Science.gov

Sample records for musculoaponeurotic fibrosarcoma oncogene

  1. Oncogenes

    SciTech Connect

    Compans, R.W.; Cooper, M.; Koprowski, H.; McConell, I.; Melchers, F.; Nussenzweig, V.; Oldstone, M.; Olsnes, S.; Saedler, H.; Vogt, P.K.

    1989-01-01

    This book covers the following topics: Roles of drosophila proto-oncogenes and growth factor homologs during development of the fly; Interaction of oncogenes with differentiation programs; Genetics of src: structure and functional organization of a protein tyrosine kinase; Structures and activities of activated abl oncogenes; Eukaryotic RAS proteins and yeast proteins with which they interact. This book presents up-to-data review articles on oncogenes. The editor includes five contributions which critically evaluate recent research in the field.

  2. Generation of fibrosarcomas in vivo by a retrovirus that expresses the normal B chain of platelet-derived growth factor and mimics the alternative splice pattern of the v-sis oncogene.

    PubMed Central

    Pech, M; Gazit, A; Arnstein, P; Aaronson, S A

    1989-01-01

    A retrovirus containing the entire human platelet-derived growth factor B-chain (PDGF-B) gene was constructed in order to investigate the in vivo biological activity of its encoded growth factor. When this virus was introduced into newborn mice, it reproducibly generated fibrosarcomas at the site of inoculation. Proviruses in each fibrosarcoma analyzed had lost 149 nucleotides downstream of the PDGF-B coding region. This deletion originated from an alternative or aberrant splice event that occurred within exon 7 of the PDGF-B gene and mimicked the v-sis oncogene. Thus, deletion of this region may be necessary for efficient retrovirus replication or for more potent transforming function. Evidence that the normal growth factor coding sequence was unaltered derived from RNase protection studies and immunoprecipitation analysis. Tumors were generally polyclonal but demonstrated clonal subpopulations. Moreover, tumor-derived cell lines became monoclonal within a few tissue culture passages and rapidly formed tumors in vivo. These findings argue that overexpression of the normal human PDGF-B gene product under retrovirus control can induce the fully malignant phenotype. Images PMID:2649890

  3. [Neonatal pulmonary fibrosarcoma].

    PubMed

    Desrousseaux, B; Gourdin, C; Atat, I; Podvin, A; Vix, M; Dusol, F; Bayart, M

    1989-01-01

    The authors report a case of pulmonary fibrosarcoma in a newborn. The respiratory distress imposed an urgent thoracotomy at the fifth hour of live. A lobectomy was performed. Three months later a relapse occurred. A second thoracotomy permitted an incomplete resection. The total involution was achieved after 6 months of chemotherapy. Actually no recidive is shown after 20 months of follow up. Its an exceptional case. A unique one was published in 1977. PMID:2698289

  4. Musculoaponeurotic Area of the Hip and Clinicophotographic Scaling System

    PubMed Central

    Mena-Chávez, J. Alejandro

    2015-01-01

    Background: With the evolution of body contouring, few innovative alternatives have been developed for cosmetic treatment in the hip area. Methods: A multicenter controlled study was conducted, including a prior review of the literature regarding the hip area. Dissections were performed on 4 male cadavers, outlining the “musculoaponeurotic area of the hip.” The area was subdivided into anterior and posterior surfaces. A clinical study was conducted in 79 patients, obtaining a scale by using the most prominent points on the sides of both thighs as the main reference. With the lines marked on photographs and the measurements, a “clinicophotographic scaling system” was designed. Results: The anterior surface corresponds to the tensor fasciae latae and its tendon as well as to the aponeurosis of the gluteus medius. The posterior surface corresponds with the iliotibial tract and the tendon insertions of the gluteus maximus. The average dimensions of the cadaver “musculoaponeurotic area of the hip” are as follows: length, 17.5 cm, and width, 11.5 cm. Using the “clinicophotographic scaling system,” the dimensions are as follows: length, 14.9 cm, and width, 10.3 cm. Conclusions: The “musculoaponeurotic area of the hip” was defined involving muscles, tendons, aponeurosis, fascia, subcutaneous cellular tissue, and skin. The borders were established using important anatomical points that determine the length and width of the area. The “clinicophotographic scaling system” was used to clinically calculate the length and width of the area. By examination and palpation, the borders and dimensions of this area could be determined. PMID:26180724

  5. Fibrosarcoma complicating irradiated pituitary adenoma

    SciTech Connect

    Shi, T.; Farrell, M.A.; Kaufmann, J.C.

    1984-09-01

    Eight years after radiation therapy (5000 rads of 60Co) for a pituitary adenoma, a patient developed a sellar fibrosarcoma. The tumor had an aggressive growth pattern: it infiltrated the optic nerve, sphenoidal air sinus, hypothalamus, and both cavernous sinuses, where compression of the left internal carotid artery resulted in a massive hemispheric infarction. Surgery was ineffective in arresting rapid growth of the lesion; death occurring 5 months after onset of symptoms.

  6. Recurrent congenital fibrosarcoma with heart metastases.

    PubMed

    Lohi, Olli; Vornanen, Martine; Kähkönen, Marketta; Vettenranta, Kim; Parto, Katriina; Arola, Mikko

    2012-07-01

    Congenital fibrosarcomas are malignant tumors that arise in soft tissues. In infants this unique tumor does not commonly metastasize, even though there may be local recurrences. We report here a boy who had congenital fibrosarcoma in his right foot, which was completely excised at the age of 3 days. Four months later, a solitary encapsulated metastasis emerged in thoracic chest wall, which was operated. During adjuvant chemotherapy he developed histologically confirmed fibrosarcoma metastases in the heart. After extended treatment with cyclophosphamide/topotecan and gemcitabine/docetaxel, the heart tumors disappeared and he has been in complete remission for 3 years.

  7. Fibrosarcoma of the mandible: a diagnostic dilemma.

    PubMed

    Nanda, Kanwar Deep Singh; Mehta, Anurag; Nanda, Jasmine

    2013-08-01

    Fibrosarcoma is a malignant mesenchymal neoplasm of fibroblasts that rarely affects oral cavity and can cause local recurrences or metastasis. The aetiologic factors are still unknown, but many authors have reported the radiation therapy history as an important aetiological factor, followed by trauma and underlying conditions like Paget's disease, fibrous dysplasia or chronic osteomyelitis. Fibrosarcoma of mandible is rare, with an incidence which ranges from 0-6.1% of all primary fibrosarcomas of the bone. This paper has described a case of a swelling in the mandible of a 17-years old female who had a radiolucency in association with crown of an impacted tooth and foci of radiopacity, which led to a misdiagnosis of either an odontogenic lesion or a bone tumour, but proved to be a fibrosarcoma on histopathological and immunohistochemistry investigations.

  8. Andreas Vesalius' 500th Anniversary: Initiation of the Superficial Facial System and Superficial Musculoaponeurotic System Concepts.

    PubMed

    Brinkman, Romy J; Hage, J Joris

    2016-02-01

    Because of their relevance for liposuction and rhytidectomies, respectively, the superficial fascial system (SFS) and superficial musculoaponeurotic system (SMAS) have been thoroughly studied over the past decennia. Although it is well known that the SMAS concept was introduced by Tessier in 1974, it remains unknown who first properly described the stratum membranosum of the SFS. In light of the 500th birthday of Andreas Vesalius (1515-1564), we searched his 1543 masterwork De Humani Corporis Fabrica Libri Septem and related work for references to these structures. We found ample reference to both structures as the membrana carnosa (or fleshy membrane) in his works and concluded that Vesalius recognized the extension, nature, and functions of the stratum membranosum of the SFS, as well as its more musculous differentiation as the SMAS in the head and neck area, and the dartos in the perineogenital area. In doing so, Vesalius recorded most details of the SFS and SMAS concepts avant la lettre. PMID:26761152

  9. Andreas Vesalius' 500th Anniversary: Initiation of the Superficial Facial System and Superficial Musculoaponeurotic System Concepts.

    PubMed

    Brinkman, Romy J; Hage, J Joris

    2016-02-01

    Because of their relevance for liposuction and rhytidectomies, respectively, the superficial fascial system (SFS) and superficial musculoaponeurotic system (SMAS) have been thoroughly studied over the past decennia. Although it is well known that the SMAS concept was introduced by Tessier in 1974, it remains unknown who first properly described the stratum membranosum of the SFS. In light of the 500th birthday of Andreas Vesalius (1515-1564), we searched his 1543 masterwork De Humani Corporis Fabrica Libri Septem and related work for references to these structures. We found ample reference to both structures as the membrana carnosa (or fleshy membrane) in his works and concluded that Vesalius recognized the extension, nature, and functions of the stratum membranosum of the SFS, as well as its more musculous differentiation as the SMAS in the head and neck area, and the dartos in the perineogenital area. In doing so, Vesalius recorded most details of the SFS and SMAS concepts avant la lettre.

  10. Wound tension in rhytidectomy. Effects of skin-flap undermining and superficial musculoaponeurotic system suspension.

    PubMed

    Burgess, L P; Casler, J D; Kryzer, T C

    1993-02-01

    This study was conducted to determine the effects of skin-flap undermining and superficial musculoaponeurotic system (SMAS) suspension on wound-closing tension. Nine sides from five fresh-frozen cadavers were used, with closing tension measured at the two main anchor points, anteriorly (A) and posteriorly (P), with and without SMAS plication for minimal (MIN), intermediate (INT), and maximal (MAX) skin-flap undermining. Results indicated that closing tension was significantly decreased with SMAS plication, both A and P, for all three levels of skin undermining. The average decrease in closing tension with SMAS plication was: A-MIN 191 g, A-INT 95 g, A-MAX 83 g, P-MIN 235 g, P-INT 68 g, and P-MAX 70 g (P < .001 for all). Considering the effect of skin-flap undermining alone, closing tension decreased with wider skin-flap undermining, both with and without SMAS plication. The tension-reducing effect of SMAS plication was decreased with wider skin-flap undermining. Regression analysis determined a second-order exponential curve relating closing tension to skin excision.

  11. A transition in transcriptional activation by the glucocorticoid and retinoic acid receptors at the tumor stage of dermal fibrosarcoma development.

    PubMed Central

    Vivanco, M D; Johnson, R; Galante, P E; Hanahan, D; Yamamoto, K R

    1995-01-01

    In transgenic mice harboring the bovine papillomavirus genome, fibrosarcomas arise along an experimentally accessible pathway in which normal dermal fibroblasts progress through two pre-neoplastic stages, mild and aggressive fibromatosis, followed by a final transition to the tumor stage. We found that the glucocorticoid receptor (GR) displays only modest transcriptional regulatory activity in cells derived from the three non-tumor stages, whereas it is highly active in fibrosarcoma cells. Upon inoculation into mice, the aggressive fibromatosis cells progress to tumor cells that have high GR activity; thus, the increased transcriptional regulatory activity of GR correlates with the cellular transition to the tumor stage. The intracellular levels of GR, as well as its hormone-dependent nuclear translocation and specific DNA binding activities, are unaltered throughout the progression. Strikingly, the low GR activity observed in the pre-neoplastic stages cannot be overcome by exogenous GR introduced by co-transfection. Moreover, comparisons of primary embryo fibroblasts and their transformed derivatives revealed a similar pattern--modest GR activity, unresponsive to overexpressed GR protein, in the normal cells was strongly increased in the transformed cells. Likewise, the retinoic acid receptor (RAR) displayed similar differential activity in the fibrosarcoma pathway. Thus, the oncogenic transformation of fibroblasts, and likely other cell types, is accompanied by a striking increase in the activities of transcriptional regulators such as GR and RAR. We suggest that normal primary cells have a heretofore unrecognized capability to limit the magnitude of induction of gene expression. Images PMID:7774580

  12. Ameloblastic Fibrosarcoma Arising in the Maxilla

    PubMed Central

    Pillay, Rachael R.; Bilski, Arthur; Batstone, Martin

    2016-01-01

    Background: Ameloblastic fibrosarcoma (AFS) is a rare odontogenic neoplasm of the jaw that usually arises de novo or through a malignant change in the mesenchymal component of a preexisting or recurrent benign fibroma. The majority of AFS cases reported in the literature arise in the mandible. Case Report: A 35-year-old male presented with an asymptomatic left maxillary mass that on imaging was found to be effacing most of his maxillary sinus. He underwent a left maxillectomy with free-flap reconstruction and adjuvant radiotherapy to the tumor bed. Conclusion: Wide local excision remains the treatment of choice for AFS, given the poor survival rates of patients with recurrent disease. However, long-term studies and follow-up are needed to elucidate the role of adjuvant therapies in the primary treatment of AFS. PMID:27303223

  13. Microchip-associated fibrosarcoma in a cat.

    PubMed

    Carminato, Antonio; Vascellari, Marta; Marchioro, Wendy; Melchiotti, Erica; Mutinelli, Franco

    2011-12-01

    A 9-year-old, neutered male cat was presented for a subcutaneous mass on the neck. After surgical removal of the mass, a pet identification microchip was found within the tumour. Histological examination of the mass revealed typical features of the feline postinjection sarcoma. The cat had never received injections at the tumour site; all routine vaccinations were administered in the hindlimbs. Few cases of sarcomas developing at the site of microchip application have been reported in animals, although the contributory role of vaccine administrations has not been ruled out. This is the first report of a microchip-associated fibrosarcoma in a cat. Adherence to American Association of Feline Practitioners vaccination guidelines, avoiding the interscapular area, enabled confirmation of the definitive aetiology of the neoplasia.

  14. Cytoplasmic expression of Wilms tumor transcription factor-1 (WT1): a useful immunomarker for young-type fibromatoses and infantile fibrosarcoma.

    PubMed

    Magro, Gaetano; Salvatorelli, Lucia; Vecchio, Giada Maria; Musumeci, Giuseppe; Rita, Alaggio; Parenti, Rosalba

    2014-09-01

    There is increasing evidence that Wilms' tumor transcription factor-1 (WT1) is expressed in the cytoplasm of neoplastic cells from different benign and malignant tumors. Only a few studies on WT1 cytoplasmic immunolocalization are available in pediatric tumors. The aim of the present study was to investigate immunohistochemically the expression and distribution of WT1 in a large series of soft tissue fibroblastic/myofibroblastic lesions occurring in children and adolescents. Notably WT1 was not expressed in nodular fasciitis and desmoid-type (adult) fibromatosis, while it stained diffusely and strongly in several infantile-type fibromatoses, such as fibrous hamartoma of infancy, myofibroma/myofibromatosis, and lipofibromatosis. Interestingly, WT1 cytoplasmic expression was also found in all cases (10/10) of infantile fibrosarcomas examined. The present study shows that a diffuse WT1 cytoplasmic expression is of complementary diagnostic value to conventional myofibroblastic markers (α-smooth muscle actin; desmin) in confirming diagnosis of young-type fibromatoses or infantile fibrosarcoma and in ruling out both desmoid-type fibromatoses and nodular fasciitis. WT1 cytoplasmic expression in infantile fibrosarcoma is a novel finding which could be exploitable as an immunomarker for this tumor. Although highly sensitive, WT1 cytoplasmic immunostaining is not specific for infantile fibrosarcoma, and thus it should be evaluated in the context of a wide immunohistochemical panel when pathologists are dealing with spindle cell lesions of soft tissues in children and adolescents. Accordingly we recommend that a correct diagnosis of fibroblastic/myofibroblastic soft tissue lesion in pediatric patients is usually achieved on the basis of a careful correlation of morphological and immunohistochemical findings in the appropriate clinical context. The different cellular localization of WT1, namely nuclear, cytoplasmic or nucleo-cytoplasmic, in different benign and malignant

  15. Complex effects of Ras proto-oncogenes in tumorigenesis.

    PubMed

    Diaz, Roberto; Lopez-Barcons, Lluis; Ahn, Daniel; Garcia-Espana, Antonio; Yoon, Andrew; Matthews, Jeremy; Mangues, Ramon; Perez-Soler, Roman; Pellicer, Angel

    2004-04-01

    Ras proteins have been found mutated in about one-third of human tumors. In vitro, Ras has been shown to regulate distinct and contradictory effects, such as cellular proliferation and apoptosis. Nonetheless, the effects that the wild-type protein elicits in tumorigenesis are poorly understood. Depending on the type of tissue, Ras proto-oncogenes appear to either promote or inhibit the tumor phenotype. In this report, we treated wild-type and N-ras knockout mice with 3-methylcholanthrene (MCA) to induce fibrosarcomas and found that MCA is more carcinogenic in wild-type mice than in knockout mice. After injecting different doses of a tumorigenic cell line, the wild-type mice exhibited a shorter latency of tumor development than the knockouts, indicating that there are N-ras-dependent differences in the stromal cells. Likewise, we have analyzed B-cell lymphomas induced by either N-methylnitrosourea or by the N-ras oncogene in mice that over-express the N-ras proto-oncogene and found that the over-expression of wild-type N-ras is able to increase the incidence of these lymphomas. Considered together, our results indicate that Ras proto-oncogenes can enhance or inhibit the malignant phenotype in vivo in different systems.

  16. Characteristics of a Virus Isolated from a Feline Fibrosarcoma

    PubMed Central

    McKissick, G. E.; Lamont, P. H.

    1970-01-01

    A virus was isolated from a radioresistant feline fibrosarcoma. It induced multi-nucleated giant-cell formation and lysis in a cell line derived from a canine fibro-sarcoma, which was used to characterize the virus. End-point titrations in these cells required 28 days. The virus was sensitive to ether and heat and was destroyed at pH 3. Replication was not inhibited by 5-bromodeoxyuridine. Electron microscopy revealed assembly by a budding process from the plasma membrane of infected cells. The average diameter of the virion was 106 nm. Intracisternal particles with an average diameter of 45 nm were present within infected cells. In two instances secondary monolayers of feline renal cells underwent morphological transformation after inoculation of the virus. The two strains of transformed cells are now in continuous culture and do not yield infectious virus. Images PMID:4194169

  17. Development of the Platysma Muscle and the Superficial Musculoaponeurotic System (Human Specimens at 8–17 Weeks of Development)

    PubMed Central

    De la Cuadra-Blanco, C.; Peces-Peña, M. D.; Carvallo-de Moraes, L. O.; Herrera-Lara, M. E.; Mérida-Velasco, J. R.

    2013-01-01

    There is controversy regarding the description of the different regions of the face of the superficial musculoaponeurotic system (SMAS) and its relationship with the superficial mimetic muscles. The purpose of this study is to analyze the development of the platysma muscle and the SMAS in human specimens at 8–17 weeks of development using an optical microscope. Furthermore, we propose to study the relationship of the anlage of the SMAS and the neighbouring superficial mimetic muscles. The facial musculature derives from the mesenchyme of the second arch and migrates towards the different regions of the face while forming premuscular laminae. During the 8th week of development, the cervical, infraorbital, mandibular, and temporal laminae are observed to be on the same plane. The platysma muscle derives from the cervical lamina and its mandibular extension enclosing the lower part of the parotid region and the cheek, while the SMAS derives from the upper region. During the period of development analyzed in this study, we have observed no continuity between the anlage of the SMAS and that of the superficial layer of the temporal fascia and the zygomaticus major muscle. Nor have we observed any structure similar to the SMAS in the labial region. PMID:24396304

  18. Development of the platysma muscle and the superficial musculoaponeurotic system (human specimens at 8-17 weeks of development).

    PubMed

    De la Cuadra-Blanco, C; Peces-Peña, M D; Carvallo-de Moraes, L O; Herrera-Lara, M E; Mérida-Velasco, J R

    2013-01-01

    There is controversy regarding the description of the different regions of the face of the superficial musculoaponeurotic system (SMAS) and its relationship with the superficial mimetic muscles. The purpose of this study is to analyze the development of the platysma muscle and the SMAS in human specimens at 8-17 weeks of development using an optical microscope. Furthermore, we propose to study the relationship of the anlage of the SMAS and the neighbouring superficial mimetic muscles. The facial musculature derives from the mesenchyme of the second arch and migrates towards the different regions of the face while forming premuscular laminae. During the 8th week of development, the cervical, infraorbital, mandibular, and temporal laminae are observed to be on the same plane. The platysma muscle derives from the cervical lamina and its mandibular extension enclosing the lower part of the parotid region and the cheek, while the SMAS derives from the upper region. During the period of development analyzed in this study, we have observed no continuity between the anlage of the SMAS and that of the superficial layer of the temporal fascia and the zygomaticus major muscle. Nor have we observed any structure similar to the SMAS in the labial region.

  19. Electrochemical treatment of mouse and rat fibrosarcomas with direct current

    SciTech Connect

    Chou, C.K.; McDougall, J.A.; Ahn, C.; Vora, N.

    1997-03-01

    Electrochemical treatment (ECT) of cancer utilizes direct current to produce chemical changes in tumors. ECT has been suggested as an effective alternative local cancer therapy. However, a methodology is not established, and mechanisms are not well studied. In vivo studies were conducted to evaluate the effectiveness of ECT on animal tumor models. Radiation-induced fibrosarcomas were implanted subcutaneously in 157 female C3H/HeJ mice. Larger rat fibrosarcomas were implanted on 34 female Fisher 344 rats. When the spheroidal tumors reached 10 mm in the mice, two to five platinum electrodes were inserted into the tumors at various spacings and orientations. Ten rats in a pilot group were treated when their ellipsoidal tumors were about 25 mm long; electrode insertion was similar to the later part of the mouse study; i.e., two at the base and two at the center. A second group of 24 rats was treated with six or seven electrodes when their tumors were about 20 mm long; all electrodes were inserted at the tumor base. Of the 24 rats, 12 of these were treated once, 10 were treated twice, and 2 were treated thrice. All treated tumors showed necrosis and regression for both mice and rats; however, later tumor recurrence reduced long-term survival. When multiple treatments were implemented, the best 3 month mouse tumor cure rate was 59.3%, and the best 6 month rat tumor cure rate was 75.0%. These preliminary results indicate that ECT is effective on the radiation-induced fibrosarcoma (RIF-1) mouse tumor and rat fibrosarcoma. The effectiveness is dependent on electrode placement and dosage.

  20. Fibrosarcoma arising from gouty tophi: report of a unique case and review of literature

    PubMed Central

    Wang, Jian-Jun; Wang, Hai-Yan; Cheng, Kai; Wang, Xuan; Yu, Bo; Shi, Shan-Shan; Zhou, Xiao-Jun; Shi, Qun-Li

    2015-01-01

    Fibrosarcoma is a malignant mesenchymal tumor. To the author’s best knowledge, no previous case of fibrosarcoma arising from gouty tophi has been reported. Here we reported the first case of fibrosarcoma arising from gouty tophi. A case of 58-year-old man was presented with a mass with ulcer and infection in the second joint of left middle finger for 2 months, with long standing gouty tophi. The tumor was biopsied and the biopsy showed complete excision of the tumor. With the pathological and immunohistochemical features considered, the diagnosis of fibrosarcoma associated with gouty tophi was made. The clinical findings, pathological characteristics and treatment were described. PMID:26097616

  1. Oncogenes and surgical pathology.

    PubMed

    Bartow, S A

    1987-08-01

    The discovery of oncogenes began with identification of genetic material in viruses capable of causing neoplasia in animals. Through processes of "transduction" and "insertional mutagenesis," RNA/retroviruses may (1) alter directly, (2) alter expression of, or (3) move pieces of host cellular genome in ways that they become potential agents of neoplastic transformation. The pieces of host cellular genome, either affected in situ by viral gene insertion or transduced by the virus, are known as oncogenes. Approximately 20 oncogenes have been identified. Although they have yet to be proven to be sufficient or necessary for neoplastic transformation, the evidence for their playing a part in the transformation process is mounting. The functions of the protein products of the various oncogenes are closely related to those of proteins involved in normal cell regulatory and cycle activities. Study of the oncogene products and their functions serves to elucidate the basic character of neoplasia. The functional classes of oncogenes with specific examples of genomic amplification, altered mRNA or protein product expression, or mutational deletion associated with human neoplasia are reviewed herein. Since the techniques for detecting oncogene DNA and mRNA alterations are rapidly becoming a part of our diagnostic armamentarium, surgical pathologists should be prepared for the imminent use of such molecular techniques and information in diagnosis and prognosis of human neoplasia.

  2. Endocardial fibrosarcoma in a reticulated python (Python reticularis).

    PubMed

    Gumber, Sanjeev; Nevarez, Javier G; Cho, Doo-Youn

    2010-11-01

    A female, reticulated python (Python reticularis) of unknown age was presented with a history of lethargy, weakness, and distended coelom. Physical examination revealed severe dystocia and stomatitis. The reticulated python was euthanized due to a poor clinical prognosis. Postmortem examination revealed marked distention of the reproductive tract with 26 eggs (10-12 cm in diameter), pericardial effusion, and a slightly firm, pale tan mass (3-4 cm in diameter) adhered to the endocardium at the base of aorta. Based on histopathologic and transmission electron microscopic findings, the diagnosis of endocardial fibrosarcoma was made.

  3. Infantile fibrosarcoma of ethmoid sinus, misdiagnosed as an adenoid in a 5-year-old child.

    PubMed

    Geramizadeh, Bita; Khademi, Bijan; Karimi, Mehran; Shekarkhar, Golsa

    2015-01-01

    Infantile fibrosarcoma of head and neck is rare and the presence of this tumor in ethmoid sinus is even more uncommon. To the best of our knowledge, <5 cases have been reported in the last 20 years in the English literature, so far, only one of which has been infantile type in a 15 months old girl. In this case report, we will explain our experience with a rare case of infantile fibrosarcoma originating from ethmoid sinus in a 5-year-old boy who presented with dyspnea and epistaxis. After biopsy, it was diagnosed as fibrosarcoma of sinus origin. PMID:26604519

  4. Prenatal diagnosis of a fibrosarcoma of the thigh: a case report.

    PubMed

    Durin, Luc; Jeanne-Pasquier, Corinne; Bailleul, Patrick; Eboué, Cyril; Aicardi, Stéphanie; Herlicoviez, Michel; Dreyfus, Michel

    2006-01-01

    We report a rare case of fibrosarcoma of the thigh suspected prenatally. At 27 weeks of gestation a voluminous, vascularised mass was discovered at ultrasound on the foetus' left leg, suggestive of haemangioma or a fibrosarcoma. There were no signs of heart failure. A rapid increase in the tumour mass was noted and a caesarean section was carried out at 39 weeks because of abnormal foetal heart rate. Postnatal ultrasound examination was comparable to that carried out prenatally; pathological examination of the mass biopsied and immunohistochemical investigation provided a diagnosis of congenital fibrosarcoma. After neoadjuvant chemotherapy and surgery the infant is now in complete remission without amputation. PMID:16968999

  5. Pesticides and oncogenic modulation.

    PubMed

    Vakonaki, Elena; Androutsopoulos, Vasilis P; Liesivuori, Jyrki; Tsatsakis, Aristidis M; Spandidos, Demetrios A

    2013-05-10

    Pesticides constitute a diverse class of chemicals used for the protection of agricultural products. Several lines of evidence demonstrate that organochlorine and organophosphate pesticides can cause malignant transformation of cells in in vitro and in vivo models. In the current minireview a comprehensive summary of recent in vitro findings is presented along with data reported from human population studies, regarding the impact of pesticide exposure on activation or dysregulation of oncogenes and tumor suppressor genes. Substantial mechanistic work suggests that pesticides are capable of inducing mutations in oncogenes and increase their transcriptional expression in vitro, whereas human population studies indicate associations between pesticide exposure levels and mutation occurrence in cancer-related genes. Further work is required to fully explore the exact mechanisms by which pesticide exposure affects the integrity and normal function of oncogenes and tumor suppressor genes in human populations.

  6. Limited Role of Murine ATM in Oncogene-Induced Senescence and p53-Dependent Tumor Suppression

    PubMed Central

    Martinez-Pastor, Barbara; Ortega-Molina, Ana; Soria, Rebeca; Collado, Manuel; Fernandez-Capetillo, Oscar; Serrano, Manuel

    2009-01-01

    Recent studies in human fibroblasts have provided a new general paradigm of tumor suppression according to which oncogenic signaling produces DNA damage and this, in turn, results in ATM/p53-dependent cellular senescence. Here, we have tested this model in a variety of murine experimental systems. Overexpression of oncogenic Ras in murine fibroblasts efficiently induced senescence but this occurred in the absence of detectable DNA damage signaling, thus suggesting a fundamental difference between human and murine cells. Moreover, lung adenomas initiated by endogenous levels of oncogenic K-Ras presented abundant senescent cells, but undetectable DNA damage signaling. Accordingly, K-Ras-driven adenomas were also senescent in Atm-null mice, and the tumorigenic progression of these lesions was only modestly accelerated by Atm-deficiency. Finally, we have examined chemically-induced fibrosarcomas, which possess a persistently activated DNA damage response and are highly sensitive to the activity of p53. We found that the absence of Atm favored genomic instability in the resulting tumors, but did not affect the persistent DNA damage response and did not impair p53-dependent tumor suppression. All together, we conclude that oncogene-induced senescence in mice may occur in the absence of a detectable DNA damage response. Regarding murine Atm, our data suggest that it plays a minor role in oncogene-induced senescence or in p53-dependent tumor suppression, being its tumor suppressive activity probably limited to the maintenance of genomic stability. PMID:19421407

  7. Bifrontal meningeal fibrosarcoma in a patient with metastases to the liver, kidneys and suprarenal glands.

    PubMed

    Aung, T H; Tse, C H

    1993-09-01

    Primary meningeal sarcoma is a rare malignant tumour of the central nervous system and metastases to the liver, kidney and the suprarenal gland have not been reported elsewhere. A 47 year old Chinese woman who presented with a short history of headache and vomiting was found to have metastatic meningeal fibrosarcoma in the liver 4 months after resection of primary bifrontal meningeal fibrosarcoma. The computerized tomography findings and relevant histology are presented.

  8. Oral and maxillofacial sclerosing epithelioid fibrosarcoma: report of five cases.

    PubMed

    Folk, Gretchen S; Williams, Stephen B; Foss, Robert B; Fanburg-Smith, Julie C

    2007-09-01

    Sclerosing epithelioid fibrosarcoma (SEF) has distinctive morphology and occurs mainly in deep soft tissue of adult extremities. Approximately 59 cases of SEF have been reported, with only 12 previously described in head and neck locations. Lesions involving the oral and maxillofacial region (OMFR) and intraosseous examples are rare. We present five cases of OMFRSEF. The OMF Pathology Department Registry was searched for cases coded from 1990 to the present as "SEF," "fibrosarcoma not otherwise specified" or "neoplasm of uncertain histiogenesis." Inclusion required OMFR location, an abundantly sclerotic sarcoma with epithelioid features, and lack of other phenotype by immunohistochemistry. Five cases of SEF included 3 males and 2 females. The age of the patients were: 19, 22, 35, 47 and 47 years. Tumor location included the infra-temporal fossa, buccal mucosa (recurrence extending into bone), anterior mandible (intraosseous primary, focally extending into soft tissue), and left parotid and submandibular gland (with metaplastic bone) regions. Tumor sizes ranged from 1.0 to 5.7 cm, median 3.5 cm. Histologically, the tumors were well delineated and multinodular, separated by fibrous septae. The spindled to primarily epithelioid tumor cells formed moderately cellular sheets and cords of irregularly contoured medium to large, round to oval, occasionally overlapping nuclei, indistinct nucleoli, wispy eosinophilic (retracting) cytoplasm, and distinctive cytoplasmic borders, embedded in osteoid-like stroma. Hemangiopericytoid (HPC-like) vessels were observed. Despite numerous apoptotic cells, mitoses were generally low; necrosis was present in two cases. Three tumors were graded as 2/3 and two 1/3. Immunohistochemically, the tumor cells were positive for vimentin, 1 case focally for CD34, whereas all cases were negative for S100 protein, keratins, EMA, desmin, and SMA. Wide or radical excision was performed with no adjuvant therapy. Follow-up revealed that 4 cases recurred

  9. [Atherosclerosis and oncogenes].

    PubMed

    Onraed-Dupriez, B

    1992-01-01

    Atherosclerosis, a leading cause of mortality in the developed world, has mainly been studied with respect to the pathogenic role of lipids. However, over the last few years, a new avenue of research has stemmed from Benditt's monoclonal theory which linkens the atheroma plaque to a benign tumor developed from a single smooth muscle cell. Investigations into mechanisms capable of initiating this monoclonal cell growth have included studies of protooncogene activation. Barrett and Benditt have reported increased expression of the sis oncogene in the atheroma plaque; the product of this oncogene is very similar to the beta chain of platelet-derived growth factor (PDGF) which may play a role in the development of the atheroma plaque. These recent studies focusing on the earliest step of formation of the atheroma plaque, ie, cell growth, complement the pathophysiologic theories studied until now.

  10. Oncogenes and growth control

    SciTech Connect

    Kahn, P.; Graf, T.

    1986-01-01

    This book contains six sections, each consisting of several papers. Some of the paper titles are: A Role for Proto-Oncogenes in Differentiation.; The ras Gene Family; Regulation of Human Globin Gene Expression; Regulation of Gene Expression by Steroid Hormones; The Effect of DNA Methylation on DNA-Protein Interactions and on the Regulation of Gene Expression; and Trans-Acting Elements Encoded in Immediate Early Genes of DNA Tumor Viruses.

  11. The human oncogenic viruses

    SciTech Connect

    Luderer, A.A.; Weetall, H.H

    1986-01-01

    This book contains eight selections. The titles are: Cytogenetics of the Leukemias and Lymphomas; Cytogenetics of Solid Tumors: Renal Cell Carcinoma, Malignant Melanoma, Retinoblastoma, and Wilms' Tumor; Elucidation of a Normal Function for a Human Proto-Oncogene; Detection of HSV-2 Genes and Gene Products in Cervical Neoplasia; Papillomaviruses in Anogennital Neoplasms; Human Epstein-Barr Virus and Cancer; Hepatitis B Virus and Hepatocellular Carcinoma; and Kaposi's Sarcoma: Acquired Immunodeficiency Syndrome (AIDS) and Associated Viruses.

  12. PRIMARY FIBROSARCOMA OF THE THYROID GLAND: CASE REPORT.

    PubMed

    Dabelić, Nina; Mateša, Neven; Jukić, Tomislav; Soldić, Željko; Kust, Davor; Prgomet, Angela; Bolanca, Ante; Kusić, Zvonko

    2016-03-01

    Due to progressive dyspnea, a male patient aged 59 underwent medical examination in 2003 in a local hospital. Neck ultrasound and fine-needle aspiration biopsy (FNAB) of a suspect lesion in the thyroid gland revealed the presence of a malignant neoplasm, i.e. mesenchymal tumor. Immunocytochemistry for epithelial membrane antigen, chromogranin A and leukocyte common antigen (CD45) was negative, while vimentin and S-100 were positive. The patient was referred to a university hospital center, where further oncologic work-up was done. Neck ultrasound revealed a tumor in the left lobe of the thyroid, with extension to the aortic arch. After repeated FNAB, cytologic diagnosis of primary thyroid fibrosarcoma was established. Due to the locally advanced and consequently inoperable disease, primary radiotherapy to the neck region (64 Gy in 32 fractions) was applied, followed by 6 cycles of chemotherapy with doxorubicin. After completion of therapy, computed tomography scan demonstrated significant regression of primary disease, but it was still not amenable to surgical treatment. Thus, the decision of the oncology board was active surveillance of the patient. During 9-year follow up, no signs of progression or activity of the disease were found. PMID:27333734

  13. Congenital fibrosarcoma and history of prenatal exposure to petroleum derivatives.

    PubMed

    Ortega-García, Juan A; Soldin, Offie P; López-Hernández, Fernando A; Trasande, Leonardo; Ferrís-Tortajada, Josep

    2012-10-01

    Congenital fibrosarcoma (CFS) is a rare fibrous tissue malignancy that usually presents in the first few years of life. It is unique among human sarcomas in that it has an excellent prognosis. We describe a temporal clustering of a number of cases of CFS and investigate the possible associated prenatal risk factors. The Pediatric Environmental History, a questionnaire developed in our clinic that is instrumental in determining environmental risk factors for tumor-related disease, was essential in documenting the presence or absence of risk factors considered as human carcinogens. We found a history of exposure to petroleum products in four cases of CFS that occurred at a greater than expected rate in a short time frame-an apparent cancer cluster. We call attention to the possibility that exposure to petroleum products raises the risk of developing CFS. While future studies should focus on systematic investigation of CFS and its underlying mechanisms, this report suggests the need for proactive measures to avoid exposure to solvents and petroleum products during pregnancy.

  14. Congenital Fibrosarcoma and History of Prenatal Exposure to Petroleum Derivatives

    PubMed Central

    Soldin, Offie P.; López-Hernández, Fernando A.; Trasande, Leonardo; Ferrís-Tortajada, Josep

    2012-01-01

    Congenital fibrosarcoma (CFS) is a rare fibrous tissue malignancy that usually presents in the first few years of life. It is unique among human sarcomas in that it has an excellent prognosis. We describe a temporal clustering of a number of cases of CFS and investigate the possible associated prenatal risk factors. The Pediatric Environmental History, a questionnaire developed in our clinic that is instrumental in determining environmental risk factors for tumor-related disease, was essential in documenting the presence or absence of risk factors considered as human carcinogens. We found a history of exposure to petroleum products in four cases of CFS that occurred at a greater than expected rate in a short time frame–an apparent cancer cluster. We call attention to the possibility that exposure to petroleum products raises the risk of developing CFS. While future studies should focus on systematic investigation of CFS and its underlying mechanisms, this report suggests the need for proactive measures to avoid exposure to solvents and petroleum products during pregnancy. PMID:22945410

  15. [Sclerosing epithelioid fibrosarcoma of the paravertebral column. Case report and literature review].

    PubMed

    Puerta Roldán, Patricia; Rodríguez Rodríguez, Rodrigo; Bagué Rossell, Silvia; de Juan Delago, Manel; Molet Teixidó, Joan

    2013-01-01

    Sclerosing epithelioid fibrosarcoma (SEF) is a rare variant of low-grade fibrosarcoma, with specific histological and immunohistochemical features and a poor prognosis. We report a case of SEF of the paravertebral column in a 49-year old male who presented a paraspinal mass with extension into the L4-L5 neural foramen and invasion of the L5 nerve root. Histology of the tumourectomy specimen and its immunohistochemical study led to the diagnosis of SEF. This case was particularly unusual due to its paravertebral column location and, despite its low grade, illustrates the malignant potential of SEF.

  16. Metastatic Secondary Fibrosarcoma of Bone Responsive to Repeated Courses of Ifosfamide and Associated With Hypoglycemia

    PubMed Central

    Rodger, N. Wilson; Bramwell, Vivien H. C.

    2003-01-01

    We present a case of a 40-year-old man with secondary fibrosarcoma of bone, arising from a non-ossifying fibroma. He subsequently developed metastatic disease that responded to four successive chemotherapy courses, the last three using the same dose/schedule of single agent ifosfamide. Eventual rapid progression of a huge intra-abdominal mass was associated with the syndrome of extrapancreatic tumour hypoglycemia (EPTH). The clinicopathological behaviour of fibrosarcoma of bone, and the mechanism of EPTH are discussed. PMID:18521374

  17. Identification of ALV-J associated acutely transforming virus Fu-J carrying complete v-fps oncogene.

    PubMed

    Wang, Yixin; Li, Jianliang; Li, Yang; Fang, Lichun; Sun, Xiaolong; Chang, Shuang; Zhao, Peng; Cui, Zhizhong

    2016-06-01

    Transduction of oncogenes by ALVs and generation of acute transforming viruses is common in natural viral infections. In order to understand the molecular basis for the rapid oncogenicity of Fu-J, an acutely transforming avian leukosis virus isolated from fibrosarcomas in crossbreed broilers infected with subgroup J avian leukosis virus (ALV-J) in China, complete genomic structure of Fu-J virus was determined by PCR amplification and compared with those of Fu-J1, Fu-J2, Fu-J3, Fu-J4, and Fu-J5 reported previously. The results showed that the genome of Fu-J was defective, with parts of gag gene replaced by the complete v-fps oncogene and encoded a 137 kDa Gag-fps fusion protein. Sequence analysis revealed that Fu-J and Fu-J1 to Fu-J5 were related quasi-species variants carrying different lengths of v-fps oncogenes generated from recombination between helper virus and c-fps gene. Comparison of virus carrying v-fps oncogene also gave us a glimpse of the molecular characterization and evolution process of the acutely transforming ALV.

  18. Oncogenes in melanoma: an update.

    PubMed

    Kunz, Manfred

    2014-01-01

    Melanoma is a highly aggressive tumour with poor prognosis in the metastatic stage. BRAF, NRAS, and KIT are three well-known oncogenes involved in melanoma pathogenesis. Targeting of mutated BRAF kinase has recently been shown to significantly improve overall survival of metastatic melanoma patients, underscoring the particular role of this oncogene in melanoma biology. However, recurrences regularly occur within several months, which supposedly involve further oncogenes. Moreover, oncogenic driver mutations have not been described for up to 30% of all melanomas. In order to obtain a more complete picture of the mutational landscape of melanoma, more recent studies used high-throughput DNA sequencing technologies. A number of new oncogene candidates such as MAPK1/2, ERBB4, GRIN2A, GRM3, RAC1, and PREX2 were identified. Their particular role in melanoma biology is currently under investigation. Evidence for the functional relevance of some of these new oncogene candidates has been provided in in vitro and in vivo experiments. However, these findings await further validation in clinical studies. This review provides an overview on well-known melanoma oncogenes and new oncogene candidates, based on recent high-throughput sequencing studies. The list of genes discussed herein is of course not complete but highlights some of the most significant of recent findings in this area. The new candidates may support more individualized treatment approaches for metastatic melanoma patients in the future. PMID:24468268

  19. Principles of cancer therapy: oncogene and non-oncogene addiction.

    PubMed

    Luo, Ji; Solimini, Nicole L; Elledge, Stephen J

    2009-03-01

    Cancer is a complex collection of distinct genetic diseases united by common hallmarks. Here, we expand upon the classic hallmarks to include the stress phenotypes of tumorigenesis. We describe a conceptual framework of how oncogene and non-oncogene addictions contribute to these hallmarks and how they can be exploited through stress sensitization and stress overload to selectively kill cancer cells. In particular, we present evidence for a large class of non-oncogenes that are essential for cancer cell survival and present attractive drug targets. Finally, we discuss the path ahead to therapeutic discovery and provide theoretical considerations for combining orthogonal cancer therapies. PMID:19269363

  20. Fibrosarcoma adjacent to the site of microchip implantation in a cat.

    PubMed

    Daly, Meighan K; Saba, Corey F; Crochik, Sonia S; Howerth, Elizabeth W; Kosarek, Carrie E; Cornell, Karen K; Roberts, Royce E; Northrup, Nicole C

    2008-04-01

    A 14-year-old spayed female domestic shorthair cat presented with an interscapular mass. A computed tomography scan, biopsy, and histological examination revealed a fibrosarcoma adjacent to a pet identification microchip. Because the cat was previously vaccinated at this site, it is not possible to establish definitive causation of the fibrosarcoma, but this is the first report of a tumor in the vicinity of a microchip in a cat. Microchip-associated tumors have been reported in rodents and dogs. Veterinarians should be aware that because inflammation may predispose felines to tumor formation, separation and observation of vaccination and implantation sites are indicated. Adherence to American Association of Feline Practitioners (AAFP) vaccination guidelines and monitoring of microchip implantation sites are recommended.

  1. Immunomodulatory properties of silver nanoparticles contribute to anticancer strategy for murine fibrosarcoma

    PubMed Central

    Chakraborty, Biswajit; Pal, Ramkrishna; Ali, Mohammed; Singh, Leichombam Mohindro; Shahidur Rahman, Dewan; Kumar Ghosh, Sujit; Sengupta, Mahuya

    2016-01-01

    The use of nanotechnology in nanoparticle-based cancer therapeutics is gaining impetus due to the unique biophysical properties of nanoparticles at the quantum level. Silver nanoparticles (AgNPs) have been reported as one type of potent therapeutic nanoparticles. The present study is aimed to determine the effect of AgNPs in arresting the growth of a murine fibrosarcoma by a reductive mechanism. Initially, a bioavailability study showed that mouse serum albumin (MSA)-coated AgNPs have enhanced uptake; therefore, toxicity studies of AgNP-MSA at 10 different doses (1–10 mg/kg b.w.) were performed in LACA mice by measuring the complete blood count, lipid profile and histological parameters. The complete blood count, lipid profile and histological parameter results showed that the doses from 2 to 8 mg (IC50: 6.15 mg/kg b.w.) sequentially increased the count of leukocytes, lymphocytes and granulocytes, whereas the 9- and 10-mg doses showed conclusive toxicity. In an antitumor study, the incidence and size of fibrosarcoma were reduced or delayed when murine fibrosarcoma groups were treated by AgNP-MSA. Transmission electron micrographs showed that considerable uptake of AgNP-MSA by the sentinel immune cells associated with tumor tissue and a morphologically buckled structure of the immune cells containing AgNP-MSA. Because the toxicity studies revealed a relationship between AgNPs and immune function, the protumorigenic cytokines TNF-α, IL-6 and IL-1β were also assayed in AgNP-MSA-treated and non-treated fibrosarcoma groups, and these cytokines were found to be downregulated after treatment with AgNP-MSA. PMID:25938978

  2. Synergistic effects of sonoporation and taurolidin/TRAIL on apoptosis in human fibrosarcoma.

    PubMed

    Daigeler, Adrien; Chromik, Ansgar M; Haendschke, Kathrin; Emmelmann, Sabine; Siepmann, Monica; Hensel, Karin; Schmitz, Georg; Klein-Hitpass, Ludger; Steinau, Hans U; Lehnhardt, Marcus; Hauser, Joerg

    2010-11-01

    Sonodynamic therapy, in combination with ultrasound contrast agents, proved to enhance the uptake of chemotherapeutics in malignant cells. HT1080 fibrosarcoma cells were treated in vitro with a combination of ultrasound SonoVue™-microbubbles and taurolidine (TRD) plus tumor necrosis factor related apoptosis inducing ligand (TRAIL). Apoptosis was measured by TdT-mediated dUTP-biotin nick end labelling (TUNEL) assay and fluorescence activated cell sorting (FACS) analysis. Gene expression was analysed by RNA-microarray. The apoptotic effects of TRD and TRAIL on human fibrosarcoma are enhanced by sonodynamic therapy and additional application of contrast agents, such as SonoVue™ by 25%. A broad change in the expression of genes related to apoptotic pathways is observed when ultrasound and microbubbles act synchronously in combination with the chemotherapeutics (e.g. BIRC3, NFKBIA and TNFAIP3). Some of these genes have already been proven to play a role in programmed cell death in human fibrosarcoma (HSPA1A/HSPA1B, APAF1, PAWR, SOCS2) or were associated with sonication induced apoptosis (CD44). Further studies are needed to explore the options of sonodynamic therapy on soft tissue sarcoma and its molecular mechanisms.

  3. The T-box transcription factor 3 is a promising biomarker and a key regulator of the oncogenic phenotype of a diverse range of sarcoma subtypes.

    PubMed

    Willmer, T; Cooper, A; Sims, D; Govender, D; Prince, S

    2016-01-01

    Sarcomas represent a complex group of malignant neoplasms of mesenchymal origin and their heterogeneity poses a serious diagnostic and therapeutic challenge. There is therefore a need to elucidate the molecular mechanisms underpinning the pathogenesis of the more than 70 distinguishable sarcoma subtypes. The transcription factor TBX3, a critical developmental regulator, is overexpressed in several cancers of epithelial origin where it contributes to tumorigenesis by different molecular mechanisms. However, the status and role of TBX3 in sarcomas have not been reported. Here we show that a diverse subset of soft tissue and bone sarcoma cell lines and patient-derived sarcoma tissues express high levels of TBX3. We further explore the significance of this overexpression using a small interferring RNA approach and demonstrate that TBX3 promotes the migratory ability of chondrosarcoma, rhabdomyosarcoma and liposarcoma cells but inhibits fibrosarcoma cell migration. This suggested that TBX3 may play a key role in the development of different sarcoma subtypes by functioning as either an oncoprotein or as a brake to prevent tumour progression. To further explore this, TBX3 knockdown and overexpression cell culture models were established using chondrosarcoma and fibrosarcoma cells as representatives of each scenario, and the resulting cells were characterized with regard to key features of tumorigenesis. Results from in vitro and in vivo assays reveal that, while TBX3 promotes substrate-dependent and -independent cell proliferation, migration and tumour formation in chondrosarcoma cells, it discourages fibrosarcoma formation. Our findings provide novel evidence linking TBX3 to cancers of mesenchymal origin. Furthermore, we show that TBX3 may be a biomarker for the diagnosis of histologically dynamic sarcoma subtypes and that it impacts directly on their oncogenic phenotype. Indeed, we reveal that TBX3 may exhibit oncogene or tumour suppressor activity in sarcomas, which

  4. The Roles of Hyaluronan/RHAMM/CD44 and Their Respective Interactions along the Insidious Pathways of Fibrosarcoma Progression

    PubMed Central

    Nikitovic, Dragana; Kouvidi, Katerina; Karamanos, Nikos K.; Tzanakakis, George N.

    2013-01-01

    Fibrosarcomas are rare malignant mesenchymal tumors originating from fibroblasts. Importantly, fibrosarcoma cells were shown to have a high content and turnover of extracellular matrix (ECM) components including hyaluronan (HA), proteoglycans, collagens, fibronectin, and laminin. ECMs are complicated structures that surround and support cells within tissues. During cancer progression, significant changes can be observed in the structural and mechanical properties of the ECM components. Importantly, hyaluronan deposition is usually higher in malignant tumors as compared to benign tissues, predicting tumor progression in some tumor types. Furthermore, activated stromal cells are able to produce tissue structure rich in hyaluronan in order to promote tumor growth. Key biological roles of HA result from its interactions with its specific CD44 and RHAMM (receptor for HA-mediated motility) cell-surface receptors. HA-receptor downstream signaling pathways regulate in turn cellular processes implicated in tumorigenesis. Growth factors, including PDGF-BB, TGFβ2, and FGF-2, enhanced hyaluronan deposition to ECM and modulated HA-receptor expression in fibrosarcoma cells. Indeed, FGF-2 through upregulation of specific HAS isoforms and hyaluronan synthesis regulated secretion and net hyaluronan deposition to the fibrosarcoma pericellular matrix modulating these cells' migration capability. In this paper we discuss the involvement of hyaluronan/RHAMM/CD44 mediated signaling in the insidious pathways of fibrosarcoma progression. PMID:24083250

  5. Antitumor effectiveness of different amounts of electrical charge in Ehrlich and fibrosarcoma Sa-37 tumors

    PubMed Central

    Ciria, HC; Quevedo, MS; Cabrales, LB; Bruzón, RP; Salas, MF; Pena, OG; González, TR; López, DS; Flores, JM

    2004-01-01

    Background In vivo studies were conducted to quantify the effectiveness of low-level direct electric current for different amounts of electrical charge and the survival rate in fibrosarcoma Sa-37 and Ehrlich tumors, also the effect of direct electric in Ehrlich tumor was evaluate through the measurements of tumor volume and the peritumoral and tumoral findings. Methods BALB/c male mice, 7–8 week old and 20–22 g weight were used. Ehrlich and fibrosarcoma Sa-37 cell lines, growing in BALB/c mice. Solid and subcutaneous Ehrlich and fibrosarcoma Sa-37 tumors, located dorsolaterally in animals, were initiated by the inoculation of 5 × 106 and 1 × 105 viable tumor cells, respectively. For each type of tumor four groups (one control group and three treated groups) consisting of 10 mice randomly divided were formed. When the tumors reached approximately 0.5 cm3, four platinum electrodes were inserted into their bases. The electric charge delivered to the tumors was varied in the range of 5.5 to 110 C/cm3 for a constant time of 45 minutes. An additional experiment was performed in BALB/c male mice bearing Ehrlich tumor to examine from a histolological point of view the effects of direct electric current. A control group and a treated group with 77 C/cm3 (27.0 C in 0.35 cm3) and 10 mA for 45 min were formed. In this experiment when the tumor volumes reached 0.35 cm3, two anodes and two cathodes were inserted into the base perpendicular to the tumor long axis. Results Significant tumor growth delay and survival rate were achieved after electrotherapy and both were dependent on direct electric current intensity, being more marked in fibrosarcoma Sa-37 tumor. Complete regressions for fibrosarcoma Sa-37 and Ehrlich tumors were observed for electrical charges of 80 and 92 C/cm3, respectively. Histopathological and peritumoral findings in Ehrlich tumor revealed in the treated group marked tumor necrosis, vascular congestion, peritumoral neutrophil infiltration, an acute

  6. Trientine, a copper-chelating agent, induced apoptosis in murine fibrosarcoma cells by activation of the p38 MAPK pathway.

    PubMed

    KADOWAKI, Shingo; ENDOH, Daiji; OKUI, Toyo; HAYASHI, Masanobu

    2009-11-01

    We have reported that treatment with trientine, Cu-chelating agent, inhibits tumor growth in a murine transplantation model using fibrosarcoma and induces apoptosis in tumor cells in vivo and in vitro. When fibrosarcoma cells were treated with 10 mM trientine, the activities of p38 MAPK in treated cells were approximately 3-4 times higher than those in untreated cells. Proportions of cells in which apoptosis was induced by trientine increased in an incubation time-dependent manner from days 2 to 6. The proportions of apoptotic cells in the cells treated with trientine and SB203580, an inhibitor of p38 MAPK, were approximately 50% in those of cells treated with trientine alone. The present results showed that the p38 MAPK pathway may play an important role in induction of apoptosis in fibrosarcoma cells by trientine.

  7. Fibrosarcoma with typical features of postinjection sarcoma at site of microchip implant in a dog: histologic and immunohistochemical study.

    PubMed

    Vascellari, M; Melchiotti, E; Mutinelli, F

    2006-07-01

    A 9-year-old, male French Bulldog was examined for a subcutaneous mass located at the site of a microchip implant. Cytologic examination of the mass was suggestive of a malignant mesenchymal neoplasm. Histologically, the mass was confirmed as a high-grade infiltrative fibrosarcoma, with multifocal necrosis and peripheral lymphoid aggregates. By immunohistochemistry, the sample was investigated for vimentin, smooth-muscle actin (SMA), CD3, CD79alpha, and CD18. All the neoplastic cells were positive for vimentin. Scattered cells at the periphery of the lesion were also positive for SMA, highlighting a myofibroblastic phenotype. The lymphoid cells were positive for CD18 and CD3. No aluminum deposits were detected by the aurintricarboxylic acid method. A diagnosis of fibrosarcoma morphologically similar to feline postinjection sarcomas was made. Fibrosarcomas at the site of injections have been reported in dogs and ferrets. Furthermore, neoplastic growth at the site of microchip implant in dog and laboratory rodents has been described.

  8. Inhibitory effect of delphinidin from Solanum melongena on human fibrosarcoma HT-1080 invasiveness in vitro.

    PubMed

    Nagase, H; Sasaki, K; Kito, H; Haga, A; Sato, T

    1998-04-01

    We investigated the inhibitory effect of eggplant (Solanum melongena var. marunasu) extract on human fibrosarcoma HT-1080 cell invasion of reconstituted basement membrane [Matrigel (MG)]. We found that the effective component of the plant extract was delphinidin, a flavonoid pigment contained in the peel. The extract and delphinidin did not affect tumor cell adhesion to MG or haptotactic migration to MG. HT-1080 secretes matrix metalloproteinase(MMP)-2 and MMP-9, which degrade extracellular matrix as part of the invasive process. Delphinidin slightly inhibited the activity of MMPs, which may have been responsible, in part, for the inhibition of tumor cell invasiveness. PMID:9581517

  9. Inhibitory effect of iron withdrawal by chelation on the growth of human and murine mammary carcinoma and fibrosarcoma cells.

    PubMed

    Power Coombs, Melanie R; Grant, Taryn; Greenshields, Anna L; Arsenault, Daniel J; Holbein, Bruce E; Hoskin, David W

    2015-10-01

    Since iron uptake is essential for cell growth, rapidly dividing cancer cells are sensitive to iron depletion. To explore the effect of iron withdrawal on cancer cell growth, mouse and human mammary carcinoma cells (4T1 and MDA-MB-468, respectively) and mouse and human fibrosarcoma cells (L929 and HT1080, respectively) were cultured in the absence or presence of DIBI, a novel iron-chelating polymer containing hydroxypyridinone iron-ligand functionality. Cell growth was measured by a colorimetric assay for cell metabolic activity. DIBI-treated 4T1, MDA-MB-468, L929 and HT1080 cells, as well as their normal counterparts, showed a dose- and time-dependent reduction in growth that was selective for human cancer cells and mouse fibrosarcoma cells. The inhibitory effect of DIBI on fibrosarcoma and mammary carcinoma cell growth was reversed by addition of exogenous iron in the form of iron (III) citrate, confirming the iron selectivity of DIBI and that its inhibitory activity was iron-related. Fibrosarcoma and mammary carcinoma cell growth inhibition by DIBI was associated with S-phase cell cycle arrest and low to moderate levels of cell death by apoptosis. Consistent with apoptosis induction following DIBI-mediated iron withdrawal, fibrosarcoma and mammary carcinoma cells exhibited mitochondrial membrane permeabilization. A comparison of DIBI to other iron chelators showed that DIBI was superior to deferiprone and similar to or better than deferoxamine for inhibition of fibrosarcoma and mammary carcinoma cell growth. These findings suggest that iron withdrawal from the tumor microenvironment with a selective and potent iron chelator such as DIBI may prevent or inhibit tumor progression.

  10. Oncogenicity of human N-ras oncogene and proto-oncogene introduced into retroviral vectors

    SciTech Connect

    Souyri, M.; Vigon, I.; Charon, M.; Tambourin, P. )

    1989-09-01

    The N-ras gene is the only member of the ras family which has never been naturally transduced into a retrovirus. In order to study the in vitro and in vivo oncogenicity of N-ras and to compare its pathogenicity to that of H-ras, the authors have inserted an activated or a normal form of human N-ras cDNA into a slightly modified Harvey murine sarcoma virus-derived vector in which the H-ras p21 coding region had been deleted. The resulting constructions were transfected into NIH 3T3 cells. The activated N-ras-containing construct (HSN) induced 10{sup 4} foci per {mu}g of DNA and was found to be as transforming as H-ras was. After infection of the transfected cells by either the ecotropic Moloney murine leukemia virus or the amphotropic 4070A helper viruses, rescued transforming viruses were injected into newborn mice. Both pseudotypes of HSN virus containing activated N-ras induced the typical Harvey disease with similar latency. However, they found that the virus which contained normal N-ras p21 (HSn) was also pathogenic and induced splenomegaly, lymphadenopathies, and sarcoma in mice after a latency of 3 to 7 weeks. In addition, Moloney murine leukemia virus pseudotypes of N-ras caused neurological disorders in 30% of the infected animals. These results differed markedly from those of previous experiments in which the authors had inserted the activated form of N-ras in the pSV(X) vector: the resulting SVN-ras virus was transforming on NIH 3T3 cells but was poorly oncogenic in vivo. Altogether, these data demonstrated unequivocally that N-ras is potentially as oncogenic as H-ras and that such oncogenic effect could depend on the vector environment.

  11. Skull sclerosing epithelioid fibrosarcoma: A case report and review of the literature

    PubMed Central

    XU, JINGJING; WANG, JIAWEI; ZHANG, MINMING; LI, BAIZHOU

    2016-01-01

    Sclerosing epithelioid fibrosarcoma (SEF) is an unusual variant of fibrosarcoma that was previously considered to be a low-grade tumor with an indolent course. The tumor occurs most commonly in the soft tissue of the limb, trunk, head and neck, and occasionally in the bone and visceral organs. The skull is a rare primary site for SEF, with only 3 cases reported to date. The current study reports a case of SEF occurring in the occipital bone of a 24-year-old man, who lacked neurological symptoms. Imaging revealed a large mass emanating from the occipital bone and involving the superior sagittal sinus, torcular herophili and adjacent brain tissue. Histological and immunohistochemical characteristics confirmed the diagnosis of SEF. The patient experienced local recurrence and distant metastasis at 10 and 15 months, respectively, subsequent to the resection of the primary mass. The current case and review of the literature suggest that skull SEF may behave clinically as an aggressive malignant sarcoma. Radiological findings indicated the biological and histopathological characteristics of the tumor. Thus, its clinical behavior and certain imaging features may suggest this diagnosis. PMID:27123127

  12. Paeonol Oxime Inhibits bFGF-Induced Angiogenesis and Reduces VEGF Levels in Fibrosarcoma Cells

    PubMed Central

    Han, Ihn; Jung, Ji Hoon; Lee, Eun-Ok; Zhu, Shudong; Chen, Chang-Yan; Kim, Sung-Hoon

    2010-01-01

    Background We previously reported the anti-angiogenic activity of paeonol isolated from Moutan Cortex. In the present study, we investigated the negative effect of paeonol oxime (PO, a paeonol derivative) on basic fibroblast growth factor (bFGF)-mediated angiogenesis in human umbilical vein endothelial cells (HUVECs) (including tumor angiogenesis) and pro-survival activity in HT-1080 fibrosarcoma cell line. Methodology/Principal Findings We showed that PO (IC50  = 17.3 µg/ml) significantly inhibited bFGF-induced cell proliferation, which was achieved with higher concentrations of paeonol (IC50 over 200 µg). The treatment with PO blocked bFGF-stimulated migration and in vitro capillary differentiation (tube formation) in a dose-dependent manner. Furthermore, PO was able to disrupt neovascularization in vivo. Interestingly, PO (25 µg/ml) decreased the cell viability of HT-1080 fibrosarcoma cells but not that of HUVECs. The treatment with PO at 12.5 µg/ml reduced the levels of phosphorylated AKT and VEGF expression (intracellular and extracelluar) in HT-1080 cells. Consistently, immunefluorescence imaging analysis revealed that PO treatment attenuated AKT phosphorylation in HT-1080 cells. Conclusions/Significance Taken together, these results suggest that PO inhibits bFGF-induced angiogenesis in HUVECs and decreased the levels of PI3K, phospho-AKT and VEGF in HT-1080 cells. PMID:20808805

  13. Oncogenic Brain Metazoan Parasite Infection

    PubMed Central

    Spurgeon, Angela N.; Cress, Marshall C.; Gabor, Oroszi; Ding, Qing-Qing; Miller, Douglas C.

    2013-01-01

    Multiple observations suggest that certain parasitic infections can be oncogenic. Among these, neurocysticercosis is associated with increased risk for gliomas and hematologic malignancies. We report the case of a 71-year-old woman with colocalization of a metazoan parasite, possibly cysticercosis, and a WHO grade IV neuroepithelial tumor with exclusively neuronal differentiation by immunohistochemical stains (immunopositive for synaptophysin, neurofilament protein, and Neu-N and not for GFAP, vimentin, or S100). The colocalization and temporal relationship of these two entities suggest a causal relationship. PMID:24151568

  14. (Oncogenic action of ionizing radiation)

    SciTech Connect

    Not Available

    1990-01-01

    An extensive experiment involving approximately 400 rats exposed to the neon ion beam at the Bevalac in Berkeley, CA and to electrons is nearing completion. The carcinogenicity of energetic electrons was determined for comparison with the neon ion results. As in past reports we will describe progress in three areas corresponding to the specific aims of the proposal: (1) carcinogenesis and DNA strand breaks in rat skin following exposure by the neon ions or electrons; (2) DNA strand breaks in the epidermis as a function of radiation penetration; (3) oncogene activation in radiation-induced rat skin cancers. 72 refs., 6 tabs.

  15. Expression of Cellular Oncogenes in Human Malignancies

    NASA Astrophysics Data System (ADS)

    Slamon, Dennis J.; Dekernion, Jean B.; Verma, Inder M.; Cline, Martin J.

    1984-04-01

    Cellular oncogenes have been implicated in the induction of malignant transformation in some model systems in vitro and may be related to malignancies in vivo in some vertebrate species. This article describes a study of the expression of 15 cellular oncogenes in fresh human tumors from 54 patients, representing 20 different tumor types. More than one cellular oncogene was transcriptionally active in all of the tumors examined. In 14 patients it was possible to study normal and malignant tissue from the same organ. In many of these patients, the transcriptional activity of certain oncogenes was greater in the malignant than the normal tissue. The cellular fes (feline sarcoma) oncogene, not previously known to be transcribed in mammalian tissue, was found to be active in lung and hematopoietic malignancies.

  16. Lameness and pleural effusion associated with an aggressive fibrosarcoma in a horse.

    PubMed

    Jorgensen, J S; Geoly, F J; Berry, C R; Breuhaus, B A

    1997-05-01

    An 8-year-old Thoroughbred gelding was admitted for evaluation of chronic lameness of the left scapulohumeral joint of 3 months' duration. Radiography revealed a radiolucent lesion with the proximal portion of the humerus in the area of the metaphysis. Scintigraphy confirmed radiographic findings, with an increased uptake of technetium Tc 99m medronate in the proximal portion of the left humerus. A preliminary diagnosis of humeral fracture was made. Two weeks later, the horse was readmitted for clinical signs of respiratory distress. Radiographic and ultrasonographic evaluation revealed masses within the thoracic and abdominal cavities. The diagnosis was changed to neoplasm with multiple metastases. Because of the unfavorable prognosis, the horse was euthanatized. Necropsy findings confirmed an aggressive neoplasm. Special histochemical stains, immunohistochemistry, and electron microscopy were required to characterize the neoplasm as an anaplastic fibrosarcoma. Findings in this horse illustrate the importance of considering neoplasia, resulting in bone lesions, as a possible cause of chronic lameness in horses. PMID:9143540

  17. Unusual case of infantile fibrosarcoma evaluated on F-18 fluorodeoxyglucose positron emission tomography-computed tomography

    PubMed Central

    Bedmutha, Akshay; Singh, Natasha; Shivdasani, Divya; Gupta, Nitin

    2016-01-01

    Infantile fibrosarcoma (IFS) is a rare soft-tissue sarcoma originating from extremities and occasionally from axial soft tissue. The prognosis is good with favorable long-term survival. It is rarely metastasizing tumor, the chances being lesser with IFS originating from extremities. Use of neoadjuvant chemotherapy (NACT) as a treatment regime further reduces the chances of local relapse and distant metastasis. The organs commonly affected in metastatic IFS are lungs and lymph nodes. We report an unusual case of an IFS originating from extremity, which received NACT, yet presented with an early metastatic disease involving soft tissues and sparing lungs and lymph nodes, as demonstrated on fluorodeoxyglucose positron emission tomography-computed tomography. PMID:27385891

  18. Slit2 inhibits growth and metastasis of fibrosarcoma and squamous cell carcinoma.

    PubMed

    Kim, Hee Kyung; Zhang, Hong; Li, Hui; Wu, Tsung-Teh; Swisher, Stephen; He, Donggou; Wu, Lizhi; Xu, Jianmin; Elmets, Craig A; Athar, Mohammad; Xu, Xìao-chun; Xu, Hui

    2008-12-01

    Slits are a group of secreted glycoproteins that play a role in the regulation of cell migration. Previous studies suggested that Slit2 might be a tumor-suppressor gene. However, it remained to be determined whether Slit2 suppressed tumor growth and metastasis in animal models. We showed that Slit2 expression was decreased or abolished in human esophageal squamous cell carcinomas (SCCs) compared to normal tissues by in situ hybridization. Stable transfection of human SCC A431 and fibrosarcoma HT1080 cells with Slit2 gene suppressed tumor growth in athymic nude mice. Apoptosis in Slit2-transfected tumors was increased, whereas proliferating cells were decreased, suggesting a mechanism for Slit2-mediated tumor suppression. This was supported by further analysis indicating that antiapoptotic molecules Bcl-2 and Bcl-xl and cell cycle molecules Cdk6 and Cyclin D1 were down-regulated in Slit2-transfected tumors. Furthermore, wound healing and Matrigel invasion assays showed that the transfection with Slit2 inhibited tumor cell migration and invasion. Slit2-transfected tumors showed a high level of keratin 8/18 and a low level of N-cadherin expression compared to empty vector-transfected tumors. More importantly, Slit2 transfection suppressed the metastasis of HT1080 tumor cells in lungs after intravenous inoculation. Collectively, our study has demonstrated that Slit2 inhibits tumor growth and metastasis of fibrosarcoma and SCC and that its effect on cell cycle and apoptosis signal pathways is an important mechanism for Slit2-mediated tumor suppression.

  19. PPARγ1 phosphorylation enhances proliferation and drug resistance in human fibrosarcoma cells

    SciTech Connect

    Pang, Xiaojuan; Shu, Yuxin; Niu, Zhiyuan; Zheng, Wei; Wu, Haochen; Lu, Yan; Shen, Pingping

    2014-03-10

    Post-translational regulation plays a critical role in the control of cell growth and proliferation. The phosphorylation of peroxisome proliferator-activated receptor γ (PPARγ) is the most important post-translational modification. The function of PPARγ phosphorylation has been studied extensively in the past. However, the relationship between phosphorylated PPARγ1 and tumors remains unclear. Here we investigated the role of PPARγ1 phosphorylation in human fibrosarcoma HT1080 cell line. Using the nonphosphorylation (Ser84 to alanine, S84A) and phosphorylation (Ser84 to aspartic acid, S84D) mutant of PPARγ1, the results suggested that phosphorylation attenuated PPARγ1 transcriptional activity. Meanwhile, we demonstrated that phosphorylated PPARγ1 promoted HT1080 cell proliferation and this effect was dependent on the regulation of cell cycle arrest. The mRNA levels of cyclin-dependent kinase inhibitor (CKI) p21{sup Waf1/Cip1} and p27{sup Kip1} descended in PPARγ1{sup S84D} stable HT1080 cell, whereas the expression of p18{sup INK4C} was not changed. Moreover, compared to the PPARγ1{sup S84A}, PPARγ1{sup S84D} up-regulated the expression levels of cyclin D1 and cyclin A. Finally, PPARγ1 phosphorylation reduced sensitivity to agonist rosiglitazone and increased resistance to anticancer drug 5-fluorouracil (5-FU) in HT1080 cell. Our findings establish PPARγ1 phosphorylation as a critical event in human fibrosarcoma growth. These findings raise the possibility that chemical compounds that prevent the phosphorylation of PPARγ1 could act as anticancer drugs. - Highlights: • Phosphorylation attenuates PPARγ1 transcriptional activity. • Phosphorylated PPARγ1 promotes HT1080 cells proliferation. • PPARγ1 phosphorylation regulates cell cycle by mediating expression of cell cycle regulators. • PPARγ1 phosphorylation reduces sensitivity to agonist and anticancer drug. • Our findings establish PPARγ1 phosphorylation as a critical event in HT1080

  20. TRAIL and Taurolidine induce apoptosis and decrease proliferation in human fibrosarcoma

    PubMed Central

    Daigeler, Adrien; Brenzel, Christina; Bulut, Daniel; Geisler, Anne; Hilgert, Christoph; Lehnhardt, Marcus; Steinau, Hans U; Flier, Annegret; Steinstraesser, Lars; Klein-Hitpass, Ludger; Mittelkötter, Ulrich; Uhl, Waldemar; Chromik, Ansgar M

    2008-01-01

    Background Disseminated soft tissue sarcoma still represents a therapeutic dilemma because effective cytostatics are missing. Therefore we tested TRAIL and Tarolidine (TRD), two substances with apoptogenic properties on human fibrosarcoma (HT1080). Methods Viability, apoptosis and necrosis were visualized by TUNEL-Assay and quantitated by FACS analysis (Propidiumiodide/AnnexinV staining). Gene expression was analysed by RNA-Microarray and the results validated for selected genes by rtPCR. Protein level changes were documented by Western Blot analysis. NFKB activity was analysed by ELISA and proliferation assays (BrdU) were performed. Results and discussion The single substances TRAIL and TRD induced apoptotic cell death and decreased proliferation in HT1080 cells significantly. Gene expression of several genes related to apoptotic pathways (TRAIL: ARHGDIA, NFKBIA, TNFAIP3; TRD: HSPA1A/B, NFKBIA, GADD45A, SGK, JUN, MAP3K14) was changed. The combination of TRD and TRAIL significantly increased apoptotic cell death compared to the single substances and lead to expression changes in a variety of genes (HSPA1A/B, NFKBIA, PPP1R15A, GADD45A, AXL, SGK, DUSP1, JUN, IRF1, MYC, BAG5, BIRC3). NFKB activity assay revealed an antipodal regulation of the several subunits of NFKB by TRD and TRD+TRAIL compared to TRAIL alone. Conclusion TRD and TRAIL are effective to induce apoptosis and decrease proliferation in human fibrosarcoma. A variety of genes seems to be involved, pointing to the NFKB pathway as key regulator in TRD/TRAIL-mediated apoptosis. PMID:19077262

  1. Elastin peptides regulate HT-1080 fibrosarcoma cell migration and invasion through an Hsp90-dependent mechanism

    PubMed Central

    Donet, M; Brassart-Pasco, S; Salesse, S; Maquart, F-X; Brassart, B

    2014-01-01

    Background: The elastin-derived peptides (EDPs) exert protumoural activities by potentiating the secretion of matrix metalloproteinases (MMP) and the plasminogen–plasmin activating system. In the present paper, we studied heat-shock protein 90 (Hsp90) involvement in this mechanism. Methods: HT-1080 fibrosarcoma cell migration and invasion were studied in artificial wound assay and modified Boyden chamber assay, respectively. Heat-shock protein 90 was studied by western blot and immunofluorescence. Matrix metalloproteinase–2 and urokinase plasminogen activator (uPA) were studied by gelatin±plasminogen zymography and immunofluorescence. Heat-shock protein 90 partners were studied by immunoprecipitation. Messenger RNA expression was studied using real-time PCR. Small interfering RNAs were used to confirm the essential role of Hsp90. Results: We showed that kappa-elastin and VGVAPG elastin hexapeptide stimulated Hsp90, pro-MMP-2 and uPA secretion within 6 h, whereas AGVPGLGVG and GRKRK peptides had no effect. No increase of mRNA level was observed. Heat-shock protein 90-specific inhibitors inhibit EDP-stimulated HT-1080 cell-invasive capacity and restrained EDP-stimulated pro-MMP-2 and uPA secretions. The inhibitory effect was reproduced by using Hsp90-blocking antibody or Hsp90 knockdown by siRNA. Heat-shock protein 90 interacted with and stabilised uPA and pro-MMP-2 in conditioned culture media of HT-1080 fibrosarcoma cells. Conclusions: Taken together, our results demonstrate that EDPs exert protumoural activities through an Hsp90-dependent mechanism involving pro-MMP-2 and uPA. PMID:24874477

  2. Pseudolaric Acid B Induced Cell Cycle Arrest, Autophagy and Senescence in Murine Fibrosarcoma L929 Cell

    PubMed Central

    hua Yu, Jing; yu Liu, Chun; bin Zheng, Gui; Zhang, Li Ying; hui Yan, Ming; yan Zhang, Wen; ying Meng, Xian; fang Yu, Xiao

    2013-01-01

    Objective: PAB induced various cancer cell apoptosis, cell cycle arrest and senescence. But in cell line murine fibrosarcoma L929, PAB did not induce apoptosis, but autophagy, therefore it was thought by us as a good model to research the relationship of cell cycle arrest, autophagy and senescence bypass apoptosis. Methods: Inhibitory ratio was assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) analysis. Phase contrast microscopy visualized cell morphology. Hoechst 33258 staining for nuclear change, propidium iodode (PI) staining for cell cycle, monodansylcadaverine (MDC) staining for autophagy, and rodanmine 123 staining for mitochondrial membrane potential (MMP) were measured by fluorescence microscopy or flowcytometry. Apoptosis was determined by DNA ladder test. Protein kinase C (PKC) activity was detected by PKC assay kit. SA-β-galactosidase assay was used to detect senescence. Protein expression was examined by western blot. Results: PAB inhibited L929 cell growth in time-and dose-dependent manner. At 12 h, 80 μmol/L PAB induced obvious mitotic arrest; at 24 h, PAB began to induce autophagy; at 36 h, cell-treated with PAB slip into G1 cell cycle; and 3 d PAB induced senescence. In time sequence PAB induced firstly cell cycle arrest, then autophagy, then slippage into G1 phase, lastly senescence. Senescent cells had high level of autophagy, inhibiting autophagy led to apoptosis, and no senescence. PAB activated PKC activity to induce cell cycle arrest, autophagy and senescence, inhibiting PKC activity suppressed cell cycle arrest, autophagy and senescence. Conclusion: PAB induced cell cycle arrest, autophagy and senescence in murine fibrosarcoma L929 cell through PKC. PMID:23630435

  3. TAD disruption as oncogenic driver.

    PubMed

    Valton, Anne-Laure; Dekker, Job

    2016-02-01

    Topologically Associating Domains (TADs) are conserved during evolution and play roles in guiding and constraining long-range regulation of gene expression. Disruption of TAD boundaries results in aberrant gene expression by exposing genes to inappropriate regulatory elements. Recent studies have shown that TAD disruption is often found in cancer cells and contributes to oncogenesis through two mechanisms. One mechanism locally disrupts domains by deleting or mutating a TAD boundary leading to fusion of the two adjacent TADs. The other mechanism involves genomic rearrangements that break up TADs and creates new ones without directly affecting TAD boundaries. Understanding the mechanisms by which TADs form and control long-range chromatin interactions will therefore not only provide insights into the mechanism of gene regulation in general, but will also reveal how genomic rearrangements and mutations in cancer genomes can lead to misregulation of oncogenes and tumor suppressors. PMID:27111891

  4. MYC oncogene in myeloid neoplasias.

    PubMed

    Delgado, M Dolores; Albajar, Marta; Gomez-Casares, M Teresa; Batlle, Ana; León, Javier

    2013-02-01

    MYC is a transcription factor that regulates many critical genes for cell proliferation, differentiation, and biomass accumulation. MYC is one of the most prevalent oncogenes found to be altered in human cancer, being deregulated in about 50 % of tumors. Although MYC deregulation has been more frequently associated to lymphoma and lymphoblastic leukemia than to myeloid malignancies, a body of evidence has been gathered showing that MYC plays a relevant role in malignancies derived from the myeloid compartment. The myeloid leukemogenic activity of MYC has been demonstrated in different murine models. Not surprisingly, MYC has been found to be amplified or/and deregulated in the three major types of myeloid neoplasms: acute myeloid leukemia, myelodysplastic syndromes, and myeloproliferative neoplasms, including chronic myeloid leukemia. Here, we review the recent literature describing the involvement of MYC in myeloid tumors.

  5. Myc oncogenes: the enigmatic family.

    PubMed Central

    Ryan, K M; Birnie, G D

    1996-01-01

    The myc family of proto-oncogenes is believed to be involved in the establishment of many types of human malignancy. The members of this family have been shown to function as transcription factors, and through a designated target sequence bring about continued cell-cycle progression, cellular immortalization and blockages to differentiation in many lineages. However, while much of the recent work focusing on the c-myc oncogene has provided some very important advances, it has also brought to light a large amount of conflicting data as to the mechanism of action of the gene product. In this regard, it has now been shown that c-myc is effective in transcriptional repression as well as transcriptional activation and, perhaps more paradoxically, that it has a role in programmed cell death (apoptosis) as well as in processes of cell-cycle progression. In addition, particular interest has surrounded the distinct roles of the two alternative translation products of the c-myc gene, c-Myc 1 and c-Myc 2. The intriguing observation that the ratio of c-Myc 1 to c-Myc 2 increases markedly upon cellular quiescence led to the discovery that the enforced expression of the two proteins individually showed that c-Myc 2 stimulates cell growth, whereas c-Myc 1 appears to be growth suppressing. Clearly, the disparities in the activities of c-Myc, together with the consistent occurrence of mutations of c-myc in human malignancies, means that, although reaching an understanding of the functions of the myc gene family might not be simple, it remains well worthy of pursuit. PMID:8615760

  6. No change in mRNA expression of immune-related genes in peripheral blood mononuclear cells challenged with Theileria annulata in Murrah buffalo (Bubalus bubalis).

    PubMed

    Panigrahi, Manjit; Kumar, Amod; Bhushan, Bharat; Ghosh, Srikant; Saravanan, B C; Sulabh, Sourabh; Parida, Subhashree; Gaur, Gyanendra Kumar

    2016-07-01

    Water buffaloes (Bubalus bubalis) act as carrier to Theileria annulata and show less clinical sign of tropical theileriosis as compared to indigenous and exotic cattle. Differential expression of immune-related genes such as major histocompatibility complex, class II, DQ alpha 1 (MHC-DQα), signal-regulatory protein alpha (SIRPA), prion protein (PRNP), Toll-like receptor 10 (TLR10), c-musculoaponeurotic fibrosarcoma oncogene homolog (cMAF) and V-maf avian musculoaponeurotic fibrosarcoma oncogene homolog B (MAFB) genes influence host resistance to this disease in exotic, crossbred and indigenous cattle. In the present study we examined the differential mRNA expression of the abovesaid immune-related genes in response to T. annulata infection in buffaloes. Peripheral blood mononuclear cells (PBMCs) harvested from blood samples of buffaloes were challenged with ground-up tick supernatant carrying T. annulata sporozoites in vitro. After 48h of in vitro challenge qPCR was employed to measure the relative mRNA expression of MHC-DQα, SIRPA, PRNP, TLR10, cMAF and MAFB genes in infected and control PBMCs. In the current study, the selected genes showed no change in mRNA expression after T.annulata infection which indicates that they have little role in providing host resistance to theileriosis in buffaloes.

  7. No change in mRNA expression of immune-related genes in peripheral blood mononuclear cells challenged with Theileria annulata in Murrah buffalo (Bubalus bubalis).

    PubMed

    Panigrahi, Manjit; Kumar, Amod; Bhushan, Bharat; Ghosh, Srikant; Saravanan, B C; Sulabh, Sourabh; Parida, Subhashree; Gaur, Gyanendra Kumar

    2016-07-01

    Water buffaloes (Bubalus bubalis) act as carrier to Theileria annulata and show less clinical sign of tropical theileriosis as compared to indigenous and exotic cattle. Differential expression of immune-related genes such as major histocompatibility complex, class II, DQ alpha 1 (MHC-DQα), signal-regulatory protein alpha (SIRPA), prion protein (PRNP), Toll-like receptor 10 (TLR10), c-musculoaponeurotic fibrosarcoma oncogene homolog (cMAF) and V-maf avian musculoaponeurotic fibrosarcoma oncogene homolog B (MAFB) genes influence host resistance to this disease in exotic, crossbred and indigenous cattle. In the present study we examined the differential mRNA expression of the abovesaid immune-related genes in response to T. annulata infection in buffaloes. Peripheral blood mononuclear cells (PBMCs) harvested from blood samples of buffaloes were challenged with ground-up tick supernatant carrying T. annulata sporozoites in vitro. After 48h of in vitro challenge qPCR was employed to measure the relative mRNA expression of MHC-DQα, SIRPA, PRNP, TLR10, cMAF and MAFB genes in infected and control PBMCs. In the current study, the selected genes showed no change in mRNA expression after T.annulata infection which indicates that they have little role in providing host resistance to theileriosis in buffaloes. PMID:26997138

  8. Characterization of a novel fusion gene EML4-NTRK3 in a case of recurrent congenital fibrosarcoma.

    PubMed

    Tannenbaum-Dvir, Sarah; Glade Bender, Julia L; Church, Alanna J; Janeway, Katherine A; Harris, Marian H; Mansukhani, Mahesh M; Nagy, Peter L; Andrews, Stuart J; Murty, Vundavalli V; Kadenhe-Chiweshe, Angela; Connolly, Eileen P; Kung, Andrew L; Dela Cruz, Filemon S

    2015-10-01

    We describe the clinical course of a recurrent case of congenital fibrosarcoma diagnosed in a 9-mo-old boy with a history of hemimelia. Following complete surgical resection of the primary tumor, the patient subsequently presented with bulky bilateral pulmonary metastases 6 mo following surgery. Molecular characterization of the tumor revealed the absence of the prototypical ETV6-NTRK3 translocation. However, tumor characterization incorporating cytogenetic, array comparative genomic hybridization, and RNA sequencing analyses, revealed a somatic t(2;15)(2p21;15q25) translocation resulting in the novel fusion of EML4 with NTRK3. Cloning and expression of EML4-NTRK3 in murine fibroblast NIH 3T3 cells revealed a potent tumorigenic phenotype as assessed in vitro and in vivo. These results demonstrate that multiple fusion partners targeting NTRK3 can contribute to the development of congenital fibrosarcoma. PMID:27148571

  9. Characterization of a novel fusion gene EML4-NTRK3 in a case of recurrent congenital fibrosarcoma

    PubMed Central

    Tannenbaum-Dvir, Sarah; Glade Bender, Julia L.; Church, Alanna J.; Janeway, Katherine A.; Harris, Marian H.; Mansukhani, Mahesh M.; Nagy, Peter L.; Andrews, Stuart J.; Murty, Vundavalli V.; Kadenhe-Chiweshe, Angela; Connolly, Eileen P.; Kung, Andrew L.; Dela Cruz, Filemon S.

    2015-01-01

    Abstract We describe the clinical course of a recurrent case of congenital fibrosarcoma diagnosed in a 9-mo-old boy with a history of hemimelia. Following complete surgical resection of the primary tumor, the patient subsequently presented with bulky bilateral pulmonary metastases 6 mo following surgery. Molecular characterization of the tumor revealed the absence of the prototypical ETV6-NTRK3 translocation. However, tumor characterization incorporating cytogenetic, array comparative genomic hybridization, and RNA sequencing analyses, revealed a somatic t(2;15)(2p21;15q25) translocation resulting in the novel fusion of EML4 with NTRK3. Cloning and expression of EML4-NTRK3 in murine fibroblast NIH 3T3 cells revealed a potent tumorigenic phenotype as assessed in vitro and in vivo. These results demonstrate that multiple fusion partners targeting NTRK3 can contribute to the development of congenital fibrosarcoma. PMID:27148571

  10. Epithelial Dysplasia in Ameloblastic Fibrosarcoma Arising from Recurrent Ameloblastic Fibroma in a 26-Year-Old Iranian Man

    PubMed Central

    Mohsenifar, Zhaleh; Behrad, Samira; Abbas, Fatemeh Mashhadi

    2015-01-01

    Patient: Male, 26 Final Diagnosis: Ameloblastic fibrosarcoma Symptoms: Swelling Medication: — Clinical Procedure: Hemimandibulectomy Specialty: Dentistry Objective: Rare disease Background: Ameloblastic fibrosarcoma (AFS) is a rare malignant odontogenic tumor with a mesenchymal component, showing sarcomatous features and epithelial nests resembling ameloblastic fibroma (AF). Case Report: We report a case of AFS showing epithelial dysplasia arising in a recurrent AF in the left mandible after 3 years in a 26-year-old man, which is regarded as an uncommon histopathologic finding in AFS. We also emphasize the comprehensive clinical, radiographic, and histopathologic evaluation, and immunohistochemical staining of this patient. Conclusions: We conclude that it is important to consider malignancy alternations in the epithelial component of AFS, along with that of the mesenchymal component, to provide a proper diagnosis and treatment of recurrent AF. PMID:26289384

  11. RAS oncogenes: weaving a tumorigenic web

    PubMed Central

    Pylayeva-Gupta, Yuliya; Grabocka, Elda; Bar-Sagi, Dafna

    2013-01-01

    RAS proteins are essential components of signalling pathways that emanate from cell surface receptors. Oncogenic activation of these proteins owing to missense mutations is frequently detected in several types of cancer. A wealth of biochemical and genetic studies indicates that RAS proteins control a complex molecular circuitry that consists of a wide array of interconnecting pathways. In this Review, we describe how RAS oncogenes exploit their extensive signalling reach to affect multiple cellular processes that drive tumorigenesis. PMID:21993244

  12. Coagulation activation by MC28 fibrosarcoma cells facilitates lung tumor formation.

    PubMed

    Amirkhosravi, M; Francis, J L

    1995-01-01

    Tumor cells interact with the hemostatic system in various ways and may thus influence malignant growth and spread. MC28 fibrosarcoma cells possess a potent procoagulant activity (PCA) and form lung tumors following intravenous injection. The aim of this work was to study the relationship between PCA, intravascular coagulation and lung seeding in the MC28 model. MC28 cells were injected into control, warfarinized and heparinized hooded Lister rats. Coagulation changes were monitored by thromboelastography (TEG) and Sonoclot analysis (SA), lung fibrin formation by light and electron microscopy, tumor seeding by macroscopic counting and tumor cell and platelet deposition in the lungs by radiolabelling. PCA was measured by chromogenic assay. MC28 PCA was characterized as a tissue factor-factor VIIa complex that probably arose during cell culture or disaggregation of solid tumors. Injection of tumor cells caused marked coagulopathy and was rapidly (within 30 min) followed by fibrin deposition in the lungs and accumulation of radiolabelled platelets. Heparin and warfarin significantly reduced lung seeding (p < 0.001) and reduced retention of radiolabelled tumor cells in the pulmonary circulation (p < 0.01). Inhibition of cellular PCA by prior treatment with concanavalin A markedly reduced intravascular coagulation and lung seeding. We conclude that MC28 cells cause intravascular coagulation as a direct result of their procoagulant activity. The data suggest that tumor cells form complexes with platelets and fibrin which are retained in the lungs long enough for extravasation and seeding to occur.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Ameloblastic fibrosarcoma of the mandible: a case report and brief review of the literature.

    PubMed

    Loya-Solis, Abelardo; González-Colunga, Karla Judith; Pérez-Rodríguez, Cynthia M; Ramírez-Ochoa, Natalie Sofía; Ceceñas-Falcón, Luis; Barboza-Quintana, Oralia

    2015-01-01

    Ameloblastic fibrosarcoma is an uncommon odontogenic tumor composed of a benign epithelial component and a malignant ectomesenchymal component most frequently seen in the third and fourth decades of life. It mainly presents as a painful maxillary or mandibular swelling. Radiographs show a radiolucent mass with ill-defined borders. Radical surgical excision and long-term follow-up are the suggested treatment. We report the case of a 22-year-old female with a 2-month history of an asymptomatic swelling in her left mandible. Examination revealed an exophytic growth measuring 3 × 3 cm extending from the mandibular left first premolar to the second molar. The patient underwent a left hemimandibular resection. Histopathological examination revealed a biphasic tumor composed of inconspicuous islands of benign odontogenic epithelium and an abundant malignant mesenchymal component with marked cellularity, nuclear pleomorphism, hyperchromatism, and moderate mitotic figures with clear margins; one year after the surgical procedure, the patient is clinically and radiologically disease-free.

  14. Ameloblastic Fibrosarcoma of the Mandible: A Case Report and Brief Review of the Literature

    PubMed Central

    Loya-Solis, Abelardo; González-Colunga, Karla Judith; Pérez-Rodríguez, Cynthia M.; Ramírez-Ochoa, Natalie Sofía; Ceceñas-Falcón, Luis; Barboza-Quintana, Oralia

    2015-01-01

    Ameloblastic fibrosarcoma is an uncommon odontogenic tumor composed of a benign epithelial component and a malignant ectomesenchymal component most frequently seen in the third and fourth decades of life. It mainly presents as a painful maxillary or mandibular swelling. Radiographs show a radiolucent mass with ill-defined borders. Radical surgical excision and long-term follow-up are the suggested treatment. We report the case of a 22-year-old female with a 2-month history of an asymptomatic swelling in her left mandible. Examination revealed an exophytic growth measuring 3 × 3 cm extending from the mandibular left first premolar to the second molar. The patient underwent a left hemimandibular resection. Histopathological examination revealed a biphasic tumor composed of inconspicuous islands of benign odontogenic epithelium and an abundant malignant mesenchymal component with marked cellularity, nuclear pleomorphism, hyperchromatism, and moderate mitotic figures with clear margins; one year after the surgical procedure, the patient is clinically and radiologically disease-free. PMID:25861504

  15. Comparative activation states of tumor-associated and peritoneal macrophages from mice bearing an induced fibrosarcoma.

    PubMed

    Valdez, J C; de Alderete, N; Meson, O E; Sirena, A; Perdigon, G

    1990-11-01

    Balb/c mice bearing a methylcholanthrene-induced fibrosarcoma were used to compare the activation levels of tumor-associated and peritoneal macrophages. Two stages of tumor growth were examined, namely "small" and "large" tumors, with average diameters of 10 and 30 mm, respectively. The activation state, determined by measurement of both phagocytic index and beta-glucuronidase content, was found to be markedly higher in tumor-associated macrophages than in their peritoneal counterparts and it was, in addition, independent of tumor progression. The percentage of tumor-associated macrophages, which were detected on the basis of Fc receptor expression, remained constant in the growing neoplasm, at approximately 23% of total cell population. None of these parameters were affected by inoculation with an immunopotentiating dose of heat-killed Candida albicans which, on the other hand, seemed not to alter the course of the tumor. These data suggest that within the tumor microenvironment macrophages would somehow be maintained at a constant proportion and at a highly activated state, while outside the tumor they would be at a lower activation level. Our results also suggest that TAM would not possess antitumor activity in vivo, although we have found this activity in vitro.

  16. Mechanistic investigation of toxicity of chromium oxide nanoparticles in murine fibrosarcoma cells

    PubMed Central

    Alarifi, Saud; Ali, Daoud; Alkahtani, Saad

    2016-01-01

    Chromium oxide nanoparticles (Cr2O3NPs) are widely used in polymers and paints. In the present study, we aimed to determine the toxicity of Cr2O3NPs in murine fibrosarcoma (L929) cells. The cytotoxicity of Cr2O3NPs was measured by MTT and neutral red uptake assays; Cr2O3NPs had significant cytotoxic effects on L929 cells. Enhancement of intracellular reactive oxygen species was observed in L929 cells after exposure to Cr2O3NPs. Cr2O3NPs produced caspase-3, indicating that exposure to Cr2O3NPs induced apoptosis. After exposure to Cr2O3NPs, the cellular glutathione level decreased and lipid peroxidation, superoxide dismutase, and catalase increased in a dose- and time-dependent manner. By using single-cell gel tests, we also observed increased DNA damage in a Cr2O3NP exposure-duration- and dose-dependent fashion. Cell toxicity and DNA damage may be useful biomarkers for determining the safety of Cr2O3NPs in human and animal health. PMID:27099490

  17. Coagulation activation by MC28 fibrosarcoma cells facilitates lung tumor formation.

    PubMed

    Amirkhosravi, M; Francis, J L

    1995-01-01

    Tumor cells interact with the hemostatic system in various ways and may thus influence malignant growth and spread. MC28 fibrosarcoma cells possess a potent procoagulant activity (PCA) and form lung tumors following intravenous injection. The aim of this work was to study the relationship between PCA, intravascular coagulation and lung seeding in the MC28 model. MC28 cells were injected into control, warfarinized and heparinized hooded Lister rats. Coagulation changes were monitored by thromboelastography (TEG) and Sonoclot analysis (SA), lung fibrin formation by light and electron microscopy, tumor seeding by macroscopic counting and tumor cell and platelet deposition in the lungs by radiolabelling. PCA was measured by chromogenic assay. MC28 PCA was characterized as a tissue factor-factor VIIa complex that probably arose during cell culture or disaggregation of solid tumors. Injection of tumor cells caused marked coagulopathy and was rapidly (within 30 min) followed by fibrin deposition in the lungs and accumulation of radiolabelled platelets. Heparin and warfarin significantly reduced lung seeding (p < 0.001) and reduced retention of radiolabelled tumor cells in the pulmonary circulation (p < 0.01). Inhibition of cellular PCA by prior treatment with concanavalin A markedly reduced intravascular coagulation and lung seeding. We conclude that MC28 cells cause intravascular coagulation as a direct result of their procoagulant activity. The data suggest that tumor cells form complexes with platelets and fibrin which are retained in the lungs long enough for extravasation and seeding to occur.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7740497

  18. Host immune responses to tumor cells augmented by bleomycin and their therapeutic effects on rat fibrosarcoma.

    PubMed

    Hosokawa, M; Xu, Z Y; Morikawa, K; Hamada, J; Kobayashi, H

    1988-01-01

    The administration--timing-dependent therapeutic effects of bleomycin (BLM) were observed on a fibrosarcoma implanted SC in WKA rats. Five consecutive IP administrations of BLM (5 mg/kg/d) were found to be more effective when BLM was given from Day 8 than when it was given from Day 1 for tumors implanted on Day 0. The therapeutic effects correlated well with antitumor immune responses, which were examined on Day 13 when the tumor had not yet regressed even in surviving rats. The tumor-neutralizing activity of spleen cells was augmented in rats treated with BLM from Day 8 to Day 12, and the suppressor cell activity detected in the spleen cells of tumor-bearing rats was eliminated by the BLM treatment. The tumoricidal activity of peritoneal exudate cells (PEC) was detected in rats treated from Day 8 but not in rats untreated or treated from Day 1. The in vitro treatment of KMT-17 cells with BLM (20 micrograms/ml) for two hours enhanced the sensitivity of the tumor cells to the activity of tumoricidal PEC. This suggests that the direct action of BLM on tumor cells also plays an immunologic role in BLM treatment. The findings reveal that the therapeutic effect of BLM is elicited by its ability to augment the host immune responses to tumor cells. PMID:2479397

  19. Type I collagen gel protects murine fibrosarcoma L929 cells from TNFα-induced cell death

    SciTech Connect

    Wang, Hong-Ju; He, Wen-Qi; Chen, Ling; Liu, Wei-Wei; Xu, Qian; Xia, Ming-Yu; Hayashi, Toshihiko; Fujisaki, Hitomi; Hattori, Shunji; Tashiro, Shin-ichi; Onodera, Satoshi; Ikejima, Takashi

    2015-02-20

    Murine fibrosarcoma L929 cells have been used to test efficacy of proinflammatory cytokine TNFα. In the present study, we reported on protective effect of type I collagen gel used as L929 cell culture. L929 cell grew and proliferated well on collagen gel. However, the L929 cells exhibited cobblestone-like morphology which was much different from the spread fusiform shape when cultured on conventional cell dishes as well as the cells tended to aggregate. On conventional cell culture dishes, the cells treated with TNFα became round in shape and eventually died in a necroptotic manner. The cells cultured on collagen gel, however, were completely unaffected. TNFα treatment was reported to induce autophagy in L929 cells on the plastic dish, and therefore we investigated the effect of collagen gel on induction of autophagy. The results indicated that autophagy induced by TNFα treatment was much reduced when the cells were cultured on collagen gel. In conclusion, type I collagen gel protected L929 cell from TNFα-induced cell death. - Highlights: • Collagen gel culture changed the morphology of L929 cells. • L929 cell cultured on collagen gel were resistant to TNFα-induced cell death. • Collagen gel culture inhibited TNFα-induced autophagy in L929 cells.

  20. Comparative activation states of tumor-associated and peritoneal macrophages from mice bearing an induced fibrosarcoma.

    PubMed

    Valdez, J C; de Alderete, N; Meson, O E; Sirena, A; Perdigon, G

    1990-11-01

    Balb/c mice bearing a methylcholanthrene-induced fibrosarcoma were used to compare the activation levels of tumor-associated and peritoneal macrophages. Two stages of tumor growth were examined, namely "small" and "large" tumors, with average diameters of 10 and 30 mm, respectively. The activation state, determined by measurement of both phagocytic index and beta-glucuronidase content, was found to be markedly higher in tumor-associated macrophages than in their peritoneal counterparts and it was, in addition, independent of tumor progression. The percentage of tumor-associated macrophages, which were detected on the basis of Fc receptor expression, remained constant in the growing neoplasm, at approximately 23% of total cell population. None of these parameters were affected by inoculation with an immunopotentiating dose of heat-killed Candida albicans which, on the other hand, seemed not to alter the course of the tumor. These data suggest that within the tumor microenvironment macrophages would somehow be maintained at a constant proportion and at a highly activated state, while outside the tumor they would be at a lower activation level. Our results also suggest that TAM would not possess antitumor activity in vivo, although we have found this activity in vitro. PMID:2099903

  1. Phase-specific cytotoxicity in vivo of hydroxyurea on murine fibrosarcoma pulmonary nodules.

    PubMed Central

    Grdina, D. J.

    1982-01-01

    The cytotoxic effects in vivo of hydroxyurea (HU) on murine fibrosarcoma (FSa) cells grown as pulmonary tumours were determined. Tumour cells from 13-day-old nodules were made into suspension and separated on the basis of cell size by centrifugal elutriation. Flow microfluorometry (FMF) was used to determine the cell-cycle parameters and the relative synchrony of the separated populations, as well as the degree of contamination by normal diploid cells in each of the tumour-cell populations. HU cytotoxicity was tested by administering both a single 1 mg/g i.p. dose into mice that had been injected i.v. 20 min earlier with known numbers of synchronized viable FSa cells, and i.p. doses of 1 mg/g each into mice bearing 13-day-old pulmonary nodules. In the latter experiments, animals were killed 1 h after the last dose, and the tumour nodules were excised and made into a single-cell suspension and elutriated. Known numbers of cells from each fraction were injected into recipient mice to determine survival. In both sets of experiments, cell killing by HU correlated with the percentage of S-phase cells. The treatment of 13-day-old pulmonary nodules with 3 doses of HU also depleted the (G2+M) phase tumour cells and increased the heterogeneity between tumour subpopulations, as determined by FMF analysis. PMID:7073937

  2. Human genome: proto-oncogenes and proretroviruses.

    PubMed

    Kisselev, L L; Chumakov, I M; Zabarovsky, E R; Prassolov, V S; Mett, V L; Berditchevsky, F B; Tret'yakov, L D

    1985-01-01

    A brief review of the studies undertaken at the Laboratory for Molecular Bases of Oncogenesis (Institute of Molecular Biology, Moscow) till middle of 1984 is presented. The human genome contains multiple dispersed nucleotide sequences related to the proto-oncogene mos and to proretroviral sequences in tight juxtaposition to each other. From sequencing appropriate cloned fragments of human DNA in phage and plasmid vectors it follows that one of these regions, NV-1, is a pseudogene of proto-mos with partial duplications and two Alu elements intervening its coding sequence, and the other, CL-1, seems to be also a mos-related gene with a deletion of the internal part of the structural gene. CL-1 is flanked by a proretroviral-like sequence including tRNAiMet binding site and U5 (part of the long terminal repeat). The proretroviral-like sequences are transcribed in 21-35S poly(A)+RNA abundant in normal and malignant human cells. Two hypotheses are proposed: endogenous retroviruses take part in amplification of at least some proto-oncogenes; proto-oncogenes are inactivated via insertion of movable genetic elements and conversion into pseudogenes. Potential oncogenicity of a normal human genome undergoes two controversial influences: it increases due to proto-oncogene amplification and decreases due to inactivation of some of them.

  3. Systems Biology Strategy Reveals PKCδ is Key for Sensitizing TRAIL-Resistant Human Fibrosarcoma

    PubMed Central

    Hayashi, Kentaro; Tabata, Sho; Piras, Vincent; Tomita, Masaru; Selvarajoo, Kumar

    2015-01-01

    Cancer cells are highly variable and largely resistant to therapeutic intervention. Recently, the use of the tumor necrosis factor related apoptosis-inducing ligand (TRAIL) induced treatment is gaining momentum due to TRAIL’s ability to specifically target cancers with limited effect on normal cells. Nevertheless, several malignant cancer types still remain non-sensitive to TRAIL. Previously, we developed a dynamic computational model, based on perturbation-response differential equations approach, and predicted protein kinase C (PKC) as the most effective target, with over 95% capacity to kill human fibrosarcoma (HT1080) in TRAIL stimulation (1). Here, to validate the model prediction, which has significant implications for cancer treatment, we conducted experiments on two TRAIL-resistant cancer cell lines (HT1080 and HT29). Using PKC inhibitor bisindolylmaleimide I, we demonstrated that cell viability is significantly impaired with over 95% death of both cancer types, in consistency with our previous model. Next, we measured caspase-3, Poly (ADP-ribose) polymerase (PARP), p38, and JNK activations in HT1080, and confirmed cell death occurs through apoptosis with significant increment in caspase-3 and PARP activations. Finally, to identify a crucial PKC isoform, from 10 known members, we analyzed each isoform mRNA expressions in HT1080 cells and shortlisted the highest 4 for further siRNA knock-down (KD) experiments. From these KDs, PKCδ produced the most cancer cell death in conjunction with TRAIL. Overall, our approach combining model predictions with experimental validation holds promise for systems biology based cancer therapy. PMID:25601862

  4. Nano-Scaled Particles of Titanium Dioxide Convert Benign Mouse Fibrosarcoma Cells into Aggressive Tumor Cells

    PubMed Central

    Onuma, Kunishige; Sato, Yu; Ogawara, Satomi; Shirasawa, Nobuyuki; Kobayashi, Masanobu; Yoshitake, Jun; Yoshimura, Tetsuhiko; Iigo, Masaaki; Fujii, Junichi; Okada, Futoshi

    2009-01-01

    Nanoparticles are prevalent in both commercial and medicinal products; however, the contribution of nanomaterials to carcinogenesis remains unclear. We therefore examined the effects of nano-sized titanium dioxide (TiO2) on poorly tumorigenic and nonmetastatic QR-32 fibrosarcoma cells. We found that mice that were cotransplanted subcutaneously with QR-32 cells and nano-sized TiO2, either uncoated (TiO2−1, hydrophilic) or coated with stearic acid (TiO2−2, hydrophobic), did not form tumors. However, QR-32 cells became tumorigenic after injection into sites previously implanted with TiO2−1, but not TiO2−2, and these developing tumors acquired metastatic phenotypes. No differences were observed either histologically or in inflammatory cytokine mRNA expression between TiO2−1 and TiO2−2 treatments. However, TiO2−2, but not TiO2−1, generated high levels of reactive oxygen species (ROS) in cell-free conditions. Although both TiO2−1 and TiO2−2 resulted in intracellular ROS formation, TiO2−2 elicited a stronger response, resulting in cytotoxicity to the QR-32 cells. Moreover, TiO2−2, but not TiO2−1, led to the development of nuclear interstices and multinucleate cells. Cells that survived the TiO2 toxicity acquired a tumorigenic phenotype. TiO2-induced ROS formation and its related cell injury were inhibited by the addition of antioxidant N-acetyl-l-cysteine. These results indicate that nano-sized TiO2 has the potential to convert benign tumor cells into malignant ones through the generation of ROS in the target cells. PMID:19815711

  5. Ameloblastic Fibrosarcoma of the mandible evolving from a prior Ameloblastic Fibroma after two years: an unusual finding.

    PubMed

    Bertoni, Franco; Del Corso, Giacomo; Bacchini, Patrizia; Marchetti, Claudio; Tarsitano, Achille

    2016-10-01

    Transformation of an ameloblastic fibroma to an ameloblastic fibrosarcoma has been reported rarely in the literature. The present case report describes such evolution in a patient under long-term follow-up. The patient was first treated in 2008, and he developed the malignant counterpart of the disease 2 years later. The patient is currently under careful long-term follow-up and is free of disease. This article describes the clinical and radiographic features, histological characteristics, immunohistochemical findings, and surgical treatment of the tumor.

  6. Ameloblastic fibrosarcoma of the upper jaw: Report of a rare case with long-term follow-up

    PubMed Central

    Khalili, Maryam; Shakib, Pouyan Amini

    2013-01-01

    Ameloblastic fibrosarcoma (AFS) is a rare malignant mixed odontogenic tumor which is usually considered as the malignant counterpart of ameloblastic fibroma. Only mesenchymal component represents sarcomatous alterations and ameloblast-like epithelial nest remains bland in AFS. Here, we report a case of AFS in a 26-year-old man in the maxilla, which was regarded as an uncommon location for this tumor. After 2 years follow up, no evidence of recurrence was noted. We also emphasize on comprehensive clinical, radiographic, and histopathologic evaluation of such patients rather than immunohistochemical staining to make an accurate diagnosis. PMID:23878574

  7. Molecular characterization of novel H-2 class I molecules expressed by a C3H UV-induced fibrosarcoma.

    PubMed Central

    McMillan, M; Lewis, K D; Rovner, D M

    1985-01-01

    Two novel class I-like molecules expressed on tumor 1591, a C3H UV-induced fibrosarcoma, are biochemically characterized using two-dimensional gel electrophoresis, a cross-blocking RIA, and tryptic peptide mapping. One novel molecule that reacts with CP28, a syngeneic tumor-specific monoclonal antibody, appears mosaic because it possesses characteristics of both Kk and Dk class I molecules. The second molecule is closely related but not identical to the bona fide Ld molecule expressed on BALB/c spleen. Thus 1591 expresses at least two novel class I molecules and is vigorously rejected by normal C3H mice, while a variant tumor derived from 1591, termed AS7, does not express these two class I molecules although it still expresses Kk and Dk. The significance of these observations to the immunobiology and genetics of the UV-induced fibrosarcoma system is discussed. Speculations on the role that the major histocompatibility complex may play in the immunosurveillance of neoplasms are also presented. Images PMID:3860872

  8. Post-radiation fibrosarcoma of the cerebrum associated with a prominent, lace-like, perivascular, desmoplastic change.

    PubMed

    Shintaku, Masayuki; Adachi, Yasushi; Takeuchi, Yasuhide; Yamamoto, Daisuke; Koyama, Junji

    2016-04-01

    An intra-axial tumor measuring about 4 cm was excised from the right temporal lobe of a 35-year-old woman, who had a past history of resection of craniopharyngioma and postoperative radiation 21 years earlier. The tumor involved both the cortex and white matter, but was not attached to the dura mater. It consisted of a dense, interlacing, fascicular proliferation of atypical fibroblastic cells and was associated with an extensive, lace-like, desmoplastic change mainly involving the perivascular region around the tumor and overlying the subarachnoid space. The histopathological features of the desmoplastic change resembled meningioangiomatosis, but no proliferation of meningothelial cells was noted. The patient has been free from recurrence for 12 months since the operation. The association of primary cerebral fibrosarcoma with an extensive, lace-like, perivascular, desmoplastic change has not been documented in the literature. The radiation administered 21 years previously may have played some pathogenetic role in the perivascular desmoplastic change, and a malignant transformation of fibroblasts within the perivascular collagenous tissue is considered the most likely origin of the fibrosarcoma.

  9. Function of oncogenes in cancer development: a changing paradigm

    PubMed Central

    Vicente-Dueñas, Carolina; Romero-Camarero, Isabel; Cobaleda, Cesar; Sánchez-García, Isidro

    2013-01-01

    Tumour-associated oncogenes induce unscheduled proliferation as well as genomic and chromosomal instability. According to current models, therapeutic strategies that block oncogene activity are likely to selectively target tumour cells. However, recent evidences have revealed that oncogenes are only essential for the proliferation of some specific tumour cell types, but not all. Indeed, the latest studies of the interactions between the oncogene and its target cell have shown that oncogenes contribute to cancer development not only by inducing proliferation but also by developmental reprogramming of the epigenome. This provides the first evidence that tumorigenesis can be initiated by stem cell reprogramming, and uncovers a new role for oncogenes in the origin of cancer. Here we analyse these evidences and propose an updated model of oncogene function that can explain the full range of genotype–phenotype associations found in human cancer. Finally, we discuss how this vision opens new avenues for developing novel anti-cancer interventions. PMID:23632857

  10. Structure of mutant human oncogene protein determined

    SciTech Connect

    Baum, R.

    1989-01-16

    The protein encoded by a mutant human oncogene differs only slightly in structure from the native protein that initiates normal cell division, a finding that may complicate efforts to develop inhibitors of the mutant protein. Previously, the x-ray structure of the protein encoded by the normal c-Ha-ras gene, a protein believed to signal cells to start or stop dividing through its interaction with guanosine triphosphate (GTP), was reported. The structure of the protein encoded by a transforming c-Ha-ras oncogene, in which a valine codon replaces the normal glycine codon at position 12 in the gene, has now been determined. The differences in the structures of the mutant and normal proteins are located primarily in a loop that interacts with the /beta/-phosphate of a bound guanosine diphosphate (GDP) molecule.

  11. Macroautophagy and the Oncogene-Induced Senescence

    PubMed Central

    Grasso, Daniel; Vaccaro, Maria I.

    2014-01-01

    The oncogene-induced senescence is emerging as a potent tumor suppressor mechanism and as a possible therapeutic target. Macroautophagy is intimately linked to the senescence condition setup, although its role has not been elucidated yet. Here, we discuss up-to-date concepts of senescence-related macroautophagy and evaluate the current trend of this growing research field, which has relevance in future perspectives toward therapeutic options against cancer. PMID:25324830

  12. Sclerosing Epithelioid Fibrosarcoma of the Bone: A Case Report of High Resistance to Chemotherapy and a Survey of the Literature

    PubMed Central

    Grunewald, Thomas G. P.; von Luettichau, Irene; Weirich, Gregor; Wawer, Angela; Behrends, Uta; Prodinger, Peter M.; Jundt, Gernot; Bielack, Stefan S.; Gradinger, Reiner; Burdach, Stefan

    2010-01-01

    Sclerosing epithelioid fibrosarcoma (SEF) is a rare soft tissue sarcoma mostly occurring in extraosseous sites. SEF represents a clinically challenging entity especially because no standardized treatment regimens are available. Intraosseous localization is an additional challenge with respect to the therapeutical approach. We report on a 16-year-old patient with SEF of the right proximal tibia. The patient underwent standardized neoadjuvant chemotherapy analogous to the EURAMOS-1 protocol for the treatment of osteosarcoma followed by tumor resection and endoprosthetic reconstruction. Histopathological analysis of the resected tumor showed >90% vital tumor cells suggesting no response to chemotherapy. Therefore, therapy was reassigned to the CWS 2002 High-Risk protocol for the treatment of soft tissue sarcoma. To date (22 months after diagnosis), there is no evidence of relapse or metastasis. Our data suggest that SEF may be resistant to a chemotherapy regimen containing Cisplatin, Doxorubicin, and Methotrexate, which should be considered in planning treatment for patients with SEF. PMID:20396630

  13. Primary Renal Sclerosing Epithelioid Fibrosarcoma: Report of Two Cases with EWSR1-CREB3L1 Gene Fusion

    PubMed Central

    Argani, Pedram; Lewin, Jack R.; Edmonds, Pamela; Netto, George J.; Prieto-Granada, Carlos; Zhang, Lei; Jungbluth, Achim A.; Antonescu, Cristina R.

    2014-01-01

    We report the first two genetically confirmed cases of primary renal sclerosing epithelioid fibrosarcoma (SEF), occurring in a 17 year-old male and a 61 year-old female. In both cases, the tumors demonstrated the typical epithelioid clear cell morphology associated with extensive hyalinizing fibrosis, raising the differential diagnosis of solitary fibrous tumor, metanephric stromal tumor, and the sclerosing variant of clear cell sarcoma of the kidney. Both neoplasms demonstrated diffuse immunoreactivity for MUC4, a highly specific marker for SEF, and both demonstrated evidence of rearrangement of both the EWSR1 and CREB3L1 genes which have recently shown to be fused in this entity. Both neoplasms presented with metastatic disease. Primary renal SEF represents yet another translocation-associated sarcoma now shown to arise primarily in the kidney. PMID:25353281

  14. Electron paramagnetic resonance (EPR) oxygen image hypoxic fraction plus radiation dose strongly correlates with tumor cure in FSa fibrosarcomas

    PubMed Central

    Elas, Martyna; Bell, Rebecca; Hleihel, Danielle; Barth, Eugene D.; McFaul, Colin; Haney, Chad R.; Bielanska, Joanna; Pustelny, Katarzyna; Ahn, Kang-Hyun; Pelizzari, Charles A.; Kocherginsky, Masha; Halpern, Howard J.

    2008-01-01

    Purpose Tumor hypoxia has long been known to produce resistance to radiation. In this study, electron paramagnetic resonance (EPR) oxygen imaging was investigated for its power to predict the success of tumor control depending on tumor oxygenation level and radiation therapy dose. Methods and Materials Thirty-four EPR oxygen images were obtained from the legs of C3H mice bearing 0.5 ml FSa fibrosarcomas under both normal (air breathing) and clamped tumor conditions. Under the same conditions as those during which the images were obtained, tumors were irradiated to a variety doses near the FSa TCD50. Tumor tissue was distinguished from normal tissue using co-registration of the EPR oxygen images with spin-echo MRI images of the tumor and/or stereotactic localization. Tumor voxel statistics in the EPR oxygen image included mean and median pO2, and the fraction of tumor voxels below the specified pO2 values of 3, 6 and 10 torr. Bivariate logistic regression analysis using radiation dose and each of the EPR oxygen image statistics determined which best separated treatment failure from success. Results and Conclusions TCD50 measurements were similar to those found in the literature for this syngeneic tumor. Bivariate analysis of 34 tumors demonstrated that tumor cure correlated with dose (p=0.004) and with <10 torr hypoxic fraction (p=0.023). Together, radiation dose and EPR image hypoxic fraction separate the population of FSa fibrosarcomas which are cured from those which fail, thus predicting curability. PMID:18474313

  15. Activation of proto-oncogenes by disruption of chromosome neighborhoods.

    PubMed

    Hnisz, Denes; Weintraub, Abraham S; Day, Daniel S; Valton, Anne-Laure; Bak, Rasmus O; Li, Charles H; Goldmann, Johanna; Lajoie, Bryan R; Fan, Zi Peng; Sigova, Alla A; Reddy, Jessica; Borges-Rivera, Diego; Lee, Tong Ihn; Jaenisch, Rudolf; Porteus, Matthew H; Dekker, Job; Young, Richard A

    2016-03-25

    Oncogenes are activated through well-known chromosomal alterations such as gene fusion, translocation, and focal amplification. In light of recent evidence that the control of key genes depends on chromosome structures called insulated neighborhoods, we investigated whether proto-oncogenes occur within these structures and whether oncogene activation can occur via disruption of insulated neighborhood boundaries in cancer cells. We mapped insulated neighborhoods in T cell acute lymphoblastic leukemia (T-ALL) and found that tumor cell genomes contain recurrent microdeletions that eliminate the boundary sites of insulated neighborhoods containing prominent T-ALL proto-oncogenes. Perturbation of such boundaries in nonmalignant cells was sufficient to activate proto-oncogenes. Mutations affecting chromosome neighborhood boundaries were found in many types of cancer. Thus, oncogene activation can occur via genetic alterations that disrupt insulated neighborhoods in malignant cells.

  16. Oncogenic extracellular vesicles in brain tumor progression.

    PubMed

    D'Asti, Esterina; Garnier, Delphine; Lee, Tae H; Montermini, Laura; Meehan, Brian; Rak, Janusz

    2012-01-01

    The brain is a frequent site of neoplastic growth, including both primary and metastatic tumors. The clinical intractability of many brain tumors and their distinct biology are implicitly linked to the unique microenvironment of the central nervous system (CNS) and cellular interactions within. Among the most intriguing forms of cellular interactions is that mediated by membrane-derived extracellular vesicles (EVs). Their biogenesis (vesiculation) and uptake by recipient cells serves as a unique mechanism of intercellular trafficking of complex biological messages including the exchange of molecules that cannot be released through classical secretory pathways, or that are prone to extracellular degradation. Tumor cells produce EVs containing molecular effectors of several cancer-related processes such as growth, invasion, drug resistance, angiogenesis, and coagulopathy. Notably, tumor-derived EVs (oncosomes) also contain oncogenic proteins, transcripts, DNA, and microRNA (miR). Uptake of this material may change properties of the recipient cells and impact the tumor microenvironment. Examples of transformation-related molecules found in the cargo of tumor-derived EVs include the oncogenic epidermal growth factor receptor (EGFRvIII), tumor suppressors (PTEN), and oncomirs (miR-520g). It is postulated that EVs circulating in blood or cerebrospinal fluid (CSF) of brain tumor patients may be used to decipher molecular features (mutations) of the underlying malignancy, reflect responses to therapy, or molecular subtypes of primary brain tumors [e.g., glioma or medulloblastoma (MB)]. It is possible that metastases to the brain may also emit EVs with clinically relevant oncogenic signatures. Thus, EVs emerge as a novel and functionally important vehicle of intercellular communication that can mediate multiple biological effects. In addition, they provide a unique platform to develop molecular biomarkers in brain malignancies. PMID:22934045

  17. Role of non-genomic androgen signalling in suppressing proliferation of fibroblasts and fibrosarcoma cells.

    PubMed

    Castoria, G; Giovannelli, P; Di Donato, M; Ciociola, A; Hayashi, R; Bernal, F; Appella, E; Auricchio, F; Migliaccio, A

    2014-12-04

    The functions of androgen receptor (AR) in stromal cells are still debated in spite of the demonstrated importance of these cells in organ development and diseases. Here, we show that physiological androgen concentration (10 nM R1881 or DHT) fails to induce DNA synthesis, while it consistently stimulates cell migration in mesenchymal and transformed mesenchymal cells. Ten nanomolar R1881 triggers p27 Ser10 phosphorylation and its stabilization in NIH3T3 fibroblasts. Activation of Rac and its downstream effector DYRK 1B is responsible for p27 Ser10 phosphorylation and cell quiescence. Ten nanomolar androgen also inhibits transformation induced by oncogenic Ras in NIH3T3 fibroblasts. Overexpression of an AR mutant unable to interact with filamin A, use of a small peptide displacing AR/filamin A interaction, and filamin A knockdown indicate that the androgen-triggered AR/filamin A complex regulates the pathway leading to p27 Ser10 phosphorylation and cell cycle arrest. As the AR/filamin A complex is also responsible for migration stimulated by 10 nM androgen, our report shows that the androgen-triggered AR/filamin A complex controls, through Rac 1, the decision of cells to halt cell cycle and migration. This study reveals a new and unexpected role of androgen/AR signalling in coordinating stromal cell functions.

  18. Melanoma: oncogenic drivers and the immune system

    PubMed Central

    Karachaliou, Niki; Pilotto, Sara; Teixidó, Cristina; Viteri, Santiago; González-Cao, María; Riso, Aldo; Morales-Espinosa, Daniela; Molina, Miguel Angel; Chaib, Imane; Santarpia, Mariacarmela; Richardet, Eduardo; Bria, Emilio

    2015-01-01

    Advances and in-depth understanding of the biology of melanoma over the past 30 years have contributed to a change in the consideration of melanoma as one of the most therapy-resistant malignancies. The finding that oncogenic BRAF mutations drive tumor growth in up to 50% of melanomas led to a molecular therapy revolution for unresectable and metastatic disease. Moving beyond BRAF, inactivation of immune regulatory checkpoints that limit T cell responses to melanoma has provided targets for cancer immunotherapy. In this review, we discuss the molecular biology of melanoma and we focus on the recent advances of molecularly targeted and immunotherapeutic approaches. PMID:26605311

  19. Oncogenic osteomalacia: strange tumours in strange places.

    PubMed Central

    Weiss, D.; Bar, R. S.; Weidner, N.; Wener, M.; Lee, F.

    1985-01-01

    Two patients presented with hypophosphataemic osteomalacia and were subsequently found to have small tumours unusual histopathology and location causing the osteomalacia. Each tumour was found after an intensive search for occult masses. Studies of vitamin D metabolism and renal tubular function before and after surgery yielded further insight into the pathophysiology of oncogenic osteomalacia. These cases demonstrate that microscopic quantities of tumour are capable of causing the syndrome and further illustrate the high index of suspicion often necessary to locate causative tumours in patients with hypophosphataemic osteomalacia. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:4022870

  20. Pro-oncogenic and anti-oncogenic pathways: opportunities and challenges of cancer therapy

    PubMed Central

    Zhang, Jiao; Chen, Yan-Hua; Lu, Qun

    2010-01-01

    Carcinogenesis is the uncontrolled growth of cells gaining the potential to invade and disrupt vital tissue functions. This malignant process includes the occurrence of ‘unwanted’ gene mutations that induce the transformation of normal cells, for example, by overactivation of pro-oncogenic pathways and inactivation of tumor-suppressive or anti-oncogenic pathways. It is now recognized that the number of major signaling pathways that control oncogenesis is not unlimited; therefore, suppressing these pathways can conceivably lead to a cancer cure. However, the clinical application of cancer intervention has not matched up to scientific expectations. Increasing numbers of studies have revealed that many oncogenic-signaling elements show double faces, in which they can promote or suppress cancer pathogenesis depending on tissue type, cancer stage, gene dosage and their interaction with other players in carcinogenesis. This complexity of oncogenic signaling poses challenges to traditional cancer therapy and calls for considerable caution when designing an anticancer drug strategy. We propose future oncology interventions with the concept of integrative cancer therapy. PMID:20373871

  1. Fibrosarcoma versus fibromatoses and cellular nodular fasciitis. A comparative study of their proliferative activity using proliferating cell nuclear antigen, DNA flow cytometry, and p53.

    PubMed

    Oshiro, Y; Fukuda, T; Tsuneyoshi, M

    1994-07-01

    We analyzed the proliferative activities, immunoreactivity of the p53 protein, and aneuploidy in patients with benign and malignant fibrous lesions, including 19 with nodular fasciitis (cellular type) (6-88 years old, mean 42.9), 11 with abdominal fibromatoses (22-74 years old, mean 37.9), 13 with extraabdominal fibromatoses (2-38 years old, mean 19.5), and 23 with fibrosarcomas (adult type: 16-71 years old, mean 47.3; infantile type: 3 months to 9 years, mean 2.9) using immunohistochemistry to determine proliferating cell nuclear antigen (PC10) and p53 protein (CM1) as well as performing DNA flow cytometry. The proliferating cell nuclear antigen (PCNA) score was measured as the ratio of PCNA-positive nuclear size/total nuclear size determined by an image analysis computer system. The distribution pattern of the PCNA-positive cells was uneven in each instance of nodular fasciitis, in contrast to the distribution in abdominal fibromatosis, extraabdominal fibromatosis, and fibrosarcoma. Both fibrosarcoma (28.4 +/- 20.0) and nodular fasciitis (33.6 +/- 20.9) exhibited a larger value and a greater variation in the PCNA score than did either abdominal (13.5 +/- 14.5) or extraabdominal fibromatosis (19.9 +/- 21.5). Abdominal fibromatosis exhibited a smaller value and less variation in the score. In short, the PCNA score did not correlate with the malignant potential. The proliferative index (S + G2 + M fraction) in fibrosarcoma was significantly higher than in either nodular fasciitis or abdominal fibromatosis. Aneuploidy was detected in five cases (26%) of fibrosarcoma, while six (26%) fibrosarcomas showed p53 positivity. Furthermore, p53-positive patients had a worse survival (0.01 < p < 0.05), and p53 positivity correlated with the proliferative index (p < 0.01). In conclusion, the PCNA score simply indicates the proliferative activity independent of malignant potential. On the other hand, p53 positivity, proliferative index, and aneuploidy are all indicators of

  2. The Oncogenic Functions of Nicotinic Acetylcholine Receptors

    PubMed Central

    Zhao, Yue

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) are ion channels that are expressed in the cell membrane of all mammalian cells, including cancer cells. Recent findings suggest that nAChRs not only mediate nicotine addiction in the brain but also contribute to the development and progression of cancers directly induced by nicotine and its derived carcinogenic nitrosamines whereas deregulation of the nAChRs is observed in many cancers, and genome-wide association studies (GWAS) indicate that SNPs nAChRs associate with risks of lung cancers and nicotine addiction. Emerging evidences suggest nAChRs are posited at the central regulatory loops of numerous cell growth and prosurvival signal pathways and also mediate the synthesis and release of stimulatory and inhibitory neurotransmitters induced by their agonists. Thus nAChRs mediated cell signaling plays an important role in stimulating the growth and angiogenic and neurogenic factors and mediating oncogenic signal transduction during cancer development in a cell type specific manner. In this review, we provide an integrated view of nAChRs signaling in cancer, heightening on the oncogenic properties of nAChRs that may be targeted for cancer treatment. PMID:26981122

  3. Identification of an Oncogenic RAB Protein

    PubMed Central

    Wheeler, Douglas B.; Zoncu, Roberto; Root, David E.; Sabatini, David M.; Sawyers, Charles L.

    2015-01-01

    In an shRNA screen for genes that affect AKT phosphorylation, we identified the RAB35 small GTPase—a protein previously implicated in endomembrane trafficking—as a new regulator of the PI3K pathway. Depletion of RAB35 suppresses AKT phosphorylation in response to growth factors, whereas expression of a dominant active GTPase-deficient mutant of RAB35 constitutively activates the PI3K/AKT pathway. RAB35 functions downstream of growth factor receptors and upstream of PDK1 and mTORC2 and co-purifies with PI3K in immunoprecipitation assays. Two somatic RAB35 mutations found in human tumors generate alleles that constitutively activate PI3K/AKT signaling, suppress apoptosis, and transform cells in a PI3K-dependent manner. Furthermore, oncogenic RAB35 is sufficient to drive PDGFRα to LAMP2-positive endomembranes in the absence of ligand, suggesting there may be latent oncogenic potential in dysregulated endomembrane trafficking. PMID:26338797

  4. Oncogenic Activation of NF-κB

    PubMed Central

    Staudt, Louis M.

    2010-01-01

    Recent genetic evidence has established a pathogenetic role for NF-κB signaling in cancer. NF-κB signaling is engaged transiently when normal B lymphocytes respond to antigens, but lymphomas derived from these cells accumulate genetic lesions that constitutively activate NF-κB signaling. Many genetic aberrations in lymphomas alter CARD11, MALT1, or BCL10, which constitute a signaling complex that is intermediate between the B-cell receptor and IκB kinase. The activated B-cell-like subtype of diffuse large B-cell lymphoma activates NF-κB by a variety of mechanisms including oncogenic mutations in CARD11 and a chronic active form of B-cell receptor signaling. Normal plasma cells activate NF-κB in response to ligands in the bone marrow microenvironment, but their malignant counterpart, multiple myeloma, sustains a variety of genetic hits that stabilize the kinase NIK, leading to constitutive activation of the classical and alternative NF-κB pathways. Various oncogenic abnormalities in epithelial cancers, including mutant K-ras, engage unconventional IκB kinases to activate NF-κB. Inhibition of constitutive NF-κB signaling in each of these cancer types induces apoptosis, providing a rationale for the development of NF-κB pathway inhibitors for the treatment of cancer. PMID:20516126

  5. The Oncogenic Functions of Nicotinic Acetylcholine Receptors.

    PubMed

    Zhao, Yue

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) are ion channels that are expressed in the cell membrane of all mammalian cells, including cancer cells. Recent findings suggest that nAChRs not only mediate nicotine addiction in the brain but also contribute to the development and progression of cancers directly induced by nicotine and its derived carcinogenic nitrosamines whereas deregulation of the nAChRs is observed in many cancers, and genome-wide association studies (GWAS) indicate that SNPs nAChRs associate with risks of lung cancers and nicotine addiction. Emerging evidences suggest nAChRs are posited at the central regulatory loops of numerous cell growth and prosurvival signal pathways and also mediate the synthesis and release of stimulatory and inhibitory neurotransmitters induced by their agonists. Thus nAChRs mediated cell signaling plays an important role in stimulating the growth and angiogenic and neurogenic factors and mediating oncogenic signal transduction during cancer development in a cell type specific manner. In this review, we provide an integrated view of nAChRs signaling in cancer, heightening on the oncogenic properties of nAChRs that may be targeted for cancer treatment. PMID:26981122

  6. Identification of an oncogenic RAB protein.

    PubMed

    Wheeler, Douglas B; Zoncu, Roberto; Root, David E; Sabatini, David M; Sawyers, Charles L

    2015-10-01

    In a short hairpin RNA screen for genes that affect AKT phosphorylation, we identified the RAB35 small guanosine triphosphatase (GTPase)-a protein previously implicated in endomembrane trafficking-as a regulator of the phosphatidylinositol 3'-OH kinase (PI3K) pathway. Depletion of RAB35 suppresses AKT phosphorylation in response to growth factors, whereas expression of a dominant active GTPase-deficient mutant of RAB35 constitutively activates the PI3K/AKT pathway. RAB35 functions downstream of growth factor receptors and upstream of PDK1 and mTORC2 and copurifies with PI3K in immunoprecipitation assays. Two somatic RAB35 mutations found in human tumors generate alleles that constitutively activate PI3K/AKT signaling, suppress apoptosis, and transform cells in a PI3K-dependent manner. Furthermore, oncogenic RAB35 is sufficient to drive platelet-derived growth factor receptor α to LAMP2-positive endomembranes in the absence of ligand, suggesting that there may be latent oncogenic potential in dysregulated endomembrane trafficking.

  7. Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma.

    PubMed

    Northcott, Paul A; Lee, Catherine; Zichner, Thomas; Stütz, Adrian M; Erkek, Serap; Kawauchi, Daisuke; Shih, David J H; Hovestadt, Volker; Zapatka, Marc; Sturm, Dominik; Jones, David T W; Kool, Marcel; Remke, Marc; Cavalli, Florence M G; Zuyderduyn, Scott; Bader, Gary D; VandenBerg, Scott; Esparza, Lourdes Adriana; Ryzhova, Marina; Wang, Wei; Wittmann, Andrea; Stark, Sebastian; Sieber, Laura; Seker-Cin, Huriye; Linke, Linda; Kratochwil, Fabian; Jäger, Natalie; Buchhalter, Ivo; Imbusch, Charles D; Zipprich, Gideon; Raeder, Benjamin; Schmidt, Sabine; Diessl, Nicolle; Wolf, Stephan; Wiemann, Stefan; Brors, Benedikt; Lawerenz, Chris; Eils, Jürgen; Warnatz, Hans-Jörg; Risch, Thomas; Yaspo, Marie-Laure; Weber, Ursula D; Bartholomae, Cynthia C; von Kalle, Christof; Turányi, Eszter; Hauser, Peter; Sanden, Emma; Darabi, Anna; Siesjö, Peter; Sterba, Jaroslav; Zitterbart, Karel; Sumerauer, David; van Sluis, Peter; Versteeg, Rogier; Volckmann, Richard; Koster, Jan; Schuhmann, Martin U; Ebinger, Martin; Grimes, H Leighton; Robinson, Giles W; Gajjar, Amar; Mynarek, Martin; von Hoff, Katja; Rutkowski, Stefan; Pietsch, Torsten; Scheurlen, Wolfram; Felsberg, Jörg; Reifenberger, Guido; Kulozik, Andreas E; von Deimling, Andreas; Witt, Olaf; Eils, Roland; Gilbertson, Richard J; Korshunov, Andrey; Taylor, Michael D; Lichter, Peter; Korbel, Jan O; Wechsler-Reya, Robert J; Pfister, Stefan M

    2014-07-24

    Medulloblastoma is a highly malignant paediatric brain tumour currently treated with a combination of surgery, radiation and chemotherapy, posing a considerable burden of toxicity to the developing child. Genomics has illuminated the extensive intertumoral heterogeneity of medulloblastoma, identifying four distinct molecular subgroups. Group 3 and group 4 subgroup medulloblastomas account for most paediatric cases; yet, oncogenic drivers for these subtypes remain largely unidentified. Here we describe a series of prevalent, highly disparate genomic structural variants, restricted to groups 3 and 4, resulting in specific and mutually exclusive activation of the growth factor independent 1 family proto-oncogenes, GFI1 and GFI1B. Somatic structural variants juxtapose GFI1 or GFI1B coding sequences proximal to active enhancer elements, including super-enhancers, instigating oncogenic activity. Our results, supported by evidence from mouse models, identify GFI1 and GFI1B as prominent medulloblastoma oncogenes and implicate 'enhancer hijacking' as an efficient mechanism driving oncogene activation in a childhood cancer.

  8. Protective effects of S-2-(3-aminopropylamino)ethylphosphorothioic acid against radiation damage of normal tissues and a fibrosarcoma in mice

    SciTech Connect

    Milas, L.; Hunter, N.; Reid, B.O.; Thames, H.D. Jr.

    1982-05-01

    S-2-(3-Aminopropylamino)ethylphosphorothioic acid (WR-2721) was investigated for its protective effect against radiation-produced damage of jejunum, testis, lung, hair follicles, and a fibrosarcoma of C3Hf/Kam mice. Most of these tissues were radioprotected, and the degree of radioprotection depended on the dose of WR-2721 and the time interval between administration of WR-2721 and radiation treatment. WR-2721 increased resistance of jejunal epithelial cells and spermatogenic cells to single doses of gamma-rays by factors of 1.64 and 1.54, respectively. Protection against hair loss was less pronounced; the dose-modifying factor here was 1.24. The radiation-induced acute damage of the lung expressed by the increased formation of tumor nodules in the lung was not decreased by treatment of animals with WR-2721 before radiation. In contrast, WR-2721 augmented the radiation-induced enhancement of metastasis formation in the lung. WR-2721 protected fibrosarcoma micrometastases in the lung against therapeutic effect of radiation by a factor of 1.238. In contrast, this compound had no effect on the therapy of an 8-mm fibrosarcoma growing in the legs of mice.

  9. Hedgehog Cholesterolysis: Specialized Gatekeeper to Oncogenic Signaling

    PubMed Central

    Callahan, Brian P.; Wang, Chunyu

    2015-01-01

    Discussions of therapeutic suppression of hedgehog (Hh) signaling almost exclusively focus on receptor antagonism; however, hedgehog’s biosynthesis represents a unique and potentially targetable aspect of this oncogenic signaling pathway. Here, we review a key biosynthetic step called cholesterolysis from the perspectives of structure/function and small molecule inhibition. Cholesterolysis, also called cholesteroylation, generates cholesterol-modified Hh ligand via autoprocessing of a hedgehog precursor protein. Post-translational modification by cholesterol appears to be restricted to proteins in the hedgehog family. The transformation is essential for Hh biological activity and upstream of signaling events. Despite its decisive role in generating ligand, cholesterolysis remains conspicuously unexplored as a therapeutic target. PMID:26473928

  10. The guardians of inherited oncogenic vulnerabilities.

    PubMed

    Arnal, Audrey; Tissot, Tazzio; Ujvari, Beata; Nunney, Leonard; Solary, Eric; Laplane, Lucie; Bonhomme, François; Vittecoq, Marion; Tasiemski, Aurélie; Renaud, François; Pujol, Pascal; Roche, Benjamin; Thomas, Frédéric

    2016-01-01

    Similar to seemingly maladaptive genes in general, the persistence of inherited cancer-causing mutant alleles in populations remains a challenging question for evolutionary biologists. In addition to traditional explanations such as senescence or antagonistic pleiotropy, here we put forward a new hypothesis to explain the retention of oncogenic mutations. We propose that although natural defenses evolve to prevent neoplasm formation and progression thus increasing organismal fitness, they also conceal the effects of cancer-causing mutant alleles on fitness and concomitantly protect inherited ones from purging by purifying selection. We also argue for the importance of the ecological contexts experienced by individuals and/or species. These contexts determine the locally predominant fitness-reducing risks, and hence can aid the prediction of how natural selection will influence cancer outcomes. PMID:26519218

  11. PLAG1 fusion oncogenes in lipoblastoma.

    PubMed

    Hibbard, M K; Kozakewich, H P; Dal Cin, P; Sciot, R; Tan, X; Xiao, S; Fletcher, J A

    2000-09-01

    Lipoblastomas are pediatric neoplasms resulting from transformation of adipocytes. These benign tumors are typically composed of adipose cells in different stages of maturation within a variably myxoid matrix, and they contain clonal rearrangements of chromosome band 8q12. Because lipoblastomas resemble embryonic adipose tissue, characterization of their transforming mechanisms might reveal biological pathways in physiological adipogenesis. Herein, we demonstrate that lipoblastoma chromosome 8q12 rearrangements bring about promoter-swapping events in the PLAG1 oncqgene. We show that the hyaluronic acid synthase 2 (HAS2) or collagen 1 alpha 2 (COL1A2) gene promoter regions are fused to the entire PLAG1 coding sequence in each of four lipoblastomas. PLAG1 is a developmentally regulated zinc finger gene whose tumorigenic function has been shown previously only in epithelial salivary gland cells. Our findings reveal that PLAG1 activation, presumably resulting from transcriptional up-regulation, is a central oncogenic event in lipoblastoma.

  12. Activation of ras oncogenes preceding the onset of neoplasia

    SciTech Connect

    Kumar, R.; Barbacid, M. ); Sukumar, S. )

    1990-06-01

    The identification of ras oncogenes in human and animal cancers including precancerous lesions indicates that these genes participate in the early stages of neoplastic development. Yet, these observations do not define the timing of ras oncogene activation in the multistep process of carcinogenesis. To ascertain the timing of ras oncogene activation, an animal model system was devised that involves the induction of mammary carcinomas in rats exposed at birth to the carcinogen nitrosomethylurea. High-resolution restriction fragment length polymorphism analysis of polymerase chain reaction-amplified ras sequences revealed the presence of both H-ras and K-ras oncogenes in normal mammary glands 2 weeks after carcinogen treatment and at least 2 months before the onset of neoplasia. These ras oncogenes can remain latent within the mammary gland until exposure to estrogens, demonstrating that activation of ras oncogenes can precede the onset of neoplasia and suggesting that normal physiological proliferative processes such as estrogen-induced mammary gland development may lead to neoplasia if the targeted cells harbor latent ras oncogenes.

  13. Hydrophilic extract from Posidonia oceanica inhibits activity and expression of gelatinases and prevents HT1080 human fibrosarcoma cell line invasion.

    PubMed

    Barletta, Emanuela; Ramazzotti, Matteo; Fratianni, Florinda; Pessani, Daniela; Degl'Innocenti, Donatella

    2015-01-01

    Posidonia oceanica (L.) Delile is an endemic Mediterranean sea-grass distributed in the infralittoral zones, where it forms meadows playing a recognized ecological role in the coastal marine habitat. Although its use as a traditional herbal remedy is poorly documented, recent literature reports interesting pharmacological activities as antidiabetic, antioxidant and vasoprotective. Differently from previous literature, this study presents a hydrophilic extraction method that recovers metabolites that may be tested in biological buffers. We showed for the first time in the highly invasive HT1080 human fibrosarcoma cell line that our hydrophilic extract from P. oceanica was able to strongly decrease gene and protein expression of gelatinases MMP-2 and MMP-9 and to directly inhibit in a dose-dependent manner gelatinolytic activity in vitro. Moreover, we have revealed that our extract strongly inhibited HT1080 cell migration and invasion. Biochemical analysis of the hydrophilic extract showed that catechins were the major constituents with minor contribution of gallic acid, ferulic acid and chlorogenic plus a fraction of uncharacterized phenols. However, if each individual compound was tested independently, none by itself was able to induce a direct inhibition of gelatinases as strong as that observed in total extract, opening up new routes to the identification of novel compounds. These results indicate that our hydrophilic extract from P. oceanica might be a source of new pharmacological natural products for treatment or prevention of several diseases related to an altered MMP-2 and MMP-9 expression. PMID:26176658

  14. 1,2,3,4-Diepoxybutane-Induced DNA-Protein Cross-Linking in Human Fibrosarcoma (HT1080) Cells

    PubMed Central

    Gherezghiher, Teshome B.; Ming, Xun; Villalta, Peter; Campbell, Colin; Tretyakova, Natalia Y.

    2013-01-01

    1,2,3,4-diepoxybutane (DEB) is the key carcinogenic metabolite of 1,3-butadiene (BD), an important industrial and environmental chemical present in urban air and in cigarette smoke. DEB is a genotoxic bis-electrophile capable of cross-linking cellular biomolecules to form DNA-DNA and DNA-protein cross-links (DPCs). In the present work, mass spectrometry-based proteomics was employed to characterize DEB-mediated DNA-protein cross-linking in human fibrosarcoma (HT1080) cells. Over 150 proteins including histones, high mobility group proteins, transcription factors, splicing factors, and tubulins were found among those covalently cross-linked to chromosomal DNA in the presence of DEB. A large portion of the cross-linked proteins are known factors involved in DNA binding, transcriptional regulation, cell signaling, DNA repair, and DNA damage response. HPLC-ESI+-MS/MS analysis of total proteolytic digests revealed the presence of 1-(S-cysteinyl)-4-(guan-7-yl)-2,3-butanediol conjugates, confirming that DEB forms DPCs between cysteine thiols within proteins and the N-7 guanine positions within DNA. However, relatively high concentrations of DEB were required to achieve significant DPC formation, indicating that it is a poor cross-linking agent as compared to antitumor nitrogen mustards and platinum compounds. PMID:23506368

  15. A novel branched TAT(47-57) peptide for selective Ni(2+) introduction into the human fibrosarcoma cell nucleus.

    PubMed

    Szyrwiel, Łukasz; Shimura, Mari; Shirataki, Junko; Matsuyama, Satoshi; Matsunaga, Akihiro; Setner, Bartosz; Szczukowski, Łukasz; Szewczuk, Zbigniew; Yamauchi, Kazuto; Malinka, Wiesław; Chavatte, Laurent; Łobinski, Ryszard

    2015-07-01

    A TAT47-57 peptide was modified on the N-terminus by elongation with a 2,3-diaminopropionic acid residue and then by coupling of two histidine residues on its N-atoms. This branched peptide could bind to Ni under physiological conditions as a 1 : 1 complex. We demonstrated that the complex was quantitatively taken up by human fibrosarcoma cells, in contrast to Ni(2+) ions. Ni localization (especially at the nuclei) was confirmed by imaging using both scanning X-ray fluorescence microscopy and Newport Green fluorescence. A competitive assay with Newport Green showed that the latter displaced the peptide ligand from the Ni-complex. Ni(2+) delivered as a complex with the designed peptide induced substantially more DNA damage than when introduced as a free ion. The availability of such a construct opens up the way to investigate the importance of the nucleus as a target for the cytotoxicity, genotoxicity or carcinogenicity of Ni(2+).

  16. Growth-related variations in the glycosaminoglycan synthesis of ultraviolet light-induced murine cutaneous fibrosarcoma cells

    SciTech Connect

    Piepkorn, M.; Carney, H.; Linker, A.

    1985-08-01

    Glycosaminoglycan synthesis was studied in cell populations of ultraviolet light-induced murine cutaneous fibrosarcoma cells under conditions of varying growth rates in vitro. After labeling with the precursors, /sup 3/H-glucosamine and /sup 35/SO/sub 4/, sulfated glycosaminoglycans recoverable by direct proteolysis of the culture monolayers increased approximately 5-fold on a per cell basis from sparsely populated, exponential cell cultures (greater than 85% of cells in S, G2, or M phases) to stationary cultures inhibited by high cell density (greater than 50% of cells in G1). Within this cell surface-associated material, the relative ratio of heparan sulfate to the chondroitin sulfates was approximately 60/40% under conditions of exponential growth; in the growth-arrested cultures, the reverse ratio was found. The substratum attached material, obtained from the flask surface after ethyl glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA)-mediated detachment of the monolayers, contained relatively more hyaluronic acid, heparan sulfate, and chondroitin sulfates in the most actively proliferating cultures compared with the growth-inhibited cell populations. Furthermore, heparan sulfate and the chondroitin sulfates, which were enriched in the substratum material and in the cell pellet of exponential cultures, showed a relative shift to the cell surface-associated compartment (releasable by mild trypsinization after EGTA-mediated cell detachment) and to the compartment loosely associated with the pericellular matrix (i.e., released into the supernatant during detachment of the monolayers in the presence of EGTA).

  17. Molecular species of phospholipid in rats in primary and transplanted fibrosarcomas induced by soybean oil containing tocopherol acetate.

    PubMed

    Ishinaga, M; Tanimoto, M; Sugiyama, S; Kumamoto, R; Yokoro, K

    1991-09-01

    When soybean oil containing tocopherol acetate was given to rats once a week subcutaneously for 10-12 months, it caused the development of fibrosarcomas at the injection site in 11 of 15 rats. A tumor produced in this manner proved eminently transplantable into other rats. The molecular species of phospholipid subclasses were determined in primary and transplanted tumors. The molecular species composition of the phospholipid subclasses in both types of tumors were similar. The percentages of diacyl and alkylacyl glycerophosphocholine (GPC) were 90-93 and 6-8% of total phosphatidylcholine, respectively. The percentages of diacyl and alkenylacyl glycerophosphoethanolamine (GPE) were 51 and 45%, respectively, of total phosphatidylethanolamine (PE). Diacyl and alkylacyl GPC species containing arachidonic acid (20:4) composed about 15-16 and 37-40% of each subclass, respectively. Diacyl and alkenylacyl GPE species containing 20:4 composed about 38-40 and 56-60% of each subclass, respectively. Disaturated species of diacyl and alkylacyl GPC composed about 22-24 and 13% of each subclass, respectively, whereas these species of PE composed less than 2%. The fatty acid composition of the other tumor phospholipids was analyzed.

  18. Hydrophilic extract from Posidonia oceanica inhibits activity and expression of gelatinases and prevents HT1080 human fibrosarcoma cell line invasion

    PubMed Central

    Barletta, Emanuela; Ramazzotti, Matteo; Fratianni, Florinda; Pessani, Daniela; Degl'Innocenti, Donatella

    2015-01-01

    Posidonia oceanica (L.) Delile is an endemic Mediterranean sea-grass distributed in the infralittoral zones, where it forms meadows playing a recognized ecological role in the coastal marine habitat. Although its use as a traditional herbal remedy is poorly documented, recent literature reports interesting pharmacological activities as antidiabetic, antioxidant and vasoprotective. Differently from previous literature, this study presents a hydrophilic extraction method that recovers metabolites that may be tested in biological buffers. We showed for the first time in the highly invasive HT1080 human fibrosarcoma cell line that our hydrophilic extract from P. oceanica was able to strongly decrease gene and protein expression of gelatinases MMP-2 and MMP-9 and to directly inhibit in a dose-dependent manner gelatinolytic activity in vitro. Moreover, we have revealed that our extract strongly inhibited HT1080 cell migration and invasion. Biochemical analysis of the hydrophilic extract showed that catechins were the major constituents with minor contribution of gallic acid, ferulic acid and chlorogenic plus a fraction of uncharacterized phenols. However, if each individual compound was tested independently, none by itself was able to induce a direct inhibition of gelatinases as strong as that observed in total extract, opening up new routes to the identification of novel compounds. These results indicate that our hydrophilic extract from P. oceanica might be a source of new pharmacological natural products for treatment or prevention of several diseases related to an altered MMP-2 and MMP-9 expression. PMID:26176658

  19. Combination of glycosphingosomes and liposomal doxorubicin shows increased activity against dimethyl-α-benzanthracene-induced fibrosarcoma in mice

    PubMed Central

    Khan, Masood A; Aljarbou, Ahmed N; Aldebasi, Yousef H; Alorainy, Mohammed S; Khan, Arif

    2015-01-01

    The present study aimed to assess the antitumor effect of glycosphingolipid-incorporated liposomes (glycosphingosomes) in combination with liposomal doxorubicin (Lip-Dox) in a mouse model of fibrosarcoma. Glycosphingosomes were prepared by incorporating glycosphingolipids isolated from Sphingomonas paucimobilis into the liposomes of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, cholesterol, and cardiolipin. Tumors were induced by administering dimethyl-α-benzanthracene, and tumor-bearing mice were treated with various formulations of Dox, including free Dox, Lip-Dox, or glycosphingosomes + Lip-Dox. Mice were observed for 90 days to monitor their survival and tumor size. Free Dox, but not Lip-Dox or a combination of glycosphingosomes and Lip-Dox, caused the substantial depletion of leukocytes and significantly increased the levels of lactate dehydrogenase and creatinine kinase in mice. Tumor-bearing mice treated with a combination of glycosphingosomes and Lip-Dox showed restricted tumor growth and increased survival when compared to those treated with free Dox or Lip-Dox. The results of the present study suggest that a combination of glycosphingosomes and Lip-Dox may prove to be very effective in the treatment of tumors. PMID:26504383

  20. Noncanonical Roles of the Immune System in Eliciting Oncogene Addiction

    PubMed Central

    Casey, Stephanie C.; Bellovin, David I.; Felsher, Dean W.

    2013-01-01

    Summary Cancer is highly complex. The magnitude of this complexity makes it highly surprising that even the brief suppression of an oncogene can sometimes result in rapid and sustained tumor regression illustrating that cancers can be “oncogene addicted” [1-10]. The essential implication is that oncogenes may not only fuel the initiation of tumorigenesis, but in some cases necessarily their surfeit of activation is paramaount to maintain a neoplastic state [11]. Oncogene suppression acutely restores normal physiological programs that effectively overrides secondary genetic events and a cancer collapses [12,13]. Oncogene addiction is mediated both through both tumor intrinsic cell-autonomous mechanisms including proliferative arrest, apoptosis, differentiation and cellular senescence [1,2,4,12] but also host-dependent mechanisms that interact with these tumor intrinsic programs [14,15]. Notably, oncogene inactivation elicits a host immune response that involves specific immune effectors and cytokines that facilitate a remodeling of the tumor microenvironment including the shut down of angiogenesis and the induction of cellular senescence of tumor cells [16]. Hence, immune effectors are critically involved in tumor initiation and prevention [17-19] and progression [20], but also appear to be essential to tumor regression upon oncogene inactivation [21-23]. The understanding how the inactivation of an oncogene elicits a systemic signal in the host that prompts a deconstruction of a tumor could have important implications. The combination of oncogene-targeted therapy together with immunomodulatory therapy may be ideal for the development of both a robust tumor intrinsic as well as immunological effectively leading to sustained tumor regression. PMID:23571026

  1. Oncogenic and RASopathy-associated K-RAS mutations relieve membrane-dependent occlusion of the effector-binding site

    PubMed Central

    Mazhab-Jafari, Mohammad T.; Marshall, Christopher B.; Smith, Matthew J.; Gasmi-Seabrook, Geneviève M. C.; Stathopulos, Peter B.; Inagaki, Fuyuhiko; Kay, Lewis E.; Neel, Benjamin G.; Ikura, Mitsuhiko

    2015-01-01

    K-RAS4B (Kirsten rat sarcoma viral oncogene homolog 4B) is a prenylated, membrane-associated GTPase protein that is a critical switch for the propagation of growth factor signaling pathways to diverse effector proteins, including rapidly accelerated fibrosarcoma (RAF) kinases and RAS-related protein guanine nucleotide dissociation stimulator (RALGDS) proteins. Gain-of-function KRAS mutations occur frequently in human cancers and predict poor clinical outcome, whereas germ-line mutations are associated with developmental syndromes. However, it is not known how these mutations affect K-RAS association with biological membranes or whether this impacts signal transduction. Here, we used solution NMR studies of K-RAS4B tethered to nanodiscs to investigate lipid bilayer-anchored K-RAS4B and its interactions with effector protein RAS-binding domains (RBDs). Unexpectedly, we found that the effector-binding region of activated K-RAS4B is occluded by interaction with the membrane in one of the NMR-observable, and thus highly populated, conformational states. Binding of the RAF isoform ARAF and RALGDS RBDs induced marked reorientation of K-RAS4B from the occluded state to RBD-specific effector-bound states. Importantly, we found that two Noonan syndrome-associated mutations, K5N and D153V, which do not affect the GTPase cycle, relieve the occluded orientation by directly altering the electrostatics of two membrane interaction surfaces. Similarly, the most frequent KRAS oncogenic mutation G12D also drives K-RAS4B toward an exposed configuration. Further, the D153V and G12D mutations increase the rate of association of ARAF-RBD with lipid bilayer-tethered K-RAS4B. We revealed a mechanism of K-RAS4B autoinhibition by membrane sequestration of its effector-binding site, which can be disrupted by disease-associated mutations. Stabilizing the autoinhibitory interactions between K-RAS4B and the membrane could be an attractive target for anticancer drug discovery. PMID:25941399

  2. Oncogenic and RASopathy-associated K-RAS mutations relieve membrane-dependent occlusion of the effector-binding site.

    PubMed

    Mazhab-Jafari, Mohammad T; Marshall, Christopher B; Smith, Matthew J; Gasmi-Seabrook, Geneviève M C; Stathopulos, Peter B; Inagaki, Fuyuhiko; Kay, Lewis E; Neel, Benjamin G; Ikura, Mitsuhiko

    2015-05-26

    K-RAS4B (Kirsten rat sarcoma viral oncogene homolog 4B) is a prenylated, membrane-associated GTPase protein that is a critical switch for the propagation of growth factor signaling pathways to diverse effector proteins, including rapidly accelerated fibrosarcoma (RAF) kinases and RAS-related protein guanine nucleotide dissociation stimulator (RALGDS) proteins. Gain-of-function KRAS mutations occur frequently in human cancers and predict poor clinical outcome, whereas germ-line mutations are associated with developmental syndromes. However, it is not known how these mutations affect K-RAS association with biological membranes or whether this impacts signal transduction. Here, we used solution NMR studies of K-RAS4B tethered to nanodiscs to investigate lipid bilayer-anchored K-RAS4B and its interactions with effector protein RAS-binding domains (RBDs). Unexpectedly, we found that the effector-binding region of activated K-RAS4B is occluded by interaction with the membrane in one of the NMR-observable, and thus highly populated, conformational states. Binding of the RAF isoform ARAF and RALGDS RBDs induced marked reorientation of K-RAS4B from the occluded state to RBD-specific effector-bound states. Importantly, we found that two Noonan syndrome-associated mutations, K5N and D153V, which do not affect the GTPase cycle, relieve the occluded orientation by directly altering the electrostatics of two membrane interaction surfaces. Similarly, the most frequent KRAS oncogenic mutation G12D also drives K-RAS4B toward an exposed configuration. Further, the D153V and G12D mutations increase the rate of association of ARAF-RBD with lipid bilayer-tethered K-RAS4B. We revealed a mechanism of K-RAS4B autoinhibition by membrane sequestration of its effector-binding site, which can be disrupted by disease-associated mutations. Stabilizing the autoinhibitory interactions between K-RAS4B and the membrane could be an attractive target for anticancer drug discovery.

  3. The oncogenic action of ionizing radiation on rat skin

    SciTech Connect

    Burns, F.J.

    1991-01-01

    Progress has occurred in several areas corresponding to the specific aims of the proposal: (1) Progression and multiple events in radiation carcinogenesis of rat skin as a function of LET; (2) cell cycle kinetics of irradiated rat epidermis as determined by double labeling and double emulsion autoradiography; (3) oncogene activation detected by in situ hybridization in radiation-induced rat skin tumors; (4) amplification of the c-myc oncogene in radiation-induced rat skin tumors as a function of LET; and (5) transformation of rat skin keratinocytes by ionizing radiation in combination with c-Ki-ras and c-myc oncogenes. 111 refs., 13 figs., 12 tabs.

  4. Oncogenes: The Passport for Viral Oncolysis Through PKR Inhibition

    PubMed Central

    Fernandes, Janaina

    2016-01-01

    The transforming properties of oncogenes are derived from gain-of-function mutations, shifting cell signaling from highly regulated homeostatic to an uncontrolled oncogenic state, with the contribution of the inactivating mutations in tumor suppressor genes P53 and RB, leading to tumor resistance to conventional and target-directed therapy. On the other hand, this scenario fulfills two requirements for oncolytic virus infection in tumor cells: inactivation of tumor suppressors and presence of oncoproteins, also the requirements to engage malignancy. Several of these oncogenes have a negative impact on the main interferon antiviral defense, the double-stranded RNA-activated protein kinase (PKR), which helps viruses to spontaneously target tumor cells instead of normal cells. This review is focused on the negative impact of overexpression of oncogenes on conventional and targeted therapy and their positive impact on viral oncolysis due to their ability to inhibit PKR-induced translation blockage, allowing virion release and cell death. PMID:27486347

  5. Oncogene-dependent apoptosis is mediated by caspase-9

    PubMed Central

    Fearnhead, Howard O.; Rodriguez, Joe; Govek, Eve-Ellen; Guo, Wenjun; Kobayashi, Ryuji; Hannon, Greg; Lazebnik, Yuri A.

    1998-01-01

    Understanding how oncogenic transformation sensitizes cells to apoptosis may provide a strategy to kill tumor cells selectively. We previously developed a cell-free system that recapitulates oncogene dependent apoptosis as reflected by activation of caspases, the core of the apoptotic machinery. Here, we show that this activation requires a previously identified apoptosis-promoting complex consisting of caspase-9, APAF-1, and cytochrome c. As predicted by the in vitro system, preventing caspase-9 activation blocked drug-induced apoptosis in cells sensitized by E1A, an adenoviral oncogene. Oncogenes, such as E1A, appear to facilitate caspase-9 activation by several mechanisms, including the control of cytochrome c release from the mitochondria. PMID:9811857

  6. Oncogenes: The Passport for Viral Oncolysis Through PKR Inhibition.

    PubMed

    Fernandes, Janaina

    2016-01-01

    The transforming properties of oncogenes are derived from gain-of-function mutations, shifting cell signaling from highly regulated homeostatic to an uncontrolled oncogenic state, with the contribution of the inactivating mutations in tumor suppressor genes P53 and RB, leading to tumor resistance to conventional and target-directed therapy. On the other hand, this scenario fulfills two requirements for oncolytic virus infection in tumor cells: inactivation of tumor suppressors and presence of oncoproteins, also the requirements to engage malignancy. Several of these oncogenes have a negative impact on the main interferon antiviral defense, the double-stranded RNA-activated protein kinase (PKR), which helps viruses to spontaneously target tumor cells instead of normal cells. This review is focused on the negative impact of overexpression of oncogenes on conventional and targeted therapy and their positive impact on viral oncolysis due to their ability to inhibit PKR-induced translation blockage, allowing virion release and cell death. PMID:27486347

  7. Silent assassin: oncogenic ras directs epigenetic inactivation of target genes.

    PubMed

    Cheng, Xiaodong

    2008-01-01

    Oncogenic transformation is associated with genetic changes and epigenetic alterations. A study now shows that oncogenic Ras uses a complex and elaborate epigenetic silencing program to specifically repress the expression of multiple unrelated cancer-suppressing genes through a common pathway. These results suggest that cancer-related epigenetic modifications may arise through a specific and instructive mechanism and that genetic changes and epigenetic alterations are intimately connected and contribute to tumorigenesis cooperatively. PMID:18385037

  8. Know thy neighbor: stromal cells can contribute oncogenic signals

    NASA Technical Reports Server (NTRS)

    Tlsty, T. D.; Hein, P. W.

    2001-01-01

    Although the stroma within carcinogenic lesions is known to be supportive and responsive to tumors, new data increasingly show that the stroma also has a more active, oncogenic role in tumorigenesis. Stromal cells and their products can transform adjacent tissues in the absence of pre-existing tumor cells by inciting phenotypic and genomic changes in the epithelial cells. The oncogenic action of distinctive stromal components has been demonstrated through a variety of approaches, which provide clues about the cellular pathways involved.

  9. Inhibition of Ras oncogenic activity by Ras protooncogenes.

    PubMed

    Diaz, Roberto; Lue, Jeffrey; Mathews, Jeremy; Yoon, Andrew; Ahn, Daniel; Garcia-España, Antonio; Leonardi, Peter; Vargas, Marcelo P; Pellicer, Angel

    2005-01-10

    Point mutations in ras genes have been found in a large number and wide variety of human tumors. These oncogenic Ras mutants are locked in an active GTP-bound state that leads to a constitutive and deregulated activation of Ras function. The dogma that ras oncogenes are dominant, whereby the mutation of a single allele in a cell will predispose the host cell to transformation regardless of the presence of the normal allele, is being challenged. We have seen that increasing amounts of Ras protooncogenes are able to inhibit the activity of the N-Ras oncogene in the activation of Elk in NIH 3T3 cells and in the formation of foci. We have been able to determine that the inhibitory effect is by competition between Ras protooncogenes and the N-Ras oncogene that occurs first at the effector level at the membranes, then at the processing level and lastly at the effector level in the cytosol. In addition, coexpression of the N-Ras protooncogene in thymic lymphomas induced by the N-Ras oncogene is associated with increased levels of p107, p130 and cyclin A and decreased levels of Rb. In the present report, we have shown that the N-Ras oncogene is not truly dominant over Ras protooncogenes and their competing activities might be depending on cellular context.

  10. Evaluation of a Japanese quail fibrosarcoma cell line (QT-35) for use in the propagation and detection of metapneumovirus.

    PubMed

    Sabara, Marta I; Larence, June E

    2002-04-01

    A Japanese quail fibrosarcoma cell line (QT-35) was evaluated and compared to Vero cells for its utility in metapneumovirus propagation, titration and serological detection by indirect immunofluorescence staining. Cell characteristics such as growth kinetics at different passage levels and seeding density in 96-well plates using various media formulations were studied in order to determine suitable assay parameters. Specifically, QT-35 cells supported the replication of a subgroup A metapneumovirus, strain 14/1, when maintained in DMEM containing a high level of glucose (4500 mg/l) and 2% gamma-irradiated fetal bovine serum (gamma-FBS). There appeared to be a decreased ability of metapneumovirus produced in chicken embryo fibroblast (CEF) cells to replicate to high titers in QT-35 cells, however, this apparent restriction was overcome after the second passage resulting in high titered stock. Metapneumovirus produced in Vero cells and propagated in QT-35 cells produced high titered stock after the first passage. Viral titers determined in Vero and QT-35 cells were comparable, when the latter cell line was used at passage levels < or = 20 and seeded between 5.0 x 10(4) and 1.0 x 10(5) cells/0.33 cm(2) in hgDMEM containing 10% gamma-FBS, with a reduction to 2% gamma-FBS when the virus was applied to the cell monolayers 24 h post-seeding. After infection with metapneumovirus, QT-35 cells exhibited syncytia, similar to those in metapneumovirus-infected Vero cells, which were readily detected by indirect immunofluorescent (IF) staining.

  11. Molecular Understanding of Growth Inhibitory Effect from Irradiated to Bystander Tumor Cells in Mouse Fibrosarcoma Tumor Model.

    PubMed

    Desai, Sejal; Srambikkal, Nishad; Yadav, Hansa D; Shetake, Neena; Balla, Murali M S; Kumar, Amit; Ray, Pritha; Ghosh, Anu; Pandey, B N

    2016-01-01

    Even though bystander effects pertaining to radiation risk assessment has been extensively studied, the molecular players of radiation induced bystander effect (RIBE) in the context of cancer radiotherapy are poorly known. In this regard, the present study is aimed to investigate the effect of irradiated tumor cells on the bystander counterparts in mouse fibrosarcoma (WEHI 164 cells) tumor model. Mice co-implanted with WEHI 164 cells γ-irradiated with a lethal dose of 15 Gy and unirradiated (bystander) WEHI 164 cells showed inhibited tumor growth, which was measured in terms of tumor volume and Luc+WEHI 164 cells based bioluminescence in vivo imaging. Histopathological analysis and other assays revealed decreased mitotic index, increased apoptosis and senescence in these tumor tissues. In addition, poor angiogenesis was observed in these tumor tissues, which was further confirmed by fluorescence imaging of tumor vascularisation and CD31 expression by immuno-histochemistry. Interestingly, the growth inhibitory bystander effect was exerted more prominently by soluble factors obtained from the irradiated tumor cells than the cellular fraction. Cytokine profiling of the supernatants obtained from the irradiated tumor cells showed increased levels of VEGF, Rantes, PDGF, GMCSF and IL-2 and decreased levels of IL-6 and SCF. Comparative proteomic analysis of the supernatants from the irradiated tumor cells showed differential expression of total 24 protein spots (21 up- and 3 down-regulated) when compared with the supernatant from the unirradiated control cells. The proteins which showed substantially higher level in the supernatant from the irradiated cells included diphosphate kinase B, heat shock cognate, annexin A1, angiopoietin-2, actin (cytoplasmic 1/2) and stress induced phosphoprotein 1. However, the levels of proteins like annexin A2, protein S100 A4 and cofilin was found to be lower in this supernatant. In conclusion, our results provided deeper insight about

  12. Trientine, a copper-chelating agent, induced apoptosis in murine fibrosarcoma cells in vivo and in vitro.

    PubMed

    Hayashi, Masanobu; Nishiya, Hide; Chiba, Toshiaki; Endoh, Daiji; Kon, Yasuhiro; Okui, Toyo

    2007-02-01

    Anti-copper treatments have been investigated to determine whether they suppress angiogenesis and tumor development since Cu is widely accepted as being required for angiogenesis. We examined the effects of treatment with trientine, a copper-chelating agent, on tumor development in a murine xenograft model using fibrosarcoma-derived transplantable QRsp-11 cells and C57BL/6 mice and induction of apoptosis in tumor cells and endothelial cells in vivo and in vitro. The tumor volumes increased more slowly in trientine-treated mice than in untreated mice. Tumor volumes in the treated mice were significantly smaller than those in the untreated mice at 24 days postinoculation (d.p.i.) of tumor cells. A cluster of pyknotic tumor cells and morphological abnormalities in capillary endothelial cells were observed in the tumors of trientine-treated mice but not in the tumors of untreated mice. The proportions of apoptotic and necrotic cells in the tumors of treated mice were approximately 3.5-fold higher than those in the tumors of untreated mice at 14 d.p.i. When the cells were treated with trientine in vitro, mouse endothelial cells and bovine primary endothelial cells showed an approximately 10-fold higher sensitivity to trientine than QRsp-11 cells in terms of D37. However, the proportion of apoptotic cells in endothelial cells was significantly lower than that in QRsp-11 cells after treatment with trientine. These results show that apoptosis was induced in tumor cells by treatment with trientine in vivo and in vitro.

  13. Molecular Understanding of Growth Inhibitory Effect from Irradiated to Bystander Tumor Cells in Mouse Fibrosarcoma Tumor Model.

    PubMed

    Desai, Sejal; Srambikkal, Nishad; Yadav, Hansa D; Shetake, Neena; Balla, Murali M S; Kumar, Amit; Ray, Pritha; Ghosh, Anu; Pandey, B N

    2016-01-01

    Even though bystander effects pertaining to radiation risk assessment has been extensively studied, the molecular players of radiation induced bystander effect (RIBE) in the context of cancer radiotherapy are poorly known. In this regard, the present study is aimed to investigate the effect of irradiated tumor cells on the bystander counterparts in mouse fibrosarcoma (WEHI 164 cells) tumor model. Mice co-implanted with WEHI 164 cells γ-irradiated with a lethal dose of 15 Gy and unirradiated (bystander) WEHI 164 cells showed inhibited tumor growth, which was measured in terms of tumor volume and Luc+WEHI 164 cells based bioluminescence in vivo imaging. Histopathological analysis and other assays revealed decreased mitotic index, increased apoptosis and senescence in these tumor tissues. In addition, poor angiogenesis was observed in these tumor tissues, which was further confirmed by fluorescence imaging of tumor vascularisation and CD31 expression by immuno-histochemistry. Interestingly, the growth inhibitory bystander effect was exerted more prominently by soluble factors obtained from the irradiated tumor cells than the cellular fraction. Cytokine profiling of the supernatants obtained from the irradiated tumor cells showed increased levels of VEGF, Rantes, PDGF, GMCSF and IL-2 and decreased levels of IL-6 and SCF. Comparative proteomic analysis of the supernatants from the irradiated tumor cells showed differential expression of total 24 protein spots (21 up- and 3 down-regulated) when compared with the supernatant from the unirradiated control cells. The proteins which showed substantially higher level in the supernatant from the irradiated cells included diphosphate kinase B, heat shock cognate, annexin A1, angiopoietin-2, actin (cytoplasmic 1/2) and stress induced phosphoprotein 1. However, the levels of proteins like annexin A2, protein S100 A4 and cofilin was found to be lower in this supernatant. In conclusion, our results provided deeper insight about

  14. Molecular Understanding of Growth Inhibitory Effect from Irradiated to Bystander Tumor Cells in Mouse Fibrosarcoma Tumor Model

    PubMed Central

    Desai, Sejal; Srambikkal, Nishad; Yadav, Hansa D.; Shetake, Neena; Balla, Murali M. S.; Kumar, Amit; Ray, Pritha; Ghosh, Anu

    2016-01-01

    Even though bystander effects pertaining to radiation risk assessment has been extensively studied, the molecular players of radiation induced bystander effect (RIBE) in the context of cancer radiotherapy are poorly known. In this regard, the present study is aimed to investigate the effect of irradiated tumor cells on the bystander counterparts in mouse fibrosarcoma (WEHI 164 cells) tumor model. Mice co-implanted with WEHI 164 cells γ-irradiated with a lethal dose of 15 Gy and unirradiated (bystander) WEHI 164 cells showed inhibited tumor growth, which was measured in terms of tumor volume and Luc+WEHI 164 cells based bioluminescence in vivo imaging. Histopathological analysis and other assays revealed decreased mitotic index, increased apoptosis and senescence in these tumor tissues. In addition, poor angiogenesis was observed in these tumor tissues, which was further confirmed by fluorescence imaging of tumor vascularisation and CD31 expression by immuno-histochemistry. Interestingly, the growth inhibitory bystander effect was exerted more prominently by soluble factors obtained from the irradiated tumor cells than the cellular fraction. Cytokine profiling of the supernatants obtained from the irradiated tumor cells showed increased levels of VEGF, Rantes, PDGF, GMCSF and IL-2 and decreased levels of IL-6 and SCF. Comparative proteomic analysis of the supernatants from the irradiated tumor cells showed differential expression of total 24 protein spots (21 up- and 3 down-regulated) when compared with the supernatant from the unirradiated control cells. The proteins which showed substantially higher level in the supernatant from the irradiated cells included diphosphate kinase B, heat shock cognate, annexin A1, angiopoietin-2, actin (cytoplasmic 1/2) and stress induced phosphoprotein 1. However, the levels of proteins like annexin A2, protein S100 A4 and cofilin was found to be lower in this supernatant. In conclusion, our results provided deeper insight about

  15. Growth-Inhibitory and Apoptosis-Inducing Effects of Punica granatum L. var. spinosa (Apple Punice) on Fibrosarcoma Cell Lines

    PubMed Central

    Sineh Sepehr, Koushan; Baradaran, Behzad; Mazandarani, Masoumeh; Yousefi, Bahman; Abdollahpour Alitappeh, Meghdad; Khori, Vahid

    2014-01-01

    Purpose: Punica granatum L. var. granatum (Pomegranate), an herbaceous plant found in Iran, The aim of this study was to investigate the cytotoxic effects, induction of apoptosis, and the mechanism of cell death of ethanol extract from Punica granatum L. var. spinosa on the mouse fibrosarcoma cell line, WEHI-164. Methods: Various parts of the herbs were extracted from fruit using ethanol as the solvent, and the cytotoxicity and cell viability of the ethanolic extract were determined by the MTT assay. To determine whether necrosis or apoptosis is the predominant cause of cell death, cell death detection was performed using the ELISA method. The induction of apoptosis was confirmed using the terminal deoxynucleotidyl transferase- (TdT-) mediated dUTP nick end labeling (TUNEL) assay. Moreover, a sensitive immunoblotting technique was used to examine the production of Caspase-3 and Bcl2 proteins. Results: Our findings suggested that the ethalonic extract of Punica granatum L. var. spinosa altered cell morphology, decreased cell viability, suppressed cell proliferation and induced cell death in a time- and dose-dependent manner in WEHI-164 cells (IC50 = 229.024μg/ml), when compared to a chemotherapeutic anticancer drug, Toxol (Vesper Pharmaceuticals), with increased nucleosome production from apoptotic cells. Induction of apoptosis by the plant extract was proved by the decrease of pro-Caspase-3 and Bcl2 proteins and quantitatively confirmed by Immunoblotting analysis. Conclusion: The results obtained from the present study have demonstrated the growth-inhibitory effect of Ethanol Extracts from Punica granatum L. var. spinosa, and clearly showed that apoptosis was the major mechanism of in-vitro cell death induced by the extract. PMID:25671193

  16. Effect of cellular determination on oncogenic transformation by chemicals and oncogenes.

    PubMed Central

    Harrington, M A; Gonzales, F; Jones, P A

    1988-01-01

    Three developmentally determined myogenic cell lines derived from C3H 10T1/2 C18 (10T1/2) mouse embryo cells treated with 5-azacytidine were compared with the parental 10T1/2 line for their susceptibility to oncogenic transformation by 3-methylcholanthrene or the activated human c-Ha-ras oncogene. Neither the 10T1/2 cells nor the myogenic derivatives grew in soft agar or formed tumors in nude mice. In contrast to 10T1/2 cells, the three myogenic derivatives were not susceptible to transformation by 3-methylcholanthrene, so that cellular determination altered the response of 10T1/2 cells to chemical carcinogen. On the other hand, all cell types were transformed to a tumorigenic phenotype following transfection with the activated c-Ha-ras gene. The transfected myogenic cells expressed both the c-Ha-ras gene and the muscle determination gene MyoD1. In contrast to other reports, the presence of as many as six copies of the c-Ha-ras gene per genome did not prevent the formation of striated muscle cells which expressed immunologically detectable muscle-specific myosin. The expression of the c-Ha-ras gene does not therefore necessarily preclude the expression of the determination gene for myogenesis or prevent end-stage myogenic differentiation. Images PMID:2460742

  17. Identification of Novel Small Molecule Inhibitors of Oncogenic RET Kinase.

    PubMed

    Moccia, Marialuisa; Liu, Qingsong; Guida, Teresa; Federico, Giorgia; Brescia, Annalisa; Zhao, Zheng; Choi, Hwan Geun; Deng, Xianming; Tan, Li; Wang, Jinhua; Billaud, Marc; Gray, Nathanael S; Carlomagno, Francesca; Santoro, Massimo

    2015-01-01

    Oncogenic mutation of the RET receptor tyrosine kinase is observed in several human malignancies. Here, we describe three novel type II RET tyrosine kinase inhibitors (TKI), ALW-II-41-27, XMD15-44 and HG-6-63-01, that inhibit the cellular activity of oncogenic RET mutants at two digit nanomolar concentration. These three compounds shared a 3-trifluoromethyl-4-methylpiperazinephenyl pharmacophore that stabilizes the 'DFG-out' inactive conformation of RET activation loop. They blocked RET-mediated signaling and proliferation with an IC50 in the nM range in fibroblasts transformed by the RET/C634R and RET/M918T oncogenes. They also inhibited autophosphorylation of several additional oncogenic RET-derived point mutants and chimeric oncogenes. At a concentration of 10 nM, ALW-II-41-27, XMD15-44 and HG-6-63-01 inhibited RET kinase and signaling in human thyroid cancer cell lines carrying oncogenic RET alleles; they also inhibited proliferation of cancer, but not non-tumoral Nthy-ori-3-1, thyroid cells, with an IC50 in the nM range. The three compounds were capable of inhibiting the 'gatekeeper' V804M mutant which confers substantial resistance to established RET inhibitors. In conclusion, we have identified a type II TKI scaffold, shared by ALW-II-41-27, XMD15-44 and HG-6-63-01, that may be used as novel lead for the development of novel agents for the treatment of cancers harboring oncogenic activation of RET.

  18. Oncogenes and RNA splicing of human tumor viruses.

    PubMed

    Ajiro, Masahiko; Zheng, Zhi-Ming

    2014-09-01

    Approximately 10.8% of human cancers are associated with infection by an oncogenic virus. These viruses include human papillomavirus (HPV), Epstein-Barr virus (EBV), Merkel cell polyomavirus (MCV), human T-cell leukemia virus 1 (HTLV-1), Kaposi's sarcoma-associated herpesvirus (KSHV), hepatitis C virus (HCV) and hepatitis B virus (HBV). These oncogenic viruses, with the exception of HCV, require the host RNA splicing machinery in order to exercise their oncogenic activities, a strategy that allows the viruses to efficiently export and stabilize viral RNA and to produce spliced RNA isoforms from a bicistronic or polycistronic RNA transcript for efficient protein translation. Infection with a tumor virus affects the expression of host genes, including host RNA splicing factors, which play a key role in regulating viral RNA splicing of oncogene transcripts. A current prospective focus is to explore how alternative RNA splicing and the expression of viral oncogenes take place in a cell- or tissue-specific manner in virus-induced human carcinogenesis.

  19. Inhibition of ras oncogene: a novel approach to antineoplastic therapy.

    PubMed

    Scharovsky, O G; Rozados, V R; Gervasoni, S I; Matar, P

    2000-01-01

    The most frequently detected oncogene alterations, both in animal and human cancers, are the mutations in the ras oncogene family. These oncogenes are mutated or overexpressed in many human tumors, with a high incidence in tumors of the pancreas, thyroid, colon, lung and certain types of leukemia. Ras is a small guanine nucleotide binding protein that transduces biological information from the cell surface to cytoplasmic components within cells. The signal is transduced to the cell nucleus through second messengers, and it ultimately induces cell division. Oncogenic forms of p21(ras) lead to unregulated, sustained signaling through downstream effectors. The ras family of oncogenes is involved in the development of both primary tumors and metastases making it a good therapeutic target. Several therapeutic approaches to cancer have been developed pointing to reducing the altered gene product or to eliminating its biological function: (1) gene therapy with ribozymes, which are able to break down specific RNA sequences, or with antisense oligonucleotides, (2) immunotherapy through passive or active immunization protocols, and (3) inhibition of p21(ras) farnesylation either by inhibition of farnesyl transferase or synthesis inhibition of farnesyl moieties. PMID:10895051

  20. Oncogenes and RNA splicing of human tumor viruses.

    PubMed

    Ajiro, Masahiko; Zheng, Zhi-Ming

    2014-09-01

    Approximately 10.8% of human cancers are associated with infection by an oncogenic virus. These viruses include human papillomavirus (HPV), Epstein-Barr virus (EBV), Merkel cell polyomavirus (MCV), human T-cell leukemia virus 1 (HTLV-1), Kaposi's sarcoma-associated herpesvirus (KSHV), hepatitis C virus (HCV) and hepatitis B virus (HBV). These oncogenic viruses, with the exception of HCV, require the host RNA splicing machinery in order to exercise their oncogenic activities, a strategy that allows the viruses to efficiently export and stabilize viral RNA and to produce spliced RNA isoforms from a bicistronic or polycistronic RNA transcript for efficient protein translation. Infection with a tumor virus affects the expression of host genes, including host RNA splicing factors, which play a key role in regulating viral RNA splicing of oncogene transcripts. A current prospective focus is to explore how alternative RNA splicing and the expression of viral oncogenes take place in a cell- or tissue-specific manner in virus-induced human carcinogenesis. PMID:26038756

  1. Oncogenes and RNA splicing of human tumor viruses

    PubMed Central

    Ajiro, Masahiko; Zheng, Zhi-Ming

    2014-01-01

    Approximately 10.8% of human cancers are associated with infection by an oncogenic virus. These viruses include human papillomavirus (HPV), Epstein–Barr virus (EBV), Merkel cell polyomavirus (MCV), human T-cell leukemia virus 1 (HTLV-1), Kaposi's sarcoma-associated herpesvirus (KSHV), hepatitis C virus (HCV) and hepatitis B virus (HBV). These oncogenic viruses, with the exception of HCV, require the host RNA splicing machinery in order to exercise their oncogenic activities, a strategy that allows the viruses to efficiently export and stabilize viral RNA and to produce spliced RNA isoforms from a bicistronic or polycistronic RNA transcript for efficient protein translation. Infection with a tumor virus affects the expression of host genes, including host RNA splicing factors, which play a key role in regulating viral RNA splicing of oncogene transcripts. A current prospective focus is to explore how alternative RNA splicing and the expression of viral oncogenes take place in a cell- or tissue-specific manner in virus-induced human carcinogenesis. PMID:26038756

  2. Oncogenic Ras influences the expression of multiple lncRNAs.

    PubMed

    Kotake, Yojiro; Naemura, Madoka; Kitagawa, Kyoko; Niida, Hiroyuki; Tsunoda, Toshiyuki; Shirasawa, Senji; Kitagawa, Masatoshi

    2016-08-01

    Recent ultrahigh-density tiling array and large-scale transcriptome analysis have revealed that large numbers of long non-coding RNAs (lncRNAs) are transcribed in mammals. Several lncRNAs have been implicated in transcriptional regulation, organization of nuclear structure, and post-transcriptional processing. However, the regulation of expression of lncRNAs is less well understood. Here, we show that the exogenous and endogenous expression of an oncogenic form of small GTPase Ras (called oncogenic Ras) decrease the expression of lncRNA ANRIL (antisense non-coding RNA in the INK4 locus), which is involved in the regulation of cellular senescence. We also show that forced expression of oncogenic Ras increases the expression of lncRNA PANDA (p21 associated ncRNA DNA damage activated), which is involved in the regulation of apoptosis. Microarray analysis demonstrated that expression of multiple lncRNAs fluctuated by forced expression of oncogenic Ras. These findings indicate that oncogenic Ras regulates the expression of a large number of lncRNAs including functional lncRNAs, such as ANRIL and PANDA.

  3. Combined effects of treatment with trientine, a copper-chelating agent, and x-irradiation on tumor growth in transplantation model of a murine fibrosarcoma.

    PubMed

    Hayashi, Masanobu; Hirai, Ryou; Ishihara, Yuusuke; Horiguchi, Noboru; Endoh, Daiji; Okui, Toyo

    2007-10-01

    Combined effects of treatment with trientine, a copper-chelating agent, and X-irradiation on development of fibrosarcoma using a murine transplantation model in vivo and on cellular survival in vitro were examined. Copper contents in the tumors and serum of trientine-treated mice were significantly lower than those of untreated mice. The tumor volumes of mouse fibrosarcoma QRsp-11 cells increased more slowly in the trientine-treated and the X-irradiated mice than in the control mice from 10 to 24 days postinoculation. The extent of inhibition of tumor growth by X-irradiation at 3 Gy was similar to that obtained by treatment with trientine. A combination of trientine and X-irradiation at 3 Gy showed inhibitory effects on tumor growth similar to those obtained by X-irradiation at 6 Gy. The results showed that trientine and X-irradiation interacted additively in inhibition of tumor growth. When QRsp-11 cells and mouse and bovine endothelial cells were treated with trientine after X-irradiation, the surviving fractions of the cells with combined treatments were essentially consistent with the products of the surviving fractions of trientine-treated cells and those of X-irradiated cells. When the cells were pretreated with trientine and X-irradiated, the surviving fractions of the pretreated cells were lower than those of cells without treatment.

  4. miR-520c and miR-373 upregulate MMP9 expression by targeting mTOR and SIRT1, and activate the Ras/Raf/MEK/Erk signaling pathway and NF-κB factor in human fibrosarcoma cells.

    PubMed

    Liu, Ping; Wilson, Michael J

    2012-02-01

    MicroRNA 520c and 373 (miR-520c and miR-373) have been characterized as oncogenes and play critical roles in cancer cell metastasis. However, the relationship between these two microRNAs and matrix metalloproteinases (MMPs), which are important in cancer cell metastasis, remains unknown. Here, we report new evidence in which miR-520c and miR-373 effects in human fibrosarcoma HT1080 cells are associated with MMP9 activity, and this upregulation of MMP9 is not only at the activity and protein levels, but also at that of its mRNA. Our experimental data demonstrate that these effects occur not by direct binding to the MMP9 promoter, but by miR-520c and miR-373 directly targeting the 3'-untranslational region (UTR) of mRNAs of mTOR and SIRT1 (negative regulators of expression of MMP9 via inactivating the Ras/Raf/MEK/Erk signaling pathway and transcription factor NF-κB activity); and thus suppressing translation levels of SIRT1 and mTOR. Moreover, inhibition of key kinases of the Ras/Raf/MEK/Erk signaling pathway and Western blots for selected proteins further identified miR-520c and miR-373 as activating this signaling pathway and NF-κB. In conclusion, miR-520c and miR-373 increased the expression of MMP9 by directly targeting the 3'-UTRs of mRNAs of mTOR and SIRT1 and suppressing their translation; resulting in activation of the Ras/Raf/MEK/Erk signaling pathway and NF-κB; and, finally, increasing the mRNA, protein, and activity of MMP9 and enhancing cell migration and cell growth in 3D type I collagen gels.

  5. Piroxicam, indomethacin and aspirin action on a murine fibrosarcoma. Effects on tumour-associated and peritoneal macrophages.

    PubMed Central

    Valdéz, J C; Perdigón, G

    1991-01-01

    Growth of a methylcholanthrene-induced fibrosarcoma in BALB/c mice was accompanied by an increase in the activation state of tumour-associated macrophages (TAM), as measured by their FcIgG receptor expression, phagocytic index and beta-glucuronidase levels. All of these parameters were markedly higher in TAM than in peritoneal macrophages (PM) derived from the same animal. On the other hand, PM from tumour-bearing mice showed lower activation parameters than PM from normal animals. We also studied the effect on tumour development of three inhibitors of prostaglandin synthesis: indomethacin, piroxicam and aspirin. Intraperitoneal administration of these drugs during 8 d was followed by the regression of palpable tumours. Indomethacin (90 mg/d) induced 45% regression, while with piroxicam (two 400 mg/d doses and six 200 mg/d doses) and aspirin (1 mg/d) 32% and 30% regressions, respectively, were observed. The growth rate of nonregressing tumours, which had reached different volumes by the end of the treatment, was delayed to a similar extent by the three anti-inflammatory non-steroidal drugs (NSAID). With respect to TAM, the treatment did not induce any significant change in their activation state, though both piroxicam and indomethacin increased slightly the TAM number. In contrast, NSAID administration was followed by a remarkable increase in the activation parameters of PM when compared with PM from tumour-bearing mice receiving no treatment. Indeed, these parameters were in some cases higher than those of PM from normal mice. The leukocytosis (60,000/microliters) with neutrophilia (80%) induced by tumour growth on peripheral blood leukocytes (PBL) was reversed by the treatment to values close to normal, in parallel with the reduction of tumour size. A drop in haematocrit was also noted which was most probably a consequence of tumour growth rather than of the treatment. This study reveals that the three NSAID tested have a remarkable antitumour activity, which

  6. Oncogene addiction: pathways of therapeutic response, resistance, and road maps toward a cure.

    PubMed

    Pagliarini, Raymond; Shao, Wenlin; Sellers, William R

    2015-03-01

    A key goal of cancer therapeutics is to selectively target the genetic lesions that initiate and maintain cancer cell proliferation and survival. While most cancers harbor multiple oncogenic mutations, a wealth of preclinical and clinical data supports that many cancers are sensitive to inhibition of single oncogenes, a concept referred to as 'oncogene addiction'. Herein, we describe the clinical evidence supporting oncogene addiction and discuss common mechanistic themes emerging from the response and acquired resistance to oncogene-targeted therapies. Finally, we suggest several opportunities toward exploiting oncogene addiction to achieve curative cancer therapies.

  7. Oncogene addiction: pathways of therapeutic response, resistance, and road maps toward a cure

    PubMed Central

    Pagliarini, Raymond; Shao, Wenlin; Sellers, William R

    2015-01-01

    A key goal of cancer therapeutics is to selectively target the genetic lesions that initiate and maintain cancer cell proliferation and survival. While most cancers harbor multiple oncogenic mutations, a wealth of preclinical and clinical data supports that many cancers are sensitive to inhibition of single oncogenes, a concept referred to as ‘oncogene addiction’. Herein, we describe the clinical evidence supporting oncogene addiction and discuss common mechanistic themes emerging from the response and acquired resistance to oncogene-targeted therapies. Finally, we suggest several opportunities toward exploiting oncogene addiction to achieve curative cancer therapies. PMID:25680965

  8. Oncogenic kinase fusions: an evolving arena with innovative clinical opportunities

    PubMed Central

    Tabbò, Fabrizio; Pizzi, Marco; Kyriakides, Peter W.; Ruggeri, Bruce; Inghirami, Giorgio

    2016-01-01

    Cancer biology relies on intrinsic and extrinsic deregulated pathways, involving a plethora of intra-cellular and extra-cellular components. Tyrosine kinases are frequently deregulated genes, whose aberrant expression is often caused by major cytogenetic events (e.g. chromosomal translocations). The resulting tyrosine kinase fusions (TKFs) prompt the activation of oncogenic pathways, determining the biological and clinical features of the associated tumors. First reported half a century ago, oncogenic TKFs are now found in a large series of hematologic and solid tumors. The molecular basis of TKFs has been thoroughly investigated and tailored therapies against recurrent TKFs have recently been developed. This review illustrates the biology of oncogenic TKFs and their role in solid as well as hematological malignancies. We also address the therapeutic implications of TKFs and the many open issues concerning their clinical impact. PMID:26943776

  9. Developmental-stage-dependent transcriptional response to leukaemic oncogene expression

    PubMed Central

    Regha, Kakkad; Assi, Salam A.; Tsoulaki, Olga; Gilmour, Jane; Lacaud, Georges; Bonifer, Constanze

    2015-01-01

    Acute myeloid leukaemia (AML) is characterized by a block in myeloid differentiation the stage of which is dependent on the nature of the transforming oncogene and the developmental stage of the oncogenic hit. This is also true for the t(8;21) translocation that gives rise to the RUNX1-ETO fusion protein and initiates the most common form of human AML. Here we study the differentiation of mouse embryonic stem cells expressing an inducible RUNX1-ETO gene into blood cells as a model, combined with genome-wide analyses of transcription factor binding and gene expression. RUNX1-ETO interferes with both the activating and repressive function of its normal counterpart, RUNX1, at early and late stages of blood cell development. However, the response of the transcriptional network to RUNX1-ETO expression is developmental stage specific, highlighting the molecular mechanisms determining specific target cell expansion after an oncogenic hit. PMID:26018585

  10. Avian oncogenic virus differential diagnosis in chickens using oligonucleotide microarray.

    PubMed

    Wang, Lih-Chiann; Huang, Dean; Pu, Chang-En; Wang, Ching-Ho

    2014-12-15

    Avian oncogenic viruses include the avian leukosis virus (ALV), reticuloendotheliosis virus (REV) and Marek's disease virus (MDV). Multiple oncogenic viral infections are frequently seen, with even Marek's disease vaccines reported to be contaminated with ALV and REV. The gross lesions caused by avian oncogenic viruses often overlap, making differentiation diagnosis based on histopathology difficult. The objective of this study is to develop a rapid approach to simultaneously differentiate, subgroup and pathotype the avian oncogenic viruses. The oligonucleotide microarray was employed in this study. Particular DNA sequences were recognized using specific hybridization between the DNA target and probe on the microarray, followed with colorimetric development through enzyme reaction. With 10 designed probes, ALV-A, ALV-E, ALV-J, REV, MDV pathogenic and vaccine strains were clearly discriminated on the microarray with the naked eyes. The detection limit was 27 copy numbers, which was 10-100 times lower than multiplex PCR. Of 102 field samples screened using the oligonucleotide microarray, 32 samples were positive for ALV-E, 17 samples were positive for ALV-J, 6 samples were positive for REV, 4 samples were positive for MDV, 7 samples were positive for both ALV-A and ALV-E, 5 samples were positive for ALV-A, ALV-E and ALV-J, one sample was positive for both ALV-J and MDV, and 3 samples were positive for both REV and MDV. The oligonucleotide microarray, an easy-to-use, high-specificity, high-sensitivity and extendable assay, presents a potent technique for rapid differential diagnosis of avian oncogenic viruses and the detection of multiple avian oncogenic viral infections under field conditions.

  11. Molecular biology of oncogenic inflammatory processes. I. Non-oncogenic and oncogenic pathogens, intrinsic inflammatory reactions without pathogens, and microRNA/DNA interactions (Review).

    PubMed

    Sinkovics, Joseph G

    2012-02-01

    In some inflammasomes tumor cells are generated. The internal environment of the inflammasome is conducive to the induction of malignant transformation. Epigenetic changes initiate this process. The subverted stromal connective tissue cells act to promote and sustain the process of malignant trans-formation. In its early stages, the premalignant cells depend on paracrine circuitries for the reception of growth factors. The ligands are derived from the connective tissue, and the receptors are expressed on the recipient premalignant cells. The initial events are not a direct attack on the proto-oncogenes, and thus it may be entirely reversible. Epigenetic processes of hypermethylation of the genes at the promoters of tumor suppressor genes (to silence them), and deacetylation of the histones aimed at the promoters of proto-oncogenes (to activate them) are on-going. A large number of short RNA sequences (interfering, micro-, short hairpin, non-coding RNAs) silence tumor suppressor genes, by neutralizing their mRNAs. In a serial sequence oncogenes undergo amplifications, point-mutations, translocations and fusions. In its earliest stage, the process is reversible by demethylation of the silenced suppressor gene promoters (to reactivate them), or re-acetylation of the histones of the oncogene promoters, thus de-activating them. The external administration of histone deacetylase inhibitors usually leads to the restoration of histone acetylation. In time, the uncorrected processes solidify into constitutive and irreversible gene mutations. Some of the pathogens inducing inflammations with consquential malignant transformation contain oncogenic gene sequences (papilloma viruses, Epstein-Barr virus, Kaposi's sarcoma-associated herpesvirus, hepatitis B and C viruses, Merkel cell polyoma virus, Helicobacter pylori, enterotoxigenic Bacteroides fragilis). These induced malignancies may be multifocal. Other pathogens are devoid of any known oncogenic genomic sequences

  12. Oncogenic MicroRNAs: Key Players in Malignant Transformation

    PubMed Central

    Frixa, Tania; Donzelli, Sara; Blandino, Giovanni

    2015-01-01

    MicroRNAs (miRNAs) represent a class of non-coding RNAs that exert pivotal roles in the regulation of gene expression at the post-transcriptional level. MiRNAs are involved in many biological processes and slight modulations in their expression have been correlated with the occurrence of different diseases. In particular, alterations in the expression of miRNAs with oncogenic or tumor suppressor functions have been associated with carcinogenesis, malignant transformation, metastasis and response to anticancer treatments. This review will mainly focus on oncogenic miRNAs whose aberrant expression leads to malignancy. PMID:26694467

  13. Avian sarcoma virus 17 carries the jun oncogene.

    PubMed Central

    Maki, Y; Bos, T J; Davis, C; Starbuck, M; Vogt, P K

    1987-01-01

    Biologically active molecular clones of avian sarcoma virus 17 (ASV 17) contain a replication-defective proviral genome of 3.5 kilobases (kb). The genome retains partial gag and env sequences, which flank a cell-derived putative oncogene of 0.93 kb, termed jun. The jun gene lacks preserved coding domains of tyrosine-specific protein kinases. It also shows no significant nucleic acid homology with other known oncogenes. The probable transformation-specific protein in ASV 17-transformed cells is a 55-kDa gag-jun fusion product. Images PMID:3033666

  14. Protection of cats against progressive fibrosarcomas and persistent leukemia virus infection by vaccination with feline leukemia cells.

    PubMed

    Grant, C K; de Noronha, F; Tusch, C; Michalek, M T; McLane, M F

    1980-12-01

    Young cats (3-6 mo old) were challenged with oncogenic Snyder-Theilen feline sarcoma virus (FeSV) after vaccination with live or killed FL74 cat lymphoma cells. Compared with controls immunized with normal cat fibroblasts, the FL74-vaccinated cats exhibited increased resistance to FeSV-induced progressive primary and disseminated secondary tumors. Maximum protection was achieved by vaccination with live FL74 cells or with a low dose of freeze-thawed cells, but tumor cells inactivated by glutaraldehyde or paraformaldehyde were also effective. Infectious helper feline leukemia virus (FeLV) was detected in the blood of all cats after FeSV challenge, but the duration and magnitude of this viremia were reduced in animals that had been previously vaccinated with live, freeze-thawed, or paraformaldehyde-fixed cells. Although immunized cats were resistant to FeSV-induced tumors and FeLV viremia, no evidence was obtained to suggest that vaccination with dead cells induced detectable circulating antibody prior to challenge with oncogenic virus. After FeSV challenge, complement-dependent antibody to feline oncornavirus-associated cell membrane antigen (CDA-FOCMA) appeared at high titer in cats that were destined either to survive tumor-free or to develop small, localized, and eventually regressing tumors. Cats immunized with live FL74 cells developed CDA-FOCMA prior to challenge, and antibody appeared in these cats following an episode of transient FeLV viremia induced by virus replicating from the injected tumor cells. Therefore, apparently, a state of transient or persistent FeLV viremia regularly preceded detection of CDA-FOCMA activity. Several individually derived feline lymphoma cell lines were used as targets for CDA-FOCMA, and the results suggested that lytic activity is directed to multiple antigen determinants expressed differently by individual feline lymphomas.

  15. Mouse Elk oncogene maps to chromosome X and a novel Elk oncogene (Elk3) maps to chromosome 10

    SciTech Connect

    Tamai, Yoshitaka; Taketo, Makoto; Nozaki, Masami

    1995-03-20

    The Elk protein is a member of the Ets family found in both vertebrates and invertebrates. Human ELK1 encoded by ELK1 binds alone or together with serum response factor to DNA and regulates gene expression in a variety of biological processes. Using a panel of interspecific backcross mice, we have mapped the Elk oncogene (Elk) and a novel type Elk oncogene (Elk3), closely related to ELK1. Elk maps to Chr X, and Elk3 maps to the proximal region of Chr 10. 18 refs., 1 fig., 1 tab.

  16. Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma

    PubMed Central

    Northcott, Paul A; Lee, Catherine; Zichner, Thomas; Stütz, Adrian M; Erkek, Serap; Kawauchi, Daisuke; Shih, David JH; Hovestadt, Volker; Zapatka, Marc; Sturm, Dominik; Jones, David TW; Kool, Marcel; Remke, Marc; Cavalli, Florence; Zuyderduyn, Scott; Bader, Gary; VandenBerg, Scott; Esparza, Lourdes Adriana; Ryzhova, Marina; Wang, Wei; Wittmann, Andrea; Stark, Sebastian; Sieber, Laura; Seker-Cin, Huriye; Linke, Linda; Kratochwil, Fabian; Jäger, Natalie; Buchhalter, Ivo; Imbusch, Charles D; Zipprich, Gideon; Raeder, Benjamin; Schmidt, Sabine; Diessl, Nicolle; Wolf, Stephan; Wiemann, Stefan; Brors, Benedikt; Lawerenz, Chris; Eils, Jürgen; Warnatz, Hans-Jörg; Risch, Thomas; Yaspo, Marie-Laure; Weber, Ursula D; Bartholomae, Cynthia C; von Kalle, Christof; Turányi, Eszter; Hauser, Peter; Sanden, Emma; Darabi, Anna; Siesjö, Peter; Sterba, Jaroslav; Zitterbart, Karel; Sumerauer, David; van Sluis, Peter; Versteeg, Rogier; Volckmann, Richard; Koster, Jan; Schuhmann, Martin U; Ebinger, Martin; Grimes, H. Leighton; Robinson, Giles W; Gajjar, Amar; Mynarek, Martin; von Hoff, Katja; Rutkowski, Stefan; Pietsch, Torsten; Scheurlen, Wolfram; Felsberg, Jörg; Reifenberger, Guido; Kulozik, Andreas E; von Deimlmg, Andreas; Witt, Olaf; Eils, Roland; Gilbertson, Richard J; Korshunov, Andrey; Taylor, Michael D; Lichter, Peter; Korbel, Jan O; Wechsler-Reya, Robert J; Pfister, Stefan M

    2014-01-01

    Summary Paragraph Medulloblastoma is a highly malignant paediatric brain tumour currently treated with a combination of surgery, radiation, and chemotherapy, posing a considerable burden of toxicity to the developing child. Genomics has illuminated the extensive intertumoural heterogeneity of medulloblastoma, identifying four distinct molecular subgroups. Group 3 and Group 4 subgroup medulloblastomas account for the majority of paediatric cases; yet, oncogenic drivers for these subtypes remain largely unidentified. Here we describe a series of prevalent, highly disparate genomic structural variants, restricted to Groups 3 and 4, resulting in specific and mutually exclusive activation of the growth factor independent 1 family protooncogenes, GFI1 and GFI1B. Somatic structural variants juxtapose GFI1/GFI1B coding sequences proximal to active enhancer elements, including super-enhancers, instigating oncogenic activity. Our results, supported by evidence from mouse models, identify GFI1 and GFI1B as prominent medulloblastoma oncogenes and implicate ‘enhancer hijacking’ as an efficient mechanism driving oncogene activation in a childhood cancer. PMID:25043047

  17. Oncogenic cancer/testis antigens: prime candidates for immunotherapy.

    PubMed

    Gjerstorff, Morten F; Andersen, Mads H; Ditzel, Henrik J

    2015-06-30

    Recent developments have set the stage for immunotherapy as a supplement to conventional cancer treatment. Consequently, a significant effort is required to further improve efficacy and specificity, particularly the identification of optimal therapeutic targets for clinical testing. Cancer/testis antigens are immunogenic, highly cancer-specific, and frequently expressed in various types of cancer, which make them promising candidate targets for cancer immunotherapy, including cancer vaccination and adoptive T-cell transfer with chimeric T-cell receptors. Our current understanding of tumor immunology and immune escape suggests that targeting oncogenic antigens may be beneficial, meaning that identification of cancer/testis antigens with oncogenic properties is of high priority. Recent work from our lab and others provide evidence that many cancer/testis antigens, in fact, have oncogenic functions, including support of growth, survival and metastasis. This novel insight into the function of cancer/testis antigens has the potential to deliver more effective cancer vaccines. Moreover, immune targeting of oncogenic cancer/testis antigens in combination with conventional cytotoxic therapies or novel immunotherapies such as checkpoint blockade or adoptive transfer, represents a highly synergistic approach with the potential to improve patient survival.

  18. Oncogenic human papillomaviruses and ploidy in cervical lesions.

    PubMed Central

    Rihet, S; Lorenzato, M; Clavel, C

    1996-01-01

    AIM: To compare ploidy measurements obtained on tissue sections of selected low and high grade squamous intraepithelial lesions containing oncogenic HPV (types 16, 18 or 33) detected by in situ hybridisation (ISH) or PCR. METHODS: DNA ploidy was assessed by image cytometry after Feulgen staining of contiguous serial sections of eight lesions exhibiting atypical squamous cells or squamous atypia and 53 low and 63 high grade squamous intraepithelial lesions in which HPV had been detected by ISH or PCR. RESULTS: Aneuploidy was strongly associated with the presence of oncogenic HPV, being detected in 50% of lesions with squamous atypia and 75.5% of the low and 95.2% of the high grade squamous intraepithelial lesions. The multiploid profile was highly associated with high grade lesions and with the pattern of HPV DNA integration. CONCLUSIONS: The presence of aneuploidy is strongly suggestive of the presence of oncogenic HPV types. Combining the detection of HPV by ISH and PCR with DNA image cytometry may provide the pathologist and the physician with important prognostic information about low grade lesions, especially when these lesions have a multiploid DNA profile and contain oncogenic HPV. PMID:8944607

  19. The contrasting oncogenic and tumor suppressor roles of FES.

    PubMed

    Greer, Peter A; Kanda, Shigeru; Smithgall, Thomas E

    2012-01-01

    The FES gene was first discovered as a protein-tyrosine kinase-encoding retroviral oncogene. The ability of v-FES to transform cells in vitro and initiate cancer in vivo has been established by cell culture, engraftment and transgenic mouse studies. The corresponding cellular c-FES proto-oncogene encodes a cytoplasmic FES protein-tyrosine kinase with restrained catalytic activity relative to its retrovirally encoded homologs. These observations have stimulated a search for mutations or inappropriate expression of c-FES in human cancers and research aimed at understanding the functions of the FES kinase and its potential involvement in cancer and other diseases. Paradoxically, although first identified as an oncogene, genetic evidence has also implicated c-fes as a potential tumor suppressor. This review will describe observations from basic and translational research which shapes our current understanding of the physiological, cellular and molecular functions of the FES protein-tyrosine kinase and its potential roles in tumorigenesis. We also propose a model to reconcile the conflicting oncogenic and tumor suppressor roles of c-FES in tumorigenesis.

  20. Targeting Oncogenic Mutant p53 for Cancer Therapy

    PubMed Central

    Parrales, Alejandro; Iwakuma, Tomoo

    2015-01-01

    Among genetic alterations in human cancers, mutations in the tumor suppressor p53 gene are the most common, occurring in over 50% of human cancers. The majority of p53 mutations are missense mutations and result in the accumulation of dysfunctional p53 protein in tumors. These mutants frequently have oncogenic gain-of-function activities and exacerbate malignant properties of cancer cells, such as metastasis and drug resistance. Increasing evidence reveals that stabilization of mutant p53 in tumors is crucial for its oncogenic activities, while depletion of mutant p53 attenuates malignant properties of cancer cells. Thus, mutant p53 is an attractive druggable target for cancer therapy. Different approaches have been taken to develop small-molecule compounds that specifically target mutant p53. These include compounds that restore wild-type conformation and transcriptional activity of mutant p53, induce depletion of mutant p53, inhibit downstream pathways of oncogenic mutant p53, and induce synthetic lethality to mutant p53. In this review article, we comprehensively discuss the current strategies targeting oncogenic mutant p53 in cancers, with special focus on compounds that restore wild-type p53 transcriptional activity of mutant p53 and those reducing mutant p53 levels. PMID:26732534

  1. Folate levels modulate oncogene-induced replication stress and tumorigenicity

    PubMed Central

    Lamm, Noa; Maoz, Karin; Bester, Assaf C; Im, Michael M; Shewach, Donna S; Karni, Rotem; Kerem, Batsheva

    2015-01-01

    Chromosomal instability in early cancer stages is caused by replication stress. One mechanism by which oncogene expression induces replication stress is to drive cell proliferation with insufficient nucleotide levels. Cancer development is driven by alterations in both genetic and environmental factors. Here, we investigated whether replication stress can be modulated by both genetic and non-genetic factors and whether the extent of replication stress affects the probability of neoplastic transformation. To do so, we studied the effect of folate, a micronutrient that is essential for nucleotide biosynthesis, on oncogene-induced tumorigenicity. We show that folate deficiency by itself leads to replication stress in a concentration-dependent manner. Folate deficiency significantly enhances oncogene-induced replication stress, leading to increased DNA damage and tumorigenicity in vitro. Importantly, oncogene-expressing cells, when grown under folate deficiency, exhibit a significantly increased frequency of tumor development in mice. These findings suggest that replication stress is a quantitative trait affected by both genetic and non-genetic factors and that the extent of replication stress plays an important role in cancer development. PMID:26197802

  2. Notch signaling: switching an oncogene to a tumor suppressor

    PubMed Central

    Lobry, Camille; Oh, Philmo; Mansour, Marc R.; Look, A. Thomas

    2014-01-01

    The Notch signaling pathway is a regulator of self-renewal and differentiation in several tissues and cell types. Notch is a binary cell-fate determinant, and its hyperactivation has been implicated as oncogenic in several cancers including breast cancer and T-cell acute lymphoblastic leukemia (T-ALL). Recently, several studies also unraveled tumor-suppressor roles for Notch signaling in different tissues, including tissues where it was before recognized as an oncogene in specific lineages. Whereas involvement of Notch as an oncogene in several lymphoid malignancies (T-ALL, B-chronic lymphocytic leukemia, splenic marginal zone lymphoma) is well characterized, there is growing evidence involving Notch signaling as a tumor suppressor in myeloid malignancies. It therefore appears that Notch signaling pathway’s oncogenic or tumor-suppressor abilities are highly context dependent. In this review, we summarize and discuss latest advances in the understanding of this dual role in hematopoiesis and the possible consequences for the treatment of hematologic malignancies. PMID:24608975

  3. c-Abl antagonizes the YAP oncogenic function

    PubMed Central

    Keshet, R; Adler, J; Ricardo Lax, I; Shanzer, M; Porat, Z; Reuven, N; Shaul, Y

    2015-01-01

    YES-associated protein (YAP) is a central transcription coactivator that functions as an oncogene in a number of experimental systems. However, under DNA damage, YAP activates pro-apoptotic genes in conjunction with p73. This program switching is mediated by c-Abl (Abelson murine leukemia viral oncogene) via phosphorylation of YAP at the Y357 residue (pY357). YAP as an oncogene coactivates the TEAD (transcriptional enhancer activator domain) family transcription factors. Here we asked whether c-Abl regulates the YAP–TEAD functional module. We found that DNA damage, through c-Abl activation, specifically depressed YAP–TEAD-induced transcription. Remarkably, c-Abl counteracts YAP-induced transformation by interfering with the YAP–TEAD transcriptional program. c-Abl induced TEAD1 phosphorylation, but the YAP–TEAD complex remained unaffected. In contrast, TEAD coactivation was compromised by phosphomimetic YAP Y357E mutation but not Y357F, as demonstrated at the level of reporter genes and endogenous TEAD target genes. Furthermore, YAP Y357E also severely compromised the role of YAP in cell transformation, migration, anchorage-independent growth, and epithelial-to-mesenchymal transition (EMT) in human mammary MCF10A cells. These results suggest that YAP pY357 lost TEAD transcription activation function. Our results demonstrate that YAP pY357 inactivates YAP oncogenic function and establish a role for YAP Y357 phosphorylation in cell-fate decision. PMID:25361080

  4. Enhancing Anti-Tumor Efficacy of Doxorubicin by Non-Covalent Conjugation to Gold Nanoparticles – In Vitro Studies on Feline Fibrosarcoma Cell Lines

    PubMed Central

    Wójcik, Michał; Lewandowski, Wiktor; Król, Magdalena; Pawłowski, Karol; Mieczkowski, Józef; Lechowski, Roman; Zabielska, Katarzyna

    2015-01-01

    Background Feline injection-site sarcomas are malignant skin tumors of mesenchymal origin, the treatment of which is a challenge for veterinary practitioners. Methods of treatment include radical surgery, radiotherapy and chemotherapy. The most commonly used cytostatic drugs are cyclophosphamide, doxorubicin and vincristine. However, the use of cytostatics as adjunctive treatment is limited due to their adverse side-effects, low biodistribution after intravenous administration and multidrug resistance. Colloid gold nanoparticles are promising drug delivery systems to overcome multidrug resistance, which is a main cause of ineffective chemotherapy treatment. The use of colloid gold nanoparticles as building blocks for drug delivery systems is preferred due to ease of surface functionalization with various molecules, chemical stability and their low toxicity. Methods Stability and structure of the glutathione-stabilized gold nanoparticles non-covalently modified with doxorubicin (Au-GSH-Dox) was confirmed using XPS, TEM, FT-IR, SAXRD and SAXS analyses. MTT assay, Annexin V and Propidium Iodide Apoptosis assay and Rhodamine 123 and Verapamil assay were performed on 4 feline fibrosarcoma cell lines (FFS1WAW, FFS1, FFS3, FFS5). Statistical analyses were performed using Graph Pad Prism 5.0 (USA). Results A novel approach, glutathione-stabilized gold nanoparticles (4.3 +/- 1.1 nm in diameter) non-covalently modified with doxorubicin (Au-GSH-Dox) was designed and synthesized. A higher cytotoxic effect (p<0.01) of Au-GSH-Dox than that of free doxorubicin has been observed in 3 (FFS1, FFS3, FFS1WAW) out of 4 feline fibrosarcoma cell lines. The effect has been correlated to the activity of glycoprotein P (main efflux pump responsible for multidrug resistance). Conclusions The results indicate that Au-GSH-Dox may be a potent new therapeutic agent to increase the efficacy of the drug by overcoming the resistance to doxorubicin in feline fibrosarcoma cell lines. Moreover, as

  5. Distant metastatic spread of molecularly proven infantile fibrosarcoma of the chest in a 2-month-old girl: case report and review of literature.

    PubMed

    van Grotel, Martine; Blanco, Esther; Sebire, Neil J; Slater, Olga; Chowdhury, Tanzina; Anderson, John

    2014-04-01

    Infantile fibrosarcoma (IFS) is a malignant neoplasm, arising in children younger than 2 years of age and with a hallmark chromosomal translocation t(12;15)(p13;q26) encoding an ETV6-NTRK3 fusion oncoprotein. A review of the world literature found no reported cases of molecularly proven IFS with distant metastatic spread at presentation. We report the case of a 2-month-old infant girl presenting with a chest wall primary IFS bearing and expressing the ETV6-NTRK3 fusion, who had several pulmonary metastatic deposits at diagnosis. She achieved complete remission with chemotherapy and surgery. To our knowledge, this is the first reported case of molecularly proven IFS with distant metastatic spread.

  6. Salinomycin causes migration and invasion of human fibrosarcoma cells by inducing MMP-2 expression via PI3-kinase, ERK-1/2 and p38 kinase pathways.

    PubMed

    Yu, Seon-Mi; Kim, Song Ja

    2016-06-01

    Salinomycin (SAL) is a polyether ionophore antibiotic that has recently been shown to regulate a variety of cellular responses in various human cancer cells. However, the effects of SAL on metastatic capacity of HT1080 human fibrosarcoma cells have not been elucidated. We investigated the effect of SAL on migration and invasion, with emphasis on the expression and activation of matrix metalloproteinase (MMP)-2 in HT1080 human fibrosarcoma cells. Treatment of SAL promoted the expression and activation of MMP-2 in a dose- and time-dependent manner, as detected by western blot analysis, gelatin zymography, and real-time polymerase chain reaction. SAL also increased metastatic capacities, as determined by an increase in the migration and invasion of cells using the wound healing assay and the invasion assay, respectively. To confirm the detailed molecular mechanisms of these effects, we measured the activation of phosphoinositide 3 kinase (PI3-kinase) and mitogen-activated protein kinase (MAPK)s (ERK-1/2 and p38 kinase), as detected by the phosphorylated proteins through western blot analysis. SAL treatment increased the phosphorylation of Akt and MAPKs. Inhibition of PI3-kinase, ERK-1/2, and p38 kinase with LY294002, PD98059, and SB203580, respectively, in the presence of SAL suppressed the metastatic capacity by reducing MMP-2 expression, as determined by gelatin zymography. Our results indicate that the PI3-kinase and MAPK signaling pathways are involved in migration and invasion of HT1080 through induction of MMP-2 expression and activation. In conclusion, SAL significantly increases the metastatic capacity of HT1080 cells by inducing MMP-2 expression via PI3-kinase and MAPK pathways. Our results suggest that SAL may be a potential agent for the study of cancer metastatic capacities.

  7. Beta-sitosterol-induced-apoptosis is mediated by the activation of ERK and the downregulation of Akt in MCA-102 murine fibrosarcoma cells.

    PubMed

    Moon, Dong-Oh; Lee, Kyeong-Jun; Choi, Yung Hyun; Kim, Gi-Young

    2007-08-01

    Beta-sitosterol (SITO) is a potential candidate for cancer chemotherapy, however, little is known about the cellular and molecular mechanisms in cancer cells. We herein identified how SITO induces anti-proliferation and cell death in MCA-102 fibrosarcoma cells. SITO exposure induced-apoptosis and the cell death resulted from a significant loss of the Bcl-2 and the inhibitor of apoptosis protein (IAP) family (XIAP, cIAP-1 and cIAP-2), and increased Bax with an alteration of p53 and p21. SITO-induced cell death significantly also increased caspase activity and poly(ADP-ribose) polymerase (PARP) cleavage, and caspase-3 inhibitor z-DEVD-fmk significantly inhibited SITO-induced cell death. These data suggest that the activation of caspase-3 is associated with SITO-induced-apoptosis. Treatment with SITO also induced phosphorylation of extracellular-signal regulating kinase (ERK) and p38 mitogen-activated protein kinase (MARK), but not c-Jun N-terminal kinase (JNK). A specific ERK inhibitor PD98059 significantly blocks SITO-induced-apoptosis, whereas a JNK inhibitor SP600125 has no affect. A p38 MAPK inhibitor SB203580 very slightly suppressed cell death. The induction of apoptosis was also accompanied by an inactivation of phosphatidylinositol 3-kinase (PI3K)/Akt, and PI3K inhibitor LY29004 significantly increases SITO-induced cell death. These findings provide evidence demonstrating that the proapoptotic effect of SITO is mediated through the activation of ERK and the block of the PI3K/Akt signal pathway in MCA-102 cells. Therefore, SITO has a strong potential as a therapeutic agent for preventing cancers such as fibrosarcoma.

  8. A Network-Based Model of Oncogenic Collaboration for Prediction of Drug Sensitivity

    PubMed Central

    Laderas, Ted G.; Heiser, Laura M.; Sönmez, Kemal

    2015-01-01

    Tumorigenesis is a multi-step process, involving the acquisition of multiple oncogenic mutations that transform cells, resulting in systemic dysregulation that enables proliferation, invasion, and other cancer hallmarks. The goal of precision medicine is to identify therapeutically-actionable mutations from large-scale omic datasets. However, the multiplicity of oncogenes required for transformation, known as oncogenic collaboration, makes assigning effective treatments difficult. Motivated by this observation, we propose a new type of oncogenic collaboration where mutations in genes that interact with an oncogene may contribute to the oncogene’s deleterious potential, a new genomic feature that we term “surrogate oncogenes.” Surrogate oncogenes are representatives of these mutated subnetworks that interact with oncogenes. By mapping mutations to a protein–protein interaction network, we determine the significance of the observed distribution using permutation-based methods. For a panel of 38 breast cancer cell lines, we identified a significant number of surrogate oncogenes in known oncogenes such as BRCA1 and ESR1, lending credence to this approach. In addition, using Random Forest Classifiers, we show that these significant surrogate oncogenes predict drug sensitivity for 74 drugs in the breast cancer cell lines with a mean error rate of 30.9%. Additionally, we show that surrogate oncogenes are predictive of survival in patients. The surrogate oncogene framework incorporates unique or rare mutations from a single sample, and therefore has the potential to integrate patient-unique mutations into drug sensitivity predictions, suggesting a new direction in precision medicine and drug development. Additionally, we show the prevalence of significant surrogate oncogenes in multiple cancers from The Cancer Genome Atlas, suggesting that surrogate oncogenes may be a useful genomic feature for guiding pancancer analyses and assigning therapies across many tissue

  9. Functional implications of mitochondrial reactive oxygen species generated by oncogenic viruses

    PubMed Central

    Choi, Young Bong; Harhaj, Edward William

    2014-01-01

    Between 15–20% of human cancers are associated with infection by oncogenic viruses. Oncogenic viruses, including HPV, HBV, HCV and HTLV-1, target mitochondria to influence cell proliferation and survival. Oncogenic viral gene products also trigger the production of reactive oxygen species which can elicit oxidative DNA damage and potentiate oncogenic host signaling pathways. Viral oncogenes may also subvert mitochondria quality control mechanisms such as mitophagy and metabolic adaptation pathways to promote virus replication. Here, we will review recent progress on viral regulation of mitophagy and metabolic adaptation and their roles in viral oncogenesis. PMID:25580106

  10. Regulation of oncogene-induced cell cycle exit and senescence by chromatin modifiers

    PubMed Central

    David, Gregory

    2012-01-01

    Oncogene activation leads to dramatic changes in numerous biological pathways controlling cellular division, and results in the initiation of a transcriptional program that promotes transformation. Conversely, it also triggers an irreversible cell cycle exit called cellular senescence, which allows the organism to counteract the potentially detrimental uncontrolled proliferation of damaged cells. Therefore, a tight transcriptional control is required at the onset of oncogenic signal, coordinating both positive and negative regulation of gene expression. Not surprisingly, numerous chromatin modifiers contribute to the cellular response to oncogenic stress. While these chromatin modifiers were initially thought of as mere mediators of the cellular response to oncogenic stress, recent studies have uncovered a direct and specific regulation of chromatin modifiers by oncogenic signals. We review here the diverse functions of chromatin modifiers in the cellular response to oncogenic stress, and discuss the implications of these findings on the regulation of cell cycle progression and proliferation by activated oncogenes. PMID:22825329

  11. Malignant transformation of diploid human fibroblasts by transfection of oncogenes

    SciTech Connect

    McCormick, J.J.

    1992-01-01

    This document consist of brief reports prepared by postdoctoral students supported by the project, each describing his accomplishments under the grant. Topics include (1) Malignant Transformation of MSU-1. 1 Cells by Gamma Radiation, (2) Correlation between Levels of ras Expression and Presence of Transformed Phenotypes Including Tumorigenicity, Using a Modulatable Promoter, (3) Relation between Specific rad Oncogene Expression, (4) Correlation of Genetic Changes in Fibroblastic Tumors with Malignancies, (5)Transformation of MSU-1.1 Cells by sis Oncogene, (6) Malignant Transformation of MSU-1.0 Cells, (7) Correlation of Urokinase Plasminogen Activation (mu-PA) with Malignant Phenotype, (8)Two Dimensional Gel Electrophoresis Studies of the Proteins of the Major Cell Strains of the MSU-1 Family of Cells, and (9) Correlation between Proteinase Activity Levels and Malignancy.

  12. SUMOylated IRF-1 shows oncogenic potential by mimicking IRF-2

    SciTech Connect

    Park, Sun-Mi; Chae, Myounghee; Kim, Bo-Kyoung; Seo, Taegun; Jang, Ik-Soon; Choi, Jong-Soon; Kim, Il-Chul; Lee, Je-Ho; Park, Junsoo

    2010-01-01

    Interferon regulatory factor-1 (IRF-1) is an interferon-induced transcriptional activator that suppresses tumors by impeding cell proliferation. Recently, we demonstrated that the level of SUMOylated IRF-1 is elevated in tumor cells, and that SUMOylation of IRF-1 attenuates its tumor-suppressive function. Here we report that SUMOylated IRF-1 mimics IRF-2, an antagonistic repressor, and shows oncogenic potential. To demonstrate the role of SUMOylated IRF-1 in tumorigenesis, we used SUMO-IRF-1 recombinant protein. Stable expression of SUMO-IRF-1 in NIH3T3 cells resulted in focus formation and anchorage-independent growth in soft agar. Inoculation of SUMO-IRF-1-transfected cells into athymic nude mice resulted in tumor formation and infiltration of adipose tissues. Finally, we demonstrated that SUMO-IRF-1 transforms NIH3T3 cells in a dose-dependent manner suggesting that SUMOylated IRF-1 may act as an oncogenic protein in tumor cells.

  13. The oncogenic action of ionizing radiation on rat skin

    SciTech Connect

    Burns, F.J.; Garte, S.J.

    1990-01-01

    An extensive experiment involving approximately 400 rats exposed to the neon ion beam at the Bevalac in Berkeley, CA and to electrons is nearing completion. Progress is described in three areas corresponding to the specific aims of the proposal: (1) carcinogenesis and DNA strand breaks in rat skin following exposure by the neon ions or electrons; (2) oncogene activation in radiation-induced rat skin cancers; (3) DNA strand breaks in the epidermis as a function of radiation penetration. 59 refs., 4 tabs.

  14. Oncogenic association of specific human papillomavirus types with cervical neoplasia.

    PubMed

    Lorincz, A T; Temple, G F; Kurman, R J; Jenson, A B; Lancaster, W D

    1987-10-01

    Molecular hybridization analysis of human papillomavirus (HPV) DNA from 190 cervical biopsy specimens from women in the United States, Brazil, and Peru revealed viral sequences in 2 (9%) of 23 biopsy specimens of normal mature squamous epithelium, 7 (44%) of 16 biopsy specimens of metaplastic squamous epithelia, 60 (77%) of 78 cervical intraepithelial neoplasia (CIN), 57 (89%) of 64 invasive squamous carcinomas, and 8 (89%) of 9 endocervical adenocarcinomas. HPV typing by DNA hybridization revealed HPV 6 and HPV 11 sequences in metaplastic squamous epithelia, CIN I, and CIN II, but not in CIN III lesions or invasive carcinomas. HPV 16 was detected in metaplastic epithelium and in nearly half of the invasive squamous carcinomas and adenocarcinomas. It was present in 31% of CIN lesions, increasing in frequency with the severity of CIN from 20% of CIN I to 50% of CIN III. HPV 16 showed a striking difference in geographic distribution, being detected in 36% of the carcinomas from the United States compared to 64% of the carcinomas from Brazil and Peru. HPV 18 was found in metaplastic epithelia and in 17% of carcinomas but in only 1% of CIN lesions. HPV 31 was not found in metaplastic epithelium but was present in 6% of carcinomas and in 18% of CIN lesions. In addition, a group of uncharacterized HPVs, not corresponding to any of the probes used, was found in 5% of normal and metaplastic epithelia and in 18% of CIN and 19% of invasive cancers. These results suggest that individual HPV types that infect the cervix have varying degrees of oncogenic association. HPV 6 and HPV 11 appear to have very little oncogenic association, HPV 31 has low oncogenic association, and HPV 16 and HPV 18 have high oncogenic association. PMID:2821311

  15. Oncogene regulation of tumor suppressor genes in tumorigenesis.

    PubMed

    Sung, Jimmy; Turner, Joel; McCarthy, Susan; Enkemann, Steve; Li, Chan Gong; Yan, Perally; Huang, Timothy; Yeatman, Timothy J

    2005-02-01

    We attempted to demonstrate whether there is an epigenetic link between oncogenes and tumor suppression genes in tumorigenesis. We designed a high throughput model to identify a candidate group of tumor suppressor genes potentially regulated by oncogenes. Gene expression profiling of mock-transfected versus v-src-transfected 3Y1 rat fibroblasts identified significant overexpression of DNA methyltransferase 1, the enzyme responsible for aberrant genome methylation, in v-src-transfected fibroblasts. Secondary microarray analyses identified a number of candidate tumor suppressor genes that were down-regulated by v-src but were also re-expressed following treatment with 5-aza-2'-deoxycytidine, a potent demethylating agent. This candidate group included both tumor suppressor genes that are known to be silenced by DNA hypermethylation and those that have not been previously identified with promoter hypermethylation. To further validate our model, we identified tsg, a tumor suppressor gene that was shown to be down-regulated by v-src and found to harbor dense promoter hypermethylation. Our model demonstrates a cooperative relationship between oncogenes and tumor suppressor genes mediated through promoter hypermethylation.

  16. Oncogenic transformation of diverse gastrointestinal tissues in primary organoid culture

    PubMed Central

    Li, Xingnan; Nadauld, Lincoln; Ootani, Akifumi; Corney, David C.; Pai, Reetesh K.; Gevaert, Olivier; Cantrell, Michael A.; Rack, Paul G.; Neal, James T.; Chan, Carol W-M.; Yeung, Trevor; Gong, Xue; Yuan, Jenny; Wilhelmy, Julie; Robine, Sylvie; Attardi, Laura D.; Plevritis, Sylvia K.; Hung, Kenneth E.; Chen, Chang-Zheng; Ji, Hanlee P.; Kuo, Calvin J.

    2014-01-01

    The application of primary organoid cultures containing epithelial and mesenchymal elements to cancer modeling holds promise for combining the accurate multilineage differentiation and physiology of in vivo systems with the facile in vitro manipulation of transformed cell lines. Here, a single air-liquid interface culture method was used without modification to engineer oncogenic mutations into primary epithelial/mesenchymal organoids from mouse colon, stomach and pancreas. Pancreatic and gastric organoids exhibited dysplasia upon KrasG12D expression and/or p53 loss, and readily generated adenocarcinoma upon in vivo transplantation. In contrast, primary colon organoids required combinatorial Apc, p53, KrasG12D and Smad4 mutations for progressive transformation to invasive adenocarcinoma-like histology in vitro and tumorigenicity in vivo, recapitulating multi-hit models of colorectal cancer (CRC), and versus more promiscuous transformation of small intestinal organoids. Colon organoid culture functionally validated the microRNA miR-483 as a dominant driver oncogene at the Insulin-like growth factor-2 (IGF2) 11p15.5 CRC amplicon, inducing dysplasia in vitro and tumorigenicity in vivo. These studies demonstrate the general utility of a highly tractable primary organoid system for cancer modeling and driver oncogene validation in diverse gastrointestinal tissues. PMID:24859528

  17. Oncogenic transformation of diverse gastrointestinal tissues in primary organoid culture.

    PubMed

    Li, Xingnan; Nadauld, Lincoln; Ootani, Akifumi; Corney, David C; Pai, Reetesh K; Gevaert, Olivier; Cantrell, Michael A; Rack, Paul G; Neal, James T; Chan, Carol W-M; Yeung, Trevor; Gong, Xue; Yuan, Jenny; Wilhelmy, Julie; Robine, Sylvie; Attardi, Laura D; Plevritis, Sylvia K; Hung, Kenneth E; Chen, Chang-Zheng; Ji, Hanlee P; Kuo, Calvin J

    2014-07-01

    The application of primary organoid cultures containing epithelial and mesenchymal elements to cancer modeling holds promise for combining the accurate multilineage differentiation and physiology of in vivo systems with the facile in vitro manipulation of transformed cell lines. Here we used a single air-liquid interface culture method without modification to engineer oncogenic mutations into primary epithelial and mesenchymal organoids from mouse colon, stomach and pancreas. Pancreatic and gastric organoids exhibited dysplasia as a result of expression of Kras carrying the G12D mutation (Kras(G12D)), p53 loss or both and readily generated adenocarcinoma after in vivo transplantation. In contrast, primary colon organoids required combinatorial Apc, p53, Kras(G12D) and Smad4 mutations for progressive transformation to invasive adenocarcinoma-like histology in vitro and tumorigenicity in vivo, recapitulating multi-hit models of colorectal cancer (CRC), as compared to the more promiscuous transformation of small intestinal organoids. Colon organoid culture functionally validated the microRNA miR-483 as a dominant driver oncogene at the IGF2 (insulin-like growth factor-2) 11p15.5 CRC amplicon, inducing dysplasia in vitro and tumorigenicity in vivo. These studies demonstrate the general utility of a highly tractable primary organoid system for cancer modeling and driver oncogene validation in diverse gastrointestinal tissues.

  18. Targeting Bcl-2 stability to sensitize cells harboring oncogenic ras.

    PubMed

    Peng, Bo; Ganapathy, Suthakar; Shen, Ling; Huang, Junchi; Yi, Bo; Zhou, Xiaodong; Dai, Wei; Chen, Changyan

    2015-09-01

    The pro-survival factor Bcl-2 and its family members are critical determinants of the threshold of the susceptibility of cells to apoptosis. Studies are shown that cells harboring an oncogenic ras were extremely sensitive to the inhibition of protein kinase C (PKC) and Bcl-2 could antagonize this apoptotic process. However, it remains unrevealed how Bcl-2 is being regulated in this apoptotic process. In this study, we investigate the role of Bcl-2 stability in sensitizing the cells harboring oncogenic K-ras to apoptosis triggered by PKC inhibitor GO6976. We demonstrated that Bcl-2 in Swiss3T3 cells ectopically expressing or murine lung cancer LKR cells harboring K-ras rapidly underwent ubiquitin-dependent proteasome pathway after the treatment of GO6976, accompanied with induction of apoptosis. In this process, Bcl-2 formed the complex with Keap-1 and Cul3. The mutation of serine-17 and deletion of BH-2 or 4 was required for Bcl-2 ubiquitination and degradation, which elevate the signal threshold for the induction of apoptosis in the cells following PKC inhibition. Thus, Bcl-2 appears an attractive target for the induction of apoptosis by PKC inhibition in cancer cells expressing oncogenic K-ras. PMID:26041886

  19. Therapeutic opportunities involving cellular oncogenes: novel approaches fostered by biotechnology.

    PubMed

    Huber, B E

    1989-01-01

    Biotechnological processes are having a major impact on many industrial sectors, including the pharmaceutical industry. The contributions of recombinant DNA and hybridoma technologies to modern therapeutics include production of natural and unnatural peptides, subunit vaccines, monoclonal antibodies and nucleic acid hybridization probes for in vitro and in vivo diagnostics and biological imaging, therapeutic monoclonal antibodies as tissue-specific delivery systems or as agents to confer passive immunity, production of therapeutic targets for rational drug design, and the use of cloned enzymes as stereospecific catalysts in large-scale production of small medicinal molecules. Biotechnological advances have led to the identification of a discrete set of genes, oncogenes, which may be essential contributing factors for a great variety and number of human cancers. In addition, biotechnological innovations are fostering the exploitation of oncogenes as novel therapeutic targets for cancer diagnosis, prognosis, and treatment. Because oncogenes are activated in transformation by either qualitative or quantitative mechanisms, however, different biotechnology-based therapeutic approaches are required for each class.

  20. PRG3 induces Ras-dependent oncogenic cooperation in gliomas

    PubMed Central

    Yakubov, Eduard; Chen, Daishi; Broggini, Thomas; Sehm, Tina; Majernik, Gökce Hatipoglu; Hock, Stefan W.; Schwarz, Marc; Engelhorn, Tobias; Doerfler, Arnd; Buchfelder, Michael; Eyupoglu, Ilker Y.; Savaskan, Nicolai E.

    2016-01-01

    Malignant gliomas are one of the most devastating cancers in humans. One characteristic hallmark of malignant gliomas is their cellular heterogeneity with frequent genetic lesions and disturbed gene expression levels conferring selective growth advantage. Here, we report on the neuronal-associated growth promoting gene PRG3 executing oncogenic cooperation in gliomas. We have identified perturbed PRG3 levels in human malignant brain tumors displaying either elevated or down-regulated PRG3 levels compared to non-transformed specimens. Further, imbalanced PRG3 levels in gliomas foster Ras-driven oncogenic amplification with increased proliferation and cell migration although angiogenesis was unaffected. Hence, PRG3 interacts with RasGEF1 (RasGRF1/CDC25), undergoes Ras-induced challenges, whereas deletion of the C-terminal domain of PRG3 (PRG3ΔCT) inhibits Ras. Moreover PRG3 silencing makes gliomas resistant to Ras inhibition. In vivo disequilibrated PRG3 gliomas show aggravated proliferation, invasion, and deteriorate clinical outcome. Thus, our data show that the interference with PRG3 homeostasis amplifies oncogenic properties and foster the malignancy potential in gliomas. PMID:27058420

  1. CRAF R391W is a melanoma driver oncogene

    PubMed Central

    Atefi, Mohammad; Titz, Bjoern; Tsoi, Jennifer; Avramis, Earl; Le, Allison; Ng, Charles; Lomova, Anastasia; Lassen, Amanda; Friedman, Michael; Chmielowski, Bartosz; Ribas, Antoni; Graeber, Thomas G.

    2016-01-01

    Approximately 75% of melanomas have known driver oncogenic mutations in BRAF, NRAS, GNA11 or GNAQ, while the mutations providing constitutive oncogenic signaling in the remaining melanomas are not known. We established a melanoma cell line from a tumor with none of the common driver mutations. This cell line demonstrated a signaling profile similar to BRAF-mutants, but lacked sensitivity to the BRAF inhibitor vemurafenib. RNA-seq mutation data implicated CRAF R391W as the alternative driver mutation of this melanoma. CRAF R391W was homozygous and over expressed. These melanoma cells were highly sensitive to CRAF, but not BRAF knockdown. In reconstitution experiments, CRAF R391W, but not CRAF WT, transformed NIH3T3 cells in soft-agar colony formation assays, increased kinase activity in vitro, induced MAP kinase signaling and conferred vemurafenib resistance. MAP kinase inducing activity was dependent on CRAF dimerization. Thus, CRAF is a bona fide alternative oncogene for BRAF/NRAS/GNAQ/GNA11 wild type melanomas. PMID:27273450

  2. KRAS insertion mutations are oncogenic and exhibit distinct functional properties

    PubMed Central

    White, Yasmine; Bagchi, Aditi; Van Ziffle, Jessica; Inguva, Anagha; Bollag, Gideon; Zhang, Chao; Carias, Heidi; Dickens, David; Loh, Mignon; Shannon, Kevin; Firestone, Ari J.

    2016-01-01

    Oncogenic KRAS mutations introduce discrete amino acid substitutions that reduce intrinsic Ras GTPase activity and confer resistance to GTPase-activating proteins (GAPs). Here we discover a partial duplication of the switch 2 domain of K-Ras encoding a tandem repeat of amino acids G60_A66dup in a child with an atypical myeloproliferative neoplasm. K-Ras proteins containing this tandem duplication or a similar five amino acid E62_A66dup mutation identified in lung and colon cancers transform the growth of primary myeloid progenitors and of Ba/F3 cells. Recombinant K-RasG60_A66dup and K-RasE62_A66dup proteins display reduced intrinsic GTP hydrolysis rates, accumulate in the GTP-bound conformation and are resistant to GAP-mediated GTP hydrolysis. Remarkably, K-Ras proteins with switch 2 insertions are impaired for PI3 kinase binding and Akt activation, and are hypersensitive to MEK inhibition. These studies illuminate a new class of oncogenic KRAS mutations and reveal unexpected plasticity in oncogenic Ras proteins that has diagnostic and therapeutic implications. PMID:26854029

  3. Activation of oncogenes by radon progeny and x-rays

    SciTech Connect

    Ling, C.C.

    1990-01-01

    The overall goal of this proposal is to study the carcinogenic effect of both high and low LET radiation at the molecular level, utilizing techniques developed in molecular biology, cancer cell biology and radiation biology. The underlying assumption is that malignant transformation of normal cells is a multistep process requiring two or more molecular events in the genomic DNA. We hypothesize that radiation may induce such events in one or more steps of the multistep process. We will use in vitro models of transformation that reproduce the stepwise progression of normal cells toward the transformed phenotype and ask whether radiation can provide the necessary activating function at discrete steps along this path. Our strategy involves transfecting into normal primary cells a variety of cloned oncogenes that are known to supply only some of the functions necessary for full transformation. These partially transformed'' cells will be the targets for irradiation by x-rays and alpha particles. The results will provide the basis for assessing the ability of ionizing radiation to activate oncogenic functions that complement'' the oncogene already present in the transfected cells and produce the fully transformed phenotype. Progress is described. 121 refs.

  4. Activation of a human c-K-ras oncogene.

    PubMed Central

    Yamamoto, F; Perucho, M

    1984-01-01

    The human lung carcinomas PR310 and PR371 contain activated c-K-ras oncogenes. The oncogene of PR371 was found to present a mutation at codon 12 of the first coding exon which substitutes cysteine for glycine in the encoded p21 protein. We report here that the transforming gene of PR310 tumor contains a mutation in the second coding exon. An A----T transversion at codon 61 results in the incorporation of histidine instead of glutamine in the c-K-ras gene product. By constructing c-K-ras/c-H-ras chimeric genes we show that this point mutation is sufficient to confer transforming potential to ras genes, and that a hybrid ras gene coding for a protein mutant at both codons 12 and 61 is also capable of transforming NIH3T3 cells. The relative transforming potency of p21 proteins encoded by ras genes mutant at codons 12, 61 or both has been analyzed. Our studies also show that the coding exons of ras genes, including the fourth, can be interchanged and the chimeric p21 ras proteins retain their oncogenic ability in normal rodent established cell lines. PMID:6096811

  5. PVT1: a rising star among oncogenic long noncoding RNAs.

    PubMed

    Colombo, Teresa; Farina, Lorenzo; Macino, Giuseppe; Paci, Paola

    2015-01-01

    It is becoming increasingly clear that short and long noncoding RNAs critically participate in the regulation of cell growth, differentiation, and (mis)function. However, while the functional characterization of short non-coding RNAs has been reaching maturity, there is still a paucity of well characterized long noncoding RNAs, even though large studies in recent years are rapidly increasing the number of annotated ones. The long noncoding RNA PVT1 is encoded by a gene that has been long known since it resides in the well-known cancer risk region 8q24. However, a couple of accidental concurrent conditions have slowed down the study of this gene, that is, a preconception on the primacy of the protein-coding over noncoding RNAs and the prevalent interest in its neighbor MYC oncogene. Recent studies have brought PVT1 under the spotlight suggesting interesting models of functioning, such as competing endogenous RNA activity and regulation of protein stability of important oncogenes, primarily of the MYC oncogene. Despite some advancements in modelling the PVT1 role in cancer, there are many questions that remain unanswered concerning the precise molecular mechanisms underlying its functioning. PMID:25883951

  6. PVT1: A Rising Star among Oncogenic Long Noncoding RNAs

    PubMed Central

    Colombo, Teresa; Farina, Lorenzo; Macino, Giuseppe; Paci, Paola

    2015-01-01

    It is becoming increasingly clear that short and long noncoding RNAs critically participate in the regulation of cell growth, differentiation, and (mis)function. However, while the functional characterization of short non-coding RNAs has been reaching maturity, there is still a paucity of well characterized long noncoding RNAs, even though large studies in recent years are rapidly increasing the number of annotated ones. The long noncoding RNA PVT1 is encoded by a gene that has been long known since it resides in the well-known cancer risk region 8q24. However, a couple of accidental concurrent conditions have slowed down the study of this gene, that is, a preconception on the primacy of the protein-coding over noncoding RNAs and the prevalent interest in its neighbor MYC oncogene. Recent studies have brought PVT1 under the spotlight suggesting interesting models of functioning, such as competing endogenous RNA activity and regulation of protein stability of important oncogenes, primarily of the MYC oncogene. Despite some advancements in modelling the PVT1 role in cancer, there are many questions that remain unanswered concerning the precise molecular mechanisms underlying its functioning. PMID:25883951

  7. Utilizing signature-score to identify oncogenic pathways of cholangiocarcinoma

    PubMed Central

    Hsiao, Tzu-Hung; Chen, Hung-I Harry; Lu, Jo-Yang; Lin, Pei-Ying; Keller, Charles; Comerford, Sarah; Tomlinson, Gail E.; Chen, Yidong

    2013-01-01

    Extracting maximal information from gene signature sets (GSSs) via microarray-based transcriptional profiling involves assigning function to up and down regulated genes. Here we present a novel sample scoring method called Signature-score (S-score) which can be used to quantify the expression pattern of tumor samples from previously identified gene signature sets. A simulation result demonstrated an improved accuracy and robustness by S-score method comparing with other scoring methods. By applying the S-score method to cholangiocarcinoma (CAC), an aggressive hepatic cancer that arises from bile ducts cells, we identified enriched oncogenic pathways in two large CAC data sets. Thirteen pathways were enriched in CAC compared with normal liver and bile duct. Moreover, using S-score, we were able to dissect correlations between CAC-associated oncogenic pathways and Gene Ontology function. Two major oncogenic clusters and associated functions were identified. Cluster 1, which included beta-catenin and Ras, showed a positive correlation with the cell cycle, while cluster 2, which included TGF-beta, cytokeratin 19 and EpCAM was inversely correlated with immune function. We also used S-score to identify pathways that are differentially expressed in CAC and hepatocellular carcinoma (HCC), the more common subtype of liver cancer. Our results demonstrate the utility and effectiveness of S-score in assigning functional roles to tumor-associated gene signature sets and in identifying potential therapeutic targets for specific liver cancer subtypes. PMID:23905013

  8. Melanoma proliferation and chemoresistance controlled by the DEK oncogene

    PubMed Central

    Khodadoust, Michael S.; Verhaegen, Monique; Kappes, Ferdinand; Riveiro-Falkenbach, Erica; Cigudosa, Juan C.; Kim, David S.L.; Chinnaiyan, Arul M.; Markovitz, David M.; Soengas, María S.

    2009-01-01

    Gain of chromosome 6p is a consistent feature of advanced melanomas. However, the identity of putative oncogene(s) associated with this amplification has remained elusive. The chromatin remodeling factor DEK is an attractive candidate as it maps to 6p (i.e. within common melanoma-amplified loci). Moreover, DEK expression is increased in metastatic melanomas, although the functional relevance of this induction remains unclear. Importantly, in other tumor types, DEK can display various tumorigenic effects, in part through its ability to promote proliferation and inhibit p53-dependent apoptosis. Here, we report a generalized upregulation of DEK protein in cells from aggressive melanomas. In addition, we provide genetic and mechanistic evidence to support a key role of DEK in the maintenance of malignant phenotypes of melanoma cells. Specifically, we show that long-term DEK downregulation by independent shRNAs resulted in premature senescence of a variety of melanoma cell lines. Short-term abrogation of DEK expression was also functionally relevant, as it attenuated the traditional resistance of melanomas to DNA damaging agents. Unexpectedly, DEK shRNA had no impact on p53 levels or p53-dependent apoptosis. Instead, we identified a new role for DEK in the transcriptional activation of the antiapoptotic MCL-1. Other MCL-1 related factors such as BCL-2 or BCL-xL were unaffected by changes in the endogenous levels of DEK, indicating a selective impact of this gene on the apoptotic machinery of melanoma cells. These results provide support for DEK as a long sought-after oncogene mapping at chromosome 6, with novel functions in melanoma proliferation and chemoresistance. PMID:19679545

  9. Oncogenic NRAS Primes Primary Acute Myeloid Leukemia Cells for Differentiation.

    PubMed

    Brendel, Cornelia; Teichler, Sabine; Millahn, Axel; Stiewe, Thorsten; Krause, Michael; Stabla, Kathleen; Ross, Petra; Huynh, Minh; Illmer, Thomas; Mernberger, Marco; Barckhausen, Christina; Neubauer, Andreas

    2015-01-01

    RAS mutations are frequently found among acute myeloid leukemia patients (AML), generating a constitutively active signaling protein changing cellular proliferation, differentiation and apoptosis. We have previously shown that treatment of AML patients with high-dose cytarabine is preferentially beneficial for those harboring oncogenic RAS. On the basis of a murine AML cell culture model, we ascribed this effect to a RAS-driven, p53-dependent induction of differentiation. Hence, in this study we sought to confirm the correlation between RAS status and differentiation of primary blasts obtained from AML patients. The gene expression signature of AML blasts with oncogenic NRAS indeed corresponded to a more mature profile compared to blasts with wildtype RAS, as demonstrated by gene set enrichment analysis (GSEA) and real-time PCR analysis of myeloid ecotropic viral integration site 1 homolog (MEIS1) in a unique cohort of AML patients. In addition, in vitro cell culture experiments with established cell lines and a second set of primary AML cells showed that oncogenic NRAS mutations predisposed cells to cytarabine (AraC) driven differentiation. Taken together, our findings show that AML with inv(16) and NRAS mutation have a differentiation gene signature, supporting the notion that NRAS mutation may predispose leukemic cells to AraC induced differentiation. We therefore suggest that promotion of differentiation pathways by specific genetic alterations could explain the superior treatment outcome after therapy in some AML patient subgroups. Whether a differentiation gene expression status may generally predict for a superior treatment outcome in AML needs to be addressed in future studies. PMID:25901794

  10. Autism Linked to Increased Oncogene Mutations but Decreased Cancer Rate

    PubMed Central

    Zimmerman, M. Bridget; Mahajan, Vinit B.; Bassuk, Alexander G.

    2016-01-01

    Autism spectrum disorder (ASD) is one phenotypic aspect of many monogenic, hereditary cancer syndromes. Pleiotropic effects of cancer genes on the autism phenotype could lead to repurposing of oncology medications to treat this increasingly prevalent neurodevelopmental condition for which there is currently no treatment. To explore this hypothesis we sought to discover whether autistic patients more often have rare coding, single-nucleotide variants within tumor suppressor and oncogenes and whether autistic patients are more often diagnosed with neoplasms. Exome-sequencing data from the ARRA Autism Sequencing Collaboration was compared to that of a control cohort from the Exome Variant Server database revealing that rare, coding variants within oncogenes were enriched for in the ARRA ASD cohort (p<1.0x10-8). In contrast, variants were not significantly enriched in tumor suppressor genes. Phenotypically, children and adults with ASD exhibited a protective effect against cancer, with a frequency of 1.3% vs. 3.9% (p<0.001), but the protective effect decreased with age. The odds ratio of neoplasm for those with ASD relative to controls was 0.06 (95% CI: 0.02, 0.19; p<0.0001) in the 0 to 14 age group; 0.35 (95% CI: 0.14, 0.87; p = 0.024) in the 15 to 29 age group; 0.41 (95% CI: 0.15, 1.17; p = 0.095) in the 30 to 54 age group; and 0.49 (95% CI: 0.14, 1.74; p = 0.267) in those 55 and older. Both males and females demonstrated the protective effect. These findings suggest that defects in cellular proliferation, and potentially senescence, might influence both autism and neoplasm, and already approved drugs targeting oncogenic pathways might also have therapeutic value for treating autism. PMID:26934580

  11. Suppression of Myc oncogenic activity by ribosomal protein haploinsufficiency.

    PubMed

    Barna, Maria; Pusic, Aya; Zollo, Ornella; Costa, Maria; Kondrashov, Nadya; Rego, Eduardo; Rao, Pulivarthi H; Ruggero, Davide

    2008-12-18

    The Myc oncogene regulates the expression of several components of the protein synthetic machinery, including ribosomal proteins, initiation factors of translation, RNA polymerase III and ribosomal DNA. Whether and how increasing the cellular protein synthesis capacity affects the multistep process leading to cancer remains to be addressed. Here we use ribosomal protein heterozygote mice as a genetic tool to restore increased protein synthesis in Emu-Myc/+ transgenic mice to normal levels, and show that the oncogenic potential of Myc in this context is suppressed. Our findings demonstrate that the ability of Myc to increase protein synthesis directly augments cell size and is sufficient to accelerate cell cycle progression independently of known cell cycle targets transcriptionally regulated by Myc. In addition, when protein synthesis is restored to normal levels, Myc-overexpressing precancerous cells are more efficiently eliminated by programmed cell death. Our findings reveal a new mechanism that links increases in general protein synthesis rates downstream of an oncogenic signal to a specific molecular impairment in the modality of translation initiation used to regulate the expression of selective messenger RNAs. We show that an aberrant increase in cap-dependent translation downstream of Myc hyperactivation specifically impairs the translational switch to internal ribosomal entry site (IRES)-dependent translation that is required for accurate mitotic progression. Failure of this translational switch results in reduced mitotic-specific expression of the endogenous IRES-dependent form of Cdk11 (also known as Cdc2l and PITSLRE), which leads to cytokinesis defects and is associated with increased centrosome numbers and genome instability in Emu-Myc/+ mice. When accurate translational control is re-established in Emu-Myc/+ mice, genome instability is suppressed. Our findings demonstrate how perturbations in translational control provide a highly specific outcome

  12. Oncogenic rearrangements driving ionizing radiation–associated human cancer

    PubMed Central

    Santoro, Massimo; Carlomagno, Francesca

    2013-01-01

    The Chernobyl nuclear disaster has caused a remarkable increase in radiation-induced papillary thyroid carcinoma in children and young adults. In this issue of the JCI, Ricarte-Filho and colleagues demonstrate that chromosomal rearrangements are the oncogenic “drivers” in most post-Chernobyl carcinomas and that they often lead to unscheduled activation of the MAPK signaling pathway. These findings represent a major step forward in our understanding of radiation-induced carcinogenesis and suggest various hypotheses about the mechanisms underlying the formation and selection of gene rearrangements during cancer cell evolution. PMID:24162670

  13. Hedgehog Signal Transduction: Key Players, Oncogenic Drivers, and Cancer Therapy.

    PubMed

    Pak, Ekaterina; Segal, Rosalind A

    2016-08-22

    The Hedgehog (Hh) signaling pathway governs complex developmental processes, including proliferation and patterning within diverse tissues. These activities rely on a tightly regulated transduction system that converts graded Hh input signals into specific levels of pathway activity. Uncontrolled activation of Hh signaling drives tumor initiation and maintenance. However, recent entry of pathway-specific inhibitors into the clinic reveals mixed patient responses and thus prompts further exploration of pathway activation and inhibition. In this review, we share emerging insights into regulated and oncogenic Hh signaling, supplemented with updates on the development and use of Hh pathway-targeted therapies.

  14. T cell intrinsic USP15 deficiency promotes excessive IFN-γ production and an immunosuppressive tumor microenvironment in MCA-induced fibrosarcoma

    PubMed Central

    Zou, Qiang; Jin, Jin; Xiao, Yichuan; Zhou, Xiaofei; Hu, Hongbo; Cheng, Xuhong; Kazimi, Nasser; Ullrich, Stephen E; Sun, Shao-Cong

    2015-01-01

    USP15 is a deubiquitinase that negatively regulates activation of naïve CD4+ T cells and generation of IFN-γ-producing T helper 1 (Th1) cells. USP15 deficiency in mice promotes antitumor T cell responses in a transplantable cancer model; however, it has remained unclear how deregulated T cell activation impacts primary tumor development during the prolonged interplay between tumors and the immune system. Here, we find that the USP15-deficient mice are hypersensitive to methylcholantrene (MCA)-induced fibrosarcomas. Excessive IFN-γ production in USP15-deficient mice promotes expression of the immunosuppressive molecule PD-L1 and the chemokine CXCL12, causing accumulation of T-bet+ regulatory T cells and CD11b+Gr-1+ myeloid-derived suppressor cells at tumor site. Mixed bone marrow adoptive transfer studies further reveals a T cell-intrinsic role for USP15 in regulating IFN-γ production and tumor development. These findings suggest that T cell intrinsic USP15 deficiency causes excessive production of IFN-γ, which promotes an immunosuppressive tumor microenvironment, during MCA-induced primary tumorigenesis. PMID:26686633

  15. Major histocompatibility complex class I genes in murine fibrosarcoma IC9 are down regulated at the level of the chromatin structure.

    PubMed Central

    Maschek, U; Pülm, W; Segal, S; Hämmerling, G J

    1989-01-01

    The fibrosarcoma IC9 is deficient in the expression of the major histocompatibility complex class I genes Kb, Kk, and Dk and expresses only the Db molecule. Because class I deficiency may enable tumor cells to escape the immune response by cytotoxic T lymphocytes, we investigated why the class I genes are not expressed. Expression of the silent class I genes could not be induced, but all known DNA-binding factors specific for class I genes could be detected in nuclear extracts of IC9 cells. After cloning of the silent Kb gene from the IC9 cells and subsequent transfection of this cloned Kb gene into LTK- and IC9 cells, normal Kb antigens were expressed on the cell surface of both cell lines. Digestion of the chromatin of IC9 cells with micrococcal nuclease and DNase I showed a decreased nuclease sensitivity of the silent class I genes in comparison with active genes and the absence of DNase I hypersensitive sites in the promoter region of the silent Dk gene. These findings demonstrate that class I expression is turned off by a cis-acting regulatory mechanism at the level of the chromatin structure. Images PMID:2506438

  16. Immunohistochemical observations on tumor suppressor gene p53 status in mouse fibrosarcoma following in-vivo photodynamic therapy: the role of xanthine oxidase activity

    NASA Astrophysics Data System (ADS)

    Ziolkowski, Piotr P.; Symonowicz, Krzysztof; Milnerowicz, Artur; Osiecka, Beata J.

    1997-12-01

    Tumor suppressor gene p53 expression in a mouse fibrosarcoma following in-vivo photodynamic therapy has been studied using the immunohistochemical method. Photodynamic treatment involved injections of the well known sensitizer -- hematoporphyrin derivative at the doses 1.25 and 2.5 mg/kg of body weight and irradiations at the doses 25 and 50 J/sq cm. Glass slide preparations from PDT-treated tumors were obtained at different time points (15, 60 minutes, 2 and 24 hours) after therapy, subsequently stained for wild type/mutant p53, and assessed for positive reaction. High PDT doses (HpD -- 2.5 mg/kg; light dose -- 50 J/sq cm) correlated with decreased expression of p53 in tumor cells. The other part of the study was directed to measure the xanthine oxidase (XO) activity in the tumor cells. PDT included injections of HpD and light exposure at the same doses as for p53 study. We observed a complete inhibition of the enzyme activity. The slight increase in XO activity was found following treatment with either light or HpD alone.

  17. Biological study of the effect of water soluble [N-(2-hydroxybenzyl)-L-aspartato] gallium complexes on breast carcinoma and fibrosarcoma cells.

    PubMed

    Mohsen, Ahmed; Saby, Charles; Collery, Philippe; Sabry, Gilane Mohamed; Hassan, Rasha Elsherif; Badawi, Abdelfattah; Jeannesson, Pierre; Desmaële, Didier; Morjani, Hamid

    2016-10-01

    Two water soluble gallium complexes described as [Ga(III)LCl], where L is the deprotonated form of N-2-hydroxybenzyl aspartic acid derivatives, were synthesized and characterized by (1)H NMR, (13)C NMR, FT-IR, mass spectrometry, and elemental analysis. The 2-(5-chloro-2-hydroxybenzylamino)succinic acid derivative (GS2) has been found to be a promising anticancer drug candidate. This compound was found to be more cytotoxic against human breast carcinoma MDA-MB231 and fibrosarcoma HT-1080 cell lines than the unsubstituted derivative and GaCl3. GS2 was able to induce apoptosis through downregulation of AKT phosphorylation, G2M arrest in cell cycle, and caspase 3/7 pathway. This gallium complex was found to induce an increase in mitochondrial ROS level in HT-1080 cells but not in MDA-MB231 cells. This suggests that the mechanism of action of GS2 would not be mediated by the drug-induced oxidative stress but probably by directly and indirectly inhibiting the AKT cell-signaling pathway. PMID:27484500

  18. Biological study of the effect of water soluble [N-(2-hydroxybenzyl)-L-aspartato] gallium complexes on breast carcinoma and fibrosarcoma cells.

    PubMed

    Mohsen, Ahmed; Saby, Charles; Collery, Philippe; Sabry, Gilane Mohamed; Hassan, Rasha Elsherif; Badawi, Abdelfattah; Jeannesson, Pierre; Desmaële, Didier; Morjani, Hamid

    2016-10-01

    Two water soluble gallium complexes described as [Ga(III)LCl], where L is the deprotonated form of N-2-hydroxybenzyl aspartic acid derivatives, were synthesized and characterized by (1)H NMR, (13)C NMR, FT-IR, mass spectrometry, and elemental analysis. The 2-(5-chloro-2-hydroxybenzylamino)succinic acid derivative (GS2) has been found to be a promising anticancer drug candidate. This compound was found to be more cytotoxic against human breast carcinoma MDA-MB231 and fibrosarcoma HT-1080 cell lines than the unsubstituted derivative and GaCl3. GS2 was able to induce apoptosis through downregulation of AKT phosphorylation, G2M arrest in cell cycle, and caspase 3/7 pathway. This gallium complex was found to induce an increase in mitochondrial ROS level in HT-1080 cells but not in MDA-MB231 cells. This suggests that the mechanism of action of GS2 would not be mediated by the drug-induced oxidative stress but probably by directly and indirectly inhibiting the AKT cell-signaling pathway.

  19. Expression of the 72-kD heat shock protein is induced by ultraviolet A radiation in a human fibrosarcoma cell line.

    PubMed

    Trautinger, F; Kokesch, C; Klosner, G; Knobler, R M; Kindas-Mügge, I

    1999-06-01

    The 72-kD heat shock protein (hsp72) belongs to a family of stress inducible proteins (heat shock proteins, hsp) and its expression is associated with increased survival of cells in culture following exposure to ultraviolet radiation (UV). Hsp72 can be induced by a number of stresses, including heat, cold, and toxic chemicals. The purpose of this study was to evaluate whether UV is able to activate transcription of hsp72. The human fibrosarcoma cell line HT1080 was used for these experiments because hsp72 is not detectable in these cells under normal culture conditions. Cells were exposed to UVA and UVB using a solar simulating source and hsp72 was determined in whole cell extracts by immunoblotting. For inhibition of mRNA and protein synthesis cordycepin (20 microg/ml) and cycloheximide (10 microg/ml) were added to the cultures, respectively. UVA-induced lipid peroxidation was inhibited by alpha-tocopherol and butylated hydroxytoluene (BHT). UVA but not UVB induced hsp72 with maximal expression at 40 J/cm2, 8-12 h after exposure. Induction was blocked by cordycepin as well as by cycloheximide indicating that both, mRNA and protein synthesis, are required for UVA-induction of hsp72. Inhibition of cell lipid peroxidation with alpha-tocopherol and BHT had no effect on hsp72 expression. These results suggest that induction of hsp72 is part of an adaptive response mechanism in human cells to UV-related stress.

  20. Retroviruses Hijack Chromatin Loops to Drive Oncogene Expression and Highlight the Chromatin Architecture around Proto-Oncogenic Loci

    PubMed Central

    Pattison, Jillian M.; Wright, Jason B.; Cole, Michael D.

    2015-01-01

    The majority of the genome consists of intergenic and non-coding DNA sequences shown to play a major role in different gene regulatory networks. However, the specific potency of these distal elements as well as how these regions exert function across large genomic distances remains unclear. To address these unresolved issues, we closely examined the chromatin architecture around proto-oncogenic loci in the mouse and human genomes to demonstrate a functional role for chromatin looping in distal gene regulation. Using cell culture models, we show that tumorigenic retroviral integration sites within the mouse genome occur near existing large chromatin loops and that this chromatin architecture is maintained within the human genome as well. Significantly, as mutagenesis screens are not feasible in humans, we demonstrate a way to leverage existing screens in mice to identify disease relevant human enhancers and expose novel disease mechanisms. For instance, we characterize the epigenetic landscape upstream of the human Cyclin D1 locus to find multiple distal interactions that contribute to the complex cis-regulation of this cell cycle gene. Furthermore, we characterize a novel distal interaction upstream of the Cyclin D1 gene which provides mechanistic evidence for the abundant overexpression of Cyclin D1 occurring in multiple myeloma cells harboring a pathogenic translocation event. Through use of mapped retroviral integrations and translocation breakpoints, our studies highlight the importance of chromatin looping in oncogene expression, elucidate the epigenetic mechanisms crucial for distal cis-regulation, and in one particular instance, explain how a translocation event drives tumorigenesis through upregulation of a proto-oncogene. PMID:25799187

  1. Oncogenic programmes and Notch activity: an 'organized crime'?

    PubMed

    Dominguez, Maria

    2014-04-01

    The inappropriate Notch signalling can influence virtually all aspect of cancer, including tumour-cell growth, survival, apoptosis, angiogenesis, invasion and metastasis, although it does not do this alone. Hence, elucidating the partners of Notch that are active in cancer is now the focus of much intense research activity. The genetic toolkits available, coupled to the small size and short life of the fruit fly Drosophila melanogaster, makes this an inexpensive and effective animal model, suited to large-scale cancer gene discovery studies. The fly eye is not only a non-vital organ but its stereotyped size and disposition also means it is easy to screen for mutations that cause tumours and metastases and provides ample opportunities to test cancer theories and to unravel unanticipated nexus between Notch and other cancer genes, or to discover unforeseen Notch's partners in cancer. These studies suggest that Notch's oncogenic capacity is brought about not simply by increasing signal strength but through partnerships, whereby oncogenes gain more by cooperating than acting individually, as in a ring 'organized crime'. PMID:24780858

  2. Secreted primary human malignant mesothelioma exosome signature reflects oncogenic cargo.

    PubMed

    Greening, David W; Ji, Hong; Chen, Maoshan; Robinson, Bruce W S; Dick, Ian M; Creaney, Jenette; Simpson, Richard J

    2016-01-01

    Malignant mesothelioma (MM) is a highly-aggressive heterogeneous malignancy, typically diagnosed at advanced stage. An important area of mesothelioma biology and progression is understanding intercellular communication and the contribution of the secretome. Exosomes are secreted extracellular vesicles shown to shuttle cellular cargo and direct intercellular communication in the tumour microenvironment, facilitate immunoregulation and metastasis. In this study, quantitative proteomics was used to investigate MM-derived exosomes from distinct human models and identify select cargo protein networks associated with angiogenesis, metastasis, and immunoregulation. Utilising bioinformatics pathway/network analyses, and correlation with previous studies on tumour exosomes, we defined a select mesothelioma exosomal signature (mEXOS, 570 proteins) enriched in tumour antigens and various cancer-specific signalling (HPGD/ENO1/OSMR) and secreted modulators (FN1/ITLN1/MAMDC2/PDGFD/GBP1). Notably, such circulating cargo offers unique insights into mesothelioma progression and tumour microenvironment reprogramming. Functionally, we demonstrate that oncogenic exosomes facilitate the migratory capacity of fibroblast/endothelial cells, supporting the systematic model of MM progression associated with vascular remodelling and angiogenesis. We provide biophysical and proteomic characterisation of exosomes, define a unique oncogenic signature (mEXOS), and demonstrate the regulatory capacity of exosomes in cell migration/tube formation assays. These findings contribute to understanding tumour-stromal crosstalk in the context of MM, and potential new diagnostic and therapeutic extracellular targets.

  3. Insulator dysfunction and oncogene activation in IDH mutant gliomas

    PubMed Central

    Flavahan, William A.; Drier, Yotam; Liau, Brian B.; Gillespie, Shawn M.; Venteicher, Andrew S.; Stemmer-Rachamimov, Anat O.; Suvà, Mario L.; Bernstein, Bradley E.

    2015-01-01

    Gain-of-function IDH mutations are initiating events that define major clinical and prognostic classes of gliomas1,2. Mutant IDH protein produces a novel onco-metabolite, 2-hydroxyglutarate (2-HG), that interferes with iron-dependent hydroxylases, including the TET family of 5′-methylcytosine hydroxylases3–7. TET enzymes catalyze a key step in the removal of DNA methylation8,9. IDH mutant gliomas thus manifest a CpG island methylator phenotype (G-CIMP)10,11, though the functional significance of this altered epigenetic state remains unclear. Here we show that IDH mutant gliomas exhibit hyper-methylation at CTCF binding sites, compromising binding of this methylation-sensitive insulator protein. Reduced CTCF binding is associated with loss of insulation between topological domains and aberrant gene activation. We specifically demonstrate that loss of CTCF at a domain boundary permits a constitutive enhancer to aberrantly interact with the receptor tyrosine kinase gene PDGFRA, a prominent glioma oncogene. Treatment of IDH mutant gliomaspheres with demethylating agent partially restores insulator function and down-regulates PDGFRA. Conversely, CRISPR-mediated disruption of the CTCF motif in IDH wildtype gliomaspheres up-regulates PDGFRA and increases proliferation. Our study suggests that IDH mutations promote gliomagenesis by disrupting chromosomal topology and allowing aberrant regulatory interactions that induce oncogene expression. PMID:26700815

  4. Oncogenic programmes and Notch activity: an 'organized crime'?

    PubMed

    Dominguez, Maria

    2014-04-01

    The inappropriate Notch signalling can influence virtually all aspect of cancer, including tumour-cell growth, survival, apoptosis, angiogenesis, invasion and metastasis, although it does not do this alone. Hence, elucidating the partners of Notch that are active in cancer is now the focus of much intense research activity. The genetic toolkits available, coupled to the small size and short life of the fruit fly Drosophila melanogaster, makes this an inexpensive and effective animal model, suited to large-scale cancer gene discovery studies. The fly eye is not only a non-vital organ but its stereotyped size and disposition also means it is easy to screen for mutations that cause tumours and metastases and provides ample opportunities to test cancer theories and to unravel unanticipated nexus between Notch and other cancer genes, or to discover unforeseen Notch's partners in cancer. These studies suggest that Notch's oncogenic capacity is brought about not simply by increasing signal strength but through partnerships, whereby oncogenes gain more by cooperating than acting individually, as in a ring 'organized crime'.

  5. KIT oncogene inhibition drives intratumoral macrophage M2 polarization

    PubMed Central

    Cavnar, Michael J.; Zeng, Shan; Kim, Teresa S.; Sorenson, Eric C.; Ocuin, Lee M.; Balachandran, Vinod P.; Seifert, Adrian M.; Greer, Jonathan B.; Popow, Rachel; Crawley, Megan H.; Cohen, Noah A.; Green, Benjamin L.; Rossi, Ferdinand; Besmer, Peter; Antonescu, Cristina R.

    2013-01-01

    Tumor-associated macrophages (TAMs) are a major component of the cancer microenvironment. Modulation of TAMs is under intense investigation because they are thought to be nearly always of the M2 subtype, which supports tumor growth. Gastrointestinal stromal tumor (GIST) is the most common human sarcoma and typically results from an activating mutation in the KIT oncogene. Using a spontaneous mouse model of GIST and 57 freshly procured human GISTs, we discovered that TAMs displayed an M1-like phenotype and function at baseline. In both mice and humans, the KIT oncoprotein inhibitor imatinib polarized TAMs to become M2-like, a process which involved TAM interaction with apoptotic tumor cells leading to the induction of CCAAT/enhancer binding protein (C/EBP) transcription factors. In human GISTs that eventually developed resistance to imatinib, TAMs reverted to an M1-like phenotype and had a similar gene expression profile as TAMs from untreated human GISTs. Therefore, TAM polarization depends on tumor cell oncogene activity and has important implications for immunotherapeutic strategies in human cancers. PMID:24323358

  6. A novel putative tyrosine kinase receptor with oncogenic potential.

    PubMed

    Janssen, J W; Schulz, A S; Steenvoorden, A C; Schmidberger, M; Strehl, S; Ambros, P F; Bartram, C R

    1991-11-01

    We have detected transforming activity by a tumorigenicity assay using NIH3T3 cells transfected with DNA from a chronic myeloproliferative disorder patient. Here, we report the cDNA cloning of the corresponding oncogene, designated UFO, in allusion to the as yet unidentified function of its protein. Nucleotide sequence analysis of a 3116bp cDNA clone revealed a 2682-bp-long open reading frame capable of directing the synthesis of a 894 amino acid polypeptide. The predicted UFO protein exhibits characteristic features of a transmembrane receptor with associated tyrosine kinase activity. The UFO proto-oncogene maps to human chromosome 19q13.1 and is transcribed into two 5.0 kb and 3.2 kb mRNAs in human bone marrow and human tumor cell lines. The UFO locus is evolutionarily conserved between vertebrate species. A 4.0 kb mRNA of the murine UFO homolog is expressed in a variety of different mouse tissues. We thus have identified a novel element of the complex signaling network involved in the control of cell proliferation and differentiation.

  7. Design of a small molecule against an oncogenic noncoding RNA.

    PubMed

    Velagapudi, Sai Pradeep; Cameron, Michael D; Haga, Christopher L; Rosenberg, Laura H; Lafitte, Marie; Duckett, Derek R; Phinney, Donald G; Disney, Matthew D

    2016-05-24

    The design of precision, preclinical therapeutics from sequence is difficult, but advances in this area, particularly those focused on rational design, could quickly transform the sequence of disease-causing gene products into lead modalities. Herein, we describe the use of Inforna, a computational approach that enables the rational design of small molecules targeting RNA to quickly provide a potent modulator of oncogenic microRNA-96 (miR-96). We mined the secondary structure of primary microRNA-96 (pri-miR-96) hairpin precursor against a database of RNA motif-small molecule interactions, which identified modules that bound RNA motifs nearby and in the Drosha processing site. Precise linking of these modules together provided Targaprimir-96 (3), which selectively modulates miR-96 production in cancer cells and triggers apoptosis. Importantly, the compound is ineffective on healthy breast cells, and exogenous overexpression of pri-miR-96 reduced compound potency in breast cancer cells. Chemical Cross-Linking and Isolation by Pull-Down (Chem-CLIP), a small-molecule RNA target validation approach, shows that 3 directly engages pri-miR-96 in breast cancer cells. In vivo, 3 has a favorable pharmacokinetic profile and decreases tumor burden in a mouse model of triple-negative breast cancer. Thus, rational design can quickly produce precision, in vivo bioactive lead small molecules against hard-to-treat cancers by targeting oncogenic noncoding RNAs, advancing a disease-to-gene-to-drug paradigm.

  8. FES kinases are required for oncogenic FLT3 signaling.

    PubMed

    Voisset, E; Lopez, S; Chaix, A; Georges, C; Hanssens, K; Prébet, T; Dubreuil, P; De Sepulveda, P

    2010-04-01

    The closely related non-receptor tyrosine kinases FEline Sarcoma (FES) and FEs Related (FER) are activated by cell surface receptors in hematopoietic cells. Despite the early description of oncogenic viral forms of fes, v-fes, and v-fps, the implication of FES and FER in human pathology is not known. We have recently shown that FES but not FER is necessary for oncogenic KIT receptor signaling. Here, we report that both FES and FER kinases are activated in primary acute myeloid leukemia (AML) blasts and in AML cell lines. FES and FER activation is dependent on FLT3 in cell lines harboring constitutively active FLT3 mutants. Moreover, both FES and FER proteins are critical for FLT3-internal tandem duplication (ITD) signaling and for cell proliferation in relevant AML cell lines. FER is required for cell cycle transitions, whereas FES seems necessary for cell survival. We concluded that FES and FER kinases mediate essential non-redundant functions downstream of FLT3-ITD.

  9. REST regulates oncogenic properties of glioblastoma stem cells

    PubMed Central

    Kamal, Mohamed M.; Sathyan, Pratheesh; Singh, Sanjay K.; Zinn, Pascal O.; Marisetty, Anantha L.; Liang, Shoudan; Gumin, Joy; El-Mesallamy, Hala Osman; Suki, Dima; Colman, Howard; Fuller, Gregory N.; Lang, Frederick F.; Majumder, Sadhan

    2013-01-01

    Glioblastoma multiforme (GBM) tumors are the most common malignant primary brain tumors in adults. Although many GBM tumors are believed to be caused by self-renewing, glioblastoma-derived stem-like cells (GSCs), the mechanisms that regulate self-renewal and other oncogenic properties of GSCs are only now being unraveled. Here we showed that GSCs derived from GBM patient specimens express varying levels of the transcriptional repressor REST, suggesting heterogeneity across different GSC lines. Loss- and gain-of-function experiments indicated that REST maintains self-renewal of GSCs. High REST-expressing GSCs (HR-GSCs) produced tumors histopathologically distinct from those generated by low REST-expressing GSCs (LR-GSCs) in orthotopic mouse brain tumor models. Knockdown of REST in HR-GSCs resulted in increased survival in GSC-transplanted mice and produced tumors with higher apoptotic and lower invasive properties. Conversely, forced expression of exogenous REST in LR-GSCs produced decreased survival in mice and produced tumors with lower apoptotic and higher invasive properties, similar to HR-GSCs. Thus, based on our results, we propose that a novel function of REST is to maintain self-renewal and other oncogenic properties of GSCs and that REST can play a major role in mediating tumorigenicity in GBM. PMID:22228704

  10. Expression of proto-oncogenes in bovine preimplantation blastocysts.

    PubMed

    Tetens, F; Kliem, A; Tscheudschilsuren, G; Navarrete Santos, A; Fischer, B

    2000-05-01

    Proto-oncogenes are involved in the regulation of gene expression, for example after ligand binding to growth factor receptors. Expression of the proto-oncogenes c-fos, c-jun, c-ha-ras and c-myc was studied in in vivo grown and in vitro cultured bovine preimplantation blastocysts employing RT-PCR, ribonuclease protection assay and immunohistochemistry. Thirteen- and 14- day-old preimplantation blastocysts, i.e. stages before and during trophoblast elongation, were used. In in vivo-grown blastocysts c-fos, c-jun and c-ha-ras transcripts as well as c-Fos, c-Jun and c-Myc proteins were detected in all stages studied. Cultured blastocysts were treated with 10 nM epidermal growth factor and 10 nM transforming growth factor-alpha simultaneously. Epidermal growth factor and transforming growth factor-alpha treatment induced c-fos mRNA and c-Myc protein expression. The induction of downstream targets of the epidermal growth factor receptor by epidermal growth factor and transforming growth factor-alpha indicates a functional epidermal growth factor signal transduction pathway in elongating bovine blastocysts.

  11. Evidence for long-range oncogene activation by hepadnavirus insertion.

    PubMed Central

    Fourel, G; Couturier, J; Wei, Y; Apiou, F; Tiollais, P; Buendia, M A

    1994-01-01

    Insertional mutagenesis of host genes, a common oncogenic strategy of slow transforming retroviruses, has recently been described for a DNA virus of the hepadnavirus group: the woodchuck hepatitis virus. This virus causes insertional activation of myc genes, mainly the intronless N-myc2 oncogene, in > 50% of woodchuck liver tumours. In most remaining tumours, N-myc2 is overexpressed without any apparent genetic alteration. To elucidate the role of the virus in such cases, we have cloned and analysed single integration sites in four woodchuck tumours carrying wild-type myc alleles. All sites were clustered within < 20 kb in a single locus, in which scarce unique sequences showed no detectable transcriptional activity. By fluorescent in situ hybridization, N-myc2 and the new locus (win) were localized to the same region of the long arm of the woodchuck X chromosome, and a 150-180 kb intervening distance was deduced from pulse-field gel analysis. The detection of viral integrations in win in additional tumours that produced abundant N-myc2 transcripts further substantiates the link between these two loci in woodchuck tumorigenesis. We propose that efficient activation of the N-myc2 promoter by the hepadnavirus enhancer acting over a long distance might operate in liver cell transformation. Images PMID:8013453

  12. Oncogenicity of the developmental transcription factor Sox9

    PubMed Central

    Matheu, Ander; Collado, Manuel; Wise, Clare; Manterola, Lorea; Cekaite, Lina; Tye, Angela J.; Canamero, Marta; Bujanda, Luis; Schedl, Andreas; Cheah, Kathryn S.E.; Skotheim, Rolf I.; Lothe, Ragnhild A.; de Munain, Adolfo López; Briscoe, James; Serrano, Manuel; Lovell-Badge, Robin

    2012-01-01

    SOX9, a high mobility group (HMG) box transcription factor, plays critical roles during embryogenesis and its activity is required for development, differentiation and lineage commitment in various tissues including the intestinal epithelium. Here, we present functional and clinical data of a broadly important role for SOX9 in tumorigenesis. SOX9 was overexpressed in a wide range of human cancers, where its expression correlated with malignant character and progression. Gain of SOX9 copy number is detected in some primary colorectal cancers. SOX9 exhibited several pro-oncogenic properties, including the ability to promote proliferation, inhibit senescence and collaborate with other oncogenes in neoplastic transformation. In primary MEFs and colorectal cancer cells, SOX9 expression facilitated tumor growth and progression whilst its inactivation reduced tumorigenicity. Mechanistically, we have found that Sox9 directly binds and activates the promoter of the polycomb protein Bmi1, whose upregulation represses the tumor suppressor Ink4a/Arf locus. In agreement with this, human colorectal cancers showed a positive correlation between expression levels of SOX9 and BMI1 and a negative correlation between SOX9 and ARF in clinical samples. Taken together, our findings provide direct mechanistic evidence of the involvement of SOX9 in neoplastic pathobiology, particularly in colorectal cancer. PMID:22246670

  13. Secreted primary human malignant mesothelioma exosome signature reflects oncogenic cargo

    NASA Astrophysics Data System (ADS)

    Greening, David W.; Ji, Hong; Chen, Maoshan; Robinson, Bruce W. S.; Dick, Ian M.; Creaney, Jenette; Simpson, Richard J.

    2016-09-01

    Malignant mesothelioma (MM) is a highly-aggressive heterogeneous malignancy, typically diagnosed at advanced stage. An important area of mesothelioma biology and progression is understanding intercellular communication and the contribution of the secretome. Exosomes are secreted extracellular vesicles shown to shuttle cellular cargo and direct intercellular communication in the tumour microenvironment, facilitate immunoregulation and metastasis. In this study, quantitative proteomics was used to investigate MM-derived exosomes from distinct human models and identify select cargo protein networks associated with angiogenesis, metastasis, and immunoregulation. Utilising bioinformatics pathway/network analyses, and correlation with previous studies on tumour exosomes, we defined a select mesothelioma exosomal signature (mEXOS, 570 proteins) enriched in tumour antigens and various cancer-specific signalling (HPGD/ENO1/OSMR) and secreted modulators (FN1/ITLN1/MAMDC2/PDGFD/GBP1). Notably, such circulating cargo offers unique insights into mesothelioma progression and tumour microenvironment reprogramming. Functionally, we demonstrate that oncogenic exosomes facilitate the migratory capacity of fibroblast/endothelial cells, supporting the systematic model of MM progression associated with vascular remodelling and angiogenesis. We provide biophysical and proteomic characterisation of exosomes, define a unique oncogenic signature (mEXOS), and demonstrate the regulatory capacity of exosomes in cell migration/tube formation assays. These findings contribute to understanding tumour-stromal crosstalk in the context of MM, and potential new diagnostic and therapeutic extracellular targets.

  14. Oncogenic osteomalacia: two case reports with surprisingly different outcomes.

    PubMed

    Seijas, Roberto; Ares, Oscar; Sierra, Judit; Pérez-Dominguez, Manuel

    2009-04-01

    Oncogenic osteomalacia is a rare paraneoplastic syndrome of acquired hypophosphatemic osteomalacia, resulting from a deficit in renal tubular phosphate reabsorption, in which fibroblast growth factor 23 (FGF23) seems to be implicated. This condition is usually associated with a phosphaturic mesenchymal tumor of mixed connective tissue located in the bone or soft tissue. The clinical and the radiologic findings are the same as those seen in osteomalacia, and the biochemical features include renal phosphate loss, low serum phosphate and 1,25-(OH)(2) vitD(3) levels, increased alkaline phosphatase, and normal calcium, PTH, calcitonin, 25-OH-vitD(3) and 25,25-(OH)(2) vitD(3). We present two cases of oncogenic osteomalacia associated with phosphaturic mesenchymal tumors, which were histologically similar, but presented a completely different evolution. In the first patient, the tumor developed on the sole of the foot. Following removal of the mass, the symptoms resolved and biochemical and radiological parameters returned to normal. However, in the second patient, a liver tumor developed and resection did not resolve the disease. Multiple lesions appeared in several locations during follow-up. This disease usually remits with complete tumor resection. Nevertheless, if this is not possible, oral treatment with phosphate, calcium and calcitriol can improve the symptoms. If scintigraphy of the tumor shows octreotide receptors, patients may respond partially to therapy with somatostatin analogs, with stabilization of the lesion.

  15. Secreted primary human malignant mesothelioma exosome signature reflects oncogenic cargo

    PubMed Central

    Greening, David W.; Ji, Hong; Chen, Maoshan; Robinson, Bruce W. S.; Dick, Ian M.; Creaney, Jenette; Simpson, Richard J.

    2016-01-01

    Malignant mesothelioma (MM) is a highly-aggressive heterogeneous malignancy, typically diagnosed at advanced stage. An important area of mesothelioma biology and progression is understanding intercellular communication and the contribution of the secretome. Exosomes are secreted extracellular vesicles shown to shuttle cellular cargo and direct intercellular communication in the tumour microenvironment, facilitate immunoregulation and metastasis. In this study, quantitative proteomics was used to investigate MM-derived exosomes from distinct human models and identify select cargo protein networks associated with angiogenesis, metastasis, and immunoregulation. Utilising bioinformatics pathway/network analyses, and correlation with previous studies on tumour exosomes, we defined a select mesothelioma exosomal signature (mEXOS, 570 proteins) enriched in tumour antigens and various cancer-specific signalling (HPGD/ENO1/OSMR) and secreted modulators (FN1/ITLN1/MAMDC2/PDGFD/GBP1). Notably, such circulating cargo offers unique insights into mesothelioma progression and tumour microenvironment reprogramming. Functionally, we demonstrate that oncogenic exosomes facilitate the migratory capacity of fibroblast/endothelial cells, supporting the systematic model of MM progression associated with vascular remodelling and angiogenesis. We provide biophysical and proteomic characterisation of exosomes, define a unique oncogenic signature (mEXOS), and demonstrate the regulatory capacity of exosomes in cell migration/tube formation assays. These findings contribute to understanding tumour-stromal crosstalk in the context of MM, and potential new diagnostic and therapeutic extracellular targets. PMID:27605433

  16. Proteogenomic analysis reveals exosomes are more oncogenic than ectosomes.

    PubMed

    Keerthikumar, Shivakumar; Gangoda, Lahiru; Liem, Michael; Fonseka, Pamali; Atukorala, Ishara; Ozcitti, Cemil; Mechler, Adam; Adda, Christopher G; Ang, Ching-Seng; Mathivanan, Suresh

    2015-06-20

    Extracellular vesicles (EVs) include the exosomes (30-100 nm) that are produced through the endocytic pathway via the multivesicular bodies and the ectosomes (100-1000 nm) that are released through the budding of the plasma membrane. Despite the differences in the mode of biogenesis and size, reliable markers that can distinguish between exosomes and ectosomes are non-existent. Moreover, the precise functional differences between exosomes and ectosomes remains poorly characterised. Here, using label-free quantitative proteomics, we highlight proteins that could be exploited as markers to discriminate between exosomes and ectosomes. For the first time, a global proteogenomics analysis unveiled the secretion of mutant proteins that are implicated in cancer progression through tumor-derived EVs. Follow up integrated bioinformatics analysis highlighted the enrichment of oncogenic cargo in exosomes and ectosomes. Interestingly, exosomes induced significant cell proliferation and migration in recipient cells compared to ectosomes confirming the oncogenic nature of exosomes. These findings ascertain that cancer cells facilitate oncogenesis by the secretion of mutant and oncoproteins into the tumor microenvironment via exosomes and ectosomes. The integrative proteogenomics approach utilized in this study has the potential to identify disease biomarker candidates which can be later assayed in liquid biopsies obtained from cancer patients.

  17. Proteogenomic analysis reveals exosomes are more oncogenic than ectosomes

    PubMed Central

    Liem, Michael; Fonseka, Pamali; Atukorala, Ishara; Ozcitti, Cemil; Mechler, Adam; Adda, Christopher G.; Ang, Ching-Seng; Mathivanan, Suresh

    2015-01-01

    Extracellular vesicles (EVs) include the exosomes (30-100 nm) that are produced through the endocytic pathway via the multivesicular bodies and the ectosomes (100-1000 nm) that are released through the budding of the plasma membrane. Despite the differences in the mode of biogenesis and size, reliable markers that can distinguish between exosomes and ectosomes are non-existent. Moreover, the precise functional differences between exosomes and ectosomes remains poorly characterised. Here, using label-free quantitative proteomics, we highlight proteins that could be exploited as markers to discriminate between exosomes and ectosomes. For the first time, a global proteogenomics analysis unveiled the secretion of mutant proteins that are implicated in cancer progression through tumor-derived EVs. Follow up integrated bioinformatics analysis highlighted the enrichment of oncogenic cargo in exosomes and ectosomes. Interestingly, exosomes induced significant cell proliferation and migration in recipient cells compared to ectosomes confirming the oncogenic nature of exosomes. These findings ascertain that cancer cells facilitate oncogenesis by the secretion of mutant and oncoproteins into the tumor microenvironment via exosomes and ectosomes. The integrative proteogenomics approach utilized in this study has the potential to identify disease biomarker candidates which can be later assayed in liquid biopsies obtained from cancer patients. PMID:25944692

  18. Secreted primary human malignant mesothelioma exosome signature reflects oncogenic cargo.

    PubMed

    Greening, David W; Ji, Hong; Chen, Maoshan; Robinson, Bruce W S; Dick, Ian M; Creaney, Jenette; Simpson, Richard J

    2016-01-01

    Malignant mesothelioma (MM) is a highly-aggressive heterogeneous malignancy, typically diagnosed at advanced stage. An important area of mesothelioma biology and progression is understanding intercellular communication and the contribution of the secretome. Exosomes are secreted extracellular vesicles shown to shuttle cellular cargo and direct intercellular communication in the tumour microenvironment, facilitate immunoregulation and metastasis. In this study, quantitative proteomics was used to investigate MM-derived exosomes from distinct human models and identify select cargo protein networks associated with angiogenesis, metastasis, and immunoregulation. Utilising bioinformatics pathway/network analyses, and correlation with previous studies on tumour exosomes, we defined a select mesothelioma exosomal signature (mEXOS, 570 proteins) enriched in tumour antigens and various cancer-specific signalling (HPGD/ENO1/OSMR) and secreted modulators (FN1/ITLN1/MAMDC2/PDGFD/GBP1). Notably, such circulating cargo offers unique insights into mesothelioma progression and tumour microenvironment reprogramming. Functionally, we demonstrate that oncogenic exosomes facilitate the migratory capacity of fibroblast/endothelial cells, supporting the systematic model of MM progression associated with vascular remodelling and angiogenesis. We provide biophysical and proteomic characterisation of exosomes, define a unique oncogenic signature (mEXOS), and demonstrate the regulatory capacity of exosomes in cell migration/tube formation assays. These findings contribute to understanding tumour-stromal crosstalk in the context of MM, and potential new diagnostic and therapeutic extracellular targets. PMID:27605433

  19. [Nature of cancer explored from the perspective of the functional evolution of proto-oncogenes].

    PubMed

    Watari, Akihiro

    2012-01-01

    The products of proto-oncogene play critical roles in the development or maintenance of multicellular societies in animals via strict regulatory systems. When these regulatory systems are disrupted, proto-oncogenes can become oncogenes, and thereby induce cell transformation and carcinogenesis. To understand the molecular basis for development of the regulatory system of proto-oncogenes during evolution, we screened for ancestral proto-oncogenes from the unicellular choanoflagellate Monosiga ovata (M. ovata) by monitoring their transforming ability in mammalian cells; consequently, we isolated a Pak gene ortholog, which encodes a serine/threonine kinase as a 'primitive oncogene'. We also cloned Pak orthologs from fungi and the multicellular sponge Ephydatia fluviatilis, and compared their regulatory features with that of M. ovata Pak (MoPak). MoPak is constitutively active and induces cell transformation in mammalian cells. In contrast, Pak orthologs from multicellular animals are strictly regulated. Analyses of Pak mutants revealed that structural alterations in the auto-inhibitory domain (AID) are responsible for the enhanced kinase activity and the oncogenic activity of MoPak. Furthermore, we show that Rho family GTPases-mediated regulatory system of Pak kinase is conserved throughout the evolution from unicellular to multicellular animals, but the MoPak is more sensitive to the Rho family GTPases-mediated activation than multicellular Pak. These results show that maturation of AID function was required for the development of the strict regulatory system of the Pak proto-oncogene, and support the potential link between the development of the regulatory system of proto-oncogenes and the evolution of multicellularity. Further analysis of oncogenic functions of proto-oncogene orthologs in the unicellular genes would provide some insights into the mechanisms of the destruction of multicellular society in cancer.

  20. The superficial musculoaponeurotic system of the face: a model explored.

    PubMed

    Broughton, M; Fyfe, G M

    2013-01-01

    Regional differences in the integument of the body are explained, at least in part, by differences in fascial arrangements. In the face, where the skin is more mobile due to the action of the underlying facial muscles, fascial organisation is important for support and separation of muscle groups. This study used bequeathed cadaver material to investigate a current model of the SMAS proposed by Macchi et al., the original boundaries of which were explored and extended using both histology and gross dissection. As a clearly identifiable structure spanning the lateral and midface, the SMAS in the specimen supported the model proposed by Macchi et al. The three main findings that support the model were the layered morphological appearance of the SMAS, its progression from fibrous to aponeurotic in a lateral to medial direction, and the enveloping of the zygomaticus musculature. Extension beyond the proposed model into the temporal region was observed, but nasal and forehead regions showed no evidence of SMAS, while its presence in the cervical platysma region remained inconclusive. Fascial and soft tissue variability was considerable within facial regions of the examined specimen, helping to explain the debate around the SMAS in the literature. PMID:24294524

  1. The Superficial Musculoaponeurotic System of the Face: A Model Explored

    PubMed Central

    Broughton, M.; Fyfe, G. M.

    2013-01-01

    Regional differences in the integument of the body are explained, at least in part, by differences in fascial arrangements. In the face, where the skin is more mobile due to the action of the underlying facial muscles, fascial organisation is important for support and separation of muscle groups. This study used bequeathed cadaver material to investigate a current model of the SMAS proposed by Macchi et al., the original boundaries of which were explored and extended using both histology and gross dissection. As a clearly identifiable structure spanning the lateral and midface, the SMAS in the specimen supported the model proposed by Macchi et al. The three main findings that support the model were the layered morphological appearance of the SMAS, its progression from fibrous to aponeurotic in a lateral to medial direction, and the enveloping of the zygomaticus musculature. Extension beyond the proposed model into the temporal region was observed, but nasal and forehead regions showed no evidence of SMAS, while its presence in the cervical platysma region remained inconclusive. Fascial and soft tissue variability was considerable within facial regions of the examined specimen, helping to explain the debate around the SMAS in the literature. PMID:24294524

  2. Can anti-tumor immunity help to explain “oncogene addiction”?

    PubMed Central

    Restifo, Nicholas P.

    2010-01-01

    Summary “Oncogene addiction” refers to the process of tumor cell death that can occur after inactivation of a single oncogene. In this issue of Cancer Cell, Rakhra, et al. argue that complete tumor clearance after molecular targeted therapies requires a functioning immune system, pointing the way toward radically new combination therapies. PMID:21075303

  3. [Expression of proto-oncogenes and its role in spermatogenic cells].

    PubMed

    Yang, Jun-ling; Xu, Si-fan

    2005-07-01

    This article reviews the specific expression of many proto-oncogenes during male germ cell development. The normal expression of proto-oncogenes plays an important role in the regulation of spermatogonial mitosis, spermatocyte meiosis as well as spermiogenesis and sperm maturation.

  4. RET oncogene in MEN2, MEN2B, MTC and other forms of thyroid cancer.

    PubMed

    Lodish, Maya B; Stratakis, Constantine A

    2008-04-01

    Hereditary medullary thyroid carcinoma (MTC) is caused by specific autosomal dominant gain-of-function mutations in the RET proto-oncogene. Genotype-phenotype correlations exist that help predict the presence of other associated endocrine neoplasms as well as the timing of thyroid cancer development. MTC represents a promising model for targeted cancer therapy, as the oncogenic event responsible for initiating malignancy has been well characterized. The RET proto-oncogene has become the target for molecularly designed drug therapy. Tyrosine kinase inhibitors targeting activated RET are currently in clinical trials for the treatment of patients with MTC. This review will provide a brief overview of MTC and the associated RET oncogenic mutations, and will summarize the therapies designed to strategically interfere with the pathologic activation of the RET oncogene.

  5. Inhibition of cell transformation by sulindac sulfide is confined to specific oncogenic pathways

    PubMed Central

    Gala, Manish; Sun, Ronggai; Yang, Vincent W.

    2009-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) have been shown to reduce the risk of colorectal cancer (CRC). They are also known to induce the regression of colorectal adenomas, which are precursors to CRC. Despite these evidences, the exact mechanism by which NSAIDs exerts its anti-oncogenic effect is not completely understood. Using a focus formation assay, here we show that sulindac sulfide, a NSAID, specifically inhibits cell transformation mediated by oncogenic Ha-Ras, but not by other established oncogene products such as v-Src, Gα 12, and Gα13. Our results suggest that the ability of sulindac sulfide to suppress transformation is confined to specific oncogenic pathways. Further studies of the sulindac-resistant oncogenic pathways may lead to identification of novel therapeutic agents that are effective in the prevention or treatment of CRC. PMID:11734340

  6. A mouse model of melanoma driven by oncogenic KRAS

    PubMed Central

    Milagre, Carla; Dhomen, Nathalie; Geyer, Felipe C; Hayward, Robert; Lambros, Maryou; Reis-Filho, Jorge S; Marais, Richard

    2010-01-01

    The small G-protein NRAS is mutated in 22% of human melanomas, whereas the related proteins, KRAS and HRAS are mutated in only 2% and 1% of melanomas respectively. We have developed a mouse models of melanoma in which Cre recombinase/loxP technology is used to drive inducible expression of G12VKRAS in the melanocytic lineage. The mice develop skin hyper-pigmentation, nevi and tumors that bear many of the cardinal histopathology features and molecular characteristics of human melanoma. These tumors invade and destroy the underlying muscles and cells derived from them can grow as subcutaneous tumors and colonise the lungs of nude mice. These data establish that oncogenic KRAS can be a founder event in melanomagenesis. PMID:20516123

  7. PNUTS functions as a proto-oncogene by sequestering PTEN.

    PubMed

    Kavela, Sridhar; Shinde, Swapnil R; Ratheesh, Raman; Viswakalyan, Kotapalli; Bashyam, Murali D; Gowrishankar, Swarnalata; Vamsy, Mohana; Pattnaik, Sujit; Rao, Subramanyeshwar; Sastry, Regulagadda A; Srinivasulu, Mukta; Chen, Junjie; Maddika, Subbareddy

    2013-01-01

    PTEN is a well-defined tumor suppressor gene that antagonizes the PI3K/Akt pathway to regulate a multitude of cellular processes, such as survival, growth, motility, invasiveness, and angiogenesis. While the functions of PTEN have been studied extensively, the regulation of its activity during normal and disease conditions still remains incompletely understood. In this study, we identified the protein phosphatase-1 nuclear targeting subunit PNUTS (PPP1R10) as a PTEN-associated protein. PNUTS directly interacted with the lipid-binding domain (C2 domain) of PTEN and sequestered it in the nucleus. Depletion of PNUTS leads to increased apoptosis and reduced cellular proliferation in a PTEN-dependent manner. PNUTS expression was elevated in certain cancers compared with matched normal tissues. Collectively, our studies reveal PNUTS as a novel PTEN regulator and a likely oncogene.

  8. Significance of oncogenes and tumor suppressor genes in AML prognosis.

    PubMed

    Kavianpour, Maria; Ahmadzadeh, Ahmad; Shahrabi, Saeid; Saki, Najmaldin

    2016-08-01

    Acute myeloid leukemia (AML) is a heterogeneous disorder among hematologic malignancies. Several genetic alterations occur in this disease, which cause proliferative progression, reducing differentiation and apoptosis in leukemic cells as well as increasing their survival. In the genetic study of AML, genetic translocations, gene overexpression, and mutations effective upon biology and pathogenesis of this disease have been recognized. Proto-oncogenes and tumor suppressor genes, which are important in normal development of myeloid cells, are involved in the regulation of cell cycle and apoptosis, undergo mutation in this type of leukemia, and are effective in prognosis of AML subtypes. This review deals with these genes, the assessment of which can be important in the diagnosis and prognosis of patients as well as therapeutic outcome. PMID:27179964

  9. Oncogenes, protooncogenes, and tumor suppressor genes in acute myelogenous leukemia.

    PubMed

    Hijiya, N; Gewirtz, A M

    1995-05-01

    In recent years, our understanding of normal human hematopoiesis has expanded greatly. We have increased our knowledge of regulatory growth factors, the receptors through which they act, and the secondary messengers involved in transducing the growth/differentiation signals from the cytoplasmic membrane to the nucleus. This knowledge has revealed potential mechanisms for inducing the neoplastic transformation of hematopoietic cells. This applies in particular to the role of viral oncogenes and cellular protooncogenes and, more recently, to the role of tumor suppressor genes. Protooncogenes are intimately involved in the processes of cell proliferation and differentiation. Therefore, any amplification, mutation, structural alteration, or change in transcriptional regulation of protooncogenes might lead to or be associated with induction of the malignant phenotype. Based on the importance of these genes in leukemogenesis and the maintenance of the malignant phenotype, it seems reasonable to hypothesize that targeted disruption of leukemogenic genes may be of therapeutic value.

  10. Arf tumor suppressor promoter monitors latent oncogenic signals in vivo

    NASA Astrophysics Data System (ADS)

    Zindy, Frederique; Williams, Richard T.; Baudino, Troy A.; Rehg, Jerold E.; Skapek, Stephen X.; Cleveland, John L.; Roussel, Martine F.; Sherr, Charles J.

    2003-12-01

    Induction of the Arf tumor suppressor gene by elevated thresholds of mitogenic signals activates a p53-dependent transcriptional response that triggers either growth arrest or apoptosis, thereby countering abnormal cell proliferation. Conversely, Arf inactivation is associated with tumor development. Expression of Arf in tissues of adult mice is difficult to detect, possibly because its induction leads to the arrest or elimination of incipient tumor cells. We replaced coding sequences of exon 1 of the mouse cellular Arf gene with a cDNA encoding GFP, thereby producing Arf-null animals in which GFP expression is driven by the intact Arf promoter. The Arf promoter was induced in several biologic settings previously shown to elicit mouse p19Arf expression. Inactivation of Arf in this manner led to the outgrowth of tumor cells expressing GFP, thereby providing direct evidence that the Arf promoter monitors latent oncogenic signals in vivo.

  11. Structural Effects of Oncogenic PI3K alpha Mutations

    SciTech Connect

    S Gabelli; C Huang; D Mandelker; O Schmidt-Kittler; B Vogelstein; L Amzel

    2011-12-31

    Physiological activation of PI3K{alpha} is brought about by the release of the inhibition by p85 when the nSH2 binds the phosphorylated tyrosine of activated receptors or their substrates. Oncogenic mutations of PI3K{alpha} result in a constitutively activated enzyme that triggers downstream pathways that increase tumor aggressiveness and survival. Structural information suggests that some mutations also activate the enzyme by releasing p85 inhibition. Other mutations work by different mechanisms. For example, the most common mutation, His1047Arg, causes a conformational change that increases membrane association resulting in greater accessibility to the substrate, an integral membrane component. These effects are examples of the subtle structural changes that result in increased activity. The structures of these and other mutants are providing the basis for the design of isozyme-specific, mutation-specific inhibitors for individualized cancer therapies.

  12. Characterization and developmental expression of a Drosophila ras oncogene.

    PubMed Central

    Mozer, B; Marlor, R; Parkhurst, S; Corces, V

    1985-01-01

    We cloned a Drosophila melanogaster ras gene (Dmras64B) on the basis of its homology to the ras oncogen from Harvey murine sarcoma virus. This gene mapped at chromosomal position 64B on the left arm of the third chromosome. Sequencing of Dmras64B revealed extensive amino acid homology with the proteins encoded by the human and Saccharomyces cerevisiae ras genes. The coding region of the Drosophila gene is interrupted by two introns located in different positions with respect to its human counterpart. Dmras64B encodes three different RNAs (1.6, 2.1, and 2.6 kilobases long) that are constantly expressed throughout the development of the fly. Images PMID:3921827

  13. PNUTS functions as a proto-oncogene by sequestering PTEN

    PubMed Central

    Kavela, Sridhar; Shinde, Swapnil R; Ratheesh, Raman; Viswakalyan, Kotapalli; Bashyam, Murali D; Gowrishankar, Swarnalata; Vamsy, Mohana; Pattnaik, Sujit; Rao, Subramanyeshwar; Sastry, Regulagadda A; Srinivasulu, Mukta; Chen, Junjie; Maddika, Subbareddy

    2012-01-01

    PTEN is a well-defined tumor suppressor gene that antagonizes the PI3K/Akt pathway to regulate a multitude of cellular processes such as survival, growth, motility, invasiveness and angiogenesis. While the functions of PTEN have been studied extensively, the regulation of its activity during normal and disease conditions still remains incompletely understood. In this study, we identified the protein phosphatase-1 nuclear targeting subunit PNUTS (PPP1R10) as a PTEN associated protein. PNUTS directly interacted with the lipid-binding domain (C2 domain) of PTEN and sequestered it in the nucleus. Depletion of PNUTS leads to increased apoptosis and reduced cellular proliferation in a PTEN-dependent manner. PNUTS expression was elevated in certain cancers compared to matched normal tissues. Collectively, our studies reveal PNUTS as a novel PTEN regulator and a likely oncogene. PMID:23117887

  14. Induction of promyelocytic leukemia (PML) oncogenic domains (PODs) by papillomavirus

    SciTech Connect

    Nakahara, Tomomi; Lambert, Paul F.

    2007-09-30

    Promyelocytic leukemia oncogenic domains (PODs), also called nuclear domain 10 (ND10), are subnuclear structures that have been implicated in a variety of cellular processes as well as the life cycle of DNA viruses including papillomaviruses. In order to investigate the interplay between papillomaviruses and PODs, we analyzed the status of PODs in organotypic raft cultures of human keratinocytes harboring HPV genome that support the differentiation-dependent HPV life cycle. The number of PODs per nucleus was increased in the presence of HPV genomes selectively within the poorly differentiated layers but was absent in the terminally differentiated layers of the stratified epithelium. This increase in PODs was correlated with an increase in abundance of post-translationally modified PML protein. Neither the E2-dependent transcription nor viral DNA replication was reliant upon the presence of PML. Implications of these findings in terms of HPV's interaction with its host are discussed.

  15. Tumor-Derived Exosomes in Oncogenic Reprogramming and Cancer Progression

    PubMed Central

    Saleem, Sarmad N; Abdel-Mageed, Asim B

    2014-01-01

    In multicellular organisms, effective communication between cells is a crucial part of cellular and tissue homeostasis. This communication mainly involves direct cell–cell contact as well as the secretion of molecules that bind to receptors at the recipient cells. However, a more recently characterized mode of intercellular communication — the release of membrane vesicles known as exosomes — has been the subject of increasing interest and intensive research over the past decade. Following the discovery of the exosome-mediated immune activation, the pathophysiological roles of exosomes have been recognized in different diseases, including cancer. In this review, we describe the biogenesis and main physical characteristics that define exosomes as a specific population of secreted vesicles, with a special focus on their role in oncogenic transformation and cancer progression. PMID:25156068

  16. SOCS1 in cancer: An oncogene and a tumor suppressor.

    PubMed

    Beaurivage, Claudia; Champagne, Audrey; Tobelaim, William S; Pomerleau, Véronique; Menendez, Alfredo; Saucier, Caroline

    2016-06-01

    The Suppressor Of Cytokine Signaling 1 (SOCS1) has been extensively investigated in immune cells where it works as a potent inhibitor of inflammation by negative feedback regulation of the cytokine-activated JAK-STAT signaling pathways. SOCS1 is also recognized as a tumor suppressor in numerous cancers and its critical functional relevance in non-immune cells, including epithelial cells, has just begun to emerge. Most notably, conflicting results from clinical and experimental studies suggest that SOCS1 may function as either a tumor suppressor or a tumor promoter, in a cell context-dependent manner. Here, we present an overview of the mechanisms underlying SOCS1 function as a tumor suppressor and discuss the emerging evidences of SOCS1 activity as an oncogene. PMID:26811119

  17. Oncogenic Radiation Abscopal Effects In Vivo: Interrogating Mouse Skin

    SciTech Connect

    Mancuso, Mariateresa; Leonardi, Simona; Giardullo, Paola; Pasquali, Emanuela; Tanori, Mirella; De Stefano, Ilaria; Casciati, Arianna; Naus, Christian C.; Pazzaglia, Simonetta; Saran, Anna

    2013-08-01

    Purpose: To investigate the tissue dependence in transmission of abscopal radiation signals and their oncogenic consequences in a radiosensitive mouse model and to explore the involvement of gap junction intercellular communication (GJIC) in mediating radiation tumorigenesis in off-target mouse skin. Methods and Materials: Patched1 heterozygous (Ptch1{sup +/−}) mice were irradiated at postnatal day 2 (P2) with 10 Gy of x-rays. Individual lead cylinders were used to protect the anterior two-thirds of the body, whereas the hindmost part was directly exposed to radiation. To test the role of GJICs and their major constituent connexin43 (Cx43), crosses between Ptch1{sup +/−} and Cx43{sup +/−} mice were similarly irradiated. These mouse groups were monitored for their lifetime, and skin basal cell carcinomas (BCCs) were counted and recorded. Early responses to DNA damage - Double Strand Breaks (DSBs) and apoptosis - were also evaluated in shielded and directly irradiated skin areas. Results: We report abscopal tumor induction in the shielded skin of Ptch1{sup +/−} mice after partial-body irradiation. Endpoints were induction of early nodular BCC-like tumors and macroscopic infiltrative BCCs. Abscopal tumorigenesis was significantly modulated by Cx43 status, namely, Cx43 reduction was associated with decreased levels of DNA damage and oncogenesis in out-of-field skin, suggesting a key role of GJIC in transmission of oncogenic radiation signals to unhit skin. Conclusions: Our results further characterize the nature of abscopal responses and the implications they have on pathologic processes in different tissues, including their possible underlying mechanistic bases.

  18. Intrinsic Structural Disorder Confers Cellular Viability on Oncogenic Fusion Proteins

    PubMed Central

    Hegyi, Hedi; Buday, László; Tompa, Peter

    2009-01-01

    Chromosomal translocations, which often generate chimeric proteins by fusing segments of two distinct genes, represent the single major genetic aberration leading to cancer. We suggest that the unifying theme of these events is a high level of intrinsic structural disorder, enabling fusion proteins to evade cellular surveillance mechanisms that eliminate misfolded proteins. Predictions in 406 translocation-related human proteins show that they are significantly enriched in disorder (43.3% vs. 20.7% in all human proteins), they have fewer Pfam domains, and their translocation breakpoints tend to avoid domain splitting. The vicinity of the breakpoint is significantly more disordered than the rest of these already highly disordered fusion proteins. In the unlikely event of domain splitting in fusion it usually spares much of the domain or splits at locations where the newly exposed hydrophobic surface area approximates that of an intact domain. The mechanisms of action of fusion proteins suggest that in most cases their structural disorder is also essential to the acquired oncogenic function, enabling the long-range structural communication of remote binding and/or catalytic elements. In this respect, there are three major mechanisms that contribute to generating an oncogenic signal: (i) a phosphorylation site and a tyrosine-kinase domain are fused, and structural disorder of the intervening region enables intramolecular phosphorylation (e.g., BCR-ABL); (ii) a dimerisation domain fuses with a tyrosine kinase domain and disorder enables the two subunits within the homodimer to engage in permanent intermolecular phosphorylations (e.g., TFG-ALK); (iii) the fusion of a DNA-binding element to a transactivator domain results in an aberrant transcription factor that causes severe misregulation of transcription (e.g. EWS-ATF). Our findings also suggest novel strategies of intervention against the ensuing neoplastic transformations. PMID:19888473

  19. Dimerize RACK1 upon transformation with oncogenic ras

    SciTech Connect

    Chu, L.-Y.; Chen, Y.-H.; Chuang, N.-N. . E-mail: zonnc@sinica.edu.tw

    2005-05-06

    From our previous studies, we learned that syndecan-2/p120-GAP complex provided docking site for Src to prosecute tyrosine kinase activity upon transformation with oncogenic ras. And, RACK1 protein was reactive with syndecan-2 to keep Src inactivated, but not when Ras was overexpressed. In the present study, we characterized the reaction between RACK1 protein and Ras. RACK1 was isolated from BALB/3T3 cells transfected with plasmids pcDNA3.1-[S-ras(Q{sub 61}K)] of shrimp Penaeus japonicus and RACK1 was revealed to react with GTP-K{sub B}-Ras(Q{sub 61}K), not GDP-K{sub B}-Ras(Q{sub 61}K). This selective interaction between RACK1 and GTP-K{sub B}-Ras(Q{sub 61}K) was further confirmed with RACK1 of human placenta and mouse RACK1-encoded fusion protein. We found that RACK1 was dimerized upon reaction with GTP-K{sub B}-Ras(Q{sub 61}K), as well as with 14-3-3{beta} and geranylgeranyl pyrophosphate, as revealed by phosphorylation with Src tyrosine kinase. We reported the complex of RACK1/GTP-K{sub B}-Ras(Q{sub 61}K) reacted selectively with p120-GAP. This interaction was sufficient to dissemble RACK1 into monomers, a preferred form to compete for the binding of syndecan-2. These data indicate that the reaction of GTP-K{sub B}-Ras(Q{sub 61}K) with RACK1 in dimers may operate a mechanism to deplete RACK1 from reaction with syndecan-2 upon transformation by oncogenic ras and the RACK1/GTP-Ras complex may provide a route to react with p120-GAP and recycle monomeric RACK1 to syndecan-2.

  20. Class I PI3K in oncogenic cellular transformation

    PubMed Central

    Zhao, Li; Vogt, Peter K.

    2009-01-01

    Class I phosphoinositide 3-kinase (PI3K) is a dimeric enzyme, consisting of a catalytic and a regulatory subunit. The catalytic subunit occurs in four isoforms designated as p110α, p110β, p110γ and p110δ. These combine with several regulatory subunits; for p110α, β and δ the standard regulatory subunit is p85, for p110γ it is p101. PI3Ks play important roles in human cancer. PIK3CA, the gene encoding p110α, is mutated frequently in common cancers, including carcinoma of the breast, prostate, colon and endometrium. Eighty percent of these mutations are represented by one of three amino acid substitutions in the helical or kinase domains of the enzyme. The mutant p110α shows a gain of function in enzymatic and signaling activity and is oncogenic in cell culture and in animal model systems. Structural and genetic data suggest that the mutations affect regulatory inter- and intramolecular interactions and support the conclusion that there are at least two molecular mechanisms for the gain-of-function in p110α. One of these mechanisms operates largely independently of binding to p85, the other abolishes the requirement for an interaction with Ras. The non-alpha isoforms of p110 do not show cancer-specific mutations. However, they are often differentially expressed in cancer and, in contrast to p110α, wild-type non-alpha isoforms of p110 are oncogenic when overexpressed in cell culture. The isoforms of p110 have become promising drug targets. Isoform-selective inhibitors have been identified. Inhibitors that target exclusively the cancer-specific mutants of p110α constitute an important goal and challenge for current drug development. PMID:18794883

  1. Oncogenic c-kit transcript is a target for binase.

    PubMed

    Mitkevich, Vladimir A; Petrushanko, Irina Y; Kretova, Olga V; Zelenikhin, Pavel V; Prassolov, Vladimir S; Tchurikov, Nickolai A; Ilinskaya, Olga N; Makarov, Alexander A

    2010-07-01

    Mutational activation of c-Kit receptor tyrosine kinase is common in acute myelogenous leukemia (AML). One such activating point mutation is the N822K replacement in the c-Kit protein. Here we investigate the selective cytotoxic effect of binase--RNase from Bacillus intermedius--on FDC-P1-N822K cells. These cells were derived from myeloid progenitor FDC-P1 cells, in which ectopic expression of N822K c-kit gene induces interleukin-3 independent growth. In order to determine whether the sensitivity of these cells to binase is caused by the expression of c-kit oncogene, the cytotoxicity of the RNase was studied in the presence of selective inhibitor of mutated c-Kit imatinib (Gleevec). Inhibition of mutated c-Kit protein leads to the loss of cell sensitivity to the apoptotic effect of binase, while the latter still decreases the amount of cellular RNA. Using green fluorescent protein as an expression marker for the c-Kit oncoprotein, we demonstrate that the elimination of c-Kit is the key factor in selective cytotoxicity of binase. Quantitative RT-PCR with RNA samples isolated from the binase-treated FDC-P1-N822K cells shows that binase treatment results in 41% reduction in the amount of с-kit mRNA. This indicates that the transcript of the activated mutant c-kit is the target for toxic action of binase. Thus, the combination of inhibition of oncogenic protein with the destruction of its mRNA is a promising approach to eliminating malignant cells.

  2. Oncogenes in human testicular cancer: DNA and RNA studies.

    PubMed Central

    Peltomäki, P.; Alfthan, O.; de la Chapelle, A.

    1991-01-01

    Oncogene dosage and expression were studied in 16 testicular neoplasms, 14 of germ cell and two of non-germ cell origin. In comparison with normal DNA, tumour DNA of a total of eight patients (seven with germ cell neoplasm and one with testicular lymphoma) showed increased dosages of KRAS2, PDGFA, EGFR, MET and PDGFB. The most frequent (occurring in six tumours) and prominent (up to 3-4-fold) increases were detected in the dosages of KRAS2 (on chromosome 12p) and PDGFA (chromosome 7p), relative to a reference locus from chromosome 2. Importantly, there was a similar increase in 12p dosage in general in these tumours, suggesting the presence of the characteristic isochromosome 12p marker. On the contrary, possible 7p polysomy (assessed by molecular methods) did not explain the PDGFA (or EGFR) changes in all cases. NRAS, MYCN, CSFIR, MYB, MYC, ABL, HRASI, TP53, and ERBB2 did not reveal any consistent alterations in tumour DNA. In RNA dot blot assays the expression of KRAS2, PDGFA, EGFR, or MYC was generally not increased in the tumour samples when compared to that in normal testicular tissue of the same patients although there was interindividual variation in mRNA levels. It thus appears that while oncogene dosage changes occur in a proportion of testis cancers, they are often part of changes in large chromosomal regions or whole arms and are seldom accompanied by altered expression. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:1829952

  3. Exposure to airborne PM2.5 suppresses microRNA expression and deregulates target oncogenes that cause neoplastic transformation in NIH3T3 cells

    PubMed Central

    Cheng, Xinxin; Shao, Mingming; Wu, Chen; Wang, Suhan; Li, Hongmin; Wei, Lixuan; Gao, Yanning; Tan, Wen; Cheng, Shujun; Wu, Tangchun; Yu, Dianke; Lin, Dongxin

    2015-01-01

    Long-term exposure to airborne PM2.5 is associated with increased lung cancer risk but the underlying mechanism remains unclear. We characterized global microRNA and mRNA expression in human bronchial epithelial cells exposed to PM2.5 organic extract and integrally analyzed microRNA-mRNA interactions. Foci formation and xenograft tumorigenesis in mice with NIH3T3 cells expressing genes targeted by microRNAs were performed to explore the oncogenic potential of these genes. We also detected plasma levels of candidate microRNAs in subjects exposed to different levels of air PM2.5 and examined the aberrant expression of genes targeted by these microRNAs in human lung cancer. Under our experimental conditions, treatment of cells with PM2.5 extract resulted in downregulation of 138 microRNAs and aberrant expression of 13 mRNAs (11 upregulation and 2 downregulation). In silico and biochemical analyses suggested SLC30A1, SERPINB2 and AKR1C1, among the upregulated genes, as target for miR-182 and miR-185, respectively. Ectopic expression of each of these genes significantly enhanced foci formation in NIH3T3 cells. Following subcutaneous injection of these cells into nude mice, fibrosarcoma were formed from SLC30A1- or SERPINB2-expressing cells. Reduced plasma levels of miR-182 were detected in subjects exposed to high level of PM2.5 than in those exposed to low level of PM2.5 (P = 0.043). Similar results were seen for miR-185 although the difference was not statistically significant (P = 0.328). Increased expressions of SLC30A1, SERPINB2 and AKR1C1 were detected in human lung cancer. These results suggest that modulation of miR-182 and miR-185 and their target genes may contribute to lung carcinogenesis attributable to PM2.5 exposure. PMID:26338969

  4. Derivation of transplantable 7,12-dimethylbenz(a)anthracene-induced chicken fibrosarcoma lines: differences in metastasizing properties and organ specificity

    SciTech Connect

    Galton, J.E.; Xue, B.; Hochwald, G.M.; Thorbecke, G.J.

    1982-08-01

    Transplantable 7,12-dimethylbenz(a)anthracene-induced SC chicken fibrosarcoma (CHCT-NYU) lines were studied for their ability to grow in internal organs after iv injection (artificial metastases) into 1- to 3-week-old chickens. Some tumor lines were recently derived, whereas others were studied after many serial subcutaneous transplantations. Artificial metastases were seen in the stomach, pancreas, lungs, heart, and muscle, and occasionally in the kidneys and liver. Agammaglobulinemic recipients showed more extensive organ involvement than normal recipients of the same age. Whole-body ..gamma..-irradiation enhanced the incidence of artificial metastases, particularly in lungs. Antibody from the serum of a primary tumor-bearing host reduced the growth of the corresponding tumor in many organs. The metastatic pattern of line CHCT-NYU4 was a relatively stable property. However, intravenous transplantation of tumor cells from line CHCT-NYU4 taken from the liver, lungs, and pancreas of a single recipient established sublines with changes in organ specificity. After a few such serial transplants of liver-derived tumor, a line was derived that grew virtually in the liver alone. A subline with preference for growth in lungs was also obtained, but its ability to grow in the pancreas persisted. A pancreas-derived tumor line also grew in the liver and lungs. Subcutaneous transplants of tissue fragments of the lung-derived tumor line caused the appearance of spontaneous metastases in lungs. The incidence of spontaneous metastases with the lung-derived line was much greater than that with the liver-derived line or with the original CHCT-NYU4 line.

  5. Frequent deletion of CDKN2A and recurrent coamplification of KIT, PDGFRA, and KDR in fibrosarcoma of bone--an array comparative genomic hybridization study.

    PubMed

    Niini, Tarja; López-Guerrero, José Antonio; Ninomiya, Shinsuke; Guled, Mohamed; Hattinger, Claudia Maria; Michelacci, Francesca; Böhling, Tom; Llombart-Bosch, Antonio; Picci, Piero; Serra, Massimo; Knuutila, Sakari

    2010-02-01

    Very little is known about the genetics of fibrosarcoma (FS) of bone. We applied array comparative genomic hybridization (CGH) to identify genes and genomic regions with potential role in the pathogenesis of this tumor. Seventeen patients with FS of bone were included in the study. Array CGH analysis was carried out in 13 fresh frozen tissue specimens from 11 of these patients (nine primary tumors and four local recurrences). DNA was extracted and hybridizations were performed on Agilent 244K CGH oligoarrays. The data were analyzed using Agilent DNA Analytics Software. The number of changes per patient ranged from 0 to 132 (average = 43). Losses were most commonly detected at 6q, 8p, 9p, 10, 13q, and 20p. CDKN2A was homozygously deleted in 7/11 patients. Hypermethylation of both p16(INK4a) and p14(ARF) was found in 1/14 patients. An internal deletion of STARD13 was found in a region with common losses at 13q13.1. The most frequent gains were seen at 1q, 4q, 5p, 8q, 12p, 15q, 16q, 17q, 20q, 22q, and Xp. Single recurrent high level amplification was detected at 4q12, including KIT, PDGFRA, and KDR. No activating mutations were found in any of them. Immunohistochemistry revealed expression of PDGFRA and/or PDGFRB in 12/17 samples. Moreover, small regions of gains pinpointed genes of particular interest, such as IGF1R at 15q26.3 and CHD1L at 1q21.1. In conclusion, our analysis provided novel findings that can be exploited when searching for markers for diagnosis and prognosis, and targets of therapy in this tumor type.

  6. Contribution of alpha-D-galactopyranosyl end groups to attachment of highly and low metastatic murine fibrosarcoma cells to various substrates.

    PubMed

    Grimstad, I A; Varani, J; McCoy, J P

    1984-12-01

    There are much greater numbers of cell surface terminal, non-reducing alpha-D-galactorpyranosyl groups in highly malignant (metastatic) cells than are found in low malignant cells derived from the same murine fibrosarcoma. We have examined the contribution of these residues to attachment of the cells to various collagens and to plastic. Removal of these carbohydrate groups with alpha-galactosidase or blocking them with lectins from Griffonia simplicifolia seeds or with anti-blood group B antiserum all dramatically inhibited the attachment of both the highly malignant and the low malignant cells. Following removal with the enzyme, the alpha-D-galactopyranosyl end groups were rapidly resynthesized. This resynthesis was inhibited by tunicamycin, an inhibitor of de novo glycoprotein synthesis. This antibiotic also impaired cell attachment and, when used in addition to treatment with alpha-galactosidase, it inhibited cell attachment more than did treatment with the enzyme alone. The effects of all treatments on cell attachment were greater for the highly malignant than for the low malignant cells. With the latter cells, inhibition by lectin was seen only in the absence of serum, whereas the adhesion of highly malignant cells was affected in both the presence and the absence of serum. On their surface membrane the highly malignant cells express much more than do the low malignant cells of a glycoprotein that cross-reacts immunologically with laminin. The basement membrane glycoprotein laminin promotes cell attachment to collagen, and both glycoproteins contain terminal, non-reducing alpha-D-galactopyranosyl groups. Attachment of cells is a requirement for the formation of a metastasis, and thus the laminin-like molecule and the alpha-D-galactopyranosyl end groups (whether on the laminin-related moiety or on other cell surface molecules) may both be important for expression of the most malignant phenotype.

  7. Reversal of radiation-induced cisplatin resistance in murine fibrosarcoma cells by selective modulation of the cyclic GMP-dependent transduction pathway.

    PubMed Central

    Eichholtz-Wirth, H.

    1995-01-01

    Cisplatin resistance, induced in murine fibrosarcoma cells (SSK) in vitro or in vivo by low-dose irradiation, can be overcome by activation of the cyclic GMP(cGMP)-dependent transduction pathway. This is mediated either by stimulating cGMP formation with sodium nitroprusside or by replacing cGMP with a selective activator of the cGMP-dependent protein kinase, 8-bromo-cGMP. The cyclic AMP-dependent transduction pathway is not involved in cisplatin resistance. Instead, activation of cAMP sensitises both parental and resistant SSK cells equally to the action of cisplatin. There is a 1.8 to 2.5-fold increase in drug toxicity, depending on the activating agent. Enhancement of cisplatin sensitivity is induced by specific inhibition of cAMP hydrolysis, increase in cAMP formation or by increasing the activation potential to cAMP-dependent protein kinase by specific cAMP analogues. Cells that have lost cisplatin resistance respond to cGMP- or cAMP-elevating agents in the same way as the parental SSK cells. The radiation sensitivity is unchanged in all cell lines, even after activation of cAMP or cGMP. These results suggest that specific DNA repair pathways are altered by radiation but affected only in cisplatin damage repair, which is regulated by cGMP. Although there is ample cooperativity and interaction between the cAMP- and the cGMP-dependent transduction pathways, specific substrate binding by cGMP appears to play an important role in radiation-induced cisplatin resistance. PMID:7640207

  8. Sequence comparison in the crossover region of an oncogenic avian retrovirus recombinant and its nononcogenic parent: Genetic regions that control growth rate and oncogenic potential

    SciTech Connect

    Tsichlis, P.N.; Donehower, L.; Hager, G.; Zeller, N.; Malavarca, R.; Astrin, S.; Skalka, A.M.

    1982-11-01

    NTRE is an avian retrovirus recombinant of the endogeneous nononcogenic Rous-associated virus-0 (RAV-0) and the oncogenic, exogeneous, transformation-defective (td) Prague strain of Rous sarcoma virus B (td-PrRSV-B). Oligonucleotide mapping had shown that the recombinant virus is indistinguishable from its RAV-0 parent except for the 3'-end sequences, which were derived from td-PrRSV-B. However, the virus exhibits properties which are typical of an exogenous virus: it grows to high titers in tissue culture, and it is oncogenic in vivo. To accurately define the genetic region responsible for these properties, the authors determined the nucleotide sequences of the recombinant and its RAV-0 parent by using molecular clones of their DNA. These were compared with sequences already available for PrRSV-C, a virus closely related to the exogenous parent td-PrRSV-B. The results suggested that the crossover event which generated NTRE 7 took place in a region -501 to -401 nucleotides from the 3' end of the td-PrRSV parental genome and that sequences to the right of the recombination region were responsible for its growth properties and oncogenic potential. Since the exogenous-virus-specific sequences are expected to be missing from transformation-defective mutants of the Schmidt-Ruppin strain of RSV, which, like other exogeneous viruses, grow to high tiers in tissue culture and are oncogenic in vivo, the authors concluded that the growth properties and oncogenic potential of the exogeneous viruses are determined by sequences in the U3 region of the long terminal repeat. However, the authors propose that the exogeneous-virus-specific region may play a role in determining the oncogenic spectrum of a given oncogenic virus.

  9. Oncogenic activation of the human trk proto-oncogene by recombination with the ribosomal large subunit protein L7a.

    PubMed Central

    Ziemiecki, A; Müller, R G; Fu, X C; Hynes, N E; Kozma, S

    1990-01-01

    The trk-2h oncogene, isolated from the human breast carcinoma cell line MDA-MB 231 by genomic DNA-transfection into NIH3T3 cells, consists of the trk proto-oncogene receptor kinase domain fused to a N-terminal 41 amino acid activating sequence (Kozma, S.C., Redmond, S.M.S., Xiao-Chang, F., Saurer, S.M., Groner, B. and Hynes, N.E. (1988) EMBO J., 7, 147-154). Antibodies raised against a bacterially produced beta gal-trk receptor kinase fusion protein recognized a 44 kd phosphoprotein phosphorylated on serine, threonine and tyrosine in extracts of trk-2h transformed NIH3T3 cells. In vitro, in the presence of Mn2+/gamma ATP, this protein became phosphorylated extensively on tyrosine. Cells transformed by trk-2h did not, however, show an elevation in total phosphotyrosine. We have cloned and sequenced the cDNA encoding the amino terminal activating sequences of trk-2h (Kozma et al., 1988). The encoded protein has a high basic amino acid content and the gene is expressed as an abundant 1.2 kb mRNA in human, rat and mouse cells. Antipeptide antibodies raised against a C-terminal peptide recognized specifically a 30 kd protein on Western blots of human, rat and mouse cell extracts. Immunofluorescence revealed, in addition to granular cytoplasmic fluorescence, intense nucleolar staining. The high basic amino acid content and nucleolar staining prompted us to investigate whether the 30 kd protein could be a ribosomal protein. Western immunoblotting analysis of 2D-electrophoretically resolved ribosomal proteins indicated that the 30 kd protein is the ribosomal large subunit protein L7a.(ABSTRACT TRUNCATED AT 250 WORDS) Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 9. PMID:2403926

  10. Functional transition of Pak proto-oncogene during early evolution of metazoans.

    PubMed

    Watari, A; Iwabe, N; Masuda, H; Okada, M

    2010-07-01

    Proto-oncogenes encode signaling molecular switches regulating cellular homeostasis in metazoans, and can be converted to oncogenes by gain-of-function mutations. To address the molecular basis for development of the regulatory system of proto-oncogenes during evolution, we screened for ancestral proto-oncogenes from the unicellular choanoflagellate Monosiga ovata by monitoring their transforming activities, and isolated a Pak gene ortholog encoding a serine/threonine kinase as a 'primitive oncogene'. We also cloned Pak orthologs from fungi and the multicellular sponge Ephydatia fluviatilis, and compared their regulatory features with that of M. ovata Pak (MoPak). MoPak is constitutively active and induces cell transformation in mammalian fibroblasts, although the Pak orthologs from multicellular animals are strictly regulated. Analyses of Pak mutants revealed that structural alteration of the auto-inhibitory domain (AID) of MoPak confers higher constitutive kinase activity, as well as greater binding ability to Rho family GTPases than the multicellular Paks, and this structural alteration is responsible for cell transformation and disruption of multicellular tissue organization. These results show that maturation of AID function was required for the development of the strict regulatory system of the Pak proto-oncogene, and suggest a potential link between the establishment of the regulatory system of proto-oncogenes and metazoan evolution.

  11. Differential induction of cytolytic susceptibility by E1A, myc, and ras oncogenes in immortalized cells.

    PubMed Central

    Cook, J L; May, D L; Wilson, B A; Walker, T A

    1989-01-01

    The E1A oncogene of adenovirus serotypes 2 and 5 induces susceptibility to the cytolytic effects of natural killer lymphocytes and activated macrophages when expressed in infected and transformed mammalian cells (cytolysis-susceptible phenotype). E1A and the oncogenes v-myc, long-terminal-repeat-promoted c-myc, and activated c-ras share the ability to immortalize transfected low-passage rodent cells. The cytolytic phenotypes of well-characterized rodent cell lines immortalized by these three oncogenes were defined. In contrast to target cells expressing the intact E1A gene, myc- and ras-expressing, immortalized primary transfectants were resistant to lysis by both types of killer cell populations. The same patterns of susceptibility (E1A) and resistance (myc and ras) to cytolysis were observed in oncogene-transfected continuous rat (REF52) and mouse (NIH 3T3) cell lines, indicating that differences in the cytolytic phenotypes associated with expression of these oncogenes are not due to cell selection during immortalization. The results suggest that the E1A oncogene may possess a functional domain that is different from those of other oncogenes, such as myc and ras, and that the activity linked to this postulated domain is dissociable from the process of immortalization. Images PMID:2526229

  12. Multiple oncogenic mutations and clonal relationship in spatially distinct benign human epidermal tumors

    PubMed Central

    Hafner, Christian; Toll, Agustí; Fernández-Casado, Alejandro; Earl, Julie; Marqués, Miriam; Acquadro, Francesco; Méndez-Pertuz, Marinela; Urioste, Miguel; Malats, Núria; Burns, Julie E.; Knowles, Margaret A.; Cigudosa, Juan C.; Hartmann, Arndt; Vogt, Thomas; Landthaler, Michael; Pujol, Ramón M.; Real, Francisco X.

    2010-01-01

    Malignant tumors result from the accumulation of genetic alterations in oncogenes and tumor suppressor genes. Much less is known about the genetic changes in benign tumors. Seborrheic keratoses (SK) are very frequent benign human epidermal tumors without malignant potential. We performed a comprehensive mutational screen of genes in the FGFR3-RAS-MAPK and phosphoinositide 3-kinase (PI3K)-AKT pathways from 175 SK, including multiple lesions from each patient. SK commonly harbored multiple bona fide oncogenic mutations in FGFR3, PIK3CA, KRAS, HRAS, EGFR, and AKT1 oncogenes but not in tumor suppressor genes TSC1 and PTEN. Despite the occurrence of oncogenic mutations and the evidence for downstream ERK/MAPK and PI3K pathway signaling, we did not find induction of senescence or a DNA damage response. Array comparative genomic hybridization (aCGH) analysis revealed that SK are genetically stable. The pattern of oncogenic mutations and X chromosome inactivation departs significantly from randomness and indicates that spatially independent lesions from a given patient share a clonal relationship. Our findings show that multiple oncogenic mutations in the major signaling pathways involved in cancer are not sufficient to drive malignant tumor progression. Furthermore, our data provide clues on the origin and spread of oncogenic mutations in tissues, suggesting that apparently independent (multicentric) adult benign tumors may have a clonal origin. PMID:21078999

  13. DNA damage and repair in oncogenic transformation by heavy ion radiation

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Mei, M.; George, K. A.; Craise, L. M.

    1996-01-01

    Energetic heavy ions are present in galactic cosmic rays and solar particle events. One of the most important late effects in risk assessment is carcinogenesis. We have studied the carcinogenic effects of heavy ions at the cellular and molecular levels and have obtained quantitative data on dose-response curves and on the repair of oncogenic lesions for heavy particles with various charges and energies. Studies with repair inhibitors and restriction endonucleases indicated that for oncogenic transformation DNA is the primary target. Results from heavy ion experiments showed that the cross section increased with LET and reached a maximum value of about 0.02 micrometer2 at about 500 keV/micrometer. This limited size of cross section suggests that only a fraction of cellular genomic DNA is important in radiogenic transformation. Free radical scavengers, such as DMSO, do not give any effect on induction of oncogenic transformation by 600 MeV/u iron particles, suggesting most oncogenic damage induced by high-LET heavy ions is through direct action. Repair studies with stationary phase cells showed that the amount of reparable oncogenic lesions decreased with an increase of LET and that heavy ions with LET greater than 200 keV/micrometer produced only irreparable oncogenic damage. An enhancement effect for oncogenic transformation was observed in cells irradiated by low-dose-rate argon ions (400 MeV/u; 120 keV/micrometer). Chromosomal aberrations, such as translocation and deletion, but not sister chromatid exchange, are essential for heavy-ion-induced oncogenic transformation. The basic mechanism(s) of misrepair of DNA damage, which form oncogenic lesions, is unknown.

  14. DNA damage and repair in oncogenic transformation by heavy ion radiation

    NASA Astrophysics Data System (ADS)

    Yang, T. C.; Mei, M.; George, K. A.; Craise, L. M.

    Energetic heavy ions are present in galactic cosmic rays and solar particle events. One of the most important late effects in risk assessment is carcinogenesis. We have studied the carcinogenic effects of heavy ions at the cellular and molecular levels and have obtained quantitative data on dose-response curves and on the repair of oncogenic lesions for heavy particles with various charges and energies. Studies with repair inhibitors and restriction endonucleases indicated that for oncogenic transformation DNA is the primary target. Results from heavy ion experiments showed that the cross section increased with LET and reached a maximum value of about 0.02 mum^2 at about 500 keV/mum. This limited size of cross section suggests that only a fraction of cellular genomic DNA is important in radiogenic transformation. Free radical scavengers, such as DMSO, do not give any effect on induction of oncogenic transformation by 600 MeV/u iron particles, suggesting most oncogenic damage induced by high-LET heavy ions is through direct action. Repair studies with stationary phase cells showed that the amount of reparable oncogenic lesions decreased with an increase of LET and that heavy ions with LET greater than 200 keV/mum produced only irreparable oncogenic damage. An enhancement effect for oncogenic transformation was observed in cells irradiated by low-dose-rate argon ions (400 MeV/u; 120 keV/mum). Chromosomal aberrations, such as translocation and deletion, but not sister chromatid exchange, are essential for heavy-ion-induced oncogenic transformation. The basic mechanism(s) of misrepair of DNA damage, which form oncogenic lesions, is unknown.

  15. Characterization of the NTRK1 genomic region involved in chromosomal rearrangements generating TRK oncogenes

    SciTech Connect

    Greco, A.; Mariani, C.; Miranda, C.; Pagliardini, S.; Pierotti, M.A. )

    1993-11-01

    TRK oncogenes are created by chromosomal rearrangements linking the tyrosine-kinase domain of the NTRK1 gene (encoding one of the receptors for the nerve growth factor) to foreign activating sequences. TRK oncogenes are frequently detected in human papillary thyroid carcinoma, as a result of rearrangements involving at least three different activating genes. The authors have found that the rearrangements creating all the TRK oncogenes so far characterized fall within a 2.9-kb XbaI/SmaI restriction fragment of the NTRK1 gene. Here they report the nucleotide sequence and the exon organization of this fragment. 13 refs., 2 figs.

  16. Oncogenically active MYD88 mutations in human lymphoma

    PubMed Central

    Ngo, Vu N.; Young, Ryan M.; Schmitz, Roland; Jhavar, Sameer; Xiao, Wenming; Lim, Kian-Huat; Kohlhammer, Holger; Xu, Weihong; Yang, Yandan; Zhao, Hong; Shaffer, Arthur L.; Romesser, Paul; Wright, George; Powell, John; Rosenwald, Andreas; Muller-Hermelink, Hans Konrad; Ott, German; Gascoyne, Randy D.; Connors, Joseph M.; Rimsza, Lisa M.; Campo, Elias; Jaffe, Elaine S.; Delabie, Jan; Smeland, Erlend B.; Fisher, Richard I.; Braziel, Rita M.; Tubbs, Raymond R.; Cook, J. R.; Weisenburger, Denny D.; Chan, Wing C.; Staudt, Louis M.

    2016-01-01

    The activated B-cell-like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL) remains the least curable form of this malignancy despite recent advances in therapy1. Constitutive nuclear factor (NF)-κB and JAK kinase signalling promotes malignant cell survival in these lymphomas, but the genetic basis for this signalling is incompletely understood. Here we describe the dependence of ABC DLBCLs on MYD88, an adaptor protein that mediates toll and interleukin (IL)-1 receptor signalling2,3, and the discovery of highly recurrent oncogenic mutations affecting MYD88 in ABC DLBCL tumours. RNA interference screening revealed that MYD88 and the associated kinases IRAK1 and IRAK4 are essential for ABC DLBCL survival. High-throughput RNA resequencing uncovered MYD88 mutations in ABC DLBCL lines. Notably, 29% of ABC DLBCL tumours harboured the same amino acid substitution, L265P, in the MYD88 Toll/IL-1 receptor (TIR) domain at an evolutionarily invariant residue in its hydrophobic core. This mutation was rare or absent in other DLBCL subtypes and Burkitt’s lymphoma, but was observed in 9% of mucosa-associated lymphoid tissue lymphomas. At a lower frequency, additional mutations were observed in the MYD88 TIR domain, occurring in both the ABC and germinal centre B-cell-like (GCB) DLBCL subtypes. Survival of ABC DLBCL cells bearing the L265P mutation was sustained by the mutant but not the wild-type MYD88 isoform, demonstrating that L265P is a gain-of-function driver mutation. The L265P mutant promoted cell survival by spontaneously assembling a protein complex containing IRAK1 and IRAK4, leading to IRAK4 kinase activity, IRAK1 phosphorylation, NF-κB signalling, JAK kinase activation of STAT3, and secretion of IL-6, IL-10 and interferon-β. Hence, theMYD88 signalling pathway is integral to the pathogenesis of ABC DLBCL, supporting the development of inhibitors of IRAK4 kinase and other components of this pathway for the treatment of tumours bearing oncogenic MYD88 mutations

  17. RNF4-Dependent Oncogene Activation by Protein Stabilization.

    PubMed

    Thomas, Jane J; Abed, Mona; Heuberger, Julian; Novak, Rostislav; Zohar, Yaniv; Beltran Lopez, Angela P; Trausch-Azar, Julie S; Ilagan, Ma Xenia G; Benhamou, David; Dittmar, Gunnar; Kopan, Raphael; Birchmeier, Walter; Schwartz, Alan L; Orian, Amir

    2016-09-20

    Ubiquitylation regulates signaling pathways critical for cancer development and, in many cases, targets proteins for degradation. Here, we report that ubiquitylation by RNF4 stabilizes otherwise short-lived oncogenic transcription factors, including β-catenin, Myc, c-Jun, and the Notch intracellular-domain (N-ICD) protein. RNF4 enhances the transcriptional activity of these factors, as well as Wnt- and Notch-dependent gene expression. While RNF4 is a SUMO-targeted ubiquitin ligase, protein stabilization requires the substrate's phosphorylation, rather than SUMOylation, and binding to RNF4's arginine-rich motif domain. Stabilization also involves generation of unusual polyubiquitin chains and docking of RNF4 to chromatin. Biologically, RNF4 enhances the tumor phenotype and is essential for cancer cell survival. High levels of RNF4 mRNA correlate with poor survival of a subgroup of breast cancer patients, and RNF4 protein levels are elevated in 30% of human colon adenocarcinomas. Thus, RNF4-dependent ubiquitylation translates transient phosphorylation signal(s) into long-term protein stabilization, resulting in enhanced oncoprotein activation. PMID:27653698

  18. RECQL4 helicase has oncogenic potential in sporadic breast cancers.

    PubMed

    Arora, Arvind; Agarwal, Devika; Abdel-Fatah, Tarek Ma; Lu, Huiming; Croteau, Deborah L; Moseley, Paul; Aleskandarany, Mohammed A; Green, Andrew R; Ball, Graham; Rakha, Emad A; Chan, Stephen Yt; Ellis, Ian O; Wang, Lisa L; Zhao, Yongliang; Balajee, Adayabalam S; Bohr, Vilhelm A; Madhusudan, Srinivasan

    2016-03-01

    RECQL4 helicase is a molecular motor that unwinds DNA, a process essential during DNA replication and DNA repair. Germ-line mutations in RECQL4 cause type II Rothmund-Thomson syndrome (RTS), characterized by a premature ageing phenotype and cancer predisposition. RECQL4 is widely considered to be a tumour suppressor, although its role in human breast cancer is largely unknown. As the RECQL4 gene is localized to chromosome 8q24, a site frequently amplified in sporadic breast cancers, we hypothesized that it may play an oncogenic role in breast tumourigenesis. To address this, we analysed large cohorts for gene copy number changes (n = 1977), mRNA expression (n = 1977) and protein level (n = 1902). Breast cancer incidence was also explored in 58 patients with type II RTS. DNA replication dynamics and chemosensitivity was evaluated in RECQL4-depleted breast cancer cells in vitro. Amplification or gain in gene copy number (30.6%), high-level mRNA expression (51%) and high levels of protein (23%) significantly associated with aggressive tumour behaviour, including lymph node positivity, larger tumour size, HER2 overexpression, ER-negativity, triple-negative phenotypes and poor survival. RECQL4 depletion impaired the DNA replication rate and increased chemosensitivity in cultured breast cancer cells. Thus, although recognized as a 'safe guardian of the genome', our data provide compelling evidence that RECQL4 is tumour promoting in established breast cancers. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  19. Control of Tumorigenesis and Chemoresistance by the DEK oncogene

    PubMed Central

    Riveiro-Falkenbach, Erica; Soengas, María S.

    2010-01-01

    Slight modifications of chromatin dynamics can translate into short and large-scale changes in DNA replication and DNA repair. Similarly, promoter usage and accessibility are tightly dependent on chromatin architecture. Consequently, it is perhaps not surprising that factors controlling chromatin organization are frequently deregulated (directly or indirectly) in cancer cells. DEK is emerging as a novel class of DNA topology modulators which can be both targets and effectors of pro-tumorigenic events. The locus containing DEK at chromosome 6p22.3 is amplified or reorganized in multiple cancer types. In addition, DEK can be subject to a variety of tumor-associated transcriptional and post-translational modifications. In turn, DEK can favor cell transformation, at least in part by inhibiting cell differentiation and premature senescence. More recently, DEK has also been linked to the resistance of malignant cells to apoptotic inducers. Interestingly, a fraction of DEK can also bind RNA and affect alternative splicing, further illustrating the pleiotropic roles that this protein may exert in cancer cells. Here we will summarize the current literature regarding the regulation and function(s) of DEK as a proto-oncogene. In addition, the translational relevance of DEK as a putative diagnostic marker and candidate for drug development will also be discussed. PMID:20501624

  20. Copper is required for oncogenic BRAF signaling and tumorigenesis

    PubMed Central

    Brady, Donita C.; Crowe, Matthew S.; Turski, Michelle L.; Hobbs, G. Aaron; Yao, Xiaojie; Chaikuad, Apirat; Knapp, Stefan; Xiao, Kunhong; Campbell, Sharon L.; Thiele, Dennis J.; Counter, Christopher M.

    2014-01-01

    The BRAF kinase is mutated, typically V600E, to induce an active oncogenic state in a large fraction of melanoma, thyroid, hairy cell leukemia, and to a lesser extent, a wide spectrum of other cancers1,2. BRAFV600E phosphorylates and activates the kinases MEK1 and MEK2, which in turn phosphorylate and activate the kinases ERK1 and ERK2, stimulating the MAPK pathway to promote cancer3. Targeting MEK1/2 is proving to be an important therapeutic strategy, as a MEK1/2 inhibitor provides a survival advantage in metastatic melanoma4, which is increased when co-administered with a BRAFV600E inhibitor5. In this regard, we previously found that copper (Cu) influx enhances MEK1 phosphorylation of ERK1/2 through a Cu-MEK1 interaction6. We now show that genetic loss of the high affinity Cu transporter Ctr1 or mutations in MEK1 that disrupt Cu binding reduced BRAFV600E-driven signaling and tumorigenesis. Conversely, a MEK1-MEK5 chimera that phosphorylates ERK1/2 independent of Cu or an active ERK2 restored tumor growth to cells lacking Ctr1. Importantly, Cu chelators used in the treatment of Wilson disease7 reduced tumor growth of both BRAFV600E-transformed cells and cells resistant to BRAF inhibition. Taken together, these results suggest that Cu-chelation therapy could be repurposed to treat BRAFV600E mutation-positive cancers. PMID:24717435

  1. The LMO2 oncogene regulates DNA replication in hematopoietic cells

    PubMed Central

    Sincennes, Marie-Claude; Humbert, Magali; Grondin, Benoît; Lisi, Véronique; Veiga, Diogo F. T.; Haman, André; Cazaux, Christophe; Mashtalir, Nazar; Affar, EL Bachir; Verreault, Alain; Hoang, Trang

    2016-01-01

    Oncogenic transcription factors are commonly activated in acute leukemias and subvert normal gene expression networks to reprogram hematopoietic progenitors into preleukemic stem cells, as exemplified by LIM-only 2 (LMO2) in T-cell acute lymphoblastic leukemia (T-ALL). Whether or not these oncoproteins interfere with other DNA-dependent processes is largely unexplored. Here, we show that LMO2 is recruited to DNA replication origins by interaction with three essential replication enzymes: DNA polymerase delta (POLD1), DNA primase (PRIM1), and minichromosome 6 (MCM6). Furthermore, tethering LMO2 to synthetic DNA sequences is sufficient to transform these sequences into origins of replication. We next addressed the importance of LMO2 in erythroid and thymocyte development, two lineages in which cell cycle and differentiation are tightly coordinated. Lowering LMO2 levels in erythroid progenitors delays G1-S progression and arrests erythropoietin-dependent cell growth while favoring terminal differentiation. Conversely, ectopic expression in thymocytes induces DNA replication and drives these cells into cell cycle, causing differentiation blockade. Our results define a novel role for LMO2 in directly promoting DNA synthesis and G1-S progression. PMID:26764384

  2. Genomic and oncogenic preference of HBV integration in hepatocellular carcinoma

    PubMed Central

    Zhao, Ling-Hao; Liu, Xiao; Yan, He-Xin; Li, Wei-Yang; Zeng, Xi; Yang, Yuan; Zhao, Jie; Liu, Shi-Ping; Zhuang, Xue-Han; Lin, Chuan; Qin, Chen-Jie; Zhao, Yi; Pan, Ze-Ya; Huang, Gang; Liu, Hui; Zhang, Jin; Wang, Ruo-Yu; Yang, Yun; Wen, Wen; Lv, Gui-Shuai; Zhang, Hui-Lu; Wu, Han; Huang, Shuai; Wang, Ming-Da; Tang, Liang; Cao, Hong-Zhi; Wang, Ling; Lee, T.P.; Jiang, Hui; Tan, Ye-Xiong; Yuan, Sheng-Xian; Hou, Guo-Jun; Tao, Qi-Fei; Xu, Qin-Guo; Zhang, Xiu-Qing; Wu, Meng-Chao; Xu, Xun; Wang, Jun; Yang, Huan-Ming; Zhou, Wei-Ping; Wang, Hong-Yang

    2016-01-01

    Hepatitis B virus (HBV) can integrate into the human genome, contributing to genomic instability and hepatocarcinogenesis. Here by conducting high-throughput viral integration detection and RNA sequencing, we identify 4,225 HBV integration events in tumour and adjacent non-tumour samples from 426 patients with HCC. We show that HBV is prone to integrate into rare fragile sites and functional genomic regions including CpG islands. We observe a distinct pattern in the preferential sites of HBV integration between tumour and non-tumour tissues. HBV insertional sites are significantly enriched in the proximity of telomeres in tumours. Recurrent HBV target genes are identified with few that overlap. The overall HBV integration frequency is much higher in tumour genomes of males than in females, with a significant enrichment of integration into chromosome 17. Furthermore, a cirrhosis-dependent HBV integration pattern is observed, affecting distinct targeted genes. Our data suggest that HBV integration has a high potential to drive oncogenic transformation. PMID:27703150

  3. Relaxin Enhances the Oncogenic Potential of Human Thyroid Carcinoma Cells

    PubMed Central

    Hombach-Klonisch, Sabine; Bialek, Joanna; Trojanowicz, Bogusz; Weber, Ekkehard; Holzhausen, Hans-Jürgen; Silvertown, Josh D.; Summerlee, Alastair J.; Dralle, Henning; Hoang-Vu, Cuong; Klonisch, Thomas

    2006-01-01

    The role of members of the insulin-like superfamily in human thyroid carcinoma is primarily unknown. Here we demonstrate the presence of RLN2 relaxin and relaxin receptor LGR7 in human papillary, follicular, and undifferentiated anaplastic thyroid carcinoma suggesting a specific involvement of relaxin-LGR7 signaling in thyroid carcinoma. Stable transfectants of the LGR7-positive human follicular thyroid carcinoma cell lines FTC-133 and FTC-238 that secrete bioactive proRLN2 revealed this hormone to act as a multifunctional endocrine factor in thyroid carcinoma cells. Although RLN2 did not act as a mitogen, it acted as an autocrine/paracrine factor and significantly increased anchorage-independent growth and thyroid carcinoma cell motility and invasiveness through elastin matrices. Suppression of LGR7 expression by LGR7-siRNA abolished the RLN2-mediated accelerated tumor cell motility. The increased elastinolytic activity correlated with enhanced production and secretion of the lysosomal proteinases cathepsin-D (cath-D) and cath-L forms hereby identified as new RLN2 target molecules in human neoplastic thyrocytes. We found the intracellular distribution of procath-L specifically altered in RLN2 transfectants, providing first evidence for selective actions of relaxin on the powerful elastinolytic cath-L production, storage, and secretion in thyroid carcinoma cells. Thus, relaxin enhances the oncogenic potential and acts as novel endocrine modulator of invasiveness in human thyroid carcinoma cells. PMID:16877360

  4. Relaxin enhances the oncogenic potential of human thyroid carcinoma cells.

    PubMed

    Hombach-Klonisch, Sabine; Bialek, Joanna; Trojanowicz, Bogusz; Weber, Ekkehard; Holzhausen, Hans-Jürgen; Silvertown, Josh D; Summerlee, Alastair J; Dralle, Henning; Hoang-Vu, Cuong; Klonisch, Thomas

    2006-08-01

    The role of members of the insulin-like superfamily in human thyroid carcinoma is primarily unknown. Here we demonstrate the presence of RLN2 relaxin and relaxin receptor LGR7 in human papillary, follicular, and undifferentiated anaplastic thyroid carcinoma suggesting a specific involvement of relaxin-LGR7 signaling in thyroid carcinoma. Stable transfectants of the LGR7-positive human follicular thyroid carcinoma cell lines FTC-133 and FTC-238 that secrete bioactive proRLN2 revealed this hormone to act as a multifunctional endocrine factor in thyroid carcinoma cells. Although RLN2 did not act as a mitogen, it acted as an autocrine/paracrine factor and significantly increased anchorage-independent growth and thyroid carcinoma cell motility and invasiveness through elastin matrices. Suppression of LGR7 expression by LGR7-siRNA abolished the RLN2-mediated accelerated tumor cell motility. The increased elastinolytic activity correlated with enhanced production and secretion of the lysosomal proteinases cathepsin-D (cath-D) and cath-L forms hereby identified as new RLN2 target molecules in human neoplastic thyrocytes. We found the intracellular distribution of procath-L specifically altered in RLN2 transfectants, providing first evidence for selective actions of relaxin on the powerful elastinolytic cath-L production, storage, and secretion in thyroid carcinoma cells. Thus, relaxin enhances the oncogenic potential and acts as novel endocrine modulator of invasiveness in human thyroid carcinoma cells.

  5. Oncogenic Role of Merlin/NF2 in Glioblastoma

    PubMed Central

    Guerrero, Paola A.; Yin, Wei; Camacho, Laura; Marchetti, Dario

    2014-01-01

    Glioblastoma is the most common and aggressive primary brain tumor in adults, with a poor prognosis because of its resistance to radiotherapy and chemotherapy. Merlin/NF2 (neurofibromatosis type 2) is a tumor suppressor found to be mutated in most nervous system tumors; however, it is not mutated in glioblastomas. Merlin associates with several transmembrane receptors and intracellular proteins serving as an anchoring molecule. Additionally, it acts as a key component of cell motility. By selecting subpopulations of U251 glioblastoma cells, we observed that high expression of phosphorylated Merlin at serine 518 (S518-Merlin), Notch1 and epidermal growth factor receptor (EGFR) correlated with increased cell proliferation and tumorigenesis. These cells were defective in cell-contact inhibition with changes in Merlin phosphorylation directly affecting Notch1, EGFR expression as well as downstream targets Hes1 and Ccnd. Of note, we identified a function for S518-Merlin which is distinct from what has been reported when the expression of Merlin is diminished in relation to EGFR and Notch expression, providing first-time evidence that demonstrates that the phosphorylation of Merlin at S518 in glioblastoma promotes oncogenic properties that are not only the result of inactivation of the tumor suppressor role of Merlin, but also, an independent process implicating a Merlin-driven regulation of Notch1 and EGFR. PMID:25043298

  6. A Computational Drug Repositioning Approach for Targeting Oncogenic Transcription Factors

    PubMed Central

    Gayvert, Kaitlyn; Dardenne, Etienne; Cheung, Cynthia; Boland, Mary Regina; Lorberbaum, Tal; Wanjala, Jackline; Chen, Yu; Rubin, Mark; Tatonetti, Nicholas P.; Rickman, David; Elemento, Olivier

    2016-01-01

    Summary Mutations in transcription factors (TFs) genes are frequently observed in tumors, often leading to aberrant transcriptional activity. Unfortunately, TFs are often considered undruggable due to the absence of targetable enzymatic activity. To address this problem, we developed CRAFTT, a Computational drug-Repositioning Approach For Targeting Transcription factor activity. CRAFTT combines ChIP-seq with drug-induced expression profiling to identify small molecules that can specifically perturb TF activity. Application to ENCODE ChIP-seq datasets revealed known drug-TF interactions and a global drug-protein network analysis further supported these predictions. Application of CRAFTT to ERG, a pro-invasive, frequently over-expressed oncogenic TF predicted that dexamethasone would inhibit ERG activity. Indeed, dexamethasone significantly decreased cell invasion and migration in an ERG-dependent manner. Furthermore, analysis of Electronic Medical Record data indicates a protective role for dexamethasone against prostate cancer. Altogether, our method provides a broadly applicable strategy to identify drugs that specifically modulate TF activity. PMID:27264179

  7. CXCR4 in breast cancer: oncogenic role and therapeutic targeting

    PubMed Central

    Xu, Chao; Zhao, Hong; Chen, Haitao; Yao, Qinghua

    2015-01-01

    Chemokines are 8–12 kDa peptides that function as chemoattractant cytokines and are involved in cell activation, differentiation, and trafficking. Chemokines bind to specific G-protein-coupled seven-span transmembrane receptors. Chemokines play a fundamental role in the regulation of a variety of cellular, physiological, and developmental processes. Their aberrant expression can lead to a variety of human diseases including cancer. C-X-C chemokine receptor type 4 (CXCR4), also known as fusin or CD184, is an alpha-chemokine receptor specific for stromal-derived-factor-1 (SDF-1 also called CXCL12). CXCR4 belongs to the superfamily of the seven transmembrane domain heterotrimeric G protein-coupled receptors and is functionally expressed on the cell surface of various types of cancer cells. CXCR4 also plays a role in the cell proliferation and migration of these cells. Recently, CXCR4 has been reported to play an important role in cell survival, proliferation, migration, as well as metastasis of several cancers including breast cancer. This review is mainly focused on the current knowledge of the oncogenic role and potential drugs that target CXCR4 in breast cancer. Additionally, CXCR4 proangiogenic molecular mechanisms will be reviewed. Strict biunivocal binding affinity and activation of CXCR4/CXCL12 complex make CXCR4 a unique molecular target for prevention and treatment of breast cancer. PMID:26356032

  8. Papillomavirus sequences integrate near cellular oncogenes in some cervical carcinomas

    SciTech Connect

    Duerst, M.; Croce, C.M.; Gissmann, L.; Schwarz, E.; Huebner, K.

    1987-02-01

    The chromosomal locations of cellular sequences flanking integrated papillomavirus DNA in four cervical cell lines and a primary cervical carcinoma have been determined. The two human papillomavirus (HPV) 16 flanking sequences derived from the tumor were localized to chromosomes regions 20pter..-->..20q13 and 3p25..-->..3qter, regions that also contain the protooncogenes c-src-1 and c-raf-1, respectively. The HPV 16 integration site in the SiHa cervical carcinoma-derived cell line is in chromosome region 13q14..-->..13q32. The HPV 18 integration site in SW756 cervical carcinoma cells is in chromosome 12 but is not closely linked to the Ki-ras2 gene. Finally, in two cervical carcinoma cell lines, HeLa and C4-I, HPV 18 DNA is integrated in chromosome 8, 5' of the c-myc gene. The HeLaHPV 18 integration site is within 40 kilobases 5' of the c-myc gene, inside the HL60 amplification unit surrounding and including the c-myc gene. Additionally, steady-state levels of c-myc mRNA are elevated in HeLa and C4-I cells relative to other cervical carcinoma cell lines. Thus, in at least some genital tumors, cis-activation of cellular oncogenes by HPV may be involved in malignant transformation of cervical cells.

  9. Oncogenic potential diverge among human papillomavirus type 16 natural variants

    SciTech Connect

    Sichero, Laura; Simao Sobrinho, Joao; Lina Villa, Luisa

    2012-10-10

    We compared E6/E7 protein properties of three different HPV-16 variants: AA, E-P and E-350G. Primary human foreskin keratinocytes (PHFK) were transduced with HPV-16 E6 and E7 and evaluated for proliferation and ability to grow in soft agar. E-P infected keratinocytes presented the lowest efficiency in colony formation. AA and E-350G keratinocytes attained higher capacity for in vitro transformation. We observed similar degradation of TP53 among HPV-16 variants. Furthermore, we accessed the expression profile in early (p5) and late passage (p30) transduced cells of 84 genes commonly involved in carcinogenesis. Most differences could be attributed to HPV-16 E6/E7 expression. In particular, we detected different expression of ITGA2 and CHEK2 in keratinocytes infected with AA and AA/E-350G late passage cells, respectively, and higher expression of MAP2K1 in E-350G transduced keratinocytes. Our results indicate differences among HPV-16 variants that could explain, at least in part, differences in oncogenic potential attributed to these variants.

  10. Fusion oncogenes in salivary gland tumors: molecular and clinical consequences.

    PubMed

    Stenman, Göran

    2013-07-01

    Salivary gland tumors constitute a heterogeneous group of uncommon diseases that pose significant diagnostic and therapeutic challenges. However, the recent discovery of a translocation-generated gene fusion network in salivary gland carcinomas as well in benign salivary gland tumors opens up new avenues for improved diagnosis, prognostication, and development of specific targeted therapies. The gene fusions encode novel fusion oncoproteins or ectopically expressed normal or truncated oncoproteins. The major targets of the translocations are transcriptional coactivators, tyrosine kinase receptors, and transcription factors involved in growth factor signaling and cell cycle regulation. Notably, several of these targets or pathways activated by these targets are druggable. Examples of clinically significant gene fusions in salivary gland cancers are the MYB-NFIB fusion specific for adenoid cystic carcinoma, the CRTC1-MAML2 fusion typical of low/intermediate-grade mucoepidermoid carcinoma, and the recently identified ETV6-NTRK3 fusion in mammary analogue secretory carcinoma. Similarly, gene fusions involving the PLAG1 and HMGA2 oncogenes are specific for benign pleomorphic adenomas. Continued studies of the molecular consequences of these fusion oncoproteins and their down-stream targets will ultimately lead to the identification of novel driver genes in salivary gland neoplasms and will also form the basis for the development of new therapeutic strategies for salivary gland cancers and, perhaps, other neoplasms.

  11. MDMX exerts its oncogenic activity via suppression of retinoblastoma protein.

    PubMed

    Zhang, H; Hu, L; Qiu, W; Deng, T; Zhang, Y; Bergholz, J; Xiao, Z-X

    2015-10-29

    Inactivation of the retinoblastoma protein (RB) has a major role in the development of human malignancies. We have previously shown that MDM2, an ubiquitin E3 ligase and major negative regulator of p53, binds to and promotes proteasome-mediated degradation of RB. MDMX, a homolog of MDM2, also binds to and inhibits p53 transactivation activity, yet it does not possess intrinsic ubiquitin ligase activity. Here, we show that MDMX binds to and promotes RB degradation in an MDM2-dependent manner. Specifically, the MDMX C-terminal ring domain binds to the RB C-pocket and enhances MDM2-RB interaction. Silencing MDMX induces RB accumulation, cell cycle arrest and senescence-like phenotypes, which are reverted by simultaneous RB knockdown. Furthermore, MDMX ablation leads to significant retardation of xenograft tumor growth, concomitant with RB accumulation. These results demonstrate that MDMX exerts oncogenic activity via suppression of RB, and suggest that both MDM2 and MDMX could be chemotherapeutic targets. PMID:25703327

  12. Enhancement of therapeutic effects of recombinant interleukin 2 on a transplantable rat fibrosarcoma by the use of a sustained release vehicle, pluronic gel.

    PubMed

    Morikawa, K; Okada, F; Hosokawa, M; Kobayashi, H

    1987-01-01

    We have tested the feasibility of pluronic F-127 gel (PLF-127; a polyoxyethylene-polyoxypropylene surface active block copolymer) as a sustained release vehicle for topical administration of interleukin 2 (IL-2) in order to enhance the therapeutic effects of IL-2 against a rat fibrosarcoma, KMT-17. Injection of human DNA recombinant IL-2 (3 X 10(4) units s.c.) in 30% (w/w) PLF-127 into rats provided detectable serum IL-2 levels for up to 10 h, while injection of IL-2 alone provided detectable IL-2 levels for 3 h. When, following s.c. inoculation with 1 X 10(5) KMT-17 tumor cells into rats, IL-2 (6 X 10(4) units/day) in PLF-127 gels was injected s.c. around the growing tumor inoculum every 2 days for 10 days from Day 1 to Day 19, the survival days of rats were more prolonged [mean survival day, 32.3 +/- 5.4 (SD)] as compared with that of rats treated with saline [20.7 +/- 2.1] than mean survival days of rats treated with IL-2 alone [27.3 +/- 4.5] or PLF-127 alone [22.9 +/- 3.3]. Moreover, the span of mean survival days of rats treated with IL-2 in PLF-127 locally (31.7 +/- 5.9) was much longer than that of rats given IL-2 in PLF-127 systemically (22.8 +/- 3.4). By means of a Winn assay, stronger tumor neutralizing activities were observed in regional lymph node cells obtained from tumor bearing rats treated with IL-2 in PLF-127 than were observed in lymph node cells from rats treated with IL-2 alone or PLF-127 alone (percentage of inhibition, 90.3, 12.2, and -15.5%, respectively). The therapeutic effects of IL-2 were thus found to be consistent with the antitumor activity in regional lymph node cells. These results suggest that the enhanced therapeutic effects of IL-2 in PLF-127 are due to enhancement of antitumor immune responses induced by sustained IL-2 activity at the tumor sites. PMID:3491675

  13. BIM mediates oncogene inactivation-induced apoptosis in multiple transgenic mouse models of acute lymphoblastic leukemia

    PubMed Central

    Li, Yulin; Deutzmann, Anja; Choi, Peter S.; Fan, Alice C.; Felsher, Dean W.

    2016-01-01

    Oncogene inactivation in both clinical targeted therapies and conditional transgenic mouse cancer models can induce significant tumor regression associated with the robust induction of apoptosis. Here we report that in MYC-, RAS-, and BCR-ABL-induced acute lymphoblastic leukemia (ALL), apoptosis upon oncogene inactivation is mediated by the same pro-apoptotic protein, BIM. The induction of BIMin the MYC- and RAS-driven leukemia is mediated by the downregulation of miR-17-92. Overexpression of miR-17-92 blocked the induction of apoptosis upon oncogene inactivation in the MYC and RAS-driven but not in the BCR-ABL-driven ALL leukemia. Hence, our results provide novel insight into the mechanism of apoptosis upon oncogene inactivation and suggest that induction of BIM-mediated apoptosis may be an important therapeutic approach for ALL. PMID:27095570

  14. ARF and ATM/ATR cooperate in p53-mediated apoptosis upon oncogenic stress

    SciTech Connect

    Pauklin, Siim . E-mail: spauklin@ut.ee; Kristjuhan, Arnold; Maimets, Toivo; Jaks, Viljar

    2005-08-26

    Induction of apoptosis is pivotal for eliminating cells with damaged DNA or deregulated proliferation. We show that tumor suppressor ARF and ATM/ATR kinase pathways cooperate in the induction of apoptosis in response to elevated expression of c-myc, {beta}-catenin or human papilloma virus E7 oncogenes. Overexpression of oncogenes leads to the formation of phosphorylated H2AX foci, induction of Rad51 protein levels and ATM/ATR-dependent phosphorylation of p53. Inhibition of ATM/ATR kinases abolishes both induction of Rad51 and phosphorylation of p53, and remarkably reduces the level of apoptosis induced by co-expression of oncogenes and ARF. However, the induction of apoptosis is downregulated in p53-/- cells and does not depend on activities of ATM/ATR kinases, indicating that efficient induction of apoptosis by oncogene activation depends on coordinated action of ARF and ATM/ATR pathways in the regulation of p53.

  15. Oncogenic and tumor-promoting Spermatophytes and Pteridophytes and their active principles.

    PubMed

    Farnsworth, N R; Bingel, A S; Fong, H H; Saleh, A A; Christenson, G M; Saufferer, S M

    1976-08-01

    A survey and discussion are presented of plants classified as Spermatophyta and Pteridophyta, extracts of which have been shown to be oncogenic or tumor-promoting in animals. The active oncogenic and tumor-promoting principles, where known, have been identified. They represent tannins; pyrrolizidine, indole, tropolone, quinoline, purine, and benzophenanthridine alkaloids; nitroso compounds; triterpene glycosides; lignans; isoflavans; allyl benzenoids; simple (nu-pyrenes; and carbocyclic hydroxy acids. A total of 28 compounds of known structure have been identified as oncogens and several phorbol esters as tumor-promoters. Plants known to contain any of the 28 oncogens (excluding shikimic acid and caffeine) have been tabulated; they represent at least 454 species, 110 genera, and 34 families of Spermatophyta and Pteridophyta.

  16. Duplication of the MYB oncogene in T cell acute lymphoblastic leukemia.

    PubMed

    Lahortiga, Idoya; De Keersmaecker, Kim; Van Vlierberghe, Pieter; Graux, Carlos; Cauwelier, Barbara; Lambert, Frederic; Mentens, Nicole; Beverloo, H Berna; Pieters, Rob; Speleman, Frank; Odero, Maria D; Bauters, Marijke; Froyen, Guy; Marynen, Peter; Vandenberghe, Peter; Wlodarska, Iwona; Meijerink, Jules P P; Cools, Jan

    2007-05-01

    We identified a duplication of the MYB oncogene in 8.4% of individuals with T cell acute lymphoblastic leukemia (T-ALL) and in five T-ALL cell lines. The duplication is associated with a threefold increase in MYB expression, and knockdown of MYB expression initiates T cell differentiation. Our results identify duplication of MYB as an oncogenic event and suggest that MYB could be a therapeutic target in human T-ALL.

  17. Ras-mediated cell cycle arrest is altered by nuclear oncogenes to induce Schwann cell transformation.

    PubMed Central

    Ridley, A J; Paterson, H F; Noble, M; Land, H

    1988-01-01

    The cellular responses to ras and nuclear oncogenes were investigated in purified populations of rat Schwann cells. v-Ha-ras and SV40 large T cooperate to transform Schwann cells, inducing growth in soft agar and allowing proliferation in the absence of added mitogens. Expression of large T alone reduces their growth factor requirements but is insufficient to induce full transformation. In contrast, expression of v-Ha-ras leads to proliferation arrest in Schwann cells expressing a temperature-sensitive mutant of large T at the restrictive temperature. Cells arrest in either the G1 or G2/M phases of the cell cycle, and can re-enter cell division at the permissive temperature even after prolonged periods at the restrictive conditions. Oncogenic ras proteins also inhibit DNA synthesis when microinjected into Schwann cells. Adenovirus E1a and c-myc oncogenes behave similarly to SV40 large T. They cooperate with Ha-ras oncogenes to transform Schwann cells, and prevent ras-induced growth arrest. Thus nuclear oncogenes fundamentally alter the response of Schwann cells to a ras oncogene from cell cycle arrest to transformation. Images PMID:3049071

  18. Translation Start Sequences Affect the Efficiency of Silencing of Agrobacterium tumefaciens T-DNA Oncogenes1

    PubMed Central

    Lee, Hyewon; Humann, Jodi L.; Pitrak, Jennifer S.; Cuperus, Josh T.; Parks, T. Dawn; Whistler, Cheryl A.; Mok, Machteld C.; Ream, L. Walt

    2003-01-01

    Agrobacterium tumefaciens oncogenes cause transformed plant cells to overproduce auxin and cytokinin. Two oncogenes encode enzymes that convert tryptophan to indole-3-acetic acid (auxin): iaaM (tryptophan mono-oxygenase) and iaaH (indole-3-acetamide hydrolase). A third oncogene (ipt) encodes AMP isopentenyl transferase, which produces cytokinin (isopentenyl-AMP). Inactivation of ipt and iaaM (or iaaH) abolishes tumorigenesis. Because adequate means do not exist to control crown gall, we created resistant plants by introducing transgenes designed to elicit posttranscriptional gene silencing (PTGS) of iaaM and ipt. Transgenes that elicit silencing trigger sequence-specific destruction of the inducing RNA and messenger RNAs with related sequences. Although PTGS has proven effective against a variety of target genes, we found that a much higher percentage of transgenic lines silenced iaaM than ipt, suggesting that transgene sequences influenced the effectiveness of PTGS. Sequences required for oncogene silencing included a translation start site. A transgene encoding a translatable sense-strand RNA from the 5′ end of iaaM silenced the iaaM oncogene, but deletion of the translation start site abolished the ability of the transgene to silence iaaM. Silencing A. tumefaciens T-DNA oncogenes is a new and effective method to produce plants resistant to crown gall disease. PMID:12972655

  19. Induction of p38δ Expression Plays an Essential Role in Oncogenic ras-Induced Senescence

    PubMed Central

    Kwong, Jinny; Chen, Michelle; Lv, Dan; Luo, Na; Su, Weijun; Xiang, Rong

    2013-01-01

    Oncogene-induced senescence is a stable proliferative arrest that serves as a tumor-suppressing defense mechanism. p38 mitogen-activated protein kinase (MAPK) has been implicated in oncogene-induced senescence and tumor suppression. However, the specific role of each of the four p38 isoforms in oncogene-induced senescence is not fully understood. Here, we demonstrate that p38δ mediates oncogene-induced senescence through a p53- and p16INK4A-independent mechanism. Instead, evidence suggests a link between p38δ and the DNA damage pathways. Moreover, we have discovered a novel mechanism that enhances the expression of p38δ during senescence. In this mechanism, oncogenic ras induces the Raf-1–MEK–extracellular signal-regulated kinase (ERK) pathway, which, in turn, activates the AP-1 and Ets transcription factors that are bound to the p38δ promoter, leading to increased transcription of p38δ. These findings indicate that induction of the prosenescent function of p38δ by oncogenic ras is achieved through 2 mechanisms, transcriptional activation by the Raf-1–MEK–ERK–AP-1/Ets pathway, which increases the cellular concentration of the p38δ protein, and posttranslational modification by MKK3/6, which stimulates the enzymatic activity of p38δ. In addition, these studies identify the AP-1 and Ets transcription factors as novel signaling components in the senescence-inducing pathway. PMID:23878395

  20. Oncogenic KRAS and BRAF Drive Metabolic Reprogramming in Colorectal Cancer.

    PubMed

    Hutton, Josiah E; Wang, Xiaojing; Zimmerman, Lisa J; Slebos, Robbert J C; Trenary, Irina A; Young, Jamey D; Li, Ming; Liebler, Daniel C

    2016-09-01

    Metabolic reprogramming, in which altered utilization of glucose and glutamine supports rapid growth, is a hallmark of most cancers. Mutations in the oncogenes KRAS and BRAF drive metabolic reprogramming through enhanced glucose uptake, but the broader impact of these mutations on pathways of carbon metabolism is unknown. Global shotgun proteomic analysis of isogenic DLD-1 and RKO colon cancer cell lines expressing mutant and wild type KRAS or BRAF, respectively, failed to identify significant differences (at least 2-fold) in metabolic protein abundance. However, a multiplexed parallel reaction monitoring (PRM) strategy targeting 73 metabolic proteins identified significant protein abundance increases of 1.25-twofold in glycolysis, the nonoxidative pentose phosphate pathway, glutamine metabolism, and the phosphoserine biosynthetic pathway in cells with KRAS G13D mutations or BRAF V600E mutations. These alterations corresponded to mutant KRAS and BRAF-dependent increases in glucose uptake and lactate production. Metabolic reprogramming and glucose conversion to lactate in RKO cells were proportional to levels of BRAF V600E protein. In DLD-1 cells, these effects were independent of the ratio of KRAS G13D to KRAS wild type protein. A study of 8 KRAS wild type and 8 KRAS mutant human colon tumors confirmed the association of increased expression of glycolytic and glutamine metabolic proteins with KRAS mutant status. Metabolic reprogramming is driven largely by modest (<2-fold) alterations in protein expression, which are not readily detected by the global profiling methods most commonly employed in proteomic studies. The results indicate the superiority of more precise, multiplexed, pathway-targeted analyses to study functional proteome systems. Data are available through MassIVE Accession MSV000079486 at ftp://MSV000079486@massive.ucsd.edu. PMID:27340238

  1. SUMOylation Confers Posttranslational Stability on NPM-ALK Oncogenic Protein.

    PubMed

    Vishwamitra, Deeksha; Curry, Choladda V; Shi, Ping; Alkan, Serhan; Amin, Hesham M

    2015-09-01

    Nucleophosmin-anaplastic lymphoma kinase-expressing (NPM-ALK+) T-cell lymphoma is an aggressive form of cancer that commonly affects children and adolescents. The expression of NPM-ALK chimeric oncogene results from the chromosomal translocation t(2;5)(p23;q35) that causes the fusion of the ALK and NPM genes. This translocation generates the NPM-ALK protein tyrosine kinase that forms the constitutively activated NPM-ALK/NPM-ALK homodimers. In addition, NPM-ALK is structurally associated with wild-type NPM to form NPM/NPM-ALK heterodimers, which can translocate to the nucleus. The mechanisms that sustain the stability of NPM-ALK are not fully understood. SUMOylation is a posttranslational modification that is characterized by the reversible conjugation of small ubiquitin-like modifiers (SUMOs) with target proteins. SUMO competes with ubiquitin for substrate binding and therefore, SUMOylation is believed to protect target proteins from proteasomal degradation. Moreover, SUMOylation contributes to the subcellular distribution of target proteins. Herein, we found that the SUMOylation pathway is deregulated in NPM-ALK+ T-cell lymphoma cell lines and primary lymphoma tumors from patients. We also identified Lys24 and Lys32 within the NPM domain as the sites where NPM-ALK conjugates with SUMO-1 and SUMO-3. Importantly, antagonizing SUMOylation by the SENP1 protease decreased the accumulation of NPM-ALK and suppressed lymphoma cell viability, proliferation, and anchorage-independent colony formation. One possible mechanism for the SENP1-mediated decrease in NPM-ALK levels was the increase in NPM-ALK association with ubiquitin, which facilitates its degradation. Our findings propose a model in which aberrancies in SUMOylation contribute to the pathogenesis of NPM-ALK+ T-cell lymphoma. Unraveling such pathogenic mechanisms may lead to devising novel strategies to eliminate this aggressive neoplasm.

  2. Cul4A is an oncogene in malignant pleural mesothelioma.

    PubMed

    Hung, Ming-Szu; Mao, Jian-Hua; Xu, Zhidong; Yang, Cheng-Ta; Yu, Jau-Song; Harvard, Chansonette; Lin, Yu-Ching; Bravo, Dawn Therese; Jablons, David M; You, Liang

    2011-02-01

    Cullin 4A (Cul4A) is important in cell survival, development, growth and the cell cycle, but its role in mesothelioma has not been studied. For the first time, we identified amplification of the Cul4A gene in four of five mesothelioma cell lines. Consistent with increased Cul4A gene copy number, we found that Cul4A protein was overexpressed in mesothelioma cells as well. Cul4A protein was also overexpressed in 64% of primary malignant pleural mesothelioma (MPM) tumours. Furthermore, knockdown of Cul4A with shRNA in mesothelioma cells resulted in up-regulation of p21 and p27 tumour suppressor proteins in a p53-independent manner in H290, H28 and MS-1 mesothelioma cell lines. Knockdown of Cul4A also resulted in G0/G1 cell cycle arrest and decreased colony formation in H290, H28 and MS-1 mesothelioma cell lines. Moreover, G0/G1 cell cycle arrest was partially reversed by siRNA down-regulation of p21 and/or p27 in Cul4A knockdown H290 cell line. In the contrary, overexpression of Cul4A resulted in down-regulation of p21 and p27 proteins and increased colony formation in H28 mesothelioma cell line. Both p21 and p27 showed faster degradation rates in Cul4A overexpressed H28 cell line and slower degradation rates in Cul4A knockdown H28 cell line. Our study indicates that Cul4A amplification and overexpression play an oncogenic role in the pathogenesis of mesothelioma. Thus, Cul4A may be a potential therapeutic target for MPM.

  3. Fos family members: regulation, structure and role in oncogenic transformation.

    PubMed

    Tulchinsky, E

    2000-07-01

    The members of the Fos protein family might be subdivided in two groups, according to their ability to transform rodent fibroblasts, transforming (c-Fos and FosB) and non-transforming (Fra-1 and Fra-2) proteins. Members of these groups are differently activated in response to external stimuli and possess different structural features. Importantly, whilst c-Fos and FosB contain multiple transactivation modules in their N- and C-terminal parts, transactivation domains are absent in the non-transforming Fos proteins. As a result, Fra-1 and Fra-2 though efficiently form dimers with the Jun proteins, are weak transcriptional activators and inhibit the c-Fos-dependent activation in transient transfection assay. The numerous experiments performed with the different Fos mutant proteins with impaired transforming ability, as well as with chimeric proteins revealed the importance of the transactivation function for transformation. Fra-1 and Fra-2 proteins albeit ineffectively triggering oncogenic transformation, are abundant in ras- and src-transformed murine and chicken fibroblasts, in neoplastic thyroid cells and in highly malignant mouse adenocarcinoma cells, which underwent mesenchymal transition. The abundance of the non-transforming Fos proteins in these systems might be mediated by a positive AP-l-dependent feedback mechanism, as well as by wnt signals. Furthermore, the manipulation of the Fra-1 expression level in thyroid and mammary tumor cells modulated the transcription of several tumor progression markers and affected cell morphology and invasiveness. These recent data demonstrate a novel function of non-transforming Fos proteins in the maintenance and progression of the transformed state. Interestingly, this function is independent of the documented invalidity of the Fra-1 and Fra-2 proteins as transcriptional activators in rodent fibroblasts.

  4. Novel oncogenic PDGFRA mutations in pediatric high-grade gliomas.

    PubMed

    Paugh, Barbara S; Zhu, Xiaoyan; Qu, Chunxu; Endersby, Raelene; Diaz, Alexander K; Zhang, Junyuan; Bax, Dorine A; Carvalho, Diana; Reis, Rui M; Onar-Thomas, Arzu; Broniscer, Alberto; Wetmore, Cynthia; Zhang, Jinghui; Jones, Chris; Ellison, David W; Baker, Suzanne J

    2013-10-15

    The outcome for children with high-grade gliomas (HGG) remains dismal, with a 2-year survival rate of only 10% to 30%. Diffuse intrinsic pontine glioma (DIPG) comprise a subset of HGG that arise in the brainstem almost exclusively in children. Genome-wide analyses of copy number imbalances previously showed that platelet-derived growth factor receptor α (PDGFRA) is the most frequent target of focal amplification in pediatric HGGs, including DIPGs. To determine whether PDGFRA is also targeted by more subtle mutations missed by copy number analysis, we sequenced all PDGFRA coding exons from a cohort of pediatric HGGs. Somatic-activating mutations were identified in 14.4% (13 of 90) of nonbrainstem pediatric HGGs and 4.7% (2 of 43) of DIPGs, including missense mutations and in-frame deletions and insertions not previously described. Forty percent of tumors with mutation showed concurrent amplification, whereas 60% carried heterozygous mutations. Six different mutations impacting different domains all resulted in ligand-independent receptor activation that was blocked by small molecule inhibitors of PDGFR. Expression of mutants in p53-null primary mouse astrocytes conferred a proliferative advantage in vitro and generated HGGs in vivo with complete penetrance when implanted into brain. The gene expression signatures of these murine HGGs reflected the spectrum of human diffuse HGGs. PDGFRA intragenic deletion of exons 8 and 9 were previously shown in adult HGG, but were not detected in 83 nonbrainstem pediatric HGG and 57 DIPGs. Thus, a distinct spectrum of mutations confers constitutive receptor activation and oncogenic activity to PDGFRα in childhood HGG. PMID:23970477

  5. Spi-1, Fli-1 and Fli-3 (miR-17-92) oncogenes contribute to a single oncogenic network controlling cell proliferation in friend erythroleukemia.

    PubMed

    Kayali, Samer; Giraud, Guillaume; Morlé, François; Guyot, Boris

    2012-01-01

    Clonal erythroleukemia developing in susceptible mice infected by Friend virus complex are associated with highly recurrent proviral insertions at one of three loci called Spi-1, Fli-1 or Fli-3, leading to deregulated expression of oncogenic Spi-1 or Fli-1 transcription factors or miR-17-92 miRNA cluster, respectively. Deregulated expression of each of these three oncogenes has been independently shown to contribute to cell proliferation of erythroleukemic clones. Previous studies showed a close relationship between Spi-1 and Fli-1, which belong to the same ETS family, Spi-1 activating fli-1 gene, and both Spi-1 and Fli-1 activating multiple common target genes involved in ribosome biogenesis. In this study, we demonstrated that Spi-1 and Fli-1 are also involved in direct miR-17-92 transcriptional activation through their binding to a conserved ETS binding site in its promoter. Moreover, we demonstrated that physiological re-expression of exogenous miR-17 and miR-20a are able to partially rescue the proliferation loss induced by Fli-1 knock-down and identified HBP1 as a target of these miRNA in erythroleukemic cells. These results establish that three of the most recurrently activated oncogenes in Friend erythroleukemia are actually involved in a same oncogenic network controlling cell proliferation. The putative contribution of a similar ETS-miR-17-92 network module in other normal or pathological proliferative contexts is discussed.

  6. ER functions of oncogenes and tumor suppressors: Modulators of intracellular Ca(2+) signaling.

    PubMed

    Bittremieux, Mart; Parys, Jan B; Pinton, Paolo; Bultynck, Geert

    2016-06-01

    Intracellular Ca(2+) signals that arise from the endoplasmic reticulum (ER), the major intracellular Ca(2+)-storage organelle, impact several mitochondrial functions and dictate cell survival and cell death processes. Furthermore, alterations in Ca(2+) signaling in cancer cells promote survival and establish a high tolerance towards cell stress and damage, so that the on-going oncogenic stress does not result in the activation of cell death. Over the last years, the mechanisms underlying these oncogenic alterations in Ca(2+) signaling have started to emerge. An important aspect of this is the identification of several major oncogenes, including Bcl-2, Bcl-XL, Mcl-1, PKB/Akt, and Ras, and tumor suppressors, such as p53, PTEN, PML, BRCA1, and Beclin 1, as direct and critical regulators of Ca(2+)-transport systems located at the ER membranes, including IP3 receptors and SERCA Ca(2+) pumps. In this way, these proteins execute part of their function by controlling the ER-mitochondrial Ca(2+) fluxes, favoring either survival (oncogenes) or cell death (tumor suppressors). Oncogenic mutations, gene deletions or amplifications alter the expression and/or function of these proteins, thereby changing the delicate balance between oncogenes and tumor suppressors, impacting oncogenesis and favoring malignant cell function and behavior. In this review, we provided an integrated overview of the impact of the major oncogenes and tumor suppressors, often altered in cancer cells, on Ca(2+) signaling from the ER Ca(2+) stores. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen.

  7. p38alpha and p38gamma mediate oncogenic ras-induced senescence through differential mechanisms.

    PubMed

    Kwong, Jinny; Hong, Lixin; Liao, Rong; Deng, Qingdong; Han, Jiahuai; Sun, Peiqing

    2009-04-24

    Oncogene-induced senescence is a tumor-suppressive defense mechanism triggered upon activation of certain oncogenes in normal cells. Recently, the senescence response to oncogene activation has been shown to act as a bona fide barrier to cancer development in vivo. Multiple previous studies have implicated the importance of the p38 MAPK pathway in oncogene-induced senescence. However, the contribution of each of the four p38 isoforms (encoded by different genes) to senescence induction is unclear. In the current study, we demonstrated that p38alpha and p38gamma, but not p38beta, play an essential role in oncogenic ras-induced senescence. Both p38alpha and p38gamma are expressed in primary human fibroblasts and are activated upon transduction of oncogenic ras. Small hairpin RNA-mediated silencing of p38alpha or p38gamma expression abrogated ras-induced senescence, whereas constitutive activation of p38alpha and p38gamma caused premature senescence. Furthermore, upon activation by oncogenic ras, p38gamma stimulated the transcriptional activity of p53 by phosphorylating p53 at Ser(33), suggesting that the ability of p38gamma to mediate senescence is at least partly achieved through p53. However, p38alpha contributed to ras-inducted senescence via a p53-indepdendent mechanism in cells by mediating ras-induced expression of p16(INK4A), another key senescence effector. These findings have identified p38alpha and p38gamma as essential components of the signaling pathway that regulates the tumor-suppressing senescence response, providing insights into the molecular mechanisms underlying the differential involvement of the p38 isoforms in senescence induction.

  8. Diversity of mutations in the RET proto-oncogene and its oncogenic mechanism in medullary thyroid cancer.

    PubMed

    Hedayati, Mehdi; Zarif Yeganeh, Marjan; Sheikholeslami, Sara; Afsari, Farinaz

    2016-08-01

    Thyroid cancer is the most common endocrine malignancy and accounts for nearly 1% of all of human cancer. Thyroid cancer has four main histological types: papillary, follicular, medullary, and anaplastic. Papillary, follicular, and anaplastic thyroid carcinomas are derived from follicular thyroid cells, whereas medullary thyroid carcinoma (MTC) originates from the neural crest parafollicular cells or C-cells of the thyroid gland. MTC represents a neuroendocrine tumor and differs considerably from differentiated thyroid carcinoma. MTC is one of the aggressive types of thyroid cancer, which represents 3-10% of all thyroid cancers. It occurs in hereditary (25%) and sporadic (75%) forms. The hereditary form of MTC has an autosomal dominant mode of inheritance. According to the present classification, hereditary MTC is classified as a multiple endocrine neoplasi type 2 A & B (MEN2A & MEN2B) and familial MTC (FMTC). The RET proto-oncogene is located on chromosome 10q11.21. It is composed of 21 exons and encodes a transmembrane receptor tyrosine kinase. RET regulates a complex network of signal transduction pathways during development, survival, proliferation, differentiation, and migration of the enteric nervous system progenitor cells. Gain of function mutations in RET have been well demonstrated in MTC development. Variants of MTC result from different RET mutations, and they have a good genotype-phenotype correlation. Various MTC related mutations have been reported in different exons of the RET gene. We proposed that RET genetic mutations may be different in distinct populations. Therefore, the aim of this study was to find a geographical pattern of RET mutations in different populations. PMID:26678667

  9. The oncogenic action of ionizing radiation on rat skin

    SciTech Connect

    Burns, F.J.; Garte, S.J.

    1992-01-01

    The multistage theory of carcinogenesis specifies that cells progress to cancer through a series of discrete, irreversible genetic alterations, but data on radiation-induced cancer incidence in rat skin suggests that an intermediate repairable alteration may occur. Data are presented on cancer induction in rat skin exposed to an electron beam (LET=0.34 keV/[mu]), a neon ion beam (LET=45) or an argon ion beam (LET=125). The rats were observed for tumors at least 78 weeks with squamous and basal cell carcinomas observed. The total cancer yield was fitted by the quadratic equation, and the equation parameters were estimated by linear regression for each type of radiation. Analysis of the DNA from the electron-induced carcinomas indicated that K-ras and/or c-myc oncogenes were activated. In situ hybridization indicated that the cancers contain subpopulations of cells with differing amounts of c-myc and H-ras amplification. The results are consistent with the idea that ionizing radiation produces stable, carcinogenically relevant lesions via 2 repairable events at low LET and via a non-repairable linked event pathway at high LET; either pathway may advance the cell by 1 stage. The proliferative response of rat epidermis following exposure to ionizing radiation was quantified by injection of [sup 14]C-thymidine. The return of these cells to S-phase a second time was detected by a second label ([sup 3]H). When the labeled cells were in G1-phase, the dorsal skin was irradiated with X-rays. All labeling indices were determined. The [sup 14]C labeling index was constant and unaffected by the radiation. The proportion of all cells entering S-phase averaged 3.5% at 18 hr and increased after 44, 52 and 75 hr to average levels of 11.8%, 5. 3%, and 6.6% at 0, 10 and 25 Gy respectively. The proportion of S-phase cells labeled with [sup 14]C increased after 42 hr and remained relatively constant thereafter.

  10. Human cancers converge at the HIF-2alpha oncogenic axis.

    PubMed

    Franovic, Aleksandra; Holterman, Chet E; Payette, Josianne; Lee, Stephen

    2009-12-15

    , silencing these receptors phenocopies the loss of HIF-2alpha oncogenic activity, abrogating the serum-independent growth of human cancer cells in culture. Based on these data, we propose an alternative to the predominant view that cancers exploit independent autonomous growth pathways and reveal HIF-2alpha as a potentially universal culprit in promoting the persistent proliferation of neoplastic cells. PMID:19955413

  11. Single nucleotide polymorphisms in microRNA binding sites of oncogenes: implications in cancer and pharmacogenomics.

    PubMed

    Manikandan, Mayakannan; Munirajan, Arasambattu Kannan

    2014-02-01

    Cancer, a complex genetic disease involving uncontrolled cell proliferation, is caused by inactivation of tumor suppressor genes and activation of oncogenes. A vast majority of these cancer causing genes are known targets of microRNAs (miRNAs) that bind to complementary sequences in 3' untranslated regions (UTR) of messenger RNAs and repress them from translation. Single Nucleotide Polymorphisms (SNPs) occurring naturally in such miRNA binding regions can alter the miRNA:mRNA interaction and can significantly affect gene expression. We hypothesized that 3'UTR SNPs in miRNA binding sites of proto-oncogenes could abrogate their post-transcriptional regulation, resulting in overexpression of oncogenic proteins, tumor initiation, progression, and modulation of drug response in cancer patients. Therefore, we developed a systematic computational pipeline that integrates data from well-established databases, followed stringent selection criteria and identified a panel of 30 high-confidence SNPs that may impair miRNA target sites in the 3' UTR of 54 mRNA transcripts of 24 proto-oncogenes. Further, 8 SNPs amidst them had the potential to determine therapeutic outcome in cancer patients. Functional annotation suggested that altogether these SNPs occur in proto-oncogenes enriched for kinase activities. We provide detailed in silico evidence for the functional effect of these candidate SNPs in various types of cancer.

  12. Involvement of oncogenes in radon-induced lung tumors in rats

    SciTech Connect

    Foreman, M.E.; McCoy, L.S.; Frazier, M.E.

    1992-12-31

    Several oncogenes, notably those of the ras and myc family, have been implicated in the induction of lung tumors. Although inhalation of radon and radon daughters has been shown to result in a high incidence of lung tumors, the role of oncogenes in these tumors (if any) remains unknown. In certain cases of chemically induced carcinogenesis, unique point mutations in the 12th, 59th, and 61st codons of H-ras and Ki-ras have been found to transform ras proto-oncogenes to dominant-acting oncogenes. We have isolated DNA from fixed, archived, radon-induced tumors in rats, amplified the oncogene of interest by polymerase chain reaction, and analyzed it by sequencing. Although we have not found any of the classically described point mutations in the H-ras gene, preliminary evidence indicates that several common mutations occur with high frequency in the second exon. These point mutations have not been seen in any {open_quotes}spontaneously{close_quotes} occurring tumors. At present we theorize that these mutations represent one of the secondary effects of a multi-step process in the development of these lung tumors. As this project expands, we are making a systematic effort to correlate the molecular data with the pathological data derived from the original studies of these archived tumors.

  13. Regulation of autophagy and chloroquine sensitivity by oncogenic RAS in vitro is context-dependent.

    PubMed

    Morgan, Michael J; Gamez, Graciela; Menke, Christina; Hernandez, Ariel; Thorburn, Jacqueline; Gidan, Freddi; Staskiewicz, Leah; Morgan, Shellie; Cummings, Christopher; Maycotte, Paola; Thorburn, Andrew

    2014-10-01

    Chloroquine (CQ) is an antimalarial drug and late-stage inhibitor of autophagy currently FDA-approved for use in the treatment of rheumatoid arthritis and other autoimmune diseases. Based primarily on its ability to inhibit autophagy, CQ and its derivative, hydroxychloroquine, are currently being investigated as primary or adjuvant therapy in multiple clinical trials for cancer treatment. Oncogenic RAS has previously been shown to regulate autophagic flux, and cancers with high incidence of RAS mutations, such as pancreatic cancer, have been described in the literature as being particularly susceptible to CQ treatment, leading to the hypothesis that oncogenic RAS makes cancer cells dependent on autophagy. This autophagy "addiction" suggests that the mutation status of RAS in tumors could identify patients who would be more likely to benefit from CQ therapy. Here we show that RAS mutation status itself is unlikely to be beneficial in such a patient selection because oncogenic RAS does not always promote autophagy addiction. Moreover, oncogenic RAS can have opposite effects on both autophagic flux and CQ sensitivity in different cells. Finally, for any given cell type, the positive or negative effect of oncogenic RAS on autophagy does not necessarily predict whether RAS will promote or inhibit CQ-mediated toxicity. Thus, although our results confirm that different tumor cell lines display marked differences in how they respond to autophagy inhibition, these differences can occur irrespective of RAS mutation status and, in different contexts, can either promote or reduce chloroquine sensitivity of tumor cells.

  14. Transforming but not immortalizing oncogenes activate the transcription factor PEA1.

    PubMed Central

    Wasylyk, C; Imler, J L; Wasylyk, B

    1988-01-01

    The transcription factor PEA1 (a homologue of AP1 and c-jun) is highly active in several fibroblast cell lines, compared to its low activity in a myeloma and an embryo-carcinoma (EC) cell line. Serum components are essential to attain these high levels of PEA1 activity in fibroblasts. This serum requirement is abrogated by transformation with the oncogenes c-Ha-ras, v-src and polyoma middle T (Py-MT) but not by immortalization with polyoma large T (Py-LT), v-myc, c-myc or SV40 large T (SV40T). Expression in myeloma cells of the same transforming oncogenes, as well as v-mos and c-fos, activates PEA1, whereas expression of the same immortalizing oncogenes and EIA does not. These results suggest that a common target for transforming oncogenes is PEA1. Serum components have no effect on PEA1 activity in the myeloma and EC cell lines. In contrast, retinoic acid treatment of F9 EC cells augments PEA1 activity. These results suggest that transforming oncogene expression compensates for the absence of cell type-specific factors which are required to activate PEA1. Activation of PEA1 may lead to altered transcription of a set of transformation-related genes. Images PMID:3142763

  15. Constitutive asymmetric dimerization drives oncogenic activation of epidermal growth factor receptor carboxyl-terminal deletion mutants

    PubMed Central

    Park, Angela K.J.; Francis, Joshua M.; Park, Woong-Yang; Park, Joon-Oh; Cho, Jeonghee

    2015-01-01

    Genomic alterations targeting the Epidermal Growth Factor Receptor (EGFR) gene have been strongly associated with cancer pathogenesis. The clinical effectiveness of EGFR targeted therapies, including small molecules directed against the kinase domain such as gefitinib, erlotinib and afatinib, have been proven successful in treating non-small cell lung cancer patients with tumors harboring EGFR kinase domain mutations. Recent large-scale genomic studies in glioblastoma and lung cancer have identified an additional class of oncogenic mutations caused by the intragenic deletion of carboxy-terminal coding regions. Here, we report that combinations of exonic deletions of exon 25 to 28 lead to the oncogenic activation of EGF receptor in the absence of ligand and consequent cellular transformation, indicating a significant role of C-terminal domain in modulating EGFR activation. Furthermore, we show that the oncogenic activity of the resulting C-terminal deletion mutants are efficiently inhibited by EGFR-targeted drugs including erlotinib, afatinib, dacomitinib as well as cetuximab, expanding the therapeutic rationale of cancer genome-based EGFR targeted approaches. Finally, in vivo and in vitro preclinical studies demonstrate that constitutive asymmetric dimerization in mutant EGFR is a key mechanism for oncogenic activation and tumorigenesis by C-terminal deletion mutants. Therefore, our data provide compelling evidence for oncogenic activation of C-terminal deletion mutants at the molecular level and we propose that C-terminal deletion status of EGFR can be considered as a potential genomic marker for EGFR-targeted therapy. PMID:25826094

  16. Cancer induction by restriction of oncogene expression to the stem cell compartment

    PubMed Central

    Pérez-Caro, María; Cobaleda, César; González-Herrero, Inés; Vicente-Dueñas, Carolina; Bermejo-Rodríguez, Camino; Sánchez-Beato, Margarita; Orfao, Alberto; Pintado, Belén; Flores, Teresa; Sánchez-Martín, Manuel; Jiménez, Rafael; Piris, Miguel A; Sánchez-García, Isidro

    2009-01-01

    In human cancers, all cancerous cells carry the oncogenic genetic lesions. However, to elucidate whether cancer is a stem cell-driven tissue, we have developed a strategy to limit oncogene expression to the stem cell compartment in a transgenic mouse setting. Here, we focus on the effects of the BCR-ABLp210 oncogene, associated with chronic myeloid leukaemia (CML) in humans. We show that CML phenotype and biology can be established in mice by restricting BCR-ABLp210 expression to stem cell antigen 1 (Sca1)+ cells. The course of the disease in Sca1-BCR-ABLp210 mice was not modified on STI571 treatment. However, BCR-ABLp210-induced CML is reversible through the unique elimination of the cancer stem cells (CSCs). Overall, our data show that oncogene expression in Sca1+ cells is all that is required to fully reprogramme it, giving rise to a full-blown, oncogene-specified tumour with all its mature cellular diversity, and that elimination of the CSCs is enough to eradicate the whole tumour. PMID:19037256

  17. Inhibition of oncogene expression by green tea and (-)-epigallocatechin gallate in mice.

    PubMed

    Hu, G; Han, C; Chen, J

    1995-01-01

    The effects of tea drinking on the tobacco-specific nitrosamine 4-(methylnitrosamine)-1-(3-pyridyl)-1-butanone (NNK)-induced mouse lung oncogene expression and the effect of topical application of the tea polyphenol component (-)-epigallocatechin-3-gallate (EGCG) on 12-O-tedradecanoylphorbol-13-acetate (TPA)-induced mouse skin oncogene expression were investigated. In the first experiment, mice were treated with NNK (1.3 mg/kg body wt ip) once a day for three days and were given 2% tea in drinking water during the whole experimental period. After four or eight weeks, the lung tissue of the mice treated with NNK displayed a significantly high level of expression in c-myc, c-raf, and c-H-ras oncogenes, and they were all inhibited by tea drinking with inhibitory rates of 50%, 20%, and 50%, respectively. In the second experiment, a single application of 10 nmol of TPA to mouse skin led to a marked increase in the transcripts' level of ornithine decarboxylase (ODC) gene, protein kinase C (PKC) gene, and c-myc oncogene at four hours after TPA administration. Topical application of EGCG (1 or 5 mumol) one hour before the application of TPA inhibited all TPA-induced gene expression in a dose-dependent fashion. These results confirm the anticarcinogenic effects of tea and suggest that a possible mechanism is the effect of tea on carcinogen-induced oncogene expression.

  18. The HPV-16 E7 oncogene sensitizes malignant cells to IFN-alpha-induced apoptosis

    SciTech Connect

    Wang, Yisong

    2005-10-01

    Interferons (IFNs) exert antitumor effects in several human malignancies, but their mechanism of action is unclear. There is a great variability in sensitivity to IFN treatment depending on both tumor type and the individual patient. The reason for this variable sensitivity is not known. The fact that several IFN-induced anticellular effects are exerted through modulation of proto-oncogenes and tumor suppressor genes may indicate that the malignant genotype may be decisive in the cell's sensitivity to IFN. To determine if a deregulated oncogene could alter the cellular response to IFN, a mouse lymphoma cell line (J3D) was stably transfected with the viral human papillomavirus-16 (HPV-16) E7 oncogene. The E7-transfected cells and their respective mock-transfected sister clones were treated with IFN-{alpha} and examined for possible IFN-induced anticellular effects. We found that the E7-transfected clones were greatly sensitized to IFN-{alpha}-induced apoptosis compared with their mock-transfected counterparts. Induction of apoptosis in the transfected cells correlated with the ability of IFN to activate parts of the proapoptotic machinery specifically in these cells, including activation of caspases and the proapoptotic protein Bak. In summary, our data suggest that transfection of malignant cells with the E7 oncogene can sensitize them to IFN-{alpha}-induced apoptosis. This demonstrates that an oncogenic event may alter the cellular sensitivity to IFN and might also have implications for treatment of HPV related diseases with IFN.

  19. Mutations Impairing GSK3-Mediated MAF Phosphorylation Cause Cataract, Deafness, Intellectual Disability, Seizures, and a Down Syndrome-like Facies

    PubMed Central

    Niceta, Marcello; Stellacci, Emilia; Gripp, Karen W.; Zampino, Giuseppe; Kousi, Maria; Anselmi, Massimiliano; Traversa, Alice; Ciolfi, Andrea; Stabley, Deborah; Bruselles, Alessandro; Caputo, Viviana; Cecchetti, Serena; Prudente, Sabrina; Fiorenza, Maria T.; Boitani, Carla; Philip, Nicole; Niyazov, Dmitriy; Leoni, Chiara; Nakane, Takaya; Keppler-Noreuil, Kim; Braddock, Stephen R.; Gillessen-Kaesbach, Gabriele; Palleschi, Antonio; Campeau, Philippe M.; Lee, Brendan H.L.; Pouponnot, Celio; Stella, Lorenzo; Bocchinfuso, Gianfranco; Katsanis, Nicholas; Sol-Church, Katia; Tartaglia, Marco

    2015-01-01

    Transcription factors operate in developmental processes to mediate inductive events and cell competence, and perturbation of their function or regulation can dramatically affect morphogenesis, organogenesis, and growth. We report that a narrow spectrum of amino-acid substitutions within the transactivation domain of the v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog (MAF), a leucine zipper-containing transcription factor of the AP1 superfamily, profoundly affect development. Seven different de novo missense mutations involving conserved residues of the four GSK3 phosphorylation motifs were identified in eight unrelated individuals. The distinctive clinical phenotype, for which we propose the eponym Aymé-Gripp syndrome, is not limited to lens and eye defects as previously reported for MAF/Maf loss of function but includes sensorineural deafness, intellectual disability, seizures, brachycephaly, distinctive flat facial appearance, skeletal anomalies, mammary gland hypoplasia, and reduced growth. Disease-causing mutations were demonstrated to impair proper MAF phosphorylation, ubiquitination and proteasomal degradation, perturbed gene expression in primary skin fibroblasts, and induced neurodevelopmental defects in an in vivo model. Our findings nosologically and clinically delineate a previously poorly understood recognizable multisystem disorder, provide evidence for MAF governing a wider range of developmental programs than previously appreciated, and describe a novel instance of protein dosage effect severely perturbing development. PMID:25865493

  20. A rare variant at 11p13 is associated with tuberculosis susceptibility in the Han Chinese population

    PubMed Central

    Chen, Cheng; Zhao, Qi; Hu, Yi; Shao, Yan; Li, Guoli; Zhu, Limei; Lu, Wei; Xu, Biao

    2016-01-01

    Genome-wide association studies (GWASs) have yet to be conducted for tuberculosis (TB) susceptibility in China. Two previously identified single nucleotide polymorphisms (SNPs) from tuberculosis GWASs, rs2057178 and rs4331426, were evaluated for TB predisposition. The associations between SNPs and gene expression levels were analyzed using the genomic data and corresponding whole-genome expression of the Han Chinese in Beijing, China. Genotyping was successfully completed for 763 pulmonary TB patients and 763 healthy controls. The T allele of the rare variant rs2057178 was significantly associated with TB predisposition (χ2 = 14.07, P = 0.0002). Meanwhile, the CT genotype of rs2057178 was associated with a decreased risk of TB (adjusted OR = 0.52, 95% CI, 0.34–0.78). The CT genotype of rs2057178 was also associated with decreased expression levels of infection-related gene, suppressor of cytokine signaling 2 (SOCS2), and increased expression levels of v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog B (MAFB). No gene expression levels were found to be associated with the genotype of rs4331426. We found that the rare variant rs2057178 was significantly associated with TB in the Han Chinese population. Moreover, the expression levels of MAFB and SOCS2 correlated with rs2057178 and might be potential candidates for assessing TB susceptibility. PMID:27035414

  1. Retinoid X receptors orchestrate osteoclast differentiation and postnatal bone remodeling

    PubMed Central

    Menéndez-Gutiérrez, María P.; Rőszer, Tamás; Fuentes, Lucía; Núñez, Vanessa; Escolano, Amelia; Redondo, Juan Miguel; De Clerck, Nora; Metzger, Daniel; Valledor, Annabel F.; Ricote, Mercedes

    2015-01-01

    Osteoclasts are bone-resorbing cells that are important for maintenance of bone remodeling and mineral homeostasis. Regulation of osteoclast differentiation and activity is important for the pathogenesis and treatment of diseases associated with bone loss. Here, we demonstrate that retinoid X receptors (RXRs) are key elements of the transcriptional program of differentiating osteoclasts. Loss of RXR function in hematopoietic cells resulted in formation of giant, nonresorbing osteoclasts and increased bone mass in male mice and protected female mice from bone loss following ovariectomy, which induces osteoporosis in WT females. The increase in bone mass associated with RXR deficiency was due to lack of expression of the RXR-dependent transcription factor v-maf musculoaponeurotic fibrosarcoma oncogene family, protein B (MAFB) in osteoclast progenitors. Evaluation of osteoclast progenitor cells revealed that RXR homodimers directly target and bind to the Mafb promoter, and this interaction is required for proper osteoclast proliferation, differentiation, and activity. Pharmacological activation of RXRs inhibited osteoclast differentiation due to the formation of RXR/liver X receptor (LXR) heterodimers, which induced expression of sterol regulatory element binding protein-1c (SREBP-1c), resulting in indirect MAFB upregulation. Our study reveals that RXR signaling mediates bone homeostasis and suggests that RXRs have potential as targets for the treatment of bone pathologies such as osteoporosis. PMID:25574839

  2. Sexually dimorphic expression of Mafb regulates masculinization of the embryonic urethral formation

    PubMed Central

    Suzuki, Kentaro; Numata, Tomokazu; Suzuki, Hiroko; Raga, Dennis Diana; Ipulan, Lerrie Ann; Yokoyama, Chikako; Matsushita, Shoko; Hamada, Michito; Nakagata, Naomi; Nishinakamura, Ryuichi; Kume, Shoen; Takahashi, Satoru; Yamada, Gen

    2014-01-01

    Masculinization of external genitalia is an essential process in the formation of the male reproductive system. Prominent characteristics of this masculinization are the organ size and the sexual differentiation of the urethra. Although androgen is a pivotal inducer of the masculinization, the regulatory mechanism under the control of androgen is still unknown. Here, we address this longstanding question about how androgen induces masculinization of the embryonic external genitalia through the identification of the v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog B (Mafb) gene. Mafb is expressed prominently in the mesenchyme of male genital tubercle (GT), the anlage of external genitalia. MAFB expression is rarely detected in the mesenchyme of female GTs. However, exposure to exogenous androgen induces its mesenchymal expression in female GTs. Furthermore, MAFB expression is prominently down-regulated in male GTs of androgen receptor (Ar) KO mice, indicating that AR signaling is necessary for its expression. It is revealed that Mafb KO male GTs exhibit defective embryonic urethral formation, giving insight into the common human congenital anomaly hypospadias. However, the size of Mafb KO male GTs is similar with that of wild-type males. Moreover, androgen treatment fails to induce urethral masculinization of the GTs in Mafb KO mice. The current results provide evidence that Mafb is an androgen-inducible, sexually dimorphic regulator of embryonic urethral masculinization. PMID:25362053

  3. Pterocarpan-enriched soy leaf extract ameliorates insulin sensitivity and pancreatic β-cell proliferation in type 2 diabetic mice.

    PubMed

    Kim, Un-Hee; Yoon, Jeong-Hyun; Li, Hua; Kang, Ji-Hyun; Ji, Hyeon-Seon; Park, Ki Hun; Shin, Dong-Ha; Park, Ho-Yong; Jeong, Tae-Sook

    2014-01-01

    In Korea, soy (Glycine max (L.) Merr.) leaves are eaten as a seasonal vegetable or pickled in soy sauce. Ethyl acetate extracts of soy leaves (EASL) are enriched in pterocarpans and have potent α-glucosidase inhibitory activity. This study investigated the molecular mechanisms underlying the anti-diabetic effect of EASL in C57BL/6J mice with high-fat diet (HFD)-induced type 2 diabetes. Mice were randomly divided into normal diet (ND), HFD (60 kcal% fat diet), EASL (HFD with 0.56% (wt/wt) EASL), and Pinitol (HFD with 0.15% (wt/wt) pinitol) groups. Weight gain and abdominal fat accumulation were significantly suppressed by EASL. Levels of plasma glucose, HbA1c, and insulin in the EASL group were significantly lower than those of the HFD group, and the pancreatic islet of the EASL group had greater size than those of the HFD group. EASL group up-regulated neurogenin 3 (Ngn3), paired box 4 (Pax4), and v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MafA), which are markers of pancreatic cell development, as well as insulin receptor substrate 1 (IRS1), IRS2, and glucose transporter 4 (GLUT4), which are related to insulin sensitivity. Furthermore, EASL suppressed genes involved in hepatic gluconeogenesis and steatosis. These results suggest that EASL improves plasma glucose and insulin levels in mice with HDF-induced type 2 diabetes by regulating β-cell proliferation and insulin sensitivity. PMID:25401395

  4. The study of regulatory effects of Pdx-1, MafA and NeuroD1 on the activity of porcine insulin promoter and the expression of human islet amyloid polypeptide.

    PubMed

    Liu, Xiao-Dan; Ruan, Jin-Xue; Xia, Ji-Han; Yang, Shu-Lin; Fan, Jun-Hua; Li, Kui

    2014-09-01

    The purpose of the present study was to determine the activation of porcine insulin promoter (PIP) by three transcription factors: pancreatic and duodenal homeobox 1 (Pdx-1), v-maf musculoaponeurotic fibrosarcoma oncogene (MafA) and neurogenic differentiation 1 (NeuroD1) in non-beta islet cells cultured in vitro. In addition, the expression of the exogenous human islet amyloid polypeptide (hIAPP) gene driving by PIP in porcine kidney 15 (PK15) cells co-transfected with these transcription factors was also examined. In the present study, a series of vectors for gene overexpression were constructed, including pGL3-Pdx-1, pGL3-MafA, pGL3-NeuroD1, pGL3-PIP-LUC and pcDNA3.1-PIP-hIAPP. The dual-luciferase reporter assay showed that the PIP activity was increased in PK15 cells when overexpressing the exogenous transcription factors Pdx-1, MafA and NeuroD1. Introducing the PIP-hIAPP expression vector into PK15 cells combined with exogenous Pdx-1, MafA and NeuroD1 resulted in the efficient expression of hIAPP at the gene level, but not the protein. The current systematic porcine insulin promoter analysis provided the basic information for future utilization of porcine insulin.

  5. cDNA cloning and mRNA expression of canine pancreatic and duodenum homeobox 1 (Pdx-1).

    PubMed

    Takemitsu, Hiroshi; Yamamoto, Ichiro; Lee, Peter; Ohta, Taizo; Mori, Nobuko; Arai, Toshiro

    2012-10-01

    Pancreatic and duodenal homeobox 1 (Pdx-1) is a critical insulin transcription factor expressed by pancreatic β-cells, and is crucial in the early stage of pancreas development. Unfortunately, nothing concerning Pdx-1 in canine has been elucidated yet. In this study, full length canine Pdx-1 cDNA was cloned and it was 1498 bp in length, consisting of a 99 bp 5'-untranslated region (UTR), a 849 bp coding region, and a 550 bp 3'-UTR region. A deduced 282 amino acid sequence of canine PDX-1 displayed high overall sequence identity with human, bovine, and mouse PDX-1. qRT-PCR analysis revealed that a high level of Pdx1 mRNA expression is exists in the duodenum and pancreas of canines. In addition, functional canine insulin promoter-luciferase reporter constructs with various canine insulin promoter region fragments revealed that our Pdx-1 isolated cDNA sequence encodes for a functionally active PDX-1 protein. Significant promoter activity was observed within the -583 bp 5'-upstream region of canine insulin gene with Chinese hamster ovary cells. In addition, Pdx-1 appears to have a synergistic effect with beta cell transactivator 2 (BETA2) and V-maf avian musculoaponeurotic fibrosarcoma oncogene homolog A (MafA), which also have important roles in the activation of the insulin gene promoter. Our results confirm that similar to humans, Pdx1 plays an important role in expression of insulin gene in canines.

  6. Ebselen treatment prevents islet apoptosis, maintains intranuclear Pdx-1 and MafA levels, and preserves β-cell mass and function in ZDF rats.

    PubMed

    Mahadevan, Jana; Parazzoli, Susan; Oseid, Elizabeth; Hertzel, Ann V; Bernlohr, David A; Vallerie, Sara N; Liu, Chang-qin; Lopez, Melissa; Harmon, Jamie S; Robertson, R Paul

    2013-10-01

    We reported earlier that β-cell-specific overexpression of glutathione peroxidase (GPx)-1 significantly ameliorated hyperglycemia in diabetic db/db mice and prevented glucotoxicity-induced deterioration of β-cell mass and function. We have now ascertained whether early treatment of Zucker diabetic fatty (ZDF) rats with ebselen, an oral GPx mimetic, will prevent β-cell deterioration. No other antihyperglycemic treatment was given. Ebselen ameliorated fasting hyperglycemia, sustained nonfasting insulin levels, lowered nonfasting glucose levels, and lowered HbA1c levels with no effects on body weight. Ebselen doubled β-cell mass, prevented apoptosis, prevented expression of oxidative stress markers, and enhanced intranuclear localization of pancreatic and duodenal homeobox (Pdx)-1 and v-maf musculoaponeurotic fibrosarcoma oncogene family, protein A (MafA), two critical insulin transcription factors. Minimal β-cell replication was observed in both groups. These findings indicate that prevention of oxidative stress is the mechanism whereby ebselen prevents apoptosis and preserves intranuclear Pdx-1 and MafA, which, in turn, is a likely explanation for the beneficial effects of ebselen on β-cell mass and function. Since ebselen is an oral antioxidant currently used in clinical trials, it is a novel therapeutic candidate to ameliorate fasting hyperglycemia and further deterioration of β-cell mass and function in humans undergoing the onset of type 2 diabetes.

  7. A programmable synthetic lineage-control network that differentiates human IPSCs into glucose-sensitive insulin-secreting beta-like cells.

    PubMed

    Saxena, Pratik; Heng, Boon Chin; Bai, Peng; Folcher, Marc; Zulewski, Henryk; Fussenegger, Martin

    2016-01-01

    Synthetic biology has advanced the design of standardized transcription control devices that programme cellular behaviour. By coupling synthetic signalling cascade- and transcription factor-based gene switches with reverse and differential sensitivity to the licensed food additive vanillic acid, we designed a synthetic lineage-control network combining vanillic acid-triggered mutually exclusive expression switches for the transcription factors Ngn3 (neurogenin 3; OFF-ON-OFF) and Pdx1 (pancreatic and duodenal homeobox 1; ON-OFF-ON) with the concomitant induction of MafA (V-maf musculoaponeurotic fibrosarcoma oncogene homologue A; OFF-ON). This designer network consisting of different network topologies orchestrating the timely control of transgenic and genomic Ngn3, Pdx1 and MafA variants is able to programme human induced pluripotent stem cells (hIPSCs)-derived pancreatic progenitor cells into glucose-sensitive insulin-secreting beta-like cells, whose glucose-stimulated insulin-release dynamics are comparable to human pancreatic islets. Synthetic lineage-control networks may provide the missing link to genetically programme somatic cells into autologous cell phenotypes for regenerative medicine. PMID:27063289

  8. A programmable synthetic lineage-control network that differentiates human IPSCs into glucose-sensitive insulin-secreting beta-like cells

    PubMed Central

    Saxena, Pratik; Heng, Boon Chin; Bai, Peng; Folcher, Marc; Zulewski, Henryk; Fussenegger, Martin

    2016-01-01

    Synthetic biology has advanced the design of standardized transcription control devices that programme cellular behaviour. By coupling synthetic signalling cascade- and transcription factor-based gene switches with reverse and differential sensitivity to the licensed food additive vanillic acid, we designed a synthetic lineage-control network combining vanillic acid-triggered mutually exclusive expression switches for the transcription factors Ngn3 (neurogenin 3; OFF-ON-OFF) and Pdx1 (pancreatic and duodenal homeobox 1; ON-OFF-ON) with the concomitant induction of MafA (V-maf musculoaponeurotic fibrosarcoma oncogene homologue A; OFF-ON). This designer network consisting of different network topologies orchestrating the timely control of transgenic and genomic Ngn3, Pdx1 and MafA variants is able to programme human induced pluripotent stem cells (hIPSCs)-derived pancreatic progenitor cells into glucose-sensitive insulin-secreting beta-like cells, whose glucose-stimulated insulin-release dynamics are comparable to human pancreatic islets. Synthetic lineage-control networks may provide the missing link to genetically programme somatic cells into autologous cell phenotypes for regenerative medicine. PMID:27063289

  9. Use of Molecular Imaging Markers of Glycolysis, Hypoxia and Proliferation (18F-FDG, 64Cu-ATSM and 18F-FLT) in a Dog with Fibrosarcoma: The Importance of Individualized Treatment Planning and Monitoring

    PubMed Central

    Zornhagen, Kamilla Westarp; Clausen, Malene M.; Hansen, Anders E.; Law, Ian; McEvoy, Fintan J.; Engelholm, Svend A.; Kjær, Andreas; Kristensen, Annemarie T.

    2015-01-01

    Glycolysis, hypoxia, and proliferation are important factors in the tumor microenvironment contributing to treatment-resistant aggressiveness. Imaging these factors using combined functional positron emission tomography and computed tomography can potentially guide diagnosis and management of cancer patients. A dog with fibrosarcoma was imaged using 18F-FDG, 64Cu-ATSM, and 18F-FLT before, during, and after 10 fractions of 4.5 Gy radiotherapy. Uptake of all tracers decreased during treatment. Fluctuations in 18F-FDG and 18F-FLT PET uptakes and a heterogeneous spatial distribution of the three tracers were seen. Tracer distributions partially overlapped. It appears that each tracer provides distinct information about tumor heterogeneity and treatment response. PMID:26854160

  10. Use of Molecular Imaging Markers of Glycolysis, Hypoxia and Proliferation ((18)F-FDG, (64)Cu-ATSM and (18)F-FLT) in a Dog with Fibrosarcoma: The Importance of Individualized Treatment Planning and Monitoring.

    PubMed

    Zornhagen, Kamilla Westarp; Clausen, Malene M; Hansen, Anders E; Law, Ian; McEvoy, Fintan J; Engelholm, Svend A; Kjær, Andreas; Kristensen, Annemarie T

    2015-01-01

    Glycolysis, hypoxia, and proliferation are important factors in the tumor microenvironment contributing to treatment-resistant aggressiveness. Imaging these factors using combined functional positron emission tomography and computed tomography can potentially guide diagnosis and management of cancer patients. A dog with fibrosarcoma was imaged using (18)F-FDG, (64)Cu-ATSM, and (18)F-FLT before, during, and after 10 fractions of 4.5 Gy radiotherapy. Uptake of all tracers decreased during treatment. Fluctuations in (18)F-FDG and (18)F-FLT PET uptakes and a heterogeneous spatial distribution of the three tracers were seen. Tracer distributions partially overlapped. It appears that each tracer provides distinct information about tumor heterogeneity and treatment response. PMID:26854160

  11. Peripheral-type benzodiazepine receptor (PBR) and PBR drug ligands in fibroblast and fibrosarcoma cell proliferation: role of ERK, c-Jun and ligand-activated PBR-independent pathways.

    PubMed

    Kletsas, Dimitris; Li, Wenping; Han, Zeqiu; Papadopoulos, Vassilios

    2004-05-15

    Peripheral-type benzodiazepine receptor (PBR) is a 18-kDa high-affinity drug and cholesterol binding protein, that has been implicated in several physiological processes, such as cholesterol transport and mitochondrial respiration. Specific PBR ligands regulate cell proliferation, although their action is controversial and probably cell-type specific. The aim of the present study was to examine the expression of PBR in cells of mesenchymal origin, i.e. human fibroblasts and fibrosarcoma cells, as well as its role in the regulation of their proliferation. Both mesenchymal cell types express high levels of PBR, localized exclusively in mitochondria. PBR-specific drug ligands, the isoquinoline carboxamide PK 11195 and the benzodiazepine Ro5-4864, at relative high concentrations (10(-4)M), exert a strong inhibitory effect on cell proliferation by arresting the cells at the G0/G1 phase of the cell cycle, while no apoptotic cell death was observed. In normal fibroblasts, this inhibition was correlated with a decrease in the activation of the cell cycle markers ERK and c-Jun. PBR knockdown by RNA inhibition did not affect the proliferation of either cell type and did not influence the inhibitory effect of PK 11195 and Ro5-4864 on cell growth. These data suggest that in fibroblasts and fibrosarcoma cells PBR drug ligands inhibit cell proliferation in a PBR-independent manner. These results are in contrast to data reported on cells of epithelial origin, suggesting that the origin of the cells is crucial in defining the role of PBR in their proliferation, and raise caution in the commonly made assumption that PBR mediates cell functions affected by PBR drug ligands.

  12. Pancreatitis-induced Inflammation Contributes to Pancreatic Cancer by Inhibiting Oncogene-Induced Senescence

    PubMed Central

    Guerra, Carmen; Collado, Manuel; Navas, Carolina; Schuhmacher, Alberto J; Hernández-Porras, Isabel; Cañamero, Marta; Rodriguez-Justo, Manuel; Serrano, Manuel; Barbacid, Mariano

    2016-01-01

    Pancreatic acinar cells of adult mice (≥P60) are resistant to transformation by some of the most robust oncogenic insults including expression of K-Ras oncogenes and loss of p16Ink4a/p19Arf or Trp53 tumor suppressors. Yet, these acinar cells yield pancreatic intraepithelial neoplasias (mPanIN) and ductal adenocarcinomas (mPDAC) if exposed to limited bouts of non-acute pancreatitis, providing they harbor K-Ras oncogenes. Pancreatitis contributes to tumor progression by abrogating the senescence barrier characteristic of low-grade mPanINs. Attenuation of pancreatitis-induced inflammation also accelerates tissue repair and thwarts mPanIN expansion. Patients with chronic pancreatitis display senescent PanINs, if they have received anti-inflammatory drugs. These results put forward the concept that anti-inflammatory treatment of people diagnosed with pancreatitis may reduce their risk of developing PDAC. PMID:21665147

  13. Polymorphic changes of cell phenotype caused by elevated expression of an exogenous NEU proto-oncogene.

    PubMed

    Tarakhovsky, A M; Resnikov, M; Zaichuk, T; Tugusheva, M V; Butenko, Z A; Prassolov, V S

    1990-03-01

    The NEU proto-oncogene encodes a 185,000 dalton transmembrane glycoprotein with extensive homology to epidermal growth factor receptor. In the current study the effect of exogenous NEU expression on phenotype and growth properties of cells established lines was examined. The replication defective retroviruses were used to express constitutively NEU cDNA in the Rat-1, NIH3T3 and Balb/c3T3 cells. In spite of the practically similar NEU mRNA and protein content in infected cells only in Balb/c3T3 cells, high NEU expression ultimately led to oncogenic transformation. The Rat-1 cells were practically insensitive to oncogenic action of NEU. Subpopulation divergency with respect to NEU-dependent transformation was also revealed in infected NIH3T3 cells. These results suggest the existence of unknown host-specific factor(s) determining the response of cells to NEU overexpression.

  14. Role of "oncogenic nexus" of CIP2A in breast oncogenesis: how does it work?

    PubMed

    De, Pradip; Carlson, Jennifer H; Leyland-Jones, Brian; Dey, Nandini

    2015-01-01

    The CIP2A gene is an oncogene associated with solid and hematologic malignancies [1]. CIP2A protein is an oncoprotein and a potential cancer therapy target [2]. Literature shows that CIP2A inhibits the tumor suppressor protein PP2A [3] which downregulates phophorylation of AKT, a hallmark of cancers [4] and stabilizes the proto-oncogene, c-MYC in tumor cells [5], the comprehensive action of CIP2A and its functional interaction(s) with other oncoproteins and tumor suppressors is not clearly established. Recently we tried to put forward a contextual mode-of-action of CIP2A protein in a review which proposed that CIP2A influences oncogenesis via an "oncogenic nexus" [1]. In this review we critically evaluated the potential relevance of the mode-of-action of the "oncogenic nexus" of CIP2A in breast carcinogenesis and appraised the role of this nexus in different PAM50 luminal A, PAM50 luminal B, PAM50 HER2-enriched and PAM50 basal BC. This review has a novel approach. Here we have not only compiled and discussed the latest developments in this field but also presented data obtained from c-BioPortal and STRING10 in order to substantiate our view regarding the mode-of-action of the "oncogenic nexus" of CIP2A. We functionally correlated alterations of genes pertaining to the "oncogenic nexus" of CIP2A with protein-protein interactions between the different components of the nexus including (1) subunits of PP2A, (2) multiple transcription factors including MYC oncogene and (3) components of the PI3K-mTOR and the MAPK-ERK oncogenic pathways. Using these proteins as "input" to STRING10 we studied the association, Action view, at the highest Confidence level. OncoPrints (c-BioPortal) showed alterations (%) of regulatory subunits genes of PP2A (PPP2R1A and PPP2R1B) along with alterations of CIP2A in breast invasive carcinoma (TCGA, Nature 2012 & TCGA, Provisional). Similar genetic alterations of PP2A were also observed in samples of breast tumors at our Avera Research

  15. Role of papillomavirus oncogenes in human cervical cancer: Transgenic animal studies

    SciTech Connect

    Griep, A.E.; Lambert, P.F.

    1994-05-01

    Human papillomaviruses are believed to be etiologic agents for the majority of human cervical carcinoma, a common cancer that is a leading cause of death by cancer among women worldwide. In cervical carcinoma, a subset of papillomaviral genes, namely E6 and E7, are expressed. In vitro tissue culture studies indicate that HPV E6 and E7 are oncogenes, and that their oncogenicity is due in part to their capacity to inactivate cellular tumor suppressor genes. The behavior of E6 and E7 in vitro and the genetic evidence from analysis of human cancers suggest that the E6 and E7 genes play a significant role in the development of cervical cancer. This hypothesis is now being tested using animal models. In this review, we summarize our current knowledge of the oncogenicity of papillomavirus genes that has been generated through their study in transgenic mice. 82 refs., 4 figs., 1 tab.

  16. Common BRAF(V600E)-directed pathway mediates widespread epigenetic silencing in colorectal cancer and melanoma

    PubMed Central

    Fang, Minggang; Hutchinson, Lloyd; Deng, April

    2016-01-01

    During cancer development, it is well established that many genes, including tumor suppressor genes, are hypermethylated and transcriptionally repressed, a phenomenon referred to as epigenetic silencing. In general, the factors involved in, and the mechanistic basis of, epigenetic silencing during cancer development are not well understood. We have recently described an epigenetic silencing pathway, directed by the oncogenic B-Raf proto-oncogene (BRAF) variant BRAF(V600E), that mediates widespread epigenetic silencing in colorectal cancer (CRC). Notably, the BRAF(V600E) mutation is also present in 50–70% of melanomas. Here, we show that the same pathway we identified in CRC also directs epigenetic silencing of a similar set of genes in BRAF-positive melanoma. In both CRC and melanoma, BRAF(V600E) promotes epigenetic silencing through up-regulation of v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog G (MAFG), a transcriptional repressor with sequence-specific DNA-binding activity. The elevated concentration of MAFG drives DNA binding on the promoter. Promoter-bound MAFG recruits a set of corepressors that includes its heterodimeric partner BTB and CNC homology 1, basic leucine zipper transcription factor 1 (BACH1), the chromatin remodeling factor chromodomain helicase DNA-binding protein 8 (CHD8), and the DNA methyltransferase DNMT3B, resulting in hypermethylation and transcriptional silencing. Our results reveal a common BRAF(V600E)-directed transcriptional regulatory pathway that mediates epigenetic silencing in unrelated solid tumors and provide strong support for an instructive model of oncoprotein-directed epigenetic silencing. PMID:26787892

  17. Identification of Oncogenic Mutations and Gene Fusions in the Follicular Variant of Papillary Thyroid Carcinoma

    PubMed Central

    Dias-Santagata, Dora; Sadow, Peter M.; Lynch, Kerry D.; Lubitz, Carrie; Donovan, Samuel E.; Zheng, Zongli; Le, Long; Iafrate, A. J.; Daniels, Gilbert H.

    2014-01-01

    Background: The diagnosis of the follicular variant of papillary thyroid carcinoma (FVPTC) is increasingly common. Recent studies have suggested that FVPTC is heterogeneous and comprises multiple tumor types with distinct biological behaviors and underlying genetics. Objectives: The purpose of this work was to identify the prevalence of mutations and gene fusions in known oncogenes in a panel representative of the common spectrum of FVPTC diagnosed at an academic medical center and correlate the clinical and pathological features obtained at the initial diagnosis with the tumor genotype. Materials and Methods: We performed SNaPshot genotyping on a panel of 129 FVPTCs of ≥1 cm for 90 point mutations or small deletions in known oncogenes and tumor suppressors and identified gene fusions using an anchored multiplex PCR assay targeting a panel of rearranged oncogenes. Results: We identified a mutation or gene fusion in 70% (89 of 127) of cases. Mutations targeting the RAS family of oncogenes were the most frequently observed class of alterations, present in 36% (46 of 127) of cases, followed by BRAF mutation, present in 30% (38 of 127). We also detected oncogenic rearrangements not previously associated with FVPTC, including TFG-ALK and CREB3L2-PPARγ. BRAF mutation was significantly associated with unencapsulated tumor status. Conclusions: These data support the hypothesis that FVPTC is composed of distinct biological entities, with one class being identified by BRAF mutation and support the use of clinical genotyping assays that detect a diverse array of rearrangements involving ALK and PPARγ. Additional studies are necessary to identify genetic drivers in the 30% of FVPTCs with no known oncogenic alteration and to better predict behavior in tumors with known genotypes. PMID:25148236

  18. ONCOGENIC HUMAN PAPILLOMAVIRUS (HPV) INFECTIONS IN 18 TO 24 YEAR OLD FEMALE ONLINE DATERS

    PubMed Central

    Barrere, Alexis; Stern, Joshua E.; Feng, Qinghua; Hughes, James P.; Winer, Rachel L.

    2015-01-01

    Background While risk factors for HPV infections in young women are well-defined, the risk associated with meeting male sex partners via the internet is unclear. Methods We analyzed cross-sectional data from 282 18-24-year old women who reported using Internet dating websites in the past year. Women were mailed vaginal self-sampling kits for PCR-based HPV genotyping (including 19 oncogenic types) and sexual behavior and health history questionnaires. Generalized linear models were used to evaluate risk factors for prevalent oncogenic HPV infections. Results 35% of women reported having met a male sex partner via the Internet in the past 6 months, and 42% reported a history of HPV vaccination. The prevalence of oncogenic HPV infection was 37%, and 9% of women tested positive for HPV-16 or HPV-18. Having met a male sex partner via the Internet in the past 6 months was not significantly associated with oncogenic HPV infection. In multivariate analyses, variables associated with an increased likelihood of oncogenic HPV infection included male partners in the past 6 months who were reported to have ≥1 concurrent partnership (adjusted prevalence ratio [aPR]=1.51,95%CI:1.11-2.06) and not always using condoms with male partners in the past 6 months (aPR=1.86,95%CI:1.05-3.30). Self-reporting a history of receiving ≥1 dose of HPV vaccine was inversely associated with testing positive for HPV-16 or HPV-18 (aPR=0.39,95%CI:0.16–0.97). Conclusions While measures of recent sexual behavior were associated with prevalent oncogenic HPV infection, male partners met online were not associated with an increased likelihood of infection in this cohort of young women. PMID:26267875

  19. Common Oncogenic Mutations Are Infrequent in Oral Squamous Cell Carcinoma of Asian Origin

    PubMed Central

    Zanaruddin, Sharifah Nurain Syed; Yee, Pei San; Hor, Seen Yii; Kong, Yink Heay; Ghani, Wan Maria Nabillah Wan Abd; Mustafa, Wan Mahadzir Wan; Zain, Rosnah Binti; Prime, Stephen S.; Rahman, Zainal Ariff Abd; Cheong, Sok-Ching

    2013-01-01

    Objectives The frequency of common oncogenic mutations and TP53 was determined in Asian oral squamous cell carcinoma (OSCC). Materials and Methods The OncoCarta™ panel v1.0 assay was used to characterize oncogenic mutations. In addition, exons 4-11 of the TP53 gene were sequenced. Statistical analyses were conducted to identify associations between mutations and selected clinico-pathological characteristics and risk habits. Results Oncogenic mutations were detected in PIK3CA (5.7%) and HRAS (2.4%). Mutations in TP53 were observed in 27.7% (31/112) of the OSCC specimens. Oncogenic mutations were found more frequently in non-smokers (p = 0.049) and TP53 truncating mutations were more common in patients with no risk habits (p = 0.019). Patients with mutations had worse overall survival compared to those with absence of mutations; and patients who harbored DNA binding domain (DBD) and L2/L3/LSH mutations showed a worse survival probability compared to those patients with wild type TP53. The majority of the oncogenic and TP53 mutations were G:C > A:T and A:T > G:C base transitions, regardless of the different risk habits. Conclusion Hotspot oncogenic mutations which are frequently present in common solid tumors are exceedingly rare in OSCC. Despite differences in risk habit exposure, the mutation frequency of PIK3CA and HRAS in Asian OSCC were similar to that reported in OSCC among Caucasians, whereas TP53 mutations rates were significantly lower. The lack of actionable hotspot mutations argue strongly for the need to comprehensively characterize gene mutations associated with OSCC for the development of new diagnostic and therapeutic tools. PMID:24224046

  20. LTβR signalling preferentially accelerates oncogenic AKT-initiated liver tumours

    PubMed Central

    Scarzello, Anthony J; Jiang, Qun; Back, Timothy; Dang, Hien; Hodge, Deborah; Hanson, Charlotte; Subleski, Jeffrey; Weiss, Jonathan M; Stauffer, Jimmy K; Chaisaingmongkol, Jitti; Rabibhadana, Siritida; Ruchirawat, Mathuros; Ortaldo, John; Wang, Xin Wei; Norris, Paula S; Ware, Carl F; Wiltrout, Robert H

    2016-01-01

    Objectives The relative contributions of inflammatory signalling and sequential oncogenic dysregulation driving liver cancer pathogenesis remain incompletely understood. Lymphotoxin-β receptor (LTβR) signalling is critically involved in hepatitis and liver tumorigenesis. Therefore, we explored the interdependence of inflammatory lymphotoxin signalling and specific oncogenic pathways in the progression of hepatic cancer. Design Pathologically distinct liver tumours were initiated by hydrodynamic transfection of oncogenic V-Akt Murine Thymoma Viral Oncogene Homolog 1 (AKT)/β-catenin or AKT/Notch expressing plasmids. To investigate the relationship of LTβR signalling and specific oncogenic pathways, LTβR antagonist (LTβR-Fc) or agonist (anti-LTβR) were administered post oncogene transfection. Initiated livers/tumours were investigated for changes in oncogene expression, tumour proliferation, progression, latency and pathology. Moreover, specific LTβR-mediated molecular events were investigated in human liver cancer cell lines and through transcriptional analyses of samples from patients with intrahepatic cholangiocarcinoma (ICC). Results AKT/β-catenin-transfected livers displayed increased expression of LTβ and LTβR, with antagonism of LTβR signalling reducing tumour progression and enhancing survival. Conversely, enforced LTβR-activation of AKT/β-catenin-initiated tumours induced robust increases in proliferation and progression of hepatic tumour phenotypes in an AKT-dependent manner. LTβR-activation also rapidly accelerated ICC progression initiated by AKT/Notch, but not Notch alone. Moreover, LTβR-accelerated development coincides with increases of Notch, Hes1, c-MYC, pAKT and β-catenin. We further demonstrate LTβR signalling in human liver cancer cell lines to be a regulator of Notch, pAKTser473 and β-catenin. Transcriptome analysis of samples from patients with ICC links increased LTβR network expression with poor patient survival, increased

  1. Using Multiplexed Assays of Oncogenic Drivers in Lung Cancers to Select Targeted Drugs

    PubMed Central

    Kris, Mark G.; Johnson, Bruce E.; Berry, Lynne D.; Kwiatkowski, David J.; Iafrate, A. John; Wistuba, Ignacio I.; Varella-Garcia, Marileila; Franklin, Wilbur A.; Aronson, Samuel L.; Su, Pei-Fang; Shyr, Yu; Camidge, D. Ross; Sequist, Lecia V.; Glisson, Bonnie S.; Khuri, Fadlo R.; Garon, Edward B.; Pao, William; Rudin, Charles; Schiller, Joan; Haura, Eric B.; Socinski, Mark; Shirai, Keisuke; Chen, Heidi; Giaccone, Giuseppe; Ladanyi, Marc; Kugler, Kelly; Minna, John D.; Bunn, Paul A.

    2014-01-01

    IMPORTANCE Targeting oncogenic drivers (genomic alterations critical to cancer development and maintenance) has transformed the care of patients with lung adenocarcinomas. The Lung Cancer Mutation Consortium was formed to perform multiplexed assays testing adenocarcinomas of the lung for drivers in 10 genes to enable clinicians to select targeted treatments and enroll patients into clinical trials. OBJECTIVES To determine the frequency of oncogenic drivers in patients with lung adenocarcinomas and to use the data to select treatments targeting the identified driver(s) and measure survival. DESIGN, SETTING, AND PARTICIPANTS From 2009 through 2012, 14 sites in the United States enrolled patients with metastatic lung adenocarcinomas and a performance status of 0 through 2 and tested their tumors for 10 drivers. Information was collected on patients, therapies, and survival. INTERVENTIONS Tumors were tested for 10 oncogenic drivers, and results were used to select matched targeted therapies. MAIN OUTCOMES AND MEASURES Determination of the frequency of oncogenic drivers, the proportion of patients treated with genotype-directed therapy, and survival. RESULTS From 2009 through 2012, tumors from 1007 patients were tested for at least 1 gene and 733 for 10 genes (patients with full genotyping). An oncogenic driver was found in 466 of 733 patients (64%). Among these 733 tumors, 182 tumors (25%) had the KRAS driver; sensitizing EGFR, 122 (17%); ALK rearrangements, 57 (8%); other EGFR, 29 (4%); 2 or more genes, 24 (3%); ERBB2 (formerly HER2), 19 (3%); BRAF, 16 (2%); PIK3CA, 6 (<1%); MET amplification, 5 (<1%); NRAS, 5 (<1%); MEK1, 1 (<1%); AKT1, 0. Results were used to select a targeted therapy or trial in 275 of 1007 patients (28%). The median survival was 3.5 years (interquartile range [IQR], 1.96-7.70) for the 260 patients with an oncogenic driver and genotype-directed therapy compared with 2.4 years (IQR, 0.88-6.20) for the 318 patients with any oncogenic driver(s) who

  2. Comparative Evaluation of Vaccine Efficacy of Recombinant Marek's Disease Virus Vaccine Lacking Meq Oncogene in Commercial Chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek's disease virus oncogene meq has been identified as the gene involved in tumorigenesis in chickens. We have recently developed a Meq-null virus, rMd5delMeq, in which the oncogene Meq was deleted. Vaccine efficacy experiments conducted in ADOL 15I5 x 71 chickens vaccinated with rMd5delMeq virus...

  3. CYCLOPENTA-FUSED POLYCYCLIC AROMATIC HYDROCARBONS IN STRAIN A/J MOUSE LUNG: DNA ADDUCTS, ONCOGENE MUTATIONS, & TUMORIGENESIS

    EPA Science Inventory

    Cyclopenta-fused Polycyclic Aromatic Hydrocarbons in Strain AJJ Mouse Lung: DNA Adducts, Oncogene Mutations, and Tumorigenesis.

    We have examined the relationships between DNA adducts, Ki-ras oncogene mutations, DNA adducts, and adenoma induction in the lungs of strain A/J...

  4. Human gene control by vital oncogenes: revisiting a theoretical model and its implications for targeted cancer therapy.

    PubMed

    Willis, Rudolph E

    2012-01-01

    An important assumption of our current understanding of the mechanisms of carcinogenesis has been the belief that clarification of the cancer process would inevitably reveal some of the crucial mechanisms of normal human gene regulation. Since the momentous work of Bishop and Varmus, both the molecular and the biochemical processes underlying the events in the development of cancer have become increasingly clear. The identification of cellular signaling pathways and the role of protein kinases in the events leading to gene activation have been critical to our understanding not only of normal cellular gene control mechanisms, but also have clarified some of the important molecular and biochemical events occurring within a cancer cell. We now know that oncogenes are dysfunctional proto-oncogenes and that dysfunctional tumor suppressor genes contribute to the cancer process. Furthermore, Weinstein and others have hypothesized the phenomenon of oncogene addiction as a distinct characteristic of the malignant cell. It can be assumed that cancer cells, indeed, become dependent on such vital oncogenes. The products of these vital oncogenes, such as c-myc, may well be the Achilles heel by which targeted molecular therapy may lead to truly personalized cancer therapy. The remaining problem is the need to introduce relevant molecular diagnostic tests such as genome microarray analysis and proteomic methods, especially protein kinase identification arrays, for each individual patient. Genome wide association studies on cancers with gene analysis of single nucleotide and other mutations in functional proto-oncogenes will, hopefully, identify dysfunctional proto-oncogenes and allow the development of more specific targeted drugs directed against the protein products of these vital oncogenes. In 1984 Willis proposed a molecular and biochemical model for eukaryotic gene regulation suggesting how proto-oncogenes might function within the normal cell. That model predicted the

  5. Oncogenic Human Papillomaviruses Activate the Tumor-Associated Lens Epithelial-Derived Growth Factor (LEDGF) Gene

    PubMed Central

    Leitz, Jenny; Reuschenbach, Miriam; Lohrey, Claudia; Honegger, Anja; Accardi, Rosita; Tommasino, Massimo; Llano, Manuel; von Knebel Doeberitz, Magnus; Hoppe-Seyler, Karin; Hoppe-Seyler, Felix

    2014-01-01

    The expression of the human papillomavirus (HPV) E6/E7 oncogenes is crucial for HPV-induced malignant cell transformation. The identification of cellular targets attacked by the HPV oncogenes is critical for our understanding of the molecular mechanisms of HPV-associated carcinogenesis and may open novel therapeutic opportunities. Here, we identify the Lens Epithelial-Derived Growth Factor (LEDGF) gene as a novel cellular target gene for the HPV oncogenes. Elevated LEDGF expression has been recently linked to human carcinogenesis and can protect tumor cells towards different forms of cellular stress. We show that intracellular LEDGF mRNA and protein levels in HPV-positive cancer cells are critically dependent on the maintenance of viral oncogene expression. Ectopic E6/E7 expression stimulates LEDGF transcription in primary keratinocytes, at least in part via activation of the LEDGF promoter. Repression of endogenous LEDGF expression by RNA interference results in an increased sensitivity of HPV-positive cancer cells towards genotoxic agents. Immunohistochemical analyses of cervical tissue specimens reveal a highly significant increase of LEDGF protein levels in HPV-positive lesions compared to histologically normal cervical epithelium. Taken together, these results indicate that the E6/E7-dependent maintenance of intracellular LEDGF expression is critical for protecting HPV-positive cancer cells against various forms of cellular stress, including DNA damage. This could support tumor cell survival and contribute to the therapeutic resistance of cervical cancers towards genotoxic treatment strategies in the clinic. PMID:24604027

  6. Repeat-element driven activation of proto-oncogenes in human malignancies.

    PubMed

    Lamprecht, Björn; Bonifer, Constanze; Mathas, Stephan

    2010-11-01

    Recent data demonstrated that the aberrant activity of endogenous repetitive elements of the DNA in humans can drive the expression of proto-oncogenes. This article summarizes these results and gives an outlook on the impact of these findings on the pathogenesis and therapy of human cancer.

  7. The contribution of tumor and host tissue factor expression to oncogene-driven gliomagenesis.

    PubMed

    Magnus, Nathalie; Meehan, Brian; Garnier, Delphine; Hashemi, Maryam; Montermini, Laura; Lee, Tae Hoon; Milsom, Chloe; Pawlinski, Rafal; Ohlfest, John; Anderson, Mark; Mackman, Nigel; Rak, Janusz

    2014-11-14

    Glioblastoma multiforme (GBM) is an aggressive form of glial brain tumors, associated with angiogenesis, thrombosis, and upregulation of tissue factor (TF), the key cellular trigger of coagulation and signaling. Since TF is upregulated by oncogenic mutations occurring in different subsets of human brain tumors we investigated whether TF contributes to tumourigenesis driven by oncogenic activation of EGFR (EGFRvIII) and RAS pathways in the brain. Here we show that TF expression correlates with poor prognosis in glioma, but not in GBM. In situ, the TF protein expression is heterogeneously expressed in adult and pediatric gliomas. GBM cells harboring EGFRvIII (U373vIII) grow aggressively as xenografts in SCID mice and their progression is delayed by administration of monoclonal antibodies blocking coagulant (CNTO 859) and signaling (10H10) effects of TF in vivo. Mice in which TF gene is disrupted in the neuroectodermal lineage exhibit delayed progression of spontaneous brain tumors driven by oncogenic N-ras and SV40 large T antigen (SV40LT) expressed under the control of sleeping beauty transposase. Reduced host TF levels in low-TF/SCID hypomorphic mice mitigated growth of glioma subcutaneously but not in the brain. Thus, we suggest that tumor-associated TF may serve as therapeutic target in the context of oncogene-driven disease progression in a subset of glioma.

  8. Power of PTEN/AKT: Molecular switch between tumor suppressors and oncogenes

    PubMed Central

    XIE, YINGQIU; NAIZABEKOV, SANZHAR; CHEN, ZHANLIN; TOKAY, TURSONJAN

    2016-01-01

    An increasing amount of evidence has shown that tumor suppressors can become oncogenes, or vice versa, but the mechanism behind this is unclear. Recent findings have suggested that phosphatase and tensin homolog (PTEN) is one of the powerful switches for the conversion between tumor suppressors and oncogenes. PTEN regulates a number of cellular processes, including cell death and proliferation, through the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway. Furthermore, a number of studies have suggested that PTEN deletions may alter various functions of certain tumor suppressor and oncogenic proteins. The aim of the present review was to analyze specific cases driven by PTEN loss/AKT activation, including aberrant signaling pathways and novel drug targets for clinical application in personalized medicine. The findings illustrate how PTEN loss and/or AKT activation switches MDM2-dependent p53 downregulation, and induces conversion between oncogene and tumor suppressor in enhancer of zeste homolog 2, BTB domain-containing 7A, alternative reading frame 2, p27 and breast cancer 1, early onset, through multiple mechanisms. This review highlights the genetic basis of complex drug targets and provides insights into the rationale of precision cancer therapy. PMID:27347153

  9. MYC oncogene overexpression drives renal cell carcinoma in a mouse model through glutamine metabolism

    PubMed Central

    Shroff, Emelyn H.; Eberlin, Livia S.; Dang, Vanessa M.; Gouw, Arvin M.; Gabay, Meital; Adam, Stacey J.; Bellovin, David I.; Tran, Phuoc T.; Philbrick, William M.; Garcia-Ocana, Adolfo; Casey, Stephanie C.; Li, Yulin; Dang, Chi V.; Zare, Richard N.; Felsher, Dean W.

    2015-01-01

    The MYC oncogene is frequently mutated and overexpressed in human renal cell carcinoma (RCC). However, there have been no studies on the causative role of MYC or any other oncogene in the initiation or maintenance of kidney tumorigenesis. Here, we show through a conditional transgenic mouse model that the MYC oncogene, but not the RAS oncogene, initiates and maintains RCC. Desorption electrospray ionization–mass-spectrometric imaging was used to obtain chemical maps of metabolites and lipids in the mouse RCC samples. Gene expression analysis revealed that the mouse tumors mimicked human RCC. The data suggested that MYC-induced RCC up-regulated the glutaminolytic pathway instead of the glycolytic pathway. The pharmacologic inhibition of glutamine metabolism with bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide impeded MYC-mediated RCC tumor progression. Our studies demonstrate that MYC overexpression causes RCC and points to the inhibition of glutamine metabolism as a potential therapeutic approach for the treatment of this disease. PMID:25964345

  10. Significance of hepatitis virus infection in the oncogenic initiation of hepatocellular carcinoma

    PubMed Central

    Sukowati, Caecilia HC; El-Khobar, Korri E; Ie, Susan I; Anfuso, Beatrice; Muljono, David H; Tiribelli, Claudio

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death worldwide. Chronic infection of hepatitis B virus (HBV) and/or hepatitis C virus (HCV) is a major risk factor in the development of the HCC, independently from excessive alcohol abuse and metabolic disease. Since the biology of HBV and HCV is different, their oncogenic effect may go through different mechanisms, direct and/or indirect. Viral hepatitis infection is associated with cellular inflammation, oxidative stress, and DNA damage, that may lead to subsequent hepatic injuries such as chronic hepatitis, fibrosis, cirrhosis, and finally HCC. Direct oncogenic properties of these viruses are related with their genotypic characteristics and the ability of viral proteins to interact with host proteins, thus altering the molecular pathways balance of the cells. In addition, the integration of HBV DNA, especially the gene S and X, in a particular site of the host genome can disrupt chromosomal stability and may activate various oncogenic mechanisms, including those in hematopoietic cells. Recently, several studies also had demonstrated that viral hepatitis could trigger the population of hepatic cancer stem cells. This review summarize available pre-clinical and clinical data in literature regarding oncogenic properties of HBV and HCV in the early initiation of HCC. PMID:26819517

  11. Somatic Copy Number Alterations at Oncogenic Loci Show Diverse Correlations with Gene Expression

    NASA Astrophysics Data System (ADS)

    Roszik, Jason; Wu, Chang-Jiun; Siroy, Alan E.; Lazar, Alexander J.; Davies, Michael A.; Woodman, Scott E.; Kwong, Lawrence N.

    2016-01-01

    Somatic copy number alterations (SCNAs) affecting oncogenic drivers have a firmly established role in promoting cancer. However, no agreed-upon standard exists for calling locus-specific amplifications and deletions in each patient sample. Here, we report the correlative analysis of copy number amplitude and length with gene expression across 6,109 samples from The Cancer Genome Atlas (TCGA) dataset across 16 cancer types. Using specificity, sensitivity, and precision-based scores, we assigned optimized amplitude and length cutoffs for nine recurrent SCNAs affecting known oncogenic drivers, using mRNA expression as a functional readout. These cutoffs captured the majority of SCNA-driven, highly-expression-altered samples. The majority of oncogenes required only amplitude cutoffs, as high amplitude samples were almost invariably focal; however, CDKN2A and PTEN uniquely required both amplitude and length cutoffs as primary predictors. For PTEN, these extended to downstream AKT activation. In contrast, SCNA genes located peri-telomerically or in fragile sites showed poor expression-copy number correlations. Overall, our analyses identify optimized amplitude and length cutoffs as efficient predictors of gene expression changes for specific oncogenic SCNAs, yet warn against one-size-fits-all interpretations across all loci. Our results have implications for cancer data analyses and the clinic, where copy number and mutation data are increasingly used to personalize cancer therapy.

  12. Derepression of hTERT gene expression promotes escape from oncogene-induced cellular senescence.

    PubMed

    Patel, Priyanka L; Suram, Anitha; Mirani, Neena; Bischof, Oliver; Herbig, Utz

    2016-08-23

    Oncogene-induced senescence (OIS) is a critical tumor-suppressing mechanism that restrains cancer progression at premalignant stages, in part by causing telomere dysfunction. Currently it is unknown whether this proliferative arrest presents a stable and therefore irreversible barrier to cancer progression. Here we demonstrate that cells frequently escape OIS induced by oncogenic H-Ras and B-Raf, after a prolonged period in the senescence arrested state. Cells that had escaped senescence displayed high oncogene expression levels, retained functional DNA damage responses, and acquired chromatin changes that promoted c-Myc-dependent expression of the human telomerase reverse transcriptase gene (hTERT). Telomerase was able to resolve existing telomeric DNA damage response foci and suppressed formation of new ones that were generated as a consequence of DNA replication stress and oncogenic signals. Inhibition of MAP kinase signaling, suppressing c-Myc expression, or inhibiting telomerase activity, caused telomere dysfunction and proliferative defects in cells that had escaped senescence, whereas ectopic expression of hTERT facilitated OIS escape. In human early neoplastic skin and breast tissue, hTERT expression was detected in cells that displayed features of senescence, suggesting that reactivation of telomerase expression in senescent cells is an early event during cancer progression in humans. Together, our data demonstrate that cells arrested in OIS retain the potential to escape senescence by mechanisms that involve derepression of hTERT expression. PMID:27503890

  13. INO80 governs superenhancer-mediated oncogenic transcription and tumor growth in melanoma.

    PubMed

    Zhou, Bingying; Wang, Li; Zhang, Shu; Bennett, Brian D; He, Fan; Zhang, Yan; Xiong, Chengliang; Han, Leng; Diao, Lixia; Li, Pishun; Fargo, David C; Cox, Adrienne D; Hu, Guang

    2016-06-15

    Superenhancers (SEs) are large genomic regions with a high density of enhancer marks. In cancer, SEs are found near oncogenes and dictate cancer gene expression. However, how oncogenic SEs are regulated remains poorly understood. Here, we show that INO80, a chromatin remodeling complex, is required for SE-mediated oncogenic transcription and tumor growth in melanoma. The expression of Ino80, the SWI/SNF ATPase, is elevated in melanoma cells and patient melanomas compared with normal melanocytes and benign nevi. Furthermore, Ino80 silencing selectively inhibits melanoma cell proliferation, anchorage-independent growth, tumorigenesis, and tumor maintenance in mouse xenografts. Mechanistically, Ino80 occupies >90% of SEs, and its occupancy is dependent on transcription factors such as MITF and Sox9. Ino80 binding reduces nucleosome occupancy and facilitates Mediator recruitment, thus promoting oncogenic transcription. Consistently, genes co-occupied by Ino80 and Med1 are selectively expressed in melanomas compared with melanocytes. Together, our results reveal an essential role of INO80-dependent chromatin remodeling in SE function and suggest a novel strategy for disrupting SEs in cancer treatment. PMID:27340176

  14. Oncogene expression in vivo by ovarian adenocarcinomas and mixed-mullerian tumors.

    PubMed Central

    Kacinski, B. M.; Carter, D.; Kohorn, E. I.; Mittal, K.; Bloodgood, R. S.; Donahue, J.; Kramer, C. A.; Fischer, D.; Edwards, R.; Chambers, S. K.

    1989-01-01

    Six-micron paraffin sections of paraformaldehyde-fixed specimens of 24 ovarian benign and neoplastic specimens were assayed for tumor cell-specific oncogene expression by a sensitive, quantitative in situ hybridization technique with probes for 17 oncogenes, beta-actin, and E. coli beta-lactamase. In the benign, borderline, and invasive adenocarcinomas, multiple oncogenes, including neu, fes, fms, Ha-ras, trk, c-myc, fos, and PDGF-A chains, were expressed at significant levels relative to a housekeeping gene (beta-actin). In the mixed-Mullerian tumors, a rather different pattern of oncogene expression was observed, characterized primarily by expression of sis (PDGF-B chain). For the adenocarcinomas, statistical analysis demonstrated that expression of several genes (fms, neu, PDGF-A) was closely linked to others (c-fos, c-myc) known to have important roles in the control of cell proliferation, but only one gene, fms, correlated very strongly with clinicopathologic features (high FIGO histologic grade and high FIGO clinical stage) predictive of aggressive clinical behavior and poor outcome. The authors discuss the role that tumor epithelial cell expression of the fms gene product might play in the auto- and paracrine control of growth and dissemination of ovarian adenocarcinomas. Images FIG. 1 PMID:2556864

  15. Identification of kinase fusion oncogenes in post-Chernobyl radiation-induced thyroid cancers

    PubMed Central

    Ricarte-Filho, Julio C.; Li, Sheng; Garcia-Rendueles, Maria E.R.; Montero-Conde, Cristina; Voza, Francesca; Knauf, Jeffrey A.; Heguy, Adriana; Viale, Agnes; Bogdanova, Tetyana; Thomas, Geraldine A.; Mason, Christopher E.; Fagin, James A.

    2013-01-01

    Exposure to ionizing radiation during childhood markedly increases the risk of developing papillary thyroid cancer. We examined tissues from 26 Ukrainian patients with thyroid cancer who were younger than 10 years of age and living in contaminated areas during the time of the Chernobyl nuclear reactor accident. We identified nonoverlapping somatic driver mutations in all 26 cases through candidate gene assays and next-generation RNA sequencing. We found that 22 tumors harbored fusion oncogenes that arose primarily through intrachromosomal rearrangements. Altogether, 23 of the oncogenic drivers identified in this cohort aberrantly activate MAPK signaling, including the 2 somatic rearrangements resulting in fusion of transcription factor ETS variant 6 (ETV6) with neurotrophic tyrosine kinase receptor, type 3 (NTRK3) and fusion of acylglycerol kinase (AGK) with BRAF. Two other tumors harbored distinct fusions leading to overexpression of the nuclear receptor PPARγ. Fusion oncogenes were less prevalent in tumors from a cohort of children with pediatric thyroid cancers that had not been exposed to radiation but were from the same geographical regions. Radiation-induced thyroid cancers provide a paradigm of tumorigenesis driven by fusion oncogenes that activate MAPK signaling or, less frequently, a PPARγ-driven transcriptional program. PMID:24135138

  16. Somatic Copy Number Alterations at Oncogenic Loci Show Diverse Correlations with Gene Expression

    PubMed Central

    Roszik, Jason; Wu, Chang-Jiun; Siroy, Alan E.; Lazar, Alexander J.; Davies, Michael A; Woodman, Scott E; Kwong, Lawrence N

    2016-01-01

    Somatic copy number alterations (SCNAs) affecting oncogenic drivers have a firmly established role in promoting cancer. However, no agreed-upon standard exists for calling locus-specific amplifications and deletions in each patient sample. Here, we report the correlative analysis of copy number amplitude and length with gene expression across 6,109 samples from The Cancer Genome Atlas (TCGA) dataset across 16 cancer types. Using specificity, sensitivity, and precision-based scores, we assigned optimized amplitude and length cutoffs for nine recurrent SCNAs affecting known oncogenic drivers, using mRNA expression as a functional readout. These cutoffs captured the majority of SCNA-driven, highly-expression-altered samples. The majority of oncogenes required only amplitude cutoffs, as high amplitude samples were almost invariably focal; however, CDKN2A and PTEN uniquely required both amplitude and length cutoffs as primary predictors. For PTEN, these extended to downstream AKT activation. In contrast, SCNA genes located peri-telomerically or in fragile sites showed poor expression-copy number correlations. Overall, our analyses identify optimized amplitude and length cutoffs as efficient predictors of gene expression changes for specific oncogenic SCNAs, yet warn against one-size-fits-all interpretations across all loci. Our results have implications for cancer data analyses and the clinic, where copy number and mutation data are increasingly used to personalize cancer therapy. PMID:26787600

  17. Oncogene transcription in normal human IMR-90 fibroblasts: induction by serum and tetradecanoyl phorbol acetate

    SciTech Connect

    Bower, E.A.; Kaji, H.

    1988-01-01

    The authors report studies of oncogene transcription induced by the addition of serum to quiescent cultures of human IMR-90 fibroblasts. Oncogene messenger RNAs for c-myc, c-erbB and c-ras were increased in a specific temporal sequence after the addition of serum. Compounds that are proposed to exert their actions by the stimulation of cell growth were tested for their effect on oncogene transcription in IMR-90 fibroblasts. The tumor promoter tetradecanoyl phorbol acetate (TPA) was found to selectively induce the transcription of c-myc without observable effect on the transcription of the other oncogenes studied, and without inducing cell division. The inactive analog, phorbol didecanoate (PDD), and two complete carcinogens dimethylbenzanthracene (DMBA) and 4-nitro quinoline-1-oxide (4NQO) were without effect on the transcription of the genes studied. These results suggest that the complete ordered sequence of gene transcription is necessary to achieve the physiologic response of cell division, and that classical promoters and complete carcinogens achieve their effects through different pathways.

  18. Significance of hepatitis virus infection in the oncogenic initiation of hepatocellular carcinoma.

    PubMed

    Sukowati, Caecilia H C; El-Khobar, Korri E; Ie, Susan I; Anfuso, Beatrice; Muljono, David H; Tiribelli, Claudio

    2016-01-28

    Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death worldwide. Chronic infection of hepatitis B virus (HBV) and/or hepatitis C virus (HCV) is a major risk factor in the development of the HCC, independently from excessive alcohol abuse and metabolic disease. Since the biology of HBV and HCV is different, their oncogenic effect may go through different mechanisms, direct and/or indirect. Viral hepatitis infection is associated with cellular inflammation, oxidative stress, and DNA damage, that may lead to subsequent hepatic injuries such as chronic hepatitis, fibrosis, cirrhosis, and finally HCC. Direct oncogenic properties of these viruses are related with their genotypic characteristics and the ability of viral proteins to interact with host proteins, thus altering the molecular pathways balance of the cells. In addition, the integration of HBV DNA, especially the gene S and X, in a particular site of the host genome can disrupt chromosomal stability and may activate various oncogenic mechanisms, including those in hematopoietic cells. Recently, several studies also had demonstrated that viral hepatitis could trigger the population of hepatic cancer stem cells. This review summarize available pre-clinical and clinical data in literature regarding oncogenic properties of HBV and HCV in the early initiation of HCC. PMID:26819517

  19. Src-like-adaptor protein (SLAP) differentially regulates normal and oncogenic c-Kit signaling.

    PubMed

    Kazi, Julhash U; Agarwal, Shruti; Sun, Jianmin; Bracco, Enrico; Rönnstrand, Lars

    2014-02-01

    The Src-like-adaptor protein (SLAP) is an adaptor protein sharing considerable structural homology with Src. SLAP is expressed in a variety of cells and regulates receptor tyrosine kinase signaling by direct association. In this report, we show that SLAP associates with both wild-type and oncogenic c-Kit (c-Kit-D816V). The association involves the SLAP SH2 domain and receptor phosphotyrosine residues different from those mediating Src interaction. Association of SLAP triggers c-Kit ubiquitylation which, in turn, is followed by receptor degradation. Although SLAP depletion potentiates c-Kit downstream signaling by stabilizing the receptor, it remains non-functional in c-Kit-D816V signaling. Ligand-stimulated c-Kit or c-Kit-D816V did not alter membrane localization of SLAP. Interestingly oncogenic c-Kit-D816V, but not wild-type c-Kit, phosphorylates SLAP on residues Y120, Y258 and Y273. Physical interaction between c-Kit-D816V and SLAP is mandatory for the phosphorylation to take place. Although tyrosine-phosphorylated SLAP does not affect c-Kit-D816V signaling, mutation of these tyrosine sites to phenylalanine can restore SLAP activity. Taken together the data demonstrate that SLAP negatively regulates wild-type c-Kit signaling, but not its oncogenic counterpart, indicating a possible mechanism by which the oncogenic c-Kit bypasses the normal cellular negative feedback control.

  20. Derepression of hTERT gene expression promotes escape from oncogene-induced cellular senescence

    PubMed Central

    Patel, Priyanka L.; Suram, Anitha; Mirani, Neena; Bischof, Oliver; Herbig, Utz

    2016-01-01

    Oncogene-induced senescence (OIS) is a critical tumor-suppressing mechanism that restrains cancer progression at premalignant stages, in part by causing telomere dysfunction. Currently it is unknown whether this proliferative arrest presents a stable and therefore irreversible barrier to cancer progression. Here we demonstrate that cells frequently escape OIS induced by oncogenic H-Ras and B-Raf, after a prolonged period in the senescence arrested state. Cells that had escaped senescence displayed high oncogene expression levels, retained functional DNA damage responses, and acquired chromatin changes that promoted c-Myc–dependent expression of the human telomerase reverse transcriptase gene (hTERT). Telomerase was able to resolve existing telomeric DNA damage response foci and suppressed formation of new ones that were generated as a consequence of DNA replication stress and oncogenic signals. Inhibition of MAP kinase signaling, suppressing c-Myc expression, or inhibiting telomerase activity, caused telomere dysfunction and proliferative defects in cells that had escaped senescence, whereas ectopic expression of hTERT facilitated OIS escape. In human early neoplastic skin and breast tissue, hTERT expression was detected in cells that displayed features of senescence, suggesting that reactivation of telomerase expression in senescent cells is an early event during cancer progression in humans. Together, our data demonstrate that cells arrested in OIS retain the potential to escape senescence by mechanisms that involve derepression of hTERT expression. PMID:27503890

  1. Oncogenic transformation by vrel requires an amino-terminal activation domain

    SciTech Connect

    Kamens, J.; Brent, R. . Dept. of Molecular Biology); Richardson, P.; Gilmore, T. . Dept. of Biology); Mosialos, G. . Dept. of Chemistry)

    1990-06-01

    The mechanism by which the products of the v-{ital rel} oncogene, the corresponding c-{ital rel} proto-oncogene, and the related {ital dorsal} gene of {ital Drosophila melanogaster} exert their effects is not clear. The authors show that the v-{ital rel}, chicken c-{ital rel}, and {ital dorsal} proteins activated gene expression when fused to LexA sequences and bound to DNA upstream of target genes in {ital Saccharomyces cerevisiae}. They have defined two distinct activation regions in the c-{ital rel} protein. Region I, located in the amino-terminal half of {ital rel} and {ital dorsal} proteins, contains no stretches of glutamines, prolines, or acidic amino acids and therefore may be a novel activation domain. Lesions in the v-{ital rel} protein that diminished or abolished oncogenic transformation of avian spleen cells correspondingly affected transcription activation by region I. Region II, located in the carboxy terminus of the c-{ital rel} protein, is highly acidic. Region II is not present in the v-{ital rel} protein or in a transforming mutant derivative of the c-{ital rel} protein. The authors' results show that the oncogenicity of Rel proteins requires activation region I and suggest that the biological function of {ital rel} and {ital dorsal} proteins depends on transcription activation by this region.

  2. Suppressor of cytokine signaling 1 interacts with oncogenic lymphocyte-specific protein tyrosine kinase.

    PubMed

    Venkitachalam, Srividya; Chueh, Fu-Yu; Leong, King-Fu; Pabich, Samantha; Yu, Chao-Lan

    2011-03-01

    Lymphocyte-specific protein tyrosine kinase (Lck) plays a key role in T cell signal transduction and is tightly regulated by phosphorylation and dephosphorylation. Lck can function as an oncoprotein when overexpressed or constantly activated by mutations. Our previous studies showed that Lck-induced cellular transformation could be suppressed by enforced expression of suppressor of cytokine signaling 1 (SOCS1), a SOCS family member involved in the negative feedback control of cytokine signaling. We observed attenuated Lck kinase activity in SOCS1-expressing cells, suggesting an important role of SOCS in regulating Lck functions. It remains largely unknown whether and how SOCS proteins interact with the oncogenic Lck kinase. Here, we report that among four SOCS family proteins, SOCS1, SOCS2, SOCS3 and CIS (cytokine-inducible SH2 domain containing protein), SOCS1 has the highest affinity in binding to the oncogenic Lck kinase. We identified the positive regulatory phosphotyrosine 394 residue in the kinase domain as the key interacting determinant in Lck. Additionally, the Lck kinase domain alone is sufficient to bind SOCS1. While the SH2 domain in SOCS1 is important in its association with the oncogenic Lck kinase, other functional domains may also contribute to overall binding affinity. These findings provide important mechanistic insights into the role of SOCS proteins as tumor suppressors in cells transformed by oncogenic protein tyrosine kinases.

  3. An enzyme-linked immunosorbent assay to screen for inhibitors of the oncogenic anaplastic lymphoma kinase.

    PubMed

    Gunby, Rosalind Helen; Tartari, Carmen Julia; Porchia, Francesca; Donella-Deana, Arianna; Scapozza, Leonardo; Gambacorti-Passerini, Carlo

    2005-07-01

    The discovery of novel anti-cancer drugs targeting anaplastic lymphoma kinase (ALK), an oncogenic tyrosine kinase, raises the need for in vitro assays suitable for screening compounds for ALK inhibition. To this aim we have developed and optimized an ALK-specific enzyme-linked immunosorbent assay that employs a novel ALK peptide substrate and purified ALK kinase domain. PMID:15996942

  4. Netrin-1 exerts oncogenic activities through enhancing Yes-associated protein stability.

    PubMed

    Qi, Qi; Li, Dean Y; Luo, Hongbo R; Guan, Kun-Liang; Ye, Keqiang

    2015-06-01

    Yes-associated protein (YAP), a transcription coactivator, is the major downstream effector of the Hippo pathway, which plays a critical role in organ size control and cancer development. However, how YAP is regulated by extracellular stimuli in tumorigenesis remains incompletely understood. Netrin-1, a laminin-related secreted protein, displays proto-oncogenic activity in cancers. Nonetheless, the downstream signaling mediating its oncogenic effects is not well defined. Here we show that netrin-1 via its transmembrane receptors, deleted in colorectal cancer and uncoordinated-5 homolog, up-regulates YAP expression, escalating YAP levels in the nucleus and promoting cancer cell proliferation and migration. Inactivating netrin-1, deleted in colorectal cancer, or uncoordinated-5 homolog B (UNC5B) decreases YAP protein levels, abrogating cancer cell progression by netrin-1, whereas knockdown of mammalian STE20-like protein kinase 1/2 (MST1/2) or large tumor suppressor kinase 1/2 (Lats1/2), two sets of upstream core kinases of the Hippo pathway, has no effect in blocking netrin-1-induced up-regulation of YAP. Netrin-1 stimulates phosphatase 1A to dephosphorylate YAP, which leads to decreased ubiquitination and degradation, enhancing YAP accumulation and signaling. Hence, our findings support that netrin-1 exerts oncogenic activity through YAP signaling, providing a mechanism coupling extracellular signals to the nuclear YAP oncogene.

  5. Oncogenic human papillomaviruses activate the tumor-associated lens epithelial-derived growth factor (LEDGF) gene.

    PubMed

    Leitz, Jenny; Reuschenbach, Miriam; Lohrey, Claudia; Honegger, Anja; Accardi, Rosita; Tommasino, Massimo; Llano, Manuel; von Knebel Doeberitz, Magnus; Hoppe-Seyler, Karin; Hoppe-Seyler, Felix

    2014-03-01

    The expression of the human papillomavirus (HPV) E6/E7 oncogenes is crucial for HPV-induced malignant cell transformation. The identification of cellular targets attacked by the HPV oncogenes is critical for our understanding of the molecular mechanisms of HPV-associated carcinogenesis and may open novel therapeutic opportunities. Here, we identify the Lens Epithelial-Derived Growth Factor (LEDGF) gene as a novel cellular target gene for the HPV oncogenes. Elevated LEDGF expression has been recently linked to human carcinogenesis and can protect tumor cells towards different forms of cellular stress. We show that intracellular LEDGF mRNA and protein levels in HPV-positive cancer cells are critically dependent on the maintenance of viral oncogene expression. Ectopic E6/E7 expression stimulates LEDGF transcription in primary keratinocytes, at least in part via activation of the LEDGF promoter. Repression of endogenous LEDGF expression by RNA interference results in an increased sensitivity of HPV-positive cancer cells towards genotoxic agents. Immunohistochemical analyses of cervical tissue specimens reveal a highly significant increase of LEDGF protein levels in HPV-positive lesions compared to histologically normal cervical epithelium. Taken together, these results indicate that the E6/E7-dependent maintenance of intracellular LEDGF expression is critical for protecting HPV-positive cancer cells against various forms of cellular stress, including DNA damage. This could support tumor cell survival and contribute to the therapeutic resistance of cervical cancers towards genotoxic treatment strategies in the clinic.

  6. Vitamin D/Vitamin D Receptor Axis Regulates DNA Repair During Oncogene-Induced Senescence

    PubMed Central

    Graziano, Simona; Johnston, Rachel; Deng, Ou; Zhang, Junran; Gonzalo, Susana

    2016-01-01

    Oncogenic Ras expression is associated with activation of the DNA damage response (DDR) pathway, as evidenced by elevated DNA damage, primarily DNA double-strand breaks (DSBs), and activation of DNA damage checkpoints, which in primary human cells leads to entry into senescence. DDR activation is viewed as a physiological barrier against uncontrolled proliferation in oncogenic Ras-expressing cells, and arises in response to genotoxic stress due to the production of reactive oxygen species (ROS) that damage DNA, and to hyper-replication stress. Although oncogene-induced senescence (OIS) is considered a tumor suppressor mechanism, the accumulation of DNA damage in senescent cells is thought to cause genomic instability, eventually allowing secondary hits in the genome that promote tumorigenesis. To date, the molecular mechanisms behind DNA repair defects during OIS remain poorly understood. Here, we show that oncogenic Ras expression in human primary cells results in down-regulation of BRCA1 and 53BP1, two key factors in DNA DSBs repair by homologous recombination (HR) and non-homologous end joining (NHEJ), respectively. As a consequence, Ras-induced senescent cells are hindered in their ability to recruit BRCA1 and 53BP1 to DNA damage sites. While BRCA1 is down-regulated at transcripts levels, 53BP1 loss is caused by activation of cathepsin L (CTSL)-mediated degradation of 53BP1 protein. Moreover, we discovered a marked down-regulation of vitamin D receptor (VDR) during OIS, and a role for the vitamin D/VDR axis regulating the levels of these DNA repair factors during OIS. This study reveals a new functional relationship between the oncogene Ras, the vitamin D/VDR axis, and the expression of DNA repair factors, in the context of OIS. The observed deficiencies in DNA repair factors in senescent cells could contribute to the genomic instability that allows senescence bypass and tumorigenesis. PMID:27041576

  7. Carcinogen-specific mutations in preferred Ras-Raf pathway oncogenes directed by strand bias.

    PubMed

    Keller, Ross R; Gestl, Shelley A; Lu, Amy Q; Hoke, Alicia; Feith, David J; Gunther, Edward J

    2016-08-01

    Carcinogen exposures inscribe mutation patterns on cancer genomes and sometimes bias the acquisition of driver mutations toward preferred oncogenes, potentially dictating sensitivity to targeted agents. Whether and how carcinogen-specific mutation patterns direct activation of preferred oncogenes remains poorly understood. Here, mouse models of breast cancer were exploited to uncover a mechanistic link between strand-biased mutagenesis and oncogene preference. When chemical carcinogens were employed during Wnt1-initiated mammary tumorigenesis, exposure to either 7,12-dimethylbenz(a)anthracene (DMBA) or N-ethyl-N-nitrosourea (ENU) dramatically accelerated tumor onset. Mammary tumors that followed DMBA exposure nearly always activated the Ras pathway via somatic Hras(CAA61CTA) mutations. Surprisingly, mammary tumors that followed ENU exposure typically lacked Hras mutations, and instead activated the Ras pathway downstream via Braf(GTG636GAG) mutations. Hras(CAA61CTA) mutations involve an A-to-T change on the sense strand, whereas Braf(GTG636GAG) mutations involve an inverse T-to-A change, suggesting that strand-biased mutagenesis may determine oncogene preference. To examine this possibility further, we turned to an alternative Wnt-driven tumor model in which carcinogen exposures augment a latent mammary tumor predisposition in Apc(min) mice. DMBA and ENU each accelerated mammary tumor onset in Apc(min) mice by introducing somatic, "second-hit" Apc mutations. Consistent with our strand bias model, DMBA and ENU generated strikingly distinct Apc mutation patterns, including stringently strand-inverse mutation signatures at A:T sites. Crucially, these contrasting signatures precisely match those proposed to confer bias toward Hras(CAA61CTA) versus Braf(GTG636GAG) mutations in the original tumor sets. Our findings highlight a novel mechanism whereby exposure history acts through strand-biased mutagenesis to specify activation of preferred oncogenes. PMID:27207659

  8. V-cbl, an oncogene from a dual-recombinant murine retrovirus that induces early B-lineage lymphomas

    SciTech Connect

    Langdon, W.Y.; Klinken, S.P. National Institute of Allergy and Infectious Diseases, Bethesda, MD ); Hartley, J.W.; Morse, H.C. III ); Ruscetti, S.K. )

    1989-02-01

    Cas NS-1 is an acutely transforming murine retrovirus that induces pre-B and pro-B cell lymphomas. Molecular cloning showed it was generated from the ecotropic Cas-Br-M virus by sequential recombinations with endogenous retroviral sequences and a cellular oncogene. The oncogene sequence shows no homology with known oncogenes but some similarity to the yeast transcriptional activator GCN4. A 100-kDa gag-cbl fusion protein, with no detectable kinase activity, is responsible for the cellular transformation. The cellular homologue of v-cbl, present in mouse and human DNA, is expressed in a range of hemopoietic lineages.

  9. Targeting the production of oncogenic microRNAs with multimodal synthetic small molecules.

    PubMed

    Vo, Duc Duy; Staedel, Cathy; Zehnacker, Laura; Benhida, Rachid; Darfeuille, Fabien; Duca, Maria

    2014-03-21

    MicroRNAs (miRNAs) are a recently discovered category of small RNA molecules that regulate gene expression at the post-transcriptional level. Accumulating evidence indicates that miRNAs are aberrantly expressed in a variety of human cancers and revealed to be oncogenic and to play a pivotal role in initiation and progression of these pathologies. It is now clear that the inhibition of oncogenic miRNAs, defined as blocking their biosynthesis or their function, could find an application in the therapy of different types of cancer in which these miRNAs are implicated. Here we report the design, synthesis, and biological evaluation of new small-molecule RNA ligands targeting the production of oncogenic microRNAs. In this work we focused our attention on miR-372 and miR-373 that are implicated in the tumorigenesis of different types of cancer such as gastric cancer. These two oncogenic miRNAs are overexpressed in gastric cancer cells starting from their precursors pre-miR-372 and pre-miR-373, two stem-loop structured RNAs that lead to mature miRNAs after cleavage by the enzyme Dicer. The small molecules described herein consist of the conjugation of two RNA binding motives, i.e., the aminoglycoside neomycin and different natural and artificial nucleobases, in order to obtain RNA ligands with increased affinity and selectivity compared to that of parent compounds. After the synthesis of this new series of RNA ligands, we demonstrated that they are able to inhibit the production of the oncogenic miRNA-372 and -373 by binding their pre-miRNAs and inhibiting the processing by Dicer. Moreover, we proved that some of these compounds bear anti-proliferative activity toward gastric cancer cells and that this activity is likely linked to a decrease in the production of targeted miRNAs. To date, only few examples of small molecules targeting oncogenic miRNAs have been reported, and such inhibitors could be extremely useful for the development of new anticancer therapeutic

  10. miR-203 suppresses the proliferation and metastasis of hepatocellular carcinoma by targeting oncogene ADAM9 and oncogenic long non-coding RNA HULC.

    PubMed

    Wan, Daiwei; Shen, Shunli; Fu, Shunjun; Preston, Burnley; Brandon, Coder; He, Songbing; Shen, Chenglong; Wu, Jian; Wang, Sutong; Xie, Wenxuan; Chen, Bin; Liya, A; Guo, Yixing; Zheng, Dingcheng; Zhi, Qiaoming; Peng, Baogang

    2016-01-01

    MicroRNAs (miRNAs) have been integrated into tumorigenic programs by regulating genes at post-transcriptional level. Long non-coding RNAs (lncRNAs) are novel targets for miRNAs. Here, we reported that miR-203 down-regulation was closely linked to advanced clinical features and poor overall survival (OS) of patients with hepatocellular carcinoma. We also confirmed that miR-203 and oncogene ADAM9 (a disintegrin and metalloproteinase 9)/oncogenic long non-coding RNA HULC (highly up-regulated in liver cancer) were inversely expressed in hepatocellular carcinoma (HCC) tissues or cell lines. More intriguingly, up-regulation of miR-203 diminished the expression of ADAM9 and HULC in HCC cancer cells. Over-expression of miR-203 could markedly inhibit cell proliferation, invasion and induce cell apoptosis. Furthermore, we identified that miR-203 modulated ADAM9 and HULC in a novel post-transcriptional regulatory mechanism. Over-expression of HULC partly rescued the miR-203-mediated antitumor effects. These results suggested that miR-203 played tumor suppressive roles by downregulating ADAM9 and HULC and indicated its potential application in cancer treatment.

  11. Role of the proto-oncogene Pokemon in cellular transformation and ARF repression.

    PubMed

    Maeda, Takahiro; Hobbs, Robin M; Merghoub, Taha; Guernah, Ilhem; Zelent, Arthur; Cordon-Cardo, Carlos; Teruya-Feldstein, Julie; Pandolfi, Pier Paolo

    2005-01-20

    Aberrant transcriptional repression through chromatin remodelling and histone deacetylation has been postulated to represent a driving force underlying tumorigenesis because histone deacetylase inhibitors have been found to be effective in cancer treatment. However, the molecular mechanisms by which transcriptional derepression would be linked to tumour suppression are poorly understood. Here we identify the transcriptional repressor Pokemon (encoded by the Zbtb7 gene) as a critical factor in oncogenesis. Mouse embryonic fibroblasts lacking Zbtb7 are completely refractory to oncogene-mediated cellular transformation. Conversely, Pokemon overexpression leads to overt oncogenic transformation both in vitro and in vivo in transgenic mice. Pokemon can specifically repress the transcription of the tumour suppressor gene ARF through direct binding. We find that Pokemon is aberrantly overexpressed in human cancers and that its expression levels predict biological behaviour and clinical outcome. Pokemon's critical role in cellular transformation makes it an attractive target for therapeutic intervention. PMID:15662416

  12. MiR-191 Regulates Primary Human Fibroblast Proliferation and Directly Targets Multiple Oncogenes.

    PubMed

    Polioudakis, Damon; Abell, Nathan S; Iyer, Vishwanath R

    2015-01-01

    miRNAs play a central role in numerous pathologies including multiple cancer types. miR-191 has predominantly been studied as an oncogene, but the role of miR-191 in the proliferation of primary cells is not well characterized, and the miR-191 targetome has not been experimentally profiled. Here we utilized RNA induced silencing complex immunoprecipitations as well as gene expression profiling to construct a genome wide miR-191 target profile. We show that miR-191 represses proliferation in primary human fibroblasts, identify multiple proto-oncogenes as novel miR-191 targets, including CDK9, NOTCH2, and RPS6KA3, and present evidence that miR-191 extensively mediates target expression through coding sequence (CDS) pairing. Our results provide a comprehensive genome wide miR-191 target profile, and demonstrate miR-191's regulation of primary human fibroblast proliferation.

  13. RNA-DNA differences are rarer in proto-oncogenes than in tumor suppressor genes.

    PubMed

    Gao, Feng; Lin, Yan; Zhang, Randy Ren

    2012-01-01

    It has long been assumed that DNA sequences and corresponding RNA transcripts are almost identical; a recent discovery, however, revealed widespread RNA-DNA differences (RDDs), which represent a largely unexplored aspect of human genome variation. It has been speculated that RDDs can affect disease susceptibility and manifestations; however, almost nothing is known about how RDDs are related to disease. Here, we show that RDDs are rarer in proto-oncogenes than in tumor suppressor genes; the number of RDDs in coding exons, but not in 3'UTR and 5'UTR, is significantly lower in the former than the latter, and this trend is especially pronounced in non-synonymous RDDs, i.e., those cause amino acid changes. A potential mechanism is that, unlike proto-oncogenes, the requirement of tumor suppressor genes to have both alleles affected to cause tumor 'buffers' these genes to tolerate more RDDs.

  14. WISP-1 is a Wnt-1- and beta-catenin-responsive oncogene.

    PubMed

    Xu, L; Corcoran, R B; Welsh, J W; Pennica, D; Levine, A J

    2000-03-01

    WISP-1 (Wnt-1 induced secreted protein 1) is a member of the CCN family of growth factors. This study identifies WISP-1 as a beta-catenin-regulated gene that can contribute to tumorigenesis. The promoter of WISP-1 was cloned and shown to be activated by both Wnt-1 and beta-catenin expression. TCF/LEF sites played a minor role, whereas the CREB site played an important role in this transcriptional activation. WISP-1 demonstrated oncogenic activities; overexpression of WISP-1 in normal rat kidney fibroblast cells (NRK-49F) induced morphological transformation, accelerated cell growth, and enhanced saturation density. Although these cells did not acquire anchorage-independent growth in soft agar, they readily formed tumors in nude mice, suggesting that appropriate cellular attachment is important for signaling oncogenic events downstream of WISP-1.

  15. Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia.

    PubMed

    Grembecka, Jolanta; He, Shihan; Shi, Aibin; Purohit, Trupta; Muntean, Andrew G; Sorenson, Roderick J; Showalter, Hollis D; Murai, Marcelo J; Belcher, Amalia M; Hartley, Thomas; Hess, Jay L; Cierpicki, Tomasz

    2012-03-01

    Translocations involving the mixed lineage leukemia (MLL) gene result in human acute leukemias with very poor prognosis. The leukemogenic activity of MLL fusion proteins is critically dependent on their direct interaction with menin, a product of the multiple endocrine neoplasia (MEN1) gene. Here we present what are to our knowledge the first small-molecule inhibitors of the menin-MLL fusion protein interaction that specifically bind menin with nanomolar affinities. These compounds effectively reverse MLL fusion protein-mediated leukemic transformation by downregulating the expression of target genes required for MLL fusion protein oncogenic activity. They also selectively block proliferation and induce both apoptosis and differentiation of leukemia cells harboring MLL translocations. Identification of these compounds provides a new tool for better understanding MLL-mediated leukemogenesis and represents a new approach for studying the role of menin as an oncogenic cofactor of MLL fusion proteins. Our findings also highlight a new therapeutic strategy for aggressive leukemias with MLL rearrangements.

  16. Mitochondrial Ca2+ Remodeling is a Prime Factor in Oncogenic Behavior

    PubMed Central

    Rimessi, Alessandro; Patergnani, Simone; Bonora, Massimo; Wieckowski, Mariusz R.; Pinton, Paolo

    2015-01-01

    Cancer is sustained by defects in the mechanisms underlying cell proliferation, mitochondrial metabolism, and cell death. Mitochondrial Ca2+ ions are central to all these processes, serving as signaling molecules with specific spatial localization, magnitude, and temporal characteristics. Mutations in mtDNA, aberrant expression and/or regulation of Ca2+-handling/transport proteins and abnormal Ca2+-dependent relationships among the cytosol, endoplasmic reticulum, and mitochondria can cause the deregulation of mitochondrial Ca2+-dependent pathways that are related to these processes, thus determining oncogenic behavior. In this review, we propose that mitochondrial Ca2+ remodeling plays a pivotal role in shaping the oncogenic signaling cascade, which is a required step for cancer formation and maintenance. We will describe recent studies that highlight the importance of mitochondria in inducing pivotal “cancer hallmarks” and discuss possible tools to manipulate mitochondrial Ca2+ to modulate cancer survival. PMID:26161362

  17. Small-Molecule Protein-Protein Interaction Inhibitor of Oncogenic Rho Signaling.

    PubMed

    Diviani, Dario; Raimondi, Francesco; Del Vescovo, Cosmo D; Dreyer, Elisa; Reggi, Erica; Osman, Halima; Ruggieri, Lucia; Gonano, Cynthia; Cavin, Sabrina; Box, Clare L; Lenoir, Marc; Overduin, Michael; Bellucci, Luca; Seeber, Michele; Fanelli, Francesca

    2016-09-22

    Uncontrolled activation of Rho signaling by RhoGEFs, in particular AKAP13 (Lbc) and its close homologs, is implicated in a number of human tumors with poor prognosis and resistance to therapy. Structure predictions and alanine scanning mutagenesis of Lbc identified a circumscribed hot region for RhoA recognition and activation. Virtual screening targeting that region led to the discovery of an inhibitor of Lbc-RhoA interaction inside cells. By interacting with the DH domain, the compound inhibits the catalytic activity of Lbc, halts cellular responses to activation of oncogenic Lbc pathways, and reverses a number of prostate cancer cell phenotypes such as proliferation, migration, and invasiveness. This study provides insights into the structural determinants of Lbc-RhoA recognition. This is a successful example of structure-based discovery of a small protein-protein interaction inhibitor able to halt oncogenic Rho signaling in cancer cells with therapeutic implications.

  18. Repurposing a Prokaryotic Toxin-Antitoxin System for the Selective Killing of Oncogenically Stressed Human Cells.

    PubMed

    Preston, Mark A; Pimentel, Belén; Bermejo-Rodríguez, Camino; Dionne, Isabelle; Turnbull, Alice; de la Cueva-Méndez, Guillermo

    2016-07-15

    Prokaryotes express intracellular toxins that pass unnoticed to carrying cells until coexpressed antitoxin partners are degraded in response to stress. Although not evolved to function in eukaryotes, one of these toxins, Kid, induces apoptosis in mammalian cells, an effect that is neutralized by its cognate antitoxin, Kis. Here we engineered this toxin-antitoxin pair to create a synthetic system that becomes active in human cells suffering a specific oncogenic stress. Inspired by the way Kid becomes active in bacterial cells, we produced a Kis variant that is selectively degraded in human cells expressing oncoprotein E6. The resulting toxin-antitoxin system functions autonomously in human cells, distinguishing those that suffer the oncogenic insult, which are killed by Kid, from those that do not, which remain protected by Kis. Our results provide a framework for developing personalized anticancer strategies avoiding off-target effects, a challenge that has been hardly tractable by other means thus far.

  19. Oncogenic MITF dysregulation in clear cell sarcoma: defining the MiT family of human cancers.

    PubMed

    Davis, Ian J; Kim, Jessica J; Ozsolak, Fatih; Widlund, Hans R; Rozenblatt-Rosen, Orit; Granter, Scott R; Du, Jinyan; Fletcher, Jonathan A; Denny, Christopher T; Lessnick, Stephen L; Linehan, W Marston; Kung, Andrew L; Fisher, David E

    2006-06-01

    Clear cell sarcoma (CCS) harbors a pathognomonic chromosomal translocation fusing the Ewing's sarcoma gene (EWS) to the CREB family transcription factor ATF1 and exhibits melanocytic features. We show that EWS-ATF1 occupies the MITF promoter, mimicking melanocyte-stimulating hormone (MSH) signaling to induce expression of MITF, the melanocytic master transcription factor and an amplified oncogene in melanoma. Knockdown/rescue studies revealed that MITF mediates the requirement of EWS-ATF1 for CCS survival in vitro and in vivo as well as for melanocytic differentiation. Moreover, MITF and TFE3 reciprocally rescue one another in lines derived from CCS or pediatric renal carcinoma. Seemingly unrelated tumors thus employ distinct strategies to oncogenically dysregulate the MiT family, collectively broadening the definition of MiT-associated human cancers.

  20. Tumor suppression by miR-26 overrides potential oncogenic activity in intestinal tumorigenesis

    PubMed Central

    Zeitels, Lauren R.; Acharya, Asha; Shi, Guanglu; Chivukula, Divya; Chivukula, Raghu R.; Anandam, Joselin L.; Abdelnaby, Abier A.; Balch, Glen C.; Mansour, John C.; Yopp, Adam C.; Richardson, James A.

    2014-01-01

    Down-regulation of miR-26 family members has been implicated in the pathogenesis of multiple malignancies. In some settings, including glioma, however, miR-26-mediated repression of PTEN promotes tumorigenesis. To investigate the contexts in which the tumor suppressor versus oncogenic activity of miR-26 predominates in vivo, we generated miR-26a transgenic mice. Despite measureable repression of Pten, elevated miR-26a levels were not associated with malignancy in transgenic animals. We documented reduced miR-26 expression in human colorectal cancer and, accordingly, showed that miR-26a expression potently suppressed intestinal adenoma formation in Apcmin/+ mice, a model known to be sensitive to Pten dosage. These studies reveal a tumor suppressor role for miR-26 in intestinal cancer that overrides putative oncogenic activity, highlighting the therapeutic potential of miR-26 delivery to this tumor type. PMID:25395662

  1. Role of the proto-oncogene Pokemon in cellular transformation and ARF repression.

    PubMed

    Maeda, Takahiro; Hobbs, Robin M; Merghoub, Taha; Guernah, Ilhem; Zelent, Arthur; Cordon-Cardo, Carlos; Teruya-Feldstein, Julie; Pandolfi, Pier Paolo

    2005-01-20

    Aberrant transcriptional repression through chromatin remodelling and histone deacetylation has been postulated to represent a driving force underlying tumorigenesis because histone deacetylase inhibitors have been found to be effective in cancer treatment. However, the molecular mechanisms by which transcriptional derepression would be linked to tumour suppression are poorly understood. Here we identify the transcriptional repressor Pokemon (encoded by the Zbtb7 gene) as a critical factor in oncogenesis. Mouse embryonic fibroblasts lacking Zbtb7 are completely refractory to oncogene-mediated cellular transformation. Conversely, Pokemon overexpression leads to overt oncogenic transformation both in vitro and in vivo in transgenic mice. Pokemon can specifically repress the transcription of the tumour suppressor gene ARF through direct binding. We find that Pokemon is aberrantly overexpressed in human cancers and that its expression levels predict biological behaviour and clinical outcome. Pokemon's critical role in cellular transformation makes it an attractive target for therapeutic intervention.

  2. The MET Oncogene as a Therapeutical Target in Cancer Invasive Growth

    PubMed Central

    Luraghi, Paolo; Schelter, Florian; Krüger, Achim; Boccaccio, Carla

    2012-01-01

    The MET proto-oncogene, encoding the tyrosine kinase receptor for Hepatocyte Growth Factor (HGF) regulates invasive growth, a genetic program that associates control of cell proliferation with invasion of the extracellular matrix and protection from apoptosis. Physiologically, invasive growth takes place during embryonic development, and, in post-natal life, in wound healing and regeneration of several tissues. The MET oncogene is overexpressed and/or genetically mutated in many tumors, thereby sustaining pathological invasive growth, a prerequisite for metastasis. MET is the subject of intense research as a target for small molecule kinase inhibitors and, together with its ligand HGF, for inhibitory antibodies. The tight interplay of MET with the protease network has unveiled mechanisms to be exploited to achieve effective inhibition of invasive growth. PMID:22973229

  3. An oncogenic MYB feedback loop drives alternate cell fates in adenoid cystic carcinoma

    PubMed Central

    Drier, Yotam; Cotton, Matthew J.; Williamson, Kaylyn E.; Gillespie, Shawn M.; Ryan, Russell J.H.; Kluk, Michael J.; Carey, Christopher D.; Rodig, Scott J.; Sholl, Lynette M; Afrogheh, Amir H.; Faquin, William C.; Queimado, Lurdes; Qi, Jun; Wick, Michael J.; El-Naggar, Adel K.; Bradner, James E.; Moskaluk, Christopher A.; Aster, Jon C.; Knoechel, Birgit; Bernstein, Bradley E.

    2016-01-01

    Translocation events are frequent in cancer and may create chimeric fusions or ‘regulatory rearrangements’ that drive oncogene overexpression. Here we identify super-enhancer translocations that drive overexpression of the oncogenic transcription factor MYB as a recurrent theme in adenoid cystic carcinoma (ACC). Whole-genome sequencing data and chromatin maps reveal distinct chromosomal rearrangements that juxtapose super-enhancers to the MYB locus. Chromosome conformation capture confirms that the translocated enhancers interact with the MYB promoter. Remarkably, MYB protein binds to the translocated enhancers, creating a positive feedback loop that sustains its expression. MYB also binds enhancers that drive different regulatory programs in alternate cell lineages in ACC, cooperating with TP63 in myoepithelial cells and a Notch program in luminal epithelial cells. Bromodomain inhibitors slow tumor growth in ACC primagraft models in vivo. Thus, our study identifies super-enhancer translocations that drive MYB expression and provides insight into downstream MYB functions in the alternate ACC lineages. PMID:26829750

  4. Centrosomal targeting of tyrosine kinase activity does not enhance oncogenicity in chronic myeloproliferative disorders.

    PubMed

    Bochtler, T; Kirsch, M; Maier, B; Bachmann, J; Klingmüller, U; Anderhub, S; Ho, A D; Krämer, A

    2012-04-01

    Constitutive tyrosine kinase activation by reciprocal chromosomal translocation is a common pathogenetic mechanism in chronic myeloproliferative disorders. Since centrosomal proteins have been recurrently identified as translocation partners of tyrosine kinases FGFR1, JAK2, PDGFRα and PDGFRβ in these diseases, a role for the centrosome in oncogenic transformation has been hypothesized. In this study, we addressed the functional role of centrosomally targeted tyrosine kinase activity. First, centrosomal localization was not routinely found for all chimeric fusion proteins tested. Second, targeting of tyrosine kinases to the centrosome by creating artificial chimeric fusion kinases with the centrosomal targeting domain of AKAP450 failed to enhance the oncogenic transforming potential in both Ba/F3 and U2OS cells, although phospho-tyrosine-mediated signal transduction pathways were initiated at the centrosome. We conclude that the centrosomal localization of constitutively activated tyrosine kinases does not contribute to disease pathogenesis in chronic myeloproliferative disorders. PMID:22015771

  5. KRAS2 oncogene overexpression in myelodysplastic syndrome with translocation 5;12.

    PubMed

    Srivastava, A; Boswell, H S; Heerema, N A; Nahreini, P; Lauer, R C; Antony, A C; Hoffman, R; Tricot, G J

    1988-10-01

    The factors that initiate and maintain the abnormal hematopoietic clone in the myelo-dysplastic syndromes (MDS) remain largely unknown. We describe a patient with MDS associated with an abnormal karyotype, 46,XY,t(5;12)(q31;p12). According to the FAB cooperative group classification, the patient was classified as chronic myelomonocytic leukemia. Because of the particular chromosomal translocation, the structure-function relationship of three genes relevant to the translocation breakpoints, CSF2, FMS, and KRAS2, was studied in bone marrow and peripheral blood lymphocytes in this patient. No major structural alterations were observed at these three genetic loci. Although the levels of expression of the CSF2 and FMS genes remained unaltered, the KRAS2 oncogene was overexpressed approximately six-fold in bone marrow cells from the MDS patient compared with normal donors. We postulate that the RAS oncogene activation may be instrumental in the genesis of MDS.

  6. Initiation of oncogenic transformation in human mammary epithelial cells by charged particles

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Georgy, K. A.; Craise, L. M.; Durante, M.

    1997-01-01

    Experimental studies have shown that high linear-energy transfer (LET) charged particles can be more effective than x-rays and gamma-rays in inducing oncogenic transformation in cultured cells and tumors in animals. Based on these results, experiments were designed and performed with an immortal human mammary epithelial cell line (H184B5), and several clones transformed by heavy ions were obtained. Cell fusion experiments were subsequently done, and results indicate that the transforming gene(s) is recessive. Chromosome analysis with fluorescence in situ hybridization (FISH) techniques also showed additional translocations in transformed human mammary epithelial cells. In addition, studies with these cell lines indicate that heavy ions can effectively induce deletion, break, and dicentrics. Deletion of tumor suppressor gene(s) and/or formation of translocation through DNA double strand breaks is a likely mechanism for the initiation of oncogenic transformation in human mammary epithelial cells.

  7. Oncogenic transformation through the cell cycle and the LET dependent inverse dose rate effect

    NASA Technical Reports Server (NTRS)

    Geard, C. R.; Miller, R. C.; Brenner, D. J.; Hall, E. J.; Wachholz, B. W. (Principal Investigator)

    1994-01-01

    Synchronised populations of mouse C3H/10T-1/2 cells were obtained by a stringent mitotic dislodgment procedure. Mitotic cells rapidly attach and progress sequentially through the cell cycle. Irradiation (3 Gy of X rays) was carried out at intervals from 0 to 18 h after initiating cell cycle progression of the mitotic cells. Oncogenic transformation was enhanced 10-fold over cells irradiated soon after replating (G1 and S phases) for cells in a near 2 h period corresponding to cells in G2 phase but not in mitosis. The cell surviving fraction had a 2-1/2-fold variation with resistant peaks corresponding to the late G1 and late S phases. These findings provide experimental support for the hypothesis initiated by Rossi and Kellerer and developed by Brenner and Hall to explain the LET dependent inverse dose rate effect for oncogenic transformation.

  8. NSD3-NUT Fusion Oncoprotein in NUT Midline Carcinoma: Implications for a Novel Oncogenic Mechanism

    PubMed Central

    French, Christopher A.; Rahman, Shaila; Walsh, Erica M.; Kühnle, Simone; Grayson, Adlai R.; Lemieux, Madeleine E.; Grunfeld, Noam; Rubin, Brian P.; Antonescu, Cristina R.; Zhang, Songlin; Venkatramani, Rajkumar; Cin, Paola Dal; Howley, Peter M.

    2014-01-01

    NUT midline carcinoma (NMC) is an aggressive subtype of squamous cell carcinoma that typically harbors BRD4/3-NUT fusion oncoproteins that block differentiation and maintain tumor growth. In 20% of cases NUT is fused to uncharacterized non-BRD gene(s). We established a new patient-derived NMC cell line (1221) and demonstrated that it harbors a novel NSD3-NUT fusion oncogene. We find that NSD3-NUT is both necessary and sufficient for the blockade of differentiation and maintenance of proliferation in NMC cells. NSD3-NUT binds to BRD4, and BRD bromodomain inhibitors induce differentiation and arrest proliferation of 1221 cells. We find further that NSD3 is required for the blockade of differentiation in BRD4-NUT-expressing NMCs. These findings identify NSD3 as a novel critical oncogenic component and potential therapeutic target in NMC. PMID:24875858

  9. A human oncogene of the RAS superfamily unmasked by expression cDNA cloning.

    PubMed Central

    Chan, A M; Miki, T; Meyers, K A; Aaronson, S A

    1994-01-01

    As an approach to identify human oncogenes, we generated an expression cDNA library from an ovarian carcinoma line. A potent transforming gene was detected by transfection analysis and identified as TC21, a recently cloned member of the RAS gene superfamily. A single point mutation substituting glutamine for leucine at position 72 was shown to be responsible for activation of transforming properties. While the cDNA clone possessed high transforming activity, the ovarian tumor genomic DNA, which contained the mutated TC21 allele, failed to induce transformed foci. Thus, expression cDNA cloning made it possible to identify and isolate a human oncogene that has evaded detection by conventional approaches. Images PMID:8052619

  10. Wnt/β-catenin, an oncogenic pathway targeted by H. pylori in gastric carcinogenesis.

    PubMed

    Song, Xiaowen; Xin, Na; Wang, Wei; Zhao, Chenghai

    2015-11-01

    A section of gastric cancers presents nuclear β-catenin accumulation correlated with H. pylori infection. H. pylori stimulate Wnt/β-catenin pathway by activating oncogenic c-Met and epidermal growth factor receptor (EGFR), or by inhibiting tumor suppressor Runx3 and Trefoil factor 1 (TFF1). H. pylori also trigger Wnt/β-catenin pathway by recruiting macrophages. Moreover, Wnt/β-catenin pathway is found involved in H. pylori-induced gastric cancer stem cell generation. Recently, by using gastroids, researchers have further revealed that H. pylori induce gastric epithelial cell proliferation through β-catenin. These findings indicate that Wnt/β-catenin is an oncogenic pathway activated by H. pylori. Therefore, this pathway is a potential therapy target for H. pylori-related gastric cancer. PMID:26417932

  11. Seahorse-derived peptide suppresses invasive migration of HT1080 fibrosarcoma cells by competing with intracellular α-enolase for plasminogen binding and inhibiting uPA-mediated activation of plasminogen.

    PubMed

    Kim, Yong-Tae; Kim, Se-kwon; Jeon, You-Jin; Park, Sun Joo

    2014-12-01

    α-Enolase is a glycolytic enzyme and a surface receptor for plasminogen. α-Enolase-bound plasminogen promotes tumor cell invasion and cancer metastasis by activating plasmin and consequently degrading the extracellular matrix degradation. Therefore, α-enolase and plasminogen are novel targets for cancer therapy. We found that the amino acid sequence of a peptide purified from enzymatic hydrolysates of seahorse has striking similarities to that of α-enolase. In this study, we report that this peptide competes with cellular α-enolase for plasminogen binding and suppresses urokinase plasminogen activator (uPA)-mediated activation of plasminogen, which results in decreased invasive migration of HT1080 fibrosarcoma cells. In addition, the peptide treatment decreased the expression levels of uPA compared to that of untreated controls. These results provide new insight into the mechanism by which the seahorse-derived peptide suppresses invasive properties of human cancer cells. Our findings suggest that this peptide could emerge as a potential therapeutic agent for cancer.

  12. Activation of cellular oncogenes by chemical carcinogens in Syrian hamster embryo fibroblasts

    SciTech Connect

    Ebert, R.; Reiss, E.; Roellich, G.; Schiffmann, D. ); Barrett, J.C.; Wiseman, R.W. ); Pechan, R.

    1990-08-01

    Carcinogen-induced point mutations resulting in activation of ras oncogenes have been demonstrated in various experimental systems such as skin carcinogenesis, mammary, and liver carcinogenesis. In many cases, the data support the conclusion that these point mutations are critical changes in the initiation of these tumors. The Syrian hamster embryo (SHE) cell transformation model system has been widely used to study the multistep process of chemically induced neoplastic transformation. Recent data suggest that activation of the Ha-ras gene via point mutation is one of the crucial events in the transformation of these cells. The authors have now cloned the c-Ha-ras proto-oncogene from SHE cDNA-libraries, and we have performed polymerase chain reaction and direct sequencing to analyze tumor cell lines induced by different chemical carcinogens for the presence of point mutations. No changes were detectable at codons 12, 13, 59, 61, and 117 or adjacent regions in tumor cell lines induced by diethylstilbestrol, asbestos, benzo(a)pyrene, trenbolone, or aflatoxin B{sub 1}. Thus, it is not known whether point mutations in the Ha-ras proto-oncogene are essential for the acquisition of the neoplastic phenotype of SHE cells. Activation of other oncogenes or inactivation of tumor suppressor genes may be responsible for the neoplastic progression of these cells. However, in SHE cells neoplastically transformed by diethylstilbestrol or trenbolone, a significant elevation of the c-Ha-ras expression was observed. Enhanced expression of c-myc was detected in SHE cells transformed by benzo(a)pyrene or trenbolone.

  13. Cellular senescence checkpoint function determines differential Notch1-dependent oncogenic and tumor suppressor activities

    PubMed Central

    Kagawa, Shingo; Natsuizaka, Mitsuteru; Whelan, Kelly A.; Facompre, Nicole; Naganuma, Seiji; Ohashi, Shinya; Kinugasa, Hideaki; Egloff, Ann Marie; Basu, Devraj; Gimotty, Phyllis A.; Klein-Szanto, Andres J; Bass, Adam; Wong, Kwok-Kin; Diehl, J. Alan; Rustgi, Anil K.; Nakagawa, Hiroshi

    2014-01-01

    Notch activity regulates tumor biology in a context-dependent and complex manner. Notch may act as an oncogene or a tumor suppressor gene even within the same tumor type. Recently, Notch signaling has been implicated in cellular senescence. Yet, it remains unclear as to how cellular senescence checkpoint functions may interact with Notch-mediated oncogenic and tumor suppressor activities. Herein, we used genetically engineered human esophageal keratinocytes and esophageal squamous cell carcinoma cells to delineate the functional consequences of Notch activation and inhibition along with pharmacological intervention and RNA interference (RNAi) experiments. When expressed in a tetracycline-inducible manner, the ectopically expressed activated form of Notch1 (ICN1) displayed oncogene-like characteristics inducing cellular senescence corroborated by the induction of G0/G1 cell-cycle arrest, Rb dephosphorylation, flat and enlarged cell morphology and senescence-associated β-galactosidase activity. Notch-induced senescence involves canonical CSL/RBPJ-dependent transcriptional activity and the p16INK4A-Rb pathway. Loss of p16INK4A or the presence of human papilloma virus (HPV) E6/E7 oncogene products not only prevented ICN1 from inducing senescence, but permitted ICN1 to facilitate anchorage-independent colony formation and xenograft tumor growth with increased cell proliferation and reduced squamous-cell differentiation. Moreover, Notch1 appears to mediate replicative senescence as well as TGF-β-induced cellular senescence in non-transformed cells and that HPV E6/E7 targets Notch1 for inactivation to prevent senescence, revealing a tumor suppressor attribute of endogenous Notch1. In aggregate, cellular senescence checkpoint functions may influence dichotomous Notch activities in the neoplastic context. PMID:24931169

  14. The Oncogenic Transforming Potential of the Passage of Single α Particles through Mammalian Cell Nuclei

    NASA Astrophysics Data System (ADS)

    Miller, Richard C.; Randers-Pehrson, Gerhard; Geard, Charles R.; Hall, Eric J.; Brenner, David J.

    1999-01-01

    Domestic, low-level exposure to radon gas is considered a major environmental lung-cancer hazard involving DNA damage to bronchial cells by α particles from radon progeny. At domestic exposure levels, the relevant bronchial cells are very rarely traversed by more than one α particle, whereas at higher radon levels--at which epidemiological studies in uranium miners allow lung-cancer risks to be quantified with reasonable precision--these bronchial cells are frequently exposed to multiple α -particle traversals. Measuring the oncogenic transforming effects of exactly one α particle without the confounding effects of multiple traversals has hitherto been unfeasible, resulting in uncertainty in extrapolations of risk from high to domestic radon levels. A technique to assess the effects of single α particles uses a charged-particle microbeam, which irradiates individual cells or cell nuclei with predefined exact numbers of particles. Although previously too slow to assess the relevant small oncogenic risks, recent improvements in throughput now permit microbeam irradiation of large cell numbers, allowing the first oncogenic risk measurements for the traversal of exactly one α particle through a cell nucleus. Given positive controls to ensure that the dosimetry and biological controls were comparable, the measured oncogenicity from exactly one α particle was significantly lower than for a Poisson-distributed mean of one α particle, implying that cells traversed by multiple α particles contribute most of the risk. If this result applies generally, extrapolation from high-level radon risks (involving cellular traversal by multiple α particles) may overestimate low-level (involving only single α particles) radon risks.

  15. Expression of proto-oncogenes and gene mutation of sarcomeric proteins in patients with hypertrophic cardiomyopathy.

    PubMed

    Kai, H; Muraishi, A; Sugiu, Y; Nishi, H; Seki, Y; Kuwahara, F; Kimura, A; Kato, H; Imaizumi, T

    1998-09-21

    Several mutations of cardiac beta-myosin heavy chain (beta-MHC) gene were reported in patients with hypertrophic cardiomyopathy (HCM). Involvement of proto-oncogenes has been shown in the mechanism of experimental cardiac hypertrophy. This study sought to examine the effects of c-H-ras and c-myc expression in the steady-state myocardium on hypertrophic changes and to evaluate the possible interaction between beta-MHC mutation and proto-oncogene expression in HCM. Endomyocardial biopsy was performed in 17 HCM patients (5 beta-MHC mutations and 1 troponin T mutation) and 7 control subjects (no mutation). Reverse transcription-polymerase chain reaction analysis revealed c-H-ras expression in all members of both groups. Cardiomyocyte size was correlated with the expression level of c-H-ras (P<0.001), and c-H-ras expression was upregulated in HCM patients (P<0.01). HCM patients with a beta-MHC mutation had the higher c-H-ras expression than did control subjects or patients without a mutation (P<0.01). c-myc mRNA was expressed in 7 of 17 HCM patients but not in control subjects. Myocyte size was greater in c-myc-positive HCM patients than in control subjects and c-myc-negative HCM patients (P<0.001 and P<0.05, respectively). The proto-oncogene expression did not affect clinical findings, myocardial fibrosis, or disarray. In conclusion, c-H-ras and c-myc expression in the steady-state myocardium may play a role in the hypertrophic mechanism in HCM. It is possible that ss-MHC gene mutation has some effect on the regulation of proto-oncogene expression in HCM.

  16. The Activating Transcription Factor 3 Protein Suppresses the Oncogenic Function of Mutant p53 Proteins*

    PubMed Central

    Wei, Saisai; Wang, Hongbo; Lu, Chunwan; Malmut, Sarah; Zhang, Jianqiao; Ren, Shumei; Yu, Guohua; Wang, Wei; Tang, Dale D.; Yan, Chunhong

    2014-01-01

    Mutant p53 proteins (mutp53) often acquire oncogenic activities, conferring drug resistance and/or promoting cancer cell migration and invasion. Although it has been well established that such a gain of function is mainly achieved through interaction with transcriptional regulators, thereby modulating cancer-associated gene expression, how the mutp53 function is regulated remains elusive. Here we report that activating transcription factor 3 (ATF3) bound common mutp53 (e.g. R175H and R273H) and, subsequently, suppressed their oncogenic activities. ATF3 repressed mutp53-induced NFKB2 expression and sensitized R175H-expressing cancer cells to cisplatin and etoposide treatments. Moreover, ATF3 appeared to suppress R175H- and R273H-mediated cancer cell migration and invasion as a consequence of preventing the transcription factor p63 from inactivation by mutp53. Accordingly, ATF3 promoted the expression of the metastasis suppressor SHARP1 in mutp53-expressing cells. An ATF3 mutant devoid of the mutp53-binding domain failed to disrupt the mutp53-p63 binding and, thus, lost the activity to suppress mutp53-mediated migration, suggesting that ATF3 binds to mutp53 to suppress its oncogenic function. In line with these results, we found that down-regulation of ATF3 expression correlated with lymph node metastasis in TP53-mutated human lung cancer. We conclude that ATF3 can suppress mutp53 oncogenic function, thereby contributing to tumor suppression in TP53-mutated cancer. PMID:24554706

  17. Oncogenic action of beta, proton, alpha and electron radiation on the rat skin

    SciTech Connect

    Burns, F.J.

    1980-01-01

    Rat skin is being utilized as an empirical model for testing dose and time related aspects of the oncogenic action of ionizing radiation, ultraviolet light, and polycyclic aromatic hydrocarbons. Molecular lesions in the skin DNA, including, strand breaks and thymine dimers, are being measured and compared to tumor induction. The induction and repair kinetics of molcular lesions are being compared to split dose repair. Modifiers and radiosensitizers are being utilized to test specific aspects of a chromosome breakage theory of radiation oncogenesis.

  18. Nuclear Localization and DNA Binding Properties of a Protein Expressed by Human c-myc Oncogene

    NASA Astrophysics Data System (ADS)

    Persson, Hakan; Leder, Philip

    1984-08-01

    Antisera to the human cellular myc oncogene product were used to identify a human c-myc specific protein with a molecular weight of 65,000. Subcellular fractionation showed that the human c-myc protein is predominantly found in the cell nucleus. The p65 Kc-myc protein binds to double- and single-stranded DNA as measured by a DNA affinity chromatography assay.

  19. Mate choice for more melanin as a mechanism to maintain a functional oncogene

    PubMed Central

    Fernandez, André A.; Morris, Molly R.

    2008-01-01

    The mechanisms by which cancer evolves and persists in natural systems have been difficult to ascertain. In the Xiphophorus melanoma model, a functional oncogene (Xiphophorus melanoma receptor kinase Xmrk) has been maintained for several million years despite being deleterious and in an extremely unstable genomic region. Melanomas in Xiphophorus spp. fishes (platyfishes and swordtails) have been investigated since the 1920s, and, yet, positive selection that could explain the maintenance of Xmrk has not been found. Here, we show that Xiphophorus cortezi females from two populations prefer males with the spotted caudal (Sc) melanin pattern, which is associated with the presence of the Xmrk oncogene and serves as the site of melanoma formation within this species. Moreover, X. cortezi females prefer males with an enhanced Sc to males with a reduced Sc pattern. RT-PCR analysis confirms tissue-specific Xmrk expression within the Sc pattern in X. cortezi. Because of the association of Xmrk with the Sc pigment pattern and the fact that melanoma formation augments this visual signal, sexual selection appears to be maintaining this oncogene because of a mating preference for Sc, as well as the exaggeration of this male trait. At the individual level, decreases in viability and fecundity because of Xmrk and subsequent melanoma formation may be mitigated via increases in mate acquisition. At the population level, maintenance of this oncogene appears to be under frequency dependent selection, as we detected female preference for males without Sc in a third population that had higher frequencies of Sc in females. PMID:18757731

  20. Biological basis of personalized anticoagulation in cancer: oncogene and oncomir networks as putative regulators of coagulopathy.

    PubMed

    D'Asti, Esterina; Rak, Janusz

    2016-04-01

    Activation of stromal response pathways in cancer is increasingly viewed as both a local and systemic extension of molecular alterations driving malignant transformation. Rather than reflecting passive and unspecific responses to anatomical abnormalities, the coagulation system is a target of oncogenic deregulation, impacting the role of clotting and fibrinolytic proteins, and integrating hemostasis, inflammation, angiogenesis and cellular growth effects in cancer. These processes signify, but do not depend on, the clinically manifest coagulopathy and thrombosis. In this regard, the role of driver mutations affecting oncoprotein coding genes such as RAS, EGFR or MET and tumour suppressors (PTEN, TP53) are well described as regulators of tissue factor (TF), protease activated receptors (PAR-1/2) and ectopic coagulation factors (FVII). Indeed, in both adult and pediatric brain tumours the expression patterns of coagulation and angiogenesis regulators (coagulome and angiome, respectively) reflect the molecular subtypes of the underlying diseases (glioblastoma or medulloblastoma) as defined by their oncogenic classifiers and clinical course. This emerging understanding is still poorly established in relation to the transforming effects of non-coding genes, including those responsible for the expression of microRNA (miR). Indeed, several miRs have been recently found to regulate TF and other effectors. We recently documented that in the context of the aggressive embryonal tumour with multilayered rosettes (ETMR) the oncogenic driver miR (miR-520g) suppresses the expression of TF and correlates with hypocoagulant tumour characteristics. Unlike in adult cancers, the growth of pediatric embryonal brain tumour cells as spheres (to maintain stem cell properties) results in upregulation of miR-520g and downregulation of TF expression and activity. We postulate that oncogenic protein and miR coding genes form alternative pathways of coagulation system regulation in different

  1. Expression of c-yes oncogene product in various animal tissues and spontaneous canine tumours.

    PubMed

    Rungsipipat, A; Tateyama, S; Yamaguchi, R; Uchida, K; Miyoshi, N

    1999-06-01

    An immunohistochemical study of various visceral organs of normal adult dogs, cats, pigs, horses, cows, and chickens (five of each species) and of 185 spontaneous canine tumours was carried out using paraffin wax sections and a commercially available antibody to the human c- yes oncogene product. Among the adult normal tissues of six animal species, epithelial cells of the proximal and distal renal tubules, the myocardium, hepatocytes, cerebellar Purkinje cells and adrenal cortical cells were positive for c- yes product. Among the foetal tissues of dogs and chickens, a positive reaction was observed on canine chorionic villi cells and chick yolk sac surface epithelium, and on epithelial cells of the renal tubules, hepatocytes and the myocardium. These findings suggest that the c- yes proto-oncogene may play a physiological role in the cell growth and metabolism of these adult and foetal tissues. Of the 185 tumours tested, 59 (31.9 per cent) expressed the c- yes oncogene product. The c- yes -positive tumours accounted for 44.4 per cent (12/27) of the skin tumours, 5.5 per cent (1/18) of the round cell tumours, 35. 7 per cent (10/28) of the soft tissue tumours, 21.4 per cent (3/14) of the testicular tumours, 29.1 per cent (23/79) of the mammary tumours, and 52.6 per cent (10/19) of the other tumours types. Expression of the c- yes oncogene appeared to be common in spontaneously arising canine tumours, and the degree of expression varied considerably by tumour type.

  2. Cellular senescence checkpoint function determines differential Notch1-dependent oncogenic and tumor-suppressor activities.

    PubMed

    Kagawa, S; Natsuizaka, M; Whelan, K A; Facompre, N; Naganuma, S; Ohashi, S; Kinugasa, H; Egloff, A M; Basu, D; Gimotty, P A; Klein-Szanto, A J; Bass, A J; Wong, K-K; Diehl, J A; Rustgi, A K; Nakagawa, H

    2015-04-30

    Notch activity regulates tumor biology in a context-dependent and complex manner. Notch may act as an oncogene or a tumor-suppressor gene even within the same tumor type. Recently, Notch signaling has been implicated in cellular senescence. Yet, it remains unclear as to how cellular senescence checkpoint functions may interact with Notch-mediated oncogenic and tumor-suppressor activities. Herein, we used genetically engineered human esophageal keratinocytes and esophageal squamous cell carcinoma cells to delineate the functional consequences of Notch activation and inhibition along with pharmacological intervention and RNA interference experiments. When expressed in a tetracycline-inducible manner, the ectopically expressed activated form of Notch1 (ICN1) displayed oncogene-like characteristics inducing cellular senescence corroborated by the induction of G0/G1 cell-cycle arrest, Rb dephosphorylation, flat and enlarged cell morphology and senescence-associated β-galactosidase activity. Notch-induced senescence involves canonical CSL/RBPJ-dependent transcriptional activity and the p16(INK4A)-Rb pathway. Loss of p16(INK4A) or the presence of human papilloma virus (HPV) E6/E7 oncogene products not only prevented ICN1 from inducing senescence but permitted ICN1 to facilitate anchorage-independent colony formation and xenograft tumor growth with increased cell proliferation and reduced squamous-cell differentiation. Moreover, Notch1 appears to mediate replicative senescence as well as transforming growth factor-β-induced cellular senescence in non-transformed cells and that HPV E6/E7 targets Notch1 for inactivation to prevent senescence, revealing a tumor-suppressor attribute of endogenous Notch1. In aggregate, cellular senescence checkpoint functions may influence dichotomous Notch activities in the neoplastic context.

  3. Altered MENIN expression disrupts the MAFA differentiation pathway in insulinoma.

    PubMed

    Hamze, Z; Vercherat, C; Bernigaud-Lacheretz, A; Bazzi, W; Bonnavion, R; Lu, J; Calender, A; Pouponnot, C; Bertolino, P; Roche, C; Stein, R; Scoazec, J Y; Zhang, C X; Cordier-Bussat, M

    2013-12-01

    The protein MENIN is the product of the multiple endocrine neoplasia type I (MEN1) gene. Altered MENIN expression is one of the few events that are clearly associated with foregut neuroendocrine tumours (NETs), classical oncogenes or tumour suppressors being not involved. One of the current challenges is to understand how alteration of MENIN expression contributes to the development of these tumours. We hypothesised that MENIN might regulate factors maintaining endocrine-differentiated functions. We chose the insulinoma model, a paradigmatic example of well-differentiated pancreatic NETs, to study whether MENIN interferes with the expression of v-MAF musculoaponeurotic fibrosarcoma oncogene homologue A (MAFA), a master glucose-dependent transcription factor in differentiated β-cells. Immunohistochemical analysis of a series of human insulinomas revealed a correlated decrease in both MENIN and MAFA. Decreased MAFA expression resulting from targeted Men1 ablation was also consistently observed in mouse insulinomas. In vitro analyses using insulinoma cell lines showed that MENIN regulated MAFA protein and mRNA levels, and bound to Mafa promoter sequences. MENIN knockdown concomitantly decreased mRNA expression of both Mafa and β-cell differentiation markers (Ins1/2, Gck, Slc2a2 and Pdx1) and, in parallel, increased the proliferation rate of tumours as measured by bromodeoxyuridine incorporation. Interestingly, MAFA knockdown alone also increased proliferation rate but did not affect the expression of candidate proliferation genes regulated by MENIN. Finally, MENIN variants with missense mutations detected in patients with MEN1 lost the WT MENIN properties to regulate MAFA. Together, our findings unveil a previously unsuspected MENIN/MAFA connection regarding control of the β-cell differentiation/proliferation balance, which could contribute to tumorigenesis.

  4. Detection of the c-myc oncogene product in colonic polyps and carcinomas.

    PubMed Central

    Stewart, J.; Evan, G.; Watson, J.; Sikora, K.

    1986-01-01

    The c-myc oncogene has been implicated in the processes of normal cell proliferation and differentiation. Elevated levels of c-myc mRNA and its gene product (p62c-myc), have been detected in a variety of solid tumours and cultured cel lines. Its precise role in normal cell function and in neoplastic transformation and progression has yet to be elucidated. We have used a monoclonal antibody, raised by peptide immunisation, to determine the distribution by immunoperoxidase staining of the c-myc oncogene product in archival specimens of colonic polyps and carcinomas. Samples from 42 patients with colon carcinoma, 24 with benign polyps and 15 normal colon biopsies were examined. Normal colon revealed maximum staining in the mid-zone of the crypts, corresponding to the zone of differentiation and maturation. The staining was predominantly cytoplasmic. Adenomatous polyps revealed the most intense pattern of staining in areas of dysplastic change. Colonic tumours showed a wide range of staining. Well differentiated tumours contained more cytoplasmic p62c-myc than poorly differentiated tumours. These findings suggest that the c-myc oncogene product may play an important role in the evolution of colonic neoplasia. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:3511934

  5. Acquired immune response to oncogenic human papillomavirus associated with prophylactic cervical cancer vaccines.

    PubMed

    Einstein, Mark H

    2008-04-01

    Human papillomavirus (HPV) is a common infection among women and a necessary cause of cervical cancer. Oncogenic HPV types infecting the anogenital tract have the potential to induce natural immunity, but at present we do not clearly understand the natural history of infection in humans and the mechanisms by which the virus can evade the host immune response. Natural acquired immune responses against HPV may be involved in the clearance of infection, but persistent infection with oncogenic virus types leads to the development of precancerous lesions and cancer. B cell responses are important for viral neutralization, but antibody responses in patients with cervical cancer are poor. Prophylactic vaccines targeting oncogenic virus types associated with cervical cancer have the potential to prevent up to 80% of cervical cancers by targeting HPV types 16 and 18. Clinical data show that prophylactic vaccines are effective in inducing antibody responses and in preventing persistent infection with HPV, as well as the subsequent development of high-grade cervical intraepithelial neoplasia. This article reviews the known data regarding natural immune responses to HPV and those developed by prophylactic vaccination.

  6. Emerging Roles of Agrobacterial Plant-Transforming Oncogenes in Plant Defense Reactions

    NASA Astrophysics Data System (ADS)

    Bulgakov, Victor P.; Inyushkina, Yuliya V.; Gorpenchenko, Tatiana Y.; Koren, Olga G.; Shkryl, Yuri N.; Zhuravlev, Yuri N.

    2009-01-01

    For recent years, engineering plant metabolic pathways by using rol genes looks promising in several aspects. New directions of rol-gene studies are highlighted in this work underlying the unique regulatory properties of the genes. It is known that following agrobacterial infection, the Agrobacterium rhizogenes rolA, rolB and rolC genes are transferred to plant genome, causing tumor formation and hairy root disease. In this report, we show mat these oncogenes are also involved in regulation of plant defense reactions, including the production of secondary metabolites. Situations occur where the rol genes perform their own critical function to regulate secondary metabolism by bypassing upstream plant control mechanisms and directing defense reactions via a "short cut." The rolC gene expressed in transformed plant cells is efficient in establishing an enhanced resistance of host cells to salt and temperature stresses. The emerging complexity of the rol-gene triggered effects and the involvement of signals generated by these genes in basic processes of cell biology such as calcium and ROS signaling indicate that the plant oncogenes, like some animal protooncogenes, use sophisticated strategies to affect cell growth and differentiation. The data raise the intriguing possibility that some components of plant and animal oncogene signaling pathways share common features.

  7. Modulation of junction tension by tumor suppressors and proto-oncogenes regulates cell-cell contacts.

    PubMed

    Bosveld, Floris; Guirao, Boris; Wang, Zhimin; Rivière, Mathieu; Bonnet, Isabelle; Graner, François; Bellaïche, Yohanns

    2016-02-15

    Tumor suppressors and proto-oncogenes play crucial roles in tissue proliferation. Furthermore, de-regulation of their functions is deleterious to tissue architecture and can result in the sorting of somatic rounded clones minimizing their contact with surrounding wild-type (wt) cells. Defects in the shape of somatic clones correlate with defects in proliferation, cell affinity, cell-cell adhesion, oriented cell division and cortical contractility. Combining genetics, live-imaging, laser ablation and computer simulations, we aim to analyze whether distinct or similar mechanisms can account for the common role of tumor suppressors and proto-oncogenes in cell-cell contact regulation. In Drosophila epithelia, the tumor suppressors Fat (Ft) and Dachsous (Ds) regulate cell proliferation, tissue morphogenesis, planar cell polarity and junction tension. By analyzing the evolution over time of ft mutant cells and clones, we show that ft clones reduce their cell-cell contacts with the surrounding wt tissue in the absence of concomitant cell divisions and over-proliferation. This contact reduction depends on opposed changes of junction tensions in the clone bulk and its boundary with neighboring wt tissue. More generally, either clone bulk or boundary junction tension is modulated by the activation of Yorkie, Myc and Ras, yielding similar contact reductions with wt cells. Together, our data highlight mechanical roles for proto-oncogene and tumor suppressor pathways in cell-cell interactions.

  8. Gene expression array analyses predict increased proto-oncogene expression in MMTV induced mammary tumors.

    PubMed

    Popken-Harris, Pamela; Kirchhof, Nicole; Harrison, Ben; Harris, Lester F

    2006-08-01

    Exogenous infection by milk-borne mouse mammary tumor viruses (MMTV) typically induce mouse mammary tumors in genetically susceptible mice at a rate of 90-95% by 1 year of age. In contrast to other transforming retroviruses, MMTV acts as an insertional mutagen and under the influence of steroid hormones induces oncogenic transformation after insertion into the host genome. As these events correspond with increases in adjacent proto-oncogene transcription, we used expression array profiling to determine which commonly associated MMTV insertion site proto-oncogenes were transcriptionally active in MMTV induced mouse mammary tumors. To verify our gene expression array results we developed real-time quantitative RT-PCR assays for the common MMTV insertion site genes found in RIII/Sa mice (int-1/wnt-1, int-2/fgf-3, int-3/Notch 4, and fgf8/AIGF) as well as two genes that were consistently up regulated (CCND1, and MAT-8) and two genes that were consistently down regulated (FN1 and MAT-8) in the MMTV induced tumors as compared to normal mammary gland. Finally, each tumor was also examined histopathologically. Our expression array findings support a model whereby just one or a few common MMTV insertions into the host genome sets up a dominant cascade of events that leave a characteristic molecular signature.

  9. Fumarase tumor suppressor gene and MET oncogene cooperate in upholding transformation and tumorigenesis.

    PubMed

    Costa, Barbara; Dettori, Daniela; Lorenzato, Annalisa; Bardella, Chiara; Coltella, Nadia; Martino, Cosimo; Cammarata, Cristina; Carmeliet, Peter; Olivero, Martina; Di Renzo, Maria Flavia

    2010-08-01

    Loss of the fumarate hydratase (FH) tumor suppressor gene results in the development of benign tumors that rarely, but regrettably, progress to very aggressive cancers. Using mouse embryo fibroblasts (MEFs) to model transformation, we found that fh knockdown results in increased expression of the met oncogene-encoded tyrosine kinase receptor through hypoxia-inducible factor (hif) stabilization. MET-increased expression was alone able to stabilize hif, thus establishing a feed forward loop that might enforce tumor progression. The fh-defective MEFs showed increased motility and protection from apoptosis. Motility, but not survival, relied on hif-1alpha and was greatly enhanced by MET ligand hepatocyte growth factor. Met cooperated with a weakly oncogenic ras in making MEFs transformed and tumorigenic, as shown by in vitro and in vivo assays. Loss of fh was not equally effective by itself but enhanced the transformed and tumorigenic phenotype induced by ras and MET. Consistently, the rescue of fumarase expression abrogated the motogenic and transformed phenotype of fh-defective MEFs. In conclusion, the data suggest that the progression of tumors where FH is lost might be boosted by activation of the MET oncogene, which is able to drive cell-autonomous tumor progression and is a strong candidate for targeted therapy. PMID:20354140

  10. The potent oncogene NPM-ALK mediates malignant transformation of normal human CD4(+) T lymphocytes.

    PubMed

    Zhang, Qian; Wei, Fang; Wang, Hong Yi; Liu, Xiaobin; Roy, Darshan; Xiong, Qun-Bin; Jiang, Shuguang; Medvec, Andrew; Danet-Desnoyers, Gwenn; Watt, Christopher; Tomczak, Ewa; Kalos, Michael; Riley, James L; Wasik, Mariusz A

    2013-12-01

    With this study we have demonstrated that in vitro transduction of normal human CD4(+) T lymphocytes with NPM-ALK results in their malignant transformation. The transformed cells become immortalized and display morphology and immunophenotype characteristic of patient-derived anaplastic large-cell lymphomas. These unique features, which are strictly dependent on NPM-ALK activity and expression, include perpetual cell growth, proliferation, and survival; activation of the key signal transduction pathways STAT3 and mTORC1; and expression of CD30 (the hallmark of anaplastic large-cell lymphoma) and of immunosuppressive cytokine IL-10 and cell-surface protein PD-L1/CD274. Implantation of NPM-ALK-transformed CD4(+) T lymphocytes into immunodeficient mice resulted in formation of tumors indistinguishable from patients' anaplastic large-cell lymphomas. Our findings demonstrate that the key aspects of human carcinogenesis closely recapitulating the features of the native tumors can be faithfully reproduced in vitro when an appropriate oncogene is used to transform its natural target cells; this in turn points to the fundamental role in malignant cell transformation of potent oncogenes expressed in the relevant target cells. Such transformed cells should permit study of the early stages of carcinogenesis, and in particular the initial oncogene-host cell interactions. This experimental design could also be useful for studies of the effects of early therapeutic intervention and likely also the mechanisms of malignant progression.

  11. The tumor suppressor microRNA let-7 represses the HMGA2 oncogene

    PubMed Central

    Lee, Yong Sun; Dutta, Anindya

    2007-01-01

    HMGA2, a high-mobility group protein, is oncogenic in a variety of tumors, including benign mesenchymal tumors and lung cancers. Knockdown of Dicer in HeLa cells revealed that the HMGA2 gene is transcriptionally active, but its mRNA is destabilized in the cytoplasm through the microRNA (miRNA) pathway. HMGA2 was derepressed upon inhibition of let-7 in cells with high levels of the miRNA. Ectopic expression of let-7 reduced HMGA2 and cell proliferation in a lung cancer cell. The effect of let-7 on HMGA2 was dependent on multiple target sites in the 3′ untranslated region (UTR), and the growth-suppressive effect of let-7 on lung cancer cells was rescued by overexpression of the HMGA2 ORF without a 3′UTR. Our results provide a novel example of suppression of an oncogene by a tumor-suppressive miRNA and suggest that some tumors activate the oncogene through chromosomal translocations that eliminate the oncogene’s 3′UTR with the let-7 target sites. PMID:17437991

  12. Tissue-specific p19Arf regulation dictates the response to oncogenic K-ras.

    PubMed

    Young, Nathan P; Jacks, Tyler

    2010-06-01

    The ability of oncogenes to engage tumor suppressor pathways represents a key regulatory mechanism that can limit the outgrowth of incipient tumor cells. For example, in a number of settings oncogenic Ras strongly activates the Ink4a/Arf locus, resulting in cell cycle arrest or senescence. The capacity of different cell types to execute tumor suppressor programs following expression of endogenous K-ras(G12D) in vivo has not been examined. Using compound mutant mice containing the Arf(GFP) reporter and the spontaneously activating K-ras(LA2) allele, we have uncovered dramatic tissue specificity of K-ras(G12D)-dependent p19(Arf) up-regulation. Lung tumors, which can arise in the presence of functional p19(Arf), rarely display p19(Arf) induction. In contrast, sarcomas always show robust activation, which correlates with genetic evidence, suggesting that loss of the p19(Arf)-p53 pathway is a requisite event for sarcomagenesis. Using constitutive and inducible RNAi systems in vivo, we highlight cell type-specific chromatin regulation of Ink4a/Arf as a critical determinant of cellular responses to oncogenic K-ras. Polycomb-group complexes repress the locus in lung tumors, whereas the SWI/SNF family member Snf5 acts as an important mediator of p19(Arf) induction in sarcomas. This variation in tumor suppressor induction might explain the inherent differences between tissues in their sensitivity to Ras-mediated transformation. PMID:20479239

  13. Aging-associated inflammation promotes selection for adaptive oncogenic events in B cell progenitors.

    PubMed

    Henry, Curtis J; Casás-Selves, Matias; Kim, Jihye; Zaberezhnyy, Vadym; Aghili, Leila; Daniel, Ashley E; Jimenez, Linda; Azam, Tania; McNamee, Eoin N; Clambey, Eric T; Klawitter, Jelena; Serkova, Natalie J; Tan, Aik Choon; Dinarello, Charles A; DeGregori, James

    2015-12-01

    The incidence of cancer is higher in the elderly; however, many of the underlying mechanisms for this association remain unexplored. Here, we have shown that B cell progenitors in old mice exhibit marked signaling, gene expression, and metabolic defects. Moreover, B cell progenitors that developed from hematopoietic stem cells (HSCs) transferred from young mice into aged animals exhibited similar fitness defects. We further demonstrated that ectopic expression of the oncogenes BCR-ABL, NRAS(V12), or Myc restored B cell progenitor fitness, leading to selection for oncogenically initiated cells and leukemogenesis specifically in the context of an aged hematopoietic system. Aging was associated with increased inflammation in the BM microenvironment, and induction of inflammation in young mice phenocopied aging-associated B lymphopoiesis. Conversely, a reduction of inflammation in aged mice via transgenic expression of α-1-antitrypsin or IL-37 preserved the function of B cell progenitors and prevented NRAS(V12)-mediated oncogenesis. We conclude that chronic inflammatory microenvironments in old age lead to reductions in the fitness of B cell progenitor populations. This reduced progenitor pool fitness engenders selection for cells harboring oncogenic mutations, in part due to their ability to correct aging-associated functional defects. Thus, modulation of inflammation--a common feature of aging--has the potential to limit aging-associated oncogenesis.

  14. Cellular oncogene expression following exposure of mice to {gamma}-rays

    SciTech Connect

    Anderson, A.; Woloschak, G.E.

    1991-06-12

    We examined the effects of total body exposure of BCF1 mice to {gamma}-rays (300 cGy) in modulating expression of cellular oncogenes in both gut and liver tissues. We selected specific cellular oncogenes (c-fos, c-myc, c-src, and c-H-ras), based on their normal expression in liver and gut tissues from untreated mice. As early as 5 min. following whole body exposure of BCF1 mice to {gamma}-rays we detected induction of mRNA specific for c-src and c-H-ras in both liver and gut tissues. c-fos RNA was slightly decreased in accumulation in gut but was unaffected in liver tissue from irradiated mice relative to untreated controls. c-myc mRNA accumulation was unaffected in all tissues examined. These experiments document that modulation of cellular oncogene expression can occur as an early event in tissues following irradiation and suggest that this modulation may play a role in radiation-induced carcinogenesis.

  15. Differential Sensitivity of Mouse Epithelial Tissues to the Polyomavirus Middle T Oncogene

    PubMed Central

    Cecena, Grace; Wen, Fang; Cardiff, Robert D.; Oshima, Robert G.

    2006-01-01

    To determine how different epithelial cell types respond to the same oncogenic stimulation, we have used a modified human keratin 18 gene to conditionally express the polyomavirus middle T antigen (PyMT) oncogene in simple epithelial tissues of transgenic mice. Activation of PyMT expression by transgenic Cre recombinase in mammary epithelial cells resulted in carcinomas in all bitransgenic females. PyMT expression induced by K18-driven Cre in internal epithelial organs resulted in pancreatic acinar metaplasia and ductal dysplasia with remarkable desmoplastic stromal responses in all 25 bitransgenic mice. Hepatoma formation with altered lipid metabolism and gastric adenocarcinoma occurred in 96 and 54% of these mice, respectively. Elevated PyMT RNA expression also correlated with intraepithelial neoplasia in the prostate. Activated Erk2 was found in mammary tumors, pancreatic tissues, and affected livers. Hes1 RNA, a target of Notch signaling that has been implicated downstream of Ras pathway activation, was elevated in pancreatic and liver lesions. The variety of responses of different epithelia to PyMT demonstrates the importance of the differentiated state in interpreting oncogenic signals. PMID:16400032

  16. Hepatoma-derived growth factor/nucleolin axis as a novel oncogenic pathway in liver carcinogenesis.

    PubMed

    Chen, San-Cher; Hu, Tsung-Hui; Huang, Chao-Cheng; Kung, Mei-Lang; Chu, Tian-Huei; Yi, Li-Na; Huang, Shih-Tsung; Chan, Hoi-Hung; Chuang, Jiin-Haur; Liu, Li-Feng; Wu, Han-Chung; Wu, Deng-Chyang; Chang, Min-Chi; Tai, Ming-Hong

    2015-06-30

    Hepatoma-derived growth factor (HDGF) overexpression is involved in liver fibrosis and carcinogenesis. However, the receptor(s) and signaling for HDGF remain unclear. By using affinity chromatography and proteomic techniques, nucleolin (NCL) was identified and validated as a HDGF-interacting membrane protein in hepatoma cells. Exogenous HDGF elicited the membrane NCL accumulation within 0.5 hour by protein stabilization and transcriptional NCL upregulation within 24 hours. Blockade of surface NCL by antibodies neutralization potently suppressed HDGF uptake and HDGF-stimulated phosphatidylinositol 3-kinase (PI3K)/Akt signaling in hepatoma cells. By using rescectd hepatocellular carcinoma (HCC) tissues, immunohistochemical analysis revealed NCL overexpression was correlated with tumour grades, vascular invasion, serum alpha-fetoprotein levels and the poor survival in HCC patients. Multivariate analysis showed NCL was an independent prognostic factor for survival outcome of HCC patients after surgery. To delineate the role of NCL in liver carcinogenesis, ectopic NCL overexpression promoted the oncogenic behaviours and induced PI3K/Akt activation in hepatoma cells. Conversely, NCL knockdown by RNA interference attenuated the oncogenic behaviours and PI3K/Akt signaling, which could be partially rescued by exogenous HDGF supply. In summary, this study provides the first evidence that surface NCL transmits the oncogenic signaling of HDGF and facilitates a novel diagnostic and therapeutic target for HCC. PMID:25938538

  17. DEK Proto-Oncogene Expression Interferes with the Normal Epithelial Differentiation Program

    PubMed Central

    Wise-Draper, Trisha M.; Morreale, Richard J.; Morris, Teresa A.; Mintz-Cole, Rachael A.; Hoskins, Elizabeth E.; Balsitis, Scott J.; Husseinzadeh, Nader; Witte, David P.; Wikenheiser-Brokamp, Kathryn A.; Lambert, Paul F.; Wells, Susanne I.

    2009-01-01

    Overexpression of the DEK gene is associated with multiple human cancers, but its specific roles as a putative oncogene are not well defined. DEK transcription was previously shown to be induced by the high-risk human papillomavirus (HPV) E7 oncogene via E2F and Rb pathways. Transient DEK overexpression was able to inhibit both senescence and apoptosis in cultured cells. In at least the latter case, this mechanism involved the destabilization of p53 and the decreased expression of p53 target genes. We show here that DEK overexpression disrupts the normal differentiation program in a manner that is independent of either p53 or cell death. DEK expression was distinctly repressed upon the differentiation of cultured primary human keratinocytes, and stable DEK overexpression caused epidermal thickening in an organotypic raft model system. The observed hyperplasia involved a delay in keratinocyte differentiation toward a more undifferentiated state, and expansion of the basal cell compartment was due to increased proliferation, but not apoptosis. These phenotypes were accompanied by elevated p63 expression in the absence of p53 destabilization. In further support of bona fide oncogenic DEK activities, we report here up-regulated DEK protein levels in both human papilloma virus-positive hyperplastic murine skin and a subset of human squamous cell carcinomas. We suggest that DEK up-regulation may contribute to carcinoma development at least in part through increased proliferation and retardation of differentiation. PMID:19036808

  18. Common Oncogene Mutations and Novel SND1-BRAF Transcript Fusion in Lung Adenocarcinoma from Never Smokers

    PubMed Central

    Jang, Jin Sung; Lee, Adam; Li, Jun; Liyanage, Hema; Yang, Yanan; Guo, Lixia; Asmann, Yan W.; Li, Peter W.; Erickson-Johnson, Michele; Sakai, Yuta; Sun, ZhiFu; Jeon, Hyo-Sung; Hwang, Hayoung; Bungum, Aaron O.; Edell, Eric S.; Simon, Vernadette A.; Kopp, Karla J.; Eckloff, Bruce; Oliveira, Andre M.; Wieben, Eric; Aubry, Marie Christine; Yi, Eunhee; Wigle, Dennis; Diasio, Robert B.; Yang, Ping; Jen, Jin

    2015-01-01

    Lung adenocarcinomas from never smokers account for approximately 15 to 20% of all lung cancers and these tumors often carry genetic alterations that are responsive to targeted therapy. Here we examined mutation status in 10 oncogenes among 89 lung adenocarcinomas from never smokers. We also screened for oncogene fusion transcripts in 20 of the 89 tumors by RNA-Seq. In total, 62 tumors had mutations in at least one of the 10 oncogenes, including EGFR (49 cases, 55%), K-ras (5 cases, 6%), BRAF (4 cases, 5%), PIK3CA (3 cases, 3%), and ERBB2 (4 cases, 5%). In addition to ALK fusions identified by IHC/FISH in four cases, two previously known fusions involving EZR- ROS1 and KIF5B-RET were identified by RNA-Seq as well as a third novel fusion transcript that was formed between exons 1–9 of SND1 and exons 2 to 3′ end of BRAF. This in-frame fusion was observed in 3/89 tested tumors and 2/64 additional never smoker lung adenocarcinoma samples. Ectopic expression of SND1-BRAF in H1299 cells increased phosphorylation levels of MEK/ERK, cell proliferation, and spheroid formation compared to parental mock-transfected control. Jointly, our results suggest a potential role of the novel BRAF fusion in lung cancer development and therapy. PMID:25985019

  19. Pin1 is required for sustained B cell proliferation upon oncogenic activation of Myc

    PubMed Central

    D'Artista, Luana; Bisso, Andrea; Piontini, Andrea; Doni, Mirko; Verrecchia, Alessandro; Kress, Theresia R.; Morelli, Marco J.; Del Sal, Giannino; Amati, Bruno; Campaner, Stefano

    2016-01-01

    The c-myc proto-oncogene is activated by translocation in Burkitt's lymphoma and substitutions in codon 58 stabilize the Myc protein or augment its oncogenic potential. In wild-type Myc, phosphorylation of Ser 62 and Thr 58 provides a landing pad for the peptidyl prolyl-isomerase Pin1, which in turn promotes Ser 62 dephosphorylation and Myc degradation. However, the role of Pin1 in Myc-induced lymphomagenesis remains unknown. We show here that genetic ablation of Pin1 reduces lymphomagenesis in Eμ-myc transgenic mice. In both Pin1-deficient B-cells and MEFs, the proliferative response to oncogenic Myc was selectively impaired, with no alterations in Myc-induced apoptosis or mitogen-induced cell cycle entry. This proliferative defect wasn't attributable to alterations in either Ser 62 phosphorylation or Myc-regulated transcription, but instead relied on the activity of the ARF-p53 pathway. Pin1 silencing in lymphomas retarded disease progression in mice, making Pin1 an attractive therapeutic target in Myc-driven tumors. PMID:26943576

  20. Transmembrane voltage potential of somatic cells controls oncogene-mediated tumorigenesis at long-range

    PubMed Central

    Chernet, Brook T.; Levin, Michael

    2014-01-01

    The microenvironment is increasingly recognized as a crucial aspect of cancer. In contrast and complement to the field's focus on biochemical factors and extracellular matrix, we characterize a novel aspect of host:tumor interaction – endogenous bioelectric signals among non-excitable somatic cells. Extending prior work focused on the bioelectric state of cancer cells themselves, we show for the first time that the resting potentials of distant cells are critical for oncogene-dependent tumorigenesis. In the Xenopus laevis tadpole model, we used human oncogenes such as mutant KRAS to drive formation of tumor-like structures that exhibited overproliferation, increased nuclear size, hypoxia, acidity, and leukocyte attraction. Remarkably, misexpression of hyperpolarizing ion channels at distant sites within the tadpole significantly reduced the incidence of these tumors. The suppression of tumorigenesis could also be achieved by hyperpolarization using native CLIC1 chloride channels, suggesting a treatment modality not requiring gene therapy. Using a dominant negative approach, we implicate HDAC1 as the mechanism by which resting potential changes affect downstream cell behaviors. Based on published data on the voltage-mediated changes of butyrate flux through the SLC5A8 transporter, we present a model linking resting potentials of host cells to the ability of oncogenes to initiate tumorigenesis. Antibiotic data suggest that the relevant butyrate is generated by a native bacterial species, identifying a novel link between the microbiome and cancer that is mediated by alterations in bioelectric signaling. PMID:24830454

  1. Narrowing the focus: a toolkit to systematically connect oncogenic signaling pathways with cancer phenotypes

    PubMed Central

    Singleton, Katherine R.; Wood, Kris C.

    2016-01-01

    Functional genomics approaches such as gain- and loss-of-function screening can efficiently reveal genes that control cancer cell growth, survival, signal transduction, and drug resistance, but distilling the results of large-scale screens into actionable therapeutic strategies is challenging given our incomplete understanding of the functions of many genes. Research over several decades, including the results of large-scale cancer sequencing projects, has made it clear that many oncogenic properties are controlled by a common set of core oncogenic signaling pathways. By directly screening this core set of pathways, rather than much larger numbers of individual genes, it may be possible to more directly and efficiently connect functional genomic screening results with therapeutic targets. Here, we describe the recent development of methods to directly screen oncogenic pathways in high-throughput. We summarize the results of studies that have used pathway-centric screening to map the pathways of resistance to targeted therapies in diverse cancer types, then conclude by expanding on potential future applications of this approach.

  2. The MYC 3' Wnt-Responsive Element Drives Oncogenic MYC Expression in Human Colorectal Cancer Cells.

    PubMed

    Rennoll, Sherri A; Eshelman, Melanie A; Raup-Konsavage, Wesley M; Kawasawa, Yuka Imamura; Yochum, Gregory S

    2016-01-01

    Mutations in components of the Wnt/β-catenin signaling pathway drive colorectal cancer (CRC) by deregulating expression of downstream target genes including the c-MYC proto-oncogene (MYC). The critical regulatory DNA enhancer elements that control oncogenic MYC expression in CRC have yet to be fully elucidated. In previous reports, we correlated T-cell factor (TCF) and β-catenin binding to the MYC 3' Wnt responsive DNA element (MYC 3' WRE) with MYC expression in HCT116 cells. Here we used CRISPR/Cas9 to determine whether this element is a critical driver of MYC. We isolated a clonal population of cells that contained a deletion of a single TCF binding element (TBE) within the MYC 3' WRE. This deletion reduced TCF/β-catenin binding to this regulatory element and decreased MYC expression. Using RNA-Seq analysis, we found altered expression of genes that regulate metabolic processes, many of which are known MYC target genes. We found that 3' WRE-Mut cells displayed a reduced proliferative capacity, diminished clonogenic growth, and a decreased potential to form tumors in vivo. These findings indicate that the MYC 3' WRE is a critical driver of oncogenic MYC expression and suggest that this element may serve as a therapeutic target for CRC. PMID:27223305

  3. Transglutaminase 2 contributes to a TP53-induced autophagy program to prevent oncogenic transformation

    PubMed Central

    Yeo, Shi Yun; Itahana, Yoko; Guo, Alvin Kunyao; Han, Rachel; Iwamoto, Kozue; Nguyen, Hung Thanh; Bao, Yi; Kleiber, Kai; Wu, Ya Jun; Bay, Boon Huat; Voorhoeve, Mathijs; Itahana, Koji

    2016-01-01

    Genetic alterations which impair the function of the TP53 signaling pathway in TP53 wild-type human tumors remain elusive. To identify new components of this pathway, we performed a screen for genes whose loss-of-function debilitated TP53 signaling and enabled oncogenic transformation of human mammary epithelial cells. We identified transglutaminase 2 (TGM2) as a putative tumor suppressor in the TP53 pathway. TGM2 suppressed colony formation in soft agar and tumor formation in a xenograft mouse model. The depletion of growth supplements induced both TGM2 expression and autophagy in a TP53-dependent manner, and TGM2 promoted autophagic flux by enhancing autophagic protein degradation and autolysosome clearance. Reduced expression of both CDKN1A, which regulates the cell cycle downstream of TP53, and TGM2 synergized to promote oncogenic transformation. Our findings suggest that TGM2-mediated autophagy and CDKN1A-mediated cell cycle arrest are two important barriers in the TP53 pathway that prevent oncogenic transformation. DOI: http://dx.doi.org/10.7554/eLife.07101.001 PMID:26956429

  4. Detection of Enhancer-Associated Rearrangements Reveals Mechanisms of Oncogene Dysregulation in B-cell Lymphoma

    PubMed Central

    Ryan, Russell J.H.; Drier, Yotam; Whitton, Holly; Cotton, M. Joel; Kaur, Jasleen; Issner, Robbyn; Gillespie, Shawn; Epstein, Charles B.; Nardi, Valentina; Sohani, Aliyah R.; Hochberg, Ephraim P.; Bernstein, Bradley E.

    2015-01-01

    B-cell lymphomas frequently contain genomic rearrangements that lead to oncogene activation by heterologous distal regulatory elements. We utilized a novel approach, termed ‘Pinpointing Enhancer-Associated Rearrangements by Chromatin Immunoprecipitation’ or PEAR-ChIP, to simultaneously map enhancer activity and proximal rearrangements in lymphoma cell lines and patient biopsies. This method detects rearrangements involving known cancer genes, including CCND1, BCL2, MYC, PDCD1LG2, NOTCH1, CIITA, and SGK1, as well as novel enhancer duplication events of likely oncogenic significance. We identify lymphoma subtype-specific enhancers in the MYC locus that are silenced in lymphomas with MYC-activating rearrangements and are associated with germline polymorphisms that alter lymphoma risk. We show that BCL6-locus enhancers are acetylated by the BCL6-activating transcription factor MEF2B, and can undergo genomic duplication, or target the MYC promoter for activation in the context of a “pseudo-double-hit” t(3;8)(q27;q24) rearrangement linking the BCL6 and MYC loci. Our work provides novel insights regarding enhancer-driven oncogene activation in lymphoma. PMID:26229090

  5. Recognition of Human Oncogenic Viruses by Host Pattern-Recognition Receptors

    PubMed Central

    Di Paolo, Nelson C.

    2014-01-01

    Human oncogenic viruses include Epstein–Barr virus, hepatitis B virus, hepatitis C virus, human papilloma virus, human T-cell lymphotropic virus, Kaposi’s associated sarcoma virus, and Merkel cell polyomavirus. It would be expected that during virus–host interaction, the immune system would recognize these pathogens and eliminate them. However, through evolution, these viruses have developed a number of strategies to avoid such an outcome and successfully establish chronic infections. The persistent nature of the infection caused by these viruses is associated with their oncogenic potential. In this article, we will review the latest information on the interaction between oncogenic viruses and the innate immune system of the host. In particular, we will summarize the available knowledge on the recognition by host pattern-recognition receptors of pathogen-associated molecular patterns present in the incoming viral particle or generated during the virus’ life cycle. We will also review the data on the recognition of cell-derived danger associated molecular patterns generated during the virus infection that may impact the outcome of the host–pathogen interaction and the development cancer. PMID:25101093

  6. Bim Regulation of Lumen Formation in Cultured Mammary Epithelial Acini Is Targeted by Oncogenes

    PubMed Central

    Reginato, Mauricio J.; Mills, Kenna R.; Becker, Esther B. E.; Lynch, Danielle K.; Bonni, Azad; Muthuswamy, Senthil K.; Brugge, Joan S.

    2005-01-01

    Epithelial cells organize into cyst-like structures that contain a spherical monolayer of cells that enclose a central lumen. Using a three-dimensional basement membrane culture model in which mammary epithelial cells form hollow, acinus-like structures, we previously demonstrated that lumen formation is achieved, in part, through apoptosis of centrally localized cells. We demonstrate that the proapoptotic protein Bim may selectively trigger apoptosis of the centrally localized acinar cells, leading to temporally controlled lumen formation. Bim is not detectable during early stages of three-dimensional mammary acinar morphogenesis and is then highly upregulated in all cells of acini, coincident with detection of apoptosis in the centrally localized acinar cells. Inhibition of Bim expression by RNA interference transiently blocks luminal apoptosis and delays lumen formation. Oncogenes that induce acinar luminal filling, such as ErbB2 and v-Src, suppress expression of Bim through a pathway dependent on Erk-mitogen-activated protein kinase; however, HPV 16 E7, an oncogene that stimulates cell proliferation but not luminal filling, is unable to reduce Bim expression. Thus, Bim is a critical regulator of luminal apoptosis during mammary acinar morphogenesis in vitro and may be an important target of oncogenes that disrupt glandular epithelial architecture. PMID:15899862

  7. Determination of somatic oncogenic mutations linked to target-based therapies using MassARRAY technology

    PubMed Central

    Llorca-Cardeñosa, Marta J.; Mongort, Cristina; Alonso, Elisa; Navarro, Samuel; Burgues, Octavio; Vivancos, Ana; Cejalvo, Juan Miguel; Perez-Fidalgo, José Alejandro; Roselló, Susana; Ribas, Gloria; Cervantes, Andrés

    2016-01-01

    Somatic mutation analysis represents a useful tool in selecting personalized therapy. The aim of our study was to determine the presence of common genetic events affecting actionable oncogenes using a MassARRAY technology in patients with advanced solid tumors who were potential candidates for target-based therapies. The analysis of 238 mutations across 19 oncogenes was performed in 197 formalin-fixed paraffin-embedded samples of different tumors using the OncoCarta Panel v1.0 (Sequenom Hamburg, Germany). Of the 197 specimens, 97 (49.2%) presented at least one mutation. Forty-nine different oncogenic mutations in 16 genes were detected. Mutations in KRAS and PIK3CA were detected in 40/97 (41.2%) and 30/97 (30.9%) patients respectively. Thirty-one patients (32.0%) had mutations in two genes, 20 of them (64.5%) initially diagnosed with colorectal cancer. The co-occurrence of mutation involved mainly KRAS, PIK3CA, KIT and RET. Mutation profiles were validated using a customized panel and the Junior Next-Generation Sequencing technology (GS-Junior 454, Roche). Twenty-eight patients participated in early clinical trials or received specific treatments according to the molecular characterization (28.0%). MassARRAY technology is a rapid and effective method for identifying key cancer-driving mutations across a large number of samples, which allows for a more appropriate selection for personalized therapies. PMID:26968814

  8. Oncogenic KRAS regulates BMP4 expression in colon cancer cell lines.

    PubMed

    Duerr, Eva-Maria; Mizukami, Yusuke; Moriichi, Kentaro; Gala, Manish; Jo, Won-Seok; Kikuchi, Hirotoshi; Xavier, Ramnik J; Chung, Daniel C

    2012-05-15

    Activating mutations in the KRAS oncogene are common in colorectal cancer. However, the complete spectrum of KRAS targets that mediate its tumorigenic effect has not yet been fully delineated. We identified bone morphogenetic protein 4 (Bmp4), a transforming growth factor-β family member that regulates development and tissue homeostasis, as a new target of KRAS. In SW480, Hela, and 293 cells, oncogenic KRAS(V12) downregulated BMP4 RNA levels, a BMP4 promoter luciferase construct, and Bmp4 protein levels. The MEK inhibitor PD98059 but not the phosphatidylinositol 3-kinase inhibitor LY294002 blocked this downregulation of BMP4. To identify the region of the BMP4 promoter that mediated this regulation by KRAS, serial 5'-deletions of the promoter were generated. An inhibitory region was identified between -3,285 and -3,258 bp in the Bmp4 promoter. In summary, oncogenic KRAS can downregulate Bmp4 through a transcriptional pathway that depends on ERK. These findings point to a unique link between two pathways that are frequently altered in colon cancer.

  9. Recognition of human oncogenic viruses by host pattern-recognition receptors.

    PubMed

    Di Paolo, Nelson C

    2014-01-01

    Human oncogenic viruses include Epstein-Barr virus, hepatitis B virus, hepatitis C virus, human papilloma virus, human T-cell lymphotropic virus, Kaposi's associated sarcoma virus, and Merkel cell polyomavirus. It would be expected that during virus-host interaction, the immune system would recognize these pathogens and eliminate them. However, through evolution, these viruses have developed a number of strategies to avoid such an outcome and successfully establish chronic infections. The persistent nature of the infection caused by these viruses is associated with their oncogenic potential. In this article, we will review the latest information on the interaction between oncogenic viruses and the innate immune system of the host. In particular, we will summarize the available knowledge on the recognition by host pattern-recognition receptors of pathogen-associated molecular patterns present in the incoming viral particle or generated during the virus' life cycle. We will also review the data on the recognition of cell-derived danger associated molecular patterns generated during the virus infection that may impact the outcome of the host-pathogen interaction and the development cancer.

  10. Oncogene activation in spontaneous and chemically induced rodent tumors: implications for risk analysis

    SciTech Connect

    Reynolds, S.H.; Stowers, S.J.; Patterson, R.M.; Maronpot, R.R.; Anderson, M.W.

    1988-06-01

    The validity of rodent tumor end points in assessing the potential hazards of chemical exposure to humans is a somewhat controversial but very important issue since most chemicals are classified as potentially hazardous to humans on the basis of long-term carcinogenesis studies in rodents. The ability to distinguish between genotoxic, cytotoxic, or receptor-mediated promotion effects of chemical treatment would aid in the interpretation of rodent carcinogenesis data. Activated oncogenes in spontaneously occurring and chemically induced rodent tumors were examined and compared as one approach to determine the mechanism by which chemical treatment caused an increased incidence of rodent tumors. Different patterns of activated oncogenes were found not only in spontaneous versus chemically induced mouse liver tumors but also in a variety of spontaneous rat tumors versus chemically induced rat lung tumors. In the absence of cytotoxic effects, it could be argued that the chemicals in question activated protooncogenes by a direct genotoxic mechanism. These results provided a basis for the analysis of activated oncogenes in spontaneous and chemically induced rodent tumors to provide information at a molecular level to aid in the extrapolation of rodent carcinogenesis data to human risk assessment.

  11. PIK3CA is implicated as an oncogene in ovarian cancer

    SciTech Connect

    Shayesteh, Laleh; Lu, Yiling; Kuo, Wen-Lin; Baldocchi, Russell; Godfrey, Tony; Collins, Colin; Pinkel, Daniel; Powell, Bethan; Mills,Gordon B.; Gray, Joe W.

    1998-03-25

    Ovarian cancer is the leading cause of death from gynecological malignancy and the fourth leading cause of cancer death among American women, yet little is known about its molecular aetiology. Studies using comparative genomic hybridization (CGH) have revealed several regions of recurrent, abnormal, DNA sequence copy number that may encode genes involved in the genesis or progression of the disease. One region at 3q26 found to be increased in copy number in approximately 40 percent of ovarian and other cancers contains PIK3CA, which encodes the p110 a catalytic subunit of phosphatidylinositol 3-kinase(PI3-kinase). The association between PIK3CA copy number and PI3-kinase activity makes PIK3CA a candidate oncogene because a broad range of cancer-related functions have been associated with PI3-kinase mediated signaling. These include proliferation, glucose transport and catabolism, cell adhesion, apoptosis, RAS signaling and oncogenic transformation. In addition, downstream effectors of PI3-kinase,AKT1 and AKT2, have been found to be amplified or activated in human tumors, including ovarian cancer. We show here that PIK3CA is frequently increased in copy number in ovarian cancers, that the increased copy number is associated with increased PIK3CA transcription, p110 a protein expression and PI3-kinase activity and that treatment with the PI3-kinase inhibitor LY294002 decreases proliferation and increases apoptosis. Our observations suggest PIK3CA is an oncogene that has an important role in ovarian cancer.

  12. Common Oncogene Mutations and Novel SND1-BRAF Transcript Fusion in Lung Adenocarcinoma from Never Smokers.

    PubMed

    Jang, Jin Sung; Lee, Adam; Li, Jun; Liyanage, Hema; Yang, Yanan; Guo, Lixia; Asmann, Yan W; Li, Peter W; Erickson-Johnson, Michele; Sakai, Yuta; Sun, ZhiFu; Jeon, Hyo-Sung; Hwang, Hayoung; Bungum, Aaron O; Edell, Eric S; Simon, Vernadette A; Kopp, Karla J; Eckloff, Bruce; Oliveira, Andre M; Wieben, Eric; Aubry, Marie Christine; Yi, Eunhee; Wigle, Dennis; Diasio, Robert B; Yang, Ping; Jen, Jin

    2015-05-18

    Lung adenocarcinomas from never smokers account for approximately 15 to 20% of all lung cancers and these tumors often carry genetic alterations that are responsive to targeted therapy. Here we examined mutation status in 10 oncogenes among 89 lung adenocarcinomas from never smokers. We also screened for oncogene fusion transcripts in 20 of the 89 tumors by RNA-Seq. In total, 62 tumors had mutations in at least one of the 10 oncogenes, including EGFR (49 cases, 55%), K-ras (5 cases, 6%), BRAF (4 cases, 5%), PIK3CA (3 cases, 3%), and ERBB2 (4 cases, 5%). In addition to ALK fusions identified by IHC/FISH in four cases, two previously known fusions involving EZR- ROS1 and KIF5B-RET were identified by RNA-Seq as well as a third novel fusion transcript that was formed between exons 1-9 of SND1 and exons 2 to 3' end of BRAF. This in-frame fusion was observed in 3/89 tested tumors and 2/64 additional never smoker lung adenocarcinoma samples. Ectopic expression of SND1-BRAF in H1299 cells increased phosphorylation levels of MEK/ERK, cell proliferation, and spheroid formation compared to parental mock-transfected control. Jointly, our results suggest a potential role of the novel BRAF fusion in lung cancer development and therapy.

  13. Individual and Complementary Effects of Human Papillomavirus Oncogenes on Epithelial Cell Proliferation and Differentiation.

    PubMed

    Bergner, Sven; Halec, Gordana; Schmitt, Markus; Aubin, François; Alonso, Angel; Auvinen, Eeva

    2016-01-01

    Previous studies on human papillomavirus (HPV) type 16 protein functions have established the oncogenic nature of three viral proteins: E5, E6 and E7. Here we have studied the functions of these proteins by functional deletion of the individual E5, E6 or E7, or both E6 and E7 oncogenes in the context of the whole viral genome. These mutants, or the intact wild-type genome, were expressed from the natural viral promoters along with differentiation of epithelial HaCaT cells in three-dimensional collagen raft cultures. High episomal viral copy numbers were obtained using a transfection-based loxp-HPV16-eGFP-N1 vector system. All epithelial equivalents carrying the different HPV type 16 genomes showed pronounced hyperplastic and dysplastic morphology. Particularly the E7 oncogene, with contribution of E6, was shown to enhance cell proliferation. Specifically, the crucial role of E7 in HPV-associated hyperproliferation was clearly manifested. Based on morphological characteristics, immunohistochemical staining for differentiation and proliferation markers, and low expression of E1^E4, we propose that our raft culture models produce cervical intraepithelial neoplasia (CIN)1 and CIN2-like tissue. Our experimental setting provides an alternative tool to study concerted functions of HPV proteins in the development of epithelial dysplasia. PMID:26636751

  14. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function.

    PubMed

    Viale, Andrea; Pettazzoni, Piergiorgio; Lyssiotis, Costas A; Ying, Haoqiang; Sánchez, Nora; Marchesini, Matteo; Carugo, Alessandro; Green, Tessa; Seth, Sahil; Giuliani, Virginia; Kost-Alimova, Maria; Muller, Florian; Colla, Simona; Nezi, Luigi; Genovese, Giannicola; Deem, Angela K; Kapoor, Avnish; Yao, Wantong; Brunetto, Emanuela; Kang, Ya'an; Yuan, Min; Asara, John M; Wang, Y Alan; Heffernan, Timothy P; Kimmelman, Alec C; Wang, Huamin; Fleming, Jason B; Cantley, Lewis C; DePinho, Ronald A; Draetta, Giulio F

    2014-10-30

    Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers in western countries, with a median survival of 6 months and an extremely low percentage of long-term surviving patients. KRAS mutations are known to be a driver event of PDAC, but targeting mutant KRAS has proved challenging. Targeting oncogene-driven signalling pathways is a clinically validated approach for several devastating diseases. Still, despite marked tumour shrinkage, the frequency of relapse indicates that a fraction of tumour cells survives shut down of oncogenic signalling. Here we explore the role of mutant KRAS in PDAC maintenance using a recently developed inducible mouse model of mutated Kras (Kras(G12D), herein KRas) in a p53(LoxP/WT) background. We demonstrate that a subpopulation of dormant tumour cells surviving oncogene ablation (surviving cells) and responsible for tumour relapse has features of cancer stem cells and relies on oxidative phosphorylation for survival. Transcriptomic and metabolic analyses of surviving cells reveal prominent expression of genes governing mitochondrial function, autophagy and lysosome activity, as well as a strong reliance on mitochondrial respiration and a decreased dependence on glycolysis for cellular energetics. Accordingly, surviving cells show high sensitivity to oxidative phosphorylation inhibitors, which can inhibit tumour recurrence. Our integrated analyses illuminate a therapeutic strategy of combined targeting of the KRAS pathway and mitochondrial respiration to manage pancreatic cancer.

  15. The impact of the MYB-NFIB fusion proto-oncogene in vivo

    PubMed Central

    Mikse, Oliver R.; Tchaicha, Jeremy H.; Akbay, Esra A.; Chen, Liang; Bronson, Roderick T.; Hammerman, Peter S.; Wong, Kwok-Kin

    2016-01-01

    Recurrent fusion of the v-myb avian myelobastosis viral oncogene homolog (MYB) and nuclear factor I/B (NFIB) generates the MYB-NFIB transcription factor, which has been detected in a high percentage of individuals with adenoid cystic carcinoma (ACC). To understand the functional role of this fusion protein in carcinogenesis, we generated a conditional mutant transgenic mouse that expresses MYB-NFIB along with p53 mutation in tissues that give rise to ACC: mammary tissue, salivary glands, or systemically in the whole body. Expression of the oncogene in mammary tissue resulted in hyperplastic glands that developed into adenocarcinoma in 27.3% of animals. Systemic expression of the MYB-NFIB fusion caused more rapid development of this breast phenotype, but mice died due to abnormal proliferation in the glomerular compartment of the kidney, which led to development of glomerulonephritis. These findings suggest the MYB-NFIB fusion is oncogenic and treatments targeting this transcription factor may lead to therapeutic responses in ACC patients. PMID:27213588

  16. HER2 missense mutations have distinct effects on oncogenic signaling and migration

    PubMed Central

    Zabransky, Daniel J.; Yankaskas, Christopher L.; Cochran, Rory L.; Wong, Hong Yuen; Croessmann, Sarah; Chu, David; Kavuri, Shyam M.; Red Brewer, Monica; Rosen, D. Marc; Dalton, W. Brian; Cimino-Mathews, Ashley; Cravero, Karen; Button, Berry; Kyker-Snowman, Kelly; Cidado, Justin; Erlanger, Bracha; Parsons, Heather A.; Manto, Kristen M.; Bose, Ron; Lauring, Josh; Arteaga, Carlos L.; Konstantopoulos, Konstantinos; Park, Ben Ho

    2015-01-01

    Recurrent human epidermal growth factor receptor 2 (HER2) missense mutations have been reported in human cancers. These mutations occur primarily in the absence of HER2 gene amplification such that most HER2-mutant tumors are classified as “negative” by FISH or immunohistochemistry assays. It remains unclear whether nonamplified HER2 missense mutations are oncogenic and whether they are targets for HER2-directed therapies that are currently approved for the treatment of HER2 gene-amplified breast cancers. Here we functionally characterize HER2 kinase and extracellular domain mutations through gene editing of the endogenous loci in HER2 nonamplified human breast epithelial cells. In in vitro and in vivo assays, the majority of HER2 missense mutations do not impart detectable oncogenic changes. However, the HER2 V777L mutation increased biochemical pathway activation and, in the context of a PIK3CA mutation, enhanced migratory features in vitro. However, the V777L mutation did not alter in vivo tumorigenicity or sensitivity to HER2-directed therapies in proliferation assays. Our results suggest the oncogenicity and potential targeting of HER2 missense mutations should be considered in the context of cooperating genetic alterations and provide previously unidentified insights into functional analysis of HER2 mutations and strategies to target them. PMID:26508629

  17. Beneficial effects of low dose radiation in response to the oncogenic KRAS induced cellular transformation.

    PubMed

    Kim, Rae-Kwon; Kim, Min-Jung; Seong, Ki Moon; Kaushik, Neha; Suh, Yongjoon; Yoo, Ki-Chun; Cui, Yan-Hong; Jin, Young Woo; Nam, Seon Young; Lee, Su-Jae

    2015-01-01

    Recently low dose irradiation has gained attention in the field of radiotherapy. For lack of understanding of the molecular consequences of low dose irradiation, there is much doubt concerning its risks on human beings. In this article, we report that low dose irradiation is capable of blocking the oncogenic KRAS-induced malignant transformation. To address this hypothesis, we showed that low dose irradiation, at doses of 0.1 Gray (Gy); predominantly provide defensive response against oncogenic KRAS -induced malignant transformation in human cells through the induction of antioxidants without causing cell death and acts as a critical regulator for the attenuation of reactive oxygen species (ROS). Importantly, we elucidated that knockdown of antioxidants significantly enhanced ROS generation, invasive and migratory properties and abnormal acini formation in KRAS transformed normal as well as cancer cells. Taken together, this study demonstrates that low dose irradiation reduces the KRAS induced malignant cellular transformation through diminution of ROS. This interesting phenomenon illuminates the beneficial effects of low dose irradiation, suggesting one of contributory mechanisms for reducing the oncogene induced carcinogenesis that intensify the potential use of low dose irradiation as a standard regimen. PMID:26515758

  18. Transmembrane voltage potential of somatic cells controls oncogene-mediated tumorigenesis at long-range.

    PubMed

    Chernet, Brook T; Levin, Michael

    2014-05-30

    The microenvironment is increasingly recognized as a crucial aspect of cancer. In contrast and complement to the field's focus on biochemical factors and extracellular matrix, we characterize a novel aspect of host:tumor interaction - endogenous bioelectric signals among non-excitable somatic cells. Extending prior work focused on the bioelectric state of cancer cells themselves, we show for the first time that the resting potentials of distant cells are critical for oncogene-dependent tumorigenesis. In the Xenopus laevis tadpole model, we used human oncogenes such as mutant KRAS to drive formation of tumor-like structures that exhibited overproliferation, increased nuclear size, hypoxia, acidity, and leukocyte attraction. Remarkably, misexpression of hyperpolarizing ion channels at distant sites within the tadpole significantly reduced the incidence of these tumors. The suppression of tumorigenesis could also be achieved by hyperpolarization using native CLIC1 chloride channels, suggesting a treatment modality not requiring gene therapy. Using a dominant negative approach, we implicate HDAC1 as the mechanism by which resting potential changes affect downstream cell behaviors. Based on published data on the voltage-mediated changes of butyrate flux through the SLC5A8 transporter, we present a model linking resting potentials of host cells to the ability of oncogenes to initiate tumorigenesis. Antibiotic data suggest that the relevant butyrate is generated by a native bacterial species, identifying a novel link between the microbiome and cancer that is mediated by alterations in bioelectric signaling. PMID:24830454

  19. Structure and transforming potential of the human cot oncogene encoding a putative protein kinase.

    PubMed Central

    Miyoshi, J; Higashi, T; Mukai, H; Ohuchi, T; Kakunaga, T

    1991-01-01

    A new transforming gene has been molecularly cloned from hamster SHOK cells transformed with DNA extracted from a human thyroid carcinoma cell line and named the cot (cancer Osaka thyroid) oncogene. cDNA sequencing disclosed that this oncogene codes for a protein with 415 amino acid residues, and computer matching showed 42 to 48% similarity matches with serine protein kinases. Its gene product was identified as a 52-kDa protein by transcription and translation in vitro. Expression of cot cDNA under transcriptional control by a retroviral long terminal repeat induced morphological transformation of NIH 3T3 cells as well as SHOK cells. Protein kinase activity associated with constructed p60gag-cot was detected by immune complex kinase assay with anti-gag antiserum. The cot oncogene was overexpressed in transformed SHOK cells and found to have a rearranged 3' end in the last coding exon, which probably resulted in a deletion and an altered C' terminus in the transforming protein. This DNA rearrangement appeared to have occurred during transfection of the tumor DNA into hamster SHOK cells and not in the original thyroid tumor. Images PMID:2072910

  20. Oncogenic features of the bone morphogenic protein 7 (BMP7) in pheochromocytoma

    PubMed Central

    Leinhäuser, Ines; Richter, Andrea; Lee, Misu; Höfig, Ines; Anastasov, Nataša; Fend, Falko; Ercolino, Tonino; Mannelli, Massimo; Gimenez-Roqueplo, Anne-Paule; Robledo, Mercedes; de Krijger, Ronald; Beuschlein, Felix; Atkinson, Michael J.; Pellegata, Natalia S.

    2015-01-01

    BMP7 is a growth factor playing pro- or anti-oncogenic roles in cancer in a cell type-dependent manner. We previously reported that the BMP7 gene is overexpressed in pheochromocytomas (PCCs) developing in MENX-affected rats and human patients. Here, analyzing a large cohort of PCC patients, we found that 72% of cases showed elevated levels of the BMP7 protein. To elucidate the role of BMP7 in PCC, we modulated its levels in PCC cell lines (overexpression in PC12, knockdown in MPC and MTT cells) and conducted functional assays. Active BMP signaling promoted cell proliferation, migration, and invasion, and sustained survival of MENX rat primary PCC cells. In PCC, BMP7 signals through the PI3K/AKT/mTOR pathway and causes integrin β1 up-regulation. Silencing integrin β1 in PC12 cells suppressed BMP7-mediated oncogenic features. Treatment of MTT cells with DMH1, a novel BMP antagonist, suppressed proliferation and migration. To verify the clinical applicability of our findings, we evaluated a dual PI3K/mTOR inhibitor (NVP-BEZ235) in MENX-affected rats in vivo. PCCs treated with NVP-BEZ235 had decreased proliferation and integrin β1 levels, and higher apoptosis. Altogether, BMP7 activates pro-oncogenic pathways in PCC. Downstream effectors of BMP7-mediated signaling may represent novel targets for treating progressive/inoperable PCC, still orphan of effective therapy. PMID:26337467

  1. Oncogenic features of the bone morphogenic protein 7 (BMP7) in pheochromocytoma.

    PubMed

    Leinhäuser, Ines; Richter, Andrea; Lee, Misu; Höfig, Ines; Anastasov, Nataša; Fend, Falko; Ercolino, Tonino; Mannelli, Massimo; Gimenez-Roqueplo, Anne-Paule; Robledo, Mercedes; de Krijger, Ronald; Beuschlein, Felix; Atkinson, Michael J; Pellegata, Natalia S

    2015-11-17

    BMP7 is a growth factor playing pro- or anti-oncogenic roles in cancer in a cell type-dependent manner. We previously reported that the BMP7 gene is overexpressed in pheochromocytomas (PCCs) developing in MENX-affected rats and human patients. Here, analyzing a large cohort of PCC patients, we found that 72% of cases showed elevated levels of the BMP7 protein. To elucidate the role of BMP7 in PCC, we modulated its levels in PCC cell lines (overexpression in PC12, knockdown in MPC and MTT cells) and conducted functional assays. Active BMP signaling promoted cell proliferation, migration, and invasion, and sustained survival of MENX rat primary PCC cells. In PCC, BMP7 signals through the PI3K/AKT/mTOR pathway and causes integrin β1 up-regulation. Silencing integrin β1 in PC12 cells suppressed BMP7-mediated oncogenic features. Treatment of MTT cells with DMH1, a novel BMP antagonist, suppressed proliferation and migration. To verify the clinical applicability of our findings, we evaluated a dual PI3K/mTOR inhibitor (NVP-BEZ235) in MENX-affected rats in vivo. PCCs treated with NVP-BEZ235 had decreased proliferation and integrin β1 levels, and higher apoptosis. Altogether, BMP7 activates pro-oncogenic pathways in PCC. Downstream effectors of BMP7-mediated signaling may represent novel targets for treating progressive/inoperable PCC, still orphan of effective therapy. PMID:26337467

  2. A dual role for Hdac1: oncosuppressor in tumorigenesis, oncogene in tumor maintenance.

    PubMed

    Santoro, Fabio; Botrugno, Oronza A; Dal Zuffo, Roberto; Pallavicini, Isabella; Matthews, Geoffrey M; Cluse, Leonie; Barozzi, Iros; Senese, Silvia; Fornasari, Lorenzo; Moretti, Simona; Altucci, Lucia; Pelicci, Pier Giuseppe; Chiocca, Susanna; Johnstone, Ricky W; Minucci, Saverio

    2013-04-25

    Aberrant recruitment of histone deacetylases (HDACs) by the oncogenic fusion protein PML-RAR is involved in the pathogenesis of acute promyelocytic leukemia (APL). PML-RAR, however, is not sufficient to induce disease in mice but requires additional oncogenic lesions during the preleukemic phase. Here, we show that knock-down of Hdac1 and Hdac2 dramatically accelerates leukemogenesis in transgenic preleukemic mice. These events are not restricted to APL because lymphomagenesis driven by deletion of p53 or, to a lesser extent, by c-myc overexpression, was also accelerated by Hdac1 knock-down. In the preleukemic phase of APL, Hdac1 counteracts the activity of PML-RAR in (1) blocking differentiation; (2) impairing genomic stability; and (3) increasing self-renewal in hematopoietic progenitors, as all of these events are affected by the reduction in Hdac1 levels. This led to an expansion of a subpopulation of PML-RAR-expressing cells that is the major source of leukemic stem cells in the full leukemic stage. Remarkably, short-term treatment of preleukemic mice with an HDAC inhibitor accelerated leukemogenesis. In contrast, knock-down of Hdac1 in APL mice led to enhanced survival duration of the leukemic animals. Thus, Hdac1 has a dual role in tumorigenesis: oncosuppressive in the early stages, and oncogenic in established tumor cells.

  3. Development of neutralizing monoclonal antibodies for oncogenic human papillomavirus types 31, 33, 45, 52, and 58.

    PubMed

    Brown, Martha J; Seitz, Hanna; Towne, Victoria; Müller, Martin; Finnefrock, Adam C

    2014-04-01

    Human papillomavirus (HPV) is the etiological agent for all cervical cancers, a significant number of other anogenital cancers, and a growing number of head and neck cancers. Two licensed vaccines offer protection against the most prevalent oncogenic types, 16 and 18, responsible for approximately 70% of cervical cancer cases worldwide and one of these also offers protection against types 6 and 11, responsible for 90% of genital warts. The vaccines are comprised of recombinantly expressed major capsid proteins that self-assemble into virus-like particles (VLPs) and prevent infection by eliciting neutralizing antibodies. Adding the other frequently identified oncogenic types 31, 33, 45, 52, and 58 to a vaccine would increase the coverage against HPV-induced cancers to approximately 90%. We describe the generation and characterization of panels of monoclonal antibodies to these five additional oncogenic HPV types, and the selection of antibody pairs that were high affinity and type specific and recognized conformation-dependent neutralizing epitopes. Such characteristics make these antibodies useful tools for monitoring the production and potency of a prototype vaccine as well as monitoring vaccine-induced immune responses in the clinic. PMID:24574536

  4. Myc and Ras oncogenes engage different energy metabolism programs and evoke distinct patterns of oxidative and DNA replication stress.

    PubMed

    Maya-Mendoza, Apolinar; Ostrakova, Jitka; Kosar, Martin; Hall, Arnaldur; Duskova, Pavlina; Mistrik, Martin; Merchut-Maya, Joanna Maria; Hodny, Zdenek; Bartkova, Jirina; Christensen, Claus; Bartek, Jiri

    2015-03-01

    Both Myc and Ras oncogenes impact cellular metabolism, deregulate redox homeostasis and trigger DNA replication stress (RS) that compromises genomic integrity. However, how are such oncogene-induced effects evoked and temporally related, to what extent are these kinetic parameters shared by Myc and Ras, and how are these cellular changes linked with oncogene-induced cellular senescence in different cell context(s) remain poorly understood. Here, we addressed the above-mentioned open questions by multifaceted comparative analyses of human cellular models with inducible expression of c-Myc and H-RasV12 (Ras), two commonly deregulated oncoproteins operating in a functionally connected signaling network. Our study of DNA replication parameters using the DNA fiber approach and time-course assessment of perturbations in glycolytic flux, oxygen consumption and production of reactive oxygen species (ROS) revealed the following results. First, overabundance of nuclear Myc triggered RS promptly, already after one day of Myc induction, causing slow replication fork progression and fork asymmetry, even before any metabolic changes occurred. In contrast, Ras overexpression initially induced a burst of cell proliferation and increased the speed of replication fork progression. However, after several days of induction Ras caused bioenergetic metabolic changes that correlated with slower DNA replication fork progression and the ensuing cell cycle arrest, gradually leading to senescence. Second, the observed oncogene-induced RS and metabolic alterations were cell-type/context dependent, as shown by comparative analyses of normal human BJ fibroblasts versus U2-OS sarcoma cells. Third, the energy metabolic reprogramming triggered by Ras was more robust compared to impact of Myc. Fourth, the detected oncogene-induced oxidative stress was due to ROS (superoxide) of non-mitochondrial origin and mitochondrial OXPHOS was reduced (Crabtree effect). Overall, our study provides novel

  5. p38α and p38γ Mediate Oncogenic ras-induced Senescence through Differential Mechanisms*S⃞

    PubMed Central

    Kwong, Jinny; Hong, Lixin; Liao, Rong; Deng, Qingdong; Han, Jiahuai; Sun, Peiqing

    2009-01-01

    Oncogene-induced senescence is a tumor-suppressive defense mechanism triggered upon activation of certain oncogenes in normal cells. Recently, the senescence response to oncogene activation has been shown to act as a bona fide barrier to cancer development in vivo. Multiple previous studies have implicated the importance of the p38 MAPK pathway in oncogene-induced senescence. However, the contribution of each of the four p38 isoforms (encoded by different genes) to senescence induction is unclear. In the current study, we demonstrated that p38α and p38γ, but not p38β, play an essential role in oncogenic ras-induced senescence. Both p38α and p38γ are expressed in primary human fibroblasts and are activated upon transduction of oncogenic ras. Small hairpin RNA-mediated silencing of p38α or p38γ expression abrogated ras-induced senescence, whereas constitutive activation of p38α and p38γ caused premature senescence. Furthermore, upon activation by oncogenic ras, p38γ stimulated the transcriptional activity of p53 by phosphorylating p53 at Ser33, suggesting that the ability of p38γ to mediate senescence is at least partly achieved through p53. However, p38α contributed to ras-inducted senescence via a p53-indepdendent mechanism in cells by mediating ras-induced expression of p16INK4A, another key senescence effector. These findings have identified p38α and p38γ as essential components of the signaling pathway that regulates the tumor-suppressing senescence response, providing insights into the molecular mechanisms underlying the differential involvement of the p38 isoforms in senescence induction. PMID:19251701

  6. The Human Papillomavirus E6 Oncogene Dysregulates the Cell Cycle and Contributes to Cervical Carcinogenesis through Two Independent Activities

    PubMed Central

    Shai, Anny; Brake, Tiffany; Somoza, Chamorro; Lambert, Paul F.

    2010-01-01

    Cervical cancer is a leading cause of death due to cancer among women worldwide. Using transgenic mice to dissect the contributions of the human papillomavirus (HPV) 16 E6 and E7 oncogenes in cervical cancer, E7 was identified previously to be the dominant oncogene. Specifically, when treated with exogenous estrogen for 6 months, E7 transgenic mice developed cancer throughout the reproductive tract, but E6 transgenic mice did not. E6 contributed to carcinogenesis of the reproductive tract, as E6/E7 double transgenic mice treated for 6 months with estrogen developed larger cancers than E7 transgenic mice. In the current study, we investigated whether the E6 oncogene alone could cooperate with estrogen to induce cervical cancer after an extended estrogen treatment period of 9 months. We found that the E6 oncogene synergizes with estrogen to induce cervical cancer after 9 months, indicating that E6 has a weaker but detectable oncogenic potential in the reproductive tract compared with the E7 oncogene. Using transgenic mice that express mutant forms of HPV16 E6, we determined that the interactions of E6 with cellular α-helix and PDZ partners correlate with its ability to induce cervical carcinogenesis. In analyzing the tumors arising in E6 transgenic mice, we learned that E6 induces expression of the E2F-responsive genes, Mcm7 and cyclin E, in the absence of the E7 oncogene. E6 also prevented the expression of p16 in tumors of the reproductive tract through a mechanism mediated by the interaction of E6 with α-helix partners. PMID:17308103

  7. The transcription factor EGR-1 suppresses transformation of human fibrosarcoma HT1080 cells by coordinated induction of transforming growth factor-beta1, fibronectin, and plasminogen activator inhibitor-1.

    PubMed

    Liu, C; Yao, J; de Belle, I; Huang, R P; Adamson, E; Mercola, D

    1999-02-12

    Re-expression of EGR-1 in fibrosarcoma HT1080 suppresses transformation including tumorigenicity (Huang, R.-P., Liu, C., Fan, Y., Mercola, D., and Adamson, E. (1995) Cancer Res. 55, 5054-5062) owing in part to up-regulation of the transforming growth factor (TGF)-beta1 promoter by EGR-1 which suppresses growth by an autocrine mechanism (Liu, C., Adamson, E., and Mercola, D. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 11831-11836). Here we show that enhanced cell attachment contributes to the suppression via increased secretion of fibronectin (FN) and also of plasminogen activator inhibitor-1 (PAI-1). The secretion of FN and PAI-1 is strongly correlated with EGR-1 expression (RPEARSON = 0.971 and 0. 985, respectively). Addition of authentic TGF-beta1 to parental cells greatly stimulated secretion of PAI-1 but not FN, whereas addition of TGF-beta antibody or lipofection with specific antisense TGF-beta1 oligonucleotides to EGR-1-regulated cells completely inhibits the secretion of PAI-1 but not FN. However, in gel mobility shift assays pure EGR-1 or nuclear extracts of EGR-1-regulated cells specifically bind to two GC-rich elements of the human FN promoter at positions -75/-52 and -4/+18, indicating that the increased secretion of FN is likely due to direct up-regulation by EGR-1. Moreover, adhesion was greatly enhanced in EGR-1-regulated cells and was reversed by treatment with Arg-Gly-Asp (RGD) or PAI-1 antibody indicating that the secreted proteins are functional. We conclude that EGR-1 regulates the coordinated expression of gene products important for cell attachment ("oikis" factor) and normal growth control.

  8. In vivo quantification and perturbation of Myc-Max interactions and the impact on oncogenic potential.

    PubMed

    Raffeiner, Philipp; Röck, Ruth; Schraffl, Andrea; Hartl, Markus; Hart, Jonathan R; Janda, Kim D; Vogt, Peter K; Stefan, Eduard; Bister, Klaus

    2014-10-15

    The oncogenic bHLH-LZ transcription factor Myc forms binary complexes with its binding partner Max. These and other bHLH-LZ-based protein-protein interactions (PPI) in the Myc-Max network are essential for the physiological and oncogenic activities of Myc. We have generated a genetically determined and highly specific protein-fragment complementation assay based on Renilla luciferase to analyze the dynamic interplay of bHLH-LZ transcription factors Myc, Max, and Mxd1 in vivo. We also applied this PPI reporter to quantify alterations of nuclear Myc-Max complexes in response to mutational events, competitive binding by the transcriptional repressor Mxd1, or perturbations by small-molecule Myc inhibitors, including recently identified potent PPI inhibitors from a Kröhnke pyridine library. We show that the specificity of Myc-Max PPI reduction by the pyridine inhibitors directly correlates with their efficient and highly specific potential to interfere with the proliferation of human and avian tumor cells displaying deregulated Myc expression. In a direct comparison with known Myc inhibitors using human and avian cell systems, the pyridine compounds reveal a unique inhibitory potential even at sub-micromolar concentrations combined with remarkable specificity for the inhibition of Myc-driven tumor cell proliferation. Furthermore, we show in direct comparisons using defined avian cell systems that different Max PPI profiles for the variant members of the Myc protein family (c-Myc, v-Myc, N-Myc, L-Myc) correlate with their diverse oncogenic potential and their variable sensitivity to the novel pyridine inhibitors.

  9. G-rich proto-oncogenes are targeted for genomic instability in B-cell lymphomas.

    PubMed

    Duquette, Michelle L; Huber, Michael D; Maizels, Nancy

    2007-03-15

    Diffuse large B-cell lymphoma is the most common lymphoid malignancy in adults. It is a heterogeneous disease with variability in outcome. Genomic instability of a subset of proto-oncogenes, including c-MYC, BCL6, RhoH, PIM1, and PAX5, can contribute to initial tumor development and has been correlated with poor prognosis and aggressive tumor growth. Lymphomas in which these proto-oncogenes are unstable derive from germinal center B cells that express activation-induced deaminase (AID), the B-cell-specific factor that deaminates DNA to initiate immunoglobulin gene diversification. Proto-oncogene instability is evident as both aberrant hypermutation and translocation, paralleling programmed instability which diversifies the immunoglobulin loci. We have asked if genomic sequence correlates with instability in AID-positive B-cell lymphomas. We show that instability does not correlate with enrichment of the WRC sequence motif that is the consensus for deamination by AID. Instability does correlate with G-richness, evident as multiple runs of the base guanine on the nontemplate DNA strand. Extending previous analysis of c-MYC, we show experimentally that transcription of BCL6 and RhoH induces formation of structures, G-loops, which contain single-stranded regions targeted by AID. We further show that G-richness does not characterize translocation breakpoints in AID-negative B- and T-cell malignancies. These results identify G-richness as one feature of genomic structure that can contribute to genomic instability in AID-positive B-cell malignancies.

  10. Effect of sulfur dioxide on expression of proto-oncogenes and tumor suppressor genes from rats.

    PubMed

    Bai, Juli; Meng, Ziqiang

    2010-06-01

    Sulfur dioxide (SO(2)) is a ubiquitous air pollutant that is present in low concentrations in the urban air, and in higher concentrations in the working environment. In the present study, male Wistar rats were housed in exposure chambers and treated with 14.00 +/- 1.01, 28.00 +/- 1.77 and 56.00 +/- 3.44 mg m(-3) SO(2) for 6 h/day for 7 days, while control group was exposed to filtered air in the same condition. The mRNA and protein levels of proto-oncogenes (c-fos, c-jun, c-myc, and Ki-ras) and tumor suppressor genes (p53, Rb, and p16) were analyzed in lungs using a real-time reverse transcription-polymerase chain reaction (real-time RT-PCR) assay and Western blot analysis. The results showed that mRNA and protein levels of c-fos, c-jun, c-myc, Ki-ras, and p53 in lungs were increased in a dose-dependent manner, while mRNA and protein levels of Rb and p16 were decreased in lungs of rats after SO(2) inhalation. These results lead to a conclusion that SO(2) exposure could activate expressions of proto-oncogenes and suppress expressions of tumor suppressor genes, which might relate to the molecular mechanism of cocarcinogenic properties and potential carcinogenic effects of SO(2). According to previous studies, the results also indicated that promoter genes of apoptosis and tumor suppressor genes could produce apoptotic signals to antagonize the growth signals that arise from oncogenes. Understanding its molecular controls will benefit development of treatments for many diseases.

  11. The prolactin receptor mediates HOXA1-stimulated oncogenicity in mammary carcinoma cells.

    PubMed

    Hou, Lin; Xu, Bing; Mohankumar, Kumarasamypet M; Goffin, Vincent; Perry, Jo K; Lobie, Peter E; Liu, Dong-Xu

    2012-12-01

    The HOX genes are a highly conserved subgroup of homeodomain-containing transcription factors that are crucial to normal development. Forced expression of HOXA1 results in oncogenic transformation of immortalized human mammary cells with aggressive tumour formation in vivo. Microarray analysis identified that the prolactin receptor (PRLR) was significantly upregulated by forced expression of HOXA1 in mammary carcinoma cells. To determine prolactin (PRL) involvement in HOXA1‑induced oncogenicity in mammary carcinoma cells (MCF-7), we examined the effect of human prolactin (hPRL)-initiated PRLR signal transduction on changes in cellular behaviour mediated by HOXA1. Forced expression of HOXA1 in MCF-7 cells increased PRLR mRNA and protein expression. Forced expression of HOXA1 also enhanced hPRL-stimulated phosphorylation of both STAT5A/B and p44/42 MAPK, and increased subsequent transcriptional activity of STAT5A and STAT5B, and Elk-1 and Sap1a, respectively. Moreover, forced expression of HOXA1 in MCF-7 cells enhanced the hPRL‑stimulated increase in total cell number as a consequence of enhanced cell proliferation and cell survival, and also enhanced hPRL-stimulated anchorage-independent growth in soft agar. Increased anchorage-independent growth was attenuated by the PRLR antagonist ∆1-9-G129R‑hPRL. In conclusion, we have demonstrated that HOXA1 increases expression of the cell surface receptor PRLR and enhances PRLR-mediated signal transduction. Thus, the PRLR is one mediator of HOXA1‑stimulated oncogenicity in mammary carcinoma cells. PMID:23064471

  12. Associations between clinical characteristics and oncogene expression in patients with non-small cell lung cancer.

    PubMed

    Han, Y; Yu, D P; Zhou, S J; Song, X Y; Li, Y S; Xiao, N; Liu, Z D; Sun, X J; Zhao, Q Y; Liu, S K

    2014-10-31

    More than 40 oncogenes associated with non-small cell lung cancer (NSCLC) have been identified with varied gene expression. The correlations between specific clinical characteristics and oncogene expression in NSCLC patients were examined. From October 2011 to September 2012, a total of 60 patients with NSCLC (male:female, 34:24; mean age, 59.5 ± 10.6 years; age range, 31-81 years) were diagnosed and evaluated for treatment with radical resection at a single facility. Eligible patients exhibiting tumor node metastasis (TNM) stage I-III NSCLC confirmed by post-surgical pathology were included. mRNA expression was detected by branched DNA-liquidchip technology (bDNA-LCT) and mutations were detected at EGFR exons 18, 19, 20, and 21, KRAS exons 2 and 3, BRAF and PIK3CA exons 9 and 20. Correlations between gene expression at mutations and clinical characteristics of gender, age, histological type, degree of differentiation, smoking status, immunohistochemical (IHC) evaluation of TTF-1, TNM staging, and discrete age ("nage") were examined. Significant associations were observed between IHC staining for TTF-1 and histological type (P = 0.00001) and with BRAC1, TYMS, RRM1, and TUBB3 expression (P = 0.0187, 0.0051, 0.024, and 0.0238, respectively). Significant cross-correlations were observed between TYMS, BRAC1, TOP2A, STMN1, TUBB3, and RRM1 expression (P < 0.05), but not between EGFR exon 21, KRAS exon 2, and PIK3CA exon 9 expression and any other mutation expression (P > 0.05). Relationships between clinical characteristics and oncogene expression in NSCLC, particularly those of TTF-1 level and smoking status, may be useful indicators of prognosis and development of anti-cancer drug resistance.

  13. Cinnamic Acid Derivatives as Inhibitors of Oncogenic Protein Kinases--Structure, Mechanisms and Biomedical Effects.

    PubMed

    Mielecki, Marcin; Lesyng, Bogdan

    2016-01-01

    Cinnamic acid belongs to phenolic-acid class of polyphenols, one of the most abundant plant secondary metabolites. These substances are widely studied because of plethora of their biological activities. In particular, their inhibition of protein kinases contributes to the pleiotropic effects in the cell. Protein kinases are essential in controlling cell signaling networks. Selective targeting of oncogenic protein kinases increases clinical anticancer efficacy. Cinnamic acid and related compounds have inspired researchers in the design of numerous synthetic and semisynthetic inhibitors of oncogenic protein kinases for the past three decades. Interest in cinnamoyl-scaffold-containing compounds revived in recent years, which was stimulated by modern drug design and discovery methodologies such as in vitro and in silico HTS. This review presents cinnamic acid derivatives and analogs for which direct inhibition of protein kinases was identified. We also summarize significance of the above protein kinase families - validated or promising targets for anticancer therapies. The inhibition mode may vary from ATP-competitive, through bisubstrate-competitive and mixedcompetitive, to non-competitive one. Kinase selectivity is often correlated with subtle chemical modifications, and may also be steered by an additional non-cinnamoyl fragment of the inhibitor. Specific cinnamic acid congeners may synergize their effects in the cell by a wider range of activities, like suppression of additional enzymes, e.g. deubiquitinases, influencing the same signaling pathways (e.g. JAK2/STAT). Cinnamic acid, due to its biological and physicochemical properties, provides nature-inspired ideas leading to novel inhibitors of oncogenic protein kinases and related enzymes, capable to target a variety of cancer cells.

  14. Integrated, genome-wide screening for hypomethylated oncogenes in salivary gland adenoid cystic carcinoma

    PubMed Central

    Shao, Chunbo; Sun, Wenyue; Tan, Marietta; Glazer, Chad A.; Bhan, Sheetal; Zhong, Xiaoli; Fakhry, Carole; Sharma, Rajni; Westra, William H.; Hoque, Mohammad O.; Moskaluk, Christopher A.; Sidransky, David; Califano, Joseph A.; Ha, Patrick K.

    2011-01-01

    Purpose Salivary gland adenoid cystic carcinoma (ACC) is a rare malignancy that is poorly understood. In order to look for relevant oncogene candidates under the control of promoter methylation, an integrated, genome-wide screen was performed. Experimental Design Global demethylation of normal salivary gland cell strains using 5-aza-2′-deoxycytidine (5-Aza dC) and Trichostatin A (TSA), followed by expression array analysis was performed. ACC-specific expression profiling was generated using expression microarray analysis of primary ACC and normal samples. Next, the two profiles were integrated to identify a subset of genes for further validation of promoter demethylation in ACC versus normal. Finally, promising candidates were further validated for mRNA, protein, and promoter methylation levels in larger ACC cohorts. Functional validation was then performed in cancer cell lines. Results We found 159 genes that were significantly re-expressed after 5-Aza dC/TSA treatment and overexpressed in ACC. After initial validation, eight candidates showed hypomethylation in ACC: AQP1, CECR1, C1QR1, CTAG2, P53AIP1, TDRD12, BEX1, and DYNLT3. Aquaporin 1 (AQP1) showed the most significant hypomethylation and was further validated. AQP1 hypomethylation in ACC was confirmed with two independent cohorts. Of note, there was significant overexpression of AQP1 in both mRNA and protein in the paraffin-embedded ACC cohort. Furthermore, AQP1 was up-regulated in 5-Aza dC/TSA treated SACC83. Lastly, AQP1 promoted cell proliferation and colony formation in SACC83. Conclusions Our integrated, genome-wide screening method proved to be an effective strategy for detecting novel oncogenes in ACC. AQP1 is a promising oncogene candidate for ACC and is transcriptionally regulated by promoter hypomethylation. PMID:21551254

  15. Mas Oncogene Signaling and Transformation Require the Small GTP-Binding Protein Rac

    PubMed Central

    Zohn, Irene E.; Symons, Marc; Chrzanowska-Wodnicka, Magdalena; Westwick, John K.; Der, Channing J.

    1998-01-01

    The Mas oncogene encodes a novel G-protein-coupled receptor that was identified originally as a transforming protein when overexpressed in NIH 3T3 cells. The mechanism and signaling pathways that mediate Mas transformation have not been determined. We observed that the foci of transformed NIH 3T3 cells caused by Mas were similar to those caused by activated Rho and Rac proteins. Therefore, we determined if Mas signaling and transformation are mediated through activation of a specific Rho family protein. First, we observed that, like activated Rac1, Mas cooperated with activated Raf and caused synergistic transformation of NIH 3T3 cells. Second, both Mas- and Rac1-transformed NIH 3T3 cells retained actin stress fibers and showed enhanced membrane ruffling. Third, like Rac, Mas induced lamellipodium formation in porcine aortic endothelial cells. Fourth, Mas and Rac1 strongly activated the JNK and p38, but not ERK, mitogen-activated protein kinases. Fifth, Mas and Rac1 stimulated transcription from common DNA promoter elements: NF-κB, serum response factor (SRF), Jun/ATF-2, and the cyclin D1 promoter. Finally, Mas transformation and some of Mas signaling (SRF and cyclin D1 but not NF-κB activation) were blocked by dominant negative Rac1. Taken together, these observations suggest that Mas transformation is mediated in part by activation of Rac-dependent signaling pathways. Thus, Rho family proteins are common mediators of transformation by a diverse variety of oncogene proteins that include Ras, Dbl family, and G-protein-coupled oncogene proteins. PMID:9488437

  16. Complete surgical resection of lung tumor decreases exhalation of mutated KRAS oncogene.

    PubMed

    Kordiak, Jacek; Szemraj, Janusz; Hamara, Katarzyna; Bialasiewicz, Piotr; Nowak, Dariusz

    2012-09-01

    Exhaled breath condensate (EBC) contains extracellular DNA that may originate from pathological lesions of the respiratory tract and can be a genetic marker of pulmonary malignancy. We tested whether complete surgical excision of lung cancer will decrease exhalation of mutated KRAS oncogene. Fifty seven patients with clinical diagnosis of lung cancer and detectable KRAS mutations in pre-surgery EBC-DNA were qualified for surgical treatment. Point mutations at codon 12 of KRAS oncogene were detected using mutant-enriched PCR technique in DNA from pre-surgery blood, EBC collected before, 7 and 30 days after surgery and from specimens of resected tumor and normal pulmonary parenchyma. The ratio of mutated to wild type KRAS DNA (R mut/wild KRAS) was calculated for each specimen after electrophoresis and densitometry of the final amplification and digestion product. In 46 patients non-small cell lung cancer (NSCLC) and in 11 benign lesion (BL) were confirmed. All blood and tumor specimens were positive for KRAS mutations, while 41 specimens of normal pulmonary parenchyma were negative. In NSCLC patients pre-surgery EBC R mut/wild KRAS of 0.20 ± 0.03 decreased by 1.3- and 3.7-times (p < 0.001) at 7th and 30th day and 10 EBC specimens at day 30th became negative. The highest R mut/wild KRAS was found in NSCLC specimens - 1.36 ± 0.29 while the lowest in pulmonary parenchyma - 0.02 ± 0.03 (p < 0.001). R mut/wild KRAS in EBC did not correlate with the blood and cancer ratios. Determination of mutated KRAS oncogene in EBC can be potentially helpful in the follow-up of surgical treatment of pulmonary malignancy. PMID:22795503

  17. RNAi-mediated oncogene silencing confers resistance to crown gall tumorigenesis.

    PubMed

    Escobar, M A; Civerolo, E L; Summerfelt, K R; Dandekar, A M

    2001-11-01

    Crown gall disease, caused by the soil bacterium Agrobacterium tumefaciens, results in significant economic losses in perennial crops worldwide. A. tumefaciens is one of the few organisms with a well characterized horizontal gene transfer system, possessing a suite of oncogenes that, when integrated into the plant genome, orchestrate de novo auxin and cytokinin biosynthesis to generate tumors. Specifically, the iaaM and ipt oncogenes, which show approximately 90% DNA sequence identity across studied A. tumefaciens strains, are required for tumor formation. By expressing two self-complementary RNA constructions designed to initiate RNA interference (RNAi) of iaaM and ipt, we generated transgenic Arabidopsis thaliana and Lycopersicon esculentum plants that are highly resistant to crown gall disease development. In in vitro root inoculation bioassays with two biovar I strains of A. tumefaciens, transgenic Arabidopsis lines averaged 0.0-1.5% tumorigenesis, whereas wild-type controls averaged 97.5% tumorigenesis. Similarly, several transformed tomato lines that were challenged by stem inoculation with three biovar I strains, one biovar II strain, and one biovar III strain of A. tumefaciens displayed between 0.0% and 24.2% tumorigenesis, whereas controls averaged 100% tumorigenesis. This mechanism of resistance, which is based on mRNA sequence homology rather than the highly specific receptor-ligand binding interactions characteristic of traditional plant resistance genes, should be highly durable. If successful and durable under field conditions, RNAi-mediated oncogene silencing may find broad applicability in the improvement of tree crop and ornamental rootstocks. PMID:11687652

  18. Governance of science at the National Cancer Institute: perceptions and opportunities in oncogene research.

    PubMed

    Fischinger, P J; DeVita, V T

    1984-10-01

    Insights from various areas of carcinogenesis can now be blended into cohesive and molecular hypotheses testable at a clinical level. One can now define new areas such as biochemical epidemiology. Whereas previously one thought of identifying individuals at high risk for cancer due to life-style or occupation, one can now propose to identify the susceptible individual at the molecular level for some cancers. Theoretically, if past exposure to carcinogens were significant, we may now be able to measure the exact sites of attack and damage in cellular DNA. We now have oncogenes as the probable targets. Treatment potential with highly specific molecular tools should not be far behind. As often cited before, the first priority of the NCl has always been basic research. The present excitement in the area of oncogenes has certainly been a shining example of research success. As is always the case in a rapidly moving field, there are optimists and pessimists. There are fears of overpromise and dangers of lack of swift application. NCl's view can be summed up this way. Oncogene research is important if only for its implications in developmental biology. It needs no other reason for support or excitement. It also will be important to our understanding of cancer; how important, we do not yet know. We believe it will lead to practical applications in diagnosis, prevention, and treatment; how practical and how soon remain unknowns. By definition then, we are clearly optimists, for which no apologies are offered. The danger of overpromise, it seems to these authors, is exceeded by the risk of failure to pursue and apply one of the most exciting areas of research that brings molecular biology to the crowded bedside of the cancer patient. A good dose of optimism seems about right to make a little room. PMID:6467222

  19. BTB-Zinc Finger Oncogenes Are Required for Ras and Notch-Driven Tumorigenesis in Drosophila.

    PubMed

    Doggett, Karen; Turkel, Nezaket; Willoughby, Lee F; Ellul, Jason; Murray, Michael J; Richardson, Helena E; Brumby, Anthony M

    2015-01-01

    During tumorigenesis, pathways that promote the epithelial-to-mesenchymal transition (EMT) can both facilitate metastasis and endow tumor cells with cancer stem cell properties. To gain a greater understanding of how these properties are interlinked in cancers we used Drosophila epithelial tumor models, which are driven by orthologues of human oncogenes (activated alleles of Ras and Notch) in cooperation with the loss of the cell polarity regulator, scribbled (scrib). Within these tumors, both invasive, mesenchymal-like cell morphology and continual tumor overgrowth, are dependent upon Jun N-terminal kinase (JNK) activity. To identify JNK-dependent changes within the tumors we used a comparative microarray analysis to define a JNK gene signature common to both Ras and Notch-driven tumors. Amongst the JNK-dependent changes was a significant enrichment for BTB-Zinc Finger (ZF) domain genes, including chronologically inappropriate morphogenesis (chinmo). chinmo was upregulated by JNK within the tumors, and overexpression of chinmo with either RasV12 or Nintra was sufficient to promote JNK-independent epithelial tumor formation in the eye/antennal disc, and, in cooperation with RasV12, promote tumor formation in the adult midgut epithelium. Chinmo primes cells for oncogene-mediated transformation through blocking differentiation in the eye disc, and promoting an escargot-expressing stem or enteroblast cell state in the adult midgut. BTB-ZF genes are also required for Ras and Notch-driven overgrowth of scrib mutant tissue, since, although loss of chinmo alone did not significantly impede tumor development, when loss of chinmo was combined with loss of a functionally related BTB-ZF gene, abrupt, tumor overgrowth was significantly reduced. abrupt is not a JNK-induced gene, however, Abrupt is present in JNK-positive tumor cells, consistent with a JNK-associated oncogenic role. As some mammalian BTB-ZF proteins are also highly oncogenic, our work suggests that EMT

  20. Regulation of oncogene expression in T-DNA-transformed host plant cells.

    PubMed

    Zhang, Yi; Lee, Chil-Woo; Wehner, Nora; Imdahl, Fabian; Svetlana, Veselova; Weiste, Christoph; Dröge-Laser, Wolfgang; Deeken, Rosalia

    2015-01-01

    Virulent Agrobacterium tumefaciens strains integrate their T-DNA into the plant genome where the encoded agrobacterial oncogenes are expressed and cause crown gall disease. Essential for crown gall development are IaaH (indole-3-acetamide hydrolase), IaaM (tryptophan monooxygenase) and Ipt (isopentenyl transferase), which encode enzymes for the biosynthesis of auxin (IaaH, IaaM) and cytokinin (Ipt). Although these oncogenes are well studied as the tumor-inducing principle, nothing is known about the regulation of oncogene expression in plant cells. Our studies show that the intergenic regions (IGRs) between the coding sequences (CDS) of the three oncogenes function as promoters in plant cells. These promoters possess a eukaryotic sequence organization and cis-regulatory elements for the binding of plant transcription factors. WRKY18, WRKY40, WRKY60 and ARF5 were identified as activators of the Ipt promoter whereas IaaH and IaaM is constitutively expressed and no transcription factor further activates their promoters. Consistent with these results, the wrky triple mutant plants in particular, develops smaller crown galls than wild-type and exhibits a reduced Ipt transcription, despite the presence of an intact ARF5 gene. WRKY40 and WRKY60 gene expression is induced by A. tumefaciens within a few hours whereas the ARF5 gene is transcribed later during crown gall development. The WRKY proteins interact with ARF5 in the plant nucleus, but only WRKY40 together with ARF5 synergistically boosts the activation of the Ipt promoter in an auxin-dependent manner. From our data, we propose that A. tumefaciens initially induces WRKY40 gene expression as a pathogen defense response of the host cell. The WRKY protein is recruited to induce Ipt expression, which initiates cytokinin-dependent host cell division. With increasing auxin levels triggered by ubiquitous expression of IaaH and IaaM, ARF5 is activated and interacts with WRKY40 to potentiate Ipt expression and balance

  1. pSa causes oncogenic suppression of Agrobacterium by inhibiting VirE2 protein export.

    PubMed

    Lee, L Y; Gelvin, S B; Kado, C I

    1999-01-01

    When coresident with the Ti (tumor-inducing) plasmid, the 21-kDa product of the osa gene of the plasmid pSa can suppress crown gall tumorigenesis incited by Agrobacterium tumefaciens. Neither T-DNA processing nor vir (virulence) gene induction is affected by the presence of osa in the bacterium. We used Arabidopsis thaliana root segments and tobacco leaf discs to demonstrate that Osa inhibits A. tumefaciens from transforming these plants to the stable phenotypes of tumorigenesis, kanamycin resistance, and stable beta-glucuronidase (GUS) expression. When A. tumefaciens contained osa, the lack of expression of transient GUS activity in infected plant tissues, as well as the lack of systemic viral symptoms following agroinfection of Nicotiana benthamiana by tomato mottle virus, suggested that oncogenic suppression by Osa occurs before T-DNA enters the plant nucleus. The extracellular complementation of an A. tumefaciens virE2 mutant (the T-DNA donor strain) by an A. tumefaciens strain lacking T-DNA but containing a wild-type virE2 gene (the VirE2 donor strain) was blocked when osa was present in the VirE2 donor strain, but not when osa was present in the T-DNA donor strain. These data indicate that osa inhibits VirE2 protein, but not T-DNA export from A. tumefaciens. These data further suggest that VirE2 protein and T-DNA are separately exported from the bacterium. The successful infection of Datura stramonium plants and leaf discs of transgenic tobacco plants expressing VirE2 protein by an A. tumefaciens virE2 mutant carrying osa confirmed that oncogenic suppression by osa does not occur by blocking T-DNA transfer. Overexpression of virB9, virB10, and virB11 in A. tumefaciens did not overcome oncogenic suppression by osa. The finding that the expression of the osa gene by itself, rather than the formation of a conjugal intermediate with pSa, blocks transformation suggests that the mechanism of oncogenic suppression by osa may differ from that of the IncQ plasmid RSF

  2. BTB-Zinc Finger Oncogenes Are Required for Ras and Notch-Driven Tumorigenesis in Drosophila

    PubMed Central

    Doggett, Karen; Turkel, Nezaket; Willoughby, Lee F.; Ellul, Jason; Murray, Michael J.; Richardson, Helena E.; Brumby, Anthony M.

    2015-01-01

    During tumorigenesis, pathways that promote the epithelial-to-mesenchymal transition (EMT) can both facilitate metastasis and endow tumor cells with cancer stem cell properties. To gain a greater understanding of how these properties are interlinked in cancers we used Drosophila epithelial tumor models, which are driven by orthologues of human oncogenes (activated alleles of Ras and Notch) in cooperation with the loss of the cell polarity regulator, scribbled (scrib). Within these tumors, both invasive, mesenchymal-like cell morphology and continual tumor overgrowth, are dependent upon Jun N-terminal kinase (JNK) activity. To identify JNK-dependent changes within the tumors we used a comparative microarray analysis to define a JNK gene signature common to both Ras and Notch-driven tumors. Amongst the JNK-dependent changes was a significant enrichment for BTB-Zinc Finger (ZF) domain genes, including chronologically inappropriate morphogenesis (chinmo). chinmo was upregulated by JNK within the tumors, and overexpression of chinmo with either RasV12 or Nintra was sufficient to promote JNK-independent epithelial tumor formation in the eye/antennal disc, and, in cooperation with RasV12, promote tumor formation in the adult midgut epithelium. Chinmo primes cells for oncogene-mediated transformation through blocking differentiation in the eye disc, and promoting an escargot-expressing stem or enteroblast cell state in the adult midgut. BTB-ZF genes are also required for Ras and Notch-driven overgrowth of scrib mutant tissue, since, although loss of chinmo alone did not significantly impede tumor development, when loss of chinmo was combined with loss of a functionally related BTB-ZF gene, abrupt, tumor overgrowth was significantly reduced. abrupt is not a JNK-induced gene, however, Abrupt is present in JNK-positive tumor cells, consistent with a JNK-associated oncogenic role. As some mammalian BTB-ZF proteins are also highly oncogenic, our work suggests that EMT

  3. Normal Expression of a Rearranged and Mutated c-myc Oncogene after Transfection into Fibroblasts

    NASA Astrophysics Data System (ADS)

    Richman, Adam; Hayday, Adrian

    1989-10-01

    Expression of the c-myc oncogene is deregulated in a variety of malignancies. Rearrangement and mutation of the c-myc locus is a characteristic feature of human Burkitt's lymphoma. Whether deregulation is solely a result of mutation of c-myc or whether it is influenced by the transformed B cell context has not been determined. A translocated and mutated allele of c-myc was stably transfected into fibroblasts. The rearranged allele was expressed indistinguishably from a normal c-myc gene: it had serum-regulated expression, was transcribed with normal promoter preference, and was strongly attenuated. Thus mutations by themselves are insufficient to deregulate c-myc transcription.

  4. Rapid Detection of high-level oncogene amplifications in ultrasonic surgical aspirations of brain tumors

    PubMed Central

    2012-01-01

    Background Genomic tumor information, such as identification of amplified oncogenes, can be used to plan treatment. The two sources of a brain tumor that are commonly available include formalin-fixed, paraffin-embedded (FFPE) sections from the small diagnostic biopsy and the ultrasonic surgical aspiration that contains the bulk of the tumor. In research centers, frozen tissue of a brain tumor may also be available. This study compared ultrasonic surgical aspiration and FFPE specimens from the same brain tumors for retrieval of DNA and molecular assessment of amplified oncogenes. Methods Surgical aspirations were centrifuged to separate erythrocytes from the tumor cells that predominantly formed large, overlying buffy coats. These were sampled to harvest nuclear pellets for DNA purification. Four glioblastomas, 2 lung carcinoma metastases, and an ependymoma were tested. An inexpensive PCR technique, multiplex ligation-dependent probe amplification (MLPA), quantified 79 oncogenes using 3 kits. Copy number (CN) results were normalized to DNA from non-neoplastic brain (NB) in calculated ratios, [tumor DNA]/[NB DNA]. Bland-Altman and Spearman rank correlative comparisons were determined. Regression analysis identified outliers. Results Purification of DNA from ultrasonic surgical aspirations was rapid (<3 days) versus FFPE (weeks) and yielded greater amounts in 6 of 7 tumors. Gene amplifications up to 15-fold corresponded closely between ultrasonic aspiration and FFPE assays in Bland-Altman analysis. Correlation coefficients ranged from 0.71 to 0.99 using 3 kit assays per tumor. Although normalized CN ratios greater than 2.0 were more numerous in FFPE specimens, some were found only in the ultrasonic surgical aspirations, consistent with tumor heterogeneity. Additionally, CN ratios revealed 9 high-level (≥ 6.0) gene amplifications in FFPE of which 8 were also detected in the ultrasonic aspirations at increased levels. The ultrasonic aspiration levels of these

  5. Uncharted Waters: Zebrafish Cancer Models Navigate a Course for Oncogene Discovery.

    PubMed

    Ceol, Craig J; Houvras, Yariv

    2016-01-01

    Over a decade has elapsed since the first genetically-engineered zebrafish cancer model was described. During this time remarkable progress has been made. Sophisticated genetic tools have been built to generate oncogene expressing cancers and characterize multiple models of solid and blood tumors. These models have led to unique insights into mechanisms of tumor initiation and progression. New drug targets have been identified, particularly through the functional analysis of cancer genomes. Now in the second decade, zebrafish cancer models are poised for even faster growth as they are used in high-throughput genetic analyses to elucidate key mechanisms underlying critical cancer phenotypes. PMID:27165347

  6. The Role of Hypoxia Inducible Factor-1 Alpha in Bypassing Oncogene-Induced Senescence

    PubMed Central

    Kilic Eren, Mehtap; Tabor, Vedrana

    2014-01-01

    Oncogene induced senescence (OIS) is a sustained anti-proliferative response acutely induced in primary cells via activation of mitogenic oncogenes such as Ras/BRAF. This mechanism acts as an initial barrier preventing normal cells transformation into malignant cell. Besides oncogenic activation and DNA damage response (DDR), senescence is modulated by a plethora of other factors, and one of the most important one is oxygen tension of the tissue. The aim of this study was to determine the impact of hypoxia on RasV12-induced senescence in human diploid fibroblasts (HDFs). We showed here that hypoxia prevents execution of oncogene induced senescence (OIS), through a strong down-regulation of senescence hallmarks, such as SA- β-galactosidase, H3K9me3, HP1γ, p53, p21CIP1 and p16INK4a in association with induction of hypoxia inducible factor-1α (HIF-1α). In addition, hypoxia also decreased marks of H-RasV12-induced DDR in both cell lines through down-regulation of ATM/ATR, Chk1 and Chk2 phosphorylation as well as decreased γ-H2AX positivity. Utilizing shRNA system targeting HIF-1α we show that HIF-1α is directly involved in down regulation of p53 and its target p21CIP1 but not p16INK4a. In line with this finding we found that knock down of HIF-1α leads to a strong induction of apoptotic response, but not restoration of senescence in Ras expressing HDFs in hypoxia. This indicates that HIF-1α is an important player in early steps of tumorigenesis, leading to suppression of senescence through its negative regulation of p53 and p21CIP1. In our work we describe a mechanism through which hypoxia and specifically HIF-1α preclude cells from maintaining senescence-driven anti proliferative response. These findings indicate the possible mechanism through which hypoxic environment helps premalignant cells to evade impingement of cellular failsafe pathways. PMID:24984035

  7. Kaposi Sarcoma of Childhood: Inborn or Acquired Immunodeficiency to Oncogenic HHV-8.

    PubMed

    Jackson, Carolyn C; Dickson, Mark A; Sadjadi, Mahan; Gessain, Antoine; Abel, Laurent; Jouanguy, Emmanuelle; Casanova, Jean-Laurent

    2016-03-01

    Kaposi sarcoma (KS) is an endothelial malignancy caused by human herpes virus-8 (HHV-8) infection. The epidemic and iatrogenic forms of childhood KS result from a profound and acquired T cell deficiency. Recent studies have shown that classic KS of childhood can result from rare single-gene inborn errors of immunity, with mutations in WAS, IFNGR1, STIM1, and TNFRSF4. The pathogenesis of the endemic form of childhood KS has remained elusive. We review childhood KS pathogenesis and its relationship to inherited and acquired immunodeficiency to oncogenic HHV-8. PMID:26469702

  8. High-content, full genome siRNA screen for regulators of oncogenic HRAS-driven macropinocytosis.

    PubMed

    Fennell, Myles; Commisso, Cosimo; Ramirez, Craig; Garippa, Ralph; Bar-Sagi, Dafna

    2015-09-01

    Uptake of nutrients, such as glucose and amino acids, is critical to support cell growth and is typically mediated by cell surface transporters. An alternative mechanism for the bulk uptake of nutrients from the extracellular space is macropinocytosis, a nonclathrin, and nonreceptor-mediated endocytic process, in which extracellular fluid is taken up into large intracellular vesicles called macropinosomes. Oncogenic transformation leads to the increased metabolic activity of tumor cells, and in the Ras-driven tumor part of this enhanced activity is the stimulation of macropinocytosis. To measure oncogene-dependent macropinocytosis, we used HeLa cells expressing oncogenic HRAS(G12D) driven from a Tet-regulated promoter. Upon oncogenic HRAS expression, the cells undergo metabolic changes that include the elevation of macropinocytosis. We detected macropinocytosis through the uptake of lysine-fixable tetramethyl rhodamine (TMR)-Dextran (70 kDa) from the cell media into nascent intracellular macropinosomes. These macropinosomes were quantified by image-based high-content analysis, with the size, intensity, and position of macropinosomes measured. Using this model system, we ran a full genome-wide siRNA screen (siGenome™; GE) to identify genes involved in controlling oncogenic HRAS-dependent macropinocytosis. Hits from the primary screen were confirmed with siRNA reagents from a different library (GE, OTP), which allowed us to mitigate potential off-target effects. Candidate genes from this screen include known regulators of macropinocytosis as well as novel targets.

  9. Attempts on producing lymphoid cell line from Penaeus monodon by induction with SV40-T and 12S EIA oncogenes.

    PubMed

    Puthumana, Jayesh; Prabhakaran, Priyaja; Philip, Rosamma; Singh, I S Bright

    2015-12-01

    In an attempt of in vitro transformation, transfection mediated expression of Simian virus-40 (T) antigen (SV40-T) and transduction mediated expression of Adenovirus type 12 early region 1A (12S E1A) oncogene were performed in Penaeus monodon lymphoid cells. pSV3-neo vector encoding SV40-T oncogene and a recombinant baculovirus BacP2-12S E1A-GFP encoding 12S E1A oncogene under the control of hybrid promoters were used. Electroporation and lipofection mediated transformation of SV40-T in lymphoid cells confirmed the transgene expression by phenotypic variation and the expression of GFP in co-transfection experiment. The cells transfected by lipofection (≥ 5%) survived for 14 days with lower toxicity (30%), whilst on electroporation, most of the cells succumbed to death (60%) and survived cells lived up to 7 days. Transduction efficiency in primary lymphoid cells was more than 80% within 14 days of post-transduction, however, an incubation period of 7 days post-transduction was observed without detectable expression of 12S E1A. High level of oncogenic 12S E1A expression were observed after 14 day post-transduction and the proliferating cells survived for more than 90 days with GFP expression, however, without in vitro transformation and immortalization. The study put forth the requirement of transduction mediated 'specific' oncogene expression along with telomerase activation and epigenetic induction for the immortalization and establishment of shrimp cell line.

  10. In vitro transformation of immature hematopoietic cells by the P210 BCR/ABL oncogene product of the Philadelphia chromosome

    SciTech Connect

    McLaughlin, J.; Chianese, E.; Witte, O.N.

    1987-09-01

    The Philadelphia chromosome is the cytogenetic hallmark of human chronic myelogenous leukemia. RNA splicing joins sequences from a gene on chromosome 22 (BCR) across the translocation breakpoint to a portion of the ABL oncogene from chromosome 9, resulting in a chimeric protein (P210) that is an active tyrosine kinase. Although strongly correlated with this specific human neoplasm, and implicated as an oncogene by analogy to the gene product of the Abelson murine leukemia virus, the P210 gene had not been tested directly for oncogenic potential in hematopoietic cells. The authors have used a retroviral gene-transfer system to express P210 in mouse bone marrow cells. When infected bone marrow is plated under conditions for long-term culture of cells of the B-lymphoid lineage, cells expressing high amounts of P210 tyrosine kinase dominate the culture and rapidly lead to clonal outgrowths of immature lymphoid cells. Expression of P210 is growth-stimulatory but not sufficient for full oncogenic behavior. Some clonal lines progress toward a fully malignant phenotype as judged by increased cloning efficiency in agar suspension and frequency and rapidity of tumor induction in syngeneic mice. Such in vitro systems should be useful in evaluating the sequential and perhaps synergistic involvement of the P210 gene and other oncogenes as models for the progressive changes observed in human chronic myelogenous leukemia.

  11. Effect of track structure and radioprotectors on the induction of oncogenic transformation in murine fibroblasts by heavy ions

    NASA Technical Reports Server (NTRS)

    Miller, R. C.; Martin, S. G.; Hanson, W. R.; Marino, S. A.; Hall, E. J.; Wachholz, B. W. (Principal Investigator)

    1998-01-01

    The oncogenic potential of high-energy 56Fe particles (1 GeV/nucleon) accelerated with the Alternating Gradient Synchrotron at the Brookhaven National Laboratory was examined utilizing the mouse C3H 10T1/2 cell model. The dose-averaged LET for high-energy 56Fe is estimated to be 143 keV/micrometer with the exposure conditions used in this study. For 56Fe ions, the maximum relative biological effectiveness (RBEmax) values for cell survival and oncogenic transformation were 7.71 and 16.5 respectively. Compared to 150 keV/micrometer 4He nuclei, high-energy 56Fe nuclei were significantly less effective in cell killing and oncogenic induction. The prostaglandin E1 analog misoprostol, an effective oncoprotector of C3H 10T1/2 cells exposed to X rays, was evaluated for its potential as a radioprotector of oncogenic transformation with high-energy 56Fe. Exposure of cells to misoprostol did not alter 56Fe cytotoxicity or the rate of 56Fe-induced oncogenic transformation.

  12. Epigenetics provides a new generation of oncogenes and tumour-suppressor genes

    PubMed Central

    Esteller, M

    2006-01-01

    Cancer is nowadays recognised as a genetic and epigenetic disease. Much effort has been devoted in the last 30 years to the elucidation of the ‘classical' oncogenes and tumour-suppressor genes involved in malignant cell transformation. However, since the acceptance that major disruption of DNA methylation, histone modification and chromatin compartments are a common hallmark of human cancer, epigenetics has come to the fore in cancer research. One piece is still missing from the story: are the epigenetic genes themselves driving forces on the road to tumorigenesis? We are in the early stages of finding the answer, and the data are beginning to appear: knockout mice defective in DNA methyltransferases, methyl-CpG-binding proteins and histone methyltransferases strongly affect the risk of cancer onset; somatic mutations, homozygous deletions and methylation-associated silencing of histone acetyltransferases, histone methyltransferases and chromatin remodelling factors are being found in human tumours; and the first cancer-prone families arising from germline mutations in epigenetic genes, such as hSNF5/INI1, have been described. Even more importantly, all these ‘new' oncogenes and tumour-suppressor genes provide novel molecular targets for designed therapies, and the first DNA-demethylating agents and inhibitors of histone deacetylases are reaching the bedside of patients with haematological malignancies. PMID:16404435

  13. Strategies of oncogenic microbes to deal with WW domain-containing oxidoreductase

    PubMed Central

    Lan, Yu-Yan; Hsiao, Jenn-Ren; Chang, Nan-Shan

    2015-01-01

    WW domain-containing oxidoreductase (WWOX) is a well-documented tumor suppressor protein that controls growth, survival, and metastasis of malignant cells. To counteract WWOX’s suppressive effects, cancer cells have developed many strategies either to downregulate WWOX expression or to functionally inactivate WWOX. Relatively unknown is, in the context of those cancers associated with certain viruses or bacteria, how the oncogenic pathogens deal with WWOX. Here we review recent studies showing different strategies utilized by three cancer-associated pathogens. Helicobactor pylori reduces WWOX expression through promoter hypermethylation, an epigenetic mechanism also occurring in many other cancer cells. WWOX has a potential to block canonical NF-κB activation and tumorigenesis induced by Tax, an oncoprotein of human T-cell leukemia virus. Tax successfully overcomes the blockage by inhibiting WWOX expression through activation of the non-canonical NF-κB pathway. On the other hand, latent membrane protein 2A of Epstein–Barr virus physically interacts with WWOX and redirects its function to trigger a signaling pathway that upregulates matrix metalloproteinase 9 and cancer cell invasion. These reports may be just “the tip of the iceberg” regarding multiple interactions between WWOX and oncogenic microbes. Further studies in this direction should expand our understanding of infection-driven oncogenesis. PMID:25488911

  14. Human Oncogenic Herpesvirus and Post-translational Modifications - Phosphorylation and SUMOylation.

    PubMed

    Chang, Pei-Ching; Campbell, Mel; Robertson, Erle S

    2016-01-01

    Pathogens, especially viruses, evolve abilities to utilize cellular machineries to facilitate their survival and propagation. Post-translational modifications (PTMs), especially phosphorylation and SUMOylation, that reversibly modulate the function and interactions of target proteins are among the most important features in cell signaling pathways. PTM-dependent events also serve as one of the favorite targets for viruses. Among the seven unambiguous human oncogenic viruses, hepatitis B virus (HBV), hepatitis C virus (HCV), Epstein-Barr virus (EBV), Kaposi's sarcoma-associated herpesvirus (KSHV), human papillomavirus (HPV), Human T lymphotrophic virus-1 (HTLV-1), and Merkel cell polyomavirus (MCPyV), two are herpesviruses. The life cycle of herpesviruses consists of latent and lytic phases and the rapid switch between these states includes global remodeling of the viral genome from heterochromatin-to-euchromatin. The balance between lytic replication and latency is essential for herpesvirus to maintain a persistent infection through a combination of viral propagation and evasion of the host immune response, which consequently may contribute to tumorigenesis. It is no surprise that the swift reversibility of PTMs, especially SUMOylation, a modification that epigenetically regulates chromatin structure, is a major hijack target of the host for oncogenic herpesviruses. In this brief review, we summarize the varied ways in which herpesviruses engage the host immune components through PTMs, focusing on phosphorylation and SUMOylation. PMID:27379086

  15. AID-expressing epithelium is protected from oncogenic transformation by an NKG2D surveillance pathway.

    PubMed

    Pérez-García, Arantxa; Pérez-Durán, Pablo; Wossning, Thomas; Sernandez, Isora V; Mur, Sonia M; Cañamero, Marta; Real, Francisco X; Ramiro, Almudena R

    2015-08-17

    Activation-induced deaminase (AID) initiates secondary antibody diversification in germinal center B cells, giving rise to higher affinity antibodies through somatic hypermutation (SHM) or to isotype-switched antibodies through class switch recombination (CSR). SHM and CSR are triggered by AID-mediated deamination of cytosines in immunoglobulin genes. Importantly, AID activity in B cells is not restricted to Ig loci and can promote mutations and pro-lymphomagenic translocations, establishing a direct oncogenic mechanism for germinal center-derived neoplasias. AID is also expressed in response to inflammatory cues in epithelial cells, raising the possibility that AID mutagenic activity might drive carcinoma development. We directly tested this hypothesis by generating conditional knock-in mouse models for AID overexpression in colon and pancreas epithelium. AID overexpression alone was not sufficient to promote epithelial cell neoplasia in these tissues, in spite of displaying mutagenic and genotoxic activity. Instead, we found that heterologous AID expression in pancreas promotes the expression of NKG2D ligands, the recruitment of CD8(+) T cells, and the induction of epithelial cell death. Our results indicate that AID oncogenic potential in epithelial cells can be neutralized by immunosurveillance protective mechanisms.

  16. The dark and the bright side of Stat3: proto-oncogene and tumor-suppressor.

    PubMed

    Ecker, Andrea; Simma, Olivia; Hoelbl, Andrea; Kenner, Lukas; Beug, Hartmut; Moriggl, Richard; Sexl, Veronika

    2009-01-01

    Stat transcription factors have been implicated in tumorigenesis in mice and men. Stat3 and Stat5 are considered powerful proto-oncogenes, whereas Stat1 has been demonstrated to suppress tumor formation. We demonstrate here for the first time that a constitutive active version of Stat3alpha (Stat3alphaC) may also suppress transformation. Mouse embryonic fibroblasts (MEFs) deficient for p53 can be transformed with either c-myc or with rasV12 alone. Interestingly, transformation by c-myc is efficiently suppressed by co-expression of Stat3alphaC, but Stat3alphaC does not interfere with transformation by the rasV12-oncogene. In contrast, transplantation of bone marrow cells expressing Stat3alphaC induces the formation of a highly aggressive T cell leukemia in mice. The leukemic cells invaded multiple organs including lung, heart, salivary glands, liver and kidney. Interestingly, transplanted mice developed a similar leukemia when the bone marrow cells were transduced with Stat3beta, which is also constitutively active when expressed at significant levels. Our experiments demonstrate that Stat3 has both - tumor suppressing and tumor promoting properties.

  17. Tuning of alternative splicing--switch from proto-oncogene to tumor suppressor.

    PubMed

    Shchelkunova, Aleksandra; Ermolinsky, Boris; Boyle, Meghan; Mendez, Ivan; Lehker, Michael; Martirosyan, Karen S; Kazansky, Alexander V

    2013-01-01

    STAT5B, a specific member of the STAT family, is intimately associated with prostate tumor progression. While the full form of STAT5B is thought to promote tumor progression, a naturally occurring truncated isoform acts as a tumor suppressor. We previously demonstrated that truncated STAT5 is generated by insertion of an alternatively spliced exon and results in the introduction of an early termination codon. Present approaches targeting STAT proteins based on inhibition of functional domains of STAT's, such as DNA-binding, cooperative binding (protein-protein interaction), dimerization and phosphorylation will halt the action of the entire gene, both the proto-oncogenic and tumor suppressor functions of Stat5B. In this report we develop a new approach aimed at inhibiting the expression of full-length STAT5B (a proto-oncogene) while simultaneously enhancing the expression of STAT5∆B (a tumor suppressor). We have demonstrated the feasibility of using steric-blocking splice-switching oligonucleotides (SSOs) with a complimentary sequence to the targeted exon-intron boundary to enhance alternative intron/exon retention (up to 10%). The functional effect of the intron/exon proportional tuning was validated by cell proliferation and clonogenic assays. The new scheme applies specific steric-blocking splice-switching oligonucleotides and opens an opportunity for anti-tumor treatment as well as for the alteration of functional abilities of other STAT proteins.

  18. SRSF2 promotes splicing and transcription of exon 11 included isoform in Ron proto-oncogene.

    PubMed

    Moon, Heegyum; Cho, Sunghee; Loh, Tiing Jen; Oh, Hyun Kyung; Jang, Ha Na; Zhou, Jianhua; Kwon, Young-Soo; Liao, D Joshua; Jun, Youngsoo; Eom, Soohyun; Ghigna, Claudia; Biamonti, Giuseppe; Green, Michael R; Zheng, Xuexiu; Shen, Haihong

    2014-11-01

    The product of proto-oncogene Ron is a human receptor for the macrophage-stimulating protein (MSP). Upon activation, Ron is able to induce cell dissociation, migration and matrix invasion. Exon 11 skipping of Ron pre-mRNA produces Ron△165 protein that is constitutively active even in the absence of its ligand. Here we show that knockdown of SRSF2 promotes the decrease of exon 11 inclusion, whereas overexpression of SRSF2 promotes exon 11 inclusion. We demonstrate that SRSF2 promotes exon 11 inclusion through splicing and transcription procedure. We also present evidence that reduced expression of SRSF2 induces a decrease in the splicing of both introns 10 and 11; by contrast, overexpression of SRSF2 induces an increase in the splicing of introns 10 and 11. Through mutation analysis, we show that SRSF2 functionally targets and physically interacts with CGAG sequence on exon 11. In addition, we reveal that the weak strength of splice sites of exon 11 is not required for the function of SRSF2 on the splicing of Ron exon 11. Our results indicate that SRSF2 promotes exon 11 inclusion of Ron proto-oncogene through targeting exon 11. Our study provides a novel mechanism by which Ron is expressed.

  19. Oncogene Mutations in Colorectal Polyps Identified in the Norwegian Colorectal Cancer Prevention (NORCCAP) Screening Study

    PubMed Central

    Lorentzen, Jon A.; Grzyb, Krzysztof; De Angelis, Paula M.; Hoff, Geir; Eide, Tor J.; Andresen, Per Arne

    2016-01-01

    Data are limited on oncogene mutation frequencies in polyps from principally asymptomatic participants of population-based colorectal cancer screening studies. In this study, DNA from 204 polyps, 5 mm or larger, were collected from 176 participants of the NORCCAP screening study and analyzed for mutations in KRAS, BRAF, and PIK3CA including the rarely studied KRAS exons 3 and 4 mutations. KRAS mutations were identified in 23.0% of the lesions and were significantly associated with tubulovillous adenomas and large size. A significantly higher frequency of KRAS mutations in females was associated with mutations in codon 12. The KRAS exon 3 and 4 mutations constituted 23.4% of the KRAS positive lesions, which is a larger proportion compared to previous observations in colorectal cancer. BRAF mutations were identified in 11.3% and were associated with serrated polyps. None of the individuals were diagnosed with de novo or recurrent colorectal cancer during the follow-up time (median 11.2 years). Revealing differences in mutation-spectra according to gender and stages in tumorigenesis might be important for optimal use of oncogenes as therapeutic targets and biomarkers. PMID:27656095

  20. Effects of cadmium on cell proliferation, apoptosis, and proto-oncogene expression in zebrafish liver cells.

    PubMed

    Chen, Ying Ying; Zhu, Jin Yong; Chan, King Ming

    2014-12-01

    Cadmium (Cd) is one of the major transitional metal that has toxic effects in aquatic organisms and their associated ecosystem; however, its hepatic toxicity and carcinogenicity are not very well characterized. We used a zebrafish liver (ZFL) cell line as a model to investigate the mechanism of Cd-induced toxicity on hepatocytes. Our results showed that Cd can be effectively accumulated in ZFL cells in our exposure experiments. Cell cytotoxicity assays and flow cytometer measurements revealed that Cd(2+) stimulated ZFL cell proliferation with decreasing apoptotic cell numbers indicating potentially tumorigenic effects of Cd in ZFL cells. Gene expression profiles also indicated that Cd downregulated oncogenes p53 and rad51 and upregulated immediate response oncogenes, growth arrest and DNA damage-inducible (gadd45) genes, and growth factors. We also found dramatic changes in the gene expression of c-jun and igf1rb at different exposure time points, supporting the notion that potentially tumorigenic of Cd-is involved in the activation of immediate early genes or genes related to apoptosis in cancer promotion.

  1. The proto-oncogene TWIST1 is regulated by microRNAs.

    PubMed

    Nairismägi, Maarja-Liisa; Füchtbauer, Annette; Labouriau, Rodrigo; Bramsen, Jesper Bertram; Füchtbauer, Ernst-Martin

    2013-01-01

    Upregulation of the proto-oncogene Twist1 is highly correlated with acquired drug resistance and poor prognosis in human cancers. Altered expression of this multifunctional transcription factor is also associated with inherited skeletal malformations. The mammalian Twist1 3'UTRs are highly conserved and contain a number of potential regulatory elements including miRNA target sites. We analyzed the translational regulation of TWIST1 using luciferase reporter assays in a variety of cell lines. Among several miRNAs tested, miR-145a-5p, miR-151-5p and a combination of miR-145a-5p + miR-151-5p and miR-151-5p + miR-337-3p were able to significantly repress Twist1 translation. This phenomena was confirmed with both exogenous and endogenous miRNAs and was dependent on the presence of the predicted target sites in the 3'UTR. Furthermore, the repression was sensitive to LNA-modified miRNA antagonists and resulted in decreased migratory potential of murine embryonic fibroblast cells. Understanding the in vivo mechanisms of this oncogene's regulation might open up a possibility for therapeutic interference by gene specific cancer therapies.

  2. Human Oncogenic Herpesvirus and Post-translational Modifications – Phosphorylation and SUMOylation

    PubMed Central

    Chang, Pei-Ching; Campbell, Mel; Robertson, Erle S.

    2016-01-01

    Pathogens, especially viruses, evolve abilities to utilize cellular machineries to facilitate their survival and propagation. Post-translational modifications (PTMs), especially phosphorylation and SUMOylation, that reversibly modulate the function and interactions of target proteins are among the most important features in cell signaling pathways. PTM-dependent events also serve as one of the favorite targets for viruses. Among the seven unambiguous human oncogenic viruses, hepatitis B virus (HBV), hepatitis C virus (HCV), Epstein-Barr virus (EBV), Kaposi’s sarcoma-associated herpesvirus (KSHV), human papillomavirus (HPV), Human T lymphotrophic virus-1 (HTLV-1), and Merkel cell polyomavirus (MCPyV), two are herpesviruses. The life cycle of herpesviruses consists of latent and lytic phases and the rapid switch between these states includes global remodeling of the viral genome from heterochromatin-to-euchromatin. The balance between lytic replication and latency is essential for herpesvirus to maintain a persistent infection through a combination of viral propagation and evasion of the host immune response, which consequently may contribute to tumorigenesis. It is no surprise that the swift reversibility of PTMs, especially SUMOylation, a modification that epigenetically regulates chromatin structure, is a major hijack target of the host for oncogenic herpesviruses. In this brief review, we summarize the varied ways in which herpesviruses engage the host immune components through PTMs, focusing on phosphorylation and SUMOylation. PMID:27379086

  3. Oncogenic cooperation and coamplification of developmental transcription factor genes in lung cancer.

    PubMed

    Kendall, Jude; Liu, Qing; Bakleh, Amy; Krasnitz, Alex; Nguyen, Ken C Q; Lakshmi, B; Gerald, William L; Powers, Scott; Mu, David

    2007-10-16

    We used high-resolution array analysis to discover a recurrent lung cancer amplicon located at 14q13.3. Low-level gain of this region was detected in 15% of lung cancer samples, and high-level amplification was detected in an additional 4% of samples. High-level focal amplification appears to be specific to lung cancers, because it was not detected in >500 samples of other tumor types. Mapping of the commonly amplified region revealed there are three genes in the core region, all of which encode transcription factors with either established lung developmental function (TTF1/NKX2-1, NKX2-8) or potential lung developmental function (PAX9). All three genes were overexpressed to varying degrees in amplified samples, although TTF1/NKX2-1 was not expressed in the squamous cancer subtype, consistent with previous reports. Remarkably, overexpression of any pairwise combination of these genes showed pronounced synergy in promoting the proliferation of immortalized human lung epithelial cells. Analysis of human lung cancer cell lines by both RNAi and ectopic overexpression further substantiates an oncogenic role for these transcription factors. These results, taken together with previous reports of oncogenic alterations of transcription factors involved in lung development (p63, CEBPA), suggest genetic alterations that directly interfere with transcriptional networks normally regulating lung development may be a more common feature of lung cancer than previously realized.

  4. Mutant p53 oncogenic functions are sustained by Plk2 kinase through an autoregulatory feedback loop.

    PubMed

    Valenti, Fabio; Fausti, Francesca; Biagioni, Francesca; Shay, Tal; Fontemaggi, Giulia; Domany, Eytan; Yaffe, Michael B; Strano, Sabrina; Blandino, Giovanni; Di Agostino, Silvia

    2011-12-15

    Aberrant activation of kinases has emerged to be a key event along with tumor progression, maintenance of tumor phenotype and response to anticancer treatments. This study documents the existence of an oncogenic auto-regulatory feedback loop that includes the Polo-like kinase-2 (Snk/Plk2) and mutant p53 proteins. Plk2 protein binds to and phosphorylates mutant p53, thereby potentiating its oncogenic activities. Phosphorylated mutant p53 binds more efficiently to p300 consequently strengthening its own transcriptional activity. Plk2 gene is regulated at a transcriptional level by both wt- and mutant p53 proteins. This leads to growth suppression or enhanced cell proliferation and chemo-resistance, respectively. In turn, the siRNA-mediated knock down of either mutant p53 or Plk2 proteins significantly curtails the growth properties of tumor cells and their chemo-resistance to anticancer treatments. Therefore, this paper identifies a novel tumor network including Plk2 and mutant p53 proteins whose triggering in response to DNA damage might disclose important implications for the treatment of human cancers. PMID:22134238

  5. Oncogenic role of leptin and Notch interleukin-1 leptin crosstalk outcome in cancer

    PubMed Central

    Lipsey, Crystal C; Harbuzariu, Adriana; Daley-Brown, Danielle; Gonzalez-Perez, Ruben R

    2016-01-01

    Obesity is a global pandemic characterized by high levels of body fat (adiposity) and derived-cytokines (i.e., leptin). Research shows that adiposity and leptin provide insight on the link between obesity and cancer progression. Leptin’s main function is to regulate energy balance. However, obese individuals routinely develop leptin resistance, which is the consequence of the breakdown in the signaling mechanism controlling satiety resulting in the accumulation of leptin. Therefore, leptin levels are often chronically elevated in human obesity. Elevated leptin levels are related to higher incidence, increased progression and poor prognosis of several human cancers. In addition to adipose tissue, cancer cells can also secrete leptin and overexpress leptin receptors. Leptin is known to act as a mitogen, inflammatory and pro-angiogenic factor that induces cancer cell proliferation and tumor angiogenesis. Moreover, leptin signaling induces cancer stem cells, which are involved in cancer recurrence and drug resistance. A novel and complex signaling crosstalk between leptin, Notch and interleukin-1 (IL-1) [Notch, IL-1 and leptin crosstalk outcome (NILCO)] seems to be an important driver of leptin-induced oncogenic actions. Leptin and NILCO signaling mediate the activation of cancer stem cells that can affect drug resistance. Thus, leptin and NILCO signaling are key links between obesity and cancer progression. This review presents updated data suggesting that adiposity affects cancer incidence, progression, and response to treatment. Here we show data supporting the oncogenic role of leptin in breast, endometrial, and pancreatic cancers. PMID:27019796

  6. AID-expressing epithelium is protected from oncogenic transformation by an NKG2D surveillance pathway

    PubMed Central

    Pérez-García, Arantxa; Pérez-Durán, Pablo; Wossning, Thomas; Sernandez, Isora V; Mur, Sonia M; Cañamero, Marta; Real, Francisco X; Ramiro, Almudena R

    2015-01-01

    Activation-induced deaminase (AID) initiates secondary antibody diversification in germinal center B cells, giving rise to higher affinity antibodies through somatic hypermutation (SHM) or to isotype-switched antibodies through class switch recombination (CSR). SHM and CSR are triggered by AID-mediated deamination of cytosines in immunoglobulin genes. Importantly, AID activity in B cells is not restricted to Ig loci and can promote mutations and pro-lymphomagenic translocations, establishing a direct oncogenic mechanism for germinal center-derived neoplasias. AID is also expressed in response to inflammatory cues in epithelial cells, raising the possibility that AID mutagenic activity might drive carcinoma development. We directly tested this hypothesis by generating conditional knock-in mouse models for AID overexpression in colon and pancreas epithelium. AID overexpression alone was not sufficient to promote epithelial cell neoplasia in these tissues, in spite of displaying mutagenic and genotoxic activity. Instead, we found that heterologous AID expression in pancreas promotes the expression of NKG2D ligands, the recruitment of CD8+ T cells, and the induction of epithelial cell death. Our results indicate that AID oncogenic potential in epithelial cells can be neutralized by immunosurveillance protective mechanisms. PMID:26282919

  7. Identification and Validation of Oncogenes in Liver Cancer Using an Integrative Oncogenomic Approach

    PubMed Central

    Zender, Lars; Spector, Mona S.; Xue, Wen; Flemming, Peer; Cordon-Cardo, Carlos; Silke, John; Fan, Sheung-Tat; Luk, John M.; Wigler, Michael; Hannon, Gregory J.; Mu, David; Lucito, Robert; Powers, Scott; Lowe, Scott W.

    2010-01-01

    SUMMARY The heterogeneity and instability of human tumors hamper straightforward identification of cancer-causing mutations through genomic approaches alone. Herein we describe a mouse model of liver cancer initiated from progenitor cells harboring defined cancer-predisposing lesions. Genome-wide analyses of tumors in this mouse model and in human hepatocellular carcinomas revealed a recurrent amplification at mouse chromosome 9qA1, the syntenic region of human chromosome 11q22. Gene-expression analyses delineated cIAP1, a known inhibitor of apoptosis, and Yap, a transcription factor, as candidate oncogenes in the amplicon. In the genetic context of their amplification, both cIAP1 and Yap accelerated tumorigenesis and were required to sustain rapid growth of amplicon-containing tumors. Furthermore, cIAP1 and Yap cooperated to promote tumorigenesis. Our results establish a tractable model of liver cancer, identify two oncogenes that cooperate by virtue of their coamplification in the same genomic locus, and suggest an efficient strategy for the annotation of human cancer genes. PMID:16814713

  8. Hepatocellular alterations and dysregulation of oncogenic pathways in the liver of transgenic mice overexpressing growth hormone.

    PubMed

    Miquet, Johanna G; Freund, Thomas; Martinez, Carolina S; González, Lorena; Díaz, María E; Micucci, Giannina P; Zotta, Elsa; Boparai, Ravneet K; Bartke, Andrzej; Turyn, Daniel; Sotelo, Ana I

    2013-04-01

    Growth hormone (GH) overexpression throughout life in transgenic mice is associated with the development of liver tumors at old ages. The preneoplastic pathology observed in the liver of young adult GH-overexpressing mice is similar to that present in humans at high risk of hepatic cancer. To elucidate the molecular pathogenesis underlying the pro-oncogenic liver pathology induced by prolonged exposure to elevated GH levels, the activation and expression of several components of signal transduction pathways that have been implicated in hepatocellular carcinogenesis were evaluated in the liver of young adult GH-transgenic mice. In addition, males and females were analyzed in parallel in order to evaluate sexual dimorphism. Transgenic mice from both sexes exhibited hepatocyte hypertrophy with enlarged nuclear size and exacerbated hepatocellular proliferation, which were higher in males. Dysregulation of several oncogenic pathways was observed in the liver of GH-overexpressing transgenic mice. Many signaling mediators and effectors were upregulated in transgenic mice compared with normal controls, including Akt2, NFκB, GSK3β, β-catenin, cyclin D1, cyclin E, c-myc, c-jun and c-fos. The molecular alterations described did not exhibit sexual dimorphism in transgenic mice except for higher gene expression and nuclear localization of cyclin D1 in males. We conclude that prolonged exposure to GH induces in the liver alterations in signaling pathways involved in cell growth, proliferation and survival that resemble those found in many human tumors.

  9. Overexpressed homeobox B9 regulates oncogenic activities by transforming growth factor-β1 in gliomas

    SciTech Connect

    Fang, Liping; Xu, Yinghui; Zou, Lijuan

    2014-03-28

    Highlights: • HOXB9 is overexpressed in gliomas. • HOXB9 over expression had shorter survival time than down expression in gliomas. • HOXB9 stimulated the proliferation, migration and sphere formation of glioma cells. • Activation of TGF-β1 contributed to HOXB9-induced oncogenic activities. - Abstract: Glioma is the leading cause of deaths related to tumors in the central nervous system. The mechanisms of gliomagenesis remain elusive to date. Homeobox B9 (HOXB9) has a crucial function in the regulation of gene expression and cell survival, but its functions in glioma formation and development have yet to be elucidated. This study showed that HOXB9 expression in glioma tissues was significantly higher than that in nontumor tissues. Higher HOXB9 expression was also significantly associated with advanced clinical stage in glioma patients. HOXB9 overexpression stimulated the proliferation, migration, and sphere formation of glioma cells, whereas HOXB9 knockdown elicited an opposite effect. HOXB9 overexpression also increased the tumorigenicity of glioma cells in vivo. Moreover, the activation of transforming growth factor-β1 contributed to HOXB9-induced oncogenic activities. HOXB9 could be used as a predictable biomarker to be detected in different pathological and histological subtypes in glioma for diagnosis or prognosis.

  10. Tocopherol Succinate: Modulation of Antioxidant Enzymes and Oncogene Expression, and Hematopoietic Recovery

    SciTech Connect

    Singh, Vijay K.; Parekh, Vaishali I.; Brown, Darren S.; Kao, Tzu-Cheg; Mog, Steven R.

    2011-02-01

    Purpose: A class of naturally occurring isoforms of tocopherol (tocols) was shown to have varying degrees of protection when administered before radiation exposure. We recently demonstrated that {alpha}-tocopherol succinate (TS) is a potential radiation prophylactic agent. Our objective in this study was to further investigate the mechanism of action of TS in mice exposed to {sup 60}Co {gamma}-radiation. Methods and Materials: We evaluated the effects of TS on expression of antioxidant enzymes and oncogenes by quantitative RT-PCR in bone marrow cells of {sup 60}Co {gamma}-irradiated mice. Further, we tested the ability of TS to rescue and repopulate hematopoietic stem cells by analyzing bone marrow cellularity and spleen colony forming unit in spleen of TS-injected and irradiated mice. Results: Our results demonstrate that TS modulated the expression of antioxidant enzymes and inhibited expression of oncogenes in irradiated mice at different time points. TS also increased colony forming unit-spleen numbers and bone marrow cellularity in irradiated mice. Conclusions: Results provide additional support for the observed radioprotective efficacy of TS and insight into mechanisms.

  11. mTORC1 is a critical mediator of oncogenic Semaphorin3A signaling.

    PubMed

    Yamada, Daisuke; Kawahara, Kohichi; Maeda, Takehiko

    2016-08-01

    Aberration of signaling pathways by genetic mutations or alterations in the surrounding tissue environments can result in tumor development or metastasis. However, signaling molecules responsible for these processes have not been completely elucidated. Here, we used mouse Lewis lung carcinoma cells (LLC) to explore the mechanism by which the oncogenic activity of Semaphorin3A (Sema3A) signaling is regulated. Sema3A knockdown by shRNA did not affect apoptosis, but decreased cell proliferation in LLCs; both the mammalian target of rapamycin complex 1 (mTORC1) level and glycolytic activity were also decreased. In addition, Sema3A knockdown sensitized cells to inhibition of oxidative phosphorylation by oligomycin, but conferred resistance to decreased cell viability induced by glucose starvation. Furthermore, recombinant SEMA3A rescued the attenuation of cell proliferation and glycolytic activity in LLCs after Sema3A knockdown, whereas mTORC1 inhibition by rapamycin completely counteracted this effect. These results demonstrate that Sema3A signaling exerts its oncogenic effect by promoting an mTORC1-mediated metabolic shift from oxidative phosphorylation to aerobic glycolysis. PMID:27246732

  12. Oncogene Mutations in Colorectal Polyps Identified in the Norwegian Colorectal Cancer Prevention (NORCCAP) Screening Study.

    PubMed

    Lorentzen, Jon A; Grzyb, Krzysztof; De Angelis, Paula M; Hoff, Geir; Eide, Tor J; Andresen, Per Arne

    2016-01-01

    Data are limited on oncogene mutation frequencies in polyps from principally asymptomatic participants of population-based colorectal cancer screening studies. In this study, DNA from 204 polyps, 5 mm or larger, were collected from 176 participants of the NORCCAP screening study and analyzed for mutations in KRAS, BRAF, and PIK3CA including the rarely studied KRAS exons 3 and 4 mutations. KRAS mutations were identified in 23.0% of the lesions and were significantly associated with tubulovillous adenomas and large size. A significantly higher frequency of KRAS mutations in females was associated with mutations in codon 12. The KRAS exon 3 and 4 mutations constituted 23.4% of the KRAS positive lesions, which is a larger proportion compared to previous observations in colorectal cancer. BRAF mutations were identified in 11.3% and were associated with serrated polyps. None of the individuals were diagnosed with de novo or recurrent colorectal cancer during the follow-up time (median 11.2 years). Revealing differences in mutation-spectra according to gender and stages in tumorigenesis might be important for optimal use of oncogenes as therapeutic targets and biomarkers. PMID:27656095

  13. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas.

    PubMed

    Pasqualucci, L; Neumeister, P; Goossens, T; Nanjangud, G; Chaganti, R S; Küppers, R; Dalla-Favera, R

    2001-07-19

    Genomic instability promotes tumorigenesis and can occur through various mechanisms, including defective segregation of chromosomes or inactivation of DNA mismatch repair. Although B-cell lymphomas are associated with chromosomal translocations that deregulate oncogene expression, a mechanism for genome-wide instability during lymphomagenesis has not been described. During B-cell development, the immunoglobulin variable (V) region genes are subject to somatic hypermutation in germinal-centre B cells. Here we report that an aberrant hypermutation activity targets multiple loci, including the proto-oncogenes PIM1, MYC, RhoH/TTF (ARHH) and PAX5, in more than 50% of diffuse large-cell lymphomas (DLCLs), which are tumours derived from germinal centres. Mutations are distributed in the 5' untranslated or coding sequences, are independent of chromosomal translocations, and share features typical of V-region-associated somatic hypermutation. In contrast to mutations in V regions, however, these mutations are not detectable in normal germinal-centre B cells or in other germinal-centre-derived lymphomas, suggesting a DLCL-associated malfunction of somatic hypermutation. Intriguingly, the four hypermutable genes are susceptible to chromosomal translocations in the same region, consistent with a role for hypermutation in generating translocations by DNA double-strand breaks. By mutating multiple genes, and possibly by favouring chromosomal translocations, aberrant hypermutation may represent the major contributor to lymphomagenesis.

  14. Effects of oncogenic mutations on the conformational free-energy landscape of EGFR kinase

    PubMed Central

    Sutto, Ludovico; Gervasio, Francesco Luigi

    2013-01-01

    Activating mutations in the epidermal growth factor receptor (EGFR) tyrosine kinase are frequently found in many cancers. It has been suggested that changes in the equilibrium between its active and inactive conformations are linked to its oncogenic potential. Here, we quantify the effects of some of the most common single (L858R and T790M) and double (T790M-L858R) oncogenic mutations on the conformational free-energy landscape of the EGFR kinase domain by using massive molecular dynamics simulations together with parallel tempering, metadynamics, and one of the best force-fields available. Whereas the wild-type EGFR catalytic domain monomer is mostly found in an inactive conformation, our results show a clear shift toward the active conformation for all of the mutants. The L858R mutation stabilizes the active conformation at the expense of the inactive conformation and rigidifies the αC-helix. The T790M gatekeeper mutant favors activation by stabilizing a hydrophobic cluster. Finally, T790M with L858R shows a significant positive epistasis effect. This combination not only stabilizes the active conformation, but in nontrivial ways changes the free-energy landscape lowering the transition barriers. PMID:23754386

  15. Beyond ALK-RET, ROS1 and other oncogene fusions in lung cancer

    PubMed Central

    Nakaoku, Takashi; Tsuta, Koji; Tsuchihara, Katsuya; Matsumoto, Shingo; Yoh, Kiyotaka; Goto, Koichi

    2015-01-01

    Fusions of the RET and ROS1 protein tyrosine kinase oncogenes with several partner genes were recently identified as new targetable genetic aberrations in cases of non-small cell lung cancer (NSCLC) lacking activating EGFR, KRAS, ALK, BRAF, or HER2 oncogene aberrations. RET and ROS1 fusion-positive tumors are mainly observed in young, female, and/or never smoking patients. Studies based on in vitro and in vivo (i.e., mouse) models and studies of several fusion-positive patients indicate that inhibiting the kinase activity of the RET and ROS1 fusion proteins is a promising therapeutic strategy. Accordingly, there are several ongoing clinical trials aimed at examining the efficacy of tyrosine kinase inhibitors (TKIs) against RET and ROS1 proteins in patients with fusion-positive lung cancer. Other gene fusions (NTRK1, NRG1, and FGFR1/2/3) that are targetable by existing TKIs have also been identified in NSCLCs. Options for personalized lung cancer therapy will be increased with the help of multiplex diagnosis systems able to detect multiple druggable gene fusions. PMID:25870798

  16. The histone demethylase LSD1 is a novel oncogene and therapeutic target in oral cancer.

    PubMed

    Wang, Yanling; Zhu, Yumin; Wang, Qiong; Hu, Huijun; Li, Zhongwu; Wang, Dongmiao; Zhang, Wei; Qi, Bin; Ye, Jinhai; Wu, Heming; Jiang, Hongbing; Liu, Laikui; Yang, Jianrong; Cheng, Jie

    2016-04-28

    The histone demethylase LSD1 functions as a key pro-oncogene and attractive therapeutic target in human cancer. Here we sought to interrogate the oncogenic roles of LSD1 in OSCC tumorigenesis and therapeutic intervention by integrating chemical-induced OSCC model, genetic and pharmacological loss-of-function approaches. Our data revealed that aberrant LSD1 overexpression in OSCC was significantly associated with tumor aggressiveness and shorter overall survival. Increased abundance of LSD1 was detected along with disease progression in DMBA- or 4NQO-induced OSCC animal models. LSD1 depletion via siRNA-mediated knockdown in OSCC cells resulted in impaired cell proliferation, migration/invasion, tumorsphere formation and reduced xenograft growth while inducing cell apoptosis and enhancing chemosensitivity to 5-FU. Moreover, treatments of LSD1 chemical inhibitors (pargyline and tranylcypromine) induced its protein reduction probably via enhanced protein degradation and produced similar phenotypic changes resembling LSD1 silencing in OSCC cells. Pharmacological inhibition of LSD1 by intraperitoneal delivery of these inhibitors resulted in impaired xenograft overgrowth. Taken together, our data reveal the tumorigenic roles of LSD1 and identified LSD1 as a novel biomarker with diagnostic and prognostic significance, and also establish that targeting LSD1 by chemical inhibitors is a viable therapeutic strategy against OSCC. PMID:26872725

  17. S6K1 alternative splicing modulates its oncogenic activity and regulates mTORC1

    PubMed Central

    Ben-Hur, Vered; Denichenko, Polina; Siegfried, Zahava; Maimon, Avi; Krainer, Adrian; Davidson, Ben; Karni, Rotem

    2016-01-01

    Ribosomal S6 Kinase 1 (S6K1) is a major mTOR downstream signaling molecule which regulates cell size and translation efficiency. Here we report that short isoforms of S6K1 are over-produced in breast cancer cell lines and tumors. Overexpression of S6K1 short isoforms induces transformation of human breast epithelial cells. The long S6K1 variant (Iso-1) induced opposite effects: It inhibits Ras-induced transformation and tumor formation, while its knockdown or knockout induced transformation, suggesting that Iso-1 has a tumor suppressor activity. We further found that S6K1 short isoforms bind and activate mTORC1, elevating 4E-BP1 phosphorylation, cap-dependent translation and Mcl-1 protein levels. Both a phosphorylation-defective 4E-BP1 mutant and the mTORC1 inhibitor rapamycin partially blocked the oncogenic effects of S6K1 short isoforms, suggesting that these are mediated by mTORC1 and 4E-BP1. Thus, alternative splicing of S6K1 acts as a molecular switch in breast cancer cells elevating oncogenic isoforms that activate mTORC1. PMID:23273915

  18. Oncogene Mutations in Colorectal Polyps Identified in the Norwegian Colorectal Cancer Prevention (NORCCAP) Screening Study

    PubMed Central

    Lorentzen, Jon A.; Grzyb, Krzysztof; De Angelis, Paula M.; Hoff, Geir; Eide, Tor J.; Andresen, Per Arne

    2016-01-01

    Data are limited on oncogene mutation frequencies in polyps from principally asymptomatic participants of population-based colorectal cancer screening studies. In this study, DNA from 204 polyps, 5 mm or larger, were collected from 176 participants of the NORCCAP screening study and analyzed for mutations in KRAS, BRAF, and PIK3CA including the rarely studied KRAS exons 3 and 4 mutations. KRAS mutations were identified in 23.0% of the lesions and were significantly associated with tubulovillous adenomas and large size. A significantly higher frequency of KRAS mutations in females was associated with mutations in codon 12. The KRAS exon 3 and 4 mutations constituted 23.4% of the KRAS positive lesions, which is a larger proportion compared to previous observations in colorectal cancer. BRAF mutations were identified in 11.3% and were associated with serrated polyps. None of the individuals were diagnosed with de novo or recurrent colorectal cancer during the follow-up time (median 11.2 years). Revealing differences in mutation-spectra according to gender and stages in tumorigenesis might be important for optimal use of oncogenes as therapeutic targets and biomarkers.

  19. AID-expressing epithelium is protected from oncogenic transformation by an NKG2D surveillance pathway.

    PubMed

    Pérez-García, Arantxa; Pérez-Durán, Pablo; Wossning, Thomas; Sernandez, Isora V; Mur, Sonia M; Cañamero, Marta; Real, Francisco X; Ramiro, Almudena R

    2015-10-01

    Activation-induced deaminase (AID) initiates secondary antibody diversification in germinal center B cells, giving rise to higher affinity antibodies through somatic hypermutation (SHM) or to isotype-switched antibodies through class switch recombination (CSR). SHM and CSR are triggered by AID-mediated deamination of cytosines in immunoglobulin genes. Importantly, AID activity in B cells is not restricted to Ig loci and can promote mutations and pro-lymphomagenic translocations, establishing a direct oncogenic mechanism for germinal center-derived neoplasias. AID is also expressed in response to inflammatory cues in epithelial cells, raising the possibility that AID mutagenic activity might drive carcinoma development. We directly tested this hypothesis by generating conditional knock-in mouse models for AID overexpression in colon and pancreas epithelium. AID overexpression alone was not sufficient to promote epithelial cell neoplasia in these tissues, in spite of displaying mutagenic and genotoxic activity. Instead, we found that heterologous AID expression in pancreas promotes the expression of NKG2D ligands, the recruitment of CD8(+) T cells, and the induction of epithelial cell death. Our results indicate that AID oncogenic potential in epithelial cells can be neutralized by immunosurveillance protective mechanisms. PMID:26282919

  20. STAT5 Outcompetes STAT3 To Regulate the Expression of the Oncogenic Transcriptional Modulator BCL6

    PubMed Central

    Walker, Sarah R.; Nelson, Erik A.; Yeh, Jennifer E.; Pinello, Luca; Yuan, Guo-Cheng

    2013-01-01

    Inappropriate activation of the transcription factors STAT3 and STAT5 has been shown to drive cancer pathogenesis through dysregulation of genes involved in cell survival, growth, and differentiation. Although STAT3 and STAT5 are structurally related, they can have opposite effects on key genes, including BCL6. BCL6, a transcriptional repressor, has been shown to be oncogenic in diffuse large B cell lymphoma. BCL6 also plays an important role in breast cancer pathogenesis, a disease in which STAT3 and STAT5 can be activated individually or concomitantly. To determine the mechanism by which these oncogenic transcription factors regulate BCL6 transcription, we analyzed their effects at the levels of chromatin and gene expression. We found that STAT3 increases expression of BCL6 and enhances recruitment of RNA polymerase II phosphorylated at a site associated with transcriptional initiation. STAT5, in contrast, represses BCL6 expression below basal levels and decreases the association of RNA polymerase II at the gene. Furthermore, the repression mediated by STAT5 is dominant over STAT3-mediated induction. STAT5 exerts this effect by displacing STAT3 from one of the two regulatory regions to which it binds. These findings may underlie the divergent biology of breast cancers containing activated STAT3 alone or in conjunction with activated STAT5. PMID:23716595

  1. Oncogenic transformation of Drosophila somatic cells induces a functional piRNA pathway.

    PubMed

    Fagegaltier, Delphine; Falciatori, Ilaria; Czech, Benjamin; Castel, Stephane; Perrimon, Norbert; Simcox, Amanda; Hannon, Gregory J

    2016-07-15

    Germline genes often become re-expressed in soma-derived human cancers as "cancer/testis antigens" (CTAs), and piRNA (PIWI-interacting RNA) pathway proteins are found among CTAs. However, whether and how the piRNA pathway contributes to oncogenesis in human neoplasms remain poorly understood. We found that oncogenic Ras combined with loss of the Hippo tumor suppressor pathway reactivates a primary piRNA pathway in Drosophila somatic cells coincident with oncogenic transformation. In these cells, Piwi becomes loaded with piRNAs derived from annotated generative loci, which are normally restricted to either the germline or the somatic follicle cells. Negating the pathway leads to increases in the expression of a wide variety of transposons and also altered expression of some protein-coding genes. This correlates with a reduction in the proliferation of the transformed cells in culture, suggesting that, at least in this context, the piRNA pathway may play a functional role in cancer. PMID:27474441

  2. A novel LKB1 isoform enhances AMPK metabolic activity and displays oncogenic properties.

    PubMed

    Dahmani, R; Just, P-A; Delay, A; Canal, F; Finzi, L; Prip-Buus, C; Lambert, M; Sujobert, P; Buchet-Poyau, K; Miller, E; Cavard, C; Marmier, S; Terris, B; Billaud, M; Perret, C

    2015-04-30

    The LKB1 tumor suppressor gene encodes a master kinase that coordinates the regulation of energetic metabolism and cell polarity. We now report the identification of a novel isoform of LKB1 (named ΔN-LKB1) that is generated through alternative transcription and internal initiation of translation of the LKB1 mRNA. The ΔN-LKB1 protein lacks the N-terminal region and a portion of the kinase domain. Although ΔN-LKB1 is catalytically inactive, it potentiates the stimulating effect of LKB1 on the AMP-activated protein kinase (AMPK) metabolic sensor through a direct interaction with the regulatory autoinhibitory domain of AMPK. In contrast, ΔN-LKB1 negatively interferes with the LKB1 polarizing activity. Finally, combining in vitro and in vivo approaches, we showed that ΔN-LKB1 has an intrinsic oncogenic property. ΔN-LKB1 is expressed solely in the lung cancer cell line, NCI-H460. Silencing of ΔN-LKB1 decreased the survival of NCI-H460 cells and inhibited their tumorigenicity when engrafted in nude mice. In conclusion, we have identified a novel LKB1 isoform that enhances the LKB1-controlled AMPK metabolic activity but inhibits LKB1-induced polarizing activity. Both the LKB1 tumor suppressor gene and the oncogene ΔN-LKB1 are expressed from the same locus and this may account for some of the paradoxical effects of LKB1 during tumorigenesis.

  3. Prevalence of gsp oncogene in somatotropinomas and clinically non-functioning pituitary adenomas: our experience.

    PubMed

    Taboada, Giselle Fernandes; Tabet, Ana Lúcia Osório; Naves, Luciana A; de Carvalho, Denise Pires; Gadelha, Mônica Roberto

    2009-01-01

    The purpose of the present study is to evaluate the prevalence of the gsp oncogene in Brazilian patients harboring somatotropinomas and non-functioning pituitary adenomas (NFPA). Patients and methods Deoxyribonucleic acid was extracted from 54 somatotropinomas and 14 NFPA. Exons 8 and 9 (including codons 201 and 227, respectively) of the GNAS gene were amplified by polymerase chain reaction (PCR). The PCR products were then purified and sequenced using the same primers. Results The gsp oncogene was found in nine tumors (eight somatotropinomas). The prevalence among somatotropinomas was 15% and among NFPA was 7%. The mutation was found in codon 201 in eight tumors and in codon 227 in one tumor (a somatotropinoma). No differences were found in age, sex, GH, and IGF-I levels or tumor volume at diagnosis between gsp+ and gsp- patients. Conclusion We found a lower than expected prevalence of gsp mutations in somatotropinomas and a similar prevalence in NFPA compared to previous studies from other countries. PMID:18642089

  4. Double minute chromosomes in glioblastoma multiforme are revealed by precise reconstruction of oncogenic amplicons

    PubMed Central

    Sanborn, J. Zachary; Salama, Sofie R.; Grifford, Mia; Brennan, Cameron W.; Mikkelsen, Tom; Jhanwar, Suresh; Katzman, Sol; Chin, Lynda; Haussler, David

    2013-01-01

    DNA sequencing offers a powerful tool in oncology based on the precise definition of structural rearrangements, copy number in tumor genomes. Here we describe the development of methods to compute copy number and detect structural variants with data synthesis to locally reconstruct highly rearranged regions of the tumor genome with high precision from standard short read, paired-end sequencing datasets. We find that circular assemblies are the most parsimonious explanation for a set of highly amplified tumor regions in a subset of glioblastoma multiforme (GBM) samples sequenced by The Cancer Genome Atlas (TCGA) consortium, revealing evidence for double minute chromosomes (DM) in these tumors. Further, we find that some samples harbor multiple circular amplicons and in some cases further rearrangements occurred after the initial amplicon-generating event. Fluorescence in situ hybridization (FISH) analysis offered an initial confirmation of the presence of DMs. Gene content in these assemblies helps identify likely driver oncogenes for these amplicons. RNA-seq data available for one DM offered additional support for our local tumor genome assemblies, identifying the birth of a novel exon made possible through rearranged sequences present in the DM. Consistent with previous estimates, our method was also useful for analysis of a larger set of GBM tumors for which exome sequencing data is available, finding evidence for oncogenic DMs in over 20% of clinical specimens examined. PMID:23940299

  5. Antineoplastic Effects of siRNA against TMPRSS2-ERG Junction Oncogene in Prostate Cancer

    PubMed Central

    Urbinati, Giorgia; Ali, Hafiz Muhammad; Rousseau, Quentin; Chapuis, Hubert; Desmaële, Didier; Couvreur, Patrick; Massaad-Massade, Liliane

    2015-01-01

    TMPRSS2-ERG junction oncogene is present in more than 50% of patients with prostate cancer and its expression is frequently associated with poor prognosis. Our aim is to achieve gene knockdown by siRNA TMPRSS2-ERG and then to assess the biological consequences of this inhibition. First, we designed siRNAs against the two TMPRSS2-ERG fusion variants (III and IV), most frequently identified in patients’ biopsies. Two of the five siRNAs tested were found to efficiently inhibit mRNA of both TMPRSS2-ERG variants and to decrease ERG protein expression. Microarray analysis further confirmed ERG inhibition by both siRNAs TMPRSS2-ERG and revealed one common down-regulated gene, ADRA2A, involved in cell proliferation and migration. The siRNA against TMPRSS2-ERG fusion variant IV showed the highest anti-proliferative effects: Significantly decreased cell viability, increased cleaved caspase-3 and inhibited a cluster of anti-apoptotic proteins. To propose a concrete therapeutic approach, siRNA TMPRSS2-ERG IV was conjugated to squalene, which can self-organize as nanoparticles in water. The nanoparticles of siRNA TMPRSS2-ERG-squalene injected intravenously in SCID mice reduced growth of VCaP xenografted tumours, inhibited oncoprotein expression and partially restored differentiation (decrease in Ki67). In conclusion, this study offers a new prospect of treatment for prostate cancer based on siRNA-squalene nanoparticles targeting TMPRSS2-ERG junction oncogene. PMID:25933120

  6. Trefoil Factor 3 Is Oncogenic and Mediates Anti-Estrogen Resistance in Human Mammary Carcinoma123

    PubMed Central

    Kannan, Nagarajan; Kang, Jian; Kong, Xiangjun; Tang, Jianzhong; Perry, Jo K; Mohankumar, Kumarasamypet M; Miller, Lance D; Liu, Edison T; Mertani, Hichem C; Zhu, Tao; Grandison, Prudence M; Liu, Dong-Xu; Lobie, Peter E

    2010-01-01

    We report herein that trefoil factor 3 (TFF3) is oncogenic and mediates anti-estrogen resistance in human mammary carcinoma. Forced expression of TFF3 in mammary carcinoma cells increased cell proliferation and survival, enhanced anchorage-independent growth, and promoted migration and invasion. Moreover, forced expression of TFF3 increased tumor size in xenograft models. Conversely, depletion of endogenous TFF3 with small interfering RNA (siRNA) decreased the oncogenicity and invasiveness of mammary carcinoma cells. Neutralization of secreted TFF3 by antibody promoted apoptosis, decreased cell growth in vitro, and arrested mammary carcinoma xenograft growth. TFF3 expression was significantly correlated to decreased survival of estrogen receptor (ER)-positive breast cancer patients treated with tamoxifen. Forced expression of TFF3 in mammary carcinoma cells increased ER transcriptional activity, promoted estrogen-independent growth, and produced resistance to tamoxifen and fulvestrant in vitro and to tamoxifen in xenograft models. siRNA-mediated depletion or antibody inhibition of TFF3 significantly enhanced the efficacy of antiestrogens. Increased TFF3 expression was observed in tamoxifen-resistant (TAMR) cells and antibody inhibition of TFF3 in TAMR cells improved tamoxifen sensitivity. Functional antagonism of TFF3 therefore warrants consideration as a novel therapeutic strategy for mammary carcinoma. PMID:21170268

  7. Trefoil factor 3 is oncogenic and mediates anti-estrogen resistance in human mammary carcinoma.

    PubMed

    Kannan, Nagarajan; Kang, Jian; Kong, Xiangjun; Tang, Jianzhong; Perry, Jo K; Mohankumar, Kumarasamypet M; Miller, Lance D; Liu, Edison T; Mertani, Hichem C; Zhu, Tao; Grandison, Prudence M; Liu, Dong-Xu; Lobie, Peter E

    2010-12-01

    We report herein that trefoil factor 3 (TFF3) is oncogenic and mediates anti-estrogen resistance in human mammary carcinoma. Forced expression of TFF3 in mammary carcinoma cells increased cell proliferation and survival, enhanced anchorage-independent growth, and promoted migration and invasion. Moreover, forced expression of TFF3 increased tumor size in xenograft models. Conversely, depletion of endogenous TFF3 with small interfering RNA (siRNA) decreased the oncogenicity and invasiveness of mammary carcinoma cells. Neutralization of secreted TFF3 by antibody promoted apoptosis, decreased cell growth in vitro, and arrested mammary carcinoma xenograft growth. TFF3 expression was significantly correlated to decreased survival of estrogen receptor (ER)-positive breast cancer patients treated with tamoxifen. Forced expression of TFF3 in mammary carcinoma cells increased ER transcriptional activity, promoted estrogen-independent growth, and produced resistance to tamoxifen and fulvestrant in vitro and to tamoxifen in xenograft models. siRNA-mediated depletion or antibody inhibition of TFF3 significantly enhanced the efficacy of antiestrogens. Increased TFF3 expression was observed in tamoxifen-resistant (TAMR) cells and antibody inhibition of TFF3 in TAMR cells improved tamoxifen sensitivity. Functional antagonism of TFF3 therefore warrants consideration as a novel therapeutic strategy for mammary carcinoma.

  8. Viral Interactions with PDZ Domain-Containing Proteins—An Oncogenic Trait?

    PubMed Central

    James, Claire D.; Roberts, Sally

    2016-01-01

    Many of the human viruses with oncogenic capabilities, either in their natural host or in experimental systems (hepatitis B and C, human T cell leukaemia virus type 1, Kaposi sarcoma herpesvirus, human immunodeficiency virus, high-risk human papillomaviruses and adenovirus type 9), encode in their limited genome the ability to target cellular proteins containing PSD95/ DLG/ZO-1 (PDZ) interaction modules. In many cases (but not always), the viruses have evolved to bind the PDZ domains using the same short linear peptide motifs found in host protein-PDZ interactions, and in some cases regulate the interactions in a similar fashion by phosphorylation. What is striking is that the diverse viruses target a common subset of PDZ proteins that are intimately involved in controlling cell polarity and the structure and function of intercellular junctions, including tight junctions. Cell polarity is fundamental to the control of cell proliferation and cell survival and disruption of polarity and the signal transduction pathways involved is a key event in tumourigenesis. This review focuses on the oncogenic viruses and the role of targeting PDZ proteins in the virus life cycle and the contribution of virus-PDZ protein interactions to virus-mediated oncogenesis. We highlight how many of the viral associations with PDZ proteins lead to deregulation of PI3K/AKT signalling, benefitting virus replication but as a consequence also contributing to oncogenesis. PMID:26797638

  9. Detection of K-Ras oncogene using magnetic beads-quantum dots in microfluidic chip.

    PubMed

    Noh, Han Na; Kim, Jong Sung

    2013-08-01

    Recently quantum dots (QDs) have been extensively used in the field of biotechnology. QDs have merits of wide selection of emission wavelength and exceptional stability against photo bleaching over conventional organic fluorophores and are used in cell imaging, biomarker, and fluorescence resonance energy transfer (FRET) sensor. Magnetic beads have been used as solid support in microfluidic devices to trace bio-molecules. In this study, Polydimethylsiloxane (PDMS) based microfluidic chips were prepared for the detection of K-Ras oncogene by using QDs-DNA conjugate. K-Ras oncogene can be detected by fluorescence quenching in microfluidic chip. Carboxylated CdSe/ZnS QDs (emission wavelength: 605 nm) could bind to magnetic beads of polystyrene/divinyl benzene via EDC/NHS crosslinking reaction. The fluorescence from QDs could be quenched by intercalating dye (thiazol orange dimers: TOTO-3) after hybridization with target DNA and probe DNA in the channel of microfluidic chip. The fluorescence intensity change of QDs after hybridization in microfluidic chip has been studied. PMID:23882748

  10. Pervasive transcription read-through promotes aberrant expression of oncogenes and RNA chimeras in renal carcinoma

    PubMed Central

    Grosso, Ana R; Leite, Ana P; Carvalho, Sílvia; Matos, Mafalda R; Martins, Filipa B; Vítor, Alexandra C; Desterro, Joana MP; Carmo-Fonseca, Maria; de Almeida, Sérgio F

    2015-01-01

    Aberrant expression of cancer genes and non-canonical RNA species is a hallmark of cancer. However, the mechanisms driving such atypical gene expression programs are incompletely understood. Here, our transcriptional profiling of a cohort of 50 primary clear cell renal cell carcinoma (ccRCC) samples from The Cancer Genome Atlas (TCGA) reveals that transcription read-through beyond the termination site is a source of transcriptome diversity in cancer cells. Amongst the genes most frequently mutated in ccRCC, we identified SETD2 inactivation as a potent enhancer of transcription read-through. We further show that invasion of neighbouring genes and generation of RNA chimeras are functional outcomes of transcription read-through. We identified the BCL2 oncogene as one of such invaded genes and detected a novel chimera, the CTSC-RAB38, in 20% of ccRCC samples. Collectively, our data highlight a novel link between transcription read-through and aberrant expression of oncogenes and chimeric transcripts that is prevalent in cancer. DOI: http://dx.doi.org/10.7554/eLife.09214.001 PMID:26575290

  11. TBK1 Directly Engages Akt/PKB Survival Signaling to Support Oncogenic Transformation

    PubMed Central

    Ou, Yi-Hung; Torres, Michael; Ram, Rosalyn; Formstecher, Etienne; Roland, Christina; Cheng, Tzuling; Brekken, Rolf; Wurz, Ryan; Tasker, Andrew; Polverino, Tony; Tan, Seng-Lai; White, Michael A.

    2011-01-01

    The innate immune signaling kinase, TBK1, couples pathogen surveillance to induction of host defense mechanisms. Pathological activation of TBK1 in cancer can overcome programmed cell death cues, enabling cells to survive oncogenic stress. The mechanistic basis of TBK1 prosurvival signaling, however, has been enigmatic. Here we show that TBK1 directly activates AKT by phosphorylation of the canonical activation loop and hydrophobic motif sites independently of PDK1 and mTORC2. Upon mitogen stimulation, triggering of the innate immune response, re-exposure to glucose, or oncogene activation, TBK1 is recruited to the exocyst, where it activates AKT. In cells lacking TBK1, insulin activates AKT normally, but AKT activation by exocyst-dependent mechanisms is impaired. Discovery and characterization of a 6-aminopyrazolopyrimidine derivative, as a selective low nanomolar TBK1 inhibitor, indicates this regulatory arm can be pharmacologically perturbed independently of canonical PI3K/PDK1 signaling. Thus, AKT is a direct TBK1 substrate that connects TBK1 to prosurvival signaling. PMID:21329883

  12. Methylation profile and amplification of proto-oncogenes in rat pancreas induced with phytoestrogens

    SciTech Connect

    Lyn-Cook, B.D.; Blann, E.; Bo, J.

    1995-01-01

    Specific gene hypermethylation has been shown in DNA from neonatal rats exposed to the phytoestrogens, coumestrol, and equol. The pancreas is an organ in which estrogen receptors have been shown to be present. Studies have correlated the development of acute pancreatitis with rising levels of human estrogen binding proteins. Neonatal rats were dosed with 10 or 100 {mu}g of coumestrol or equol on postnatal day (PND) 1-10. The animals were sacrificed at Day 15. The pancreas was excised and pancreatic acinar cells isolated for molecular analysis. DNA was isolated from the cells by lysis in TEN-9 buffer supplemented with proteinase K and 0.1% SDS. High molecular weight (HMW) DNA was digested with the methylated DNA specific restriction enzymes, Hpa II and Msp I, for determination of methylation profiles. Both coumestrol and equol at high doses caused hypermethylation of the c-H-ras proto-oncogene. No hypermethylation or hypomethylation was observed in the proto-oncogenes, c-myc or c-fos. Methylation is thought to be an epigenetic mechanism involved in the activation (hypomethylation) or inactivation (hypermethylation) of cellular genes which are known to play a role in carcinogenesis. Epidemiology studies have shown that equol may have anti-carcinogenic effects on some hormone-dependent cancers. Additional studies are needed to further understand the role of phytoestrogens and methylation in relation to pancreatic disorders. 15 refs., 4 figs.

  13. SRSF2 promotes splicing and transcription of exon 11 included isoform in Ron proto-oncogene

    PubMed Central

    Moon, Heegyum; Cho, Sunghee; Loh, Tiing Jen; Oh, Hyun Kyung; Jang, Ha Na; Zhou, Jianhua; Kwon, Young-Soo; Liao, D. Joshua; Jun, Youngsoo; Eom, Soohyun; Ghigna, Claudia; Biamonti, Giuseppe; Green, Michael R; Zheng, Xuexiu; Shen, Haihong

    2015-01-01

    The product of proto-oncogene Ron is a human receptor for the macrophage-stimulating protein (MSP). Upon activation, Ron is able to induce cell dissociation, migration and matrix invasion. Exon 11 skipping of Ron pre-mRNA produces Ron△165 protein that is constitutively active even in the absence of its ligand. Here we show that knockdown of SRSF2 promotes the decrease of exon 11 inclusion, whereas overexpression of SRSF2 promotes exon 11 inclusion. We demonstrate that SRSF2 promotes exon 11 inclusion through splicing and transcription procedure. We also present evidence that reduced expression of SRSF2 induce a decrease in the splicing of both intron 10 and 11, by contrast, overexpression of SRSF2 induce an increase in the splicing of intron 10 and 11. Through mutation analysis, we show that SRSF2 functionally target and physically interact with CGAG sequence on exon 11. In addition, we reveal that weak strength of splice sites of exon 11 is not required for the function of SRSF2 on the splicing of Ron exon 11. Our results indicate that SRSF2 promotes exon 11 inclusion of Ron proto-oncogene through targeting exon 11. Our study provides a novel mechanism by which Ron is expressed. PMID:25220236

  14. Activation of ras oncogene in aflatoxin-induced rat liver carcinogenesis.

    PubMed Central

    Sinha, S; Webber, C; Marshall, C J; Knowles, M A; Proctor, A; Barrass, N C; Neal, G E

    1988-01-01

    The presence of activated transforming genes was investigated in four primary aflatoxin-induced rat liver tumors in male Fischer rats, in two cell lines generated from such tumors, in an epithelial liver-derived nontransformed cell line, and in the latter cell line after transformation by aflatoxin B1 in vitro. When DNA extracted from these sources was transfected into NIH 3T3 cells, negative results were obtained from focus assays. Cotransfection of these DNA samples with a gene for resistance to G418, followed by selection for resistance to that antibiotic, and tumorigenicity testing in nude mice demonstrated DNA-mediated transfer of the neoplastic phenotype in all cases except for DNA from the nontransformed cell line. DNA extracted from these primary nude mouse tumors used in a secondary round of transfection with NIH 3T3 cells gave positive results in focus assays, which were conserved through succeeding rounds of transfection. By use of appropriate radiolabeled probes, activated ras oncogenes were detected in all samples. N-ras activation was detected in three of the primary rat liver tumors and both hepatoma cell lines. Ki-ras activation was detected in one primary rat liver tumor, and Ha-ras activation was detected in the cell line transformed in vitro with activated aflatoxin B1. The activated Ki-ras oncogene was further characterized by use of synthetic oligonucleotide probes and was shown to contain a G----A transition at the second nucleotide in codon 12. Images PMID:3287372

  15. Interplay Between Metabolism and Oncogenic Process: Role of microRNAs

    PubMed Central

    Arora, Aastha; Singh, Saurabh; Bhatt, Anant Narayan; Pandey, Sanjay; Sandhir, Rajat; Dwarakanath, Bilikere S.

    2015-01-01

    Cancer is a complex disease that arises from the alterations in the composition and regulation of several genes leading to the disturbances in signaling pathways, resulting in the dysregulation of cell proliferation and death as well as the ability of transformed cells to invade the host tissue and metastasize. It is increasingly becoming clear that metabolic reprograming plays a critical role in tumorigenesis and metastasis. Therefore, targeting this phenotype is considered as a promising approach for the development of therapeutics and adjuvants. The process of metabolic reprograming is linked to the activation of oncogenes and/or suppression of tumor suppressor genes, which are further regulated by microRNAs (miRNAs) that play important roles in the interplay between oncogenic process and metabolic reprograming. Looking at the advances