thyroid, and submandibular glands. Antisense morpholino-mediated knockdown of either trip4 or ascc1 in zebrafish disrupted the highly patterned and coordinated process of α-motoneuron outgrowth and formation of myotomes and neuromuscular junctions and led to a swimming defect in the larvae. Immunoprecipitation of the ASC-1 complex consistently copurified cysteine and glycine rich protein 1 (CSRP1), a transcriptional cofactor, which is known to be involved in spinal cord regeneration upon injury in adult zebrafish. ASCC1 mutant fibroblasts downregulated genes associated with neurogenesis, neuronal migration, and pathfinding (SERPINF1, DAB1, SEMA3D, SEMA3A), as well as with bone development (TNFRSF11B, RASSF2, STC1). Our findings indicate that the dysfunction of a transcriptional coactivator complex can result in a clinical syndrome affecting the neuromuscular system.

  17. Mutations in Subunits of the Activating Signal Cointegrator 1 Complex Are Associated with Prenatal Spinal Muscular Atrophy and Congenital Bone Fractures

    PubMed Central

    Knierim, Ellen; Hirata, Hiromi; Wolf, Nicole I.; Morales-Gonzalez, Susanne; Schottmann, Gudrun; Tanaka, Yu; Rudnik-Schöneborn, Sabine; Orgeur, Mickael; Zerres, Klaus; Vogt, Stefanie; van Riesen, Anne; Gill, Esther; Seifert, Franziska; Zwirner, Angelika; Kirschner, Janbernd; Goebel, Hans Hilmar; Hübner, Christoph; Stricker, Sigmar; Meierhofer, David; Stenzel, Werner; Schuelke, Markus

    2016-01-01

    Transcriptional signal cointegrators associate with transcription factors or nuclear receptors and coregulate tissue-specific gene transcription. We report on recessive loss-of-function mutations in two genes (TRIP4 and ASCC1) that encode subunits of the nuclear activating signal cointegrator 1 (ASC-1) complex. We used autozygosity mapping and whole-exome sequencing to search for pathogenic mutations in four families. Affected individuals presented with prenatal-onset spinal muscular atrophy (SMA), multiple congenital contractures (arthrogryposis multiplex congenita), respiratory distress, and congenital bone fractures. We identified homozygous and compound-heterozygous nonsense and frameshift TRIP4 and ASCC1 mutations that led to a truncation or the entire absence of the respective proteins and cosegregated with the disease phenotype. Trip4 and Ascc1 have identical expression patterns in 17.5-day-old mouse embryos with high expression levels in the spinal cord, brain, paraspinal ganglia, thyroid, and submandibular glands. Antisense morpholino-mediated knockdown of either trip4 or ascc1 in zebrafish disrupted the highly patterned and coordinated process of α-motoneuron outgrowth and formation of myotomes and neuromuscular junctions and led to a swimming defect in the larvae. Immunoprecipitation of the ASC-1 complex consistently copurified cysteine and glycine rich protein 1 (CSRP1), a transcriptional cofactor, which is known to be involved in spinal cord regeneration upon injury in adult zebrafish. ASCC1 mutant fibroblasts downregulated genes associated with neurogenesis, neuronal migration, and pathfinding (SERPINF1, DAB1, SEMA3D, SEMA3A), as well as with bone development (TNFRSF11B, RASSF2, STC1). Our findings indicate that the dysfunction of a transcriptional coactivator complex can result in a clinical syndrome affecting the neuromuscular system. PMID:26924529

  18. Results from a phase 1 study of nusinersen (ISIS-SMNRx) in children with spinal muscular atrophy

    PubMed Central

    Swoboda, Kathryn J.; Darras, Basil T.; Iannaccone, Susan T.; Montes, Jacqueline; De Vivo, Darryl C.; Norris, Daniel A.; Bennett, C. Frank; Bishop, Kathie M.

    2016-01-01

    Objective: To examine safety, tolerability, pharmacokinetics, and preliminary clinical efficacy of intrathecal nusinersen (previously ISIS-SMNRx), an antisense oligonucleotide designed to alter splicing of SMN2 mRNA, in patients with childhood spinal muscular atrophy (SMA). Methods: Nusinersen was delivered by intrathecal injection to medically stable patients with type 2 and type 3 SMA aged 2–14 years in an open-label phase 1 study and its long-term extension. Four ascending single-dose levels (1, 3, 6, and 9 mg) were examined in cohorts of 6–10 participants. Participants were monitored for safety and tolerability, and CSF and plasma pharmacokinetics were measured. Exploratory efficacy endpoints included the Hammersmith Functional Motor Scale Expanded (HFMSE) and Pediatric Quality of Life Inventory. Results: A total of 28 participants enrolled in the study (n = 6 in first 3 dose cohorts; n = 10 in the 9-mg cohort). Intrathecal nusinersen was well-tolerated with no safety/tolerability concerns identified. Plasma and CSF drug levels were dose-dependent, consistent with preclinical data. Extended pharmacokinetics indicated a prolonged CSF drug half-life of 4–6 months after initial clearance. A significant increase in HFMSE scores was observed at the 9-mg dose at 3 months postdose (3.1 points; p = 0.016), which was further increased 9–14 months postdose (5.8 points; p = 0.008) during the extension study. Conclusions: Results from this study support continued development of nusinersen for treatment of SMA. Classification of evidence: This study provides Class IV evidence that in children with SMA, intrathecal nusinersen is not associated with safety or tolerability concerns. PMID:26865511

  19. Non-aggregating tau phosphorylation by cyclin-dependent kinase 5 contributes to motor neuron degeneration in spinal muscular atrophy.

    PubMed

    Miller, Nimrod; Feng, Zhihua; Edens, Brittany M; Yang, Ben; Shi, Han; Sze, Christie C; Hong, Benjamin Taige; Su, Susan C; Cantu, Jorge A; Topczewski, Jacek; Crawford, Thomas O; Ko, Chien-Ping; Sumner, Charlotte J; Ma, Long; Ma, Yong-Chao

    2015-04-15

    Mechanisms underlying motor neuron degeneration in spinal muscular atrophy (SMA), the leading inherited cause of infant mortality, remain largely unknown. Many studies have established the importance of hyperphosphorylation of the microtubule-associated protein tau in various neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. However, tau phosphorylation in SMA pathogenesis has yet to be investigated. Here we show that tau phosphorylation on serine 202 (S202) and threonine 205 (T205) is increased significantly in SMA motor neurons using two SMA mouse models and human SMA patient spinal cord samples. Interestingly, phosphorylated tau does not form aggregates in motor neurons or neuromuscular junctions (NMJs), even at late stages of SMA disease, distinguishing it from other tauopathies. Hyperphosphorylation of tau on S202 and T205 is mediated by cyclin-dependent kinase 5 (Cdk5) in SMA disease condition, because tau phosphorylation at these sites is significantly reduced in Cdk5 knock-out mice; genetic knock-out of Cdk5 activating subunit p35 in an SMA mouse model also leads to reduced tau phosphorylation on S202 and T205 in the SMA;p35(-/-) compound mutant mice. In addition, expression of the phosphorylation-deficient tauS202A,T205A mutant alleviates motor neuron defects in a zebrafish SMA model in vivo and mouse motor neuron degeneration in culture, whereas expression of phosphorylation-mimetic tauS202E,T205E promotes motor neuron defects. More importantly, genetic knock-out of tau in SMA mice rescues synapse stripping on motor neurons, NMJ denervation, and motor neuron degeneration in vivo. Altogether, our findings suggest a novel mechanism for SMA pathogenesis in which hyperphosphorylation of non-aggregating tau by Cdk5 contributes to motor neuron degeneration.

  20. Non-Aggregating Tau Phosphorylation by Cyclin-Dependent Kinase 5 Contributes to Motor Neuron Degeneration in Spinal Muscular Atrophy

    PubMed Central

    Miller, Nimrod; Feng, Zhihua; Edens, Brittany M.; Yang, Ben; Shi, Han; Sze, Christie C.; Hong, Benjamin Taige; Su, Susan C.; Cantu, Jorge A.; Topczewski, Jacek; Crawford, Thomas O.; Ko, Chien-Ping; Sumner, Charlotte J.; Ma, Long

    2015-01-01

    Mechanisms underlying motor neuron degeneration in spinal muscular atrophy (SMA), the leading inherited cause of infant mortality, remain largely unknown. Many studies have established the importance of hyperphosphorylation of the microtubule-associated protein tau in various neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. However, tau phosphorylation in SMA pathogenesis has yet to be investigated. Here we show that tau phosphorylation on serine 202 (S202) and threonine 205 (T205) is increased significantly in SMA motor neurons using two SMA mouse models and human SMA patient spinal cord samples. Interestingly, phosphorylated tau does not form aggregates in motor neurons or neuromuscular junctions (NMJs), even at late stages of SMA disease, distinguishing it from other tauopathies. Hyperphosphorylation of tau on S202 and T205 is mediated by cyclin-dependent kinase 5 (Cdk5) in SMA disease condition, because tau phosphorylation at these sites is significantly reduced in Cdk5 knock-out mice; genetic knock-out of Cdk5 activating subunit p35 in an SMA mouse model also leads to reduced tau phosphorylation on S202 and T205 in the SMA;p35−/− compound mutant mice. In addition, expression of the phosphorylation-deficient tauS202A,T205A mutant alleviates motor neuron defects in a zebrafish SMA model in vivo and mouse motor neuron degeneration in culture, whereas expression of phosphorylation-mimetic tauS202E,T205E promotes motor neuron defects. More importantly, genetic knock-out of tau in SMA mice rescues synapse stripping on motor neurons, NMJ denervation, and motor neuron degeneration in vivo. Altogether, our findings suggest a novel mechanism for SMA pathogenesis in which hyperphosphorylation of non-aggregating tau by Cdk5 contributes to motor neuron degeneration. PMID:25878277

  1. Gene Therapy for Muscular Dystrophies: Progress and Challenges

    PubMed Central

    Oh, Donghoon

    2010-01-01

    Muscular dystrophies are groups of inherited progressive diseases of the muscle caused by mutations of diverse genes related to normal muscle function. Although there is no current effective treatment for these devastating diseases, various molecular strategies have been developed to restore the expressions of the associated defective proteins. In preclinical animal models, both viral and nonviral vectors have been shown to deliver recombinant versions of defective genes. Antisense oligonucleotides have been shown to modify the splicing mechanism of mesenger ribonucleic acid to produce an internally deleted but partially functional dystrophin in an experimental model of Duchenne muscular dystrophy. In addition, chemicals can induce readthrough of the premature stop codon in nonsense mutations of the dystrophin gene. On the basis of these preclinical data, several experimental clinical trials are underway that aim to demonstrate efficacy in treating these devastating diseases. PMID:20944811

  2. Derivation of human embryonic stem cell from spinal muscular atrophy patient.

    PubMed

    Xie, Pingyuan; Zhou, Hao; Zhou, Xiaoying; Zhao, Xiaomeng; Du, Juan; Lu, Guangxiu; Lin, Ge; Ouyang, Qi

    2016-03-01

    We established a human embryonic stem cell (hESC) line chHES-427 from the abnormal embryo carrying homozygous deletion of exon 7 of survival motor neuron gene (SMN). This cell line maintained a normal karyotype 46, XX during long-term culture. Further characteristic analysis suggested that the cells expressed the pluripotency-related markers and had the capacity to differentiate into the derivatives from the three germ layers in vitro. PMID:27345972

  3. The Power of Human Protective Modifiers: PLS3 and CORO1C Unravel Impaired Endocytosis in Spinal Muscular Atrophy and Rescue SMA Phenotype.

    PubMed

    Hosseinibarkooie, Seyyedmohsen; Peters, Miriam; Torres-Benito, Laura; Rastetter, Raphael H; Hupperich, Kristina; Hoffmann, Andrea; Mendoza-Ferreira, Natalia; Kaczmarek, Anna; Janzen, Eva; Milbradt, Janine; Lamkemeyer, Tobias; Rigo, Frank; Bennett, C Frank; Guschlbauer, Christoph; Büschges, Ansgar; Hammerschmidt, Matthias; Riessland, Markus; Kye, Min Jeong; Clemen, Christoph S; Wirth, Brunhilde

    2016-09-01

    Homozygous loss of SMN1 causes spinal muscular atrophy (SMA), the most common and devastating childhood genetic motor-neuron disease. The copy gene SMN2 produces only ∼10% functional SMN protein, insufficient to counteract development of SMA. In contrast, the human genetic modifier plastin 3 (PLS3), an actin-binding and -bundling protein, fully protects against SMA in SMN1-deleted individuals carrying 3-4 SMN2 copies. Here, we demonstrate that the combinatorial effect of suboptimal SMN antisense oligonucleotide treatment and PLS3 overexpression-a situation resembling the human condition in asymptomatic SMN1-deleted individuals-rescues survival (from 14 to >250 days) and motoric abilities in a severe SMA mouse model. Because PLS3 knockout in yeast impairs endocytosis, we hypothesized that disturbed endocytosis might be a key cellular mechanism underlying impaired neurotransmission and neuromuscular junction maintenance in SMA. Indeed, SMN deficit dramatically reduced endocytosis, which was restored to normal levels by PLS3 overexpression. Upon low-frequency electro-stimulation, endocytotic FM1-43 (SynaptoGreen) uptake in the presynaptic terminal of neuromuscular junctions was restored to control levels in SMA-PLS3 mice. Moreover, proteomics and biochemical analysis revealed CORO1C, another F-actin binding protein, whose direct binding to PLS3 is dependent on calcium. Similar to PLS3 overexpression, CORO1C overexpression restored fluid-phase endocytosis in SMN-knockdown cells by elevating F-actin amounts and rescued the axonal truncation and branching phenotype in Smn-depleted zebrafish. Our findings emphasize the power of genetic modifiers to unravel the cellular pathomechanisms underlying SMA and the power of combinatorial therapy based on splice correction of SMN2 and endocytosis improvement to efficiently treat SMA. PMID:27499521

  4. Synthesis and biological evaluation of novel 2,4-diaminoquinazoline derivatives as SMN2 promoter activators for the potential treatment of spinal muscular atrophy.

    PubMed

    Thurmond, John; Butchbach, Matthew E R; Palomo, Marty; Pease, Brian; Rao, Munagala; Bedell, Louis; Keyvan, Monica; Pai, Grace; Mishra, Rama; Haraldsson, Magnus; Andresson, Thorkell; Bragason, Gisli; Thosteinsdottir, Margret; Bjornsson, Jon Mar; Coovert, Daniel D; Burghes, Arthur H M; Gurney, Mark E; Singh, Jasbir

    2008-02-14

    Proximal spinal muscular atrophy (SMA) is an autosomal recessive disorder characterized by death of motor neurons in the spinal cord that is caused by deletion and/or mutation of the survival motor neuron gene ( SMN1). Adjacent to SMN1 are a variable number of copies of the SMN2 gene. The two genes essentially differ by a single nucleotide, which causes the majority of the RNA transcripts from SMN2 to lack exon 7. Although both SMN1 and SMN2 encode the same Smn protein amino acid sequence, the loss of SMN1 and incorrect splicing of SMN2 have the consequence that Smn protein levels are insufficient for the survival of motor neurons. The therapeutic goal of our medicinal chemistry effort was to identify small-molecule activators of the SMN2 promoter that, by up-regulating gene transcription, would produce greater quantities of full-length Smn protein. Our initial medicinal chemistry effort explored a series of C5 substituted benzyl ether based 2,4-diaminoquinazoline derivatives that were found to be potent activators of the SMN2 promoter; however, inhibition of DHFR was shown to be an off-target activity that was linked to ATP depletion. We used a structure-guided approach to overcome DHFR inhibition while retaining SMN2 promoter activation. A lead compound 11a was identified as having high potency (EC50 = 4 nM) and 2.3-fold induction of the SMN2 promoter. Compound 11a possessed desirable pharmaceutical properties, including excellent brain exposure and long brain half-life following oral dosing to mice. The piperidine compound 11a up-regulated expression of the mouse SMN gene in NSC-34 cells, a mouse motor neuron hybrid cell line. In type 1 SMA patient fibroblasts, compound 11a induced Smn in a dose-dependent manner when analyzed by immunoblotting and increased the number of intranuclear particles called gems. The compound restored gems numbers in type I SMA patient fibroblasts to levels near unaffected genetic carriers of SMA.

  5. Moving ahead in language: observations on a report of precocious language development in 3-4 year old children with spinal muscular atrophy type II.

    PubMed

    Sieratzki, Jechil S; Woll, Bencie

    2005-01-01

    Benony and Benony in a recent issue of this Journal have presented new data on the precocity of language acquisition in children with type II spinal muscular atrophy (SMA), at age 36-47 months. They refer to our interim report of advanced early language development in these motor-impaired children, which covers the age period 18-35 months. Here, we provide more details of our findings and discuss them in relation to their report and our theory of the role of the procedural system in language learning.

  6. Spinal Muscular Atrophy

    MedlinePlus

    ... with symptoms and prevent complications. They may include machines to help with breathing, nutritional support, physical therapy, and medicines. NIH: National Institute of Neurological Disorders and Stroke

  7. Spinal Muscular Atrophy

    MedlinePlus

    ... diseases that progressively destroy lower motor neurons—nerve cells in the brain stem and spinal cord that control essential voluntary muscle activity such as speaking, walking, breathing, and swallowing. ...

  8. Spinal muscular atrophy

    MedlinePlus

    ... type II have less severe symptoms during early infancy, but they become weaker with time. SMA type ... MM, De Vivo DC, eds. Neuromuscular Disorders of Infancy, Childhood, and Adolescence . 2nd ed. Philadelphia, PA: Elsevier; ...

  9. Spinal Muscular Atrophy (SMA)

    MedlinePlus

    ... kids, and I also enjoy such hobbies as computer technology and music com- position (including the publication ... treating SMA and moving toward a cure. Medical, computer and assistive technologies enable even very young children ...

  10. Upper limb evaluation and one-year follow up of non-ambulant patients with spinal muscular atrophy: an observational multicenter trial.

    PubMed

    Seferian, Andreea Mihaela; Moraux, Amélie; Canal, Aurélie; Decostre, Valérie; Diebate, Oumar; Le Moing, Anne Gaëlle; Gidaro, Teresa; Deconinck, Nicolas; Van Parys, Frauke; Vereecke, Wendy; Wittevrongel, Sylvia; Annoussamy, Mélanie; Mayer, Michèle; Maincent, Kim; Cuisset, Jean-Marie; Tiffreau, Vincent; Denis, Severine; Jousten, Virginie; Quijano-Roy, Susana; Voit, Thomas; Hogrel, Jean-Yves; Servais, Laurent

    2015-01-01

    Assessment of the upper limb strength in non-ambulant neuromuscular patients remains challenging. Although potential outcome measures have been reported, longitudinal data demonstrating sensitivity to clinical evolution in spinal muscular atrophy patients are critically lacking. Our study recruited 23 non-ambulant patients, 16 patients (males/females = 6/10; median age 15.4 years with a range from 10.7 to 31.1 years) with spinal muscular atrophy type II and 7 patients (males/females = 2/5; median age 19.9 years with a range from 8.3 to 29.9 years) with type III. The Brooke functional score was on median 3 with a range from 2 to 6. The average total vital capacity was 46%, and seven patients required non-invasive ventilation at night. Patients were assessed at baseline, 6 months, and 1 year using the Motor Function Measure and innovative devices MyoGrip, MyoPinch, and MoviPlate, which assess handgrip strength, key pinch strength, and hand/finger extension-flexion function, respectively. The study demonstrated the feasibility and reliability of these measures for all patients, and sensitivity to negative changes after the age of 14 years. The younger patients showed an increase of the distal force in the follow-up period. The distal force measurements and function were correlated to different functional scales. These data represent an important step in the process of validating these devices as potential outcome measures for future clinical trials.

  11. Proteasome-mediated proteolysis of the polyglutamine-expanded androgen receptor is a late event in spinal and bulbar muscular atrophy (SBMA) pathogenesis.

    PubMed

    Heine, Erin M; Berger, Tamar R; Pluciennik, Anna; Orr, Christopher R; Zboray, Lori; Merry, Diane E

    2015-05-15

    Proteolysis of polyglutamine-expanded proteins is thought to be a required step in the pathogenesis of several neurodegenerative diseases. The accepted view for many polyglutamine proteins is that proteolysis of the mutant protein produces a "toxic fragment" that induces neuronal dysfunction and death in a soluble form; toxicity of the fragment is buffered by its incorporation into amyloid-like inclusions. In contrast to this view, we show that, in the polyglutamine disease spinal and bulbar muscular atrophy, proteolysis of the mutant androgen receptor (AR) is a late event. Immunocytochemical and biochemical analyses revealed that the mutant AR aggregates as a full-length protein, becoming proteolyzed to a smaller fragment through a process requiring the proteasome after it is incorporated into intranuclear inclusions. Moreover, the toxicity-predicting conformational antibody 3B5H10 bound to soluble full-length AR species but not to fragment-containing nuclear inclusions. These data suggest that the AR is toxic as a full-length protein, challenging the notion of polyglutamine protein fragment-associated toxicity by redefining the role of AR proteolysis in spinal and bulbar muscular atrophy pathogenesis.

  12. [Translation and validation of the Egen Klassifikation scale for the Spanish population: functional assessment for non-ambulatory individuals with Duchenne's muscular dystrophy and spinal muscular atrophy].

    PubMed

    Fagoaga, Joaquín; Girabent-Farrés, Montserrat; Bagur-Calafat, Caritat; Febrer, Anna; Steffensen, Birgit F

    2013-06-01

    Introduccion. La escala Egen Klassifikation (EK) es un cuestionario que valora la capacidad funcional de personas con distrofia muscular de Duchenne y atrofia muscular espinal no ambulantes y que estan en silla de ruedas. Objetivo. Traducir y validar la EK para la poblacion espanola, como instrumento de medicion de la capacidad funcional en dichos pacientes. Pacientes y metodos. Se realiza, en primer lugar, una traduccion-retrotraduccion de la EK en la poblacion espanola y, posteriormente, se practica el estudio de fiabilidad de la version traducida al espanol de dicha escala. Se llevan a cabo tres mediciones a 30 pacientes con edades comprendidas entre 4 y 67 anos. Dos de estas mediciones se realizan por el mismo observador, y la tercera, por un segundo observador, para evaluar la concordancia intra e interobservador. Resultados. Los valores obtenidos referidos a la puntuacion total de los items de la escala, suma EK, reflejan un indice de fiabilidad del 0,995. Tambien muestran una fiabilidad superior a 0,86 en cada uno de los items, tanto en las observaciones intra como interobservador. Conclusiones. La version espanola de la EK es un instrumento valido y fiable para la poblacion espanola, como herramienta de medicion de la capacidad funcional en pacientes con distrofia muscular de Duchenne y atrofia muscular espinal no ambulantes y que estan en silla de ruedas.

  13. Duchenne Muscular Dystrophy Gene Therapy in the Canine Model

    PubMed Central

    2015-01-01

    Abstract Duchenne muscular dystrophy (DMD) is an X-linked lethal muscle disease caused by dystrophin deficiency. Gene therapy has significantly improved the outcome of dystrophin-deficient mice. Yet, clinical translation has not resulted in the expected benefits in human patients. This translational gap is largely because of the insufficient modeling of DMD in mice. Specifically, mice lacking dystrophin show minimum dystrophic symptoms, and they do not respond to the gene therapy vector in the same way as human patients do. Further, the size of a mouse is hundredfolds smaller than a boy, making it impossible to scale-up gene therapy in a mouse model. None of these limitations exist in the canine DMD (cDMD) model. For this reason, cDMD dogs have been considered a highly valuable platform to test experimental DMD gene therapy. Over the last three decades, a variety of gene therapy approaches have been evaluated in cDMD dogs using a number of nonviral and viral vectors. These studies have provided critical insight for the development of an effective gene therapy protocol in human patients. This review discusses the history, current status, and future directions of the DMD gene therapy in the canine model. PMID:25710459

  14. [Evolution of functional capacity, assessed with the Egen Klassifikation scale, in the Spanish population with spinal muscular atrophy or Duchenne muscular dystrophy. A three year longitudinal study].

    PubMed

    Fagoaga, J; Girabent-Farres, M; Bagur-Calafat, C; Steffensen, B F

    2015-10-16

    Introduccion. La atrofia muscular espinal (AME) y la distrofia muscular de Duchenne (DMD) son dos enfermedades neuromusculares que evolucionan con perdida progresiva de la fuerza muscular y, en consecuencia, perdida de la capacidad funcional. La valoracion con escalas de medicion permite conocer mejor y cuantificar esta involucion, asi como tomar decisiones terapeuticas para anticiparse a los problemas y mejorar la calidad de vida de las personas afectas de estas patologias. Objetivo. Estudiar los cambios de la capacidad funcional de un grupo de pacientes con AME y DMD en un periodo de tres años. Pacientes y metodos. Diecinueve personas de la poblacion española afectas de AME o DMD, a las que se valoro con la escala Egen Klassifikation en dos ocasiones, en un periodo de tres años. Resultados. Los resultados obtenidos reflejan una disminucion de la capacidad funcional de estas personas durante este periodo de tiempo, con una diferencia significativa en la suma total de la escala (p = 0,003). Todos los items de la escala tuvieron valoraciones inferiores despues de tres años, y se llego a la significacion estadistica en la valoracion de la capacidad de mover las manos y de toser. Conclusion. La capacidad funcional de los pacientes con AME y DMD disminuye de forma significativa en tres años.

  15. Preservation of VGLUT1 synapses on ventral calbindin-immunoreactive interneurons and normal locomotor function in a mouse model of spinal muscular atrophy

    PubMed Central

    Thirumalai, Vatsala; Behrend, Rachel M.; Birineni, Swetha; Liu, Wenfang; Blivis, Dvir

    2013-01-01

    Dysfunction in sensorimotor synapses is one of the earliest pathological changes observed in a mouse model [spinal muscular atrophy (SMA)Δ7] of spinal muscular atrophy. Here, we examined the density of proprioceptive and cholinergic synapses on calbindin-immunoreactive interneurons ventral to the lateral motor column. This population includes inhibitory Renshaw interneurons that are known to receive synaptic input from muscle spindle afferents and from motoneurons. At postnatal day (P)13, near the end stage of the disease, the somatic area of calbindin+ neurons in the L1/L2 and L5/L6 segments was reduced in SMAΔ7 mice compared with controls. In addition, the number and density of terminals expressing the glutamate vesicular transporter (VGLUT1) and the vesicular acetylcholine transporter (VAChT) were increased on calbindin+ cells in the L1-L2 but not in the L5-L6 segments of SMAΔ7 mice. In addition, the isolated spinal cord of SMA mice was able to generate locomotor-like activity at P4-P6 in the presence of a drug cocktail or in response to dorsal root stimulation. These results argue against a generalized loss of proprioceptive input to spinal circuits in SMA and suggest that the loss of proprioceptive synapses on motoneurons may be secondary to motoneuron pathology. The increased number of VGLUT1+ and VAChT+ synapses on calbindin+ neurons in the L1/L2 segments may be the result of homeostatic mechanisms. Finally, we have shown that abnormal locomotor network function is unlikely to account for the motor deficits observed in SMA mice at P4–6. PMID:23136344

  16. Upper Limb Evaluation and One-Year Follow Up of Non-Ambulant Patients with Spinal Muscular Atrophy: An Observational Multicenter Trial

    PubMed Central

    Canal, Aurélie; Decostre, Valérie; Diebate, Oumar; Le Moing, Anne Gaëlle; Gidaro, Teresa; Deconinck, Nicolas; Van Parys, Frauke; Vereecke, Wendy; Wittevrongel, Sylvia; Annoussamy, Mélanie; Mayer, Michèle; Maincent, Kim; Cuisset, Jean-Marie; Tiffreau, Vincent; Denis, Severine; Jousten, Virginie; Quijano-Roy, Susana; Voit, Thomas; Hogrel, Jean-Yves; Servais, Laurent

    2015-01-01

    Assessment of the upper limb strength in non-ambulant neuromuscular patients remains challenging. Although potential outcome measures have been reported, longitudinal data demonstrating sensitivity to clinical evolution in spinal muscular atrophy patients are critically lacking. Our study recruited 23 non-ambulant patients, 16 patients (males/females = 6/10; median age 15.4 years with a range from 10.7 to 31.1 years) with spinal muscular atrophy type II and 7 patients (males/females = 2/5; median age 19.9 years with a range from 8.3 to 29.9 years) with type III. The Brooke functional score was on median 3 with a range from 2 to 6. The average total vital capacity was 46%, and seven patients required non-invasive ventilation at night. Patients were assessed at baseline, 6 months, and 1 year using the Motor Function Measure and innovative devices MyoGrip, MyoPinch, and MoviPlate, which assess handgrip strength, key pinch strength, and hand/finger extension-flexion function, respectively. The study demonstrated the feasibility and reliability of these measures for all patients, and sensitivity to negative changes after the age of 14 years. The younger patients showed an increase of the distal force in the follow-up period. The distal force measurements and function were correlated to different functional scales. These data represent an important step in the process of validating these devices as potential outcome measures for future clinical trials. Trial Registration ClinicalTrials.gov NCT00993161 PMID:25861036

  17. Effective Classification and Gene Expression Profiling for the Facioscapulohumeral Muscular Dystrophy

    PubMed Central

    González-Navarro, Félix F.; Belanche-Muñoz, Lluís A.; Silva-Colón, Karen A.

    2013-01-01

    The Facioscapulohumeral Muscular Dystrophy (FSHD) is an autosomal dominant neuromuscular disorder whose incidence is estimated in about one in 400,000 to one in 20,000. No effective therapeutic strategies are known to halt progression or reverse muscle weakness and atrophy. It is known that the FSHD is caused by modifications located within a D4ZA repeat array in the chromosome 4q, while recent advances have linked these modifications to the DUX4 gene. Unfortunately, the complete mechanisms responsible for the molecular pathogenesis and progressive muscle weakness still remain unknown. Although there are many studies addressing cancer databases from a machine learning perspective, there is no such precedent in the analysis of the FSHD. This study aims to fill this gap by analyzing two specific FSHD databases. A feature selection algorithm is used as the main engine to select genes promoting the highest possible classification capacity. The combination of feature selection and classification aims at obtaining simple models (in terms of very low numbers of genes) capable of good generalization, that may be associated with the disease. We show that the reported method is highly efficient in finding genes to discern between healthy cases (not affected by the FSHD) and FSHD cases, allowing the discovery of very parsimonious models that yield negligible repeated cross-validation error. These models in turn give rise to very simple decision procedures in the form of a decision tree. Current biological evidence regarding these genes shows that they are linked to skeletal muscle processes concerning specific human conditions. PMID:24349187

  18. The molecular responses of skeletal muscle satellite cells to continuous expression of IGF-1: implications for the rescue of induced muscular atrophy in aged rats

    NASA Technical Reports Server (NTRS)

    Chakravarthy, M. V.; Booth, F. W.; Spangenburg, E. E.

    2001-01-01

    Approximately 50% of humans older than 85 years have physical frailty due to weak skeletal muscles. This indicates a need for determining mechanisms to combat this problem. A critical cellular factor for postnatal muscle growth is a population of myogenic precursor cells called satellite cells. Given the complex process of sarcopenia, it has been postulated that, at some point in this process, a limited satellite cell proliferation potential could become rate-limiting to the regrowth of old muscles. It is conceivable that if satellite cell proliferative capacity can be maintained or enhanced with advanced age, sarcopenia could potentially be delayed or prevented. Therefore, the purposes of this paper are to describe whether IGF-I can prevent muscular atrophy induced by repeated cycles of hindlimb immobilization, increase the in vitro proliferation in satellite cells from these muscles and, if so, the molecular mechanisms by which IGF-I mediates this increased proliferation. Our results provide evidence that IGF-I can enhance aged muscle regrowth possibly through increased satellite cell proliferation. The results also suggest that IGF-I enhances satellite cell proliferation by decreasing the cell cycle inhibitor, p27Kip1, through the PI3'-K/Akt pathway. These data provide molecular evidence for IGF-I's rescue effect upon aging-associated skeletal muscle atrophy.

  19. D5S351 and D5S1414 located at the spinal muscular atrophy critical region represent novel informative markers in the Iranian population

    PubMed Central

    Sedghi, Maryam; Vallian, Sadeq

    2015-01-01

    Spinal muscular atrophy (SMA) is a degenerative neuromuscular disease associated with progressive symmetric weakness and atrophy of the limb muscles. In view of the involvement of numerous point mutations and deletions associated with the disease, the application of polymorphic markers flanking the SMA critical region could be valuable in molecular diagnosis of the disease. In the present study, D5S351 and D5S1414 polymorphic markers located at the SMA critical region in the Iranian populations were characterized. Genotyping of the markers indicated the presence of six and nine different alleles for D5S351 and D5S1414, respectively. Haplotype frequency estimation in 25 trios families and 75 unrelated individuals indicated the presence of six informative haplotypes with frequency higher than 0.05 in the studied population. Furthermore, the D′ coefficient and the χ2 value for D5S351 and D5S1414 markers revealed the presence of linkage disequilibrium between the two markers in the Iranians. These data suggested that D5S351 and D5S1414 could be suggested as informative markers for linkage analysis and molecular diagnosis of SMA in the Iranian population. PMID:26693404

  20. Uniparental disomy as a cause of spinal muscular atrophy and progressive myoclonic epilepsy: phenotypic homogeneity due to the homozygous c.125C>T mutation in ASAH1.

    PubMed

    Giráldez, Beatriz G; Guerrero-López, Rosa; Ortega-Moreno, Laura; Verdú, Alfonso; Carrascosa-Romero, M Carmen; García-Campos, Óscar; García-Muñozguren, Susana; Pardal-Fernández, José Manuel; Serratosa, José M

    2015-03-01

    Spinal muscular atrophy and progressive myoclonic epilepsy (SMAPME, OMIM#159950) is a rare autosomal recessive disorder characterized by the combination of progressive myoclonic epilepsy and muscular weakness due to lower motor neuron disease. Mutations in ASAH1, previously associated only to Farber disease, have been recently described in seven patients with SMAPME. A homozygous c.125C>T mutation was initially found in six patients with a clinical homogeneous phenotype. A heterozygous compound mutation found in an additional patient has broadened the clinical and genetic spectrum of clinical SMAPME. We report a new case of a 13-year-old girl with SMAPME with the homozygous ASAH1 c.125C>T mutation, unique in that it is due to paternal uniparental disomy. She experienced muscle weakness from the age of three due to lower motor neuron involvement that lead to severe handicap and onset in late childhood of a progressive myoclonic epilepsy. This clinical picture fully overlaps with that of previously reported patients with this mutation and supports our view that the clinical phenotype associated with the homozygous c.125C>T mutation constitutes a clinically homogenous and recognizable disease. PMID:25578555

  1. Exclusion mapping of the hereditary dentatorubropallidoluysian atrophy gene from the Huntington's disease locus.

    PubMed

    Kondo, I; Ohta, H; Yazaki, M; Ikeda, J E; Gusella, J F; Kanazawa, I

    1990-02-01

    Hereditary dentatorubropallidoluysian atrophy (DRPLA) is an autosomal dominant neurodegenerative disorder. Clinical and genetic findings in hereditary DRPLA are very similar to those of Huntington's disease (HD). However, it can be differentiated from HD by the pathological findings of dentatorubral and pallidoluysian atrophies and by a lack of prominent atrophy of the striatum at necropsy. The hereditary DRPLA gene has not been localised and the possibility that the two disease loci are allelic has been suggested. We have searched for linkage between the locus for hereditary DRPLA and D4S10 using the G8 probe, which is a genetic marker linked to HD. In four families, there were negative scores at all recombination fractions and the lod score was -2.215 at recombination fraction theta = 0.15. These data indicate that the locus for hereditary DRPLA is not closely linked to D4S10 and that hereditary DRPLA is a distinct disease from HD.

  2. Selective vulnerability of motor neurons and dissociation of pre- and post-synaptic pathology at the neuromuscular junction in mouse models of spinal muscular atrophy.

    PubMed

    Murray, Lyndsay M; Comley, Laura H; Thomson, Derek; Parkinson, Nick; Talbot, Kevin; Gillingwater, Thomas H

    2008-04-01

    Proximal spinal muscular atrophy (SMA) is a common autosomal recessive childhood form of motor neuron disease. Previous studies have highlighted nerve- and muscle-specific events in SMA, including atrophy of muscle fibres and post-synaptic motor endplates, loss of lower motor neuron cell bodies and denervation of neuromuscular junctions caused by loss of pre-synaptic inputs. Here we have undertaken a detailed morphological investigation of neuromuscular synaptic pathology in the Smn-/-;SMN2 and Smn-/-;SMN2;Delta7 mouse models of SMA. We show that neuromuscular junctions in the transversus abdominis (TVA), levator auris longus (LAL) and lumbrical muscles were disrupted in both mouse models. Pre-synaptic inputs were lost and abnormal accumulations of neurofilament were present, even in early/mid-symptomatic animals in the most severely affected muscle groups. Neuromuscular pathology was more extensive in the postural TVA muscle compared with the fast-twitch LAL and lumbrical muscles. Pre-synaptic pathology in Smn-/-;SMN2;Delta7 mice was reduced compared with Smn-/-;SMN2 mice at late-symptomatic time-points, although post-synaptic pathology was equally severe. We demonstrate that shrinkage of motor endplates does not correlate with loss of motor nerve terminals, signifying that one can occur in the absence of the other. We also demonstrate selective vulnerability of a subpopulation of motor neurons in the caudal muscle band of the LAL. Paralysis with botulinum toxin resulted in less terminal sprouting and ectopic synapse formation in the caudal band compared with the rostral band, suggesting that motor units conforming to a Fast Synapsing (FaSyn) phenotype are likely to be more vulnerable than those with a Delayed Synapsing (DeSyn) phenotype. PMID:18065780

  3. Muscular dystrophy in the Japanese Spitz: an inversion disrupts the DMD and RPGR genes.

    PubMed

    Atencia-Fernandez, Sabela; Shiel, Robert E; Mooney, Carmel T; Nolan, Catherine M

    2015-04-01

    An X-linked muscular dystrophy, with deficiency of full-length dystrophin and expression of a low molecular weight dystrophin-related protein, has been described in Japanese Spitz dogs. The aim of this study was to identify the causative mutation and develop a specific test to identify affected cases and carrier animals. Gene expression studies in skeletal muscle of an affected animal indicated aberrant expression of the Duchenne muscular dystrophy (dystrophin) gene and an anomaly in intron 19 of the gene. Genome-walking experiments revealed an inversion that interrupts two genes on the X chromosome, the Duchenne muscular dystrophy gene and the retinitis pigmentosa GTPase regulator gene. All clinically affected dogs and obligate carriers that were tested had the mutant chromosome, and it is concluded that the inversion is the causative mutation for X-linked muscular dystrophy in the Japanese Spitz breed. A PCR assay that amplifies mutant and wild-type alleles was developed and proved capable of identifying affected and carrier individuals. Unexpectedly, a 7-year-old male animal, which had not previously come to clinical attention, was shown to possess the mutant allele and to have a relatively mild form of the disease. This observation indicates phenotypic heterogeneity in Japanese Spitz muscular dystrophy, a feature described previously in humans and Golden Retrievers. With the availability of a simple, fast and accurate test for Japanese Spitz muscular dystrophy, detection of carrier animals and selected breeding should help eliminate the mutation from the breed.

  4. A novel role for CARM1 in promoting nonsense-mediated mRNA decay: potential implications for spinal muscular atrophy.

    PubMed

    Sanchez, Gabriel; Bondy-Chorney, Emma; Laframboise, Janik; Paris, Geneviève; Didillon, Andréanne; Jasmin, Bernard J; Côté, Jocelyn

    2016-04-01

    Loss of 'Survival of Motor Neurons' (SMN) leads to spinal muscular atrophy (SMA), a disease characterized by degeneration of spinal cord alpha motor neurons, resulting in muscle weakness, paralysis and death during early childhood. SMN is required for assembly of the core splicing machinery, and splicing defects were documented in SMA. We previously uncovered that Coactivator-Associated Methyltransferase-1 (CARM1) is abnormally up-regulated in SMA, leading to mis-regulation of a number of transcriptional and alternative splicing events. We report here that CARM1 can promote decay of a premature terminating codon (PTC)-containing mRNA reporter, suggesting it can act as a mediator of nonsense-mediated mRNA decay (NMD). Interestingly, this pathway, while originally perceived as solely a surveillance mechanism preventing expression of potentially detrimental proteins, is now emerging as a highly regulated RNA decay pathway also acting on a subset of normal mRNAs. We further show that CARM1 associates with major NMD factor UPF1 and promotes its occupancy on PTC-containing transcripts. Finally, we identify a specific subset of NMD targets that are dependent on CARM1 for degradation and that are also misregulated in SMA, potentially adding exacerbated targeting of PTC-containing mRNAs to the already complex array of molecular defects associated with this disease.

  5. The polyglutamine-expanded androgen receptor responsible for spinal and bulbar muscular atrophy inhibits the APC/CCdh1 ubiquitin ligase complex

    PubMed Central

    Bott, Laura C.; Salomons, Florian A.; Maric, Dragan; Liu, Yuhong; Merry, Diane; Fischbeck, Kenneth H.; Dantuma, Nico P.

    2016-01-01

    Polyglutamine expansion in the androgen receptor (AR) causes spinal and bulbar muscular atrophy (SBMA), an X-linked neuromuscular disease that is fully manifest only in males. It has been suggested that proteins with expanded polyglutamine tracts impair ubiquitin-dependent proteolysis due to their propensity to aggregate, but recent studies indicate that the overall activity of the ubiquitin-proteasome system is preserved in SBMA models. Here we report that AR selectively interferes with the function of the ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C), which, together with its substrate adaptor Cdh1, is critical for cell cycle arrest and neuronal architecture. We show that both wild-type and mutant AR physically interact with the APC/CCdh1 complex in a ligand-dependent fashion without being targeted for proteasomal degradation. Inhibition of APC/CCdh1 by mutant but not wild-type AR in PC12 cells results in enhanced neurite outgrowth which is typically followed by rapid neurite retraction and mitotic entry. Our data indicate a role of AR in neuronal differentiation through regulation of APC/CCdh1 and suggest abnormal cell cycle reactivation as a pathogenic mechanism in SBMA. PMID:27312068

  6. Morphological characteristics of motor neurons do not determine their relative susceptibility to degeneration in a mouse model of severe spinal muscular atrophy.

    PubMed

    Thomson, Sophie R; Nahon, Joya E; Mutsaers, Chantal A; Thomson, Derek; Hamilton, Gillian; Parson, Simon H; Gillingwater, Thomas H

    2012-01-01

    Spinal muscular atrophy (SMA) is a leading genetic cause of infant mortality, resulting primarily from the degeneration and loss of lower motor neurons. Studies using mouse models of SMA have revealed widespread heterogeneity in the susceptibility of individual motor neurons to neurodegeneration, but the underlying reasons remain unclear. Data from related motor neuron diseases, such as amyotrophic lateral sclerosis (ALS), suggest that morphological properties of motor neurons may regulate susceptibility: in ALS larger motor units innervating fast-twitch muscles degenerate first. We therefore set out to determine whether intrinsic morphological characteristics of motor neurons influenced their relative vulnerability to SMA. Motor neuron vulnerability was mapped across 10 muscle groups in SMA mice. Neither the position of the muscle in the body, nor the fibre type of the muscle innervated, influenced susceptibility. Morphological properties of vulnerable and disease-resistant motor neurons were then determined from single motor units reconstructed in Thy.1-YFP-H mice. None of the parameters we investigated in healthy young adult mice - including motor unit size, motor unit arbor length, branching patterns, motor endplate size, developmental pruning and numbers of terminal Schwann cells at neuromuscular junctions - correlated with vulnerability. We conclude that morphological characteristics of motor neurons are not a major determinant of disease-susceptibility in SMA, in stark contrast to related forms of motor neuron disease such as ALS. This suggests that subtle molecular differences between motor neurons, or extrinsic factors arising from other cell types, are more likely to determine relative susceptibility in SMA.

  7. A novel role for CARM1 in promoting nonsense-mediated mRNA decay: potential implications for spinal muscular atrophy.

    PubMed

    Sanchez, Gabriel; Bondy-Chorney, Emma; Laframboise, Janik; Paris, Geneviève; Didillon, Andréanne; Jasmin, Bernard J; Côté, Jocelyn

    2016-04-01

    Loss of 'Survival of Motor Neurons' (SMN) leads to spinal muscular atrophy (SMA), a disease characterized by degeneration of spinal cord alpha motor neurons, resulting in muscle weakness, paralysis and death during early childhood. SMN is required for assembly of the core splicing machinery, and splicing defects were documented in SMA. We previously uncovered that Coactivator-Associated Methyltransferase-1 (CARM1) is abnormally up-regulated in SMA, leading to mis-regulation of a number of transcriptional and alternative splicing events. We report here that CARM1 can promote decay of a premature terminating codon (PTC)-containing mRNA reporter, suggesting it can act as a mediator of nonsense-mediated mRNA decay (NMD). Interestingly, this pathway, while originally perceived as solely a surveillance mechanism preventing expression of potentially detrimental proteins, is now emerging as a highly regulated RNA decay pathway also acting on a subset of normal mRNAs. We further show that CARM1 associates with major NMD factor UPF1 and promotes its occupancy on PTC-containing transcripts. Finally, we identify a specific subset of NMD targets that are dependent on CARM1 for degradation and that are also misregulated in SMA, potentially adding exacerbated targeting of PTC-containing mRNAs to the already complex array of molecular defects associated with this disease. PMID:26656492

  8. The polyglutamine-expanded androgen receptor responsible for spinal and bulbar muscular atrophy inhibits the APC/C(Cdh1) ubiquitin ligase complex.

    PubMed

    Bott, Laura C; Salomons, Florian A; Maric, Dragan; Liu, Yuhong; Merry, Diane; Fischbeck, Kenneth H; Dantuma, Nico P

    2016-06-17

    Polyglutamine expansion in the androgen receptor (AR) causes spinal and bulbar muscular atrophy (SBMA), an X-linked neuromuscular disease that is fully manifest only in males. It has been suggested that proteins with expanded polyglutamine tracts impair ubiquitin-dependent proteolysis due to their propensity to aggregate, but recent studies indicate that the overall activity of the ubiquitin-proteasome system is preserved in SBMA models. Here we report that AR selectively interferes with the function of the ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C), which, together with its substrate adaptor Cdh1, is critical for cell cycle arrest and neuronal architecture. We show that both wild-type and mutant AR physically interact with the APC/C(Cdh1) complex in a ligand-dependent fashion without being targeted for proteasomal degradation. Inhibition of APC/C(Cdh1) by mutant but not wild-type AR in PC12 cells results in enhanced neurite outgrowth which is typically followed by rapid neurite retraction and mitotic entry. Our data indicate a role of AR in neuronal differentiation through regulation of APC/C(Cdh1) and suggest abnormal cell cycle reactivation as a pathogenic mechanism in SBMA.

  9. Shift from extracellular signal-regulated kinase to AKT/cAMP response element-binding protein pathway increases survival-motor-neuron expression in spinal-muscular-atrophy-like mice and patient cells.

    PubMed

    Branchu, Julien; Biondi, Olivier; Chali, Farah; Collin, Thibault; Leroy, Felix; Mamchaoui, Kamel; Makoukji, Joelle; Pariset, Claude; Lopes, Philippe; Massaad, Charbel; Chanoine, Christophe; Charbonnier, Frédéric

    2013-03-01

    Spinal muscular atrophy (SMA), a recessive neurodegenerative disease, is characterized by the selective loss of spinal motor neurons. No available therapy exists for SMA, which represents one of the leading genetic causes of death in childhood. SMA is caused by a mutation of the survival-of-motor-neuron 1 (SMN1) gene, leading to a quantitative defect in the survival-motor-neuron (SMN) protein expression. All patients retain one or more copies of the SMN2 gene, which modulates the disease severity by producing a small amount of stable SMN protein. We reported recently that NMDA receptor activation, directly in the spinal cord, significantly enhanced the transcription rate of the SMN2 genes in a mouse model of very severe SMA (referred as type 1) by a mechanism that involved AKT/CREB pathway activation. Here, we provide the first compelling evidence for a competition between the MEK/ERK/Elk-1 and the phosphatidylinositol 3-kinase/AKT/CREB signaling pathways for SMN2 gene regulation in the spinal cord of type 1 SMA-like mice. The inhibition of the MEK/ERK/Elk-1 pathway promotes the AKT/CREB pathway activation, leading to (1) an enhanced SMN expression in the spinal cord of SMA-like mice and in human SMA myotubes and (2) a 2.8-fold lifespan extension in SMA-like mice. Furthermore, we identified a crosstalk between ERK and AKT signaling pathways that involves the calcium-dependent modulation of CaMKII activity. Together, all these data open new perspectives to the therapeutic strategy for SMA patients. PMID:23467345

  10. Altered gene expression patterns in muscle ring finger 1 null mice during denervation- and dexamethasone-induced muscle atrophy

    PubMed Central

    Watson, Monica L.; Waddell, David S.; Neff, Eric S.; Baehr, Leslie M.; Ross, Adam P.; Bodine, Sue C.

    2013-01-01

    Muscle atrophy can result from inactivity or unloading on one hand or the induction of a catabolic state on the other. Muscle-specific ring finger 1 (MuRF1), a member of the tripartite motif family of E3 ubiquitin ligases, is an essential mediator of multiple conditions inducing muscle atrophy. While most studies have focused on the role of MuRF1 in protein degradation, the protein may have other roles in regulating skeletal muscle mass and metabolism. We therefore systematically evaluated the effect of MuRF1 on gene expression during denervation and dexamethasone-induced atrophy. We find that the lack of MuRF1 leads to few differences in control animals, but there were several significant differences in specific sets of genes upon denervation- and dexamethasone-induced atrophy. For example, during denervation, MuRF1 knockout mice showed delayed repression of metabolic and structural genes and blunted induction of genes associated with the neuromuscular junction. In the latter case, this pattern correlates with blunted HDAC4 and myogenin upregulation. Lack of MuRF1 caused fewer changes in the dexamethasone-induced atrophy program, but certain genes involved in fat metabolism and intracellular signaling were affected. Our results demonstrate a new role for MuRF1 in influencing gene expression in two important models of muscle atrophy. PMID:24130153

  11. Cross‐disease comparison of amyotrophic lateral sclerosis and spinal muscular atrophy reveals conservation of selective vulnerability but differential neuromuscular junction pathology

    PubMed Central

    Nijssen, Jik; Frost‐Nylen, Johanna

    2015-01-01

    Neuromuscular junctions are primary pathological targets in the lethal motor neuron diseases spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS). Synaptic pathology and denervation of target muscle fibers has been reported prior to the appearance of clinical symptoms in mouse models of both diseases, suggesting that neuromuscular junctions are highly vulnerable from the very early stages, and are a key target for therapeutic intervention. Here we examined neuromuscular pathology longitudinally in three clinically relevant muscle groups in mouse models of ALS and SMA in order to assess their relative vulnerabilities. We show for the first time that neuromuscular junctions of the extraocular muscles (responsible for the control of eye movement) were resistant to degeneration in endstage SMA mice, as well as in late symptomatic ALS mice. Tongue muscle neuromuscular junctions were also spared in both animal models. Conversely, neuromuscular junctions of the lumbrical muscles of the hind‐paw were vulnerable in both SMA and ALS, with a loss of neuronal innervation and shrinkage of motor endplates in both diseases. Thus, the pattern of selective vulnerability was conserved across these two models of motor neuron disease. However, the first evidence of neuromuscular pathology occurred at different timepoints of disease progression, with much earlier evidence of presynaptic involvement in ALS, progressing to changes on the postsynaptic side. Conversely, in SMA changes appeared concomitantly at the neuromuscular junction, suggesting that mechanisms of neuromuscular disruption are distinct in these diseases. J. Comp. Neurol. 524:1424–1442, 2016. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:26502195

  12. SMA CARNI-VAL TRIAL PART II: A Prospective, Single-Armed Trial of L-Carnitine and Valproic Acid in Ambulatory Children with Spinal Muscular Atrophy

    PubMed Central

    Kissel, John T.; Scott, Charles B.; Reyna, Sandra P.; Crawford, Thomas O.; Simard, Louise R.; Krosschell, Kristin J.; Acsadi, Gyula; Elsheik, Bakri; Schroth, Mary K.; D'Anjou, Guy; LaSalle, Bernard; Prior, Thomas W.; Sorenson, Susan; Maczulski, Jo Anne; Bromberg, Mark B.; Chan, Gary M.; Swoboda, Kathryn J.

    2011-01-01

    Background Multiple lines of evidence have suggested that valproic acid (VPA) might benefit patients with spinal muscular atrophy (SMA). The SMA CARNIVAL TRIAL was a two part prospective trial to evaluate oral VPA and l-carnitine in SMA children. Part 1 targeted non-ambulatory children ages 2–8 in a 12 month cross over design. We report here Part 2, a twelve month prospective, open-label trial of VPA and L-carnitine in ambulatory SMA children. Methods This study involved 33 genetically proven type 3 SMA subjects ages 3–17 years. Subjects underwent two baseline assessments over 4–6 weeks and then were placed on VPA and L-carnitine for 12 months. Assessments were performed at baseline, 3, 6 and 12 months. Primary outcomes included safety, adverse events and the change at 6 and 12 months in motor function assessed using the Modified Hammersmith Functional Motor Scale Extend (MHFMS-Extend), timed motor tests and fine motor modules. Secondary outcomes included changes in ulnar compound muscle action potential amplitudes (CMAP), handheld dynamometry, pulmonary function, and Pediatric Quality of Life Inventory scores. Results Twenty-eight subjects completed the study. VPA and carnitine were generally well tolerated. Although adverse events occurred in 85% of subjects, they were usually mild and transient. Weight gain of 20% above body weight occurred in 17% of subjects. There was no significant change in any primary outcome at six or 12 months. Some pulmonary function measures showed improvement at one year as expected with normal growth. CMAP significantly improved suggesting a modest biologic effect not clinically meaningful. Conclusions This study, coupled with the CARNIVAL Part 1 study, indicate that VPA is not effective in improving strength or function in SMA children. The outcomes used in this study are feasible and reliable, and can be employed in future trials in SMA. Trial Regsitration Clinicaltrials.gov NCT00227266 PMID:21754985

  13. [The first Japanese case of autosomal dominant Emery-Dreifuss muscular dystrophy with a novel mutation in the lamin A/C gene].

    PubMed

    Onishi, Yasushi; Higuchi, Jun; Ogawa, Tatuji; Namekawa, Akio; Hayashi, Hidemori; Odakura, Hironori; Goto, Kanako; Hayashi, Yukiko K

    2002-02-01

    Emery-Dreifuss muscular dystrophy (EDMD) is a muscular disorder characterized by 1) early contracture of the elbows. Achilles tendons and post-cervical muscles, 2) slowly progressive muscle wasting and weakness with a humeroperoneal distribution, and 3) life-threatening cardiomyopathy with conduction block. Most of families with EDMD show X-linked recessive inheritance with mutations in the STA gene on chromosome Xq28, which encodes a protein named emerin. A rare autosomal dominant form of EDMD (AD-EDMD) is caused by mutations in lamin A/C gene (LMNA) on chromosome 1q21. Both emerin and lamin A/C are located in the inner surface membrane of the nucleus. A 49-year-old woman was skinny and slow runner from childhood and suspected as having a certain muscular disorder. At 35 years, she was found to have the second degree atrioventricular block. At 45 years, she was admitted to a hospital for right-side hemiplegia after cerebral infarction. Cardiac involvement was also observed including high degree atrioventricular block with chronic atrial fibrillation and frequent paroxysmal ventricular contraction on the electrocardiogram. At 49 years, she was referred to our hospital for further evaluation. She had possible dilated cardiomyopathy with conduction block. She also had muscular atrophy and weakness in all extremities, predominantly in the right-side, and contracture of bilateral Achilles tendon, knee and elbow joints, and postcervical muscles. Biopsied skeletal muscle and electromyogram showed myopathic changes. Since a novel point mutation of Ser303Pro was found in exon 5 of LMNA gene, she was diagnosed as having AD-EDMD and had a permanent pacemaker implantation. Her daughter also had some abnormalities on electrocardiogram. This is the first Japanese case of AD-EDMD. Amiodaron was effective for non-sustained ventricular tachycardia. Early diagnosis and following cardiological examinations and treatments are important and necessary to improve the prognosis of the

  14. Emerging strategies for cell and gene therapy of the muscular dystrophies

    PubMed Central

    Muir, Lindsey A.; Chamberlain, Jeffrey S.

    2016-01-01

    The muscular dystrophies are a heterogeneous group of over 40 disorders that are characterised by muscle weakness and wasting. The most common are Duchenne muscular dystrophy and Becker muscular dystrophy, which result from mutations within the gene encoding dystrophin; myotonic dystrophy type 1, which results from an expanded trinucleotide repeat in the myotonic dystrophy protein kinase gene; and facioscapulohumeral dystrophy, which is associated with contractions in the subtelomeric region of human chromosome 1. Currently the only treatments involve clinical management of symptoms, although several promising experimental strategies are emerging. These include gene therapy using adeno-associated viral, lentiviral and adenoviral vectors and nonviral vectors, such as plasmid DNA. Exon-skipping and cell-based therapies have also shown promise in the effective treatment and regeneration of dystrophic muscle. The availability of numerous animal models for Duchenne muscular dystrophy has enabled extensive testing of a wide range of therapeutic approaches for this type of disorder. Consequently, we focus here on the therapeutic developments for Duchenne muscular dystrophy as a model of the types of approaches being considered for various types of dystrophy. We discuss the advantages and limitations of each therapeutic strategy, as well as prospects and recent successes in the context of future clinical applications. PMID:19555515

  15. Transcriptional profile of a myotube starvation model of atrophy

    NASA Technical Reports Server (NTRS)

    Stevenson, Eric J.; Koncarevic, Alan; Giresi, Paul G.; Jackman, Robert W.; Kandarian, Susan C.

    2005-01-01

    Skeletal muscle wasting is a pervasive phenomenon that can result from a wide range of pathological conditions as well as from habitual muscular inactivity. The present work describes a cell-culture condition that induces significant atrophy in skeletal muscle C2C12 myotubes. The failure to replenish differentiation media in mature myotubes leads to rapid atrophy (53% in diameter), which is referred to here as starvation. Affymetrix microarrays were used to develop a transcriptional profile of control (fed) vs. atrophied (nonfed) myotubes. Myotube starvation was characterized by an upregulation of genes involved in translational inhibition, amino acid biosynthesis and transport, and cell cycle arrest/apoptosis, among others. Downregulated genes included several structural and regulatory elements of the extracellular matrix as well as several elements of Wnt/frizzled and TGF-beta signaling pathways. Interestingly, the characteristic transcriptional upregulation of the ubiquitin-proteasome system, calpains, and cathepsins known to occur in multiple in vivo models of atrophy were not seen during myotube starvation. With the exception of the downregulation of extracellular matrix genes, serine protease inhibitor genes, and the upregulation of the translation initiation factor PHAS-I, this model of atrophy in cell culture has a transcriptional profile quite distinct from any study published to date with atrophy in whole muscle. These data show that, although the gross morphology of atrophied muscle fibers may be similar in whole muscle vs. myotube culture, the processes by which this phenotype is achieved differ markedly.

  16. Patterns of gene expression in atrophying skeletal muscles: response to food deprivation

    NASA Technical Reports Server (NTRS)

    Jagoe, R. Thomas; Lecker, Stewart H.; Gomes, Marcelo; Goldberg, Alfred L.

    2002-01-01

    During fasting and many systemic diseases, muscle undergoes rapid loss of protein and functional capacity. To define the transcriptional changes triggering muscle atrophy and energy conservation in fasting, we used cDNA microarrays to compare mRNAs from muscles of control and food-deprived mice. Expression of >94% of genes did not change, but interesting patterns emerged among genes that were differentially expressed: 1) mRNAs encoding polyubiquitin, ubiquitin extension proteins, and many (but not all) proteasome subunits increased, which presumably contributes to accelerated protein breakdown; 2) a dramatic increase in mRNA for the ubiquitin ligase, atrogin-1, but not most E3s; 3) a significant suppression of mRNA for myosin binding protein H (but not other myofibrillar proteins) and IGF binding protein 5, which may favor cell protein loss; 4) decreases in mRNAs for several glycolytic enzymes and phosphorylase kinase subunits, and dramatic increases in mRNAs for pyruvate dehydrogenase kinase 4 and glutamine synthase, which should promote glucose sparing and gluconeogenesis. During fasting, metallothionein mRNA increased dramatically, mRNAs for extracellular matrix components fell, and mRNAs that may favor cap-independent mRNA translation rose. Significant changes occurred in mRNAs for many growth-related proteins and transcriptional regulators. These transcriptional changes indicate a complex adaptive program that should favor protein degradation and suppress glucose oxidation in muscle. Similar analysis of muscles atrophying for other causes is allowing us to identify a set of atrophy-specific changes in gene expression.

  17. From "glycosyltransferase" to "congenital muscular dystrophy": integrating knowledge from NCBI Entrez Gene and the Gene Ontology.

    PubMed

    Sahoo, Satya S; Zeng, Kelly; Bodenreider, Olivier; Sheth, Amit

    2007-01-01

    Entrez Gene (EG), Online Mendelian Inheritance in Man (OMIM) and the Gene Ontology (GO) are three complementary knowledge resources that can be used to correlate genomic data with disease information. However, bridging between genotype and phenotype through these resources currently requires manual effort or the development of customized software. In this paper, we argue that integrating EG and GO provides a robust and flexible solution to this problem. We demonstrate how the Resource Description Framework (RDF) developed for the Semantic Web can be used to represent and integrate these resources and enable seamless access to them as a unified resource. We illustrate the effectiveness of our approach by answering a real-world biomedical query linking a specific molecular function, glycosyltransferase, to the disorder congenital muscular dystrophy.

  18. Duchenne Muscular Dystrophy Gene Expression in Normal and Diseased Human Muscle

    NASA Astrophysics Data System (ADS)

    Oronzi Scott, M.; Sylvester, J. E.; Heiman-Patterson, T.; Shi, Y.-J.; Fieles, W.; Stedman, H.; Burghes, A.; Ray, P.; Worton, R.; Fischbeck, K. H.

    1988-03-01

    A probe for the 5' end of the Duchenne muscular dystrophy (DMD) gene was used to study expression of the gene in normal human muscle, myogenic cell cultures, and muscle from patients with DMD. Expression was found in RNA from normal fetal muscle, adult cardiac and skeletal muscle, and cultured muscle after myoblast fusion. In DMD muscle, expression of this portion of the gene was also revealed by in situ RNA hybridization, particularly in regenerating muscle fibers.

  19. Muscle atrophy

    MedlinePlus

    Muscle wasting; Wasting; Atrophy of the muscles ... There are two types of muscle atrophy: disuse and neurogenic. Disuse atrophy is caused by not using the muscles enough . This type of atrophy can often be ...

  20. SMA CARNI-VAL Trial Part I: Double-Blind, Randomized, Placebo-Controlled Trial of L-Carnitine and Valproic Acid in Spinal Muscular Atrophy

    PubMed Central

    Swoboda, Kathryn J.; Scott, Charles B.; Crawford, Thomas O.; Simard, Louise R.; Reyna, Sandra P.; Krosschell, Kristin J.; Acsadi, Gyula; Elsheik, Bakri; Schroth, Mary K.; D'Anjou, Guy; LaSalle, Bernard; Prior, Thomas W.; Sorenson, Susan L.; Maczulski, Jo Anne; Bromberg, Mark B.; Chan, Gary M.; Kissel, John T.

    2010-01-01

    Background Valproic acid (VPA) has demonstrated potential as a therapeutic candidate for spinal muscular atrophy (SMA) in vitro and in vivo. Methods Two cohorts of subjects were enrolled in the SMA CARNIVAL TRIAL, a non-ambulatory group of “sitters” (cohort 1) and an ambulatory group of “walkers” (cohort 2). Here, we present results for cohort 1: a multicenter phase II randomized double-blind intention-to-treat protocol in non-ambulatory SMA subjects 2–8 years of age. Sixty-one subjects were randomized 1∶1 to placebo or treatment for the first six months; all received active treatment the subsequent six months. The primary outcome was change in the modified Hammersmith Functional Motor Scale (MHFMS) score following six months of treatment. Secondary outcomes included safety and adverse event data, and change in MHFMS score for twelve versus six months of active treatment, body composition, quantitative SMN mRNA levels, maximum ulnar CMAP amplitudes, myometry and PFT measures. Results At 6 months, there was no difference in change from the baseline MHFMS score between treatment and placebo groups (difference = 0.643, 95% CI = −1.22–2.51). Adverse events occurred in >80% of subjects and were more common in the treatment group. Excessive weight gain was the most frequent drug-related adverse event, and increased fat mass was negatively related to change in MHFMS values (p = 0.0409). Post-hoc analysis found that children ages two to three years that received 12 months treatment, when adjusted for baseline weight, had significantly improved MHFMS scores (p = 0.03) compared to those who received placebo the first six months. A linear regression analysis limited to the influence of age demonstrates young age as a significant factor in improved MHFMS scores (p = 0.007). Conclusions This study demonstrated no benefit from six months treatment with VPA and L-carnitine in a young non-ambulatory cohort of subjects with SMA. Weight gain, age

  1. Type III 3-Methylglutaconic Aciduria (Optic Atrophy Plus Syndrome, or Costeff Optic Atrophy Syndrome): Identification of the OPA3 Gene and Its Founder Mutation in Iraqi Jews

    PubMed Central

    Anikster, Yair; Kleta, Robert; Shaag, Avraham; Gahl, William A.; Elpeleg, Orly

    2001-01-01

    Type III 3-methylglutaconic aciduria (MGA) (MIM 258501) is a neuro-ophthalmologic syndrome that consists of early-onset bilateral optic atrophy and later-onset spasticity, extrapyramidal dysfunction, and cognitive deficit. Urinary excretion of 3-methylglutaconic acid and of 3-methylglutaric acid is increased. The disorder has been reported in ∼40 patients of Iraqi Jewish origin, allowing the mapping of the disease to chromosome 19q13.2-q13.3, by linkage analysis. To isolate the causative gene, OPA3, we sequenced four genes within the critical interval and identified, in the intronic sequence of a gene corresponding to cDNA clone FLJ22187, a point mutation that segregated with the type III MGA phenotype. The FLJ22187-cDNA clone, which we identified as the OPA3 gene, consists of two exons and encodes a peptide of 179 amino acid residues. Northern blot analysis revealed a primary transcript of ∼5.0 kb that was ubiquitously expressed, most prominently in skeletal muscle and kidney. Within the brain, the cerebral cortex, the medulla, the cerebellum, and the frontal lobe, compared to other parts of the brain, had slightly increased expression. The intronic G→C mutation abolished mRNA expression in fibroblasts from affected patients and was detected in 8 of 85 anonymous Israeli individuals of Iraqi Jewish origin. Milder mutations in OPA3 should be sought in patients with optic atrophy with later onset, even in the absence of additional neurological abnormalities. PMID:11668429

  2. Learning about Spinal Muscular Atrophy

    MedlinePlus

    ... Features Funding Divisions Funding Opportunities Funded Programs and Projects Grant Information NIH Common Fund NIH RePORTER Research ... Patient Care Education All About the Human Genome Project Fact Sheets Genetic Education Resources for Teachers Genomic ...

  3. Relatively low proportion of dystrophin gene deletions in Israeili Duchenne and Becker muscular dystrophy patients

    SciTech Connect

    Shomrat, R.; Gluck, E.; Legum, C.; Shiloh, Y.

    1994-02-15

    Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are allelic disorders caused by mutations in the X-linked dystrophin gene. The most common mutations in western populations are deletions that are spread non-randomly throughout the gene. Molecular analysis of the dystrophin gene structure by hybridization of the full length cDNA to Southern blots and by PCR in 62 unrelated Israeli male DMD/BMD patients showed deletions in 23 (37%). This proportion is significantly lower than that found in European and North American populations (55-65%). Seventy-eight percent of the deletions were confined to exons 44-52, half of these exons 44-45, and the remaining 22% to exons 1 and 19. There was no correlation between the size of the deletion and the severity of the disease. All the deletions causing frameshift resulted in the DMD phenotypes. 43 refs., 1 fig., 1 tab.

  4. Muscle cell atrophy induced by HSP gene silencing was counteracted by HSP overexpression

    NASA Astrophysics Data System (ADS)

    Choi, Inho; Lee, Joo-Hee; Nikawa, Takeshi; Gwag, Taesik; Park, Kyoungsook; Park, Junsoo

    Heat shock proteins (HSP), as molecular chaperones, are known to assist protein quality control under various stresses. Although overexpression of HSP70 was found to contribute to muscle size retention under an unloading condition, it remains largely unclarified whether muscle atrophy is induced by active suppression of HSP expression. In this study, we pre-treated Hsp70 siRNA to rat L6 cells for the HSP gene silencing, and determined myotube diameter, HSP72 expression and anabolic and catabolic signaling activities in the absence or presence of triterpene celastrol (CEL), the HSP70 inducer. Relative to a negative control (NC), muscle cell diameter was reduced 0.89-fold in the siRNA-treated group, increased 1.2-fold in the CEL-treated group and retained at the size of NC in the siRNA+CEL group. HSP72 expression was decreased 0.35-fold by siRNA whereas the level was increased 6- to 8-fold in the CEL and siRNA+CEL groups. Expression of FoxO3 and atrogin-1 was increased 1.8- to 4.8-fold by siRNA, which was abolished by CEL treatment. Finally, phosphorylation of Akt1, S6K and ERK1/2 was not affected by siRNA, but was elevated 2- to 6-fold in the CEL and siRNA+CEL groups. Taken together, HSP downregulation by Hsp gene silencing led to muscle cell atrophy principally via increases in catabolic activities and that such anti-atrophic effect was counteracted by HSP overexpression.

  5. New susceptible variant of COQ2 gene in Japanese patients with sporadic multiple system atrophy

    PubMed Central

    Sun, Zhuoran; Ohta, Yasuyuki; Yamashita, Toru; Sato, Kota; Takemoto, Mami; Hishikawa, Nozomi

    2016-01-01

    Objective: The aim of this study was to analyze the association between the variations of coenzyme Q2 4-hydroxybenzoate polyprenyltransferase gene (COQ2) and Japanese patients with multiple system atrophy (MSA). Methods: We investigated the genetic variations in exons 1, 2, 6, and 7 of the COQ2 gene in 133 Japanese patients with MSA and 200 controls and analyzed the association between the variations and MSA. Results: Six DNA variations (G21S, L25V, V66L, P157S, V393A, and X422K) were found in the 133 patients with MSA, and G21S and X422K were new variations that had never been reported. V66L was a common variation that was found in all 133 patients with MSA. G21S, P157S, V393A, and X422K did not show gene frequency differences between patients with MSA and controls. On the other hand, L25V was newly proven to be the only risk factor of sporadic MSA with predominant olivopontocerebellar ataxia. Conclusions: The present study suggests L25V variant of COQ2 gene as a genetic risk factor in Japanese patients with MSA with cerebellar ataxia. PMID:27123473

  6. Progressive retinal atrophy in Schapendoes dogs: mutation of the newly identified CCDC66 gene.

    PubMed

    Dekomien, Gabriele; Vollrath, Conni; Petrasch-Parwez, Elisabeth; Boevé, Michael H; Akkad, Denis A; Gerding, Wanda M; Epplen, Jörg T

    2010-05-01

    Canine generalized progressive retinal atrophy (gPRA) is characterized by continuous degeneration of photoreceptor cells leading to night blindness and progressive vision loss. Until now, mutations in 11 genes have been described that account for gPRA in dogs, mostly following an autosomal recessive inheritance mode. Here, we describe a gPRA locus comprising the newly identified gene coiled-coil domain containing 66 (CCDC66) on canine chromosome 20, as identified via linkage analysis in the Schapendoes breed. Mutation screening of the CCDC66 gene revealed a 1-bp insertion in exon 6 leading to a stop codon as the underlying cause of disease. The insertion is present in all affected dogs in the homozygous state as well as in all obligatory mutation carriers in the heterozygous state. The CCDC66 gene is evolutionarily conserved in different vertebrate species and exhibits a complex pattern of differential RNA splicing resulting in various isoforms in the retina. Immunohistochemically, CCDC66 protein is detected mainly in the inner segments of photoreceptors in mouse, dog, and man. The affected Schapendoes retina lacks CCDC66 protein. Thus this natural canine model for gPRA yields superior potential to understand functional implications of this newly identified protein including its physiology, and it opens new perspectives for analyzing different aspects of the general pathophysiology of gPRA. PMID:19777273

  7. Progress in muscular dystrophy research with special emphasis on gene therapy

    PubMed Central

    SUGITA, Hideo; TAKEDA, Shin’ichi

    2010-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked, progressive muscle-wasting disease caused by mutations in the DMD gene. Since the disease was described by physicians in the 19th century, information about the subject has been accumulated. One author (Sugita) was one of the coworkers who first reported that the serum creatine kinase (CK) level is elevated in progressive muscular dystrophy patients. Even 50 years after that first report, an elevated serum CK level is still the most useful marker in the diagnosis of DMD, a sensitive index of the state of skeletal muscle, and useful to evaluate therapeutic effects. In the latter half of this article, we describe recent progress in the therapy of DMD, with an emphasis on gene therapies, particularly exon skipping. PMID:20689232

  8. Expression of the Murine Duchenne Muscular Dystrophy Gene in Muscle and Brain

    NASA Astrophysics Data System (ADS)

    Chamberlain, Jeffrey S.; Pearlman, Joel A.; Muzny, Donna M.; Gibbs, Richard A.; Ranier, Joel E.; Reeves, Alice A.; Caskey, C. Thomas

    1988-03-01

    Complementary DNA clones were isolated that represent the 5' terminal 2.5 kilobases of the murine Duchenne muscular dystrophy (Dmd) messenger RNA (mRNA). Mouse Dmd mRNA was detectable in skeletal and cardiac muscle and at a level approximately 90 percent lower in brain. Dmd mRNA is also present, but at much lower than normal levels, in both the muscle and brain of three different strains of dystrophic mdx mice. The identification of Dmd mRNA in brain raises the possibility of a relation between human Duchenne muscular dystrophy (DMD) gene expression and the mental retardation found in some DMD males. These results also provide evidence that the mdx mutations are allelic variants of mouse Dmd gene mutations.

  9. Influence of Immune Responses in Gene/Stem Cell Therapies for Muscular Dystrophies

    PubMed Central

    Sitzia, Clementina; Erratico, Silvia; Torrente, Yvan

    2014-01-01

    Muscular dystrophies (MDs) are a heterogeneous group of diseases, caused by mutations in different components of sarcolemma, extracellular matrix, or enzymes. Inflammation and innate or adaptive immune response activation are prominent features of MDs. Various therapies under development are directed toward rescuing the dystrophic muscle damage using gene transfer or cell therapy. Here we discussed current knowledge about involvement of immune system responses to experimental therapies in MDs. PMID:24959590

  10. Gene Expression Profiling in Limb-Girdle Muscular Dystrophy 2A

    PubMed Central

    Sáenz, Amets; Azpitarte, Margarita; Armañanzas, Rubén; Leturcq, France; Alzualde, Ainhoa; Inza, Iñaki; García-Bragado, Federico; De la Herran, Gaspar; Corcuera, Julián; Cabello, Ana; Navarro, Carmen; De la Torre, Carolina; Gallardo, Eduard; Illa, Isabel; de Munain, Adolfo López

    2008-01-01

    Limb-girdle muscular dystrophy type 2A (LGMD2A) is a recessive genetic disorder caused by mutations in calpain 3 (CAPN3). Calpain 3 plays different roles in muscular cells, but little is known about its functions or in vivo substrates. The aim of this study was to identify the genes showing an altered expression in LGMD2A patients and the possible pathways they are implicated in. Ten muscle samples from LGMD2A patients with in which molecular diagnosis was ascertained were investigated using array technology to analyze gene expression profiling as compared to ten normal muscle samples. Upregulated genes were mostly those related to extracellular matrix (different collagens), cell adhesion (fibronectin), muscle development (myosins and melusin) and signal transduction. It is therefore suggested that different proteins located or participating in the costameric region are implicated in processes regulated by calpain 3 during skeletal muscle development. Genes participating in the ubiquitin proteasome degradation pathway were found to be deregulated in LGMD2A patients, suggesting that regulation of this pathway may be under the control of calpain 3 activity. As frizzled-related protein (FRZB) is upregulated in LGMD2A muscle samples, it could be hypothesized that β-catenin regulation is also altered at the Wnt signaling pathway, leading to an incorrect myogenesis. Conversely, expression of most transcription factor genes was downregulated (MYC, FOS and EGR1). Finally, the upregulation of IL-32 and immunoglobulin genes may induce the eosinophil chemoattraction explaining the inflammatory findings observed in presymptomatic stages. The obtained results try to shed some light on identification of novel therapeutic targets for limb-girdle muscular dystrophies. PMID:19015733

  11. Gene expression of muscular and neuronal pathways is cooperatively dysregulated in patients with idiopathic achalasia.

    PubMed

    Palmieri, Orazio; Mazza, Tommaso; Merla, Antonio; Fusilli, Caterina; Cuttitta, Antonello; Martino, Giuseppina; Latiano, Tiziana; Corritore, Giuseppe; Bossa, Fabrizio; Palumbo, Orazio; Muscarella, Lucia Anna; Carella, Massimo; Graziano, Paolo; Andriulli, Angelo; Latiano, Anna

    2016-01-01

    Idiopathic achalasia is characterized by the absence of peristalsis secondary to loss of neurons in the myenteric plexus that hampers proper relaxation of the lower esophageal sphincter. Achalasia can be considered a multifactorial disorder as it occurs in related individuals and is associated with HLA class II genes, thereby suggesting genetic influence. We used microarray technology and advanced in-silico functional analyses to perform the first genome-wide expression profiling of mRNA in tissue samples from 12 achalasia and 5 control patients. It revealed 1,728 differentially expressed genes, of these, 837 (48.4%) were up-regulated in cases. In particular, genes participating to the smooth muscle contraction biological function were mostly up-regulated. Functional analysis revealed a significant enrichment of neuronal/muscular and neuronal/immunity processes. Upstream regulatory analysis of 180 genes involved in these processes suggested TLR4 and IL18 as critical key-players. Two functional gene networks were significantly over-represented: one involved in organ morphology, skeletal muscle system development and function, and neurological diseases, and the other participating in cell morphology, humoral immune response and cellular movement. These results highlight on pivotal genes that may play critical roles in neuronal/muscular and neuronal/immunity processes, and that may contribute to the onset and development of achalasia. PMID:27511445

  12. Gene expression of muscular and neuronal pathways is cooperatively dysregulated in patients with idiopathic achalasia

    PubMed Central

    Palmieri, Orazio; Mazza, Tommaso; Merla, Antonio; Fusilli, Caterina; Cuttitta, Antonello; Martino, Giuseppina; Latiano, Tiziana; Corritore, Giuseppe; Bossa, Fabrizio; Palumbo, Orazio; Muscarella, Lucia Anna; Carella, Massimo; Graziano, Paolo; Andriulli, Angelo; Latiano, Anna

    2016-01-01

    Idiopathic achalasia is characterized by the absence of peristalsis secondary to loss of neurons in the myenteric plexus that hampers proper relaxation of the lower esophageal sphincter. Achalasia can be considered a multifactorial disorder as it occurs in related individuals and is associated with HLA class II genes, thereby suggesting genetic influence. We used microarray technology and advanced in-silico functional analyses to perform the first genome-wide expression profiling of mRNA in tissue samples from 12 achalasia and 5 control patients. It revealed 1,728 differentially expressed genes, of these, 837 (48.4%) were up-regulated in cases. In particular, genes participating to the smooth muscle contraction biological function were mostly up-regulated. Functional analysis revealed a significant enrichment of neuronal/muscular and neuronal/immunity processes. Upstream regulatory analysis of 180 genes involved in these processes suggested TLR4 and IL18 as critical key-players. Two functional gene networks were significantly over-represented: one involved in organ morphology, skeletal muscle system development and function, and neurological diseases, and the other participating in cell morphology, humoral immune response and cellular movement. These results highlight on pivotal genes that may play critical roles in neuronal/muscular and neuronal/immunity processes, and that may contribute to the onset and development of achalasia. PMID:27511445

  13. Missense mutations in the adhalin gene linked to autosomal recessive muscular dystrophy

    SciTech Connect

    Roberds, S.L.; Anderson, R.D.; Lim, L.E.

    1994-09-01

    Adhalin, the 50-kDa dystrophin-associated glycoprotein, is deficient in skeletal muscle of patients having severe childhood autosomal recessive muscular dystrophy (SCARMD). In several North African families, SCARMD has been linked to markers in the pericentromeric region of chromosome l3q, but SCARMD has been excluded from linkage to this locus in other families. To determine whether the adhalin gene might be involved in SCARMD, human adhalin cDNA and large portions of the adhalin gene were cloned. Adhalin is a transmembrane glycoprotein with an extracellular domain bearing limited homology to domains of entactin and nerve growth factor receptor, suggesting that adhalin may serve as a receptor for an extracellular matrix protein. The adhalin gene was mapped to chromosome 17q12-q21.33, excluding the gene from involvement in 13q-linked SCARMD. A polymorphic microsatellite was identified within intron 6 of the adhalin gene, and one allelic variant of this marker cosegregated with the disease phenotype in a large French family with a lod score of 3.61 at 0 recombination. Adhalin is undetectable in skeletal muscle from affected members of this family. Missense mutations were identified within the adhalin gene that might cause SCARMD in this family. Thus, genetic defects in at least two components, dystrophin and adhalin, of the dystrophin-glycoprotein complex can independently cause muscular dystrophies.

  14. Conservation of the Duchenne muscular dystrophy gene in mice and humans

    SciTech Connect

    Hoffman, E.P.; Monaco, A.P.; Feener, C.C.; Kunkel, L.M.

    1987-10-16

    A portion of the Duchenne muscular dystrophy (DMD) gene transcript from human fetal skeletal muscle and mouse adult heart was sequence, representing approximately 25 percent of the total, 14-kb DMD transcript. The nucleic acid and predicted amino acid sequences from the two species are nearly 90 percent homologous. The amino acid sequence that is predicted from this portion of the DMD gene indicates that the protein product might serve a structural role in muscle, but the abundance and tissue distribution of the messenger RNA suggest that the DMD protein is not nebulin.

  15. Gyrate atrophy of the choroid and retina diagnosed by ornithine-δ-aminotransferase gene analysis: a case report.

    PubMed

    Kim, Sang Jin; Lim, Dong Hui; Kim, Jae Hui; Kang, Se Woong

    2013-10-01

    A pair of 19-year-old female identical twins was referred to our hospital with progressive visual loss. They exhibited bilateral chorioretinal atrophy involving the midperiphery on fundoscopy and fluorescein angiography. Bilateral visual field constriction was noted on dynamic Goldmann perimetry, and a markedly impaired response was observed on both photopic and scotopic electroretinograms. Cystoid macular edema was identified in both eyes on optical coherence tomography. Plasma levels of ornithine were elevated. Based on these observations, the patients were diagnosed with gyrate atrophy of the choroid and retina. The clinical diagnosis was confirmed by mutation analysis of the ornithine-δ-aminotransferase (OAT) gene. Patients were treated with a pyridoxine supplement (300 mg/day) and an arginine-restricted diet to lower plasma levels of ornithine, which were successfully reduced without progression of chorioretinal atrophy for 15 months. Our report describes the first case of gyrate atrophy in the Korean population diagnosed by OAT gene analysis and treated with vitamin B6 dietary supplementation. PMID:24082780

  16. Immunological identification of a high molecular weight protein as a condidate for the product of the Duchenne muscular dystrophy gene

    SciTech Connect

    Kao, L.; Krstenansky, J.; Mendell, J.; Rammohan, K.W.; Gruenstein, E. )

    1988-06-01

    An oligopeptide was synthesized based on translation of the nucleotide sequence of the putative exon region of clone pERT87-25 from the gene for Duchenne muscular dystrophy. Immunization of rabbits with this oligopeptide induced the formation of antibodies directed against a protein present in human, rat, and rabbit skeletal muscle. This protein, which is missing in the skeletal muscle of two patients with Duchenne muscular dystrophy, has a molecular mass of {approx}320-420 kDa and is clearly different from the putative Duchenne muscular dystrophy-related protein nebulin. The data suggest that this 320-420-kDa protein is produced by the Duchenne muscular dystrophy gene.

  17. Interferon-Stimulated Gene 15 (ISG15) Conjugates Proteins in Dermatomyositis Muscle with Perifascicular Atrophy

    PubMed Central

    Salajegheh, Mohammad; Kong, Sek Won; Pinkus, Jack L.; Walsh, Ronan J.; Liao, Anne; Nazareno, Remedios; Amato, Anthony A.; Krastins, Bryan; Morehouse, Chris; Higgs, Brandon W.; Jallal, Bahija; Yao, Yhong; Sarracino, David A.; Parker, Kenneth

    2010-01-01

    Introduction Dermatomyositis (DM) is an autoimmune disease involving muscle and skin. Perifascicular atrophy (PFA) of myofibers is a specific and characteristic DM pathological lesion. Interferon-stimulated gene 15 (ISG15) is a ubiquitin-like modifier with a poorly understood immunological role. Methods We generated microarray data measuring the expression of approximately 18,000 genes in each of 113 human muscle biopsy specimens. Biopsy specimens and cultured skeletal muscle were further studied using immunohistochemistry, immunoblotting, proteomic profiling by liquid chromatography/mass spectrometry, real-time quantitative PCR, and laser capture microdissection. Results Transcripts encoding ISG15-conjugation pathway proteins were upregulated in DM with PFA (DM-PFA) muscle, with marked elevation of ISG15 (339-fold), HERC5 (62-fold), and USP18 (68-fold) present in all DM-PFA patients but none of 99 non-DM samples. Combined analysis with publicly available microarray datasets further showed marked ISG15 and USP18 transcript elevation had 100% sensitivity and specificity for 28 biopsies from adult DM-PFA and juvenile DM compared to 199 other muscle samples from a wide range of muscle diseases. Free ISG15 and ISG15-conjugated proteins were found by immunoblot only in DM-PFA muscle. Cultured human skeletal muscle exposed to type 1 interferons produced similar transcripts and both ISG15 protein and ISG15 conjugates. Laser capture microdissection followed by proteomic analysis showed deficiency of titin in DM perifascicular atrophic myofibers. Conclusion A large-scale microarray study of muscle samples from a diverse collection of muscle diseases revealed that the autoimmune disease dermatomyositis was uniquely associated with overactivation of the ISG15 conjugation pathway. Exposure of human skeletal muscle cell culture to type 1 interferons produces a molecular picture highly similar to that of human DM muscle biopsy specimens. Perifascicular atrophic myofibers in DM

  18. FHL1 reduces dystrophy in transgenic mice overexpressing FSHD muscular dystrophy region gene 1 (FRG1).

    PubMed

    Feeney, Sandra J; McGrath, Meagan J; Sriratana, Absorn; Gehrig, Stefan M; Lynch, Gordon S; D'Arcy, Colleen E; Price, John T; McLean, Catriona A; Tupler, Rossella; Mitchell, Christina A

    2015-01-01

    Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal-dominant disease with no effective treatment. The genetic cause of FSHD is complex and the primary pathogenic insult underlying the muscle disease is unknown. Several disease candidate genes have been proposed including DUX4 and FRG1. Expression analysis studies of FSHD report the deregulation of genes which mediate myoblast differentiation and fusion. Transgenic mice overexpressing FRG1 recapitulate the FSHD muscular dystrophy phenotype. Our current study selectively examines how increased expression of FRG1 may contribute to myoblast differentiation defects. We generated stable C2C12 cell lines overexpressing FRG1, which exhibited a myoblast fusion defect upon differentiation. To determine if myoblast fusion defects contribute to the FRG1 mouse dystrophic phenotype, this strain was crossed with skeletal muscle specific FHL1-transgenic mice. We previously reported that FHL1 promotes myoblast fusion in vitro and FHL1-transgenic mice develop skeletal muscle hypertrophy. In the current study, FRG1 mice overexpressing FHL1 showed an improvement in the dystrophic phenotype, including a reduced spinal kyphosis, increased muscle mass and myofiber size, and decreased muscle fibrosis. FHL1 expression in FRG1 mice, did not alter satellite cell number or activation, but enhanced myoblast fusion. Primary myoblasts isolated from FRG1 mice showed a myoblast fusion defect that was rescued by FHL1 expression. Therefore, increased FRG1 expression may contribute to a muscular dystrophy phenotype resembling FSHD by impairing myoblast fusion, a defect that can be rescued by enhanced myoblast fusion via expression of FHL1. PMID:25695429

  19. FHL1 Reduces Dystrophy in Transgenic Mice Overexpressing FSHD Muscular Dystrophy Region Gene 1 (FRG1)

    PubMed Central

    Feeney, Sandra J.; McGrath, Meagan J.; Sriratana, Absorn; Gehrig, Stefan M.; Lynch, Gordon S.; D’Arcy, Colleen E.; Price, John T.; McLean, Catriona A.; Tupler, Rossella; Mitchell, Christina A.

    2015-01-01

    Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal-dominant disease with no effective treatment. The genetic cause of FSHD is complex and the primary pathogenic insult underlying the muscle disease is unknown. Several disease candidate genes have been proposed including DUX4 and FRG1. Expression analysis studies of FSHD report the deregulation of genes which mediate myoblast differentiation and fusion. Transgenic mice overexpressing FRG1 recapitulate the FSHD muscular dystrophy phenotype. Our current study selectively examines how increased expression of FRG1 may contribute to myoblast differentiation defects. We generated stable C2C12 cell lines overexpressing FRG1, which exhibited a myoblast fusion defect upon differentiation. To determine if myoblast fusion defects contribute to the FRG1 mouse dystrophic phenotype, this strain was crossed with skeletal muscle specific FHL1-transgenic mice. We previously reported that FHL1 promotes myoblast fusion in vitro and FHL1-transgenic mice develop skeletal muscle hypertrophy. In the current study, FRG1 mice overexpressing FHL1 showed an improvement in the dystrophic phenotype, including a reduced spinal kyphosis, increased muscle mass and myofiber size, and decreased muscle fibrosis. FHL1 expression in FRG1 mice, did not alter satellite cell number or activation, but enhanced myoblast fusion. Primary myoblasts isolated from FRG1 mice showed a myoblast fusion defect that was rescued by FHL1 expression. Therefore, increased FRG1 expression may contribute to a muscular dystrophy phenotype resembling FSHD by impairing myoblast fusion, a defect that can be rescued by enhanced myoblast fusion via expression of FHL1. PMID:25695429

  20. Cerebral Atrophy

    MedlinePlus

    ... In brain tissue, atrophy describes a loss of neurons and the connections between them. Atrophy can be ... syndrome, which interfere with the basic functions of neurons multiple sclerosis , which causes inflammation, myelin damage, and ...

  1. Perspective on Adeno-Associated Virus Capsid Modification for Duchenne Muscular Dystrophy Gene Therapy.

    PubMed

    Nance, Michael E; Duan, Dongsheng

    2015-12-01

    Duchenne muscular dystrophy (DMD) is a X-linked, progressive childhood myopathy caused by mutations in the dystrophin gene, one of the largest genes in the genome. It is characterized by skeletal and cardiac muscle degeneration and dysfunction leading to cardiac and/or respiratory failure. Adeno-associated virus (AAV) is a highly promising gene therapy vector. AAV gene therapy has resulted in unprecedented clinical success for treating several inherited diseases. However, AAV gene therapy for DMD remains a significant challenge. Hurdles for AAV-mediated DMD gene therapy include the difficulty to package the full-length dystrophin coding sequence in an AAV vector, the necessity for whole-body gene delivery, the immune response to dystrophin and AAV capsid, and the species-specific barriers to translate from animal models to human patients. Capsid engineering aims at improving viral vector properties by rational design and/or forced evolution. In this review, we discuss how to use the state-of-the-art AAV capsid engineering technologies to overcome hurdles in AAV-based DMD gene therapy.

  2. Research Resource: Hormones, Genes, and Athleticism: Effect of Androgens on the Avian Muscular Transcriptome.

    PubMed

    Fuxjager, Matthew J; Lee, Jae-Hyung; Chan, Tak-Ming; Bahn, Jae Hoon; Chew, Jenifer G; Xiao, Xinshu; Schlinger, Barney A

    2016-02-01

    Male vertebrate social displays vary from physically simple to complex, with the latter involving exquisite motor command of the body and appendages. Studies of these displays have, in turn, provided substantial insight into neuromotor mechanisms. The neotropical golden-collared manakin (Manacus vitellinus) has been used previously as a model to investigate intricate motor skills because adult males of this species perform an acrobatic and androgen-dependent courtship display. To support this behavior, these birds express elevated levels of androgen receptors (AR) in their skeletal muscles. Here we use RNA sequencing to explore how testosterone (T) modulates the muscular transcriptome to support male manakin courtship displays. In addition, we explore how androgens influence gene expression in the muscles of the zebra finch (Taenopygia guttata), a model passerine bird with a limited courtship display and minimal muscle AR. We identify androgen-dependent, muscle-specific gene regulation in both species. In addition, we identify manakin-specific effects that are linked to muscle use during the manakin display, including androgenic regulation of genes associated with muscle fiber contractility, cellular homeostasis, and energetic efficiency. Overall, our results point to numerous genes and gene networks impacted by androgens in male birds, including some that underlie optimal muscle function necessary for performing acrobatic display routines. Manakins are excellent models to explore gene regulation promoting athletic ability. PMID:26745669

  3. Limb-girdle muscular dystrophy in the Agarwals: Utility of founder mutations in CAPN3 gene

    PubMed Central

    Khadilkar, Satish V.; Chaudhari, Chetan R.; Dastur, Rashna S.; Gaitonde, Pradnya S.; Yadav, Jayendra G.

    2016-01-01

    Background and Purpose: Diagnostic evaluation of limb-girdle muscular dystrophy type 2A (LGMD2A) involves specialized studies on muscle biopsy and mutation analysis. Mutation screening is the gold standard for diagnosis but is difficult as the gene is large and multiple mutations are known. This study evaluates the utility of two known founder mutations as a first-line diagnostic test for LGMD2A in the Agarwals. Materials and Methods: The Agarwals with limb-girdle muscular dystrophy (LGMD) phenotype were analyzed for two founder alleles (intron 18/exon 19 c.2051-1G>T and exon 22 c.2338G>C). Asymptomatic first-degree relatives of patients with genetically confirmed mutations and desirous of counseling were screened for founder mutations. Results: Founder alleles were detected in 26 out of 29 subjects with LGMD phenotype (89%). The most common genotype observed was homozygous for exon 22 c.2338 G>C mutation followed by compound heterozygosity. Single founder allele was identified in two. Single allele was detected in two of the five asymptomatic relatives. Conclusion: Eighty-nine percent of the Agarwals having LGMD phenotype have LGMD2A resulting from founder mutations. Founder allele analysis can be utilized as the initial noninvasive diagnostic step for index cases, carrier detection, and counseling. PMID:27011640

  4. Emerging gene editing strategies for Duchenne muscular dystrophy targeting stem cells

    PubMed Central

    Bertoni, Carmen

    2014-01-01

    The progressive loss of muscle mass characteristic of many muscular dystrophies impairs the efficacy of most of the gene and molecular therapies currently being pursued for the treatment of those disorders. It is becoming increasingly evident that a therapeutic application, to be effective, needs to target not only mature myofibers, but also muscle progenitors cells or muscle stem cells able to form new muscle tissue and to restore myofibers lost as the result of the diseases or during normal homeostasis so as to guarantee effective and lost lasting effects. Correction of the genetic defect using oligodeoxynucleotides (ODNs) or engineered nucleases holds great potential for the treatment of many of the musculoskeletal disorders. The encouraging results obtained by studying in vitro systems and model organisms have set the groundwork for what is likely to become an emerging field in the area of molecular and regenerative medicine. Furthermore, the ability to isolate and expand from patients various types of muscle progenitor cells capable of committing to the myogenic lineage provides the opportunity to establish cell lines that can be used for transplantation following ex vivo manipulation and expansion. The purpose of this article is to provide a perspective on approaches aimed at correcting the genetic defect using gene editing strategies and currently under development for the treatment of Duchenne muscular dystrophy (DMD), the most sever of the neuromuscular disorders. Emphasis will be placed on describing the potential of using the patient own stem cell as source of transplantation and the challenges that gene editing technologies face in the field of regenerative biology. PMID:24795643

  5. Intellectual ability in the duchenne muscular dystrophy and dystrophin gene mutation location.

    PubMed

    Milic Rasic, V; Vojinovic, D; Pesovic, J; Mijalkovic, G; Lukic, V; Mladenovic, J; Kosac, A; Novakovic, I; Maksimovic, N; Romac, S; Todorovic, S; Savic Pavicevic, D

    2014-12-01

    Duchenne muscular dystrophy (DMD) is the most common form of muscular dystrophy during childhood. Mutations in dystrophin (DMD) gene are also recognized as a cause of cognitive impairment. We aimed to determine the association between intelligence level and mutation location in DMD genes in Serbian patients with DMD. Forty-one male patients with DMD, aged 3 to 16 years, were recruited at the Clinic for Neurology and Psychiatry for Children and Youth in Belgrade, Serbia. All patients had defined DMD gene deletions or duplications [multiplex ligation-dependent probe amplification (MLPA), polymerase chain reaction (PCR)] and cognitive status assessment (Wechsler Intelligence Scale for Children, Brunet-Lezine scale, Vineland-Doll scale). In 37 patients with an estimated full scale intelligence quotient (FSIQ), six (16.22%) had borderline intelligence (70

  6. Animal models of Duchenne muscular dystrophy: from basic mechanisms to gene therapy

    PubMed Central

    McGreevy, Joe W.; Hakim, Chady H.; McIntosh, Mark A.; Duan, Dongsheng

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disorder. It is caused by loss-of-function mutations in the dystrophin gene. Currently, there is no cure. A highly promising therapeutic strategy is to replace or repair the defective dystrophin gene by gene therapy. Numerous animal models of DMD have been developed over the last 30 years, ranging from invertebrate to large mammalian models. mdx mice are the most commonly employed models in DMD research and have been used to lay the groundwork for DMD gene therapy. After ~30 years of development, the field has reached the stage at which the results in mdx mice can be validated and scaled-up in symptomatic large animals. The canine DMD (cDMD) model will be excellent for these studies. In this article, we review the animal models for DMD, the pros and cons of each model system, and the history and progress of preclinical DMD gene therapy research in the animal models. We also discuss the current and emerging challenges in this field and ways to address these challenges using animal models, in particular cDMD dogs. PMID:25740330

  7. X-linked markers in the Duchenne muscular dystrophy gene associated with oral clefts.

    PubMed

    Patel, Poorav J; Beaty, Terri H; Ruczinski, Ingo; Murray, Jeffrey C; Marazita, Mary L; Munger, Ronald G; Hetmanski, Jacqueline B; Wu, Tao; Murray, Tanda; Rose, Margaret; Redett, Richard J; Jin, Sheng C; Lie, Rolv T; Wu-Chou, Yah-Huei; Wang, Hong; Ye, Xiaoqian; Yeow, Vincent; Chong, Samuel; Jee, Sun H; Shi, Bing; Scott, Alan F

    2013-04-01

    As part of an international consortium, case-parent trios were collected for a genome-wide association study of isolated, non-syndromic oral clefts, including cleft lip (CL), cleft palate (CP), and cleft lip and palate (CLP). Non-syndromic oral clefts have a complex and heterogeneous etiology. Risk is influenced by genes and environmental factors, and differs markedly by gender. Family-based association tests (FBAT) were used on 14,486 single nucleotide polymorphisms (SNPs) spanning the X chromosome, stratified by type of cleft and racial group. Significant results, even after multiple-comparisons correction, were obtained for the Duchenne muscular dystrophy (DMD) gene, the largest single gene in the human genome, among CL/P (i.e., both CL and CLP combined) trios. When stratified into groups of European and Asian ancestry, stronger signals were obtained for Asian subjects. Although conventional sliding-window haplotype analysis showed no increase in significance, selected combinations of the 25 most significant SNPs in the DMD gene identified four SNPs together that attained genome-wide significance among Asian CL/P trios, raising the possibility of interaction between distant SNPs within the DMD gene. PMID:23489894

  8. [Functional assessment for people unable to walk due to spinal muscular atrophy and Duchenne muscular dystrophy. Translation and validation of the Egen Klassifikation 2 scale for the Spanish population].

    PubMed

    Fagoaga, Joaquín; Girabent-Farrés, Montserrat; Bagur-Calafat, Caritat; Febrer, Anna; Steffensen, Birgit F

    2015-05-16

    Introduccion. La escala Egen Klassifikation 2 (EK2), ampliacion de la escala EK, evalua la capacidad funcional de personas con atrofia muscular espinal (AME) y distrofia muscular de Duchenne (DMD) que estan en fase de silla de ruedas. Esta version es mas especifica para la AME que su antecesora. Objetivo. Analizar la validez y fiabilidad de la version española de dicha escala como instrumento de medicion de la capacidad funcional en pacientes afectos de AME y DMD que estan en silla de ruedas. Pacientes y metodos. Primeramente se realizo una traduccion-retrotraduccion al español de la version en ingles de la EK2 y, posteriormente, se estudio la fiabilidad de la version traducida. Para ello, se seleccionaron 39 pacientes, de edades comprendidas entre 4 y 60 años, que fueron valorados por dos observadores. Para evaluar la concordancia intraobservador se realizaron dos evaluaciones por un mismo observador, y para la interobservador, se realizo una tercera evaluacion por un segundo observador. Resultados. Los valores obtenidos referidos a la puntuacion total de los items de la escala (suma EK2) reflejan una fiabilidad intra e interobservador excelente, de 0,993 y 0,988, respectivamente. Asimismo, para cada uno de los items, la fiabilidad fue excelente, a excepcion de un item, en el que fue buena. Conclusiones. La version española de la escala EK2 es un instrumento valido y fiable para la poblacion española como herramienta de medicion de la capacidad funcional en pacientes con AME y DMD que estan en silla de ruedas.

  9. Muscles in a mouse model of spinal muscular atrophy show profound defects in neuromuscular development even in the absence of failure in neuromuscular transmission or loss of motor neurons

    PubMed Central

    Lee, Young il; Mikesh, Michelle; Smith, Ian; Rimer, Mendell; Thompson, Wesley

    2011-01-01

    A mouse model of the devastating human disease "spinal muscular atrophy" (SMA) was used to investigate the severe muscle weakness and spasticity that precedes the death of these animals near the end of the 2nd postnatal week. Counts of motor units to the soleus muscle as well as of axons in the soleus muscle nerve showed no loss of motor neurons. Similarly, neither immunostaining of neuromuscular junctions nor the measurement of the tension generated by nerve stimulation gave evidence of any significant impairment in neuromuscular transmission, even when animals were maintained up to 5 days longer via a supplementary diet. However, the muscles were clearly weaker, generating less than half their normal tension. Weakness in 3 muscles examined in the study appears due to a severe but uniform reduction in muscle fiber size. The size reduction results from a failure of muscle fibers to grow during early postnatal development and, in soleus, to a reduction in number of fibers generated. Neuromuscular development is severely delayed in these mutant animals: expression of myosin heavy chain isoforms, the elimination of polyneuronal innervation, the maturation in the shape of the AChR plaque, the arrival of SCs at the junctions and their coverage of the nerve terminal, the development of junctional folds. Thus, if SMA in this particular mouse is a disease of motor neurons, it can act in a manner that does not result in their death or disconnection from their targets but nonetheless alters many aspects of neuromuscular development. PMID:21658376

  10. Muscles in a mouse model of spinal muscular atrophy show profound defects in neuromuscular development even in the absence of failure in neuromuscular transmission or loss of motor neurons.

    PubMed

    Lee, Young Il; Mikesh, Michelle; Smith, Ian; Rimer, Mendell; Thompson, Wesley

    2011-08-15

    A mouse model of the devastating human disease "spinal muscular atrophy" (SMA) was used to investigate the severe muscle weakness and spasticity that precede the death of these animals near the end of the 2nd postnatal week. Counts of motor units to the soleus muscle as well as of axons in the soleus muscle nerve showed no loss of motor neurons. Similarly, neither immunostaining of neuromuscular junctions nor the measurement of the tension generated by nerve stimulation gave evidence of any significant impairment in neuromuscular transmission, even when animals were maintained up to 5days longer via a supplementary diet. However, the muscles were clearly weaker, generating less than half their normal tension. Weakness in 3 muscles examined in the study appears due to a severe but uniform reduction in muscle fiber size. The size reduction results from a failure of muscle fibers to grow during early postnatal development and, in soleus, to a reduction in number of fibers generated. Neuromuscular development is severely delayed in these mutant animals: expression of myosin heavy chain isoforms, the elimination of polyneuronal innervation, the maturation in the shape of the AChR plaque, the arrival of SCs at the junctions and their coverage of the nerve terminal, the development of junctional folds. Thus, if SMA in this particular mouse is a disease of motor neurons, it can act in a manner that does not result in their death or disconnection from their targets but nonetheless alters many aspects of neuromuscular development.

  11. Dilysine motifs in exon 2b of SMN protein mediate binding to the COPI vesicle protein α-COP and neurite outgrowth in a cell culture model of spinal muscular atrophy.

    PubMed

    Custer, Sara K; Todd, Adrian G; Singh, Natalia N; Androphy, Elliot J

    2013-10-15

    Spinal muscular atrophy (SMA) is a devastating neuromuscular disorder that stems from low levels of survival of motor neuron (SMN) protein. The processes that cause motor neurons and muscle cells to become dysfunctional are incompletely understood. We are interested in neuromuscular homeostasis and the stresses put upon that system by loss of SMN. We recently reported that α-COP, a member of the coatomer complex of coat protein I (COPI) vesicles, is an SMN-binding partner, implicating this protein complex in normal SMN function. To investigate the functional significance of the interaction between α-COP and SMN, we constructed an inducible NSC-34 cell culture system to model the consequences of SMN depletion and find that depletion of SMN protein results in shortened neurites. Heterologous expression of human SMN, and interestingly over-expression of α-COP, restores normal neurite length and morphology. Mutagenesis of the canonical COPI dilysine motifs in exon 2b results in failure to bind to α-COP and abrogates the ability of human SMN to restore neurite outgrowth in SMN-depleted motor neuron-like NSC-34 cells. We conclude that the interaction between SMN and α-COP serves an important function in the growth and maintenance of motor neuron processes and may play a significant role in the pathogenesis of SMA. PMID:23727837

  12. Patterns of dystrophin gene deletion in Egyptian Duchenne/Becker muscular dystrophy patients

    PubMed Central

    El Sherif, RM; Aly Fahmy, N; Nonaka, I; Etribi, MA

    2007-01-01

    Summary Large variations in the proportion of intragenic deletion in the dystrophin gene have been observed in different populations. Although dystrophin gene deletion was extensively studied all over the world, only few studies were done on Egyptian population and there was no account on the dystrophin gene duplication. In this study, we present our results on the pattern of deletion of the dystrophin gene together with the usage of quantitative polymerase chain reaction (PCR) as a method for duplication analysis within the dystrophin gene in Egyptian patients. Forty one Duchene/Becker muscular dystrophy patients were included in this study. The diagnosis was based on detailed clinical assessment, serum creatine kinase (CK) level, neurophysiologic study and muscle biopsy for histopathological analysis. DNA was extracted from ten milliliter peripheral blood according to basic protocol, and multiplex polymerase chain reaction for dystrophin gene using both Chamberlin and Beggs sets of primers amplifying eighteen exons covering the two main dystrophin gene hot spots. In addition primers from Abbs set were used when it was necessary to check the exon borders. DNA from cases with no detectable deletion was analyzed for dystrophin gene duplication using quantitative PCR technique. We had a percentage of 61.1% deletion which is higher than data from previous Egyptian studies and most of the deletion was localized in the major hotspot region between exons 44 and 52 and we had 5% of the cases with duplication. Our results were compared with previous studies from Egypt and with studies from different populations especially with data recorded in the Middle East and North Africa. PMID:18646563

  13. Molecular analysis of the Duchenne muscular dystrophy gene in Spanish individuals: Deletion detection and familial diagnosis

    SciTech Connect

    Patino, A.; Garcia-Delgado, M.; Narbona, J.

    1995-11-06

    Deletion studies were performed in 26 Duchenne muscular dystrophy (DMD) patients through amplification of nine different exons by multiplex polymerase chain reaction (PCR). DNA from paraffin-embedded muscle biopsies was analyzed in 12 of the 26 patients studied. Optimization of this technique is of great utility because it enables analysis of material stored in pathology archives. PCR deletion detection, useful in DMD-affected boys, is problematic in determining the carrier state in female relatives. For this reason, to perform familial linkage diagnosis, we made use of a dinucleotide repeat polymorphism (STRP, or short tandem repeat polymorphism) located in intron 49 of the gene. We designed a new pair of primers that enabled the detection of 22 different alleles in relatives in the 14 DMD families studied. The use of this marker allowed familial diagnosis in 11 of the 14 DMD families and detection of de novo deletions in 3 of the probands. 8 refs., 5 figs., 2 tabs.

  14. Gene therapies that restore dystrophin expression for the treatment of Duchenne muscular dystrophy.

    PubMed

    Robinson-Hamm, Jacqueline N; Gersbach, Charles A

    2016-09-01

    Duchenne muscular dystrophy is one of the most common inherited genetic diseases and is caused by mutations to the DMD gene that encodes the dystrophin protein. Recent advances in genome editing and gene therapy offer hope for the development of potential therapeutics. Truncated versions of the DMD gene can be delivered to the affected tissues with viral vectors and show promising results in a variety of animal models. Genome editing with the CRISPR/Cas9 system has recently been used to restore dystrophin expression by deleting one or more exons of the DMD gene in patient cells and in a mouse model that led to functional improvement of muscle strength. Exon skipping with oligonucleotides has been successful in several animal models and evaluated in multiple clinical trials. Next-generation oligonucleotide formulations offer significant promise to build on these results. All these approaches to restoring dystrophin expression are encouraging, but many hurdles remain. This review summarizes the current state of these technologies and summarizes considerations for their future development.

  15. Gene therapies that restore dystrophin expression for the treatment of Duchenne muscular dystrophy.

    PubMed

    Robinson-Hamm, Jacqueline N; Gersbach, Charles A

    2016-09-01

    Duchenne muscular dystrophy is one of the most common inherited genetic diseases and is caused by mutations to the DMD gene that encodes the dystrophin protein. Recent advances in genome editing and gene therapy offer hope for the development of potential therapeutics. Truncated versions of the DMD gene can be delivered to the affected tissues with viral vectors and show promising results in a variety of animal models. Genome editing with the CRISPR/Cas9 system has recently been used to restore dystrophin expression by deleting one or more exons of the DMD gene in patient cells and in a mouse model that led to functional improvement of muscle strength. Exon skipping with oligonucleotides has been successful in several animal models and evaluated in multiple clinical trials. Next-generation oligonucleotide formulations offer significant promise to build on these results. All these approaches to restoring dystrophin expression are encouraging, but many hurdles remain. This review summarizes the current state of these technologies and summarizes considerations for their future development. PMID:27542949

  16. Duchenne muscular dystrophy

    MedlinePlus

    Pseudohypertrophic muscular dystrophy; Muscular dystrophy - Duchenne type ... Duchenne muscular dystrophy is a form of muscular dystrophy . It worsens quickly. Other muscular dystrophies (including Becker's muscular dystrophy ) get ...

  17. Adeno-Associated Viral-Mediated LARGE Gene Therapy Rescues the Muscular Dystrophic Phenotype in Mouse Models of Dystroglycanopathy

    PubMed Central

    Yu, Miao; He, Yonglin; Wang, Kejian; Zhang, Peng; Zhang, Shengle

    2013-01-01

    Abstract Dystroglycanopathies are a group of congenital muscular dystrophies (CMD) often caused by mutations in genes encoding glycosyltransferases that lead to hypoglycosylation of α-dystroglycan (α-DG) and reduce its extracellular matrix-binding activity. Overexpressing LARGE (formerly known as like-glycosyltransferase) generates an extracellular matrix-binding carbohydrate epitope in cells with CMD-causing mutations in not only LARGE but also other glycosyltransferases, including POMT1, POMGnT1, and fukutin, creating the possibilities of a one-for-all gene therapy. To determine the feasibility of LARGE gene therapy, a serotype 9 adeno-associated viral vector for overexpressing LARGE (AAV9-LARGE) was injected intracardially into newborns of two mouse models of CMD: the natural LARGE mutant Largemyd mice and protein O-mannose N-acetylglucosaminyltransferase 1 (POMGnT1) knockout mice. AAV9-LARGE virus treatment yielded partial restoration of α-DG glycosylation and ligand-binding activity. The muscular dystrophy phenotype in skeletal muscles was ameliorated as revealed by significantly reduced fibrosis, necrosis, and numbers of centrally located nuclei with improved motor function. These results indicate that LARGE overexpression in vivo by AAV9-mediated gene therapy is effective at restoring functional glycosylation of α-DG and rescuing the muscular dystrophy phenotype in deficiency of not only LARGE but also POMGnT1, providing evidence that in vivo LARGE gene therapy may be broadly useful in dystroglycanopathies. PMID:23379513

  18. Differential expression of perilipin 2 and 5 in human skeletal muscle during aging and their association with atrophy-related genes.

    PubMed

    Conte, Maria; Vasuri, Francesco; Bertaggia, Enrico; Armani, Andrea; Santoro, Aurelia; Bellavista, Elena; Degiovanni, Alessio; D'Errico-Grigioni, Antonia; Trisolino, Giovanni; Capri, Miriam; Franchi, Martino V; Narici, Marco V; Sandri, Marco; Franceschi, Claudio; Salvioli, Stefano

    2015-06-01

    Sarcopenia, the progressive loss of muscle mass and strength, is a phenomenon characterizing human aging whose etiology is still not clear. While there is increasing evidence for the influence of inter-muscular adipose tissue infiltration in the development of sarcopenia, much less is known about a possible role for intra-muscular triglycerides (IMTG). IMTG accumulate in form of lipid droplets decorated by proteins such as Perilipins (Plins). In skeletal muscle the most abundant are Plin2 and Plin5. In this study we compared the expression of these two Plins in Vastus lateralis muscle samples of subjects of different age, both healthy donors (HD) and patients with limited lower limb mobility (LLMI). These latter are characterized by a condition of chronic physical inactivity. Plin2 expression resulted higher in old age for both HD and LLMI patients, while Plin5 slightly decreased only in LLMI patients. Moreover, in these patients, only Plin2 was associated with the decrease of muscle strength and the expression of factors related to muscle atrophy (MuRF1, Atrogin and p53). An increase in Plin2 and a concomitant decrease of Plin5 was also observed when we considered animal model of disuse-induced muscle atrophy. As a whole, these data indicate that Plin2 and Plin5 have a different expression pattern during muscle aging and inactivity, and only Plin2 appears to be associated with functional alterations of the muscle.

  19. Loss of epigenetic silencing of the DUX4 transcription factor gene in facioscapulohumeral muscular dystrophy.

    PubMed

    Hewitt, Jane E

    2015-10-15

    Current genetic and molecular evidence best supports an epigenetic mechanism for facioscapulohumeral muscular dystrophy (FSHD), whereby de-repression of the D4Z4 macrosatellite array leads to aberrant expression of the DUX4 transcription factor in skeletal muscle. This de-repression is triggered by either array contraction or (more rarely) by mutation of the SMCHD1 (structural maintenance of chromosomes flexible hinge domain containing 1) gene. Activation of DUX4 targets, including germline genes and several mammalian retrotransposons, then drives pathogenesis. A direct role for DUX4 mRNA in suppression of nonsense-mediated decay pathways has recently been demonstrated and may also contribute to muscle pathology. Loss of D4Z4 repression in FSHD is observed as hypomethylation of the array accompanied by loss of repressive chromatin marks. The molecular mechanisms of D4Z4 repression are poorly understood, but recent data have identified an Argonaute (AGO)-dependent siRNA pathway. Targeting this pathway by exogenous siRNAs could be a therapeutic strategy for FSHD. PMID:26113644

  20. Disruption of snRNP biogenesis factors Tgs1 and pICln induces phenotypes that mirror aspects of SMN-Gemins complex perturbation in Drosophila, providing new insights into spinal muscular atrophy.

    PubMed

    Borg, Rebecca M; Fenech Salerno, Benji; Vassallo, Neville; Bordonne, Rémy; Cauchi, Ruben J

    2016-10-01

    The neuromuscular disorder, spinal muscular atrophy (SMA), results from insufficient levels of the survival motor neuron (SMN) protein. Together with Gemins 2-8 and Unrip, SMN forms the large macromolecular SMN-Gemins complex, which is known to be indispensable for chaperoning the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs). It remains unclear whether disruption of this function is responsible for the selective neuromuscular degeneration in SMA. In the present study, we first show that loss of wmd, the Drosophila Unrip orthologue, has a negative impact on the motor system. However, due to lack of a functional relationship between wmd/Unrip and Gemin3, it is likely that Unrip joined the SMN-Gemins complex only recently in evolution. Second, we uncover that disruption of either Tgs1 or pICln, two cardinal players in snRNP biogenesis, results in viability and motor phenotypes that closely resemble those previously uncovered on loss of the constituent members of the SMN-Gemins complex. Interestingly, overexpression of both factors leads to motor dysfunction in Drosophila, a situation analogous to that of Gemin2. Toxicity is conserved in the yeast S. pombe where pICln overexpression induces a surplus of Sm proteins in the cytoplasm, indicating that a block in snRNP biogenesis is partly responsible for this phenotype. Importantly, we show a strong functional relationship and a physical interaction between Gemin3 and either Tgs1 or pICln. We propose that snRNP biogenesis is the pathway connecting the SMN-Gemins complex to a functional neuromuscular system, and its disturbance most likely leads to the motor dysfunction that is typical in SMA. PMID:27388936

  1. Olivopontocerebellar atrophy

    MedlinePlus

    OPCA; Olivopontocerebellar degeneration; Multiple system atrophy – cerebellar predominance; MSA-C ... Tremor medications, such as those used to treat Parkinson's disease Speech and physical therapy Techniques to prevent ...

  2. Nonsense mutation-associated Becker muscular dystrophy: interplay between exon definition and splicing regulatory elements within the DMD gene

    PubMed Central

    Flanigan, Kevin M.; Dunn, Diane M.; von Niederhausern, Andrew; Soltanzadeh, Payam; Howard, Michael T.; Sampson, Jacinda B.; Swoboda, Kathryn J.; Bromberg, Mark B.; Mendell, Jerry R.; Taylor, Laura; Anderson, Christine B.; Pestronk, Alan; Florence, Julaine; Connolly, Anne M.; Mathews, Katherine D.; Wong, Brenda; Finkel, Richard S.; Bonnemann, Carsten G.; Day, John W.; McDonald, Craig; Weiss, Robert B.

    2013-01-01

    Nonsense mutations are usually predicted to function as null alleles due to premature termination of protein translation. However, nonsense mutations in the DMD gene, encoding the dystrophin protein, have been associated with both the severe Duchenne Muscular Dystrophy (DMD) and milder Becker Muscular Dystrophy (BMD) phenotypes. In a large survey, we identified 243 unique nonsense mutations in the DMD gene, and for 210 of these we could establish definitive phenotypes. We analyzed the reading frame predicted by exons flanking those in which nonsense mutations were found, and present evidence that nonsense mutations resulting in BMD likely do so by inducing exon skipping, confirming that exonic point mutations affecting exon definition have played a significant role in determining phenotype. We present a new model based on the combination of exon definition and intronic splicing regulatory elements for the selective association of BMD nonsense mutations with a subset of DMD exons prone to mutation-induced exon skipping. PMID:21972111

  3. Nonsense mutation-associated Becker muscular dystrophy: interplay between exon definition and splicing regulatory elements within the DMD gene.

    PubMed

    Flanigan, Kevin M; Dunn, Diane M; von Niederhausern, Andrew; Soltanzadeh, Payam; Howard, Michael T; Sampson, Jacinda B; Swoboda, Kathryn J; Bromberg, Mark B; Mendell, Jerry R; Taylor, Laura E; Anderson, Christine B; Pestronk, Alan; Florence, Julaine M; Connolly, Anne M; Mathews, Katherine D; Wong, Brenda; Finkel, Richard S; Bonnemann, Carsten G; Day, John W; McDonald, Craig; Weiss, Robert B

    2011-03-01

    Nonsense mutations are usually predicted to function as null alleles due to premature termination of protein translation. However, nonsense mutations in the DMD gene, encoding the dystrophin protein, have been associated with both the severe Duchenne Muscular Dystrophy (DMD) and milder Becker Muscular Dystrophy (BMD) phenotypes. In a large survey, we identified 243 unique nonsense mutations in the DMD gene, and for 210 of these we could establish definitive phenotypes. We analyzed the reading frame predicted by exons flanking those in which nonsense mutations were found, and present evidence that nonsense mutations resulting in BMD likely do so by inducing exon skipping, confirming that exonic point mutations affecting exon definition have played a significant role in determining phenotype. We present a new model based on the combination of exon definition and intronic splicing regulatory elements for the selective association of BMD nonsense mutations with a subset of DMD exons prone to mutation-induced exon skipping.

  4. A Phase 1/2a Follistatin Gene Therapy Trial for Becker Muscular Dystrophy

    PubMed Central

    Mendell, Jerry R; Sahenk, Zarife; Malik, Vinod; Gomez, Ana M; Flanigan, Kevin M; Lowes, Linda P; Alfano, Lindsay N; Berry, Katherine; Meadows, Eric; Lewis, Sarah; Braun, Lyndsey; Shontz, Kim; Rouhana, Maria; Clark, Kelly Reed; Rosales, Xiomara Q; Al-Zaidy, Samiah; Govoni, Alessandra; Rodino-Klapac, Louise R; Hogan, Mark J; Kaspar, Brian K

    2015-01-01

    Becker muscular dystrophy (BMD) is a variant of dystrophin deficiency resulting from DMD gene mutations. Phenotype is variable with loss of ambulation in late teenage or late mid-life years. There is currently no treatment for this condition. In this BMD proof-of-principle clinical trial, a potent myostatin antagonist, follistatin (FS), was used to inhibit the myostatin pathway. Extensive preclinical studies, using adeno-associated virus (AAV) to deliver follistatin, demonstrated an increase in strength. For this trial, we used the alternatively spliced FS344 to avoid potential binding to off target sites. AAV1.CMV.FS344 was delivered to six BMD patients by direct bilateral intramuscular quadriceps injections. Cohort 1 included three subjects receiving 3 × 1011 vg/kg/leg. The distance walked on the 6MWT was the primary outcome measure. Patients 01 and 02 improved 58 meters (m) and 125 m, respectively. Patient 03 showed no change. In Cohort 2, Patients 05 and 06 received 6 × 1011 vg/kg/leg with improved 6MWT by 108 m and 29 m, whereas, Patient 04 showed no improvement. No adverse effects were encountered. Histological changes corroborated benefit showing reduced endomysial fibrosis, reduced central nucleation, more normal fiber size distribution with muscle hypertrophy, especially at high dose. The results are encouraging for treatment of dystrophin-deficient muscle diseases. PMID:25322757

  5. Current Challenges and Future Directions in Recombinant AAV-Mediated Gene Therapy of Duchenne Muscular Dystrophy

    PubMed Central

    Okada, Takashi; Takeda, Shin'ichi

    2013-01-01

    Various characteristics of adeno-associated virus (AAV)-based vectors with long-term safe expression have made it an exciting transduction tool for clinical gene therapy of Duchenne muscular dystrophy (DMD). Although host immune reactions against the vector as well as transgene products were detected in some instances of the clinical studies, there have been promising observations. Methods of producing AAV vectors for considerable in vivo experimentation and clinical investigations have been developed and a number of studies with AAV vector-mediated muscle transduction were attempted. Notably, an intravenous limb perfusion transduction technique enables extensive transgene expression in the skeletal muscles without noticeable adverse events. Furthermore, cardiac transduction by the rAAV9-microdystrophin would be promising to prevent development of cardiac dysfunction. Recent achievements in transduction technology suggest that long-term transgene expression with therapeutic benefits in DMD treatment would be achieved by the rAAV-mediated transduction strategy with an adequate regimen to regulate host immune response. PMID:24276316

  6. Contrasting evolutionary histories of two introns of the duchenne muscular dystrophy gene, Dmd, in humans.

    PubMed Central

    Nachman, M W; Crowell, S L

    2000-01-01

    The Duchenne muscular dystrophy (Dmd) locus lies in a region of the X chromosome that experiences a high rate of recombination and is thus expected to be relatively unaffected by the effects of selection on nearby genes. To provide a picture of nucleotide variability at a high-recombination locus in humans, we sequenced 5. 4 kb from two introns of Dmd in a worldwide sample of 41 alleles from Africa, Asia, Europe, and the Americas. These same regions were also sequenced in one common chimpanzee and one orangutan. Dramatically different patterns of genetic variation were observed at these two introns, which are separated by >500 kb of DNA. Nucleotide diversity at intron 44 pi = 0.141% was more than four times higher than nucleotide diversity at intron 7 pi = 0.034% despite similar levels of divergence for these two regions. Intron 7 exhibited significant linkage disequilibrium extending over 10 kb and also showed a significant excess of rare polymorphisms. In contrast, intron 44 exhibited little linkage disequilibrium and no skew in the frequency distribution of segregating sites. Intron 7 was much more variable in Africa than in other continents, while intron 44 displayed similar levels of variability in different geographic regions. Comparison of intraspecific polymorphism to interspecific divergence using the HKA test revealed a significant reduction in variability at intron 7 relative to intron 44, and this effect was most pronounced in the non-African samples. These results are best explained by positive directional selection acting at or near intron 7 and demonstrate that even genes in regions of high recombination may be influenced by selection at linked sites. PMID:10924480

  7. MicroRNA in skeletal muscle development, growth, atrophy, and disease.

    PubMed

    Kovanda, Anja; Režen, Tadeja; Rogelj, Boris

    2014-01-01

    MicroRNAs (miRNAs) are short noncoding RNAs that are important global- as well as tissue- and cell-type-specific regulators of gene expression. Muscle-specific miRNAs or myomirs have been shown to control various processes in skeletal muscles, from myogenesis and muscle homeostasis to different responses to environmental stimuli, such as exercise. Importantly, myomirs are also involved in the development of muscle atrophy arising from aging, immobility, prolonged exposure to microgravity, or muscular and neuromuscular disorders. Additionally, muscle atrophy is both induced by and exacerbates many important chronic and infectious diseases. As global yet specific muscle regulators, myomirs are also good candidates for therapeutic use. Understanding the dynamics of myomirs expression and their role in the development of disease is necessary to determine their potential for muscle atrophy prevention.

  8. Effects of exercise training on atrophy gene expression in skeletal muscle of mice with chronic allergic lung inflammation.

    PubMed

    Durigan, J L Q; Peviani, S M; Russo, T L; Silva, A C D; Vieira, R P; Martins, M A; Carvalho, C R F; Salvini, T F

    2009-04-01

    We evaluated the effects of chronic allergic airway inflammation and of treadmill training (12 weeks) of low and moderate intensity on muscle fiber cross-sectional area and mRNA levels of atrogin-1 and MuRF1 in the mouse tibialis anterior muscle. Six 4-month-old male BALB/c mice (28.5 +/- 0.8 g) per group were examined: 1) control, non-sensitized and non-trained (C); 2) ovalbumin sensitized (OA, 20 microg per mouse); 3) non-sensitized and trained at 50% maximum speed _ low intensity (PT50%); 4) non-sensitized and trained at 75% maximum speed _ moderate intensity (PT75%); 5) OA-sensitized and trained at 50% (OA+PT50%), 6) OA-sensitized and trained at 75% (OA+PT75%). There was no difference in muscle fiber cross-sectional area among groups and no difference in atrogin-1 and MuRF1 expression between C and OA groups. All exercised groups showed significantly decreased expression of atrogin-1 compared to C (1.01 +/- 0.2-fold): PT50% = 0.71 +/- 0.12-fold; OA+PT50% = 0.74 +/- 0.03-fold; PT75% = 0.71 +/- 0.09-fold; OA+PT75% = 0.74 +/- 0.09-fold. Similarly significant results were obtained regarding MuRF1 gene expression compared to C (1.01 +/- 0.23-fold): PT50% = 0.53 +/- 0.20-fold; OA+PT50% = 0.55 +/- 0.11-fold; PT75% = 0.35 +/- 0.15-fold; OA+PT75% = 0.37 +/- 0.08-fold. A short period of OA did not induce skeletal muscle atrophy in the mouse tibialis anterior muscle and aerobic training at low and moderate intensity negatively regulates the atrophy pathway in skeletal muscle of healthy mice or mice with allergic lung inflammation.

  9. Neuroglobin Gene Therapy Prevents Optic Atrophy and Preserves Durably Visual Function in Harlequin Mice

    PubMed Central

    Lechauve, Christophe; Augustin, Sébastien; Cwerman-Thibault, Hélène; Reboussin, Élodie; Roussel, Delphine; Lai-Kuen, René; Saubamea, Bruno; Sahel, José-Alain; Debeir, Thomas; Corral-Debrinski, Marisol

    2014-01-01

    Neuroglobin (NGB) is considered as an endogenous neuroprotective molecule against stroke, since the protein alleviates the adverse effects of hypoxic and ischemic insults. We previously demonstrated the functional link between NGB and mitochondria since it is required for respiratory chain function. Thus, here, we evaluated the relevance of this effect in the Harlequin (Hq) mouse strain, which exhibits retinal ganglion cell (RGC) loss and optic atrophy due to a respiratory chain complex I (CI) defect. A twofold decrease of NGB amounts was observed in Hq retinas. We constructed a recombinant adeno-associated virus which combines to the mouse NGB open reading frame, its 5′ and 3′UTR, for guarantying mRNA stability and translation capacity. The vector was administrated intravitreally to Hq mice and NGB expression was stable for up to 7 months without negative effect on retinal architecture or function. On the contrary, RGCs and their axons were substantially preserved from degeneration; consequently, CI activity in optic nerves was protected conferring improvements in vision. Hence, we established that NGB prevents respiratory chain impairment, therefore, protecting visual function otherwise compromised by mitochondrial energetic failure. PMID:24622090

  10. Neuroglobin gene therapy prevents optic atrophy and preserves durably visual function in Harlequin mice.

    PubMed

    Lechauve, Christophe; Augustin, Sébastien; Cwerman-Thibault, Hélène; Reboussin, Élodie; Roussel, Delphine; Lai-Kuen, René; Saubamea, Bruno; Sahel, José-Alain; Debeir, Thomas; Corral-Debrinski, Marisol

    2014-06-01

    Neuroglobin (NGB) is considered as an endogenous neuroprotective molecule against stroke, since the protein alleviates the adverse effects of hypoxic and ischemic insults. We previously demonstrated the functional link between NGB and mitochondria since it is required for respiratory chain function. Thus, here, we evaluated the relevance of this effect in the Harlequin (Hq) mouse strain, which exhibits retinal ganglion cell (RGC) loss and optic atrophy due to a respiratory chain complex I (CI) defect. A twofold decrease of NGB amounts was observed in Hq retinas. We constructed a recombinant adeno-associated virus which combines to the mouse NGB open reading frame, its 5' and 3'UTR, for guarantying mRNA stability and translation capacity. The vector was administrated intravitreally to Hq mice and NGB expression was stable for up to 7 months without negative effect on retinal architecture or function. On the contrary, RGCs and their axons were substantially preserved from degeneration; consequently, CI activity in optic nerves was protected conferring improvements in vision. Hence, we established that NGB prevents respiratory chain impairment, therefore, protecting visual function otherwise compromised by mitochondrial energetic failure. PMID:24622090

  11. YAC contigs for 4q35 in the region of the facioscapulohumeral muscular dystrophy (FSHD) gene

    SciTech Connect

    Weiffenbach, B.; DuBois, J.; Manning, S.; Ma, N.S.; Moir, D. ); Schutte, B.C. ); Altherr, M.R. Los Alamos National Lab., NM ); Jacobsen, S.J. ); Stanton, V.P. Jr. )

    1994-02-01

    The authors report here the construction of a genetic linkage map and an overlapping set of clones containing DNA markers linked to the causative locus for facioscapulohumeral muscular dystrophy (FSHD) on 4q35. Multi-point linkage analysis placed eight loci in the following order with odds greater than 1000:1: cen-D4S171-FXI-D4S426-D4S187-D4S130-D4S163-D4S139-D4F35S1-qter. The most likely position of D4S809 was distal to D4F35S1. Thirty-four yeast artificial chromosomes (YACs) were isolated by PCR-based assays for STSs derived from DNA markers with known genetic and physical order. Walking from the insert ends of 2 YACs identified 7 additional YACs, bridging the gaps between three of the markers. Two new YACs were found by hybridization of a cosmid inter-Alu PCR product to dot blots of inter-Alu PCR products of YAC DNA pools. All YAC clones were positioned using the genetic and physical order of the STSs and inter-Alu PCR fingerprint data. Eleven of the YAC-, and two cosmids were mapped by fluorescence in situ hybridization to confirm the location of the clones and to detect chimerism. The 43 YACs were assembled into two contigs. The larger contig spans approximately 2.4 Mb and contains markers closest to the FSHD gene. 53 refs., 3 figs., 3 tabs.

  12. Multiple System Atrophy

    MedlinePlus

    ... Enhancing Diversity Find People About NINDS NINDS Multiple System Atrophy Information Page Condensed from Multiple System Atrophy ... Trials Organizations Publicaciones en Español What is Multiple System Atrophy? Multiple system atrophy (MSA) is a progressive ...

  13. Spinal Muscular Atrophy (SMA) (For Parents)

    MedlinePlus

    ... necessary to ensure adequate nutrition that doesn't overload a child with unnecessary calories. Children who can' ... Use Visit the Nemours Web site. Note: All information on KidsHealth® is for educational purposes only. For ...

  14. Regulation of a Notch3-Hes1 pathway and protective effect by a tocopherol-omega alkanol chain derivative in muscle atrophy.

    PubMed

    von Grabowiecki, Yannick; Licona, Cynthia; Palamiuc, Lavinia; Abreu, Paula; Vidimar, Vania; Coowar, Djalil; Mellitzer, Georg; Gaiddon, Christian

    2015-01-01

    Muscular atrophy, a physiopathologic process associated with severe human diseases such as amyotrophic lateral sclerosis (ALS) or cancer, has been linked to reactive oxygen species (ROS) production. The Notch pathway plays a role in muscle development and in muscle regeneration upon physical injury. In this study, we explored the possibility that the Notch pathway participates in the ROS-related muscular atrophy occurring in cancer-associated cachexia and ALS. We also tested whether hybrid compounds of tocopherol, harboring antioxidant activity, and the omega-alkanol chain, presenting cytoprotective activity, might reduce muscle atrophy and impact the Notch pathway. We identified one tocopherol-omega alkanol chain derivative, AGT251, protecting myoblastic cells against known cytotoxic agents. We showed that this compound presenting antioxidant activity counteracts the induction of the Notch pathway by cytotoxic stress, leading to a decrease of Notch1 and Notch3 expression. At the functional level, these regulations correlated with a repression of the Notch target gene Hes1 and the atrophy/remodeling gene MuRF1. Importantly, we also observed an induction of Notch3 and Hes1 expression in two murine models of muscle atrophy: a doxorubicin-induced cachexia model and an ALS murine model expressing mutated superoxide dismutase 1. In both models, the induction of Notch3 and Hes1 were partially opposed by AGT251, which correlated with ameliorations in body and muscle weight, reduction of muscular atrophy markers, and improved survival. Altogether, we identified a compound of the tocopherol family that protects against muscle atrophy in various models, possibly through the regulation of the Notch pathway.

  15. Regulation of a Notch3-Hes1 pathway and protective effect by a tocopherol-omega alkanol chain derivative in muscle atrophy.

    PubMed

    von Grabowiecki, Yannick; Licona, Cynthia; Palamiuc, Lavinia; Abreu, Paula; Vidimar, Vania; Coowar, Djalil; Mellitzer, Georg; Gaiddon, Christian

    2015-01-01

    Muscular atrophy, a physiopathologic process associated with severe human diseases such as amyotrophic lateral sclerosis (ALS) or cancer, has been linked to reactive oxygen species (ROS) production. The Notch pathway plays a role in muscle development and in muscle regeneration upon physical injury. In this study, we explored the possibility that the Notch pathway participates in the ROS-related muscular atrophy occurring in cancer-associated cachexia and ALS. We also tested whether hybrid compounds of tocopherol, harboring antioxidant activity, and the omega-alkanol chain, presenting cytoprotective activity, might reduce muscle atrophy and impact the Notch pathway. We identified one tocopherol-omega alkanol chain derivative, AGT251, protecting myoblastic cells against known cytotoxic agents. We showed that this compound presenting antioxidant activity counteracts the induction of the Notch pathway by cytotoxic stress, leading to a decrease of Notch1 and Notch3 expression. At the functional level, these regulations correlated with a repression of the Notch target gene Hes1 and the atrophy/remodeling gene MuRF1. Importantly, we also observed an induction of Notch3 and Hes1 expression in two murine models of muscle atrophy: a doxorubicin-induced cachexia model and an ALS murine model expressing mutated superoxide dismutase 1. In both models, the induction of Notch3 and Hes1 were partially opposed by AGT251, which correlated with ameliorations in body and muscle weight, reduction of muscular atrophy markers, and improved survival. Altogether, we identified a compound of the tocopherol family that protects against muscle atrophy in various models, possibly through the regulation of the Notch pathway. PMID:25326132

  16. Nonsense-codon mutations of the ornithine aminotransferase gene with decreased levels of mutant mRNA in gyrate atrophy.

    PubMed

    Mashima, Y; Murakami, A; Weleber, R G; Kennaway, N G; Clarke, L; Shiono, T; Inana, G

    1992-07-01

    A generalized deficiency of the mitochondrial matrix enzyme ornithine aminotransferase (OAT) is the inborn error in gyrate atrophy (GA), an autosomal recessive degenerative disease of the retina and choroid of the eye. Mutations in the OAT gene show a high degree of molecular heterogeneity in GA, reflecting the genetic heterogeneity in this disease. Using the combined techniques of PCR, denaturing gradient gel electrophoresis, and direct sequencing, we have identified three nonsense-codon mutations and one nonsense codon-generating mutation of the OAT gene in GA pedigrees. Three of them are single-base substitutions, and one is a 2-bp deletion resulting in a reading frameshift. A nonsense codon created at position 79 (TGA) by a frameshift and nonsense mutations at codons 209 (TAT----TAA) and 299 (TAC----TAG) result in abnormally low levels of OAT mRNA in the patient's skin fibroblasts. A nonsense mutation at codon 426 (CGA----TGA) in the last exon, however, has little effect on the mRNA level. Thus, the mRNA level can be reduced by nonsense-codon mutations, but the position of the mutation may be important, with earlier premature-translation termination having a greater effect than a later mutation.

  17. Whole dystrophin gene analysis by next-generation sequencing: a comprehensive genetic diagnosis of Duchenne and Becker muscular dystrophy.

    PubMed

    Wang, Yan; Yang, Yao; Liu, Jing; Chen, Xiao-Chun; Liu, Xin; Wang, Chun-Zhi; He, Xi-Yu

    2014-10-01

    Duchenne/Becker muscular dystrophies are the most frequent inherited neuromuscular diseases caused by mutations of the dystrophin gene. However, approximately 30% of patients with the disease do not receive a molecular diagnosis because of the complex mutational spectrum and the large size of the gene. The introduction and use of next-generation sequencing have advanced clinical genetic research and might be a suitable method for the detection of various types of mutations in the dystrophin gene. To identify the mutational spectrum using a single platform, whole dystrophin gene sequencing was performed using next-generation sequencing. The entire dystrophin gene, including all exons, introns and promoter regions, was target enriched using a DMD whole gene enrichment kit. The enrichment libraries were sequenced on an Illumina HiSeq 2000 sequencer using paired read 100 bp sequencing. We studied 26 patients: 21 had known large deletion/duplications and 5 did not have detectable large deletion/duplications by multiplex ligation-dependent probe amplification technology (MLPA). We applied whole dystrophin gene analysis by next-generation sequencing to the five patients who did not have detectable large deletion/duplications and to five randomly chosen patients from the 21 who did have large deletion/duplications. The sequencing data covered almost 100% of the exonic region of the dystrophin gene by ≥10 reads with a mean read depth of 147. Five small mutations were identified in the first five patients, of which four variants were unreported in the dmd.nl database. The deleted or duplicated exons and the breakpoints in the five large deletion/duplication patients were precisely identified. Whole dystrophin gene sequencing by next-generation sequencing may be a useful tool for the genetic diagnosis of Duchenne and Becker muscular dystrophies.

  18. Optic atrophy and a Leigh-like syndrome due to mutations in the c12orf65 gene: report of a novel mutation and review of the literature.

    PubMed

    Heidary, Gena; Calderwood, Laurel; Cox, Gerald F; Robson, Caroline D; Teot, Lisa A; Mullon, Jennifer; Anselm, Irina

    2014-03-01

    Combined oxidative phosphorylation deficiency type 7 (COXPD7) is a rare disorder of mitochondrial metabolism that results in optic atrophy and Leigh syndrome-like disease. We describe 2 siblings with compound heterozygous mutations in the recently identified C12orf65 gene who presented with optic atrophy and mild developmental delays and subsequently developed bilateral, symmetric lesions in the brainstem reminiscent of Leigh syndrome. Repeat neuroimaging demonstrated reversibility of the findings in 1 sibling and persistent metabolic stroke in the other. This article highlights the phenotypic manifestations from a novel mutation in the C12orf65 gene and reviews the clinical presentation of the 5 other individuals reported to date who carry mutations in this gene. PMID:24284555

  19. Refined mapping of a gene responsible for Fukuyama-type congenital muscular dystrophy: Evidence for strong linkage disequilibrium

    SciTech Connect

    Toda, Tatsushi; Ikegawa, Shiro; Okui, Keiko; Nakamura, Yusuke; Kanazawa, Ichiro; Kondo, Eri; Saito, Kayoko; Fukuyama, Yukio; Yoshioka, Mieko; Kumagai, Toshiyuki

    1994-11-01

    Fukuyama-type congenital muscular dystrophy (FCMD), the second most common form of childhood muscular dystrophy in Japan, is an autosomal recessive severe muscular dystrophy associated with an anomaly of the brain. After our initial mapping of the FCMD locus to chromosome 9q31-33, we further defined the locus within a region of {approximately}5 cM between loci D9S127 and CA246, by homozygosity mapping in patients born to consanguineous marriages and by recombination analyses in other families. We also found evidence for strong linkage disequilibrium between FCMD and a polymorphic microsatellite marker, mfd220, which showed no recombination and a lod score of (Z) 17.49. A {open_quotes}111-bp{close_quotes} allele for the mfd220 was observed in 22 (34%) of 64 FCMD chromosomes, but it was present in only 1 of 120 normal chromosomes. This allelic association with FCMD was highly significant ({chi}{sup 2} = 50.7; P < .0001). Hence, we suspect that the FCMD gene could lie within a few hundred kilobases of the mfd220 locus. 32 refs., 2 figs., 2 tabs.

  20. Isolation and characterization of a full length cDNA for dentatorubral-pallidoluysian atrophy (DRPLA) gene

    SciTech Connect

    Oyake, M.; Onodera, O.; Ikeuchi, T.

    1994-09-01

    Hereditary dentatorubral-pallidoluysian atrophy (DRPLA) is an autosomal dominant spinocerebellar degeneration characterized by anticipation and variable combination of symptoms including myoclonus, epilepsy, cerebellar ataxia, choleoathetosis, and dementia. Recently, we discovered that DRPLA is caused by unstable expansion of a CAG repeat of a B37 gene on chromosome 12. To characterize functions of the DRPLA gene product, we isolated several cDNA clones for the DRPLA gene from human adult and fetus brain cDNA libraries, using an oligonucleotide flanking the CAG repeat. The cDNA spans 4247 bp in length and there is only an open reading frame coding for 986 amino acids. The CAG repeat, which is expanded in DRPLA, is located 291 bp downstream from the initiation methionine and encodes a polyglutamine tract. The deduced amino acid sequence from amino acids residues 582 to 707 has a high homology to published human hippocampus derived expressed sequence (M78755) located at chromosome 1p (63.8% identity), and 3{prime}-untranslated region of the DRPLA cDNA revealed homology to the mouse small nuclear RNA U7 gene (X54165). Northern blot analysis revealed a 4.7 knt transcript which is widely expressed in various tissues including heart, lung, kidney, placenta, skeletal muscle, and brain. In human adult brain, the transcript was broadly expressed including amygdala, caudate nucleus, corpus callosum, hippocampus, hypothalamus, substantia nigra, subthalamic nucleus and thalamus, and was not specific to the dentatorubral-pallidoluysian system. The availability of a full length cDNA will be highly useful for analyzing the pathogenesis of this unique neurodegenerative disease as well as for analyzing other CAG repeat related neurodegenerative diseases.

  1. Muscular dystrophy

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/001190.htm Muscular dystrophy To use the sharing features on this page, please enable JavaScript. Muscular dystrophy is a group of inherited disorders that cause ...

  2. Muscular Dystrophy

    MedlinePlus

    Muscular dystrophy (MD) is a group of more than 30 inherited diseases. They all cause muscle weakness and ... ability to walk. There is no cure for muscular dystrophy. Treatments can help with the symptoms and prevent ...

  3. Sudeck atrophy.

    PubMed

    Staunton, H

    2006-01-01

    This paper reviews the contribution of Sudeck to the understanding of the condition commonly referred to as 'Sudeck's atrophy' and which is commonly used as a synonym for a condition variously called reflex sympathetic dystrophy, causalgia, algodystrophy and others. Sudeck came to show in his later papers that the so-called atrophy was, in the majority of cases, a normal inflammatory process of bone change in the course of healing after an inflammatory/infective or traumatic insult. Contrary to the views of much current literature, the vast majority of such cases had a good prognosis. In those cases which became pathological and had a correspondingly poorer prognosis, the characteristic clinical picture becomes associated with radiological and pathological changes, which, uniquely, are described by Sudeck. A knowledge of such radiological and pathological substrate for clinical symptomatology is important in the analysis of pain following trauma. PMID:17274178

  4. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep.

    PubMed

    Clop, Alex; Marcq, Fabienne; Takeda, Haruko; Pirottin, Dimitri; Tordoir, Xavier; Bibé, Bernard; Bouix, Jacques; Caiment, Florian; Elsen, Jean-Michel; Eychenne, Francis; Larzul, Catherine; Laville, Elisabeth; Meish, Françoise; Milenkovic, Dragan; Tobin, James; Charlier, Carole; Georges, Michel

    2006-07-01

    Texel sheep are renowned for their exceptional meatiness. To identify the genes underlying this economically important feature, we performed a whole-genome scan in a Romanov x Texel F2 population. We mapped a quantitative trait locus with a major effect on muscle mass to chromosome 2 and subsequently fine-mapped it to a chromosome interval encompassing the myostatin (GDF8) gene. We herein demonstrate that the GDF8 allele of Texel sheep is characterized by a G to A transition in the 3' UTR that creates a target site for mir1 and mir206, microRNAs (miRNAs) that are highly expressed in skeletal muscle. This causes translational inhibition of the myostatin gene and hence contributes to the muscular hypertrophy of Texel sheep. Analysis of SNP databases for humans and mice demonstrates that mutations creating or destroying putative miRNA target sites are abundant and might be important effectors of phenotypic variation.

  5. Emery-Dreifuss muscular dystrophy: the most recognizable laminopathy.

    PubMed

    Madej-Pilarczyk, A; Kochański, A

    2016-01-01

    Emery-Dreifuss muscular dystrophy (EDMD), a rare inherited disease, is characterized clinically by humero-peroneal muscle atrophy and weakness, multijoint contractures, spine rigidity and cardiac insufficiency with conduction defects. There are at least six types of EDMD known so far, of which five have been associated with mutations in genes encoding nuclear proteins. The majority of the EDMD cases described so far are of the emerinopathy (EDMD1) kind, with a recessive X-linked mode of inheritance, or else laminopathy (EDMD2), with an autosomal dominant mode of inheritance. In the work described here, the authors have sought to describe the history by which EDMD came to be distinguished as a separate entity, as well as the clinical and genetic characteristics of the disease, the pathophysiology of lamin-related muscular diseases and, finally, therapeutic issues, prevention and ethical aspects. PMID:27179216

  6. "Hybrid exercise" prevents muscle atrophy in association with a distinct gene expression pattern.

    PubMed

    Matsugaki, Toru; Shiba, Naoto; Kohno, Shohei; Nikawa, Takeshi; Hirasaka, Katsuya; Okumura, Yuushi; Ishidoh, Kazumi; Soejima, Takashi; Yoshimitsu, Kazuhiro; Nagata, Kensei

    2011-01-01

    "Hybrid exercise" utilizing combined electrical stimulation and voluntary muscle contraction has been developed as a muscle exercise method. Although our previous studies have confirmed the effectiveness of the procedure, the mechanisms of its efficacy still remain unclear. In the present study, we identified genes that are specifically expressed in disused muscles, using the semitendinosus muscle from patients who underwent anterior cruciate ligament (ACL) reconstruction. Preoperative exercise was performed by four ACL-injured patients, who were subjected either to hybrid exercise (n=2), electrical stimulation (n=1), or no electrical stimulation (n=1), in addition to standard weight training for 4 weeks. Cross-sectional area (CSA) of the semitendinosus muscle was measured before and after the exercise by magnetic resonance imaging (MRI). A piece of the semitendinosus muscle was isolated during the surgery, and comprehensive analysis of the gene expression in this sample was performed using DNA microarray analysis. CSA increased in size by 4.2 and 14.7%, respectively, after hybrid exercise, and by 1.4% after electrical stimulation. However it shrunk by 7.7% without electrical stimulation. DNA microarray analysis revealed that hybrid exercise was more effective at stimulating the expression of signal transduction-, transcription- and cytoskeleton-related genes in semitendinosus muscles than electrical stimulation alone. In particular, gene ontology analysis revealed that hybrid exercise induced significantly higher expression of eukaryotic translation initiation factor 5A (EIFSA), peroxisomal biogenesis factor 6 (PEX6) and histone cluster 1 H4 (HIST1H4), compared with electrical stimulation alone. The expression of signal transduction-, transcription- and cytoskeleton-related genes may play an important role in muscle bulk increasing mechanisms in hybrid exercise.

  7. Limb-girdle muscular dystrophy type 2A resulting from homozygous G2338C transversion mutation in the calpain-3 gene.

    PubMed

    Peddareddygari, Leema Reddy; Surgan, Victoria; Grewal, Raji P

    2010-12-01

    Limb-girdle muscular dystrophy represents a clinically and genetically heterogeneous group of myopathies. Limb-girdle muscular dystrophy Type 2A, which is transmitted in an autosomal-recessive pattern, is caused by mutations in the calpain-3 (CAPN3) gene. A number of mutations have been reported in patients from throughout the world but not in the Asian-Indian population. We describe a genotype/phenotype analysis of an Asian-Indian patient with a history, neurologic examination, and investigations consistent with muscular dystrophy. Genetic analysis of this patient showed a homozygous G2338C transversion resulting in an amino acid change from aspartic acid 780 histidine in the CAPN3 gene confirming Limb-girdle muscular dystrophy Type 2A. Subsequent testing of the patient's family revealed that his parents and sister were heterozygous unaffected carriers. The G2338C transversion was detected as a compound heterozygous mutation in one patient in Germany. We report a homozygous case and expand the clinical spectrum of limb-girdle muscular dystrophy Type 2A to include Asian-Indians. PMID:21386772

  8. More deletions in the 5{prime} region than in the central region of the dystrophin gene were identified among Filipino Duchenne and Becker muscular dystrophy patients

    SciTech Connect

    1995-11-06

    This report describes mutations in the dystrophin gene and the frequency of these mutations in Filipino pedigrees with Duchenne and Becker muscular dystrophy (DMD/BMD). The findings suggest the presence of genetic variability among DMD/BMD patients in different populations. 13 refs., 1 tab.

  9. Facioscapulohumeral muscular dystrophy (FSHD) region gene 1 (FRG1) expression and possible function in mouse tooth germ development.

    PubMed

    Hasegawa, Kana; Wada, Hiroko; Nagata, Kengo; Fujiwara, Hiroaki; Wada, Naohisa; Someya, Hirotaka; Mikami, Yurie; Sakai, Hidetaka; Kiyoshima, Tamotsu

    2016-08-01

    Abnormal expression of Facioscapulohumeral muscular dystrophy (FSHD) region gene 1 (FRG1) is involved in the pathogenesis of FSHD. FRG1 is also important for the normal muscular and vascular development. Our previous study showed that FRG1 is one of the highly expressed genes in the mandible on embryonic day 10.5 (E10.5) than on E12.0. In this study, we investigated the temporospatial expression pattern of FRG1 mRNA and protein during the development of the mouse lower first molar, and also evaluated the subcellular localization of the FRG1 protein in mouse dental epithelial (mDE6) cells. The FRG1 expression was identified in the dental epithelial and mesenchymal cells at the initiation and bud stages. It was detected in the inner enamel epithelium at the cap and early bell stages. At the late bell and root formation stages, these signals were detected in ameloblasts and odontoblasts during the formation of enamel and dentin matrices, respectively. The FRG1 protein was localized in the cytoplasm in the mouse tooth germ in vivo, while FRG1 was detected predominantly in the nucleus and faintly in the cytoplasm in mDE6 cells in vitro. In mDE6 cells treated with bone morphogenetic protein 4 (BMP4), the protein expression of FRG1 increased in cytoplasm, suggesting that FRG1 may translocate to the cytoplasm. These findings suggest that FRG1 is involved in the morphogenesis of the tooth germ, as well as in the formation of enamel and dentin matrices and that FRG1 may play a role in the odontogenesis in the mouse following BMP4 stimulation. PMID:27234941

  10. Life-threatening Arrhythmias in a Becker Muscular Dystrophy Family due to the Duplication of Exons 3-4 of the Dystrophin Gene.

    PubMed

    Ishizaki, Masatoshi; Fujimoto, Akiko; Ueyama, Hidetsugu; Nishida, Yasuto; Imamura, Shigehiro; Uchino, Makoto; Ando, Yukio

    2015-01-01

    We herein present a report of three patients with Becker muscular dystrophy in the same family who developed complete atrioventricular block or ventricular tachycardia with severe cardiomyopathy. Our cases became unable to walk in their teens, and were introduced to mechanical ventilation due to respiratory muscle weakness in their twenties and thirties. In all three cases, a medical device such as a permanent cardiac pacemaker or an implantable cardiac defibrillator was considered to be necessary. The duplication of exons 3-4 in the dystrophin gene was detected in two of the patients. In patients with Becker muscular dystrophy, complete atrioventricular block or ventricular tachycardia within a family has rarely been reported. Thus attention should be paid to the possibility of severe arrhythmias in the severe phenotype of Becker muscular dystrophy. PMID:26631896

  11. Histological comparison of the smooth uterine muscle of healthy golden retriever bitches, carriers of the progressive muscular dystrophy (GRMD) gene, and GRMD-affected bitches.

    PubMed

    Brolio, M P; Cima, D S; Miglino, M A; Ambrósio, C E

    2014-11-10

    There is evidence to suggest that weakness of the pelvic and/or uterine musculature may negatively affect the obstetric performance of women who carry the gene for Duchenne muscular dystrophy (DMD). The golden retriever dog is the ideal animal model for preclinical studies of progressive muscular dystrophy, and this model is referred to as "golden retriever muscular dystrophy (GRMD)". This study evaluated and compared the histopathological aspects of the uterine muscle of eleven dogs: health, n=4; carriers of GRMD gene, n=5; and affected females, n=2. The obtained results showed that the uterine muscle of healthy dogs was exclusively composed of type III collagen, while a predominance of type I collagen and small amounts of type III were observed in the uterine muscle of the carriers. The myometrium of the affected bitches showed small quantities of both collagen types. The differences noted in the three evaluated groups suggest that female carrier and those individuals affected by muscular dystrophy had collagen alteration and muscle fiber commitment in the uterine muscle, a deficiency which could directly influence the composition and function of this tissue. In addition, this information is highly relevant to the reproductive management of these animals. This data open important venues for translate reproductive protocols for women, who carry the dystrophin gene.

  12. PABPN1 overexpression leads to upregulation of genes encoding nuclear proteins that are sequestered in oculopharyngeal muscular dystrophy nuclear inclusions.

    PubMed

    Corbeil-Girard, Louis-Philippe; Klein, Arnaud F; Sasseville, A Marie-Josée; Lavoie, Hugo; Dicaire, Marie-Josée; Saint-Denis, Anik; Pagé, Martin; Duranceau, André; Codère, François; Bouchard, Jean-Pierre; Karpati, George; Rouleau, Guy A; Massie, Bernard; Langelier, Yves; Brais, Bernard

    2005-04-01

    Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset disease caused by expanded (GCN)12-17 stretches encoding the N-terminal polyalanine domain of the poly(A) binding protein nuclear 1 (PABPN1). OPMD is characterized by intranuclear inclusions (INIs) in skeletal muscle fibers, which contain PABPN1, molecular chaperones, ubiquitin, proteasome subunits, and poly(A)-mRNA. We describe an adenoviral model of PABPN1 expression that produces INIs in most cells. Microarray analysis revealed that PABPN1 overexpression reproducibly changed the expression of 202 genes. Sixty percent of upregulated genes encode nuclear proteins, including many RNA and DNA binding proteins. Immunofluorescence microscopy revealed that all tested nuclear proteins encoded by eight upregulated genes colocalize with PABPN1 within the INIs: CUGBP1, SFRS3, FKBP1A, HMG2, HNRPA1, PRC1, S100P, and HSP70. In addition, CUGBP1, SFRS3, and FKBP1A were also found in OPMD muscle INIs. This study demonstrates that a large number of nuclear proteins are sequestered in OPMD INIs, which may compromise cellular function.

  13. Becker Muscular Dystrophy (BMD) caused by duplication of exons 3-6 of the dystrophin gene presenting as dilated cardiomyopathy

    SciTech Connect

    Tsai, A.C.; Allingham-Hawkins, D.J.; Becker, L.

    1994-09-01

    X-linked dilated cardiomyopathy (XLCM) is a progressive myocardial disease presenting with congestive heart failure in teenage males without clinical signs of skeletal myopathy. Tight linkage of XLCM to the DMD locus has been demonstrated; it has been suggested that, at least in some families, XLCM is a {open_quotes}dystrophinopathy.{close_quotes} We report a 14-year-old boy who presented with acute heart failure due to dilated cardiomyopathy. He had no history of muscle weakness, but physical examination revealed pseudohypertrophy of the calf muscles. He subsequently received a heart transplantation. Family history was negative. Serum CK level at the time of diagnosis was 10,416. Myocardial biopsy showed no evidence of carditis. Dystrophin staining of cardiac and skeletal muscle with anti-sera to COOH and NH{sub 2}termini showed a patchy distribution of positivity suggestive of Becker muscular dystrophy. Analysis of 18 of the 79 dystrophin exons detected a duplication that included exons 3-6. The proband`s mother has an elevated serum CK and was confirmed to be a carrier of the same duplication. A mutation in the muscle promotor region of the dystrophin gene has been implicated in the etiology of SLCM. However, Towbin et al. (1991) argued that other 5{prime} mutations in the dystrophin gene could cause selective cardiomyopathy. The findings in our patient support the latter hypothesis. This suggests that there are multiple regions in the dystrophin gene which, when disrupted, can cause isolated dilated cardiomyopathy.

  14. B4GALNT2 (GALGT2) Gene Therapy Reduces Skeletal Muscle Pathology in the FKRP P448L Mouse Model of Limb Girdle Muscular Dystrophy 2I.

    PubMed

    Thomas, Paul J; Xu, Rui; Martin, Paul T

    2016-09-01

    Overexpression of B4GALNT2 (previously GALGT2) inhibits the development of muscle pathology in mouse models of Duchenne muscular dystrophy, congenital muscular dystrophy 1A, and limb girdle muscular dystrophy 2D. In these models, muscle GALGT2 overexpression induces the glycosylation of α dystroglycan with the cytotoxic T cell glycan and increases the overexpression of dystrophin and laminin α2 surrogates known to inhibit disease. Here, we show that GALGT2 gene therapy significantly reduces muscle pathology in FKRP P448Lneo(-) mice, a model for limb girdle muscular dystrophy 2I. rAAVrh74.MCK.GALGT2-treated FKRP P448Lneo(-) muscles showed reduced levels of centrally nucleated myofibers, reduced variance, increased size of myofiber diameters, reduced myofiber immunoglobulin G uptake, and reduced muscle wasting at 3 and 6 months after treatment. GALGT2 overexpression in FKRP P448Lneo(-) muscles did not cause substantial glycosylation of α dystroglycan with the cytotoxic T cell glycan or increased expression of dystrophin and laminin α2 surrogates in mature skeletal myofibers, but it increased the number of embryonic myosin-positive regenerating myofibers. These data demonstrate that GALGT2 overexpression can reduce the extent of muscle pathology in FKRP mutant muscles, but that it may do so via a mechanism that differs from its ability to induce surrogate gene expression. PMID:27561302

  15. B4GALNT2 (GALGT2) Gene Therapy Reduces Skeletal Muscle Pathology in the FKRP P448L Mouse Model of Limb Girdle Muscular Dystrophy 2I.

    PubMed

    Thomas, Paul J; Xu, Rui; Martin, Paul T

    2016-09-01

    Overexpression of B4GALNT2 (previously GALGT2) inhibits the development of muscle pathology in mouse models of Duchenne muscular dystrophy, congenital muscular dystrophy 1A, and limb girdle muscular dystrophy 2D. In these models, muscle GALGT2 overexpression induces the glycosylation of α dystroglycan with the cytotoxic T cell glycan and increases the overexpression of dystrophin and laminin α2 surrogates known to inhibit disease. Here, we show that GALGT2 gene therapy significantly reduces muscle pathology in FKRP P448Lneo(-) mice, a model for limb girdle muscular dystrophy 2I. rAAVrh74.MCK.GALGT2-treated FKRP P448Lneo(-) muscles showed reduced levels of centrally nucleated myofibers, reduced variance, increased size of myofiber diameters, reduced myofiber immunoglobulin G uptake, and reduced muscle wasting at 3 and 6 months after treatment. GALGT2 overexpression in FKRP P448Lneo(-) muscles did not cause substantial glycosylation of α dystroglycan with the cytotoxic T cell glycan or increased expression of dystrophin and laminin α2 surrogates in mature skeletal myofibers, but it increased the number of embryonic myosin-positive regenerating myofibers. These data demonstrate that GALGT2 overexpression can reduce the extent of muscle pathology in FKRP mutant muscles, but that it may do so via a mechanism that differs from its ability to induce surrogate gene expression.

  16. Muscle diseases: the muscular dystrophies.

    PubMed

    McNally, Elizabeth M; Pytel, Peter

    2007-01-01

    Dystrophic muscle disease can occur at any age. Early- or childhood-onset muscular dystrophies may be associated with profound loss of muscle function, affecting ambulation, posture, and cardiac and respiratory function. Late-onset muscular dystrophies or myopathies may be mild and associated with slight weakness and an inability to increase muscle mass. The phenotype of muscular dystrophy is an endpoint that arises from a diverse set of genetic pathways. Genes associated with muscular dystrophies encode proteins of the plasma membrane and extracellular matrix, and the sarcomere and Z band, as well as nuclear membrane components. Because muscle has such distinctive structural and regenerative properties, many of the genes implicated in these disorders target pathways unique to muscle or more highly expressed in muscle. This chapter reviews the basic structural properties of muscle and genetic mechanisms that lead to myopathy and muscular dystrophies that affect all age groups.

  17. Muscular Dystrophy

    MedlinePlus

    ... in Duchenne muscular dystrophy. Dev. Med. Child Neurol. Mar 1995;37(3):260-269. 4. Centers for ... DM1) . The International Myotonic Dystrophy Consortium (IDMC). Neurology. Mar 28 2000;54(6):1218-1221. 5. Harper ...

  18. Muscular Dystrophy

    MedlinePlus

    ... be affected. Limb-girdle muscular dystrophy (LGMD) affects boys and girls equally, weakening muscles in the shoulders and upper ... weakness and poor muscle tone. Occurring in both girls and boys, it can have different symptoms. It varies in ...

  19. Reevaluation of the linkage of an optic atrophy susceptibility gene to X-chromosomal markers in Finnish families with Leber hereditary optic neuroretinopathy (LHON)

    SciTech Connect

    Juvonen, V.; Aula, P.; Vilkki, J.; Nikoskelainen, E.; Savontaus, M.-L.

    1993-07-01

    One of the commonest reasons for sudden-onset optic nerve degeneration in young men can be attributed to maternally inherited Leber hereditary optic neuroretinopathy (LHON) (Nikoskelainen et al. 1987). Specific point mutations at either np 11778 (Wallace et al. 1988) or np 3460 (Howell et al. 1991; Huoponen et al. 1991) in mitochondrial DNA (mtDNA) encoding for respiratory enzyme complex I subunits (i.e., ND4 or ND1) can be found in 70% of families. These mutations exist as being either homoplasmic or heteroplasmic, but the correlation between the degree of heteroplasmy and the risk of developing optic atrophy is far from clear (Holt et al. 1989; Vilkki et al. 1990). Neither does heteroplasmy explain the strong male bias seen in LHON families, when the sex ratio of patients with visual impairment is observed. Earlier results indicated that susceptibility to optic atrophy in Finnish families with LHON was probably determined by an X-chromosomal gene closely linked to DXS7. Contradictory results prompted reevaluation of the existence of an X-chromosomal visual loss susceptibility gene in Finnish LHON families. The results of this present study clearly demonstrate that the earlier close linkage to DXS7 is implausible. The altered Z is due to revised pedigrees, the use of liability classes, and separation of the families according to the associated mtDNA mutation. 16 refs., 1 fig., 1 tab.

  20. Production of the 2400 kb Duchenne muscular dystrophy (DMD) gene transcript; transcription time and cotranscriptional splicing

    SciTech Connect

    Tennyson, C.N.; Worton, R.G.

    1994-09-01

    The largest known gene in any organism is the human DMD gene which has 79 exons that span 2400 kb. The extreme nature of the DMD gene raises questions concerning the time required for transcription and whether splicing begins before transcription is complete. DMD gene transcription is induced as cultured human myoblasts differentiate to form multinucleated myotubes, providing a system for studying the kinetics of transcription and splicing. Using quantitative RT-PCR, transcript accumulation was monitored from four different regions within the gene following induction of expression. By comparing the accumulation of transcripts from the 5{prime} and 3{prime} ends of the gene we have shown that approximately 12 hours are required to transcribe 1770 kb of the gene, extrapolating to a time of 16 hours for the transcription unit expressed in muscle. Comparison of accumulation profiles for spliced and total transcript demonstrated that transcripts are spliced at the 5{prime} end before transcription is complete, providing strong evidence for cotranscriptional splicing of DMD gene transcripts. Finally, the rate of transcript accumulation was reduced at the 3{prime} end of the gene relative to the 5{prime} end, perhaps due to premature termination of transcription complexes as they traverse this enormous transcription unit. The lag between transcription initiation and the appearance of complete transcripts could be important in limiting transcript production in dividing cells and to the timing of mRNA appearance in differentiating muscle.

  1. CuZnSOD gene deletion targeted to skeletal muscle leads to loss of contractile force but does not cause muscle atrophy in adult mice

    PubMed Central

    Zhang, Yiqiang; Davis, Carol; Sakellariou, George K.; Shi, Yun; Kayani, Anna C.; Pulliam, Daniel; Bhattacharya, Arunabh; Richardson, Arlan; Jackson, Malcolm J.; McArdle, Anne; Brooks, Susan V.; Van Remmen, Holly

    2013-01-01

    We have previously shown that deletion of CuZnSOD in mice (Sod1−/− mice) leads to accelerated loss of muscle mass and contractile force during aging. To dissect the relative roles of skeletal muscle and motor neurons in this process, we used a Cre-Lox targeted approach to establish a skeletal muscle-specific Sod1-knockout (mKO) mouse to determine whether muscle-specific CuZnSOD deletion is sufficient to cause muscle atrophy. Surprisingly, mKO mice maintain muscle masses at or above those of wild-type control mice up to 18 mo of age. In contrast, maximum isometric specific force measured in gastrocnemius muscle is significantly reduced in the mKO mice. We found no detectable increases in global measures of oxidative stress or ROS production, no reduction in mitochondrial ATP production, and no induction of adaptive stress responses in muscle from mKO mice. However, Akt-mTOR signaling is elevated and the number of muscle fibers with centrally located nuclei is increased in skeletal muscle from mKO mice, which suggests elevated regenerative pathways. Our data demonstrate that lack of CuZnSOD restricted to skeletal muscle does not lead to muscle atrophy but does cause muscle weakness in adult mice and suggest loss of CuZnSOD may potentiate muscle regenerative pathways.—Zhang, Y., Davis, C., Sakellariou, G.K., Shi, Y., Kayani, A.C., Pulliam, D., Bhattacharya, A., Richardson, A., Jackson, M.J., McArdle, A., Brooks, S.V., Van Remmen, H. CuZnSOD gene deletion targeted to skeletal muscle leads to loss of contractile force but does not cause muscle atrophy in adult mice. PMID:23729587

  2. Molecular evidence that the p55 gene is not responsible for either of two Xq28-linked disorders: Emery-Deifuss muscular dystrophy and dyskeratosis congenita

    SciTech Connect

    Metzenberg, A.B.; Pan, Y.; Das, S.; Gitschier, J. ); Pai, G.S. )

    1994-05-01

    Mapping studies have indicated that over two dozen genetic diseases lie on Xq28, the distal long arm of the X chromosome. In most cases the responsible gene has not yet been isolated. Most of these diseases occur at low frequency, and together with small family sizes and the lack of associated cytogenetic aberrations, this characteristic has made isolation of the genes difficult. Identification of the genes responsible for inherited disorders should eventually lead to a greater understanding of biochemical and developmental pathways. We and others are attempting to find these genes by examining genes that are candidates by virtue of their map location. One candidate is the Xq28-linked gene MPP-1, which encodes the p55 protein. In this study, we asked whether mutations in the p55 gene are present in patients affected with the Xq28-linked disorders dyskeratosis congenita and Emergy-Dreifuss muscular dystrophy. The p55 cDNA is [approx]2 kb in length. The strategy for mutation detection in this sequence involved reverse transciption (RT)-PCR amplification of patient and control cDNA, yielding five sets of overlapping fragments, each set consisting of 400 bp, followed by SSCP analysis of each fragment. In no case was a true mutation in the p55 gene discovered. Therefore, it is highly unlikely that mutations in the p55 gene are responsible for any cases of dyskeratosis congenita or Emergy-Dreifuss muscular dystrophy.

  3. Transgenic mice expressing mutant Pinin exhibit muscular dystrophy, nebulin deficiency and elevated expression of slow-type muscle fiber genes

    SciTech Connect

    Wu, Hsu-Pin; Hsu, Shu-Yuan; Wu, Wen-Ai; Hu, Ji-Wei; Ouyang, Pin

    2014-01-03

    Highlights: •Pnn CCD domain functions as a dominant negative mutant regulating Pnn expression and function. •Pnn CCD mutant Tg mice have a muscle wasting phenotype during development and show dystrophic histological features. •Pnn mutant muscles are susceptible to slow fiber type gene transition and NEB reduction. •The Tg mouse generated by overexpression of the Pnn CCD domain displays many characteristics resembling NEB{sup +/−} mice. -- Abstract: Pinin (Pnn) is a nuclear speckle-associated SR-like protein. The N-terminal region of the Pnn protein sequence is highly conserved from mammals to insects, but the C-terminal RS domain-containing region is absent in lower species. The N-terminal coiled-coil domain (CCD) is, therefore, of interest not only from a functional point of view, but also from an evolutionarily standpoint. To explore the biological role of the Pnn CCD in a physiological context, we generated transgenic mice overexpressing Pnn mutant in skeletal muscle. We found that overexpression of the CCD reduces endogenous Pnn expression in cultured cell lines as well as in transgenic skeletal muscle fibers. Pnn mutant mice exhibited reduced body mass and impaired muscle function during development. Mutant skeletal muscles show dystrophic histological features with muscle fibers heavily loaded with centrally located myonuclei. Expression profiling and pathway analysis identified over-representation of genes in gene categories associated with muscle contraction, specifically those related to slow type fiber. In addition nebulin (NEB) expression level is repressed in Pnn mutant skeletal muscle. We conclude that Pnn downregulation in skeletal muscle causes a muscular dystrophic phenotype associated with NEB deficiency and the CCD domain is incapable of replacing full length Pnn in terms of functional capacity.

  4. Optic nerve atrophy

    MedlinePlus

    Optic atrophy; Optic neuropathy ... There are many causes of optic atrophy. The most common is poor blood flow. This is called ischemic optic neuropathy. The problem most often affects older adults. ...

  5. Muscle-specific promoters may be necessary for adeno-associated virus-mediated gene transfer in the treatment of muscular dystrophies.

    PubMed

    Cordier, L; Gao, G P; Hack, A A; McNally, E M; Wilson, J M; Chirmule, N; Sweeney, H L

    2001-01-20

    Recombinant adeno-associated virus (rAAV) vectors allow efficient gene transfer and expression in the muscle; therefore, rAAVs represent a potential gene therapy vector for muscular dystrophies. For further investigations, we used a mouse muscular dystrophy model (gsg(-/-) mice) gamma-sarcoglycan, a subunit of the dystrophin-glycoprotein complex, is missing. gsg(-/-) mice develop progressive dystrophy representative of a severe human phenotype disease. We previously showed high levels and stable expression of gamma-sarcoglycan in myofibers after direct muscle injection into gsg(-/-) mice of a recombinant AAV vector (AAV.dMCK.gSG) carrying the gamma-sarcoglycan cDNA driven by a muscle-specific promoter (truncated version of muscle creatine kinase). Here, we show that when gamma-sarcoglycan expression is driven by the ubiquitous cytomegalovirus (CMV) promoter (AAV.CMV.gSG), lower levels of transgene expression are observed and are associated with a humoral response to gamma-sarcoglycan. When using an rAAV vector, expressing the highly immunogenic product gamma-galactosidase under the CMV promoter (AAV.CMV.LacZ), we measured a strong cellular and humoral immune response to the transgene after intramuscular injection into gsg(-/-) mice. This study suggests that restriction of transgene expression to the muscle is an important criterion for the treatment of muscular dystrophies and will aid in the design of protocols for gene therapy.

  6. Meaning of Muscular Dystrophy

    MedlinePlus

    ... Help White House Lunch Recipes The Meaning of Muscular Dystrophy KidsHealth > For Kids > The Meaning of Muscular Dystrophy ... you know someone who has MD. What Is Muscular Dystrophy? Muscular dystrophy (say: MUS-kyoo-lur DIS-troh- ...

  7. [Unusual muscular involvement in ankylosing spondylitis].

    PubMed

    Wattiaux, M J; Rondier, J; Bletry, O; Godeau, P; Cayla, J

    1985-03-01

    Muscle involvement in ankylosing spondylitis has been little studied. The authors report two cases with marked muscular atrophy and functional impotence, which had directed the diagnosis towards a myopathy over a period of several years in the first case, and a suspected primary muscular disease associated with ankylosing spondylitis in the second. Muscle biopsies eliminated the diagnosis of myopathy in both cases, with rapid functional recovery with proper treatment. Following a review of the literature, two hypotheses can be considered to explain the muscular involvement in ankylosing spondylitis: one mechanism which appears well-established is a radiculitis with involvement of the paravertebral muscles: other authors suggest that there is nonspecific, generalized muscular involvement in this disorder.

  8. Transgenic Drosophila for Investigating DUX4 and FRG1, Two Genes Associated with Facioscapulohumeral Muscular Dystrophy (FSHD)

    PubMed Central

    Jones, Takako I.; Parilla, Megan; Jones, Peter L.

    2016-01-01

    Facioscapulohumeral muscular dystrophy (FSHD) is typically an adult onset dominant myopathy. Epigenetic changes in the chromosome 4q35 region linked to both forms of FSHD lead to a relaxation of repression and increased somatic expression of DUX4-fl (DUX4-full length), the pathogenic alternative splicing isoform of the DUX4 gene. DUX4-fl encodes a transcription factor expressed in healthy testis and pluripotent stem cells; however, in FSHD, increased levels of DUX4-fl in myogenic cells lead to aberrant regulation of target genes. DUX4-fl has proven difficult to study in vivo; thus, little is known about its normal and pathogenic roles. The endogenous expression of DUX4-fl in FSHD-derived human muscle and myogenic cells is extremely low, exogenous expression of DUX4-fl in somatic cells rapidly induces cytotoxicity, and, due in part to the lack of conservation beyond primate lineages, viable animal models based on DUX4-fl have been difficult to generate. By contrast, the FRG1 (FSHD region gene 1), which is linked to FSHD, is evolutionarily conserved from invertebrates to humans, and has been studied in several model organisms. FRG1 expression is critical for the development of musculature and vasculature, and overexpression of FRG1 produces a myopathic phenotype, yet the normal and pathological functions of FRG1 are not well understood. Interestingly, DUX4 and FRG1 were recently linked when the latter was identified as a direct transcriptional target of DUX4-FL. To better understand the pathways affected in FSHD by DUX4-fl and FRG1, we generated transgenic lines of Drosophila expressing either gene under control of the UAS/GAL4 binary system. Utilizing these lines, we generated screenable phenotypes recapitulating certain known consequences of DUX4-fl or FRG1 overexpression. These transgenic Drosophila lines provide resources to dissect the pathways affected by DUX4-fl or FRG1 in a genetically tractable organism and may provide insight into both muscle development

  9. Transgenic Drosophila for Investigating DUX4 and FRG1, Two Genes Associated with Facioscapulohumeral Muscular Dystrophy (FSHD).

    PubMed

    Jones, Takako I; Parilla, Megan; Jones, Peter L

    2016-01-01

    Facioscapulohumeral muscular dystrophy (FSHD) is typically an adult onset dominant myopathy. Epigenetic changes in the chromosome 4q35 region linked to both forms of FSHD lead to a relaxation of repression and increased somatic expression of DUX4-fl (DUX4-full length), the pathogenic alternative splicing isoform of the DUX4 gene. DUX4-fl encodes a transcription factor expressed in healthy testis and pluripotent stem cells; however, in FSHD, increased levels of DUX4-fl in myogenic cells lead to aberrant regulation of target genes. DUX4-fl has proven difficult to study in vivo; thus, little is known about its normal and pathogenic roles. The endogenous expression of DUX4-fl in FSHD-derived human muscle and myogenic cells is extremely low, exogenous expression of DUX4-fl in somatic cells rapidly induces cytotoxicity, and, due in part to the lack of conservation beyond primate lineages, viable animal models based on DUX4-fl have been difficult to generate. By contrast, the FRG1 (FSHD region gene 1), which is linked to FSHD, is evolutionarily conserved from invertebrates to humans, and has been studied in several model organisms. FRG1 expression is critical for the development of musculature and vasculature, and overexpression of FRG1 produces a myopathic phenotype, yet the normal and pathological functions of FRG1 are not well understood. Interestingly, DUX4 and FRG1 were recently linked when the latter was identified as a direct transcriptional target of DUX4-FL. To better understand the pathways affected in FSHD by DUX4-fl and FRG1, we generated transgenic lines of Drosophila expressing either gene under control of the UAS/GAL4 binary system. Utilizing these lines, we generated screenable phenotypes recapitulating certain known consequences of DUX4-fl or FRG1 overexpression. These transgenic Drosophila lines provide resources to dissect the pathways affected by DUX4-fl or FRG1 in a genetically tractable organism and may provide insight into both muscle development

  10. Assignment of a gene for hereditary dentatorubral-pallidoluysian atrophy (DRPLA) to 12p13.1-p12.3

    SciTech Connect

    Kondo, I.; Marimoto, Y.; Kuwano, A.

    1994-09-01

    Hereditary dentatorubral-pallidoluysian atrophy (DRPLA) is an autosomal dominant neurodegenerative disorder characterized by ataxia, epilepsy, myoclonus, dementia and involuntary movements. A number of families have been reported, particularly in Japan. Clinical symptoms vary greatly from case to case even in a single pedigree and genetic anticipation is clearly observed. Our previous linkage study between DRPLA and DNA markers on 12p showed the gene for DRPLA was tighly linked to CD4 on 12p13.3-p12 and loosely linked to F8vWF on 12p13. Recently a candidate gene for DRPLA has been located at the CTG-B37 locus and clinical severity is dependent on the CAG repeat number at the CTG-B37 locus. To define more precise localization of the gene for DRPLA, we have studied CTG-B37 genotypes in two patients with partial deletion of the short arm of chromosome 12. The patients with del(12)(p13.3-p13.1) and with del(12)(p12.2-11.2) had two distinct alleles of CTG-B37, CD4 and F8vWF. Therefore, the gene for DRPLA, CTG-B37 locus and CD4 are assigned to p13.1-p12.3 of chromosome 12 and F8vWF is assigned to 12p13.3.

  11. Alternative splicing and muscular dystrophy

    PubMed Central

    Pistoni, Mariaelena; Ghigna, Claudia; Gabellini, Davide

    2013-01-01

    Alternative splicing of pre-mRNAs is a major contributor to proteomic diversity and to the control of gene expression in higher eukaryotic cells. For this reasons, alternative splicing is tightly regulated in different tissues and developmental stages and its disruption can lead to a wide range of human disorders. The aim of this review is to focus on the relevance of alternative splicing for muscle function and muscle disease. We begin by giving a brief overview of alternative splicing, muscle-specific gene expression and muscular dystrophy. Next, to illustrate these concepts we focus on two muscular dystrophy, myotonic muscular dystrophy and facioscapulohumeral muscular dystrophy, both associated to disruption of splicing regulation in muscle. PMID:20603608

  12. Differential gene expression of muscle-specific ubiquitin ligase MAFbx/Atrogin-1 and MuRF1 in response to immobilization-induced atrophy of slow-twitch and fast-twitch muscles.

    PubMed

    Okamoto, Takeshi; Torii, Suguru; Machida, Shuichi

    2011-11-01

    We examined muscle-specific ubiquitin ligases MAFbx/Atrogin-1 and MuRF1 gene expression resulting from immobilization-induced skeletal muscle atrophy of slow-twitch soleus and fast-twitch plantaris muscles. Male C57BL/6 mice were subjected to hindlimb immobilization, which induced similar percentage decreases in muscle mass in the soleus and plantaris muscles. Expression of MAFbx/Atrogin-1 and MuRF1 was significantly greater in the plantaris muscle than in the soleus muscle during the early stage of atrophy. After a 3-day period of atrophy, total FOXO3a protein level had increased in both muscles, while phosphorylated FOXO3a protein had decreased in the plantaris muscle, but not in the soleus muscle. PGC-1α protein expression did not change following immobilization in both muscles, but basal PGC-1α protein in the soleus was markedly higher than that in plantaris muscles. These data suggest that although soleus and plantaris muscles atrophied to a similar extent and that muscle-specific ubiquitin protein ligases (E3) may contribute more to the atrophy of fast-twitch muscle than to that of slow-twitch muscle during immobilization.

  13. Early-progressive dilated cardiomyopathy in a family with Becker muscular dystrophy related to a novel frameshift mutation in the dystrophin gene exon 27.

    PubMed

    Tsuda, Takeshi; Fitzgerald, Kristi; Scavena, Mena; Gidding, Samuel; Cox, Mary O; Marks, Harold; Flanigan, Kevin M; Moore, Steven A

    2015-03-01

    We report a family in which two male siblings with Becker muscular dystrophy (BMD) developed severe dilated cardiomyopathy (DCM) and progressive heart failure (HF) at age 11 years; one died at age 14 years while awaiting heart transplant and the other underwent left ventricular assist device implantation at the same age. Genetic analysis of one sibling showed a novel frameshift mutation in exon 27 of Duchenne muscular dystrophy (DMD) gene (c.3779_3785delCTTTGGAinsGG), in which seven base pairs are deleted and two are inserted. Although this predicts an amino-acid substitution and premature termination (p.Thr1260Argfs*8), muscle biopsy dystrophin immunostaining instead indicates that the mutation is more likely to alter splicing. Despite relatively preserved skeletal muscular performance, both the siblings developed progressive HF secondary to early-onset DCM. In addition, their 7-year-old nephew with delayed gross motor development, mild proximal muscle weakness and markedly elevated serum creatine kinase level (>13 000 IU l(-1)) at 16 months was recently demonstrated to have the familial DMD mutation. Here, we report a novel genotype of BMD with early-onset DCM and progressive lethal HF during early adolescence.

  14. A founder mutation in Anoctamin 5 is a major cause of limb-girdle muscular dystrophy.

    PubMed

    Hicks, Debbie; Sarkozy, A; Muelas, N; Koehler, K; Huebner, A; Hudson, G; Chinnery, P F; Barresi, R; Eagle, M; Polvikoski, T; Bailey, G; Miller, J; Radunovic, A; Hughes, P J; Roberts, R; Krause, S; Walter, M C; Laval, S H; Straub, V; Lochmüller, H; Bushby, K

    2011-01-01

    The limb-girdle muscular dystrophies are a group of disorders with wide genetic and clinical heterogeneity. Recently, mutations in the ANO5 gene, which encodes a putative calcium-activated chloride channel belonging to the Anoctamin family of proteins, were identified in five families with one of two previously identified disorders, limb-girdle muscular dystrophy 2L and non-dysferlin Miyoshi muscular dystrophy. We screened a candidate group of 64 patients from 59 British and German kindreds and found the truncating mutation, c.191dupA in exon 5 of ANO5 in 20 patients, homozygously in 15 and in compound heterozygosity with other ANO5 variants in the rest. An intragenic single nucleotide polymorphism and an extragenic microsatellite marker are in linkage disequilibrium with the mutation, suggesting a founder effect in the Northern European population. We have further defined the clinical phenotype of ANO5-associated muscular dystrophy. Patients show adult onset proximal lower limb weakness with highly raised serum creatine kinase values (average 4500 IU/l) and frequent muscle atrophy and asymmetry of muscle involvement. Onset varies from the early 20 s to 50 s and the weakness is generally slowly progressive, with most patients remaining ambulant for several decades. Distal presentation is much less common but a milder degree of distal lower limb weakness is often observed. Upper limb strength is only mildly affected and cardiac and respiratory function is normal. Females appear less frequently affected. In the North of England population we have identified eight patients with ANO5 mutations, suggesting a minimum prevalence of 0.27/100,000, twice as common as dysferlinopathy. We suggest that mutations in ANO5 represent a relatively common cause of adult onset muscular dystrophy with high serum creatine kinase and that mutation screening, particularly of the common mutation c.191dupA, should be an early step in the diagnostic algorithm of adult limb-girdle muscular

  15. Intragraft Expression of the IL-10 Gene Is Up-Regulated in Renal Protocol Biopsies with Early Interstitial Fibrosis, Tubular Atrophy, and Subclinical Rejection

    PubMed Central

    Hueso, Miguel; Navarro, Estanis; Moreso, Francesc; O'Valle, Francisco; Pérez-Riba, Mercè; del Moral, Raimundo García; Grinyó, Josep M.; Serón, Daniel

    2010-01-01

    Grafts with subclinical rejection associated with interstitial fibrosis and tubular atrophy (SCR+IF/TA) show poorer survival than grafts with subclinical rejection without IF/TA (SCR). Aiming to detect differences among SCR+IF/TA and SCR, we immunophenotyped the inflammatory infiltrate (CD45, CD3, CD20, CD68) and used a low-density array to determine levels of TH1 (interleukin IL-2, IL-3, γ-interferon, tumor necrosis factor-α, lymphotoxin-α, lymphotoxin-β, granulocyte-macrophage colony-stimulating factor) and TH2 (IL-4, IL-5, IL-6, IL-10, and IL-13) transcripts as well as of IL-2R (as marker for T-cell activation) in 31 protocol biopsies of renal allografts. Here we show that grafts with early IF/TA and SCR can be distinguished from grafts with SCR on the basis of the activation of IL-10 gene expression and of an increased infiltration by B-lymphocytes in a cellular context in which the degree of T-cell activation is similar in both groups of biopsies, as demonstrated by equivalent levels of IL-2R mRNA. These results suggest that the up-regulation of the IL-10 gene expression, as well as an increased proportion of B-lymphocytes in the inflammatory infiltrates, might be useful as markers of early chronic lesions in grafts with SCR. PMID:20150436

  16. Calpain 3 Expression Pattern during Gastrocnemius Muscle Atrophy and Regeneration Following Sciatic Nerve Injury in Rats

    PubMed Central

    Wu, Ronghua; Yan, Yingying; Yao, Jian; Liu, Yan; Zhao, Jianmei; Liu, Mei

    2015-01-01

    Calpain 3 (CAPN3), also known as p94, is a skeletal muscle-specific member of the calpain family that is involved in muscular dystrophy; however, the roles of CAPN3 in muscular atrophy and regeneration are yet to be understood. In the present study, we attempted to explain the effect of CAPN3 in muscle atrophy by evaluating CAPN3 expression in rat gastrocnemius muscle following reversible sciatic nerve injury. After nerve injury, the wet weight ratio and cross sectional area (CSA) of gastrocnemius muscle were decreased gradually from 1–14 days and then recovery from 14–28 days. The active form of CAPN3 (~62 kDa) protein decreased slightly on day 3 and then increased from day 7 to 14 before a decrease from day 14 to 28. The result of linear correlation analysis showed that expression of the active CAPN3 protein level was negatively correlated with muscle wet weight ratio. CAPN3 knockdown by short interfering RNA (siRNA) injection improved muscle recovery on days 7 and 14 after injury as compared to that observed with control siRNA treatment. Depletion of CAPN3 gene expression could promote myoblast differentiation in L6 cells. Based on these findings, we conclude that the expression pattern of the active CAPN3 protein is linked to muscle atrophy and regeneration following denervation: its upregulation during early stages may promote satellite cell renewal by inhibiting differentiation, whereas in later stages, CAPN3 expression may be downregulated to stimulate myogenic differentiation and enhance recovery. These results provide a novel mechanistic insight into the role of CAPN3 protein in muscle regeneration after peripheral nerve injury. PMID:26569227

  17. The combined influence of stretch, mobility and electrical stimulation in the prevention of muscle fiber atrophy caused hypokinesia and hypodynamia

    NASA Technical Reports Server (NTRS)

    Goldspink, G.; Goldspink, D.; Loughna, P.

    1984-01-01

    The morphological and biochemical changes which occur in the hind limb muscles of the rat in response to hypokinesia and hypodynamia were investigated. Hind limb cast fixation and suspension techniques were employed to study the musclar atrophy after five days of hypokinesia and hypodynamia induced by suspension, appreciable muscular atrophy was apparent, particularly in the anti-gravity muscles. The effect of passive stretching and electrical stimulation on muscle atrophy was studied. Changes in muscle protein mass were assessed with spectrophotometric and radioactive techniques. Passive stretch is shown to counteract muscle disuse atrophy. The change in the numbers of specific muscle fibers in atrophied muscles is discussed.

  18. Myotonic Muscular Dystrophy

    MedlinePlus

    ... a Difference How to Get Involved Donate Myotonic Muscular Dystrophy (MMD) Share print email share facebook twitter google plus linkedin Myotonic Muscular Dystrophy (MMD) What is myotonic muscular dystrophy (MMD)? Myotonic ...

  19. Muscular dystrophy - resources

    MedlinePlus

    Resources - muscular dystrophy ... The following organizations are good resources for information on muscular dystrophy : Muscular Dystrophy Association -- www.mdausa.org National Institute of Neurological Disorders and Stroke -- www.ninds.nih. ...

  20. A Duchenne Muscular Dystrophy Gene Hot Spot Mutation in Dystrophin-Deficient Cavalier King Charles Spaniels Is Amenable to Exon 51 Skipping

    PubMed Central

    Walmsley, Gemma L.; Arechavala-Gomeza, Virginia; Fernandez-Fuente, Marta; Burke, Margaret M.; Nagel, Nicole; Holder, Angela; Stanley, Rachael; Chandler, Kate; Marks, Stanley L.; Muntoni, Francesco; Shelton, G. Diane; Piercy, Richard J.

    2010-01-01

    Background Duchenne muscular dystrophy (DMD), which afflicts 1 in 3500 boys, is one of the most common genetic disorders of children. This fatal degenerative condition is caused by an absence or deficiency of dystrophin in striated muscle. Most affected patients have inherited or spontaneous deletions in the dystrophin gene that disrupt the reading frame resulting in unstable truncated products. For these patients, restoration of the reading frame via antisense oligonucleotide-mediated exon skipping is a promising therapeutic approach. The major DMD deletion “hot spot” is found between exons 45 and 53, and skipping exon 51 in particular is predicted to ameliorate the dystrophic phenotype in the greatest number of patients. Currently the mdx mouse is the most widely used animal model of DMD, although its mild phenotype limits its suitability in clinical trials. The Golden Retriever muscular dystrophy (GRMD) model has a severe phenotype, but due to its large size, is expensive to use. Both these models have mutations in regions of the dystrophin gene distant from the commonly mutated DMD “hot spot”. Methodology/Principal Findings Here we describe the severe phenotype, histopathological findings, and molecular analysis of Cavalier King Charles Spaniels with dystrophin-deficient muscular dystrophy (CKCS-MD). The dogs harbour a missense mutation in the 5′ donor splice site of exon 50 that results in deletion of exon 50 in mRNA transcripts and a predicted premature truncation of the translated protein. Antisense oligonucleotide-mediated skipping of exon 51 in cultured myoblasts from an affected dog restored the reading frame and protein expression. Conclusions/Significance Given the small size of the breed, the amiable temperament and the nature of the mutation, we propose that CKCS-MD is a valuable new model for clinical trials of antisense oligonucleotide-induced exon skipping and other therapeutic approaches for DMD. PMID:20072625

  1. Screening Duchenne and Becker muscular dystrophy patients for deletions in 30 exons of the dystrophin gene by three-multiplex PCR

    SciTech Connect

    Risch, N. )

    1992-09-01

    Deletion mutations of the dystrophin gene may cause either the severe Duchenne muscular dystrophy (DMD) or the milder, allelic Becker muscular dystrophy (BMD) and are clustered in two high-frequency-deletion regions (HFDRs) located, respectively, 500 kb and 1,200 kb downstream from the 5[prime] end of the gene. Three PCR reactions described allowed the analysis of a total of 30 exons and led, to the identification of three additional deletions involving the following exons: (a) 42 only, (b) 28-42, and (c) 16 only, none of which were detected with the two original multiplex reactions. Therefore, the three modified multiplexes detected 95 of the 96 deletions identified among the 152 patients studied so far by using Southern analysis and cDNA probes. The only deletion that remained undetected with this system involves exons 22-25 and generates the junction fragment described elsewhere. The percentage of deletion mutations among DMS/BMD patients amounts to 63%, which is in agreement with similar estimates from other laboratories. When field-inversion gel electrophoresis is coupled to Southern analysis, the detection rate of deletion and duplication mutations reaches 65%.

  2. Autosomal-Recessive Intellectual Disability with Cerebellar Atrophy Syndrome Caused by Mutation of the Manganese and Zinc Transporter Gene SLC39A8.

    PubMed

    Boycott, Kym M; Beaulieu, Chandree L; Kernohan, Kristin D; Gebril, Ola H; Mhanni, Aziz; Chudley, Albert E; Redl, David; Qin, Wen; Hampson, Sarah; Küry, Sébastien; Tetreault, Martine; Puffenberger, Erik G; Scott, James N; Bezieau, Stéphane; Reis, André; Uebe, Steffen; Schumacher, Johannes; Hegele, Robert A; McLeod, D Ross; Gálvez-Peralta, Marina; Majewski, Jacek; Ramaekers, Vincent T; Nebert, Daniel W; Innes, A Micheil; Parboosingh, Jillian S; Abou Jamra, Rami

    2015-12-01

    Manganese (Mn) and zinc (Zn) are essential divalent cations used by cells as protein cofactors; various human studies and animal models have demonstrated the importance of Mn and Zn for development. Here we describe an autosomal-recessive disorder in six individuals from the Hutterite community and in an unrelated Egyptian sibpair; the disorder is characterized by intellectual disability, developmental delay, hypotonia, strabismus, cerebellar atrophy, and variable short stature. Exome sequencing in one affected Hutterite individual and the Egyptian family identified the same homozygous variant, c.112G>C (p.Gly38Arg), affecting a conserved residue of SLC39A8. The affected Hutterite and Egyptian individuals did not share an extended common haplotype, suggesting that the mutation arose independently. SLC39A8 is a member of the solute carrier gene family known to import Mn, Zn, and other divalent cations across the plasma membrane. Evaluation of these two metal ions in the affected individuals revealed variably low levels of Mn and Zn in blood and elevated levels in urine, indicating renal wasting. Our findings identify a human Mn and Zn transporter deficiency syndrome linked to SLC39A8, providing insight into the roles of Mn and Zn homeostasis in human health and development.

  3. Autosomal-Recessive Intellectual Disability with Cerebellar Atrophy Syndrome Caused by Mutation of the Manganese and Zinc Transporter Gene SLC39A8

    PubMed Central

    Boycott, Kym M.; Beaulieu, Chandree L.; Kernohan, Kristin D.; Gebril, Ola H.; Mhanni, Aziz; Chudley, Albert E.; Redl, David; Qin, Wen; Hampson, Sarah; Küry, Sébastien; Tetreault, Martine; Puffenberger, Erik G.; Scott, James N.; Bezieau, Stéphane; Reis, André; Uebe, Steffen; Schumacher, Johannes; Hegele, Robert A.; McLeod, D. Ross; Gálvez-Peralta, Marina; Majewski, Jacek; Ramaekers, Vincent T.; Nebert, Daniel W.; Innes, A. Micheil; Parboosingh, Jillian S.; Abou Jamra, Rami

    2015-01-01

    Manganese (Mn) and zinc (Zn) are essential divalent cations used by cells as protein cofactors; various human studies and animal models have demonstrated the importance of Mn and Zn for development. Here we describe an autosomal-recessive disorder in six individuals from the Hutterite community and in an unrelated Egyptian sibpair; the disorder is characterized by intellectual disability, developmental delay, hypotonia, strabismus, cerebellar atrophy, and variable short stature. Exome sequencing in one affected Hutterite individual and the Egyptian family identified the same homozygous variant, c.112G>C (p.Gly38Arg), affecting a conserved residue of SLC39A8. The affected Hutterite and Egyptian individuals did not share an extended common haplotype, suggesting that the mutation arose independently. SLC39A8 is a member of the solute carrier gene family known to import Mn, Zn, and other divalent cations across the plasma membrane. Evaluation of these two metal ions in the affected individuals revealed variably low levels of Mn and Zn in blood and elevated levels in urine, indicating renal wasting. Our findings identify a human Mn and Zn transporter deficiency syndrome linked to SLC39A8, providing insight into the roles of Mn and Zn homeostasis in human health and development. PMID:26637978

  4. Autosomal-Recessive Intellectual Disability with Cerebellar Atrophy Syndrome Caused by Mutation of the Manganese and Zinc Transporter Gene SLC39A8.

    PubMed

    Boycott, Kym M; Beaulieu, Chandree L; Kernohan, Kristin D; Gebril, Ola H; Mhanni, Aziz; Chudley, Albert E; Redl, David; Qin, Wen; Hampson, Sarah; Küry, Sébastien; Tetreault, Martine; Puffenberger, Erik G; Scott, James N; Bezieau, Stéphane; Reis, André; Uebe, Steffen; Schumacher, Johannes; Hegele, Robert A; McLeod, D Ross; Gálvez-Peralta, Marina; Majewski, Jacek; Ramaekers, Vincent T; Nebert, Daniel W; Innes, A Micheil; Parboosingh, Jillian S; Abou Jamra, Rami

    2015-12-01

    Manganese (Mn) and zinc (Zn) are essential divalent cations used by cells as protein cofactors; various human studies and animal models have demonstrated the importance of Mn and Zn for development. Here we describe an autosomal-recessive disorder in six individuals from the Hutterite community and in an unrelated Egyptian sibpair; the disorder is characterized by intellectual disability, developmental delay, hypotonia, strabismus, cerebellar atrophy, and variable short stature. Exome sequencing in one affected Hutterite individual and the Egyptian family identified the same homozygous variant, c.112G>C (p.Gly38Arg), affecting a conserved residue of SLC39A8. The affected Hutterite and Egyptian individuals did not share an extended common haplotype, suggesting that the mutation arose independently. SLC39A8 is a member of the solute carrier gene family known to import Mn, Zn, and other divalent cations across the plasma membrane. Evaluation of these two metal ions in the affected individuals revealed variably low levels of Mn and Zn in blood and elevated levels in urine, indicating renal wasting. Our findings identify a human Mn and Zn transporter deficiency syndrome linked to SLC39A8, providing insight into the roles of Mn and Zn homeostasis in human health and development. PMID:26637978

  5. A radiation hybrid map of 15 loci on the distal long arm of chromosome 4, the region containing the gene responsible for facioscapulohumeral muscular dystrophy (FSHD)

    SciTech Connect

    Winokur, S.T.; Wasmuth, J.H. ); Schutte, B. ); Weiffenbach, B. ); Washington, S.S.; Chakravarti, A. ); McElligot, D. ); Altherr, M.R. Los Alamos National Lab., NM )

    1993-10-01

    A physical map of 4q35 was constructed through radiation hybrid analysis of 134 clones generated from the cell line HHW416, a chromosome 4-only human-hamster somatic cell hybrid. This subtelomeric region contains the as-yet-unidentified gene responsible for facioscapulohumeral muscular dystrophy. The most likely order of 15 loci within 4q35 was determined. The loci ordered on this radiation hybrid map include both genes and polymorphic loci, as well as monomorphic loci which cannot be placed on a genetic linkage map. The physical distance spanning these loci was estimated to be approximately 4.5 Mb, by using a kilobase/centiray conversion factor derived from 4p16.3 marker analysis through the same set of radiation hybrids. The comparison of this physical map to established genetic maps suggests that this region is smaller than initially estimated and that recombination rates are increased near the telomere. 37 refs., 2 figs., 2 tabs.

  6. [Extreme atrophy of the shoulder muscles in juvenile ankylosing spondylitis as a (misleading) main symptom].

    PubMed

    Berliner, M; Schmidt, K L

    1989-01-01

    An extreme unilateral muscular atrophy of the shoulder and upper arm region was a symptom of juvenile ankylosing spondylitis in a 20-year-old female patient. No pathological patterns were found in electromyographic, bioptic, and tomographic (CT, NMR) investigations. The muscular atrophy was caused by a shoulder arthritis with severe erosive damage. The false assumption of a neurological disorder and the disregard of anamnesis and low back pain delayed for several years an accurate diagnosis. After the onset of an arthritis of hip joints a collagen disease with myositis was supposed falsely in spite of normal electromyographic results. The unusual muscular atrophy around the shoulder joint probably must be interpreted as a consequence of reflex inhibition and partly due to inactivity. A real myositis seems to not be probable, because newer investigations in contrast to earlier findings show no evidence for inflammatory muscle disease in ankylosing spondylitis.

  7. Blunted Akt/FOXO signalling and activation of genes controlling atrophy and fuel use in statin myopathy.

    PubMed

    Mallinson, Joanne E; Constantin-Teodosiu, Dumitru; Sidaway, James; Westwood, F Russell; Greenhaff, Paul L

    2009-01-15

    Statins are used clinically for cholesterol reduction, but statin therapy is associated with myopathic changes through a poorly defined mechanism. We used an in vivo model of statin myopathy to determine whether statins up-regulate genes associated with proteasomal- and lysosomal-mediated proteolysis and whether PDK gene expression is simultaneously up-regulated leading to the impairment of muscle carbohydrate oxidation. Animals were dosed daily with 80 mg kg(-1) day(-1) simvastatin for 4 (n = 6) and 12 days (n = 5), 88 mg kg(-1) day(-1) simvastatin for 12 days (n = 4), or vehicle (0.5% w/v hydroxypropyl-methylcellulose and 0.1% w/v polysorbate 80; Control, n = 6) for 12 days by oral gavage. We found, in biceps femoris muscle, decreased Akt(Ser473), FOXO1(Ser253) and FOXO3a(Ser253) phosphorylation in the cytosol (P < 0.05, P < 0.05, P < 0.001, respectively) and decreased phosphorylation of FOXO1 in the nucleus after 12 days simvastatin when compared to Control (P < 0.05). This was paralleled by a marked increase in the transcription of downstream targets of FOXO, i.e. MAFbx (P < 0.001), MuRF-1 (P < 0.001), cathepsin-L (P < 0.05), PDK2 (P < 0.05) and PDK4 (P < 0.05). These changes were accompanied by increased PPARalpha (P < 0.05), TNFalpha (P < 0.01), IL6 (P < 0.01), Mt1A (P < 0.01) mRNA and increased muscle glycogen (P < 0.05) compared to Control. RhoA activity decreased after 4 days simvastatin (P < 0.05); however, activity was no different from Control after 12 days. Simvastatin down-regulated PI3k/Akt signalling, independently of RhoA, and up-regulated FOXO transcription factors and downstream gene targets known to be implicated in proteasomal- and lysosomal-mediated muscle proteolysis, carbohydrate oxidation, oxidative stress and inflammation in an in vivo model of statin-induced myopathy. These changes occurred in the main before evidence of extensive myopathy or a decline in the muscle protein to DNA ratio. PMID:19001041

  8. Progressive hemifacial atrophy

    PubMed Central

    Sande, Abhijeet; Risbud, Mukund; Kshar, Avinash; Paranjpe, Arati Oka

    2013-01-01

    Progressive hemifacial atrophy, also known as Parry-Romberg Syndrome, is an uncommon degenerative and poorly understood condition. It is characterized by a slow and progressive but self-limited atrophy affecting one side of the face. The incidence and the cause of this alteration are unknown. A cerebral disturbance of fat metabolism has been proposed as a primary cause. Possible factors that are involved in the pathogenesis include trauma, viral infections, heredity, endocrine disturbances and auto-immunity. The most common complications that appear in association to this disorder are: trigeminal neuralgia, facial paresthesia, severe headache and epilepsy. Characteristically, the atrophy progresses slowly for several years and, it becomes stable. The objective of this work is, through the presentation of a clinical case, to accomplish a literature review concerning general characteristics, etiology, physiopathology and treatment of progressive hemifacial atrophy. PMID:23878573

  9. Novel mutations in DNAJB6 gene cause a very severe early-onset limb-girdle muscular dystrophy 1D disease.

    PubMed

    Palmio, Johanna; Jonson, Per Harald; Evilä, Anni; Auranen, Mari; Straub, Volker; Bushby, Kate; Sarkozy, Anna; Kiuru-Enari, Sari; Sandell, Satu; Pihko, Helena; Hackman, Peter; Udd, Bjarne

    2015-11-01

    DNAJB6 is the causative gene for limb-girdle muscular dystrophy 1D (LGMD1D). Four different coding missense mutations, p.F89I, p.F93I, p.F93L, and p.P96R, have been reported in families from Europe, North America and Asia. The previously known mutations cause mainly adult-onset proximal muscle weakness with moderate progression and without respiratory involvement. A Finnish family and a British patient have been studied extensively due to a severe muscular dystrophy. The patients had childhood-onset LGMD, loss of ambulation in early adulthood and respiratory involvement; one patient died of respiratory failure aged 32. Two novel mutations, c.271T > A (p.F91I) and c.271T > C (p.F91L), in DNAJB6 were identified by whole exome sequencing as a cause of this severe form of LGMD1D. The results were confirmed by Sanger sequencing. The anti-aggregation effect of the mutant DNAJB6 was investigated in a filter-trap based system using transient transfection of mammalian cell lines and polyQ-huntingtin as a model for an aggregation-prone protein. Both novel mutant proteins show a significant loss of ability to prevent aggregation.

  10. Novel mutations in DNAJB6 gene cause a very severe early-onset limb-girdle muscular dystrophy 1D disease.

    PubMed

    Palmio, Johanna; Jonson, Per Harald; Evilä, Anni; Auranen, Mari; Straub, Volker; Bushby, Kate; Sarkozy, Anna; Kiuru-Enari, Sari; Sandell, Satu; Pihko, Helena; Hackman, Peter; Udd, Bjarne

    2015-11-01

    DNAJB6 is the causative gene for limb-girdle muscular dystrophy 1D (LGMD1D). Four different coding missense mutations, p.F89I, p.F93I, p.F93L, and p.P96R, have been reported in families from Europe, North America and Asia. The previously known mutations cause mainly adult-onset proximal muscle weakness with moderate progression and without respiratory involvement. A Finnish family and a British patient have been studied extensively due to a severe muscular dystrophy. The patients had childhood-onset LGMD, loss of ambulation in early adulthood and respiratory involvement; one patient died of respiratory failure aged 32. Two novel mutations, c.271T > A (p.F91I) and c.271T > C (p.F91L), in DNAJB6 were identified by whole exome sequencing as a cause of this severe form of LGMD1D. The results were confirmed by Sanger sequencing. The anti-aggregation effect of the mutant DNAJB6 was investigated in a filter-trap based system using transient transfection of mammalian cell lines and polyQ-huntingtin as a model for an aggregation-prone protein. Both novel mutant proteins show a significant loss of ability to prevent aggregation. PMID:26338452

  11. A case of Becker muscular dystrophy resulting from the skipping of four contiguous exons (71-74) of the dystrophin gene during mRNA maturation.

    PubMed

    Patria, S Y; Alimsardjono, H; Nishio, H; Takeshima, Y; Nakamura, H; Matsuo, M

    1996-07-01

    The mutations in one-third of both Duchenne and Becker muscular dystrophy patients remain unknown because they do not involve gross rearrangements of the dystrophin gene. Here we report the first example of multiple exon skipping during the splicing of dystrophin mRNA precursor encoded by an apparently normal dystrophin gene. A 9-year-old Japanese boy exhibiting excessive fatigue and high serum creatine kinase activity was examined for dystrophinopathy. An immunohistochemical study of muscle tissue biopsy disclosed faint and discontinuous staining of the N-terminal and rod domains of dystrophin but no staining at all of the C-terminal domain of dystrophin. The dystrophin transcript from muscle tissue was analyzed by the reverse transcriptase polymerase chain reaction. An amplified product encompassing exons 67-79 of dystrophin cDNA was found to be smaller than that of the wild-type product. Sequence analysis of this fragment showed that the 3' end of exon 70 was directly connected to the 5' end of exon 75 and, thus, that exons 71-74 were completely absent. As a result, a truncated dystrophin protein lacking 110 amino acids from the C-terminal domain should result from translation of this truncated mRNA, and the patient was diagnosed as having Becker muscular dystrophy at the molecular level. Genomic DNA was analyzed to identify the cause of the disappearance of these exons. Every exon-encompassing region could be amplified from genomic DNA, indicating that the dystrophin gene is intact. Furthermore, sequencing of these amplified products did not disclose any particular nucleotide change that could be responsible for the multiple exon skipping observed. Considering that exons 71-74 are spliced out alternatively in some tissue-specific isoforms, to suppose that the alternative splicing machinery is present in the muscle tissue of the index case and that it is activated by an undetermined mechanism is reasonable. These results illustrate a novel genetic anomaly that

  12. Statistical insights into major human muscular diseases.

    PubMed

    Gupta, Shakti; Kim, Sung-Min; Wang, Yu; Dinasarapu, Ashok Reddy; Subramaniam, Shankar

    2014-07-15

    Muscular diseases lead to muscle fiber degeneration, impairment of mobility, and in some cases premature death. Many of these muscular diseases are largely idiopathic. The goal of this study was to identify biomarkers based on their functional role and possible mechanisms of pathogenesis, specific to individual muscular disease. We analyzed the muscle transcriptome from five major muscular diseases: acute quadriplegic myopathy (AQM), amyotrophic lateral sclerosis (ALS), mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS), dermatomyositis (DM) and polymyositis (PM) using pairwise statistical comparison to identify uniquely regulated genes in each muscular disease. The genome-wide information encoded in the transcriptome provided biomarkers and functional insights into dysregulation in each muscular disease. The analysis showed that the dysregulation of genes in forward membrane pathway, responsible for transmitting action potential from neural excitation, is unique to AQM, while the dysregulation of myofibril genes, determinant of the mechanical properties of muscle, is unique to ALS, dysregulation of ER protein processing, responsible for correct protein folding, is unique to DM, and upregulation of immune response genes is unique to PM. We have identified biomarkers specific to each muscular disease which can be used for diagnostic purposes.

  13. Osteoprotegerin protects against muscular dystrophy.

    PubMed

    Dufresne, Sébastien S; Dumont, Nicolas A; Bouchard, Patrice; Lavergne, Éliane; Penninger, Josef M; Frenette, Jérôme

    2015-04-01

    Receptor-activator of NF-κB, its ligand RANKL, and the soluble decoy receptor osteoprotegerin are the key regulators of osteoclast differentiation and bone remodeling. Although there is a strong association between osteoporosis and skeletal muscle atrophy/dysfunction, the functional relevance of a particular biological pathway that synchronously regulates bone and skeletal muscle physiopathology still is elusive. Here, we show that muscle cells can produce and secrete osteoprotegerin and pharmacologic treatment of dystrophic mdx mice with recombinant osteoprotegerin muscles. (Recombinant osteoprotegerin-Fc mitigates the loss of muscle force in a dose-dependent manner and preserves muscle integrity, particularly in fast-twitch extensor digitorum longus.) Our data identify osteoprotegerin as a novel protector of muscle integrity, and it potentially represents a new therapeutic avenue for both muscular diseases and osteoporosis.

  14. Evaluation of 2'-Deoxy-2'-fluoro Antisense Oligonucleotides for Exon Skipping in Duchenne Muscular Dystrophy

    PubMed Central

    Jirka, Silvana M G; Tanganyika-de Winter, Christa L; Boertje-van der Meulen, Joke W; van Putten, Maaike; Hiller, Monika; Vermue, Rick; de Visser, Peter C; Aartsma-Rus, Annemieke

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a severe muscle wasting disorder typically caused by frame-shifting mutations in the DMD gene. Restoration of the reading frame would allow the production of a shorter but partly functional dystrophin protein as seen in Becker muscular dystrophy patients. This can be achieved with antisense oligonucleotides (AONs) that induce skipping of specific exons during pre-mRNA splicing. Different chemical modifications have been developed to improve AON properties. The 2'-deoxy-2'-fluoro (2F) RNA modification is attractive for exon skipping due to its ability to recruit ILF2/3 proteins to the 2F/pre-mRNA duplex, which resulted in enhanced exon skipping in spinal muscular atrophy models. In this study, we examined the effect of two different 2'-substituted AONs (2'-F phosphorothioate (2FPS) and 2'-O-Me phosphorothioate (2OMePS)) on exon skipping in DMD cell and animal models. In human cell cultures, 2FPS AONs showed higher exon skipping levels than their isosequential 2OMePS counterparts. Interestingly, in the mdx mouse model, 2FPS was less efficient than 2OMePS and suggested safety issues as evidenced by increased spleen size and weight loss. Our results do not support a clinical application for 2FPS AON. PMID:26623937

  15. Evaluation of 2'-Deoxy-2'-fluoro Antisense Oligonucleotides for Exon Skipping in Duchenne Muscular Dystrophy.

    PubMed

    Jirka, Silvana M G; Tanganyika-de Winter, Christa L; Boertje-van der Meulen, Joke W; van Putten, Maaike; Hiller, Monika; Vermue, Rick; de Visser, Peter C; Aartsma-Rus, Annemieke

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a severe muscle wasting disorder typically caused by frame-shifting mutations in the DMD gene. Restoration of the reading frame would allow the production of a shorter but partly functional dystrophin protein as seen in Becker muscular dystrophy patients. This can be achieved with antisense oligonucleotides (AONs) that induce skipping of specific exons during pre-mRNA splicing. Different chemical modifications have been developed to improve AON properties. The 2'-deoxy-2'-fluoro (2F) RNA modification is attractive for exon skipping due to its ability to recruit ILF2/3 proteins to the 2F/pre-mRNA duplex, which resulted in enhanced exon skipping in spinal muscular atrophy models. In this study, we examined the effect of two different 2'-substituted AONs (2'-F phosphorothioate (2FPS) and 2'-O-Me phosphorothioate (2OMePS)) on exon skipping in DMD cell and animal models. In human cell cultures, 2FPS AONs showed higher exon skipping levels than their isosequential 2OMePS counterparts. Interestingly, in the mdx mouse model, 2FPS was less efficient than 2OMePS and suggested safety issues as evidenced by increased spleen size and weight loss. Our results do not support a clinical application for 2FPS AON. PMID:26623937

  16. Glucocorticoid-induced skeletal muscle atrophy.

    PubMed

    Schakman, O; Kalista, S; Barbé, C; Loumaye, A; Thissen, J P

    2013-10-01

    Many pathological states characterized by muscle atrophy (e.g., sepsis, cachexia, starvation, metabolic acidosis and severe insulinopenia) are associated with an increase in circulating glucocorticoids (GC) levels, suggesting that GC could trigger the muscle atrophy observed in these conditions. GC-induced muscle atrophy is characterized by fast-twitch, glycolytic muscles atrophy illustrated by decreased fiber cross-sectional area and reduced myofibrillar protein content. GC-induced muscle atrophy results from increased protein breakdown and decreased protein synthesis. Increased muscle proteolysis, in particular through the activation of the ubiquitin proteasome and the lysosomal systems, is considered to play a major role in the catabolic action of GC. The stimulation by GC of these two proteolytic systems is mediated through the increased expression of several Atrogenes ("genes involved in atrophy"), such as FOXO, Atrogin-1, and MuRF-1. The inhibitory effect of GC on muscle protein synthesis is thought to result mainly from the inhibition of the mTOR/S6 kinase 1 pathway. These changes in muscle protein turnover could be explained by changes in the muscle production of two growth factors, namely Insulin-like Growth Factor (IGF)-I, a muscle anabolic growth factor and Myostatin, a muscle catabolic growth factor. This review will discuss the recent progress made in the understanding of the mechanisms involved in GC-induced muscle atrophy and consider the implications of these advancements in the development of new therapeutic approaches for treating GC-induced myopathy. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting.

  17. Confirmation of a third locus, at 2p, for autosomal recessive limb-girdle muscular dystrophy indicates that at least 4 genes are responsible for this condition

    SciTech Connect

    Passos-Bueno, M.R.; Moreira, E.S.; Vasques, L.R.

    1994-09-01

    Autosomal recessive limb-girdle muscular dystrophies (AR LGMD) represent a heterogeneous group of diseases with a wide spectrum of clinical signs, varying from very severe to mild ones. One gene for a mild form was mapped at 15q while another gene for a severe form was mapped at 13p. In both cases, evidence of genetic heterogeneity were demonstrated following analysis of Brazilian families. More recently, a third gene was identified at 2p based on linkage analysis in 2 LGMD families with the markers D2S166, D2S136 and D2S134. The relative proportion of each genetic form among affected families is unknown. Therefore, the closest available markers for each of the LGMD genes have been tested in 12 Brazilian families with at least 3 affected patients. The following results have been observed: 3 were 15q-linked families, 1 was 13p-linked, at least 2 were linked to 2p and 2 were excluded for any of these 3 loci. In relation to the 2p locus, we have tested a total of 12 markers in the 2 linked Brazilian families. The maximum lod score for the marker which was informative for the two families (D2S291) was 8.35 at {theta}=0.01. Therefore, these results suggest the existence of at least 4 different genes causing the LGMD phenotype and confirm linkage to the 2p locus. In addition, our data refine the localization of the third locus since the marker D2S291 is at least 9 cM closer to this gene (FAPESP, CNPq, MDA, PADCT).

  18. Flexibility and Muscular Strength.

    ERIC Educational Resources Information Center

    Liemohn, Wendell

    1988-01-01

    This definition of flexibility and muscular strength also explores their roles in overall physical fitness and focuses on how increased flexibility and muscular strength can help decrease or eliminate lower back pain. (CB)

  19. Mutation in TOR1AIP1 encoding LAP1B in a form of muscular dystrophy: a novel gene related to nuclear envelopathies.

    PubMed

    Kayman-Kurekci, Gulsum; Talim, Beril; Korkusuz, Petek; Sayar, Nilufer; Sarioglu, Turkan; Oncel, Ibrahim; Sharafi, Parisa; Gundesli, Hulya; Balci-Hayta, Burcu; Purali, Nuhan; Serdaroglu-Oflazer, Piraye; Topaloglu, Haluk; Dincer, Pervin

    2014-07-01

    We performed genome-wide homozygosity mapping and mapped a novel myopathic phenotype to chromosomal region 1q25 in a consanguineous family with three affected individuals manifesting proximal and distal weakness and atrophy, rigid spine and contractures of the proximal and distal interphalangeal hand joints. Additionally, cardiomyopathy and respiratory involvement were noted. DNA sequencing of torsinA-interacting protein 1 (TOR1AIP1) gene encoding lamina-associated polypeptide 1B (LAP1B), showed a homozygous c.186delG mutation that causes a frameshift resulting in a premature stop codon (p.E62fsTer25). We observed that expression of LAP1B was absent in the patient skeletal muscle fibres. Ultrastructural examination showed intact sarcomeric organization but alterations of the nuclear envelope including nuclear fragmentation, chromatin bleb formation and naked chromatin. LAP1B is a type-2 integral membrane protein localized in the inner nuclear membrane that binds to both A- and B-type lamins, and is involved in the regulation of torsinA ATPase. Interestingly, luminal domain-like LAP1 (LULL1)-an endoplasmic reticulum-localized partner of torsinA-was overexpressed in the patient's muscle in the absence of LAP1B. Therefore, the findings suggest that LAP1 and LULL1 might have a compensatory effect on each other. This study expands the spectrum of genes associated with nuclear envelopathies and highlights the critical function for LAP1B in striated muscle.

  20. Mutation in TOR1AIP1 encoding LAP1B in a form of muscular dystrophy: a novel gene related to nuclear envelopathies.

    PubMed

    Kayman-Kurekci, Gulsum; Talim, Beril; Korkusuz, Petek; Sayar, Nilufer; Sarioglu, Turkan; Oncel, Ibrahim; Sharafi, Parisa; Gundesli, Hulya; Balci-Hayta, Burcu; Purali, Nuhan; Serdaroglu-Oflazer, Piraye; Topaloglu, Haluk; Dincer, Pervin

    2014-07-01

    We performed genome-wide homozygosity mapping and mapped a novel myopathic phenotype to chromosomal region 1q25 in a consanguineous family with three affected individuals manifesting proximal and distal weakness and atrophy, rigid spine and contractures of the proximal and distal interphalangeal hand joints. Additionally, cardiomyopathy and respiratory involvement were noted. DNA sequencing of torsinA-interacting protein 1 (TOR1AIP1) gene encoding lamina-associated polypeptide 1B (LAP1B), showed a homozygous c.186delG mutation that causes a frameshift resulting in a premature stop codon (p.E62fsTer25). We observed that expression of LAP1B was absent in the patient skeletal muscle fibres. Ultrastructural examination showed intact sarcomeric organization but alterations of the nuclear envelope including nuclear fragmentation, chromatin bleb formation and naked chromatin. LAP1B is a type-2 integral membrane protein localized in the inner nuclear membrane that binds to both A- and B-type lamins, and is involved in the regulation of torsinA ATPase. Interestingly, luminal domain-like LAP1 (LULL1)-an endoplasmic reticulum-localized partner of torsinA-was overexpressed in the patient's muscle in the absence of LAP1B. Therefore, the findings suggest that LAP1 and LULL1 might have a compensatory effect on each other. This study expands the spectrum of genes associated with nuclear envelopathies and highlights the critical function for LAP1B in striated muscle. PMID:24856141

  1. Nanoparticle Delivery of Antisense Oligonucleotides and Their Application in the Exon Skipping Strategy for Duchenne Muscular Dystrophy

    PubMed Central

    Falzarano, Maria Sofia; Passarelli, Chiara

    2014-01-01

    Antisense therapy is a powerful tool for inducing post-transcriptional modifications and thereby regulating target genes associated with disease. There are several classes of antisense oligonucleotides (AONs) with therapeutic use, such as double-stranded RNAs (interfering RNAs, utilized for gene silencing, and single-stranded AONs with various chemistries, which are useful for antisense targeting of micro-RNAs and mRNAs. In particular, the use of AONs for exon skipping, by targeting pre-mRNA, is proving to be a highly promising therapy for some genetic disorders like Duchenne muscular dystrophy and spinal muscular atrophy. However, AONs are unable to cross the plasma membrane unaided, and several other obstacles still remain to be overcome, in particular their instability due to their nuclease sensitivity and their lack of tissue specificity. Various drug delivery systems have been explored to improve the bioavailability of nucleic acids, and nanoparticles (NPs) have been suggested as potential vectors for DNA/RNA. This review describes the recent progress in AON conjugation with natural and synthetic delivery systems, and provides an overview of the efficacy of NP-AON complexes as an exon-skipping treatment for Duchenne muscular dystrophy. PMID:24506782

  2. Comparison of Mutation Profiles in the Duchenne Muscular Dystrophy Gene among Populations: Implications for Potential Molecular Therapies

    PubMed Central

    López-Hernández, Luz Berenice; Gómez-Díaz, Benjamín; Luna-Angulo, Alexandra Berenice; Anaya-Segura, Mónica; Bunyan, David John; Zúñiga-Guzman, Carolina; Escobar-Cedillo, Rosa Elena; Roque-Ramírez, Bladimir; Ruano-Calderón, Luis Angel; Rangel-Villalobos, Héctor; López-Hernández, Julia Angélica; Estrada-Mena, Francisco Javier; García, Silvia; Coral-Vázquez, Ramón Mauricio

    2015-01-01

    Novel therapeutic approaches are emerging to restore dystrophin function in Duchenne Muscular Dystrophy (DMD), a severe neuromuscular disease characterized by progressive muscle wasting and weakness. Some of the molecular therapies, such as exon skipping, stop codon read-through and internal ribosome entry site-mediated translation rely on the type and location of mutations. Hence, their potential applicability worldwide depends on mutation frequencies within populations. In view of this, we compared the mutation profiles of the populations represented in the DMD Leiden Open-source Variation Database with original data from Mexican patients (n = 162) with clinical diagnosis of the disease. Our data confirm that applicability of exon 51 is high in most populations, but also show that differences in theoretical applicability of exon skipping may exist among populations; Mexico has the highest frequency of potential candidates for the skipping of exons 44 and 46, which is different from other populations (p < 0.001). To our knowledge, this is the first comprehensive comparison of theoretical applicability of exon skipping targets among specific populations. PMID:25761239

  3. Effect of Oenothera odorata Root Extract on Microgravity and Disuse-Induced Muscle Atrophy.

    PubMed

    Lee, Yong-Hyeon; Seo, Dong-Hyun; Park, Ji-Hyung; Kabayama, Kazuya; Opitz, Joerg; Lee, Kwang Ho; Kim, Han-Sung; Kim, Tack-Joong

    2015-01-01

    Muscle atrophy, a reduction of muscle mass, strength, and volume, results from reduced muscle use and plays a key role in various muscular diseases. In the microgravity environment of space especially, muscle atrophy is induced by muscle inactivity. Exposure to microgravity induces muscle atrophy through several biological effects, including associations with reactive oxygen species (ROS). This study used 3D-clinostat to investigate muscle atrophy caused by oxidative stress in vitro, and sciatic denervation was used to investigate muscle atrophy in vivo. We assessed the effect of Oenothera odorata root extract (EVP) on muscle atrophy. EVP helped recover cell viability in C2C12 myoblasts exposed to microgravity for 24 h and delayed muscle atrophy in sciatic denervated mice. However, the expressions of HSP70, SOD1, and ceramide in microgravity-exposed C2C12 myoblasts and in sciatic denervated mice were either decreased or completely inhibited. These results suggested that EVP can be expected to have a positive effect on muscle atrophy by disuse and microgravity. In addition, EVP helped characterize the antioxidant function in muscle atrophy. PMID:25945103

  4. Effect of Oenothera odorata Root Extract on Microgravity and Disuse-Induced Muscle Atrophy

    PubMed Central

    Lee, Yong-Hyeon; Seo, Dong-Hyun; Park, Ji-Hyung; Kabayama, Kazuya; Opitz, Joerg; Lee, Kwang Ho; Kim, Han-Sung; Kim, Tack-Joong

    2015-01-01

    Muscle atrophy, a reduction of muscle mass, strength, and volume, results from reduced muscle use and plays a key role in various muscular diseases. In the microgravity environment of space especially, muscle atrophy is induced by muscle inactivity. Exposure to microgravity induces muscle atrophy through several biological effects, including associations with reactive oxygen species (ROS). This study used 3D-clinostat to investigate muscle atrophy caused by oxidative stress in vitro, and sciatic denervation was used to investigate muscle atrophy in vivo. We assessed the effect of Oenothera odorata root extract (EVP) on muscle atrophy. EVP helped recover cell viability in C2C12 myoblasts exposed to microgravity for 24 h and delayed muscle atrophy in sciatic denervated mice. However, the expressions of HSP70, SOD1, and ceramide in microgravity-exposed C2C12 myoblasts and in sciatic denervated mice were either decreased or completely inhibited. These results suggested that EVP can be expected to have a positive effect on muscle atrophy by disuse and microgravity. In addition, EVP helped characterize the antioxidant function in muscle atrophy. PMID:25945103

  5. Research opportunities in muscle atrophy

    NASA Technical Reports Server (NTRS)

    Herbison, G. J. (Editor); Talbot, J. M. (Editor)

    1984-01-01

    Muscle atrophy in a weightless environment is studied. Topics of investigation include physiological factors of muscle atrophy in space flight, biochemistry, countermeasures, modelling of atrophied muscle tissue, and various methods of measurement of muscle strength and endurance. A review of the current literature and suggestions for future research are included.

  6. Limb Girdle Muscular Dystrophy (LGMD): Case Report

    PubMed Central

    Kalyan, Meenakshi; Gaikwad, Anu N.; Makadia, Ankit; Shah, Harshad

    2015-01-01

    We report a young male of autosomal recessive limb girdle muscular dystrophy (LGMD) with positive family history presented with gradual onset proximal muscle weakness in all four limbs since eight years and thinning of shoulders, arms and thighs. Neurological examination revealed atrophy of both shoulders with wasting of both deltoids thinning of thighs and pseudo hypertrophy of both calves, hypotonia in all four limbs. Gower’s sign was positive. Winging of scapula was present. Power was 3/5 at both shoulders, 4/5 at both elbows, 5/5 at both wrists, 3/5 at both hip joints, 3/5 at both knees, 5/5 at both ankles. All deep tendon reflexes and superficial reflexes were present with plantars bilateral flexors. Electromyography (EMG) showed myopathic pattern. He had elevated creatinine phosphokinase levels and muscle biopsy findings consistent with muscular dystrophy. PMID:25738022

  7. Intra-amniotic rAAV-mediated microdystrophin gene transfer improves canine X-linked muscular dystrophy and may induce immune tolerance.

    PubMed

    Hayashita-Kinoh, Hiromi; Yugeta, Naoko; Okada, Hironori; Nitahara-Kasahara, Yuko; Chiyo, Tomoko; Okada, Takashi; Takeda, Shin'ichi

    2015-04-01

    Duchenne muscular dystrophy (DMD) is a severe congenital disease due to mutations in the dystrophin gene. Supplementation of dystrophin using recombinant adenoassociated virus vector has promise as a treatment of DMD, although therapeutic benefit of the truncated dystrophin still remains to be elucidated. Besides, host immune responses against the vector as well as transgene products have been denoted in the clinical gene therapy studies. Here, we transduced dystrophic dogs fetuses to investigate the therapeutic effects of an AAV vector expressing microdystrophin under conditions of immune tolerance. rAAV-CMV-microdystrophin and a rAAV-CAG-luciferase were injected into the amniotic fluid surrounding fetuses. We also reinjected rAAV9-CMV-microdystrophin into the jugular vein of an infant dystrophic dog to induce systemic expression of microdystrophin. Gait and cardiac function significantly improved in the rAAV-microdystrophin-injected dystrophic dog, suggesting that an adequate treatment of rAAV-microdystrophin with immune modulation induces successful long-term transgene expression to analyze improved dystrophic phenotype.

  8. Intra-Amniotic rAAV-Mediated Microdystrophin Gene Transfer Improves Canine X-Linked Muscular Dystrophy and May Induce Immune Tolerance

    PubMed Central

    Hayashita-Kinoh, Hiromi; Yugeta, Naoko; Okada, Hironori; Nitahara-Kasahara, Yuko; Chiyo, Tomoko; Okada, Takashi; Takeda, Shin'ichi

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a severe congenital disease due to mutations in the dystrophin gene. Supplementation of dystrophin using recombinant adenoassociated virus vector has promise as a treatment of DMD, although therapeutic benefit of the truncated dystrophin still remains to be elucidated. Besides, host immune responses against the vector as well as transgene products have been denoted in the clinical gene therapy studies. Here, we transduced dystrophic dogs fetuses to investigate the therapeutic effects of an AAV vector expressing microdystrophin under conditions of immune tolerance. rAAV-CMV-microdystrophin and a rAAV-CAG-luciferase were injected into the amniotic fluid surrounding fetuses. We also reinjected rAAV9-CMV-microdystrophin into the jugular vein of an infant dystrophic dog to induce systemic expression of microdystrophin. Gait and cardiac function significantly improved in the rAAV-microdystrophin-injected dystrophic dog, suggesting that an adequate treatment of rAAV-microdystrophin with immune modulation induces successful long-term transgene expression to analyze improved dystrophic phenotype. PMID:25586688

  9. Muscle phenotypic variability in limb girdle muscular dystrophy 2 G.

    PubMed

    Paim, Julia F; Cotta, Ana; Vargas, Antonio P; Navarro, Monica M; Valicek, Jaquelin; Carvalho, Elmano; da-Cunha, Antonio L; Plentz, Estevão; Braz, Shelida V; Takata, Reinaldo I; Almeida, Camila F; Vainzof, Mariz

    2013-06-01

    Limb girdle muscular dystrophy type 2 G (LGMD2G) is caused by mutations in the telethonin gene. Only few families were described presenting this disease, and they are mainly Brazilians. Here, we identified one additional case carrying the same common c.157C > T mutation in the telethonin gene but with an atypical histopathological muscle pattern. In a female patient with a long duration of symptoms (46 years), muscle biopsy showed, in addition to telethonin deficiency, the presence of nemaline rods, type 1 fiber predominance, nuclear internalization, lobulated fibers, and mitochondrial paracrystalline inclusions. Her first clinical signs were identified at 8 years old, which include tiptoe walking, left lower limb deformity, and frequent falls. Ambulation loss occurred at 41 years old, and now, at 54 years old, she presented pelvic girdle atrophy, winging scapula, foot deformity with incapacity to perform ankle dorsiflexion, and absent tendon reflexes. The presence of nemaline bodies could be a secondary phenomenon, possibly associated with focal Z-line abnormalities of a long-standing disease. However, these new histopathological findings, characteristic of congenital myopathies, expand muscle phenotypic variability of telethoninopathy. PMID:23479141

  10. Gene expression in mdx mouse muscle in relation to age and exercise: aberrant mechanical-metabolic coupling and implications for pre-clinical studies in Duchenne muscular dystrophy.

    PubMed

    Camerino, Giulia Maria; Cannone, Maria; Giustino, Arcangela; Massari, Ada Maria; Capogrosso, Roberta Francesca; Cozzoli, Anna; De Luca, Annamaria

    2014-11-01

    Weakness and fatigability are typical features of Duchenne muscular dystrophy patients and are aggravated in dystrophic mdx mice by chronic treadmill exercise. Mechanical activity modulates gene expression and muscle plasticity. Here, we investigated the outcome of 4 (T4, 8 weeks of age) and 12 (T12, 16 weeks of age) weeks of either exercise or cage-based activity on a large set of genes in the gastrocnemius muscle of mdx and wild-type (WT) mice using quantitative real-time PCR. Basal expression of the exercise-sensitive genes peroxisome-proliferator receptor γ coactivator 1α (Pgc-1α) and Sirtuin1 (Sirt1) was higher in mdx versus WT mice at both ages. Exercise increased Pgc-1α expression in WT mice; Pgc-1α was downregulated by T12 exercise in mdx muscles, along with Sirt1, Pparγ and the autophagy marker Bnip3. Sixteen weeks old mdx mice showed a basal overexpression of the slow Mhc1 isoform and Serca2; T12 exercise fully contrasted this basal adaptation as well as the high expression of follistatin and myogenin. Conversely, T12 exercise was ineffective in WT mice. Damage-related genes such as gp91-phox (NADPH-oxidase2), Tgfβ, Tnfα and c-Src tyrosine kinase were overexpressed in mdx muscles and not affected by exercise. Likewise, the anti-inflammatory adiponectin was lower in T12-exercised mdx muscles. Chronic exercise with minor adaptive effects in WT muscles leads to maladaptation in mdx muscles with a disequilibrium between protective and damaging signals. Increased understanding of the pathways involved in the altered mechanical-metabolic coupling may help guide appropriate physical therapies while better addressing pharmacological interventions in translational research.

  11. A founder mutation in Anoctamin 5 is a major cause of limb girdle muscular dystrophy

    PubMed Central

    Muelas, Nuria; Köehler, Katrin; Huebner, Angela; Hudson, Gavin; Chinnery, Patrick F.; Barresi, Rita; Eagle, Michelle; Polvikoski, Tuomo; Bailey, Geraldine; Miller, James; Radunovic, Aleksander; Hughes, Paul J.; Roberts, Richard; Krause, Sabine; Walter, Maggie C.; Laval, Steven H.; Straub, Volker; Lochmüller, Hanns; Bushby, Kate

    2014-01-01

    The limb girdle muscular dystrophies (LGMDs) are a group of disorders with wide genetic and clinical heterogeneity. Recently, mutations in the ANO5 gene, which encodes a putative calcium-activated chloride channel belonging to the Anoctamin family of proteins, were identified in five families with one of two previously identified disorders, LGMD2L and non-dysferlin Miyoshi muscular dystrophy (MMD3). We screened a candidate group of 64 patients from 59 British and German kindreds and found the truncating mutation, c.191dupA in exon 5 of ANO5 in 20 patients, homozygously in 15 and in compound heterozygosity with other ANO5 variants in the rest. An intragenic SNP and an extragenic microsatellite marker are in linkage disequilibrium with the mutation, suggesting a founder effect in the Northern European population. We have further defined the clinical phenotype of ANO5-associated muscular dystrophy. Patients show adult onset proximal lower limb weakness with highly raised creatinine kinase (CK) values (average 4500 IU/l) and frequent muscle atrophy and asymmetry of muscle involvement. Onset varies from the early 20s to 50s and the weakness is generally slowly progressive, with most patients remaining ambulant for several decades. Distal presentation is much less common but a milder degree of distal lower limb weakness is often observed. Upper limb strength is only mildly affected and cardiac and respiratory function is normal. Females appear less frequently affected. In the North of England population we have identified eight patients with ANO5 mutations, suggesting a minimum prevalence of 0.27/100 000, twice as common as dysferlinopathy. We suggest that mutations in ANO5 represent a relatively common cause of adult onset muscular dystrophy with high CK and that mutation screening, particularly of the common mutation c.191dupA, should be an early step in the diagnostic algorithm of adult LGMD patients. PMID:21186264

  12. Wasting mechanisms in muscular dystrophy.

    PubMed

    Shin, Jonghyun; Tajrishi, Marjan M; Ogura, Yuji; Kumar, Ashok

    2013-10-01

    Muscular dystrophy is a group of more than 30 different clinical genetic disorders that are characterized by progressive skeletal muscle wasting and degeneration. Primary deficiency of specific extracellular matrix, sarcoplasmic, cytoskeletal, or nuclear membrane protein results in several secondary changes such as sarcolemmal instability, calcium influx, fiber necrosis, oxidative stress, inflammatory response, breakdown of extracellular matrix, and eventually fibrosis which leads to loss of ambulance and cardiac and respiratory failure. A number of molecular processes have now been identified which hasten disease progression in human patients and animal models of muscular dystrophy. Accumulating evidence further suggests that aberrant activation of several signaling pathways aggravate pathological cascades in dystrophic muscle. Although replacement of defective gene with wild-type is paramount to cure, management of secondary pathological changes has enormous potential to improving the quality of life and extending lifespan of muscular dystrophy patients. In this article, we have reviewed major cellular and molecular mechanisms leading to muscle wasting in muscular dystrophy. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting.

  13. [DIAGNOSTIC VARIATIONS OF X-LINKED MUSCULAR DYSTROPHY WITH CONTRACTURES].

    PubMed

    Kvirkvelia, N; Shakarishvili, R; Gugutsidze, D; Khizanishvili, N

    2015-01-01

    Case report with review describes X-linked muscular dystrophy with contractures in 28 years old man and his cousin. The disease revealed itself in an early stage (age 5-10), the process was progressing with apparent tendons retraction and contraction, limited movement in the areas of the neck and back of spine, atrophy of shoulder and pelvic yard and back muscles. Intellect was intact. Cardyomyopathy was exhibited. CK was normal. EMG showed classic myopathic features. Muscle biopsy showed different caliber groups of muscle fibers, growth of endo-perimesial connective tissue. Clinical manifestations together with electrophysiological and histological data suggest consistency with Rotthauwe-Mortier-Bayer X-linked muscular dystrophy.

  14. Muscular dystrophy of mink: a new animal model.

    PubMed

    Hegreberg, G A; Hamilton, M J; Padgett, G A

    1976-04-01

    Muscular dystrophies comprise an important group of inherited disorders of man. Although the disease has been studied extensively, little is known about the underlying primary pathomechanisms. Consequently, treatment of patients is difficult and prognosis is poor. An animal model of muscular dystrophy is a useful research tool for approaching the basic problems of pathogenesis in muscle diseases. An inherited progressive muscular dystrophy of mink which resembles the amyotonic forms of human muscular dystrophy is currently under study. Clinically, the earliest sign is progressive muscular weakness and atrophy. Muscle enzyme activities in serum are usually elevated to pathologic levels. Urinary creatine/creatinine ratio is elevated. Pathologic changes are limited to skeletal muscle and are typical of those seen in amyotonic forms of human muscular dystrophy. These changes include variation in diameter size of muscle fibers, centralized nuclei, floccular and hyaline degeneration of scattered muscle fibers, increase in connective tissue in endomysial and perimysial areas, and regenerative attempts. Both type I and type II muscle fibers are involved in the disease process. Genetic studies indicate an autosomal recessive mode of inheritance. Although the primary defect in muscular dystrophy is traditionally thought to reside in skeletal muscle, recent studies have produced theories of primary involvement of other tissues and organ systems. These theories are presented and relationships to the traditional theory are discussed.

  15. Genetic and physical mapping at the limb-girdle muscular dystrophy locus (LGMD2B) on chromosome 2p

    SciTech Connect

    Bashir, R.; Keers, S.; Strachan, T.

    1996-04-01

    The limb-girdle muscular dystrophies (LGMD) are a genetically heterogeneous group of disorders, different forms of which have been mapped to at least six distinct genetic loci. We have mapped to at least six distinct genetic loci. We have mapped an autosomal recessive form of LGMD (LGMD2B) to chromosome 2p13. Two other conditions have been shown to map to this region or to the homologous region in mouse: a gene for a form of autosomal recessive distal muscular dystrophy, Miyoshi myopathy, shows linkage to the same markers on chromosome 2p as LGMD2B, and an autosomal recessive mouse mutation mnd2, in which there is rapidly progressive paralysis and muscle atrophy, has been mapped to mouse chromosome 6 to a region showing conserved synteny with human chromosome 2p12-p13. We have assembled a 6-cM YAC contig spanning the LGMD2B locus and have mapped seven genes and 13 anonymous polymorphic microsatellites to it. Using haplotype analysis in the linked families, we have narrowed our region of interest to a 0-cM interval between D2S2113 and D2S145, which does not overlap with the critical region for mnd2 in mouse. Use of these most closely linked markers will help to determine the relationship between LGMD2B and Miyoshi myopathy. YACs selected from our contig will be the starting point for the cloning of the LGMD2B gene and thereby establish the biological basis for this form of muscular dystrophy and its relationship with the other limb-girdle muscular dystrophies. 26 refs., 6 figs.

  16. Prenatal diagnosis of congenital myopathies and muscular dystrophies.

    PubMed

    Massalska, D; Zimowski, J G; Bijok, J; Kucińska-Chahwan, A; Łusakowska, A; Jakiel, G; Roszkowski, T

    2016-09-01

    Congenital myopathies and muscular dystrophies constitute a genetically and phenotypically heterogeneous group of rare inherited diseases characterized by muscle weakness and atrophy, motor delay and respiratory insufficiency. To date, curative care is not available for these diseases, which may severely affect both life-span and quality of life. We discuss prenatal diagnosis and genetic counseling for families at risk, as well as diagnostic possibilities in sporadic cases. PMID:27197572

  17. Creatine monohydrate as a therapeutic aid in muscular dystrophy.

    PubMed

    Pearlman, Jared P; Fielding, Roger A

    2006-02-01

    In recent years, dietary supplementation with creatine has been shown to enhance neuromuscular function in several diseases. Recent studies have suggested that creatine can be beneficial in patients with muscular dystrophy and other mitochondrial cytopathies, and may attenuate sarcopenia and facilitate rehabilitation of disuse atrophy. Though the mechanisms are still unknown, creatine has been shown to decrease cytoplasmic Ca2+ levels and increase intramuscular and cerebral phosphocreatine stores, providing potential musculoskeletal and neuroprotective effects. PMID:16536185

  18. Safe and bodywide muscle transduction in young adult Duchenne muscular dystrophy dogs with adeno-associated virus.

    PubMed

    Yue, Yongping; Pan, Xiufang; Hakim, Chady H; Kodippili, Kasun; Zhang, Keqing; Shin, Jin-Hong; Yang, Hsiao T; McDonald, Thomas; Duan, Dongsheng

    2015-10-15

    The ultimate goal of muscular dystrophy gene therapy is to treat all muscles in the body. Global gene delivery was demonstrated in dystrophic mice more than a decade ago using adeno-associated virus (AAV). However, translation to affected large mammals has been challenging. The only reported attempt was performed in newborn Duchenne muscular dystrophy (DMD) dogs. Unfortunately, AAV injection resulted in growth delay, muscle atrophy and contracture. Here we report safe and bodywide AAV delivery in juvenile DMD dogs. Three ∼2-m-old affected dogs received intravenous injection of a tyrosine-engineered AAV-9 reporter or micro-dystrophin (μDys) vector at the doses of 1.92-6.24 × 10(14) viral genome particles/kg under transient or sustained immune suppression. DMD dogs tolerated injection well and their growth was not altered. Hematology and blood biochemistry were unremarkable. No adverse reactions were observed. Widespread muscle transduction was seen in skeletal muscle, the diaphragm and heart for at least 4 months (the end of the study). Nominal expression was detected in internal organs. Improvement in muscle histology was observed in μDys-treated dogs. In summary, systemic AAV gene transfer is safe and efficient in young adult dystrophic large mammals. This may translate to bodywide gene therapy in pediatric patients in the future. PMID:26264580

  19. Safe and bodywide muscle transduction in young adult Duchenne muscular dystrophy dogs with adeno-associated virus.

    PubMed

    Yue, Yongping; Pan, Xiufang; Hakim, Chady H; Kodippili, Kasun; Zhang, Keqing; Shin, Jin-Hong; Yang, Hsiao T; McDonald, Thomas; Duan, Dongsheng

    2015-10-15

    The ultimate goal of muscular dystrophy gene therapy is to treat all muscles in the body. Global gene delivery was demonstrated in dystrophic mice more than a decade ago using adeno-associated virus (AAV). However, translation to affected large mammals has been challenging. The only reported attempt was performed in newborn Duchenne muscular dystrophy (DMD) dogs. Unfortunately, AAV injection resulted in growth delay, muscle atrophy and contracture. Here we report safe and bodywide AAV delivery in juvenile DMD dogs. Three ∼2-m-old affected dogs received intravenous injection of a tyrosine-engineered AAV-9 reporter or micro-dystrophin (μDys) vector at the doses of 1.92-6.24 × 10(14) viral genome particles/kg under transient or sustained immune suppression. DMD dogs tolerated injection well and their growth was not altered. Hematology and blood biochemistry were unremarkable. No adverse reactions were observed. Widespread muscle transduction was seen in skeletal muscle, the diaphragm and heart for at least 4 months (the end of the study). Nominal expression was detected in internal organs. Improvement in muscle histology was observed in μDys-treated dogs. In summary, systemic AAV gene transfer is safe and efficient in young adult dystrophic large mammals. This may translate to bodywide gene therapy in pediatric patients in the future.

  20. Targeting latent TGFβ release in muscular dystrophy.

    PubMed

    Ceco, Ermelinda; Bogdanovich, Sasha; Gardner, Brandon; Miller, Tamari; DeJesus, Adam; Earley, Judy U; Hadhazy, Michele; Smith, Lucas R; Barton, Elisabeth R; Molkentin, Jeffery D; McNally, Elizabeth M

    2014-10-22

    Latent transforming growth factor-β (TGFβ) binding proteins (LTBPs) bind to inactive TGFβ in the extracellular matrix. In mice, muscular dystrophy symptoms are intensified by a genetic polymorphism that changes the hinge region of LTBP, leading to increased proteolytic susceptibility and TGFβ release. We have found that the hinge region of human LTBP4 was also readily proteolysed and that proteolysis could be blocked by an antibody to the hinge region. Transgenic mice were generated to carry a bacterial artificial chromosome encoding the human LTBP4 gene. These transgenic mice displayed larger myofibers, increased damage after muscle injury, and enhanced TGFβ signaling. In the mdx mouse model of Duchenne muscular dystrophy, the human LTBP4 transgene exacerbated muscular dystrophy symptoms and resulted in weaker muscles with an increased inflammatory infiltrate and greater LTBP4 cleavage in vivo. Blocking LTBP4 cleavage may be a therapeutic strategy to reduce TGFβ release and activity and decrease inflammation and muscle damage in muscular dystrophy.

  1. Neonatal congenital microvillus atrophy

    PubMed Central

    Pecache, N; Patole, S; Hagan, R; Hill, D; Charles, A; Papadimitriou, J

    2004-01-01

    Congenital microvillous atrophy (CMVA) is the leading cause of neonatal secretory diarrhoea with onset either in the first 72 hours of life (early onset) or at 6–8 weeks after birth (late onset). To date over 30 cases have been reported worldwide. The prognosis for this life threatening condition continues to be poor. Therapeutic agents like somatostatin and epidermal growth factor are either ineffective or of marginal benefit. Overall five year survival after small bowel transplantation is currently ∼50%. The following brief review is aimed towards helping neonatologists/perinatologists in the early diagnosis, and management of CMVA and in counselling the parents appropriately. PMID:14970294

  2. Association between AgI-CA alleles and severity of autosomal recessive proximal spina lmuscular atrophy

    SciTech Connect

    DiDonato, C.J.; Carpten, J.D.; Fuerst, P.; Ingraham, S.E.; Mendell, J.R.; Burghes, A.H.M.; Morgan, K.; Prescott, G.; Simard, L.R.; McPherson, J.D.

    1994-12-01

    The gene for autosomal recessive proximal spinal muscular atrophy (SMA) has been mapped to an 850-kb interval on 5q11.2-q13.3, between the centromeric D5S823 and telomeric D5S557 markers. We report a new complex marker, Ag1-CA, that lies in this interval, whose primers produce one, two, or rarely three amplification-fragment-length variants (AFLVs) per allele. Class I chromosomes are those which amplify a single AFLV allele, and class II chromosomes are those which amplify an allele with two or three AFLVs. Ag1-CA shows highly significant allelic association with type I SMA in both the French Canadian (Hopital Sainte-Justine (HSJ)) and American (Ohio State University (OSU)) populations (P < .0001). Significant association between the Ag1-CA genotype and disease severity was also observed. Type I patients were predominantly homozygous for class I chromosomes (P = .0003 OSU; P = 0.0012 HSJ), whereas the majority of type II patients were heterozygous for class I and II chromosomes (P = .0014 OSU; P = .001 HSJ). There was no significant difference in Ag1-CA genotype frequencies between type III patients (P = .5 OSU; P = .25 HSJ) and the paired normal chromosomes from both carrier parents. Our results indicate that Ag1-CA is the most closely linked marker to SMA and defines the critical candidate-gene region. Finally, we have proposed a model that should be taken into consideration when screening candidates SMA genes.

  3. Glucocorticoids enhance muscle endurance and ameliorate Duchenne muscular dystrophy through a defined metabolic program

    PubMed Central

    Morrison-Nozik, Alexander; Anand, Priti; Zhu, Han; Duan, Qiming; Sabeh, Mohamad; Prosdocimo, Domenick A.; Nordsborg, Nikolai; Russell, Aaron P.; MacRae, Calum A.; Gerber, Anthony N.; Jain, Mukesh K.; Haldar, Saptarsi M.

    2015-01-01

    Classic physiology studies dating to the 1930s demonstrate that moderate or transient glucocorticoid (GC) exposure improves muscle performance. The ergogenic properties of GCs are further evidenced by their surreptitious use as doping agents by endurance athletes and poorly understood efficacy in Duchenne muscular dystrophy (DMD), a genetic muscle-wasting disease. A defined molecular basis underlying these performance-enhancing properties of GCs in skeletal muscle remains obscure. Here, we demonstrate that ergogenic effects of GCs are mediated by direct induction of the metabolic transcription factor KLF15, defining a downstream pathway distinct from that resulting in GC-related muscle atrophy. Furthermore, we establish that KLF15 deficiency exacerbates dystrophic severity and muscle GC–KLF15 signaling mediates salutary therapeutic effects in the mdx mouse model of DMD. Thus, although glucocorticoid receptor (GR)-mediated transactivation is often associated with muscle atrophy and other adverse effects of pharmacologic GC administration, our data define a distinct GR-induced gene regulatory pathway that contributes to therapeutic effects of GCs in DMD through proergogenic metabolic programming. PMID:26598680

  4. Posterior Cortical Atrophy

    PubMed Central

    Crutch, Sebastian J; Lehmann, Manja; Schott, Jonathan M; Rabinovici, Gil D; Rossor, Martin N; Fox, Nick C

    2013-01-01

    Posterior cortical atrophy (PCA) is a neurodegenerative syndrome that is characterized by a progressive decline in visuospatial, visuoperceptual, literacy and praxic skills. The progressive neurodegeneration affecting parietal, occipital and occipito-temporal cortices which underlies PCA is attributable to Alzheimer's disease (AD) in the majority of patients. However, alternative underlying aetiologies including Dementia with Lewy Bodies (DLB), corticobasal degeneration (CBD) and prion disease have also been identified, and not all PCA patients have atrophy on clinical imaging. This heterogeneity has led to diagnostic and terminological inconsistencies, caused difficulty comparing studies from different centres, and limited the generalizability of clinical trials and investigations of factors driving phenotypic variability. Significant challenges remain in identifying the factors associated with both the selective vulnerability of posterior cortical regions and the young age of onset seen in PCA. Greater awareness of the syndrome and agreement over the correspondence between syndrome-and disease-level classifications are required in order to improve diagnostic accuracy, research study design and clinical management. PMID:22265212

  5. Genetics Home Reference: optic atrophy type 1

    MedlinePlus

    ... Conditions optic atrophy type 1 optic atrophy type 1 Enable Javascript to view the expand/collapse boxes. ... Open All Close All Description Optic atrophy type 1 is a condition that affects vision. Individuals with ...

  6. Optic atrophy in Leber hereditary optic neuroretinopathy is probably determined by an X-chromosomal gene closely linked to DXS7.

    PubMed Central

    Vilkki, J; Ott, J; Savontaus, M L; Aula, P; Nikoskelainen, E K

    1991-01-01

    Leber hereditary optic neuroretinopathy (LHON) is a maternally inherited disease, probably transmitted by mutations in mtDNA. The variation in the clinical expression of the disease among family members has remained unexplained, but pedigree data suggest an involvement of an X-chromosomal factor. We have studied genetic linkage of the liability to develop optic atrophy to 15 polymorphic markers on the X chromosome in six pedigrees with LHON. The results show evidence of linkage to the locus DXS7 on the proximal Xp. Tight linkage to the other marker loci was excluded. Multipoint linkage analysis placed the liability locus at DXS7 with a maximum lod score (Zmax) of 2.48 at a recombination fraction (theta) of .0 and with a Zmax - 1 support interval theta = .09 distal to theta = .07 proximal of DXS7. No evidence of heterogeneity was found among different types of families, with or without a known mtDNA mutation associated with LHON. PMID:1998335

  7. Ex vivo gene editing of the dystrophin gene in muscle stem cells mediated by peptide nucleic acid single stranded oligodeoxynucleotides induces stable expression of dystrophin in a mouse model for Duchenne muscular dystrophy.

    PubMed

    Nik-Ahd, Farnoosh; Bertoni, Carmen

    2014-07-01

    Duchenne muscular dystrophy (DMD) is a fatal disease caused by mutations in the dystrophin gene, which result in the complete absence of dystrophin protein throughout the body. Gene correction strategies hold promise to treating DMD. Our laboratory has previously demonstrated the ability of peptide nucleic acid single-stranded oligodeoxynucleotides (PNA-ssODNs) to permanently correct single-point mutations at the genomic level. In this study, we show that PNA-ssODNs can target and correct muscle satellite cells (SCs), a population of stem cells capable of self-renewing and differentiating into muscle fibers. When transplanted into skeletal muscles, SCs transfected with correcting PNA-ssODNs were able to engraft and to restore dystrophin expression. The number of dystrophin-positive fibers was shown to significantly increase over time. Expression was confirmed to be the result of the activation of a subpopulation of SCs that had undergone repair as demonstrated by immunofluorescence analyses of engrafted muscles using antibodies specific to full-length dystrophin transcripts and by genomic DNA analysis of dystrophin-positive fibers. Furthermore, the increase in dystrophin expression detected over time resulted in a significant improvement in muscle morphology. The ability of transplanted cells to return into quiescence and to activate upon demand was confirmed in all engrafted muscles following injury. These results demonstrate the feasibility of using gene editing strategies to target and correct SCs and further establish the therapeutic potential of this approach to permanently restore dystrophin expression into muscle of DMD patients.

  8. A model to estimate the expression of the dystrophin gene in muscle from female Becker muscular dystrophy carriers.

    PubMed Central

    Vainzof, M; Passos-Bueno, M R; Pavanello, R C; Schreiber, R; Zatz, M

    1992-01-01

    The purpose of the present investigation was to assess the possibility of building a model to estimate, through dystrophin western blotting analysis, the expression of the DMD/BMD gene in muscle from heterozygotes. Dystrophin was analysed by mixing in increasing proportions (from 0% to 100%) aliquots of solubilised muscle from BMD patients with a qualitatively abnormal dystrophin and a normal male control. The intensity of the abnormal bands, which could be detected starting with 20% of muscle from the BMD patient, increased progressively according to the affected muscle concentration. In five obligate BMD carriers, two dystrophin bands were observed (corresponding to the products from the X bearing the normal and the BMD alleles), even among those with normal serum enzyme activities. Surprisingly, in the four obligate BMD carriers related to patients in whom an additional dystrophin fragment of 250 kd was present (two of them with raised serum enzymes), this band could not be seen, suggesting that the stability or the mechanism responsible for the synthesis of abnormal dystrophin products differs in heterozygotes compared to affected patients. Images PMID:1640426

  9. Effect of Electroacupuncture on the Expression of Glycyl-tRNA Synthetase and Ultrastructure Changes in Atrophied Rat Peroneus Longus Muscle Induced by Sciatic Nerve Injection Injury

    PubMed Central

    Wang, Meng; Zhang, Xiao Ming; Yang, Sheng Bo

    2016-01-01

    Glycyl-tRNA synthetase (GlyRS) is one of the key enzymes involved in protein synthesis. Its mutations have been reported to cause Charcot-Marie-Tooth disease which demonstrates muscular atrophy in distal extremities, particularly manifested in peroneus muscles. In this situation, the dysfunctions of mitochondria and sarcoplasmic reticulum (SR) affect energy supply and excitation-contraction coupling of muscle fibers, therefore resulting in muscular atrophy. Although the treatment of muscular atrophy is a global urgent problem, it can be improved by electroacupuncture (EA) treatment. To investigate the mechanism underlying EA treatment improving muscular atrophy, we focused on the perspective of protein synthesis by establishing a penicillin injection-induced sciatic nerve injury model. In our model, injured rats without treatment showed decreased sciatic functional index (SFI), decreased peroneus longus muscle weight and muscle fiber cross-sectional area, aggregated mitochondria with vacuoles appearing, swollen SR, and downregulated mRNA and protein expression levels of GlyRS and myosin heavy chain IIb (MHC-IIb). The injured rats with EA treatment showed significant recovery. These results indicated that EA stimulation can alleviate peroneus longus muscular atrophy induced by iatrogenic sciatic nerve injury through promoting the recovery of GlyRS and muscle ultrastructure and increasing muscle protein synthesis. PMID:27274754

  10. Effect of Electroacupuncture on the Expression of Glycyl-tRNA Synthetase and Ultrastructure Changes in Atrophied Rat Peroneus Longus Muscle Induced by Sciatic Nerve Injection Injury.

    PubMed

    Wang, Meng; Zhang, Xiao Ming; Yang, Sheng Bo

    2016-01-01

    Glycyl-tRNA synthetase (GlyRS) is one of the key enzymes involved in protein synthesis. Its mutations have been reported to cause Charcot-Marie-Tooth disease which demonstrates muscular atrophy in distal extremities, particularly manifested in peroneus muscles. In this situation, the dysfunctions of mitochondria and sarcoplasmic reticulum (SR) affect energy supply and excitation-contraction coupling of muscle fibers, therefore resulting in muscular atrophy. Although the treatment of muscular atrophy is a global urgent problem, it can be improved by electroacupuncture (EA) treatment. To investigate the mechanism underlying EA treatment improving muscular atrophy, we focused on the perspective of protein synthesis by establishing a penicillin injection-induced sciatic nerve injury model. In our model, injured rats without treatment showed decreased sciatic functional index (SFI), decreased peroneus longus muscle weight and muscle fiber cross-sectional area, aggregated mitochondria with vacuoles appearing, swollen SR, and downregulated mRNA and protein expression levels of GlyRS and myosin heavy chain IIb (MHC-IIb). The injured rats with EA treatment showed significant recovery. These results indicated that EA stimulation can alleviate peroneus longus muscular atrophy induced by iatrogenic sciatic nerve injury through promoting the recovery of GlyRS and muscle ultrastructure and increasing muscle protein synthesis. PMID:27274754

  11. The ubiquitin ligase tripartite-motif-protein 32 is induced in Duchenne muscular dystrophy.

    PubMed

    Assereto, Stefania; Piccirillo, Rosanna; Baratto, Serena; Scudieri, Paolo; Fiorillo, Chiara; Massacesi, Manuela; Traverso, Monica; Galietta, Luis J; Bruno, Claudio; Minetti, Carlo; Zara, Federico; Gazzerro, Elisabetta

    2016-08-01

    Activation of the proteasome pathway is one of the secondary processes of cell damage, which ultimately lead to muscle degeneration and necrosis in Duchenne muscular dystrophy (DMD). In mdx mice, the proteasome inhibitor bortezomib up-regulates the membrane expression of members of the dystrophin complex and reduces the inflammatory reaction. However, chronic inhibition of the 26S proteasome may be toxic, as indicated by the systemic side-effects caused by this drug. Therefore, we sought to determine the components of the ubiquitin-proteasome pathway that are specifically activated in human dystrophin-deficient muscles. The analysis of a cohort of patients with genetically determined DMD or Becker muscular dystrophy (BMD) unveiled a selective up-regulation of the ubiquitin ligase tripartite motif-containing protein 32 (TRIM32). The induction of TRIM32 was due to a transcriptional effect and it correlated with disease severity in BMD patients. In contrast, atrogin1 and muscle RING-finger protein-1 (MuRF-1), which are strongly increased in distinct types of muscular atrophy, were not affected by the DMD dystrophic process. Knock-out models showed that TRIM32 is involved in ubiquitination of muscle cytoskeletal proteins as well as of protein inhibitor of activated STAT protein gamma (Piasγ) and N-myc downstream-regulated gene, two inhibitors of satellite cell proliferation and differentiation. Accordingly, we showed that in DMD/BMD muscle tissue, TRIM32 induction was more pronounced in regenerating myofibers rather than in necrotic muscle cells, thus pointing out a role of this protein in the regulation of human myoblast cell fate. This finding highlights TRIM32 as a possible therapeutic target to favor skeletal muscle regeneration in DMD patients.

  12. Exposure to microgravity for 30 days onboard Bion M1 caused muscle atrophy and decreased regeneration in the mouse femoral Quadriceps

    NASA Astrophysics Data System (ADS)

    Grigoryan, Eleonora; Radugina, Elena A.; Almeida, Eduardo; Blaber, Elizabeth; Poplinskaya, Valentina; Markitantova, Yulia

    Mechanical unloading of muscle during spaceflight in microgravity is known to cause muscular atrophy, changes in muscle fiber type composition, gene expression, and reductions in regenerative muscle growth. Although limited data exists for long-term effects of microgravity in human muscle, these processes have mostly been studied in rodents for short periods of time, up to two weeks of spaceflight. Here we report on how 30-day, long-term, mechanical unloading in microgravity affects mouse muscle of the femoral Quadriceps group. To conduct these studies we used muscle tissue from 6 mice from the NASA Biospecimen Sharing Program conducted in collaboration with the Institute for Biomedical Problems of the Russian Academy of Sciences, during the Russian Bion M1 biosatellite mission in 2013. Muscle morphology observed in histological sections shows signs of extensive atrophy and regenerative hypoplasia. Specifically, we observed a two-fold decrease in the number of myonuclei and low density of myofibrils, their separation and fragmentation. Despite obvious atrophy, muscle regeneration nevertheless appears to have continued after 30 days in microgravity as evidenced by thin and short newly formed muscle fibers. Many of them however showed evidence of apoptosis and degradation of synthesized fibrils, suggesting long-term unloading in microgravity affects late stages of myofiber differentiation. Ground asynchronous and vivarium control animals showed normal, well-developed tissue structure with sufficient blood and nerve supply and evidence of regenerative formation of new muscle fibers free of apoptotic nuclei. Myofiber nuclei stress responses in spaceflight animals was detected by positive nuclear immunolocalization of c-jun and c-myc proteins. Regenerative activity of satellite cells in muscle was localized with pax-7, MyoD and MCad immunostaining, and did not appear altered in microgravity. In summary, long-term spaceflight in microgravity causes significant atrophy

  13. Cardiomyopathy in becker muscular dystrophy: Overview

    PubMed Central

    Ho, Rady; Nguyen, My-Le; Mather, Paul

    2016-01-01

    Becker muscular dystrophy (BMD) is an X-linked recessive disorder involving mutations of the dystrophin gene. Cardiac involvement in BMD has been described and cardiomyopathy represents the number one cause of death in these patients. In this paper, the pathophysiology, clinical evaluations and management of cardiomyopathy in patients with BMD will be discussed. PMID:27354892

  14. [Spinal muscle atrophy in Brown Swiss x Braunvieh cross calves].

    PubMed

    Dirksen, G; Doll, K; Hafner, A; Hermanns, W; Dahme, E

    1992-05-01

    The report describes seven SMA-cases in descendents of crossbreeds of American Brown Swiss x Deutsches Braunvieh. Symptoms and course: After initially normal development of the calves for one to six weeks the disease set in suddenly followed by a rapid lethal course of one to one and a half weeks duration due to asphyxia and/or secondary diseases. Only one case was reported having been sick since birth (?). Characteristic signs were rapidly progressing muscular atrophy, paresis and paralysis of the limbs, the trunk and the diaphragm, usually accompanied by progressive dyspnoea. Signs of congenital neuromyodysplasia (arthrogryposis) of different degree were present in four of the seven calves. Six calves had contracted a secondary pneumonia. Blood gas analysis (6/7) revealed a compensated (1x) or decompensated (4x) respiratory acidosis. Neurohistological findings: Degeneration and loss of motor neurons in the ventral horns of the spinal cord and neurogenic muscular atrophy. Immunohistochemistry revealed a pronounced accumulation of type 200 kD-neurofilaments in perikarya and dendrites of ventral horn motoneurons indicating disturbed mechanisms of the axonal transport. The disease seems to be inherited as a recessive trait.

  15. Myotonic Dystrophy and Facioscapulohumeral Muscular Dystrophy Registry

    ClinicalTrials.gov

    2016-08-26

    Myotonic Dystrophy; Facioscapulohumeral Muscular Dystrophy; Muscular Dystrophy; Myotonic Dystrophy Type 1; Myotonic Dystrophy Type 2; Congenital Myotonic Dystrophy; PROMM (Proximal Myotonic Myopathy); Steinert's Disease; Myotonic Muscular Dystrophy

  16. Dystroglycan induced muscular dystrophies - a review.

    PubMed

    Zhang, Q-Z

    2016-09-01

    Dystroglycanopathies are muscular dystrophies caused by mutations in genes involved the in O-linked glycosylation of α-dystroglycan. Severe forms of these conditions result in abnormalities in exhibit brain and ocular developmental too, in addition to muscular dystrophy. The full spectrum of developmental pathology is caused mainly by loss of dystroglycan from Bergmann glia. Moreover, cognitive deficits are constant features of severe forms of dystroglycanopathies. However, the precise molecular mechanism leading to neuronal dysfunction in these diseases is not fully known yet. The present review article will discuss the importance of dystroglycan in cerebellar development and associated pathological states. PMID:27649671

  17. Confirmation of the 2p locus for the mild autosomal recessive lim-girdle muscular dystrophy gene (LGMD2B) in three families allows refinement of the candidate region

    SciTech Connect

    Bashir, R.; Iughetti, P.; Strachan, T.

    1995-05-01

    The mild autosomal recessive limb-girdle muscular dystrophies (LGMD) are a heterogeneous group of muscle diseases. The first gene to be mapped and associated with this phenotype was a locus on 15q geographic isolate. These results have been confirmed in other populations, but it was shown that there is genetic heterogeneity for this form of LGMD. Recently, a second locus has been mapped to chromosome 2p. The confirmation of the mapping of this second locus in LGMD families from different populations is of utmost importance for the positional cloning of this gene (HGMW-approved symbol LGMD2B). In this publication, haplotypes generated from five chromosome 2 markers from all of the known large families linked to chromosome 2p are reported together with the recombinants that show the current most likely location of the LGMD 2B gene. 9 refs., 2 figs., 1 tab.

  18. Research opportunities in muscle atrophy

    NASA Technical Reports Server (NTRS)

    Herbison, G. J.; Talbot, J. M.

    1984-01-01

    A trophy of skeletal muscle; muscle a trophy associated with manned space flight; the nature, causes, and mechanisms of muscle atrophy associated with space flight, selected physiological factors, biochemical aspects, and countermeasures are addressed.

  19. C3KO mouse expression analysis: downregulation of the muscular dystrophy Ky protein and alterations in muscle aging.

    PubMed

    Jaka, Oihane; Kramerova, Irina; Azpitarte, Margarita; López de Munain, Adolfo; Spencer, Melissa; Sáenz, Amets

    2012-11-01

    Mutations in CAPN3 gene cause limb-girdle muscular dystrophy type 2A (LGMD2A) characterized by muscle wasting and progressive degeneration of scapular and pelvic musculature. Since CAPN3 knockout mice (C3KO) display features of muscle pathology similar to those features observed in the earliest-stage or preclinical LGMD2A patients, gene expression profiling analysis in C3KO mice was performed to gain insight into mechanisms of disease. Two different comparisons were carried out in order to determine, first, the differential gene expression between wild-type (WT) and C3KO soleus and, second, to identify the transcripts differentially expressed in aging muscles of WT and C3KO mice. The up/downregulation of two genes, important for normal muscle function, was identified in C3KO mice: the Ky gene, encoding a protease implicated in muscle development, and Park2 gene encoding an E3 ubiquitin ligase (parkin). The Ky gene was downregulated in C3KO muscles suggesting that Ky protease may play a complementary role in regulating muscle cytoskeleton homeostasis in response to changes in muscle activity. Park2 was upregulated in the aged WT muscles but not in C3KO muscles. Taking into account the known functions of parkin E3 ligase, it is possible that it plays a role in ubiquitination and degradation of atrophy-specific and damaged proteins that are necessary to avoid cellular toxicity and a cellular stress response in aging muscles.

  20. Multiple system atrophy.

    PubMed

    Peeraully, Tasneem

    2014-04-01

    Multiple system atrophy (MSA) is a rare adult-onset synucleinopathy associated with dysautonomia and the variable presence of poorly levodopa-responsive parkinsonism and/or cerebellar ataxia. Other clinical symptoms that can be associated with MSA include hyperreflexia, stridor, sleep apnea, and rapid eye movement sleep behavior disorder (RBD). Mean survival from time of diagnosis ranges between 6 to 10 years, and definitive diagnosis is made on autopsy with demonstration of oligodendroglial cytoplasmic inclusions consisting of fibrillar α-synuclein. Magnetic resonance imaging (MRI) may be positive for cruciform T2 hyperintensity within the pons (the "hot cross bun sign"), volume loss in the pons and cerebellum, and T2 signal loss in the dorsolateral putamen with hyperintense rim on fluid attenuated inversion recovery (FLAIR) sequencing. Although most cases are sporadic, genetic polymorphisms have been identified both in familial and sporadic cases of MSA, and influence observed phenotypes. Treatment is symptomatic, with both pharmacological and nonpharmacological strategies. There are currently no consensus guidelines on management. Current and future research is aimed at identifying biomarkers and developing disease-modifying therapies.

  1. Autonomic, locomotor and cardiac abnormalities in a mouse model of muscular dystrophy: targeting the renin-angiotensin system.

    PubMed

    Sabharwal, Rasna; Chapleau, Mark W

    2014-04-01

    New Findings What is the topic of this review? This symposium report summarizes autonomic, cardiac and skeletal muscle abnormalities in sarcoglycan-δ-deficient mice (Sgcd-/-), a mouse model of limb girdle muscular dystrophy, with emphasis on the roles of autonomic dysregulation and activation of the renin-angiotensin system at a young age. What advances does it highlight? The contributions of the autonomic nervous system and the renin-angiotensin system to the pathogenesis of muscular dystrophy are highlighted. Results demonstrate that autonomic dysregulation precedes and predicts later development of cardiac dysfunction in Sgcd-/- mice and that treatment of young Sgcd-/- mice with the angiotensin type 1 receptor antagonist losartan or with angiotensin-(1-7) abrogates the autonomic dysregulation, attenuates skeletal muscle pathology and increases spontaneous locomotor activity. Muscular dystrophies are a heterogeneous group of genetic muscle diseases characterized by muscle weakness and atrophy. Mutations in sarcoglycans and other subunits of the dystrophin-glycoprotein complex cause muscular dystrophy and dilated cardiomyopathy in animals and humans. Aberrant autonomic signalling is recognized in a variety of neuromuscular disorders. We hypothesized that activation of the renin-angiotensin system contributes to skeletal muscle and autonomic dysfunction in mice deficient in the sarcoglycan-δ (Sgcd) gene at a young age and that this early autonomic dysfunction contributes to the later development of left ventricular (LV) dysfunction and increased mortality. We demonstrated that young Sgcd-/- mice exhibit histopathological features of skeletal muscle dystrophy, decreased locomotor activity and severe autonomic dysregulation, but normal LV function. Autonomic regulation continued to deteriorate in Sgcd-/- mice with age and was accompanied by LV dysfunction and dilated cardiomyopathy at older ages. Autonomic dysregulation at a young age predicted later development of

  2. A novel point mutation (G-1 to T) in a 5' splice donor site of intron 13 of the dystrophin gene results in exon skipping and is responsible for Becker muscular dystrophy.

    PubMed

    Hagiwara, Y; Nishio, H; Kitoh, Y; Takeshima, Y; Narita, N; Wada, H; Yokoyama, M; Nakamura, H; Matsuo, M

    1994-01-01

    The mutations in one-third of Duchenne and Becker muscular dystrophy patients remain unknown, as they do not involve gross rearrangements of the dystrophin gene. We now report a defect in the splicing of precursor mRNA (pre-mRNA), resulting from a maternally inherited mutation of the dystrophin gene in a patient with Becker muscular dystrophy. This defect results from a G-to-T transversion at the terminal nucleotide of exon 13, within the 5' splice site of intron 13, and causes complete skipping of exon 13 during processing of dystrophin pre-mRNA. The predicted polypeptide encoded by the aberrant mRNA is a truncated dystrophin lacking 40 amino acids from the amino-proximal end of the rod domain. This is the first report of an intraexon point mutation that completely inactivates a 5' splice donor site in dystrophin pre-mRNA. Analysis of the genomic context of the G-1-to-T mutation at the 5' splice site supports the exon-definition model of pre-mRNA splicing and contributes to the understanding of splice-site selection.

  3. A novel point mutation (G[sup [minus]1] to T) in a 5[prime] splice donor site of intron 13 of the dystrophin gene results in exon skipping and is responsible for Becker Muscular Dystrophy

    SciTech Connect

    Hagiwara, Yoko; Nishio, Hisahide; Kitoh, Yoshihiko; Takeshima, Yasuhiro; Narita, Naoko; Wada, Hiroko; Yokoyama, Mitsuhiro; Nakamura, Hajime; Matsuo, Masafumi )

    1994-01-01

    The mutations in one-third of Duchenne and Becker muscular dystrophy patients remain unknown, as they do not involve gross rearrangements of the dystrophin gene. The authors now report a defect in the splicing of precursor mRNA (pre-mRNA), resulting from a maternally inherited mutation of the dystrophin gene in a patient with Becker muscular dystrophy. This defect results from a G-to-T transversion at the terminal nucleotide of exon 13, within the 5[prime] splice site of intron 13, and causes complete skipping of exon 13 during processing of dystrophin pre-mRNA. The predicted polypeptide encoded by the aberrant mRNA is a truncated dystrophin lacking 40 amino acids from the amino-proximal end of the rod domain. This is the first report of an intraexon point mutation that completely inactivates a 5[prime] splice donor site in dystrophin pre-mRNA. Analysis of the genomic context of the G[sup [minus]1]-to-T mutation at the 5[prime] splice site supports the exon-definition model of pre-mRNA splicing and contributes to the understanding of splice-site selection. 48 refs., 5 figs.

  4. Molecular characterization of an X(p21.2;q28) chromosomal inversion in a Duchenne muscular dystrophy patient with mental retardation reveals a novel long non-coding gene on Xq28.

    PubMed

    Tran, Thi Hoai Thu; Zhang, Zhujun; Yagi, Mariko; Lee, Tomoko; Awano, Hiroyuki; Nishida, Atsushi; Okinaga, Takeshi; Takeshima, Yasuhiro; Matsuo, Masafumi

    2013-01-01

    Duchenne muscular dystrophy (DMD) is the most common inherited muscular disease and is characterized by progressive muscle wasting. DMD is caused by mutations in the dystrophin gene on Xp21.2. One-third of DMD cases are complicated by mental retardation, but the pathogenesis of this is unknown. We have identified an intrachromosomal inversion, inv(X)(p21.2;q28) in a DMD patient with mental retardation. We hypothesized that a gene responsible for the mental retardation in this patient would be disrupted by the inversion. We localized the inversion break point by analysis of dystrophin complementary DNA (cDNA) and fluorescence in situ hybridization. We used 5' and 3' rapid amplification of cDNA ends to extend the known transcripts, and reverse transcription-PCR to analyze tissue-specific expression. The patient's dystrophin cDNA was separated into two fragments between exons 18 and 19. Exon 19 was dislocated to the long arm of the X-chromosome. We identified a novel 109-bp sequence transcribed upstream of exon 19, and a 576-bp sequence including a poly(A) tract transcribed downstream of exon 18. Combining the two novel sequences, we identified a novel gene, named KUCG1, which comprises three exons spanning 50 kb on Xq28. The 685-bp transcript has no open-reading frame, classifying it as a long non-coding RNA. KUCG1 mRNA was identified in brain. We cloned a novel long non-coding gene from a chromosomal break point. It was supposed that this gene may have a role in causing mental retardation in the index case.

  5. Evaluation of Limb-Girdle Muscular Dystrophy

    ClinicalTrials.gov

    2014-03-06

    Becker Muscular Dystrophy; Limb-Girdle Muscular Dystrophy, Type 2A (Calpain-3 Deficiency); Limb-Girdle Muscular Dystrophy, Type 2B (Miyoshi Myopathy, Dysferlin Deficiency); Limb-Girdle Muscular Dystrophy, Type 2I (FKRP-deficiency)

  6. Why is muscularity sexy? Tests of the fitness indicator hypothesis.

    PubMed

    Frederick, David A; Haselton, Martie G

    2007-08-01

    Evolutionary scientists propose that exaggerated secondary sexual characteristics are cues of genes that increase offspring viability or reproductive success. In six studies the hypothesis that muscularity is one such cue is tested. As predicted, women rate muscular men as sexier, more physically dominant and volatile, and less committed to their mates than nonmuscular men. Consistent with the inverted-U hypothesis of masculine traits, men with moderate muscularity are rated most attractive. Consistent with past research on fitness cues, across two measures, women indicate that their most recent short-term sex partners were more muscular than their other sex partners (ds = .36, .47). Across three studies, when controlling for other characteristics (e.g., body fat), muscular men rate their bodies as sexier to women (partial rs = .49-.62) and report more lifetime sex partners (partial rs = .20-.27), short-term partners (partial rs = .25-.28), and more affairs with mated women (partial r = .28).

  7. How Is Muscular Dystrophy Diagnosed?

    MedlinePlus

    ... Information Clinical Trials Resources and Publications How is muscular dystrophy diagnosed? Skip sharing on social media links Share this: Page Content The first step in diagnosing muscular dystrophy (MD) is a visit with a health care ...

  8. Effect of breed body size and the muscular hypertrophy gene in the production and carcass traits of concentrate-finished yearling bulls.

    PubMed

    Martínez, A; Aldai, N; Celaya, R; Osoro, K

    2010-04-01

    To examine the extent of the effect of muscular hypertrophy character in beef of northern-Spanish breeds, animal performance and carcass characteristics of 152 finishing steers from 5 genotypes were studied: 32 yearling bulls from a rustic Asturiana de la Montaña (AM) breed, 96 yearling bulls from Asturiana de los Valles (AV) breed, divided in 3 groups depending on the presence of the gene responsible for double-muscling (i.e., 32 AV mh/mh, 32 AV mh/+, 32 AV +/+), and 24 yearling bulls from AM x AV cross were used. Each genotype was composed of 8 animals per year (4 animals per pen) for 4 yr, except for the AM x AV genotype, which was only evaluated in the last 3 yr of the experiment. All animals were fed indoors with concentrate meal and barley straw ad libitum. Average daily gains in AV animals (1.41 kg/d) were greater (P < 0.01) than in AM (1.12 kg/d), whereas AM x AV were intermediate (1.29 kg/d) to these. No significant differences (P = 0.604) in ADG were found among the 3 AV genotypes. Longer fattening periods (P < 0.001) were taken for AM animals to reach acceptable BW at slaughter. Double-muscled animals (AV mh/mh) were found to have the best feed efficiencies when expressed as G:F (P < 0.001). However, residual feed intake calculated on a daily basis showed a greater efficiency in AV mh/mh and AM than in other genotypes. Carcasses from double-muscled animals had greater BW, yield, conformation and compactness index, and less fat cover than the other genotypes (P < 0.001). Carcasses from AM breed were the lightest and had the worst conformation, whereas those from AM x AV generally presented intermediate characteristics between AV and AM. Double-muscled animals had the greatest LM weight and area. The sixth-rib dissection revealed a greater percentage of muscle (84.6%) and decreased percentages of subcutaneous fat (1.1%), intermuscular fat (4.7%), bone (8.5%), and other tissues (1.2%) in AV mh/mh compared with other genotypes. Water-holding capacity was

  9. Clinical features, molecular genetics, and pathophysiology of dominant optic atrophy.

    PubMed

    Votruba, M; Moore, A T; Bhattacharya, S S

    1998-10-01

    Inherited optic neuropathies are a significant cause of childhood and adult blindness and dominant optic atrophy (DOA) is the most common form of autosomally inherited (non-glaucomatous) optic neuropathy. Patients with DOA present with an insidious onset of bilateral visual loss and they characteristically have temporal optic nerve pallor, centrocaecal visual field scotoma, and a colour vision deficit, which is frequently blue-yellow. Evidence from histological and electrophysiological studies suggests that the pathology is confined to the retinal ganglion cell. A gene for dominant optic atrophy (OPA1) has been mapped to chromosome 3q28-qter, and studies are under way to refine the genetic interval in which the gene lies, to map the region physically, and hence to clone the gene. A second locus for dominant optic atrophy has recently been shown to map to chromosome 18q12.2-12.3 near the Kidd blood group locus. The cloning of genes for dominant optic atrophy will provide important insights into the pathophysiology of the retinal ganglion cell in health and disease. These insights may prove to be of great value in the understanding of other primary ganglion cell diseases, such as the mitochondrially inherited Leber's hereditary optic neuropathy and other diseases associated with ganglion cell loss, such as glaucoma.

  10. Postradiation atrophy of mature bone

    SciTech Connect

    Ergun, H.; Howland, W.J.

    1980-01-01

    The primary event of radiation damage to bone is atrophy and true necrosis of bone is uncommon. The postradiation atrophic changes of bone are the result of combined cellular and vascular damage, the former being more important. The damage to the osteoblast resulting in decreased matrix production is apparently the primary histopathologic event. Radiation damaged bone is susceptible to superimposed complications of fracture, infection, necrosis, and sarcoma. The primary radiographic evidence of atrophy, localized osteopenia, is late in appearing. Contrary to former views, the mature bone is quite radiosensitive and reacts quickly to even small doses of radiation. The differentiation of postirradiation atrophy and metastasis may be difficult. Biopsy should be the last resort because of the possibility of causing true necrosis in atrophic bone by trauma and infection.

  11. The gene for creatine kinase, mitochondrial 2 (sarcomeric; CKMT2), maps to chromosome 5q13. 3

    SciTech Connect

    Richard, I.; Devaud, C. ); Cherif, D.; Cohen, D.; Beckmann, J.S. )

    1993-10-01

    YAC clones for the creatine kinase, mitochrondial 2 (sarcomeric; CKMT2), gene were isolated. One of these YACs was localized on chromosome 5q13.3 by fluorescence in situ hybridization. A polymorphic dinucleotide repeat (heterozygosity 0.77) was identified within the seventh intron of the CKMT2 gene. Genotyping of CEPH families allowed positioning of CKMT2 on the multipoint map of chromosome 5 between D5S424 and D5S428, distal to spinal muscular atrophy (SMA) (5q12-q14). 8 refs., 1 fig., 2 tabs.

  12. Generation of KCL026 research grade human embryonic stem cell line carrying a mutation in SMN1 gene

    PubMed Central

    Hewitson, Heema; Wood, Victoria; Kadeva, Neli; Cornwell, Glenda; Codognotto, Stefano; Stephenson, Emma; Ilic, Dusko

    2016-01-01

    The KCL026 human embryonic stem cell line was derived from an embryo donated for research that carried a mutation in the SMN1 gene encoding survival of motor neuron 1, telomeric (exons 7 and 8 deletion). Mutations in this gene are associated with spinal muscular atrophy. The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment. Pluripotent state and differentiation potential were confirmed by in vitro assays. PMID:27345977

  13. Paternal isodisomy for chromosome 5 in a child with spinal muscular atropy

    SciTech Connect

    Brzustowicz, L.M.; Penchaszadeh, G.K.; Gilliam, T.C.; Allitto, B.A.; Theve, R.; Michaud, L.; Sugarman, E.; Handelin, B.L.; Chatkupt, S.; Koenigsberger, M.R. )

    1994-03-01

    Paternal isodisomy for chromosomes 5 was detected in a 2-year-old boy with type III spinal muscular atrophy (SMA), an autosomal recessive degenerative disorder of alpha motor neurons, known to map to 5q11.2-13.3. Examination of 17 short-sequence repeat polymorphisms spanning 5p15.1-15.3. to 5q33.3-qter produced no evidence of maternally inherited alleles. Cytogenetic analysis revealed a normal male karyotype, and FISH with probes closely flanking the SMA locus confirmed the presence of two copies of chromosome 5. No developmental abnormalities, other than those attributable to classical childhood-onset SMA, were present. While the absence of a maternally derived chromosome 5 could have produced the symptoms of SMA through the mechanism of genomic imprinting, the lack of more global developmental abnormalities would be unusual. Paternal transmission of two copies of a defective gene at the SMA locus seems to be the most likely cause of disease, but proof of this will have to await the identification of the SMA gene. While uniparental isodisomy is a rare event, it must be considered as a possible mechanism involved in SMA when conducting prenatal testing and counseling for this disorder. 37 refs., 2 figs., 1 tab.

  14. Genetics Home Reference: multiple system atrophy

    MedlinePlus

    ... OPCA progressive autonomic failure with multiple system atrophy SDS Shy-Drager syndrome sporadic olivopontocerebellar atrophy Related Information ... A, Hulot JS, Morrison KE, Renton A, Sussmuth SD, Landwehrmeyer BG, Ludolph A, Agid Y, Brice A, ...

  15. Developmental Defects in a Zebrafish Model for Muscular Dystrophies Associated with the Loss of Fukutin-Related Protein (FKRP)

    ERIC Educational Resources Information Center

    Thornhill, Paul; Bassett, David; Lochmuller, Hanns; Bushby, Kate; Straub, Volker

    2008-01-01

    A number of muscular dystrophies are associated with the defective glycosylation of [alpha]-dystroglycan and many are now known to result from mutations in a number of genes encoding putative or known glycosyltransferases. These diseases include severe forms of congenital muscular dystrophy (CMD) such as Fukuyama type congenital muscular dystrophy…

  16. An intronic LINE-1 element insertion in the dystrophin gene aborts dystrophin expression and results in Duchenne-like muscular dystrophy in the corgi breed

    PubMed Central

    Smith, Bruce F.; Yue, Yongping; Woods, Philip R.; Kornegay, Joe N.; Shin, Jin-Hong; Williams, Regina R.; Duan, Dongsheng

    2010-01-01

    Duchenne muscular dystrophy (DMD) is a dystrophin-deficient lethal muscle disease. To date, the catastrophic muscle wasting phenotype has only been seen in dystrophin-deficient humans and dogs. While Duchenne-like symptoms have been observed in more than a dozen dog breeds, the mutation is often not known and research colonies are rarely established. Here we report an independent canine DMD model originally derived from the Pembroke Welsh corgi breed. The affected dogs presented clinical signs of muscular dystrophy. Immunostaining revealed the absence of dystrophin and up-regulation of utrophin. Histopathologic examination showed variable fiber size, central nucleation, calcification, fibrosis, neutrophil and macrophage infiltration and cardiac focal vacuolar degeneration. Carrier dogs also displayed mild myopathy. The mutation was identified as a long interspersed repetitive element-1 (LINE-1) insertion in intron 13 which introduced a new exon containing an in-frame stop codon. Similar mutations have been seen in human patients. A colony was generated by crossing carrier females with normal males. Affected puppies had a normal birth weight but they experienced a striking growth delay in the first 5 days. In summary, the new corgi DMD model offers an excellent opportunity to study DMD pathogenesis and to develop novel therapies. PMID:20714321

  17. Cervical Spinal Cord Atrophy Profile in Adult SMN1-Linked SMA

    PubMed Central

    El Mendili, Mohamed-Mounir; Lenglet, Timothée; Stojkovic, Tanya; Behin, Anthony; Guimarães-Costa, Raquel; Salachas, François; Meininger, Vincent; Bruneteau, Gaelle; Le Forestier, Nadine; Laforêt, Pascal; Lehéricy, Stéphane; Benali, Habib; Pradat, Pierre-François

    2016-01-01

    Purpose The mechanisms underlying the topography of motor deficits in spinal muscular atrophy (SMA) remain unknown. We investigated the profile of spinal cord atrophy (SCA) in SMN1-linked SMA, and its correlation with the topography of muscle weakness. Materials and Methods Eighteen SMN1-linked SMA patients type III/V and 18 age/gender-matched healthy volunteers were included. Patients were scored on manual muscle testing and functional scales. Spinal cord was imaged using 3T MRI system. Radial distance (RD) and cord cross-sectional area (CSA) measurements in SMA patients were compared to those in controls and correlated with strength and disability scores. Results CSA measurements revealed a significant cord atrophy gradient mainly located between C3 and C6 vertebral levels with a SCA rate ranging from 5.4% to 23% in SMA patients compared to controls. RD was significantly lower in SMA patients compared to controls in the anterior-posterior direction with a maximum along C4 and C5 vertebral levels (p-values < 10−5). There were no correlations between atrophy measurements, strength and disability scores. Conclusions Spinal cord atrophy in adult SMN1-linked SMA predominates in the segments innervating the proximal muscles. Additional factors such as neuromuscular junction or intrinsic skeletal muscle defects may play a role in more complex mechanisms underlying weakness in these patients. PMID:27089520

  18. Facioscapulohumeral Muscular Dystrophy

    PubMed Central

    Statland, Jeffrey M.; Tawil, Rabi

    2014-01-01

    Facioscapulohumeral muscular dystrophy (FSHSD) is one of the most common adult muscular dystrophies and is divided into types 1 and 2 based on genetic mutation. Clinically both FSHD types 1 and 2 demonstrate often asymmetric and progressive muscle weakness affecting initially the face, shoulder, and arms, followed by the distal and then proximal lower extremities later in the disease course. Approximately 95% of patients, termed FSHD1, have a deletion of a key number of repetitive elements on chromosome 4q35. The remaining 5%, termed FSHD2, have no deletion on chromosome 4q35. Nevertheless, both FSHD types 1 and 2 share a common downstream mechanism making it possible that future disease-directed therapies will be effective for both FSHD types 1 and 2. PMID:25037087

  19. Becker muscular dystrophy-like myopathy regarded as so-called "fatty muscular dystrophy" in a pig: a case report and its diagnostic method.

    PubMed

    Horiuchi, Noriyuki; Aihara, Naoyuki; Mizutani, Hiroshi; Kousaka, Shinichi; Nagafuchi, Tsuneyuki; Ochiai, Mariko; Ochiai, Kazuhiko; Kobayashi, Yoshiyasu; Furuoka, Hidefumi; Asai, Tetsuo; Oishi, Koji

    2014-03-01

    We describe a case of human Becker muscular dystrophy (BMD)-like myopathy that was characterized by the declined stainability of dystrophin at sarcolemma in a pig and the immunostaining for dystrophin on the formalin-fixed, paraffin-embedded (FFPE) tissue. The present case was found in a meat inspection center. The pig looked appeared healthy at the ante-mortem inspection. Muscular abnormalities were detected after carcass dressing as pale, discolored skeletal muscles with prominent fat infiltrations and considered so-called "fatty muscular dystrophy". Microscopic examination revealed following characteristics: diffused fat infiltration into the skeletal muscle and degeneration and regeneration of the remaining skeletal muscle fibers. Any lesions that were suspected of neurogenic atrophy, traumatic muscular degeneration, glycogen storage disease or other porcine muscular disorders were not observed. The immunostaining for dystrophin was conducted and confirmed to be applicable on FFPE porcine muscular tissues and revealed diminished stainability of dystrophin at the sarcolemma in the present case. Based on the histological observations and immunostaining results, the present case was diagnosed with BMD-like myopathy associated with dystrophin abnormality in a pig. Although the genetic properties were not clear, the present BMD-like myopathy implied the occurrence of dystrophinopathy in pigs. To the best of our knowledge, this is the first report of a natural case of myopathy associated with dystrophin abnormalities in a pig.

  20. Muscle-specific SIRT1 gain-of-function increases slow-twitch fibers and ameliorates pathophysiology in a mouse model of duchenne muscular dystrophy.

    PubMed

    Chalkiadaki, Angeliki; Igarashi, Masaki; Nasamu, Armiyaw Sebastian; Knezevic, Jovana; Guarente, Leonard

    2014-07-01

    SIRT1 is a metabolic sensor and regulator in various mammalian tissues and functions to counteract metabolic and age-related diseases. Here we generated and analyzed mice that express SIRT1 at high levels specifically in skeletal muscle. We show that SIRT1 transgenic muscle exhibits a fiber shift from fast-to-slow twitch, increased levels of PGC-1α, markers of oxidative metabolism and mitochondrial biogenesis, and decreased expression of the atrophy gene program. To examine whether increased activity of SIRT1 protects from muscular dystrophy, a muscle degenerative disease, we crossed SIRT1 muscle transgenic mice to mdx mice, a genetic model of Duchenne muscular dystrophy. SIRT1 overexpression in muscle reverses the phenotype of mdx mice, as determined by histology, creatine kinase release into the blood, and endurance in treadmill exercise. In addition, SIRT1 overexpression also results in increased levels of utrophin, a functional analogue of dystrophin, as well as increased expression of PGC-1α targets and neuromuscular junction genes. Based on these findings, we suggest that pharmacological interventions that activate SIRT1 in skeletal muscle might offer a new approach for treating muscle diseases.

  1. Trunk muscularity in throwers.

    PubMed

    Tanaka, N I; Komuro, T; Tsunoda, N; Aoyama, T; Okada, M; Kanehisa, H

    2013-01-01

    This study aimed to examine and compare the trunk muscularity of track and field throwers and non-athletes, and its predictive value to the physical performance of the athletes. Using a magnetic resonance imaging method, the skeletal muscle volume (SMV) of the trunk (SMV(trunk)) was determined in 19 strength trained athletes and 18 non-athletes. Also, the SMV of upper, middle and lower regions of the trunk was calculated in every 33% of the trunk length. For the athletes, the maximum weight (1RM) of squat, high clean, and deadlift, and shot forward throwing score were measured. The SMV(trunk) in the athletes was 10% greater than that of non-athletes, with a larger difference in the upper region of the trunk. Step-wise multiple regression analysis indicated that the SMV of the lower region was a significant contributor for predicting the 1RM values of the 3 tasks, as well as the shot forward throwing score. The current results indicate that, while the muscularity of the trunk in track and field throwers is characterized by predominant development in the upper region, the muscularity in the lower region is a determinant factor for the 1RM values of the squat, high clean, and deadlift and shot forward throwing score. PMID:22903318

  2. Gene-targeting pharmaceuticals for single-gene disorders.

    PubMed

    Beaudet, Arthur L; Meng, Linyan

    2016-04-15

    The concept of orphan drugs for treatment of orphan genetic diseases is perceived enthusiastically at present, and this is leading to research investment on the part of governments, disease-specific foundations and industry. This review attempts to survey the potential to use traditional pharmaceuticals as opposed to biopharmaceuticals to treat single-gene disorders. The available strategies include the use of antisense oligonucleotides (ASOs) to alter splicing or knock-down expression of a transcript, siRNAs to knock-down gene expression and drugs for nonsense mutation read-through. There is an approved drug for biallelic knock-down of the APOB gene as treatment for familial hypercholesterolemia. Both ASOs and siRNAs are being explored to knock-down the transthyretin gene to prevent the related form of amyloidosis. The use of ASOs to alter gene-splicing to treat spinal muscular atrophy is in phase 3 clinical trials. Work is progressing on the use of ASOs to activate the normally silent paternal copy of the imprinted UBE3A gene in neurons as a treatment for Angelman syndrome. A gene-activation or gene-specific ramp-up strategy would be generally helpful if such could be developed. There is exciting theoretical potential for converting biopharmaceutical strategies such gene correction and CRISPR-Cas9 editing to a synthetic pharmaceutical approach. PMID:26628634

  3. Facioscapulohumeral muscular dystrophy presenting with isolated axial myopathy and bent spine syndrome.

    PubMed

    Kottlors, Michael; Kress, Wolfram; Meng, Gerhard; Glocker, Franz X

    2010-08-01

    Several subtypes of facioscapulohumeral muscular dystrophy (FSHD) with atypical clinical presentation have been described. We report a new, distinct phenotype with progressive bent spine syndrome solely affecting the paraspinal muscles. Magnetic resonance imaging study of the lumbar spine revealed marked atrophy of the paraspinal muscles. The diagnosis was confirmed by DNA testing, which revealed shortened restriction fragments of the D4Z4 repeat on haplotype A in connection with a positive family history. PMID:20658601

  4. Nuclear factor-kappa B signaling in skeletal muscle atrophy.

    PubMed

    Li, Hong; Malhotra, Shweta; Kumar, Ashok

    2008-10-01

    Skeletal muscle atrophy/wasting is a serious complication of a wide range of diseases and conditions such as aging, disuse, AIDS, chronic obstructive pulmonary disease, space travel, muscular dystrophy, chronic heart failure, sepsis, and cancer. Emerging evidence suggests that nuclear factor-kappa B (NF-kappaB) is one of the most important signaling pathways linked to the loss of skeletal muscle mass in various physiological and pathophysiological conditions. Activation of NF-kappaB in skeletal muscle leads to degradation of specific muscle proteins, induces inflammation and fibrosis, and blocks the regeneration of myofibers after injury/atrophy. Recent studies employing genetic mouse models have provided strong evidence that NF-kappaB can serve as an important molecular target for the prevention of skeletal muscle loss. In this article, we have outlined the current understanding regarding the role of NF-kappaB in skeletal muscle with particular reference to different models of muscle wasting and the development of novel therapy.

  5. Postradiation atrophy of mature bone

    SciTech Connect

    Erguen, H.; Howland, W.J.

    1980-01-01

    The growing number of oncological patients subjected to radiotherapy require the diagnostic radiologist to be aware of expected bone changes following irradiation and the differentiation of this entity from metastasis. The primary event of radiation damage to bone is atrophy and true necrosis of bone is uncommon. The postradiation atrophic changes of bone are the result of combined cellular and vascular damage, the former being more important. The damage to the osteoblast resulting in decreased matrix production is apparently the primary histopathologic event. Radiation damaged bone is susceptible to superimposed complications of fracture, infection, necrosis, and sarcoma. The primary radiographic evidence of atrophy, localized osteopenia, is late in appearing, mainly because of the relative insensitivity of radiographs in detecting demineralization. Contrary to former views, the mature bone is quite radiosensitive and reacts quickly to even small doses of radiation. In vivo midrodensitometric analysis and radionuclide bone and bone marrow scans can reveal early changes following irradiation. The differentiation of postirradiation atrophy and metastasis may be difficult. Biopsy should be the last resort because of the possibility of causing true necrosis in atrophic bone by trauma and infection.

  6. Postradiation atrophy of mature bone

    SciTech Connect

    Ergun, H.; Howland, W.J.

    1980-01-01

    The growing number of oncological patients subjected to radiotherapy require the diagnostic radiologist to be aware of expected bone changes following irradiation and the differentiation of this entity from metastasis. The primary event of radiation damage to bone is atrophy and true necrosis of bone is uncommon. The postradiation atrophic changes of bone are the result of combined cellular and vascular damage, the former being more important. The damage to the osteoblast resulting in decreased matrix production is apparently the primary histopathologic event. Radiation damaged bone is susceptible to superimposed complications of fracture, infection, necrosis, and sarcoma. The primary radiographic evidence of atrophy, localized osteopenia, is late in appearing, mainly because of the relative insensitivity of radiographs in detecing demineralization. Contrary to former views, the mature bone is quite radiosensitive and reacts quickly to even small doses of radiation. In vivo midrodensitometric analysis and radionuclide bone and bone marrow scans can reveal early changes following irradiation. The differentiation of postirradiation atrophy and metastasis may be difficult. Biopsy should be the last resort because of the possibility of causing true necrosis in atrophic bone by trauma and infection.

  7. Genetics Home Reference: tibial muscular dystrophy

    MedlinePlus

    ... Names for This Condition tardive tibial muscular dystrophy TMD Udd distal myopathy Udd-Markesbery muscular dystrophy Udd ... titin may cause more severe tibial muscular dystrophy (TMD). Neuromuscul Disord. 2008 Dec;18(12):922-8. ...

  8. Nuclear Atrophy of Retinal Ganglion Cells Precedes the Bax-Dependent Stage of Apoptosis

    PubMed Central

    Janssen, Katherine T.; Mac Nair, Caitlin E.; Dietz, Joel A.; Schlamp, Cassandra L.; Nickells, Robert W.

    2013-01-01

    Purpose. Retinal ganglion cells atrophy during the execution of the intrinsic apoptotic program. This process, which has been termed the apoptotic volume decrease (AVD) in other cell types, has not been well-characterized in ganglion cells. Methods. Acute optic nerve crush was used to examine neuronal atrophy in the ganglion cell layer in wild-type and Bax-deficient mice. Nuclear size was measured from retinal wholemounts. Heterochromatin formation was assessed using transmission electron microscopy, whereas histone H4 acetylation was monitored using immunofluoresence. Ganglion cell and retinal transcript abundance was measured using quantitative PCR. Results. Nuclear and soma sizes linearly correlated in both control and damaged retinas. Cells in wild-type mice exhibited nuclear atrophy within 1 day after optic nerve damage. Three days after crush, nuclear atrophy was restricted to ganglion cells identified by retrograde labeling, while amacrine cells also exhibited some atrophy by 5 days. Similar kinetics of nuclear atrophy were observed in cells deficient for the essential proapoptotic gene Bax. Bax-deficient cells also exhibited other nuclear changes common in wild-type cells, including the deacetylation of histones, formation of heterochromatin, and the silencing of ganglion cell–specific gene expression. Conclusions. Retinal ganglion cell somas and nuclei undergo the AVD in response to optic nerve damage. Atrophy is rapid and precedes the Bax-dependent committed step of the intrinsic apoptotic pathway. PMID:23422829

  9. The value of respiratory muscle testing in a child with congenital muscular dystrophy

    PubMed Central

    Khirani, Sonia; Dabaj, Ivana; Amaddeo, Alessandro; Ramirez, Adriana; Quijano-Roy, Susana; Fauroux, Brigitte

    2014-01-01

    Respiratory muscle testing is often limited to noninvasive volitional tests such as vital capacity and maximal static pressures. We report the case of a 12-year-old boy with congenital muscular dystrophy (CMD) in whom invasive and non-volitional respiratory muscle tests showed an elective diaphragmatic dysfunction with the preservation of expiratory muscle strength. This finding, coupled with a clinical phenotype associating diffuse muscle atrophy with finger hyperlaxity and proximal contractures, strengthened the suspicion of Ullrich CMD. Skin-cultured fibroblasts showed intracellular retention of collagen 6 (COL6), muscle magnetic resonance imaging was typical of COL6 myopathy, and molecular studies identified a COL6 gene mutation (COL6A2 c.954+2T>C). The diagnosis of a diaphragmatic dysfunction led to a sleep study that evidenced periods of hypoxemia which justified nocturnal noninvasive ventilation. This case report highlights the benefit of assessing respiratory muscles, through invasive procedure, to assist in clinical diagnosis and to guide clinical management. PMID:25473580

  10. Cardio-Muscular Conditioner

    NASA Technical Reports Server (NTRS)

    1993-01-01

    In the mid-sixties, Gary Graham, a Boeing designer, developed a cardiovascular conditioner for a planned Air Force orbiting laboratory. After the project was cancelled, Graham participated in space station conditioning studies for the Skylab program. Twenty years later, he used this expertise to develop the Shuttle 2000-1, a physical therapy and athletic development conditioner, available through Contemporary Designs. The machine is used by football teams, sports clinics and medical rehabilitation centers. Cardiovascular fitness and muscular strength development are promoted through both kinetic and plyometric exercises.

  11. Congenital muscular torticollis.

    PubMed

    Nilesh, Kumar; Mukherji, Srijon

    2013-07-01

    Congenital muscular torticollis (CMT) is a rare congenital musculoskeletal disorder characterized by unilateral shortening of the sternocleidomastoid muscle (SCM). It presents in newborn infants or young children with reported incidence ranging from 0.3% to 2%. Owing to effective shortening of SCM on the involved side there is ipsilateral head tilt and contralateral rotation of the face and chin. This article reports a case of CMT in a 3½-year-old male child successfully managed by surgical release of the involved SCM followed by physiotherapy.

  12. Congenital muscular torticollis

    PubMed Central

    Nilesh, Kumar; Mukherji, Srijon

    2013-01-01

    Congenital muscular torticollis (CMT) is a rare congenital musculoskeletal disorder characterized by unilateral shortening of the sternocleidomastoid muscle (SCM). It presents in newborn infants or young children with reported incidence ranging from 0.3% to 2%. Owing to effective shortening of SCM on the involved side there is ipsilateral head tilt and contralateral rotation of the face and chin. This article reports a case of CMT in a 3½-year-old male child successfully managed by surgical release of the involved SCM followed by physiotherapy. PMID:24205484

  13. Gene therapy for peripheral nervous system diseases.

    PubMed

    Federici, Thais; Boulis, Nicholas

    2007-08-01

    Peripheral nerve diseases, also known as peripheral neuropathies, affect 15-20 million of Americans and diabetic neuropathy is the most common condition. Currently, the treatment of peripheral neuropathies is more focused on managing pain rather than providing permissive conditions for regeneration. Despite advances in microsurgical techniques, including nerve grafting and reanastomosis, axonal regeneration after peripheral nerve injury remains suboptimal. Also, no satisfactory treatments are available at this time for peripheral neurodegeneration occurring in motor neuron diseases (MND), including amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). Peripheral nerves have the inherent capacity of regeneration. Gene therapy strategies focused on neuroprotection may help optimizing axonal regrowth. A better understanding of the cellular and molecular events involved in axonal degeneration and regeneration have helped researchers to identify targets for intervention. This review summarizes the current state on the clinical experience as well as gene therapy strategies for peripheral neuropathies, including MND, peripheral nerve injury, neuropathic pain, and diabetic neuropathy.

  14. Connective tissue growth factor is overexpressed in muscles of human muscular dystrophy.

    PubMed

    Sun, Guilian; Haginoya, Kazuhiro; Wu, Yanling; Chiba, Yoko; Nakanishi, Tohru; Onuma, Akira; Sato, Yuko; Takigawa, Masaharu; Iinuma, Kazuie; Tsuchiya, Shigeru

    2008-04-15

    The detailed process of how dystrophic muscles are replaced by fibrotic tissues is unknown. In the present study, the immunolocalization and mRNA expression of connective tissue growth factor (CTGF) in muscles from normal and dystrophic human muscles were examined with the goal of elucidating the pathophysiological function of CTGF in muscular dystrophy. Biopsies of frozen muscle from patients with Duchenne muscular dystrophy (DMD), Becker muscular dystrophy, congenital muscular dystrophy, spinal muscular atrophy, congenital myopathy were analyzed using anti-CTGF polyclonal antibody. Reverse transcription-polymerase chain reaction (RT-PCR) was also performed to evaluate the expression of CTGF mRNA in dystrophic muscles. In normal muscle, neuromuscular junctions and vessels were CTGF-immunopositive, which suggests a physiological role for CTGF in these sites. In dystrophic muscle, CTGF immunoreactivity was localized to muscle fiber basal lamina, regenerating fibers, and the interstitium. Triple immunolabeling revealed that activated fibroblasts were immunopositive for CTGF and transforming growth factor-beta1 (TGF-beta1). RT-PCR analysis revealed increased levels of CTGF mRNA in the muscles of DMD patients. Co-localization of TGF-beta1 and CTGF in activated fibroblasts suggests that CTGF expression is regulated by TGF-beta1 through a paracrine/autocrine mechanism. In conclusion, TGF-beta1-CTGF pathway may play a role in the fibrosis that is commonly observed in muscular dystrophy.

  15. Preferential localization of the limb-girdle muscular dystrophy type 2A gene in the proximal part of a 1-cM 15q15.1-q15.3 interval.

    PubMed

    Allamand, V; Broux, O; Richard, I; Fougerousse, F; Chiannilkulchai, N; Bourg, N; Brenguier, L; Devaud, C; Pasturaud, P; Pereira de Souza, A

    1995-06-01

    A gene for a recessive form of limb-girdle muscular dystrophy (LGMD2A) has been localized to chromosome 15. A physical map of the 7-cM candidate 15q15.1-q21.1 region has been constructed by means of a 10-12-Mb continuum of overlapping YAC clones. New microsatellite markers developed from these YACs were genotyped on large, consanguineous LGMD2A pedigrees from different origins. The identification of recombination events in these families allowed the restriction of the LGMD2A region to an estimated 1-cM interval, equivalent to approximately 3-4 Mb. Linkage disequilibrium data on genetic isolates from the island of Réunion and from the Amish community suggest a preferential location of the LGMD2A gene in the proximal part of this region. Analysis of the interrelated pedigrees from Réunion revealed the existence of at least six different carrier haplotypes. This allelic heterogeneity is incompatible with the presumed existence of a founder effect and suggests that multiple LGMD2A mutations may segregate in this population. PMID:7762565

  16. Preferential localization of the limb-girdle muscular dystrophy type 2A gene in the proximal part of a 1-cM 15q15.1-q15.3 interval

    SciTech Connect

    Allamand, V.; Broux, O.; Richard, I.

    1995-06-01

    A gene for a recessive form of limb-girdle muscular dystrophy (LGMD2A) has been localized to chromosome 15. A physical map of the 7-cM candidate 15q15.1-q21.1 region has been constructed by means of a 10-12-Mb continuum of overlapping YAC clones. New microsatellite markers developed from these YACs were genotyped on large, consanguineous LGMD2A pedigrees from different origins. The identification of recombination events in these families allowed the restriction of the LGMD2A region to an estimated 1-cM interval, equivalent to {approximately}3-4 Mb. Linkage disequilibrium data on genetic isolates from the island of Reunion and from the Amish community suggest a preferential location of the LGMD2A gene in the proximal part of this region. Analysis of the interrelated pedigrees from Reunion revealed the existence of at least six different carrier haplotypes. This allelic heterogeneity is incompatible with the presumed existence of a founder effect and suggests that multiple LGMD2A mutations may segregate in this population. 40 refs., 4 figs., 4 tabs.

  17. Therapeutic advances in muscular dystrophy

    PubMed Central

    Leung, Doris G; Wagner, Kathryn R

    2013-01-01

    The muscular dystrophies comprise a heterogeneous group of genetic disorders that produce progressive skeletal muscle weakness and wasting. There has been rapid growth and change in our understanding of these disorders in recent years, and advances in basic science are being translated into increasing numbers of clinical trials. This review will discuss therapeutic developments in 3 of the most common forms of muscular dystrophy: Duchenne muscular dystrophy, facioscapulohumeral muscular dystrophy, and myotonic dystrophy. Each of these disorders represents a different class of genetic disease (monogenic, epigenetic, and repeat expansion disorders), and the approach to therapy addresses the diverse and complex molecular mechanisms involved in these diseases. The large number of novel pharmacologic agents in development with good biologic rationale and strong proof of concept suggests there will be an improved quality of life for individuals with muscular dystrophy. PMID:23939629

  18. Enhanced autophagy as a potential mechanism for the improved physiological function by simvastatin in muscular dystrophy

    PubMed Central

    Whitehead, Nicholas P.

    2016-01-01

    ABSTRACT Autophagy has recently emerged as an important cellular process for the maintenance of skeletal muscle health and function. Excessive autophagy can trigger muscle catabolism, leading to atrophy. In contrast, reduced autophagic flux is a characteristic of several muscle diseases, including Duchenne muscular dystrophy, the most common and severe inherited muscle disorder. Recent evidence demonstrates that enhanced reactive oxygen species (ROS) production by CYBB/NOX2 impairs autophagy in muscles from the dmd/mdx mouse, a genetic model of Duchenne muscular dystrophy. Statins decrease CYBB/NOX2 expression and activity and stimulate autophagy in skeletal muscle. Therefore, we treated dmd/mdx mice with simvastatin and showed decreased CYBB/NOX2-mediated oxidative stress and enhanced autophagy induction. This was accompanied by reduced muscle damage, inflammation and fibrosis, and increased muscle force production. Our data suggest that increased autophagy may be a potential mechanism by which simvastatin improves skeletal muscle health and function in muscular dystrophy. PMID:26890413

  19. Diabetes mellitus, diabetes insipidus, and optic atrophy. An autosomal recessive syndrome?

    PubMed Central

    Fraser, F C; Gunn, T

    1977-01-01

    Twenty-one families were selected from the published reports in which the propositus had the triad of juvenile diabetes mellitus, diabetes insipidus, and optic atrophy. The data were consistent with the hypothesis of an autosomal gene which, in the homozygote, causes juvenile diabetes mellitus and one or more of diabetes insipidus, optic atrophy, and nerve deafness. Heterozygotes appear to have an increased probability of developing juvenile diabetes mellitus. PMID:881709

  20. Vulvar Skin Atrophy Induced by Topical Glucocorticoids

    PubMed Central

    Johnson, Elisabeth; Groben, Pamela; Eanes, Alisa; Iyer, Priya; Ugoeke, Joseph; Zolnoun, Denniz

    2011-01-01

    Steroid induced skin atrophy is the most frequent and perhaps most important cutaneous side effect of topical glucocorticoid therapy. To date, it has not been described in vulvar skin. We describe a patient with significant vulvar skin atrophy following prolonged steroid application to treat vulvar dermatitis. The extensive atrophy in the perineum resulted in secondary ‘webbing’ and partial obstruction of genital hiatus and superimposed dyspareunia. Prolonged topical steroids may result in atrophic changes in vulvar skin. Therefore, further research in clinical correlates of steroid-induced atrophy in the vulvar region is warranted. PMID:22594868

  1. Investigation of Poor Academic Achievement in Children with Duchenne Muscular Dystrophy

    ERIC Educational Resources Information Center

    Hinton, V. J.; De Vivo, D. C.; Fee, R.; Goldstein, E.; Stern, Y.

    2004-01-01

    Duchenne Muscular Dystrophy (DMD) is a neurogenetic developmental disorder that presents with progressive muscular weakness. It is caused by a mutation in a gene that results in the absence of specific products that normally localize to muscle cells and the central nervous system (CNS). The majority of affected individuals have IQs within the…

  2. Heredity in multiple system atrophy.

    PubMed

    Soma, Hiroyuki; Yabe, Ichiro; Takei, Asako; Fujiki, Naoto; Yanagihara, Tetsuro; Sasaki, Hidenao

    2006-01-15

    We investigated the family histories of 157 Japanese patients with probable or possible multiple system atrophy (MSA). A family history of neurodegenerative disorders was only detected in three MSA patients (1.9%). We evaluated these patients by careful neurological examination, neuroimaging studies, and genetic studies to exclude hereditary spinocerebellar ataxia with a similar clinical phenotype to MSA. The results indicated that one of them had a family history of MSA. Although the familial presence of neurodegenerative disorders is rare in MSA patients, the existence of such cases suggests that MSA may have a genetic background.

  3. Sarcoglycans in muscular dystrophy.

    PubMed

    Hack, A A; Groh, M E; McNally, E M

    Muscular dystrophy is a heterogeneous genetic disease that affects skeletal and cardiac muscle. The genetic defects associated with muscular dystrophy include mutations in dystrophin and its associated glycoproteins, the sarcoglycans. Furthermore, defects in dystrophin have been shown to cause a disruption of the normal expression and localization of the sarcoglycan complex. Thus, abnormalities of sarcoglycan are a common molecular feature in a number of dystrophies. By combining biochemistry, molecular cell biology, and human and mouse genetics, a growing understanding of the sarcoglycan complex is emerging. Sarcoglycan appears to be an important, independent mediator of dystrophic pathology in both skeletal muscle and heart. The absence of sarcoglycan leads to alterations of membrane permeability and apoptosis, two shared features of a number of dystrophies. beta-sarcoglycan and delta-sarcoglycan may form the core of the sarcoglycan subcomplex with alpha- and gamma-sarcoglycan less tightly associated to this core. The relationship of epsilon-sarcoglycan to the dystrophin-glycoprotein complex remains unclear. Animals lacking alpha-, gamma- and delta-sarcoglycan have been described and provide excellent opportunities for further investigation of the function of sarcoglycan. Dystrophin with dystroglycan and laminin may be a mechanical link between the actin cytoskeleton and the extracellular matrix. By positioning itself in close proximity to dystrophin and dystroglycan, sarcoglycan may function to couple mechanical and chemical signals in striated muscle. Sarcoglycan may be an independent signaling or regulatory module whose position in the membrane is determined by dystrophin but whose function is carried out independent of the dystrophin-dystroglycan-laminin axis.

  4. Congenital myopathies and muscular dystrophies.

    PubMed

    Gilbreath, Heather R; Castro, Diana; Iannaccone, Susan T

    2014-08-01

    The congenital muscular dystrophies (CMD) and myopathies (CM) are a diverse group of diseases that share features such as early onset of symptoms (in the first year of life), genetic causes, and high risks for restrictive lung disease and orthopedic deformities. Understanding for disease mechanism is available and a fairly well-structured genotype-phenotype correlation for all the CMDs and CMs is now available. To best illustrate the clinical spectrum and diagnostic algorithm for these diseases, this article presents 5 cases, including Ullrich congenital muscular dystrophy, nemaline myopathy, centronuclear myopathy, merosin deficiency congenital muscular dystrophy, and core myopathy.

  5. Congenital myopathies and muscular dystrophies.

    PubMed

    Gilbreath, Heather R; Castro, Diana; Iannaccone, Susan T

    2014-08-01

    The congenital muscular dystrophies (CMD) and myopathies (CM) are a diverse group of diseases that share features such as early onset of symptoms (in the first year of life), genetic causes, and high risks for restrictive lung disease and orthopedic deformities. Understanding for disease mechanism is available and a fairly well-structured genotype-phenotype correlation for all the CMDs and CMs is now available. To best illustrate the clinical spectrum and diagnostic algorithm for these diseases, this article presents 5 cases, including Ullrich congenital muscular dystrophy, nemaline myopathy, centronuclear myopathy, merosin deficiency congenital muscular dystrophy, and core myopathy. PMID:25037085

  6. Multiple System Atrophy with Orthostatic Hypotension (Shy-Drager Syndrome)

    MedlinePlus

    ... Enhancing Diversity Find People About NINDS NINDS Multiple System Atrophy with Orthostatic Hypotension Information Page Synonym(s): Shy- ... being done? Clinical Trials Organizations What is Multiple System Atrophy with Orthostatic Hypotension? Multiple system atrophy with ...

  7. Crustacean muscles: atrophy and regeneration during molting

    SciTech Connect

    Mykles, D.L.; Skinner, D.M.

    1981-01-01

    The ultrastructural basis of atrophy of claw closer muscle of the land crab and the organization of myofibrils and sacroplasmic reticulum during the hydrolysis of protein that occurs during proecdysis was examined. The changes that occur in contractile proteins during claw muscle atrophy and the involvement of Ca/sup 2 +/-dependent proteinases (CDP) in myofilament degradation were investigated. (ACR)

  8. Seronegative Intestinal Villous Atrophy: A Diagnostic Challenge

    PubMed Central

    Teixeira, Cristina; Ribeiro, Suzane; Trabulo, Daniel; Cardoso, Cláudia; Mangualde, João; Freire, Ricardo; Alves, Ana Luísa; Gamito, Élia; Cremers, Isabelle; Oliveira, Ana Paula

    2016-01-01

    Celiac disease is the most important cause of intestinal villous atrophy. Seronegative intestinal villous atrophy, including those that are nonresponsive to a gluten-free diet, is a diagnostic challenge. In these cases, before establishing the diagnosis of seronegative celiac disease, alternative etiologies of atrophic enteropathy should be considered. Recently, a new clinical entity responsible for seronegative villous atrophy was described—olmesartan-induced sprue-like enteropathy. Herein, we report two uncommon cases of atrophic enteropathy in patients with arterial hypertension under olmesartan, who presented with severe chronic diarrhea and significant involuntary weight loss. Further investigation revealed intestinal villous atrophy and intraepithelial lymphocytosis. Celiac disease and other causes of villous atrophy were ruled out. Drug-induced enteropathy was suspected and clinical improvement and histologic recovery were verified after olmesartan withdrawal. These cases highlight the importance for clinicians to maintain a high index of suspicion for olmesartan as a precipitant of sprue-like enteropathy. PMID:27803820

  9. Reflex myoclonus in olivopontocerebellar atrophy.

    PubMed Central

    Rodriguez, M E; Artieda, J; Zubieta, J L; Obeso, J A

    1994-01-01

    The presence of reflex myoclonus in response to touching and pin-pricking the wrist or stretching the fingers and to photic stimulation was assessed in 24 patients with a presumed diagnosis of olivopontocerebellar atrophy (OPCA) and in 30 age matched control subjects. Reflex myoclonus to soma-esthetic stimulation was found in 23 patients and in none of the controls. Photic myoclonus was present in 12 patients and in none of the controls. Electrophysiological study of the reflex myoclonus showed enhanced (> 10 microV) somatosensory evoked potentials and an associated reflex electromyographic discharge (C-wave) in 15 patients. These findings indicate that reflex myoclonus is common in OPCA and probably of cortical origin. Images PMID:8158179

  10. [Sudeck's atrophy. 3 clinical cases].

    PubMed

    Cordioli, E; Tondini, C; Pizzi, C; Premuda, G

    1994-05-01

    Three patients fulfilling criteria for Sudeck's atrophy (reflex sympathetic dystrophy syndrome--RSDS) are described and etiological, pathogenetic and clinical features of the disease are reviewed. RSDS is associated with a wide variety of precipitating factors, each of whom, often in concomitance with metabolic diseases and psychiatric disturbances, may cause the same clinical syndrome, which continues in a "vicious circle" of feed-back mechanisms, correlated with sympathetic hyperactivity. The symptoms may begin gradually and the disorder progresses in stages lasting from weeks to months. The management has not yet been established. Generally, the earlier the syndrome is recognized, the better the results of treatment will be. Analgesics, salmon calcitonin and physiokinesitherapy are recommended. Psychological support is advisable. In more severe patients sympathetic blockade and surgical sympathectomy may be necessary. The effects of hyperbaric oxygen treatment must still be assessed.

  11. Is hippocampal atrophy a future drug target?

    PubMed

    Dhikav, Vikas; Anand, Kuljeet Singh

    2007-01-01

    Hippocampus is the brain structure, vital for episodic and declarative memory. Atrophy of the human hippocampus is seen in a variety of psychiatric and neurological disorders e.g. recurrent depression, schizophrenia, bipolar disorder, post-traumatic stress disorder, epilepsy, head injury, and Alzheimer's disease (AD). Importantly, aging hippocampus also undergoes atrophy. In many instances, for example, AD, the atrophy precedes the development of symptoms while in others, there is a temporal relationship between atrophy and symptomatology. The presence of atrophied hippocampus is one of the most consistent features of many common psychiatric disorders. Several factors contribute to this atrophy. Stress is one of the most profound factors implicated and the mechanisms involve glucocorticoids, serotonin, excitatory amino acids etc. Hippocampal formation as a whole can undergo atrophy or its individual structural components e.g. apical dendrities can exhibit atrophy. Several drugs of unrelated classes have been shown to prevent atrophy indicating heterogenous manner in which hippocampal atrophy is produced. These include, tianeptine (affects structural plasticity in hippocampus and is an effective antidepressant); phenytoin (antiseizure and neuroprotective); fluoxetine (downregulates neurodegenerative enzyme and increases neuroprotective hippocampal S100 beta); lithium (neuroprotective and antiapoptotic); tricyclic antidepressants (increase hippocampal neurogenesis); antipsychotics (reduce hippocampal neuronal suppression); sodium valproate (increases neurogenesis) and mifepristone (antioxidant, neuroprotective and anti-glucocorticoid). Now the most important question is: to what extent does the hippocampal atrophy play a role in the genesis of symptoms of diseases or their progression? And if it does, can we achieve the same degree of prevention or reversal seen in experimental animals, in humans also. An even more important question is: whether the prevention of

  12. Muscular Dystrophy, incurability, eugenics

    PubMed Central

    Rideau, Y; Rideau, F

    2007-01-01

    Summary The medical entity “muscular dystrophy” has been the object of a recent opinion campaign aimed at promoting a law in favour of euthanasia. This disease has become, in the eyes of the public, a media model of a particularly severe and incurable disease. This very widespread statement does not correspond to reality as far as concerns the life of these patients, to the condition that they have benefited from a very useful and fully provided empirical treatment. As already seen, the hope for life has already doubled, without clear limits. The idea of inducing an interruption when at death’s door, as long as a systematic prevention prior to birth, does not conform with the motivated opinion of the majority of patients consulted. On the contrary, the dogma of incurability may lead to dramatic individual consequences which should be stressed, from a medical viewpoint, on account of the unacceptable risks of social injustice or eugenics that this would imply. PMID:17915566

  13. Dystrophin and muscular dystrophy: past, present, and future.

    PubMed

    O'Brien, K F; Kunkel, L M

    2001-01-01

    Duchenne muscular dystrophy was described in the medical literature in the early 1850s but the molecular basis of the disease was not determined until the late 1980s. The cloning of dystrophin led to the identification of a large complex of proteins that plays an important, although not yet well understood, role in muscle biology. Concomitant with the elucidation of the function of dystrophin and its associated proteins has been the pursuit of therapeutic options for muscular dystrophy. Although there is still no cure for this disorder, great advances are being made in the areas of gene introduction and cell transplant therapy. PMID:11592805

  14. Biomechanical simulation of atrophy in MR images

    NASA Astrophysics Data System (ADS)

    Castellano Smith, Andrew D.; Crum, William R.; Hill, Derek L. G.; Thacker, Neil A.; Bromiley, Paul A.

    2003-05-01

    Progressive cerebral atrophy is a physical component of the most common forms of dementia - Alzheimer's disease, vascular dementia, Lewy-Body disease and fronto-temporal dementia. We propose a phenomenological simulation of atrophy in MR images that provides gold-standard data; the origin and rate of progression of atrophy can be controlled and the resultant remodelling of brain structures is known. We simulate diffuse global atrophic change by generating global volumetric change in a physically realistic biomechanical model of the human brain. Thermal loads are applied to either single, or multiple, tissue types within the brain to drive tissue expansion or contraction. Mechanical readjustment is modelled using finite element methods (FEM). In this preliminary work we apply these techniques to the MNI brainweb phantom to produce new images exhibiting global diffuse atrophy. We compare the applied atrophy with that measured from the images using an established quantitative technique. Early results are encouraging and suggest that the model can be extended and used for validation of atrophy measurement techniques and non-rigid image registration, and for understanding the effect of atrophy on brain shape.

  15. Reducing body myopathy and other FHL1-related muscular disorders.

    PubMed

    Schessl, Joachim; Feldkirchner, Sarah; Kubny, Christiana; Schoser, Benedikt

    2011-12-01

    During the past 2 years, considerable progress in the field of four and a half LIM domain protein 1 (FHL1)-related myopathies has led to the identification of a growing number of FHL1 mutations. This genetic progress has uncovered crucial pathophysiological concepts, thus redefining clinical phenotypes. Important new characterizations include 4 distinct human myopathies: reducing body myopathy, X-linked myopathy with postural muscle atrophy, Emery-Dreifuss muscular dystrophy, and scapuloperoneal myopathy. Additionally, FHL1 mutations have been discovered in rigid spine syndrome and in a single family with contractures, rigid spine, and cardiomyopathy. In this review, we focus on the clinical phenotypes, which we correlate with the novel genetic and histological findings encountered within FHL1-related myopathies. This correlation will frequently lead to a considerably expanded clinical spectrum associated with a given FHL1 mutation.

  16. Differential isoform expression and selective muscle involvement in muscular dystrophies.

    PubMed

    Huovinen, Sanna; Penttilä, Sini; Somervuo, Panu; Keto, Joni; Auvinen, Petri; Vihola, Anna; Huovinen, Sami; Pelin, Katarina; Raheem, Olayinka; Salenius, Juha; Suominen, Tiina; Hackman, Peter; Udd, Bjarne

    2015-10-01

    Despite the expression of the mutated gene in all muscles, selective muscles are involved in genetic muscular dystrophies. Different muscular dystrophies show characteristic patterns of fatty degenerative changes by muscle imaging, even to the extent that the patterns have been used for diagnostic purposes. However, the underlying molecular mechanisms explaining the selective involvement of muscles are not known. To test the hypothesis that different muscles may express variable amounts of different isoforms of muscle genes, we applied a custom-designed exon microarray containing probes for 57 muscle-specific genes to assay the transcriptional profiles in sets of human adult lower limb skeletal muscles. Quantitative real-time PCR and whole transcriptome sequencing were used to further analyze the results. Our results demonstrate significant variations in isoform and gene expression levels in anatomically different muscles. Comparison of the known patterns of selective involvement of certain muscles in two autosomal dominant titinopathies and one autosomal dominant myosinopathy, with the isoform and gene expression results, shows a correlation between the specific muscles involved and significant differences in the level of expression of the affected gene and exons in these same muscles compared with some other selected muscles. Our results suggest that differential expression levels of muscle genes and isoforms are one determinant in the selectivity of muscle involvement in muscular dystrophies.

  17. Mechanisms of cisplatin-induced muscle atrophy

    SciTech Connect

    Sakai, Hiroyasu; Sagara, Atsunobu; Arakawa, Kazuhiko; Sugiyama, Ryoto; Hirosaki, Akiko; Takase, Kazuhide; Jo, Ara; Sato, Ken; Chiba, Yoshihiko; Yamazaki, Mitsuaki; Matoba, Motohiro; Narita, Minoru

    2014-07-15

    Fatigue is the most common side effect of chemotherapy. However, the mechanisms of “muscle fatigue” induced by anti-cancer drugs are not fully understood. We therefore investigated the muscle-atrophic effect of cisplatin, a platinum-based anti-cancer drug, in mice. C57BL/6J mice were treated with cisplatin (3 mg/kg, i.p.) or saline for 4 consecutive days. On Day 5, hindlimb and quadriceps muscles were isolated from mice. The loss of body weight and food intake under the administration of cisplatin was the same as those in a dietary restriction (DR) group. Under the present conditions, the administration of cisplatin significantly decreased not only the muscle mass of the hindlimb and quadriceps but also the myofiber diameter, compared to those in the DR group. The mRNA expression levels of muscle atrophy F-box (MAFbx), muscle RING finger-1 (MuRF1) and forkhead box O3 (FOXO3) were significantly and further increased by cisplatin treated group, compared to DR. Furthermore, the mRNA levels of myostatin and p21 were significantly upregulated by the administration of cisplatin, compared to DR. On the other hand, the phosphorylation of Akt and FOXO3a, which leads to the blockade of the upregulation of MuRF1 and MAFbx, was significantly and dramatically decreased by cisplatin. These findings suggest that the administration of cisplatin increases atrophic gene expression, and may lead to an imbalance between protein synthesis and protein degradation pathways, which would lead to muscle atrophy. This phenomenon could, at least in part, explain the mechanism of cisplatin-induced muscle fatigue. - Highlights: • Cisplatin decreased mass and myofiber diameter in quadriceps muscle. • The mRNA of MAFbx, MuRF1 and FOXO3 were increased by the cisplatin. • The mRNA of myostatin and p21 were upregulated by cisplatin. • The phosphorylation of Akt and FOXO3a was decreased by cisplatin.

  18. [Muscular isokinetic dynamometry].

    PubMed

    Svetlize, H D

    1991-01-01

    In the past, muscular strength has primarily been measured using isometric, isotonic or tensiometric techniques. The advent of isokinetic dynamometers has supplied an objective method of measuring peak torque throughout a full range of motion at a predetermined speed of contraction. An isokinetic contraction is a refinement of the controlled motion concept. The isokinetic contraction is dynamic, but the speed of the motion is held constant by a special device. In this way, resistance is in direct ratio to the varying force applied through the full course of a natural movement. The purpose of this study was to determine the peak torque of quadriceps (Q), and hamstrings (H), and their biomechanical angle of production, H to Q ratio and bilateral comparisons of these variables for the first time in a Southamerican population. Twenty healthy and voluntary males (age: 21.9 +/- 3.1 years, height 193.2 +/- 6.5 cm, weight: 84.2 +/- 5.2 kgs.), were tested on the Cybex II Dynamometer and Cybex Data Reduction Computer (CDRC). Quadriceps and hamstrings peak torque (pkTQ), in Newton-meters, were obtained at angular velocities of 60, 180 and 240 degrees. sec-1. Also, the angle of the range of motion at which peak torque occurred in both directions, H and Q peak torque to body weight ratios, H to Q ratio were measured. Finally, CDRC provided the bilateral comparison of the different variables expressed in percentages. All measurements were automatically corrected for the effect of gravity. The absolute maximal pkTQ of dominant (D), and non-dominant (ND), quadriceps at 60 degrees/sec was DQ 297 +/- 25 Nwm and nDQ 303 +/- 13 Nwm.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1921692

  19. Muscular dystrophy in a dog resembling human becker muscular dystrophy.

    PubMed

    Baroncelli, A B; Abellonio, F; Pagano, T B; Esposito, I; Peirone, B; Papparella, S; Paciello, O

    2014-05-01

    A 3-year-old, male Labrador retriever dog was presented with clinical signs of progressive exercise intolerance, bilateral elbow extension, rigidity of the forelimbs, hindlimb flexion and kyphosis. Microscopical examination of muscle tissue showed marked variability in myofibre size, replacement of muscle with mature adipose tissue and degeneration/regeneration of muscle fibres, consistent with muscular dystrophy. Immunohistochemical examination for dystrophin showed markedly reduced labelling with monoclonal antibodies specific for the rod domain and the carboxy-terminal of dystrophin, while expression of β-sarcoglycan, γ-sarcoglycan and β-dystroglycan was normal. Immunoblotting revealed a truncated dystrophin protein of approximately 135 kDa. These findings supported a diagnosis of congenital canine muscular dystrophy resembling Becker muscular dystrophy in man.

  20. Models of Multiple System Atrophy

    PubMed Central

    Fellner, Lisa; Wenning, Gregor K.; Stefanova, Nadia

    2016-01-01

    Multiple system atrophy (MSA) is a predominantly sporadic, adult-onset, fatal neurodegenerative disease of unknown etiology. MSA is characterized by autonomic failure, levodopa-unresponsive parkinsonism, cerebellar ataxia and pyramidal signs in any combination. MSA belongs to a group of neurodegenerative disorders termed α-synucleinopathies, which also include Parkinson’s disease and dementia with Lewy bodies. Their common pathological feature is the occurrence of abnormal α-synuclein positive inclusions in neurons or glial cells. In MSA, the main cell type presenting aggregates composed of α-synuclein are oligodendroglial cells. This pathological hallmark, also called glial cytoplasmic inclusions (GCIs), is associated with progressive and profound neuronal loss in various regions of the brain. The development of animal models of MSA is justified by the limited understanding of the mechanisms of neurodegeneration and GCIs formation, which is paralleled by a lack of therapeutic strategies. Two main types of rodent models have been generated to replicate different features of MSA neuropathology. On one hand, neurotoxin-based models have been produced to reproduce neuronal loss in substantia nigra pars compacta and striatum. On the other hand, transgenic mouse models with overexpression of α-synuclein in oligodendroglia have been used to reproduce GCIs-related pathology. This chapter gives an overview of the atypical Parkinson’s syndrome MSA and summarizes the currently available MSA animal models and their relevance for pre-clinical testing of disease-modifying therapies. PMID:24338664

  1. Common recessive limb girdle muscular dystrophies differential diagnosis: why and how?

    PubMed

    Cotta, Ana; Carvalho, Elmano; da-Cunha-Júnior, Antonio Lopes; Paim, Júlia Filardi; Navarro, Monica M; Valicek, Jaquelin; Menezes, Miriam Melo; Nunes, Simone Vilela; Xavier Neto, Rafael; Takata, Reinaldo Issao; Vargas, Antonio Pedro

    2014-09-01

    Limb girdle muscular dystrophies are heterogeneous autosomal hereditary neuromuscular disorders. They produce dystrophic changes on muscle biopsy and they are associated with mutations in several genes involved in muscular structure and function. Detailed clinical, laboratorial, imaging, diagnostic flowchart, photographs, tables, and illustrated diagrams are presented for the differential diagnosis of common autosomal recessive limb girdle muscular dystrophy subtypes diagnosed nowadays at one reference center in Brazil. Preoperative image studies guide muscle biopsy site selection. Muscle involvement image pattern differs depending on the limb girdle muscular dystrophy subtype. Muscle involvement is conspicuous at the posterior thigh in calpainopathy and fukutin-related proteinopathy; anterior thigh in sarcoglycanopathy; whole thigh in dysferlinopathy, and telethoninopathy. The precise differential diagnosis of limb girdle muscular dystrophies is important for genetic counseling, prognostic orientation, cardiac and respiratory management. Besides that, it may probably, in the future, provide specific genetic therapies for each subtype.

  2. Immunoproteasome in animal models of Duchenne muscular dystrophy.

    PubMed

    Chen, Chiao-Nan Joyce; Graber, Ted G; Bratten, Wendy M; Ferrington, Deborah A; Thompson, LaDora V

    2014-04-01

    Increased proteasome activity has been implicated in the atrophy and deterioration associated with dystrophic muscles of Duchenne muscular dystrophy (DMD). While proteasome inhibitors show promise in the attenuation of muscle degeneration, proteasome inhibition-induced toxicity was a major drawback of this therapeutic strategy. Inhibitors that selectively target the proteasome subtype that is responsible for the loss in muscle mass and quality would reduce side effects and be less toxic. This study examined proteasome activity and subtype populations, along with muscle function, morphology and damage in wild-type (WT) mice and two murine models of DMD, dystrophin-deficient (MDX) and dystrophin- and utrophin-double-knockout (DKO) mice. We found that immunoproteasome content was increased in dystrophic muscles while the total proteasome content was unchanged among the three genotypes of mice. Proteasome proteolytic activity was elevated in dystrophic muscles, especially in DKO mice. These mice also exhibited more severe muscle atrophy than either WT or MDX mice. Muscle damage and regeneration, characterized by the activity of muscle creatine kinase in the blood and the percentage of central nuclei were equally increased in dystrophic mice. Accordingly, the overall muscle function was similarly reduced in both dystrophic mice compared with WT. These data demonstrated that there was transformation of standard proteasomes to immunoproteasomes in dystrophic muscles. In addition, DKO that showed greatest increase in proteasome activities also demonstrated more severe atrophy compared with MDX and WT. These results suggest a putative role for the immunoproteasome in muscle deterioration associated with DMD and provide a potential target for therapeutic intervention.

  3. Dystrophin-deficient muscular dystrophy in a Norfolk terrier.

    PubMed

    Beltran, E; Shelton, G D; Guo, L T; Dennis, R; Sanchez-Masian, D; Robinson, D; De Risio, L

    2015-05-01

    A six-month-old male entire Norfolk terrier was presented with a 3-month history of poor development, reluctance to exercise and progressive and diffuse muscle atrophy. Serum creatine kinase concentration was markedly elevated. Magnetic resonance imaging of the epaxial muscles revealed asymmetrical streaky signal changes aligned within the muscle fibres (hyperintense on T2-weighted images and short-tau inversion recovery with moderate contrast enhancement on T1-weighted images). Electromyography revealed pseudomyotonic discharges and fibrillation potentials localised at the level of the supraspinatus, epaxial muscles and tibial cranialis muscles. Muscle biopsy results were consistent with dystrophin-deficient muscular dystrophy. The dog remained stable 7 months after diagnosis with coenzyme Q10 and l-carnitine; however after that time, there was a marked deterioration and the owners elected euthanasia. This case report describes the clinical presentation, magnetic resonance imaging, electrodiagnostic and histopathological findings with immunohistochemical analysis in a Norfolk terrier with confirmed dystrophin-deficient muscular dystrophy, which has not been previously described in this breed.

  4. What Are the Treatments for Muscular Dystrophy?

    MedlinePlus

    ... Resources and Publications What are the treatments for muscular dystrophy? Skip sharing on social media links Share this: ... available to stop or reverse any form of muscular dystrophy (MD). Instead, certain therapies and medications aim to ...

  5. Recessive optic atrophy, sensorimotor neuropathy and cataract associated with novel compound heterozygous mutations in OPA1

    PubMed Central

    LEE, JINHO; JUNG, SUNG-CHUL; HONG, YOUNG BIN; YOO, JEONG HYUN; KOO, HEASOO; LEE, JA HYUN; HONG, HYUN DAE; KIM, SANG-BEOM; CHUNG, KI WHA; CHOI, BYUNG-OK

    2016-01-01

    Mutations in the optic atrophy 1 gene (OPA1) are associated with autosomal dominant optic atrophy and 20% of patients demonstrate extra-ocular manifestations. In addition to these autosomal dominant cases, only a few syndromic cases have been reported thus far with compound heterozygous OPA1 mutations, suggestive of either recessive or semi-dominant patterns of inheritance. The majority of these patients were diagnosed with Behr syndrome, characterized by optic atrophy, ataxia and peripheral neuropathy. The present study describes a 10-year-old boy with Behr syndrome presenting with early-onset severe optic atrophy, sensorimotor neuropathy, ataxia and congenital cataracts. He had optic atrophy and was declared legally blind at six years old. Electrophysiological, radiological, and histopathological findings were compatible with axonal sensorimotor polyneuropathy. At birth, he presented with a congenital cataract, which has not been previously described in patients with OPA1 mutations. Whole exome sequencing indicated a pair of novel compound heterozygous mutations: p.L620fs*13 (c.1857–1858delinsT) and p.R905Q (c.G2714A). Neither mutation was observed in controls (n=300), and thus, they were predicted to be pathogenic by multiple in silico analyses. The mutation sites were highly conserved throughout different vertebrate species. The patients parents did not have any ophthalmic or neurologic symptoms and the results of electrophysiological studies were normal, suggestive of an autosomal recessive pattern of inheritance. The present study identified novel compound heterozygous OPA1 mutations in a patient with recessive optic atrophy, sensorimotor neuropathy and congenital cataracts, indicating an expansion of the clinical spectrum of pathologies associated with OPA1 mutations. Thus, OPA1 gene screening is advisable in the workup of patients with recessive optic atrophy, particularly with Behr syndrome and cataracts. PMID:27150940

  6. Emerging Drugs for Duchenne Muscular Dystrophy

    PubMed Central

    Malik, Vinod; Rodino-Klapac, Louise; Mendell, Jerry R.

    2012-01-01

    Introduction Duchenne muscular dystrophy (DMD) is the most common, severe childhood form of muscular dystrophy. Treatment is limited to glucocorticoids that have the benefit of prolonging ambulation by approximately 2 years and preventing scoliosis. Finding a more satisfactory treatment should focus on maintaining long-term efficacy with a minimal side effect profile. Areas covered Authors discuss different therapeutic strategies that have been used in pre-clinical and clinical settings. Expert opinion Multiple treatment approaches have emerged. Most attractive are molecular-based therapies that can express the missing dystrophin protein (exon skipping or mutation suppression) or a surrogate gene product (utrophin). Other approaches include increasing the strength of muscles (myostatin inhibitors), reducing muscle fibrosis, and decreasing oxidative stress. Additional targets include inhibiting NF-κB to reduce inflammation, or promoting skeletal muscle blood flow and muscle contractility using phosphodiesterase inhibitors or nitric oxide (NO) donors. The potential for each of these treatment strategies to enter clinical trials is a central theme of discussion. The review emphasizes that the goal of treatment should be to find a product at least as good as glucocorticoids with a lower side effect profile or with a significant glucocorticoid sparing effect. PMID:22632414

  7. Dystonia in multiple system atrophy

    PubMed Central

    Boesch, S; Wenning, G; Ransmayr, G; Poewe, W

    2002-01-01

    Objective: To delineate the frequency and nature of dystonia in multiple system atrophy (MSA). Methods: a cohort of 24 patients with clinically probable MSA over the past 10 years were prospectively followed up. Motor features were either dominated by parkinsonism (MSA-P subtype, n=18) or cerebellar ataxia (MSA-C, n=6). Classification of dystonic features and their changes with time was based on clinical observation during 6–12 monthly follow up visits. Parkinsonian features and complications of drug therapy were assessed. Most patients (22/24) died during the observation period. Neuropathological examination was confirmatory in all of the five necropsied patients. Results: At first neurological visit dystonia was present in 11 (46%) patients all of whom had been levodopa naive at this time point. Six patients (25%) exhibited cervical dystonia (antecollis) (MSA-P n=4, MSA-C n=2), five patients (21%) showed unilateral limb dystonia (MSA-P n=4; MSA-C n=1). A definite initial response to levodopa treatment was seen in 15/18 patients with MSA-P, but in none of the six patients with MSA-C. A subgroup of 12 patients with MSA-P developed levodopa induced dyskinesias 2.3 years (range 0.5–4) after initiation of levodopa therapy. Most patients had peak dose craniocervical dystonia; however, some patients experienced limb or generalised dystonia. Isolated peak dose limb chorea occurred in only one patient. Conclusion: The prospective clinical study suggests that dystonia is common in untreated MSA-P. This finding may reflect younger age at disease onset and putaminal pathology in MSA-P. Levodopa induced dyskinesias were almost exclusively dystonic affecting predominantly craniocervical musculature. Future studies are required to elucidate the underlying pathophysiology of dystonia in MSA. PMID:11861684

  8. Compound Muscle Action Potential and Motor Function in Children with Spinal Muscular Atrophy

    PubMed Central

    Lewelt, Aga J.; Krosschell, Kristin J.; Scott, Charles; Sakonju, Ai; Kissel, John T.; Crawford, Thomas O.; Acsadi, Gyula; D'Anjou, Guy; Elsheikh, Bakri; Reyna, Sandra P.; Schroth, Mary K.; Maczulski, Jo Anne; Stoddard, Gregory J.; Elovic, Elie; Swoboda, Kathryn J.

    2010-01-01

    Introduction Reliable outcome measures that reflect the underlying disease process and correlate with motor function in children with SMA are needed for clinical trials. Methods Maximum ulnar compound muscle action potential (CMAP) data were collected at 2 visits over a 4–6 week period in children with SMA types II and III, ages 2–17 years old, at 4 academic centers. Primary functional outcome measures included the Modified Hammersmith Functional Motor Scale (MHFMS) and MHFMS-Extend. Results CMAP negative peak amplitude and area showed excellent discrimination between the ambulatory and non-ambulatory SMA cohorts (ROC=0.88). CMAP had excellent test-retest reliability (ICC=0.96–0.97, n=64) and moderate to strong correlation with the MHFMS and MHFMS-Extend (r=0.61–0.73, n=68, p<0.001). Discussion Maximum ulnar CMAP amplitude and area is a feasible, valid and reliable outcome measure for use in pediatric multicenter clinical trials in SMA. CMAP correlates well with motor function and has potential value as a relevant surrogate for disease status. PMID:20737553

  9. Genetics Home Reference: spinal muscular atrophy with respiratory distress type 1

    MedlinePlus

    ... a protein involved in copying (replicating) DNA ; producing RNA, a chemical cousin of DNA; and producing proteins. ... aid in DNA replication and the production of RNA and proteins. These problems particularly affect alpha-motor ...

  10. Treatment of scoliosis in intermediate spinal muscular atrophy (SMA type II) in childhood.

    PubMed

    Fujak, Albert; Ingenhorst, Anne; Heuser, Katja; Forst, Raimund; Forst, Jürgen

    2005-04-30

    Summary. Progressive scoliosis with increasing pelvic obliquity in early childhood of patients with SMA type II is a common feature in this disease. Spinal surgery in muscle disorders should be carried out as soon as a progressive curve of more then 20 Celsius Cobb and a preserved FVC of 20-30% is proved. In later stages or severe forms of SMA II spinal stabilization becomes often impossible due to the respiratory insufficiency, the poor general condition and the severity of the scoliosis with marked pelvic obliquity. A special telescope rod was developed in order to enable a lengthening of this instrumentation during growth for children treated in early childhood. In 15 of 20 patients with SMA II in early childhood not satisfactory results after telescope rod implantation were observed. In spite of the telescope technique crankshaft phenomenon appeared and curve progression were observed. So then we stopped telescope rod implantation. This instrumentation could be in principle a good therapeutical tool for this indication, but its technical manufacturing has firstly to be improved decisively. For SMA II patients younger than 10 years with progressive scoliosis our therapeutic recommendation is nowadays a corset until the age of 10-12 years followed by definitive surgical correction using other multisegmental instrumentation like the Isola(R) system. PMID:17615511

  11. [Specific features of Becker Muscular Dystrophy patients and female carriers of Duchenne Muscular Dystrophy].

    PubMed

    Magot, A; Mercier, S; Péréon, Y

    2015-12-01

    Becker muscular dystrophy (BMD) was first described in 1955 and linked to the DMD gene in 1987. Compared to Duchenne muscular dystrophy (DMD), clinical onset of BMD usually occurs after the age of 12 and wheelchair is required after the age of 16. BMD is characterized by generalized weakness first affecting limb girdle muscles, hypertrophy of the calves and cardiomyopathy in males. Some patients have only mild symptoms such as cramps or elevated serum creatine kinases (SCK) throughout all their lives. SCK levels are usually elevated. Muscle biopsy (immunohistochemistry or immunoblotting) shows a dystrophic pattern with abnormal dystrophin staining. Diagnosis is confirmed by DMD gene sequencing. Deletions or duplications of one or several exons are identified in the majority of cases. A multidisciplinary approach is recommended for the care management of these patients with a particular attention to the cardiomyopathy, which is typically responsible for death but can be prevented by specific treatment. X-linked dilated cardiomyopathies linked to DMD gene are a phenotypic continuum of BMD. Some female carriers of DMD mutations exhibit clinical symptoms of variable severity, often milder and beginning later than in males. The cardiomyopathy is the most frequent feature that should be especially monitored in these patients. Genetic counselling should be systematically proposed. PMID:26773584

  12. Clearance of the mutant androgen receptor in motoneuronal models of spinal and bulbar muscular atrophy☆

    PubMed Central

    Rusmini, Paola; Crippa, Valeria; Giorgetti, Elisa; Boncoraglio, Alessandra; Cristofani, Riccardo; Carra, Serena; Poletti, Angelo

    2013-01-01

    Spinal and bulbar muscular atrophy (SBMA) is an X-linked motoneuron disease caused by an abnormal expansion of a tandem CAG repeat in exon 1 of the androgen receptor (AR) gene that results in an abnormally long polyglutamine tract (polyQ) in the AR protein. As a result, the mutant AR (ARpolyQ) misfolds, forming cytoplasmic and nuclear aggregates in the affected neurons. Neurotoxicity only appears to be associated with the formation of nuclear aggregates. Thus, improved ARpolyQ cytoplasmic clearance, which indirectly decreases ARpolyQ nuclear accumulation, has beneficial effects on affected motoneurons. In addition, increased ARpolyQ clearance contributes to maintenance of motoneuron proteostasis and viability, preventing the blockage of the proteasome and autophagy pathways that might play a role in the neuropathy in SBMA. The expression of heat shock protein B8 (HspB8), a member of the small heat shock protein family, is highly induced in surviving motoneurons of patients affected by motoneuron diseases, where it seems to participate in the stress response aimed at cell protection. We report here that HspB8 facilitates the autophagic removal of misfolded aggregating species of ARpolyQ. In addition, though HspB8 does not influence p62 and LC3 (two key autophagic molecules) expression, it does prevent p62 bodies formation, and restores the normal autophagic flux in these cells. Interestingly, trehalose, a well-known autophagy stimulator, induces HspB8 expression, suggesting that HspB8 might act as one of the molecular mediators of the proautophagic activity of trehalose. Collectively, these data support the hypothesis that treatments aimed at restoring a normal autophagic flux that result in the more efficient clearance of mutant ARpolyQ might produce beneficial effects in SBMA patients. PMID:23810450

  13. Can endoscopic atrophy predict histological atrophy? Historical study in United Kingdom and Japan

    PubMed Central

    Kono, Shin; Gotoda, Takuji; Yoshida, Shigeaki; Oda, Ichiro; Kondo, Hitoshi; Gatta, Luigi; Naylor, Greg; Dixon, Michael; Moriyasu, Fuminori; Axon, Anthony

    2015-01-01

    AIM: To assess the diagnostic concordance between endoscopic and histological atrophy in the United Kingdom and Japan. METHODS: Using published data, a total of 252 patients, 126 in the United Kingdom and 126 in Japan, aged 20 to 80 years, were evaluated. The extent of endoscopic atrophy was classified into five subgroups according to a modified Kimura-Takemoto classification system and was compared with histological findings of atrophy at five biopsy sites according to the updated Sydney system. RESULTS: The strength of agreement of the extent of atrophy between histology and visual endoscopic inspection showed good reproducibility, with a weighted kappa value of 0.76 (P < 0.001). Multivariate analysis showed that three factors were associated with decreased concordance: Japanese ethnicity [odds ratio (OR) 0.22, 95% confidence interval (CI) 0.11-0.43], older age (OR = 0.32, 95%CI: 0.16-0.66) and endoscopic atrophy (OR = 0.10, 95%CI: 0.03-0.36). The strength of agreement between endoscopic and histological atrophy, assessed by cancer risk-oriented grading, was reproducible, with a kappa value of 0.81 (95%CI: 0.75-0.87). Only nine patients (3.6%) were endoscopically underdiagnosed with antral predominant rather than extensive atrophy and were considered false negatives. CONCLUSION: Endoscopic grading can predict histological atrophy with few false negatives, indicating that precancerous conditions can be identified during screening endoscopy, particularly in patients in western countries. PMID:26673849

  14. Porcine models of muscular dystrophy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Duchenne muscular dystrophy is a progressive, fatal, X-linked disease caused by a failure to accumulate the cytoskeletal protein, dystrophin. This disease is modeled by a variety of animal models including several fish models, mice, rats, and dogs. While these models have contributed substantially t...

  15. [Development of an ultrasound-mediated nucleic acid delivery system for treating muscular dystrophies].

    PubMed

    Negishi, Yoichi; Hamano, Nobuhito; Shiono, Hitomi; Akiyama, Saki; Endo-Takahashi, Yoko; Suzuki, Ryo; Maruyama, Kazuo; Aramaki, Yukihiko

    2012-01-01

    Muscular dystrophies are a group of heterogeneous diseases that are characterized by progressive muscle weakness, wasting and degeneration. These muscular deficiencies are often caused by the loss of the protein dystrophin, a crucial element of the dystrophin-glycoprotein complex of muscle fibers. Duchenne muscular dystrophy (DMD) is a fatal, X-linked muscular disease that occurs in 1 out of every 3500 males. Therefore, feasible strategies for replacing or repairing the defective gene are required; however, to date, no effective therapeutic strategies for muscular dystrophies have been established. In this review, we first introduce gene therapies mediated by adeno-associated viruses (AAVs) including a functional dystrophin cDNA or antisense oligonucleotide (AO)-induced exon-skipping therapies, which are designed to exclude the mutated or additional exon(s) in the defective gene and thereby correct the translational reading frame. Recently, we developed "Bubble liposomes" (BLs), which are polyethylene glycol (PEG)-modified liposomes entrapping echo-contrast gas that is known as ultrasound (US) imaging gas. BL application combined with US exposure can function as a novel gene delivery tool, and we demonstrate that the US-mediated eruption of BLs is a feasible and efficient technique to deliver plasmid DNA or AOs for the treat