Sample records for musically modulated electromagnetic

  1. Music and the brain - design of an MEG compatible piano.

    PubMed

    Chacon-Castano, Julian; Rathbone, Daniel R; Hoffman, Rachel; Heng Yang; Pantazis, Dimitrios; Yang, Jason; Hornberger, Erik; Hanumara, Nevan C

    2017-07-01

    Magnetoencephalography (MEG) neuroimaging has been used to study subjects' responses when listening to music, but research into the effects of playing music has been limited by the lack of MEG compatible instruments that can operate in a magnetically shielded environment without creating electromagnetic interference. This paper describes the design and preliminary testing of an MEG compatible piano keyboard with 25 full size keys that employs a novel 3-state optical encoder design and electronics to provide realistic velocity-controlled volume modulation. This instrument will allow researchers to study musical performance on a finer timescale than fMRI and enable a range of MEG studies.

  2. Temporal modulations in speech and music.

    PubMed

    Ding, Nai; Patel, Aniruddh D; Chen, Lin; Butler, Henry; Luo, Cheng; Poeppel, David

    2017-10-01

    Speech and music have structured rhythms. Here we discuss a major acoustic correlate of spoken and musical rhythms, the slow (0.25-32Hz) temporal modulations in sound intensity and compare the modulation properties of speech and music. We analyze these modulations using over 25h of speech and over 39h of recordings of Western music. We show that the speech modulation spectrum is highly consistent across 9 languages (including languages with typologically different rhythmic characteristics). A different, but similarly consistent modulation spectrum is observed for music, including classical music played by single instruments of different types, symphonic, jazz, and rock. The temporal modulations of speech and music show broad but well-separated peaks around 5 and 2Hz, respectively. These acoustically dominant time scales may be intrinsic features of speech and music, a possibility which should be investigated using more culturally diverse samples in each domain. Distinct modulation timescales for speech and music could facilitate their perceptual analysis and its neural processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The Change of Music Preferences Following the Onset of a Mental Disorder.

    PubMed

    Gebhardt, Stefan; von Georgi, Richard

    2015-02-24

    A psychiatric population (n=123) was examined on how music preferences had changed after the onset of a mental disorder. Most patients did not change their previous music preference; this group of patients considered music helpful for their mental state, showed more attractivity and enforcement as personality traits and used music more for emotion modulation. Patients who experienced a preference shift reported that music had impaired them during the time of illness; these patients showed less ego-strength, less confidence and less enforcement and used music less for arousal modulation. A third subgroup stopped listening to music completely after the onset of the mental disorder; these patients attribute less importance to music and also reported that music had impaired their mental state. They showed more ego-strength and used music less for emotion modulation. The results suggest that the use of music in everyday life can be helpful as an emotion modulation strategy. However, some patients might need instructions on how to use music in a functional way and not a dysfunctional one. Psychiatrists and psychotherapists as well as music therapists should be aware of emotion modulation strategies, subjective valence of music and personality traits of their patients. Due to the ubiquity of music, psychoeducative instructions on how to use music in everyday life plays an increasing role in the treatment of mental illness.

  4. The Change of Music Preferences Following the Onset of a Mental Disorder

    PubMed Central

    Gebhardt, Stefan; von Georgi, Richard

    2015-01-01

    A psychiatric population (n=123) was examined on how music preferences had changed after the onset of a mental disorder. Most patients did not change their previous music preference; this group of patients considered music helpful for their mental state, showed more attractivity and enforcement as personality traits and used music more for emotion modulation. Patients who experienced a preference shift reported that music had impaired them during the time of illness; these patients showed less ego-strength, less confidence and less enforcement and used music less for arousal modulation. A third subgroup stopped listening to music completely after the onset of the mental disorder; these patients attribute less importance to music and also reported that music had impaired their mental state. They showed more ego-strength and used music less for emotion modulation. The results suggest that the use of music in everyday life can be helpful as an emotion modulation strategy. However, some patients might need instructions on how to use music in a functional way and not a dysfunctional one. Psychiatrists and psychotherapists as well as music therapists should be aware of emotion modulation strategies, subjective valence of music and personality traits of their patients. Due to the ubiquity of music, psychoeducative instructions on how to use music in everyday life plays an increasing role in the treatment of mental illness. PMID:26266024

  5. Performing music can induce greater modulation of emotion-related psychophysiological responses than listening to music.

    PubMed

    Nakahara, Hidehiro; Furuya, Shinichi; Masuko, Tsutomu; Francis, Peter R; Kinoshita, Hiroshi

    2011-09-01

    The present study investigated the differential effects of music-induced emotion on heart rate (HR) and its variability (HRV) while playing music on the piano and listening to a recording of the same piece of music. Sixteen pianists were monitored during tasks involving emotional piano performance, non-emotional piano performance, emotional perception, and non-emotional perception. It was found that emotional induction during both perception and performance modulated HR and HRV, and that such modulations were significantly greater during musical performance than during perception. The results confirmed that musical performance was far more effective in modulating emotion-related autonomic nerve activity than musical perception in musicians. The findings suggest the presence of a neural network of reward-emotion-associated autonomic nerve activity for musical performance that is independent of a neural network for musical perception. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Analysis of MUSIC-type imaging functional for single, thin electromagnetic inhomogeneity in limited-view inverse scattering problem

    NASA Astrophysics Data System (ADS)

    Ahn, Chi Young; Jeon, Kiwan; Park, Won-Kwang

    2015-06-01

    This study analyzes the well-known MUltiple SIgnal Classification (MUSIC) algorithm to identify unknown support of thin penetrable electromagnetic inhomogeneity from scattered field data collected within the so-called multi-static response matrix in limited-view inverse scattering problems. The mathematical theories of MUSIC are partially discovered, e.g., in the full-view problem, for an unknown target of dielectric contrast or a perfectly conducting crack with the Dirichlet boundary condition (Transverse Magnetic-TM polarization) and so on. Hence, we perform further research to analyze the MUSIC-type imaging functional and to certify some well-known but theoretically unexplained phenomena. For this purpose, we establish a relationship between the MUSIC imaging functional and an infinite series of Bessel functions of integer order of the first kind. This relationship is based on the rigorous asymptotic expansion formula in the existence of a thin inhomogeneity with a smooth supporting curve. Various results of numerical simulation are presented in order to support the identified structure of MUSIC. Although a priori information of the target is needed, we suggest a least condition of range of incident and observation directions to apply MUSIC in the limited-view problem.

  7. Direction Finding in the Presence of Complex Electro-Magnetic Environment.

    DTIC Science & Technology

    1995-06-29

    compiling adversely affects the resolution capabilities of the MUSIC algorithm. A technique utilizing the terminal impedance matrix is devised to...performance of the MUSIC algorithm is also investigated.Interference power, as little as 15dB below the signal power from the near field scatterer greatly...reduces.the resolution capabilities of the MUSIC algorithm. A new away configuration is devised to suppress the interference. Modification of the MUSIC

  8. African Music in an American Context. Mini-Module.

    ERIC Educational Resources Information Center

    African-American Inst., New York, NY. School Services Div.

    Insights are offered into how speech, melody, and rhythm dramatize the differences in the construction and interpretation of music for Africa and America. Intended for use in instructing American students about African music, the learning module relates music to traditional African culture and maintains that the music is at the same time…

  9. Scientific perspectives on music therapy.

    PubMed

    Hillecke, Thomas; Nickel, Anne; Bolay, Hans Volker

    2005-12-01

    What needs to be done on the long road to evidence-based music therapy? First of all, an adequate research strategy is required. For this purpose the general methodology for therapy research should be adopted. Additionally, music therapy needs a variety of methods of allied fields to contribute scientific findings, including mathematics, natural sciences, behavioral and social sciences, as well as the arts. Pluralism seems necessary as well as inevitable. At least two major research problems can be identified, however, that make the path stony: the problem of specificity and the problem of eclecticism. Neuroscientific research in music is giving rise to new ideas, perspectives, and methods; they seem to be promising prospects for a possible contribution to a theoretical and empirical scientific foundation for music therapy. Despite the huge heterogeneity of theoretical approaches in music therapy, an integrative model of working ingredients in music therapy is useful as a starting point for empirical studies in order to question what specifically works in music therapy. For this purpose, a heuristic model, consisting of five music therapy working factors (attention modulation, emotion modulation, cognition modulation, behavior modulation, and communication modulation) has been developed by the Center for Music Therapy Research (Viktor Dulger Institute) in Heidelberg. Evidence shows the effectiveness of music therapy for treating certain diseases, but the question of what it is in music therapy that works remains largely unanswered. The authors conclude with some questions to neuroscientists, which we hope may help elucidate relevant aspects of a possible link between the two disciplines.

  10. Human neuromagnetic steady-state responses to amplitude-modulated tones, speech, and music.

    PubMed

    Lamminmäki, Satu; Parkkonen, Lauri; Hari, Riitta

    2014-01-01

    Auditory steady-state responses that can be elicited by various periodic sounds inform about subcortical and early cortical auditory processing. Steady-state responses to amplitude-modulated pure tones have been used to scrutinize binaural interaction by frequency-tagging the two ears' inputs at different frequencies. Unlike pure tones, speech and music are physically very complex, as they include many frequency components, pauses, and large temporal variations. To examine the utility of magnetoencephalographic (MEG) steady-state fields (SSFs) in the study of early cortical processing of complex natural sounds, the authors tested the extent to which amplitude-modulated speech and music can elicit reliable SSFs. MEG responses were recorded to 90-s-long binaural tones, speech, and music, amplitude-modulated at 41.1 Hz at four different depths (25, 50, 75, and 100%). The subjects were 11 healthy, normal-hearing adults. MEG signals were averaged in phase with the modulation frequency, and the sources of the resulting SSFs were modeled by current dipoles. After the MEG recording, intelligibility of the speech, musical quality of the music stimuli, naturalness of music and speech stimuli, and the perceived deterioration caused by the modulation were evaluated on visual analog scales. The perceived quality of the stimuli decreased as a function of increasing modulation depth, more strongly for music than speech; yet, all subjects considered the speech intelligible even at the 100% modulation. SSFs were the strongest to tones and the weakest to speech stimuli; the amplitudes increased with increasing modulation depth for all stimuli. SSFs to tones were reliably detectable at all modulation depths (in all subjects in the right hemisphere, in 9 subjects in the left hemisphere) and to music stimuli at 50 to 100% depths, whereas speech usually elicited clear SSFs only at 100% depth.The hemispheric balance of SSFs was toward the right hemisphere for tones and speech, whereas SSFs to music showed no lateralization. In addition, the right lateralization of SSFs to the speech stimuli decreased with decreasing modulation depth. The results showed that SSFs can be reliably measured to amplitude-modulated natural sounds, with slightly different hemispheric lateralization for different carrier sounds. With speech stimuli, modulation at 100% depth is required, whereas for music the 75% or even 50% modulation depths provide a reasonable compromise between the signal-to-noise ratio of SSFs and sound quality or perceptual requirements. SSF recordings thus seem feasible for assessing the early cortical processing of natural sounds.

  11. Towards a neural basis of music perception.

    PubMed

    Koelsch, Stefan; Siebel, Walter A

    2005-12-01

    Music perception involves complex brain functions underlying acoustic analysis, auditory memory, auditory scene analysis, and processing of musical syntax and semantics. Moreover, music perception potentially affects emotion, influences the autonomic nervous system, the hormonal and immune systems, and activates (pre)motor representations. During the past few years, research activities on different aspects of music processing and their neural correlates have rapidly progressed. This article provides an overview of recent developments and a framework for the perceptual side of music processing. This framework lays out a model of the cognitive modules involved in music perception, and incorporates information about the time course of activity of some of these modules, as well as research findings about where in the brain these modules might be located.

  12. Response of cardiac autonomic modulation after a single exposure to musical auditory stimulation

    PubMed Central

    Ferreira, Lucas L.; Vanderlei, Luiz Carlos M.; Guida, Heraldo L.; de Abreu, Luiz Carlos; Garner, David M.; Vanderlei, Franciele M.; Ferreira, Celso; Valenti, Vitor E.

    2015-01-01

    The acute effects after exposure to different styles of music on cardiac autonomic modulation assessed through heart rate variability (HRV) analysis have not yet been well elucidated. We aimed to investigate the recovery response of cardiac autonomic modulation in women after exposure to musical auditory stimulation of different styles. The study was conducted on 30 healthy women aged between 18 years and 30 years. We did not include subjects having previous experience with musical instruments and those who had an affinity for music styles. The volunteers remained at rest for 10 min and were exposed to classical baroque (64-84 dB) and heavy metal (75-84 dB) music for 10 min, and their HRV was evaluated for 30 min after music cessation. We analyzed the following HRV indices: Standard deviation of normal-to-normal (SDNN) intervals, root mean square of successive differences (RMSSD), percentage of normal-to-normal 50 (pNN50), low frequency (LF), high frequency (HF), and LF/HF ratio. SDNN, LF in absolute units (ms2) and normalized (nu), and LF/HF ratio increased while HF index (nu) decreased after exposure to classical baroque music. Regarding the heavy metal music style, it was observed that there were increases in SDNN, RMSSD, pNN50, and LF (ms2) after the musical stimulation. In conclusion, the recovery response of cardiac autonomic modulation after exposure to auditory stimulation with music featured an increased global activity of both systems for the two musical styles, with a cardiac sympathetic modulation for classical baroque music and a cardiac vagal tone for the heavy metal style. PMID:25774614

  13. MUSIC electromagnetic imaging with enhanced resolution for small inclusions

    NASA Astrophysics Data System (ADS)

    Chen, Xudong; Zhong, Yu

    2009-01-01

    This paper investigates the influence of the test dipole on the resolution of the multiple signal classification (MUSIC) imaging method applied to the electromagnetic inverse scattering problem of determining the locations of a collection of small objects embedded in a known background medium. Based on the analysis of the induced electric dipoles in eigenstates, an algorithm is proposed to determine the test dipole that generates a pseudo-spectrum with enhanced resolution. The amplitudes in three directions of the optimal test dipole are not necessarily in phase, i.e., the optimal test dipole may not correspond to a physical direction in the real three-dimensional space. In addition, the proposed test-dipole-searching algorithm is able to deal with some special scenarios, due to the shapes and materials of objects, to which the standard MUSIC does not apply.

  14. A new MUSIC electromagnetic imaging method with enhanced resolution for small inclusions

    NASA Astrophysics Data System (ADS)

    Zhong, Yu; Chen, Xudong

    2008-11-01

    This paper investigates the influence of test dipole on the resolution of the multiple signal classification (MUSIC) imaging method applied to the electromagnetic inverse scattering problem of determining the locations of a collection of small objects embedded in a known background medium. Based on the analysis of the induced electric dipoles in eigenstates, an algorithm is proposed to determine the test dipole that generates a pseudo-spectrum with enhanced resolution. The amplitudes in three directions of the optimal test dipole are not necessarily in phase, i.e., the optimal test dipole may not correspond to a physical direction in the real three-dimensional space. In addition, the proposed test-dipole-searching algorithm is able to deal with some special scenarios, due to the shapes and materials of objects, to which the standard MUSIC doesn't apply.

  15. Electromagnetic radiation as a probe of the initial state and of viscous dynamics in relativistic nuclear collisions

    NASA Astrophysics Data System (ADS)

    Vujanovic, Gojko; Paquet, Jean-François; Denicol, Gabriel S.; Luzum, Matthew; Jeon, Sangyong; Gale, Charles

    2016-07-01

    The penetrating nature of electromagnetic signals makes them suitable probes to explore the properties of the strongly interacting medium created in relativistic nuclear collisions. We examine the effects of the initial conditions and shear relaxation time on the spectra and flow coefficients of electromagnetic probes, using an event-by-event 3+1-dimensional viscous hydrodynamic simulation (music).

  16. Music for Elementary Teachers; Self-Help Guide (MUS 370). Adams State College.

    ERIC Educational Resources Information Center

    Stokes, Cloyce

    This self-help guide for the music teacher is one of a series of eight Teacher Education Modules developed by Adams State College Teacher Corps Program. The guide itself consists of 11 modules, the first five of which focus on the mathematical and scientific aspects of music--pitch, tempo, furation, time, and key. These five modules are…

  17. Interpretation of Blazar Flux Variations as Music

    NASA Astrophysics Data System (ADS)

    Webb, J. R.

    2003-12-01

    Blazars are believed to be distant galaxies in the process of formation. They emit electromagnetic radiation (light) over the entire electromagnetic spectrum from radio waves to gamma-rays. The emission varies with time in most frequency ranges and the causes for the variation are yet to be adequately explained. Astronomers have been monitoring these objects with optical telescopes for over 50 years now and we have collected a large database of brightnesses over these fifty years. This paper presents some of these light curves, and adopts a computational method to translate the brightness fluctuations into musical tones. These tones are then converted to sound using a midi synthesizer on a PC.

  18. Electromagnetic MUSIC-type imaging of perfectly conducting, arc-like cracks at single frequency

    NASA Astrophysics Data System (ADS)

    Park, Won-Kwang; Lesselier, Dominique

    2009-11-01

    We propose a non-iterative MUSIC (MUltiple SIgnal Classification)-type algorithm for the time-harmonic electromagnetic imaging of one or more perfectly conducting, arc-like cracks found within a homogeneous space R2. The algorithm is based on a factorization of the Multi-Static Response (MSR) matrix collected in the far-field at a single, nonzero frequency in either Transverse Magnetic (TM) mode (Dirichlet boundary condition) or Transverse Electric (TE) mode (Neumann boundary condition), followed by the calculation of a MUSIC cost functional expected to exhibit peaks along the crack curves each half a wavelength. Numerical experimentation from exact, noiseless and noisy data shows that this is indeed the case and that the proposed algorithm behaves in robust manner, with better results in the TM mode than in the TE mode for which one would have to estimate the normal to the crack to get the most optimal results.

  19. Experience Drives Synchronization: The phase and Amplitude Dynamics of Neural Oscillations to Musical Chords Are Differentially Modulated by Musical Expertise.

    PubMed

    Pallesen, Karen Johanne; Bailey, Christopher J; Brattico, Elvira; Gjedde, Albert; Palva, J Matias; Palva, Satu

    2015-01-01

    Musical expertise is associated with structural and functional changes in the brain that underlie facilitated auditory perception. We investigated whether the phase locking (PL) and amplitude modulations (AM) of neuronal oscillations in response to musical chords are correlated with musical expertise and whether they reflect the prototypicality of chords in Western tonal music. To this aim, we recorded magnetoencephalography (MEG) while musicians and non-musicians were presented with common prototypical major and minor chords, and with uncommon, non-prototypical dissonant and mistuned chords, while watching a silenced movie. We then analyzed the PL and AM of ongoing oscillations in the theta (4-8 Hz) alpha (8-14 Hz), beta- (14-30 Hz) and gamma- (30-80 Hz) bands to these chords. We found that musical expertise was associated with strengthened PL of ongoing oscillations to chords over a wide frequency range during the first 300 ms from stimulus onset, as opposed to increased alpha-band AM to chords over temporal MEG channels. In musicians, the gamma-band PL was strongest to non-prototypical compared to other chords, while in non-musicians PL was strongest to minor chords. In both musicians and non-musicians the long-latency (> 200 ms) gamma-band PL was also sensitive to chord identity, and particularly to the amplitude modulations (beats) of the dissonant chord. These findings suggest that musical expertise modulates oscillation PL to musical chords and that the strength of these modulations is dependent on chord prototypicality.

  20. Brain correlates of music-evoked emotions.

    PubMed

    Koelsch, Stefan

    2014-03-01

    Music is a universal feature of human societies, partly owing to its power to evoke strong emotions and influence moods. During the past decade, the investigation of the neural correlates of music-evoked emotions has been invaluable for the understanding of human emotion. Functional neuroimaging studies on music and emotion show that music can modulate activity in brain structures that are known to be crucially involved in emotion, such as the amygdala, nucleus accumbens, hypothalamus, hippocampus, insula, cingulate cortex and orbitofrontal cortex. The potential of music to modulate activity in these structures has important implications for the use of music in the treatment of psychiatric and neurological disorders.

  1. Experience Drives Synchronization: The phase and Amplitude Dynamics of Neural Oscillations to Musical Chords Are Differentially Modulated by Musical Expertise

    PubMed Central

    Pallesen, Karen Johanne; Bailey, Christopher J.; Brattico, Elvira; Gjedde, Albert; Palva, J. Matias; Palva, Satu

    2015-01-01

    Musical expertise is associated with structural and functional changes in the brain that underlie facilitated auditory perception. We investigated whether the phase locking (PL) and amplitude modulations (AM) of neuronal oscillations in response to musical chords are correlated with musical expertise and whether they reflect the prototypicality of chords in Western tonal music. To this aim, we recorded magnetoencephalography (MEG) while musicians and non-musicians were presented with common prototypical major and minor chords, and with uncommon, non-prototypical dissonant and mistuned chords, while watching a silenced movie. We then analyzed the PL and AM of ongoing oscillations in the theta (4–8 Hz) alpha (8–14 Hz), beta- (14–30 Hz) and gamma- (30–80 Hz) bands to these chords. We found that musical expertise was associated with strengthened PL of ongoing oscillations to chords over a wide frequency range during the first 300 ms from stimulus onset, as opposed to increased alpha-band AM to chords over temporal MEG channels. In musicians, the gamma-band PL was strongest to non-prototypical compared to other chords, while in non-musicians PL was strongest to minor chords. In both musicians and non-musicians the long-latency (> 200 ms) gamma-band PL was also sensitive to chord identity, and particularly to the amplitude modulations (beats) of the dissonant chord. These findings suggest that musical expertise modulates oscillation PL to musical chords and that the strength of these modulations is dependent on chord prototypicality. PMID:26291324

  2. [The new magnetic therapy TAMMEF in the treatment of simple shoulder pain].

    PubMed

    Battisti, E; Bianciardi, L; Albanese, A; Piazza, E; Rigato, M; Galassi, G; Giordano, N

    2007-01-01

    Numerous studies have demonstrated the utility of extremely low frequencies (ELF) electromagnetic fields in the treatment of pain. Moreover, the effects of these fields seems to depend on their respective codes (frequency, intensity, waveform). In our study we want to assess the effects of the TAMMEF (Therapeutic Application of a Musically Modulated Electromagnetic Field) system, whose field is piloted by a musical signal and its parameters (frequency, intensity, waveform) are modified in time, randomly varying within the respective ranges, so that all possible codes can occur during a single application. Sixty subjects, affected by shoulder periarthritis were enrolled in the study and randomly divided into three groups of 20 patients each: A exposed to TAMMEF, B exposed to ELF, C exposed to a simulated field. All subjects underwent a cycle of 15 daily sessions of 30 minutes each and a clinical examination upon enrollment, after 7 days of therapy, at the end of the cycle and at a follow-up 30 days later. All the patients of groups A and B completed the therapy without the appearance of side effects: they presented a significant improvement of the subjective pain and the functional limitation, which remained stable at the follow-up examination. In group C, there was no improvement of the pain symptoms or articular functionality. This study suggests that the TAMMEF system is efficacious in the control of pain symptoms and in the reduction of functional limitation in patients with shoulder periarthritis. Moreover, the effects of the TAMMEF system cover those produced by the ELF field.

  3. Timbral Sharpness and Modulations in Frequency and Amplitude: Implications for the Fusion of Musical Sounds.

    NASA Astrophysics Data System (ADS)

    Goad, Pamela Joy

    The fusion of musical voices is an important aspect of musical blend, or the mixing of individual sounds. Yet, little research has been done to explicitly determine the factors involved in fusion. In this study, the similarity of timbre and modulation were examined for their contribution to the fusion of sounds. It is hypothesized that similar timbres will fuse better than dissimilar timbres, and, voices with the same kind of modulation will fuse better than voices of different modulations. A perceptually-based measure, known as sharpness was investigated as a measure of timbre. The advantages of using sharpness are that it is based on hearing sensitivities and masking phenomena of inner ear processing. Five musical instrument families were digitally recorded in performances across a typical playing range at two extreme dynamic levels. Analyses reveal that sharpness is capable of uncovering subtle changes in timbre including those found in musical dynamics, instrument design, and performer-specific variations. While these analyses alone are insufficient to address fusion, preliminary calculations of timbral combinations indicate that sharpness has the potential to predict the fusion of sounds used in musical composition. Three experiments investigated the effects of modulation on the fusion of a harmonic major sixth interval. In the first experiment using frequency modulation, stimuli varied in deviation about a mean fundamental frequency and relative modulation phase between the two tones. Results showed smaller frequency deviations promoted fusion and relative phase differences had a minimal effect. In a second experiment using amplitude modulation, stimuli varied in deviation about a mean amplitude level and relative phase of modulation. Results showed smaller amplitude deviations promoted better fusion, but unlike frequency modulation, relative phase differences were also important. In a third experiment, frequency modulation, amplitude modulation and mixed modulation were arranged in all possible voicings. Results showed frequency modulation in the lower voice and less variance in amplitude envelopes contributed to an increase in fusion. The theory that similar modulations would promote better fusion was only marginally supported. For these experiments, results revealed differences depending on modulation type and that a lesser amount of modulation fosters greater fusion.

  4. Using music as a signal for biofeedback.

    PubMed

    Bergstrom, Ilias; Seinfeld, Sofia; Arroyo-Palacios, Jorge; Slater, Mel; Sanchez-Vives, Maria V

    2014-07-01

    Studies on the potential benefits of conveying biofeedback stimulus using a musical signal have appeared in recent years with the intent of harnessing the strong effects that music listening may have on subjects. While results are encouraging, the fundamental question has yet to be addressed, of how combined music and biofeedback compares to the already established use of either of these elements separately. This experiment, involving young adults (N = 24), compared the effectiveness at modulating participants' states of physiological arousal of each of the following conditions: A) listening to pre-recorded music, B) sonification biofeedback of the heart rate, and C) an algorithmically modulated musical feedback signal conveying the subject's heart rate. Our hypothesis was that each of the conditions (A), (B) and (C) would differ from the other two in the extent to which it enables participants to increase and decrease their state of physiological arousal, with (C) being more effective than (B), and both more than (A). Several physiological measures and qualitative responses were recorded and analyzed. Results show that using musical biofeedback allowed participants to modulate their state of physiological arousal at least equally well as sonification biofeedback, and much better than just listening to music, as reflected in their heart rate measurements, controlling for respiration-rate. Our findings indicate that the known effects of music in modulating arousal can therefore be beneficially harnessed when designing a biofeedback protocol. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Perceptually Salient Regions of the Modulation Power Spectrum for Musical Instrument Identification.

    PubMed

    Thoret, Etienne; Depalle, Philippe; McAdams, Stephen

    2017-01-01

    The ability of a listener to recognize sound sources, and in particular musical instruments from the sounds they produce, raises the question of determining the acoustical information used to achieve such a task. It is now well known that the shapes of the temporal and spectral envelopes are crucial to the recognition of a musical instrument. More recently, Modulation Power Spectra (MPS) have been shown to be a representation that potentially explains the perception of musical instrument sounds. Nevertheless, the question of which specific regions of this representation characterize a musical instrument is still open. An identification task was applied to two subsets of musical instruments: tuba, trombone, cello, saxophone, and clarinet on the one hand, and marimba, vibraphone, guitar, harp, and viola pizzicato on the other. The sounds were processed with filtered spectrotemporal modulations with 2D Gaussian windows. The most relevant regions of this representation for instrument identification were determined for each instrument and reveal the regions essential for their identification. The method used here is based on a "molecular approach," the so-called bubbles method. Globally, the instruments were correctly identified and the lower values of spectrotemporal modulations are the most important regions of the MPS for recognizing instruments. Interestingly, instruments that were confused with each other led to non-overlapping regions and were confused when they were filtered in the most salient region of the other instrument. These results suggest that musical instrument timbres are characterized by specific spectrotemporal modulations, information which could contribute to music information retrieval tasks such as automatic source recognition.

  6. Music and Creative Movement: Arizona HSST/CDA Competency Based Training Module #23.

    ERIC Educational Resources Information Center

    Brownrigg, Carolyn

    The purpose of this Child Development Associate (CDA) training module is to help the CDA intern increase musical experiences in his or her classroom. Objectives are presented along with suggested activities for achieving each objective, and an assessment checklist. Also provided is a study guide emphasizing the values of musical activities in the…

  7. Music modulation of pain perception and pain-related activity in the brain, brain stem, and spinal cord: a functional magnetic resonance imaging study.

    PubMed

    Dobek, Christine E; Beynon, Michaela E; Bosma, Rachael L; Stroman, Patrick W

    2014-10-01

    The oldest known method for relieving pain is music, and yet, to date, the underlying neural mechanisms have not been studied. Here, we investigate these neural mechanisms by applying a well-defined painful stimulus while participants listened to their favorite music or to no music. Neural responses in the brain, brain stem, and spinal cord were mapped with functional magnetic resonance imaging spanning the cortex, brain stem, and spinal cord. Subjective pain ratings were observed to be significantly lower when pain was administered with music than without music. The pain stimulus without music elicited neural activity in brain regions that are consistent with previous studies. Brain regions associated with pleasurable music listening included limbic, frontal, and auditory regions, when comparing music to non-music pain conditions. In addition, regions demonstrated activity indicative of descending pain modulation when contrasting the 2 conditions. These regions include the dorsolateral prefrontal cortex, periaqueductal gray matter, rostral ventromedial medulla, and dorsal gray matter of the spinal cord. This is the first imaging study to characterize the neural response of pain and how pain is mitigated by music, and it provides new insights into the neural mechanism of music-induced analgesia within the central nervous system. This article presents the first investigation of neural processes underlying music analgesia in human participants. Music modulates pain responses in the brain, brain stem, and spinal cord, and neural activity changes are consistent with engagement of the descending analgesia system. Copyright © 2014 American Pain Society. Published by Elsevier Inc. All rights reserved.

  8. Musical agency reduces perceived exertion during strenuous physical performance

    PubMed Central

    Fritz, Thomas Hans; Hardikar, Samyogita; Demoucron, Matthias; Niessen, Margot; Demey, Michiel; Giot, Olivier; Li, Yongming; Haynes, John-Dylan; Villringer, Arno; Leman, Marc

    2013-01-01

    Music is known to be capable of reducing perceived exertion during strenuous physical activity. The current interpretation of this modulating effect of music is that music may be perceived as a diversion from unpleasant proprioceptive sensations that go along with exhaustion. Here we investigated the effects of music on perceived exertion during a physically strenuous task, varying musical agency, a task that relies on the experience of body proprioception, rather than simply diverting from it. For this we measured psychologically indicated exertion during physical workout with and without musical agency while simultaneously acquiring metabolic values with spirometry. Results showed that musical agency significantly decreased perceived exertion during workout, indicating that musical agency may actually facilitate physically strenuous activities. This indicates that the positive effect of music on perceived exertion cannot always be explained by an effect of diversion from proprioceptive feedback. Furthermore, this finding suggests that the down-modulating effect of musical agency on perceived exertion may be a previously unacknowledged driving force for the development of music in humans: making music makes strenuous physical activities less exhausting. PMID:24127588

  9. Musical agency reduces perceived exertion during strenuous physical performance.

    PubMed

    Fritz, Thomas Hans; Hardikar, Samyogita; Demoucron, Matthias; Niessen, Margot; Demey, Michiel; Giot, Olivier; Li, Yongming; Haynes, John-Dylan; Villringer, Arno; Leman, Marc

    2013-10-29

    Music is known to be capable of reducing perceived exertion during strenuous physical activity. The current interpretation of this modulating effect of music is that music may be perceived as a diversion from unpleasant proprioceptive sensations that go along with exhaustion. Here we investigated the effects of music on perceived exertion during a physically strenuous task, varying musical agency, a task that relies on the experience of body proprioception, rather than simply diverting from it. For this we measured psychologically indicated exertion during physical workout with and without musical agency while simultaneously acquiring metabolic values with spirometry. Results showed that musical agency significantly decreased perceived exertion during workout, indicating that musical agency may actually facilitate physically strenuous activities. This indicates that the positive effect of music on perceived exertion cannot always be explained by an effect of diversion from proprioceptive feedback. Furthermore, this finding suggests that the down-modulating effect of musical agency on perceived exertion may be a previously unacknowledged driving force for the development of music in humans: making music makes strenuous physical activities less exhausting.

  10. Photonic Breast Tomography and Tumor Aggressiveness Assessment

    DTIC Science & Technology

    2011-07-01

    incorporates, in optical domain, the vector subspace classification method, Multiple Signal Classification ( MUSIC ). MUSIC was developed by Devaney...and co-workers for finding the location of scattering targets whose size is smaller than the wavelength of acoustic waves or electromagnetic waves...general area of array processing for acoustic and radar time-reversal imaging [12]. The eigenvalue equation of TR matrix is solved, and the signal and

  11. Music for Elementary Teachers, Competency-Based Approach. Adams State College.

    ERIC Educational Resources Information Center

    Stokes, Cloyce; And Others

    This is one of a series of eight Teacher Education Modules developed by Adams State College Teacher Corps Program. The goals of this module package are listed as follows: a) to introduce the intern to music for elementary school children; b) to enable interns to develop knowledge and skills of an elementary level in music; c) to enable interns to…

  12. 'I love Rock 'n' Roll'--music genre preference modulates brain responses to music.

    PubMed

    Istók, Eva; Brattico, Elvira; Jacobsen, Thomas; Ritter, Aileen; Tervaniemi, M

    2013-02-01

    The present study examined the effect of participants' music genre preference on the neural processes underlying evaluative and cognitive judgements of music using the event-related potential technique. To this aim, two participant groups differing in their preference for Latin American and Heavy Metal music performed a liking judgement and a genre classification task on a variety of excerpts of either music genre. A late positive potential (LPP) was elicited in all conditions between 600 and 900 ms after stimulus onset. During the genre classification task, an early negativity was elicited by the preferred compared to the non-preferred music at around 230-370 ms whereas the non-preferred genre was characterized by a larger LPP. The findings suggest that evaluative and cognitive judgements of music are accompanied by affective responses and that the valence of music may spontaneously modulate early processes of music categorization even when no overt liking judgement is required. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. [Pulse-modulated Electromagnetic Radiation of Extremely High Frequencies Protects Cellular DNA against Damaging Effect of Physico-Chemical Factors in vitro].

    PubMed

    Gapeyev, A B; Lukyanova, N A

    2015-01-01

    Using a comet assay technique, we investigated protective effects of. extremely high frequency electromagnetic radiation in combination with the damaging effect of X-ray irradiation, the effect of damaging agents hydrogen peroxide and methyl methanesulfonate on DNA in mouse whole blood leukocytes. It was shown that the preliminary exposure of the cells to low intensity pulse-modulated electromagnetic radiation (42.2 GHz, 0.1 mW/cm2, 20-min exposure, modulation frequencies of 1 and 16 Hz) caused protective effects decreasing the DNA damage by 20-45%. The efficacy of pulse-modulated electromagnetic radiation depended on the type of genotoxic agent and increased in a row methyl methanesulfonate--X-rays--hydrogen peroxide. Continuous electromagnetic radiation was ineffective. The mechanisms of protective effects may be connected with an induction of the adaptive response by nanomolar concentrations of reactive oxygen species formed by pulse-modulated electromagnetic radiation.

  14. Proposal of an Algorithm to Synthesize Music Suitable for Dance

    NASA Astrophysics Data System (ADS)

    Morioka, Hirofumi; Nakatani, Mie; Nishida, Shogo

    This paper proposes an algorithm for synthesizing music suitable for emotions in moving pictures. Our goal is to support multi-media content creation; web page design, animation films and so on. Here we adopt a human dance as a moving picture to examine the availability of our method. Because we think the dance image has high affinity with music. This algorithm is composed of three modules. The first is the module for computing emotions from an input dance image, the second is for computing emotions from music in the database and the last is for selecting music suitable for input dance via an interface of emotion.

  15. Comparing the information conveyed by envelope modulation for speech intelligibility, speech quality, and music quality.

    PubMed

    Kates, James M; Arehart, Kathryn H

    2015-10-01

    This paper uses mutual information to quantify the relationship between envelope modulation fidelity and perceptual responses. Data from several previous experiments that measured speech intelligibility, speech quality, and music quality are evaluated for normal-hearing and hearing-impaired listeners. A model of the auditory periphery is used to generate envelope signals, and envelope modulation fidelity is calculated using the normalized cross-covariance of the degraded signal envelope with that of a reference signal. Two procedures are used to describe the envelope modulation: (1) modulation within each auditory frequency band and (2) spectro-temporal processing that analyzes the modulation of spectral ripple components fit to successive short-time spectra. The results indicate that low modulation rates provide the highest information for intelligibility, while high modulation rates provide the highest information for speech and music quality. The low-to-mid auditory frequencies are most important for intelligibility, while mid frequencies are most important for speech quality and high frequencies are most important for music quality. Differences between the spectral ripple components used for the spectro-temporal analysis were not significant in five of the six experimental conditions evaluated. The results indicate that different modulation-rate and auditory-frequency weights may be appropriate for indices designed to predict different types of perceptual relationships.

  16. Comparing the information conveyed by envelope modulation for speech intelligibility, speech quality, and music quality

    PubMed Central

    Kates, James M.; Arehart, Kathryn H.

    2015-01-01

    This paper uses mutual information to quantify the relationship between envelope modulation fidelity and perceptual responses. Data from several previous experiments that measured speech intelligibility, speech quality, and music quality are evaluated for normal-hearing and hearing-impaired listeners. A model of the auditory periphery is used to generate envelope signals, and envelope modulation fidelity is calculated using the normalized cross-covariance of the degraded signal envelope with that of a reference signal. Two procedures are used to describe the envelope modulation: (1) modulation within each auditory frequency band and (2) spectro-temporal processing that analyzes the modulation of spectral ripple components fit to successive short-time spectra. The results indicate that low modulation rates provide the highest information for intelligibility, while high modulation rates provide the highest information for speech and music quality. The low-to-mid auditory frequencies are most important for intelligibility, while mid frequencies are most important for speech quality and high frequencies are most important for music quality. Differences between the spectral ripple components used for the spectro-temporal analysis were not significant in five of the six experimental conditions evaluated. The results indicate that different modulation-rate and auditory-frequency weights may be appropriate for indices designed to predict different types of perceptual relationships. PMID:26520329

  17. Module Eight: Induction; Basic Electricity and Electronics Individualized Learning System.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    The module covers in greater depth electromagnetic induction, its effects, and how it is used to advantage in electrical circuits; and the physical components, called inductors, designed to take advantage of the phenomenon of electromagnetic induction. This module is divided into four lessons: electromagnetism; inductors and flux density, inducing…

  18. History of Music Therapy and Its Contemporary Applications in Cardiovascular Diseases.

    PubMed

    Montinari, Maria Rosa; Giardina, Simona; Minelli, Pierluca; Minelli, Sergio

    2018-02-01

    Contrary to what is commonly believed, music therapy is an old cure, the use of which is lost in the mists of time. Music always has been perceived to have particular healing powers, and the entire history of civilization contains aspects that link music to physical and mental healing. It seems that the adoption of music for therapeutic purposes harks back to a distant past, probably since the Paleolithic period: it was believed that listening to music could affect the behavior of human beings. In later centuries, the concept of "musical organ-tropism" was born and developed, because according to the type of music, one may affect the cardiovascular, respiratory, and neuroendocrine systems. Studies have shown that music can powerfully evoke and modulate emotions and moods, along with changes in heart activity, blood pressure, and breathing. Indeed, the following findings arise from the literature: heart and respiratory rates are higher in response to exciting music than in the case of tranquilizing music. In addition, music produces activity changes in brain structures (amygdala, hypothalamus, insular and orbitofrontal cortex) known to modulate heart function. This article provides a careful overview of music therapy history from prehistory to the present and a review of the latest applications of music therapy in cardiovascular diseases.

  19. The influence of body movements on children's perception of music with an ambiguous expressive character.

    PubMed

    Maes, Pieter-Jan; Leman, Marc

    2013-01-01

    The theory of embodied music cognition states that the perception and cognition of music is firmly, although not exclusively, linked to action patterns associated with that music. In this regard, the focus lies mostly on how music promotes certain action tendencies (i.e., dance, entrainment, etc.). Only recently, studies have started to devote attention to the reciprocal effects that people's body movements may exert on how people perceive certain aspects of music and sound (e.g., pitch, meter, musical preference, etc.). The present study positions itself in this line of research. The central research question is whether expressive body movements, which are systematically paired with music, can modulate children's perception of musical expressiveness. We present a behavioral experiment in which different groups of children (7-8 years, N = 46) either repetitively performed a happy or a sad choreography in response to expressively ambiguous music or merely listened to that music. The results of our study show indeed that children's perception of musical expressiveness is modulated in accordance with the expressive character of the dance choreography performed to the music. This finding supports theories that claim a strong connection between action and perception, although further research is needed to uncover the details of this connection.

  20. The Influence of Body Movements on Children’s Perception of Music with an Ambiguous Expressive Character

    PubMed Central

    Maes, Pieter-Jan; Leman, Marc

    2013-01-01

    The theory of embodied music cognition states that the perception and cognition of music is firmly, although not exclusively, linked to action patterns associated with that music. In this regard, the focus lies mostly on how music promotes certain action tendencies (i.e., dance, entrainment, etc.). Only recently, studies have started to devote attention to the reciprocal effects that people’s body movements may exert on how people perceive certain aspects of music and sound (e.g., pitch, meter, musical preference, etc.). The present study positions itself in this line of research. The central research question is whether expressive body movements, which are systematically paired with music, can modulate children’s perception of musical expressiveness. We present a behavioral experiment in which different groups of children (7–8 years, N = 46) either repetitively performed a happy or a sad choreography in response to expressively ambiguous music or merely listened to that music. The results of our study show indeed that children’s perception of musical expressiveness is modulated in accordance with the expressive character of the dance choreography performed to the music. This finding supports theories that claim a strong connection between action and perception, although further research is needed to uncover the details of this connection. PMID:23358805

  1. Neurophysiological Effects of Trait Empathy in Music Listening

    PubMed Central

    Wallmark, Zachary; Deblieck, Choi; Iacoboni, Marco

    2018-01-01

    The social cognitive basis of music processing has long been noted, and recent research has shown that trait empathy is linked to musical preferences and listening style. Does empathy modulate neural responses to musical sounds? We designed two functional magnetic resonance imaging (fMRI) experiments to address this question. In Experiment 1, subjects listened to brief isolated musical timbres while being scanned. In Experiment 2, subjects listened to excerpts of music in four conditions (familiar liked (FL)/disliked and unfamiliar liked (UL)/disliked). For both types of musical stimuli, emotional and cognitive forms of trait empathy modulated activity in sensorimotor and cognitive areas: in the first experiment, empathy was primarily correlated with activity in supplementary motor area (SMA), inferior frontal gyrus (IFG) and insula; in Experiment 2, empathy was mainly correlated with activity in prefrontal, temporo-parietal and reward areas. Taken together, these findings reveal the interactions between bottom-up and top-down mechanisms of empathy in response to musical sounds, in line with recent findings from other cognitive domains. PMID:29681804

  2. Neurophysiological Effects of Trait Empathy in Music Listening.

    PubMed

    Wallmark, Zachary; Deblieck, Choi; Iacoboni, Marco

    2018-01-01

    The social cognitive basis of music processing has long been noted, and recent research has shown that trait empathy is linked to musical preferences and listening style. Does empathy modulate neural responses to musical sounds? We designed two functional magnetic resonance imaging (fMRI) experiments to address this question. In Experiment 1, subjects listened to brief isolated musical timbres while being scanned. In Experiment 2, subjects listened to excerpts of music in four conditions (familiar liked (FL)/disliked and unfamiliar liked (UL)/disliked). For both types of musical stimuli, emotional and cognitive forms of trait empathy modulated activity in sensorimotor and cognitive areas: in the first experiment, empathy was primarily correlated with activity in supplementary motor area (SMA), inferior frontal gyrus (IFG) and insula; in Experiment 2, empathy was mainly correlated with activity in prefrontal, temporo-parietal and reward areas. Taken together, these findings reveal the interactions between bottom-up and top-down mechanisms of empathy in response to musical sounds, in line with recent findings from other cognitive domains.

  3. Common modulation of limbic network activation underlies musical emotions as they unfold.

    PubMed

    Singer, Neomi; Jacoby, Nori; Lin, Tamar; Raz, Gal; Shpigelman, Lavi; Gilam, Gadi; Granot, Roni Y; Hendler, Talma

    2016-11-01

    Music is a powerful means for communicating emotions among individuals. Here we reveal that this continuous stream of affective information is commonly represented in the brains of different listeners and that particular musical attributes mediate this link. We examined participants' brain responses to two naturalistic musical pieces using functional Magnetic Resonance imaging (fMRI). Following scanning, as participants listened to the musical pieces for a second time, they continuously indicated their emotional experience on scales of valence and arousal. These continuous reports were used along with a detailed annotation of the musical features, to predict a novel index of Dynamic Common Activation (DCA) derived from ten large-scale data-driven functional networks. We found an association between the unfolding music-induced emotionality and the DCA modulation within a vast network of limbic regions. The limbic-DCA modulation further corresponded with continuous changes in two temporal musical features: beat-strength and tempo. Remarkably, this "collective limbic sensitivity" to temporal features was found to mediate the link between limbic-DCA and the reported emotionality. An additional association with the emotional experience was found in a left fronto-parietal network, but only among a sub-group of participants with a high level of musical experience (>5years). These findings may indicate two processing-levels underlying the unfolding of common music emotionality; (1) a widely shared core-affective process that is confined to a limbic network and mediated by temporal regularities in music and (2) an experience based process that is rooted in a left fronto-parietal network that may involve functioning of the 'mirror-neuron system'. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. How music alters a kiss: superior temporal gyrus controls fusiform-amygdalar effective connectivity.

    PubMed

    Pehrs, Corinna; Deserno, Lorenz; Bakels, Jan-Hendrik; Schlochtermeier, Lorna H; Kappelhoff, Hermann; Jacobs, Arthur M; Fritz, Thomas Hans; Koelsch, Stefan; Kuchinke, Lars

    2014-11-01

    While watching movies, the brain integrates the visual information and the musical soundtrack into a coherent percept. Multisensory integration can lead to emotion elicitation on which soundtrack valences may have a modulatory impact. Here, dynamic kissing scenes from romantic comedies were presented to 22 participants (13 females) during functional magnetic resonance imaging scanning. The kissing scenes were either accompanied by happy music, sad music or no music. Evidence from cross-modal studies motivated a predefined three-region network for multisensory integration of emotion, consisting of fusiform gyrus (FG), amygdala (AMY) and anterior superior temporal gyrus (aSTG). The interactions in this network were investigated using dynamic causal models of effective connectivity. This revealed bilinear modulations by happy and sad music with suppression effects on the connectivity from FG and AMY to aSTG. Non-linear dynamic causal modeling showed a suppressive gating effect of aSTG on fusiform-amygdalar connectivity. In conclusion, fusiform to amygdala coupling strength is modulated via feedback through aSTG as region for multisensory integration of emotional material. This mechanism was emotion-specific and more pronounced for sad music. Therefore, soundtrack valences may modulate emotion elicitation in movies by differentially changing preprocessed visual information to the amygdala. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  5. Top–Down Modulation on the Perception and Categorization of Identical Pitch Contours in Speech and Music

    PubMed Central

    Weidema, Joey L.; Roncaglia-Denissen, M. P.; Honing, Henkjan

    2016-01-01

    Whether pitch in language and music is governed by domain-specific or domain-general cognitive mechanisms is contentiously debated. The aim of the present study was to investigate whether mechanisms governing pitch contour perception operate differently when pitch information is interpreted as either speech or music. By modulating listening mode, this study aspired to demonstrate that pitch contour perception relies on domain-specific cognitive mechanisms, which are regulated by top–down influences from language and music. Three groups of participants (Mandarin speakers, Dutch speaking non-musicians, and Dutch musicians) were exposed to identical pitch contours, and tested on their ability to identify these contours in a language and musical context. Stimuli consisted of disyllabic words spoken in Mandarin, and melodic tonal analogs, embedded in a linguistic and melodic carrier phrase, respectively. Participants classified identical pitch contours as significantly different depending on listening mode. Top–down influences from language appeared to alter the perception of pitch contour in speakers of Mandarin. This was not the case for non-musician speakers of Dutch. Moreover, this effect was lacking in Dutch speaking musicians. The classification patterns of pitch contours in language and music seem to suggest that domain-specific categorization is modulated by top–down influences from language and music. PMID:27313552

  6. How music alters a kiss: superior temporal gyrus controls fusiform–amygdalar effective connectivity

    PubMed Central

    Deserno, Lorenz; Bakels, Jan-Hendrik; Schlochtermeier, Lorna H.; Kappelhoff, Hermann; Jacobs, Arthur M.; Fritz, Thomas Hans; Koelsch, Stefan; Kuchinke, Lars

    2014-01-01

    While watching movies, the brain integrates the visual information and the musical soundtrack into a coherent percept. Multisensory integration can lead to emotion elicitation on which soundtrack valences may have a modulatory impact. Here, dynamic kissing scenes from romantic comedies were presented to 22 participants (13 females) during functional magnetic resonance imaging scanning. The kissing scenes were either accompanied by happy music, sad music or no music. Evidence from cross-modal studies motivated a predefined three-region network for multisensory integration of emotion, consisting of fusiform gyrus (FG), amygdala (AMY) and anterior superior temporal gyrus (aSTG). The interactions in this network were investigated using dynamic causal models of effective connectivity. This revealed bilinear modulations by happy and sad music with suppression effects on the connectivity from FG and AMY to aSTG. Non-linear dynamic causal modeling showed a suppressive gating effect of aSTG on fusiform–amygdalar connectivity. In conclusion, fusiform to amygdala coupling strength is modulated via feedback through aSTG as region for multisensory integration of emotional material. This mechanism was emotion-specific and more pronounced for sad music. Therefore, soundtrack valences may modulate emotion elicitation in movies by differentially changing preprocessed visual information to the amygdala. PMID:24298171

  7. Face Recognition, Musical Appraisal, and Emotional Crossmodal Bias.

    PubMed

    Invitto, Sara; Calcagnì, Antonio; Mignozzi, Arianna; Scardino, Rosanna; Piraino, Giulia; Turchi, Daniele; De Feudis, Irio; Brunetti, Antonio; Bevilacqua, Vitoantonio; de Tommaso, Marina

    2017-01-01

    Recent research on the crossmodal integration of visual and auditory perception suggests that evaluations of emotional information in one sensory modality may tend toward the emotional value generated in another sensory modality. This implies that the emotions elicited by musical stimuli can influence the perception of emotional stimuli presented in other sensory modalities, through a top-down process. The aim of this work was to investigate how crossmodal perceptual processing influences emotional face recognition and how potential modulation of this processing induced by music could be influenced by the subject's musical competence. We investigated how emotional face recognition processing could be modulated by listening to music and how this modulation varies according to the subjective emotional salience of the music and the listener's musical competence. The sample consisted of 24 participants: 12 professional musicians and 12 university students (non-musicians). Participants performed an emotional go/no-go task whilst listening to music by Albeniz, Chopin, or Mozart. The target stimuli were emotionally neutral facial expressions. We examined the N170 Event-Related Potential (ERP) and behavioral responses (i.e., motor reaction time to target recognition and musical emotional judgment). A linear mixed-effects model and a decision-tree learning technique were applied to N170 amplitudes and latencies. The main findings of the study were that musicians' behavioral responses and N170 is more affected by the emotional value of music administered in the emotional go/no-go task and this bias is also apparent in responses to the non-target emotional face. This suggests that emotional information, coming from multiple sensory channels, activates a crossmodal integration process that depends upon the stimuli emotional salience and the listener's appraisal.

  8. Musical training modulates the early but not the late stage of rhythmic syntactic processing.

    PubMed

    Sun, Lijun; Liu, Fang; Zhou, Linshu; Jiang, Cunmei

    2018-02-01

    Syntactic processing is essential for musical understanding. Although the processing of harmonic syntax has been well studied, very little is known about the neural mechanisms underlying rhythmic syntactic processing. The present study investigated the neural processing of rhythmic syntax and whether and to what extent long-term musical training impacts such processing. Fourteen musicians and 14 nonmusicians listened to syntactic-regular or syntactic-irregular rhythmic sequences and judged the completeness of these sequences. Nonmusicians, as well as musicians, showed a P600 effect to syntactic-irregular endings, indicating that musical exposure and perceptual learning of music are sufficient to enable nonmusicians to process rhythmic syntax at the late stage. However, musicians, but not nonmusicians, also exhibited an early right anterior negativity (ERAN) response to syntactic-irregular endings, which suggests that musical training only modulates the early but not the late stage of rhythmic syntactic processing. These findings revealed for the first time the neural mechanisms underlying the processing of rhythmic syntax in music, which has important implications for theories of hierarchically organized music cognition and comparative studies of syntactic processing in music and language. © 2017 Society for Psychophysiological Research.

  9. An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency.

    PubMed

    Fan, Yuancheng; Qiao, Tong; Zhang, Fuli; Fu, Quanhong; Dong, Jiajia; Kong, Botao; Li, Hongqiang

    2017-01-16

    Electromagnetically induced transparency (EIT) is a promising technology for the enhancement of light-matter interactions, and recent demonstrations of the EIT analogue realized in artificial micro-structured medium have remarkably reduced the extreme requirement for experimental observation of EIT spectrum. In this paper, we propose to electrically control the EIT-like spectrum in a metamaterial as an electromagnetic modulator. A diode acting as a tunable resistor is loaded in the gap of paired wires to inductively tune the magnetic resonance, which induces remarkable modulation on the EIT-like spectrum through the metamaterial sample. The experimental measurements confirmed that the prediction of electromagnetic modulation in three narrow bands on the EIT-like spectrum, and a modulation contrast of up to 31 dB was achieved on the transmission through the metamaterial. Our results may facilitate the study on active/dynamical technology in translational metamaterials, which connect extraordinary manipulations on the flow of light in metamaterials, e.g., the exotic EIT, and practical applications in industry.

  10. MUSIC imaging method for electromagnetic inspection of composite multi-layers

    NASA Astrophysics Data System (ADS)

    Rodeghiero, Giacomo; Ding, Ping-Ping; Zhong, Yu; Lambert, Marc; Lesselier, Dominique

    2015-03-01

    A first-order asymptotic formulation of the electric field scattered by a small inclusion (with respect to the wavelength in dielectric regime or to the skin depth in conductive regime) embedded in composite material is given. It is validated by comparison with results obtained using a Method of Moments (MoM). A non-iterative MUltiple SIgnal Classification (MUSIC) imaging method is utilized in the same configuration to locate the position of small defects. The effectiveness of the imaging algorithm is illustrated through some numerical examples.

  11. The Effects of Music Salience on the Gait Performance of Young Adults.

    PubMed

    de Bruin, Natalie; Kempster, Cody; Doucette, Angelica; Doan, Jon B; Hu, Bin; Brown, Lesley A

    2015-01-01

    The presence of a rhythmic beat in the form of a metronome tone or beat-accentuated original music can modulate gait performance; however, it has yet to be determined whether gait modulation can be achieved using commercially available music. The current study investigated the effects of commercially available music on the walking of healthy young adults. Specific aims were (a) to determine whether commercially available music can be used to influence gait (i.e., gait velocity, stride length, cadence, stride time variability), (b) to establish the effect of music salience on gait (i.e., gait velocity, stride length, cadence, stride time variability), and (c) to examine whether music tempi differentially effected gait (i.e., gait velocity, stride length, cadence, stride time variability). Twenty-five participants walked the length of an unobstructed walkway while listening to music. Music selections differed with respect to the salience or the tempo of the music. The genre of music and artists were self-selected by participants. Listening to music while walking was an enjoyable activity that influenced gait. Specifically, salient music selections increased measures of cadence, velocity, and stride length; in contrast, gait was unaltered by the presence of non-salient music. Music tempo did not differentially affect gait performance (gait velocity, stride length, cadence, stride time variability) in these participants. Gait performance was differentially influenced by music salience. These results have implications for clinicians considering the use of commercially available music as an alternative to the traditional rhythmic auditory cues used in rehabilitation programs. © the American Music Therapy Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Affective brain-computer music interfacing

    NASA Astrophysics Data System (ADS)

    Daly, Ian; Williams, Duncan; Kirke, Alexis; Weaver, James; Malik, Asad; Hwang, Faustina; Miranda, Eduardo; Nasuto, Slawomir J.

    2016-08-01

    Objective. We aim to develop and evaluate an affective brain-computer music interface (aBCMI) for modulating the affective states of its users. Approach. An aBCMI is constructed to detect a user's current affective state and attempt to modulate it in order to achieve specific objectives (for example, making the user calmer or happier) by playing music which is generated according to a specific affective target by an algorithmic music composition system and a case-based reasoning system. The system is trained and tested in a longitudinal study on a population of eight healthy participants, with each participant returning for multiple sessions. Main results. The final online aBCMI is able to detect its users current affective states with classification accuracies of up to 65% (3 class, p\\lt 0.01) and modulate its user's affective states significantly above chance level (p\\lt 0.05). Significance. Our system represents one of the first demonstrations of an online aBCMI that is able to accurately detect and respond to user's affective states. Possible applications include use in music therapy and entertainment.

  13. Musical Structure Modulates Semantic Priming in Vocal Music

    ERIC Educational Resources Information Center

    Poulin-Charronnat, Benedicte; Bigand, Emmanuel; Madurell, Francois; Peereman, Ronald

    2005-01-01

    It has been shown that harmonic structure may influence the processing of phonemes whatever the extent of participants' musical expertise [Bigand, E., Tillmann, B., Poulin, B., D'Adamo, D. A., & Madurell, F. (2001). The effect of harmonic context on phoneme monitoring in vocal music. "Cognition," 81, B11-B20]. The present study goes a step further…

  14. Background instrumental music and serial recall.

    PubMed

    Nittono, H

    1997-06-01

    Although speech and vocal music are consistently shown to impair serial recall for visually presented items, instrumental music does not always produce a significant disruption. This study investigated the features of instrumental music that would modulate the disruption in serial recall. 24 students were presented sequences of nine digits and required to recall the digits in order of presentation. Instrumental music as played either forward or backward during the task. Forward music caused significantly more disruption than did silence, whereas the reversed music did not. Some higher-order factor may be at work in the effect of background music on serial recall.

  15. MUsical Tools for ENhancing the Awareness of Global Emergencies (The MUTENAGE Project)

    NASA Astrophysics Data System (ADS)

    Lanza, T.; Menghini, A.; Pontani, S.; Sapia, V.

    2017-12-01

    What if the sound extrapolated from the Earth, using a codified methodology, would raise emotions in accordance with the environmental critical issues of a particular site? Antonio Menghini (geophysicist expert of the TEM Method) and Stefano Pontani (a musician) have codified a procedure that transforms geophysical data (transient electromagnetic) into musical notes. Now it is possible to compose musical tracks describing faithfully the risk and geological issues related to different environmental scenarios: 1) Pollution of aquifers; 2) Seawater intrusion along the coastlines; 3) Seismic risk; 4) Drought; 5) Permafrost melting For each of these environmental emergencies, the TEM method (Time Domain Electromagnetics) shows an excellent diagnostic feature, so that the technical-scientific community widely employs it since many year. In fact, the variations of the recorded signal (voltage) reflect the modifications induced on the Earth system. Associating well defined musical "footprints" to these geophysical variations, through the sonification process, we have an extraordinary didactic-popular tool, able to make the impact of climatic-environmental changes easily understandable to the common people and to students of every age and grade. We will present some examples, one being the musical effect of seawater intrusion, that is well marked by the progressive increase of the pitches, when approaching the coastline. Other interesting examples come from the sonification of the TEM data acquired on seismic area especially highlighting the effect of seismic wave amplification associated to earthquakes. Besides being a new source of inspiration for musicians, the MUTENAGE Project is intended for delivering didactic tools, for scientific museums and schools, and a series of EM concerts, that will be located in different countries, for each of the above mentioned environmental issues.

  16. Symbolic Analysis of Heart Rate Variability During Exposure to Musical Auditory Stimulation.

    PubMed

    Vanderlei, Franciele Marques; de Abreu, Luiz Carlos; Garner, David Matthew; Valenti, Vitor Engrácia

    2016-01-01

    In recent years, the application of nonlinear methods for analysis of heart rate variability (HRV) has increased. However, studies on the influence of music on cardiac autonomic modulation in those circumstances are rare. The research team aimed to evaluate the acute effects on HRV of selected auditory stimulation by 2 musical styles, measuring the results using nonlinear methods of analysis: Shannon entropy, symbolic analysis, and correlation-dimension analysis. Prospective control study in which the volunteers were exposed to music and variables were compared between control (no auditory stimulation) and during exposure to music. All procedures were performed in a sound-proofed room at the Faculty of Science and Technology at São Paulo State University (UNESP), São Paulo, Brazil. Participants were 22 healthy female students, aged between 18 and 30 y. Prior to the actual intervention, the participants remained at rest for 20 min, and then they were exposed to one of the selected types of music, either classical baroque (64-84 dB) or heavy-metal (75-84 dB). Each musical session lasted a total of 5 min and 15 s. At a point occurring up to 1 wk after that day, the participants listened to the second type of music. The 2 types of music were delivered in a random sequence that depended on the group to which the participant was assigned. The study analyzed the following HRV indices through Shannon entropy; symbolic analysis-0V%, 1V%, 2LV%, and 2ULV%; and correlation-dimension analysis. During exposure to auditory stimulation by heavy-metal or classical baroque music, the study established no statistically significant variations regarding the indices for the Shannon entropy; the symbolic analysis-0V%, 1V%, and 2ULV%; and the correlation-dimension analysis. However, during heavy-metal music, the 2LV% index in the symbolic analysis was reduced compared with the controls. Auditory stimulation with the heavy-metal music reduced the parasympathetic modulation of HRV, whereas no significant changes occurred in cardiac autonomic modulation during exposure to the classical music.

  17. Musical Sophistication and the Effect of Complexity on Auditory Discrimination in Finnish Speakers.

    PubMed

    Dawson, Caitlin; Aalto, Daniel; Šimko, Juraj; Vainio, Martti; Tervaniemi, Mari

    2017-01-01

    Musical experiences and native language are both known to affect auditory processing. The present work aims to disentangle the influences of native language phonology and musicality on behavioral and subcortical sound feature processing in a population of musically diverse Finnish speakers as well as to investigate the specificity of enhancement from musical training. Finnish speakers are highly sensitive to duration cues since in Finnish, vowel and consonant duration determine word meaning. Using a correlational approach with a set of behavioral sound feature discrimination tasks, brainstem recordings, and a musical sophistication questionnaire, we find no evidence for an association between musical sophistication and more precise duration processing in Finnish speakers either in the auditory brainstem response or in behavioral tasks, but they do show an enhanced pitch discrimination compared to Finnish speakers with less musical experience and show greater duration modulation in a complex task. These results are consistent with a ceiling effect set for certain sound features which corresponds to the phonology of the native language, leaving an opportunity for music experience-based enhancement of sound features not explicitly encoded in the language (such as pitch, which is not explicitly encoded in Finnish). Finally, the pattern of duration modulation in more musically sophisticated Finnish speakers suggests integrated feature processing for greater efficiency in a real world musical situation. These results have implications for research into the specificity of plasticity in the auditory system as well as to the effects of interaction of specific language features with musical experiences.

  18. Musical Sophistication and the Effect of Complexity on Auditory Discrimination in Finnish Speakers

    PubMed Central

    Dawson, Caitlin; Aalto, Daniel; Šimko, Juraj; Vainio, Martti; Tervaniemi, Mari

    2017-01-01

    Musical experiences and native language are both known to affect auditory processing. The present work aims to disentangle the influences of native language phonology and musicality on behavioral and subcortical sound feature processing in a population of musically diverse Finnish speakers as well as to investigate the specificity of enhancement from musical training. Finnish speakers are highly sensitive to duration cues since in Finnish, vowel and consonant duration determine word meaning. Using a correlational approach with a set of behavioral sound feature discrimination tasks, brainstem recordings, and a musical sophistication questionnaire, we find no evidence for an association between musical sophistication and more precise duration processing in Finnish speakers either in the auditory brainstem response or in behavioral tasks, but they do show an enhanced pitch discrimination compared to Finnish speakers with less musical experience and show greater duration modulation in a complex task. These results are consistent with a ceiling effect set for certain sound features which corresponds to the phonology of the native language, leaving an opportunity for music experience-based enhancement of sound features not explicitly encoded in the language (such as pitch, which is not explicitly encoded in Finnish). Finally, the pattern of duration modulation in more musically sophisticated Finnish speakers suggests integrated feature processing for greater efficiency in a real world musical situation. These results have implications for research into the specificity of plasticity in the auditory system as well as to the effects of interaction of specific language features with musical experiences. PMID:28450829

  19. Experiencing Blues at the Crossroads: A Place-Based Method for Teaching the Geography of Blues Culture

    ERIC Educational Resources Information Center

    Strait, John

    2012-01-01

    This article offers a pedagogical module that explores the geography of blues culture across the Mississippi Delta. By focusing on blues culture, rather than simply blues music itself, this project provides a forum for understanding the broader geographical conditions from which this musical form emerged. This module utilizes place-based…

  20. Coherent hybrid electromagnetic field imaging

    DOEpatents

    Cooke, Bradly J [Jemez Springs, NM; Guenther, David C [Los Alamos, NM

    2008-08-26

    An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

  1. Modulation of a compressional electromagnetic wave in a magnetized electron-positron quantum plasma.

    PubMed

    Amin, M R

    2015-09-01

    Amplitude modulation of a compressional electromagnetic wave in a strongly magnetized electron-positron pair plasma is considered in the quantum magnetohydrodynamic regime. The important ingredients of this study are the inclusion of the external strong magnetic field, Fermi quantum degeneracy pressure, particle exchange potential, quantum diffraction effects via the Bohm potential, and dissipative effect due to collision of the charged carriers. A modified-nonlinear Schödinger equation is developed for the compressional magnetic field of the electromagnetic wave by employing the standard reductive perturbation technique. The linear and nonlinear dispersions of the electromagnetic wave are discussed in detail. For some parameter ranges, relevant to dense astrophysical objects such as the outer layers of white dwarfs, neutron stars, and magnetars, etc., it is found that the compressional electromagnetic wave is modulationally unstable and propagates as a dissipated electromagnetic wave. It is also found that the quantum effects due to the particle exchange potential and the Bohm potential are negligibly small in comparison to the effects of the Fermi quantum degeneracy pressure. The numerical results on the growth rate of the modulation instability is also presented.

  2. Investigating the effects of musical training on functional brain development with a novel Melodic MMN paradigm.

    PubMed

    Putkinen, Vesa; Tervaniemi, Mari; Saarikivi, Katri; de Vent, Nathalie; Huotilainen, Minna

    2014-04-01

    Sensitivity to changes in various musical features was investigated by recording the mismatch negativity (MMN) auditory event-related potential (ERP) in musically trained and nontrained children semi-longitudinally at the ages of 9, 11, and 13 years. The responses were recorded using a novel Melodic multi-feature paradigm which allows fast (<15 min) recording of an MMN profile for changes in melody, rhythm, musical key, timbre, tuning and timing. When compared to the nontrained children, the musically trained children displayed enlarged MMNs for the melody modulations by the age 13 and for the rhythm modulations, timbre deviants and slightly mistuned tones already at the age of 11. Also, a positive mismatch response elicited by delayed tones was larger in amplitude in the musically trained than in the nontrained children at age 13. No group differences were found at the age 9 suggesting that the later enhancement of the MMN in the musically trained children resulted from training and not pre-existing difference between the groups. The current study demonstrates the applicability of the Melodic multi-feature paradigm in school-aged children and indicates that musical training enhances auditory discrimination for musically central sound dimensions in pre-adolescence. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Writing System Modulates the Association between Sensitivity to Acoustic Cues in Music and Reading Ability: Evidence from Chinese-English Bilingual Children.

    PubMed

    Zhang, Juan; Meng, Yaxuan; Wu, Chenggang; Zhou, Danny Q

    2017-01-01

    Music and language share many attributes and a large body of evidence shows that sensitivity to acoustic cues in music is positively related to language development and even subsequent reading acquisition. However, such association was mainly found in alphabetic languages. What remains unclear is whether sensitivity to acoustic cues in music is associated with reading in Chinese, a morphosyllabic language. The present study aimed to answer this question by measuring music (i.e., musical metric perception and pitch discrimination), language (i.e., phonological awareness, lexical tone sensitivity), and reading abilities (i.e., word recognition) among 54 third-grade Chinese-English bilingual children. After controlling for age and non-verbal intelligence, we found that both musical metric perception and pitch discrimination accounted for unique variance of Chinese phonological awareness while pitch discrimination rather than musical metric perception predicted Chinese lexical tone sensitivity. More importantly, neither musical metric perception nor pitch discrimination was associated with Chinese reading. As for English, musical metric perception and pitch discrimination were correlated with both English phonological awareness and English reading. Furthermore, sensitivity to acoustic cues in music was associated with English reading through the mediation of English phonological awareness. The current findings indicate that the association between sensitivity to acoustic cues in music and reading may be modulated by writing systems. In Chinese, the mapping between orthography and phonology is not as transparent as in alphabetic languages such as English. Thus, this opaque mapping may alter the auditory perceptual sensitivity in music to Chinese reading.

  4. Writing System Modulates the Association between Sensitivity to Acoustic Cues in Music and Reading Ability: Evidence from Chinese–English Bilingual Children

    PubMed Central

    Zhang, Juan; Meng, Yaxuan; Wu, Chenggang; Zhou, Danny Q.

    2017-01-01

    Music and language share many attributes and a large body of evidence shows that sensitivity to acoustic cues in music is positively related to language development and even subsequent reading acquisition. However, such association was mainly found in alphabetic languages. What remains unclear is whether sensitivity to acoustic cues in music is associated with reading in Chinese, a morphosyllabic language. The present study aimed to answer this question by measuring music (i.e., musical metric perception and pitch discrimination), language (i.e., phonological awareness, lexical tone sensitivity), and reading abilities (i.e., word recognition) among 54 third-grade Chinese–English bilingual children. After controlling for age and non-verbal intelligence, we found that both musical metric perception and pitch discrimination accounted for unique variance of Chinese phonological awareness while pitch discrimination rather than musical metric perception predicted Chinese lexical tone sensitivity. More importantly, neither musical metric perception nor pitch discrimination was associated with Chinese reading. As for English, musical metric perception and pitch discrimination were correlated with both English phonological awareness and English reading. Furthermore, sensitivity to acoustic cues in music was associated with English reading through the mediation of English phonological awareness. The current findings indicate that the association between sensitivity to acoustic cues in music and reading may be modulated by writing systems. In Chinese, the mapping between orthography and phonology is not as transparent as in alphabetic languages such as English. Thus, this opaque mapping may alter the auditory perceptual sensitivity in music to Chinese reading. PMID:29170647

  5. [Music and health--what kind of music is helpful for whom? What music not?].

    PubMed

    Trappe, H-J

    2009-12-01

    It is well known that music not only may improve quality of life (QoL) but also have different effects on heart rate (HR) and its variability (HRV). Music emphasis and rhythmic phrases are tracked consistently by physiological variables. Autonomic responses are synchronized with music, which might therefore convey emotions through autonomic arousal during crescendos or rhythmic phrases. A greater modulation of HR, HRV and modulations in cardiac autonomic nerve activity was revealed with a greater effect for music performance than music perception. Reactions to music are considered subjective, but studies suggested that cardiorespiratory variables are influenced under different circumstances. It has been shown that relaxing music decreases significantly the level of anxiety in a preoperative setting to a greater extent than orally administered midazolam (p < 0,001). Higher effectiveness and absence of apparent adverse effects make preoperative relaxing music a useful alternative to midazolam for premedication. In addition, there is sufficient practical evidence of stress reduction to suggest that a proposed regimen of listening to music while resting in bed after open heart surgery. Music intervention should be offered as an integral part of the multimodal regime administered to the patients that have undergone cardiovascular surgery. It is a supportive source that increases relaxation. Music is also effective in under conditions and music can be utilized as an effective intervention for patients with depressive symptoms, geriatrics and in pain, intensive care or palliative medicine. However, careful selected music that incorporates a patient's own preferences may offer an effective method to reduce anxiety and to improve quality of life. The most benefit on health is visible in classic music, meditation music whereas heavy metal music or technosounds are even ineffective or dangerous and will lead to stress and/or life threatening arrhythmias. There are many composers most effectively to improve QoL, particularly Bach, Mozart and Italian composers are "ideal". Georg Thieme Verlag KG Stuttgart, New York.

  6. The influence of moving with music on motor cortical activity.

    PubMed

    Stegemöller, Elizabeth L; Izbicki, Patricia; Hibbing, Paul

    2018-06-19

    Although there is a growing interest in using music to improve movement performance in various populations, there remains a need to better understand how music influences motor cortical activity. Listening to music is tightly linked to neural processes within the motor cortex and can modulate motor cortical activity in healthy young adult (HYAs). There is limited evidence regarding how moving to music modulates motor cortical activity. Thus, the purpose of this study was to explore the influence of moving to music on motor cortical activity in HYAs. Electroencephalography was collected while 32 HYAs tapped their index finger in time with a tone and with two contrasting music styles. Two movement rates were presented for each condition. Power spectra were obtained from data collected over the primary sensorimotor region and supplemental motor area and were compared between conditions. Results revealed a significant difference between both music conditions and the tone only condition for both the regions. For both music styles, power was increased in the beta band for low movement rates and increased in the alpha band for high movement rates. A secondary analysis determining the effect of music experience on motor cortical activity revealed a significant difference between musicians and non-musicians. Power in the beta band was increased across all conditions. The results of this study provide the initial step towards a more complete understanding of the neurophysiological underpinnings of music on movement performance which may inform future studies and therapeutic strategies. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. The influence of music and music therapy on pain-induced neuronal oscillations measured by magnetencephalography.

    PubMed

    Hauck, Michael; Metzner, Susanne; Rohlffs, Fiona; Lorenz, Jürgen; Engel, Andreas K

    2013-04-01

    Modern forms of music therapy are clinically established for various therapeutic or rehabilitative goals, especially in the treatment of chronic pain. However, little is known about the neuronal mechanisms that underlie pain modulation by music. Therefore, we attempted to characterize the effects of music therapy on pain perception by comparing the effects of 2 different therapeutic concepts, referred to as receptive and entrainment methods, on cortical activity recorded by magnetencephalography in combination with laser heat pain. Listening to preferred music within the receptive method yielded a significant reduction of pain ratings associated with a significant power reduction of delta-band activity in the cingulate gyrus, which suggests that participants displaced their focus of attention away from the pain stimulus. On the other hand, listening to self-composed "pain music" and "healing music" within the entrainment method exerted major effects on gamma-band activity in primary and secondary somatosensory cortices. Pain music, in contrast to healing music, increased pain ratings in parallel with an increase in gamma-band activity in somatosensory brain structures. In conclusion, our data suggest that the 2 music therapy approaches operationalized in this study seem to modulate pain perception through at least 2 different mechanisms, involving changes of activity in the delta and gamma bands at different stages of the pain processing system. Copyright © 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  8. Electromagnetic modulation of the ultrasonic signal for nondestructive detection of small defects and ferromagnetic inclusions in thin wall structures

    NASA Astrophysics Data System (ADS)

    Finkel, Peter

    2008-03-01

    We report on new nondestructive evaluation technique based on electromagnetic modulation of ultrasonic signal for detection of the small crack, flaws and inclusions in thin-walled parts. The electromagnetically induced high density current pulse produces stresses which alter the ultrasonic waves scanning the part with the defect and modulate ultrasonic signal. The excited electromagnetic field can produces crack-opening due to Lorentz forces that increase the ultrasonic reflection. The Joule heating associated with the high density current, and consequent thermal stresses may cause both crack-closure, as well as crack-opening, depending on various factors. Experimental data is presented here for the case of a small crack near holes in thin-walled structures. The measurements were taken at 2-10 MHz with a Lamb wave wedge transducer. It is shown that electromagnetic transient modulation of the ultrasonic echo pulse tone-burst suggest that this method could be used to enhance detection of small cracks and ferromagnetic inclusions in thin walled metallic structures.

  9. Musical space synesthesia: automatic, explicit and conceptual connections between musical stimuli and space.

    PubMed

    Akiva-Kabiri, Lilach; Linkovski, Omer; Gertner, Limor; Henik, Avishai

    2014-08-01

    In musical-space synesthesia, musical pitches are perceived as having a spatially defined array. Previous studies showed that symbolic inducers (e.g., numbers, months) can modulate response according to the inducer's relative position on the synesthetic spatial form. In the current study we tested two musical-space synesthetes and a group of matched controls on three different tasks: musical-space mapping, spatial cue detection and a spatial Stroop-like task. In the free mapping task, both synesthetes exhibited a diagonal organization of musical pitch tones rising from bottom left to the top right. This organization was found to be consistent over time. In the subsequent tasks, synesthetes were asked to ignore an auditory or visually presented musical pitch (irrelevant information) and respond to a visual target (i.e., an asterisk) on the screen (relevant information). Compatibility between musical pitch and the target's spatial location was manipulated to be compatible or incompatible with the synesthetes' spatial representations. In the spatial cue detection task participants had to press the space key immediately upon detecting the target. In the Stroop-like task, they had to reach the target by using a mouse cursor. In both tasks, synesthetes' performance was modulated by the compatibility between irrelevant and relevant spatial information. Specifically, the target's spatial location conflicted with the spatial information triggered by the irrelevant musical stimulus. These results reveal that for musical-space synesthetes, musical information automatically orients attention according to their specific spatial musical-forms. The present study demonstrates the genuineness of musical-space synesthesia by revealing its two hallmarks-automaticity and consistency. In addition, our results challenge previous findings regarding an implicit vertical representation for pitch tones in non-synesthete musicians. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. A combined joint diagonalization-MUSIC algorithm for subsurface targets localization

    NASA Astrophysics Data System (ADS)

    Wang, Yinlin; Sigman, John B.; Barrowes, Benjamin E.; O'Neill, Kevin; Shubitidze, Fridon

    2014-06-01

    This paper presents a combined joint diagonalization (JD) and multiple signal classification (MUSIC) algorithm for estimating subsurface objects locations from electromagnetic induction (EMI) sensor data, without solving ill-posed inverse-scattering problems. JD is a numerical technique that finds the common eigenvectors that diagonalize a set of multistatic response (MSR) matrices measured by a time-domain EMI sensor. Eigenvalues from targets of interest (TOI) can be then distinguished automatically from noise-related eigenvalues. Filtering is also carried out in JD to improve the signal-to-noise ratio (SNR) of the data. The MUSIC algorithm utilizes the orthogonality between the signal and noise subspaces in the MSR matrix, which can be separated with information provided by JD. An array of theoreticallycalculated Green's functions are then projected onto the noise subspace, and the location of the target is estimated by the minimum of the projection owing to the orthogonality. This combined method is applied to data from the Time-Domain Electromagnetic Multisensor Towed Array Detection System (TEMTADS). Examples of TEMTADS test stand data and field data collected at Spencer Range, Tennessee are analyzed and presented. Results indicate that due to its noniterative mechanism, the method can be executed fast enough to provide real-time estimation of objects' locations in the field.

  11. The effects of supervised learning on event-related potential correlates of music-syntactic processing.

    PubMed

    Guo, Shuang; Koelsch, Stefan

    2015-11-11

    Humans process music even without conscious effort according to implicit knowledge about syntactic regularities. Whether such automatic and implicit processing is modulated by veridical knowledge has remained unknown in previous neurophysiological studies. This study investigates this issue by testing whether the acquisition of veridical knowledge of a music-syntactic irregularity (acquired through supervised learning) modulates early, partly automatic, music-syntactic processes (as reflected in the early right anterior negativity, ERAN), and/or late controlled processes (as reflected in the late positive component, LPC). Excerpts of piano sonatas with syntactically regular and less regular chords were presented repeatedly (10 times) to non-musicians and amateur musicians. Participants were informed by a cue as to whether the following excerpt contained a regular or less regular chord. Results showed that the repeated exposure to several presentations of regular and less regular excerpts did not influence the ERAN elicited by less regular chords. By contrast, amplitudes of the LPC (as well as of the P3a evoked by less regular chords) decreased systematically across learning trials. These results reveal that late controlled, but not early (partly automatic), neural mechanisms of music-syntactic processing are modulated by repeated exposure to a musical piece. This article is part of a Special Issue entitled SI: Prediction and Attention. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Automated Method of Frequency Determination in Software Metric Data Through the Use of the Multiple Signal Classification (MUSIC) Algorithm

    DTIC Science & Technology

    1998-06-26

    METHOD OF FREQUENCY DETERMINATION 4 IN SOFTWARE METRIC DATA THROUGH THE USE OF THE 5 MULTIPLE SIGNAL CLASSIFICATION ( MUSIC ) ALGORITHM 6 7 STATEMENT OF...graph showing the estimated power spectral 12 density (PSD) generated by the multiple signal classification 13 ( MUSIC ) algorithm from the data set used...implemented in this module; however, it is preferred to use 1 the Multiple Signal Classification ( MUSIC ) algorithm. The MUSIC 2 algorithm is

  13. Modulated wave formation in myocardial cells under electromagnetic radiation

    NASA Astrophysics Data System (ADS)

    Takembo, Clovis N.; Mvogo, A.; Ekobena Fouda, H. P.; Kofané, T. C.

    2018-06-01

    We exclusively analyze the onset and condition of formation of modulated waves in a diffusive FitzHugh-Nagumo model for myocardial cell excitations. The cells are connected through gap junction coupling. An additive magnetic flux variable is used to describe the effect of electromagnetic induction, while electromagnetic radiation is imposed on the magnetic flux variable as a periodic forcing. We used the discrete multiple scale expansion and obtained, from the model equations, a single differential-difference amplitude nonlinear equation. We performed the linear stability analysis of this equation and found that instability features are importantly influenced by the induced electromagnetic gain. We present the unstable and stable regions of modulational instability (MI). The resulting analytic predictions are confirmed by numerical experiments of the generic equations. The results reveal that due to MI, an initial steady state that consisted of a plane wave with low amplitude evolves into a modulated localized wave patterns, soliton-like in shape, with features of synchronization. Furthermore, the formation of periodic pulse train with breathing motion presents a disappearing pattern in the presence of electromagnetic radiation. This could provide guidance and better understanding of sudden heart failure exposed to heavily electromagnetic radiation.

  14. Challenging prior evidence for a shared syntactic processor for language and music.

    PubMed

    Perruchet, Pierre; Poulin-Charronnat, Bénédicte

    2013-04-01

    A theoretical landmark in the growing literature comparing language and music is the shared syntactic integration resource hypothesis (SSIRH; e.g., Patel, 2008), which posits that the successful processing of linguistic and musical materials relies, at least partially, on the mastery of a common syntactic processor. Supporting the SSIRH, Slevc, Rosenberg, and Patel (Psychonomic Bulletin & Review 16(2):374-381, 2009) recently reported data showing enhanced syntactic garden path effects when the sentences were paired with syntactically unexpected chords, whereas the musical manipulation had no reliable effect on the processing of semantic violations. The present experiment replicated Slevc et al.'s (2009) procedure, except that syntactic garden paths were replaced with semantic garden paths. We observed the very same interactive pattern of results. These findings suggest that the element underpinning interactions is the garden path configuration, rather than the implication of an alleged syntactic module. We suggest that a different amount of attentional resources is recruited to process each type of linguistic manipulations, hence modulating the resources left available for the processing of music and, consequently, the effects of musical violations.

  15. The effect of beat frequency on eye movements during free viewing.

    PubMed

    Maróti, Emese; Knakker, Balázs; Vidnyánszky, Zoltán; Weiss, Béla

    2017-02-01

    External periodic stimuli entrain brain oscillations and affect perception and attention. It has been shown that background music can change oculomotor behavior and facilitate detection of visual objects occurring on the musical beat. However, whether musical beats in different tempi modulate information sampling differently during natural viewing remains to be explored. Here we addressed this question by investigating how listening to naturalistic drum grooves in two different tempi affects eye movements of participants viewing natural scenes on a computer screen. We found that the beat frequency of the drum grooves modulated the rate of eye movements: fixation durations were increased at the lower beat frequency (1.7Hz) as compared to the higher beat frequency (2.4Hz) and no music conditions. Correspondingly, estimated visual sampling frequency decreased as fixation durations increased with lower beat frequency. These results imply that slow musical beats can retard sampling of visual information during natural viewing by increasing fixation durations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. How does the brain process music?

    PubMed

    Warren, Jason

    2008-02-01

    The organisation of the musical brain is a major focus of interest in contemporary neuroscience. This reflects the increasing sophistication of tools (especially imaging techniques) to examine brain anatomy and function in health and disease, and the recognition that music provides unique insights into a number of aspects of nonverbal brain function. The emerging picture is complex but coherent, and moves beyond older ideas of music as the province of a single brain area or hemisphere to the concept of music as a 'whole-brain' phenomenon. Music engages a distributed set of cortical modules that process different perceptual, cognitive and emotional components with varying selectivity. 'Why' rather than 'how' the brain processes music is a key challenge for the future.

  17. Musical Expertise Increases Top–Down Modulation Over Hippocampal Activation during Familiarity Decisions

    PubMed Central

    Gagnepain, Pierre; Fauvel, Baptiste; Desgranges, Béatrice; Gaubert, Malo; Viader, Fausto; Eustache, Francis; Groussard, Mathilde; Platel, Hervé

    2017-01-01

    The hippocampus has classically been associated with episodic memory, but is sometimes also recruited during semantic memory tasks, especially for the skilled exploration of familiar information. Cognitive control mechanisms guiding semantic memory search may benefit from the set of cognitive processes at stake during musical training. Here, we examined using functional magnetic resonance imaging, whether musical expertise would promote the top–down control of the left inferior frontal gyrus (LIFG) over the generation of hippocampally based goal-directed thoughts mediating the familiarity judgment of proverbs and musical items. Analyses of behavioral data confirmed that musical experts more efficiently access familiar melodies than non-musicians although such increased ability did not transfer to verbal semantic memory. At the brain level, musical expertise specifically enhanced the recruitment of the hippocampus during semantic access to melodies, but not proverbs. Additionally, hippocampal activation contributed to speed of access to familiar melodies, but only in musicians. Critically, causal modeling of neural dynamics between LIFG and the hippocampus further showed that top–down excitatory regulation over the hippocampus during familiarity decision specifically increases with musical expertise – an effect that generalized across melodies and proverbs. At the local level, our data show that musical expertise modulates the online recruitment of hippocampal response to serve semantic memory retrieval of familiar melodies. The reconfiguration of memory network dynamics following musical training could constitute a promising framework to understand its ability to preserve brain functions. PMID:29033805

  18. Unforgettable film music: The role of emotion in episodic long-term memory for music

    PubMed Central

    Eschrich, Susann; Münte, Thomas F; Altenmüller, Eckart O

    2008-01-01

    Background Specific pieces of music can elicit strong emotions in listeners and, possibly in connection with these emotions, can be remembered even years later. However, episodic memory for emotional music compared with less emotional music has not yet been examined. We investigated whether emotional music is remembered better than less emotional music. Also, we examined the influence of musical structure on memory performance. Results Recognition of 40 musical excerpts was investigated as a function of arousal, valence, and emotional intensity ratings of the music. In the first session the participants judged valence and arousal of the musical pieces. One week later, participants listened to the 40 old and 40 new musical excerpts randomly interspersed and were asked to make an old/new decision as well as to indicate arousal and valence of the pieces. Musical pieces that were rated as very positive were recognized significantly better. Conclusion Musical excerpts rated as very positive are remembered better. Valence seems to be an important modulator of episodic long-term memory for music. Evidently, strong emotions related to the musical experience facilitate memory formation and retrieval. PMID:18505596

  19. Unforgettable film music: the role of emotion in episodic long-term memory for music.

    PubMed

    Eschrich, Susann; Münte, Thomas F; Altenmüller, Eckart O

    2008-05-28

    Specific pieces of music can elicit strong emotions in listeners and, possibly in connection with these emotions, can be remembered even years later. However, episodic memory for emotional music compared with less emotional music has not yet been examined. We investigated whether emotional music is remembered better than less emotional music. Also, we examined the influence of musical structure on memory performance. Recognition of 40 musical excerpts was investigated as a function of arousal, valence, and emotional intensity ratings of the music. In the first session the participants judged valence and arousal of the musical pieces. One week later, participants listened to the 40 old and 40 new musical excerpts randomly interspersed and were asked to make an old/new decision as well as to indicate arousal and valence of the pieces. Musical pieces that were rated as very positive were recognized significantly better. Musical excerpts rated as very positive are remembered better. Valence seems to be an important modulator of episodic long-term memory for music. Evidently, strong emotions related to the musical experience facilitate memory formation and retrieval.

  20. How musical training affects cognitive development: rhythm, reward and other modulating variables.

    PubMed

    Miendlarzewska, Ewa A; Trost, Wiebke J

    2013-01-01

    Musical training has recently gained additional interest in education as increasing neuroscientific research demonstrates its positive effects on brain development. Neuroimaging revealed plastic changes in the brains of adult musicians but it is still unclear to what extent they are the product of intensive music training rather than of other factors, such as preexisting biological markers of musicality. In this review, we synthesize a large body of studies demonstrating that benefits of musical training extend beyond the skills it directly aims to train and last well into adulthood. For example, children who undergo musical training have better verbal memory, second language pronunciation accuracy, reading ability and executive functions. Learning to play an instrument as a child may even predict academic performance and IQ in young adulthood. The degree of observed structural and functional adaptation in the brain correlates with intensity and duration of practice. Importantly, the effects on cognitive development depend on the timing of musical initiation due to sensitive periods during development, as well as on several other modulating variables. Notably, we point to motivation, reward and social context of musical education, which are important yet neglected factors affecting the long-term benefits of musical training. Further, we introduce the notion of rhythmic entrainment and suggest that it may represent a mechanism supporting learning and development of executive functions. It also hones temporal processing and orienting of attention in time that may underlie enhancements observed in reading and verbal memory. We conclude that musical training uniquely engenders near and far transfer effects, preparing a foundation for a range of skills, and thus fostering cognitive development.

  1. Waves in Nature, Lasers to Tsumanis and Beyond

    ScienceCinema

    LLNL - University of California Television

    2017-12-09

    Waves are everywhere. Microwaves, laser beams, music, tsunamis. Electromagnetic waves emanating from the Big Bang fill the universe. Learn about the similarities and difference in all of these wavy phenomena with Ed Moses and Rick Sawicki, Lawrence Livermore National Laboratory scientists Series: Science on Saturday [10/2006] [Science] [Show ID: 11541

  2. Waves in Nature, Lasers to Tsumanis and Beyond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LLNL - University of California Television

    2008-05-01

    Waves are everywhere. Microwaves, laser beams, music, tsunamis. Electromagnetic waves emanating from the Big Bang fill the universe. Learn about the similarities and difference in all of these wavy phenomena with Ed Moses and Rick Sawicki, Lawrence Livermore National Laboratory scientists Series: Science on Saturday [10/2006] [Science] [Show ID: 11541

  3. Automatic stress-relieving music recommendation system based on photoplethysmography-derived heart rate variability analysis.

    PubMed

    Shin, Il-Hyung; Cha, Jaepyeong; Cheon, Gyeong Woo; Lee, Choonghee; Lee, Seung Yup; Yoon, Hyung-Jin; Kim, Hee Chan

    2014-01-01

    This paper presents an automatic stress-relieving music recommendation system (ASMRS) for individual music listeners. The ASMRS uses a portable, wireless photoplethysmography module with a finger-type sensor, and a program that translates heartbeat signals from the sensor to the stress index. The sympathovagal balance index (SVI) was calculated from heart rate variability to assess the user's stress levels while listening to music. Twenty-two healthy volunteers participated in the experiment. The results have shown that the participants' SVI values are highly correlated with their prespecified music preferences. The sensitivity and specificity of the favorable music classification also improved as the number of music repetitions increased to 20 times. Based on the SVI values, the system automatically recommends favorable music lists to relieve stress for individuals.

  4. Beyond Expectations in Music Performance Modules in Higher Education: Rethinking Instrumental and Vocal Music Pedagogy for the Twenty-First Century

    ERIC Educational Resources Information Center

    Simones, Lilian Lima

    2017-01-01

    Music performance in the higher educational context is shaped by a reciprocal chain of interactions between students, part-time tutors and full-time teaching staff, each with specific expectations about the teaching and learning process. Such expectations can provide valuable insights not only for designing and implementing meaningful educational…

  5. Switchable Scattering Meta-Surfaces for Broadband Terahertz Modulation

    PubMed Central

    Unlu, M.; Hashemi, M. R.; Berry, C. W.; Li, S.; Yang, S.-H.; Jarrahi, M.

    2014-01-01

    Active tuning and switching of electromagnetic properties of materials is of great importance for controlling their interaction with electromagnetic waves. In spite of their great promise, previously demonstrated reconfigurable metamaterials are limited in their operation bandwidth due to their resonant nature. Here, we demonstrate a new class of meta-surfaces that exhibit electrically-induced switching in their scattering parameters at room temperature and over a broad range of frequencies. Structural configuration of the subwavelength meta-molecules determines their electromagnetic response to an incident electromagnetic radiation. By reconfiguration of the meta-molecule structure, the strength of the induced electric field and magnetic field in the opposite direction to the incident fields are varied and the scattering parameters of the meta-surface are altered, consequently. We demonstrate a custom-designed meta-surface with switchable scattering parameters at a broad range of terahertz frequencies, enabling terahertz intensity modulation with record high modulation depths and modulation bandwidths through a fully integrated, voltage-controlled device platform at room temperature. PMID:25028123

  6. Electromagnetically-induced-transparency-based cross-phase-modulation at attojoule levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lo, Hsiang-Yu; Chen, Yen-Chun; Su, Po-Ching

    2011-04-15

    We report the experimental demonstration of electromagnetically-induced-transparency-based cross-phase-modulation at attojoule or, equivalently, few-hundred-photon levels. A phase shift of 0.005 rad of a probe pulse modulated by a signal pulse with an energy of {approx}100 aJ, equivalent to {approx}400 photons, was observed in a four-level system of cold {sup 87}Rb atoms.

  7. Electromagnetic correlates of musical expertise in processing of tone patterns.

    PubMed

    Kuchenbuch, Anja; Paraskevopoulos, Evangelos; Herholz, Sibylle C; Pantev, Christo

    2012-01-01

    Using magnetoencephalography (MEG), we investigated the influence of long term musical training on the processing of partly imagined tone patterns (imagery condition) compared to the same perceived patterns (perceptual condition). The magnetic counterpart of the mismatch negativity (MMNm) was recorded and compared between musicians and non-musicians in order to assess the effect of musical training on the detection of deviants to tone patterns. The results indicated a clear MMNm in the perceptual condition as well as in a simple pitch oddball (control) condition in both groups. However, there was no significant mismatch response in either group in the imagery condition despite above chance behavioral performance in the task of detecting deviant tones. The latency and the laterality of the MMNm in the perceptual condition differed significantly between groups, with an earlier MMNm in musicians, especially in the left hemisphere. In contrast the MMNm amplitudes did not differ significantly between groups. The behavioral results revealed a clear effect of long-term musical training in both experimental conditions. The obtained results represent new evidence that the processing of tone patterns is faster and more strongly lateralized in musically trained subjects, which is consistent with other findings in different paradigms of enhanced auditory neural system functioning due to long-term musical training.

  8. Review on Neural Correlates of Emotion Regulation and Music: Implications for Emotion Dysregulation

    PubMed Central

    Hou, Jiancheng; Song, Bei; Chen, Andrew C. N.; Sun, Changan; Zhou, Jiaxian; Zhu, Haidong; Beauchaine, Theodore P.

    2017-01-01

    Previous studies have examined the neural correlates of emotion regulation and the neural changes that are evoked by music exposure. However, the link between music and emotion regulation is poorly understood. The objectives of this review are to (1) synthesize what is known about the neural correlates of emotion regulation and music-evoked emotions, and (2) consider the possibility of therapeutic effects of music on emotion dysregulation. Music-evoked emotions can modulate activities in both cortical and subcortical systems, and across cortical-subcortical networks. Functions within these networks are integral to generation and regulation of emotions. Since dysfunction in these networks are observed in numerous psychiatric disorders, a better understanding of neural correlates of music exposure may lead to more systematic and effective use of music therapy in emotion dysregulation. PMID:28421017

  9. Harnessing functional segregation across brain rhythms as a means to detect EEG oscillatory multiplexing during music listening

    NASA Astrophysics Data System (ADS)

    Adamos, Dimitrios A.; Laskaris, Nikolaos A.; Micheloyannis, Sifis

    2018-06-01

    Objective. Music, being a multifaceted stimulus evolving at multiple timescales, modulates brain function in a manifold way that encompasses not only the distinct stages of auditory perception, but also higher cognitive processes like memory and appraisal. Network theory is apparently a promising approach to describe the functional reorganization of brain oscillatory dynamics during music listening. However, the music induced changes have so far been examined within the functional boundaries of isolated brain rhythms. Approach. Using naturalistic music, we detected the functional segregation patterns associated with different cortical rhythms, as these were reflected in the surface electroencephalography (EEG) measurements. The emerged structure was compared across frequency bands to quantify the interplay among rhythms. It was also contrasted against the structure from the rest and noise listening conditions to reveal the specific components stemming from music listening. Our methodology includes an efficient graph-partitioning algorithm, which is further utilized for mining prototypical modular patterns, and a novel algorithmic procedure for identifying ‘switching nodes’ (i.e. recording sites) that consistently change module during music listening. Main results. Our results suggest the multiplex character of the music-induced functional reorganization and particularly indicate the dependence between the networks reconstructed from the δ and β H rhythms. This dependence is further justified within the framework of nested neural oscillations and fits perfectly within the context of recently introduced cortical entrainment to music. Significance. Complying with the contemporary trends towards a multi-scale examination of the brain network organization, our approach specifies the form of neural coordination among rhythms during music listening. Considering its computational efficiency, and in conjunction with the flexibility of in situ electroencephalography, it may lead to novel assistive tools for real-life applications.

  10. Harnessing functional segregation across brain rhythms as a means to detect EEG oscillatory multiplexing during music listening.

    PubMed

    Adamos, Dimitrios A; Laskaris, Nikolaos A; Micheloyannis, Sifis

    2018-06-01

    Music, being a multifaceted stimulus evolving at multiple timescales, modulates brain function in a manifold way that encompasses not only the distinct stages of auditory perception, but also higher cognitive processes like memory and appraisal. Network theory is apparently a promising approach to describe the functional reorganization of brain oscillatory dynamics during music listening. However, the music induced changes have so far been examined within the functional boundaries of isolated brain rhythms. Using naturalistic music, we detected the functional segregation patterns associated with different cortical rhythms, as these were reflected in the surface electroencephalography (EEG) measurements. The emerged structure was compared across frequency bands to quantify the interplay among rhythms. It was also contrasted against the structure from the rest and noise listening conditions to reveal the specific components stemming from music listening. Our methodology includes an efficient graph-partitioning algorithm, which is further utilized for mining prototypical modular patterns, and a novel algorithmic procedure for identifying 'switching nodes' (i.e. recording sites) that consistently change module during music listening. Our results suggest the multiplex character of the music-induced functional reorganization and particularly indicate the dependence between the networks reconstructed from the δ and β H rhythms. This dependence is further justified within the framework of nested neural oscillations and fits perfectly within the context of recently introduced cortical entrainment to music. Complying with the contemporary trends towards a multi-scale examination of the brain network organization, our approach specifies the form of neural coordination among rhythms during music listening. Considering its computational efficiency, and in conjunction with the flexibility of in situ electroencephalography, it may lead to novel assistive tools for real-life applications.

  11. How musical training affects cognitive development: rhythm, reward and other modulating variables

    PubMed Central

    Miendlarzewska, Ewa A.; Trost, Wiebke J.

    2014-01-01

    Musical training has recently gained additional interest in education as increasing neuroscientific research demonstrates its positive effects on brain development. Neuroimaging revealed plastic changes in the brains of adult musicians but it is still unclear to what extent they are the product of intensive music training rather than of other factors, such as preexisting biological markers of musicality. In this review, we synthesize a large body of studies demonstrating that benefits of musical training extend beyond the skills it directly aims to train and last well into adulthood. For example, children who undergo musical training have better verbal memory, second language pronunciation accuracy, reading ability and executive functions. Learning to play an instrument as a child may even predict academic performance and IQ in young adulthood. The degree of observed structural and functional adaptation in the brain correlates with intensity and duration of practice. Importantly, the effects on cognitive development depend on the timing of musical initiation due to sensitive periods during development, as well as on several other modulating variables. Notably, we point to motivation, reward and social context of musical education, which are important yet neglected factors affecting the long-term benefits of musical training. Further, we introduce the notion of rhythmic entrainment and suggest that it may represent a mechanism supporting learning and development of executive functions. It also hones temporal processing and orienting of attention in time that may underlie enhancements observed in reading and verbal memory. We conclude that musical training uniquely engenders near and far transfer effects, preparing a foundation for a range of skills, and thus fostering cognitive development. PMID:24672420

  12. Musical training shapes neural responses to melodic and prosodic expectation.

    PubMed

    Zioga, Ioanna; Di Bernardi Luft, Caroline; Bhattacharya, Joydeep

    2016-11-01

    Current research on music processing and syntax or semantics in language suggests that music and language share partially overlapping neural resources. Pitch also constitutes a common denominator, forming melody in music and prosody in language. Further, pitch perception is modulated by musical training. The present study investigated how music and language interact on pitch dimension and whether musical training plays a role in this interaction. For this purpose, we used melodies ending on an expected or unexpected note (melodic expectancy being estimated by a computational model) paired with prosodic utterances which were either expected (statements with falling pitch) or relatively unexpected (questions with rising pitch). Participants' (22 musicians, 20 nonmusicians) ERPs and behavioural responses in a statement/question discrimination task were recorded. Participants were faster for simultaneous expectancy violations in the melodic and linguistic stimuli. Further, musicians performed better than nonmusicians, which may be related to their increased pitch tracking ability. At the neural level, prosodic violations elicited a front-central positive ERP around 150ms after the onset of the last word/note, while musicians presented reduced P600 in response to strong incongruities (questions on low-probability notes). Critically, musicians' P800 amplitudes were proportional to their level of musical training, suggesting that expertise might shape the pitch processing of language. The beneficial aspect of expertise could be attributed to its strengthening effect of general executive functions. These findings offer novel contributions to our understanding of shared higher-order mechanisms between music and language processing on pitch dimension, and further demonstrate a potential modulation by musical expertise. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Apparatus and methods for packaging integrated circuit chips with antenna modules providing closed electromagnetic environment for integrated antennas

    NASA Technical Reports Server (NTRS)

    Gaucher, Brian P. (Inventor); Grzyb, Janusz (Inventor); Liu, Duixian (Inventor); Pfeiffer, Ullrich R. (Inventor)

    2008-01-01

    Apparatus and methods are provided for packaging IC chips together with integrated antenna modules designed to provide a closed EM (electromagnetic) environment for antenna radiators, thereby allowing antennas to be designed independent from the packaging technology.

  14. Music exposure differentially alters the levels of brain-derived neurotrophic factor and nerve growth factor in the mouse hypothalamus.

    PubMed

    Angelucci, Francesco; Ricci, Enzo; Padua, Luca; Sabino, Andrea; Tonali, Pietro Attilio

    2007-12-18

    It has been reported that music may have physiological effects on blood pressure, cardiac heartbeat, respiration, and improve mood state in people affected by anxiety, depression and other psychiatric disorders. However, the physiological bases of these phenomena are not clear. Hypothalamus is a brain region involved in the regulation of body homeostasis and in the pathophysiology of anxiety and depression through the modulation of hypothalamic-pituitary-adrenal (HPA) axis. Hypothalamic functions are also influenced by the presence of the neurotrophins brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), which are proteins involved in the growth, survival and function of neurons in the central nervous system. The aim of this study was to investigate the effect of music exposure in mice on hypothalamic levels of BDNF and NGF. We exposed young adult mice to slow rhythm music (6h per day; mild sound pressure levels, between 50 and 60 dB) for 21 consecutive days. At the end of the treatment mice were sacrificed and BDNF and NGF levels in the hypothalamus were measured by enzyme-linked immunosorbent assay (ELISA). We found that music exposure significantly enhanced BDNF levels in the hypothalamus. Furthermore, we observed that music-exposed mice had decreased NGF hypothalamic levels. Our results demonstrate that exposure to music in mice can influence neurotrophin production in the hypothalamus. Our findings also suggest that physiological effects of music might be in part mediated by modulation of neurotrophins.

  15. Electromagnetic behavior of spatial terahertz wave modulators based on reconfigurable micromirror gratings in Littrow configuration.

    PubMed

    Kappa, Jan; Schmitt, Klemens M; Rahm, Marco

    2017-08-21

    Efficient, high speed spatial modulators with predictable performance are a key element in any coded aperture terahertz imaging system. For spectroscopy, the modulators must also provide a broad modulation frequency range. In this study, we numerically analyze the electromagnetic behavior of a dynamically reconfigurable spatial terahertz wave modulator based on a micromirror grating in Littrow configuration. We show that such a modulator can modulate terahertz radiation over a wide frequency range from 1.7 THz to beyond 3 THz at a modulation depth of more than 0.6. As a specific example, we numerically simulated coded aperture imaging of an object with binary transmissive properties and successfully reconstructed the image.

  16. Implementation of Networking-by-Touch to Small Unit, Network-Enabled Operations

    DTIC Science & Technology

    2010-09-01

    Monitoring – Telemanipulation ............... 54  5.  Entertainment and Educational Applications...................... 55  6.  Tactile Displays Embedded...military situational awareness systems, text and graphics applications, medical applications, entertainment and educational applications...25] ) Electromechanical transducer Electromagnetic field sensors Computer driver 21 Now, consider another simple scenario: John loves music

  17. Effects of Listening to Music versus Environmental Sounds in Passive and Active Situations on Levels of Pain and Fatigue in Fibromyalgia.

    PubMed

    Mercadíe, Lolita; Mick, Gérard; Guétin, Stéphane; Bigand, Emmanuel

    2015-10-01

    In fibromyalgia, pain symptoms such as hyperalgesia and allodynia are associated with fatigue. Mechanisms underlying such symptoms can be modulated by listening to pleasant music. We expected that listening to music, because of its emotional impact, would have a greater modulating effect on the perception of pain and fatigue in patients with fibromyalgia than listening to nonmusical sounds. To investigate this hypothesis, we carried out a 4-week study in which patients with fibromyalgia listened to either preselected musical pieces or environmental sounds when they experienced pain in active (while carrying out a physical activity) or passive (at rest) situations. Concomitant changes of pain and fatigue levels were evaluated. When patients listened to music or environmental sounds at rest, pain and fatigue levels were significantly reduced after 20 minutes of listening, with no difference of effect magnitude between the two stimuli. This improvement persisted 10 minutes after the end of the listening session. In active situations, pain did not increase in presence of the two stimuli. Contrary to our expectations, music and environmental sounds produced a similar relieving effect on pain and fatigue, with no benefit gained by listening to pleasant music over environmental sounds. Copyright © 2015 American Society for Pain Management Nursing. Published by Elsevier Inc. All rights reserved.

  18. Lu plays music with a keyboard in the Destiny module

    NASA Image and Video Library

    2003-10-26

    ISS007-E-18033 (26 October 2003) --- Astronaut Edward T. Lu, Expedition 7 NASA ISS science officer and flight engineer, plays a musical keyboard during off-shift time in the Destiny laboratory on the International Space Station (ISS).

  19. VERY LOW FREQUENCY 16 HZ AMPLITUDE MODULATED ELECTROMAGNETIC RADIATION INCREASES CALCIUM EFFLUX FROM THE FROG HEART

    EPA Science Inventory

    The effects of continuous and amplitude-modulated radiofrequency electromagnetic waves on calcium efflux from 45Ca preloaded frog hearts were examined. rog hearts, electrically stimulated at their natural beating frequency, were exposed for 30 min to 240 MHz radiowaves in a Crawf...

  20. [Does music influence visual perception in campimetric measurements of the visual field?].

    PubMed

    Gall, Carolin; Geier, Jens-Stefan; Sabel, Bernhard A; Kasten, Erich

    2009-01-01

    21 subjects (mean age 28,4 +/- 10,9, M +/- SD) without any damage of the visual system were examined with computer-based campimetric tests of near threshold stimulus detection whereby an artificial tunnel vision was induced. Campimetry was performed in four trials in randomized order using a within-subjects-design: 1. classical music, 2. Techno music, 3. music for relaxation and 4. no music. Results were slightly better in all music conditions. Performance was best when subjects were listening to Techno music. The average increase of correctly recognized stimuli and fixation controls amounted to 3 %. To check the stability of the effects 9 subjects were tested three times. A moderating influence of personality traits and habits of listening to music was tested but could not be found. We conclude that music has at least no negative influence on performance in the campimetric measurement. Reasons for the positive effects of music can be seen in a general increase of vigilance and a modulation of perceptual thresholds.

  1. Music Improves Subjective Feelings Leading to Cardiac Autonomic Nervous Modulation: A Pilot Study

    PubMed Central

    Kume, Satoshi; Nishimura, Yukako; Mizuno, Kei; Sakimoto, Nae; Hori, Hiroshi; Tamura, Yasuhisa; Yamato, Masanori; Mitsuhashi, Rika; Akiba, Keigo; Koizumi, Jun-ichi; Watanabe, Yasuyoshi; Kataoka, Yosky

    2017-01-01

    It is widely accepted that listening to music improves subjective feelings and reduces fatigue sensations, and different kinds of music lead to different activations of these feelings. Recently, cardiac autonomic nervous modulation has been proposed as a useful objective indicator of fatigue. However, scientific considerations of the relation between feelings of fatigue and cardiac autonomic nervous modulation while listening to music are still lacking. In this study, we examined which subjective feelings of fatigue are related to participants' cardiac autonomic nervous function while they listen to music. We used an album of comfortable and relaxing environmental music, with blended sounds from a piano and violin as well as natural sound sources. We performed a crossover trial of environmental music and silent sessions for 20 healthy subjects, 12 females, and 8 males, after their daily work shift. We measured changes in eight types of subjective feelings, including healing, fatigue, sleepiness, relaxation, and refreshment, using the KOKORO scale, a subjective mood measurement system for self-reported feelings. Further, we obtained measures of cardiac autonomic nervous function on the basis of heart rate variability before and after the sessions. During the music session, subjective feelings significantly shifted toward healing and a secure/relaxed feeling and these changes were greater than those in the silent session. Heart rates (ΔHR) in the music session significantly decreased compared with those in the silent session. Other cardiac autonomic parameters such as high-frequency (HF) component and the ratio of low-frequency (LF) and HF components (LF/HF) were similar in the two sessions. In the linear regression analysis of the feelings with ΔHR and changes in LF/HF (ΔLF/HF), increases and decreases in ΔHR were correlated to the feeling axes of Fatigue-Healing and Anxiety/Tension–Security/Relaxation, whereas those in ΔLF/HF were related to the feeling axes of Sleepiness–Wakefulness and Gloomy–Refreshed. This indicated that listening to music improved the participants' feelings of fatigue and decreased their heart rates. However, it did not reduce the cardiac LF/HF, suggesting that cardiac LF/HF might show a delayed response to fatigue. Thus, we demonstrated changes in cardiac autonomic nervous functions based on feelings of fatigue. PMID:28344545

  2. Music Improves Subjective Feelings Leading to Cardiac Autonomic Nervous Modulation: A Pilot Study.

    PubMed

    Kume, Satoshi; Nishimura, Yukako; Mizuno, Kei; Sakimoto, Nae; Hori, Hiroshi; Tamura, Yasuhisa; Yamato, Masanori; Mitsuhashi, Rika; Akiba, Keigo; Koizumi, Jun-Ichi; Watanabe, Yasuyoshi; Kataoka, Yosky

    2017-01-01

    It is widely accepted that listening to music improves subjective feelings and reduces fatigue sensations, and different kinds of music lead to different activations of these feelings. Recently, cardiac autonomic nervous modulation has been proposed as a useful objective indicator of fatigue. However, scientific considerations of the relation between feelings of fatigue and cardiac autonomic nervous modulation while listening to music are still lacking. In this study, we examined which subjective feelings of fatigue are related to participants' cardiac autonomic nervous function while they listen to music. We used an album of comfortable and relaxing environmental music, with blended sounds from a piano and violin as well as natural sound sources. We performed a crossover trial of environmental music and silent sessions for 20 healthy subjects, 12 females, and 8 males, after their daily work shift. We measured changes in eight types of subjective feelings, including healing, fatigue, sleepiness, relaxation, and refreshment, using the KOKORO scale, a subjective mood measurement system for self-reported feelings. Further, we obtained measures of cardiac autonomic nervous function on the basis of heart rate variability before and after the sessions. During the music session, subjective feelings significantly shifted toward healing and a secure/relaxed feeling and these changes were greater than those in the silent session. Heart rates (ΔHR) in the music session significantly decreased compared with those in the silent session. Other cardiac autonomic parameters such as high-frequency (HF) component and the ratio of low-frequency (LF) and HF components (LF/HF) were similar in the two sessions. In the linear regression analysis of the feelings with ΔHR and changes in LF/HF (ΔLF/HF), increases and decreases in ΔHR were correlated to the feeling axes of Fatigue-Healing and Anxiety/Tension-Security/Relaxation, whereas those in ΔLF/HF were related to the feeling axes of Sleepiness-Wakefulness and Gloomy-Refreshed. This indicated that listening to music improved the participants' feelings of fatigue and decreased their heart rates. However, it did not reduce the cardiac LF/HF, suggesting that cardiac LF/HF might show a delayed response to fatigue. Thus, we demonstrated changes in cardiac autonomic nervous functions based on feelings of fatigue.

  3. Music therapy in pediatric palliative care: family-centered care to enhance quality of life.

    PubMed

    Lindenfelser, Kathryn J; Hense, Cherry; McFerran, Katrina

    2012-05-01

    Research into the value of music therapy in pediatric palliative care (PPC) has identified quality of life as one area of improvement for families caring for a child in the terminal stages of a life-threatening illness. This small-scale investigation collected data in a multisite, international study including Minnesota, USA, and Melbourne, Australia. An exploratory mixed method design used the qualitative data collected through interviews with parents to interpret results from the PedsQL Family Impact Module of overall parental quality of life. Parents described music therapy as resulting in physical improvements of their child by providing comfort and stimulation. They also valued the positive experiences shared by the family in music therapy sessions that were strength oriented and family centered. This highlighted the physical and communication scales within the PedsQL Family Impact Module, where minimal improvements were achieved in contrast to some strong results suggesting diminished quality of life in cognitive and daily activity domains. Despite the significant challenges faced by parents during this difficult time, parents described many positive experiences in music therapy, and the overall score for half of the parents in the study did not diminish. The value of music therapy as a service that addresses the family-centered agenda of PPC is endorsed by this study.

  4. Toward a Neural Basis of Music Perception – A Review and Updated Model

    PubMed Central

    Koelsch, Stefan

    2011-01-01

    Music perception involves acoustic analysis, auditory memory, auditory scene analysis, processing of interval relations, of musical syntax and semantics, and activation of (pre)motor representations of actions. Moreover, music perception potentially elicits emotions, thus giving rise to the modulation of emotional effector systems such as the subjective feeling system, the autonomic nervous system, the hormonal, and the immune system. Building on a previous article (Koelsch and Siebel, 2005), this review presents an updated model of music perception and its neural correlates. The article describes processes involved in music perception, and reports EEG and fMRI studies that inform about the time course of these processes, as well as about where in the brain these processes might be located. PMID:21713060

  5. Towards a neural basis of music-evoked emotions.

    PubMed

    Koelsch, Stefan

    2010-03-01

    Music is capable of evoking exceptionally strong emotions and of reliably affecting the mood of individuals. Functional neuroimaging and lesion studies show that music-evoked emotions can modulate activity in virtually all limbic and paralimbic brain structures. These structures are crucially involved in the initiation, generation, detection, maintenance, regulation and termination of emotions that have survival value for the individual and the species. Therefore, at least some music-evoked emotions involve the very core of evolutionarily adaptive neuroaffective mechanisms. Because dysfunctions in these structures are related to emotional disorders, a better understanding of music-evoked emotions and their neural correlates can lead to a more systematic and effective use of music in therapy. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Neural Correlates of Boredom in Music Perception

    PubMed Central

    Fakhr Tabatabaie, Ashkan; Azadehfar, Mohammad Reza; Mirian, Negin; Noroozian, Maryam; Yoonessi, Ahmad; Saebipour, Mohammad Reza; Yoonessi, Ali

    2014-01-01

    Introduction: Music can elicit powerful emotional responses, the neural correlates of which have not been properly understood. An important aspect about the quality of any musical piece is its ability to elicit a sense of excitement in the listeners. In this study, we investigated the neural correlates of boredom evoked by music in human subjects. Methods: We used EEG recording in nine subjects while they were listening to total number of 10 short-length (83 sec) musical pieces with various boredom indices. Subjects evaluated boringness of musical pieces while their EEG was recording. Results: Using short time Fourier analysis, we found that beta 2 rhythm was (16–20 Hz) significantly lower whenever the subjects rated the music as boring in comparison to non-boring. Discussion: The results demonstrate that the music modulates neural activity of various parts of the brain and can be measured using EEG. PMID:27284390

  7. When Instrumentalists Sing

    ERIC Educational Resources Information Center

    Wallace, Katherine

    2014-01-01

    This study was designed to investigate the impact that choral singing has on instrumental students' development as musicians. Instrumental music students (N = 23) enrolled in a choral elective module at a tertiary music conservatory completed an eight-item questionnaire. Descriptive answers were collated and interpreted revealing six…

  8. Time-reversal MUSIC imaging of extended targets.

    PubMed

    Marengo, Edwin A; Gruber, Fred K; Simonetti, Francesco

    2007-08-01

    This paper develops, within a general framework that is applicable to rather arbitrary electromagnetic and acoustic remote sensing systems, a theory of time-reversal "MUltiple Signal Classification" (MUSIC)-based imaging of extended (nonpoint-like) scatterers (targets). The general analysis applies to arbitrary remote sensing geometry and sheds light onto how the singular system of the scattering matrix relates to the geometrical and propagation characteristics of the entire transmitter-target-receiver system and how to use this effect for imaging. All the developments are derived within exact scattering theory which includes multiple scattering effects. The derived time-reversal MUSIC methods include both interior sampling, as well as exterior sampling (or enclosure) approaches. For presentation simplicity, particular attention is given to the time-harmonic case where the informational wave modes employed for target interrogation are purely spatial, but the corresponding generalization to broadband fields is also given. This paper includes computer simulations illustrating the derived theory and algorithms.

  9. Coupled structural/thermal/electromagnetic analysis/tailoring of graded composite structures

    NASA Technical Reports Server (NTRS)

    Hartle, M. S.; Mcknight, R. L.; Huang, H.; Holt, R.

    1992-01-01

    Described here are the accomplishments of a 5-year program to develop a methodology for coupled structural, thermal, electromagnetic analysis tailoring of graded component structures. The capabilities developed over the course of the program are the analyzer module and the tailoring module for the modeling of graded materials. Highlighted accomplishments for the past year include the addition of a buckling analysis capability, the addition of mode shape slope calculation for flutter analysis, verification of the analysis modules using simulated components, and verification of the tailoring module.

  10. Instrument Modeling and Synthesis

    NASA Astrophysics Data System (ADS)

    Horner, Andrew B.; Beauchamp, James W.

    During the 1970s and 1980s, before synthesizers based on direct sampling of musical sounds became popular, replicating musical instruments using frequency modulation (FM) or wavetable synthesis was one of the “holy grails” of music synthesis. Synthesizers such as the Yamaha DX7 allowed users great flexibility in mixing and matching sounds, but were notoriously difficult to coerce into producing sounds like those of a given instrument. Instrument design wizards practiced the mysteries of FM instrument design.

  11. The Microfluidic Jukebox

    NASA Astrophysics Data System (ADS)

    Tan, Say Hwa; Maes, Florine; Semin, Benoît; Vrignon, Jérémy; Baret, Jean-Christophe

    2014-04-01

    Music is a form of art interweaving people of all walks of life. Through subtle changes in frequencies, a succession of musical notes forms a melody which is capable of mesmerizing the minds of people. With the advances in technology, we are now able to generate music electronically without relying solely on physical instruments. Here, we demonstrate a musical interpretation of droplet-based microfluidics as a form of novel electronic musical instruments. Using the interplay of electric field and hydrodynamics in microfluidic devices, well controlled frequency patterns corresponding to musical tracks are generated in real time. This high-speed modulation of droplet frequency (and therefore of droplet sizes) may also provide solutions that reconciles high-throughput droplet production and the control of individual droplet at production which is needed for many biochemical or material synthesis applications.

  12. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT XI, INTRODUCTION TO ELECTRICAL MAINTENANCE FOR OFF-HIGHWAY VEHICLES.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO FAMILIARIZE THE TRAINEE WITH THE FUNDAMENTALS OF ELECTRICITY AND MAGNETISM AS THEY RELATE TO DIESEL POWERED EQUIPMENT. TOPICS ARE (1) FUNDAMENTALS OF ELECTRICITY AND MAGNETISM, (2) ELECTROMAGNETIC FIELDS, (3) MAGNETIC FORCE ON A CONDUCTOR, (4) ELECTROMAGNETIC INDUCTION, (5) OHM'S LAW, (6) METER…

  13. Efficacy of Multimedia Learning Modules as Preparation for Lecture-Based Tutorials in Electromagnetism

    ERIC Educational Resources Information Center

    Moore, James Christopher

    2018-01-01

    We have investigated the efficacy of on-line, multimedia learning modules (MLMs) as preparation for in-class, lecture-based tutorials in electromagnetism in a physics course for natural science majors (biology and marine science). Specifically, we report the results of a multiple-group pre/post-test research design comparing two groups receiving…

  14. Music for a Brighter World: Brightness Judgment Bias by Musical Emotion.

    PubMed

    Bhattacharya, Joydeep; Lindsen, Job P

    2016-01-01

    A prevalent conceptual metaphor is the association of the concepts of good and evil with brightness and darkness, respectively. Music cognition, like metaphor, is possibly embodied, yet no study has addressed the question whether musical emotion can modulate brightness judgment in a metaphor consistent fashion. In three separate experiments, participants judged the brightness of a grey square that was presented after a short excerpt of emotional music. The results of Experiment 1 showed that short musical excerpts are effective emotional primes that cross-modally influence brightness judgment of visual stimuli. Grey squares were consistently judged as brighter after listening to music with a positive valence, as compared to music with a negative valence. The results of Experiment 2 revealed that the bias in brightness judgment does not require an active evaluation of the emotional content of the music. By applying a different experimental procedure in Experiment 3, we showed that this brightness judgment bias is indeed a robust effect. Altogether, our findings demonstrate a powerful role of musical emotion in biasing brightness judgment and that this bias is aligned with the metaphor viewpoint.

  15. Effects of Sad and Happy Music on Mind-Wandering and the Default Mode Network.

    PubMed

    Taruffi, Liila; Pehrs, Corinna; Skouras, Stavros; Koelsch, Stefan

    2017-10-31

    Music is a ubiquitous phenomenon in human cultures, mostly due to its power to evoke and regulate emotions. However, effects of music evoking different emotional experiences such as sadness and happiness on cognition, and in particular on self-generated thought, are unknown. Here we use probe-caught thought sampling and functional magnetic resonance imaging (fMRI) to investigate the influence of sad and happy music on mind-wandering and its underlying neuronal mechanisms. In three experiments we found that sad music, compared with happy music, is associated with stronger mind-wandering (Experiments 1A and 1B) and greater centrality of the nodes of the Default Mode Network (DMN) (Experiment 2). Thus, our results demonstrate that, when listening to sad vs. happy music, people withdraw their attention inwards and engage in spontaneous, self-referential cognitive processes. Importantly, our results also underscore that DMN activity can be modulated as a function of sad and happy music. These findings call for a systematic investigation of the relation between music and thought, having broad implications for the use of music in education and clinical settings.

  16. Music for a Brighter World: Brightness Judgment Bias by Musical Emotion

    PubMed Central

    2016-01-01

    A prevalent conceptual metaphor is the association of the concepts of good and evil with brightness and darkness, respectively. Music cognition, like metaphor, is possibly embodied, yet no study has addressed the question whether musical emotion can modulate brightness judgment in a metaphor consistent fashion. In three separate experiments, participants judged the brightness of a grey square that was presented after a short excerpt of emotional music. The results of Experiment 1 showed that short musical excerpts are effective emotional primes that cross-modally influence brightness judgment of visual stimuli. Grey squares were consistently judged as brighter after listening to music with a positive valence, as compared to music with a negative valence. The results of Experiment 2 revealed that the bias in brightness judgment does not require an active evaluation of the emotional content of the music. By applying a different experimental procedure in Experiment 3, we showed that this brightness judgment bias is indeed a robust effect. Altogether, our findings demonstrate a powerful role of musical emotion in biasing brightness judgment and that this bias is aligned with the metaphor viewpoint. PMID:26863420

  17. Melody and pitch processing in five musical savants with congenital blindness.

    PubMed

    Pring, Linda; Woolf, Katherine; Tadic, Valerie

    2008-01-01

    We examined absolute-pitch (AP) and short-term musical memory abilities of five musical savants with congenital blindness, seven musicians, and seven non-musicians with good vision and normal intelligence in two experiments. In the first, short-term memory for musical phrases was tested and the savants and musicians performed statistically indistinguishably, both significantly outperforming the non-musicians and remembering more material from the C major scale sequences than random trials. In the second experiment, participants learnt associations between four pitches and four objects using a non-verbal paradigm. This experiment approximates to testing AP ability. Low statistical power meant the savants were not statistically better than the musicians, although only the savants scored statistically higher than the non-musicians. The results are evidence for a musical module, separate from general intelligence; they also support the anecdotal reporting of AP in musical savants, which is thought to be necessary for the development of musical-savant skill.

  18. The effects of emotion on memory for music and vocalisations.

    PubMed

    Aubé, William; Peretz, Isabelle; Armony, Jorge L

    2013-01-01

    Music is a powerful tool for communicating emotions which can elicit memories through associative mechanisms. However, it is currently unknown whether emotion can modulate memory for music without reference to a context or personal event. We conducted three experiments to investigate the effect of basic emotions (fear, happiness, and sadness) on recognition memory for music, using short, novel stimuli explicitly created for research purposes, and compared them with nonlinguistic vocalisations. Results showed better memory accuracy for musical clips expressing fear and, to some extent, happiness. In the case of nonlinguistic vocalisations we confirmed a memory advantage for all emotions tested. A correlation between memory accuracy for music and vocalisations was also found, particularly in the case of fearful expressions. These results confirm that emotional expressions, particularly fearful ones, conveyed by music can influence memory as has been previously shown for other forms of expressions, such as faces and vocalisations.

  19. Low frequency piezoresonance defined dynamic control of terahertz wave propagation

    NASA Astrophysics Data System (ADS)

    Dutta, Moumita; Betal, Soutik; Peralta, Xomalin G.; Bhalla, Amar S.; Guo, Ruyan

    2016-11-01

    Phase modulators are one of the key components of many applications in electromagnetic and opto-electric wave propagations. Phase-shifters play an integral role in communications, imaging and in coherent material excitations. In order to realize the terahertz (THz) electromagnetic spectrum as a fully-functional bandwidth, the development of a family of efficient THz phase modulators is needed. Although there have been quite a few attempts to implement THz phase modulators based on quantum-well structures, liquid crystals, or meta-materials, significantly improved sensitivity and dynamic control for phase modulation, as we believe can be enabled by piezoelectric-resonance devices, is yet to be investigated. In this article we provide an experimental demonstration of phase modulation of THz beam by operating a ferroelectric single crystal LiNbO3 film device at the piezo-resonance. The piezo-resonance, excited by an external a.c. electric field, develops a coupling between electromagnetic and lattice-wave and this coupling governs the wave propagation of the incident THz beam by modulating its phase transfer function. We report the understanding developed in this work can facilitate the design and fabrication of a family of resonance-defined highly sensitive and extremely low energy sub-millimeter wave sensors and modulators.

  20. Low frequency piezoresonance defined dynamic control of terahertz wave propagation.

    PubMed

    Dutta, Moumita; Betal, Soutik; Peralta, Xomalin G; Bhalla, Amar S; Guo, Ruyan

    2016-11-30

    Phase modulators are one of the key components of many applications in electromagnetic and opto-electric wave propagations. Phase-shifters play an integral role in communications, imaging and in coherent material excitations. In order to realize the terahertz (THz) electromagnetic spectrum as a fully-functional bandwidth, the development of a family of efficient THz phase modulators is needed. Although there have been quite a few attempts to implement THz phase modulators based on quantum-well structures, liquid crystals, or meta-materials, significantly improved sensitivity and dynamic control for phase modulation, as we believe can be enabled by piezoelectric-resonance devices, is yet to be investigated. In this article we provide an experimental demonstration of phase modulation of THz beam by operating a ferroelectric single crystal LiNbO 3 film device at the piezo-resonance. The piezo-resonance, excited by an external a.c. electric field, develops a coupling between electromagnetic and lattice-wave and this coupling governs the wave propagation of the incident THz beam by modulating its phase transfer function. We report the understanding developed in this work can facilitate the design and fabrication of a family of resonance-defined highly sensitive and extremely low energy sub-millimeter wave sensors and modulators.

  1. Towards Structural Analysis of Audio Recordings in the Presence of Musical Variations

    NASA Astrophysics Data System (ADS)

    Müller, Meinard; Kurth, Frank

    2006-12-01

    One major goal of structural analysis of an audio recording is to automatically extract the repetitive structure or, more generally, the musical form of the underlying piece of music. Recent approaches to this problem work well for music, where the repetitions largely agree with respect to instrumentation and tempo, as is typically the case for popular music. For other classes of music such as Western classical music, however, musically similar audio segments may exhibit significant variations in parameters such as dynamics, timbre, execution of note groups, modulation, articulation, and tempo progression. In this paper, we propose a robust and efficient algorithm for audio structure analysis, which allows to identify musically similar segments even in the presence of large variations in these parameters. To account for such variations, our main idea is to incorporate invariance at various levels simultaneously: we design a new type of statistical features to absorb microvariations, introduce an enhanced local distance measure to account for local variations, and describe a new strategy for structure extraction that can cope with the global variations. Our experimental results with classical and popular music show that our algorithm performs successfully even in the presence of significant musical variations.

  2. DISCO: An object-oriented system for music composition and sound design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaper, H. G.; Tipei, S.; Wright, J. M.

    2000-09-05

    This paper describes an object-oriented approach to music composition and sound design. The approach unifies the processes of music making and instrument building by using similar logic, objects, and procedures. The composition modules use an abstract representation of musical data, which can be easily mapped onto different synthesis languages or a traditionally notated score. An abstract base class is used to derive classes on different time scales. Objects can be related to act across time scales, as well as across an entire piece, and relationships between similar objects can replicate traditional music operations or introduce new ones. The DISCO (Digitalmore » Instrument for Sonification and Composition) system is an open-ended work in progress.« less

  3. Development of shashlik electromagnetic calorimeter prototype for SoLID

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, C.; Wang, Y.; Xiao, D.

    A shashlik electromagnetic calorimeter will be produced in Hall A of Jefferson Laboratory for Solenoidal large Intensity Device (SoLID) to measure the energy deposition of electrons and hadrons, and to provide particle identification after the energy of the accelerator was upgraded to 12 GeV. Tsinghua University is the member of Hall A collaboration in charge of development and production of the large shashlik electromagnetic calorimeter of SoLID. One module of that calorimeter is composed by 194 layers. Each layer consists of a 1.5 mm thick plastic scintillator put on top of a 0.5 mm thick lead plate. Scintillation light ismore » read out by wave-length shifter fibers penetrating through the calorimeter modules longitudinally along the direction of flight of the impact particle. This paper describes the design and construction of that module, as well as a few optimization studies meant to improve its performance. A detailed Geant4 simulation also shows that an energy resolution of 5%/√ E (GeV) and a good containment for electromagnetic showers can be achieved, as well as some basic electron identification. In conclusion, a prototype of that module will be tested soon with an electron beam at JLab.« less

  4. Development of shashlik electromagnetic calorimeter prototype for SoLID

    DOE PAGES

    Shen, C.; Wang, Y.; Xiao, D.; ...

    2017-03-07

    A shashlik electromagnetic calorimeter will be produced in Hall A of Jefferson Laboratory for Solenoidal large Intensity Device (SoLID) to measure the energy deposition of electrons and hadrons, and to provide particle identification after the energy of the accelerator was upgraded to 12 GeV. Tsinghua University is the member of Hall A collaboration in charge of development and production of the large shashlik electromagnetic calorimeter of SoLID. One module of that calorimeter is composed by 194 layers. Each layer consists of a 1.5 mm thick plastic scintillator put on top of a 0.5 mm thick lead plate. Scintillation light ismore » read out by wave-length shifter fibers penetrating through the calorimeter modules longitudinally along the direction of flight of the impact particle. This paper describes the design and construction of that module, as well as a few optimization studies meant to improve its performance. A detailed Geant4 simulation also shows that an energy resolution of 5%/√ E (GeV) and a good containment for electromagnetic showers can be achieved, as well as some basic electron identification. In conclusion, a prototype of that module will be tested soon with an electron beam at JLab.« less

  5. Electromagnetic stimulation of the ultrasonic signal for nondestructive detection of the ferromagnetic inclusions and flaws

    NASA Astrophysics Data System (ADS)

    Finkel, Peter

    2007-03-01

    It was recently shown that thermal or optical stimulation can be used to increase sensitivity of the conventional nondestructive ultrasonic detection of the small crack, flaws and inclusions in a ferromagnetic thin-walled parts. We proposed another method based on electromagnetic modulation of the ultrasonic scattered signal from the inclusions or defects. The electromagnetically induced high density current pulse produces stresses which alter the ultrasonic waves scanning the part with the defect and modulate ultrasonic signal. The excited electromagnetic field can produces crack-opening due to Lorentz forces that increase the ultrasonic reflection. The Joule heating associated with the high density current, and consequent thermal stresses may cause both crack-closure, as well as crack-opening, depending on various factors. Experimental data is presented here for the case of a small cracks near small holes in thin-walled structures. The measurements were taken at 2-10 MHz with a Lamb wave wedge transducer. It is shown that electromagnetic transient modulation of the ultrasonic echo pulse tone-burst suggest that this method could be used to enhance detection of small cracks and ferromagnetic inclusions in thin walled metallic structures.

  6. Music-related reward responses predict episodic memory performance.

    PubMed

    Ferreri, Laura; Rodriguez-Fornells, Antoni

    2017-12-01

    Music represents a special type of reward involving the recruitment of the mesolimbic dopaminergic system. According to recent theories on episodic memory formation, as dopamine strengthens the synaptic potentiation produced by learning, stimuli triggering dopamine release could result in long-term memory improvements. Here, we behaviourally test whether music-related reward responses could modulate episodic memory performance. Thirty participants rated (in terms of arousal, familiarity, emotional valence, and reward) and encoded unfamiliar classical music excerpts. Twenty-four hours later, their episodic memory was tested (old/new recognition and remember/know paradigm). Results revealed an influence of music-related reward responses on memory: excerpts rated as more rewarding were significantly better recognized and remembered. Furthermore, inter-individual differences in the ability to experience musical reward, measured through the Barcelona Music Reward Questionnaire, positively predicted memory performance. Taken together, these findings shed new light on the relationship between music, reward and memory, showing for the first time that music-driven reward responses are directly implicated in higher cognitive functions and can account for individual differences in memory performance.

  7. Effect of synchronized or desynchronized music listening during osteopathic treatment: an EEG study.

    PubMed

    Mercadié, Lolita; Caballe, Julie; Aucouturier, Jean-Julien; Bigand, Emmanuel

    2014-01-01

    While background music is often used during osteopathic treatment, it remains unclear whether it facilitates treatment, and, if it does, whether it is listening to music or jointly listening to a common stimulus that is most important. We created three experimental situations for a standard osteopathic procedure in which patients and practitioner listened either to silence, to the same music in synchrony, or (unknowingly) to different desynchronized montages of the same material. Music had no effect on heart rate and arterial pressure pre- and posttreatment compared to silence, but EEG measures revealed a clear effect of synchronized versus desynchronized listening: listening to desynchronized music was associated with larger amounts of mu-rhythm event-related desynchronization (ERD), indicating decreased sensorimotor fluency compared to what was gained in the synchronized music listening condition. This result suggests that, if any effect can be attributed to music for osteopathy, it is related to its capacity to modulate empathy between patient and therapist and, further, that music does not systematically create better conditions for empathy than silence. Copyright © 2013 Society for Psychophysiological Research.

  8. Transient coherence of media under strong phase modulation exploiting electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Shwa, David; Katz, Nadav

    2014-08-01

    When quantum systems are shifted faster than their transition and coupling time scales, their susceptibility is dramatically modified. We measure the optical susceptibility of a strongly modulated electromagnetically induced transparency system. Time vs detuning plots for different pump modulation frequencies reveal a transition between an adiabatic regime where a series of smooth pulses are created and a nonadiabatic regime where a strong transient oscillating response is added. Applying a magnetic field lifts the hyperfine level degeneracy, revealing an interference effect between the different magnetic level transients. We explore the dynamics of the magnetic and nonmagnetic cases and discuss their coherent nature. We finally combine the global phase of the transmitted pulses with the transient interference to achieve broadband magnetic sensing without losing the sensitivity of a single electromagnetically induced transparency line.

  9. Electromagnetically induced transparency in sinusoidal modulated ring resonator

    NASA Astrophysics Data System (ADS)

    Malik, Jagannath; Oruganti, Sai Kiran; Song, Seongkyu; Ko, Nak Young; Bien, Franklin

    2018-06-01

    In the present work, we demonstrate controlling the excitation of bright mode (continuum mode) resonance and dark mode (discrete mode) resonance in a planar metasurface made of sinusoidal modulation inside a closed rectangular metallic ring placed over a dielectric substrate. Unlike asymmetrical breaking of a meta-atom (often referred to as the unit cell) to achieve the dark mode response in regular metamaterials, in the present structure, the bright or dark mode resonance is achieved using even or odd half cycle modulation. The achieved dark-mode shows a sharp resonance for a particular polarization of the incident electric field, which results in an electromagnetically induced transparency like spectrum. The electromagnetic behavior of the proposed meta-atom has been investigated in the frequency domain using commercially available software and validated through experiments in the gigahertz regime.

  10. Electroencephalography Amplitude Modulation Analysis for Automated Affective Tagging of Music Video Clips

    PubMed Central

    Clerico, Andrea; Tiwari, Abhishek; Gupta, Rishabh; Jayaraman, Srinivasan; Falk, Tiago H.

    2018-01-01

    The quantity of music content is rapidly increasing and automated affective tagging of music video clips can enable the development of intelligent retrieval, music recommendation, automatic playlist generators, and music browsing interfaces tuned to the users' current desires, preferences, or affective states. To achieve this goal, the field of affective computing has emerged, in particular the development of so-called affective brain-computer interfaces, which measure the user's affective state directly from measured brain waves using non-invasive tools, such as electroencephalography (EEG). Typically, conventional features extracted from the EEG signal have been used, such as frequency subband powers and/or inter-hemispheric power asymmetry indices. More recently, the coupling between EEG and peripheral physiological signals, such as the galvanic skin response (GSR), have also been proposed. Here, we show the importance of EEG amplitude modulations and propose several new features that measure the amplitude-amplitude cross-frequency coupling per EEG electrode, as well as linear and non-linear connections between multiple electrode pairs. When tested on a publicly available dataset of music video clips tagged with subjective affective ratings, support vector classifiers trained on the proposed features were shown to outperform those trained on conventional benchmark EEG features by as much as 6, 20, 8, and 7% for arousal, valence, dominance and liking, respectively. Moreover, fusion of the proposed features with EEG-GSR coupling features showed to be particularly useful for arousal (feature-level fusion) and liking (decision-level fusion) prediction. Together, these findings show the importance of the proposed features to characterize human affective states during music clip watching. PMID:29367844

  11. Nonlinear mechanism for the generation of electromagnetic fields in a magnetized plasma by the beatings of waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aburjania, G. D.; Machabeli, G. Z.; Kharshiladze, O. A.

    2006-07-15

    The modulational instability in a plasma in a strong constant external magnetic field is considered. The plasmon condensate is modulated not by conventional low-frequency ion sound but by the beatings of two high-frequency transverse electromagnetic waves propagating along the magnetic field. The instability reduces the spatial scales of Langmuir turbulence along the external magnetic field and generates electromagnetic fields. It is shown that, for a pump wave with a sufficiently large amplitude, the effect described in the present paper can be a dominant nonlinear process.

  12. Geographical Study of American Blues Culture

    ERIC Educational Resources Information Center

    Strait, John B.

    2010-01-01

    Music is not often utilized in teaching geography, despite the fact that many scholars orient their research around analyzing both the historical and spatial dimensions of musical expression. This article reports on the use of a teaching module that utilizes blues culture as a lens to understand the geographical history of the United States. The…

  13. The Influence of Music on Prefrontal Cortex during Episodic Encoding and Retrieval of Verbal Information: A Multichannel fNIRS Study

    PubMed Central

    Ferreri, Laura; Bigand, Emmanuel; Bard, Patrick; Bugaiska, Aurélia

    2015-01-01

    Music can be thought of as a complex stimulus able to enrich the encoding of an event thus boosting its subsequent retrieval. However, several findings suggest that music can also interfere with memory performance. A better understanding of the behavioral and neural processes involved can substantially improve knowledge and shed new light on the most efficient music-based interventions. Based on fNIRS studies on music, episodic encoding, and the dorsolateral prefrontal cortex (PFC), this work aims to extend previous findings by monitoring the entire lateral PFC during both encoding and retrieval of verbal material. Nineteen participants were asked to encode lists of words presented with either background music or silence and subsequently tested during a free recall task. Meanwhile, their PFC was monitored using a 48-channel fNIRS system. Behavioral results showed greater chunking of words under the music condition, suggesting the employment of associative strategies for items encoded with music. fNIRS results showed that music provided a less demanding way of modulating both episodic encoding and retrieval, with a general prefrontal decreased activity under the music versus silence condition. This suggests that music-related memory processes rely on specific neural mechanisms and that music can positively influence both episodic encoding and retrieval of verbal information. PMID:26508813

  14. Music close to one's heart: heart rate variability with music, diagnostic with e-bra and smartphone

    NASA Astrophysics Data System (ADS)

    Hegde, Shantala; Kumar, Prashanth S.; Rai, Pratyush; Mathur, Gyanesh N.; Varadan, Vijay K.

    2012-04-01

    Music is a powerful elicitor of emotions. Emotions evoked by music, through autonomic correlates have been shown to cause significant modulation of parameters like heart rate and blood pressure. Consequently, Heart Rate Variability (HRV) analysis can be a powerful tool to explore evidence based therapeutic functions of music and conduct empirical studies on effect of musical emotion on heart function. However, there are limitations with current studies. HRV analysis has produced variable results to different emotions evoked via music, owing to variability in the methodology and the nature of music chosen. Therefore, a pragmatic understanding of HRV correlates of musical emotion in individuals listening to specifically chosen music whilst carrying out day to day routine activities is needed. In the present study, we aim to study HRV as a single case study, using an e-bra with nano-sensors to record heart rate in real time. The e-bra developed previously, has several salient features that make it conducive for this study- fully integrated garment, dry electrodes for easy use and unrestricted mobility. The study considers two experimental conditions:- First, HRV will be recorded when there is no music in the background and second, when music chosen by the researcher and by the subject is playing in the background.

  15. The Influence of Music on Prefrontal Cortex during Episodic Encoding and Retrieval of Verbal Information: A Multichannel fNIRS Study.

    PubMed

    Ferreri, Laura; Bigand, Emmanuel; Bard, Patrick; Bugaiska, Aurélia

    2015-01-01

    Music can be thought of as a complex stimulus able to enrich the encoding of an event thus boosting its subsequent retrieval. However, several findings suggest that music can also interfere with memory performance. A better understanding of the behavioral and neural processes involved can substantially improve knowledge and shed new light on the most efficient music-based interventions. Based on fNIRS studies on music, episodic encoding, and the dorsolateral prefrontal cortex (PFC), this work aims to extend previous findings by monitoring the entire lateral PFC during both encoding and retrieval of verbal material. Nineteen participants were asked to encode lists of words presented with either background music or silence and subsequently tested during a free recall task. Meanwhile, their PFC was monitored using a 48-channel fNIRS system. Behavioral results showed greater chunking of words under the music condition, suggesting the employment of associative strategies for items encoded with music. fNIRS results showed that music provided a less demanding way of modulating both episodic encoding and retrieval, with a general prefrontal decreased activity under the music versus silence condition. This suggests that music-related memory processes rely on specific neural mechanisms and that music can positively influence both episodic encoding and retrieval of verbal information.

  16. Intra- and interbrain synchronization and network properties when playing guitar in duets

    PubMed Central

    Sänger, Johanna; Müller, Viktor; Lindenberger, Ulman

    2012-01-01

    To further test and explore the hypothesis that synchronous oscillatory brain activity supports interpersonally coordinated behavior during dyadic music performance, we simultaneously recorded the electroencephalogram (EEG) from the brains of each of 12 guitar duets repeatedly playing a modified Rondo in two voices by C.G. Scheidler. Indicators of phase locking and of within-brain and between-brain phase coherence were obtained from complex time-frequency signals based on the Gabor transform. Analyses were restricted to the delta (1–4 Hz) and theta (4–8 Hz) frequency bands. We found that phase locking as well as within-brain and between-brain phase-coherence connection strengths were enhanced at frontal and central electrodes during periods that put particularly high demands on musical coordination. Phase locking was modulated in relation to the experimentally assigned musical roles of leader and follower, corroborating the functional significance of synchronous oscillations in dyadic music performance. Graph theory analyses revealed within-brain and hyperbrain networks with small-worldness properties that were enhanced during musical coordination periods, and community structures encompassing electrodes from both brains (hyperbrain modules). We conclude that brain mechanisms indexed by phase locking, phase coherence, and structural properties of within-brain and hyperbrain networks support interpersonal action coordination (IAC). PMID:23226120

  17. Reducing Electromagnetic Interference in a Grid Tied Single Phase Power Inverter

    DTIC Science & Technology

    2016-09-01

    ELECTROMAGNETIC INTERFERENCE IN A GRID TIED SINGLE PHASE POWER INVERTER by Jason Hassan Valiani September 2016 Thesis Advisor: Giovanna Oriti...3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE REDUCING ELECTROMAGNETIC INTERFERENCE IN A GRID TIED SINGLE PHASE POWER...explored. The primary goal is to understand the effects each modulation strategy has on the conducted electromagnetic interference (EMI) and then

  18. Music and the nucleus accumbens.

    PubMed

    Mavridis, Ioannis N

    2015-03-01

    Music is a universal feature of human societies over time, mainly because it allows expression and regulation of strong emotions, thus influencing moods and evoking pleasure. The nucleus accumbens (NA), the most important pleasure center of the human brain (dominates the reward system), is the 'king of neurosciences' and dopamine (DA) can be rightfully considered as its 'crown' due to the fundamental role that this neurotransmitter plays in the brain's reward system. Purpose of this article was to review the existing literature regarding the relation between music and the NA. Studies have shown that reward value for music can be coded by activity levels in the NA, whose functional connectivity with auditory and frontal areas increases as a function of increasing musical reward. Listening to music strongly modulates activity in a network of mesolimbic structures involved in reward processing including the NA. The functional connectivity between brain regions mediating reward, autonomic and cognitive processing provides insight into understanding why listening to music is one of the most rewarding and pleasurable human experiences. Musical stimuli can significantly increase extracellular DA levels in the NA. NA DA and serotonin were found significantly higher in animals exposed to music. Finally, passive listening to unfamiliar although liked music showed activations in the NA.

  19. Directed Motor-Auditory EEG Connectivity Is Modulated by Music Tempo.

    PubMed

    Nicolaou, Nicoletta; Malik, Asad; Daly, Ian; Weaver, James; Hwang, Faustina; Kirke, Alexis; Roesch, Etienne B; Williams, Duncan; Miranda, Eduardo R; Nasuto, Slawomir J

    2017-01-01

    Beat perception is fundamental to how we experience music, and yet the mechanism behind this spontaneous building of the internal beat representation is largely unknown. Existing findings support links between the tempo (speed) of the beat and enhancement of electroencephalogram (EEG) activity at tempo-related frequencies, but there are no studies looking at how tempo may affect the underlying long-range interactions between EEG activity at different electrodes. The present study investigates these long-range interactions using EEG activity recorded from 21 volunteers listening to music stimuli played at 4 different tempi (50, 100, 150 and 200 beats per minute). The music stimuli consisted of piano excerpts designed to convey the emotion of "peacefulness". Noise stimuli with an identical acoustic content to the music excerpts were also presented for comparison purposes. The brain activity interactions were characterized with the imaginary part of coherence (iCOH) in the frequency range 1.5-18 Hz (δ, θ, α and lower β) between all pairs of EEG electrodes for the four tempi and the music/noise conditions, as well as a baseline resting state (RS) condition obtained at the start of the experimental task. Our findings can be summarized as follows: (a) there was an ongoing long-range interaction in the RS engaging fronto-posterior areas; (b) this interaction was maintained in both music and noise, but its strength and directionality were modulated as a result of acoustic stimulation; (c) the topological patterns of iCOH were similar for music, noise and RS, however statistically significant differences in strength and direction of iCOH were identified; and (d) tempo had an effect on the direction and strength of motor-auditory interactions. Our findings are in line with existing literature and illustrate a part of the mechanism by which musical stimuli with different tempi can entrain changes in cortical activity.

  20. Directed Motor-Auditory EEG Connectivity Is Modulated by Music Tempo

    PubMed Central

    Nicolaou, Nicoletta; Malik, Asad; Daly, Ian; Weaver, James; Hwang, Faustina; Kirke, Alexis; Roesch, Etienne B.; Williams, Duncan; Miranda, Eduardo R.; Nasuto, Slawomir J.

    2017-01-01

    Beat perception is fundamental to how we experience music, and yet the mechanism behind this spontaneous building of the internal beat representation is largely unknown. Existing findings support links between the tempo (speed) of the beat and enhancement of electroencephalogram (EEG) activity at tempo-related frequencies, but there are no studies looking at how tempo may affect the underlying long-range interactions between EEG activity at different electrodes. The present study investigates these long-range interactions using EEG activity recorded from 21 volunteers listening to music stimuli played at 4 different tempi (50, 100, 150 and 200 beats per minute). The music stimuli consisted of piano excerpts designed to convey the emotion of “peacefulness”. Noise stimuli with an identical acoustic content to the music excerpts were also presented for comparison purposes. The brain activity interactions were characterized with the imaginary part of coherence (iCOH) in the frequency range 1.5–18 Hz (δ, θ, α and lower β) between all pairs of EEG electrodes for the four tempi and the music/noise conditions, as well as a baseline resting state (RS) condition obtained at the start of the experimental task. Our findings can be summarized as follows: (a) there was an ongoing long-range interaction in the RS engaging fronto-posterior areas; (b) this interaction was maintained in both music and noise, but its strength and directionality were modulated as a result of acoustic stimulation; (c) the topological patterns of iCOH were similar for music, noise and RS, however statistically significant differences in strength and direction of iCOH were identified; and (d) tempo had an effect on the direction and strength of motor-auditory interactions. Our findings are in line with existing literature and illustrate a part of the mechanism by which musical stimuli with different tempi can entrain changes in cortical activity. PMID:29093672

  1. The Influence of Modulated Signal Risetime in Flight Electronics Radiated Immunity Testing with a Mode-Stirred Chamber

    NASA Technical Reports Server (NTRS)

    Ely, Jay J.; Nguyen, Truong X.; Scearce, Stephen A.

    2000-01-01

    For electromagnetic immunity testing of an electronic system, it is desirable to demonstrate its functional integrity when exposed to the full range and intensity of environmental electromagnetic threats that may be encountered over its operational life. As part of this, it is necessary to show proper system operation when exposed to representative threat signal modulations. Modulated signal transition time is easily overlooked, but can be highly significant to system susceptibility. Radiated electromagnetic field immunity testing is increasingly being performed in Mode Stirred Chambers. Because the peak field vs. time relationship is affected by the operation of a reverberating room, it is important to understand how the room may influence any input signal modulation characteristics. This paper will provide insight into the field intensity vs. time relationship within the test environment of a mode stirred chamber. An understanding of this relationship is important to EMC engineers in determining what input signal modulation characteristics will be transferred to the equipment under test. References will be given for the development of this topic, and experimental data will be presented

  2. Can high-intensity exercise be more pleasant?: attentional dissociation using music and video.

    PubMed

    Jones, Leighton; Karageorghis, Costas I; Ekkekakis, Panteleimon

    2014-10-01

    Theories suggest that external stimuli (e.g., auditory and visual) may be rendered ineffective in modulating attention when exercise intensity is high. We examined the effects of music and parkland video footage on psychological measures during and after stationary cycling at two intensities: 10% of maximal capacity below ventilatory threshold and 5% above. Participants (N = 34) were exposed to four conditions at each intensity: music only, video only, music and video, and control. Analyses revealed main effects of condition and exercise intensity for affective valence and perceived activation (p < .001), state attention (p < .05), and exercise enjoyment (p < .001). The music-only and music-and-video conditions led to the highest valence and enjoyment scores during and after exercise regardless of intensity. Findings indicate that attentional manipulations can exert a salient influence on affect and enjoyment even at intensities slightly above ventilatory threshold.

  3. Biquaternion beamspace with its application to vector-sensor array direction findings and polarization estimations

    NASA Astrophysics Data System (ADS)

    Li, Dan; Xu, Feng; Jiang, Jing Fei; Zhang, Jian Qiu

    2017-12-01

    In this paper, a biquaternion beamspace, constructed by projecting the original data of an electromagnetic vector-sensor array into a subspace of a lower dimension via a quaternion transformation matrix, is first proposed. To estimate the direction and polarization angles of sources, biquaternion beamspace multiple signal classification (BB-MUSIC) estimators are then formulated. The analytical results show that the biquaternion beamspaces offer us some additional degrees of freedom to simultaneously achieve three goals. One is to save the memory spaces for storing the data covariance matrix and reduce the computation efforts of the eigen-decomposition. Another is to decouple the estimations of the sources' polarization parameters from those of their direction angles. The other is to blindly whiten the coherent noise of the six constituent antennas in each vector-sensor. It is also shown that the existing biquaternion multiple signal classification (BQ-MUSIC) estimator is a specific case of our BB-MUSIC ones. The simulation results verify the correctness and effectiveness of the analytical ones.

  4. Tolerance to exercise intensity modulates pleasure when exercising in music: The upsides of acoustic energy for High Tolerant individuals.

    PubMed

    Carlier, Mauraine; Delevoye-Turrell, Yvonne

    2017-01-01

    Moderate physical activity can be experienced by some as pleasurable and by others as discouraging. This may be why many people lack sufficient motivation to participate in the recommended 150 minutes of moderately intense exercise per week. In the present study, we assessed how pleasure and enjoyment were modulated differently by one's tolerance to self-paced physical activity. Sixty-three healthy individuals were allocated to three independent experimental conditions: a resting condition (watching TV), a cycling in silence condition, and a cycling in music condition. The tolerance threshold was assessed using the PRETIE-Questionnaire. Physical activity consisted in cycling during 30 minutes, at an intensity perceived as "somewhat difficult" on the Ratings of Perceived Exertion Scale. While controlling for self-reported physical activity level, results revealed that for the same perception of exertion and a similar level of enjoyment, the High Tolerance group produced more power output than the Low Tolerance group. There was a positive effect of music for High Tolerant individuals only, with music inducing greater power output and more pleasure. There was an effect of music on heart rate frequency in the Low Tolerant individuals without benefits in power output or pleasure. Our results suggest that for Low Tolerant individuals, energizing environments can interfere with the promised (positive) distracting effects of music. Hence, tolerance to physical effort must be taken into account to conceive training sessions that seek to use distracting methods as means to sustain pleasurable exercising over time.

  5. Method and split cavity oscillator/modulator to generate pulsed particle beams and electromagnetic fields

    DOEpatents

    Clark, M. Collins; Coleman, P. Dale; Marder, Barry M.

    1993-01-01

    A compact device called the split cavity modulator whose self-generated oscillating electromagnetic field converts a steady particle beam into a modulated particle beam. The particle beam experiences both signs of the oscillating electric field during the transit through the split cavity modulator. The modulated particle beam can then be used to generate microwaves at that frequency and through the use of extractors, high efficiency extraction of microwave power is enabled. The modulated beam and the microwave frequency can be varied by the placement of resistive wires at nodes of oscillation within the cavity. The short beam travel length through the cavity permit higher currents because both space charge and pinching limitations are reduced. The need for an applied magnetic field to control the beam has been eliminated.

  6. Method and split cavity oscillator/modulator to generate pulsed particle beams and electromagnetic fields

    DOEpatents

    Clark, M.C.; Coleman, P.D.; Marder, B.M.

    1993-08-10

    A compact device called the split cavity modulator whose self-generated oscillating electromagnetic field converts a steady particle beam into a modulated particle beam. The particle beam experiences both signs of the oscillating electric field during the transit through the split cavity modulator. The modulated particle beam can then be used to generate microwaves at that frequency and through the use of extractors, high efficiency extraction of microwave power is enabled. The modulated beam and the microwave frequency can be varied by the placement of resistive wires at nodes of oscillation within the cavity. The short beam travel length through the cavity permit higher currents because both space charge and pinching limitations are reduced. The need for an applied magnetic field to control the beam has been eliminated.

  7. The effects of learning on event-related potential correlates of musical expectancy.

    PubMed

    Carrión, Ricardo E; Bly, Benjamin Martin

    2008-09-01

    Musical processing studies have shown that unexpected endings in familiar musical sequences produce extended latencies of the P300 component. The present study sought to identify event-related potential (ERP) correlates of musical expectancy by entraining participants with rule-governed chord sequences and testing whether unexpected endings created similar responses. Two experiments were conducted in which participants performed grammaticality classifications without training (Experiment 1) and with training (Experiment 2). In both experiments, deviant chords differing in instrumental timbre elicited a MMN/P3a waveform complex. Violations related to learned patterns elicited an early right anterior negativity and P3b. Latency and amplitude of peak components were modulated by the physical characteristics of the chords, expectations due to prior knowledge of musical harmony, and contextually defined expectations developed through entrainment.

  8. Design of a mobile brain computer interface-based smart multimedia controller.

    PubMed

    Tseng, Kevin C; Lin, Bor-Shing; Wong, Alice May-Kuen; Lin, Bor-Shyh

    2015-03-06

    Music is a way of expressing our feelings and emotions. Suitable music can positively affect people. However, current multimedia control methods, such as manual selection or automatic random mechanisms, which are now applied broadly in MP3 and CD players, cannot adaptively select suitable music according to the user's physiological state. In this study, a brain computer interface-based smart multimedia controller was proposed to select music in different situations according to the user's physiological state. Here, a commercial mobile tablet was used as the multimedia platform, and a wireless multi-channel electroencephalograph (EEG) acquisition module was designed for real-time EEG monitoring. A smart multimedia control program built in the multimedia platform was developed to analyze the user's EEG feature and select music according his/her state. The relationship between the user's state and music sorted by listener's preference was also examined in this study. The experimental results show that real-time music biofeedback according a user's EEG feature may positively improve the user's attention state.

  9. Plasma based optical guiding of an amplitude-modulated electromagnetic beam

    NASA Astrophysics Data System (ADS)

    Singh, Mamta; Gupta, D. N.

    2015-06-01

    We propose the stronger optical guiding of an electromagnetic beam in a plasma by considering the amplitude modulation of the fundamental beam. With the advent of high power source of electromagnetic radiation, the electron velocity in a plasma may become quite large (comparable to the light velocity in free space). Thus, the effect of relativistic mass variation must be taken into account. The relativistic effect of the laser propagation in a plasma leads to self-focusing because of the dielectric constant of a plasma being an increasing function of the intensity. The ponderomotive force of the laser beam pushes the electrons out of the region of high intensity, which reduces the local electron density and increases the plasma dielectric function further, leading to even more selffocusing of the laser. In this work, we consider a short pulse laser of finite spot size as an amplitude modulation in time. Our findings show an efficient optical guiding mechanism based on amplitude modulation signal propagation in plasmas. Medium nonlinearity becomes stronger if an amplitude modulated beam is introduced, which contributes significantly in laser guiding in plasmas. Furthermore, the rate of laser self-focusing is increased with modulation index due the fact of stronger Kerr effect. The study related to amplitude modulated optical signal may be useful for communication technology.

  10. Modulated neural processing of Western harmony in folk musicians.

    PubMed

    Brattico, Elvira; Tupala, Tiina; Glerean, Enrico; Tervaniemi, Mari

    2013-07-01

    A chord deviating from the conventions of Western tonal music elicits an early right anterior negativity (ERAN) in inferofrontal brain regions. Here, we tested whether the ERAN is modulated by expertise in more than one music culture, as typical of folk musicians. Finnish folk musicians and nonmusicians participated in electroencephalography recordings. The cadences consisted of seven chords. In incongruous cadences, the third, fifth, or seventh chord was a Neapolitan. The ERAN to the Neapolitans was enhanced in folk musicians compared to nonmusicians. Folk musicians showed an enhanced P3a for the ending Neapolitan. The Neapolitan at the fifth position was perceived differently and elicited a late enhanced ERAN in folk musicians. Hence, expertise in more than one music culture seems to modify chord processing by enhancing the ERAN to ambivalent chords and the P3a to incongruous chords, and by altering their perceptual attributes. Copyright © 2013 Society for Psychophysiological Research.

  11. Music and natural sounds in an auditory steady-state response based brain-computer interface to increase user acceptance.

    PubMed

    Heo, Jeong; Baek, Hyun Jae; Hong, Seunghyeok; Chang, Min Hye; Lee, Jeong Su; Park, Kwang Suk

    2017-05-01

    Patients with total locked-in syndrome are conscious; however, they cannot express themselves because most of their voluntary muscles are paralyzed, and many of these patients have lost their eyesight. To improve the quality of life of these patients, there is an increasing need for communication-supporting technologies that leverage the remaining senses of the patient along with physiological signals. The auditory steady-state response (ASSR) is an electro-physiologic response to auditory stimulation that is amplitude-modulated by a specific frequency. By leveraging the phenomenon whereby ASSR is modulated by mind concentration, a brain-computer interface paradigm was proposed to classify the selective attention of the patient. In this paper, we propose an auditory stimulation method to minimize auditory stress by replacing the monotone carrier with familiar music and natural sounds for an ergonomic system. Piano and violin instrumentals were employed in the music sessions; the sounds of water streaming and cicadas singing were used in the natural sound sessions. Six healthy subjects participated in the experiment. Electroencephalograms were recorded using four electrodes (Cz, Oz, T7 and T8). Seven sessions were performed using different stimuli. The spectral power at 38 and 42Hz and their ratio for each electrode were extracted as features. Linear discriminant analysis was utilized to classify the selections for each subject. In offline analysis, the average classification accuracies with a modulation index of 1.0 were 89.67% and 87.67% using music and natural sounds, respectively. In online experiments, the average classification accuracies were 88.3% and 80.0% using music and natural sounds, respectively. Using the proposed method, we obtained significantly higher user-acceptance scores, while maintaining a high average classification accuracy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Background music genre can modulate flavor pleasantness and overall impression of food stimuli.

    PubMed

    Fiegel, Alexandra; Meullenet, Jean-François; Harrington, Robert J; Humble, Rachel; Seo, Han-Seok

    2014-05-01

    This study aimed to determine whether background music genre can alter food perception and acceptance, but also to determine how the effect of background music can vary as a function of type of food (emotional versus non-emotional foods) and source of music performer (single versus multiple performers). The music piece was edited into four genres: classical, jazz, hip-hop, and rock, by either a single or multiple performers. Following consumption of emotional (milk chocolate) or non-emotional food (bell peppers) with the four musical stimuli, participants were asked to rate sensory perception and impression of food stimuli. Participants liked food stimuli significantly more while listening to the jazz stimulus than the hip-hop stimulus. Further, the influence of background music on overall impression was present in the emotional food, but not in the non-emotional food. In addition, flavor pleasantness and overall impression of food stimuli differed between music genres arranged by a single performer, but not between those by multiple performers. In conclusion, our findings demonstrate that music genre can alter flavor pleasantness and overall impression of food stimuli. Furthermore, the influence of music genre on food acceptance varies as a function of the type of served food and the source of music performer. Published by Elsevier Ltd.

  13. How many music centers are in the brain?

    PubMed

    Altenmüller, E O

    2001-06-01

    When reviewing the literature on brain substrates of music processing, a puzzling variety of findings can be stated. The traditional view of a left-right dichotomy of brain organization--assuming that in contrast to language, music is primarily processed in the right hemisphere--was challenged 20 years ago, when the influence of music education on brain lateralization was demonstrated. Modern concepts emphasize the modular organization of music cognition. According to this viewpoint, different aspects of music are processed in different, although partly overlapping neuronal networks of both hemispheres. However, even when isolating a single "module," such as, for example, the perception of contours, the interindividual variance of brain substrates is enormous. To clarify the factors contributing to this variability, we conducted a longitudinal experiment comparing the effects of procedural versus explicit music teaching on brain networks. We demonstrated that cortical activation during music processing reflects the auditory "learning biography," the personal experiences accumulated over time. Listening to music, learning to play an instrument, formal instruction, and professional training result in multiple, in many instances multisensory, representations of music, which seem to be partly interchangeable and rapidly adaptive. In summary, as soon as we consider "real music" apart from laboratory experiments, we have to expect individually formed and quickly adaptive brain substrates, including widely distributed neuronal networks in both hemispheres.

  14. Informal Learning in Action: The Domains of Music Teaching and Their Pedagogic Modes

    ERIC Educational Resources Information Center

    Narita, Flávia Motoyama

    2017-01-01

    Green's informal learning pedagogy was adapted for a mixed-mode distance education of music teachers in Brazil. Designed as an 8-week module within the Open University of Brazil programme and implemented three times, this research involved 20 tutors and 73 student teachers, across a period of 2 years. Taking the form of a…

  15. A systematic review on the neural effects of music on emotion regulation: implications for music therapy practice.

    PubMed

    Moore, Kimberly Sena

    2013-01-01

    Emotion regulation (ER) is an internal process through which a person maintains a comfortable state of arousal by modulating one or more aspects of emotion. The neural correlates underlying ER suggest an interplay between cognitive control areas and areas involved in emotional reactivity. Although some studies have suggested that music may be a useful tool in ER, few studies have examined the links between music perception/production and the neural mechanisms that underlie ER and resulting implications for clinical music therapy treatment. Objectives of this systematic review were to explore and synthesize what is known about how music and music experiences impact neural structures implicated in ER, and to consider clinical implications of these findings for structuring music stimuli to facilitate ER. A comprehensive electronic database search resulted in 50 studies that met predetermined inclusion and exclusion criteria. Pertinent data related to the objective were extracted and study outcomes were analyzed and compared for trends and common findings. Results indicated there are certain music characteristics and experiences that produce desired and undesired neural activation patterns implicated in ER. Desired activation patterns occurred when listening to preferred and familiar music, when singing, and (in musicians) when improvising; undesired activation patterns arose when introducing complexity, dissonance, and unexpected musical events. Furthermore, the connection between music-influenced changes in attention and its link to ER was explored. Implications for music therapy practice are discussed and preliminary guidelines for how to use music to facilitate ER are shared.

  16. It's Sad but I Like It: The Neural Dissociation Between Musical Emotions and Liking in Experts and Laypersons.

    PubMed

    Brattico, Elvira; Bogert, Brigitte; Alluri, Vinoo; Tervaniemi, Mari; Eerola, Tuomas; Jacobsen, Thomas

    2015-01-01

    Emotion-related areas of the brain, such as the medial frontal cortices, amygdala, and striatum, are activated during listening to sad or happy music as well as during listening to pleasurable music. Indeed, in music, like in other arts, sad and happy emotions might co-exist and be distinct from emotions of pleasure or enjoyment. Here we aimed at discerning the neural correlates of sadness or happiness in music as opposed those related to musical enjoyment. We further investigated whether musical expertise modulates the neural activity during affective listening of music. To these aims, 13 musicians and 16 non-musicians brought to the lab their most liked and disliked musical pieces with a happy and sad connotation. Based on a listening test, we selected the most representative 18 sec excerpts of the emotions of interest for each individual participant. Functional magnetic resonance imaging (fMRI) recordings were obtained while subjects listened to and rated the excerpts. The cortico-thalamo-striatal reward circuit and motor areas were more active during liked than disliked music, whereas only the auditory cortex and the right amygdala were more active for disliked over liked music. These results discern the brain structures responsible for the perception of sad and happy emotions in music from those related to musical enjoyment. We also obtained novel evidence for functional differences in the limbic system associated with musical expertise, by showing enhanced liking-related activity in fronto-insular and cingulate areas in musicians.

  17. It's Sad but I Like It: The Neural Dissociation Between Musical Emotions and Liking in Experts and Laypersons

    PubMed Central

    Brattico, Elvira; Bogert, Brigitte; Alluri, Vinoo; Tervaniemi, Mari; Eerola, Tuomas; Jacobsen, Thomas

    2016-01-01

    Emotion-related areas of the brain, such as the medial frontal cortices, amygdala, and striatum, are activated during listening to sad or happy music as well as during listening to pleasurable music. Indeed, in music, like in other arts, sad and happy emotions might co-exist and be distinct from emotions of pleasure or enjoyment. Here we aimed at discerning the neural correlates of sadness or happiness in music as opposed those related to musical enjoyment. We further investigated whether musical expertise modulates the neural activity during affective listening of music. To these aims, 13 musicians and 16 non-musicians brought to the lab their most liked and disliked musical pieces with a happy and sad connotation. Based on a listening test, we selected the most representative 18 sec excerpts of the emotions of interest for each individual participant. Functional magnetic resonance imaging (fMRI) recordings were obtained while subjects listened to and rated the excerpts. The cortico-thalamo-striatal reward circuit and motor areas were more active during liked than disliked music, whereas only the auditory cortex and the right amygdala were more active for disliked over liked music. These results discern the brain structures responsible for the perception of sad and happy emotions in music from those related to musical enjoyment. We also obtained novel evidence for functional differences in the limbic system associated with musical expertise, by showing enhanced liking-related activity in fronto-insular and cingulate areas in musicians. PMID:26778996

  18. Benefits of listening to a recording of euphoric joint music making in polydrug abusers.

    PubMed

    Fritz, Thomas Hans; Vogt, Marius; Lederer, Annette; Schneider, Lydia; Fomicheva, Eira; Schneider, Martha; Villringer, Arno

    2015-01-01

    Listening to music can have powerful physiological and therapeutic effects. Some essential features of the mental mechanism underlying beneficial effects of music are probably strong physiological and emotional associations with music created during the act of music making. Here we tested this hypothesis in a clinical population of polydrug abusers in rehabilitation listening to a previously performed act of physiologically and emotionally intense music making. Psychological effects of listening to self-made music that was created in a previous musical feedback intervention were assessed. In this procedure, participants produced music with exercise machines (Jymmin) which modulate musical sounds. The data showed a positive effect of listening to the recording of joint music making on self-efficacy, mood, and a readiness to engage socially. Furthermore, the data showed the powerful influence of context on how the recording evoked psychological benefits. The effects of listening to the self-made music were only observable when participants listened to their own performance first; listening to a control music piece first caused effects to deteriorate. We observed a positive correlation between participants' mood and their desire to engage in social activities with their former training partners after listening to the self-made music. This shows that the observed effects of listening to the recording of the single musical feedback intervention are influenced by participants recapitulating intense pleasant social interactions during the Jymmin intervention. Listening to music that was the outcome of a previous musical feedback (Jymmin) intervention has beneficial psychological and probably social effects in patients that had suffered from polydrug addiction, increasing self-efficacy, mood, and a readiness to engage socially. These intervention effects, however, depend on the context in which the music recordings are presented.

  19. Benefits of listening to a recording of euphoric joint music making in polydrug abusers

    PubMed Central

    Fritz, Thomas Hans; Vogt, Marius; Lederer, Annette; Schneider, Lydia; Fomicheva, Eira; Schneider, Martha; Villringer, Arno

    2015-01-01

    Background and Aims: Listening to music can have powerful physiological and therapeutic effects. Some essential features of the mental mechanism underlying beneficial effects of music are probably strong physiological and emotional associations with music created during the act of music making. Here we tested this hypothesis in a clinical population of polydrug abusers in rehabilitation listening to a previously performed act of physiologically and emotionally intense music making. Methods: Psychological effects of listening to self-made music that was created in a previous musical feedback intervention were assessed. In this procedure, participants produced music with exercise machines (Jymmin) which modulate musical sounds. Results: The data showed a positive effect of listening to the recording of joint music making on self-efficacy, mood, and a readiness to engage socially. Furthermore, the data showed the powerful influence of context on how the recording evoked psychological benefits. The effects of listening to the self-made music were only observable when participants listened to their own performance first; listening to a control music piece first caused effects to deteriorate. We observed a positive correlation between participants’ mood and their desire to engage in social activities with their former training partners after listening to the self-made music. This shows that the observed effects of listening to the recording of the single musical feedback intervention are influenced by participants recapitulating intense pleasant social interactions during the Jymmin intervention. Conclusions: Listening to music that was the outcome of a previous musical feedback (Jymmin) intervention has beneficial psychological and probably social effects in patients that had suffered from polydrug addiction, increasing self-efficacy, mood, and a readiness to engage socially. These intervention effects, however, depend on the context in which the music recordings are presented. PMID:26124713

  20. Parasitic modulation of electromagnetic signals caused by time-varying plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Min, E-mail: merovingia1911@126.com; Li, Xiaoping; Xie, Kai

    2015-02-15

    An experiment on the propagation of electromagnetic (EM) signals in continuous time-varying plasma is described. The time-varying characteristics of plasma are considered to cause a parasitic modulation in both amplitude and phase, and the strength of this modulation, which carries the information of the electron density profile, is closely related to the plasma frequency and the incident wave frequency. Through theoretical analysis, we give an explanation and mechanism of the interaction between the continuous time-varying plasma and EM waves, which is verified by a comparative analysis with experiments performed under the same conditions. The effects of this modulation on themore » EM signals in the plasma sheath cannot be ignored.« less

  1. An Integrated Teaching Module.

    ERIC Educational Resources Information Center

    Samuel, Marie R.; Seiferth, Berniece B.

    This integrated teaching module provides elementary and junior high school teachers with a "hands-on" approach to studying the Anasazi Indian. Emphasis is on creative exploration that focuses on integrating art, music, poetry, writing, geography, dance, history, anthropology, sociology, and archaeology. Replicas of artifacts,…

  2. Electrical power generation by mechanically modulating electrical double layers.

    PubMed

    Moon, Jong Kyun; Jeong, Jaeki; Lee, Dongyun; Pak, Hyuk Kyu

    2013-01-01

    Since Michael Faraday and Joseph Henry made their great discovery of electromagnetic induction, there have been continuous developments in electrical power generation. Most people today get electricity from thermal, hydroelectric, or nuclear power generation systems, which use this electromagnetic induction phenomenon. Here we propose a new method for electrical power generation, without using electromagnetic induction, by mechanically modulating the electrical double layers at the interfacial areas of a water bridge between two conducting plates. We find that when the height of the water bridge is mechanically modulated, the electrical double layer capacitors formed on the two interfacial areas are continuously charged and discharged at different phases from each other, thus generating an AC electric current across the plates. We use a resistor-capacitor circuit model to explain the results of this experiment. This observation could be useful for constructing a micro-fluidic power generation system in the near future.

  3. Evaluation of Information Leakage from Cryptographic Hardware via Common-Mode Current

    NASA Astrophysics Data System (ADS)

    Hayashi, Yu-Ichi; Homma, Naofumi; Mizuki, Takaaki; Sugawara, Takeshi; Kayano, Yoshiki; Aoki, Takafumi; Minegishi, Shigeki; Satoh, Akashi; Sone, Hideaki; Inoue, Hiroshi

    This paper presents a possibility of Electromagnetic (EM) analysis against cryptographic modules outside their security boundaries. The mechanism behind the information leakage is explained from the view point of Electromagnetic Compatibility: electric fluctuation released from cryptographic modules can conduct to peripheral circuits based on ground bounce, resulting in radiation. We demonstrate the consequence of the mechanism through experiments where the ISO/IEC standard block cipher AES (Advanced Encryption Standard) is implemented on an FPGA board and EM radiations from power and communication cables are measured. Correlation Electromagnetic Analysis (CEMA) is conducted in order to evaluate the information leakage. The experimental results show that secret keys are revealed even though there are various disturbing factors such as voltage regulators and AC/DC converters between the target module and the measurement points. We also discuss information-suppression techniques as electrical-level countermeasures against such CEMAs.

  4. Music and the heart.

    PubMed

    Koelsch, Stefan; Jäncke, Lutz

    2015-11-21

    Music can powerfully evoke and modulate emotions and moods, along with changes in heart activity, blood pressure (BP), and breathing. Although there is great heterogeneity in methods and quality among previous studies on effects of music on the heart, the following findings emerge from the literature: Heart rate (HR) and respiratory rate (RR) are higher in response to exciting music compared with tranquilizing music. During musical frissons (involving shivers and piloerection), both HR and RR increase. Moreover, HR and RR tend to increase in response to music compared with silence, and HR appears to decrease in response to unpleasant music compared with pleasant music. We found no studies that would provide evidence for entrainment of HR to musical beats. Corresponding to the increase in HR, listening to exciting music (compared with tranquilizing music) is associated with a reduction of heart rate variability (HRV), including reductions of both low-frequency and high-frequency power of the HRV. Recent findings also suggest effects of music-evoked emotions on regional activity of the heart, as reflected in electrocardiogram amplitude patterns. In patients with heart disease (similar to other patient groups), music can reduce pain and anxiety, associated with lower HR and lower BP. In general, effects of music on the heart are small, and there is great inhomogeneity among studies with regard to methods, findings, and quality. Therefore, there is urgent need for systematic high-quality research on the effects of music on the heart, and on the beneficial effects of music in clinical settings. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  5. The Student Experience of a Collaborative E-Learning University Module

    ERIC Educational Resources Information Center

    Biasutti, Michele

    2011-01-01

    The aim of this paper is to present a picture of student experience of a collaborative e-learning module in an asynchronous e-learning environment. A distance learning module on music education worth five credit points for a bachelor online degree for primary school educating teachers was assessed using a self-evaluation questionnaire that…

  6. Rhythmic abilities and musical training in Parkinson's disease: do they help?

    PubMed

    Cochen De Cock, V; Dotov, D G; Ihalainen, P; Bégel, V; Galtier, F; Lebrun, C; Picot, M C; Driss, V; Landragin, N; Geny, C; Bardy, B; Dalla Bella, S

    2018-01-01

    Rhythmic auditory cues can immediately improve gait in Parkinson's disease. However, this effect varies considerably across patients. The factors associated with this individual variability are not known to date. Patients' rhythmic abilities and musicality (e.g., perceptual and singing abilities, emotional response to music, and musical training) may foster a positive response to rhythmic cues. To examine this hypothesis, we measured gait at baseline and with rhythmic cues in 39 non-demented patients with Parkinson's disease and 39 matched healthy controls. Cognition, rhythmic abilities and general musicality were assessed. A response to cueing was qualified as positive when the stimulation led to a clinically meaningful increase in gait speed. We observed that patients with positive response to cueing ( n  = 17) were more musically trained, aligned more often their steps to the rhythmic cues while walking, and showed better music perception as well as poorer cognitive flexibility than patients with non-positive response ( n  = 22). Gait performance with rhythmic cues worsened in six patients. We concluded that rhythmic and musical skills, which can be modulated by musical training, may increase beneficial effects of rhythmic auditory cueing in Parkinson's disease. Screening patients in terms of musical/rhythmic abilities and musical training may allow teasing apart patients who are likely to benefit from cueing from those who may worsen their performance due to the stimulation.

  7. Attosecond electromagnetic pulse generation due to the interaction of a relativistic soliton with a breaking-wake plasma wave.

    PubMed

    Isanin, A V; Bulanov, S S; Kamenets, F F; Pegoraro, F

    2005-03-01

    During the interaction of a low-frequency relativistic soliton with the electron density modulations of a wake plasma wave, part of the electromagnetic energy of the soliton is reflected in the form of an extremely short and ultraintense electromagnetic pulse. We calculate the spectra of the reflected and of the transmitted electromagnetic pulses analytically. The reflected wave has the form of a single cycle attosecond pulse.

  8. The Band Effect—Physically Strenuous Music Making Increases Esthetic Appreciation of Music

    PubMed Central

    Fritz, Thomas H.; Schneider, Lydia; Villringer, Arno

    2016-01-01

    The esthetic appreciation of music is strongly influenced by cultural background and personal taste. One would expect that this would complicate the utilizability of musical feedback in paradigms, such that music would only be perceived as a reward if it complies to personal esthetic appreciation. Here we report data where we assessed esthetic appreciation of music after 1. a physically strenuous music improvisation and 2. after passive music listening (where participants esthetically assessed similar music). Data are reported from two experiments with different patient groups: 1. Drug abuse patients, and 2. Chronic pain patients. Participants in both experiments performed Jymmin, a music feedback method where exercise equipment is modified in such a way that it can be played like musical instruments by modulating musical parameters in a composition software. This combines physical exertion with musical performance in a fashion that has previously been shown to have a number of positive psychological effects such as enhanced mood and reduced perceived exertion. In both experiments esthetic appreciation of musical presentations during Jymmin and a control condition without musical agency were compared. Data show that both patient groups perceived the musical outcome of their own performance as more esthetically pleasing than similar music they listened to passively. This suggests that the act of making music (when combined with physical exertion) is associated with a positivity bias about the perceived esthetical quality of the musical outcome. The outcome of personal musical agency thus tends to be perceived as rewarding even if it does not comply with personal esthetic appreciation. This suggests that musical feedback interventions may not always have to be highly individualized because individual taste may not always be crucial. The results also suggest that the method applied here may be efficient at encouraging music listeners to actively explore new musical styles that they might otherwise be reluctant to listen to (e.g., avant-garde music). The results also hint toward a deeper understanding of why musicians, who exert themselves physically during musical performances to generate music and regardless of the type of music they are playing, typically find the physically demanding experience esthetically satisfying. PMID:27799893

  9. Variability in prefrontal hemodynamic response during exposure to repeated self-selected music excerpts, a near-infrared spectroscopy study.

    PubMed

    Moghimi, Saba; Schudlo, Larissa; Chau, Tom; Guerguerian, Anne-Marie

    2015-01-01

    Music-induced brain activity modulations in areas involved in emotion regulation may be useful in achieving therapeutic outcomes. Clinical applications of music may involve prolonged or repeated exposures to music. However, the variability of the observed brain activity patterns in repeated exposures to music is not well understood. We hypothesized that multiple exposures to the same music would elicit more consistent activity patterns than exposure to different music. In this study, the temporal and spatial variability of cerebral prefrontal hemodynamic response was investigated across multiple exposures to self-selected musical excerpts in 10 healthy adults. The hemodynamic changes were measured using prefrontal cortex near infrared spectroscopy and represented by instantaneous phase values. Based on spatial and temporal characteristics of these observed hemodynamic changes, we defined a consistency index to represent variability across these domains. The consistency index across repeated exposures to the same piece of music was compared to the consistency index corresponding to prefrontal activity from randomly matched non-identical musical excerpts. Consistency indexes were significantly different for identical versus non-identical musical excerpts when comparing a subset of repetitions. When all four exposures were compared, no significant difference was observed between the consistency indexes of randomly matched non-identical musical excerpts and the consistency index corresponding to repetitions of the same musical excerpts. This observation suggests the existence of only partial consistency between repeated exposures to the same musical excerpt, which may stem from the role of the prefrontal cortex in regulating other cognitive and emotional processes.

  10. Variability in Prefrontal Hemodynamic Response during Exposure to Repeated Self-Selected Music Excerpts, a Near-Infrared Spectroscopy Study

    PubMed Central

    Moghimi, Saba; Schudlo, Larissa; Chau, Tom; Guerguerian, Anne-Marie

    2015-01-01

    Music-induced brain activity modulations in areas involved in emotion regulation may be useful in achieving therapeutic outcomes. Clinical applications of music may involve prolonged or repeated exposures to music. However, the variability of the observed brain activity patterns in repeated exposures to music is not well understood. We hypothesized that multiple exposures to the same music would elicit more consistent activity patterns than exposure to different music. In this study, the temporal and spatial variability of cerebral prefrontal hemodynamic response was investigated across multiple exposures to self-selected musical excerpts in 10 healthy adults. The hemodynamic changes were measured using prefrontal cortex near infrared spectroscopy and represented by instantaneous phase values. Based on spatial and temporal characteristics of these observed hemodynamic changes, we defined a consistency index to represent variability across these domains. The consistency index across repeated exposures to the same piece of music was compared to the consistency index corresponding to prefrontal activity from randomly matched non-identical musical excerpts. Consistency indexes were significantly different for identical versus non-identical musical excerpts when comparing a subset of repetitions. When all four exposures were compared, no significant difference was observed between the consistency indexes of randomly matched non-identical musical excerpts and the consistency index corresponding to repetitions of the same musical excerpts. This observation suggests the existence of only partial consistency between repeated exposures to the same musical excerpt, which may stem from the role of the prefrontal cortex in regulating other cognitive and emotional processes. PMID:25837268

  11. The effect of music on corticospinal excitability is related to the perceived emotion: a transcranial magnetic stimulation study.

    PubMed

    Giovannelli, Fabio; Banfi, Chiara; Borgheresi, Alessandra; Fiori, Elisa; Innocenti, Iglis; Rossi, Simone; Zaccara, Gaetano; Viggiano, Maria Pia; Cincotta, Massimo

    2013-03-01

    Transcranial magnetic stimulation (TMS) and neuroimaging studies suggest a functional link between the emotion-related brain areas and the motor system. It is not well understood, however, whether the motor cortex activity is modulated by specific emotions experienced during music listening. In 23 healthy volunteers, we recorded the motor evoked potentials (MEP) following TMS to investigate the corticospinal excitability while subjects listened to music pieces evoking different emotions (happiness, sadness, fear, and displeasure), an emotionally neutral piece, and a control stimulus (musical scale). Quality and intensity of emotions were previously rated in an additional group of 30 healthy subjects. Fear-related music significantly increased the MEP size compared to the neutral piece and the control stimulus. This effect was not seen with music inducing other emotional experiences and was not related to changes in autonomic variables (respiration rate, heart rate). Current data indicate that also in a musical context, the excitability of the corticomotoneuronal system is related to the emotion expressed by the listened piece. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Design of a Mobile Brain Computer Interface-Based Smart Multimedia Controller

    PubMed Central

    Tseng, Kevin C.; Lin, Bor-Shing; Wong, Alice May-Kuen; Lin, Bor-Shyh

    2015-01-01

    Music is a way of expressing our feelings and emotions. Suitable music can positively affect people. However, current multimedia control methods, such as manual selection or automatic random mechanisms, which are now applied broadly in MP3 and CD players, cannot adaptively select suitable music according to the user’s physiological state. In this study, a brain computer interface-based smart multimedia controller was proposed to select music in different situations according to the user’s physiological state. Here, a commercial mobile tablet was used as the multimedia platform, and a wireless multi-channel electroencephalograph (EEG) acquisition module was designed for real-time EEG monitoring. A smart multimedia control program built in the multimedia platform was developed to analyze the user’s EEG feature and select music according his/her state. The relationship between the user’s state and music sorted by listener’s preference was also examined in this study. The experimental results show that real-time music biofeedback according a user’s EEG feature may positively improve the user’s attention state. PMID:25756862

  13. Perinatal exposure to music protects spatial memory against callosal lesions.

    PubMed

    Amagdei, Anca; Balteş, Felicia Rodica; Avram, Julia; Miu, Andrei C

    2010-02-01

    Several studies have indicated that the exposure of rodents to music modulates brain development and neuroplasticity, by mechanisms that involve facilitated hippocampal neurogenesis, neurotrophin synthesis and glutamatergic signaling. This study focused on the potential protection that the perinatal exposure to music, between postnatal days 2 and 32, could offer against functional deficits induced by neonatal callosotomy in rats. The spontaneous alternation and marble-burying behaviors were longitudinally measured in callosotomized and control rats that had been exposed to music or not. The results indicated that the neonatal callosotomy-induced spontaneous alternation deficits that became apparent only after postnatal day 45, about the time when the rat corpus callosum reaches its maximal levels of myelination. The perinatal exposure to music efficiently protected the spontaneous alternation performance against the deficits induced by callosotomy. The present findings may offer important insights into music-induced neuroplasticity, relevant to brain development and neurorehabilitation. Copyright 2009 ISDN. Published by Elsevier Ltd. All rights reserved.

  14. Music training alters the course of adolescent auditory development.

    PubMed

    Tierney, Adam T; Krizman, Jennifer; Kraus, Nina

    2015-08-11

    Fundamental changes in brain structure and function during adolescence are well-characterized, but the extent to which experience modulates adolescent neurodevelopment is not. Musical experience provides an ideal case for examining this question because the influence of music training begun early in life is well-known. We investigated the effects of in-school music training, previously shown to enhance auditory skills, versus another in-school training program that did not focus on development of auditory skills (active control). We tested adolescents on neural responses to sound and language skills before they entered high school (pretraining) and again 3 y later. Here, we show that in-school music training begun in high school prolongs the stability of subcortical sound processing and accelerates maturation of cortical auditory responses. Although phonological processing improved in both the music training and active control groups, the enhancement was greater in adolescents who underwent music training. Thus, music training initiated as late as adolescence can enhance neural processing of sound and confer benefits for language skills. These results establish the potential for experience-driven brain plasticity during adolescence and demonstrate that in-school programs can engender these changes.

  15. Perception of hierarchical boundaries in music and its modulation by expertise.

    PubMed

    Zhang, Jingjing; Jiang, Cunmei; Zhou, Linshu; Yang, Yufang

    2016-10-01

    Hierarchical structure with units of different timescales is a key feature of music. For the perception of such structures, the detection of each boundary is crucial. Here, using electroencephalography (EEG), we explore the perception of hierarchical boundaries in music, and test whether musical expertise modifies such processing. Musicians and non-musicians were presented with musical excerpts containing boundaries at three hierarchical levels, including section, phrase and period boundaries. Non-boundary was chosen as a baseline condition. Recordings from musicians showed CPS (closure positive shift) was evoked at all the three boundaries, and their amplitude increased as the hierarchical level became higher, which suggest that musicians could represent music events at different timescales in a hierarchical way. For non-musicians, the CPS was only elicited at the period boundary and undistinguishable negativities were induced at all the three boundaries. The results indicate that a different and less clear way was used by non-musicians in boundary perception. Our findings reveal, for the first time, an ERP correlate of perceiving hierarchical boundaries in music, and show that the phrasing ability could be enhanced by musical expertise. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Music training alters the course of adolescent auditory development

    PubMed Central

    Tierney, Adam T.; Krizman, Jennifer; Kraus, Nina

    2015-01-01

    Fundamental changes in brain structure and function during adolescence are well-characterized, but the extent to which experience modulates adolescent neurodevelopment is not. Musical experience provides an ideal case for examining this question because the influence of music training begun early in life is well-known. We investigated the effects of in-school music training, previously shown to enhance auditory skills, versus another in-school training program that did not focus on development of auditory skills (active control). We tested adolescents on neural responses to sound and language skills before they entered high school (pretraining) and again 3 y later. Here, we show that in-school music training begun in high school prolongs the stability of subcortical sound processing and accelerates maturation of cortical auditory responses. Although phonological processing improved in both the music training and active control groups, the enhancement was greater in adolescents who underwent music training. Thus, music training initiated as late as adolescence can enhance neural processing of sound and confer benefits for language skills. These results establish the potential for experience-driven brain plasticity during adolescence and demonstrate that in-school programs can engender these changes. PMID:26195739

  17. Music, emotion, and time perception: the influence of subjective emotional valence and arousal?

    PubMed Central

    Droit-Volet, Sylvie; Ramos, Danilo; Bueno, José L. O.; Bigand, Emmanuel

    2013-01-01

    The present study used a temporal bisection task with short (<2 s) and long (>2 s) stimulus durations to investigate the effect on time estimation of several musical parameters associated with emotional changes in affective valence and arousal. In order to manipulate the positive and negative valence of music, Experiments 1 and 2 contrasted the effect of musical structure with pieces played normally and backwards, which were judged to be pleasant and unpleasant, respectively. This effect of valence was combined with a subjective arousal effect by changing the tempo of the musical pieces (fast vs. slow) (Experiment 1) or their instrumentation (orchestral vs. piano pieces). The musical pieces were indeed judged more arousing with a fast than with a slow tempo and with an orchestral than with a piano timbre. In Experiment 3, affective valence was also tested by contrasting the effect of tonal (pleasant) vs. atonal (unpleasant) versions of the same musical pieces. The results showed that the effect of tempo in music, associated with a subjective arousal effect, was the major factor that produced time distortions with time being judged longer for fast than for slow tempi. When the tempo was held constant, no significant effect of timbre on the time judgment was found although the orchestral music was judged to be more arousing than the piano music. Nevertheless, emotional valence did modulate the tempo effect on time perception, the pleasant music being judged shorter than the unpleasant music. PMID:23882233

  18. [Dynamics of biomacromolecules in coherent electromagnetic radiation field].

    PubMed

    Leshcheniuk, N S; Apanasevich, E E; Tereshenkov, V I

    2014-01-01

    It is shown that induced oscillations and periodic displacements of the equilibrium positions occur in biomacromolecules in the absence of electromagnetic radiation absorption, due to modulation of interaction potential between atoms and groups of atoms forming the non-valence bonds in macromolecules by the external electromagnetic field. Such "hyperoscillation" state causes inevitably the changes in biochemical properties of macromolecules and conformational transformation times.

  19. A Cognitive Agent for Spectrum Monitoring and Informed Spectrum Access

    DTIC Science & Technology

    2017-06-01

    electromagnetic environments (EMEs) to understand what spectrum bands are accessed, when those bands are accessed, and how much energy is...recall. The cognitive agent in this report uses the second approach. The knowledge domain of the cognitive agent is the electromagnetic spectrum. The...Knowledge DTV digital television EME electromagnetic environments FM frequency modulated RF radio frequency VHF very high frequency

  20. Musical expertise induces neuroplasticity of the planum temporale.

    PubMed

    Meyer, Martin; Elmer, Stefan; Jäncke, Lutz

    2012-04-01

    The present manuscript summarizes and discusses the implications of recent neuroimaging studies, which have investigated the relationship between musical expertise and structural, as well as functional, changes in an auditory-related association cortex, namely, the planum temporale (PT). Since the bilateral PT is known to serve as a spectrotemporal processor that supports perception of acoustic modulations in both speech and music, it comes as no surprise that musical expertise corresponds to functional sensitivity and neuroanatomical changes in cortical architecture. In this context, we focus on the following question: To what extent does musical expertise affect the functioning of the left and right plana temporalia? We discuss the relationship between behavioral, hemodynamic, and neuroanatomical data obtained from musicians in light of maturational and developmental issues. In particular, we introduce two studies of our group that show to what extent brains of musicians are more proficient in phonetic task performance. © 2012 New York Academy of Sciences.

  1. Long-term music training modulates the recalibration of audiovisual simultaneity.

    PubMed

    Jicol, Crescent; Proulx, Michael J; Pollick, Frank E; Petrini, Karin

    2018-07-01

    To overcome differences in physical transmission time and neural processing, the brain adaptively recalibrates the point of simultaneity between auditory and visual signals by adapting to audiovisual asynchronies. Here, we examine whether the prolonged recalibration process of passively sensed visual and auditory signals is affected by naturally occurring multisensory training known to enhance audiovisual perceptual accuracy. Hence, we asked a group of drummers, of non-drummer musicians and of non-musicians to judge the audiovisual simultaneity of musical and non-musical audiovisual events, before and after adaptation with two fixed audiovisual asynchronies. We found that the recalibration for the musicians and drummers was in the opposite direction (sound leading vision) to that of non-musicians (vision leading sound), and change together with both increased music training and increased perceptual accuracy (i.e. ability to detect asynchrony). Our findings demonstrate that long-term musical training reshapes the way humans adaptively recalibrate simultaneity between auditory and visual signals.

  2. The TI-99/4A Software.

    ERIC Educational Resources Information Center

    Wrege, Rachael; And Others

    1982-01-01

    Describes the software modules produced by Texas Instruments for use with the TI-99/4A home computer. Among the modules described are: Personal Real Estate, Programing Aids, Home Financial Decisions, Music Maker, Weight Control and Nutrition, Early Learning Fun, and Tax/Investment Record Keeping. (JL)

  3. Auditory neural networks involved in attention modulation prefer biologically significant sounds and exhibit sexual dimorphism in anurans.

    PubMed

    Xue, Fei; Yue, Xizi; Fan, Yanzhu; Cui, Jianguo; Brauth, Steven E; Tang, Yezhong; Fang, Guangzhan

    2018-03-09

    Allocating attention to biologically relevant stimuli in a complex environment is critically important for survival and reproductive success. In humans, attention modulation is regulated by the frontal cortex, and is often reflected by changes in specific components of the event-related potential (ERP). Although brain networks for attention modulation have been widely studied in primates and avian species, little is known about attention modulation in amphibians. The present study aimed to investigate the attention modulation networks in an anuran species, the Emei music frog ( Babina daunchina ). Male music frogs produce advertisement calls from within underground nest burrows that modify the acoustic features of the calls, and both males and females prefer calls produced from inside burrows. We broadcast call stimuli to male and female music frogs while simultaneously recording electroencephalographic (EEG) signals from the telencephalon and mesencephalon. Granger causal connectivity analysis was used to elucidate functional brain networks within the time window of ERP components. The results show that calls produced from inside nests which are highly sexually attractive result in the strongest brain connections; both ascending and descending connections involving the left telencephalon were stronger in males while those in females were stronger with the right telencephalon. Our findings indicate that the frog brain allocates neural attention resources to highly attractive sounds within the window of early components of ERP, and that such processing is sexually dimorphic, presumably reflecting the different reproductive strategies of males and females. © 2018. Published by The Company of Biologists Ltd.

  4. The Paradox of Music-Evoked Sadness: An Online Survey

    PubMed Central

    Taruffi, Liila; Koelsch, Stefan

    2014-01-01

    This study explores listeners’ experience of music-evoked sadness. Sadness is typically assumed to be undesirable and is therefore usually avoided in everyday life. Yet the question remains: Why do people seek and appreciate sadness in music? We present findings from an online survey with both Western and Eastern participants (N = 772). The survey investigates the rewarding aspects of music-evoked sadness, as well as the relative contribution of listener characteristics and situational factors to the appreciation of sad music. The survey also examines the different principles through which sadness is evoked by music, and their interaction with personality traits. Results show 4 different rewards of music-evoked sadness: reward of imagination, emotion regulation, empathy, and no “real-life” implications. Moreover, appreciation of sad music follows a mood-congruent fashion and is greater among individuals with high empathy and low emotional stability. Surprisingly, nostalgia rather than sadness is the most frequent emotion evoked by sad music. Correspondingly, memory was rated as the most important principle through which sadness is evoked. Finally, the trait empathy contributes to the evocation of sadness via contagion, appraisal, and by engaging social functions. The present findings indicate that emotional responses to sad music are multifaceted, are modulated by empathy, and are linked with a multidimensional experience of pleasure. These results were corroborated by a follow-up survey on happy music, which indicated differences between the emotional experiences resulting from listening to sad versus happy music. This is the first comprehensive survey of music-evoked sadness, revealing that listening to sad music can lead to beneficial emotional effects such as regulation of negative emotion and mood as well as consolation. Such beneficial emotional effects constitute the prime motivations for engaging with sad music in everyday life. PMID:25330315

  5. The paradox of music-evoked sadness: an online survey.

    PubMed

    Taruffi, Liila; Koelsch, Stefan

    2014-01-01

    This study explores listeners' experience of music-evoked sadness. Sadness is typically assumed to be undesirable and is therefore usually avoided in everyday life. Yet the question remains: Why do people seek and appreciate sadness in music? We present findings from an online survey with both Western and Eastern participants (N = 772). The survey investigates the rewarding aspects of music-evoked sadness, as well as the relative contribution of listener characteristics and situational factors to the appreciation of sad music. The survey also examines the different principles through which sadness is evoked by music, and their interaction with personality traits. Results show 4 different rewards of music-evoked sadness: reward of imagination, emotion regulation, empathy, and no "real-life" implications. Moreover, appreciation of sad music follows a mood-congruent fashion and is greater among individuals with high empathy and low emotional stability. Surprisingly, nostalgia rather than sadness is the most frequent emotion evoked by sad music. Correspondingly, memory was rated as the most important principle through which sadness is evoked. Finally, the trait empathy contributes to the evocation of sadness via contagion, appraisal, and by engaging social functions. The present findings indicate that emotional responses to sad music are multifaceted, are modulated by empathy, and are linked with a multidimensional experience of pleasure. These results were corroborated by a follow-up survey on happy music, which indicated differences between the emotional experiences resulting from listening to sad versus happy music. This is the first comprehensive survey of music-evoked sadness, revealing that listening to sad music can lead to beneficial emotional effects such as regulation of negative emotion and mood as well as consolation. Such beneficial emotional effects constitute the prime motivations for engaging with sad music in everyday life.

  6. Estimation of chirp rates of music-adapted prolate spheroidal atoms using reassignment

    NASA Astrophysics Data System (ADS)

    Mesz, Bruno; Serrano, Eduardo

    2007-09-01

    We introduce a modified Matching Pursuit algorithm for estimating frequency and frequency slope of FM-modulated music signals. The use of Matching Pursuit with constant frequency atoms provides coarse estimates which could be improved with chirped atoms, more suited in principle to this kind of signals. Application of the reassignment method is suggested by its good localization properties for chirps. We start considering a family of atoms generated by modulation and scaling of a prolate spheroidal wave function. These functions are concentrated in frequency on intervals of a semitone centered at the frequencies of the well-tempered scale. At each stage of the pursuit, we search the atom most correlated with the signal. We then consider the spectral peaks at each frame of the spectrogram and calculate a modified frequency and frequency slope using the derivatives of the reassignment operators; this is then used to estimate the parameters of a cubic interpolation polynomial that models local pitch fluctuations. We apply the method both to synthetic and music signals.

  7. Music improves verbal memory encoding while decreasing prefrontal cortex activity: an fNIRS study.

    PubMed

    Ferreri, Laura; Aucouturier, Jean-Julien; Muthalib, Makii; Bigand, Emmanuel; Bugaiska, Aurelia

    2013-01-01

    Listening to music engages the whole brain, thus stimulating cognitive performance in a range of non-purely musical activities such as language and memory tasks. This article addresses an ongoing debate on the link between music and memory for words. While evidence on healthy and clinical populations suggests that music listening can improve verbal memory in a variety of situations, it is still unclear what specific memory process is affected and how. This study was designed to explore the hypothesis that music specifically benefits the encoding part of verbal memory tasks, by providing a richer context for encoding and therefore less demand on the dorsolateral prefrontal cortex (DLPFC). Twenty-two healthy young adults were subjected to functional near-infrared spectroscopy (fNIRS) imaging of their bilateral DLPFC while encoding words in the presence of either a music or a silent background. Behavioral data confirmed the facilitating effect of music background during encoding on subsequent item recognition. fNIRS results revealed significantly greater activation of the left hemisphere during encoding (in line with the HERA model of memory lateralization) and a sustained, bilateral decrease of activity in the DLPFC in the music condition compared to silence. These findings suggest that music modulates the role played by the DLPFC during verbal encoding, and open perspectives for applications to clinical populations with prefrontal impairments, such as elderly adults or Alzheimer's patients.

  8. Dynamic musical communication of core affect

    PubMed Central

    Flaig, Nicole K.; Large, Edward W.

    2013-01-01

    Is there something special about the way music communicates feelings? Theorists since Meyer (1956) have attempted to explain how music could stimulate varied and subtle affective experiences by violating learned expectancies, or by mimicking other forms of social interaction. Our proposal is that music speaks to the brain in its own language; it need not imitate any other form of communication. We review recent theoretical and empirical literature, which suggests that all conscious processes consist of dynamic neural events, produced by spatially dispersed processes in the physical brain. Intentional thought and affective experience arise as dynamical aspects of neural events taking place in multiple brain areas simultaneously. At any given moment, this content comprises a unified “scene” that is integrated into a dynamic core through synchrony of neuronal oscillations. We propose that (1) neurodynamic synchrony with musical stimuli gives rise to musical qualia including tonal and temporal expectancies, and that (2) music-synchronous responses couple into core neurodynamics, enabling music to directly modulate core affect. Expressive music performance, for example, may recruit rhythm-synchronous neural responses to support affective communication. We suggest that the dynamic relationship between musical expression and the experience of affect presents a unique opportunity for the study of emotional experience. This may help elucidate the neural mechanisms underlying arousal and valence, and offer a new approach to exploring the complex dynamics of the how and why of emotional experience. PMID:24672492

  9. When music tempo affects the temporal congruence between physical practice and motor imagery.

    PubMed

    Debarnot, Ursula; Guillot, Aymeric

    2014-06-01

    When people listen to music, they hear beat and a metrical structure in the rhythm; these perceived patterns enable coordination with the music. A clear correspondence between the tempo of actual movement (e.g., walking) and that of music has been demonstrated, but whether similar coordination occurs during motor imagery is unknown. Twenty participants walked naturally for 8m, either physically or mentally, while listening to slow and fast music, or not listening to anything at all (control condition). Executed and imagined walking times were recorded to assess the temporal congruence between physical practice (PP) and motor imagery (MI). Results showed a difference when comparing slow and fast time conditions, but each of these durations did not differ from soundless condition times, hence showing that body movement may not necessarily change in order to synchronize with music. However, the main finding revealed that the ability to achieve temporal congruence between PP and MI times was altered when listening to either slow or fast music. These data suggest that when physical movement is modulated with respect to the musical tempo, the MI efficacy of the corresponding movement may be affected by the rhythm of the music. Practical applications in sport are discussed as athletes frequently listen to music before competing while they mentally practice their movements to be performed. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Dynamic musical communication of core affect.

    PubMed

    Flaig, Nicole K; Large, Edward W

    2014-01-01

    Is there something special about the way music communicates feelings? Theorists since Meyer (1956) have attempted to explain how music could stimulate varied and subtle affective experiences by violating learned expectancies, or by mimicking other forms of social interaction. Our proposal is that music speaks to the brain in its own language; it need not imitate any other form of communication. We review recent theoretical and empirical literature, which suggests that all conscious processes consist of dynamic neural events, produced by spatially dispersed processes in the physical brain. Intentional thought and affective experience arise as dynamical aspects of neural events taking place in multiple brain areas simultaneously. At any given moment, this content comprises a unified "scene" that is integrated into a dynamic core through synchrony of neuronal oscillations. We propose that (1) neurodynamic synchrony with musical stimuli gives rise to musical qualia including tonal and temporal expectancies, and that (2) music-synchronous responses couple into core neurodynamics, enabling music to directly modulate core affect. Expressive music performance, for example, may recruit rhythm-synchronous neural responses to support affective communication. We suggest that the dynamic relationship between musical expression and the experience of affect presents a unique opportunity for the study of emotional experience. This may help elucidate the neural mechanisms underlying arousal and valence, and offer a new approach to exploring the complex dynamics of the how and why of emotional experience.

  11. Music Listening modulates Functional Connectivity and Information Flow in the Human Brain.

    PubMed

    Karmonik, Christof; Brandt, Anthony; Anderson, Jeff; Brooks, Forrest; Lytle, Julie; Silverman, Elliott; Frazier, Jeff T

    2016-07-27

    Listening to familiar music has recently been reported to be beneficial during recovery from stroke. A better understanding of changes in functional connectivity and information flow is warranted in order to further optimize and target this approach through music therapy. Twelve healthy volunteers listened to seven different auditory samples during an fMRI scanning session: a musical piece chosen by the volunteer that evokes a strong emotional response (referred to as: "self-selected emotional"), two unfamiliar music pieces (Invention #1 by J. S. Bach* and Gagaku - Japanese classical opera, referred to as "unfamiliar"), the Bach piece repeated with visual guidance (DML: Directed Music Listening) and three spoken language pieces (unfamiliar African click language, an excerpt of emotionally charged language, and an unemotional reading of a news bulletin). Functional connectivity and betweenness (BTW) maps, a measure for information flow, were created with a graph-theoretical approach. Distinct variation in functional connectivity was found for different music pieces consistently for all subjects. Largest brain areas were recruited for processing self-selected music with emotional attachment or culturally unfamiliar music. Maps of information flow correlated significantly with fMRI BOLD activation maps (p<0.05). Observed differences in BOLD activation and functional connectivity may help explain previously observed beneficial effects in stroke recovery, as increased blood flow to damaged brain areas stimulated by active engagement through music listening may have supported a state more conducive to therapy.

  12. Time course of the influence of musical expertise on the processing of vocal and musical sounds.

    PubMed

    Rigoulot, S; Pell, M D; Armony, J L

    2015-04-02

    Previous functional magnetic resonance imaging (fMRI) studies have suggested that different cerebral regions preferentially process human voice and music. Yet, little is known on the temporal course of the brain processes that decode the category of sounds and how the expertise in one sound category can impact these processes. To address this question, we recorded the electroencephalogram (EEG) of 15 musicians and 18 non-musicians while they were listening to short musical excerpts (piano and violin) and vocal stimuli (speech and non-linguistic vocalizations). The task of the participants was to detect noise targets embedded within the stream of sounds. Event-related potentials revealed an early differentiation of sound category, within the first 100 ms after the onset of the sound, with mostly increased responses to musical sounds. Importantly, this effect was modulated by the musical background of participants, as musicians were more responsive to music sounds than non-musicians, consistent with the notion that musical training increases sensitivity to music. In late temporal windows, brain responses were enhanced in response to vocal stimuli, but musicians were still more responsive to music. These results shed new light on the temporal course of neural dynamics of auditory processing and reveal how it is impacted by the stimulus category and the expertise of participants. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Music improves verbal memory encoding while decreasing prefrontal cortex activity: an fNIRS study

    PubMed Central

    Ferreri, Laura; Aucouturier, Jean-Julien; Muthalib, Makii; Bigand, Emmanuel; Bugaiska, Aurelia

    2013-01-01

    Listening to music engages the whole brain, thus stimulating cognitive performance in a range of non-purely musical activities such as language and memory tasks. This article addresses an ongoing debate on the link between music and memory for words. While evidence on healthy and clinical populations suggests that music listening can improve verbal memory in a variety of situations, it is still unclear what specific memory process is affected and how. This study was designed to explore the hypothesis that music specifically benefits the encoding part of verbal memory tasks, by providing a richer context for encoding and therefore less demand on the dorsolateral prefrontal cortex (DLPFC). Twenty-two healthy young adults were subjected to functional near-infrared spectroscopy (fNIRS) imaging of their bilateral DLPFC while encoding words in the presence of either a music or a silent background. Behavioral data confirmed the facilitating effect of music background during encoding on subsequent item recognition. fNIRS results revealed significantly greater activation of the left hemisphere during encoding (in line with the HERA model of memory lateralization) and a sustained, bilateral decrease of activity in the DLPFC in the music condition compared to silence. These findings suggest that music modulates the role played by the DLPFC during verbal encoding, and open perspectives for applications to clinical populations with prefrontal impairments, such as elderly adults or Alzheimer’s patients. PMID:24339807

  14. Auditory Deficits in Amusia Extend Beyond Poor Pitch Perception

    PubMed Central

    Whiteford, Kelly L.; Oxenham, Andrew J.

    2017-01-01

    Congenital amusia is a music perception disorder believed to reflect a deficit in fine-grained pitch perception and/or short-term or working memory for pitch. Because most measures of pitch perception include memory and segmentation components, it has been difficult to determine the true extent of pitch processing deficits in amusia. It is also unclear whether pitch deficits persist at frequencies beyond the range of musical pitch. To address these questions, experiments were conducted with amusics and matched controls, manipulating both the stimuli and the task demands. First, we assessed pitch discrimination at low (500 Hz and 2000 Hz) and high (8000 Hz) frequencies using a three-interval forced-choice task. Amusics exhibited deficits even at the highest frequency, which lies beyond the existence region of musical pitch. Next, we assessed the extent to which frequency coding deficits persist in one- and two-interval frequency-modulation (FM) and amplitude-modulation (AM) detection tasks at 500 Hz at slow (fm = 4 Hz) and fast (fm = 20 Hz) modulation rates. Amusics still exhibited deficits in one-interval FM detection tasks that should not involve memory or segmentation. Surprisingly, amusics were also impaired on AM detection, which should not involve pitch processing. Finally, direct comparisons between the detection of continuous and discrete FM demonstrated that amusics suffer deficits both in coding and segmenting pitch information. Our results reveal auditory deficits in amusia extending beyond pitch perception that are subtle when controlling for memory and segmentation, and are likely exacerbated in more complex contexts such as musical listening. PMID:28315696

  15. Nonlinear propagation of electromagnetic waves in negative-refraction-index composite materials.

    PubMed

    Kourakis, I; Shukla, P K

    2005-07-01

    We investigate the nonlinear propagation of electromagnetic waves in left-handed materials. For this purpose, we consider a set of coupled nonlinear Schrödinger (CNLS) equations, which govern the dynamics of coupled electric and magnetic field envelopes. The CNLS equations are used to obtain a nonlinear dispersion, which depicts the modulational stability profile of the coupled plane-wave solutions in left-handed materials. An exact (in)stability criterion for modulational interactions is derived, and analytical expressions for the instability growth rate are obtained.

  16. The relationship between the neural computations for speech and music perception is context-dependent: an activation likelihood estimate study.

    PubMed

    LaCroix, Arianna N; Diaz, Alvaro F; Rogalsky, Corianne

    2015-01-01

    The relationship between the neurobiology of speech and music has been investigated for more than a century. There remains no widespread agreement regarding how (or to what extent) music perception utilizes the neural circuitry that is engaged in speech processing, particularly at the cortical level. Prominent models such as Patel's Shared Syntactic Integration Resource Hypothesis (SSIRH) and Koelsch's neurocognitive model of music perception suggest a high degree of overlap, particularly in the frontal lobe, but also perhaps more distinct representations in the temporal lobe with hemispheric asymmetries. The present meta-analysis study used activation likelihood estimate analyses to identify the brain regions consistently activated for music as compared to speech across the functional neuroimaging (fMRI and PET) literature. Eighty music and 91 speech neuroimaging studies of healthy adult control subjects were analyzed. Peak activations reported in the music and speech studies were divided into four paradigm categories: passive listening, discrimination tasks, error/anomaly detection tasks and memory-related tasks. We then compared activation likelihood estimates within each category for music vs. speech, and each music condition with passive listening. We found that listening to music and to speech preferentially activate distinct temporo-parietal bilateral cortical networks. We also found music and speech to have shared resources in the left pars opercularis but speech-specific resources in the left pars triangularis. The extent to which music recruited speech-activated frontal resources was modulated by task. While there are certainly limitations to meta-analysis techniques particularly regarding sensitivity, this work suggests that the extent of shared resources between speech and music may be task-dependent and highlights the need to consider how task effects may be affecting conclusions regarding the neurobiology of speech and music.

  17. The relationship between the neural computations for speech and music perception is context-dependent: an activation likelihood estimate study

    PubMed Central

    LaCroix, Arianna N.; Diaz, Alvaro F.; Rogalsky, Corianne

    2015-01-01

    The relationship between the neurobiology of speech and music has been investigated for more than a century. There remains no widespread agreement regarding how (or to what extent) music perception utilizes the neural circuitry that is engaged in speech processing, particularly at the cortical level. Prominent models such as Patel's Shared Syntactic Integration Resource Hypothesis (SSIRH) and Koelsch's neurocognitive model of music perception suggest a high degree of overlap, particularly in the frontal lobe, but also perhaps more distinct representations in the temporal lobe with hemispheric asymmetries. The present meta-analysis study used activation likelihood estimate analyses to identify the brain regions consistently activated for music as compared to speech across the functional neuroimaging (fMRI and PET) literature. Eighty music and 91 speech neuroimaging studies of healthy adult control subjects were analyzed. Peak activations reported in the music and speech studies were divided into four paradigm categories: passive listening, discrimination tasks, error/anomaly detection tasks and memory-related tasks. We then compared activation likelihood estimates within each category for music vs. speech, and each music condition with passive listening. We found that listening to music and to speech preferentially activate distinct temporo-parietal bilateral cortical networks. We also found music and speech to have shared resources in the left pars opercularis but speech-specific resources in the left pars triangularis. The extent to which music recruited speech-activated frontal resources was modulated by task. While there are certainly limitations to meta-analysis techniques particularly regarding sensitivity, this work suggests that the extent of shared resources between speech and music may be task-dependent and highlights the need to consider how task effects may be affecting conclusions regarding the neurobiology of speech and music. PMID:26321976

  18. The sound of music: differentiating musicians using a fast, musical multi-feature mismatch negativity paradigm.

    PubMed

    Vuust, Peter; Brattico, Elvira; Seppänen, Miia; Näätänen, Risto; Tervaniemi, Mari

    2012-06-01

    Musicians' skills in auditory processing depend highly on instrument, performance practice, and on level of expertise. Yet, it is not known though whether the style/genre of music might shape auditory processing in the brains of musicians. Here, we aimed at tackling the role of musical style/genre on modulating neural and behavioral responses to changes in musical features. Using a novel, fast and musical sounding multi-feature paradigm, we measured the mismatch negativity (MMN), a pre-attentive brain response, to six types of musical feature change in musicians playing three distinct styles of music (classical, jazz, rock/pop) and in non-musicians. Jazz and classical musicians scored higher in the musical aptitude test than band musicians and non-musicians, especially with regards to tonal abilities. These results were extended by the MMN findings: jazz musicians had larger MMN-amplitude than all other experimental groups across the six different sound features, indicating a greater overall sensitivity to auditory outliers. In particular, we found enhanced processing of pith and sliding up to pitches in jazz musicians only. Furthermore, we observed a more frontal MMN to pitch and location compared to the other deviants in jazz musicians and left lateralization of the MMN to timbre in classical musicians. These findings indicate that the characteristics of the style/genre of music played by musicians influence their perceptual skills and the brain processing of sound features embedded in a musical context. Musicians' brain is hence shaped by the type of training, musical style/genre, and listening experiences. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. The effect of music performance on the transcriptome of professional musicians.

    PubMed

    Kanduri, Chakravarthi; Kuusi, Tuire; Ahvenainen, Minna; Philips, Anju K; Lähdesmäki, Harri; Järvelä, Irma

    2015-03-25

    Music performance by professional musicians involves a wide-spectrum of cognitive and multi-sensory motor skills, whose biological basis is unknown. Several neuroscientific studies have demonstrated that the brains of professional musicians and non-musicians differ structurally and functionally and that musical training enhances cognition. However, the molecules and molecular mechanisms involved in music performance remain largely unexplored. Here, we investigated the effect of music performance on the genome-wide peripheral blood transcriptome of professional musicians by analyzing the transcriptional responses after a 2-hr concert performance and after a 'music-free' control session. The up-regulated genes were found to affect dopaminergic neurotransmission, motor behavior, neuronal plasticity, and neurocognitive functions including learning and memory. Particularly, candidate genes such as SNCA, FOS and DUSP1 that are involved in song perception and production in songbirds, were identified, suggesting an evolutionary conservation in biological processes related to sound perception/production. Additionally, modulation of genes related to calcium ion homeostasis, iron ion homeostasis, glutathione metabolism, and several neuropsychiatric and neurodegenerative diseases implied that music performance may affect the biological pathways that are otherwise essential for the proper maintenance of neuronal function and survival. For the first time, this study provides evidence for the candidate genes and molecular mechanisms underlying music performance.

  20. Effect of Explicit Evaluation on Neural Connectivity Related to Listening to Unfamiliar Music

    PubMed Central

    Liu, Chao; Brattico, Elvira; Abu-jamous, Basel; Pereira, Carlos S.; Jacobsen, Thomas; Nandi, Asoke K.

    2017-01-01

    People can experience different emotions when listening to music. A growing number of studies have investigated the brain structures and neural connectivities associated with perceived emotions. However, very little is known about the effect of an explicit act of judgment on the neural processing of emotionally-valenced music. In this study, we adopted the novel consensus clustering paradigm, called binarisation of consensus partition matrices (Bi-CoPaM), to study whether and how the conscious aesthetic evaluation of the music would modulate brain connectivity networks related to emotion and reward processing. Participants listened to music under three conditions – one involving a non-evaluative judgment, one involving an explicit evaluative aesthetic judgment, and one involving no judgment at all (passive listening only). During non-evaluative attentive listening we obtained auditory-limbic connectivity whereas when participants were asked to decide explicitly whether they liked or disliked the music excerpt, only two clusters of intercommunicating brain regions were found: one including areas related to auditory processing and action observation, and the other comprising higher-order structures involved with visual processing. Results indicate that explicit evaluative judgment has an impact on the neural auditory-limbic connectivity during affective processing of music. PMID:29311874

  1. Music and epilepsy: a critical review.

    PubMed

    Maguire, Melissa Jane

    2012-06-01

    The effect of music on patients with epileptic seizures is complex and at present poorly understood. Clinical studies suggest that the processing of music within the human brain involves numerous cortical areas, extending beyond Heschl's gyrus and working within connected networks. These networks could be recruited during a seizure manifesting as musical phenomena. Similarly, if certain areas within the network are hyperexcitable, then there is a potential that particular sounds or certain music could act as epileptogenic triggers. This occurs in the case of musicogenic epilepsy, whereby seizures are triggered by music. Although it appears that this condition is rare, the exact prevalence is unknown, as often patients do not implicate music as an epileptogenic trigger and routine electroencephalography does not use sound in seizure provocation. Music therapy for refractory epilepsy remains controversial, and further research is needed to explore the potential anticonvulsant role of music. Dopaminergic system modulation and the ambivalent action of cognitive and sensory input in ictogenesis may provide possible theories for the dichotomous proconvulsant and anticonvulsant role of music in epilepsy. The effect of antiepileptic drugs and surgery on musicality should not be underestimated. Altered pitch perception in relation to carbamazepine is rare, but health care professionals should discuss this risk or consider alternative medication particularly if the patient is a professional musician or native-born Japanese. Studies observing the effect of epilepsy surgery on musicality suggest a risk with right temporal lobectomy, although the extent of this risk and correlation to size and area of resection need further delineation. This potential risk may bring into question whether tests on musical perception and memory should form part of the preoperative neuropsychological workup for patients embarking on surgery, particularly that of the right temporal lobe. Wiley Periodicals, Inc. © 2012 International League Against Epilepsy.

  2. POLOCAM: a millimeter wavelength cryogenic polarimeter prototype for MUSIC-POL

    NASA Astrophysics Data System (ADS)

    Laurent, Glenn T.; Vaillancourt, John E.; Savini, Giorgio; Ade, Peter A. R.; Beland, Stephane; Glenn, Jason; Hollister, Matthew I.; Maloney, Philip R.; Sayers, Jack

    2012-09-01

    As a proof-of-concept, we have constructed and tested a cryogenic polarimeter in the laboratory as a prototype for the MUSIC instrument (Multiwavelength Sub/millimeter Kinetic Inductance Camera). The POLOCAM instrument consists of a rotating cryogenic polarization modulator (sapphire half-waveplate) and polarization analyzer (lithographed copper polarizers deposited on a thin film) placed into the optical path at the Lyot stop (4K cold pupil stop) in a cryogenic dewar. We present an overview of the project, design and performance results of the POLOCAM instrument (including polarization efficiencies and instrumental polarization), as well as future application to the MUSIC-POL instrument.

  3. Effects of low-intensity ultrahigh frequency electromagnetic radiation on inflammatory processes.

    PubMed

    Lushnikov, K V; Shumilina, Yu V; Yakushina, V S; Gapeev, A B; Sadovnikov, V B; Chemeris, N K

    2004-04-01

    Low-intensity ultrahigh frequency electromagnetic radiation (42 GHz, 100 microW/cm(2)) reduces the severity of inflammation and inhibits production of active oxygen forms by inflammatory exudate neutrophils only in mice with inflammatory process. These data suggest that some therapeutic effects of electromagnetic radiation can be explained by its antiinflammatory effect which is realized via modulation of functional activity of neutrophils in the focus of inflammation.

  4. On Electromagnetic Modulation of Flow Instabilities, Mixing and Heat Transfer in Conducting and Magnetized Fluids

    NASA Astrophysics Data System (ADS)

    Kenjeres, S.

    2016-09-01

    In the present paper we give a concise review of some recent highlights of our research dealing with electromagnetic control of flow, mixing and heat transfer of electrically conductive or magnetized fluids. We apply a combination of state-of-art numerical (DNS and LES) and experimental (PIV and LIF) techniques to provide fundamental insights into the complex phenomena of interactions between imposed (or induced) electromagnetic fields and underlying fluid flow. Our analysis covers an extensive range of working fluids, i.e. weakly- and highly-electrically-conductive, as well as magnetized fluids. These interactions are defined through the presence of different types of body forces acting per volume of fluid. A fully closed system of governing equations containing an extended set of the Navier-Stokes and a simplified set of the Maxwell equations is presented. The four characteristic examples are selected: the electromagnetic control of self-sustained jet oscillations, the electromagnetic enhancement of heat transfer in thermal convection, the wake interactions behind magnetic obstacles and finally, the thermo-magnetic convection in differentially heated cubical enclosure. The comparative assessment between experimental and numerical results is presented. It is concluded that generally good agreement between simulations and experiments is obtained for all cases considered, proving the concept of electromagnetic modulation, which can be used in numerous technological applications.

  5. Musical melody and speech intonation: singing a different tune.

    PubMed

    Zatorre, Robert J; Baum, Shari R

    2012-01-01

    Music and speech are often cited as characteristically human forms of communication. Both share the features of hierarchical structure, complex sound systems, and sensorimotor sequencing demands, and both are used to convey and influence emotions, among other functions [1]. Both music and speech also prominently use acoustical frequency modulations, perceived as variations in pitch, as part of their communicative repertoire. Given these similarities, and the fact that pitch perception and production involve the same peripheral transduction system (cochlea) and the same production mechanism (vocal tract), it might be natural to assume that pitch processing in speech and music would also depend on the same underlying cognitive and neural mechanisms. In this essay we argue that the processing of pitch information differs significantly for speech and music; specifically, we suggest that there are two pitch-related processing systems, one for more coarse-grained, approximate analysis and one for more fine-grained accurate representation, and that the latter is unique to music. More broadly, this dissociation offers clues about the interface between sensory and motor systems, and highlights the idea that multiple processing streams are a ubiquitous feature of neuro-cognitive architectures.

  6. Affective priming effects of musical sounds on the processing of word meaning.

    PubMed

    Steinbeis, Nikolaus; Koelsch, Stefan

    2011-03-01

    Recent studies have shown that music is capable of conveying semantically meaningful concepts. Several questions have subsequently arisen particularly with regard to the precise mechanisms underlying the communication of musical meaning as well as the role of specific musical features. The present article reports three studies investigating the role of affect expressed by various musical features in priming subsequent word processing at the semantic level. By means of an affective priming paradigm, it was shown that both musically trained and untrained participants evaluated emotional words congruous to the affect expressed by a preceding chord faster than words incongruous to the preceding chord. This behavioral effect was accompanied by an N400, an ERP typically linked with semantic processing, which was specifically modulated by the (mis)match between the prime and the target. This finding was shown for the musical parameter of consonance/dissonance (Experiment 1) and then extended to mode (major/minor) (Experiment 2) and timbre (Experiment 3). Seeing that the N400 is taken to reflect the processing of meaning, the present findings suggest that the emotional expression of single musical features is understood by listeners as such and is probably processed on a level akin to other affective communications (i.e., prosody or vocalizations) because it interferes with subsequent semantic processing. There were no group differences, suggesting that musical expertise does not have an influence on the processing of emotional expression in music and its semantic connotations.

  7. The steady-state response of the cerebral cortex to the beat of music reflects both the comprehension of music and attention

    PubMed Central

    Meltzer, Benjamin; Reichenbach, Chagit S.; Braiman, Chananel; Schiff, Nicholas D.; Hudspeth, A. J.; Reichenbach, Tobias

    2015-01-01

    The brain’s analyses of speech and music share a range of neural resources and mechanisms. Music displays a temporal structure of complexity similar to that of speech, unfolds over comparable timescales, and elicits cognitive demands in tasks involving comprehension and attention. During speech processing, synchronized neural activity of the cerebral cortex in the delta and theta frequency bands tracks the envelope of a speech signal, and this neural activity is modulated by high-level cortical functions such as speech comprehension and attention. It remains unclear, however, whether the cortex also responds to the natural rhythmic structure of music and how the response, if present, is influenced by higher cognitive processes. Here we employ electroencephalography to show that the cortex responds to the beat of music and that this steady-state response reflects musical comprehension and attention. We show that the cortical response to the beat is weaker when subjects listen to a familiar tune than when they listen to an unfamiliar, non-sensical musical piece. Furthermore, we show that in a task of intermodal attention there is a larger neural response at the beat frequency when subjects attend to a musical stimulus than when they ignore the auditory signal and instead focus on a visual one. Our findings may be applied in clinical assessments of auditory processing and music cognition as well as in the construction of auditory brain-machine interfaces. PMID:26300760

  8. Relativistic laser-plasma interactions in the quantum regime.

    PubMed

    Eliasson, Bengt; Shukla, P K

    2011-04-01

    We consider nonlinear interactions between a relativistically strong laser beam and a plasma in the quantum regime. The collective behavior of electrons is modeled by a Klein-Gordon equation, which is nonlinearly coupled with the electromagnetic wave through the Maxwell and Poisson equations. This allows us to study nonlinear interactions between arbitrarily large-amplitude electromagnetic waves and a quantum plasma. We have used our system of nonlinear equations to study theoretically the parametric instabilities involving stimulated Raman scattering and modulational instabilities. A model for quasi-steady-state propagating electromagnetic wave packets is also derived, and which shows possibility of localized solitary structures in a quantum plasma. Numerical simulations demonstrate collapse and acceleration of electrons in the nonlinear stage of the modulational instability, as well as possibility of the wake-field acceleration of electrons to relativistic speeds by short laser pulses at nanometer length scales. Our study is relevant for understanding the localization of intense electromagnetic pulses in a quantum plasma with extremely high electron densities and relatively low temperature.

  9. Out of time: a possible link between mirror neurons, autism and electromagnetic radiation.

    PubMed

    Thornton, Ian M

    2006-01-01

    Recent evidence suggests a link between autism and the human mirror neuron system. In this paper, I argue that temporal disruption from the environment may play an important role in the observed mirror neuron dysfunction, leading in turn to the pattern of deficits associated with autism. I suggest that the developing nervous system of an infant may be particularly prone to temporal noise that can interfere with the initial calibration of brain networks such as the mirror neuron system. The most likely source of temporal noise in the environment is artificially generated electromagnetic radiation. To date, there has been little evidence that electromagnetic radiation poses a direct biological hazard. It is clear, however, that time-varying electromagnetic waves have the potential to temporally modulate the nervous system, particularly when populations of neurons are required to act together. This modulation may be completely harmless for the fully developed nervous system of an adult. For an infant, this same temporal disruption might act to severely delay or disrupt vital calibration processes.

  10. Jumpstarting auditory learning in children with cochlear implants through music experiences.

    PubMed

    Barton, Christine; Robbins, Amy McConkey

    2015-09-01

    Musical experiences are a valuable part of the lives of children with cochlear implants (CIs). In addition to the pleasure, relationships and emotional outlet provided by music, it serves to enhance or 'jumpstart' other auditory and cognitive skills that are critical for development and learning throughout the lifespan. Musicians have been shown to be 'better listeners' than non-musicians with regard to how they perceive and process sound. A heuristic model of music therapy is reviewed, including six modulating factors that may account for the auditory advantages demonstrated by those who participate in music therapy. The integral approach to music therapy is described along with the hybrid approach to pediatric language intervention. These approaches share the characteristics of placing high value on ecologically valid therapy experiences, i.e., engaging in 'real' music and 'real' communication. Music and language intervention techniques used by the authors are presented. It has been documented that children with CIs consistently have lower music perception scores than do their peers with normal hearing (NH). On the one hand, this finding matters a great deal because it provides parameters for setting reasonable expectations and highlights the work still required to improve signal processing with the devices so that they more accurately transmit music to CI listeners. On the other hand, the finding might not matter much if we assume that music, even in its less-than-optimal state, functions for CI children, as for NH children, as a developmental jumpstarter, a language-learning tool, a cognitive enricher, a motivator, and an attention enhancer.

  11. Are lexical tones musical? Native language's influence on neural response to pitch in different domains.

    PubMed

    Chen, Ao; Peter, Varghese; Wijnen, Frank; Schnack, Hugo; Burnham, Denis

    2018-04-21

    Language experience shapes musical and speech pitch processing. We investigated whether speaking a lexical tone language natively modulates neural processing of pitch in language and music as well as their correlation. We tested tone language (Mandarin Chinese), and non-tone language (Dutch) listeners in a passive oddball paradigm measuring mismatch negativity (MMN) for (i) Chinese lexical tones and (ii) three-note musical melodies with similar pitch contours. For lexical tones, Chinese listeners showed a later MMN peak than the non-tone language listeners, whereas for MMN amplitude there were no significant differences between groups. Dutch participants also showed a late discriminative negativity (LDN). In the music condition two MMNs, corresponding to the two notes that differed between the standard and the deviant were found for both groups, and an LDN were found for both the Dutch and the Chinese listeners. The music MMNs were significantly right lateralized. Importantly, significant correlations were found between the lexical tone and the music MMNs for the Dutch but not the Chinese participants. The results suggest that speaking a tone language natively does not necessarily enhance neural responses to pitch either in language or in music, but that it does change the nature of neural pitch processing: non-tone language speakers appear to perceive lexical tones as musical, whereas for tone language speakers, lexical tones and music may activate different neural networks. Neural resources seem to be assigned differently for the lexical tones and for musical melodies, presumably depending on the presence or absence of long-term phonological memory traces. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Music preferences with hearing aids: effects of signal properties, compression settings, and listener characteristics.

    PubMed

    Croghan, Naomi B H; Arehart, Kathryn H; Kates, James M

    2014-01-01

    Current knowledge of how to design and fit hearing aids to optimize music listening is limited. Many hearing-aid users listen to recorded music, which often undergoes compression limiting (CL) in the music industry. Therefore, hearing-aid users may experience twofold effects of compression when listening to recorded music: music-industry CL and hearing-aid wide dynamic-range compression (WDRC). The goal of this study was to examine the roles of input-signal properties, hearing-aid processing, and individual variability in the perception of recorded music, with a focus on the effects of dynamic-range compression. A group of 18 experienced hearing-aid users made paired-comparison preference judgments for classical and rock music samples using simulated hearing aids. Music samples were either unprocessed before hearing-aid input or had different levels of music-industry CL. Hearing-aid conditions included linear gain and individually fitted WDRC. Combinations of four WDRC parameters were included: fast release time (50 msec), slow release time (1,000 msec), three channels, and 18 channels. Listeners also completed several psychophysical tasks. Acoustic analyses showed that CL and WDRC reduced temporal envelope contrasts, changed amplitude distributions across the acoustic spectrum, and smoothed the peaks of the modulation spectrum. Listener judgments revealed that fast WDRC was least preferred for both genres of music. For classical music, linear processing and slow WDRC were equally preferred, and the main effect of number of channels was not significant. For rock music, linear processing was preferred over slow WDRC, and three channels were preferred to 18 channels. Heavy CL was least preferred for classical music, but the amount of CL did not change the patterns of WDRC preferences for either genre. Auditory filter bandwidth as estimated from psychophysical tuning curves was associated with variability in listeners' preferences for classical music. Fast, multichannel WDRC often leads to poor music quality, whereas linear processing or slow WDRC are generally preferred. Furthermore, the effect of WDRC is more important for music preferences than music-industry CL applied to signals before the hearing-aid input stage. Variability in hearing-aid users' perceptions of music quality may be partially explained by frequency resolution abilities.

  13. An Electronic Worker Service System of the Pig House Based on ATmega16

    NASA Astrophysics Data System (ADS)

    Li, Liu-An; Jin, Tian-Ming; Yu, Ya-Ping; Zhang, Guo-Qiang; Hong, Tao

    Pork is very important for people in daily life. Quality of livestock environment is closely related to the growth of animals. To improve environmental quality, the paper designed an electronic worker service system of the pig house based on ATmega16, which consisted of 6 detection modules, wireless data collecting, GSM, time circuit, display, anti-th alarm and music player, etc. A small LAN was constructed by wireless transceiver module to test and collect data of temperature, humidity and harmful gas concentration in the pig house. If one detection point exists that harmful pollutant gases concentration exceeds the standard value, GSM module took a message for livestock farmers, so that farmers can promptly arrive at the pig house to ventilate or deal with manure in the pig house, which can effectively prevent from bad things. Time of pyroelectric detector deployment can be freely set, and intrusion information was timely sent to the users. The anti-th alarm function was achieved by the auxiliary light. The music playing module is open by timer module in order to soothing pigs' life state. All are suitable for small farms and can save human resources.

  14. Distinct Cortical Pathways for Music and Speech Revealed by Hypothesis-Free Voxel Decomposition

    PubMed Central

    Norman-Haignere, Sam

    2015-01-01

    SUMMARY The organization of human auditory cortex remains unresolved, due in part to the small stimulus sets common to fMRI studies and the overlap of neural populations within voxels. To address these challenges, we measured fMRI responses to 165 natural sounds and inferred canonical response profiles (“components”) whose weighted combinations explained voxel responses throughout auditory cortex. This analysis revealed six components, each with interpretable response characteristics despite being unconstrained by prior functional hypotheses. Four components embodied selectivity for particular acoustic features (frequency, spectrotemporal modulation, pitch). Two others exhibited pronounced selectivity for music and speech, respectively, and were not explainable by standard acoustic features. Anatomically, music and speech selectivity concentrated in distinct regions of non-primary auditory cortex. However, music selectivity was weak in raw voxel responses, and its detection required a decomposition method. Voxel decomposition identifies primary dimensions of response variation across natural sounds, revealing distinct cortical pathways for music and speech. PMID:26687225

  15. Distinct Cortical Pathways for Music and Speech Revealed by Hypothesis-Free Voxel Decomposition.

    PubMed

    Norman-Haignere, Sam; Kanwisher, Nancy G; McDermott, Josh H

    2015-12-16

    The organization of human auditory cortex remains unresolved, due in part to the small stimulus sets common to fMRI studies and the overlap of neural populations within voxels. To address these challenges, we measured fMRI responses to 165 natural sounds and inferred canonical response profiles ("components") whose weighted combinations explained voxel responses throughout auditory cortex. This analysis revealed six components, each with interpretable response characteristics despite being unconstrained by prior functional hypotheses. Four components embodied selectivity for particular acoustic features (frequency, spectrotemporal modulation, pitch). Two others exhibited pronounced selectivity for music and speech, respectively, and were not explainable by standard acoustic features. Anatomically, music and speech selectivity concentrated in distinct regions of non-primary auditory cortex. However, music selectivity was weak in raw voxel responses, and its detection required a decomposition method. Voxel decomposition identifies primary dimensions of response variation across natural sounds, revealing distinct cortical pathways for music and speech. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. 3D Target Localization of Modified 3D MUSIC for a Triple-Channel K-Band Radar.

    PubMed

    Li, Ying-Chun; Choi, Byunggil; Chong, Jong-Wha; Oh, Daegun

    2018-05-20

    In this paper, a modified 3D multiple signal classification (MUSIC) algorithm is proposed for joint estimation of range, azimuth, and elevation angles of K-band radar with a small 2 × 2 horn antenna array. Three channels of the 2 × 2 horn antenna array are utilized as receiving channels, and the other one is a transmitting antenna. The proposed modified 3D MUSIC is designed to make use of a stacked autocorrelation matrix, whose element matrices are related to each other in the spatial domain. An augmented 2D steering vector based on the stacked autocorrelation matrix is proposed for the modified 3D MUSIC, instead of the conventional 3D steering vector. The effectiveness of the proposed modified 3D MUSIC is verified through implementation with a K-band frequency-modulated continuous-wave (FMCW) radar with the 2 × 2 horn antenna array through a variety of experiments in a chamber.

  17. Music information retrieval in compressed audio files: a survey

    NASA Astrophysics Data System (ADS)

    Zampoglou, Markos; Malamos, Athanasios G.

    2014-07-01

    In this paper, we present an organized survey of the existing literature on music information retrieval systems in which descriptor features are extracted directly from the compressed audio files, without prior decompression to pulse-code modulation format. Avoiding the decompression step and utilizing the readily available compressed-domain information can significantly lighten the computational cost of a music information retrieval system, allowing application to large-scale music databases. We identify a number of systems relying on compressed-domain information and form a systematic classification of the features they extract, the retrieval tasks they tackle and the degree in which they achieve an actual increase in the overall speed-as well as any resulting loss in accuracy. Finally, we discuss recent developments in the field, and the potential research directions they open toward ultra-fast, scalable systems.

  18. Full-duplex optical communication system

    NASA Technical Reports Server (NTRS)

    Shay, Thomas M. (Inventor); Hazzard, David A. (Inventor); Horan, Stephen (Inventor); Payne, Jason A. (Inventor)

    2004-01-01

    A method of full-duplex electromagnetic communication wherein a pair of data modulation formats are selected for the forward and return data links respectively such that the forward data electro-magnetic beam serves as a carrier for the return data. A method of encoding optical information is used wherein right-hand and left-hand circular polarizations are assigned to optical information to represent binary states. An application for an earth to low earth orbit optical communications system is presented which implements the full-duplex communication and circular polarization keying modulation format.

  19. Acute Auditory Stimulation with Different Styles of Music Influences Cardiac Autonomic Regulation in Men

    PubMed Central

    da Silva, Sheila Ap. F.; Guida, Heraldo L.; dos Santos Antonio, Ana Marcia; de Abreu, Luiz Carlos; Monteiro, Carlos B. M.; Ferreira, Celso; Ribeiro, Vivian F.; Barnabe, Viviani; Silva, Sidney B.; Fonseca, Fernando L. A.; Adami, Fernando; Petenusso, Marcio; Raimundo, Rodrigo D.; Valenti, Vitor E.

    2014-01-01

    Background: No clear evidence is available in the literature regarding the acute effect of different styles of music on cardiac autonomic control. Objectives: The present study aimed to evaluate the acute effects of classical baroque and heavy metal musical auditory stimulation on Heart Rate Variability (HRV) in healthy men. Patients and Methods: In this study, HRV was analyzed regarding time (SDNN, RMSSD, NN50, and pNN50) and frequency domain (LF, HF, and LF / HF) in 12 healthy men. HRV was recorded at seated rest for 10 minutes. Subsequently, the participants were exposed to classical baroque or heavy metal music for five minutes through an earphone at seated rest. After exposure to the first song, they remained at rest for five minutes and they were again exposed to classical baroque or heavy metal music. The music sequence was random for each individual. Standard statistical methods were used for calculation of means and standard deviations. Besides, ANOVA and Friedman test were used for parametric and non-parametric distributions, respectively. Results: While listening to heavy metal music, SDNN was reduced compared to the baseline (P = 0.023). In addition, the LF index (ms2 and nu) was reduced during exposure to both heavy metal and classical baroque musical auditory stimulation compared to the control condition (P = 0.010 and P = 0.048, respectively). However, the HF index (ms2) was reduced only during auditory stimulation with music heavy metal (P = 0.01). The LF/HF ratio on the other hand decreased during auditory stimulation with classical baroque music (P = 0.019). Conclusions: Acute auditory stimulation with the selected heavy metal musical auditory stimulation decreased the sympathetic and parasympathetic modulation on the heart, while exposure to a selected classical baroque music reduced sympathetic regulation on the heart. PMID:25177673

  20. Moving to Music: Effects of Heard and Imagined Musical Cues on Movement-Related Brain Activity

    PubMed Central

    Schaefer, Rebecca S.; Morcom, Alexa M.; Roberts, Neil; Overy, Katie

    2014-01-01

    Music is commonly used to facilitate or support movement, and increasingly used in movement rehabilitation. Additionally, there is some evidence to suggest that music imagery, which is reported to lead to brain signatures similar to music perception, may also assist movement. However, it is not yet known whether either imagined or musical cueing changes the way in which the motor system of the human brain is activated during simple movements. Here, functional magnetic resonance imaging was used to compare neural activity during wrist flexions performed to either heard or imagined music with self-pacing of the same movement without any cueing. Focusing specifically on the motor network of the brain, analyses were performed within a mask of BA4, BA6, the basal ganglia (putamen, caudate, and pallidum), the motor nuclei of the thalamus, and the whole cerebellum. Results revealed that moving to music compared with self-paced movement resulted in significantly increased activation in left cerebellum VI. Moving to imagined music led to significantly more activation in pre-supplementary motor area (pre-SMA) and right globus pallidus, relative to self-paced movement. When the music and imagery cueing conditions were contrasted directly, movements in the music condition showed significantly more activity in left hemisphere cerebellum VII and right hemisphere and vermis of cerebellum IX, while the imagery condition revealed more significant activity in pre-SMA. These results suggest that cueing movement with actual or imagined music impacts upon engagement of motor network regions during the movement, and suggest that heard and imagined cues can modulate movement in subtly different ways. These results may have implications for the applicability of auditory cueing in movement rehabilitation for different patient populations. PMID:25309407

  1. Effects of Articulation Styles on Perception of Modulated Tempos in Violin Excerpts

    ERIC Educational Resources Information Center

    Geringer, John M.; Madsen, Clifford K.; Macleod, Rebecca B.

    2007-01-01

    We investigated effects of legato, staccato and pizzicato articulation styles on the perception of modulated tempos. Seventy-two music majors served as participants. Two solo violin excerpts were chosen with contrasting rhythmic rates and were recorded in all three articulation styles. Examples were presented to listeners in three conditions of…

  2. Distributed neural signatures of natural audiovisual speech and music in the human auditory cortex.

    PubMed

    Salmi, Juha; Koistinen, Olli-Pekka; Glerean, Enrico; Jylänki, Pasi; Vehtari, Aki; Jääskeläinen, Iiro P; Mäkelä, Sasu; Nummenmaa, Lauri; Nummi-Kuisma, Katarina; Nummi, Ilari; Sams, Mikko

    2017-08-15

    During a conversation or when listening to music, auditory and visual information are combined automatically into audiovisual objects. However, it is still poorly understood how specific type of visual information shapes neural processing of sounds in lifelike stimulus environments. Here we applied multi-voxel pattern analysis to investigate how naturally matching visual input modulates supratemporal cortex activity during processing of naturalistic acoustic speech, singing and instrumental music. Bayesian logistic regression classifiers with sparsity-promoting priors were trained to predict whether the stimulus was audiovisual or auditory, and whether it contained piano playing, speech, or singing. The predictive performances of the classifiers were tested by leaving one participant at a time for testing and training the model using the remaining 15 participants. The signature patterns associated with unimodal auditory stimuli encompassed distributed locations mostly in the middle and superior temporal gyrus (STG/MTG). A pattern regression analysis, based on a continuous acoustic model, revealed that activity in some of these MTG and STG areas were associated with acoustic features present in speech and music stimuli. Concurrent visual stimulus modulated activity in bilateral MTG (speech), lateral aspect of right anterior STG (singing), and bilateral parietal opercular cortex (piano). Our results suggest that specific supratemporal brain areas are involved in processing complex natural speech, singing, and piano playing, and other brain areas located in anterior (facial speech) and posterior (music-related hand actions) supratemporal cortex are influenced by related visual information. Those anterior and posterior supratemporal areas have been linked to stimulus identification and sensory-motor integration, respectively. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. TauG-guidance of transients in expressive musical performance.

    PubMed

    Schogler, Benjaman; Pepping, Gert-Jan; Lee, David N

    2008-08-01

    The sounds in expressive musical performance, and the movements that produce them, offer insight into temporal patterns in the brain that generate expression. To gain understanding of these brain patterns, we analyzed two types of transient sounds, and the movements that produced them, during a vocal duet and a bass solo. The transient sounds studied were inter-tone f (0)(t)-glides (the continuous change in fundamental frequency, f (0)(t), when gliding from one tone to the next), and attack intensity-glides (the continuous rise in sound intensity when attacking, or initiating, a tone). The temporal patterns of the inter-tone f (0)(t)-glides and attack intensity-glides, and of the movements producing them, all conformed to the mathematical function, tau (G)(t) (called tauG), predicted by General Tau Theory, and assumed to be generated in the brain. The values of the parameters of the tau (G)(t) function were modulated by the performers when they modulated musical expression. Thus the tau (G)(t) function appears to be a fundamental of brain activity entailed in the generation of expressive temporal patterns of movement and sound.

  4. Modulated scattering technique in the terahertz domain enabled by current actuated vanadium dioxide switches

    PubMed Central

    Vitale, W. A.; Tamagnone, M.; Émond, N.; Le Drogoff, B.; Capdevila, S.; Skrivervik, A.; Chaker, M.; Mosig, J. R.; Ionescu, A. M.

    2017-01-01

    The modulated scattering technique is based on the use of reconfigurable electromagnetic scatterers, structures able to scatter and modulate an impinging electromagnetic field in function of a control signal. The modulated scattering technique is used in a wide range of frequencies up to millimeter waves for various applications, such as field mapping of circuits or antennas, radio-frequency identification devices and imaging applications. However, its implementation in the terahertz domain remains challenging. Here, we describe the design and experimental demonstration of the modulated scattering technique at terahertz frequencies. We characterize a modulated scatterer consisting in a bowtie antenna loaded with a vanadium dioxide switch, actuated using a continuous current. The modulated scatterer behavior is demonstrated using a time domain terahertz spectroscopy setup and shows significant signal strength well above 0.5 THz, which makes this device a promising candidate for the development of fast and energy-efficient THz communication devices and imaging systems. Moreover, our experiments allowed us to verify the operation of a single micro-meter sized VO2 switch at terahertz frequencies, thanks to the coupling provided by the antenna. PMID:28145523

  5. Experimental measurement and theoretical modeling of microwave scattering and the structure of the sea surface influencing radar observations from space

    NASA Technical Reports Server (NTRS)

    Arnold, David; Kong, J. A.

    1992-01-01

    The electromagnetic bias is an error present in radar altimetry of the ocean due to the non-uniform reflection from wave troughs and crests. A study of the electromagnetic bias became necessary to permit error reduction in mean sea level measurements of satellite radar altimeters. Satellite radar altimeters have been used to find the upper and lower bounds for the electromagnetic bias. This report will present a theory using physical optics scattering and an empirical model of the short wave modulation to predict the electromagnetic bias. The predicted electromagnetic bias will be compared to measurements at C and Ku bands.

  6. BIOLOGICAL INFLUENCES OF LOW-FREQUENCY SINUSOIDAL ELECTROMAGNETIC SIGNALS ALONE AND SUPERIMPOSED ON RF CARRIER WAVES

    EPA Science Inventory

    The report describes in a historical context the experiments that have been performed to examine the biological responses caused by exposure to low frequency electromagnetic radiation directly or as modulation of RF carrier waves. A detailed review is provided of the independentl...

  7. Musical experience facilitates lexical tone processing among Mandarin speakers: Behavioral and neural evidence.

    PubMed

    Tang, Wei; Xiong, Wen; Zhang, Yu-Xuan; Dong, Qi; Nan, Yun

    2016-10-01

    Music and speech share many sound attributes. Pitch, as the percept of fundamental frequency, often occupies the center of researchers' attention in studies on the relationship between music and speech. One widely held assumption is that music experience may confer an advantage in speech tone processing. The cross-domain effects of musical training on non-tonal language speakers' linguistic pitch processing have been relatively well established. However, it remains unclear whether musical experience improves the processing of lexical tone for native tone language speakers who actually use lexical tones in their daily communication. Using a passive oddball paradigm, the present study revealed that among Mandarin speakers, musicians demonstrated enlarged electrical responses to lexical tone changes as reflected by the increased mismatch negativity (MMN) amplitudes, as well as faster behavioral discrimination performance compared with age- and IQ-matched nonmusicians. The current results suggest that in spite of the preexisting long-term experience with lexical tones in both musicians and nonmusicians, musical experience can still modulate the cortical plasticity of linguistic tone processing and is associated with enhanced neural processing of speech tones. Our current results thus provide the first electrophysiological evidence supporting the notion that pitch expertise in the music domain may indeed be transferable to the speech domain even for native tone language speakers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Musical rhythm and pitch: A differential effect on auditory dynamics as revealed by the N1/MMN/P3a complex.

    PubMed

    Lelo-de-Larrea-Mancera, E Sebastian; Rodríguez-Agudelo, Yaneth; Solís-Vivanco, Rodolfo

    2017-06-01

    Music represents a complex form of human cognition. To what extent our auditory system is attuned to music is yet to be clearly understood. Our principal aim was to determine whether the neurophysiological operations underlying pre-attentive auditory change detection (N1 enhancement (N1e)/Mismatch Negativity (MMN)) and the subsequent involuntary attentional reallocation (P3a) towards infrequent sound omissions, are influenced by differences in musical content. Specifically, we intended to explore any interaction effects that rhythmic and pitch dimensions of musical organization may have over these processes. Results showed that both the N1e and MMN amplitudes were differentially influenced by rhythm and pitch dimensions. MMN latencies were shorter for musical structures containing both features. This suggests some neurocognitive independence between pitch and rhythm domains, but also calls for further address on possible interactions between both of them at the level of early, automatic auditory detection. Furthermore, results demonstrate that the N1e reflects basic sensory memory processes. Lastly, we show that the involuntary switch of attention associated with the P3a reflects a general-purpose mechanism not modulated by musical features. Altogether, the N1e/MMN/P3a complex elicited by infrequent sound omissions revealed evidence of musical influence over early stages of auditory perception. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Neural responses to nostalgia-evoking music modeled by elements of dynamic musical structure and individual differences in affective traits.

    PubMed

    Barrett, Frederick S; Janata, Petr

    2016-10-01

    Nostalgia is an emotion that is most commonly associated with personally and socially relevant memories. It is primarily positive in valence and is readily evoked by music. It is also an idiosyncratic experience that varies between individuals based on affective traits. We identified frontal, limbic, paralimbic, and midbrain brain regions in which the strength of the relationship between ratings of nostalgia evoked by music and blood-oxygen-level-dependent (BOLD) signal was predicted by affective personality measures (nostalgia proneness and the sadness scale of the Affective Neuroscience Personality Scales) that are known to modulate the strength of nostalgic experiences. We also identified brain areas including the inferior frontal gyrus, substantia nigra, cerebellum, and insula in which time-varying BOLD activity correlated more strongly with the time-varying tonal structure of nostalgia-evoking music than with music that evoked no or little nostalgia. These findings illustrate one way in which the reward and emotion regulation networks of the brain are recruited during the experiencing of complex emotional experiences triggered by music. These findings also highlight the importance of considering individual differences when examining the neural responses to strong and idiosyncratic emotional experiences. Finally, these findings provide a further demonstration of the use of time-varying stimulus-specific information in the investigation of music-evoked experiences. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The Effects of Music Intervention on Functional Connectivity Strength of the Brain in Schizophrenia.

    PubMed

    Yang, Mi; He, Hui; Duan, Mingjun; Chen, Xi; Chang, Xin; Lai, Yongxiu; Li, Jianfu; Liu, Tiejun; Luo, Cheng; Yao, Dezhong

    2018-01-01

    Schizophrenia is often associated with behavior abnormality in the cognitive and affective domain. Music intervention is used as a complementary treatment for improving symptoms in patients with schizophrenia. However, the neurophysiological correlates of these remissions remain poorly understood. Here, we investigated the effects of music intervention in neural circuits through functional magnetic resonance imaging (fMRI) study in schizophrenic subjects. Under the standard care, patients were randomly assigned to music and non-music interventions (MTSZ, UMTSZ) for 1 month. Resting-state fMRI were acquired over three time points (baseline, 1 month, and 6 months later) in patients and analyzed using functional connectivity strength (FCS) and seed-based functional connection (FC) approaches. At baseline, compared with healthy controls, decreased FCS in the right middle temporal gyrus (MTG) was observed in patients. However, after music intervention, the functional circuitry of the right MTG, which was related with the function of emotion and sensorimotor, was improved in MTSZ. Furthermore, the FC increments were significantly correlated with the improvement of symptoms, while vanishing 6 months later. Together, these findings provided evidence that music intervention might positively modulate the functional connectivity of MTG in patients with schizophrenia; such changes might be associated with the observed therapeutic effects of music intervention on neurocognitive function. This trial is registered with ChiCTR-OPC-14005339.

  11. Relationships among Musical Aptitude, Digit Ratio and Testosterone in Men and Women

    PubMed Central

    Borniger, Jeremy C.; Chaudhry, Adeel; Muehlenbein, Michael P.

    2013-01-01

    Circulating adult testosterone levels, digit ratio (length of the second finger relative to the fourth finger), and directional asymmetry in digit ratio are considered sexually dimorphic traits in humans. These have been related to spatial abilities in men and women, and because similar brain structures appear to be involved in both spatial and musical abilities, neuroendocrine function may be related to musical as well as spatial cognition. To evaluate relationships among testosterone and musical ability in men and women, saliva samples were collected, testosterone concentrations assessed, and digit ratios calculated using standardized protocols in a sample of university students (N = 61), including both music and non-music majors. Results of Spearman correlations suggest that digit ratio and testosterone levels are statistically related to musical aptitude and performance only within the female sample: A) those females with greater self-reported history of exposure to music (p = 0.016) and instrument proficiency (p = 0.040) scored higher on the Advanced Measures of Music Audiation test, B) those females with higher left hand digit ratio (and perhaps lower fetal testosterone levels) were more highly ranked (p = 0.007) in the orchestra, C) female music students exhibited a trend (p = 0.082) towards higher testosterone levels compared to female non-music students, and D) female music students with higher rank in the orchestra/band had higher testosterone levels (p = 0.003) than lower ranked students. None of these relationships were significant in the male sample, although a lack of statistical power may be one cause. The effects of testosterone are likely a small part of a poorly understood system of biological and environmental stimuli that contribute to musical aptitude. Hormones may play some role in modulating the phenotype of musical ability, and this may be the case for females more so than males. PMID:23520475

  12. Cortical entrainment to music and its modulation by expertise

    PubMed Central

    Doelling, Keith B.; Poeppel, David

    2015-01-01

    Recent studies establish that cortical oscillations track naturalistic speech in a remarkably faithful way. Here, we test whether such neural activity, particularly low-frequency (<8 Hz; delta–theta) oscillations, similarly entrain to music and whether experience modifies such a cortical phenomenon. Music of varying tempi was used to test entrainment at different rates. In three magnetoencephalography experiments, we recorded from nonmusicians, as well as musicians with varying years of experience. Recordings from nonmusicians demonstrate cortical entrainment that tracks musical stimuli over a typical range of tempi, but not at tempi below 1 note per second. Importantly, the observed entrainment correlates with performance on a concurrent pitch-related behavioral task. In contrast, the data from musicians show that entrainment is enhanced by years of musical training, at all presented tempi. This suggests a bidirectional relationship between behavior and cortical entrainment, a phenomenon that has not previously been reported. Additional analyses focus on responses in the beta range (∼15–30 Hz)—often linked to delta activity in the context of temporal predictions. Our findings provide evidence that the role of beta in temporal predictions scales to the complex hierarchical rhythms in natural music and enhances processing of musical content. This study builds on important findings on brainstem plasticity and represents a compelling demonstration that cortical neural entrainment is tightly coupled to both musical training and task performance, further supporting a role for cortical oscillatory activity in music perception and cognition. PMID:26504238

  13. Cortical entrainment to music and its modulation by expertise.

    PubMed

    Doelling, Keith B; Poeppel, David

    2015-11-10

    Recent studies establish that cortical oscillations track naturalistic speech in a remarkably faithful way. Here, we test whether such neural activity, particularly low-frequency (<8 Hz; delta-theta) oscillations, similarly entrain to music and whether experience modifies such a cortical phenomenon. Music of varying tempi was used to test entrainment at different rates. In three magnetoencephalography experiments, we recorded from nonmusicians, as well as musicians with varying years of experience. Recordings from nonmusicians demonstrate cortical entrainment that tracks musical stimuli over a typical range of tempi, but not at tempi below 1 note per second. Importantly, the observed entrainment correlates with performance on a concurrent pitch-related behavioral task. In contrast, the data from musicians show that entrainment is enhanced by years of musical training, at all presented tempi. This suggests a bidirectional relationship between behavior and cortical entrainment, a phenomenon that has not previously been reported. Additional analyses focus on responses in the beta range (∼15-30 Hz)-often linked to delta activity in the context of temporal predictions. Our findings provide evidence that the role of beta in temporal predictions scales to the complex hierarchical rhythms in natural music and enhances processing of musical content. This study builds on important findings on brainstem plasticity and represents a compelling demonstration that cortical neural entrainment is tightly coupled to both musical training and task performance, further supporting a role for cortical oscillatory activity in music perception and cognition.

  14. Design of electromagnetic refractor and phase transformer using coordinate transformation theory.

    PubMed

    Lin, Lan; Wang, Wei; Cui, Jianhua; Du, Chunlei; Luo, Xiangang

    2008-05-12

    We designed an electromagnetic refractor and a phase transformer using form-invariant coordinate transformation of Maxwell's equations. The propagation direction of electromagnetic energy in these devices can be modulated as desired. Unlike the conventional dielectric refractor, electromagnetic fields at our refraction boundary do not conform to the Snell's law in isotropic materials and the impedance at this boundary is matched which makes the reflection extremely low; and the transformation of the wave front from cylindrical to plane can be realized in the phase transformer with a slab structure. Two dimensional finite-element simulations were performed to confirm the theoretical results.

  15. Cardiovascular, cerebrovascular, and respiratory changes induced by different types of music in musicians and non-musicians: the importance of silence.

    PubMed

    Bernardi, L; Porta, C; Sleight, P

    2006-04-01

    To assess the potential clinical use, particularly in modulating stress, of changes in the cardiovascular and respiratory systems induced by music, specifically tempo, rhythm, melodic structure, pause, individual preference, habituation, order effect of presentation, and previous musical training. Measurement of cardiovascular and respiratory variables while patients listened to music. University research laboratory for the study of cardiorespiratory autonomic function. 12 practising musicians and 12 age matched controls. After a five minute baseline, presentation in random order of six different music styles (first for a two minute, then for a four minute track), with a randomly inserted two minute pause, in either sequence. Breathing rate, ventilation, carbon dioxide, RR interval, blood pressure, mid-cerebral artery flow velocity, and baroreflex. Ventilation, blood pressure, and heart rate increased and mid-cerebral artery flow velocity and baroreflex decreased with faster tempi and simpler rhythmic structures compared with baseline. No habituation effect was seen. The pause reduced heart rate, blood pressure, and minute ventilation, even below baseline. An order effect independent of style was evident for mid-cerebral artery flow velocity, indicating a progressive reduction with exposure to music, independent of style. Musicians had greater respiratory sensitivity to the music tempo than did non-musicians. Music induces an arousal effect, predominantly related to the tempo. Slow or meditative music can induce a relaxing effect; relaxation is particularly evident during a pause. Music, especially in trained subjects, may first concentrate attention during faster rhythms, then induce relaxation during pauses or slower rhythms.

  16. Excitation of surface electromagnetic waves in a graphene-based Bragg grating

    PubMed Central

    Sreekanth, Kandammathe Valiyaveedu; Zeng, Shuwen; Shang, Jingzhi; Yong, Ken-Tye; Yu, Ting

    2012-01-01

    Here, we report the fabrication of a graphene-based Bragg grating (one-dimensional photonic crystal) and experimentally demonstrate the excitation of surface electromagnetic waves in the periodic structure using prism coupling technique. Surface electromagnetic waves are non-radiative electromagnetic modes that appear on the surface of semi-infinite 1D photonic crystal. In order to fabricate the graphene-based Bragg grating, alternating layers of high (graphene) and low (PMMA) refractive index materials have been used. The reflectivity plot shows a deepest, narrow dip after total internal reflection angle corresponds to the surface electromagnetic mode propagating at the Bragg grating/air boundary. The proposed graphene based Bragg grating can find a variety of potential surface electromagnetic wave applications such as sensors, fluorescence emission enhancement, modulators, etc. PMID:23071901

  17. Excitation of surface electromagnetic waves in a graphene-based Bragg grating.

    PubMed

    Sreekanth, Kandammathe Valiyaveedu; Zeng, Shuwen; Shang, Jingzhi; Yong, Ken-Tye; Yu, Ting

    2012-01-01

    Here, we report the fabrication of a graphene-based Bragg grating (one-dimensional photonic crystal) and experimentally demonstrate the excitation of surface electromagnetic waves in the periodic structure using prism coupling technique. Surface electromagnetic waves are non-radiative electromagnetic modes that appear on the surface of semi-infinite 1D photonic crystal. In order to fabricate the graphene-based Bragg grating, alternating layers of high (graphene) and low (PMMA) refractive index materials have been used. The reflectivity plot shows a deepest, narrow dip after total internal reflection angle corresponds to the surface electromagnetic mode propagating at the Bragg grating/air boundary. The proposed graphene based Bragg grating can find a variety of potential surface electromagnetic wave applications such as sensors, fluorescence emission enhancement, modulators, etc.

  18. Music reading expertise modulates hemispheric lateralization in English word processing but not in Chinese character processing.

    PubMed

    Li, Sara Tze Kwan; Hsiao, Janet Hui-Wen

    2018-07-01

    Music notation and English word reading both involve mapping horizontally arranged visual components to components in sound, in contrast to reading in logographic languages such as Chinese. Accordingly, music-reading expertise may influence English word processing more than Chinese character processing. Here we showed that musicians named English words significantly faster than non-musicians when words were presented in the left visual field/right hemisphere (RH) or the center position, suggesting an advantage of RH processing due to music reading experience. This effect was not observed in Chinese character naming. A follow-up ERP study showed that in a sequential matching task, musicians had reduced RH N170 responses to English non-words under the processing of musical segments as compared with non-musicians, suggesting a shared visual processing mechanism in the RH between music notation and English non-word reading. This shared mechanism may be related to the letter-by-letter, serial visual processing that characterizes RH English word recognition (e.g., Lavidor & Ellis, 2001), which may consequently facilitate English word processing in the RH in musicians. Thus, music reading experience may have differential influences on the processing of different languages, depending on their similarities in the cognitive processes involved. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Anxiolytic effect of music exposure on BDNFMet/Met transgenic mice.

    PubMed

    Li, Wen-Jing; Yu, Hui; Yang, Jian-Min; Gao, Jing; Jiang, Hong; Feng, Min; Zhao, Yu-Xia; Chen, Zhe-Yu

    2010-08-06

    Brain-derived neurotrophic factor (BDNF) has been reported to play important roles in the modulation of anxiety, mood stabilizers, and pathophysiology of affective disorders. Recently, a single nucleotide polymorphism (SNP) in the BDNF gene (Val66Met) has been found to be associated with depression and anxiety disorders. The humanized BDNF(Met/Met) knock-in transgenic mice exhibited increased anxiety-related behaviors that were unresponsive to serotonin reuptake inhibitors, fluoxetine. Music is known to be able to elicit emotional changes, including anxiolytic effects. In this study, we found that music treatment could significantly decrease anxiety state in BDNF(Met/Met) mice, but not in BDNF(+/)(-), mice compared with white noise exposure in open field and elevated plus maze test. Moreover, in contrast to white noise exposure, BDNF expression levels in the prefrontal cortex (PFC), amygdala and hippocampus were significantly increased in music-exposed adult BDNF(Met/Met) mice. However, music treatment could not upregulate BDNF levels in the PFC, amygdala, and hippocampus in BDNF(+/)(-) mice, which suggests the essential role of BDNF in the anxiolytic effect of music. Together, our results imply that music may provide an effective therapeutic intervention for anxiety disorders in humans with this genetic BDNF(Met) variant. Copyright 2010 Elsevier B.V. All rights reserved.

  20. "Some like it hot": spectators who score high on the personality trait openness enjoy the excitement of hearing dancers breathing without music.

    PubMed

    Jola, Corinne; Pollick, Frank E; Calvo-Merino, Beatriz

    2014-01-01

    Music is an integral part of dance. Over the last 10 years, however, dance stimuli (without music) have been repeatedly used to study action observation processes, increasing our understanding of the influence of observer's physical abilities on action perception. Moreover, beyond trained skills and empathy traits, very little has been investigated on how other observer or spectators' properties modulate action observation and action preference. Since strong correlations have been shown between music and personality traits, here we aim to investigate how personality traits shape the appreciation of dance when this is presented with three different music/sounds. Therefore, we investigated the relationship between personality traits and the subjective esthetic experience of 52 spectators watching a 24 min lasting contemporary dance performance projected on a big screen containing three movement phrases performed to three different sound scores: classical music (i.e., Bach), an electronic sound-score, and a section without music but where the breathing of the performers was audible. We found that first, spectators rated the experience of watching dance without music significantly different from with music. Second, we found that the higher spectators scored on the Big Five personality factor openness, the more they liked the no-music section. Third, spectators' physical experience with dance was not linked to their appreciation but was significantly related to high average extravert scores. For the first time, we showed that spectators' reported entrainment to watching dance movements without music is strongly related to their personality and thus may need to be considered when using dance as a means to investigate action observation processes and esthetic preferences.

  1. “Some like it hot”: spectators who score high on the personality trait openness enjoy the excitement of hearing dancers breathing without music

    PubMed Central

    Jola, Corinne; Pollick, Frank E.; Calvo-Merino, Beatriz

    2014-01-01

    Music is an integral part of dance. Over the last 10 years, however, dance stimuli (without music) have been repeatedly used to study action observation processes, increasing our understanding of the influence of observer’s physical abilities on action perception. Moreover, beyond trained skills and empathy traits, very little has been investigated on how other observer or spectators’ properties modulate action observation and action preference. Since strong correlations have been shown between music and personality traits, here we aim to investigate how personality traits shape the appreciation of dance when this is presented with three different music/sounds. Therefore, we investigated the relationship between personality traits and the subjective esthetic experience of 52 spectators watching a 24 min lasting contemporary dance performance projected on a big screen containing three movement phrases performed to three different sound scores: classical music (i.e., Bach), an electronic sound-score, and a section without music but where the breathing of the performers was audible. We found that first, spectators rated the experience of watching dance without music significantly different from with music. Second, we found that the higher spectators scored on the Big Five personality factor openness, the more they liked the no-music section. Third, spectators’ physical experience with dance was not linked to their appreciation but was significantly related to high average extravert scores. For the first time, we showed that spectators’ reported entrainment to watching dance movements without music is strongly related to their personality and thus may need to be considered when using dance as a means to investigate action observation processes and esthetic preferences. PMID:25309393

  2. Less Effort, Better Results: How Does Music Act on Prefrontal Cortex in Older Adults during Verbal Encoding? An fNIRS Study.

    PubMed

    Ferreri, Laura; Bigand, Emmanuel; Perrey, Stephane; Muthalib, Makii; Bard, Patrick; Bugaiska, Aurélia

    2014-01-01

    Several neuroimaging studies of cognitive aging revealed deficits in episodic memory abilities as a result of prefrontal cortex (PFC) limitations. Improving episodic memory performance despite PFC deficits is thus a critical issue in aging research. Listening to music stimulates cognitive performance in several non-purely musical activities (e.g., language and memory). Thus, music could represent a rich and helpful source during verbal encoding and therefore help subsequent retrieval. Furthermore, such benefit could be reflected in less demand of PFC, which is known to be crucial for encoding processes. This study aimed to investigate whether music may improve episodic memory in older adults while decreasing the PFC activity. Sixteen healthy older adults (μ = 64.5 years) encoded lists of words presented with or without a musical background while their dorsolateral prefrontal cortex (DLPFC) activity was monitored using a eight-channel continuous-wave near-infrared spectroscopy (NIRS) system (Oxymon Mk III, Artinis, The Netherlands). Behavioral results indicated a better source-memory performance for words encoded with music compared to words encoded with silence (p < 0.05). Functional NIRS data revealed bilateral decrease of oxyhemoglobin values in the music encoding condition compared to the silence condition (p < 0.05), suggesting that music modulates the activity of the DLPFC during encoding in a less-demanding direction. Taken together, our results indicate that music can help older adults in memory performances by decreasing their PFC activity. These findings open new perspectives about music as tool for episodic memory rehabilitation on special populations with memory deficits due to frontal lobe damage such as Alzheimer's patients.

  3. Less Effort, Better Results: How Does Music Act on Prefrontal Cortex in Older Adults during Verbal Encoding? An fNIRS Study

    PubMed Central

    Ferreri, Laura; Bigand, Emmanuel; Perrey, Stephane; Muthalib, Makii; Bard, Patrick; Bugaiska, Aurélia

    2014-01-01

    Several neuroimaging studies of cognitive aging revealed deficits in episodic memory abilities as a result of prefrontal cortex (PFC) limitations. Improving episodic memory performance despite PFC deficits is thus a critical issue in aging research. Listening to music stimulates cognitive performance in several non-purely musical activities (e.g., language and memory). Thus, music could represent a rich and helpful source during verbal encoding and therefore help subsequent retrieval. Furthermore, such benefit could be reflected in less demand of PFC, which is known to be crucial for encoding processes. This study aimed to investigate whether music may improve episodic memory in older adults while decreasing the PFC activity. Sixteen healthy older adults (μ = 64.5 years) encoded lists of words presented with or without a musical background while their dorsolateral prefrontal cortex (DLPFC) activity was monitored using a eight-channel continuous-wave near-infrared spectroscopy (NIRS) system (Oxymon Mk III, Artinis, The Netherlands). Behavioral results indicated a better source-memory performance for words encoded with music compared to words encoded with silence (p < 0.05). Functional NIRS data revealed bilateral decrease of oxyhemoglobin values in the music encoding condition compared to the silence condition (p < 0.05), suggesting that music modulates the activity of the DLPFC during encoding in a less-demanding direction. Taken together, our results indicate that music can help older adults in memory performances by decreasing their PFC activity. These findings open new perspectives about music as tool for episodic memory rehabilitation on special populations with memory deficits due to frontal lobe damage such as Alzheimer’s patients. PMID:24860481

  4. [Aphasia without amusia in a blind organist. Verbal alexia-agraphia without musical alexia-agraphia in braille].

    PubMed

    Signoret, J L; van Eeckhout, P; Poncet, M; Castaigne, P

    1987-01-01

    A 77 year old right handed male was blind since the age of 2. He presented with an infarction involving the territory of the left middle cerebral artery involving the temporal and the inferior parietal lobes. He had learned to read and write language as well as read and write music in braille, ultimately becoming a famous organist and composer. There were no motor or sensory deficits. Wernicke's aphasia with jargonaphasia, major difficulty in repetition, anomia and a significant comprehension deficit without word deafness was present; verbal alexia and agraphia in braille were also present. There was no evidence of amusia. He could execute in an exemplary fashion pieces of music for the organ in his repertory as well as improvise. All his musical capabilities: transposition, modulation, harmony, rythm, were preserved. The musical notation in braille remained intact: he could read by touch and play unfamiliar scores, he could also read and sing the musical notes, he could copy and write a score. Nine months after the stroke his aphasia remained unchanged. Nevertheless he composed pieces for the organ which were published. Such data highly suggest the independence of linguistic and musical competences, defined as the analysis and organization of sounds according to the rules of music. This independence in an extremely talented musician leads to a discussion of the role of the right hemisphere in the anatomical-functional processes at the origin of musical competence. The use of braille in which the same constellations of dots correspond either to letters of the alphabet or musical notes supports the independence between language and music.

  5. Energy harvesting from dancing: for broadening in participation in STEM fields

    NASA Astrophysics Data System (ADS)

    Hamidi, Armita; Tadesse, Yonas

    2016-04-01

    Energy harvesting from structure vibration, human motion or environmental source has been the focus of researchers in the past few decades. This paper proposes a novel design that is suitable to harvest energy from human motions such as dancing or physical exercise and use the device to engage young students in Science, Technology, Engineering and Math (STEM) fields and outreach activities. The energy harvester (EH) device was designed for a dominant human operational frequency range of 1-5 Hz and it can be wearable by human. We proposed to incorporate different genres of music coupled with energy harvesting technologies for motivation and energy generation. Students will learn both science and art together, since the energy harvesting requires understanding basic physical phenomena and the art enables various physical movements that imparts the largest motion transfer to the EH device. Therefore, the systems are coupled to each other. Young people follow music updates more than robotics or energy harvesting researches. Most popular videos on YouTube and VEVO are viewed more than 100 million times. Perhaps, integrating the energy harvesting research with music or physical exercise might enhance students' engagement in science, and needs investigation. A multimodal energy harvester consisting of piezoelectric and electromagnetic subsystems, which can be wearable in the leg, is proposed in this study. Three piezoelectric cantilever beams having permanent magnets at the ends are connected to a base through a slip ring. Stationary electromagnetic coils are installed in the base and connected in series. Whenever the device is driven by any oscillation parallel to the base, the unbalanced rotor will rotate generating energy across the stationary coils in the base. In another case, if the device is driven by an oscillation perpendicular to the base, a stress will be induced within the cantilever beams generating energy across the piezoelectric materials.

  6. Organists and organ music composers.

    PubMed

    Foerch, Christian; Hennerici, Michael G

    2015-01-01

    Clinical case reports of patients with exceptional musical talent and education provide clues as to how the brain processes musical ability and aptitude. In this chapter, selected examples from famous and unknown organ players/composers are presented to demonstrate the complexity of modified musical performances as well as the capacities of the brain to preserve artistic abilities: both authors are active organists and academic neurologists with strong clinical experience, practice, and knowledge about the challenges to play such an outstanding instrument and share their interest to explore potentially instrument-related phenomena of brain modulation in specific transient or permanent impairments. We concentrate on the sites of lesions, suggested pathophysiology, separate positive (e.g., seizures, visual or auditory hallucinations, or synesthesia [an involuntary perception produced by stimulation of another sense]) and negative phenomena (e.g., amusia, aphasia, neglect, or sensory-motor deficits) and particularly address aspects of recent concepts of temporary and permanent network disorders. © 2015 Elsevier B.V. All rights reserved.

  7. Music training and inhibitory control: a multidimensional model.

    PubMed

    Moreno, Sylvain; Farzan, Faranak

    2015-03-01

    Training programs aimed to improve cognitive skills have either yielded mixed results or remain to be validated. The limited benefits of such regimens are largely attributable to weak understanding of (1) how (and which) interventions provide the most cognitive improvements; and (2) how brain networks and neural mechanisms that underlie specific cognitive abilities can be modified selectively. Studies indicate that music training leads to robust and long-lasting benefits to behavior. Importantly, behavioral advantages conferred by music extend beyond perceptual abilities to even nonauditory functions, such as inhibitory control (IC) and its neural correlates. Alternative forms of arts engagement or brain training do not appear to yield such enhancements, which suggests that music uniquely taps into brain networks subserving a variety of auditory as well as domain-general mechanisms such as IC. To account for such widespread benefits of music training, we propose a framework of transfer effects characterized by three dimensions: level of processing, nature of the transfer, and involvement of executive functions. We suggest that transfer of skills is mediated through modulation of general cognitive processes, in particular IC. We believe that this model offers a viable framework to test the extent and limitations of music-related changes. © 2014 New York Academy of Sciences.

  8. Expressive intent, ambiguity, and aesthetic experiences of music and poetry

    PubMed Central

    Margulis, Elizabeth Hellmuth; Levine, William H.; Simchy-Gross, Rhimmon; Kroger, Carolyn

    2017-01-01

    A growing number of studies are investigating the way that aesthetic experiences are generated across different media. Empathy with a perceived human artist has been suggested as a common mechanism [1]. In this study, people heard 30 s excerpts of ambiguous music and poetry preceded by neutral, positively valenced, or negatively valenced information about the composer's or author’s intent. The information influenced their perception of the excerpts—excerpts paired with positive intent information were perceived as happier and excerpts paired with negative intent information were perceived as sadder (although across intent conditions, musical excerpts were perceived as happier than poetry excerpts). Moreover, the information modulated the aesthetic experience of the excerpts in different ways for the different excerpt types: positive intent information increased enjoyment and the degree to which people found the musical excerpts to be moving, but negative intent information increased these qualities for poetry. Additionally, positive intent information was judged to better match musical excerpts and negative intent information to better match poetic excerpts. These results suggest that empathy with a perceived human artist is indeed an important shared factor across experiences of music and poetry, but that other mechanisms distinguish the generation of aesthetic appreciation between these two media. PMID:28746376

  9. Expressive intent, ambiguity, and aesthetic experiences of music and poetry.

    PubMed

    Margulis, Elizabeth Hellmuth; Levine, William H; Simchy-Gross, Rhimmon; Kroger, Carolyn

    2017-01-01

    A growing number of studies are investigating the way that aesthetic experiences are generated across different media. Empathy with a perceived human artist has been suggested as a common mechanism [1]. In this study, people heard 30 s excerpts of ambiguous music and poetry preceded by neutral, positively valenced, or negatively valenced information about the composer's or author's intent. The information influenced their perception of the excerpts-excerpts paired with positive intent information were perceived as happier and excerpts paired with negative intent information were perceived as sadder (although across intent conditions, musical excerpts were perceived as happier than poetry excerpts). Moreover, the information modulated the aesthetic experience of the excerpts in different ways for the different excerpt types: positive intent information increased enjoyment and the degree to which people found the musical excerpts to be moving, but negative intent information increased these qualities for poetry. Additionally, positive intent information was judged to better match musical excerpts and negative intent information to better match poetic excerpts. These results suggest that empathy with a perceived human artist is indeed an important shared factor across experiences of music and poetry, but that other mechanisms distinguish the generation of aesthetic appreciation between these two media.

  10. Simultaneous Cooperation and Competition in the Evolution of Musical Behavior: Sex-Related Modulations of the Singer's Formant in Human Chorusing

    PubMed Central

    Keller, Peter E.; König, Rasmus; Novembre, Giacomo

    2017-01-01

    Human interaction through music is a vital part of social life across cultures. Influential accounts of the evolutionary origins of music favor cooperative functions related to social cohesion or competitive functions linked to sexual selection. However, work on non-human “chorusing” displays, as produced by congregations of male insects and frogs to attract female mates, suggests that cooperative and competitive functions may coexist. In such chorusing, rhythmic coordination between signalers, which maximizes the salience of the collective broadcast, can arise through competitive mechanisms by which individual males jam rival signals. Here, we show that mixtures of cooperative and competitive behavior also occur in human music. Acoustic analyses of the renowned St. Thomas Choir revealed that, in the presence of female listeners, boys with the deepest voices enhance vocal brilliance and carrying power by boosting high spectral energy. This vocal enhancement may reflect sexually mature males competing for female attention in a covert manner that does not undermine collaborative musical goals. The evolutionary benefits of music may thus lie in its aptness as a medium for balancing sexually motivated behavior and group cohesion. PMID:28959222

  11. Mapping Phonetic Features for Voice-Driven Sound Synthesis

    NASA Astrophysics Data System (ADS)

    Janer, Jordi; Maestre, Esteban

    In applications where the human voice controls the synthesis of musical instruments sounds, phonetics convey musical information that might be related to the sound of the imitated musical instrument. Our initial hypothesis is that phonetics are user- and instrument-dependent, but they remain constant for a single subject and instrument. We propose a user-adapted system, where mappings from voice features to synthesis parameters depend on how subjects sing musical articulations, i.e. note to note transitions. The system consists of two components. First, a voice signal segmentation module that automatically determines note-to-note transitions. Second, a classifier that determines the type of musical articulation for each transition based on a set of phonetic features. For validating our hypothesis, we run an experiment where subjects imitated real instrument recordings with their voice. Performance recordings consisted of short phrases of saxophone and violin performed in three grades of musical articulation labeled as: staccato, normal, legato. The results of a supervised training classifier (user-dependent) are compared to a classifier based on heuristic rules (user-independent). Finally, from the previous results we show how to control the articulation in a sample-concatenation synthesizer by selecting the most appropriate samples.

  12. Method and apparatus for electromagnetically braking a motor

    NASA Technical Reports Server (NTRS)

    Davis, Donald R. (Inventor); Radford, Nicolaus A (Inventor); Permenter, Frank Noble (Inventor); Parsons, Adam H (Inventor); Mehling, Joshua S (Inventor)

    2011-01-01

    An electromagnetic braking system and method is provided for selectively braking a motor using an electromagnetic brake having an electromagnet, a permanent magnet, a rotor assembly, and a brake pad. The brake assembly applies when the electromagnet is de-energized and releases when the electromagnet is energized. When applied the permanent magnet moves the brake pad into frictional engagement with a housing, and when released the electromagnet cancels the flux of the permanent magnet to allow a leaf spring to move the brake pad away from the housing. A controller has a DC/DC converter for converting a main bus voltage to a lower braking voltage based on certain parameters. The converter utilizes pulse-width modulation (PWM) to regulate the braking voltage. A calibrated gap is defined between the brake pad and permanent magnet when the brake assembly is released, and may be dynamically modified via the controller.

  13. Music induces different cardiac autonomic arousal effects in young and older persons.

    PubMed

    Hilz, Max J; Stadler, Peter; Gryc, Thomas; Nath, Juliane; Habib-Romstoeck, Leila; Stemper, Brigitte; Buechner, Susanne; Wong, Samuel; Koehn, Julia

    2014-07-01

    Autonomic arousal-responses to emotional stimuli change with age. Age-dependent autonomic responses to music-onset are undetermined. To determine whether cardiovascular-autonomic responses to "relaxing" or "aggressive" music differ between young and older healthy listeners. In ten young (22.8±1.7 years) and 10 older volunteers (61.7±7.7 years), we monitored respiration (RESP), RR-intervals (RRI), and systolic and diastolic blood pressure (BPsys, BPdia) during silence and 180second presentations of two "relaxing" and two "aggressive" classical-music excerpts. Between both groups, we compared RESP, RRI, BPs, spectral-powers of mainly sympathetic low-frequency (LF: 0.04-0.15Hz) and parasympathetic high-frequency (HF: 0.15-0.5Hz) RRI-oscillations, RRI-LF/HF-ratios, RRI-total-powers (TP-RRI), and BP-LF-powers during 30s of silence, 30s of music-onset, and the remaining 150s of music presentation (analysis-of-variance and post-hoc analysis; significance: p<0.05). During silence, both groups had similar RRI, LF/HF-ratios and LF-BPs; RESP, LF-RRI, HF-RRI, and TP-RRI were lower, but BPs were higher in older than younger participants. During music-onset, "relaxing" music decreased RRI in older and increased BPsys in younger participants, while "aggressive" music decreased RRI and increased BPsys, LF-RRI, LF/HF-ratios, and TP-RRI in older, but increased BPsys and RESP and decreased HF-RRI and TP-RRI in younger participants. Signals did not differ between groups during the last 150s of music presentation. During silence, autonomic modulation was lower - but showed sympathetic predominance - in older than younger persons. Responses to music-onset, particularly "aggressive" music, reflect more of an arousal- than an emotional-response to music valence, with age-specific shifts of sympathetic-parasympathetic balance mediated by parasympathetic withdrawal in younger and by sympathetic activation in older participants. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Tests of the module array of the ECAL0 electromagnetic calorimeter for the COMPASS experiment with the electron beam at ELSA

    NASA Astrophysics Data System (ADS)

    Anfimov, N.; Anosov, V.; Barth, J.; Chalyshev, V.; Chirikov-Zorin, I.; Dziewiecki, M.; Elsner, D.; Frolov, V.; Frommberger, F.; Guskov, A.; Hillert, W.; Klein, F.; Krumshteyn, Z.; Kurjata, R.; Marzec, J.; Nagaytsev, A.; Olchevski, A.; Orlov, I.; Rezinko, T.; Rybnikov, A.; Rychter, A.; Selyunin, A.; Zaremba, K.; Ziembicki, M.

    2015-07-01

    The array of 3 × 3 modules of the electromagnetic calorimeter ECAL0 of the COMPASS experiment at CERN has been tested with an electron beam of the ELSA (Germany) facility. The dependence of the response and the energy resolution of the calorimeter from the angle of incidence of the electron beam has been studied. A good agreement between the experimental data and the results of Monte Carlo simulation has been obtained. It will significantly expand the use of simulation to optimize event reconstruction algorithms.

  15. FAST TRACK COMMUNICATION: An electromagnetically induced grating by microwave modulation

    NASA Astrophysics Data System (ADS)

    Xiao, Zhi-Hong; Shin, Sung Guk; Kim, Kisik

    2010-08-01

    We study the phenomenon of an electromagnetically induced phase grating in a double-dark state system of 87Rb atoms, the two closely placed lower fold levels of which are coupled by a weak microwave field. Owing to the existence of the weak microwave field, the efficiency of the phase grating is strikingly improved, and an efficiency of approximately 33% can be achieved. Under the action of the weak standing wave field, the high efficiency of the phase grating can be maintained by modulating the strength and detuning of the weak microwave field, increasing the strength of the standing wave field.

  16. A Real-Time Knowledge Based Expert System For Diagnostic Problem Solving

    NASA Astrophysics Data System (ADS)

    Esteva, Juan C.; Reynolds, Robert G.

    1986-03-01

    This paper is a preliminary report of a real-time expert system which is concerned with the detection and diagnosis of electrical deviations in on-board vehicle-based electrical systems. The target systems are being tested at radio frequencies to evaluate their capability to be operated at designed levels of efficiency in an electromagnetic environment. The measurement of this capability is known as ElectroMagnetic Compatibility (EMC). The Intelligent Deviation Diagnosis (IDD) system consists of two basic modules the Automatic Data Acquisition Module (ADAM) and the Diagnosis System (DS). In this paper only the diagnosis system is described.

  17. Phase coded, micro-power impulse radar motion sensor

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A motion sensing, micro-power impulse radar MIR impresses on the transmitted signal, or the received pulse timing signal, one or more frequencies lower than the pulse repetition frequency, that become intermediate frequencies in a "IF homodyne" receiver. Thus, many advantages of classical RF receivers can be thereby be realized with ultra-wide band radar. The sensor includes a transmitter which transmits a sequence of electromagnetic pulses in response to a transmit timing signal at a nominal pulse repetition frequency. A receiver samples echoes of the sequence of electromagnetic pulses from objects within the field with controlled timing, in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The relative timing of the transmit timing signal and the receive timing signal is modulated between a first relative delay and a second relative delay at an intermediate frequency, causing the receiver to sample the echoes such that the time between transmissions of pulses in the sequence and samples by the receiver is modulated at the intermediate frequency. Modulation may be executed by modulating the pulse repetition frequency which drives the transmitter, by modulating the delay circuitry which controls the relative timing of the sample strobe, or by modulating amplitude of the transmitted pulses. The electromagnetic pulses will have a nominal center frequency related to pulse width, and the first relative delay and the second relative delay between which the timing signals are modulated, differ by less than the nominal pulse width, and preferably by about one-quarter wavelength at the nominal center frequency of the transmitted pulses.

  18. Phase coded, micro-power impulse radar motion sensor

    DOEpatents

    McEwan, T.E.

    1996-05-21

    A motion sensing, micro-power impulse radar MIR impresses on the transmitted signal, or the received pulse timing signal, one or more frequencies lower than the pulse repetition frequency, that become intermediate frequencies in a ``IF homodyne`` receiver. Thus, many advantages of classical RF receivers can be thereby be realized with ultra-wide band radar. The sensor includes a transmitter which transmits a sequence of electromagnetic pulses in response to a transmit timing signal at a nominal pulse repetition frequency. A receiver samples echoes of the sequence of electromagnetic pulses from objects within the field with controlled timing, in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The relative timing of the transmit timing signal and the receive timing signal is modulated between a first relative delay and a second relative delay at an intermediate frequency, causing the receiver to sample the echoes such that the time between transmissions of pulses in the sequence and samples by the receiver is modulated at the intermediate frequency. Modulation may be executed by modulating the pulse repetition frequency which drives the transmitter, by modulating the delay circuitry which controls the relative timing of the sample strobe, or by modulating amplitude of the transmitted pulses. The electromagnetic pulses will have a nominal center frequency related to pulse width, and the first relative delay and the second relative delay between which the timing signals are modulated, differ by less than the nominal pulse width, and preferably by about one-quarter wavelength at the nominal center frequency of the transmitted pulses. 5 figs.

  19. Music-evoked incidental happiness modulates probability weighting during risky lottery choices.

    PubMed

    Schulreich, Stefan; Heussen, Yana G; Gerhardt, Holger; Mohr, Peter N C; Binkofski, Ferdinand C; Koelsch, Stefan; Heekeren, Hauke R

    2014-01-07

    We often make decisions with uncertain consequences. The outcomes of the choices we make are usually not perfectly predictable but probabilistic, and the probabilities can be known or unknown. Probability judgments, i.e., the assessment of unknown probabilities, can be influenced by evoked emotional states. This suggests that also the weighting of known probabilities in decision making under risk might be influenced by incidental emotions, i.e., emotions unrelated to the judgments and decisions at issue. Probability weighting describes the transformation of probabilities into subjective decision weights for outcomes and is one of the central components of cumulative prospect theory (CPT) that determine risk attitudes. We hypothesized that music-evoked emotions would modulate risk attitudes in the gain domain and in particular probability weighting. Our experiment featured a within-subject design consisting of four conditions in separate sessions. In each condition, the 41 participants listened to a different kind of music-happy, sad, or no music, or sequences of random tones-and performed a repeated pairwise lottery choice task. We found that participants chose the riskier lotteries significantly more often in the "happy" than in the "sad" and "random tones" conditions. Via structural regressions based on CPT, we found that the observed changes in participants' choices can be attributed to changes in the elevation parameter of the probability weighting function: in the "happy" condition, participants showed significantly higher decision weights associated with the larger payoffs than in the "sad" and "random tones" conditions. Moreover, elevation correlated positively with self-reported music-evoked happiness. Thus, our experimental results provide evidence in favor of a causal effect of incidental happiness on risk attitudes that can be explained by changes in probability weighting.

  20. Changes in neuromagnetic beta-band oscillation after music-supported stroke rehabilitation.

    PubMed

    Fujioka, Takako; Ween, Jon Erik; Jamali, Shahab; Stuss, Donald T; Ross, Bernhard

    2012-04-01

    Precise timing of sound is crucial in music for both performing and listening. Indeed, listening to rhythmic sound sequences activates not only the auditory system but also the sensorimotor system. Previously, we showed the significance of neural beta-band oscillations (15-30 Hz) for the timing processing that involves such auditory-motor coordination. Thus, we hypothesized that motor rehabilitation training incorporating music playing will stimulate and enhance auditory-motor interaction in stroke patients. We examined three chronic patients who received Music-Supported Therapy following the protocols practiced by Schneider. Neuromagnetic beta-band activity was remarkably alike during passive listening to a metronome and during finger tapping, with or without the metronome, for either the paretic or nonparetic hand, suggesting a shared mechanism of the beta modulation. In the listening task, the magnitude of the beta decrease after the tone onset was more pronounced at the posttraining time point and was accompanied by improved arm and hand skills. The present case data give insight into the neural underpinnings of rehabilitation with music making and rhythmic auditory stimulation. © 2012 New York Academy of Sciences.

  1. Melodic multi-feature paradigm reveals auditory profiles in music-sound encoding.

    PubMed

    Tervaniemi, Mari; Huotilainen, Minna; Brattico, Elvira

    2014-01-01

    Musical expertise modulates preattentive neural sound discrimination. However, this evidence up to great extent originates from paradigms using very simple stimulation. Here we use a novel melody paradigm (revealing the auditory profile for six sound parameters in parallel) to compare memory-related mismatch negativity (MMN) and attention-related P3a responses recorded from non-musicians and Finnish Folk musicians. MMN emerged in both groups of participants for all sound changes (except for rhythmic changes in non-musicians). In Folk musicians, the MMN was enlarged for mistuned sounds when compared with non-musicians. This is taken to reflect their familiarity with pitch information which is in key position in Finnish folk music when compared with e.g., rhythmic information. The MMN was followed by P3a after timbre changes, rhythm changes, and melody transposition. The MMN and P3a topographies differentiated the groups for all sound changes. Thus, the melody paradigm offers a fast and cost-effective means for determining the auditory profile for music-sound encoding and also, importantly, for probing the effects of musical expertise on it.

  2. Music and Sound in Time Processing of Children with ADHD

    PubMed Central

    Carrer, Luiz Rogério Jorgensen

    2015-01-01

    ADHD involves cognitive and behavioral aspects with impairments in many environments of children and their families’ lives. Music, with its playful, spontaneous, affective, motivational, temporal, and rhythmic dimensions can be of great help for studying the aspects of time processing in ADHD. In this article, we studied time processing with simple sounds and music in children with ADHD with the hypothesis that children with ADHD have a different performance when compared with children with normal development in tasks of time estimation and production. The main objective was to develop sound and musical tasks to evaluate and correlate the performance of children with ADHD, with and without methylphenidate, compared to a control group with typical development. The study involved 36 participants of age 6–14 years, recruited at NANI-UNIFESP/SP, subdivided into three groups with 12 children in each. Data was collected through a musical keyboard using Logic Audio Software 9.0 on the computer that recorded the participant’s performance in the tasks. Tasks were divided into sections: spontaneous time production, time estimation with simple sounds, and time estimation with music. Results: (1) performance of ADHD groups in temporal estimation of simple sounds in short time intervals (30 ms) were statistically lower than that of control group (p < 0.05); (2) in the task comparing musical excerpts of the same duration (7 s), ADHD groups considered the tracks longer when the musical notes had longer durations, while in the control group, the duration was related to the density of musical notes in the track. The positive average performance observed in the three groups in most tasks perhaps indicates the possibility that music can, in some way, positively modulate the symptoms of inattention in ADHD. PMID:26441688

  3. Generate the scale-free brain music from BOLD signals

    PubMed Central

    Lu, Jing; Guo, Sijia; Chen, Mingming; Wang, Weixia; Yang, Hua; Guo, Daqing; Yao, Dezhong

    2018-01-01

    Abstract Many methods have been developed to translate a human electroencephalogram (EEG) into music. In addition to EEG, functional magnetic resonance imaging (fMRI) is another method used to study the brain and can reflect physiological processes. In 2012, we established a method to use simultaneously recorded fMRI and EEG signals to produce EEG-fMRI music, which represents a step toward scale-free brain music. In this study, we used a neural mass model, the Jansen–Rit model, to simulate activity in several cortical brain regions. The interactions between different brain regions were represented by the average normalized diffusion tensor imaging (DTI) structural connectivity with a coupling coefficient that modulated the coupling strength. Seventy-eight brain regions were adopted from the Automated Anatomical Labeling (AAL) template. Furthermore, we used the Balloon–Windkessel hemodynamic model to transform neural activity into a blood-oxygen-level dependent (BOLD) signal. Because the fMRI BOLD signal changes slowly, we used a sampling rate of 250 Hz to produce the temporal series for music generation. Then, the BOLD music was generated for each region using these simulated BOLD signals. Because the BOLD signal is scale free, these music pieces were also scale free, which is similar to classic music. Here, to simulate the case of an epileptic patient, we changed the parameter that determined the amplitude of the excitatory postsynaptic potential (EPSP) in the neural mass model. Finally, we obtained BOLD music for healthy and epileptic patients. The differences in levels of arousal between the 2 pieces of music may provide a potential tool for discriminating the different populations if the differences can be confirmed by more real data. PMID:29480872

  4. Generate the scale-free brain music from BOLD signals.

    PubMed

    Lu, Jing; Guo, Sijia; Chen, Mingming; Wang, Weixia; Yang, Hua; Guo, Daqing; Yao, Dezhong

    2018-01-01

    Many methods have been developed to translate a human electroencephalogram (EEG) into music. In addition to EEG, functional magnetic resonance imaging (fMRI) is another method used to study the brain and can reflect physiological processes. In 2012, we established a method to use simultaneously recorded fMRI and EEG signals to produce EEG-fMRI music, which represents a step toward scale-free brain music. In this study, we used a neural mass model, the Jansen-Rit model, to simulate activity in several cortical brain regions. The interactions between different brain regions were represented by the average normalized diffusion tensor imaging (DTI) structural connectivity with a coupling coefficient that modulated the coupling strength. Seventy-eight brain regions were adopted from the Automated Anatomical Labeling (AAL) template. Furthermore, we used the Balloon-Windkessel hemodynamic model to transform neural activity into a blood-oxygen-level dependent (BOLD) signal. Because the fMRI BOLD signal changes slowly, we used a sampling rate of 250 Hz to produce the temporal series for music generation. Then, the BOLD music was generated for each region using these simulated BOLD signals. Because the BOLD signal is scale free, these music pieces were also scale free, which is similar to classic music. Here, to simulate the case of an epileptic patient, we changed the parameter that determined the amplitude of the excitatory postsynaptic potential (EPSP) in the neural mass model. Finally, we obtained BOLD music for healthy and epileptic patients. The differences in levels of arousal between the 2 pieces of music may provide a potential tool for discriminating the different populations if the differences can be confirmed by more real data. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  5. Evolution of tonal organization in music mirrors symbolic representation of perceptual reality. Part-1: Prehistoric.

    PubMed

    Nikolsky, Aleksey

    2015-01-01

    This paper reveals the way in which musical pitch works as a peculiar form of cognition that reflects upon the organization of the surrounding world as perceived by majority of music users within a socio-cultural formation. The evidence from music theory, ethnography, archeology, organology, anthropology, psychoacoustics, and evolutionary biology is plotted against experimental evidence. Much of the methodology for this investigation comes from studies conducted within the territory of the former USSR. To date, this methodology has remained solely confined to Russian speaking scholars. A brief overview of pitch-set theory demonstrates the need to distinguish between vertical and horizontal harmony, laying out the framework for virtual music space that operates according to the perceptual laws of tonal gravity. Brought to life by bifurcation of music and speech, tonal gravity passed through eleven discrete stages of development until the onset of tonality in the seventeenth century. Each stage presents its own method of integration of separate musical tones into an auditory-cognitive unity. The theory of "melodic intonation" is set forth as a counterpart to harmonic theory of chords. Notions of tonality, modality, key, diatonicity, chromaticism, alteration, and modulation are defined in terms of their perception, and categorized according to the way in which they have developed historically. Tonal organization in music, and perspective organization in fine arts are explained as products of the same underlying mental process. Music seems to act as a unique medium of symbolic representation of reality through the concept of pitch. Tonal organization of pitch reflects the culture of thinking, adopted as a standard within a community of music users. Tonal organization might be a naturally formed system of optimizing individual perception of reality within a social group and its immediate environment, setting conventional standards of intellectual and emotional intelligence.

  6. Music and Sound in Time Processing of Children with ADHD.

    PubMed

    Carrer, Luiz Rogério Jorgensen

    2015-01-01

    ADHD involves cognitive and behavioral aspects with impairments in many environments of children and their families' lives. Music, with its playful, spontaneous, affective, motivational, temporal, and rhythmic dimensions can be of great help for studying the aspects of time processing in ADHD. In this article, we studied time processing with simple sounds and music in children with ADHD with the hypothesis that children with ADHD have a different performance when compared with children with normal development in tasks of time estimation and production. The main objective was to develop sound and musical tasks to evaluate and correlate the performance of children with ADHD, with and without methylphenidate, compared to a control group with typical development. The study involved 36 participants of age 6-14 years, recruited at NANI-UNIFESP/SP, subdivided into three groups with 12 children in each. Data was collected through a musical keyboard using Logic Audio Software 9.0 on the computer that recorded the participant's performance in the tasks. Tasks were divided into sections: spontaneous time production, time estimation with simple sounds, and time estimation with music. (1) performance of ADHD groups in temporal estimation of simple sounds in short time intervals (30 ms) were statistically lower than that of control group (p < 0.05); (2) in the task comparing musical excerpts of the same duration (7 s), ADHD groups considered the tracks longer when the musical notes had longer durations, while in the control group, the duration was related to the density of musical notes in the track. The positive average performance observed in the three groups in most tasks perhaps indicates the possibility that music can, in some way, positively modulate the symptoms of inattention in ADHD.

  7. Microwave Imaging with Infrared 2-D Lock-in Amplifier

    NASA Astrophysics Data System (ADS)

    Chiyo, Noritaka; Arai, Mizuki; Tanaka, Yasuhiro; Nishikata, Atsuhiro; Maeno, Takashi

    We have developed a 3-D electromagnetic field measurement system using 2-D lock-in amplifier. This system uses an amplitude modulated electromagnetic wave source to heat a resistive screen. A very small change of temperature on a screen illuminated with the modulated electromagnetic wave is measured using an infrared thermograph camera. In this paper, we attempted to apply our system to microwave imaging. By placing conductor patches in front of the resistive screen and illuminating with microwave, the shape of each conductor was clearly observed as the temperature difference image of the screen. In this way, the conductor pattern inside the non-contact type IC card could be visualized. Moreover, we could observe the temperature difference image reflecting the shape of a Konnyaku (a gelatinous food made from devil's-tonge starch) or a dried fishbone, both as non-conducting material resembling human body. These results proved that our method is applicable to microwave see-through imaging.

  8. "If You Have to Ask, You'll Never Know": Effects of Specialised Stylistic Expertise on Predictive Processing of Music

    PubMed Central

    Vuust, Peter; Pearce, Marcus

    2016-01-01

    Musical expertise entails meticulous stylistic specialisation and enculturation. Even so, research on musical training effects has focused on generalised comparisons between musicians and non-musicians, and cross-cultural work addressing specialised expertise has traded cultural specificity and sensitivity for other methodological limitations. This study aimed to experimentally dissociate the effects of specialised stylistic training and general musical expertise on the perception of melodies. Non-musicians and professional musicians specialising in classical music or jazz listened to sampled renditions of saxophone solos improvised by Charlie Parker in the bebop style. Ratings of explicit uncertainty and expectedness for different continuations of each melodic excerpt were collected. An information-theoretic model of expectation enabled selection of stimuli affording highly certain continuations in the bebop style, but highly uncertain continuations in the context of general tonal expectations, and vice versa. The results showed that expert musicians have acquired probabilistic characteristics of music influencing their experience of expectedness and predictive uncertainty. While classical musicians had internalised key aspects of the bebop style implicitly, only jazz musicians’ explicit uncertainty ratings reflected the computational estimates, and jazz-specific expertise modulated the relationship between explicit and inferred uncertainty data. In spite of this, there was no evidence that non-musicians and classical musicians used a stylistically irrelevant cognitive model of general tonal music providing support for the theory of cognitive firewalls between stylistic models in predictive processing of music. PMID:27732612

  9. Influence of Music on Anxiety Induced by Fear of Heights in Virtual Reality.

    PubMed

    Seinfeld, Sofia; Bergstrom, Ilias; Pomes, Ausias; Arroyo-Palacios, Jorge; Vico, Francisco; Slater, Mel; Sanchez-Vives, Maria V

    2015-01-01

    Music is a potent mood regulator that can induce relaxation and reduce anxiety in different situations. While several studies demonstrate that certain types of music have a subjective anxiolytic effect, the reported results from physiological responses are less conclusive. Virtual reality allows us to study diverse scenarios of real life under strict experimental control while preserving high ecological validity. We aimed to study the modulating effect of music on the anxiety responses triggered by an immersive virtual reality scenario designed to induce fear of heights. Subjects experienced a virtual scenario depicting an exterior elevator platform ascending and descending the total height of its 350 meters tall supporting structure. Participants were allocated to either a group that experienced the elevator ride with background music or without, in a between-groups design. Furthermore, each group included participants with different degrees of fear of heights, ranging from low to high fear. Recordings of heart rate, galvanic skin response, body balance, and head movements were obtained during the experiments. Subjective anxiety was measured by means of three questionnaires. The scenario produced significant changes in subjective and physiological measures, confirming its efficacy as a stressor. A significant increase in state anxiety was found between pre and post-assessment in the silence group, but not in the music group, indicating that post-stress recovery was faster in the musical group. Results suggest that music can ameliorate the subjective anxiety produced by fear of heights.

  10. Influence of Music on Anxiety Induced by Fear of Heights in Virtual Reality

    PubMed Central

    Seinfeld, Sofia; Bergstrom, Ilias; Pomes, Ausias; Arroyo-Palacios, Jorge; Vico, Francisco; Slater, Mel; Sanchez-Vives, Maria V.

    2016-01-01

    Music is a potent mood regulator that can induce relaxation and reduce anxiety in different situations. While several studies demonstrate that certain types of music have a subjective anxiolytic effect, the reported results from physiological responses are less conclusive. Virtual reality allows us to study diverse scenarios of real life under strict experimental control while preserving high ecological validity. We aimed to study the modulating effect of music on the anxiety responses triggered by an immersive virtual reality scenario designed to induce fear of heights. Subjects experienced a virtual scenario depicting an exterior elevator platform ascending and descending the total height of its 350 meters tall supporting structure. Participants were allocated to either a group that experienced the elevator ride with background music or without, in a between-groups design. Furthermore, each group included participants with different degrees of fear of heights, ranging from low to high fear. Recordings of heart rate, galvanic skin response, body balance, and head movements were obtained during the experiments. Subjective anxiety was measured by means of three questionnaires. The scenario produced significant changes in subjective and physiological measures, confirming its efficacy as a stressor. A significant increase in state anxiety was found between pre and post-assessment in the silence group, but not in the music group, indicating that post-stress recovery was faster in the musical group. Results suggest that music can ameliorate the subjective anxiety produced by fear of heights. PMID:26779081

  11. "If You Have to Ask, You'll Never Know": Effects of Specialised Stylistic Expertise on Predictive Processing of Music.

    PubMed

    Hansen, Niels Chr; Vuust, Peter; Pearce, Marcus

    2016-01-01

    Musical expertise entails meticulous stylistic specialisation and enculturation. Even so, research on musical training effects has focused on generalised comparisons between musicians and non-musicians, and cross-cultural work addressing specialised expertise has traded cultural specificity and sensitivity for other methodological limitations. This study aimed to experimentally dissociate the effects of specialised stylistic training and general musical expertise on the perception of melodies. Non-musicians and professional musicians specialising in classical music or jazz listened to sampled renditions of saxophone solos improvised by Charlie Parker in the bebop style. Ratings of explicit uncertainty and expectedness for different continuations of each melodic excerpt were collected. An information-theoretic model of expectation enabled selection of stimuli affording highly certain continuations in the bebop style, but highly uncertain continuations in the context of general tonal expectations, and vice versa. The results showed that expert musicians have acquired probabilistic characteristics of music influencing their experience of expectedness and predictive uncertainty. While classical musicians had internalised key aspects of the bebop style implicitly, only jazz musicians' explicit uncertainty ratings reflected the computational estimates, and jazz-specific expertise modulated the relationship between explicit and inferred uncertainty data. In spite of this, there was no evidence that non-musicians and classical musicians used a stylistically irrelevant cognitive model of general tonal music providing support for the theory of cognitive firewalls between stylistic models in predictive processing of music.

  12. Towards automatic musical instrument timbre recognition

    NASA Astrophysics Data System (ADS)

    Park, Tae Hong

    This dissertation is comprised of two parts---focus on issues concerning research and development of an artificial system for automatic musical instrument timbre recognition and musical compositions. The technical part of the essay includes a detailed record of developed and implemented algorithms for feature extraction and pattern recognition. A review of existing literature introducing historical aspects surrounding timbre research, problems associated with a number of timbre definitions, and highlights of selected research activities that have had significant impact in this field are also included. The developed timbre recognition system follows a bottom-up, data-driven model that includes a pre-processing module, feature extraction module, and a RBF/EBF (Radial/Elliptical Basis Function) neural network-based pattern recognition module. 829 monophonic samples from 12 instruments have been chosen from the Peter Siedlaczek library (Best Service) and other samples from the Internet and personal collections. Significant emphasis has been put on feature extraction development and testing to achieve robust and consistent feature vectors that are eventually passed to the neural network module. In order to avoid a garbage-in-garbage-out (GIGO) trap and improve generality, extra care was taken in designing and testing the developed algorithms using various dynamics, different playing techniques, and a variety of pitches for each instrument with inclusion of attack and steady-state portions of a signal. Most of the research and development was conducted in Matlab. The compositional part of the essay includes brief introductions to "A d'Ess Are ," "Aboji," "48 13 N, 16 20 O," and "pH-SQ." A general outline pertaining to the ideas and concepts behind the architectural designs of the pieces including formal structures, time structures, orchestration methods, and pitch structures are also presented.

  13. Radar target classification method with high accuracy and decision speed performance using MUSIC spectrum vectors and PCA projection

    NASA Astrophysics Data System (ADS)

    Secmen, Mustafa

    2011-10-01

    This paper introduces the performance of an electromagnetic target recognition method in resonance scattering region, which includes pseudo spectrum Multiple Signal Classification (MUSIC) algorithm and principal component analysis (PCA) technique. The aim of this method is to classify an "unknown" target as one of the "known" targets in an aspect-independent manner. The suggested method initially collects the late-time portion of noise-free time-scattered signals obtained from different reference aspect angles of known targets. Afterward, these signals are used to obtain MUSIC spectrums in real frequency domain having super-resolution ability and noise resistant feature. In the final step, PCA technique is applied to these spectrums in order to reduce dimensionality and obtain only one feature vector per known target. In the decision stage, noise-free or noisy scattered signal of an unknown (test) target from an unknown aspect angle is initially obtained. Subsequently, MUSIC algorithm is processed for this test signal and resulting test vector is compared with feature vectors of known targets one by one. Finally, the highest correlation gives the type of test target. The method is applied to wire models of airplane targets, and it is shown that it can tolerate considerable noise levels although it has a few different reference aspect angles. Besides, the runtime of the method for a test target is sufficiently low, which makes the method suitable for real-time applications.

  14. Detecting deviations from metronomic timing in music: effects of perceptual structure on the mental timekeeper.

    PubMed

    Repp, B H

    1999-04-01

    The detectability of a deviation from metronomic timing--of a small local increment in interonset interval (IOI) duration--in a musical excerpt is subject to positional biases, or "timing expectations," that are closely related to the expressive timing (sequence of IOI durations) typically produced by musicians in performance (Repp, 1992b, 1998c, 1998d). Experiment 1 replicated this finding with some changes in procedure and showed that the perception-performance correlation is not the result of formal musical training or availability of a musical score. Experiments 2 and 3 used a synchronization task to examine the hypothesis that participants' perceptual timing expectations are due to systematic modulations in the period of a mental timekeeper that also controls perceptual-motor coordination. Indeed, there was systematic variation in the asynchronies between taps and metronomically timed musical event onsets, and this variation was correlated both with the variations in IOI increment detectability (Experiment 1) and with the typical expressive timing pattern in performance. When the music contained local IOI increments (Experiment 2), they were almost perfectly compensated for on the next tap, regardless of their detectability in Experiment 1, which suggests a perceptual-motor feedback mechanism that is sensitive to subthreshold timing deviations. Overall, the results suggest that aspects of perceived musical structure influence the predictions of mental timekeeping mechanisms, thereby creating a subliminal warping of experienced time.

  15. Module Two: Voltage; Basic Electricity and Electronics Individualized Learning System.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    In this module the student will study and learn what voltage is, how it is generated, what AC (alternating current) and DC (direct current) are and why both kinds are needed, and how to measure voltages. The module is divided into six lessons: EMF (electromotive force) from chemical action, magnetism, electromagnetic induction, AC voltage, the…

  16. Enhancing emotional experiences to dance through music: the role of valence and arousal in the cross-modal bias.

    PubMed

    Christensen, Julia F; Gaigg, Sebastian B; Gomila, Antoni; Oke, Peter; Calvo-Merino, Beatriz

    2014-01-01

    It is well established that emotional responses to stimuli presented to one perceptive modality (e.g., visual) are modulated by the concurrent presentation of affective information to another modality (e.g., auditory)-an effect known as the cross-modal bias. However, the affective mechanisms mediating this effect are still not fully understood. It remains unclear what role different dimensions of stimulus valence and arousal play in mediating the effect, and to what extent cross-modal influences impact not only our perception and conscious affective experiences, but also our psychophysiological emotional response. We addressed these issues by measuring participants' subjective emotion ratings and their Galvanic Skin Responses (GSR) in a cross-modal affect perception paradigm employing videos of ballet dance movements and instrumental classical music as the stimuli. We chose these stimuli to explore the cross-modal bias in a context of stimuli (ballet dance movements) that most participants would have relatively little prior experience with. Results showed (i) that the cross-modal bias was more pronounced for sad than for happy movements, whereas it was equivalent when contrasting high vs. low arousal movements; and (ii) that movement valence did not modulate participants' GSR, while movement arousal did, such that GSR was potentiated in the case of low arousal movements with sad music and when high arousal movements were paired with happy music. Results are discussed in the context of the affective dimension of neuroentrainment and with regards to implications for the art community.

  17. Loud Music Exposure and Cochlear Synaptopathy in Young Adults: Isolated Auditory Brainstem Response Effects but No Perceptual Consequences.

    PubMed

    Grose, John H; Buss, Emily; Hall, Joseph W

    2017-01-01

    The purpose of this study was to test the hypothesis that listeners with frequent exposure to loud music exhibit deficits in suprathreshold auditory performance consistent with cochlear synaptopathy. Young adults with normal audiograms were recruited who either did ( n = 31) or did not ( n = 30) have a history of frequent attendance at loud music venues where the typical sound levels could be expected to result in temporary threshold shifts. A test battery was administered that comprised three sets of procedures: (a) electrophysiological tests including distortion product otoacoustic emissions, auditory brainstem responses, envelope following responses, and the acoustic change complex evoked by an interaural phase inversion; (b) psychoacoustic tests including temporal modulation detection, spectral modulation detection, and sensitivity to interaural phase; and (c) speech tests including filtered phoneme recognition and speech-in-noise recognition. The results demonstrated that a history of loud music exposure can lead to a profile of peripheral auditory function that is consistent with an interpretation of cochlear synaptopathy in humans, namely, modestly abnormal auditory brainstem response Wave I/Wave V ratios in the presence of normal distortion product otoacoustic emissions and normal audiometric thresholds. However, there were no other electrophysiological, psychophysical, or speech perception effects. The absence of any behavioral effects in suprathreshold sound processing indicated that, even if cochlear synaptopathy is a valid pathophysiological condition in humans, its perceptual sequelae are either too diffuse or too inconsequential to permit a simple differential diagnosis of hidden hearing loss.

  18. Effects of music engagement on responses to painful stimulation.

    PubMed

    Bradshaw, David H; Chapman, C Richard; Jacobson, Robert C; Donaldson, Gary W

    2012-06-01

    We propose a theoretical framework for the behavioral modulation of pain based on constructivism, positing that task engagement, such as listening for errors in a musical passage, can establish a construction of reality that effectively replaces pain as a competing construction. Graded engagement produces graded reductions in pain as indicated by reduced psychophysiological arousal and subjective pain report. Fifty-three healthy volunteers having normal hearing participated in 4 music listening conditions consisting of passive listening (no task) or performing an error detection task varying in signal complexity and task difficulty. During all conditions, participants received normally painful fingertip shocks varying in intensity while stimulus-evoked potentials (SEP), pupil dilation responses (PDR), and retrospective pain reports were obtained. SEP and PDR increased with increasing stimulus intensity. Task performance decreased with increasing task difficulty. Mixed model analyses, adjusted for habituation/sensitization and repeated measures within person, revealed significant quadratic trends for SEP and pain report (Pchange<0.001) with large reductions from no task to easy task and smaller graded reductions corresponding to increasing task difficulty/complexity. PDR decreased linearly (Pchange<0.001) with graded task condition. We infer that these graded reductions in indicators of central and peripheral arousal and in reported pain correspond to graded increases in engagement in the music listening task. Engaging activities may prevent pain by creating competing constructions of reality that draw on the same processing resources as pain. Better understanding of these processes will advance the development of more effective pain modulation through improved manipulation of engagement strategies.

  19. Active terahertz metamaterials based on liquid-crystal induced transparency and absorption

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Fan, Fei; Chen, Meng; Zhang, Xuanzhou; Chang, Sheng-Jiang

    2017-01-01

    An active terahertz (THz) liquid crystal (LC) metamaterial has been experimentally investigated for THz wave modulation. Some interesting phenomena of resonance shifting, tunable electromagnetically induced transparency (EIT) and electromagnetically induced absorption (EIA) have been observed in the same device structure under different DC bias directions and different incident wave polarization directions by the THz time domain spectroscopy. Further theoretical studies indicate that these effects originate from interference and coupling between bright and dark mode components of elliptically polarized modes in the LC metamaterial, which are induced by the optical activity of LC alignment controllable by the electric field as well as the changes of LC refractive index. The LC layer is indeed a phase retarder and polarization converter that is controlled by the DC bias. The THz modulation depth of the analogs of EIT and EIA effects are 18.3 dB and 10.5 dB in their frequency band, respectively. Electrical control, large modulation depth and feasible integration of this LC device make it an ideal candidate for THz tunable filter, intensity modulator and spatial light modulator.

  20. Electromagnetic Analysis of ITER Diagnostic Equatorial Port Plugs During Plasma Disruptions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y. Zhai, R. Feder, A. Brooks, M. Ulrickson, C.S. Pitcher and G.D. Loesser

    2012-08-27

    ITER diagnostic port plugs perform many functionsincluding structural support of diagnostic systems under high electromagnetic loads while allowing for diagnostic access to the plasma. The design of diagnostic equatorial port plugs (EPP) are largely driven by electromagnetic loads and associate responses of EPP structure during plasma disruptions and VDEs. This paper summarizes results of transient electromagnetic analysis using Opera 3d in support of the design activities for ITER diagnostic EPP. A complete distribution of disruption loads on the Diagnostic First Walls (DFWs), Diagnostic Shield Modules (DSMs) and the EPP structure, as well as impact on the system design integration duemore » to electrical contact among various EPP structural components are discussed.« less

  1. EEG Correlates of Song Prosody: A New Look at the Relationship between Linguistic and Musical Rhythm

    PubMed Central

    Gordon, Reyna L.; Magne, Cyrille L.; Large, Edward W.

    2011-01-01

    Song composers incorporate linguistic prosody into their music when setting words to melody, a process called “textsetting.” Composers tend to align the expected stress of the lyrics with strong metrical positions in the music. The present study was designed to explore the idea that temporal alignment helps listeners to better understand song lyrics by directing listeners’ attention to instances where strong syllables occur on strong beats. Three types of textsettings were created by aligning metronome clicks with all, some or none of the strong syllables in sung sentences. Electroencephalographic recordings were taken while participants listened to the sung sentences (primes) and performed a lexical decision task on subsequent words and pseudowords (targets, presented visually). Comparison of misaligned and well-aligned sentences showed that temporal alignment between strong/weak syllables and strong/weak musical beats were associated with modulations of induced beta and evoked gamma power, which have been shown to fluctuate with rhythmic expectancies. Furthermore, targets that followed well-aligned primes elicited greater induced alpha and beta activity, and better lexical decision task performance, compared with targets that followed misaligned and varied sentences. Overall, these findings suggest that alignment of linguistic stress and musical meter in song enhances musical beat tracking and comprehension of lyrics by synchronizing neural activity with strong syllables. This approach may begin to explain the mechanisms underlying the relationship between linguistic and musical rhythm in songs, and how rhythmic attending facilitates learning and recall of song lyrics. Moreover, the observations reported here coincide with a growing number of studies reporting interactions between the linguistic and musical dimensions of song, which likely stem from shared neural resources for processing music and speech. PMID:22144972

  2. Key Technologies and Applications of Gas Drainage in Underground Coal Mine

    NASA Astrophysics Data System (ADS)

    Zhou, Bo; Xue, Sheng; Cheng, Jiansheng; Li, Wenquan; Xiao, Jiaping

    2018-02-01

    It is the basis for the long-drilling directional drilling, precise control of the drilling trajectory and ensuring the effective extension of the drilling trajectory in the target layer. The technology can be used to complete the multi-branch hole construction and increase the effective extraction distance of the coal seam. The gas drainage and the bottom grouting reinforcement in the advanced area are realized, and the geological structure of the coal seam can be proved accurately. It is the main technical scheme for the efficient drainage of gas at home and abroad, and it is applied to the field of geological structure exploration and water exploration and other areas. At present, the data transmission method is relatively mature in the technology and application, including the mud pulse and the electromagnetic wave. Compared with the mud pulse transmission mode, the electromagnetic wave transmission mode has obvious potential in the data transmission rate and drilling fluid, and it is suitable for the coal mine. In this paper, the key technologies of the electromagnetic wave transmission mode are analyzed, including the attenuation characteristics of the electromagnetic transmission channel, the digital modulation scheme, the channel coding method and the weak signal processing technology. A coal mine under the electromagnetic wave drilling prototype is developed, and the ground transmission experiments and down hole transmission test are carried out. The main work includes the following aspects. First, the equivalent transmission line method is used to establish the electromagnetic transmission channel model of coal mine drilling while drilling, and the attenuation of the electromagnetic signal is measured when the electromagnetic channel measured. Second, the coal mine EM-MWD digital modulation method is developed. Third, the optimal linear block code which suitable for EM-MWD communication channel in coal mine is proposed. Fourth, the noise characteristics of well near horizontal directional drilling are analyzed, and the multi-stage filter method is proposed to suppress the natural potential and strong frequency interference signal. And the weak electromagnetic communication signal is extracted from the received signal. Finally, the detailed design of the electromagnetic wave while drilling is given.

  3. Tuning Neural Phase Entrainment to Speech.

    PubMed

    Falk, Simone; Lanzilotti, Cosima; Schön, Daniele

    2017-08-01

    Musical rhythm positively impacts on subsequent speech processing. However, the neural mechanisms underlying this phenomenon are so far unclear. We investigated whether carryover effects from a preceding musical cue to a speech stimulus result from a continuation of neural phase entrainment to periodicities that are present in both music and speech. Participants listened and memorized French metrical sentences that contained (quasi-)periodic recurrences of accents and syllables. Speech stimuli were preceded by a rhythmically regular or irregular musical cue. Our results show that the presence of a regular cue modulates neural response as estimated by EEG power spectral density, intertrial coherence, and source analyses at critical frequencies during speech processing compared with the irregular condition. Importantly, intertrial coherences for regular cues were indicative of the participants' success in memorizing the subsequent speech stimuli. These findings underscore the highly adaptive nature of neural phase entrainment across fundamentally different auditory stimuli. They also support current models of neural phase entrainment as a tool of predictive timing and attentional selection across cognitive domains.

  4. Photonics

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Optoelectronic materials and devices are examined. Optoelectronic devices, which generate, detect, modulate, or switch electromagnetic radiation are being developed for a variety of space applications. The program includes spatial light modulators, solid state lasers, optoelectronic integrated circuits, nonlinear optical materials and devices, fiber optics, and optical networking photovoltaic technology and optical processing.

  5. Electromagnetic DM technology meets future AO demands

    NASA Astrophysics Data System (ADS)

    Hamelinck, Roger; Rosielle, Nick; Steinbuch, Maarten; Doelman, Niek

    New deformable mirror technology is developed by the Technische Universiteit Eindhoven, Delft University of Technology and TNO Science and Industry. Several prototype adaptive deformable mirrors are realized mirrors, up to 427 actuators and ∅150mm diameter, with characteristics suitable for future AO systems. The prototypes consist of a 100µm thick, continuous facesheet on which low voltage, electromagnetic, push-pull actuators impose out-of-plane displacements. The variable reluctance actuators with ±10µm stroke and nanometer resolution are located in a standard actuator module. Each module with 61 actuators connects to a single PCB with dedicated, 16 bit, PWM based, drivers. A LVDS multi-drop cable connects up to 32 actuator modules. With the actuator module, accompanying PCB and multi-drop system the deformable mirror technology is made modular in its mechanics and electronics. An Ethernet-LVDS bridge enables any commercial PC to control the mirror using the UDP standard. Latest results of the deformable mirror technology development are presented.

  6. Impact of Convection on Surface Fluxes Observed During LASP/DYNAMO 2011

    DTIC Science & Technology

    2014-12-01

    20  Figure 8.  FFM maneuver used in the LASP/DYNAMO experiment (from Wang et al. 2013...Atmosphere Response Experiment DYNAMO Dynamics of Madden-Julian Oscillation EM electro-magnetic EO electro-optical FFM flight-level flux mapping FVS...level flux mapping ( FFM ) modules. Convection modules consisted of dropsonde cloud survey or radar convective element maneuver. Dropsonde modules

  7. Music performance and the perception of key.

    PubMed

    Thompson, W F; Cuddy, L L

    1997-02-01

    The effect of music performance on perceived key movement was examined. Listeners judged key movement in sequences presented without performance expression (mechanical) in Experiment 1 and with performance expression in Experiment 2. Modulation distance varied. Judgments corresponded to predictions based on the cycle of fifths and toroidal models of key relatedness, with the highest correspondence for performed versions with the toroidal model. In Experiment 3, listeners compared mechanical sequences with either performed sequences or modifications of performed sequences. Modifications preserved expressive differences between chords, but not between voices. Predictions from Experiments 1 and 2 held only for performed sequences, suggesting that differences between voices are informative of key movement. Experiment 4 confirmed that modifications did not disrupt musicality. Analyses of performances further suggested a link between performance expression and key.

  8. LSD modulates music-induced imagery via changes in parahippocampal connectivity.

    PubMed

    Kaelen, Mendel; Roseman, Leor; Kahan, Joshua; Santos-Ribeiro, Andre; Orban, Csaba; Lorenz, Romy; Barrett, Frederick S; Bolstridge, Mark; Williams, Tim; Williams, Luke; Wall, Matthew B; Feilding, Amanda; Muthukumaraswamy, Suresh; Nutt, David J; Carhart-Harris, Robin

    2016-07-01

    Psychedelic drugs such as lysergic acid diethylamide (LSD) were used extensively in psychiatry in the past and their therapeutic potential is beginning to be re-examined today. Psychedelic psychotherapy typically involves a patient lying with their eyes-closed during peak drug effects, while listening to music and being supervised by trained psychotherapists. In this context, music is considered to be a key element in the therapeutic model; working in synergy with the drug to evoke therapeutically meaningful thoughts, emotions and imagery. The underlying mechanisms involved in this process have, however, never been formally investigated. Here we studied the interaction between LSD and music-listening on eyes-closed imagery by means of a placebo-controlled, functional magnetic resonance imaging (fMRI) study. Twelve healthy volunteers received intravenously administered LSD (75µg) and, on a separate occasion, placebo, before being scanned under eyes-closed resting conditions with and without music-listening. The parahippocampal cortex (PHC) has previously been linked with (1) music-evoked emotion, (2) the action of psychedelics, and (3) mental imagery. Imaging analyses therefore focused on changes in the connectivity profile of this particular structure. Results revealed increased PHC-visual cortex (VC) functional connectivity and PHC to VC information flow in the interaction between music and LSD. This latter result correlated positively with ratings of enhanced eyes-closed visual imagery, including imagery of an autobiographical nature. These findings suggest a plausible mechanism by which LSD works in combination with music listening to enhance certain subjective experiences that may be useful in a therapeutic context. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  9. Congruence of happy and sad emotion in music and faces modifies cortical audiovisual activation.

    PubMed

    Jeong, Jeong-Won; Diwadkar, Vaibhav A; Chugani, Carla D; Sinsoongsud, Piti; Muzik, Otto; Behen, Michael E; Chugani, Harry T; Chugani, Diane C

    2011-02-14

    The powerful emotion inducing properties of music are well-known, yet music may convey differing emotional responses depending on environmental factors. We hypothesized that neural mechanisms involved in listening to music may differ when presented together with visual stimuli that conveyed the same emotion as the music when compared to visual stimuli with incongruent emotional content. We designed this study to determine the effect of auditory (happy and sad instrumental music) and visual stimuli (happy and sad faces) congruent or incongruent for emotional content on audiovisual processing using fMRI blood oxygenation level-dependent (BOLD) signal contrast. The experiment was conducted in the context of a conventional block-design experiment. A block consisted of three emotional ON periods, music alone (happy or sad music), face alone (happy or sad faces), and music combined with faces where the music excerpt was played while presenting either congruent emotional faces or incongruent emotional faces. We found activity in the superior temporal gyrus (STG) and fusiform gyrus (FG) to be differentially modulated by music and faces depending on the congruence of emotional content. There was a greater BOLD response in STG when the emotion signaled by the music and faces was congruent. Furthermore, the magnitude of these changes differed for happy congruence and sad congruence, i.e., the activation of STG when happy music was presented with happy faces was greater than the activation seen when sad music was presented with sad faces. In contrast, incongruent stimuli diminished the BOLD response in STG and elicited greater signal change in bilateral FG. Behavioral testing supplemented these findings by showing that subject ratings of emotion in faces were influenced by emotion in music. When presented with happy music, happy faces were rated as more happy (p=0.051) and sad faces were rated as less sad (p=0.030). When presented with sad music, happy faces were rated as less happy (p=0.008) and sad faces were rated as sadder (p=0.002). Happy-sad congruence across modalities may enhance activity in auditory regions while incongruence appears to impact the perception of visual affect, leading to increased activation in face processing regions such as the FG. We suggest that greater understanding of the neural bases of happy-sad congruence across modalities can shed light on basic mechanisms of affective perception and experience and may lead to novel insights in the study of emotion regulation and therapeutic use of music. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Mozart, music and medicine.

    PubMed

    Pauwels, Ernest K J; Volterrani, Duccio; Mariani, Giuliano; Kostkiewics, Magdalena

    2014-01-01

    According to the first publication in 1993 by Rauscher et al. [Nature 1993;365:611], the Mozart effect implies the enhancement of reasoning skills solving spatial problems in normal subjects after listening to Mozart's piano sonata K 448. A further evaluation of this effect has raised the question whether there is a link between music-generated emotions and a higher level of cognitive abilities by mere listening. Positron emission tomography and functional magnetic resonance imaging have revealed that listening to pleasurable music activates cortical and subcortical cerebral areas where emotions are processed. These neurobiological effects of music suggest that auditory stimulation evokes emotions linked to heightened arousal and result in temporarily enhanced performance in many cognitive domains. Music therapy applies this arousal in a clinical setting as it may offer benefits to patients by diverting their attention from unpleasant experiences and future interventions. It has been applied in the context of various important clinical conditions such as cardiovascular disorders, cancer pain, epilepsy, depression and dementia. Furthermore, music may modulate the immune response, among other things, evidenced by increasing the activity of natural killer cells, lymphocytes and interferon-γ, which is an interesting feature as many diseases are related to a misbalanced immune system. Many of these clinical studies, however, suffer from methodological inadequacies. Nevertheless, at present, there is moderate but not altogether convincing evidence that listening to known and liked music helps to decrease the burden of a disease and enhances the immune system by modifying stress. © 2014 S. Karger AG, Basel.

  11. Mozart, Music and Medicine

    PubMed Central

    Pauwels, Ernest K.J.; Volterrani, Duccio; Mariani, Giuliano; Kostkiewics, Magdalena

    2014-01-01

    According to the first publication in 1993 by Rauscher et al. [Nature 1993;365:611], the Mozart effect implies the enhancement of reasoning skills solving spatial problems in normal subjects after listening to Mozart's piano sonata K 448. A further evaluation of this effect has raised the question whether there is a link between music-generated emotions and a higher level of cognitive abilities by mere listening. Positron emission tomography and functional magnetic resonance imaging have revealed that listening to pleasurable music activates cortical and subcortical cerebral areas where emotions are processed. These neurobiological effects of music suggest that auditory stimulation evokes emotions linked to heightened arousal and result in temporarily enhanced performance in many cognitive domains. Music therapy applies this arousal in a clinical setting as it may offer benefits to patients by diverting their attention from unpleasant experiences and future interventions. It has been applied in the context of various important clinical conditions such as cardiovascular disorders, cancer pain, epilepsy, depression and dementia. Furthermore, music may modulate the immune response, among other things, evidenced by increasing the activity of natural killer cells, lymphocytes and interferon-γ, which is an interesting feature as many diseases are related to a misbalanced immune system. Many of these clinical studies, however, suffer from methodological inadequacies. Nevertheless, at present, there is moderate but not altogether convincing evidence that listening to known and liked music helps to decrease the burden of a disease and enhances the immune system by modifying stress. PMID:25060169

  12. The lateralized arcuate fasciculus in developmental pitch disorders among mandarin amusics: left for speech and right for music.

    PubMed

    Chen, Xizhuo; Zhao, Yanxin; Zhong, Suyu; Cui, Zaixu; Li, Jiaqi; Gong, Gaolang; Dong, Qi; Nan, Yun

    2018-05-01

    The arcuate fasciculus (AF) is a neural fiber tract that is critical to speech and music development. Although the predominant role of the left AF in speech development is relatively clear, how the AF engages in music development is not understood. Congenital amusia is a special neurodevelopmental condition, which not only affects musical pitch but also speech tone processing. Using diffusion tensor tractography, we aimed at understanding the role of AF in music and speech processing by examining the neural connectivity characteristics of the bilateral AF among thirty Mandarin amusics. Compared to age- and intelligence quotient (IQ)-matched controls, amusics demonstrated increased connectivity as reflected by the increased fractional anisotropy in the right posterior AF but decreased connectivity as reflected by the decreased volume in the right anterior AF. Moreover, greater fractional anisotropy in the left direct AF was correlated with worse performance in speech tone perception among amusics. This study is the first to examine the neural connectivity of AF in the neurodevelopmental condition of amusia as a result of disrupted music pitch and speech tone processing. We found abnormal white matter structural connectivity in the right AF for the amusic individuals. Moreover, we demonstrated that the white matter microstructural properties of the left direct AF is modulated by lexical tone deficits among the amusic individuals. These data support the notion of distinctive pitch processing systems between music and speech.

  13. Spectrum-Modulating Fiber-Optic Sensors

    NASA Technical Reports Server (NTRS)

    Beheim, Glenn; Fritsch, Klaus

    1989-01-01

    Family of spectrum-modulating fiber-optic sensors undergoing development for use in aircraft-engine control systems. Fiber-optic sensors offer advantages of small size, high bandwidth, immunity to electromagnetic interference, and light weight. Furthermore, they reduce number of locations on aircraft to which electrical power has to be supplied.

  14. A multifrequency MUSIC algorithm for locating small inhomogeneities in inverse scattering

    NASA Astrophysics Data System (ADS)

    Griesmaier, Roland; Schmiedecke, Christian

    2017-03-01

    We consider an inverse scattering problem for time-harmonic acoustic or electromagnetic waves with sparse multifrequency far field data-sets. The goal is to localize several small penetrable objects embedded inside an otherwise homogeneous background medium from observations of far fields of scattered waves corresponding to incident plane waves with one fixed incident direction but several different frequencies. We assume that the far field is measured at a few observation directions only. Taking advantage of the smallness of the scatterers with respect to wavelength we utilize an asymptotic representation formula for the far field to design and analyze a MUSIC-type reconstruction method for this setup. We establish lower bounds on the number of frequencies and receiver directions that are required to recover the number and the positions of an ensemble of scatterers from the given measurements. Furthermore we briefly sketch a possible application of the reconstruction method to the practically relevant case of multifrequency backscattering data. Numerical examples are presented to document the potentials and limitations of this approach.

  15. Encoding of frequency-modulation (FM) rates in human auditory cortex.

    PubMed

    Okamoto, Hidehiko; Kakigi, Ryusuke

    2015-12-14

    Frequency-modulated sounds play an important role in our daily social life. However, it currently remains unclear whether frequency modulation rates affect neural activity in the human auditory cortex. In the present study, using magnetoencephalography, we investigated the auditory evoked N1m and sustained field responses elicited by temporally repeated and superimposed frequency-modulated sweeps that were matched in the spectral domain, but differed in frequency modulation rates (1, 4, 16, and 64 octaves per sec). The results obtained demonstrated that the higher rate frequency-modulated sweeps elicited the smaller N1m and the larger sustained field responses. Frequency modulation rate had a significant impact on the human brain responses, thereby providing a key for disentangling a series of natural frequency-modulated sounds such as speech and music.

  16. Optical control of light propagation in photonic crystal based on electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Dan, Wang; Jin-Ze, Wu; Jun-Xiang, Zhang

    2016-06-01

    A kind of photonic crystal structure with modulation of the refractive index is investigated both experimentally and theoretically for exploiting electromagnetically induced transparency (EIT). The combination of EIT with periodically modulated refractive index medium gives rise to high efficiency reflection as well as forbidden transmission in a three-level atomic system coupled by standing wave. We show an accurate theoretical simulation via transfer-matrix theory, automatically accounting for multilayer reflections, thus fully demonstrate the existence of photonic crystal structure in atomic vapor. Project supported by the National Natural Science Foundation of China (Grant No. 11574188) and the Project for Excellent Research Team of the National Natural Science Foundation of China (Grant No. 61121064).

  17. Digital music players cause interference with interrogation telemetry for pacemakers and implantable cardioverter-defibrillators without affecting device function.

    PubMed

    Webster, Gregory; Jordao, Ligia; Martuscello, Maria; Mahajan, Tarun; Alexander, Mark E; Cecchin, Frank; Triedman, John K; Walsh, Edward P; Berul, Charles I

    2008-04-01

    Concern exists regarding the potential electromagnetic interaction between pacemakers, implantable cardioverter-defibrillators (ICDs) and digital music players (DMPs). A preliminary study reported interference in 50% of patients whose devices were interrogated near Apple iPods. Given the high prevalence of DMP use among young patients, we sought to define the nature of interference from iPods and evaluate other DMPs. Four DMPs (Apple Nano, Apple Video, SanDisk Sansa and Microsoft Zune) were evaluated against pacemakers and ICDs (PM/ICD). Along with continuous monitoring, we recorded a baseline ECG strip, sensing parameters and lead impedance at baseline and for each device. Among 51 patients evaluated (age 6 to 60 years, median 22), there was no interference with intrinsic device function. Interference with the programmer occurred in 41% of the patients. All four DMPs caused programmer interference, including disabled communication between the PM/ICD and programmer, noise in the ECG channel, and lost marker channel indicators. Sensing parameters and lead impedances exhibited no more than baseline variability. When the DMPs were removed six inches, there were no further programmer telemetry interactions. Contrary to a prior report, we did not identify any evidence for electromagnetic interference between a selection of DMPs and intrinsic function of PM/ICDs. The DMPs did sometimes interfere with device-programmer communication, but not in a way that compromised device function. Therefore, we recommend that DMPs not be used during device interrogation, but suggest that there is reassuring counterevidence to mitigate the current high level of concern for interactions between DMPs and implantable cardiac rhythm devices.

  18. Modulation of spectral intensity, polarization and coherence of a stochastic electromagnetic beam.

    PubMed

    Wu, Gaofeng; Cai, Yangjian

    2011-04-25

    Analytical formula for the cross-spectral density matrix of a stochastic electromagnetic Gaussian Schell-model (EGSM) beam truncated by a circular phase aperture propagating in free space is derived with the help of a tensor method, which provides a reliable and fast way for studying the propagation and transformation of a truncated EGSM beam. Statistics properties, such as the spectral intensity, the degree of coherence, the degree of polarization and the polarization ellipse of a truncated EGSM beam in free space are studied numerically. The propagation factor of a truncated EGSM beam is also analyzed. Our numerical results show that we can modulate the spectral intensity, the polarization, the coherence and the propagation factor of an EGSM beam by a circular phase aperture. It is found that the phase aperture can be used to shape the beam profile of an EGSM beam and generate electromagnetic partially coherent dark hollow or flat-topped beam, which is useful in some applications, such as optical trapping, material processing, free-space optical communications.

  19. Field-programmable beam reconfiguring based on digitally-controlled coding metasurface

    NASA Astrophysics Data System (ADS)

    Wan, Xiang; Qi, Mei Qing; Chen, Tian Yi; Cui, Tie Jun

    2016-02-01

    Digital phase shifters have been applied in traditional phased array antennas to realize beam steering. However, the phase shifter deals with the phase of the induced current; hence, it has to be in the path of each element of the antenna array, making the phased array antennas very expensive. Metamaterials and/or metasurfaces enable the direct modulation of electromagnetic waves by designing subwavelength structures, which opens a new way to control the beam scanning. Here, we present a direct digital mechanism to control the scattered electromagnetic waves using coding metasurface, in which each unit cell loads a pin diode to produce binary coding states of “1” and “0”. Through data lines, the instant communications are established between the coding metasurface and the internal memory of field-programmable gate arrays (FPGA). Thus, we realize the digital modulation of electromagnetic waves, from which we present the field-programmable reflective antenna with good measurement performance. The proposed mechanism and functional device have great application potential in new-concept radar and communication systems.

  20. Modulated electromagnetic fields in inhomogeneous media, hyperbolic pseudoanalytic functions, and transmutations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khmelnytskaya, Kira V., E-mail: khmel@uaq.edu.mx; Kravchenko, Vladislav V., E-mail: vkravchenko@math.cinvestav.edu.mx; Torba, Sergii M., E-mail: storba@math.cinvestav.edu.mx

    2016-05-15

    The time-dependent Maxwell system describing electromagnetic wave propagation in inhomogeneous isotropic media in the one-dimensional case reduces to a Vekua-type equation for bicomplex-valued functions of a hyperbolic variable, see Kravchenko and Ramirez [Adv. Appl. Cliord Algebr. 21(3), 547–559 (2011)]. Using this relation, we solve the problem of the transmission through an inhomogeneous layer of a normally incident electromagnetic time-dependent plane wave. The solution is written in terms of a pair of Darboux-associated transmutation operators [Kravchenko, V. V. and Torba, S. M., J. Phys. A: Math. Theor. 45, 075201 (2012)], and combined with the recent results on their construction [Kravchenko, V.more » V. and Torba, S. M., Complex Anal. Oper. Theory 9, 379-429 (2015); Kravchenko, V. V. and Torba, S. M., J. Comput. Appl. Math. 275, 1–26 (2015)] can be used for efficient computation of the transmitted modulated signals. We develop the corresponding numerical method and illustrate its performance with examples.« less

  1. Research on a new magnetic-field-modulated brushless double-rotor machine with sinusoidal-permeance modulating ring

    NASA Astrophysics Data System (ADS)

    Zheng, Ping; Liu, Jiaqi; Bai, Jingang; Song, Zhiyi; Liu, Yong

    2017-05-01

    The magnetic-field-modulated brushless double-rotor machine (MFM-BDRM), composed of a stator, a modulating ring rotor, and a PM rotor, is a kind of power-split device for hybrid electric vehicles (HEVs). In this paper, a new MFM-BDRM with sinusoidal-permeance modulating ring named Sinusoidal-Permeance-Modulating-Ring Brushless Double-Rotor Machine (SPMR-BDRM) is proposed to solve the problem of poor mechanical strength and large iron loss. The structure and the operating principle of the MFM-BDRM are introduced. The design principle of the sinusoidal-permeance modulating ring is analyzed and derived. The main idea of that is to minimize the harmonic permeance of air gap, thereby the harmonic magnetic fields can be restrained. There are comparisons between a MFM-BDRM with sinusoidal-permeance modulating ring and a same size MFM-BDRM with traditional modulating ring, including magnetic field distributions and electromagnetic performances. Most importantly, the iron losses are compared under six different conditions. The result indicates that the harmonic magnetic fields in the air gap are restrained; the electromagnetic torque and power factor are almost the same with same armature current; the torque ripples of the modulating ring rotor and the PM rotor are reduced; the stator loss is reduced by 13% at least and the PM loss is reduced by 20% at least compared with the same size traditional MFM-BDRM under the same operating conditions.

  2. Non-thermal continuous and modulated electromagnetic radiation fields effects on sleep EEG of rats☆

    PubMed Central

    Mohammed, Haitham S.; Fahmy, Heba M.; Radwan, Nasr M.; Elsayed, Anwar A.

    2012-01-01

    In the present study, the alteration in the sleep EEG in rats due to chronic exposure to low-level non-thermal electromagnetic radiation was investigated. Two types of radiation fields were used; 900 MHz unmodulated wave and 900 MHz modulated at 8 and 16 Hz waves. Animals has exposed to radiation fields for 1 month (1 h/day). EEG power spectral analyses of exposed and control animals during slow wave sleep (SWS) and rapid eye movement sleep (REM sleep) revealed that the REM sleep is more susceptible to modulated radiofrequency radiation fields (RFR) than the SWS. The latency of REM sleep increased due to radiation exposure indicating a change in the ultradian rhythm of normal sleep cycles. The cumulative and irreversible effect of radiation exposure was proposed and the interaction of the extremely low frequency radiation with the similar EEG frequencies was suggested. PMID:25685416

  3. Electromagnetic braking for Mars spacecraft

    NASA Technical Reports Server (NTRS)

    Holt, A. C.

    1986-01-01

    Aerobraking concepts are being studied to improve performance and cost effectiveness of propulsion systems for Mars landers and Mars interplanetary spacecraft. Access to megawatt power levels (nuclear power coupled to high-storage inductive or capacitive devices) on a manned Mars interplanetary spacecraft may make feasible electromagnetic braking and lift modulation techniques which were previously impractical. Using pulsed microwave and magnetic field technology, potential plasmadynamic braking and hydromagnetic lift modulation techniques have been identified. Entry corridor modulation to reduce loads and heating, to reduce vertical descent rates, and to expand horizontal and lateral landing ranges are possible benefits. In-depth studies are needed to identify specific design concepts for feasibility assessments. Standing wave/plasma sheath interaction techniques appear to be promising. The techniques may require some tailoring of spacecraft external structures and materials. In addition, rapid response guidance and control systems may require the use of structurally embedded sensors coupled to expert systems or to artificial intelligence systems.

  4. Electronic modulation of infrared radiation in graphene plasmonic resonators.

    PubMed

    Brar, Victor W; Sherrott, Michelle C; Jang, Min Seok; Kim, Seyoon; Kim, Laura; Choi, Mansoo; Sweatlock, Luke A; Atwater, Harry A

    2015-05-07

    All matter at finite temperatures emits electromagnetic radiation due to the thermally induced motion of particles and quasiparticles. Dynamic control of this radiation could enable the design of novel infrared sources; however, the spectral characteristics of the radiated power are dictated by the electromagnetic energy density and emissivity, which are ordinarily fixed properties of the material and temperature. Here we experimentally demonstrate tunable electronic control of blackbody emission from graphene plasmonic resonators on a silicon nitride substrate. It is shown that the graphene resonators produce antenna-coupled blackbody radiation, which manifests as narrow spectral emission peaks in the mid-infrared. By continuously varying the nanoresonator carrier density, the frequency and intensity of these spectral features can be modulated via an electrostatic gate. This work opens the door for future devices that may control blackbody radiation at timescales beyond the limits of conventional thermo-optic modulation.

  5. Evolution of tonal organization in music mirrors symbolic representation of perceptual reality. Part-1: Prehistoric

    PubMed Central

    Nikolsky, Aleksey

    2015-01-01

    This paper reveals the way in which musical pitch works as a peculiar form of cognition that reflects upon the organization of the surrounding world as perceived by majority of music users within a socio-cultural formation. The evidence from music theory, ethnography, archeology, organology, anthropology, psychoacoustics, and evolutionary biology is plotted against experimental evidence. Much of the methodology for this investigation comes from studies conducted within the territory of the former USSR. To date, this methodology has remained solely confined to Russian speaking scholars. A brief overview of pitch-set theory demonstrates the need to distinguish between vertical and horizontal harmony, laying out the framework for virtual music space that operates according to the perceptual laws of tonal gravity. Brought to life by bifurcation of music and speech, tonal gravity passed through eleven discrete stages of development until the onset of tonality in the seventeenth century. Each stage presents its own method of integration of separate musical tones into an auditory-cognitive unity. The theory of “melodic intonation” is set forth as a counterpart to harmonic theory of chords. Notions of tonality, modality, key, diatonicity, chromaticism, alteration, and modulation are defined in terms of their perception, and categorized according to the way in which they have developed historically. Tonal organization in music, and perspective organization in fine arts are explained as products of the same underlying mental process. Music seems to act as a unique medium of symbolic representation of reality through the concept of pitch. Tonal organization of pitch reflects the culture of thinking, adopted as a standard within a community of music users. Tonal organization might be a naturally formed system of optimizing individual perception of reality within a social group and its immediate environment, setting conventional standards of intellectual and emotional intelligence. PMID:26528193

  6. Features of anti-inflammatory effects of modulated extremely high-frequency electromagnetic radiation.

    PubMed

    Gapeyev, Andrew B; Mikhailik, Elena N; Chemeris, Nikolay K

    2009-09-01

    Using a model of acute zymosan-induced paw edema in NMRI mice, we test the hypothesis that anti-inflammatory effects of extremely high-frequency electromagnetic radiation (EHF EMR) can be essentially modified by application of pulse modulation with certain frequencies. It has been revealed that a single exposure of animals to continuous EHF EMR for 20 min reduced the exudative edema of inflamed paw on average by 19% at intensities of 0.1-0.7 mW/cm(2) and frequencies from the range of 42.2-42.6 GHz. At fixed effective carrier frequency of 42.2 GHz, the anti-inflammatory effect of EHF EMR did not depend on modulation frequencies, that is, application of different modulation frequencies from the range of 0.03-100 Hz did not lead to considerable changes in the effect level. On the contrary, at "ineffective" carrier frequencies of 43.0 and 61.22 GHz, the use of modulation frequencies of 0.07-0.1 and 20-30 Hz has allowed us to restore the effect up to a maximal level. The results obtained show the critical dependence of anti-inflammatory action of low-intensity EHF EMR on carrier and modulation frequencies. Within the framework of this study, the possibility of changing the level of expected biological effect of modulated EMR by a special selection of combination of carrier and modulation frequencies is confirmed.

  7. A Simple Laser Microphone for Classroom Demonstration

    ERIC Educational Resources Information Center

    Moses, James M.; Trout, K. P.

    2006-01-01

    Communication through the modulation of electromagnetic radiation has become a foundational technique in modern technology. In this paper we discuss a modern day method of eavesdropping based upon the modulation of laser light reflected from a window pane. A simple and affordable classroom demonstration of a "laser microphone" is…

  8. Electromagnetic Analysis For The Design Of ITER Diagnostic Port Plugs During Plasma Disruptions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Y

    2014-03-03

    ITER diagnostic port plugs perform many functions including structural support of diagnostic systems under high electromagnetic loads while allowing for diagnostic access to plasma. The design of diagnotic equatorial port plugs (EPP) are largely driven by electromagnetic loads and associate response of EPP structure during plasma disruptions and VDEs. This paper summarizes results of transient electromagnetic analysis using Opera 3d in support of the design activities for ITER diagnostic EPP. A complete distribution of disruption loads on the Diagnostic First Walls (DFWs). Diagnostic Shield Modules (DSMs) and the EPP structure, as well as impact on the system design integration duemore » to electrical contact among various EPP structural components are discussed.« less

  9. Single-cycle high-intensity electromagnetic pulse generation in the interaction of a plasma wakefield with regular nonlinear structures.

    PubMed

    Bulanov, S S; Esirkepov, T Zh; Kamenets, F F; Pegoraro, F

    2006-03-01

    The interaction of regular nonlinear structures (such as subcycle solitons, electron vortices, and wake Langmuir waves) with a strong wake wave in a collisionless plasma can be exploited in order to produce ultrashort electromagnetic pulses. The electromagnetic field of the nonlinear structure is partially reflected by the electron density modulations of the incident wake wave and a single-cycle high-intensity electromagnetic pulse is formed. Due to the Doppler effect the length of this pulse is much shorter than that of the nonlinear structure. This process is illustrated with two-dimensional particle-in-cell simulations. The considered laser-plasma interaction regimes can be achieved in present day experiments and can be used for plasma diagnostics.

  10. Effects of Aesthetic Chills on a Cardiac Signature of Emotionality.

    PubMed

    Sumpf, Maria; Jentschke, Sebastian; Koelsch, Stefan

    2015-01-01

    Previous studies have shown that a cardiac signature of emotionality (referred to as EK, which can be computed from the standard 12 lead electrocardiogram, ECG), predicts inter-individual differences in the tendency to experience and express positive emotion. Here, we investigated whether EK values can be transiently modulated during stimulation with participant-selected music pieces and film scenes that elicit strongly positive emotion. The phenomenon of aesthetic chills, as indicated by measurable piloerection on the forearm, was used to accurately locate moments of peak emotional responses during stimulation. From 58 healthy participants, continuous EK values, heart rate, and respiratory frequency were recorded during stimulation with film scenes and music pieces, and were related to the aesthetic chills. EK values, as well as heart rate, increased significantly during moments of peak positive emotion accompanied by piloerection. These results are the first to provide evidence for an influence of momentary psychological state on a cardiac signature of emotional personality (as reflected in EK values). The possibility to modulate ECG amplitude signatures via stimulation with emotionally significant music pieces and film scenes opens up new perspectives for the use of emotional peak experiences in the therapy of disorders characterized by flattened emotionality, such as depression or schizoid personality disorder.

  11. Effects of Aesthetic Chills on a Cardiac Signature of Emotionality

    PubMed Central

    Sumpf, Maria; Jentschke, Sebastian; Koelsch, Stefan

    2015-01-01

    Background Previous studies have shown that a cardiac signature of emotionality (referred to as EK, which can be computed from the standard 12 lead electrocardiogram, ECG), predicts inter-individual differences in the tendency to experience and express positive emotion. Here, we investigated whether EK values can be transiently modulated during stimulation with participant-selected music pieces and film scenes that elicit strongly positive emotion. Methodology/Principal Findings The phenomenon of aesthetic chills, as indicated by measurable piloerection on the forearm, was used to accurately locate moments of peak emotional responses during stimulation. From 58 healthy participants, continuous EK values, heart rate, and respiratory frequency were recorded during stimulation with film scenes and music pieces, and were related to the aesthetic chills. EK values, as well as heart rate, increased significantly during moments of peak positive emotion accompanied by piloerection. Conclusions/Significance These results are the first to provide evidence for an influence of momentary psychological state on a cardiac signature of emotional personality (as reflected in EK values). The possibility to modulate ECG amplitude signatures via stimulation with emotionally significant music pieces and film scenes opens up new perspectives for the use of emotional peak experiences in the therapy of disorders characterized by flattened emotionality, such as depression or schizoid personality disorder. PMID:26083383

  12. Your move or mine? Music training and kinematic compatibility modulate synchronization with self- versus other-generated dance movement.

    PubMed

    Su, Yi-Huang; Keller, Peter E

    2018-01-29

    Motor simulation has been implicated in how musicians anticipate the rhythm of another musician's action to achieve interpersonal synchronization. Here, we investigated whether similar mechanisms govern a related form of rhythmic action: dance. We examined (1) whether synchronization with visual dance stimuli was influenced by movement agency, (2) whether music training modulated simulation efficiency, and (3) what cues were relevant for simulating the dance rhythm. Participants were first recorded dancing the basic Charleston steps paced by a metronome, and later in a synchronization task they tapped to the rhythm of their own point-light dance stimuli, stimuli of another physically matched participant or one matched in movement kinematics, and a quantitative average across individuals. Results indicated that, while there was no overall "self advantage" and synchronization was generally most stable with the least variable (averaged) stimuli, motor simulation was driven-indicated by high tap-beat variability correlations-by familiar movement kinematics rather than morphological features. Furthermore, music training facilitated simulation, such that musicians outperformed non-musicians when synchronizing with others' movements but not with their own movements. These findings support action simulation as underlying synchronization in dance, linking action observation and rhythm processing in a common motor framework.

  13. Effect of musical training on static and dynamic measures of spectral-pattern discrimination.

    PubMed

    Sheft, Stanley; Smayda, Kirsten; Shafiro, Valeriy; Maddox, W Todd; Chandrasekaran, Bharath

    2013-06-01

    Both behavioral and physiological studies have demonstrated enhanced processing of speech in challenging listening environments attributable to musical training. The relationship, however, of this benefit to auditory abilities as assessed by psychoacoustic measures remains unclear. Using tasks previously shown to relate to speech-in-noise perception, the present study evaluated discrimination ability for static and dynamic spectral patterns by 49 listeners grouped as either musicians or nonmusicians. The two static conditions measured the ability to detect a change in the phase of a logarithmic sinusoidal spectral ripple of wideband noise with ripple densities of 1.5 and 3.0 cycles per octave chosen to emphasize either timbre or pitch distinctions, respectively. The dynamic conditions assessed temporal-pattern discrimination of 1-kHz pure tones frequency modulated by different lowpass noise samples with thresholds estimated in terms of either stimulus duration or signal-to-noise ratio. Musicians performed significantly better than nonmusicians on all four tasks. Discriminant analysis showed that group membership was correctly predicted for 88% of the listeners with the structure coefficient of each measure greater than 0.51. Results suggest that enhanced processing of static and dynamic spectral patterns defined by low-rate modulation may contribute to the relationship between musical training and speech-in-noise perception. [Supported by NIH.].

  14. Studies on omnidirectional enhancement of giga-hertz radiation by sub-wavelength plasma modulation

    NASA Astrophysics Data System (ADS)

    Fanrong, KONG; Qiuyue, NIE; Shu, LIN; Zhibin, WANG; Bowen, LI; Shulei, ZHENG; Binhao, JIANG

    2018-01-01

    The technology of radio frequency (RF) radiation intensification for radio compact antennas based on modulation and enhancement effects of sub-wavelength plasma structures represents an innovative developing strategy. It exhibits important scientific significance and promising potential of broad applications in various areas of national strategic demands, such as electrical information network and microwave communication, detection and control technology. In this paper, laboratory experiments and corresponding analyses have been carried out to investigate the modulation and enhancement technology of sub-wavelength plasma structure on the RF electromagnetic radiation. An application focused sub-wavelength plasma-added intensification up to ∼7 dB higher than the free-space radiation is observed experimentally in giga-hertz (GHz) RF band. The effective radiation enhancement bandwidth covers from 0.85 to 1.17 GHz, while the enhanced electromagnetic signals transmitted by sub-wavelength plasma structures maintain good communication quality. Particularly, differing from the traditional RF electromagnetic radiation enhancement method characterized by focusing the radiation field of antenna in a specific direction, the sub-wavelength plasma-added intensification of the antenna radiation presents an omnidirectional enhancement, which is reported experimentally for the first time. Corresponding performance characteristics and enhancement mechanism analyses are also conducted in this paper. The results have demonstrated the feasibility and promising potential of sub-wavelength plasma modulation in application focused RF communication, and provided the scientific basis for further research and development of sub-wavelength plasma enhanced compact antennas with wide-range requests and good quality for communication.

  15. Melodic Contour Identification and Music Perception by Cochlear Implant Users

    PubMed Central

    Galvin, John J.; Fu, Qian-Jie; Shannon, Robert V.

    2013-01-01

    Research and outcomes with cochlear implants (CIs) have revealed a dichotomy in the cues necessary for speech and music recognition. CI devices typically transmit 16–22 spectral channels, each modulated slowly in time. This coarse representation provides enough information to support speech understanding in quiet and rhythmic perception in music, but not enough to support speech understanding in noise or melody recognition. Melody recognition requires some capacity for complex pitch perception, which in turn depends strongly on access to spectral fine structure cues. Thus, temporal envelope cues are adequate for speech perception under optimal listening conditions, while spectral fine structure cues are needed for music perception. In this paper, we present recent experiments that directly measure CI users’ melodic pitch perception using a melodic contour identification (MCI) task. While normal-hearing (NH) listeners’ performance was consistently high across experiments, MCI performance was highly variable across CI users. CI users’ MCI performance was significantly affected by instrument timbre, as well as by the presence of a competing instrument. In general, CI users had great difficulty extracting melodic pitch from complex stimuli. However, musically-experienced CI users often performed as well as NH listeners, and MCI training in less experienced subjects greatly improved performance. With fixed constraints on spectral resolution, such as it occurs with hearing loss or an auditory prosthesis, training and experience can provide a considerable improvements in music perception and appreciation. PMID:19673835

  16. Human body frequency modulation by 0.9% sodium chloride solutions: a new paradigm and perspective for human health.

    PubMed

    Sudan, B J

    2000-08-01

    This case study demonstrates that the normal human body frequency, which can be disturbed by electromagnetic influences of the environment, can be modulated by 0.9% sodium chloride solutions (physiological saline) and that occurrence of allergic reactions have subsequently been suppressed as a result of this modulation. The use of distilled water as control showed no effect on occurrence of allergic reactions. Further observations on the growth of various plants in a greenhouse exposed to various geomagnetic fields support the previous observations on humans. The neutralization of electromagnetic influences on humans using 0.9% sodium chloride solution or by enclosure of plants within a copper wire Faraday cage resulting in a normal and uniform growth of plants as compared with disturbed and irregular growth in unenclosed controls, is demonstrated. These original observations propose a new strategy to suppress or prevent allergic reactions and possibly other effects observed in various human pathologies in relation to a disturbance of human body frequencies. It is hypothesized that the double helix structure of desoxyribonucleic acid (DNA) could be modified by environmental electromagnetic fields and that disresonance between the two chains of DNA could lead to the expression of specific pathology. Copyright 2000 Harcourt Publishers Ltd.

  17. Musical duplex perception: perception of figurally good chords with subliminal distinguishing tones.

    PubMed

    Hall, M D; Pastore, R E

    1992-08-01

    In a variant of duplex perception with speech, phoneme perception is maintained when distinguishing components are presented below intensities required for separate detection, forming the basis for the claim that a phonetic module takes precedence over nonspeech processing. This finding is replicated with music chords (C major and minor) created by mixing a piano fifth with a sinusoidal distinguishing tone (E or E flat). Individual threshold intensities for detecting E or E flat in the context of the fixed piano tones are established. Chord discrimination thresholds defined by distinguishing tone intensity were determined. Experiment 2 verified masked detection thresholds and subliminal chord identification for experienced musicians. Accurate chord perception was maintained at distinguishing tone intensities nearly 20 dB below the threshold for separate detection. Speech and music findings are argued to demonstrate general perceptual principles.

  18. Dynamics of brain activity underlying working memory for music in a naturalistic condition.

    PubMed

    Burunat, Iballa; Alluri, Vinoo; Toiviainen, Petri; Numminen, Jussi; Brattico, Elvira

    2014-08-01

    We aimed at determining the functional neuroanatomy of working memory (WM) recognition of musical motifs that occurs while listening to music by adopting a non-standard procedure. Western tonal music provides naturally occurring repetition and variation of motifs. These serve as WM triggers, thus allowing us to study the phenomenon of motif tracking within real music. Adopting a modern tango as stimulus, a behavioural test helped to identify the stimulus motifs and build a time-course regressor of WM neural responses. This regressor was then correlated with the participants' (musicians') functional magnetic resonance imaging (fMRI) signal obtained during a continuous listening condition. In order to fine-tune the identification of WM processes in the brain, the variance accounted for by the sensory processing of a set of the stimulus' acoustic features was pruned from participants' neurovascular responses to music. Motivic repetitions activated prefrontal and motor cortical areas, basal ganglia, medial temporal lobe (MTL) structures, and cerebellum. The findings suggest that WM processing of motifs while listening to music emerges from the integration of neural activity distributed over cognitive, motor and limbic subsystems. The recruitment of the hippocampus stands as a novel finding in auditory WM. Effective connectivity and agglomerative hierarchical clustering analyses indicate that the hippocampal connectivity is modulated by motif repetitions, showing strong connections with WM-relevant areas (dorsolateral prefrontal cortex - dlPFC, supplementary motor area - SMA, and cerebellum), which supports the role of the hippocampus in the encoding of the musical motifs in WM, and may evidence long-term memory (LTM) formation, enabled by the use of a realistic listening condition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Action-based effects on music perception

    PubMed Central

    Maes, Pieter-Jan; Leman, Marc; Palmer, Caroline; Wanderley, Marcelo M.

    2013-01-01

    The classical, disembodied approach to music cognition conceptualizes action and perception as separate, peripheral processes. In contrast, embodied accounts of music cognition emphasize the central role of the close coupling of action and perception. It is a commonly established fact that perception spurs action tendencies. We present a theoretical framework that captures the ways in which the human motor system and its actions can reciprocally influence the perception of music. The cornerstone of this framework is the common coding theory, postulating a representational overlap in the brain between the planning, the execution, and the perception of movement. The integration of action and perception in so-called internal models is explained as a result of associative learning processes. Characteristic of internal models is that they allow intended or perceived sensory states to be transferred into corresponding motor commands (inverse modeling), and vice versa, to predict the sensory outcomes of planned actions (forward modeling). Embodied accounts typically refer to inverse modeling to explain action effects on music perception (Leman, 2007). We extend this account by pinpointing forward modeling as an alternative mechanism by which action can modulate perception. We provide an extensive overview of recent empirical evidence in support of this idea. Additionally, we demonstrate that motor dysfunctions can cause perceptual disabilities, supporting the main idea of the paper that the human motor system plays a functional role in auditory perception. The finding that music perception is shaped by the human motor system and its actions suggests that the musical mind is highly embodied. However, we advocate for a more radical approach to embodied (music) cognition in the sense that it needs to be considered as a dynamical process, in which aspects of action, perception, introspection, and social interaction are of crucial importance. PMID:24454299

  20. Non-expert listeners show decreased heart rate and increased blood pressure (fear bradycardia) in response to atonal music

    PubMed Central

    Proverbio, Alice M.; Manfrin, Luigi; Arcari, Laura A.; De Benedetto, Francesco; Gazzola, Martina; Guardamagna, Matteo; Lozano Nasi, Valentina; Zani, Alberto

    2015-01-01

    Previous studies suggested that listening to different types of music may modulate differently psychological mood and physiological responses associated with the induced emotions. In this study the effect of listening to instrumental classical vs. atonal contemporary music was examined in a group of 50 non-expert listeners. The subjects’ heart rate and diastolic and systolic blood pressure values were measured while they listened to music of different style and emotional typologies. Pieces were selected by asking a group of composers and conservatory professors to suggest a list of the most emotional music pieces (from Renaissance to present time). A total of 214 suggestions from 20 respondents were received. Then it was asked them to identify which pieces best induced in the listener feelings of agitation, joy or pathos and the number of suggested pieces per style was computed. Atonal pieces were more frequently indicated as agitating, and tonal pieces as joyful. The presence/absence of tonality in a musical piece did not affect the affective dimension of pathos (being touching). Among the most frequently cited six pieces were selected that were comparable for structure and style, to represent each emotion and style. They were equally evaluated as unfamiliar by an independent group of 10 students of the same cohort) and were then used as stimuli for the experimental session in which autonomic parameters were recorded. Overall, listening to atonal music (independent of the pieces’ emotional characteristics) was associated with a reduced heart rate (fear bradycardia) and increased blood pressure (both diastolic and systolic), possibly reflecting an increase in alertness and attention, psychological tension, and anxiety. This evidence fits with the results of the esthetical assessment showing how, overall, atonal music is perceived as more agitating and less joyful than tonal one. PMID:26579029

  1. Music training is associated with cortical synchronization reflected in EEG coherence during verbal memory encoding.

    PubMed

    Cheung, Mei-Chun; Chan, Agnes S; Liu, Ying; Law, Derry; Wong, Christina W Y

    2017-01-01

    Music training can improve cognitive functions. Previous studies have shown that children and adults with music training demonstrate better verbal learning and memory performance than those without such training. Although prior studies have shown an association between music training and changes in the structural and functional organization of the brain, there is no concrete evidence of the underlying neural correlates of the verbal memory encoding phase involved in such enhanced memory performance. Therefore, we carried out an electroencephalography (EEG) study to investigate how music training was associated with brain activity during the verbal memory encoding phase. Sixty participants were recruited, 30 of whom had received music training for at least one year (the MT group) and 30 of whom had never received music training (the NMT group). The participants in the two groups were matched for age, education, gender distribution, and cognitive capability. Their verbal and visual memory functions were assessed using standardized neuropsychological tests and EEG was used to record their brain activity during the verbal memory encoding phase. Consistent with previous studies, the MT group demonstrated better verbal memory than the NMT group during both the learning and the delayed recall trials in the paper-and-pencil tests. The MT group also exhibited greater learning capacity during the learning trials. Compared with the NMT group, the MT group showed an increase in long-range left and right intrahemispheric EEG coherence in the theta frequency band during the verbal memory encoding phase. In addition, their event-related left intrahemispheric theta coherence was positively associated with subsequent verbal memory performance as measured by discrimination scores. These results suggest that music training may modulate the cortical synchronization of the neural networks involved in verbal memory formation.

  2. Relationship between Musical Characteristics and Temporal Breathing Pattern in Piano Performance

    PubMed Central

    Sakaguchi, Yutaka; Aiba, Eriko

    2016-01-01

    Although there is growing evidence that breathing is modulated by various motor and cognitive activities, the nature of breathing in musical performance has been little explored. The present study examined the temporal breath pattern in piano performance, aiming to elucidate how breath timing is related to musical organization/events and performance. In the experiments, the respiration of 15 professional and amateur pianists, playing 10 music excerpts in total (from four-octave C major scale, Hanon's exercise, J. S. Bach's Invention, Mozart's Sonatas, and Debussy's Clair de lune), was monitored by capnography. The relationship between breathing and musical characteristics was analyzed. Five major results were obtained. (1) Mean breath interval was shortened for excerpts in faster tempi. (2) Fluctuation of breath intervals was reduced for the pieces for finger exercise and those in faster tempi. Pianists showing large within-trial fluctuation also exhibited large inter-excerpt difference. (3) Inter-trial consistency of the breath patterns depended on the excerpts. Consistency was generally reduced for the excerpts that could be performed mechanically (i.e., pieces for finger exercise), but interestingly, one third of the participant showed consistent patterns for the simple scale, correlated with the ascending/descending sequences. (4) Pianists tended to exhale just after the music onsets, inhale at the rests, and inhibit inhale during the slur parts. There was correlation between breathing pattern and two-voice polyphonic structure for several participants. (5) Respiratory patterns were notably different among the pianists. Every pianist showed his or her own characteristic features commonly for various musical works. These findings suggest that breathing in piano performance depends not only on musical parameters and organization written in the score but also some pianist-dependent factors which might be ingrained to individual pianists. PMID:27516736

  3. Action-based effects on music perception.

    PubMed

    Maes, Pieter-Jan; Leman, Marc; Palmer, Caroline; Wanderley, Marcelo M

    2014-01-03

    The classical, disembodied approach to music cognition conceptualizes action and perception as separate, peripheral processes. In contrast, embodied accounts of music cognition emphasize the central role of the close coupling of action and perception. It is a commonly established fact that perception spurs action tendencies. We present a theoretical framework that captures the ways in which the human motor system and its actions can reciprocally influence the perception of music. The cornerstone of this framework is the common coding theory, postulating a representational overlap in the brain between the planning, the execution, and the perception of movement. The integration of action and perception in so-called internal models is explained as a result of associative learning processes. Characteristic of internal models is that they allow intended or perceived sensory states to be transferred into corresponding motor commands (inverse modeling), and vice versa, to predict the sensory outcomes of planned actions (forward modeling). Embodied accounts typically refer to inverse modeling to explain action effects on music perception (Leman, 2007). We extend this account by pinpointing forward modeling as an alternative mechanism by which action can modulate perception. We provide an extensive overview of recent empirical evidence in support of this idea. Additionally, we demonstrate that motor dysfunctions can cause perceptual disabilities, supporting the main idea of the paper that the human motor system plays a functional role in auditory perception. The finding that music perception is shaped by the human motor system and its actions suggests that the musical mind is highly embodied. However, we advocate for a more radical approach to embodied (music) cognition in the sense that it needs to be considered as a dynamical process, in which aspects of action, perception, introspection, and social interaction are of crucial importance.

  4. Relationship between Musical Characteristics and Temporal Breathing Pattern in Piano Performance.

    PubMed

    Sakaguchi, Yutaka; Aiba, Eriko

    2016-01-01

    Although there is growing evidence that breathing is modulated by various motor and cognitive activities, the nature of breathing in musical performance has been little explored. The present study examined the temporal breath pattern in piano performance, aiming to elucidate how breath timing is related to musical organization/events and performance. In the experiments, the respiration of 15 professional and amateur pianists, playing 10 music excerpts in total (from four-octave C major scale, Hanon's exercise, J. S. Bach's Invention, Mozart's Sonatas, and Debussy's Clair de lune), was monitored by capnography. The relationship between breathing and musical characteristics was analyzed. Five major results were obtained. (1) Mean breath interval was shortened for excerpts in faster tempi. (2) Fluctuation of breath intervals was reduced for the pieces for finger exercise and those in faster tempi. Pianists showing large within-trial fluctuation also exhibited large inter-excerpt difference. (3) Inter-trial consistency of the breath patterns depended on the excerpts. Consistency was generally reduced for the excerpts that could be performed mechanically (i.e., pieces for finger exercise), but interestingly, one third of the participant showed consistent patterns for the simple scale, correlated with the ascending/descending sequences. (4) Pianists tended to exhale just after the music onsets, inhale at the rests, and inhibit inhale during the slur parts. There was correlation between breathing pattern and two-voice polyphonic structure for several participants. (5) Respiratory patterns were notably different among the pianists. Every pianist showed his or her own characteristic features commonly for various musical works. These findings suggest that breathing in piano performance depends not only on musical parameters and organization written in the score but also some pianist-dependent factors which might be ingrained to individual pianists.

  5. Non-expert listeners show decreased heart rate and increased blood pressure (fear bradycardia) in response to atonal music.

    PubMed

    Proverbio, Alice M; Manfrin, Luigi; Arcari, Laura A; De Benedetto, Francesco; Gazzola, Martina; Guardamagna, Matteo; Lozano Nasi, Valentina; Zani, Alberto

    2015-01-01

    Previous studies suggested that listening to different types of music may modulate differently psychological mood and physiological responses associated with the induced emotions. In this study the effect of listening to instrumental classical vs. atonal contemporary music was examined in a group of 50 non-expert listeners. The subjects' heart rate and diastolic and systolic blood pressure values were measured while they listened to music of different style and emotional typologies. Pieces were selected by asking a group of composers and conservatory professors to suggest a list of the most emotional music pieces (from Renaissance to present time). A total of 214 suggestions from 20 respondents were received. Then it was asked them to identify which pieces best induced in the listener feelings of agitation, joy or pathos and the number of suggested pieces per style was computed. Atonal pieces were more frequently indicated as agitating, and tonal pieces as joyful. The presence/absence of tonality in a musical piece did not affect the affective dimension of pathos (being touching). Among the most frequently cited six pieces were selected that were comparable for structure and style, to represent each emotion and style. They were equally evaluated as unfamiliar by an independent group of 10 students of the same cohort) and were then used as stimuli for the experimental session in which autonomic parameters were recorded. Overall, listening to atonal music (independent of the pieces' emotional characteristics) was associated with a reduced heart rate (fear bradycardia) and increased blood pressure (both diastolic and systolic), possibly reflecting an increase in alertness and attention, psychological tension, and anxiety. This evidence fits with the results of the esthetical assessment showing how, overall, atonal music is perceived as more agitating and less joyful than tonal one.

  6. Music training is associated with cortical synchronization reflected in EEG coherence during verbal memory encoding

    PubMed Central

    Cheung, Mei-chun; Chan, Agnes S.; Liu, Ying; Law, Derry; Wong, Christina W. Y.

    2017-01-01

    Music training can improve cognitive functions. Previous studies have shown that children and adults with music training demonstrate better verbal learning and memory performance than those without such training. Although prior studies have shown an association between music training and changes in the structural and functional organization of the brain, there is no concrete evidence of the underlying neural correlates of the verbal memory encoding phase involved in such enhanced memory performance. Therefore, we carried out an electroencephalography (EEG) study to investigate how music training was associated with brain activity during the verbal memory encoding phase. Sixty participants were recruited, 30 of whom had received music training for at least one year (the MT group) and 30 of whom had never received music training (the NMT group). The participants in the two groups were matched for age, education, gender distribution, and cognitive capability. Their verbal and visual memory functions were assessed using standardized neuropsychological tests and EEG was used to record their brain activity during the verbal memory encoding phase. Consistent with previous studies, the MT group demonstrated better verbal memory than the NMT group during both the learning and the delayed recall trials in the paper-and-pencil tests. The MT group also exhibited greater learning capacity during the learning trials. Compared with the NMT group, the MT group showed an increase in long-range left and right intrahemispheric EEG coherence in the theta frequency band during the verbal memory encoding phase. In addition, their event-related left intrahemispheric theta coherence was positively associated with subsequent verbal memory performance as measured by discrimination scores. These results suggest that music training may modulate the cortical synchronization of the neural networks involved in verbal memory formation. PMID:28358852

  7. A seafloor electromagnetic receiver for marine magnetotellurics and marine controlled-source electromagnetic sounding

    NASA Astrophysics Data System (ADS)

    Chen, Kai; Wei, Wen-Bo; Deng, Ming; Wu, Zhong-Liang; Yu, Gang

    2015-09-01

    In planning and executing marine controlled-source electromagnetic methods, seafloor electromagnetic receivers must overcome the problems of noise, clock drift, and power consumption. To design a receiver that performs well and overcomes the abovementioned problems, we performed forward modeling of the E-field abnormal response and established the receiver's characteristics. We describe the design optimization and the properties of each component, that is, low-noise induction coil sensor, low-noise Ag/AgCl electrode, low-noise chopper amplifier, digital temperature-compensated crystal oscillator module, acoustic telemetry modem, and burn wire system. Finally, we discuss the results of onshore and offshore field tests to show the effectiveness of the developed seafloor electromagnetic receiver and its performance: typical E-field noise of 0.12 nV/m/rt(Hz) at 0.5 Hz, dynamic range higher than 120 dB, clock drift lower than 1 ms/day, and continuous operation of at least 21 days.

  8. Envelope Responses in Single-Trial EEG Indicate Attended Speaker in a Cocktail Party

    DTIC Science & Technology

    2013-06-20

    users to modulate their brain activity, such as motor rhythms, in order to signal intent [13], but these often require considerable training . Other...BCIs forgo training and instead have subjects make choices by attending to one of multiple visual and/or auditory stimuli. By presenting each stimulus...modulated). An envelope-based BCI could operate on more naturalistic auditory stimuli, such as speech or music . For example, an envelope-based BCI

  9. Regulation of Electromagnetic Radiation: A Confusing Course through Modulating E and H Waves.

    DTIC Science & Technology

    1982-02-15

    29 Biological Effects of RFR: Clinical Findings ......... 30 Cataract ........... . o . o ....... o 30 Psychological Effects...Claims Act alleges injuries to a contractor employee conducting tests of potential effects of electromagnetic pulse radiation on a Minuteman missile site...absorption is the position of the receiving object (e.g. human being, animal or simulated model test subject) relative to the E, H or K planes (K is a

  10. Effects of musical expertise on oscillatory brain activity in response to emotional sounds.

    PubMed

    Nolden, Sophie; Rigoulot, Simon; Jolicoeur, Pierre; Armony, Jorge L

    2017-08-01

    Emotions can be conveyed through a variety of channels in the auditory domain, be it via music, non-linguistic vocalizations, or speech prosody. Moreover, recent studies suggest that expertise in one sound category can impact the processing of emotional sounds in other sound categories as they found that musicians process more efficiently emotional musical and vocal sounds than non-musicians. However, the neural correlates of these modulations, especially their time course, are not very well understood. Consequently, we focused here on how the neural processing of emotional information varies as a function of sound category and expertise of participants. Electroencephalogram (EEG) of 20 non-musicians and 17 musicians was recorded while they listened to vocal (speech and vocalizations) and musical sounds. The amplitude of EEG-oscillatory activity in the theta, alpha, beta, and gamma band was quantified and Independent Component Analysis (ICA) was used to identify underlying components of brain activity in each band. Category differences were found in theta and alpha bands, due to larger responses to music and speech than to vocalizations, and in posterior beta, mainly due to differential processing of speech. In addition, we observed greater activation in frontal theta and alpha for musicians than for non-musicians, as well as an interaction between expertise and emotional content of sounds in frontal alpha. The results reflect musicians' expertise in recognition of emotion-conveying music, which seems to also generalize to emotional expressions conveyed by the human voice, in line with previous accounts of effects of expertise on musical and vocal sounds processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Top-down modulation of auditory processing: effects of sound context, musical expertise and attentional focus.

    PubMed

    Tervaniemi, M; Kruck, S; De Baene, W; Schröger, E; Alter, K; Friederici, A D

    2009-10-01

    By recording auditory electrical brain potentials, we investigated whether the basic sound parameters (frequency, duration and intensity) are differentially encoded among speech vs. music sounds by musicians and non-musicians during different attentional demands. To this end, a pseudoword and an instrumental sound of comparable frequency and duration were presented. The accuracy of neural discrimination was tested by manipulations of frequency, duration and intensity. Additionally, the subjects' attentional focus was manipulated by instructions to ignore the sounds while watching a silent movie or to attentively discriminate the different sounds. In both musicians and non-musicians, the pre-attentively evoked mismatch negativity (MMN) component was larger to slight changes in music than in speech sounds. The MMN was also larger to intensity changes in music sounds and to duration changes in speech sounds. During attentional listening, all subjects more readily discriminated changes among speech sounds than among music sounds as indexed by the N2b response strength. Furthermore, during attentional listening, musicians displayed larger MMN and N2b than non-musicians for both music and speech sounds. Taken together, the data indicate that the discriminative abilities in human audition differ between music and speech sounds as a function of the sound-change context and the subjective familiarity of the sound parameters. These findings provide clear evidence for top-down modulatory effects in audition. In other words, the processing of sounds is realized by a dynamically adapting network considering type of sound, expertise and attentional demands, rather than by a strictly modularly organized stimulus-driven system.

  12. Industrial Education. Electricity/Electronics Curriculum Guide, Phase II. Instructional Modules, Level I (9 Week).

    ERIC Educational Resources Information Center

    Lillo, Robert E.; Soffiotto, Nicholas S.

    Designed for students in grades 7 and 8, this electricity/electronics curriculum guide contains instructional modules for ten units of instruction (nine-week class): (1) orientation; (2) understanding electricity; (3) safety; (4) methods to generate electricity; (5) wiring tools and wire; (6) soldering; (7) magnetism and electromagnetism; (8)…

  13. Industrial Education. Electricity/Electronics Curriculum Guide, Phase II. Instructional Modules, Level I (18 Week).

    ERIC Educational Resources Information Center

    Lillo, Robert E.; Soffiotto, Nicholas S.

    Designed for students in grades 7 and 8, this electricity/electronics curriculum guide contains instructional modules for twelve units of instruction: (1) orientation; (2) understanding electricity; (3) safety; (4) methods to generate electricity; (5) wiring tools and wire; (6) soldering; (7) magnetism and electromagnetism; (8) circuits, symbols,…

  14. Immune-Modulating Perspectives for Low Frequency Electromagnetic Fields in Innate Immunity

    PubMed Central

    Rosado, Maria Manuela; Simkó, Myrtill; Mattsson, Mats-Olof; Pioli, Claudio

    2018-01-01

    In recent years, the effects of electromagnetic fields (EMFs) on the immune system have received a considerable interest, not only to investigate possible negative health impact but also to explore the possibility to favorably modulate immune responses. To generate beneficial responses, the immune system should eradicate pathogens while “respecting” the organism and tolerating irrelevant antigens. According to the current view, damage-associated molecules released by infected or injured cells, or secreted by innate immune cells generate danger signals activating an immune response. These signals are also relevant to the subsequent activation of homeostatic mechanisms that control the immune response in pro- or anti-inflammatory reactions, a feature that allows modulation by therapeutic treatments. In the present review, we describe and discuss the effects of extremely low frequency (ELF)-EMF and pulsed EMF on cell signals and factors relevant to the activation of danger signals and innate immunity cells. By discussing the EMF modulating effects on cell functions, we envisage the use of EMF as a therapeutic agent to regulate immune responses associated with wound healing. PMID:29632855

  15. Immune-Modulating Perspectives for Low Frequency Electromagnetic Fields in Innate Immunity.

    PubMed

    Rosado, Maria Manuela; Simkó, Myrtill; Mattsson, Mats-Olof; Pioli, Claudio

    2018-01-01

    In recent years, the effects of electromagnetic fields (EMFs) on the immune system have received a considerable interest, not only to investigate possible negative health impact but also to explore the possibility to favorably modulate immune responses. To generate beneficial responses, the immune system should eradicate pathogens while "respecting" the organism and tolerating irrelevant antigens. According to the current view, damage-associated molecules released by infected or injured cells, or secreted by innate immune cells generate danger signals activating an immune response. These signals are also relevant to the subsequent activation of homeostatic mechanisms that control the immune response in pro- or anti-inflammatory reactions, a feature that allows modulation by therapeutic treatments. In the present review, we describe and discuss the effects of extremely low frequency (ELF)-EMF and pulsed EMF on cell signals and factors relevant to the activation of danger signals and innate immunity cells. By discussing the EMF modulating effects on cell functions, we envisage the use of EMF as a therapeutic agent to regulate immune responses associated with wound healing.

  16. Differential roles of right temporal cortex and Broca's area in pitch processing: evidence from music and Mandarin.

    PubMed

    Nan, Yun; Friederici, Angela D

    2013-09-01

    Superior temporal and inferior frontal cortices are involved in the processing of pitch information in the domain of language and music. Here, we used fMRI to test the particular roles of these brain regions in the neural implementation of pitch in music and in tone language (Mandarin) with a group of Mandarin speaking musicians whose pertaining experiences in pitch are similar across domains. Our findings demonstrate that the neural network for pitch processing includes the pars triangularis of Broca's area and the right superior temporal gyrus (STG) across domains. Within this network, pitch sensitive activation in Broca's area is tightly linked to the behavioral performance of pitch congruity judgment, thereby reflecting controlled processes. Activation in the right STG is independent of performance and more sensitive to pitch congruity in music than in tone language, suggesting a domain-specific modulation of the perceptual processes. These observations provide a first glimpse at the cortical pitch processing network shared across domains. Copyright © 2012 Wiley Periodicals, Inc., a Wiley company.

  17. Feeling the Science, Thinking about Art

    NASA Astrophysics Data System (ADS)

    Chatzichristou, E. T.; Daglis, I. A.; Anastasiadis, A.; Giannakis, O.

    2015-10-01

    MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Loss and Energization) was an FP7- funded project, involving monitoring of the geospace environment through space and ground-based observations, in order to understand various aspects of the radiation belts (torus-shaped regions encircling the Earth, in which high-energy charged particles are trapped by the geomagnetic field), which have direct impact on human endeavors in space (spacecraft and astronauts exposure). Besides interesting science, the MAARBLE outreach team employed a variety of outreach techniques to provide the general public with simplified information concerning the scientific objectives of the project, its focus and its expected outcomes. An outstanding moment of the MAARBLE outreach experience was the organization of an international contest of musical compositions inspired by impressive sounds of space related to very low and ultra-low frequency (VLF/ULF) electromagnetic waves. The MAARBLE international contest of musical composition aspired to combine scientific and artistic ways of thinking, through the science of Astronomy and Space and the art of Music. It was an original idea to provide scientific information to the public, inviting people to "feel" the science and to think about art. The leading concept was to use the natural sounds of the Earth's magnetosphere in order to compose electroacoustic music. Composers from all European countries were invited to take part at the contest, using some (or all) of the sounds included in a database of magnetospheric sounds compiled by the MAARBLE outreach team. The results were astonishing: the contest was oversubscribed by a factor of 19 (in total 55 applications from 17 countries) and the musical pieces were of overall excellent quality, making the selection of winners a very difficult task. Ultimately, the selection committee concluded on the ten highest ranked compositions, which were uploaded on the MAARBLE website. Furthermore, the three winning compositions received important awards and they were officially presented in a dedicated event during the international conference "Geospace revisited: a Cluster/MAARBLE/Van Allen Probes Conference" in September 2014. The awe inspiring music was deeply felt by the public as it was uniquely combined with the projection of related space images and videos. The artists themselves described what feelings the music generated in them and how these inspired their compositions, characterizing this as an exhilarating experience, a "time capsule of sounds", a "cosmic wind of music" and, ultimately, a creative path of discovery. As one of the winners put it: "It was like a myth about evolution, randomness, and mysteries,but ultimately the fragility of life and our existence".

  18. Modulation of EEG Theta Band Signal Complexity by Music Therapy

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Joydeep; Lee, Eun-Jeong

    The primary goal of this study was to investigate the impact of monochord (MC) sounds, a type of archaic sounds used in music therapy, on the neural complexity of EEG signals obtained from patients undergoing chemotherapy. The secondary goal was to compare the EEG signal complexity values for monochords with those for progressive muscle relaxation (PMR), an alternative therapy for relaxation. Forty cancer patients were randomly allocated to one of the two relaxation groups, MC and PMR, over a period of six months; continuous EEG signals were recorded during the first and last sessions. EEG signals were analyzed by applying signal mode complexity, a measure of complexity of neuronal oscillations. Across sessions, both groups showed a modulation of complexity of beta-2 band (20-29Hz) at midfrontal regions, but only MC group showed a modulation of complexity of theta band (3.5-7.5Hz) at posterior regions. Therefore, the neuronal complexity patterns showed different changes in EEG frequency band specific complexity resulting in two different types of interventions. Moreover, the different neural responses to listening to monochords and PMR were observed after regular relaxation interventions over a short time span.

  19. FIBER AND INTEGRATED OPTICS. OTHER TOPICS IN QUANTUM ELECTRONICS: Modulation method for reducing long-term drift of the emission frequency of an He-Ne laser (λ = 0.63 μm) generating two orthogonally polarized electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Vitushkin, L. F.; Zakharenko, Yu G.; Smirnov, M. Z.

    1990-05-01

    Theoretical and experimental investigations were made of the principal physical factors responsible for a long-term drift of the frequency of the radiation generated in a stabilized two-frequency He-Ne laser with internal mirrors, emitting two orthogonally polarized electromagnetic waves. When zero difference between the intensities was controlled by a modulation method and the frequency was set before each measurement, a long-term (over a period of a year) frequency drift did not exceed 10 - 8, but in the absence of such control the drift could reach 5 × 10 - 8.

  20. Broadband tunable electromagnetically induced transparency analogue metamaterials based on graphene in terahertz band

    NASA Astrophysics Data System (ADS)

    Wang, Yue; Leng, Yanbing; Wang, Li; Dong, Lianhe; Liu, Shunrui; Wang, Jun; Sun, Yanjun

    2018-06-01

    Most of the actively controlled electromagnetically induced transparency analogue (EIT-like) metamaterials were implemented with narrowband modulations. In this paper, a broadband tunable EIT-like metamaterial based on graphene in the terahertz band is presented. It consists of a cut wire as the bright resonator and two couples of H-shaped resonators in mirror symmetry as the dark resonators. A broadband tunable property of transmission amplitude is realized by changing the Fermi level of graphene. Furthermore, the geometries of the metamaterial structure are optimized to achieve the ideal curve through the simulation. Such EIT-like metamaterials proposed here are promising candidates for designing active wide-band slow-light devices, wide-band terahertz active filters, and wide-band terahertz modulators.

  1. Electromagnetically induced acoustic emission—novel NDT technique for damage evaluation

    NASA Astrophysics Data System (ADS)

    Finkel, P.; Godinez, V.; Miller, R.; Finlayson, R.

    2001-04-01

    A recently developed electromagnetically induced acoustic emission technique (EM AE) which can be used for damage assessment of thin walled conducting structures is described. This technique allows a structure to be loaded locally by applying an electromagnetic field in order to produce an AE response, which may be captured by conventional or fiber optic (FO) AE sensors. The advantage of this technique is that the localized dynamic stresses induced by a short current pulse in the presence of an external magnetic field aid in the detection of cracks. Also, it is shown that electromagnetic stimulation can be applied to enhance conventional ultrasonics by modulation of the scattered signal from the defect (EM UT). Experimental data is presented for the case of a fatigue crack near rivet holes in thin walled aluminum structures.

  2. Musical Auditory Stimulation Influences Heart Rate Autonomic Responses to Endodontic Treatment

    PubMed Central

    Martiniano, Eli Carlos; Monteiro, Larissa Raylane Lucas; Valenti, Vitor E.; Sorpreso, Isabel Cristina Esposito; de Abreu, Luiz Carlos

    2017-01-01

    We aimed to evaluate the acute effect of musical auditory stimulation on heart rate autonomic regulation during endodontic treatment. The study included 50 subjects from either gender between 18 and 40 years old, diagnosed with irreversible pulpitis or pulp necrosis of the upper front teeth and endodontic treatment indication. HRV was recorded 10 minutes before (T1), during (T2), and immediately (T3 and T4) after endodontic treatment. The volunteers were randomly divided into two equal groups: exposed to music (during T2, T3, and T4) or not. We found no difference regarding salivary cortisol and anxiety score. In the group with musical stimulation heart rate decreased in T3 compared to T1 and mean RR interval increased in T2 and T3 compared to T1. SDNN and TINN indices decreased in T3 compared to T4, the RMSSD and SD1 increased in T4 compared to T1, the SD2 increased compared to T3, and LF (low frequency band) increased in T4 compared to T1 and T3. In the control group, only RMSSD and SD1 increased in T3 compared to T1. Musical auditory stimulation enhanced heart rate autonomic modulation during endodontic treatment. PMID:28182118

  3. Preferred Tempo and Low-Audio-Frequency Bias Emerge From Simulated Sub-cortical Processing of Sounds With a Musical Beat

    PubMed Central

    Zuk, Nathaniel J.; Carney, Laurel H.; Lalor, Edmund C.

    2018-01-01

    Prior research has shown that musical beats are salient at the level of the cortex in humans. Yet below the cortex there is considerable sub-cortical processing that could influence beat perception. Some biases, such as a tempo preference and an audio frequency bias for beat timing, could result from sub-cortical processing. Here, we used models of the auditory-nerve and midbrain-level amplitude modulation filtering to simulate sub-cortical neural activity to various beat-inducing stimuli, and we used the simulated activity to determine the tempo or beat frequency of the music. First, irrespective of the stimulus being presented, the preferred tempo was around 100 beats per minute, which is within the range of tempi where tempo discrimination and tapping accuracy are optimal. Second, sub-cortical processing predicted a stronger influence of lower audio frequencies on beat perception. However, the tempo identification algorithm that was optimized for simple stimuli often failed for recordings of music. For music, the most highly synchronized model activity occurred at a multiple of the beat frequency. Using bottom-up processes alone is insufficient to produce beat-locked activity. Instead, a learned and possibly top-down mechanism that scales the synchronization frequency to derive the beat frequency greatly improves the performance of tempo identification. PMID:29896080

  4. Ear Advantage for Musical Location and Relative Pitch: Effects of Musical Training and Attention.

    PubMed

    Hutchison, Joanna L; Hubbard, Timothy L; Hubbard, Nicholas A; Rypma, Bart

    2017-06-01

    Trained musicians have been found to exhibit a right-ear advantage for high tones and a left-ear advantage for low tones. We investigated whether this right/high, left/low pattern of musical processing advantage exists in listeners who had varying levels of musical experience, and whether such a pattern might be modulated by attentional strategy. A dichotic listening paradigm was used in which different melodic sequences were presented to each ear, and listeners attended to (a) the left ear or the right ear or (b) the higher pitched tones or the lower pitched tones. Listeners judged whether tone-to-tone transitions within each melodic sequence moved upward or downward in pitch. Only musically experienced listeners could adequately judge the direction of successive pitch transitions when attending to a specific ear; however, all listeners could judge the direction of successive pitch transitions within a high-tone stream or a low-tone stream. Overall, listeners exhibited greater accuracy when attending to relatively higher pitches, but there was no evidence to support a right/high, left/low bias. Results were consistent with effects of attentional strategy rather than an ear advantage for high or low tones. Implications for a potential performer/audience paradox in listening space are considered.

  5. ECoG high gamma activity reveals distinct cortical representations of lyrics passages, harmonic and timbre-related changes in a rock song.

    PubMed

    Sturm, Irene; Blankertz, Benjamin; Potes, Cristhian; Schalk, Gerwin; Curio, Gabriel

    2014-01-01

    Listening to music moves our minds and moods, stirring interest in its neural underpinnings. A multitude of compositional features drives the appeal of natural music. How such original music, where a composer's opus is not manipulated for experimental purposes, engages a listener's brain has not been studied until recently. Here, we report an in-depth analysis of two electrocorticographic (ECoG) data sets obtained over the left hemisphere in ten patients during presentation of either a rock song or a read-out narrative. First, the time courses of five acoustic features (intensity, presence/absence of vocals with lyrics, spectral centroid, harmonic change, and pulse clarity) were extracted from the audio tracks and found to be correlated with each other to varying degrees. In a second step, we uncovered the specific impact of each musical feature on ECoG high-gamma power (70-170 Hz) by calculating partial correlations to remove the influence of the other four features. In the music condition, the onset and offset of vocal lyrics in ongoing instrumental music was consistently identified within the group as the dominant driver for ECoG high-gamma power changes over temporal auditory areas, while concurrently subject-individual activation spots were identified for sound intensity, timbral, and harmonic features. The distinct cortical activations to vocal speech-related content embedded in instrumental music directly demonstrate that song integrated in instrumental music represents a distinct dimension in complex music. In contrast, in the speech condition, the full sound envelope was reflected in the high gamma response rather than the onset or offset of the vocal lyrics. This demonstrates how the contributions of stimulus features that modulate the brain response differ across the two examples of a full-length natural stimulus, which suggests a context-dependent feature selection in the processing of complex auditory stimuli.

  6. Induction machine bearing faults detection based on a multi-dimensional MUSIC algorithm and maximum likelihood estimation.

    PubMed

    Elbouchikhi, Elhoussin; Choqueuse, Vincent; Benbouzid, Mohamed

    2016-07-01

    Condition monitoring of electric drives is of paramount importance since it contributes to enhance the system reliability and availability. Moreover, the knowledge about the fault mode behavior is extremely important in order to improve system protection and fault-tolerant control. Fault detection and diagnosis in squirrel cage induction machines based on motor current signature analysis (MCSA) has been widely investigated. Several high resolution spectral estimation techniques have been developed and used to detect induction machine abnormal operating conditions. This paper focuses on the application of MCSA for the detection of abnormal mechanical conditions that may lead to induction machines failure. In fact, this paper is devoted to the detection of single-point defects in bearings based on parametric spectral estimation. A multi-dimensional MUSIC (MD MUSIC) algorithm has been developed for bearing faults detection based on bearing faults characteristic frequencies. This method has been used to estimate the fundamental frequency and the fault related frequency. Then, an amplitude estimator of the fault characteristic frequencies has been proposed and fault indicator has been derived for fault severity measurement. The proposed bearing faults detection approach is assessed using simulated stator currents data, issued from a coupled electromagnetic circuits approach for air-gap eccentricity emulating bearing faults. Then, experimental data are used for validation purposes. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Music-evoked incidental happiness modulates probability weighting during risky lottery choices

    PubMed Central

    Schulreich, Stefan; Heussen, Yana G.; Gerhardt, Holger; Mohr, Peter N. C.; Binkofski, Ferdinand C.; Koelsch, Stefan; Heekeren, Hauke R.

    2014-01-01

    We often make decisions with uncertain consequences. The outcomes of the choices we make are usually not perfectly predictable but probabilistic, and the probabilities can be known or unknown. Probability judgments, i.e., the assessment of unknown probabilities, can be influenced by evoked emotional states. This suggests that also the weighting of known probabilities in decision making under risk might be influenced by incidental emotions, i.e., emotions unrelated to the judgments and decisions at issue. Probability weighting describes the transformation of probabilities into subjective decision weights for outcomes and is one of the central components of cumulative prospect theory (CPT) that determine risk attitudes. We hypothesized that music-evoked emotions would modulate risk attitudes in the gain domain and in particular probability weighting. Our experiment featured a within-subject design consisting of four conditions in separate sessions. In each condition, the 41 participants listened to a different kind of music—happy, sad, or no music, or sequences of random tones—and performed a repeated pairwise lottery choice task. We found that participants chose the riskier lotteries significantly more often in the “happy” than in the “sad” and “random tones” conditions. Via structural regressions based on CPT, we found that the observed changes in participants' choices can be attributed to changes in the elevation parameter of the probability weighting function: in the “happy” condition, participants showed significantly higher decision weights associated with the larger payoffs than in the “sad” and “random tones” conditions. Moreover, elevation correlated positively with self-reported music-evoked happiness. Thus, our experimental results provide evidence in favor of a causal effect of incidental happiness on risk attitudes that can be explained by changes in probability weighting. PMID:24432007

  8. Reciprocal Modulation of Cognitive and Emotional Aspects in Pianistic Performances

    PubMed Central

    Higuchi, Marcia K. Kodama; Fornari, José; Del Ben, Cristina M.; Graeff, Frederico G.; Leite, João Pereira

    2011-01-01

    Background High level piano performance requires complex integration of perceptual, motor, cognitive and emotive skills. Observations in psychology and neuroscience studies have suggested reciprocal inhibitory modulation of the cognition by emotion and emotion by cognition. However, it is still unclear how cognitive states may influence the pianistic performance. The aim of the present study is to verify the influence of cognitive and affective attention in the piano performances. Methods and Findings Nine pianists were instructed to play the same piece of music, firstly focusing only on cognitive aspects of musical structure (cognitive performances), and secondly, paying attention solely on affective aspects (affective performances). Audio files from pianistic performances were examined using a computational model that retrieves nine specific musical features (descriptors) – loudness, articulation, brightness, harmonic complexity, event detection, key clarity, mode detection, pulse clarity and repetition. In addition, the number of volunteers' errors in the recording sessions was counted. Comments from pianists about their thoughts during performances were also evaluated. The analyses of audio files throughout musical descriptors indicated that the affective performances have more: agogics, legatos, pianos phrasing, and less perception of event density when compared to the cognitive ones. Error analysis demonstrated that volunteers misplayed more left hand notes in the cognitive performances than in the affective ones. Volunteers also played more wrong notes in affective than in cognitive performances. These results correspond to the volunteers' comments that in the affective performances, the cognitive aspects of piano execution are inhibited, whereas in the cognitive performances, the expressiveness is inhibited. Conclusions Therefore, the present results indicate that attention to the emotional aspects of performance enhances expressiveness, but constrains cognitive and motor skills in the piano execution. In contrast, attention to the cognitive aspects may constrain the expressivity and automatism of piano performances. PMID:21931716

  9. Novel Aspects of Evolution of the Stokes Parameters for an Electromagnetic Wave in Anisotropic Media

    NASA Astrophysics Data System (ADS)

    Botet, R.; Kuratsuji, H.; Seto, R.

    2006-08-01

    Polarization of a plane electromagnetic wave travelling through a medium is studied in the slowly-varying field envelope approximation. It is shown that the problem is identical to the 4-momentum evolution of a negatively-charged massless relativistic particle in an electromagnetic field. The approach is exemplified by the resonant oscillations of circular polarization in a medium embedded in a static magnetic field and a modulated electric field. The effect of dissipation in the medium is discussed. It is shown that the Rabi oscillations are stable below a threshold depending on the absorption coefficient. Above it, oscillations disappear.

  10. Transverse Mode Electron Beam Microwave Generator

    NASA Technical Reports Server (NTRS)

    Wharton, Lawrence E.

    1994-01-01

    An electron beam microwave device having an evacuated interaction chamber to which are coupled a resonant cavity which has an opening between the resonant cavity and the evacuated interaction chamber and an electron gun which causes a narrow beam of electrons to traverse the evacuated interaction chamber. The device also contains a mechanism for feeding back a microwave electromagnetic field from the resonant cavity to the evacuated interaction chamber in such a way as to modulate the direction of propagation of the electron beam, thereby further amplifyjng the microwave electromagnetic field. Furthermore, provision is made for coupling the electromagnetic field out of the electron beam microwave device.

  11. Dimension-sensitive optical responses of electromagnetically induced transparency vapor in a waveguide

    NASA Astrophysics Data System (ADS)

    Qi Shen, Jian; He, Sailing

    2006-12-01

    A three-level EIT (electromagnetically induced transparency) vapor is used to manipulate the transparency and absorption properties of the probe light in a waveguide. The most remarkable feature of the present scheme is such that the optical responses resulting from both electromagnetically induced transparency and large spontaneous emission enhancement are very sensitive to the frequency detunings of the probe light as well as to the small changes of the waveguide dimension. The potential applications of the dimension- and dispersion-sensitive EIT responses are discussed, and the sensitivity limits of some waveguide-based sensors, including electric absorption modulator, optical switch, wavelength sensor, and sensitive magnetometer, are analyzed.

  12. Treatment strategy and long-term functional outcome of traumatic elbow dislocation in childhood: a single centre study.

    PubMed

    Nussberger, G; Schädelin, S; Mayr, J; Studer, D; Zimmermann, P

    2018-04-01

    Traumatic elbow dislocation (TED) is the most common injury of large joints in children. There is an ongoing debate on the optimal treatment for TED. We aimed to assess the functional outcome after operative and nonoperative treatment of TED. We analysed the medical records of patients with TED treated at the University Children's Hospital, Basel, between March 2006 and June 2015. Functional outcome was assessed using the Mayo Elbow Performance Score (MEPS) and Quick Disabilities of the Arm, Shoulder and Hand (QuickDASH) Sport and Music Module score. These scores were compared between nonoperatively and operatively treated patients. A total of 37 patients (mean age 10.2 years, 5.2 to 15.3) were included. Of these, 21 (56.8%) children had undergone nonoperative treatment, with 16 (43.2%) patients having had operative treatment. After a mean follow-up of 5.6 years (1.2 to 5.9), MEPS and QuickDASH Sport and Music Module scores in the nonoperative group and operative group were similar: MEPS: 97.1 points (SD 4.6) versus 97.2 points (SD 2.6); 95% confidence interval (CI)-2.56 to 2.03); p = 0.53; QuickDASH Sport and Music Module score: 3.9 points (SD 6.1) versus 3.1 points (SD 4.6); 95% CI 2.60 to 4.17; p = 0.94. We noted no significant differences regarding the long-term functional outcome between the subgroup of children treated operatively versus those treated nonoperatively for TED with accompanying fractures of the medial epicondyle and medial condyle. Functional outcome after TED was excellent, independent of the treatment strategy. If clear indications for surgery are absent, a nonoperative approach for TED should be considered. Level III - therapeutic, retrospective, comparative study.

  13. Operation and Maintenance Manual, TECS 18.

    DTIC Science & Technology

    1978-11-01

    width modulated variable output voltage and frequency using a three-phase transistor bridge circuit . Reduced power line electromagnetic interference...Description 3-1 Section II. Circuit Fundamentals 3-1 Section III. System Description 3-2 CHAPTER 4. Protection and Maintenance 4-1 Section I. Internal...Number I-la TECS 18 Electronic Module Location-Evaporator Side 1-3 1-lb TECS 18 Electronic Module Location-Condenser Side 1-4 1-2 Remote Control Panel 1-5

  14. Self-modulational formation of pulsar microstructures

    NASA Technical Reports Server (NTRS)

    Kennel, C. F.; Chian, A. C.-L.

    1987-01-01

    A nonlinear plasma theory for self modulation of pulsar radio pulses is discussed. A nonlinear Schroedinger equation is derived for strong electromagnetic waves propagating in an electron positron plasma. The nonlinearities arising from wave intensity induced particle mass variation may excite the modulational instability of circularly and linearly polarized pulsar radiation. The resulting wave envelopes can take the form of periodic wave trains or solitons. These nonlinear stationary waveforms may account for the formation of pulsar microstructures.

  15. Prenatal Loud Music and Noise: Differential Impact on Physiological Arousal, Hippocampal Synaptogenesis and Spatial Behavior in One Day-Old Chicks

    PubMed Central

    Sanyal, Tania; Kumar, Vivek; Nag, Tapas Chandra; Jain, Suman; Sreenivas, Vishnu; Wadhwa, Shashi

    2013-01-01

    Prenatal auditory stimulation in chicks with species-specific sound and music at 65 dB facilitates spatial orientation and learning and is associated with significant morphological and biochemical changes in the hippocampus and brainstem auditory nuclei. Increased noradrenaline level due to physiological arousal is suggested as a possible mediator for the observed beneficial effects following patterned and rhythmic sound exposure. However, studies regarding the effects of prenatal high decibel sound (110 dB; music and noise) exposure on the plasma noradrenaline level, synaptic protein expression in the hippocampus and spatial behavior of neonatal chicks remained unexplored. Here, we report that high decibel music stimulation moderately increases plasma noradrenaline level and positively modulates spatial orientation, learning and memory of one day-old chicks. In contrast, noise at the same sound pressure level results in excessive increase of plasma noradrenaline level and impairs the spatial behavior. Further, to assess the changes at the molecular level, we have quantified the expression of functional synapse markers: synaptophysin and PSD-95 in the hippocampus. Compared to the controls, both proteins show significantly increased expressions in the music stimulated group but decrease in expressions in the noise group. We propose that the differential increase of plasma noradrenaline level and altered expression of synaptic proteins in the hippocampus are responsible for the observed behavioral consequences following prenatal 110 dB music and noise stimulation. PMID:23861759

  16. Performance bounds for matched field processing in subsurface object detection applications

    NASA Astrophysics Data System (ADS)

    Sahin, Adnan; Miller, Eric L.

    1998-09-01

    In recent years there has been considerable interest in the use of ground penetrating radar (GPR) for the non-invasive detection and localization of buried objects. In a previous work, we have considered the use of high resolution array processing methods for solving these problems for measurement geometries in which an array of electromagnetic receivers observes the fields scattered by the subsurface targets in response to a plane wave illumination. Our approach uses the MUSIC algorithm in a matched field processing (MFP) scheme to determine both the range and the bearing of the objects. In this paper we derive the Cramer-Rao bounds (CRB) for this MUSIC-based approach analytically. Analysis of the theoretical CRB has shown that there exists an optimum inter-element spacing of array elements for which the CRB is minimum. Furthermore, the optimum inter-element spacing minimizing CRB is smaller than the conventional half wavelength criterion. The theoretical bounds are then verified for two estimators using Monte-Carlo simulations. The first estimator is the MUSIC-based MFP and the second one is the maximum likelihood based MFP. The two approaches differ in the cost functions they optimize. We observe that Monte-Carlo simulated error variances always lie above the values established by CRB. Finally, we evaluate the performance of our MUSIC-based algorithm in the presence of model mismatches. Since the detection algorithm strongly depends on the model used, we have tested the performance of the algorithm when the object radius used in the model is different from the true radius. This analysis reveals that the algorithm is still capable of localizing the objects with a bias depending on the degree of mismatch.

  17. Effects of auditory stimulation with music of different intensities on heart period

    PubMed Central

    do Amaral, Joice A.T.; Guida, Heraldo L.; de Abreu, Luiz Carlos; Barnabé, Viviani; Vanderlei, Franciele M.; Valenti, Vitor E.

    2015-01-01

    Various studies have indicated that music therapy with relaxant music improves cardiac function of patients treated with cardiotoxic medication and heavy-metal music acutely reduces heart rate variability (HRV). There is also evidence that white noise auditory stimulation above 50 dB causes cardiac autonomic responses. In this study, we aimed to evaluate the acute effects of musical auditory stimulation with different intensities on cardiac autonomic regulation. This study was performed on 24 healthy women between 18 and 25 years of age. We analyzed HRV in the time [standard deviation of normal-to-normal RR intervals (SDNN), percentage of adjacent RR intervals with a difference of duration >50 ms (pNN50), and root-mean square of differences between adjacent normal RR intervals in a time interval (RMSSD)] and frequency [low frequency (LF), high frequency (HF), and LF/HF ratio] domains. HRV was recorded at rest for 10 minutes. Subsequently, the volunteers were exposed to baroque or heavy-metal music for 5 minutes through an earphone. The volunteers were exposed to three equivalent sound levels (60–70, 70–80, and 80–90 dB). After the first baroque or heavy-metal music, they remained at rest for 5 minutes and then they were exposed to the other music. The sequence of songs was randomized for each individual. Heavy-metal musical auditory stimulation at 80–90 dB reduced the SDNN index compared with control (44.39 ± 14.40 ms vs. 34.88 ± 8.69 ms), and stimulation at 60–70 dB decreased the LF (ms2) index compared with control (668.83 ± 648.74 ms2 vs. 392.5 ± 179.94 ms2). Baroque music at 60–70 dB reduced the LF (ms2) index (587.75 ± 318.44 ms2 vs. 376.21 ± 178.85 ms2). In conclusion, heavy-metal and baroque musical auditory stimulation at lower intensities acutely reduced global modulation of the heart and only heavy-metal music reduced HRV at higher intensities. PMID:26870675

  18. The Rhythm of Perception: Entrainment to Acoustic Rhythms Induces Subsequent Perceptual Oscillation.

    PubMed

    Hickok, Gregory; Farahbod, Haleh; Saberi, Kourosh

    2015-07-01

    Acoustic rhythms are pervasive in speech, music, and environmental sounds. Recent evidence for neural codes representing periodic information suggests that they may be a neural basis for the ability to detect rhythm. Further, rhythmic information has been found to modulate auditory-system excitability, which provides a potential mechanism for parsing the acoustic stream. Here, we explored the effects of a rhythmic stimulus on subsequent auditory perception. We found that a low-frequency (3 Hz), amplitude-modulated signal induces a subsequent oscillation of the perceptual detectability of a brief nonperiodic acoustic stimulus (1-kHz tone); the frequency but not the phase of the perceptual oscillation matches the entrained stimulus-driven rhythmic oscillation. This provides evidence that rhythmic contexts have a direct influence on subsequent auditory perception of discrete acoustic events. Rhythm coding is likely a fundamental feature of auditory-system design that predates the development of explicit human enjoyment of rhythm in music or poetry. © The Author(s) 2015.

  19. Efficiency Measurement Using a Motor-Dynamo Module

    ERIC Educational Resources Information Center

    Ng, Pun-hon; Wong, Siu-ling; Mak, Se-yuen

    2009-01-01

    In this article, we describe a simple method which can be used to measure the efficiency of a low power dc motor, a motor-converted dynamo and a coupled motor-dynamo module as a function of the speed of rotation. The result can also be used to verify Faraday's law of electromagnetic induction. (Contains 1 table and 8 figures.)

  20. Method and apparatus for coherent burst ranging

    DOEpatents

    Wachter, Eric A.; Fisher, Walter G.

    1998-01-01

    A high resolution ranging method is described utilizing a novel modulated waveform, hereafter referred to as coherent burst modulation. In the coherent burst method, high frequency modulation of an acoustic or electromagnetic transmitter, such as a laser, is performed at a modulation frequency. This modulation frequency is transmitted quasi-continuously in the form of interrupted bursts of radiation. Energy from the transmitter is directed onto a target, interacts with the target, and the returning energy is collected. The encoded burst pattern contained in the collected return signal is detected coherently by a receiver that is tuned so as to be principally sensitive to the modulation frequency. The receiver signal is processed to determine target range using both time-of-flight of the burst envelope and phase shift of the high frequency modulation. This approach effectively decouples the maximum unambiguous range and range resolution relationship of earlier methods, thereby allowing high precision ranging to be conducted at arbitrarily long distances using at least one burst of encoded energy. The use of a receiver tuned to the high frequency modulation contained within the coherent burst vastly improves both sensitivity in the detection of the target return signal and rejection of background interferences, such as ambient acoustic or electromagnetic noise. Simultaneous transmission at several energies (or wavelengths) is possible by encoding each energy with a separate modulation frequency or pattern; electronic demodulation at the receiver allows the return pattern for each energy to be monitored independently. Radial velocity of a target can also be determined by monitoring change in phase shift of the return signal as a function of time.

  1. Method and apparatus for coherent burst ranging

    DOEpatents

    Wachter, E.A.; Fisher, W.G.

    1998-04-28

    A high resolution ranging method is described utilizing a novel modulated waveform, hereafter referred to as coherent burst modulation. In the coherent burst method, high frequency modulation of an acoustic or electromagnetic transmitter, such as a laser, is performed at a modulation frequency. This modulation frequency is transmitted quasi-continuously in the form of interrupted bursts of radiation. Energy from the transmitter is directed onto a target, interacts with the target, and the returning energy is collected. The encoded burst pattern contained in the collected return signal is detected coherently by a receiver that is tuned so as to be principally sensitive to the modulation frequency. The receiver signal is processed to determine target range using both time-of-flight of the burst envelope and phase shift of the high frequency modulation. This approach effectively decouples the maximum unambiguous range and range resolution relationship of earlier methods, thereby allowing high precision ranging to be conducted at arbitrarily long distances using at least one burst of encoded energy. The use of a receiver tuned to the high frequency modulation contained within the coherent burst vastly improves both sensitivity in the detection of the target return signal and rejection of background interferences, such as ambient acoustic or electromagnetic noise. Simultaneous transmission at several energies (or wavelengths) is possible by encoding each energy with a separate modulation frequency or pattern; electronic demodulation at the receiver allows the return pattern for each energy to be monitored independently. Radial velocity of a target can also be determined by monitoring change in phase shift of the return signal as a function of time. 12 figs.

  2. Expanding the use of real-time electromagnetic tracking in radiation oncology.

    PubMed

    Shah, Amish P; Kupelian, Patrick A; Willoughby, Twyla R; Meeks, Sanford L

    2011-11-15

    In the past 10 years, techniques to improve radiotherapy delivery, such as intensity-modulated radiation therapy (IMRT), image-guided radiation therapy (IGRT) for both inter- and intrafraction tumor localization, and hypofractionated delivery techniques such as stereotactic body radiation therapy (SBRT), have evolved tremendously. This review article focuses on only one part of that evolution, electromagnetic tracking in radiation therapy. Electromagnetic tracking is still a growing technology in radiation oncology and, as such, the clinical applications are limited, the expense is high, and the reimbursement is insufficient to cover these costs. At the same time, current experience with electromagnetic tracking applied to various clinical tumor sites indicates that the potential benefits of electromagnetic tracking could be significant for patients receiving radiation therapy. Daily use of these tracking systems is minimally invasive and delivers no additional ionizing radiation to the patient, and these systems can provide explicit tumor motion data. Although there are a number of technical and fiscal issues that need to be addressed, electromagnetic tracking systems are expected to play a continued role in improving the precision of radiation delivery.

  3. Expanding the use of real‐time electromagnetic tracking in radiation oncology

    PubMed Central

    Kupelian, Patrick A.; Willoughby, Twyla R.; Meeks, Sanford L.

    2011-01-01

    In the past 10 years, techniques to improve radiotherapy delivery, such as intensity‐modulated radiation therapy (IMRT), image‐guided radiation therapy (IGRT) for both inter‐ and intrafraction tumor localization, and hypofractionated delivery techniques such as stereotactic body radiation therapy (SBRT), have evolved tremendously. This review article focuses on only one part of that evolution, electromagnetic tracking in radiation therapy. Electromagnetic tracking is still a growing technology in radiation oncology and, as such, the clinical applications are limited, the expense is high, and the reimbursement is insufficient to cover these costs. At the same time, current experience with electromagnetic tracking applied to various clinical tumor sites indicates that the potential benefits of electromagnetic tracking could be significant for patients receiving radiation therapy. Daily use of these tracking systems is minimally invasive and delivers no additional ionizing radiation to the patient, and these systems can provide explicit tumor motion data. Although there are a number of technical and fiscal issues that need to be addressed, electromagnetic tracking systems are expected to play a continued role in improving the precision of radiation delivery. PACS number: 87.63.‐d PMID:22089017

  4. Beam test evaluation of electromagnetic calorimeter modules made from proton-damaged PbWO4 crystals

    NASA Astrophysics Data System (ADS)

    Adams, T.; Adzic, P.; Ahuja, S.; Anderson, D.; Andrews, M. B.; Antropov, I.; Antunovic, Z.; Arcidiacono, R.; Arenton, M. W.; Argirò, S.; Askew, A.; Attikis, A.; Auffray, E.; Baccaro, S.; Baffioni, S.; Bailleux, D.; Baillon, P.; Barney, D.; Barone, L.; Bartoloni, A.; Bartosik, N.; Becheva, E.; Bein, S.; Silva, C. Beirāo Da Cruz E.; Bell, K. W.; Benaglia, A.; Bendavid, J.; Berry, D.; Besancon, M.; Betev, B.; Bialas, W.; Bianchini, L.; Biino, C.; Bitioukov, S.; Bornheim, A.; Brianza, L.; Brinkerhoff, A.; Brown, R. M.; Brummitt, A.; Busson, P.; Candelise, V.; Carrillo Montoya, C. A.; Cartiglia, N.; Cavallari, F.; Chang, Y. W.; Chen, K. F.; Chevenier, G.; Chipaux, R.; Clement, E.; Cockerill, D. J. A.; Corpe, L.; Couderc, F.; Courbon, B.; Cox, B.; Cucciati, G.; Cussans, D.; D'imperio, G.; Da Silva Di Calafiori, D. R.; Dafinei, I.; Daguin, J.; Daskalakis, G.; Tinoco Mendes, A. D.; De Guio, F.; Degano, A.; Dejardin, M.; Del Re, D.; Della Ricca, G.; Denegri, D.; Depasse, P.; Dev, N.; Deyrail, D.; Di Marco, E.; Diamond, B.; Diemoz, M.; Dissertori, G.; Dittmar, M.; Djambazov, L.; Doan, T. H.; Dobrzynski, L.; Dolgopolov, A.; Donegà, M.; Dordevic, M.; Dröge, M.; Durkin, T.; Dutta, D.; El Mamouni, H.; Elliott-Peisert, A.; Elmalis, E.; Fabbro, B.; Fasanella, G.; Faure, J.; Fay, J.; Fedorov, A.; Ferri, F.; Francis, B.; Frank, N.; Franzoni, G.; Funk, W.; Ganjour, S.; Gascon, S.; Gastal, M.; Geerebaert, Y.; Gelli, S.; Gerosa, R.; Ghezzi, A.; Giakoumopoulou, V. A.; Givernaud, A.; Gninenko, S.; Godinovic, N.; Goeckner-Wald, N.; Golubev, N.; Govoni, P.; Gras, P.; Guilloux, F.; Haller, C.; Hamel de Monchenault, G.; Hansen, M.; Hansen, P.; Hardenbrook, J.; Heath, H. F.; Hill, J.; Hirosky, R.; Hobson, P. R.; Holme, O.; Honma, A.; Hou, W.-S.; Hsiung, Y.; Iiyama, Y.; Ille, B.; Ingram, Q.; Jain, S.; Jarry, P.; Jessop, C.; Jovanovic, D.; Kachanov, V.; Kalafut, S.; Kao, K. Y.; Kellams, N.; Kesisoglou, S.; Khatiwada, A.; Konoplyannikov, A.; Konstantinov, D.; Korzhik, M.; Kovac, M.; Kubota, Y.; Kucher, I.; Kumar, A.; Kumar, A.; Kuo, C.; Kyberd, P.; Kyriakis, A.; Latyshev, G.; Lecoq, P.; Ledovskoy, A.; Lei, Y. J.; Lelas, D.; Lethuillier, M.; Li, H.; Lin, W.; Liu, Y. F.; Locci, E.; Longo, E.; Loukas, D.; Lu, R.-S.; Lucchini, M. T.; Lustermann, W.; Mackay, C. K.; Magniette, F.; Malcles, J.; Malhotra, S.; Mandjavidze, I.; Maravin, Y.; Margaroli, F.; Marinelli, N.; Marini, A. C.; Martelli, A.; Marzocchi, B.; Massironi, A.; Matveev, V.; Mechinsky, V.; Meng, F.; Meridiani, P.; Micheli, F.; Milosevic, J.; Mousa, J.; Musella, P.; Nessi-Tedaldi, F.; Neu, C.; Newman, H.; Nicolaou, C.; Nourbakhsh, S.; Obertino, M. M.; Organtini, G.; Orimoto, T.; Paganini, P.; Paganis, E.; Paganoni, M.; Pandolfi, F.; Panov, V.; Paramatti, R.; Parracho, P.; Pastrone, N.; Paulini, M.; Pauss, F.; Pauwels, K.; Pellegrino, F.; Pena, C.; Perniè, L.; Peruzzi, M.; Petrakou, E.; Petyt, D.; Pigazzini, S.; Piroué, P.; Planer, M.; Plestina, R.; Polic, D.; Prosper, H.; Ptochos, F.; Puljak, I.; Quittnat, M.; Ragazzi, S.; Rahatlou, S.; Rander, J.; Ranjan, K.; Rasteiro Da Silva, J.; Razis, P. A.; Romanteau, T.; Rosowsky, A.; Rovelli, C.; Rusack, R.; Salerno, R.; Santanastasio, F.; Santra, A.; Schönenberger, M.; Seez, C.; Sharma, V.; Shepherd-Themistocleous, C.; Shiu, J. G.; Shivpuri, R. K.; Singovsky, A.; Sinthuprasith, T.; Sirois, Y.; Smiljkovic, N.; Soffi, L.; Sun, M.; Symonds, P.; Tabarelli de Fatis, T.; Tambe, N.; Tarasov, I.; Taroni, S.; Teixeira De Lima, R.; Thea, A.; Theofilatos, K.; Thiant, F.; Titov, M.; Torbet, M.; Trapani, P. P.; Tropea, P.; Tsai, J. f.; Tsirou, A.; Turkewitz, J.; Tyurin, N.; Tzeng, Y. M.; Uzunian, A.; Valls, N.; Varela, J.; Veeraraghavan, V.; Verdini, P. G.; Vichoudis, P.; Vlassov, E.; Wang, J.; Wang, T.; Weinberg, M.; Wolfe, E.; Wood, J.; Zabi, A.; Zahid, S.; Zelepoukine, S.; Zghiche, A.; Zhang, L.; Zhu, K.; Zhu, R.; Zuyeuski, R.

    2016-04-01

    The performance of electromagnetic calorimeter modules made of proton-irradiated PbWO4 crystals has been studied in beam tests. The modules, similar to those used in the Endcaps of the CMS electromagnetic calorimeter (ECAL), were formed from 5×5 matrices of PbWO4 crystals, which had previously been exposed to 24 GeV protons up to integrated fluences between 2.1× 1013 and 1.3× 1014 cm-2. These correspond to the predicted charged-hadron fluences in the ECAL Endcaps at pseudorapidity η = 2.6 after about 500 fb-1 and 3000 fb-1 respectively, corresponding to the end of the LHC and High Luminosity LHC operation periods. The irradiated crystals have a lower light transmission for wavelengths corresponding to the scintillation light, and a correspondingly reduced light output. A comparison with four crystals irradiated in situ in CMS showed no significant rate dependence of hadron-induced damage. A degradation of the energy resolution and a non-linear response to electron showers are observed in damaged crystals. Direct measurements of the light output from the crystals show the amplitude decreasing and pulse becoming faster as the fluence increases. The latter is interpreted, through comparison with simulation, as a side-effect of the degradation in light transmission. The experimental results obtained can be used to estimate the long term performance of the CMS ECAL.

  5. Coupling of a nanomechanical oscillator and an atomic three-level medium

    NASA Astrophysics Data System (ADS)

    Sanz-Mora, A.; Eisfeld, A.; Wüster, S.; Rost, J.-M.

    2016-02-01

    We theoretically investigate the coupling of an ultracold three-level atomic gas and a nanomechanical mirror via classical electromagnetic radiation. The radiation pressure on the mirror is modulated by absorption of a probe light field, caused by the atoms which are electromagnetically rendered nearly transparent, allowing the gas to affect the mirror. In turn, the mirror can affect the gas as its vibrations generate optomechanical sidebands in the control field. We show that the sidebands cause modulations of the probe intensity at the mirror frequency, which can be enhanced near atomic resonances. Through the radiation pressure from the probe beam onto the mirror, this results in resonant driving of the mirror. Controllable by the two-photon detuning, the phase relation of the driving to the mirror motion decides upon amplification or damping of mirror vibrations. This permits direct phase locking of laser amplitude modulations to the motion of a nanomechanical element opening a perspective for cavity-free cooling through coupling to an atomic gas.

  6. Analogy of transistor function with modulating photonic band gap in electromagnetically induced grating

    PubMed Central

    Wang, Zhiguo; Ullah, Zakir; Gao, Mengqin; Zhang, Dan; Zhang, Yiqi; Gao, Hong; Zhang, Yanpeng

    2015-01-01

    Optical transistor is a device used to amplify and switch optical signals. Many researchers focus on replacing current computer components with optical equivalents, resulting in an optical digital computer system processing binary data. Electronic transistor is the fundamental building block of modern electronic devices. To replace electronic components with optical ones, an equivalent optical transistor is required. Here we compare the behavior of an optical transistor with the reflection from a photonic band gap structure in an electromagnetically induced transparency medium. A control signal is used to modulate the photonic band gap structure. Power variation of the control signal is used to provide an analogy between the reflection behavior caused by modulating the photonic band gap structure and the shifting of Q-point (Operation point) as well as amplification function of optical transistor. By means of the control signal, the switching function of optical transistor has also been realized. Such experimental schemes could have potential applications in making optical diode and optical transistor used in quantum information processing. PMID:26349444

  7. Analogy of transistor function with modulating photonic band gap in electromagnetically induced grating

    NASA Astrophysics Data System (ADS)

    Wang, Zhiguo; Ullah, Zakir; Gao, Mengqin; Zhang, Dan; Zhang, Yiqi; Gao, Hong; Zhang, Yanpeng

    2015-09-01

    Optical transistor is a device used to amplify and switch optical signals. Many researchers focus on replacing current computer components with optical equivalents, resulting in an optical digital computer system processing binary data. Electronic transistor is the fundamental building block of modern electronic devices. To replace electronic components with optical ones, an equivalent optical transistor is required. Here we compare the behavior of an optical transistor with the reflection from a photonic band gap structure in an electromagnetically induced transparency medium. A control signal is used to modulate the photonic band gap structure. Power variation of the control signal is used to provide an analogy between the reflection behavior caused by modulating the photonic band gap structure and the shifting of Q-point (Operation point) as well as amplification function of optical transistor. By means of the control signal, the switching function of optical transistor has also been realized. Such experimental schemes could have potential applications in making optical diode and optical transistor used in quantum information processing.

  8. Assessing Top-Down and Bottom-Up Contributions to Auditory Stream Segregation and Integration With Polyphonic Music

    PubMed Central

    Disbergen, Niels R.; Valente, Giancarlo; Formisano, Elia; Zatorre, Robert J.

    2018-01-01

    Polyphonic music listening well exemplifies processes typically involved in daily auditory scene analysis situations, relying on an interactive interplay between bottom-up and top-down processes. Most studies investigating scene analysis have used elementary auditory scenes, however real-world scene analysis is far more complex. In particular, music, contrary to most other natural auditory scenes, can be perceived by either integrating or, under attentive control, segregating sound streams, often carried by different instruments. One of the prominent bottom-up cues contributing to multi-instrument music perception is their timbre difference. In this work, we introduce and validate a novel paradigm designed to investigate, within naturalistic musical auditory scenes, attentive modulation as well as its interaction with bottom-up processes. Two psychophysical experiments are described, employing custom-composed two-voice polyphonic music pieces within a framework implementing a behavioral performance metric to validate listener instructions requiring either integration or segregation of scene elements. In Experiment 1, the listeners' locus of attention was switched between individual instruments or the aggregate (i.e., both instruments together), via a task requiring the detection of temporal modulations (i.e., triplets) incorporated within or across instruments. Subjects responded post-stimulus whether triplets were present in the to-be-attended instrument(s). Experiment 2 introduced the bottom-up manipulation by adding a three-level morphing of instrument timbre distance to the attentional framework. The task was designed to be used within neuroimaging paradigms; Experiment 2 was additionally validated behaviorally in the functional Magnetic Resonance Imaging (fMRI) environment. Experiment 1 subjects (N = 29, non-musicians) completed the task at high levels of accuracy, showing no group differences between any experimental conditions. Nineteen listeners also participated in Experiment 2, showing a main effect of instrument timbre distance, even though within attention-condition timbre-distance contrasts did not demonstrate any timbre effect. Correlation of overall scores with morph-distance effects, computed by subtracting the largest from the smallest timbre distance scores, showed an influence of general task difficulty on the timbre distance effect. Comparison of laboratory and fMRI data showed scanner noise had no adverse effect on task performance. These Experimental paradigms enable to study both bottom-up and top-down contributions to auditory stream segregation and integration within psychophysical and neuroimaging experiments. PMID:29563861

  9. Influence of music and its genres on respiratory rate and pupil diameter variations in cats under general anaesthesia: contribution to promoting patient safety.

    PubMed

    Mira, Filipa; Costa, Alexandra; Mendes, Eva; Azevedo, Pedro; Carreira, L Miguel

    2016-02-01

    The aims of the study were to recognise if there is any auditory sensory stimuli processing in cats under general anaesthesia, and to evaluate changes in respiratory rate (RR) and pupillary diameter (PD) in anaesthetised patients exposed to different music genres, while relating this to the depth of anaesthesia. A sample of 12 cats submitted for elective ovariohysterectomy was exposed to 2 min excerpts of three different music genres (classical [CM], pop [PM] and heavy metal [HM]) at three points during surgery (T1 = coeliotomy; T2 = ligature placement and transection of the ovarian pedicle; T3 = ligature placement and transection of the uterine body). A multiparametric medical monitor was used to measure the RR, and a digital calliper was used for PD measurement. Music was delivered through headphones, which fully covered the patient's ears. P values   <0.05 were considered to be statistically significant.    Statistically significant differences between stimuli conditions for all surgical points were obtained for RR (T1, P = 0.03; T2, P = 0.00; T3, P = 0.00) and for PD (T1, P = 0.03; T2, P = 0.04; T3, P = 0.00). Most individuals exhibited lower values for RR and PD when exposed to CM, intermediate values to PM and higher values to HM. The results suggest that cats under general anaesthesia are likely to perform auditory sensory stimuli processing. The exposure to music induces RR and PD variations modulated by the genre of music and is associated with autonomic nervous system activity. The use of music in the surgical theatre may contribute to allowing a reduced anaesthetic dose, minimising undesirable side effects and thus promoting patient safety. © ISFM and AAFP 2015.

  10. Effectiveness of low-cost electromagnetic shielding using nail-together galvanized steel: Test results. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, P.F.; Kennedy, E.L.; McCormack, R.G.

    1992-09-01

    The sensitivity of modern electronic equipment has increased the need for costly electromagnetic shielding. To reduce this cost, the U.S. Army Construction Engineering Research Laboratories (USACERL) has developed a new concept for shielding design that uses 28-gauge galvanized steel and standard galvanized nails. In this study, an electromagnetically shielded structure using the concept was designed, built, and evaluated for shielding effectiveness. The galvanized material was mounted to the standard USACERL test aperture and nailed to the wooden module frame, and the shielding effectiveness of the new construction design was measured using radio frequency antennas and receivers. Evaluations showed that themore » nail-together structure proved adequate for many shielding applications. However, while the galvanized steel met most shielding application requirements, this process added multiple seams to the structure, which decreased shielding in many instances by as much as 40 dB. Electromagnetic shielding, Electromagnetic pulse C3I Facilities.« less

  11. An Attachable Electromagnetic Energy Harvester Driven Wireless Sensing System Demonstrating Milling-Processes and Cutter-Wear/Breakage-Condition Monitoring.

    PubMed

    Chung, Tien-Kan; Yeh, Po-Chen; Lee, Hao; Lin, Cheng-Mao; Tseng, Chia-Yung; Lo, Wen-Tuan; Wang, Chieh-Min; Wang, Wen-Chin; Tu, Chi-Jen; Tasi, Pei-Yuan; Chang, Jui-Wen

    2016-02-23

    An attachable electromagnetic-energy-harvester driven wireless vibration-sensing system for monitoring milling-processes and cutter-wear/breakage-conditions is demonstrated. The system includes an electromagnetic energy harvester, three single-axis Micro Electro-Mechanical Systems (MEMS) accelerometers, a wireless chip module, and corresponding circuits. The harvester consisting of magnets with a coil uses electromagnetic induction to harness mechanical energy produced by the rotating spindle in milling processes and consequently convert the harnessed energy to electrical output. The electrical output is rectified by the rectification circuit to power the accelerometers and wireless chip module. The harvester, circuits, accelerometer, and wireless chip are integrated as an energy-harvester driven wireless vibration-sensing system. Therefore, this completes a self-powered wireless vibration sensing system. For system testing, a numerical-controlled machining tool with various milling processes is used. According to the test results, the system is fully self-powered and able to successfully sense vibration in the milling processes. Furthermore, by analyzing the vibration signals (i.e., through analyzing the electrical outputs of the accelerometers), criteria are successfully established for the system for real-time accurate simulations of the milling-processes and cutter-conditions (such as cutter-wear conditions and cutter-breaking occurrence). Due to these results, our approach can be applied to most milling and other machining machines in factories to realize more smart machining technologies.

  12. An Attachable Electromagnetic Energy Harvester Driven Wireless Sensing System Demonstrating Milling-Processes and Cutter-Wear/Breakage-Condition Monitoring

    PubMed Central

    Chung, Tien-Kan; Yeh, Po-Chen; Lee, Hao; Lin, Cheng-Mao; Tseng, Chia-Yung; Lo, Wen-Tuan; Wang, Chieh-Min; Wang, Wen-Chin; Tu, Chi-Jen; Tasi, Pei-Yuan; Chang, Jui-Wen

    2016-01-01

    An attachable electromagnetic-energy-harvester driven wireless vibration-sensing system for monitoring milling-processes and cutter-wear/breakage-conditions is demonstrated. The system includes an electromagnetic energy harvester, three single-axis Micro Electro-Mechanical Systems (MEMS) accelerometers, a wireless chip module, and corresponding circuits. The harvester consisting of magnets with a coil uses electromagnetic induction to harness mechanical energy produced by the rotating spindle in milling processes and consequently convert the harnessed energy to electrical output. The electrical output is rectified by the rectification circuit to power the accelerometers and wireless chip module. The harvester, circuits, accelerometer, and wireless chip are integrated as an energy-harvester driven wireless vibration-sensing system. Therefore, this completes a self-powered wireless vibration sensing system. For system testing, a numerical-controlled machining tool with various milling processes is used. According to the test results, the system is fully self-powered and able to successfully sense vibration in the milling processes. Furthermore, by analyzing the vibration signals (i.e., through analyzing the electrical outputs of the accelerometers), criteria are successfully established for the system for real-time accurate simulations of the milling-processes and cutter-conditions (such as cutter-wear conditions and cutter-breaking occurrence). Due to these results, our approach can be applied to most milling and other machining machines in factories to realize more smart machining technologies. PMID:26907297

  13. Observation of electromagnetically induced Talbot effect in an atomic system

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaoyang; Liu, Xing; Zhang, Dan; Sheng, Jiteng; Zhang, Yiqi; Zhang, Yanpeng; Xiao, Min

    2018-01-01

    The electromagnetically induced Talbot effect (EITE) resulting from the repeated self-reconstruction of a spatially intensity-modulated probe field is experimentally demonstrated in a three-level atomic configuration. The probe beam is launched into an optically induced lattice (established by the interference of two coupling fields) inside a rubidium vapor cell and is diffracted by the electromagnetically induced grating that was formed. The diffraction pattern repeats itself at the planes of integer multiple Talbot lengths. In addition, a fractional EITE is also investigated. The experimental observations agree well with the theoretical predictions. This investigation may potentially pave the way for studying the nonlinear and quantum dynamical features that have been predicted for established periodic optical systems.

  14. Does music training facilitate the mnemonic effect of song? An exploration of musicians and nonmusicians with and without Alzheimer's dementia.

    PubMed

    Baird, Amee; Samson, Séverine; Miller, Laurie; Chalmers, Kerry

    2017-02-01

    The efficacy of using sung words as a mnemonic device for verbal memory has been documented in persons with probable Alzheimer's dementia (AD), but it is not yet known whether this effect is related to music training. Given that music training can enhance cognitive functioning, we explored the effects of music training and modality (sung vs. spoken) on verbal memory in persons with and without AD. We used a mixed factorial design to compare learning (5 trials), delayed recall (30-min and, 24-hour), and recognition of sung versus spoken information in 22 healthy elderly (15 musicians), and 11 people with AD (5 musicians). Musicians with AD showed better total learning (over 5 trials) of sung information than nonmusicians with AD. There were no significant differences in delayed recall and recognition accuracy (of either modality) between musicians with and without AD, suggesting that music training may facilitate memory function in AD. Analysis of individual performances showed that two of the five musicians with AD were able to recall some information on delayed recall, whereas the nonmusicians with AD recalled no information on delay. The only significant finding in regard to modality (sung vs. spoken) was that total learning was significantly worse for sung than spoken information for nonmusicians with AD. This may be due to the need to recode information presented in song into spoken recall, which may be more cognitively demanding for this group. This is the first study to demonstrate that music training modulates memory of sung and spoken information in AD. The mechanism underlying these results is unclear, but may be due to music training, higher cognitive abilities, or both. Our findings highlight the need for further research into the potentially protective effect of music training on cognitive abilities in our aging population.

  15. Effects of arginine vasopressin on musical working memory.

    PubMed

    Granot, Roni Y; Uzefovsky, Florina; Bogopolsky, Helena; Ebstein, Richard P

    2013-01-01

    Previous genetic studies showed an association between variations in the gene coding for the 1a receptor of the neuro-hormone arginine vasopressin (AVP) and musical working memory (WM). The current study set out to test the influence of intranasal administration (INA) of AVP on musical as compared to verbal WM using a double blind crossover (AVP-placebo) design. Two groups of 25 males were exposed to 20 IU of AVP in one session, and 20 IU of saline water (placebo) in a second session, 1 week apart. In each session subjects completed the tonal subtest from Gordon's "Musical Aptitude Profile," the interval subtest from the "Montreal Battery for Evaluation of Amusias (MBEA)," and the forward and backward digit span tests. Scores in the digit span tests were not influenced by AVP. In contrast, in the music tests there was an AVP effect. In the MBEA test, scores for the group receiving placebo in the first session (PV) were higher than for the group receiving vasopressin in the first session (VP) (p < 0.05) with no main Session effect nor Group × Session interaction. In the Gordon test there was a main Session effect (p < 0.05) with scores higher in the second as compared to the first session, a marginal main Group effect (p = 0.093) and a marginal Group × Session interaction (p = 0.88). In addition we found that the group that received AVP in the first session scored higher on scales indicative of happiness, and alertness on the positive and negative affect scale, (PANAS). Only in this group and only in the music test these scores were significantly correlated with memory scores. Together the results reflect a complex interaction between AVP, musical memory, arousal, and contextual effects such as session, and base levels of memory. The results are interpreted in light of music's universal use as a means to modulate arousal on the one hand, and AVP's influence on mood, arousal, and social interactions on the other.

  16. Improved perception of music with a harmonic based algorithm for cochlear implants.

    PubMed

    Li, Xing; Nie, Kaibao; Imennov, Nikita S; Rubinstein, Jay T; Atlas, Les E

    2013-07-01

    The lack of fine structure information in conventional cochlear implant (CI) encoding strategies presumably contributes to the generally poor music perception with CIs. To improve CI users' music perception, a harmonic-single-sideband-encoder (HSSE) strategy was developed , which explicitly tracks the harmonics of a single musical source and transforms them into modulators conveying both amplitude and temporal fine structure cues to electrodes. To investigate its effectiveness, vocoder simulations of HSSE and the conventional continuous-interleaved-sampling (CIS) strategy were implemented. Using these vocoders, five normal-hearing subjects' melody and timbre recognition performance were evaluated: a significant benefit of HSSE to both melody (p < 0.002) and timbre (p < 0.026) recognition was found. Additionally, HSSE was acutely tested in eight CI subjects. On timbre recognition, a significant advantage of HSSE over the subjects' clinical strategy was demonstrated: the largest improvement was 35% and the mean 17% (p < 0.013). On melody recognition, two subjects showed 20% improvement with HSSE; however, the mean improvement of 7% across subjects was not significant (p > 0.090). To quantify the temporal cues delivered to the auditory nerve, the neural spike patterns evoked by HSSE and CIS for one melody stimulus were simulated using an auditory nerve model. Quantitative analysis demonstrated that HSSE can convey temporal pitch cues better than CIS. The results suggest that HSSE is a promising strategy to enhance music perception with CIs.

  17. [Cognitive rehabilitation of amusia].

    PubMed

    Weill-Chounlamountry, A; Soyez-Gayout, L; Tessier, C; Pradat-Diehl, P

    2008-06-01

    The cognitive model of music processing has a modular architecture with two main pathways (a melody pathway and a time pathway) for processing the musical "message" and thus enabling music recognition. It also features a music-specific module for tonal encoding of pitch which stands apart from all other known cognitive systems (including language processing). To the best of our knowledge, rehabilitation therapy for amusia has not yet been reported. We developed a therapeutic method (inspired by work on word deafness) in order to determine whether specific rehabilitation based on melody discrimination could prompt the regression of amusia. We report the case of a patient having developed receptive, acquired amusia four years previously. His tone deafness disorder was assessed using the Montreal Battery of Evaluation of Amusia (MBEA), which revealed impairment of the melody pathway but no deficiency in the time pathway. A computer-assisted rehabilitation method was implemented; it used melody discrimination tasks and an errorless learning paradigm with progressively fading visual cues. After therapy, we noted an improvement in the overall MBEA score and its component subscores which could not be explained by spontaneous recovery (in view of the number of years since the neurological accident). The improvement was maintained at seven months post-therapy. Although post-therapy improvement in daily life was not systematically assessed, the patient started listening to his favourite music again. Specific amusia therapy has shown efficacy.

  18. Evidence for Enhanced Interoceptive Accuracy in Professional Musicians

    PubMed Central

    Schirmer-Mokwa, Katharina L.; Fard, Pouyan R.; Zamorano, Anna M.; Finkel, Sebastian; Birbaumer, Niels; Kleber, Boris A.

    2015-01-01

    Interoception is defined as the perceptual activity involved in the processing of internal bodily signals. While the ability of internal perception is considered a relatively stable trait, recent data suggest that learning to integrate multisensory information can modulate it. Making music is a uniquely rich multisensory experience that has shown to alter motor, sensory, and multimodal representations in the brain of musicians. We hypothesize that musical training also heightens interoceptive accuracy comparable to other perceptual modalities. Thirteen professional singers, twelve string players, and thirteen matched non-musicians were examined using a well-established heartbeat discrimination paradigm complemented by self-reported dispositional traits. Results revealed that both groups of musicians displayed higher interoceptive accuracy than non-musicians, whereas no differences were found between singers and string-players. Regression analyses showed that accumulated musical practice explained about 49% variation in heartbeat perception accuracy in singers but not in string-players. Psychometric data yielded a number of psychologically plausible inter-correlations in musicians related to performance anxiety. However, dispositional traits were not a confounding factor on heartbeat discrimination accuracy. Together, these data provide first evidence indicating that professional musicians show enhanced interoceptive accuracy compared to non-musicians. We argue that musical training largely accounted for this effect. PMID:26733836

  19. Music Learning in Your School Computer Lab.

    ERIC Educational Resources Information Center

    Reese, Sam

    1998-01-01

    States that a growing number of schools are installing general computer labs equipped to use notation, accompaniment, and sequencing software independent of MIDI keyboards. Discusses (1) how to configure the software without MIDI keyboards or external sound modules, (2) using the actual MIDI software, (3) inexpensive enhancements, and (4) the…

  20. Ultrawide Shipboard Electrooptic Electromagnetic Environment Monitoring

    DTIC Science & Technology

    1994-05-01

    ridge-waveguide modulator has a device length of 300 fpm, a waveguide thickness of 0.4 pm, a device capacitance of 0.2 pF, and a r x- 0.7. For digital ...important noise sources identified. Particular attention will be paid to the performance characteristics of the optical modulator. For digital ...1.32 tM for digital as well as analog optical link applications. The operation of the FKE modulator was discussed in Section 2.1.2 of this report. At

  1. The development of a low-cost laser communication system for the classroom

    NASA Astrophysics Data System (ADS)

    Sparks, Robert T.; Pompea, Stephen M.; Walker, Constance E.

    2007-06-01

    Hands-On Optics (HOO) is a National Science Foundation funded program to bring optics education to underserved middle school students. We have developed the culminating module (Module 6) on laser communication. Students learn how lasers can be modulated to carry information. The main activity of this module is the construction of a low-cost laser communication system. The system can be built using parts readily available at a local electronics store for approximately US $60. The system can be used to transmit a person's voice or music from sources such as an mp3 player or radio over a distance of 350 feet. We will provide detailed plans on how to build the system in this paper.

  2. Partitioning of Electromagnetic Energy Inputs to the Thermosphere during Geomagnetic Disturbances

    DTIC Science & Technology

    2012-06-01

    boundary of a local flux tube volume is an equipotential . Figure 4 contains maps of Poynting flux normal to a 500 km altitude surface and maps of height...as a cell quantity throughout its computational volume, we are able to generate maps of the Poynting flux, ⃗ ⃗⃗⃗⃗⃗⃗ , on altitude surfaces at...the top of the thermosphere. We used separate modules to integrate the Poynting flux over this surface to compute the total electromagnetic energy

  3. Time delay in atomic photoionization with circularly polarized light

    NASA Astrophysics Data System (ADS)

    Ivanov, I. A.; Kheifets, A. S.

    2013-03-01

    We study time delay in atomic photoionization by circularly polarized light. By considering the Li atom in an excited 2p state, we demonstrate a strong time-delay asymmetry between the photoemission of the target electrons that are co- and counter-rotating with the electromagnetic field in the polarization plane. In addition, we observe the time-delay sensitivity to the polar angle of the photoelectron emission in the polarization plane. This modulation depends on the shape and duration of the electromagnetic pulse.

  4. Revisiting the Plane Electromagnetic Wave Transmission and Reflection Coefficients for the Layer with AN Alternating-Sign Disturbance of Relative Dielectric Permittivity

    NASA Astrophysics Data System (ADS)

    Milov, V. R.; Kogan, L. P.; Gorev, P. V.; Kuzmichev, P. N.; Egorova, P. A.

    2017-01-01

    In this paper, we consider the question of the plane electromagnetic wave incidence at the inhomogeneity with an arbitrary profile of the relative permittivity disturbance. Module estimation of Neumann series remainder is carried out for the field of the wave passing through the nonhomogeneous section. Based on that, the number of summands in the series, required to calculate with a given accuracy, the transmission and reflection coefficients have been determined.

  5. Constituents of Music and Visual-Art Related Pleasure - A Critical Integrative Literature Review.

    PubMed

    Tiihonen, Marianne; Brattico, Elvira; Maksimainen, Johanna; Wikgren, Jan; Saarikallio, Suvi

    2017-01-01

    The present literature review investigated how pleasure induced by music and visual-art has been conceptually understood in empirical research over the past 20 years. After an initial selection of abstracts from seven databases (keywords: pleasure, reward, enjoyment, and hedonic), twenty music and eleven visual-art papers were systematically compared. The following questions were addressed: (1) What is the role of the keyword in the research question? (2) Is pleasure considered a result of variation in the perceiver's internal or external attributes? (3) What are the most commonly employed methods and main variables in empirical settings? Based on these questions, our critical integrative analysis aimed to identify which themes and processes emerged as key features for conceptualizing art-induced pleasure. The results demonstrated great variance in how pleasure has been approached: In the music studies pleasure was often a clear object of investigation, whereas in the visual-art studies the term was often embedded into the context of an aesthetic experience, or used otherwise in a descriptive, indirect sense. Music studies often targeted different emotions, their intensity or anhedonia. Biographical and background variables and personality traits of the perceiver were often measured. Next to behavioral methods, a common method was brain imaging which often targeted the reward circuitry of the brain in response to music. Visual-art pleasure was also frequently addressed using brain imaging methods, but the research focused on sensory cortices rather than the reward circuit alone. Compared with music research, visual-art research investigated more frequently pleasure in relation to conscious, cognitive processing, where the variations of stimulus features and the changing of viewing modes were regarded as explanatory factors of the derived experience. Despite valence being frequently applied in both domains, we conclude, that in empirical music research pleasure seems to be part of core affect and hedonic tone modulated by stable personality variables, whereas in visual-art research pleasure is a result of the so called conceptual act depending on a chosen strategy to approach art. We encourage an integration of music and visual-art into to a multi-modal framework to promote a more versatile understanding of pleasure in response to aesthetic artifacts.

  6. Large Scale Beam-Tests of the Silicon and Scintillator-SiPM Modules for the CMS High Granularity Calorimeter at the HL-LHC

    NASA Astrophysics Data System (ADS)

    Jain, Shilpi

    The High Granularity Calorimeter (HGCAL) will replace the existing CMS endcap calorimeters during the High Luminosity run of the LHC (HL-LHC) era. The electromagnetic part, as well as the first layers of the hadronic part, foresees around 600 square metres of silicon sensors as the active material. The remainder of the HGCAL, in the lower radiation environment, will use plastic scintillators with on-tile silicon photomultiplier (SiPM) readout. Prototype hexagonal silicon modules, featuring a new ASIC (Skiroc2-CMS), together with a modified version of the scintillator-SiPM CALICE AHCAL, have been tested in beams at CERN. This setup represents a full slice through HGCAL. Results from MIP calibration, energy resolution, electromagnetic and hadronic shower-shapes are presented using electrons, pions and muons.

  7. Ultrasound-aided high-resolution biophotonic imaging

    NASA Astrophysics Data System (ADS)

    Wang, Lihong V.

    2003-10-01

    We develop novel biophotonic imaging for early-cancer detection, a grand challenge in cancer research, using nonionizing electromagnetic and ultrasonic waves. Unlike ionizing x-ray radiation, nonionizing electromagnetic waves such as optical waves are safe for biomedical applications and reveal new contrast mechanisms and functional information. For example, our spectroscopic oblique-incidence reflectometry can detect skin cancers based on functional hemoglobin parameters and cell nuclear size with 95% accuracy. Unfortunately, electromagnetic waves in the nonionizing spectral region do not penetrate biological tissue in straight paths as do x-rays. Consequently, high-resolution tomography based on nonionizing electromagnetic waves alone, as demonstrated by our Mueller optical coherence tomography, is limited to superficial tissue imaging. Ultrasonic imaging, on the contrary, furnishes good imaging resolution but has poor contrast in early-stage tumors and has strong speckle artifacts as well. We developed ultrasound-mediated imaging modalities by combining electromagnetic and ultrasonic waves synergistically. The hybrid modalities yield speckle-free electromagnetic-contrast at ultrasonic resolution in relatively large biological tissue. In ultrasound-modulated (acousto)-optical tomography, a focused ultrasonic wave encodes diffuse laser light in scattering biological tissue. In photo-acoustic (thermo-acoustic) tomography, a low-energy laser (RF) pulse induces ultrasonic waves in biological tissue due to thermoelastic expansion.

  8. Beam test evaluation of electromagnetic calorimeter modules made from proton-damaged PbWO 4 crystals

    DOE PAGES

    Adams, T.; Adzic, P.; Ahuja, S.; ...

    2016-04-11

    The performance of electromagnetic calorimeter modules made of proton-irradiated PbWO 4 crystals has been studied in beam tests. The modules, similar to those used in the Endcaps of the CMS electromagnetic calorimeter (ECAL), were formed from 5×5 matrices of PbWO 4 crystals, which had previously been exposed to 24 GeV protons up to integrated fluences between 2.1 × 10 13 and 1.3 × 10 14 cm –2. These correspond to the predicted charged-hadron fluences in the ECAL Endcaps at pseudorapidity η = 2.6 after about 500 fb –1 and 3000 fb –1 respectively, corresponding to the end of the LHCmore » and High Luminosity LHC operation periods. The irradiated crystals have a lower light transmission for wavelengths corresponding to the scintillation light, and a correspondingly reduced light output. A comparison with four crystals irradiated in situ in CMS showed no significant rate dependence of hadron-induced damage. A degradation of the energy resolution and a non-linear response to electron showers are observed in damaged crystals. Direct measurements of the light output from the crystals show the amplitude decreasing and pulse becoming faster as the fluence increases. The latter is interpreted, through comparison with simulation, as a side-effect of the degradation in light transmission. In conclusion, the experimental results obtained can be used to estimate the long term performance of the CMS ECAL.« less

  9. Beam test evaluation of electromagnetic calorimeter modules made from proton-damaged PbWO 4 crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, T.; Adzic, P.; Ahuja, S.

    The performance of electromagnetic calorimeter modules made of proton-irradiated PbWO 4 crystals has been studied in beam tests. The modules, similar to those used in the Endcaps of the CMS electromagnetic calorimeter (ECAL), were formed from 5×5 matrices of PbWO 4 crystals, which had previously been exposed to 24 GeV protons up to integrated fluences between 2.1 × 10 13 and 1.3 × 10 14 cm –2. These correspond to the predicted charged-hadron fluences in the ECAL Endcaps at pseudorapidity η = 2.6 after about 500 fb –1 and 3000 fb –1 respectively, corresponding to the end of the LHCmore » and High Luminosity LHC operation periods. The irradiated crystals have a lower light transmission for wavelengths corresponding to the scintillation light, and a correspondingly reduced light output. A comparison with four crystals irradiated in situ in CMS showed no significant rate dependence of hadron-induced damage. A degradation of the energy resolution and a non-linear response to electron showers are observed in damaged crystals. Direct measurements of the light output from the crystals show the amplitude decreasing and pulse becoming faster as the fluence increases. The latter is interpreted, through comparison with simulation, as a side-effect of the degradation in light transmission. In conclusion, the experimental results obtained can be used to estimate the long term performance of the CMS ECAL.« less

  10. Seeing music: The perception of melodic 'ups and downs' modulates the spatial processing of visual stimuli.

    PubMed

    Romero-Rivas, Carlos; Vera-Constán, Fátima; Rodríguez-Cuadrado, Sara; Puigcerver, Laura; Fernández-Prieto, Irune; Navarra, Jordi

    2018-05-10

    Musical melodies have "peaks" and "valleys". Although the vertical component of pitch and music is well-known, the mechanisms underlying its mental representation still remain elusive. We show evidence regarding the importance of previous experience with melodies for crossmodal interactions to emerge. The impact of these crossmodal interactions on other perceptual and attentional processes was also studied. Melodies including two tones with different frequency (e.g., E4 and D3) were repeatedly presented during the study. These melodies could either generate strong predictions (e.g., E4-D3-E4-D3-E4-[D3]) or not (e.g., E4-D3-E4-E4-D3-[?]). After the presentation of each melody, the participants had to judge the colour of a visual stimulus that appeared in a position that was, according to the traditional vertical connotations of pitch, either congruent (e.g., high-low-high-low-[up]), incongruent (high-low-high-low-[down]) or unpredicted with respect to the melody. Behavioural and electroencephalographic responses to the visual stimuli were obtained. Congruent visual stimuli elicited faster responses at the end of the experiment than at the beginning. Additionally, incongruent visual stimuli that broke the spatial prediction generated by the melody elicited larger P3b amplitudes (reflecting 'surprise' responses). Our results suggest that the passive (but repeated) exposure to melodies elicits spatial predictions that modulate the processing of other sensory events. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Music and Video Gaming during Breaks: Influence on Habitual versus Goal-Directed Decision Making.

    PubMed

    Liu, Shuyan; Schad, Daniel J; Kuschpel, Maxim S; Rapp, Michael A; Heinz, Andreas

    2016-01-01

    Different systems for habitual versus goal-directed control are thought to underlie human decision-making. Working memory is known to shape these decision-making systems and their interplay, and is known to support goal-directed decision making even under stress. Here, we investigated if and how decision systems are differentially influenced by breaks filled with diverse everyday life activities known to modulate working memory performance. We used a within-subject design where young adults listened to music and played a video game during breaks interleaved with trials of a sequential two-step Markov decision task, designed to assess habitual as well as goal-directed decision making. Based on a neurocomputational model of task performance, we observed that for individuals with a rather limited working memory capacity video gaming as compared to music reduced reliance on the goal-directed decision-making system, while a rather large working memory capacity prevented such a decline. Our findings suggest differential effects of everyday activities on key decision-making processes.

  12. From Domain-Generality to Domain-Sensitivity: 4-Month-Olds Learn an Abstract Repetition Rule in Music That 7-Month-Olds Do Not

    PubMed Central

    Dawson, Colin; Gerken, LouAnn

    2009-01-01

    Learning must be constrained for it to lead to productive generalizations. Although biology is undoubtedly an important source of constraints, prior experience may be another, leading learners to represent input in ways that are more conducive to some generalizations than others, and/or to up- and downweight features when entertaining generalizations. In two experiments, 4-month-old and 7-month-old infants were familiarized with sequences of musical chords or tones adhering either to an AAB pattern or an ABA pattern. In both cases, the 4-month-olds learned the generalization, but the 7-month-olds did not. The success of the 4-month-olds appears to contradict an account that this type of pattern learning is the provenance of a language-specific rule-learning module. It is not yet clear what drives the age-related change, but plausible candidates include differential experience with language and music, as well as interactions between general cognitive development and stimulus complexity. PMID:19338982

  13. Music and Video Gaming during Breaks: Influence on Habitual versus Goal-Directed Decision Making

    PubMed Central

    Kuschpel, Maxim S.; Rapp, Michael A.; Heinz, Andreas

    2016-01-01

    Different systems for habitual versus goal-directed control are thought to underlie human decision-making. Working memory is known to shape these decision-making systems and their interplay, and is known to support goal-directed decision making even under stress. Here, we investigated if and how decision systems are differentially influenced by breaks filled with diverse everyday life activities known to modulate working memory performance. We used a within-subject design where young adults listened to music and played a video game during breaks interleaved with trials of a sequential two-step Markov decision task, designed to assess habitual as well as goal-directed decision making. Based on a neurocomputational model of task performance, we observed that for individuals with a rather limited working memory capacity video gaming as compared to music reduced reliance on the goal-directed decision-making system, while a rather large working memory capacity prevented such a decline. Our findings suggest differential effects of everyday activities on key decision-making processes. PMID:26982326

  14. Polarization of low-frequency electromagnetic radiation in the lobes of Jupiter's magnetotail

    NASA Technical Reports Server (NTRS)

    Moses, S. L.; Kennel, C. F.; Coroniti, F. V.; Scarf, F. L.; Kurth, W. S.

    1987-01-01

    The plasma wave instruments on the Voyager spacecraft have detected intense electromagnetic radiation within the lobes of Jupiter's magnetic tail down to the lowest frequency of the detector (10 Hz). During a yaw maneuver performed by Voyager 1 in the lobe of the Jovian magnetotail, a modulation appeared in the amplitudes of waves detected in the 10-, 17.8- and 31.1-Hz channels of the plasma wave analyzer, well below the local electron cyclotron frequency of 260 Hz. The lowest amplitudes occurred when the antenna axis was most nearly parallel to the magnetic field. Wave amplitudes in the 56.2-Hz and higher frequency channels remained nearly constant during the maneuver. From the cold-plasma theory of electromagnetic waves, it is concluded that the plasma frequency was between the 56.2- and 31.1-Hz channels where the parallel-polarized component of the spectrum cuts off. This implies a tail-lobe density between 0.000032 and 0.000015/cu cm. The left-hand cutoff frequency would then be below 10 Hz, consistent with either the Z-mode (L, X) or whistlers (R-mode) in the modulated channels.

  15. Electromagnetic radiation absorbers and modulators comprising polyaniline

    DOEpatents

    Epstein, Arthur J.; Ginder, John M.; Roe, Mitchell G.; Hajiseyedjavadi, Hamid

    1992-01-01

    A composition for absorbing electromagnetic radiation, wherein said electromagnetic radiation possesses a wavelength generally in the range of from about 1000 Angstroms to about 50 meters, wherein said composition comprises a polyaniline composition of the formula ##STR1## where y can be equal to or greater than zero, and R.sup.1 and R.sup.2 are independently selected from the group containing of H, --OCH.sub.3, --CH.sub.3, --F, --Cl, --Br, --I, NR.sup.3 .sub.2, --NHCOR.sup.3, --OH, --O.sup.-, SR.sup.3, --OCOR.sup.3, --NO.sub.2, --COOH, --COOR.sup.3, --COR.sup.3, --CHO, and --CN, where R.sup.3 is a C.sub.1 to C.sub.8 alkyl, aryl or aralkyl group.

  16. Analog of electromagnetically induced transparency at terahertz frequency based on a bilayer-double-H-metamaterial

    NASA Astrophysics Data System (ADS)

    Wang, Yue'e.; Li, Zhi; Hu, Fangrong

    2018-01-01

    We designed a bilayer-double-H-metamaterials (BDHM) composed of two layers of metal and two layers of dielectric to analog a spectral response of electromagnetically induced transparency (EIT) at terahertz frequency. By changing the incident angle, the BDHM exhibits an EIT-like spectral response. The tunable spectral performances and modulation mechanism of the transparent peak are theoretically investigated using full-wave electromagnetic simulation software. The physical mechanism of the EIT-like effect is based on the constructive and destructive interference between the induced electrical dipoles. Our work provides a new way to realize the EIT-like effect only by changing the incident angles of the metamaterials. The potential applications include tunable filters, sensors, attenuators, switches, and so on.

  17. Nullspace MUSIC and Improved Radio Frequency Emitter Geolocation from a Mobile Antenna Array

    NASA Astrophysics Data System (ADS)

    Kintz, Andrew L.

    This work advances state-of-the-art Radio Frequency (RF) emitter geolocation from an airborne or spaceborne antenna array. With an antenna array, geolocation is based on Direction of Arrival (DOA) estimation algorithms such as MUSIC. The MUSIC algorithm applies to arbitrary arrays of polarization sensitive antennas and yields high resolution. However, MUSIC fails to obtain its theoretical resolution for simultaneous, closely spaced, co-frequency signals. We propose the novel Nullspace MUSIC algorithm, which outperforms MUSIC and its existing modifications while maintaining MUSIC(apostrophe)s fundamental orthogonality test. Nullspace MUSIC applies a divide-and-conquer approach and estimates a single DOA at a time. Additionally, an antenna array on an aircraft cannot be perfectly calibrated. RF waves are blocked, reflected, and scattered in a time-varying fashion by the platform around the antenna array. Consequently, full-wave electromagnetics simulations or demanding measurements of the entire platform cannot eliminate the mismatch between the true, in-situ antenna patterns and the antenna patterns that are available for DOA estimation (the antenna array manifold). Platform-induced manifold mismatch severely degrades MUSIC(apostrophe)s resolution and accuracy. We show that Nullspace MUSIC improves DOA accuracy for well separated signals that are incident on an airborne antenna array. Conventionally, geolocation from a mobile platform draws Lines of Bearing (LOB) from the antenna array along the DOAs to find the locations where the DOAs intersect with the ground. However, averaging the LOBs in the global coordinate system yields large errors due to geometric dilution of precision. Since averaging positions fails, a single emitter is typically located by finding the position on the ground that yields the Minimum Apparent Angular Error (MAAE) for the DOA estimates over a flight. We extend the MAAE approach to cluster LOBs from multiple emitters. MAAE clustering geolocates multiple simultaneous and co-frequency emitters in spite of highly erratic DOA estimates. We also mitigate manifold mismatch by applying the Direct Mapping Method (DMM). DMM averages DOA spectra on the earth(apostrophe)s surface and estimates the emitter locations directly from the composite spectrum. In the example results presented, our goal is to geolocate four diversely polarized emitters with a seven-element antenna array. This is too challenging for MAAE and DMM. We fuse Nullspace MUSIC and DMM into the novel Nullspace DMM algorithm and demonstrate that Nullspace DMM locates all emitters. Finally, we apply the proposed geolocation algorithms to real-world experimental data. A six-element antenna array and Data Collection System (DCS) were installed on a small aircraft. The DCS recorded signals from four live transmitters during a three-hour flight over Columbus, Ohio. The four emitters were geolocated from various segments of the flight. As expected, individual DOA estimates were erratic and widespread due to the airplane(apostrophe)s perturbations of the measured array manifold. MAAE and DMM locate at most three of the four emitters. On the other hand, Nullspace DMM yields unambiguous estimates for every emitter in every flight segment. The successful experimental trials show that Nullspace DMM could significantly enhance airborne emitter geolocation in missions such as RF spectrum enforcement, locating unknown transmitters for defense, and search and rescue operations.

  18. Dissemination and support of ARGUS for accelerator applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The ARGUS code is a three-dimensional code system for simulating for interactions between charged particles, electric and magnetic fields, and complex structure. It is a system of modules that share common utilities for grid and structure input, data handling, memory management, diagnostics, and other specialized functions. The code includes the fields due to the space charge and current density of the particles to achieve a self-consistent treatment of the particle dynamics. The physic modules in ARGUS include three-dimensional field solvers for electrostatics and electromagnetics, a three-dimensional electromagnetic frequency-domain module, a full particle-in-cell (PIC) simulation module, and a steady-state PIC model.more » These are described in the Appendix to this report. This project has a primary mission of developing the capabilities of ARGUS in accelerator modeling of release to the accelerator design community. Five major activities are being pursued in parallel during the first year of the project. To improve the code and/or add new modules that provide capabilities needed for accelerator design. To produce a User's Guide that documents the use of the code for all users. To release the code and the User's Guide to accelerator laboratories for their own use, and to obtain feed-back from the. To build an interactive user interface for setting up ARGUS calculations. To explore the use of ARGUS on high-power workstation platforms.« less

  19. The Tonal Function of a Task-Irrelevant Chord Modulates Speed of Visual Processing

    ERIC Educational Resources Information Center

    Escoffier, N.; Tillmann, B.

    2008-01-01

    Harmonic priming studies have provided evidence that musical expectations influence sung phoneme monitoring, with facilitated processing for phonemes sung on tonally related (expected) chords in comparison to less-related (less-expected) chords [Bigand, Tillmann, Poulin, D'Adamo, and Madurell (2001). "The effect of harmonic context on phoneme…

  20. Introduce Score Study to Your Band

    ERIC Educational Resources Information Center

    Burrack, Frederick

    2005-01-01

    In this article, the author asks music educators to imagine their band students being able to identify the melody of a piece as it jumps among sections after playing it just a few times. How about recognizing harmonic modulation, or applying dynamic contrast through understanding of compositional form? While these elements may seem obvious to…

  1. Canadian Studies for Elementary and Junior High School Teachers. A Syllabus and Resource Guide.

    ERIC Educational Resources Information Center

    State Univ., of New York, Plattsburgh. Coll. at Plattsburgh. Center for the Study of Canada.

    Developed to promote greater awareness and understanding of Canada by American students and teachers, this interdisciplinary curriculum guide includes not only social studies, but also activities dealing with mathematics, science, environmental studies, English, art, and music. The book is divided into five modules, each giving a different…

  2. Susceptibility study of audio recording devices to electromagnetic stimulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halligan, Matthew S.; Grant, Steven L.; Beetner, Daryl G.

    2014-02-01

    Little research has been performed to study how intentional electromagnetic signals may couple into recording devices. An electromagnetic susceptibility study was performed on an analog tape recorder, a digital video camera, a wired computer microphone, and a wireless microphone system to electromagnetic interference. Devices were subjected to electromagnetic stimulations in the frequency range of 1-990 MHz and field strengths up to 4.9 V/m. Carrier and message frequencies of the stimulation signals were swept, and the impacts of device orientation and antenna polarization were explored. Message signals coupled into all devices only when amplitude modulated signals were used as stimulation signals.more » Test conditions that produced maximum sensitivity were highly specific to each device. Only narrow carrier frequency ranges could be used for most devices to couple messages into recordings. A basic detection technique using cross-correlation demonstrated the need for messages to be as long as possible to maximize message detection and minimize detection error. Analysis suggests that detectable signals could be coupled to these recording devices under realistic ambient conditions.« less

  3. Gerst works with the EML hardware in the Columbus Module

    NASA Image and Video Library

    2014-09-11

    ISS041-E-000184 (11 Sept. 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 41 flight engineer, works with Electromagnetic Levitation (EML) hardware in the Columbus laboratory of the International Space Station.

  4. Gerst works with the EML hardware in the Columbus Module

    NASA Image and Video Library

    2014-09-11

    ISS041-E-000173 (11 Sept. 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 41 flight engineer, works with Electromagnetic Levitation (EML) hardware in the Columbus laboratory of the International Space Station.

  5. Words and Melody Are Intertwined in Perception of Sung Words: EEG and Behavioral Evidence

    PubMed Central

    Gordon, Reyna L.; Schön, Daniele; Magne, Cyrille; Astésano, Corine; Besson, Mireille

    2010-01-01

    Language and music, two of the most unique human cognitive abilities, are combined in song, rendering it an ecological model for comparing speech and music cognition. The present study was designed to determine whether words and melodies in song are processed interactively or independently, and to examine the influence of attention on the processing of words and melodies in song. Event-Related brain Potentials (ERPs) and behavioral data were recorded while non-musicians listened to pairs of sung words (prime and target) presented in four experimental conditions: same word, same melody; same word, different melody; different word, same melody; different word, different melody. Participants were asked to attend to either the words or the melody, and to perform a same/different task. In both attentional tasks, different word targets elicited an N400 component, as predicted based on previous results. Most interestingly, different melodies (sung with the same word) elicited an N400 component followed by a late positive component. Finally, ERP and behavioral data converged in showing interactions between the linguistic and melodic dimensions of sung words. The finding that the N400 effect, a well-established marker of semantic processing, was modulated by musical melody in song suggests that variations in musical features affect word processing in sung language. Implications of the interactions between words and melody are discussed in light of evidence for shared neural processing resources between the phonological/semantic aspects of language and the melodic/harmonic aspects of music. PMID:20360991

  6. Digital optical conversion module

    DOEpatents

    Kotter, D.K.; Rankin, R.A.

    1988-07-19

    A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer. 2 figs.

  7. Digital optical conversion module

    DOEpatents

    Kotter, Dale K.; Rankin, Richard A.

    1991-02-26

    A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer.

  8. Cognitive flexibility modulates maturation and music-training-related changes in neural sound discrimination.

    PubMed

    Saarikivi, Katri; Putkinen, Vesa; Tervaniemi, Mari; Huotilainen, Minna

    2016-07-01

    Previous research has demonstrated that musicians show superior neural sound discrimination when compared to non-musicians, and that these changes emerge with accumulation of training. Our aim was to investigate whether individual differences in executive functions predict training-related changes in neural sound discrimination. We measured event-related potentials induced by sound changes coupled with tests for executive functions in musically trained and non-trained children aged 9-11 years and 13-15 years. High performance in a set-shifting task, indexing cognitive flexibility, was linked to enhanced maturation of neural sound discrimination in both musically trained and non-trained children. Specifically, well-performing musically trained children already showed large mismatch negativity (MMN) responses at a young age as well as at an older age, indicating accurate sound discrimination. In contrast, the musically trained low-performing children still showed an increase in MMN amplitude with age, suggesting that they were behind their high-performing peers in the development of sound discrimination. In the non-trained group, in turn, only the high-performing children showed evidence of an age-related increase in MMN amplitude, and the low-performing children showed a small MMN with no age-related change. These latter results suggest an advantage in MMN development also for high-performing non-trained individuals. For the P3a amplitude, there was an age-related increase only in the children who performed well in the set-shifting task, irrespective of music training, indicating enhanced attention-related processes in these children. Thus, the current study provides the first evidence that, in children, cognitive flexibility may influence age-related and training-related plasticity of neural sound discrimination. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. Neural correlates of audiovisual integration in music reading.

    PubMed

    Nichols, Emily S; Grahn, Jessica A

    2016-10-01

    Integration of auditory and visual information is important to both language and music. In the linguistic domain, audiovisual integration alters event-related potentials (ERPs) at early stages of processing (the mismatch negativity (MMN)) as well as later stages (P300(Andres et al., 2011)). However, the role of experience in audiovisual integration is unclear, as reading experience is generally confounded with developmental stage. Here we tested whether audiovisual integration of music appears similar to reading, and how musical experience altered integration. We compared brain responses in musicians and non-musicians on an auditory pitch-interval oddball task that evoked the MMN and P300, while manipulating whether visual pitch-interval information was congruent or incongruent with the auditory information. We predicted that the MMN and P300 would be largest when both auditory and visual stimuli deviated, because audiovisual integration would increase the neural response when the deviants were congruent. The results indicated that scalp topography differed between musicians and non-musicians for both the MMN and P300 response to deviants. Interestingly, musicians' musical training modulated integration of congruent deviants at both early and late stages of processing. We propose that early in the processing stream, visual information may guide interpretation of auditory information, leading to a larger MMN when auditory and visual information mismatch. At later attentional stages, integration of the auditory and visual stimuli leads to a larger P300 amplitude. Thus, experience with musical visual notation shapes the way the brain integrates abstract sound-symbol pairings, suggesting that musicians can indeed inform us about the role of experience in audiovisual integration. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Optically-gated Non-latched High Gain Power Device

    DTIC Science & Technology

    2008-11-21

    parameters such as power conversion efficiency, dv/dt and di/dt stress on PSD and electromagnetic noise emission spectrum, which depend directly on the...4. EXPERIMENTAL STUDIES ON OTPT AND OPTICAL INTENSITY MODULATION OF OTPT PARAMETERS 33 4.1 Optical source, driver, and fiber details 33 4.2...off dynamics characterizations 36 4.5. Optical intensity modulation of OTPT parameters 37 5. EXPERIMENTAL STUDIES ON HYBRID OTPT-PSD AND OPTICAL

  11. On the Relationship Between Musicianship and Contralateral Suppression of Transient-Evoked Otoacoustic Emissions.

    PubMed

    Stuart, Andrew; Daughtrey, Emma R

    2016-04-01

    The medial olivocochlear (MOC) efferent reflex that modulates outer hair cell function has been shown to be more robust in musicians versus nonmusicians as evidenced in greater contralateral suppression of transient-evoked otoacoustic emissions (TEOAEs). All previous research comparing musical ability and MOC efferent strength has defined musicianship dichotomously (i.e., high-level music students or professional classical musicians versus nonmusicians). The objective of the study was to further explore contralateral suppression of TEOAEs among adults with a full spectrum of musicianship ranging from no history of musicianship to professional musicians. Musicianship was defined by both self-report and with an objective test to quantify individual differences in perceptual music skills. A single-factor between-subjects and correlational research designs were employed. Forty-five normal-hearing young adults participated. Participants completed a questionnaire concerning their music experience and completed the Brief Profile of Music Perception Skills (PROMS) to quantify perceptual musical skills across multiple musical domains (i.e., accent, melody, tempo, and tuning). TEOAEs were evaluated with 60 dB peak equivalent sound pressure level click stimuli with and without a contralateral 65 dB sound pressure level white noise suppressor. TEOAE suppression was expressed in two ways, absolute TEOAE suppression in dB and a normalized index of TEOAE suppression (i.e., percentage of suppression). Participants who considered themselves musicians scored significantly higher on all subscales and total Brief PROMS score (p < 0.05). There was no statistically significant difference between musicians and nonmusicians in absolute TEOAE suppression or percentage of TEOAE suppression (p > 0.05). There were no statistically significant correlations or linear predictive relationships between subscale or total Brief PROMS scores with absolute and percentage of TEOAE suppression (p > 0.05). The findings do not support the notion of a graded enhancement of MOC efferent suppression among adults with varied degrees of musicianship from nonmusicians to professional musicians. American Academy of Audiology.

  12. Independent component processes underlying emotions during natural music listening

    PubMed Central

    Zollinger, Nina; Elmer, Stefan; Jäncke, Lutz

    2016-01-01

    The aim of this study was to investigate the brain processes underlying emotions during natural music listening. To address this, we recorded high-density electroencephalography (EEG) from 22 subjects while presenting a set of individually matched whole musical excerpts varying in valence and arousal. Independent component analysis was applied to decompose the EEG data into functionally distinct brain processes. A k-means cluster analysis calculated on the basis of a combination of spatial (scalp topography and dipole location mapped onto the Montreal Neurological Institute brain template) and functional (spectra) characteristics revealed 10 clusters referring to brain areas typically involved in music and emotion processing, namely in the proximity of thalamic-limbic and orbitofrontal regions as well as at frontal, fronto-parietal, parietal, parieto-occipital, temporo-occipital and occipital areas. This analysis revealed that arousal was associated with a suppression of power in the alpha frequency range. On the other hand, valence was associated with an increase in theta frequency power in response to excerpts inducing happiness compared to sadness. These findings are partly compatible with the model proposed by Heller, arguing that the frontal lobe is involved in modulating valenced experiences (the left frontal hemisphere for positive emotions) whereas the right parieto-temporal region contributes to the emotional arousal. PMID:27217116

  13. Interaction between DRD2 variation and sound environment on mood and emotion-related brain activity.

    PubMed

    Quarto, T; Fasano, M C; Taurisano, P; Fazio, L; Antonucci, L A; Gelao, B; Romano, R; Mancini, M; Porcelli, A; Masellis, R; Pallesen, K J; Bertolino, A; Blasi, G; Brattico, E

    2017-01-26

    Sounds, like music and noise, are capable of reliably affecting individuals' mood and emotions. However, these effects are highly variable across individuals. A putative source of variability is genetic background. Here we explored the interaction between a functional polymorphism of the dopamine D2 receptor gene (DRD2 rs1076560, G>T, previously associated with the relative expression of D2S/L isoforms) and sound environment on mood and emotion-related brain activity. Thirty-eight healthy subjects were genotyped for DRD2 rs1076560 (G/G=26; G/T=12) and underwent functional magnetic resonance imaging (fMRI) during performance of an implicit emotion-processing task while listening to music or noise. Individual variation in mood induction was assessed before and after the task. Results showed mood improvement after music exposure in DRD2GG subjects and mood deterioration after noise exposure in GT subjects. Moreover, the music, as opposed to noise environment, decreased the striatal activity of GT subjects as well as the prefrontal activity of GG subjects while processing emotional faces. These findings suggest that genetic variability of dopamine receptors affects sound environment modulations of mood and emotion processing. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Recreational music-making alters gene expression pathways in patients with coronary heart disease

    PubMed Central

    Bittman, Barry; Croft, Daniel T.; Brinker, Jeannie; van Laar, Ryan; Vernalis, Marina N.; Ellsworth, Darrell L.

    2013-01-01

    Background Psychosocial stress profoundly impacts long-term cardiovascular health through adverse effects on sympathetic nervous system activity, endothelial dysfunction, and atherosclerotic development. Recreational Music Making (RMM) is a unique stress amelioration strategy encompassing group music-based activities that has great therapeutic potential for treating patients with stress-related cardiovascular disease. Material/Methods Participants (n=34) with a history of ischemic heart disease were subjected to an acute time-limited stressor, then randomized to RMM or quiet reading for one hour. Peripheral blood gene expression using GeneChip® Human Genome U133A 2.0 arrays was assessed at baseline, following stress, and after the relaxation session. Results Full gene set enrichment analysis identified 16 molecular pathways differentially regulated (P<0.005) during stress that function in immune response, cell mobility, and transcription. During relaxation, two pathways showed a significant change in expression in the control group, while 12 pathways governing immune function and gene expression were modulated among RMM participants. Only 13% (2/16) of pathways showed differential expression during stress and relaxation. Conclusions Human stress and relaxation responses may be controlled by different molecular pathways. Relaxation through active engagement in Recreational Music Making may be more effective than quiet reading at altering gene expression and thus more clinically useful for stress amelioration. PMID:23435350

  15. [Effect of mitogen activated protein kinase signal transduction on apoptosis of PC12 cells induced by electromagnetic exposure].

    PubMed

    Yang, Xue-Sen; Zhang, Wei; Gong, Qian-Fen

    2008-06-01

    To observe the effect of mitogen activated protein kinase (MAPK) signal transduction system on the apoptosis induced by electromagnetic exposure in PC12 cells. After pretreated by SB203580 alone or together with U0126, PC12 cells were exposed to 65 mW/cm(2) electromagnetic wave for 20 min. The phosphorylations of ERK1/2, JNK and P38 MAPK were tested by Western-blot at 3 h and 24 h after electromagnetic exposure. The apoptosis of PC12 cells were detected by Annexin-V-FITC flow cytometry. U0126, but not SB203580 could inhibit the activation of ERK1/2 induced by electromagnetic exposure. U0126 and SB203580 had no effects on the activation of JNK. SB203580 could inhibit the activation of P38 MAPK significantly. But U0126 had no such effect on the activation of P38 MAPK. After pretreated by SB203580 alone or together with U0126, the apoptosis of PC12 cells decreased. But the pretreatment by U0126 alone had no influence on the apoptosis of PC12 cells. The P38 MAPK signal transduction modulate the apoptosis of PC12 cells induced by electromagnetic exposure. ERK signal transduction has no effect on the apoptosis of PC12 cells. JNK signal transduction may promote the apoptosis of PC12 cells in the early stage after electromagnetic exposure.

  16. R&D of the CEPC scintillator-tungsten ECAL

    NASA Astrophysics Data System (ADS)

    Dong, M. Y.

    2018-03-01

    The circular electron and positron collider (CEPC) was proposed as a future Higgs factory. To meet the physics requirements, a particle flow algorithm-oriented calorimeter system with high energy resolution and precise reconstruction is considered. A sampling calorimeter with scintillator-tungsten sandwich structure is selected as one of the electromagnetic calorimeter (ECAL) options due to its good performance and relatively low cost. We present the design, the test and the optimization of the scintillator module read out by silicon photomultiplier (SiPM), including the design and the development of the electronics. To estimate the performance of the scintillator and SiPM module for particles with different energy, the beam test of a mini detector prototype without tungsten shower material was performed at the E3 beams in Institute of High Energy Physics (IHEP). The results are consistent with the expectation. These studies provide a reference and promote the development of particle flow electromagnetic calorimeter for the CEPC.

  17. Dynamically tunable electromagnetically induced transparency analogy in terahertz metamaterial

    NASA Astrophysics Data System (ADS)

    Liu, Chenxi; Liu, Peiguo; Bian, Lian; Zhou, Qihui; Li, Gaosheng; Liu, Hanqin

    2018-03-01

    A metamaterial analogy of tunable electromagnetically induced transparency (EIT) is theoretically investigated in terahertz regime. The proposed metamaterial consists of vertical gold strips and horizontal graphene wires, which perform as bright elements and dark elements, respectively. The EIT-like phenomenon can be induced by bright-dark mode coupling on condition of structural lateral displacement. Numerical result reveals that the EIT-like effect remains noticeable with a wide range of incidence polarization angles. Most importantly, by manipulating gate voltages, the EIT window can be dynamically controlled without refabricating the structure. The amplitude modulation depth can reach 81%, 79%, and 68% respectively at three characteristic frequencies as Fermi energy changes in the scope of 0.8-1.0 eV. Furthermore, a sensitivity of 0.95 THz per refractive index unit (RIU) is realized varying the refractive index in the surrounding medium. This structure provides potential applications for detectors, sensors, and modulators.

  18. Dynamically tunable implementation of electromagnetically induced transparency with two coupling graphene-nanostrips in terahertz region

    NASA Astrophysics Data System (ADS)

    Shu, Chang; Chen, Qing-Guo; Mei, Jin-Shuo; Yin, Jing-Hua

    2018-03-01

    In this paper, we numerically demonstrated a dynamically tunable implementation of electromagnetically induced transparency (EIT) response with two coupling graphene-nanostrips in terahertz region. Compared to the metal-based structures or separated graphene structures, the Fermi energies of proposed two coupling graphene-nanostrips can be independently tuned by changing bias voltage between the metallic pads and substrate, the EIT window which appears from the near-field coupling between two resonators can be dynamically tuned without reoptimizing and refabricating the structures. As a result, the EIT window has a significant tunable capacity which can realize a higher frequency modulation depth and control the amplitude of transmission peak at a fixed frequency; moreover, the group delay of transmission peak at a fixed frequency with the amplitude of over 0.95 could be dynamically tuned. These results would exhibit potential applications in modulators and tunable slow light devices.

  19. Dynamic Modulation of Radiative Heat Transfer beyond the Blackbody Limit.

    PubMed

    Ito, Kota; Nishikawa, Kazutaka; Miura, Atsushi; Toshiyoshi, Hiroshi; Iizuka, Hideo

    2017-07-12

    Dynamic control of electromagnetic heat transfer without changing mechanical configuration opens possibilities in intelligent thermal management in nanoscale systems. We confirmed by experiment that the radiative heat transfer is dynamically modulated beyond the blackbody limit. The near-field electromagnetic heat exchange mediated by phonon-polariton is controlled by the metal-insulator transition of tungsten-doped vanadium dioxide. The functionalized heat flux is transferred over an area of 1.6 cm 2 across a 370 nm gap, which is maintained by the microfabricated spacers and applied pressure. The uniformity of the gap is validated by optical interferometry, and the measured heat transfer is well modeled as the sum of the radiative and the parasitic conductive components. The presented methodology to form a nanometric gap with functional heat flux paves the way to the smart thermal management in various scenes ranging from highly integrated systems to macroscopic apparatus.

  20. Parametric disordering of meta-atoms and nonlinear topological transitions in liquid metacrystals

    NASA Astrophysics Data System (ADS)

    Zharov, Alexander A.; Zharova, Nina A.; Zharov, Alexander A.

    2017-09-01

    We show that amplitude-modulated electromagnetic wave incident onto a liquid metacrystal may cause parametric instability of meta-atoms resulting in isotropization of the medium that can be treated in terms of effective temperature. It makes possible to switch the sign of certain components of dielectric permittivity and/or magnetic permeability tensors that, in turn, modifies the topology of isofrequency surface. At the same time it leads to the changes of the conditions of electromagnetic wave propagation appearing in the form of focusing or defocusing nonlinearity.

  1. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Radiation emitted by a beam of particles crossing an inhomogeneous electromagnetic wave

    NASA Astrophysics Data System (ADS)

    Kol'tsov, A. V.; Serov, Alexander V.

    1995-03-01

    A theoretical investigation is made of the time dependence of the spatial distribution of particles injected perpendicular to the direction of propagation of a linearly polarised inhomogeneous electromagnetic wave and reflected by this wave. It is shown that such reflection modulates the particle density in a beam which is homogeneous at injection. Stimulated emission of radiation from a ribbon electron beam reflected by a wave is considered. The spectral—angular and polarisation characteristics of such radiation are investigated.

  2. FIBER AND INTEGRATED OPTICS: Radio-frequency electrooptic modulation in optical fibers

    NASA Astrophysics Data System (ADS)

    Bulyuk, A. N.

    1992-10-01

    The electrooptic interaction in single-mode optical fibers with both linear and circular birefringe is analyzed. In most cases, a large interaction length imposes a limit on the modulation frequency. A circular birefringence in an optical fiber may lead to an effective coupling of polarization normal modes if a phase-matching condition is satisfied. Through an appropriate choice of polarization states of the light at the entrance and exit of the device, one can achieve a polarization modulation or a frequency shift of the light. There are possible applications in rf polarization modulators, devices for shifting the frequency of light, and detectors of electromagnetic fields.

  3. Effects of arginine vasopressin on musical working memory

    PubMed Central

    Granot, Roni Y.; Uzefovsky, Florina; Bogopolsky, Helena; Ebstein, Richard P.

    2013-01-01

    Previous genetic studies showed an association between variations in the gene coding for the 1a receptor of the neuro-hormone arginine vasopressin (AVP) and musical working memory (WM). The current study set out to test the influence of intranasal administration (INA) of AVP on musical as compared to verbal WM using a double blind crossover (AVP—placebo) design. Two groups of 25 males were exposed to 20 IU of AVP in one session, and 20 IU of saline water (placebo) in a second session, 1 week apart. In each session subjects completed the tonal subtest from Gordon's “Musical Aptitude Profile,” the interval subtest from the “Montreal Battery for Evaluation of Amusias (MBEA),” and the forward and backward digit span tests. Scores in the digit span tests were not influenced by AVP. In contrast, in the music tests there was an AVP effect. In the MBEA test, scores for the group receiving placebo in the first session (PV) were higher than for the group receiving vasopressin in the first session (VP) (p < 0.05) with no main Session effect nor Group × Session interaction. In the Gordon test there was a main Session effect (p < 0.05) with scores higher in the second as compared to the first session, a marginal main Group effect (p = 0.093) and a marginal Group × Session interaction (p = 0.88). In addition we found that the group that received AVP in the first session scored higher on scales indicative of happiness, and alertness on the positive and negative affect scale, (PANAS). Only in this group and only in the music test these scores were significantly correlated with memory scores. Together the results reflect a complex interaction between AVP, musical memory, arousal, and contextual effects such as session, and base levels of memory. The results are interpreted in light of music's universal use as a means to modulate arousal on the one hand, and AVP's influence on mood, arousal, and social interactions on the other. PMID:24151474

  4. Neural processing of musical meter in musicians and non-musicians.

    PubMed

    Zhao, T Christina; Lam, H T Gloria; Sohi, Harkirat; Kuhl, Patricia K

    2017-11-01

    Musical sounds, along with speech, are the most prominent sounds in our daily lives. They are highly dynamic, yet well structured in the temporal domain in a hierarchical manner. The temporal structures enhance the predictability of musical sounds. Western music provides an excellent example: while time intervals between musical notes are highly variable, underlying beats can be realized. The beat-level temporal structure provides a sense of regular pulses. Beats can be further organized into units, giving the percept of alternating strong and weak beats (i.e. metrical structure or meter). Examining neural processing at the meter level offers a unique opportunity to understand how the human brain extracts temporal patterns, predicts future stimuli and optimizes neural resources for processing. The present study addresses two important questions regarding meter processing, using the mismatch negativity (MMN) obtained with electroencephalography (EEG): 1) how tempo (fast vs. slow) and type of metrical structure (duple: two beats per unit vs. triple: three beats per unit) affect the neural processing of metrical structure in non-musically trained individuals, and 2) how early music training modulates the neural processing of metrical structure. Metrical structures were established by patterns of consecutive strong and weak tones (Standard) with occasional violations that disrupted and reset the structure (Deviant). Twenty non-musicians listened passively to these tones while their neural activities were recorded. MMN indexed the neural sensitivity to the meter violations. Results suggested that MMNs were larger for fast tempo and for triple meter conditions. Further, 20 musically trained individuals were tested using the same methods and the results were compared to the non-musicians. While tempo and meter type similarly influenced MMNs in both groups, musicians overall exhibited significantly reduced MMNs, compared to their non-musician counterparts. Further analyses indicated that the reduction was driven by responses to sounds that defined the structure (Standard), not by responses to Deviants. We argue that musicians maintain a more accurate and efficient mental model for metrical structures, which incorporates occasional disruptions using significantly fewer neural resources. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Cantico Delle Creature: A microtonal original composition for soprano and string quartet to a text by St. Francis of Assisi, including analytical commentary

    NASA Astrophysics Data System (ADS)

    Sabol, Jason A.

    Cantico delle Creature is an original piece of music for soprano and string quartet composed in 72 tone per octave equal temperament, dividing each semitone into six equal parts called twelfth-tones. This system of tuning makes it possible to combine just intonation and spectral principles based on the harmonic series with real imitation, modulation, and polyphony. Supplemental text discusses several aspects of microtonal structure and pedagogy, including the representation of the first 64 partials of the harmonic series in 72 tone equal temperament, performance of natural string harmonics, the relationship between interval size and vibration ratio, pitch to frequency conversion, and analysis of several passages in the musical score.

  6. Simulations of a beam-driven plasma antenna in the regime of plasma transparency

    NASA Astrophysics Data System (ADS)

    Timofeev, I. V.; Berendeev, E. A.; Dudnikova, G. I.

    2017-09-01

    In this paper, the theoretically predicted possibility to increase the efficiency of electromagnetic radiation generated by a thin beam-plasma system in the regime of oblique emission, when a plasma column becomes transparent to radiation near the plasma frequency, is investigated using particle-in-cell simulations. If a finite-size plasma column has a longitudinal density modulation, such a system is able to radiate electromagnetic waves as a dipole antenna. This radiation mechanism is based on the conversion of an electron beam-driven potential plasma wave on the periodic perturbation of plasma density. In this case, the frequency of radiated waves appears to be slightly lower than the plasma frequency. That is why their fields enable the penetration into the plasma only to the skin-depth. This case is realized when the period of density modulation coincides with the wavelength of the most unstable beam-driven mode, and the produced radiation escapes from the plasma in the purely transverse direction. In the recent theoretical paper [I. V. Timofeev et al. Phys. Plasmas 23, 083119 (2016)], however, it has been found that the magnetized plasma can be transparent to this radiation at certain emission angles. It means that the beam-to-radiation power conversion can be highly efficient even in a relatively thick plasma since not only boundary layers but also the whole plasma volume can be involved in the generation of electromagnetic waves. Simulations of steady-state beam injection into a pre-modulated plasma channel confirm the existence of this effect and show limits of validity for the simplified theoretical model.

  7. Electromagnetic Chirps from Neutron Star–Black Hole Mergers

    NASA Astrophysics Data System (ADS)

    Schnittman, Jeremy D.; Dal Canton, Tito; Camp, Jordan; Tsang, David; Kelly, Bernard J.

    2018-02-01

    We calculate the electromagnetic signal of a gamma-ray flare coming from the surface of a neutron star shortly before merger with a black hole companion. Using a new version of the Monte Carlo radiation transport code Pandurata that incorporates dynamic spacetimes, we integrate photon geodesics from the neutron star surface until they reach a distant observer or are captured by the black hole. The gamma-ray light curve is modulated by a number of relativistic effects, including Doppler beaming and gravitational lensing. Because the photons originate from the inspiraling neutron star, the light curve closely resembles the corresponding gravitational waveform: a chirp signal characterized by a steadily increasing frequency and amplitude. We propose to search for these electromagnetic chirps using matched filtering algorithms similar to those used in LIGO data analysis.

  8. Electromagnetic Chirps from Neutron Star-Black Hole Mergers

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy D.; Dal Canton, Tito; Camp, Jordan B.; Tsang, David; Kelly, Bernard J.

    2018-01-01

    We calculate the electromagnetic signal of a gamma-ray flare coming from the surface of a neutron star shortly before merger with a black hole companion. Using a new version of the Monte Carlo radiation transport code Pandurata that incorporates dynamic spacetimes, we integrate photon geodesics from the neutron star surface until they reach a distant observer or are captured by the black hole. The gamma-ray light curve is modulated by a number of relativistic effects, including Doppler beaming and gravitational lensing. Because the photons originate from the inspiraling neutron star, the light curve closely resembles the corresponding gravitational waveform: a chirp signal characterized by a steadily increasing frequency and amplitude. We propose to search for these electromagnetic chirps using matched filtering algorithms similar to those used in LIGO data analysis.

  9. Modeling and characterization of an electromagnetic system for the estimation of Frequency Response Function of spindle

    NASA Astrophysics Data System (ADS)

    Tlalolini, David; Ritou, Mathieu; Rabréau, Clément; Le Loch, Sébastien; Furet, Benoit

    2018-05-01

    The paper presents an electromagnetic system that has been developed to measure the quasi-static and dynamic behavior of machine-tool spindle, at different spindle speeds. This system consists in four Pulse Width Modulation amplifiers and four electromagnets to produce magnetic forces of ± 190 N for the static mode and ± 80 N for the dynamic mode up to 5 kHz. In order to measure the Frequency Response Function (FRF) of spindle, the applied force is required, which is a key issue. A dynamic force model is proposed in order to obtain the load from the measured current in the amplifiers. The model depends on the exciting frequency and on the magnetic characteristics of the system. The predicted force at high speed is validated with a specific experiment and the performance limits of the experimental device are investigated. The FRF obtained with the electromagnetic system is compared to a classical tap test measurement.

  10. Constituents of Music and Visual-Art Related Pleasure – A Critical Integrative Literature Review

    PubMed Central

    Tiihonen, Marianne; Brattico, Elvira; Maksimainen, Johanna; Wikgren, Jan; Saarikallio, Suvi

    2017-01-01

    The present literature review investigated how pleasure induced by music and visual-art has been conceptually understood in empirical research over the past 20 years. After an initial selection of abstracts from seven databases (keywords: pleasure, reward, enjoyment, and hedonic), twenty music and eleven visual-art papers were systematically compared. The following questions were addressed: (1) What is the role of the keyword in the research question? (2) Is pleasure considered a result of variation in the perceiver’s internal or external attributes? (3) What are the most commonly employed methods and main variables in empirical settings? Based on these questions, our critical integrative analysis aimed to identify which themes and processes emerged as key features for conceptualizing art-induced pleasure. The results demonstrated great variance in how pleasure has been approached: In the music studies pleasure was often a clear object of investigation, whereas in the visual-art studies the term was often embedded into the context of an aesthetic experience, or used otherwise in a descriptive, indirect sense. Music studies often targeted different emotions, their intensity or anhedonia. Biographical and background variables and personality traits of the perceiver were often measured. Next to behavioral methods, a common method was brain imaging which often targeted the reward circuitry of the brain in response to music. Visual-art pleasure was also frequently addressed using brain imaging methods, but the research focused on sensory cortices rather than the reward circuit alone. Compared with music research, visual-art research investigated more frequently pleasure in relation to conscious, cognitive processing, where the variations of stimulus features and the changing of viewing modes were regarded as explanatory factors of the derived experience. Despite valence being frequently applied in both domains, we conclude, that in empirical music research pleasure seems to be part of core affect and hedonic tone modulated by stable personality variables, whereas in visual-art research pleasure is a result of the so called conceptual act depending on a chosen strategy to approach art. We encourage an integration of music and visual-art into to a multi-modal framework to promote a more versatile understanding of pleasure in response to aesthetic artifacts. PMID:28775697

  11. Investigation of Higher Brain Functions in Music Composition Using Models of the Cortex Based on Physical System Analogies.

    NASA Astrophysics Data System (ADS)

    Leng, Xiaodan

    The trion model was developed using the Mountcastle organizational principle for the column as the basic neuronal network in the cortex and the physical system analogy of Fisher's ANNNI spin model. An essential feature is that it is highly structured in time and in spatial connections. Simulations of a network of trions have shown that large numbers of quasi-stable, periodic spatial-temporal firing patterns can be excited. Characteristics of these patterns include the quality of being readily enhanced by only a small change in connection strengths, and that the patterns evolve in certain natural sequences from one to another. With only somewhat different parameters than used for studying memory and pattern recognition, much more flowing and intriguing patterns emerged from the simulations. The results were striking when these probabilistic evolutions were mapped onto pitches and instruments to produce music: For example different simple mappings of the same evolution give music having the "flavor" of a minuet, a waltz, folk music, or styles of specific periods. A theme can be learned so that evolutions have this theme and its variations reoccurring more often. That the trion model is a viable model for the coding of musical structure in human composition and perception is suggested. It is further proposed that model is relevant for examining creativity in the higher cognitive functions of mathematics and chess, which are similar to music. An even higher level of cortical organization was modeled by coupling together several trion networks. Further, one of the crucial features of higher brain function, especially in music composition or appreciation, is the role of emotion and mood as controlled by the many neuromodulators or neuropeptides. The MILA model whose underlying basis is zero-level representation of Kac-Moody algebra is used to modulate periodically the firing threshold of each network. Our preliminary results show that the introduction of "neuromodulation" into the dynamics of a few coupled trion networks greatly enhanced the richness of the music. Neuromodulation plays a very important role in cognitive processes. I discuss many aspects of cognitive processes such as, leaning and memory, innervation of cortical functions and coordination between music and emotions. The implications of my work are discussed.

  12. Beta-band oscillations during passive listening to metronome sounds reflect improved timing representation after short-term musical training in healthy older adults.

    PubMed

    Fujioka, Takako; Ross, Bernhard

    2017-10-01

    Sub-second time intervals in musical rhythms provide predictive cues about future events to performers and listeners through an internalized representation of timing. While the acuity of automatic, sub-second timing as well as cognitively controlled, supra-second timing declines with ageing, musical experts are less affected. This study investigated the influence of piano training on temporal processing abilities in older adults using behavioural and neuronal correlates. We hypothesized that neuroplastic changes in beta networks, caused by training in sensorimotor coordination with timing processing, can be assessed even in the absence of movement. Behavioural performance of internal timing stability was assessed with synchronization-continuation finger-tapping paradigms. Magnetoencephalography (MEG) was recorded from older adults before and after one month of one-on-one training. For neural measures of automatic timing processing, we focused on beta oscillations (13-30 Hz) during passive listening to metronome beats. Periodic beta-band modulations in older adults before training were similar to previous findings in young listeners at a beat interval of 800 ms. After training, behavioural performance for continuation tapping was improved and accompanied by an increased range of beat-induced beta modulation, compared to participants who did not receive training. Beta changes were observed in the caudate, auditory, sensorimotor and premotor cortices, parietal lobe, cerebellum and medial prefrontal cortex, suggesting that increased resources are involved in timing processing and goal-oriented monitoring as well as reward-based sensorimotor learning. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. Dissemination and support of ARGUS for accelerator applications. Technical progress report, April 24, 1991--January 20, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The ARGUS code is a three-dimensional code system for simulating for interactions between charged particles, electric and magnetic fields, and complex structure. It is a system of modules that share common utilities for grid and structure input, data handling, memory management, diagnostics, and other specialized functions. The code includes the fields due to the space charge and current density of the particles to achieve a self-consistent treatment of the particle dynamics. The physic modules in ARGUS include three-dimensional field solvers for electrostatics and electromagnetics, a three-dimensional electromagnetic frequency-domain module, a full particle-in-cell (PIC) simulation module, and a steady-state PIC model.more » These are described in the Appendix to this report. This project has a primary mission of developing the capabilities of ARGUS in accelerator modeling of release to the accelerator design community. Five major activities are being pursued in parallel during the first year of the project. To improve the code and/or add new modules that provide capabilities needed for accelerator design. To produce a User`s Guide that documents the use of the code for all users. To release the code and the User`s Guide to accelerator laboratories for their own use, and to obtain feed-back from the. To build an interactive user interface for setting up ARGUS calculations. To explore the use of ARGUS on high-power workstation platforms.« less

  14. The effects of control field detuning on the modulation instability in a three-level quantum well system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borgohain, Nitu, E-mail: nituborgohain.ism@gmail.com; Konar, S.

    The paper presents a theoretical study of the modulation instability of a continuous or quasi-continuous optical probe in a three level quantum well system under electromagnetically induced transparency. The modulation instability is affected by the control field detuning, as well as even-order dispersion and by the strength of Kerr (third-order) and quintic (fifth-order) nonlinearities. The fourth-order dispersion reduces the bandwidth over which modulation instability occurs, whereas the quintic nonlinearity saturates the growth of the modulation instability. Detuning the control field from resonance can significantly reduce the growth of the modulation instability at both low and high power levels. At lowmore » powers, the system becomes stable against modulation instability for small detuning of the control field and at high powers modulation instability disappears for larger detuning.« less

  15. Carbon nanotube scaffolds with controlled porosity as electromagnetic absorbing materials in the gigahertz range

    NASA Astrophysics Data System (ADS)

    González, M.; Crespo, M.; Baselga, J.; Pozuelo, J.

    2016-05-01

    Control of the microscopic structure of CNT nanocomposites allows modulation of the electromagnetic shielding in the gigahertz range. The porosity of CNT scaffolds has been controlled by two freezing protocols and a subsequent lyophilization step: fast freezing in liquid nitrogen and slow freezing at -20 °C. Mercury porosimetry shows that slowly frozen specimens present a more open pore size (100-150 μm) with a narrow distribution whereas specimens frozen rapidly show a smaller pore size and a heterogeneous distribution. 3D-scaffolds containing 3, 4, 6 and 7% CNT were infiltrated with epoxy and specimens with 2, 5 and 8 mm thicknesses were characterized in the GHz range. Samples with the highest pore size and porosity presented the lowest reflected power (about 30%) and the highest absorbed power (about 70%), which allows considering them as electromagnetic radiation absorbing materials.Control of the microscopic structure of CNT nanocomposites allows modulation of the electromagnetic shielding in the gigahertz range. The porosity of CNT scaffolds has been controlled by two freezing protocols and a subsequent lyophilization step: fast freezing in liquid nitrogen and slow freezing at -20 °C. Mercury porosimetry shows that slowly frozen specimens present a more open pore size (100-150 μm) with a narrow distribution whereas specimens frozen rapidly show a smaller pore size and a heterogeneous distribution. 3D-scaffolds containing 3, 4, 6 and 7% CNT were infiltrated with epoxy and specimens with 2, 5 and 8 mm thicknesses were characterized in the GHz range. Samples with the highest pore size and porosity presented the lowest reflected power (about 30%) and the highest absorbed power (about 70%), which allows considering them as electromagnetic radiation absorbing materials. Electronic supplementary information (ESI) available: Scheme of hydrogenated derivative of diglycidyl ether of bisphenol-A (HDGEBA) and m-xylylenediamine; X-ray diffractograms of pristine CNT and oxidized CNT; glass transition temperatures of composites; electromagnetic shielding analysis in the 1-18 GHz frequency range. See DOI: 10.1039/c6nr02133f

  16. Relativistic Tennis with Photons: Frequency Up-Shifting, Light Intensification and Ion Acceleration with Flying Mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.

    2011-01-04

    We formulate the Flying Mirror Concept for relativistic interaction of ultra-intense electromagnetic waves with plasmas, present its theoretical description and the results of computer simulations and laboratory experiments. In collisionless plasmas, the relativistic flying mirrors are thin and dense electron or electron-ion layers accelerated by the high intensity electromagnetic waves up to velocity close to the speed of light in vacuum; in nonlinear-media and in nonlinear vacuum they are the ionization fronts and the refraction index modulations induced by a strong electromagnetic wave. The reflection of the electromagnetic wave at the relativistic mirror results in its energy and frequency changemore » due to the double Doppler effect. In the co-propagating configuration, in the radiation pressure dominant regime, the energy of the electromagnetic wave is transferred to the ion energy providing a highly efficient acceleration mechanism. In the counter-propagation configuration the frequency of the reflected wave is multiplied by the factor proportional to the gamma-factor squared. If the relativistic mirror performs an oscillatory motion as in the case of the electron motion at the plasma-vacuum interface, the reflected light spectrum is enriched with high order harmonics.« less

  17. Culture Modulates the Brain Response to Harmonic Violations: An EEG Study on Hierarchical Syntactic Structure in Music.

    PubMed

    Akrami, Haleh; Moghimi, Sahar

    2017-01-01

    We investigated the role of culture in processing hierarchical syntactic structures in music. We examined whether violation of non-local dependencies manifest in event related potentials (ERP) for Western and Iranian excerpts by recording EEG while participants passively listened to sequences of modified/original excerpts. We also investigated oscillatory and synchronization properties of brain responses during processing of hierarchical structures. For the Western excerpt, subjective ratings of conclusiveness were marginally significant and the difference in the ERP components fell short of significance. However, ERP and behavioral results showed that while listening to culturally familiar music, subjects comprehended whether or not the hierarchical syntactic structure was fulfilled. Irregularities in the hierarchical structures of the Iranian excerpt elicited an early negativity in the central regions bilaterally, followed by two later negativities from 450-700 to 750-950 ms. The latter manifested throughout the scalp. Moreover, violations of hierarchical structure in the Iranian excerpt were associated with (i) an early decrease in the long range alpha phase synchronization, (ii) an early increase in the oscillatory activity in the beta band over the central areas, and (iii) a late decrease in the theta band phase synchrony between left anterior and right posterior regions. Results suggest that rhythmic structures and melodic fragments, representative of Iranian music, created a familiar context in which recognition of complex non-local syntactic structures was feasible for Iranian listeners. Processing of neural responses to the Iranian excerpt indicated neural mechanisms for processing of hierarchical syntactic structures in music at different levels of cortical integration.

  18. Multimedia Modules for Electromagnetics Education.

    ERIC Educational Resources Information Center

    De Los Santos Vidal, Oriol; Iskander, Magdy F.

    1997-01-01

    Multimedia technology is an invaluable teaching and learning resource. One advantage of technology based education is the ability to combine practical applications, visualization of complex mathematical and abstract subjects, virtual labs, and guided use of simulation software. This article describes several multimedia tutorials for…

  19. Auditory-motor learning influences auditory memory for music.

    PubMed

    Brown, Rachel M; Palmer, Caroline

    2012-05-01

    In two experiments, we investigated how auditory-motor learning influences performers' memory for music. Skilled pianists learned novel melodies in four conditions: auditory only (listening), motor only (performing without sound), strongly coupled auditory-motor (normal performance), and weakly coupled auditory-motor (performing along with auditory recordings). Pianists' recognition of the learned melodies was better following auditory-only or auditory-motor (weakly coupled and strongly coupled) learning than following motor-only learning, and better following strongly coupled auditory-motor learning than following auditory-only learning. Auditory and motor imagery abilities modulated the learning effects: Pianists with high auditory imagery scores had better recognition following motor-only learning, suggesting that auditory imagery compensated for missing auditory feedback at the learning stage. Experiment 2 replicated the findings of Experiment 1 with melodies that contained greater variation in acoustic features. Melodies that were slower and less variable in tempo and intensity were remembered better following weakly coupled auditory-motor learning. These findings suggest that motor learning can aid performers' auditory recognition of music beyond auditory learning alone, and that motor learning is influenced by individual abilities in mental imagery and by variation in acoustic features.

  20. Intra- and inter-brain synchronization during musical improvisation on the guitar.

    PubMed

    Müller, Viktor; Sänger, Johanna; Lindenberger, Ulman

    2013-01-01

    Humans interact with the environment through sensory and motor acts. Some of these interactions require synchronization among two or more individuals. Multiple-trial designs, which we have used in past work to study interbrain synchronization in the course of joint action, constrain the range of observable interactions. To overcome the limitations of multiple-trial designs, we conducted single-trial analyses of electroencephalography (EEG) signals recorded from eight pairs of guitarists engaged in musical improvisation. We identified hyper-brain networks based on a complex interplay of different frequencies. The intra-brain connections primarily involved higher frequencies (e.g., beta), whereas inter-brain connections primarily operated at lower frequencies (e.g., delta and theta). The topology of hyper-brain networks was frequency-dependent, with a tendency to become more regular at higher frequencies. We also found hyper-brain modules that included nodes (i.e., EEG electrodes) from both brains. Some of the observed network properties were related to musical roles during improvisation. Our findings replicate and extend earlier work and point to mechanisms that enable individuals to engage in temporally coordinated joint action.

  1. Intra- and Inter-Brain Synchronization during Musical Improvisation on the Guitar

    PubMed Central

    Müller, Viktor; Sänger, Johanna; Lindenberger, Ulman

    2013-01-01

    Humans interact with the environment through sensory and motor acts. Some of these interactions require synchronization among two or more individuals. Multiple-trial designs, which we have used in past work to study interbrain synchronization in the course of joint action, constrain the range of observable interactions. To overcome the limitations of multiple-trial designs, we conducted single-trial analyses of electroencephalography (EEG) signals recorded from eight pairs of guitarists engaged in musical improvisation. We identified hyper-brain networks based on a complex interplay of different frequencies. The intra-brain connections primarily involved higher frequencies (e.g., beta), whereas inter-brain connections primarily operated at lower frequencies (e.g., delta and theta). The topology of hyper-brain networks was frequency-dependent, with a tendency to become more regular at higher frequencies. We also found hyper-brain modules that included nodes (i.e., EEG electrodes) from both brains. Some of the observed network properties were related to musical roles during improvisation. Our findings replicate and extend earlier work and point to mechanisms that enable individuals to engage in temporally coordinated joint action. PMID:24040094

  2. Generation of novel motor sequences: the neural correlates of musical improvisation.

    PubMed

    Berkowitz, Aaron L; Ansari, Daniel

    2008-06-01

    While some motor behavior is instinctive and stereotyped or learned and re-executed, much action is a spontaneous response to a novel set of environmental conditions. The neural correlates of both pre-learned and cued motor sequences have been previously studied, but novel motor behavior has thus far not been examined through brain imaging. In this paper, we report a study of musical improvisation in trained pianists with functional magnetic resonance imaging (fMRI), using improvisation as a case study of novel action generation. We demonstrate that both rhythmic (temporal) and melodic (ordinal) motor sequence creation modulate activity in a network of brain regions comprised of the dorsal premotor cortex, the rostral cingulate zone of the anterior cingulate cortex, and the inferior frontal gyrus. These findings are consistent with a role for the dorsal premotor cortex in movement coordination, the rostral cingulate zone in voluntary selection, and the inferior frontal gyrus in sequence generation. Thus, the invention of novel motor sequences in musical improvisation recruits a network of brain regions coordinated to generate possible sequences, select among them, and execute the decided-upon sequence.

  3. Beam test of CSES silicon strip detector module

    NASA Astrophysics Data System (ADS)

    Zhang, Da-Li; Lu, Hong; Wang, Huan-Yu; Li, Xin-Qiao; Xu, Yan-Bing; An, Zheng-Hua; Yu, Xiao-xia; Wang, Hui; Shi, Feng; Wang, Ping; Zhao, Xiao-Yun

    2017-05-01

    The silicon-strip tracker of the China Seismo-Electromagnetic Satellite (CSES) consists of two double-sided silicon strip detectors (DSSDs) which provide incident particle tracking information. A low-noise analog ASIC VA140 was used in this study for DSSD signal readout. A beam test on the DSSD module was performed at the Beijing Test Beam Facility of the Beijing Electron Positron Collider (BEPC) using a 400-800 MeV/c proton beam. The pedestal analysis results, RMSE noise, gain correction, and intensity distribution of incident particles of the DSSD module are presented. Supported by the XXX Civil Space Programme

  4. Modulating the amplitude and phase of the complex spectral degree of coherence with plasmonic interferometry

    NASA Astrophysics Data System (ADS)

    Li, Dongfang; Pacifici, Domenico

    The spectral degree of coherence describes the correlation of electromagnetic fields, which plays a key role in many applications, including free-space optical communications and speckle-free bioimaging. Recently, plasmonic interferometry, i.e. optical interferometry that employs surface plasmon polaritons (SPPs), has enabled enhanced light transmission and high-sensitivity biosensing, among other applications. It offers new ways to characterize and engineer electromagnetic fields using nano-structured thin metal films. Here, we employ plasmonic interferometry to demonstrate full control of spatial coherence at length scales comparable to the wavelength of the incident light. Specifically, by measuring the diffraction pattern of several double-slit plasmonic structures etched on a metal film, the amplitude and phase of the degree of spatial coherence is determined as a function of slit-slit separation distance and incident wavelength. When the SPP contribution is turned on (i.e., by changing the polarization of the incident light from TE to TM illumination mode), strong modulation of both amplitude and phase of the spatial coherence is observed. These findings may help design compact modulators of optical spatial coherence and other optical elements to shape the light intensity in the far-field.

  5. Visualization of frequency-modulated electric field based on photonic frequency tracking in asynchronous electro-optic measurement system

    NASA Astrophysics Data System (ADS)

    Hisatake, Shintaro; Yamaguchi, Koki; Uchida, Hirohisa; Tojyo, Makoto; Oikawa, Yoichi; Miyaji, Kunio; Nagatsuma, Tadao

    2018-04-01

    We propose a new asynchronous measurement system to visualize the amplitude and phase distribution of a frequency-modulated electromagnetic wave. The system consists of three parts: a nonpolarimetric electro-optic frequency down-conversion part, a phase-noise-canceling part, and a frequency-tracking part. The photonic local oscillator signal generated by electro-optic phase modulation is controlled to track the frequency of the radio frequency (RF) signal to significantly enhance the measurable RF bandwidth. We demonstrate amplitude and phase measurement of a quasi-millimeter-wave frequency-modulated continuous-wave signal (24 GHz ± 80 MHz with a 2.5 ms period) as a proof-of-concept experiment.

  6. EIT-based all-optical switching and cross-phase modulation under the influence of four-wave mixing.

    PubMed

    Lee, Meng-Jung; Chen, Yi-Hsin; Wang, I-Chung; Yu, Ite A

    2012-05-07

    All-optical switching (AOS) or cross-phase modulation (XPM) based on the effect of electromagnetically induced transparency (EIT) makes one photon switched or phase-modulated by another possible. The existence of four-wave mixing (FWM) process greatly diminishes the switching or phase-modulation efficiency and hinders the single-photon operation. We proposed and experimentally demonstrated an idea that with an optimum detuning the EIT-based AOS can be completely intact even under the influence of FWM. The results of the work can be directly applied to the EIT-based XPM. Our work makes the AOS and XPM schemes more flexible and the single-photon operation possible in FWM-allowed systems.

  7. Integrated Graphene-Based Optoelectronic Devices Used for Ultrafast Optical-THz Photodetectors, Modulators and Emitters

    DTIC Science & Technology

    2015-04-03

    08 and AFRL/ CA policy clarification memorandum dated 16 Jan 09. This report is available to the general public, including foreign nationals. Copies... doped graphene micro-ribbon array and a quantum-well electron gas sitting at an interface between a half-space of air and another half-space of a... doped semiconductor substrate which supports a surface-plasmon mode in our system. The coupling between a spatially-modulated total electromagnetic

  8. Quasi-continuous metasurface for ultra-broadband and polarization-controlled electromagnetic beam deflection.

    PubMed

    Wang, Yanqin; Pu, Mingbo; Zhang, Zuojun; Li, Xiong; Ma, Xiaoliang; Zhao, Zeyu; Luo, Xiangang

    2015-12-04

    Two-dimensional metasurface has attracted growing interest in recent years, owing to its ability in manipulating the phase, amplitude and polarization state of electromagnetic wave within a single interface. However, most existing metasurfaces rely on the collective responses of a set of discrete meta-atoms to perform various functionalities. In this paper, we presented a quasi-continuous metasurface for high-efficiency and broadband beam steering in the microwave regime. It is demonstrated both in simulation and experiment that the incident beam deviates from the normal direction after transmitting through the ultrathin metasurface. The efficiency of the proposed metasurface approximates to the theoretical limit of the single-layer metasurface in a broad frequency range, owing to the elimination of the circuit resonance in traditional discrete structures. The proposed scheme promises potential applications in broadband electromagnetic modulation and communication systems, etc.

  9. Copper Tube Compression in Z-Current Geometry, Numerical Simulations and Comparison with Cyclope Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lefrancois, A.; L'Eplattenier, P.; Burger, M.

    2006-02-13

    Metallic tubes compressions in Z-current geometry were performed at the Cyclope facility from Gramat Research Center in order to study the behavior of metals under large strain at high strain rate. 3D configurations of cylinder compressions have been calculated here to benchmark the new beta version of the electromagnetism package coupled with the dynamics in Ls-Dyna and compared with the Cyclope experiments. The electromagnetism module is being developed in the general-purpose explicit and implicit finite element program LS-DYNA{reg_sign} in order to perform coupled mechanical/thermal/electromagnetism simulations. The Maxwell equations are solved using a Finite Element Method (FEM) for the solid conductorsmore » coupled with a Boundary Element Method (BEM) for the surrounding air (or vacuum). More details can be read in the references.« less

  10. Targeted treatment of cancer with radiofrequency electromagnetic fields amplitude-modulated at tumor-specific frequencies

    PubMed Central

    Zimmerman, Jacquelyn W.; Jimenez, Hugo; Pennison, Michael J.; Brezovich, Ivan; Morgan, Desiree; Mudry, Albert; Costa, Frederico P.; Barbault, Alexandre; Pasche, Boris

    2013-01-01

    In the past century, there have been many attempts to treat cancer with low levels of electric and magnetic fields. We have developed noninvasive biofeedback examination devices and techniques and discovered that patients with the same tumor type exhibit biofeedback responses to the same, precise frequencies. Intrabuccal administration of 27.12 MHz radiofrequency (RF) electromagnetic fields (EMF), which are amplitude-modulated at tumor-specific frequencies, results in long-term objective responses in patients with cancer and is not associated with any significant adverse effects. Intrabuccal administration allows for therapeutic delivery of very low and safe levels of EMF throughout the body as exemplified by responses observed in the femur, liver, adrenal glands, and lungs. In vitro studies have demonstrated that tumor-specific frequencies identified in patients with various forms of cancer are capable of blocking the growth of tumor cells in a tissue- and tumor-specific fashion. Current experimental evidence suggests that tumor-specific modulation frequencies regulate the expression of genes involved in migration and invasion and disrupt the mitotic spindle. This novel targeted treatment approach is emerging as an appealing therapeutic option for patients with advanced cancer given its excellent tolerability. Dissection of the molecular mechanisms accounting for the anti-cancer effects of tumor-specific modulation frequencies is likely to lead to the discovery of novel pathways in cancer. PMID:24206915

  11. Targeted treatment of cancer with radiofrequency electromagnetic fields amplitude-modulated at tumor-specific frequencies.

    PubMed

    Zimmerman, Jacquelyn W; Jimenez, Hugo; Pennison, Michael J; Brezovich, Ivan; Morgan, Desiree; Mudry, Albert; Costa, Frederico P; Barbault, Alexandre; Pasche, Boris

    2013-11-01

    In the past century, there have been many attempts to treat cancer with low levels of electric and magnetic fields. We have developed noninvasive biofeedback examination devices and techniques and discovered that patients with the same tumor type exhibit biofeedback responses to the same, precise frequencies. Intrabuccal administration of 27.12 MHz radiofrequency (RF) electromagnetic fields (EMF), which are amplitude-modulated at tumor-specific frequencies, results in long-term objective responses in patients with cancer and is not associated with any significant adverse effects. Intrabuccal administration allows for therapeutic delivery of very low and safe levels of EMF throughout the body as exemplified by responses observed in the femur, liver, adrenal glands, and lungs. In vitro studies have demonstrated that tumor-specific frequencies identified in patients with various forms of cancer are capable of blocking the growth of tumor cells in a tissue- and tumor-specific fashion. Current experimental evidence suggests that tumor-specific modulation frequencies regulate the expression of genes involved in migration and invasion and disrupt the mitotic spindle. This novel targeted treatment approach is emerging as an appealing therapeutic option for patients with advanced cancer given its excellent tolerability. Dissection of the molecular mechanisms accounting for the anti-cancer effects of tumor-specific modulation frequencies is likely to lead to the discovery of novel pathways in cancer.

  12. Electromagnetic interference in the permeability of saquinavir across the blood-brain barrier using nanoparticulate carriers.

    PubMed

    Kuo, Yung-Chih; Kuo, Chan-Ying

    2008-03-03

    Transport of antiretroviral agents across the blood-brain barrier (BBB) is of key importance to the treatment for the acquired immunodeficiency syndrome (AIDS). In this study, impact of exposure to electromagnetic field (EMF) on the permeability of saquinavir (SQV) across BBB was investigated. The in vitro BBB model was based on human brain-microvascular endothelial cells (HBMEC), and the concentration of SQV in receiver chamber of the transport system was evaluated. Polybutylcyanoacrylate (PBCA), methylmethacrylate-sulfopropylmethacrylate (MMA-SPM), and solid lipid nanoparticle (SLN) were employed as carriers for the delivery systems. Cytotoxicity of SLN decreased as content of cacao butter increased. Power of 5mV was apposite for the study on HBMEC without obvious apoptosis. Square wave produced greater permeability than sine and triangle waves. The carrier order on permeability of SQV across HBMEC monolayer under exposure to EMF was SLN>PBCA>MMA-SPM. Also, a larger frequency, modulation or depth of amplitude modulation (AM), or modulation or deviation of frequency modulation (FM) yielded a greater permeability. Besides, enhancement of permeability by AM wave was more significant than that by FM wave. Transport behavior of SQV across BBB was strongly influenced by the combination of nanoparticulate PBCA, MMA-SPM, and SLN with EMF exposure. This combination would be beneficial to the clinical application to the therapy of AIDS and other brain-related diseases.

  13. Music-of-light stethoscope: a demonstration of the photoacoustic effect

    NASA Astrophysics Data System (ADS)

    Nikitichev, D. I.; Xia, W.; Hill, E.; Mosse, C. A.; Perkins, T.; Konyn, K.; Ourselin, S.; Desjardins, A. E.; Vercauteren, T.

    2016-07-01

    In this paper we present a system aimed at demonstrating the photoacoustic (PA) effect for educational purposes. PA imaging is a hybrid imaging modality that requires no contrast agent and has a great potential for spine and brain lesion characterisation, breast cancer and blood flow monitoring notably in the context of fetal surgery. It relies on combining light excitation with ultrasound reception. Our brief was to present and explain PA imaging in a public-friendly way suitable for a variety of ages and backgrounds. We developed a simple, accessible demonstration unit using readily available materials. We used a modulated light emitting diode (LED) torch and an electronic stethoscope. The output of a music player was used for light modulation and the chest piece of the stethoscope covered by a black tape was used as an absorbing target and an enclosed chamber. This demonstration unit was presented to the public at the Bloomsbury Festival On Light in October 2015. Our stall was visited by over 100 people of varying ages. Twenty families returned in-depth evaluation questionnaires, which show that our explanations of the photoacoustic effect were well understood. Their interest in biomedical engineering was increased.

  14. Music-of-light stethoscope: a demonstration of the photoacoustic effect

    PubMed Central

    Nikitichev, D I; Xia, W; Hill, E; Mosse, C A; Perkins, T; Konyn, K; Ourselin, S; Desjardins, A E; Vercauteren, T

    2016-01-01

    Abstract In this paper we present a system aimed at demonstrating the photoacoustic (PA) effect for educational purposes. PA imaging is a hybrid imaging modality that requires no contrast agent and has a great potential for spine and brain lesion characterisation, breast cancer and blood flow monitoring notably in the context of fetal surgery. It relies on combining light excitation with ultrasound reception. Our brief was to present and explain PA imaging in a public-friendly way suitable for a variety of ages and backgrounds. We developed a simple, accessible demonstration unit using readily available materials. We used a modulated light emitting diode (LED) torch and an electronic stethoscope. The output of a music player was used for light modulation and the chest piece of the stethoscope covered by a black tape was used as an absorbing target and an enclosed chamber. This demonstration unit was presented to the public at the Bloomsbury Festival On Light in October 2015. Our stall was visited by over 100 people of varying ages. Twenty families returned in-depth evaluation questionnaires, which show that our explanations of the photoacoustic effect were well understood. Their interest in biomedical engineering was increased. PMID:29249838

  15. Logarithmic temporal axis manipulation and its application for measuring auditory contributions in F0 control using a transformed auditory feedback procedure

    NASA Astrophysics Data System (ADS)

    Yanaga, Ryuichiro; Kawahara, Hideki

    2003-10-01

    A new parameter extraction procedure based on logarithmic transformation of the temporal axis was applied to investigate auditory effects on voice F0 control to overcome artifacts due to natural fluctuations and nonlinearities in speech production mechanisms. The proposed method may add complementary information to recent findings reported by using frequency shift feedback method [Burnett and Larson, J. Acoust. Soc. Am. 112 (2002)], in terms of dynamic aspects of F0 control. In a series of experiments, dependencies of system parameters in F0 control on subjects, F0 and style (musical expressions and speaking) were tested using six participants. They were three male and three female students specialized in musical education. They were asked to sustain a Japanese vowel /a/ for about 10 s repeatedly up to 2 min in total while hearing F0 modulated feedback speech, that was modulated using an M-sequence. The results replicated qualitatively the previous finding [Kawahara and Williams, Vocal Fold Physiology, (1995)] and provided more accurate estimates. Relations with designing an artificial singer also will be discussed. [Work partly supported by the grant in aids in scientific research (B) 14380165 and Wakayama University.

  16. Music-of-light stethoscope: a demonstration of the photoacoustic effect.

    PubMed

    Nikitichev, D I; Xia, W; Hill, E; Mosse, C A; Perkins, T; Konyn, K; Ourselin, S; Desjardins, A E; Vercauteren, T

    2016-07-01

    In this paper we present a system aimed at demonstrating the photoacoustic (PA) effect for educational purposes. PA imaging is a hybrid imaging modality that requires no contrast agent and has a great potential for spine and brain lesion characterisation, breast cancer and blood flow monitoring notably in the context of fetal surgery. It relies on combining light excitation with ultrasound reception. Our brief was to present and explain PA imaging in a public-friendly way suitable for a variety of ages and backgrounds. We developed a simple, accessible demonstration unit using readily available materials. We used a modulated light emitting diode (LED) torch and an electronic stethoscope. The output of a music player was used for light modulation and the chest piece of the stethoscope covered by a black tape was used as an absorbing target and an enclosed chamber. This demonstration unit was presented to the public at the Bloomsbury Festival On Light in October 2015. Our stall was visited by over 100 people of varying ages. Twenty families returned in-depth evaluation questionnaires, which show that our explanations of the photoacoustic effect were well understood. Their interest in biomedical engineering was increased.

  17. Bilayer avalanche spin-diode logic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, Joseph S., E-mail: joseph.friedman@u-psud.fr; Querlioz, Damien; Fadel, Eric R.

    2015-11-15

    A novel spintronic computing paradigm is proposed and analyzed in which InSb p-n bilayer avalanche spin-diodes are cascaded to efficiently perform complex logic operations. This spin-diode logic family uses control wires to generate magnetic fields that modulate the resistance of the spin-diodes, and currents through these devices control the resistance of cascaded devices. Electromagnetic simulations are performed to demonstrate the cascading mechanism, and guidelines are provided for the development of this innovative computing technology. This cascading scheme permits compact logic circuits with switching speeds determined by electromagnetic wave propagation rather than electron motion, enabling high-performance spintronic computing.

  18. Features of electromagnetic processes in electric gas turbine installations

    NASA Astrophysics Data System (ADS)

    Kislyakov, M. A.; Chernov, V. A.; Maksimkin, V. L.; Bozhin, Yu. M.

    2017-12-01

    Electric gas turbine aggregates are considered in terms of ensuring reliable operation of gas-dynamic bearings. A complex of unfavorable factors affecting this unit of the installation is described, including rotor unbalance, eccentricity, irregularity of armature field rotation, its amplitude variation during rotor rotation, etc. The studies have shown that it is possible to increase the efficiency of EGTA by increasing the number of armature winding phases (i.e. reducing electromagnetic torque ripples), amplifying the damping circuits on the rotor, as well as by introducing pulse-width modulation of currents in the phases and flexible feedbacks.

  19. EM Modelling of RF Propagation Through Plasma Plumes

    NASA Astrophysics Data System (ADS)

    Pandolfo, L.; Bandinelli, M.; Araque Quijano, J. L.; Vecchi, G.; Pawlak, H.; Marliani, F.

    2012-05-01

    Electric propulsion is a commercially attractive solution for attitude and position control of geostationary satellites. Hall-effect ion thrusters generate a localized plasma flow in the surrounding of the satellite, whose impact on the communication system needs to be qualitatively and quantitatively assessed. An electromagnetic modelling tool has been developed and integrated into the Antenna Design Framework- ElectroMagnetic Satellite (ADF-EMS). The system is able to guide the user from the plume definition phases through plume installation and simulation. A validation activity has been carried out and the system has been applied to the plume modulation analysis of SGEO/Hispasat mission.

  20. The impact of acute stress on hormones and cytokines, and how their recovery is affected by music-evoked positive mood

    PubMed Central

    Koelsch, Stefan; Boehlig, Albrecht; Hohenadel, Maximilian; Nitsche, Ines; Bauer, Katrin; Sack, Ulrich

    2016-01-01

    Stress and recovery from stress significantly affect interactions between the central nervous system, endocrine pathways, and the immune system. However, the influence of acute stress on circulating immune-endocrine mediators in humans is not well known. Using a double-blind, randomized study design, we administered a CO2 stress test to n = 143 participants to identify the effects of acute stress, and recovery from stress, on serum levels of several mediators with immune function (IL-6, TNF-α, leptin, and somatostatin), as well as on noradrenaline, and two hypothalamic–pituitary–adrenal axis hormones (ACTH and cortisol). Moreover, during a 1 h-recovery period, we repeatedly measured these serum parameters, and administered an auditory mood-induction protocol with positive music and a neutral control stimulus. The acute stress elicited increases in noradrenaline, ACTH, cortisol, IL-6, and leptin levels. Noradrenaline and ACTH exhibited the fastest and strongest stress responses, followed by cortisol, IL-6 and leptin. The music intervention was associated with more positive mood, and stronger cortisol responses to the acute stressor in the music group. Our data show that acute (CO2) stress affects endocrine, immune and metabolic functions in humans, and they show that mood plays a causal role in the modulation of responses to acute stress. PMID:27020850

  1. Audio-tactile integration and the influence of musical training.

    PubMed

    Kuchenbuch, Anja; Paraskevopoulos, Evangelos; Herholz, Sibylle C; Pantev, Christo

    2014-01-01

    Perception of our environment is a multisensory experience; information from different sensory systems like the auditory, visual and tactile is constantly integrated. Complex tasks that require high temporal and spatial precision of multisensory integration put strong demands on the underlying networks but it is largely unknown how task experience shapes multisensory processing. Long-term musical training is an excellent model for brain plasticity because it shapes the human brain at functional and structural levels, affecting a network of brain areas. In the present study we used magnetoencephalography (MEG) to investigate how audio-tactile perception is integrated in the human brain and if musicians show enhancement of the corresponding activation compared to non-musicians. Using a paradigm that allowed the investigation of combined and separate auditory and tactile processing, we found a multisensory incongruency response, generated in frontal, cingulate and cerebellar regions, an auditory mismatch response generated mainly in the auditory cortex and a tactile mismatch response generated in frontal and cerebellar regions. The influence of musical training was seen in the audio-tactile as well as in the auditory condition, indicating enhanced higher-order processing in musicians, while the sources of the tactile MMN were not influenced by long-term musical training. Consistent with the predictive coding model, more basic, bottom-up sensory processing was relatively stable and less affected by expertise, whereas areas for top-down models of multisensory expectancies were modulated by training.

  2. Independent component processes underlying emotions during natural music listening.

    PubMed

    Rogenmoser, Lars; Zollinger, Nina; Elmer, Stefan; Jäncke, Lutz

    2016-09-01

    The aim of this study was to investigate the brain processes underlying emotions during natural music listening. To address this, we recorded high-density electroencephalography (EEG) from 22 subjects while presenting a set of individually matched whole musical excerpts varying in valence and arousal. Independent component analysis was applied to decompose the EEG data into functionally distinct brain processes. A k-means cluster analysis calculated on the basis of a combination of spatial (scalp topography and dipole location mapped onto the Montreal Neurological Institute brain template) and functional (spectra) characteristics revealed 10 clusters referring to brain areas typically involved in music and emotion processing, namely in the proximity of thalamic-limbic and orbitofrontal regions as well as at frontal, fronto-parietal, parietal, parieto-occipital, temporo-occipital and occipital areas. This analysis revealed that arousal was associated with a suppression of power in the alpha frequency range. On the other hand, valence was associated with an increase in theta frequency power in response to excerpts inducing happiness compared to sadness. These findings are partly compatible with the model proposed by Heller, arguing that the frontal lobe is involved in modulating valenced experiences (the left frontal hemisphere for positive emotions) whereas the right parieto-temporal region contributes to the emotional arousal. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  3. Expertise-dependent motor somatotopy of music perception.

    PubMed

    Furukawa, Yuta; Uehara, Kazumasa; Furuya, Shinichi

    2017-05-22

    Precise mapping between sound and motion underlies successful communication and information transmission in speech and musical performance. Formation of the map typically undergoes plastic changes in the neuronal network between auditory and motor regions through training. However, to what extent the map is somatotopically-tuned so that auditory information can specifically modulate the corticospinal system responsible for the relevant motor action has not been elucidated. Here we addressed this issue by assessing the excitability of corticospinal system including the primary motor cortex (M1) innervating the hand intrinsic muscles by means of transcranial magnetic stimulation while trained pianists and musically-untrained individuals (non-musicians) were listening to either piano tones or noise. M1 excitability was evaluated at two anatomically-independent muscles of the hand. The results demonstrated elevation of M1 excitability at not all but one specific muscle while listening to piano tones in the pianists, but no excitability change in both of the muscles in the non-musicians. However, listening to noise did not elicit any changes of M1 excitability at both muscles in both the pianists and the non-musicians. These findings indicate that auditory information representing the trained motor action tunes M1 excitability in a non-uniform, somatotopically-specific manner, which is likely associated with multimodal experiences in musical training. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Position coding effects in a 2D scenario: the case of musical notation.

    PubMed

    Perea, Manuel; García-Chamorro, Cristina; Centelles, Arnau; Jiménez, María

    2013-07-01

    How does the cognitive system encode the location of objects in a visual scene? In the past decade, this question has attracted much attention in the field of visual-word recognition (e.g., "jugde" is perceptually very close to "judge"). Letter transposition effects have been explained in terms of perceptual uncertainty or shared "open bigrams". In the present study, we focus on note position coding in music reading (i.e., a 2D scenario). The usual way to display music is the staff (i.e., a set of 5 horizontal lines and their resultant 4 spaces). When reading musical notation, it is critical to identify not only each note (temporal duration), but also its pitch (y-axis) and its temporal sequence (x-axis). To examine note position coding, we employed a same-different task in which two briefly and consecutively presented staves contained four notes. The experiment was conducted with experts (musicians) and non-experts (non-musicians). For the "different" trials, the critical conditions involved staves in which two internal notes that were switched vertically, horizontally, or fully transposed--as well as the appropriate control conditions. Results revealed that note position coding was only approximate at the early stages of processing and that this encoding process was modulated by expertise. We examine the implications of these findings for models of object position encoding. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. System and method for characterizing synthesizing and/or canceling out acoustic signals from inanimate sound sources

    DOEpatents

    Holzrichter, John F.; Burnett, Greg C.; Ng, Lawrence C.

    2003-01-01

    A system and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources is disclosed. Propagating wave electromagnetic sensors monitor excitation sources in sound producing systems, such as machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The methods disclosed enable accurate calculation of matched transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.

  6. Characterizing, synthesizing, and/or canceling out acoustic signals from sound sources

    DOEpatents

    Holzrichter, John F [Berkeley, CA; Ng, Lawrence C [Danville, CA

    2007-03-13

    A system for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate and animate sound sources. Electromagnetic sensors monitor excitation sources in sound producing systems, such as animate sound sources such as the human voice, or from machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The systems disclosed enable accurate calculation of transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.

  7. System and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources

    DOEpatents

    Holzrichter, John F; Burnett, Greg C; Ng, Lawrence C

    2013-05-21

    A system and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources is disclosed. Propagating wave electromagnetic sensors monitor excitation sources in sound producing systems, such as machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The methods disclosed enable accurate calculation of matched transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.

  8. System and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources

    DOEpatents

    Holzrichter, John F.; Burnett, Greg C.; Ng, Lawrence C.

    2007-10-16

    A system and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources is disclosed. Propagating wave electromagnetic sensors monitor excitation sources in sound producing systems, such as machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The methods disclosed enable accurate calculation of matched transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.

  9. Study of response nonuniformity for the LHCb calorimeter module and the prototype of the CBM calorimeter module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korolko, I. E.; Prokudin, M. S.

    A spatial nonuniformity of the response to high-energy muons is studied in the modules of the LHCb electromagnetic calorimeter and the prototype of the calorimeter module with lead plates and scintillator tiles 0.5 mm thick. The nonuniformity of the response of the inner LHCb modules to 50-GeV electrons is also measured. Software is developed for a thorough simulation of light collection in scintillator plates of a shashlik calorimeter. A model is elaborated to describe light transmission from the initial scintillation to the wavelength-shifting fiber with a subsequent reradiation and propagation of light over the fiber to the photodetector. The resultsmore » of the simulation are in good agreement with data.« less

  10. The feeling of familiarity for music in patients with a unilateral temporal lobe lesion: A gating study.

    PubMed

    Huijgen, Josefien; Dellacherie, Delphine; Tillmann, Barbara; Clément, Sylvain; Bigand, Emmanuel; Dupont, Sophie; Samson, Séverine

    2015-10-01

    Previous research has indicated that the medial temporal lobe (MTL), and more specifically the perirhinal cortex, plays a role in the feeling of familiarity for non-musical stimuli. Here, we examined contribution of the MTL to the feeling of familiarity for music by testing patients with unilateral MTL lesions. We used a gating paradigm: segments of familiar and unfamiliar musical excerpts were played with increasing durations (250, 500, 1000, 2000, 4000 ms and complete excerpts), and participants provided familiarity judgments for each segment. Based on the hypothesis that patients might need longer segments than healthy controls (HC) to identify excerpts as familiar, we examined the onset of the emergence of familiarity in HC, patients with a right MTL resection (RTR), and patients with a left MTL resection (LTR). In contrast to our hypothesis, we found that the feeling of familiarity was relatively spared in patients with a right or left MTL lesion, even for short excerpts. All participants were able to differentiate familiar from unfamiliar excerpts as early as 500 ms, although the difference between familiar and unfamiliar judgements was greater in HC than in patients. These findings suggest that a unilateral MTL lesion does not impair the emergence of the feeling of familiarity. We also assessed whether the dynamics of the musical excerpt (linked to the type and amount of information contained in the excerpts) modulated the onset of the feeling of familiarity in the three groups. The difference between familiar and unfamiliar judgements was greater for high than for low-dynamic excerpts for HC and RTR patients, but not for LTR patients. This indicates that the LTR group did not benefit in the same way from dynamics. Overall, our results imply that the recognition of previously well-learned musical excerpts does not depend on the integrity of either right or the left MTL structures. Patients with a unilateral MTL resection may compensate for the effects of unilateral damage by using the intact contralateral temporal lobe. Moreover, we suggest that remote semantic memory for music might depend more strongly on neocortical structures rather than the MTL. Copyright © 2015. Published by Elsevier Ltd.

  11. Prenatal complex rhythmic music sound stimulation facilitates postnatal spatial learning but transiently impairs memory in the domestic chick.

    PubMed

    Kauser, H; Roy, S; Pal, A; Sreenivas, V; Mathur, R; Wadhwa, S; Jain, S

    2011-01-01

    Early experience has a profound influence on brain development, and the modulation of prenatal perceptual learning by external environmental stimuli has been shown in birds, rodents and mammals. In the present study, the effect of prenatal complex rhythmic music sound stimulation on postnatal spatial learning, memory and isolation stress was observed. Auditory stimulation with either music or species-specific sounds or no stimulation (control) was provided to separate sets of fertilized eggs from day 10 of incubation. Following hatching, the chicks at age 24, 72 and 120 h were tested on a T-maze for spatial learning and the memory of the learnt task was assessed 24 h after training. In the posthatch chicks at all ages, the plasma corticosterone levels were estimated following 10 min of isolation. The chicks of all ages in the three groups took less (p < 0.001) time to navigate the maze over the three trials thereby showing an improvement with training. In both sound-stimulated groups, the total time taken to reach the target decreased significantly (p < 0.01) in comparison to the unstimulated control group, indicating the facilitation of spatial learning. However, this decline was more at 24 h than at later posthatch ages. When tested for memory after 24 h of training, only the music-stimulated chicks at posthatch age 24 h took a significantly longer (p < 0.001) time to traverse the maze, suggesting a temporary impairment in their retention of the learnt task. In both sound-stimulated groups at 24 h, the plasma corticosterone levels were significantly decreased (p < 0.001) and increased thereafter at 72 h (p < 0.001) and 120 h which may contribute to the differential response in spatial learning. Thus, prenatal auditory stimulation with either species-specific or complex rhythmic music sounds facilitates spatial learning, though the music stimulation transiently impairs postnatal memory. 2011 S. Karger AG, Basel.

  12. Dynamically controlled electromagnetically induced transparency in terahertz graphene metamaterial for modulation and slow light applications

    NASA Astrophysics Data System (ADS)

    He, Xunjun; Yao, Yuan; Yang, Xingyu; Lu, Guangjun; Yang, Wenlong; Yang, Yuqiang; Wu, Fengmin; Yu, Zhigang; Jiang, Jiuxing

    2018-03-01

    By patterning two graphene resonators on a SiO2/Si substrate, a dynamically controlled electromagnetically induced transparency (EIT) in the terahertz graphene metamaterial was numerically studied through tuning the structural parameter and Fermi energy of graphene. The calculated surface current distributions demonstrate that the distinct EIT window in the graphene metamaterial results from the near-field coupling of two graphene resonators. Moreover, the EIT window can be actively controlled by tuning Fermi energy combined states of two resonators. When the Fermi energy combined state of two resonators changes from (0.21 and 0.16 eV) to (0.4 and 0.11 eV), the amplitude modulation depth of the EIT peak is 97.8% at 0.45 THz, and the corresponding enhanced factor of group delay with 6 times is obtained. This study offers an alternative tuning method to existing optical, thermal, and relative distance tuning, delivering a promising potential for designing active and miniaturized THz devices.

  13. Range-gated field disturbance sensor with range-sensitivity compensation

    DOEpatents

    McEwan, T.E.

    1996-05-28

    A field disturbance sensor operates with relatively low power, provides an adjustable operating range, is not hypersensitive at close range, allows co-location of multiple sensors, and is inexpensive to manufacture. The sensor includes a transmitter that transmits a sequence of transmitted bursts of electromagnetic energy. The transmitter frequency is modulated at an intermediate frequency. The sequence of bursts has a burst repetition rate, and each burst has a burst width and comprises a number of cycles at a transmitter frequency. The sensor includes a receiver which receives electromagnetic energy at the transmitter frequency, and includes a mixer which mixes a transmitted burst with reflections of the same transmitted burst to produce an intermediate frequency signal. Circuitry, responsive to the intermediate frequency signal indicates disturbances in the sensor field. Because the mixer mixes the transmitted burst with reflections of the transmitted burst, the burst width defines the sensor range. The burst repetition rate is randomly or pseudorandomly modulated so that bursts in the sequence of bursts have a phase which varies. 8 figs.

  14. Range-gated field disturbance sensor with range-sensitivity compensation

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A field disturbance sensor operates with relatively low power, provides an adjustable operating range, is not hypersensitive at close range, allows co-location of multiple sensors, and is inexpensive to manufacture. The sensor includes a transmitter that transmits a sequence of transmitted bursts of electromagnetic energy. The transmitter frequency is modulated at an intermediate frequency. The sequence of bursts has a burst repetition rate, and each burst has a burst width and comprises a number of cycles at a transmitter frequency. The sensor includes a receiver which receives electromagnetic energy at the transmitter frequency, and includes a mixer which mixes a transmitted burst with reflections of the same transmitted burst to produce an intermediate frequency signal. Circuitry, responsive to the intermediate frequency signal indicates disturbances in the sensor field. Because the mixer mixes the transmitted burst with reflections of the transmitted burst, the burst width defines the sensor range. The burst repetition rate is randomly or pseudorandomly modulated so that bursts in the sequence of bursts have a phase which varies.

  15. An Exploration of Rhythmic Grouping of Speech Sequences by French- and German-Learning Infants

    PubMed Central

    Abboub, Nawal; Boll-Avetisyan, Natalie; Bhatara, Anjali; Höhle, Barbara; Nazzi, Thierry

    2016-01-01

    Rhythm in music and speech can be characterized by a constellation of several acoustic cues. Individually, these cues have different effects on rhythmic perception: sequences of sounds alternating in duration are perceived as short-long pairs (weak-strong/iambic pattern), whereas sequences of sounds alternating in intensity or pitch are perceived as loud-soft, or high-low pairs (strong-weak/trochaic pattern). This perceptual bias—called the Iambic-Trochaic Law (ITL)–has been claimed to be an universal property of the auditory system applying in both the music and the language domains. Recent studies have shown that language experience can modulate the effects of the ITL on rhythmic perception of both speech and non-speech sequences in adults, and of non-speech sequences in 7.5-month-old infants. The goal of the present study was to explore whether language experience also modulates infants’ grouping of speech. To do so, we presented sequences of syllables to monolingual French- and German-learning 7.5-month-olds. Using the Headturn Preference Procedure (HPP), we examined whether they were able to perceive a rhythmic structure in sequences of syllables that alternated in duration, pitch, or intensity. Our findings show that both French- and German-learning infants perceived a rhythmic structure when it was cued by duration or pitch but not intensity. Our findings also show differences in how these infants use duration and pitch cues to group syllable sequences, suggesting that pitch cues were the easier ones to use. Moreover, performance did not differ across languages, failing to reveal early language effects on rhythmic perception. These results contribute to our understanding of the origin of rhythmic perception and perceptual mechanisms shared across music and speech, which may bootstrap language acquisition. PMID:27378887

  16. Music therapy modulates fronto-temporal activity in rest-EEG in depressed clients.

    PubMed

    Fachner, Jörg; Gold, Christian; Erkkilä, Jaakko

    2013-04-01

    Fronto-temporal areas process shared elements of speech and music. Improvisational psychodynamic music therapy (MT) utilizes verbal and musical reflection on emotions and images arising from clinical improvisation. Music listening is shifting frontal alpha asymmetries (FAA) in depression, and increases frontal midline theta (FMT). In a two-armed randomized controlled trial (RCT) with 79 depressed clients (with comorbid anxiety), we compared standard care (SC) versus MT added to SC at intake and after 3 months. We found that MT significantly reduced depression and anxiety symptoms. The purpose of this study is to test whether or not MT has an impact on anterior fronto-temporal resting state alpha and theta oscillations. Correlations between anterior EEG, Montgomery-Åsberg Depression Rating Scale (MADRS) and the Hospital Anxiety and Depression Scale-Anxiety Subscale (HADS-A), power spectral analysis (topography, means, asymmetry) and normative EEG database comparisons were explored. After 3 month of MT, lasting changes in resting EEG were observed, i.e., significant absolute power increases at left fronto-temporal alpha, but most distinct for theta (also at left fronto-central and right temporoparietal leads). MT differed to SC at F7-F8 (z scored FAA, p < .03) and T3-T4 (theta, p < .005) asymmetry scores, pointing towards decreased relative left-sided brain activity after MT; pre/post increased FMT and decreased HADS-A scores (r = .42, p < .05) indicate reduced anxiety after MT. Verbal reflection and improvising on emotions in MT may induce neural reorganization in fronto-temporal areas. Alpha and theta changes in fronto-temporal and temporoparietal areas indicate MT action and treatment effects on cortical activity in depression, suggesting an impact of MT on anxiety reduction.

  17. A Novel Shape Memory Plate Osteosynthesis for Noninvasive Modulation of Fixation Stiffness in a Rabbit Tibia Osteotomy Model

    PubMed Central

    Müller, Christian W.; Pfeifer, Ronny; Meier, Karen; Decker, Sebastian; Reifenrath, Janin; Gösling, Thomas; Wesling, Volker; Krettek, Christian; Krämer, Manuel

    2015-01-01

    Nickel-titanium shape memory alloy (NiTi-SMA) implants might allow modulating fracture healing, changing their stiffness through alteration of both elastic modulus and cross-sectional shape by employing the shape memory effect (SME). Hypotheses: a novel NiTi-SMA plate stabilizes tibia osteotomies in rabbits. After noninvasive electromagnetic induction heating the alloy exhibits the SME and the plate changes towards higher stiffness (inverse dynamization) resulting in increased fixation stiffness and equal or better bony healing. In 14 rabbits, 1.0 mm tibia osteotomies were fixed with our experimental plate. Animals were randomised for control or induction heating at three weeks postoperatively. Repetitive X-ray imaging and in vivo measurements of bending stiffness were performed. After sacrifice at 8 weeks, macroscopic evaluation, µCT, and post mortem bending tests of the tibiae were carried out. One death and one early implant dislocation occurred. Following electromagnetic induction heating, radiographic and macroscopic changes of the implant proved successful SME activation. All osteotomies healed. In the treatment group, bending stiffness increased over time. Differences between groups were not significant. In conclusion, we demonstrated successful healing of rabbit tibia osteotomies using our novel NiTi-SMA plate. We demonstrated shape-changing SME in-vivo through transcutaneous electromagnetic induction heating. Thus, future orthopaedic implants could be modified without additional surgery. PMID:26167493

  18. Mechanical stress-controlled tunable active frequency-selective surface

    NASA Astrophysics Data System (ADS)

    Huang, Bo-Cin; Hong, Jian-Wei; Lo, Cheng-Yao

    2017-01-01

    This study proposes a tunable active frequency-selective surface (AFSS) realized by mechanically expanding or contracting a split-ring resonator (SRR) array. The proposed AFSS transfers mechanical stress from its elastic substrate to the top of the SRR, thereby achieving electromagnetic (EM) modulation without the need for an additional external power supply, meeting the requirements for the target application: the invisibility cloak. The operating mechanism of the proposed AFSS differs from those of other AFSSs, supporting modulations in arbitrary frequencies in the target range. The proposed stress-controlled or strain-induced EM modulation proves the existence of an identical and linear relationship between the strain gradient and the frequency shift, implying its suitability for other EM modulation ranges and applications.

  19. Design and analysis of a field modulated magnetic screw for artificial heart

    NASA Astrophysics Data System (ADS)

    Ling, Zhijian; Ji, Jinghua; Wang, Fangqun; Bian, Fangfang

    2017-05-01

    This paper proposes a new electromechanical energy conversion system, called Field Modulated Magnetic Screw (FMMS) as a high force density linear actuator for artificial heart. This device is based on the concept of magnetic screw and linear magnetic gear. The proposed FMMS consists of three parts with the outer and inner carrying the radially magnetized helically permanent-magnet (PM), and the intermediate having a set of helically ferromagnetic pole pieces, which modulate the magnetic fields produced by the PMs. The configuration of the newly designed FMMS is presented and its electromagnetic performances are analyzed by using the finite-element analysis, verifying the advantages of the proposed structure.

  20. Narrowband high temperature superconducting receiver for low frequency radio waves

    DOEpatents

    Reagor, David W.

    2001-01-01

    An underground communicating device has a low-noise SQUID using high temperature superconductor components connected to detect a modulated external magnetic flux for outputting a voltage signal spectrum that is related to the varying magnetic flux. A narrow bandwidth filter may be used to select a portion of the voltage signal spectrum that is relatively free of power line noise to output a relatively low noise output signal when operating in a portion of the electromagnetic spectra where such power line noise exists. A demodulator outputs a communication signal, which may be an FM signal, indicative of a modulation on the modulated external magnetic flux.

  1. Kuznetsov-Ma waves train generation in a left-handed material

    NASA Astrophysics Data System (ADS)

    Atangana, Jacques; Giscard Onana Essama, Bedel; Biya-Motto, Frederick; Mokhtari, Bouchra; Cherkaoui Eddeqaqi, Noureddine; Crépin Kofane, Timoléon

    2015-03-01

    We analyze the behavior of an electromagnetic wave which propagates in a left-handed material. Second-order dispersion and cubic-quintic nonlinearities are considered. This behavior of an electromagnetic wave is modeled by a nonlinear Schrödinger equation which is solved by collective coordinates theory in order to characterize the light pulse intensity profile. More so, a specific frequency range has been outlined where electromagnetic wave behavior will be investigated. The perfect combination of second-order dispersion and cubic nonlinearity leads to a robust soliton. When the quintic nonlinearity comes into play, it provokes strong and long internal perturbations which lead to Benjamin-Feir instability. This phenomenon, also called modulational instability, induces appearance of a Kuznetsov-Ma waves train. We numerically verify the validity of Kuznetsov-Ma theory by presenting physical conditions which lead to Kuznetsov-Ma waves train generation. Thereafter, some properties of such waves train are also verified.

  2. Accelerated ions from pulsed-power-driven fast plasma flow in perpendicular magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takezaki, Taichi, E-mail: ttakezaki@stn.nagaokaut.ac.jp; Takahashi, Kazumasa; Sasaki, Toru, E-mail: sasakit@vos.nagaokaut.ac.jp

    2016-06-15

    To understand the interaction between fast plasma flow and perpendicular magnetic field, we have investigated the behavior of a one-dimensional fast plasma flow in a perpendicular magnetic field by a laboratory-scale experiment using a pulsed-power discharge. The velocity of the plasma flow generated by a tapered cone plasma focus device is about 30 km/s, and the magnetic Reynolds number is estimated to be 8.8. After flow through the perpendicular magnetic field, the accelerated ions are measured by an ion collector. To clarify the behavior of the accelerated ions and the electromagnetic fields, numerical simulations based on an electromagnetic hybrid particle-in-cell methodmore » have been carried out. The results show that the behavior of the accelerated ions corresponds qualitatively to the experimental results. Faster ions in the plasma flow are accelerated by the induced electromagnetic fields modulated with the plasma flow.« less

  3. Topography-Assisted Electromagnetic Platform for Blood-to-PCR in a Droplet

    PubMed Central

    Chiou, Chi-Han; Shin, Dong Jin; Zhang, Yi; Wang, Tza-Huei

    2013-01-01

    This paper presents an electromagnetically actuated platform for automated sample preparation and detection of nucleic acids. The proposed platform integrates nucleic acid extraction using silica-coated magnetic particles with real-time polymerase chain reaction (PCR) on a single cartridge. Extraction of genomic material was automated by manipulating magnetic particles in droplets using a series of planar coil electromagnets assisted by topographical features, enabling efficient fluidic processing over a variety of buffers and reagents. The functionality of the platform was demonstrated by performing nucleic acid extraction from whole blood, followed by real-time PCR detection of KRAS oncogene. Automated sample processing from whole blood to PCR-ready droplet was performed in 15 minutes. We took a modular approach of decoupling the modules of magnetic manipulation and optical detection from the device itself, enabling a low-complexity cartridge that operates in tandem with simple external instruments. PMID:23835223

  4. Safe use of cellular telephones in hospitals: fundamental principles and case studies.

    PubMed

    Cohen, Ted; Ellis, Willard S; Morrissey, Joseph J; Bakuzonis, Craig; David, Yadin; Paperman, W David

    2005-01-01

    Many industries and individuals have embraced cellular telephones. They provide mobile, synchronous communication, which could hypothetically increase the efficiency and safety of inpatient healthcare. However, reports of early analog cellular telephones interfering with critical life-support machines had led many hospitals to strictly prohibit cellular telephones. A literature search revealed that individual hospitals now are allowing cellular telephone use with various policies to prevent electromagnetic interference with medical devices. The fundamental principles underlying electromagnetic interference are immunity, frequency, modulation technology, distance, and power Electromagnetic interference risk mitigation methods based on these principles have been successfully implemented. In one case study, a minimum distance between cellular telephones and medical devices is maintained, with restrictions in critical areas. In another case study, cellular telephone coverage is augmented to automatically control the power of the cellular telephone. While no uniform safety standard yet exists, cellular telephones can be safely used in hospitals when their use is managed carefully.

  5. Carbon nanotube scaffolds with controlled porosity as electromagnetic absorbing materials in the gigahertz range.

    PubMed

    González, M; Crespo, M; Baselga, J; Pozuelo, J

    2016-05-19

    Control of the microscopic structure of CNT nanocomposites allows modulation of the electromagnetic shielding in the gigahertz range. The porosity of CNT scaffolds has been controlled by two freezing protocols and a subsequent lyophilization step: fast freezing in liquid nitrogen and slow freezing at -20 °C. Mercury porosimetry shows that slowly frozen specimens present a more open pore size (100-150 μm) with a narrow distribution whereas specimens frozen rapidly show a smaller pore size and a heterogeneous distribution. 3D-scaffolds containing 3, 4, 6 and 7% CNT were infiltrated with epoxy and specimens with 2, 5 and 8 mm thicknesses were characterized in the GHz range. Samples with the highest pore size and porosity presented the lowest reflected power (about 30%) and the highest absorbed power (about 70%), which allows considering them as electromagnetic radiation absorbing materials.

  6. Basic EMC (Electromagnetic compatibility) technology advancement for C3 (Command, control, and communications) systems. Volume 6

    NASA Astrophysics Data System (ADS)

    Weiner, D.; Paul, C. R.; Whalen, J.

    1985-04-01

    This research effort was devoted to eliminating some of the basic technological gaps in the two important areas of: (1) electromagnetic effects (EM) on microelectronic circuits and (2) EM coupling and testing. The results are presented in fourteen reports which have been organized into six volumes. The reports are briefly summarized in this volume. In addition, an experiment is described which was performed to demonstrate the feasibility of applying several of the results to a problem involving electromagnetic interference. Specifically, experimental results are provided for the randomness associated with: (1) crosstalk in cable harnesses and (2) demodulation of amplitude modulated (AM) signals in operational amplifiers. These results are combined to predict candidate probability density functions (pdf's) for the amplitude of an AM interfering signal required to turn on a light emitting diode. The candidate pdf's are shown to be statistically consistent with measured data.

  7. IEEE 1988 International Symposium on Electromagnetic Compatibility, Seattle, WA, Aug. 2-4, 1988, Record

    NASA Astrophysics Data System (ADS)

    Various papers on electromagnetic compatibility are presented. Some of the optics considered include: field-to-wire coupling 1 to 18 GHz, SHF/EHF field-to-wire coupling model, numerical method for the analysis of coupling to thin wire structures, spread-spectrum system with an adaptive array for combating interference, technique to select the optimum modulation indices for suppression of undesired signals for simultaneous range and data operations, development of a MHz RF leak detector technique for aircraft harness surveillance, and performance of standard aperture shielding techniques at microwave frequncies. Also discussed are: spectrum efficiency of spread-spectrum systems, control of power supply ripple produced sidebands in microwave transistor amplifiers, an intership SATCOM versus radar electromagnetic interference prediction model, considerations in the design of a broadband E-field sensing system, unique bonding methods for spacecraft, and review of EMC practice for launch vehicle systems.

  8. Isentropic Compression with a Rectangular Configuration for Tungstene and Tantalum, Computations and Comparison with Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lefrancois, A.; Reisman, D. B.; Bastea, M.

    2006-02-13

    Isentropic compression experiments and numerical simulations on metals are performed at Z accelerator facility from Sandia National Laboratory and at Lawrence Livermore National Laboratory in order to study the isentrope, associated Hugoniot and phase changes of these metals. 3D configurations have been calculated here to benchmark the new beta version of the electromagnetism package coupled with the dynamics in Ls-Dyna and compared with the ICE Z shots 1511 and 1555. The electromagnetism module is being developed in the general-purpose explicit and implicit finite element program LS-DYNA{reg_sign} in order to perform coupled mechanical/thermal/electromagnetism simulations. The Maxwell equations are solved using amore » Finite Element Method (FEM) for the solid conductors coupled with a Boundary Element Method (BEM) for the surrounding air (or vacuum). More details can be read in the references.« less

  9. Isentropic Compression up to 200 KBars for LX 04, Numerical Simulations and Comparison with Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lefrancois, A.; Hare, D.; L'Eplattenier, P.

    2006-02-13

    Isentropic compression experiments and numerical simulations on LX-04 (HMX / Viton 85/15) were performed respectively at Z accelerator facility from Sandia National Laboratory and at Lawrence Livermore National Laboratory in order to study the isentrope and associated Hugoniot of this HE. 2D and 3D configurations have been calculated here to test the new beta version of the electromagnetism package coupled with the dynamics in Ls-Dyna and compared with the ICE Z shot 1067 on LX 04. The electromagnetism module is being developed in the general-purpose explicit and implicit finite element program LS-DYNA{reg_sign} in order to perform coupled mechanical/thermal/electromagnetism simulations. Themore » Maxwell equations are solved using a Finite Element Method (FEM) for the solid conductors coupled with a Boundary Element Method (BEM) for the surrounding air (or vacuum). More details can be read in the references.« less

  10. Shaping reverberating sound fields with an actively tunable metasurface.

    PubMed

    Ma, Guancong; Fan, Xiying; Sheng, Ping; Fink, Mathias

    2018-06-26

    A reverberating environment is a common complex medium for airborne sound, with familiar examples such as music halls and lecture theaters. The complexity of reverberating sound fields has hindered their meaningful control. Here, by combining acoustic metasurface and adaptive wavefield shaping, we demonstrate the versatile control of reverberating sound fields in a room. This is achieved through the design and the realization of a binary phase-modulating spatial sound modulator that is based on an actively reconfigurable acoustic metasurface. We demonstrate useful functionalities including the creation of quiet zones and hotspots in a typical reverberating environment. Copyright © 2018 the Author(s). Published by PNAS.

  11. A 65-kV insulated gate bipolar transistor switch applied in damped AC voltages partial discharge detection system.

    PubMed

    Jiang, J; Ma, G M; Luo, D P; Li, C R; Li, Q M; Wang, W

    2014-02-01

    Damped AC voltages detection system (DAC) is a productive way to detect the faults in power cables. To solve the problems of large volume, complicated structure and electromagnetic interference in existing switches, this paper developed a compact solid state switch based on electromagnetic trigger, which is suitable for DAC test system. Synchronous electromagnetic trigger of 32 Insulated Gate Bipolar Transistors (IGBTs) in series was realized by the topological structure of single line based on pulse width modulation control technology. In this way, external extension was easily achieved. Electromagnetic trigger and resistor-capacitor-diode snubber circuit were optimized to reduce the switch turn-on time and circular layout. Epoxy encapsulating was chosen to enhance the level of partial discharge initial voltage (PDIV). The combination of synchronous trigger and power supply is proposed to reduce the switch volume. Moreover, we have overcome the drawback of the electromagnetic interference and improved the detection sensitivity of DAC by using capacitor storage energy to maintain IGBT gate driving voltage. The experimental results demonstrated that the solid-state switch, with compact size, whose turn-on time was less than 400 ns and PDIV was more than 65 kV, was able to meet the actual demands of 35 kV DAC test system.

  12. Localization from near-source quasi-static electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Mosher, J. C.

    1993-09-01

    A wide range of research has been published on the problem of estimating the parameters of electromagnetic and acoustical sources from measurements of signals measured at an array of sensors. In the quasi-static electromagnetic cases examined here, the signal variation from a point source is relatively slow with respect to the signal propagation and the spacing of the array of sensors. As such, the location of the point sources can only be determined from the spatial diversity of the received signal across the array. The inverse source localization problem is complicated by unknown model order and strong local minima. The nonlinear optimization problem is posed for solving for the parameters of the quasi-static source model. The transient nature of the sources can be exploited to allow subspace approaches to separate out the signal portion of the spatial correlation matrix. Decomposition techniques are examined for improved processing, and an adaptation of MUltiple SIgnal Characterization (MUSIC) is presented for solving the source localization problem. Recent results on calculating the Cramer-Rao error lower bounds are extended to the multidimensional problem here. This thesis focuses on the problem of source localization in magnetoencephalography (MEG), with a secondary application to thunderstorm source localization. Comparisons are also made between MEG and its electrical equivalent, electroencephalography (EEG). The error lower bounds are examined in detail for several MEG and EEG configurations, as well as localizing thunderstorm cells over Cape Canaveral and Kennedy Space Center. Time-eigenspectrum is introduced as a parsing technique for improving the performance of the optimization problem.

  13. Localization from near-source quasi-static electromagnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosher, John Compton

    1993-09-01

    A wide range of research has been published on the problem of estimating the parameters of electromagnetic and acoustical sources from measurements of signals measured at an array of sensors. In the quasi-static electromagnetic cases examined here, the signal variation from a point source is relatively slow with respect to the signal propagation and the spacing of the array of sensors. As such, the location of the point sources can only be determined from the spatial diversity of the received signal across the array. The inverse source localization problem is complicated by unknown model order and strong local minima. Themore » nonlinear optimization problem is posed for solving for the parameters of the quasi-static source model. The transient nature of the sources can be exploited to allow subspace approaches to separate out the signal portion of the spatial correlation matrix. Decomposition techniques are examined for improved processing, and an adaptation of MUtiple SIgnal Characterization (MUSIC) is presented for solving the source localization problem. Recent results on calculating the Cramer-Rao error lower bounds are extended to the multidimensional problem here. This thesis focuses on the problem of source localization in magnetoencephalography (MEG), with a secondary application to thunderstorm source localization. Comparisons are also made between MEG and its electrical equivalent, electroencephalography (EEG). The error lower bounds are examined in detail for several MEG and EEG configurations, as well as localizing thunderstorm cells over Cape Canaveral and Kennedy Space Center. Time-eigenspectrum is introduced as a parsing technique for improving the performance of the optimization problem.« less

  14. Electrically optical phase controlling for millimeter wave orbital angular momentum multi-modulation communication

    NASA Astrophysics Data System (ADS)

    Wu, Haotian; Tang, Jin; Yu, Zhenliang; Yi, Jun; Chen, Shuqing; Xiao, Jiangnan; Zhao, Chujun; Li, Ying; Chen, Lin; Wen, Shuangchun

    2017-06-01

    Orbital angular momentum (OAM), an emerging and fascinating degree of freedom, has highlighted an innovation in communication and optical manipulation field. The beams with different OAM state, which manifest as the phase front ;twisting; of electromagnetic waves, are mutually orthogonal, which is exactly what a new freedom applied to practical communication eagers for. Herein, we proposed a novel millimeter-wave OAM modulation technique by electrically optical phase controlling. By modulating OAM and phase of optical-millimeter-wave synchronously, the multi-modulation: quadrature orbital angular momentum modulation (QOM) communication system at W band is structured and simulated, allowing a 50 Gbit/s signal transmitting with bit-error rates less than 10-4. Our work might suggest that OAM could be compounded to more complex multi-modulation signal, and revealed a new insight into OAM based high capacity wireless and radio-over-fiber communication.

  15. High Speed Terahertz Modulator on the Chip Based on Tunable Terahertz Slot Waveguide

    PubMed Central

    Singh, P. K.; Sonkusale, S.

    2017-01-01

    This paper presents an on-chip device that can perform gigahertz-rate amplitude modulation and switching of broadband terahertz electromagnetic waves. The operation of the device is based on the interaction of confined THz waves in a novel slot waveguide with an electronically tunable two dimensional electron gas (2DEG) that controls the loss of the THz wave propagating through this waveguide. A prototype device is fabricated which shows THz intensity modulation of 96% at 0.25 THz carrier frequency with low insertion loss and device length as small as 100 microns. The demonstrated modulation cutoff frequency exceeds 14 GHz indicating potential for the high-speed modulation of terahertz waves. The entire device operates at room temperature with low drive voltage (<2 V) and zero DC power consumption. The device architecture has potential for realization of the next generation of on-chip modulators and switches at THz frequencies. PMID:28102306

  16. Project Physics Handbook 4, Light and Electromagnetism.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Seven experiments and 40 activities are presented in this handbook. The experiments are related to Young's experiment, electric forces, forces on currents, electron-beam tubes, and wave modulation and communication. The activities are primarily concerned with aspects of scattered and polarized light, colors, image formation, lenses, cameras,…

  17. Study of a novel electromagnetic liquid argon calorimeter — the TGT

    NASA Astrophysics Data System (ADS)

    Berger, C.; Braunschweig, W.; Geulig, E.; Schöntag, M.; Siedling, R.; Wlochal, M.; Putzer, A.; Wotschack, J.; Cheplakov, A.; Feshchenko, A.; Kazarinov, M.; Kukhtin, V.; Ladygin, E.; Obudovskij, V.; Geweniger, C.; Hanke, P.; Kluge, E.-E.; Krause, J.; Schmidt, M.; Stenzel, H.; Tittel, K.; Wunsch, M.; Zerwas, D.; Bruncko, D.; Jusko, A.; Kocper, B.; Lupták, M.; Aderholz, M.; Bán, J.; Brettel, H.; Dydak, F.; Fent, J.; Frey, H.; Huber, J.; Jakobs, K.; Kiesling, C.; Kiryunin, A. E.; Oberlack, H.; Ribarics, P.; Schacht, P.; Stiegler, U.; Bogolyubsky, M. Y.; Buyanov, O. V.; Chekulaev, S. V.; Kurchaninov, L. L.; Levitsky, M. S.; Maximov, V. V.; Minaenko, A. A.; Moiseev, A. M.; Semenov, P. A.; Tikhonov, V. V.; Straumann, U.

    1995-02-01

    The concept and the basic design of a fast, highly granular and compact electromagnetic liquid argon calorimeter are described. This novel calorimeter offers uniform energy response and constant energy resolution independent of the production angle of an impinging particle and of its impact position at the calorimeter. An example of a calorimeter with full rapidity coverage in an application in a collider detector is given. An important aspect of the concept is the electronics for fast signal processing matched to the short charge collection time. We report on the experience with the realization of a prototype calorimeter module and on its performance in a testbeam exposure.

  18. Method and apparatus for simultaneously measuring a plurality of spectral wavelengths present in electromagnetic radiation

    DOEpatents

    Buican, Tudor N.; Martin, John C.

    1990-01-01

    An apparatus and method simultaneously measures a plurality of spectral wavelengths present in electromagnetic radiation. A modulatable birefringent optical element is employed to divide a polarized light beam into two components, thereby producing a phase difference in two resulting light beams such that the two beams can be made to interfere with one another when recombined, the interference pattern providing the wavelength information required for the analysis of the incident light. The interferometer thus created performs in a similar manner to a Michelson interferometer, but with no moving parts, and with a resolution dependent on the degree of phase shift introduced by the modulator.

  19. Implementing MANETS in Android based environment using Wi-Fi direct

    NASA Astrophysics Data System (ADS)

    Waqas, Muhammad; Babar, Mohammad Inayatullah Khan; Zafar, Mohammad Haseeb

    2015-05-01

    Packet loss occurs in real-time voice transmission over wireless broadcast Ad-hoc network which creates disruptions in sound. Basic objective of this research is to design a wireless Ad-hoc network based on two Android devices by using the Wireless Fidelity (WIFI) Direct Application Programming Interface (API) and apply the Network Codec, Reed Solomon Code. The network codec is used to encode the data of a music wav file and recover the lost packets if any, packets are dropped using a loss module at the transmitter device to analyze the performance with the objective of retrieving the original file at the receiver device using the network codec. This resulted in faster transmission of the files despite dropped packets. In the end both files had the original formatted music files with complete performance analysis based on the transmission delay.

  20. Properties of a Variable-Delay Polarization Modulator

    NASA Technical Reports Server (NTRS)

    Chuss, David T.; Wollack, Edward J.; Henry, Ross; Hui, Howard; Juarez, Aaron J.; Krenjy, Megan; Moseley, Harvey; Novak, Giles

    2011-01-01

    We investigate the polarization modulation properties of a variable-delay polarization modulator (VPM). The VPM modulates polarization via a variable separation between a polarizing grid and a parallel mirror. We find that in the limit where the wavelength is much larger than the diameter of the metal wires that comprise the grid, the phase delay derived from the geometric separation between the mirror and the grid is sufficient to characterize the device. However, outside of this range, additional parameters describing the polarizing grid geometry must be included to fully characterize the modulator response. In this paper, we report test results of a VPM at wavelengths of 350 micron and 3 mm. Electromagnetic simulations of wire grid polarizers were performed and are summarized using a simple circuit model that incorporates the loss and polarization properties of the device.

Top