Sample records for mutant chikungunya virus

  1. Appearance of E1: A226V mutant Chikungunya virus in Coastal Karnataka, India during 2008 outbreak

    PubMed Central

    Santhosh, SR; Dash, Paban Kumar; Parida, Manmohan; Khan, Mohasin; Rao, Putcha VL

    2009-01-01

    Chikungunya has resurged in the form of unprecedented explosive epidemic in 2006 after a long gap in India affecting 1.39 million of persons. The disease continued for the next two consecutive years affecting 59,535 and 64,548 persons during 2007 and 2008 respectively. The 2008 outbreak being the second largest among these three years the information regarding the etiology and the mutations involved are useful for further control measures. Among the 2008 outbreaks the Coastal Karnataka accounts for the 46,510 persons. An in-depth investigation of Chikungunya epidemic of Coastal Karnataka, India, 2008 by serology, virus isolation, RT-PCR and genome sequencing revealed the presence and continued circulation of A226V mutant Chikungunya virus. The appearance of this mutant virus was found to be associated with higher prevalence of vector Aedes albopictus and the geographical proximity of coastal Karnataka with the adjoining Kerala state. This is the first report regarding the appearance of this mutation in Karnataka state of India. The present study identified the presence and association of A226V mutant virus with Chikungunya outbreak in India during 2008. PMID:19857273

  2. Chikungunya Virus Arthritis in Adult Wild-Type Mice▿ †

    PubMed Central

    Gardner, Joy; Anraku, Itaru; Le, Thuy T.; Larcher, Thibaut; Major, Lee; Roques, Pierre; Schroder, Wayne A.; Higgs, Stephen; Suhrbier, Andreas

    2010-01-01

    Chikungunya virus is a mosquito-borne arthrogenic alphavirus that has recently reemerged to produce the largest epidemic ever documented for this virus. Here we describe a new adult wild-type mouse model of chikungunya virus arthritis, which recapitulates the self-limiting arthritis, tenosynovitis, and myositis seen in humans. Rheumatic disease was associated with a prolific infiltrate of monocytes, macrophages, and NK cells and the production of monocyte chemoattractant protein 1 (MCP-1), tumor necrosis factor alpha (TNF-α), and gamma interferon (IFN-γ). Infection with a virus isolate from the recent Reunion Island epidemic induced significantly more mononuclear infiltrates, proinflammatory mediators, and foot swelling than did an Asian isolate from the 1960s. Primary mouse macrophages were shown to be productively infected with chikungunya virus; however, the depletion of macrophages ameliorated rheumatic disease and prolonged the viremia. Only 1 μg of an unadjuvanted, inactivated, whole-virus vaccine derived from the Asian isolate completely protected against viremia and arthritis induced by the Reunion Island isolate, illustrating that protection is not strain specific and that low levels of immunity are sufficient to mediate protection. IFN-α treatment was able to prevent arthritis only if given before infection, suggesting that IFN-α is not a viable therapy. Prior infection with Ross River virus, a related arthrogenic alphavirus, and anti-Ross River virus antibodies protected mice against chikungunya virus disease, suggesting that individuals previously exposed to Ross River virus should be protected from chikungunya virus disease. This new mouse model of chikungunya virus disease thus provides insights into pathogenesis and a simple and convenient system to test potential new interventions. PMID:20519386

  3. Chikungunya Virus: What You Need to Know

    MedlinePlus

    ... Aedes species mosquito bites. Aedes mosquitoes also spread dengue and Zika viruses. ŠŠ A risk to anyone traveling ... to look for chikungunya or similar diseases, like dengue or Zika. Chikungunya is preventable, but not treatable Š Š ...

  4. Detection of chikungunya virus in saliva and urine.

    PubMed

    Musso, Didier; Teissier, Anita; Rouault, Eline; Teururai, Sylviane; de Pina, Jean-Jacques; Nhan, Tu-Xuan

    2016-06-16

    Saliva and urine have been used for arthropod-borne viruses molecular detection but not yet for chikungunya virus (CHIKV). We investigated the use of saliva and urine for molecular detection of CHIKV during the French Polynesian outbreak. During the French Polynesian chikungunya outbreak (2014-2015), we collected the same day blood and saliva samples from 60 patients with probable chikungunya (47 during the 1st week post symptoms onset and 13 after), urine was available for 39 of them. All samples were tested using a CHIKV reverse-transcription PCR. Forty eight patients had confirmed chikungunya. For confirmed chikungunya presenting during the 1st week post symptoms onset, CHIKV RNA was detected from 86.1 % (31/36) of blood, 58.3 % (21/36) of saliva and 8.3 % (2/24) of urine. Detection rate of CHIKV RNA was significantly higher in blood compared to saliva. For confirmed chikungunya presenting after the 1st week post symptoms onset, CHIKV RNA was detected from 8.3 % (1/12) of blood, 8.3 % (1/12) of saliva and 0 % (0/8) of urine. In contrast to Zika virus (ZIKV), saliva did not increased the detection rate of CHIKV RNA during the 1st week post symptoms onset. In contrast to ZIKV, dengue virus and West Nile virus, urine did not enlarged the window of detection of CHIKV RNA after the 1st week post symptoms onset. Saliva can be used for molecular detection of CHIKV during the 1st week post symptoms onset only if blood is impossible to collect but with a lower sensitivity compared to blood.

  5. A complex adenovirus vaccine against chikungunya virus provides complete protection against viraemia and arthritis

    PubMed Central

    Wang, Danher; Suhrbier, Andreas; Penn-Nicholson, Adam; Woraratanadharm, Jan; Gardner, Joy; Luo, Min; Le, Thuy T.; Anraku, Itaru; Sakalian, Michael; Einfeld, David; Dong, John Y.

    2011-01-01

    Chikungunya virus, a mosquito-borne alphavirus, recently caused the largest epidemic ever seen for this virus. Chikungunya disease primarily manifests as a painful and debilitating arthralgia/arthritis, and no effective drug or vaccine is currently available. Here we describe a recombinant chikungunya virus vaccine comprising a non-replicating complex adenovirus vector encoding the structural polyprotein cassette of chikungunya virus. A single immunisation with this vaccine consistently induced high titres of anti-chikungunya virus antibodies that neutralised both an old Asian isolate and a Réunion Island isolate from the recent epidemic. The vaccine also completely protected mice against viraemia and arthritic disease caused by both virus isolates. PMID:21320541

  6. The Global Virus Network: Challenging chikungunya

    PubMed Central

    McSweegan, Edward; Weaver, Scott C.; Lecuit, Marc; Frieman, Matthew; Morrison, Thomas E.; Hrynkow, Sharon

    2016-01-01

    The recent spread of chikungunya virus to the Western Hemisphere, together with the ongoing Ebola epidemic in West Africa, have highlighted the importance of international collaboration in the detection and management of disease outbreaks. In response to this need, the Global Virus Network (GVN) was formed in 2011. The GVN is a coalition of leading medical virologists in 34 affiliated laboratories in 24 countries, who collaborate to share their resources and expertise. The GVN supports research, promotes training for young scientists, serves as a technical resource for governments, businesses and international organizations, facilitates international scientific cooperation, and advocates for funding and evidence-based public policies. In response to the spread of chikungunya, the GVN formed a task force to identify research gaps and opportunities, including models of infection and disease, candidate vaccines and antivirals, epidemiology and vector control measures. Its members also serve as authoritative sources of information for the public, press, and policy-makers. This article forms part of a symposium in Antiviral Research on “Chikungunya discovers the New World”. PMID:26071007

  7. The neurological complications of chikungunya virus: A systematic review

    PubMed Central

    Gerardin, Patrick; de Brito, Carlos Alexandre Antunes; Soares, Cristiane Nascimento; Ferreira, Maria Lucia Brito

    2018-01-01

    Summary We performed a systematic review on the neurological complications of chikungunya virus. Such complications are being reported increasingly, owing primarily to the scale of recent epidemics but also to a growing understanding of the virus' neurovirulence. We performed a thorough literature search using PubMed and Scopus databases, summating the data on all published reports of neurological disease associated with chikungunya virus. We appraised the data for each major condition in adults, children, and neonates, as well as evaluating the latest evidence on disease pathogenesis and management strategies. The review provides a comprehensive summary for clinicians, public health officials, and researchers tackling the challenges associated with this important emerging pathogen. PMID:29671914

  8. Molecular Characterization of Chikungunya Virus, Philippines, 2011-2013.

    PubMed

    Sy, Ava Kristy; Saito-Obata, Mariko; Medado, Inez Andrea; Tohma, Kentaro; Dapat, Clyde; Segubre-Mercado, Edelwisa; Tandoc, Amado; Lupisan, Socorro; Oshitani, Hitoshi

    2016-05-01

    During 2011-2013, a nationwide outbreak of chikungunya virus infection occurred in the Philippines. The Asian genotype was identified as the predominant genotype; sporadic cases of the East/Central/South African genotype were detected in Mindanao. Further monitoring is needed to define the transmission pattern of this virus in the Philippines.

  9. Chikungunya: a bending reality.

    PubMed

    Her, Zhisheng; Kam, Yiu-Wing; Lin, Raymond T P; Ng, Lisa F P

    2009-12-01

    Chikungunya fever is an acute illness caused by the arbovirus Chikungunya virus. The virus is transmitted primarily in a sylvatic cycle involving the Aedes mosquitoes. Since 2005, a Chikungunya fever outbreak of unprecedented magnitude occurred on several Indian Ocean islands. Since then, the disease has spread to many parts of the world due to imported cases among travellers returning from epidemic areas. Chikungunya virus causes a wide spectrum of illness including fever, a characteristic rash, disabling joint symptoms which can sometimes become severe that lasts months. This review summarises on this history of Chikungunya fever, host specificity, the characteristics of Chikungunya virus, clinical features of disease and current control measures. It focuses on how the re-emergence of an old changed the outlook of managing arboviral diseases in the present social and public health context.

  10. Molecular and Clinical Characterization of Chikungunya Virus Infections in Southeast Mexico.

    PubMed

    Galán-Huerta, Kame A; Martínez-Landeros, Erik; Delgado-Gallegos, Juan L; Caballero-Sosa, Sandra; Malo-García, Iliana R; Fernández-Salas, Ildefonso; Ramos-Jiménez, Javier; Rivas-Estilla, Ana M

    2018-05-09

    Chikungunya fever is an arthropod-borne infection caused by Chikungunya virus (CHIKV). Even though clinical features of Chikungunya fever in the Mexican population have been described before, there is no detailed information. The aim of this study was to perform a full description of the clinical features in confirmed Chikungunya-infected patients and describe the molecular epidemiology of CHIKV. We evaluated febrile patients who sought medical assistance in Tapachula, Chiapas, Mexico, from June through July 2015. Infection was confirmed with molecular and serological methods. Viruses were isolated and the E1 gene was sequenced. Phylogeny reconstruction was inferred using maximum-likelihood and maximum clade credibility approaches. We studied 52 patients with confirmed CHIKV infection. They were more likely to have wrist, metacarpophalangeal, and knee arthralgia. Two combinations of clinical features were obtained to differentiate between Chikungunya fever and acute undifferentiated febrile illness. We obtained 10 CHIKV E1 sequences that grouped with the Asian lineage. Seven strains diverged from the formerly reported. Patients infected with the divergent CHIKV strains showed a broader spectrum of clinical manifestations. We defined the complete clinical features of Chikungunya fever in patients from Southeastern Mexico. Our results demonstrate co-circulation of different CHIKV strains in the state of Chiapas.

  11. Molecular and Clinical Characterization of Chikungunya Virus Infections in Southeast Mexico

    PubMed Central

    Martínez-Landeros, Erik; Delgado-Gallegos, Juan L.; Caballero-Sosa, Sandra; Malo-García, Iliana R.

    2018-01-01

    Chikungunya fever is an arthropod-borne infection caused by Chikungunya virus (CHIKV). Even though clinical features of Chikungunya fever in the Mexican population have been described before, there is no detailed information. The aim of this study was to perform a full description of the clinical features in confirmed Chikungunya-infected patients and describe the molecular epidemiology of CHIKV. We evaluated febrile patients who sought medical assistance in Tapachula, Chiapas, Mexico, from June through July 2015. Infection was confirmed with molecular and serological methods. Viruses were isolated and the E1 gene was sequenced. Phylogeny reconstruction was inferred using maximum-likelihood and maximum clade credibility approaches. We studied 52 patients with confirmed CHIKV infection. They were more likely to have wrist, metacarpophalangeal, and knee arthralgia. Two combinations of clinical features were obtained to differentiate between Chikungunya fever and acute undifferentiated febrile illness. We obtained 10 CHIKV E1 sequences that grouped with the Asian lineage. Seven strains diverged from the formerly reported. Patients infected with the divergent CHIKV strains showed a broader spectrum of clinical manifestations. We defined the complete clinical features of Chikungunya fever in patients from Southeastern Mexico. Our results demonstrate co-circulation of different CHIKV strains in the state of Chiapas. PMID:29747416

  12. Antiviral activity of silymarin against chikungunya virus

    PubMed Central

    Lani, Rafidah; Hassandarvish, Pouya; Chiam, Chun Wei; Moghaddam, Ehsan; Chu, Justin Jang Hann; Rausalu, Kai; Merits, Andres; Higgs, Stephen; Vanlandingham, Dana; Abu Bakar, Sazaly; Zandi, Keivan

    2015-01-01

    The mosquito-borne chikungunya virus (CHIKV) causes chikungunya fever, with clinical presentations such as severe back and small joint pain, and debilitating arthritis associated with crippling pains that persist for weeks and even years. Although there are several studies to evaluate the efficacy of drugs against CHIKV, the treatment for chikungunya fever is mainly symptom-based and no effective licensed vaccine or antiviral are available. Here, we investigated the antiviral activity of three types of flavonoids against CHIKV in vitro replication. Three compounds: silymarin, quercetin and kaempferol were evaluated for their in vitro antiviral activities against CHIKV using a CHIKV replicon cell line and clinical isolate of CHIKV of Central/East African genotype. A cytopathic effect inhibition assay was used to determine their activities on CHIKV viral replication and quantitative reverse transcription PCR was used to calculate virus yield. Antiviral activity of effective compound was further investigated by evaluation of CHIKV protein expression using western blotting for CHIKV nsP1, nsP3, and E2E1 proteins. Briefly, silymarin exhibited significant antiviral activity against CHIKV, reducing both CHIKV replication efficiency and down-regulating production of viral proteins involved in replication. This study may have important consequence for broaden the chance of getting the effective antiviral for CHIKV infection. PMID:26078201

  13. Globalization of Chikungunya Virus: Threat to the U.S.

    USDA-ARS?s Scientific Manuscript database

    In August, 2004, Kenyan health authorities and partners identified chikungunya virus as the cause of the febrile epidemic in a coastal island city. The virus is transmitted by Aedes mosquitoes in tropical Africa and Asia; the fever is rarely fatal but can incapacitate for weeks. Control was delayed,...

  14. Chikungunya Virus Infection of Aedes Mosquitoes.

    PubMed

    Wong, Hui Vern; Chan, Yoke Fun; Sam, I-Ching; Sulaiman, Wan Yusof Wan; Vythilingam, Indra

    2016-01-01

    In vivo infection of mosquitoes is an important method to study and characterize arthropod-borne viruses. Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that is transmitted primarily by Aedes mosquitoes. In this chapter, we describe a protocol for infection of CHIKV in two species of Aedes mosquitoes, Aedes aegypti and Aedes albopictus, together with the isolation of CHIKV in different parts of the infected mosquito such as midgut, legs, wings, salivary gland, head, and saliva. This allows the study of viral infection, replication and dissemination within the mosquito vector.

  15. Surveillance for Chikungunya and Dengue During the First Year of Chikungunya Virus Circulation in Puerto Rico

    PubMed Central

    Sharp, Tyler M.; Ryff, Kyle R.; Alvarado, Luisa; Shieh, Wun-Ju; Zaki, Sherif R.; Margolis, Harold S.; Rivera-Garcia, Brenda

    2016-01-01

    After chikungunya virus (CHIKV) transmission was detected in Puerto Rico in May 2014, multiple surveillance systems were used to describe epidemiologic trends and CHIKV-associated disease. Of 28 327 cases reported via passive surveillance, 6472 were tested for evidence of CHIKV infection, and results for 4399 (68%) were positive. Of 250 participants in household cluster investigations, 70 (28%) had evidence of recent CHIKV infection. Enhanced surveillance for chikungunya at 2 hospitals identified 1566 patients who tested positive for CHIKV, of whom 10.9% were hospitalized. Enhanced surveillance for fatal cases enabled identification of 31 cases in which CHIKV was detected in blood or tissue specimens. All surveillance systems detected a peak incidence of chikungunya in September 2014 and continued circulation in 2015. Concomitant surveillance for dengue demonstrated low incidence, which had decreased before CHIKV was introduced. Multifaceted chikungunya surveillance in Puerto Rico resolved gaps in traditional passive surveillance and enabled a holistic description of the spectrum of disease associated with CHIKV infection. PMID:27920177

  16. Co-infections with Chikungunya and Dengue Viruses, Guatemala, 2015.

    PubMed

    Edwards, Thomas; Signor, Leticia Del Carmen Castillo; Williams, Christopher; Donis, Evelin; Cuevas, Luis E; Adams, Emily R

    2016-11-01

    We screened serum samples referred to the national reference laboratory in Guatemala that were positive for chikungunya or dengue viruses in June 2015. Co-infection with both viruses was detected by reverse transcription PCR in 46 (32%) of 144 samples. Specimens should be tested for both arboviruses to detect co-infections.

  17. Clinical Features and Neurologic Complications of Children Hospitalized With Chikungunya Virus in Honduras.

    PubMed

    Samra, José A; Hagood, Nancy L; Summer, Andrea; Medina, Marco T; Holden, Kenton R

    2017-07-01

    The first case of Chikungunya virus in Honduras was identified in 2014. The virus has spread widely across Honduras via the Aedes aegypti mosquito, leading to an outbreak of Chikungunya virus (CHIKV) in 2015 that significantly impacted children. A retrospective chart review of 235 children diagnosed with CHIKV and admitted to the National Autonomous University of Honduras Hospital Escuela (Hospital Escuela) in Tegucigalpa, Honduras, was accomplished with patients who were assessed for clinical features and neurologic complications. Of 235 children admitted to Hospital Escuela with CHIKV, the majority had symptoms of fever, generalized erythematous rash, and irritability. Fourteen percent had clinical arthritis. Ten percent of patients had seizures. Six percent had meningoencephalitis. There were 2 childhood deaths during the course of this study, one from meningoencephalitis and another from myocarditis. Chikungunya virus can cause severe complications in children, the majority of which impact the central nervous system.

  18. Antiviral Perspectives for Chikungunya Virus

    PubMed Central

    Cherian, Sarah

    2014-01-01

    Chikungunya virus (CHIKV) is a mosquito-borne pathogen that has a major health impact in humans and causes acute febrile illness in humans accompanied by joint pains and, in many cases, persistent arthralgia lasting for weeks to years. CHIKV reemerged in 2005-2006 in several parts of the Indian Ocean islands and India after a gap of 32 years, causing millions of cases. The re-emergence of CHIKV has also resulted in numerous outbreaks in several countries in the eastern hemisphere, with a threat to further expand in the near future. However, there is no vaccine against CHIKV infection licensed for human use, and therapy for CHIKV infection is still mainly limited to supportive care as antiviral agents are yet in different stages of testing or development. In this review we explore the different perspectives for chikungunya treatment and the effectiveness of these treatment regimens and discuss the scope for future directions. PMID:24955364

  19. Ocular manifestations of emerging arboviruses: Dengue fever, Chikungunya, Zika virus, West Nile virus, and yellow fever.

    PubMed

    Merle, H; Donnio, A; Jean-Charles, A; Guyomarch, J; Hage, R; Najioullah, F; Césaire, R; Cabié, A

    2018-06-18

    Arboviruses are viral diseases transmitted by mosquitoes and tick bites. They are a major cause of morbidity and sometimes mortality. Their expansion is constant and due in part to climate change and globalization. Mostly found in tropical regions, arboviruses are sometimes the source of epidemics in Europe. Recently, the Chikungunya virus and the Zika virus were responsible for very large epidemics impacting populations that had never been in contact with those viruses. There are currently no effective antiviral treatments or vaccines. Ocular manifestations due to those infections are thus more frequent and increasingly better described. They are sometimes, as with Zika, complicated by a congenital ocular syndrome. The goal of this review is to describe the ophthalmological manifestations of Dengue fever, Chikungunya virus, Zika virus, West Nile virus, and yellow fever. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  20. Molecular Characterization of Chikungunya Virus, Philippines, 2011–2013

    PubMed Central

    Sy, Ava Kristy; Saito-Obata, Mariko; Medado, Inez Andrea; Tohma, Kentaro; Dapat, Clyde; Segubre-Mercado, Edelwisa; Tandoc, Amado; Lupisan, Socorro

    2016-01-01

    During 2011–2013, a nationwide outbreak of chikungunya virus infection occurred in the Philippines. The Asian genotype was identified as the predominant genotype; sporadic cases of the East/Central/South African genotype were detected in Mindanao. Further monitoring is needed to define the transmission pattern of this virus in the Philippines. PMID:27088593

  1. Chikungunya virus infection.

    PubMed

    Sam, I-C; AbuBakar, S

    2006-06-01

    Chikungunya virus (CHIKV) is a mosquito-borne alphavirus which causes epidemic fever, rash and polyarthralgia in Africa and Asia. Two outbreaks have been reported in Malaysia, in Klang, Selangor (1998) and Bagan Panchor, Perak (2006). It is not known if the outbreaks were caused by the recent introduction of CHIKV, or if the virus was already circulating in Malaysia. Seroprevalence studies from the 1960s suggested previous disease activity in certain parts of the country. In Asia, CHIKV is thought to be transmitted by the same mosquitoes as dengue, Aedes aegypti and Ae. albopictus. Due to similarities in clinical presentation with dengue, limited awareness, and a lack of laboratory diagnostic capability, CHIKV is probably often underdiagnosed or misdiagnosed as dengue. Treatment is supportive. The prognosis is generally good, although some patients experience chronic arthritis. With no vaccine or antiviral available, prevention and control depends on surveillance, early identification of outbreaks, and vector control. CHIKV should be borne in mind in sporadic cases, and in patients epidemiologically linked to ongoing local or international outbreaks or endemic areas.

  2. Characterization of Reemerging Chikungunya Virus

    PubMed Central

    Sourisseau, Marion; Schilte, Clémentine; Casartelli, Nicoletta; Trouillet, Céline; Guivel-Benhassine, Florence; Rudnicka, Dominika; Sol-Foulon, Nathalie; Roux, Karin Le; Prevost, Marie-Christine; Fsihi, Hafida; Frenkiel, Marie-Pascale; Blanchet, Fabien; Afonso, Philippe V; Ceccaldi, Pierre-Emmanuel; Ozden, Simona; Gessain, Antoine; Schuffenecker, Isabelle; Verhasselt, Bruno; Zamborlini, Alessia; Saïb, Ali; Rey, Felix A; Arenzana-Seisdedos, Fernando; Desprès, Philippe; Michault, Alain; Albert, Matthew L; Schwartz, Olivier

    2007-01-01

    An unprecedented epidemic of chikungunya virus (CHIKV) infection recently started in countries of the Indian Ocean area, causing an acute and painful syndrome with strong fever, asthenia, skin rash, polyarthritis, and lethal cases of encephalitis. The basis for chikungunya disease and the tropism of CHIKV remain unknown. Here, we describe the replication characteristics of recent clinical CHIKV strains. Human epithelial and endothelial cells, primary fibroblasts and, to a lesser extent, monocyte-derived macrophages, were susceptible to infection and allowed viral production. In contrast, CHIKV did not replicate in lymphoid and monocytoid cell lines, primary lymphocytes and monocytes, or monocyte-derived dendritic cells. CHIKV replication was cytopathic and associated with an induction of apoptosis in infected cells. Chloroquine, bafilomycin-A1, and short hairpin RNAs against dynamin-2 inhibited viral production, indicating that viral entry occurs through pH-dependent endocytosis. CHIKV was highly sensitive to the antiviral activity of type I and II interferons. These results provide a general insight into the interaction between CHIKV and its mammalian host. PMID:17604450

  3. Reptiles and Amphibians as Potential Reservoir Hosts of Chikungunya Virus.

    PubMed

    Bosco-Lauth, Angela M; Hartwig, Airn E; Bowen, Richard A

    2018-03-01

    Chikungunya virus is an emerging arbovirus of significant human-health concern. Little is known about its sylvatic cycle, including whether ectothermic vertebrates are permissive to infection. In this study, individuals from ten species of reptiles and amphibians were inoculated with chikungunya virus and samples of blood were tested to characterize viremia and seroconversion. Viremia was not detected in cane toads, house geckos, or American alligators, but most of the green iguanas, red-eared sliders, ball and Burmese pythons, leopard frogs, Texas toads, and garter snakes developed viremia. Peak virus titers in serum of up to 4.5, 4.7, and 5.1 log 10 plaque-forming units per milliliter were observed for garter snakes, ball pythons, and Texas toads, respectively. These results add to those of other studies that have suggested a possible role for ectothermic vertebrates in the ecology of arbovirus maintenance and transmission in nature.

  4. Next generation sequencing of DNA-launched Chikungunya vaccine virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hidajat, Rachmat; Nickols, Brian; Forrester, Naomi

    Chikungunya virus (CHIKV) represents a pandemic threat with no approved vaccine available. Recently, we described a novel vaccination strategy based on iDNA® infectious clone designed to launch a live-attenuated CHIKV vaccine from plasmid DNA in vitro or in vivo. As a proof of concept, we prepared iDNA plasmid pCHIKV-7 encoding the full-length cDNA of the 181/25 vaccine. The DNA-launched CHIKV-7 virus was prepared and compared to the 181/25 virus. Illumina HiSeq2000 sequencing revealed that with the exception of the 3′ untranslated region, CHIKV-7 viral RNA consistently showed a lower frequency of single-nucleotide polymorphisms than the 181/25 RNA including at themore » E2-12 and E2-82 residues previously identified as attenuating mutations. In the CHIKV-7, frequencies of reversions at E2-12 and E2-82 were 0.064% and 0.086%, while in the 181/25, frequencies were 0.179% and 0.133%, respectively. We conclude that the DNA-launched virus has a reduced probability of reversion mutations, thereby enhancing vaccine safety. - Highlights: • Chikungunya virus (CHIKV) is an emerging pandemic threat. • In vivo DNA-launched attenuated CHIKV is a novel vaccine technology. • DNA-launched virus was sequenced using HiSeq2000 and compared to the 181/25 virus. • DNA-launched virus has lower frequency of SNPs at E2-12 and E2-82 attenuation loci.« less

  5. Surveillance for Chikungunya and Dengue During the First Year of Chikungunya Virus Circulation in Puerto Rico.

    PubMed

    Sharp, Tyler M; Ryff, Kyle R; Alvarado, Luisa; Shieh, Wun-Ju; Zaki, Sherif R; Margolis, Harold S; Rivera-Garcia, Brenda

    2016-12-15

    After chikungunya virus (CHIKV) transmission was detected in Puerto Rico in May 2014, multiple surveillance systems were used to describe epidemiologic trends and CHIKV-associated disease. Of 28 327 cases reported via passive surveillance, 6472 were tested for evidence of CHIKV infection, and results for 4399 (68%) were positive. Of 250 participants in household cluster investigations, 70 (28%) had evidence of recent CHIKV infection. Enhanced surveillance for chikungunya at 2 hospitals identified 1566 patients who tested positive for CHIKV, of whom 10.9% were hospitalized. Enhanced surveillance for fatal cases enabled identification of 31 cases in which CHIKV was detected in blood or tissue specimens. All surveillance systems detected a peak incidence of chikungunya in September 2014 and continued circulation in 2015. Concomitant surveillance for dengue demonstrated low incidence, which had decreased before CHIKV was introduced. Multifaceted chikungunya surveillance in Puerto Rico resolved gaps in traditional passive surveillance and enabled a holistic description of the spectrum of disease associated with CHIKV infection. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  6. Single-Reaction Multiplex Reverse Transcription PCR for Detection of Zika, Chikungunya, and Dengue Viruses

    PubMed Central

    Waggoner, Jesse J.; Gresh, Lionel; Mohamed-Hadley, Alisha; Ballesteros, Gabriela; Davila, Maria Jose Vargas; Tellez, Yolanda; Sahoo, Malaya K.; Balmaseda, Angel; Harris, Eva

    2016-01-01

    Clinical manifestations of Zika virus, chikungunya virus, and dengue virus infections can be similar. To improve virus detection, streamline molecular workflow, and decrease test costs, we developed and evaluated a multiplex real-time reverse transcription PCR for these viruses. PMID:27184629

  7. The spectrum of neurological disease associated with Zika and chikungunya viruses in adults in Rio de Janeiro, Brazil: A case series

    PubMed Central

    da Silva, Marcus Tulius Texeira; Rosala-Hallas, Anna; Jardim, Marcia Rodrigues; Burnside, Girvan; Pamplona, Luciana; Bhojak, Maneesh; Manohar, Radhika; da Silva, Gabriel Amorelli Medeiros; Adriano, Marcus Vinicius; Brasil, Patricia; Nogueira, Rita Maria Ribeiro; Dos Santos, Carolina Cardoso; Turtle, Lance; de Sequeira, Patricia Carvalho; Brown, David W.; Griffiths, Michael J.; de Filippis, Ana Maria Bispo

    2018-01-01

    Background During 2015–16 Brazil experienced the largest epidemic of Zika virus ever reported. This arthropod-borne virus (arbovirus) has been linked to Guillain-Barré syndrome (GBS) in adults but other neurological associations are uncertain. Chikungunya virus has caused outbreaks in Brazil since 2014 but associated neurological disease has rarely been reported here. We investigated adults with acute neurological disorders for Zika, chikungunya and dengue, another arbovirus circulating in Brazil. Methods We studied adults who had developed a new neurological condition following suspected Zika virus infection between 1st November 2015 and 1st June 2016. Cerebrospinal fluid (CSF), serum, and urine were tested for evidence of Zika, chikungunya, and dengue viruses. Results Of 35 patients studied, 22 had evidence of recent arboviral infection. Twelve had positive PCR or IgM for Zika, five of whom also had evidence for chikungunya, three for dengue, and one for all three viruses. Five of them presented with GBS; seven had presentations other than GBS, including meningoencephalitis, myelitis, radiculitis or combinations of these syndromes. Additionally, ten patients positive for chikungunya virus, two of whom also had evidence for dengue virus, presented with a similar range of neurological conditions. Conclusions Zika virus is associated with a wide range of neurological manifestations, including central nervous system disease. Chikungunya virus appears to have an equally important association with neurological disease in Brazil, and many patients had dual infection. To understand fully the burden of Zika we must look beyond GBS, and also investigate for other co-circulating arboviruses, particularly chikungunya. PMID:29432457

  8. Emerging Causes of Arbovirus Encephalitis in North America: Powassan, Chikungunya, and Zika Viruses.

    PubMed

    Doughty, Christopher T; Yawetz, Sigal; Lyons, Jennifer

    2017-02-01

    Arboviruses are arthropod-borne viruses transmitted by the bite of mosquitoes, ticks, or other arthropods. Arboviruses are a common and an increasing cause of human illness in North America. Powassan virus, Chikungunya virus, and Zika virus are arboviruses that have all recently emerged as increasing causes of neurologic illness. Powassan virus almost exclusively causes encephalitis, but cases are rare, sporadic, and restricted to portions of North America and Russia. Chikungunya virus has spread widely across the world, causing millions of infections. Encephalitis is a rare manifestation of illness but is more common and severe in neonates and older adults. Zika virus has recently spread through much of the Americas and has been associated mostly with microcephaly and other congenital neurologic complications. Encephalitis occurring in infected adults has also been recently reported. This review will discuss the neuropathogenesis of these viruses, their transmission and geographic distribution, the spectrum of their neurologic manifestations, and the appropriate method of diagnosis.

  9. Chikungunya virus infections among travellers returning to Spain, 2008 to 2014

    PubMed Central

    Fernandez-Garcia, Maria Dolores; Bangert, Mathieu; de Ory, Fernando; Potente, Arantxa; Hernandez, Lourdes; Lasala, Fatima; Herrero, Laura; Molero, Francisca; Negredo, Anabel; Vázquez, Ana; Minguito, Teodora; Balfagón, Pilar; de la Fuente, Jesus; Puente, Sabino; Ramírez de Arellano, Eva; Lago, Mar; Martinez, Miguel; Gascón, Joaquim; Norman, Francesca; Lopez-Velez, Rogelio; Sulleiro, Elena; Pou, Diana; Serre, Nuria; Roblas, Ricardo Fernández; Tenorio, Antonio; Franco, Leticia; Sanchez-Seco, Maria Paz

    2016-01-01

    Since the first documented autochthonous transmission of chikungunya virus in the Caribbean island of Saint Martin in 2013, the infection has been reported within the Caribbean region as well as North, Central and South America. The risk of autochthonous transmission of chikungunya virus becoming established in Spain may be elevated due to the large numbers of travellers returning to Spain from countries affected by the 2013 epidemic in the Caribbean and South America, as well as the existence of the Aedes albopictus vector in certain parts of Spain. We retrospectively analysed the laboratory diagnostic database of the National Centre for Microbiology, Institute of Health Carlos III (CNM-ISCIII) from 2008 to 2014. During the study period, 264 confirmed cases, of 1,371 suspected cases, were diagnosed at the CNM-ISCIII. In 2014 alone, there were 234 confirmed cases. The highest number of confirmed cases were reported from the Dominican Republic (n = 136), Venezuela (n = 30) and Haiti (n = 11). Six cases were viraemic in areas of Spain where the vector is present. This report highlights the need for integrated active case and vector surveillance in Spain and other parts of Europe where chikungunya virus may be introduced by returning travellers. PMID:27631156

  10. Chikungunya virus infections among travellers returning to Spain, 2008 to 2014.

    PubMed

    Fernandez-Garcia, Maria Dolores; Bangert, Mathieu; de Ory, Fernando; Potente, Arantxa; Hernandez, Lourdes; Lasala, Fatima; Herrero, Laura; Molero, Francisca; Negredo, Anabel; Vázquez, Ana; Minguito, Teodora; Balfagón, Pilar; de la Fuente, Jesus; Puente, Sabino; Ramírez de Arellano, Eva; Lago, Mar; Martinez, Miguel; Gascón, Joaquim; Norman, Francesca; Lopez-Velez, Rogelio; Sulleiro, Elena; Pou, Diana; Serre, Nuria; Roblas, Ricardo Fernández; Tenorio, Antonio; Franco, Leticia; Sanchez-Seco, Maria Paz

    2016-09-08

    Since the first documented autochthonous transmission of chikungunya virus in the Caribbean island of Saint Martin in 2013, the infection has been reported within the Caribbean region as well as North, Central and South America. The risk of autochthonous transmission of chikungunya virus becoming established in Spain may be elevated due to the large numbers of travellers returning to Spain from countries affected by the 2013 epidemic in the Caribbean and South America, as well as the existence of the Aedes albopictus vector in certain parts of Spain. We retrospectively analysed the laboratory diagnostic database of the National Centre for Microbiology, Institute of Health Carlos III (CNM-ISCIII) from 2008 to 2014. During the study period, 264 confirmed cases, of 1,371 suspected cases, were diagnosed at the CNM-ISCIII. In 2014 alone, there were 234 confirmed cases. The highest number of confirmed cases were reported from the Dominican Republic (n = 136), Venezuela (n = 30) and Haiti (n = 11). Six cases were viraemic in areas of Spain where the vector is present. This report highlights the need for integrated active case and vector surveillance in Spain and other parts of Europe where chikungunya virus may be introduced by returning travellers. This article is copyright of The Authors, 2016.

  11. Chikungunya Myeloradiculopathy: A Rare Complication

    PubMed Central

    Krishnan, Mohana; Rahul; Krishnamoorthy

    2012-01-01

    Chikungunya, an alpha virus belonging to the family of Togaviridae is transmitted to humans by the bite of Aedes aegypti mosquito and presents with fever, headache, rash, and severe arthralgia. Chikungunya virus is not known to be neurotropic, but cases of meningoencephalitis have been reported during outbreaks. The clinical, laboratory and neuroimaging findings of a 56-year-old man who initially developed Chikungunya fever with arthralagia and later on lead to Chikungunya myeloradiculopathy, a relatively unknown and rare complication of the infection has been presented. PMID:23326078

  12. Help Control Mosquitoes that Spread Dengue, Chikungunya, and Zika Viruses

    MedlinePlus

    Help Control Mosquitoes that Spread Dengue, Chikungunya, and Zika Viruses B Z Z Z Z . Aside from being itchy ... for your information only. The Centers for Disease Control and Prevention and the U.S. Department of Health ...

  13. Chikungunya virus emergence in the Lao PDR, 2012–2013

    PubMed Central

    Somlor, Somphavanh; Vongpayloth, Khamsing; Diancourt, Laure; Buchy, Philippe; Duong, Veasna; Phonekeo, Darouny; Ketmayoon, Pakapak; Vongphrachanh, Phengta; Brey, Paul T.; Grandadam, Marc

    2017-01-01

    In May 2012, the first authenticated cases of active chikungunya virus infection were detected in Champasak Province, Southern Laos. Analysis of series of human samples and mosquito specimens collected during the outbreak and over the year that followed the emergence enabled the drawing up of a map of the progression of CHIKV and the establishment of a full genetic characterization of the virus. PMID:29284012

  14. Co-circulation of Dengue and Chikungunya Viruses, Al Hudaydah, Yemen, 2012

    PubMed Central

    El-Sawaf, Gamal; Faggioni, Giovanni; Vescio, Fenicia; Al Ameri, Ranya; De Santis, Riccardo; Helaly, Ghada; Pomponi, Alice; Metwally, Dalia; Fantini, Massimo; Qadi, Hussein; Ciccozzi, Massimo; Lista, Florigio

    2014-01-01

    We investigated 400 cases of dengue-like illness in persons hospitalized during an outbreak in Al Hudaydah, Yemen, in 2012. Overall, 116 dengue and 49 chikungunya cases were diagnosed. Dengue virus type 2 was the predominant serotype. The co-circulation of these viruses indicates that mosquitoborne infections represent a public health threat in Yemen. PMID:25061762

  15. Chikungunya Virus

    MedlinePlus

    ... Information For Health Care Providers Fact Sheets and Posters Chikungunya Nowcast for the Americas Get Email Updates ... Providers Nowcast for the Americas Fact Sheets and Posters Resources Vector Surveillance and Control File Formats Help: ...

  16. Chikungunya virus

    MedlinePlus

    ... months or longer. The disease can lead to death in frail older adults. Treatment There is no ... and the A.D.A.M. Editorial team. Related MedlinePlus Health Topics Chikungunya Browse the Encyclopedia A. ...

  17. Epidemiology of Chikungunya in the Americas

    PubMed Central

    Yactayo, Sergio; Staples, J. Erin; Millot, Véronique; Cibrelus, Laurence; Ramon-Pardo, Pilar

    2016-01-01

    Chikungunya virus (CHIKV) emerged in the Americas in late 2013 to cause substantial acute and chronic morbidity. About 1.1 million cases of chikungunya were reported within a year, including severe cases and deaths. The burden of chikungunya is unclear owing to inadequate disease surveillance and underdiagnosis. Virus evolution, globalization, and climate change may further CHIKV spread. No approved vaccine or antiviral therapeutics exist. Early detection and appropriate management could reduce the burden of severe atypical and chronic arthritic disease. Improved surveillance and risk assessment are needed to mitigate the impact of chikungunya. PMID:27920170

  18. [The chikungunya epidemic in the Caribbean: implications for travellers and physicians].

    PubMed

    Cleton, Natalie B; Reusken, Chantal B E M; van Gorp, Eric C M

    2014-01-01

    In 2013, the first autochthonous cases of the chikungunya virus (CHIKV) were reported on the Caribbean island of Saint Martin. The chikungunya virus has since become endemic in the Caribbean due to autochthonous transmission. In the presence of fever and joint symptoms in any traveller returning from the Caribbean, CHIKV should be considered. Although symptoms resemble those of dengue fever, the course of chikungunya is milder. Chikungunya much more commonly causes chronic joint pain. Laboratory tests for the chikungunya virus may give false positive results due to cross reactions with closely related viruses, so taking a full disease and travel history from the patient is necessary in order to interpret these test results correctly. There is no specific treatment for the chikungunya virus. A correct diagnosis can prevent unnecessary additional tests and unjustified treatment. The chikungunya virus can be prevented by the use of insect-repelling substances, nets and air-conditioning.

  19. Epidemiology of Chikungunya in the Americas.

    PubMed

    Yactayo, Sergio; Staples, J Erin; Millot, Véronique; Cibrelus, Laurence; Ramon-Pardo, Pilar

    2016-12-15

    Chikungunya virus (CHIKV) emerged in the Americas in late 2013 to cause substantial acute and chronic morbidity. About 1.1 million cases of chikungunya were reported within a year, including severe cases and deaths. The burden of chikungunya is unclear owing to inadequate disease surveillance and underdiagnosis. Virus evolution, globalization, and climate change may further CHIKV spread. No approved vaccine or antiviral therapeutics exist. Early detection and appropriate management could reduce the burden of severe atypical and chronic arthritic disease. Improved surveillance and risk assessment are needed to mitigate the impact of chikungunya. © 2016 World Health Organization; licensee Oxford Journals.

  20. Reemergence of Endemic Chikungunya, Malaysia

    PubMed Central

    Sam, I-Ching; Wong, Pooi-Fong; Hooi, Poh-Sim; Roslan, Nuruliza

    2007-01-01

    Chikungunya virus infection recently reemerged in Malaysia after 7 years of nondetection. Genomic sequences of recovered isolates were highly similar to those of Malaysian isolates from the 1998 outbreak. The reemergence of the infection is not part of the epidemics in other Indian Ocean countries but raises the possibility that chikungunya virus is endemic in Malaysia. PMID:17370532

  1. Asian genotype of Chikungunya virus circulating in Venezuela during 2014.

    PubMed

    Camacho, Daría; Reyes, Jesús; Negredo, Ana; Hernández, Lourdes; Sánchez-Seco, María; Comach, Guillermo

    2017-10-01

    Chikungunya virus emerged on Saint-Martin Island in the Caribbean in late 2013. Since then in July of 2104 Venezuela reported autochthonous cases. This study reports the first phylogenetic characterization of CHIKV autochthonous cases in Venezuela, 2014. The phylogenetic analysis showed that the CHIKV circulating in Venezuela (Aragua state) belong to the Asian genotype (Caribbean clade) and it is related to viruses that circulated in the same year in the Caribbean. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Chikungunya Virus: Pathophysiology, Mechanism, and Modeling

    PubMed Central

    Ganesan, Vaishnavi K.; Reid, St Patrick

    2017-01-01

    Chikungunya virus (CHIKV), a mosquito-transmitted alphavirus, is recurring in epidemic waves. In the past decade and a half, the disease has resurged in several countries around the globe, with outbreaks becoming increasingly severe. Though CHIKV was first isolated in 1952, there remain significant gaps in knowledge of CHIKV biology, pathogenesis, transmission, and mechanism. Diagnosis is largely simplified and based on symptoms, while treatment is supportive rather than curative. Here we present an overview of the disease, the challenges that lie ahead for future research, and what directions current studies are headed towards, with emphasis on improvement of current animal models and potential use of 3D models. PMID:29194359

  3. Sequential Chikungunya and Zika Virus Infections in a Traveler from Honduras.

    PubMed

    Norman, Francesca F; Chamorro, Sandra; Vázquez, Ana; Sánchez-Seco, María-Paz; Pérez-Molina, José-Antonio; Monge-Maillo, Begoña; Vivancos, María-Jesús; Rodríguez-Dominguez, Mario; Galán, Juan-Carlos; de Ory, Fernando; López-Vélez, Rogelio

    2016-11-02

    Zika virus (ZIKV) and chikungunya virus (CHIKV) are currently circulating in overlapping areas in the American continents and may both be transmitted by Aedes spp. mosquitoes. The first documented case, to the authors' knowledge, of sequential CHIKV and ZIKV infections diagnosed in a nonendemic area in a returning traveler is reported. The implications for heightened clinical surveillance for these infections and specific patient recommendations are emphasized. © The American Society of Tropical Medicine and Hygiene.

  4. Development of Neutralization Assay Using an eGFP Chikungunya Virus.

    PubMed

    Deng, Cheng-Lin; Liu, Si-Qing; Zhou, Dong-Gen; Xu, Lin-Lin; Li, Xiao-Dan; Zhang, Pan-Tao; Li, Peng-Hui; Ye, Han-Qing; Wei, Hong-Ping; Yuan, Zhi-Ming; Qin, Cheng-Feng; Zhang, Bo

    2016-06-28

    Chikungunya virus (CHIKV), a member of the Alphavirus genus, is an important human emerging/re-emerging pathogen. Currently, there are no effective antiviral drugs or vaccines against CHIKV infection. Herein, we construct an infectious clone of CHIKV and an eGFP reporter CHIKV (eGFP-CHIKV) with an isolated strain (assigned to Asian lineage) from CHIKV-infected patients. The eGFP-CHIKV reporter virus allows for direct visualization of viral replication through the levels of eGFP expression. Using a known CHIKV inhibitor, ribavirin, we confirmed that the eGFP-CHIKV reporter virus could be used to identify inhibitors against CHIKV. Importantly, we developed a novel and reliable eGFP-CHIKV reporter virus-based neutralization assay that could be used for rapid screening neutralizing antibodies against CHIKV.

  5. Chikungunya Arthritis: Implications of Acute and Chronic Inflammation Mechanisms on Disease Management.

    PubMed

    Zaid, Ali; Gérardin, Patrick; Taylor, Adam; Mostafavi, Helen; Malvy, Denis; Mahalingam, Suresh

    2018-04-01

    In the past decade, arboviruses-arthropod-borne viruses-have been the focus of public health institutions worldwide following a spate of devastating outbreaks. Chikungunya virus, an arbovirus that belongs to the alphavirus genus, is a reemerging arthritogenic virus that has caused explosive outbreaks since 2006, notably on Réunion Island, and more recently in the Caribbean, South America, India, and Southeast Asia. The severity of arthritic disease caused by chikungunya virus has prompted public health authorities in affected countries to develop specific guidelines to tackle this pathogen. Chikungunya virus disease manifests first as an acute stage of severe joint inflammation and febrile illness, which later progresses to a chronic stage, during which patients may experience debilitating and persisting articular pain for extended periods. This review aims to provide a broad perspective on current knowledge of chikungunya virus pathogenesis by identifying key clinical and experimental studies that have contributed to our understanding of chikungunya virus to date. In addition, the review explores the practical aspects of treatment and management of both acute and chronic chikungunya virus based on clinical experience during chikungunya virus outbreaks. Finally, recent findings on potential therapeutic solutions-from antiviral agents to immunomodulators-are reviewed to provide both viral immunologists and clinical rheumatologists with a balanced perspective on the nature of a reemerging arboviral disease of significant public health concern, and insight into future therapeutic approaches to better address the treatment and management of chikungunya virus. © 2017, American College of Rheumatology.

  6. Seroprevalence of Chikungunya Virus in a Rural Community in Brazil.

    PubMed

    Cunha, Rivaldo V; Trinta, Karen S; Montalbano, Camila A; Sucupira, Michel V F; de Lima, Maricelia M; Marques, Erenilde; Romanholi, Izilyanne H; Croda, Julio

    2017-01-01

    The emergence of the Chikungunya virus (CHIKV) is currently expanding. In 2015, 38,332 cases of Chikungunya were reported to the Brazilian epidemiological surveillance system. Eighteen months after notification of the first case in the city of Feira de Santana, we conducted the first serosurvey to define the magnitude of transmission in a rural community in Brazil. The serosurvey was conducted in a random sample of 450 residences in the Chapada district, located 100 kilometers from Feira de Santana. We administered questionnaires and tested 120 sera from Chapada district residents for CHIKV IgM- and IgG-specific antibodies. An individual with CHIKV infection was defined as any person with CHIKV IgM or IgG antibodies detected in the serum. One Hundred cases of Chikungunya were reported after prolonged rainfall, which reinforced the relationship between the rainfall index and CHIKV transmission. Eighteen months after the start of the outbreak, we identified a seroprevalence of 20% (95% CI, 15.4-35%). CHIKV IgG- and IgM-specific antibodies were detected in 22/120 (18.3%) and 6/120 (5.0%) individuals, respectively. Among seropositive patients, 13/24 (54.2%) reported fever and joint pain over the previous two years (p<0.01). The rate of symptomatic CHIKV infection was 40.7%. We identified a moderate seroprevalence of Chikungunya in the Chapada district, and in half of the confirmed CHIKV infections, patients reported arthralgia and fever over the previous two years.

  7. Chikungunya Virus Vaccines: Viral Vector-Based Approaches.

    PubMed

    Ramsauer, Katrin; Tangy, Frédéric

    2016-12-15

    In 2013, a major chikungunya virus (CHIKV) epidemic reached the Americas. In the past 2 years, >1.7 million people have been infected. In light of the current epidemic, with millions of people in North and South America at risk, efforts to rapidly develop effective vaccines have increased. Here, we focus on CHIKV vaccines that use viral-vector technologies. This group of vaccine candidates shares an ability to potently induce humoral and cellular immune responses by use of highly attenuated and safe vaccine backbones. So far, well-described vectors such as modified vaccinia virus Ankara, complex adenovirus, vesicular stomatitis virus, alphavirus-based chimeras, and measles vaccine Schwarz strain (MV/Schw) have been described as potential vaccines. We summarize here the recent data on these experimental vaccines, with a focus on the preclinical and clinical activities on the MV/Schw-based candidate, which is the first CHIKV-vectored vaccine that has completed a clinical trial. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  8. [Chikungunya fever - A new global threat].

    PubMed

    Montero, Antonio

    2015-08-07

    The recent onset of epidemics caused by viruses such as Ebola, Marburg, Nipah, Lassa, coronavirus, West-Nile encephalitis, Saint Louis encephalitis, human immunodeficiency virus, dengue, yellow fever and Venezuelan hemorrhagic fever alerts about the risk these agents represent for the global health. Chikungunya virus represents a new threat. Surged from remote African regions, this virus has become endemic in the Indic ocean basin, the Indian subcontinent and the southeast of Asia, causing serious epidemics in Africa, Indic Ocean Islands, Asia and Europe. Due to their epidemiological and biological features and the global presence of their vectors, chikungunya represents a serious menace and could become endemic in the Americas. Although chikungunya infection has a low mortality rate, its high attack ratio may collapse the health system during epidemics affecting a sensitive population. In this paper, we review the clinical and epidemiological features of chikungunya fever as well as the risk of its introduction into the Americas. We remark the importance of the epidemiological control and mosquitoes fighting in order to prevent this disease from being introduced into the Americas. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  9. Disruption of the Opal Stop Codon Attenuates Chikungunya Virus-Induced Arthritis and Pathology.

    PubMed

    Jones, Jennifer E; Long, Kristin M; Whitmore, Alan C; Sanders, Wes; Thurlow, Lance R; Brown, Julia A; Morrison, Clayton R; Vincent, Heather; Peck, Kayla M; Browning, Christian; Moorman, Nathaniel; Lim, Jean K; Heise, Mark T

    2017-11-14

    Chikungunya virus (CHIKV) is a mosquito-borne alphavirus responsible for several significant outbreaks of debilitating acute and chronic arthritis and arthralgia over the past decade. These include a recent outbreak in the Caribbean islands and the Americas that caused more than 1 million cases of viral arthralgia. Despite the major impact of CHIKV on global health, viral determinants that promote CHIKV-induced disease are incompletely understood. Most CHIKV strains contain a conserved opal stop codon at the end of the viral nsP3 gene. However, CHIKV strains that encode an arginine codon in place of the opal stop codon have been described, and deep-sequencing analysis of a CHIKV isolate from the Caribbean identified both arginine and opal variants within this strain. Therefore, we hypothesized that the introduction of the arginine mutation in place of the opal termination codon may influence CHIKV virulence. We tested this by introducing the arginine mutation into a well-characterized infectious clone of a CHIKV strain from Sri Lanka and designated this virus Opal524R. This mutation did not impair viral replication kinetics in vitro or in vivo Despite this, the Opal524R virus induced significantly less swelling, inflammation, and damage within the feet and ankles of infected mice. Further, we observed delayed induction of proinflammatory cytokines and chemokines, as well as reduced CD4 + T cell and NK cell recruitment compared to those in the parental strain. Therefore, the opal termination codon plays an important role in CHIKV pathogenesis, independently of effects on viral replication. IMPORTANCE Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes significant outbreaks of viral arthralgia. Studies with CHIKV and other alphaviruses demonstrated that the opal termination codon within nsP3 is highly conserved. However, some strains of CHIKV and other alphaviruses contain mutations in the opal termination codon. These mutations alter the virulence

  10. Seroprevalence of Chikungunya Virus in a Rural Community in Brazil

    PubMed Central

    Cunha, Rivaldo V.; Trinta, Karen S.; Montalbano, Camila A.; Sucupira, Michel V. F.; de Lima, Maricelia M.; Marques, Erenilde; Romanholi, Izilyanne H.

    2017-01-01

    Background The emergence of the Chikungunya virus (CHIKV) is currently expanding. In 2015, 38,332 cases of Chikungunya were reported to the Brazilian epidemiological surveillance system. Eighteen months after notification of the first case in the city of Feira de Santana, we conducted the first serosurvey to define the magnitude of transmission in a rural community in Brazil. Methodology/Main findings The serosurvey was conducted in a random sample of 450 residences in the Chapada district, located 100 kilometers from Feira de Santana. We administered questionnaires and tested 120 sera from Chapada district residents for CHIKV IgM- and IgG-specific antibodies. An individual with CHIKV infection was defined as any person with CHIKV IgM or IgG antibodies detected in the serum. One Hundred cases of Chikungunya were reported after prolonged rainfall, which reinforced the relationship between the rainfall index and CHIKV transmission. Eighteen months after the start of the outbreak, we identified a seroprevalence of 20% (95% CI, 15.4–35%). CHIKV IgG- and IgM-specific antibodies were detected in 22/120 (18.3%) and 6/120 (5.0%) individuals, respectively. Among seropositive patients, 13/24 (54.2%) reported fever and joint pain over the previous two years (p<0.01). The rate of symptomatic CHIKV infection was 40.7%. Conclusions/Significance We identified a moderate seroprevalence of Chikungunya in the Chapada district, and in half of the confirmed CHIKV infections, patients reported arthralgia and fever over the previous two years. PMID:28107342

  11. Reappearance of chikungunya, formerly called dengue, in the Americas.

    PubMed

    Halstead, Scott B

    2015-04-01

    After an absence of ≈200 years, chikungunya returned to the American tropics in 2013. The virus is maintained in a complex African zoonotic cycle but escapes into an urban cycle at 40- to 50-year intervals, causing global pandemics. In 1823, classical chikungunya, a viral exanthem in humans, occurred on Zanzibar, and in 1827, it arrived in the Caribbean and spread to North and South America. In Zanzibar, the disease was known as kidenga pepo, Swahili for a sudden cramp-like seizure caused by an evil spirit; in Cuba, it was known as dengue, a Spanish homonym of denga. During the eighteenth century, dengue (present-day chikungunya) was distinguished from breakbone fever (present-day dengue), another febrile exanthem. In the twentieth century, experiments resulted in the recovery and naming of present-day dengue viruses. In 1952, chikungunya virus was recovered during an outbreak in Tanzania, but by then, the virus had lost its original name to present-day dengue viruses.

  12. Multidisciplinary Prospective Study of Mother-to-Child Chikungunya Virus Infections on the Island of La Réunion

    PubMed Central

    Gérardin, Patrick; Barau, Georges; Michault, Alain; Bintner, Marc; Randrianaivo, Hanitra; Choker, Ghassan; Lenglet, Yann; Touret, Yasmina; Bouveret, Anne; Grivard, Philippe; Roux, Karin Le; Blanc, Séverine; Schuffenecker, Isabelle; Couderc, Thérèse; Arenzana-Seisdedos, Fernando; Lecuit, Marc; Robillard, Pierre-Yves

    2008-01-01

    Background An outbreak of chikungunya virus affected over one-third of the population of La Réunion Island between March 2005 and December 2006. In June 2005, we identified the first case of mother-to-child chikungunya virus transmission at the Groupe Hospitalier Sud-Réunion level-3 maternity department. The goal of this prospective study was to characterize the epidemiological, clinical, biological, and radiological features and outcomes of all the cases of vertically transmitted chikungunya infections recorded at our institution during this outbreak. Methods and Findings Over 22 mo, 7,504 women delivered 7,629 viable neonates; 678 (9.0%) of these parturient women were infected (positive RT-PCR or IgM serology) during antepartum, and 61 (0.8%) in pre- or intrapartum. With the exception of three early fetal deaths, vertical transmission was exclusively observed in near-term deliveries (median duration of gestation: 38 wk, range 35–40 wk) in the context of intrapartum viremia (19 cases of vertical transmission out of 39 women with intrapartum viremia, prevalence rate 0.25%, vertical transmission rate 48.7%). Cesarean section had no protective effect on transmission. All infected neonates were asymptomatic at birth, and median onset of neonatal disease was 4 d (range 3–7 d). Pain, prostration, and fever were present in 100% of cases and thrombocytopenia in 89%. Severe illness was observed in ten cases (52.6%) and mainly consisted of encephalopathy (n = 9; 90%). These nine children had pathologic MRI findings (brain swelling, n = 9; cerebral hemorrhages, n = 2), and four evolved towards persistent disabilities. Conclusions Mother-to-child chikungunya virus transmission is frequent in the context of intrapartum maternal viremia, and often leads to severe neonatal infection. Chikungunya represents a substantial risk for neonates born to viremic parturients that should be taken into account by clinicians and public health authorities in the event of a chikungunya

  13. Assessing the threat of chikungunya virus emergence in Australia.

    PubMed

    Viennet, Elvina; Knope, Katrina; Faddy, Helen M; Williams, Craig R; Harley, David

    2013-06-30

    Chikungunya virus (CHIKV) is a major threat to Australia given the distribution of competent vectors, and the large number of travellers returning from endemic regions. We describe current knowledge of CHIKV importations into Australia, and quantify reported viraemic cases, with the aim of facilitating the formulation of public health policy and ensuring maintenance of blood safety. Cases reported to the National Notifiable Disease Surveillance System (NNDSS) from 2002 to 2012 were analysed by place, month of acquisition, and place of residence. Rates of chikungunya importation were estimated based on reported cases and on the numbers of short-term movements. Between 2002 and 2012, there were 168 cases of chikungunya virus (CHIKV) imported into Australia. Victoria and New South Wales had the largest number of notifications. The main sources were Indonesia, India and Malaysia. The number of cases increased from 2008 to reach a peak in 2010 (n=64; 40%). Although Indonesia accounted for the majority of CHIKV notifications in Australia, travel from India had the highest CHIKV importation rate (number of imported cases per 100,000 travellers). The Australian population is increasingly at risk from CHIKV. Arrivals from endemic countries have increased concurrently with vector incursions via imported goods, as well as via local movement from the Torres Strait to North Queensland ports. An outbreak of CHIKV could have a significant impact on health, the safety of the blood supply and on tourism. Case and vector surveillance as well as population health responses are crucial for minimising any potential impact of CHIKV establishment in Australia. This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the Commonwealth. Requests and inquiries concerning reproduction and rights should be addressed to the Commonwealth Copyright Administration, Attorney General

  14. Spread of Chikungunya Virus East/Central/South African Genotype in Northeast Brazil.

    PubMed

    Charlys da Costa, Antonio; Thézé, Julien; Komninakis, Shirley Cavalcante Vasconcelos; Sanz-Duro, Rodrigo Lopes; Felinto, Marta Rejane Lemos; Moura, Lúcia Cristina Corrêa; Barroso, Ivoneide Moreira de Oliveira; Santos, Lucineide Eliziario Correia; Nunes, Mardjane Alves de Lemos; Moura, Adriana Avila; Lourenço, José; Deng, Xutao; Delwart, Eric L; Guimarães, Maria Raquel Dos Anjos Silva; Pybus, Oliver G; Sabino, Ester C; Faria, Nuno R

    2017-10-01

    We investigated an outbreak of exanthematous illness in Maceió by using molecular surveillance; 76% of samples tested positive for chikungunya virus. Genetic analysis of 23 newly generated genomes identified the East/Central/South African genotype, suggesting that this lineage has persisted since mid-2014 in Brazil and may spread in the Americas and beyond.

  15. Fingolimod treatment abrogates chikungunya virus-induced arthralgia.

    PubMed

    Teo, Teck-Hui; Chan, Yi-Hao; Lee, Wendy W L; Lum, Fok-Moon; Amrun, Siti Naqiah; Her, Zhisheng; Rajarethinam, Ravisankar; Merits, Andres; Rötzschke, Olaf; Rénia, Laurent; Ng, Lisa F P

    2017-02-01

    Chikungunya virus (CHIKV) is one of the many rheumatic arthropod-borne alphaviruses responsible for debilitating joint inflammation in humans. Despite the severity in many endemic regions, clinically approved intervention targeting the virus remains unavailable. CD4 + T cells have been shown to mediate CHIKV-induced joint inflammation in mice. We demonstrate here that transfer of splenic CD4 + T cells from virus-infected C57BL/6 mice into virus-infected T cell receptor-deficient (TCR -/- ) mice recapitulated severe joint pathology including inflammation, vascular leakages, subcutaneous edema, and skeletal muscle necrosis. Proteome-wide screening identified dominant CD4 + T cell epitopes in nsP1 and E2 viral antigens. Transfer of nsP1- or E2-specific primary CD4 + T cell lines into CHIKV-infected TCR -/- recipients led to severe joint inflammation and vascular leakage. This pathogenic role of virus-specific CD4 + T cells in CHIKV infections led to the assessment of clinically approved T cell-suppressive drugs for disease intervention. Although drugs targeting interleukin-2 pathway were ineffective, treatment with fingolimod, an agonist of sphingosine 1-phosphate receptor, successfully abrogated joint pathology in CHIKV-infected animals by blocking the migration of CD4 + T cells into the joints without any effect on viral replication. These results set the stage for further clinical evaluation of fingolimod in the treatment of CHIKV-induced joint pathologies. Copyright © 2017, American Association for the Advancement of Science.

  16. Guillain-Barre syndrome complicating chikungunya virus infection.

    PubMed

    Agarwal, Ayush; Vibha, Deepti; Srivastava, Achal Kumar; Shukla, Garima; Prasad, Kameshwar

    2017-06-01

    Chikungunya virus (CHIKV) is a mosquito-borne alphavirus which presents with symptoms of fever, rash, arthralgia, and occasional neurologic disease. While outbreaks have been earlier reported from India and other parts of the world, the recent outbreak in India witnessed more than 1000 cases. Various systemic and rarely neurological complications have been reported with CHIKV. We report two cases of Guillain-Barré syndrome (GBS) with CHIKV. GBS is a rare neurological complication which may occur after subsidence of fever and constitutional symptoms by several neurotropic viruses. We describe two cases of severe GBS which presented with rapidly progressive flaccid quadriparesis progressing to difficulty in swallowing and breathing. Both required mechanical ventilation and improved partly with plasmapharesis. The cases emphasize on (1) description of the rare complication in a setting of outbreak with CHIKV, (2) acute axonal as well as demyelinating neuropathy may occur with CHIKV, (3) accurate identification of this entity during outbreaks with dengue, both of which are vector borne and may present with similar complications.

  17. A sensitive epitope-blocking ELISA for the detection of Chikungunya virus-specific antibodies in patients.

    PubMed

    Goh, Lucas Y H; Kam, Yiu-Wing; Metz, Stefan W; Hobson-Peters, Jody; Prow, Natalie A; McCarthy, Suzi; Smith, David W; Pijlman, Gorben P; Ng, Lisa F P; Hall, Roy A

    2015-09-15

    Chikungunya fever (CHIKF) has re-emerged as an arboviral disease that mimics clinical symptoms of other diseases such as dengue, malaria, as well as other alphavirus-related illnesses leading to problems with definitive diagnosis of the infection. Herein we describe the development and evaluation of a sensitive epitope-blocking ELISA (EB-ELISA) capable of specifically detecting anti-chikungunya virus (CHIKV) antibodies in clinical samples. The assay uses a monoclonal antibody (mAb) that binds an epitope on the E2 protein of CHIKV and does not exhibit cross-reactivity to other related alphaviruses. We also demonstrated the use of recombinant CHIK virus-like particles (VLPs) as a safe alternative antigen to infectious virions in the assay. Based on testing of 60 serum samples from patients in the acute or convalescent phase of CHIKV infection, the EB-ELISA provided us with 100% sensitivity, and exhibited 98.5% specificity when Ross River virus (RRV)- or Barmah Forest virus (BFV)-immune serum samples were included. This assay meets the public health demands of a rapid, robust, sensitive and specific, yet simple assay for specifically diagnosing CHIK-infections in humans. Copyright © 2015. Published by Elsevier B.V.

  18. Experimental Vaccine for Mosquito-Borne Chikungunya Virus Rates Well in Clinical Study | Frederick National Laboratory for Cancer Research

    Cancer.gov

    An experimental vaccine for mosquito-borne chikungunya virus, which spread to the U.S. this year, appears to be safe and well-tolerated while offering protection against the virus, according to the results of a first-in-human clinical trial. The vacc

  19. A recombinant virus vaccine that protects against both Chikungunya and Zika virus infections.

    PubMed

    Chattopadhyay, Anasuya; Aguilar, Patricia V; Bopp, Nathen E; Yarovinsky, Timur O; Weaver, Scott C; Rose, John K

    2018-06-22

    Chikungunya virus (CHIKV) and Zika virus (ZIKV) have recently expanded their range in the world and caused serious and widespread outbreaks of near pandemic proportions. There are no licensed vaccines that protect against these co-circulating viruses that are transmitted by invasive mosquito vectors. We report here on the development of a single-dose, bivalent experimental vaccine for CHIKV and ZIKV. This vaccine is based on a chimeric vesicular stomatitis virus (VSV) that expresses the CHIKV envelope polyprotein (E3-E2-6K-E1) in place of the VSV glycoprotein (G) and also expresses the membrane-envelope (ME) glycoproteins of ZIKV. This vaccine induced neutralizing antibody responses to both CHIKV and ZIKV in wild-type mice and in interferon receptor-deficient A129 mice, animal models for CHIKV and ZIKV infection. A single vaccination of A129 mice with the vector protected these mice against infection with both CHIKV and ZIKV. Our single-dose vaccine could provide durable, low-cost protection against both CHIKV and ZIKV for people traveling to or living in areas where both viruses are circulating, which include most tropical regions in the world. Copyright © 2018. Published by Elsevier Ltd.

  20. Dynamics of Chikungunya Virus Cell Entry Unraveled by Single-Virus Tracking in Living Cells.

    PubMed

    Hoornweg, Tabitha E; van Duijl-Richter, Mareike K S; Ayala Nuñez, Nilda V; Albulescu, Irina C; van Hemert, Martijn J; Smit, Jolanda M

    2016-05-01

    Chikungunya virus (CHIKV) is a rapidly emerging mosquito-borne human pathogen causing major outbreaks in Africa, Asia, and the Americas. The cell entry pathway hijacked by CHIKV to infect a cell has been studied previously using inhibitory compounds. There has been some debate on the mechanism by which CHIKV enters the cell: several studies suggest that CHIKV enters via clathrin-mediated endocytosis, while others show that it enters independently of clathrin. Here we applied live-cell microscopy and monitored the cell entry behavior of single CHIKV particles in living cells transfected with fluorescent marker proteins. This approach allowed us to obtain detailed insight into the dynamic events that occur during CHIKV entry. We observed that almost all particles fused within 20 min after addition to the cells. Of the particles that fused, the vast majority first colocalized with clathrin. The average time from initial colocalization with clathrin to the moment of membrane fusion was 1.7 min, highlighting the rapidity of the cell entry process of CHIKV. Furthermore, these results show that the virus spends a relatively long time searching for a receptor. Membrane fusion was observed predominantly from within Rab5-positive endosomes and often occurred within 40 s after delivery to endosomes. Furthermore, we confirmed that a valine at position 226 of the E1 protein enhances the cholesterol-dependent membrane fusion properties of CHIKV. To conclude, our work confirms that CHIKV enters cells via clathrin-mediated endocytosis and shows that fusion occurs from within acidic early endosomes. Since its reemergence in 2004, chikungunya virus (CHIKV) has spread rapidly around the world, leading to millions of infections. CHIKV often causes chikungunya fever, a self-limiting febrile illness with severe arthralgia. Currently, no vaccine or specific antiviral treatment against CHIKV is available. A potential antiviral strategy is to interfere with the cell entry process of the

  1. Dengue and Chikungunya Vector Control Pocket Guide

    USDA-ARS?s Scientific Manuscript database

    This technical guide consolidates information and procedures for surveillance and control of mosquitoes that transmit dengue and chikungunya viruses. The guide focuses on mosquitoes that transmit dengue but also makes reference to chikungunya and yellow fever because the pathogens that cause these ...

  2. Economic Costs of Chikungunya Virus in Colombia.

    PubMed

    Alvis-Zakzuk, Nelson J; Díaz-Jiménez, Diana; Castillo-Rodríguez, Liliana; Castañeda-Orjuela, Carlos; Paternina-Caicedo, Ángel; Pinzón-Redondo, Hernando; Carrasquilla-Sotomayor, María; Alvis-Guzmán, Nelson; De La Hoz-Restrepo, Fernando

    2018-04-05

    The aim of the present study was to estimate the economic impact of chikungunya virus (CHIKV) infection in Colombia from a societal perspective. We conducted a retrospective, bottom-up cost-of-illness study in clinically confirmed cases during the first chikungunya (CHIK) outbreak in Colombia in 2014. Direct and indirect costs were estimated per patient. Economic costs were calculated by the addition of direct costs (direct medical costs and out-of-pocket heath expenditures) and indirect cost as a result of loss of productivity. A total of 126 patients (67 children and 59 adults) with CHIK were included. The median of the direct medical cost in children was US$257.9 (interquartile range [IQR] 121.7-563.8), and US$66.6 (IQR 26.5-317.3) for adults. The productivity loss median expenditures reached US$81.3 (IQR 72.2-203.2) per adult patient. The median economic cost in adults as a result of CHIK was US$152.9 (IQR 101.0-539.6), of which 53.2% was a result of indirect costs. Out-of-pocket expenditures comprised 3.3% of all economic costs. Our study can help health decision makers to properly assess the burden of disease caused by CHIK in Colombia, an endemic tropical country. We recommend to strength the health information systems and to continue investing in public health measures to prevent CHIK. Copyright © 2018. Published by Elsevier Inc.

  3. Clinical Spectrum of Chikungunya in Pakistan.

    PubMed

    Naqvi, Syeda; Bashir, Shehroz; Rupareliya, Chintan; Shams, Abdullah; Giyanwani, Pirthvi Raj; Ali, Zeeshan; Qamar, Faiza; Kumar, Vijesh; Talib, Vikash

    2017-07-06

    Background Chikungunya fever is a pandemic disease caused by an arthropod-borne chikungunya virus (CHIKV). The virus spreads through mosquitoes. This mosquito induced viral illness is clinically suspected on symptoms from fever and severe polyarthralgia. The recent outbreak of chikungunya was reported in November 2016 in the metropolitan city Karachi, Pakistan. We emphasis on the awareness of the etiology and vector control to prevent serious consequences. Method A total number of 1275 patients were included in this cross-sectional study. These patients were enrolled based on clinical findings described by Centers for Disease Control and Prevention (CDC). Our exclusion criteria were patients with missing data or having co-infection with dengue or malaria. The patients were tested for chikungunya antibodies, malaria, and dengue. The patients were followed for three months. Results Out of 1275 consenting patients from the emergency department, 564 tested positive for chikungunya antibodies and out of these 564 patients 365 had co-infection of dengue and malaria. So based on exclusion criteria, 199 patients had isolated chikungunya infection and were studied for the frequency of clinical symptoms. The most common finding was joint pain and fever on presentation and joint pain was the only chronic finding which persisted. Conclusion Our study demonstrated the frequency of clinical findings in chikungunya infection. It also signifies the importance of testing for antibodies because it helped in excluding patients with false positive clinical findings and differentiating co-infection with malaria and dengue. It also gauged patient's view about the cause of this disease.

  4. Clinical Spectrum of Chikungunya in Pakistan

    PubMed Central

    Bashir, Shehroz; Rupareliya, Chintan; Shams, Abdullah; Giyanwani, Pirthvi Raj; Ali, Zeeshan; Qamar, Faiza; Kumar, Vijesh; Talib, Vikash

    2017-01-01

    Background Chikungunya fever is a pandemic disease caused by an arthropod-borne chikungunya virus (CHIKV). The virus spreads through mosquitoes. This mosquito induced viral illness is clinically suspected on symptoms from fever and severe polyarthralgia. The recent outbreak of chikungunya was reported in November 2016 in the metropolitan city Karachi, Pakistan. We emphasis on the awareness of the etiology and vector control to prevent serious consequences. Method A total number of 1275 patients were included in this cross-sectional study. These patients were enrolled based on clinical findings described by Centers for Disease Control and Prevention (CDC). Our exclusion criteria were patients with missing data or having co-infection with dengue or malaria. The patients were tested for chikungunya antibodies, malaria, and dengue. The patients were followed for three months. Results Out of 1275 consenting patients from the emergency department, 564 tested positive for chikungunya antibodies and out of these 564 patients 365 had co-infection of dengue and malaria. So based on exclusion criteria, 199 patients had isolated chikungunya infection and were studied for the frequency of clinical symptoms. The most common finding was joint pain and fever on presentation and joint pain was the only chronic finding which persisted. Conclusion Our study demonstrated the frequency of clinical findings in chikungunya infection. It also signifies the importance of testing for antibodies because it helped in excluding patients with false positive clinical findings and differentiating co-infection with malaria and dengue. It also gauged patient's view about the cause of this disease.  PMID:28924518

  5. Summary results of the 2014-2015 DARPA Chikungunya challenge

    DOE PAGES

    Del Valle, Sara Y.; McMahon, Benjamin Hamilton; Asher, Jason; ...

    2018-05-30

    Here, emerging pathogens such as Zika, chikungunya, Ebola, and dengue viruses are serious threats to national and global health security. Accurate forecasts of emerging epidemics and their severity are critical to minimizing subsequent mortality, morbidity, and economic loss. The recent introduction of chikungunya and Zika virus to the Americas underscores the need for better methods for disease surveillance and forecasting.

  6. Summary results of the 2014-2015 DARPA Chikungunya challenge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del Valle, Sara Y.; McMahon, Benjamin Hamilton; Asher, Jason

    Here, emerging pathogens such as Zika, chikungunya, Ebola, and dengue viruses are serious threats to national and global health security. Accurate forecasts of emerging epidemics and their severity are critical to minimizing subsequent mortality, morbidity, and economic loss. The recent introduction of chikungunya and Zika virus to the Americas underscores the need for better methods for disease surveillance and forecasting.

  7. Co-infection with Zika and Chikungunya Viruses Associated with Fetal Death.

    PubMed

    Prata-Barbosa, Arnaldo; Cleto-Yamane, Thaís Lira; Rodrigues Robaina, Jaqueline; Guastavino, Andrea Bittencourt; de Magalhães-Barbosa, Maria Clara; de Moraes Brindeiro, Rodrigo; Medronho, Roberto Andrade; da Cunha, Antonio José Ledo Alves

    2018-05-05

    We describe a case of fetal death associated with a recent infection by Chikungunya virus (CHIKV) in a Brazilian pregnant woman (positive RT-PCR in blood and placenta). Zika virus (ZIKV) infection during pregnancy was also identified, based on a positive RT-PCR in a fetal kidney specimen. The maternal infection caused by the ZIKV was asymptomatic and the CHIKV infection had a classical clinical presentation. The fetus had no apparent anomalies, but her weight was between the 3rd and 10th percentile for the gestational age. This is the is the second case report of congenital arboviral co-infection and the first followed by antepartum fetal death. Copyright © 2018. Published by Elsevier Ltd.

  8. Molecular characterization of chikungunya virus from Andhra Pradesh, India & phylogenetic relationship with Central African isolates.

    PubMed

    M Naresh Kumar, C V; Anthony Johnson, A M; R Sai Gopal, D V

    2007-12-01

    Chikungunya virus has caused numerous large outbreaks in India. Suspected blood samples from the epidemic were collected and characterized for the identification of the responsible causative from Rayalaseema region of Andhra Pradesh. RT-PCR was used for screening of suspected blood samples. Primers were designed to amplify partial E1 gene and the amplified fragment was cloned and sequenced. The sequence was analyzed and compared with other geographical isolates to find the phylogenetic relationship. The sequence was submitted to the Gen bank DNA database (accession DQ888620). Comparative nucleotide homology analysis of the AP Ra-CTR isolate with the other isolates revealed 94.7+/-3.6 per cent of homology of CHIKAPRa-CTR with other isolates of Chikungunya virus at nucleotide level and 96.8+/-3.2 per cent of homology at amino acid level. The current epidemic was caused by the Central African genotype of CHIKV, grouped in Central Africa cluster in phylogenetic trees generated based on nucleotide and amino acid sequences.

  9. First report of naturally infected Aedes aegypti with chikungunya virus genotype ECSA in the Americas.

    PubMed

    Costa-da-Silva, André Luis; Ioshino, Rafaella Sayuri; Petersen, Vivian; Lima, Antonio Fernando; Cunha, Marielton Dos Passos; Wiley, Michael R; Ladner, Jason T; Prieto, Karla; Palacios, Gustavo; Costa, Danuza Duarte; Suesdek, Lincoln; Zanotto, Paolo Marinho de Andrade; Capurro, Margareth Lara

    2017-06-01

    The worldwide expansion of new emergent arboviruses such as Chikungunya and Zika reinforces the importance in understanding the role of mosquito species in spreading these pathogens in affected regions. This knowledge is essential for developing effective programs based on species specificity to avoid the establishment of endemic transmission cycles sustained by the identified local vectors. Although the first autochthonous transmission of Chikungunya virus was described in 2014 in the north of Brazil, the main outbreaks were reported in 2015 and 2016 in the northeast of Brazil. During 5 days of February 2016, we collected mosquitoes in homes of 6 neighborhoods of Aracaju city, the capital of Sergipe state. Four mosquito species were identified but Culex quinquefasciatus and Aedes aegypti were the most abundant. Field-caught mosquitoes were tested for Chikungunya (CHIKV), Zika (ZIKV) and Dengue viruses (DENV) by qRT-PCR and one CHIKV-infected Ae. aegypti female was detected. The complete sequence of CHIKV genome was obtained from this sample and phylogenetic analysis revealed that this isolate belongs to the East-Central-South-African (ECSA) genotype. Our study describes the first identification of a naturally CHIKV-infected Ae. aegypti in Brazil and the first report of a CHIKV from ECSA genotype identified in this species in the Americas. These findings support the notion of Ae. aegypti being a vector involved in CHIKV outbreaks in northeast of Brazil.

  10. Zika virus displacement by a chikungunya outbreak in Recife, Brazil.

    PubMed

    Magalhaes, Tereza; Braga, Cynthia; Cordeiro, Marli T; Oliveira, Andre L S; Castanha, Priscila M S; Maciel, Ana Paula R; Amancio, Nathalia M L; Gouveia, Pollyanne N; Peixoto-da-Silva, Valter J; Peixoto, Thaciana F L; Britto, Helena; Lima, Priscilla V; Lima, Andreza R S; Rosenberger, Kerstin D; Jaenisch, Thomas; Marques, Ernesto T A

    2017-11-01

    Several arboviruses, including dengue virus (DENV), Zika virus (ZIKV) and chikungunya virus (CHIKV), transmitted by Aedes mosquitoes, circulate in northeast Brazil. Diseases caused by these viruses are of great public health relevance, however, their epidemiological features in areas where the three viruses co-circulate are scarce. Here, we present analyses of molecular and serological diagnostics in a prospective study of acute febrile patients recruited from May 2015 to May 2016 in Recife, Brazil. Two hundred sixty-three acute febrile patients with symptoms suggestive of an arboviral disease who attended an urgent heath care clinic in the Recife Metropolitan Region in northeast Brazil were enrolled. Acute and convalescent blood samples were collected and tested using molecular and serological assays for infection with DENV, ZIKV and CHIKV. Quantitative real-time reverse-transcriptase polymerase chain reactions (qRTPCR) performed on acute phase sera detected no patients positive for DENV, but 26 (9.9%) positive for ZIKV and 132 (50.2%) positive for CHIKV. There were a few suspected and only one confirmed dengue case. Specific serological assays for ZIKV and CHIKV confirmed the qRTPCR data. Analyses of DENV IgM and IgG ELISAs in the context of qRTPCR results suggested high levels of cross reactive antibodies in ZIKV-positive samples. Results from neutralization assays highly corroborated those from qRTPCR and ZIKV ELISA, indicating very few positive DENV cases. ZIKV infections were temporally clustered in the first months of the study and started to decrease concomitantly with an increase in CHIKV infections in August 2015. The proportion of CHIKV infections increased significantly in September 2015 and remained high until the end of the study period, with an average of 84.7% of recruited patients being diagnosed from August 2015 to May 2016. ZIKV infections exhibited a female bias and the cases were spread over the study site, while CHIKV cases had a male bias and

  11. [Situational panorama of Mexico against the chikungunya virus pandemic].

    PubMed

    Martínez-Sánchez, Abisai; Martínez-Ramos, Ericay Berenice; Chávez-Angeles, Manuel Gerardo

    2015-01-01

    Recent outbreaks of emerging diseases emphasize the vulnerability of health systems, as is the case of chikungunya fever. The wide geographical incidence of the virus in the last years requires alerting systems for the prevention, diagnosis, control and eradication of the disease. Given the ecological, epidemiological and socio-economic characteristic of Mexico, this disease affects directly or indirectly the health of the population and development of agricultural, livestock, industrial, fishing, oil and tourism activities in the country. Due to this situation it is essential to make a brief analysis on the main clinical data, epidemiological and preventive measures with which our country counts with to confront the situation.

  12. Mosquito Cellular Factors and Functions in Mediating the Infectious entry of Chikungunya Virus

    PubMed Central

    Lee, Regina Ching Hua; Hapuarachchi, Hapuarachchige Chanditha; Chen, Karen Caiyun; Hussain, Khairunnisa' Mohamed; Chen, Huixin; Low, Swee Ling; Ng, Lee Ching; Lin, Raymond; Ng, Mary Mah-Lee; Chu, Justin Jang Hann

    2013-01-01

    Chikungunya virus (CHIKV) is an arthropod-borne virus responsible for recent epidemics in the Asia Pacific regions. A customized gene expression microarray of 18,760 transcripts known to target Aedes mosquito genome was used to identify host genes that are differentially regulated during the infectious entry process of CHIKV infection on C6/36 mosquito cells. Several genes such as epsin I (EPN1), epidermal growth factor receptor pathway substrate 15 (EPS15) and Huntingtin interacting protein I (HIP1) were identified to be differentially expressed during CHIKV infection and known to be involved in clathrin-mediated endocytosis (CME). Transmission electron microscopy analyses further revealed the presence of CHIKV particles within invaginations of the plasma membrane, resembling clathrin-coated pits. Characterization of vesicles involved in the endocytic trafficking processes of CHIKV revealed the translocation of the virus particles to the early endosomes and subsequently to the late endosomes and lysosomes. Treatment with receptor-mediated endocytosis inhibitor, monodansylcadaverine and clathrin-associated drug inhibitors, chlorpromazine and dynasore inhibited CHIKV entry, whereas no inhibition was observed with caveolin-related drug inhibitors. Inhibition of CHIKV entry upon treatment with low-endosomal pH inhibitors indicated that low pH is essential for viral entry processes. CHIKV entry by clathrin-mediated endocytosis was validated via overexpression of a dominant-negative mutant of Eps15, in which infectious entry was reduced, while siRNA-based knockdown of genes associated with CME, low endosomal pH and RAB trafficking proteins exhibited significant levels of CHIKV inhibition. This study revealed, for the first time, that the infectious entry of CHIKV into mosquito cells is mediated by the clathrin-dependent endocytic pathway. PMID:23409203

  13. Chikungunya, Influenza, Nipah, and Semliki Forest Chimeric Viruses with Vesicular Stomatitis Virus: Actions in the Brain.

    PubMed

    van den Pol, Anthony N; Mao, Guochao; Chattopadhyay, Anasuya; Rose, John K; Davis, John N

    2017-03-15

    Recombinant vesicular stomatitis virus (VSV)-based chimeric viruses that include genes from other viruses show promise as vaccines and oncolytic viruses. However, the critical safety concern is the neurotropic nature conveyed by the VSV glycoprotein. VSVs that include the VSV glycoprotein (G) gene, even in most recombinant attenuated strains, can still show substantial adverse or lethal actions in the brain. Here, we test 4 chimeric viruses in the brain, including those in which glycoprotein genes from Nipah, chikungunya (CHIKV), and influenza H5N1 viruses were substituted for the VSV glycoprotein gene. We also test a virus-like vesicle (VLV) in which the VSV glycoprotein gene is expressed from a replicon encoding the nonstructural proteins of Semliki Forest virus. VSVΔG-CHIKV, VSVΔG-H5N1, and VLV were all safe in the adult mouse brain, as were VSVΔG viruses expressing either the Nipah F or G glycoprotein. In contrast, a complementing pair of VSVΔG viruses expressing Nipah G and F glycoproteins were lethal within the brain within a surprisingly short time frame of 2 days. Intranasal inoculation in postnatal day 14 mice with VSVΔG-CHIKV or VLV evoked no adverse response, whereas VSVΔG-H5N1 by this route was lethal in most mice. A key immune mechanism underlying the safety of VSVΔG-CHIKV, VSVΔG-H5N1, and VLV in the adult brain was the type I interferon response; all three viruses were lethal in the brains of adult mice lacking the interferon receptor, suggesting that the viruses can infect and replicate and spread in brain cells if not blocked by interferon-stimulated genes within the brain. IMPORTANCE Vesicular stomatitis virus (VSV) shows considerable promise both as a vaccine vector and as an oncolytic virus. The greatest limitation of VSV is that it is highly neurotropic and can be lethal within the brain. The neurotropism can be mostly attributed to the VSV G glycoprotein. Here, we test 4 chimeric viruses of VSV with glycoprotein genes from Nipah

  14. Chikungunya, Influenza, Nipah, and Semliki Forest Chimeric Viruses with Vesicular Stomatitis Virus: Actions in the Brain

    PubMed Central

    Mao, Guochao; Chattopadhyay, Anasuya; Rose, John K.; Davis, John N.

    2017-01-01

    ABSTRACT Recombinant vesicular stomatitis virus (VSV)-based chimeric viruses that include genes from other viruses show promise as vaccines and oncolytic viruses. However, the critical safety concern is the neurotropic nature conveyed by the VSV glycoprotein. VSVs that include the VSV glycoprotein (G) gene, even in most recombinant attenuated strains, can still show substantial adverse or lethal actions in the brain. Here, we test 4 chimeric viruses in the brain, including those in which glycoprotein genes from Nipah, chikungunya (CHIKV), and influenza H5N1 viruses were substituted for the VSV glycoprotein gene. We also test a virus-like vesicle (VLV) in which the VSV glycoprotein gene is expressed from a replicon encoding the nonstructural proteins of Semliki Forest virus. VSVΔG-CHIKV, VSVΔG-H5N1, and VLV were all safe in the adult mouse brain, as were VSVΔG viruses expressing either the Nipah F or G glycoprotein. In contrast, a complementing pair of VSVΔG viruses expressing Nipah G and F glycoproteins were lethal within the brain within a surprisingly short time frame of 2 days. Intranasal inoculation in postnatal day 14 mice with VSVΔG-CHIKV or VLV evoked no adverse response, whereas VSVΔG-H5N1 by this route was lethal in most mice. A key immune mechanism underlying the safety of VSVΔG-CHIKV, VSVΔG-H5N1, and VLV in the adult brain was the type I interferon response; all three viruses were lethal in the brains of adult mice lacking the interferon receptor, suggesting that the viruses can infect and replicate and spread in brain cells if not blocked by interferon-stimulated genes within the brain. IMPORTANCE Vesicular stomatitis virus (VSV) shows considerable promise both as a vaccine vector and as an oncolytic virus. The greatest limitation of VSV is that it is highly neurotropic and can be lethal within the brain. The neurotropism can be mostly attributed to the VSV G glycoprotein. Here, we test 4 chimeric viruses of VSV with glycoprotein genes from

  15. First Report of Aedes aegypti Transmission of Chikungunya Virus in the Americas

    PubMed Central

    Díaz-González, Esteban E.; Kautz, Tiffany F.; Dorantes-Delgado, Alicia; Malo-García, Iliana R.; Laguna-Aguilar, Maricela; Langsjoen, Rose M.; Chen, Rubing; Auguste, Dawn I.; Sánchez-Casas, Rosa M.; Danis-Lozano, Rogelio; Weaver, Scott C.; Fernández-Salas, Ildefonso

    2015-01-01

    During a chikungunya fever outbreak in late 2014 in Chiapas, Mexico, entomovirological surveillance was performed to incriminate the vector(s). In neighborhoods, 75 households with suspected cases were sampled for mosquitoes, of which 80% (60) harbored Aedes aegypti and 2.7% (2) Aedes albopictus. A total of 1,170 Ae. aegypti and three Ae. albopictus was collected and 81 pools were generated. Although none of the Ae. albopictus pools were chikungunya virus (CHIKV)–positive, 18 Ae. aegypti pools (22.8%) contained CHIKV, yielding an infection rate of 32.3/1,000 mosquitoes. A lack of herd immunity in conjunction with high mosquito populations, poor vector control services in this region, and targeted collections in locations of human cases may explain the high infection rate in this vector. Consistent with predictions from experimental studies, Ae. aegypti appears to be the principal vector of CHIKV in southern Mexico, while the role of Ae. albopictus remains unknown. PMID:26416113

  16. Detection of Wolbachia in Aedes albopictus and Their Effects on Chikungunya Virus

    PubMed Central

    Ahmad, Noor Afizah; Vythilingam, Indra; Lim, Yvonne A. L.; Zabari, Nur Zatil Aqmar M.; Lee, Han Lim

    2017-01-01

    Wolbachia-based vector control strategies have been proposed as a means to augment the currently existing measures for controlling dengue and chikungunya vectors. Prior to utilizing Wolbachia as a novel vector control strategy, it is crucial to understand the Wolbachia–mosquito interactions. In this study, field surveys were conducted to screen for the infection status of Wolbachia in field-collected Aedes albopictus. The effects of Wolbachia in its native host toward the replication and dissemination of chikungunya virus (CHIKV) was also studied. The prevalence of Wolbachia-infected field-collected Ae. albopictus was estimated to be 98.6% (N = 142) for females and 95.1% (N = 102) for males in the population studied. The Ae. albopictus were naturally infected with both wAlbA and wAlbB strains. We also found that the native Wolbachia has no impact on CHIKV infection and minimal effect on CHIKV dissemination to secondary organs. PMID:27920393

  17. First Report of Aedes aegypti Transmission of Chikungunya Virus in the Americas.

    PubMed

    Díaz-González, Esteban E; Kautz, Tiffany F; Dorantes-Delgado, Alicia; Malo-García, Iliana R; Laguna-Aguilar, Maricela; Langsjoen, Rose M; Chen, Rubing; Auguste, Dawn I; Sánchez-Casas, Rosa M; Danis-Lozano, Rogelio; Weaver, Scott C; Fernández-Salas, Ildefonso

    2015-12-01

    During a chikungunya fever outbreak in late 2014 in Chiapas, Mexico, entomovirological surveillance was performed to incriminate the vector(s). In neighborhoods, 75 households with suspected cases were sampled for mosquitoes, of which 80% (60) harbored Aedes aegypti and 2.7% (2) Aedes albopictus. A total of 1,170 Ae. aegypti and three Ae. albopictus was collected and 81 pools were generated. Although none of the Ae. albopictus pools were chikungunya virus (CHIKV)-positive, 18 Ae. aegypti pools (22.8%) contained CHIKV, yielding an infection rate of 32.3/1,000 mosquitoes. A lack of herd immunity in conjunction with high mosquito populations, poor vector control services in this region, and targeted collections in locations of human cases may explain the high infection rate in this vector. Consistent with predictions from experimental studies, Ae. aegypti appears to be the principal vector of CHIKV in southern Mexico, while the role of Ae. albopictus remains unknown. © The American Society of Tropical Medicine and Hygiene.

  18. Oral receptivity of Aedes aegypti from Cape Verde for yellow fever, dengue, and chikungunya viruses.

    PubMed

    Vazeille, Marie; Yébakima, André; Lourenço-de-Oliveira, Ricardo; Andriamahefazafy, Barrysson; Correira, Artur; Rodrigues, Julio Monteiro; Veiga, Antonio; Moreira, Antonio; Leparc-Goffart, Isabelle; Grandadam, Marc; Failloux, Anna-Bella

    2013-01-01

    At the end of 2009, 21,313 cases of dengue-3 virus (DENV-3) were reported in the islands of Cape Verde, an archipelago located in the Atlantic Ocean 570 km from the coast of western Africa. It was the first dengue outbreak ever reported in Cape Verde. Mosquitoes collected in July 2010 in the city of Praia, on the island of Santiago, were identified morphologically as Aedes aegypti formosus. Using experimental oral infections, we found that this vector showed a moderate ability to transmit the epidemic dengue-3 virus, but was highly susceptible to chikungunya and yellow fever viruses.

  19. The Bridges and Blockades to Evolutionary Convergence on the Road to Predicting Chikungunya Virus Evolution.

    PubMed

    Vignuzzi, Marco; Higgs, Stephen

    2017-09-29

    Chikungunya virus, first isolated in the 1950s, has since reemerged to cause several epidemics and millions of infections throughout the world. What was once blurred and confused with dengue virus in both diagnosis and name has since become one of the best-characterized arboviral diseases. In this review, we cover the history of this virus, its evolution into distinct genotypes and lineages, and, most notably, the convergent evolution observed in recent years. We highlight research that reveals to what extent convergent evolution, and its inherent predictability, may occur and what genetic or environmental factors may hinder it.

  20. First report of naturally infected Aedes aegypti with chikungunya virus genotype ECSA in the Americas

    PubMed Central

    Costa-da-Silva, André Luis; Ioshino, Rafaella Sayuri; Petersen, Vivian; Lima, Antonio Fernando; Cunha, Marielton dos Passos; Wiley, Michael R.; Ladner, Jason T.; Prieto, Karla; Palacios, Gustavo; Costa, Danuza Duarte; Suesdek, Lincoln; Zanotto, Paolo Marinho de Andrade

    2017-01-01

    Background The worldwide expansion of new emergent arboviruses such as Chikungunya and Zika reinforces the importance in understanding the role of mosquito species in spreading these pathogens in affected regions. This knowledge is essential for developing effective programs based on species specificity to avoid the establishment of endemic transmission cycles sustained by the identified local vectors. Although the first autochthonous transmission of Chikungunya virus was described in 2014 in the north of Brazil, the main outbreaks were reported in 2015 and 2016 in the northeast of Brazil. Methodology/Principal findings During 5 days of February 2016, we collected mosquitoes in homes of 6 neighborhoods of Aracaju city, the capital of Sergipe state. Four mosquito species were identified but Culex quinquefasciatus and Aedes aegypti were the most abundant. Field-caught mosquitoes were tested for Chikungunya (CHIKV), Zika (ZIKV) and Dengue viruses (DENV) by qRT-PCR and one CHIKV-infected Ae. aegypti female was detected. The complete sequence of CHIKV genome was obtained from this sample and phylogenetic analysis revealed that this isolate belongs to the East-Central-South-African (ECSA) genotype. Conclusions Our study describes the first identification of a naturally CHIKV-infected Ae. aegypti in Brazil and the first report of a CHIKV from ECSA genotype identified in this species in the Americas. These findings support the notion of Ae. aegypti being a vector involved in CHIKV outbreaks in northeast of Brazil. PMID:28614394

  1. Imported Chikungunya Virus Strains, Taiwan, 2006–2014

    PubMed Central

    Yang, Cheng-Fen; Su, Chien-Ling; Hsu, Tung-Chien; Chang, Shu-Fen; Lin, Chien-Chou

    2016-01-01

    We identified 78 imported chikungunya cases in Taiwan during 2006–2014. Sixty-six (84.6%) cases were initially suspected to be dengue, which indicates the necessity for laboratory diagnostics in differentiation between dengue and chikungunya. Results also emphasize the need for active surveillance of febrile illness at points of entry. PMID:27767908

  2. Viremia and Clinical Presentation in Nicaraguan Patients Infected With Zika Virus, Chikungunya Virus, and Dengue Virus.

    PubMed

    Waggoner, Jesse J; Gresh, Lionel; Vargas, Maria Jose; Ballesteros, Gabriela; Tellez, Yolanda; Soda, K James; Sahoo, Malaya K; Nuñez, Andrea; Balmaseda, Angel; Harris, Eva; Pinsky, Benjamin A

    2016-12-15

     Zika virus (ZIKV), chikungunya virus (CHIKV), and dengue virus (DENV) cocirculate in Nicaragua. In this study, we sought to compare the quantified viremia and clinical presentation of patients infected with 1 or more of these viruses.  Acute-phase serum samples from 346 patients with a suspected arboviral illness were tested using a multiplex real-time reverse-transcription polymerase chain reaction for ZIKV, CHIKV, and DENV. Viremia was quantitated for each detected virus, and clinical information from request forms submitted with each sample was recorded.  A total of 263 patients tested positive for 1 or more viruses: 192 patients tested positive for a single virus (monoinfections) and 71 patients tested positive for 2 or all 3 viruses (coinfections). Quantifiable viremia was lower in ZIKV infections compared with CHIKV or DENV (mean 4.70 vs 6.42 and 5.84 log 10 copies/mL serum, respectively; P < .001 for both comparisons), and for each virus, mean viremia was significantly lower in coinfections than in monoinfections. Compared with patients with CHIKV or DENV, ZIKV patients were more likely to have a rash (P < .001) and less likely to be febrile (P < .05) or require hospitalization (P < .001). Among all patients, hospitalized cases had higher viremia than those who did not require hospitalization (7.1 vs 4.1 log10 copies/mL serum, respectively; P < .001).  ZIKV, CHIKV, and DENV result in similar clinical presentations, and coinfections may be relatively common. Our findings illustrate the need for accurate, multiplex diagnostics for patient care and epidemiologic surveillance. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America.

  3. Viremia and Clinical Presentation in Nicaraguan Patients Infected With Zika Virus, Chikungunya Virus, and Dengue Virus

    PubMed Central

    Waggoner, Jesse J.; Gresh, Lionel; Vargas, Maria Jose; Ballesteros, Gabriela; Tellez, Yolanda; Soda, K. James; Sahoo, Malaya K.; Nuñez, Andrea; Balmaseda, Angel; Harris, Eva; Pinsky, Benjamin A.

    2016-01-01

    Background. Zika virus (ZIKV), chikungunya virus (CHIKV), and dengue virus (DENV) cocirculate in Nicaragua. In this study, we sought to compare the quantified viremia and clinical presentation of patients infected with 1 or more of these viruses. Methods. Acute-phase serum samples from 346 patients with a suspected arboviral illness were tested using a multiplex real-time reverse-transcription polymerase chain reaction for ZIKV, CHIKV, and DENV. Viremia was quantitated for each detected virus, and clinical information from request forms submitted with each sample was recorded. Results. A total of 263 patients tested positive for 1 or more viruses: 192 patients tested positive for a single virus (monoinfections) and 71 patients tested positive for 2 or all 3 viruses (coinfections). Quantifiable viremia was lower in ZIKV infections compared with CHIKV or DENV (mean 4.70 vs 6.42 and 5.84 log10 copies/mL serum, respectively; P < .001 for both comparisons), and for each virus, mean viremia was significantly lower in coinfections than in monoinfections. Compared with patients with CHIKV or DENV, ZIKV patients were more likely to have a rash (P < .001) and less likely to be febrile (P < .05) or require hospitalization (P < .001). Among all patients, hospitalized cases had higher viremia than those who did not require hospitalization (7.1 vs 4.1 log10 copies/mL serum, respectively; P < .001). Conclusions. ZIKV, CHIKV, and DENV result in similar clinical presentations, and coinfections may be relatively common. Our findings illustrate the need for accurate, multiplex diagnostics for patient care and epidemiologic surveillance. PMID:27578819

  4. Differential protein modulation in midguts of Aedes aegypti infected with chikungunya and dengue 2 viruses.

    PubMed

    Tchankouo-Nguetcheu, Stéphane; Khun, Huot; Pincet, Laurence; Roux, Pascal; Bahut, Muriel; Huerre, Michel; Guette, Catherine; Choumet, Valérie

    2010-10-05

    Arthropod borne virus infections cause several emerging and resurgent infectious diseases. Among the diseases caused by arboviruses, dengue and chikungunya are responsible for a high rate of severe human diseases worldwide. The midgut of mosquitoes is the first barrier for pathogen transmission and is a target organ where arboviruses must replicate prior to infecting other organs. A proteomic approach was undertaken to characterize the key virus/vector interactions and host protein modifications that happen in the midgut for viral transmission to eventually take place. Using a proteomics differential approach with two-Dimensional Differential in-Gel Electrophoresis (2D-DIGE), we defined the protein modulations in the midgut of Aedes aegypti that were triggered seven days after an oral infection (7 DPI) with dengue 2 (DENV-2) and chikungunya (CHIKV) viruses. Gel profile comparisons showed that the level of 18 proteins was modulated by DENV-2 only and 12 proteins were modulated by CHIKV only. Twenty proteins were regulated by both viruses in either similar or different ways. Both viruses caused an increase of proteins involved in the generation of reactive oxygen species, energy production, and carbohydrate and lipid metabolism. Midgut infection by DENV-2 and CHIKV triggered an antioxidant response. CHIKV infection produced an increase of proteins involved in detoxification. Our study constitutes the first analysis of the protein response of Aedes aegypti's midgut infected with viruses belonging to different families. It shows that the differentially regulated proteins in response to viral infection include structural, redox, regulatory proteins, and enzymes for several metabolic pathways. Some of these proteins like antioxidant are probably involved in cell protection. On the other hand, we propose that the modulation of other proteins like transferrin, hsp60 and alpha glucosidase, may favour virus survival, replication and transmission, suggesting a subversion of

  5. Treatment of chikungunya musculoskeletal disorders: a systematic review.

    PubMed

    Guaraldo, Lusiele; Wakimoto, Mayumi Duarte; Ferreira, Heloisa; Bressan, Clarisse; Calvet, Guilherme Amaral; Pinheiro, Geraldo Castelar; Siqueira, Andre Machado; Brasil, Patrícia

    2018-04-01

    Chikungunya virus is amongst the fastest expanding vector transmissible diseases in recent years and has been causing massive epidemics in Africa, Asia, Latin America and the Caribbean. Despite human infection by this virus being first described in the 1950s, there is a lack of adequate therapeutic evaluations to guide evidence-based recommendations. The current guidelines rely heavily in specialists' opinion and experience instead of using higher rated evidence. Areas covered: A systematic review of the literature was performed- not restricted to clinical trials - reporting the therapeutic response against this infection with the intent to gather the best evidence of the treatment options against musculoskeletal disorders following chikungunya fever. The 15 studies included in the analysis were categorized considering the initiation of treatment during the acute, subacute and chronic phase. Expert commentary: This review demonstrates the complexity of chikungunya fever and difficulty of therapeutic management. This review found no current evidence-based treatment recommendations for the musculoskeletal disorders following chikungunya fever. To provide an optimal treatment that prevents perpetuation or progression of chikungunya infection to a potentially destructive and permanent condition without causing more harm is an aim that must be pursued by researchers and health professionals working with this disease.

  6. Stability of Yellow Fever Virus under Recombinatory Pressure as Compared with Chikungunya Virus

    PubMed Central

    McGee, Charles E.; Tsetsarkin, Konstantin A.; Guy, Bruno; Lang, Jean; Plante, Kenneth; Vanlandingham, Dana L.; Higgs, Stephen

    2011-01-01

    Recombination is a mechanism whereby positive sense single stranded RNA viruses exchange segments of genetic information. Recent phylogenetic analyses of naturally occurring recombinant flaviviruses have raised concerns regarding the potential for the emergence of virulent recombinants either post-vaccination or following co-infection with two distinct wild-type viruses. To characterize the conditions and sequences that favor RNA arthropod-borne virus recombination we constructed yellow fever virus (YFV) 17D recombinant crosses containing complementary deletions in the envelope protein coding sequence. These constructs were designed to strongly favor recombination, and the detection conditions were optimized to achieve high sensitivity recovery of putative recombinants. Full length recombinant YFV 17D virus was never detected under any of the experimental conditions examined, despite achieving estimated YFV replicon co-infection levels of ∼2.4×106 in BHK-21 (vertebrate) cells and ∼1.05×105 in C710 (arthropod) cells. Additionally YFV 17D superinfection resistance was observed in vertebrate and arthropod cells harboring a primary infection with wild-type YFV Asibi strain. Furthermore recombination potential was also evaluated using similarly designed chikungunya virus (CHIKV) replicons towards validation of this strategy for recombination detection. Non-homologus recombination was observed for CHIKV within the structural gene coding sequence resulting in an in-frame duplication of capsid and E3 gene. Based on these data, it is concluded that even in the unlikely event of a high level acute co-infection of two distinct YFV genomes in an arthropod or vertebrate host, the generation of viable flavivirus recombinants is extremely unlikely. PMID:21826243

  7. Stability of yellow fever virus under recombinatory pressure as compared with chikungunya virus.

    PubMed

    McGee, Charles E; Tsetsarkin, Konstantin A; Guy, Bruno; Lang, Jean; Plante, Kenneth; Vanlandingham, Dana L; Higgs, Stephen

    2011-01-01

    Recombination is a mechanism whereby positive sense single stranded RNA viruses exchange segments of genetic information. Recent phylogenetic analyses of naturally occurring recombinant flaviviruses have raised concerns regarding the potential for the emergence of virulent recombinants either post-vaccination or following co-infection with two distinct wild-type viruses. To characterize the conditions and sequences that favor RNA arthropod-borne virus recombination we constructed yellow fever virus (YFV) 17D recombinant crosses containing complementary deletions in the envelope protein coding sequence. These constructs were designed to strongly favor recombination, and the detection conditions were optimized to achieve high sensitivity recovery of putative recombinants. Full length recombinant YFV 17D virus was never detected under any of the experimental conditions examined, despite achieving estimated YFV replicon co-infection levels of ∼2.4 x 10⁶ in BHK-21 (vertebrate) cells and ∼1.05 x 10⁵ in C₇10 (arthropod) cells. Additionally YFV 17D superinfection resistance was observed in vertebrate and arthropod cells harboring a primary infection with wild-type YFV Asibi strain. Furthermore recombination potential was also evaluated using similarly designed chikungunya virus (CHIKV) replicons towards validation of this strategy for recombination detection. Non-homologus recombination was observed for CHIKV within the structural gene coding sequence resulting in an in-frame duplication of capsid and E3 gene. Based on these data, it is concluded that even in the unlikely event of a high level acute co-infection of two distinct YFV genomes in an arthropod or vertebrate host, the generation of viable flavivirus recombinants is extremely unlikely.

  8. Rheumatic manifestations associated with Chikungunya virus infection: A study of 307 patients with 32-month follow-up (RHUMATOCHIK study).

    PubMed

    Bouquillard, Eric; Fianu, Adrian; Bangil, Marianne; Charlette, Nathalie; Ribéra, Anne; Michault, Alain; Favier, François; Simon, Fabrice; Flipo, René-Marc

    2018-03-01

    In the wake of the Chikungunya epidemic which struck Reunion Island in 2005 and 2006, we conducted a prospective, multicentre study (RHUMATOCHIK) whose main objective was analyse the characteristics and progression of rheumatic manifestations in patients with post-Chikungunya joint pain. A cohort of 307 consecutively included patients underwent rheumatological examinations for pain secondary to Chikungunya virus infection. The long-term evaluation was conducted by telephone survey 1 and 2 years after the onset of the viral infection. At inclusion, mean age was 54 years (24-87) and 83.1% of the patients were female. Chronic joint pain was associated with synovitis in 64.2% of the patients, affecting primarily the wrists, the proximal interphalangeal joints of the fingers, and the ankles. Attempts to detect the viral genome in joint fluid (10 patients) and synovial tissue (6 patients) using the RT-PCR technique were repeatedly unsuccessful. With a mean follow-up of 32 months, joint pain persisted in 83.1% of the patients. Functional impairment, however, was moderate, with a HAQ score of 0.44±0.5. Chikungunya virus infection is frequently the cause of joint manifestations that can persist for several months, or even several years. In some cases, the clinical symptoms closely resemble those usually associated with rheumatoid arthritis. Further studies are necessary to improve the therapeutic management of these patients. Copyright © 2017 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.

  9. Isolation of infectious chikungunya virus and dengue virus using anionic polymer-coated magnetic beads.

    PubMed

    Patramool, Sirilaksana; Bernard, Eric; Hamel, Rodolphe; Natthanej, Luplertlop; Chazal, Nathalie; Surasombatpattana, Pornapat; Ekchariyawat, Peeraya; Daoust, Simon; Thongrungkiat, Supatra; Thomas, Frédéric; Briant, Laurence; Missé, Dorothée

    2013-10-01

    Mosquitoes-borne viruses are a major threat for human populations. Among them, chikungunya virus (CHIKV) and dengue virus (DENV) cause thousands of cases worldwide. The recent propagation of mosquito vectors competent to transmit these viruses to temperate areas increases their potential impact on susceptible human populations. The development of sensitive methods allowing the detection and isolation of infectious viruses is of crucial interest for determination of virus contamination in humans and in competent mosquito vectors. However, simple and rapid method allowing the capture of infectious CHIKV and DENV from samples with low viral titers useful for further genetic and functional characterization of circulating strains is lacking. The present study reports a fast and sensitive isolation technique based on viral particles adsorption on magnetic beads coated with anionic polymer, poly(methyl vinyl ether-maleic anhydrate) and suitable for isolation of infectious CHIKV and DENV from the four serotypes. Starting from quite reduced biological material, this method was accurate to combine with conventional detection techniques, including qRT-PCR and immunoblotting and allowed isolation of infectious particles without resorting to a step of cultivation. The use of polymer-coated magnetic beads is therefore of high interest for rapid detection and isolation of CHIKV and DENV from samples with reduced viral loads and represents an accurate approach for the surveillance of mosquito vector in area at risk for arbovirus outbreaks. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Entomologic and Virologic Investigation of Chikungunya, Singapore

    PubMed Central

    Tan, Li-Kiang; Tan, Cheong-Huat; Tan, Sharon S.Y.; Hapuarachchi, Hapuarachchige C.; Pok, Kwoon-Yong; Lai, Yee-Ling; Lam-Phua, Sai-Gek; Bucht, Göran; Lin, Raymond T.P.; Leo, Yee-Sin; Tan, Boon-Hian; Han, Hwi-Kwang; Ooi, Peng-Lim S; James, Lyn; Khoo, Seow-Poh

    2009-01-01

    Local transmission of chikungunya, a debilitating mosquito-borne viral disease, was first reported in Singapore in January 2008. After 3 months of absence, locally acquired Chikungunya cases resurfaced in May 2008, causing an outbreak that resulted in a total of 231 cases by September 2008. The circulating viruses were related to East, Central, and South African genotypes that emerged in the Indian Ocean region in 2005. The first local outbreak was due to a wild-type virus (alanine at codon 226 of the envelope 1 gene) and occurred in an area where Aedes aegypti mosquitoes were the primary vector. Strains isolated during subsequent outbreaks showed alanine to valine substitution (A226V) and largely spread in areas predominated by Ae. albopictus mosquitoes. These findings led to a revision of the current vector control strategy in Singapore. This report highlights the use of entomologic and virologic data to assist in the control of chikungunya in disease-endemic areas. PMID:19751586

  11. Entomologic and virologic investigation of Chikungunya, Singapore.

    PubMed

    Ng, Lee-Ching; Tan, Li-Kiang; Tan, Cheong-Huat; Tan, Sharon S Y; Hapuarachchi, Hapuarachchige C; Pok, Kwoon-Yong; Lai, Yee-Ling; Lam-Phua, Sai-Gek; Bucht, Göran; Lin, Raymond T P; Leo, Yee-Sin; Tan, Boon-Hian; Han, Hwi-Kwang; Ooi, Peng-Lim S; James, Lyn; Khoo, Seow-Poh

    2009-08-01

    Local transmission of chikungunya, a debilitating mosquito-borne viral disease, was first reported in Singapore in January 2008. After 3 months of absence, locally acquired Chikungunya cases resurfaced in May 2008, causing an outbreak that resulted in a total of 231 cases by September 2008. The circulating viruses were related to East, Central, and South African genotypes that emerged in the Indian Ocean region in 2005. The first local outbreak was due to a wild-type virus (alanine at codon 226 of the envelope 1 gene) and occurred in an area where Aedes aegypti mosquitoes were the primary vector. Strains isolated during subsequent outbreaks showed alanine to valine substitution (A226V) and largely spread in areas predominated by Ae. albopictus mosquitoes. These findings led to a revision of the current vector control strategy in Singapore. This report highlights the use of entomologic and virologic data to assist in the control of chikungunya in disease-endemic areas.

  12. Co-Infection of Mosquitoes with Chikungunya and Dengue Viruses Reveals Modulation of the Replication of Both Viruses in Midguts and Salivary Glands of Aedes aegypti Mosquitoes

    PubMed Central

    Le Coupanec, Alain; Tchankouo-Nguetcheu, Stéphane; Roux, Pascal; Khun, Huot; Huerre, Michel; Morales-Vargas, Ronald; Enguehard, Margot; Lavillette, Dimitri; Missé, Dorothée

    2017-01-01

    Arthropod-borne virus (arbovirus) infections cause several emerging and resurgent infectious diseases in humans and animals. Chikungunya-affected areas often overlap with dengue-endemic areas. Concurrent dengue virus (DENV) and chikungunya virus (CHIKV) infections have been detected in travelers returning from regions of endemicity. CHIKV and DENV co-infected Aedes albopictus have also been collected in the vicinity of co-infected human cases, emphasizing the need to study co-infections in mosquitoes. We thus aimed to study the pathogen-pathogen interaction involved in these co-infections in DENV/CHIKV co-infected Aedes aegypti mosquitoes. In mono-infections, we detected CHIKV antigens as early as 4 days post-virus exposure in both the midgut (MG) and salivary gland (SG), whereas we detected DENV serotype 2 (DENV-2) antigens from day 5 post-virus exposure in MG and day 10 post-virus exposure in SG. Identical infection rates were observed for singly and co-infected mosquitoes, and facilitation of the replication of both viruses at various times post-viral exposure. We observed a higher replication for DENV-2 in SG of co-infected mosquitoes. We showed that mixed CHIKV and DENV infection facilitated viral replication in Ae. aegypti. The outcome of these mixed infections must be further studied to increase our understanding of pathogen-pathogen interactions in host cells. PMID:28777313

  13. Co-Infection of Mosquitoes with Chikungunya and Dengue Viruses Reveals Modulation of the Replication of Both Viruses in Midguts and Salivary Glands of Aedes aegypti Mosquitoes.

    PubMed

    Le Coupanec, Alain; Tchankouo-Nguetcheu, Stéphane; Roux, Pascal; Khun, Huot; Huerre, Michel; Morales-Vargas, Ronald; Enguehard, Margot; Lavillette, Dimitri; Missé, Dorothée; Choumet, Valérie

    2017-08-04

    Arthropod-borne virus (arbovirus) infections cause several emerging and resurgent infectious diseases in humans and animals. Chikungunya-affected areas often overlap with dengue-endemic areas. Concurrent dengue virus (DENV) and chikungunya virus (CHIKV) infections have been detected in travelers returning from regions of endemicity. CHIKV and DENV co-infected Aedes albopictus have also been collected in the vicinity of co-infected human cases, emphasizing the need to study co-infections in mosquitoes. We thus aimed to study the pathogen-pathogen interaction involved in these co-infections in DENV/CHIKV co-infected Aedes aegypti mosquitoes. In mono-infections, we detected CHIKV antigens as early as 4 days post-virus exposure in both the midgut (MG) and salivary gland (SG), whereas we detected DENV serotype 2 (DENV-2) antigens from day 5 post-virus exposure in MG and day 10 post-virus exposure in SG. Identical infection rates were observed for singly and co-infected mosquitoes, and facilitation of the replication of both viruses at various times post-viral exposure. We observed a higher replication for DENV-2 in SG of co-infected mosquitoes. We showed that mixed CHIKV and DENV infection facilitated viral replication in Ae. aegypti . The outcome of these mixed infections must be further studied to increase our understanding of pathogen-pathogen interactions in host cells.

  14. Unrecognized Emergence of Chikungunya Virus during a Zika Virus Outbreak in Salvador, Brazil

    PubMed Central

    Prates, Ana Paula P. B.; Paploski, Igor A. D.; Tauro, Laura B.; Silva, Monaise M. O.; Santana, Perla; Rego, Marta F. S.; Reis, Mitermayer G.; Kitron, Uriel

    2017-01-01

    Background Chikungunya virus (CHIKV) entered Brazil in 2014, causing a large outbreak in Feira de Santana, state of Bahia. Although cases have been recorded in Salvador, the capital of Bahia, located ~100 km of Feira de Santana, CHIKV transmission has not been perceived to occur epidemically, largely contrasting with the Zika virus (ZIKV) outbreak and ensuing complications reaching the city in 2015. Methodology/Principal Findings This study aimed to determine the intensity of CHIKV transmission in Salvador between November 2014 and April 2016. Results of all the CHIKV laboratory tests performed in the public sector were obtained and the frequency of positivity was analyzed by epidemiological week. Of the 2,736 tests analyzed, 456 (16.7%) were positive. An increasing in the positivity rate was observed, starting in January/2015, and peaking at 68% in August, shortly after the exanthematous illness outbreak attributed to ZIKV. Conclusions/Significance Public health authorities and health professionals did not immediately detect the increase in CHIKV cases, likely because all the attention was directed to the ZIKV outbreak and ensuing complications. It is important that regions in the world that harbor arbovirus vectors and did not experience intense ZIKV and CHIKV transmission be prepared for the potential co-emergence of these two viruses. PMID:28114414

  15. Aedes hensilli as a Potential Vector of Chikungunya and Zika Viruses

    PubMed Central

    Ledermann, Jeremy P.; Guillaumot, Laurent; Yug, Lawrence; Saweyog, Steven C.; Tided, Mary; Machieng, Paul; Pretrick, Moses; Marfel, Maria; Griggs, Anne; Bel, Martin; Duffy, Mark R.; Hancock, W. Thane; Ho-Chen, Tai; Powers, Ann M.

    2014-01-01

    An epidemic of Zika virus (ZIKV) illness that occurred in July 2007 on Yap Island in the Federated States of Micronesia prompted entomological studies to identify both the primary vector(s) involved in transmission and the ecological parameters contributing to the outbreak. Larval and pupal surveys were performed to identify the major containers serving as oviposition habitat for the likely vector(s). Adult mosquitoes were also collected by backpack aspiration, light trap, and gravid traps at select sites around the capital city. The predominant species found on the island was Aedes (Stegomyia) hensilli. No virus isolates were obtained from the adult field material collected, nor did any of the immature mosquitoes that were allowed to emerge to adulthood contain viable virus or nucleic acid. Therefore, laboratory studies of the probable vector, Ae. hensilli, were undertaken to determine the likelihood of this species serving as a vector for Zika virus and other arboviruses. Infection rates of up to 86%, 62%, and 20% and dissemination rates of 23%, 80%, and 17% for Zika, chikungunya, and dengue-2 viruses respectively, were found supporting the possibility that this species served as a vector during the Zika outbreak and that it could play a role in transmitting other medically important arboviruses. PMID:25299181

  16. Chikungunya infection presenting as mild encephalitis with a reversible lesion in the splenium: a case report.

    PubMed

    Nagpal, Kadam; Agarwal, Puneet; Kumar, Amit; Reddi, Rajashekhar

    2017-06-01

    Chikungunya fever is an Aedes mosquito-transmitted infection caused by chikungunya virus, an RNA virus in the family Togaviridae. The disease is characteristically manifested as fever, arthralgia, and/or rash. Various neurological manifestations like meningoencephalitis, myelitis, and myeloneuropathy have been mentioned in various reports. We present a rare case of chikungunya fever presenting with mild encephalitis with a reversible lesion of the splenium (MERS), which showed complete clinical and radiological recovery.

  17. Evaluation of chikungunya virus infection in children from India during 2009-2010: A cross sectional observational study.

    PubMed

    Raghavendhar, B Siva; Ray, Pratima; Ratagiri, Vinod H; Sharma, B S; Kabra, Sushil K; Lodha, Rakesh

    2016-06-01

    Chikungunya virus, a small (about 60-70 nm diameter), spherical, enveloped, positive, single stranded RNA virus is transmitted by Aedes mosquitoes. After a short period of incubation (3-5 days) symptoms like fever with joint pains and others start appearing. After a gap of 20 years, this virus re-emerged during 2006-2008 in India causing a major outbreak of CHIKV in India. This study was conducted subsequent to the major outbreak in order to evaluate the proportion of chikungunya virus infection in children with suggestive symptoms at three geographical locations of India. Lineage of circulating strains and changes in the E1 structural polypeptide were also determined. Blood samples were collected (in Sodium citrate vacutainer tubes) during 1st June 2009 to 31st May 2010 from children (age 0 ≤ 18 years) suspected to have chikungunya infection, that is, those who presented with sudden onset of fever and/or joint pain, myalgia, and headache from three regions of India, All India Institute of Medical Sciences (AIIMS) in New Delhi, Karnataka Institute of Medical Sciences (KIMS) in Hubli and Sawai Mansingh Medical College (SMS) in Jaipur. Detection of CHIKV antibodies in all acute-phase patient plasma samples was done by IgM ELISA and for samples within ≤5 days of fever, a one-step RT-PCR was carried out on a block thermo-cycler targeting 294 bp region of E1 gene that codes for the viral envelope protein. Comparison of nucleotide and amino acid sequences from few positive samples of two regions was done with African S-27 reference strain using BioEdit. A phylogenetic tree was constructed using MEGA 6 by using the Maximum Likelihood method based on the Kimura 2-parameter model. Out of the 723 acute phase samples tested from three geographical locations of India, Chikungunya virus infection was detected in 249/723 (34.44%) subjects by either IgM Elisa (180/723) or RT-PCR (69/412). RT-PCR was employed in samples collected from children with ≤5 days of fever. Maximum

  18. The Antiviral Alkaloid Berberine Reduces Chikungunya Virus-Induced Mitogen-Activated Protein Kinase Signaling

    PubMed Central

    Thaa, Bastian; Amrun, Siti Naqiah; Simarmata, Diane; Rausalu, Kai; Nyman, Tuula A.; Merits, Andres; McInerney, Gerald M.; Ng, Lisa F. P.

    2016-01-01

    ABSTRACT Chikungunya virus (CHIKV) has infected millions of people in the tropical and subtropical regions since its reemergence in the last decade. We recently identified the nontoxic plant alkaloid berberine as an antiviral substance against CHIKV in a high-throughput screen. Here, we show that berberine is effective in multiple cell types against a variety of CHIKV strains, also at a high multiplicity of infection, consolidating the potential of berberine as an antiviral drug. We excluded any effect of this compound on virus entry or on the activity of the viral replicase. A human phosphokinase array revealed that CHIKV infection specifically activated the major mitogen-activated protein kinase (MAPK) signaling pathways extracellular signal-related kinase (ERK), p38 and c-Jun NH2-terminal kinase (JNK). Upon treatment with berberine, this virus-induced MAPK activation was markedly reduced. Subsequent analyses with specific inhibitors of these kinases indicated that the ERK and JNK signaling cascades are important for the generation of progeny virions. In contrast to specific MAPK inhibitors, berberine lowered virus-induced activation of all major MAPK pathways and resulted in a stronger reduction in viral titers. Further, we assessed the in vivo efficacy of berberine in a mouse model and measured a significant reduction of CHIKV-induced inflammatory disease. In summary, we demonstrate the efficacy of berberine as a drug against CHIKV and highlight the importance of the MAPK signaling pathways in the alphavirus infectious cycle. IMPORTANCE Chikungunya virus (CHIKV) is a mosquito-borne virus that causes severe and persistent muscle and joint pain and has recently spread to the Americas. No licensed drug exists to counter this virus. In this study, we report that the alkaloid berberine is antiviral against different CHIKV strains and in multiple human cell lines. We demonstrate that berberine collectively reduced the virus-induced activation of cellular mitogen

  19. Viperin restricts chikungunya virus replication and pathology

    PubMed Central

    Teng, Terk-Shin; Foo, Suan-Sin; Simamarta, Diane; Lum, Fok-Moon; Teo, Teck-Hui; Lulla, Aleksei; Yeo, Nicholas K.W.; Koh, Esther G.L.; Chow, Angela; Leo, Yee-Sin; Merits, Andres; Chin, Keh-Chuang; Ng, Lisa F.P.

    2012-01-01

    Chikungunya virus (CHIKV) is a mosquito-borne arthralgia arbovirus that is reemergent in sub-Saharan Africa and Southeast Asia. CHIKV infection has been shown to be self-limiting, but the molecular mechanisms of the innate immune response that control CHIKV replication remain undefined. Here, longitudinal transcriptional analyses of PBMCs from a cohort of CHIKV-infected patients revealed that type I IFNs controlled CHIKV infection via RSAD2 (which encodes viperin), an enigmatic multifunctional IFN-stimulated gene (ISG). Viperin was highly induced in monocytes, the major target cell of CHIKV in blood. Anti-CHIKV functions of viperin were dependent on its localization in the ER, and the N-terminal amphipathic α-helical domain was crucial for its antiviral activity in controlling CHIKV replication. Furthermore, mice lacking Rsad2 had higher viremia and severe joint inflammation compared with wild-type mice. Our data demonstrate that viperin is a critical antiviral host protein that controls CHIKV infection and provide a preclinical basis for the design of effective control strategies against CHIKV and other reemerging arthrogenic alphaviruses. PMID:23160199

  20. Varicella-zoster virus complements herpes simplex virus type 1 temperature-sensitive mutants.

    PubMed Central

    Felser, J M; Straus, S E; Ostrove, J M

    1987-01-01

    Varicella-zoster virus (VZV) can complement temperature-sensitive mutants of herpes simplex virus. Of seven mutants tested, two, carrying mutations in the immediate-early ICP4 and ICP27 proteins, were complemented. This complementation was not seen in coinfections with adenovirus type 5 or cytomegalovirus. Following transfection into CV-1 cells, a DNA fragment containing the VZV short repeat sequence complemented the ICP4 mutant. These data demonstrate a functional relationship between VZV and herpes simplex virus and have allowed localization of a putative VZV immediate-early gene. PMID:3023701

  1. Differential Protein Modulation in Midguts of Aedes aegypti Infected with Chikungunya and Dengue 2 Viruses

    PubMed Central

    Tchankouo-Nguetcheu, Stéphane; Khun, Huot; Pincet, Laurence; Roux, Pascal; Bahut, Muriel; Huerre, Michel; Guette, Catherine; Choumet, Valérie

    2010-01-01

    Background Arthropod borne virus infections cause several emerging and resurgent infectious diseases. Among the diseases caused by arboviruses, dengue and chikungunya are responsible for a high rate of severe human diseases worldwide. The midgut of mosquitoes is the first barrier for pathogen transmission and is a target organ where arboviruses must replicate prior to infecting other organs. A proteomic approach was undertaken to characterize the key virus/vector interactions and host protein modifications that happen in the midgut for viral transmission to eventually take place. Methodology and Principal Findings Using a proteomics differential approach with two-Dimensional Differential in-Gel Electrophoresis (2D-DIGE), we defined the protein modulations in the midgut of Aedes aegypti that were triggered seven days after an oral infection (7 DPI) with dengue 2 (DENV-2) and chikungunya (CHIKV) viruses. Gel profile comparisons showed that the level of 18 proteins was modulated by DENV-2 only and 12 proteins were modulated by CHIKV only. Twenty proteins were regulated by both viruses in either similar or different ways. Both viruses caused an increase of proteins involved in the generation of reactive oxygen species, energy production, and carbohydrate and lipid metabolism. Midgut infection by DENV-2 and CHIKV triggered an antioxidant response. CHIKV infection produced an increase of proteins involved in detoxification. Conclusion/Significance Our study constitutes the first analysis of the protein response of Aedes aegypti's midgut infected with viruses belonging to different families. It shows that the differentially regulated proteins in response to viral infection include structural, redox, regulatory proteins, and enzymes for several metabolic pathways. Some of these proteins like antioxidant are probably involved in cell protection. On the other hand, we propose that the modulation of other proteins like transferrin, hsp60 and alpha glucosidase, may favour

  2. Detection of Persistent Chikungunya Virus RNA but not Infectious Virus in Experimental Vertical Transmission in Aedes aegypti from Malaysia

    PubMed Central

    Wong, Hui Vern; Vythilingam, Indra; Sulaiman, Wan Yusof Wan; Lulla, Aleksei; Merits, Andres; Chan, Yoke Fun; Sam, I-Ching

    2016-01-01

    Vertical transmission may contribute to the maintenance of arthropod-borne viruses, but its existence in chikungunya virus (CHIKV) is unclear. Experimental vertical transmission of infectious clones of CHIKV in Aedes aegypti mosquitoes from Malaysia was investigated. Eggs and adult progeny from the second gonotrophic cycles of infected parental mosquitoes were tested. Using polymerase chain reaction (PCR), 56.3% of pooled eggs and 10% of adult progeny had detectable CHIKV RNA, but no samples had detectable infectious virus by plaque assay. Transfected CHIKV RNA from PCR-positive eggs did not yield infectious virus in BHK-21 cells. Thus, vertical transmission of viable CHIKV was not demonstrated. Noninfectious CHIKV RNA persists in eggs and progeny of infected Ae. aegypti, but the mechanism and significance are unknown. There is insufficient evidence to conclude that vertical transmission exists in CHIKV, as positive results reported in previous studies were almost exclusively based only on viral RNA detection. PMID:26598564

  3. A novel DANP-coupled hairpin RT-PCR for rapid detection of Chikungunya virus.

    PubMed

    Chen, Huixin; Takei, Fumie; Koay, Evelyn Siew-Chuan; Nakatani, Kazuhiko; Chu, Justin Jang Hann

    2013-03-01

    Chikungunya has re-emerged as an important arboviral infection of global health significance. Because of lack of a vaccine and effective treatment, rapid diagnosis plays an important role in early clinical management of patients. In this study, we have developed a novel molecular diagnostic platform that ensures a rapid and cost-effective one-step RT-PCR assay, with high sensitivity and specificity, for the early detection of the Chikungunya virus (CHIKV). It uses 2,7-diamino-1,8-naphthyridine derivative (DANP)-labeled cytosine-bulge hairpin primers to amplify the nsP2 region of the CHIKV genome, followed by measurement of the fluorescence emitted from DANP-primer complexes after PCRs. The detection limit of our assay was 0.01 plaque-forming units per reaction of CHIKV. Furthermore, the HP-nsP2 primers were highly specific in detecting CHIKV, without any cross-reactivity with the panel of RNA viruses validated in this study. The feasibility of the DANP-coupled hairpin RT-PCR for clinical diagnosis was evaluated using clinical serum samples from CHIKV-infected patients, and the specificity and sensitivity were 100% (95% CI, 80.0% to 100%) and 95.5% (95% CI, 75.1% to 99.8%), respectively. These findings confirmed its potential as a point-of-care clinical molecular diagnostic assay for CHIKV in acute-phase patient serum samples. Copyright © 2013 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  4. Curcumin and Boswellia serrata gum resin extract inhibit chikungunya and vesicular stomatitis virus infections in vitro.

    PubMed

    von Rhein, Christine; Weidner, Tatjana; Henß, Lisa; Martin, Judith; Weber, Christopher; Sliva, Katja; Schnierle, Barbara S

    2016-01-01

    Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes chikungunya fever and has infected millions of people mainly in developing countries. The associated disease is characterized by rash, high fever, and severe arthritis that can persist for years. CHIKV has adapted to Aedes albopictus, which also inhabits temperate regions including Europe and the United States of America. CHIKV has recently caused large outbreaks in Latin America. No treatment or licensed CHIKV vaccine exists. Traditional medicines are known to have anti-viral effects; therefore, we examined whether curcumin or Boswellia serrata gum resin extract have antiviral activity against CHIKV. Both compounds blocked entry of CHIKV Env-pseudotyped lentiviral vectors and inhibited CHIKV infection in vitro. In addition, vesicular stomatitis virus vector particles and viral infections were also inhibited to the same extent, indicating a broad antiviral activity. Although the bioavailability of these compounds is rather poor, they might be used as a lead structure to develop more effective antiviral drugs or might be used topically to prevent CHIKV spread in the skin after mosquito bites. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. A smartphone-based diagnostic platform for rapid detection of Zika, chikungunya, and dengue viruses

    PubMed Central

    Priye, Aashish; Bird, Sara W.; Light, Yooli K.; Ball, Cameron S.; Negrete, Oscar A.; Meagher, Robert J.

    2017-01-01

    Current multiplexed diagnostics for Zika, dengue, and chikungunya viruses are situated outside the intersection of affordability, high performance, and suitability for use at the point-of-care in resource-limited settings. Consequently, insufficient diagnostic capabilities are a key limitation facing current Zika outbreak management strategies. Here we demonstrate highly sensitive and specific detection of Zika, chikungunya, and dengue viruses by coupling reverse-transcription loop-mediated isothermal amplification (RT-LAMP) with our recently developed quenching of unincorporated amplification signal reporters (QUASR) technique. We conduct reactions in a simple, inexpensive and portable “LAMP box” supplemented with a consumer class smartphone. The entire assembly can be powered by a 5 V USB source such as a USB power bank or solar panel. Our smartphone employs a novel algorithm utilizing chromaticity to analyze fluorescence signals, which improves the discrimination of positive/negative signals by 5-fold when compared to detection with traditional RGB intensity sensors or the naked eye. The ability to detect ZIKV directly from crude human sample matrices (blood, urine, and saliva) demonstrates our device’s utility for widespread clinical deployment. Together, these advances enable our system to host the key components necessary to expand the use of nucleic acid amplification-based detection assays towards point-of-care settings where they are needed most. PMID:28317856

  6. A smartphone-based diagnostic platform for rapid detection of Zika, chikungunya, and dengue viruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Priye, Aashish; Bird, Sara W.; Light, Yooli K.

    Current multiplexed diagnostics for Zika, dengue, and chikungunya viruses are situated outside the intersection of affordability, high performance, and suitability for use at the point-of-care in resource-limited settings. Consequently, insufficient diagnostic capabilities are a key limitation facing current Zika outbreak management strategies. We demonstrate highly sensitive and specific detection of Zika, chikungunya, and dengue viruses by coupling reverse-transcription loop-mediated isothermal amplification (RT-LAMP) with our recently developed quenching of unincorporated amplification signal reporters (QUASR) technique. We conduct reactions in a simple, inexpensive and portable “LAMP box” supplemented with a consumer class smartphone. The entire assembly can be powered by a 5more » V USB source such as a USB power bank or solar panel. The smartphone employs a novel algorithm utilizing chromaticity to analyze fluorescence signals, which improves the discrimination of positive/negative signals by 5-fold when compared to detection with traditional RGB intensity sensors or the naked eye. The ability to detect ZIKV directly from crude human sample matrices (blood, urine, and saliva) demonstrates our device’s utility for widespread clinical deployment. Altogether, these advances enable our system to host the key components necessary to expand the use of nucleic acid amplification-based detection assays towards point-of-care settings where they are needed most.« less

  7. A smartphone-based diagnostic platform for rapid detection of Zika, chikungunya, and dengue viruses

    DOE PAGES

    Priye, Aashish; Bird, Sara W.; Light, Yooli K.; ...

    2017-03-20

    Current multiplexed diagnostics for Zika, dengue, and chikungunya viruses are situated outside the intersection of affordability, high performance, and suitability for use at the point-of-care in resource-limited settings. Consequently, insufficient diagnostic capabilities are a key limitation facing current Zika outbreak management strategies. We demonstrate highly sensitive and specific detection of Zika, chikungunya, and dengue viruses by coupling reverse-transcription loop-mediated isothermal amplification (RT-LAMP) with our recently developed quenching of unincorporated amplification signal reporters (QUASR) technique. We conduct reactions in a simple, inexpensive and portable “LAMP box” supplemented with a consumer class smartphone. The entire assembly can be powered by a 5more » V USB source such as a USB power bank or solar panel. The smartphone employs a novel algorithm utilizing chromaticity to analyze fluorescence signals, which improves the discrimination of positive/negative signals by 5-fold when compared to detection with traditional RGB intensity sensors or the naked eye. The ability to detect ZIKV directly from crude human sample matrices (blood, urine, and saliva) demonstrates our device’s utility for widespread clinical deployment. Altogether, these advances enable our system to host the key components necessary to expand the use of nucleic acid amplification-based detection assays towards point-of-care settings where they are needed most.« less

  8. Entomological study of chikungunya infections in the State of Kelantan, Malaysia

    PubMed Central

    Rozilawati, H.; Faudzi, A.Y.; Rahidah, A.A. Siti; Azlina, A.H. Nor; Abdullah, A.G.; Amal, N.M.; Mansor, H. Wan; Hani, H.; Apandi, Y.; Noor, Faezah; Norziyana; Nazni, W.A.; Zairi, J.; Lee, H.L.

    2011-01-01

    Background & objectives: Chikungunya infection has become a public health threat in Malaysia since the 2008 nationwide outbreaks. Aedes albopictus Skuse has been identified as the chikungunya vector in Johor State during the outbreaks. In 2009, several outbreaks had been reported in the State of Kelantan. Entomological studies were conducted in Kelantan in four districts, namely Jeli, Tumpat, Pasir Mas and Tanah Merah to identify the vector responsible for the virus transmission. Methods: CHIKV cases records were obtained from State Health Department, Kelantan and localities involved were identified. Larva survey was conducted to collect the immature mosquito stages. Modified aspirators were used to collect the adult mosquitoes. All samples on dry ice were transferred to laboratory and the presence of the virus was detected using reverse transcriptase PCR. Results: A total of 1,245 mosquito larvae were collected during larval survey and 2,019 adult mosquitoes were collected using aspirator. From these collections, 640 mosquito pools were tested for the presence of CHIKV by RT-PCR but none found positive. Ae. albopictus was the most abundant mosquito collected, followed by Culex sp., Armigeres sp. and Anopheles sp. A total of 2, 814 artificial containers were inspected during the study. Interpretation & conclusions: Since none of the mosquito samples was found to be positive for chikungunya virus, the vector(s) of chikungunya virus in these localities could not be identified. PMID:21727669

  9. Seroprevalence of antibodies against chikungunya virus in Singapore resident adult population.

    PubMed

    Ang, Li Wei; Kam, Yiu Wing; Lin, Cui; Krishnan, Prabha Unny; Tay, Joanne; Ng, Lee Ching; James, Lyn; Lee, Vernon J M; Goh, Kee Tai; Ng, Lisa F P; Lin, Raymond T P

    2017-12-01

    We determined the seroprevalence of chikungunya virus (CHIKV) infection in the adult resident population in Singapore following local outbreaks of chikungunya fever (CHIKF) in 2008-2009. Our cross-sectional study involved residual sera from 3,293 adults aged 18-79 years who had participated in the National Health Survey in 2010. Sera were tested for IgG antibodies against CHIKV and dengue virus (DENV) and neutralizing antibodies against CHIKV. The prevalence of CHIKV-neutralizing antibodies among Singapore residents aged 18-79 years was 1.9% (95% confidence interval: 1.4%- 2.3%). The CHIKV seroprevalence was highest in the elderly aged 70-79 years at 11.5%, followed by those aged 30-39 years at 3.1%. Men had significantly higher CHIKV seroprevalence than women (2.5% versus 1.3%, p = 0.01). Among the three main ethnic groups, Indians had the highest seroprevalence (3.5%) compared to Chinese (1.6%) and Malays (0.7%) (p = 0.02 and p = 0.01, respectively). Multivariable logistic regression identified adults aged 30-39 years and 70-79 years, men, those of Indian ethnicity and ethnic minority groups, and residence on ground floor of public and private housing apartments as factors that were significantly associated with a higher likelihood of exposure to CHIKV. The overall prevalence of anti-DENV IgG antibodies was 56.8% (95% CI: 55.1%- 58.5%), while 1.5% (95% CI: 1.1%- 2.0%) of adults possessed both neutralizing antibodies against CHIKV and IgG antibodies against DENV. Singapore remains highly susceptible to CHIKV infection. There is a need to maintain a high degree of vigilance through disease surveillance and vector control. Findings from such serological study, when conducted on a regular periodic basis, could supplement surveillance to provide insights on CHIKV circulation in at-risk population.

  10. Serological evidence of widespread exposure of Grenada fruit bats to chikungunya virus.

    PubMed

    Stone, D; Lyons, A C; Huang, Y-J S; Vanlandingham, D L; Higgs, S; Blitvich, B J; Adesiyun, A A; Santana, S E; Leiser-Miller, L; Cheetham, S

    2018-03-25

    Antibody detection against selected potentially zoonotic vector-borne alphaviruses and flaviviruses was conducted on sera from bats from all six parishes in Grenada, West Indies. Sera were tested for (i) antibodies to flaviviruses West Nile virus, St. Louis encephalitis virus, Ilhéus virus, Bussuquara virus (BSQV), Rio Bravo virus and all four serotypes of dengue virus (DENV) by plaque reduction neutralization test (PRNT); (ii) antibodies to alphaviruses western equine encephalitis virus, Venezuelan equine encephalitis virus and eastern equine encephalitis virus by epitope-blocking enzyme-linked immunosorbent assay (ELISA); and (iii) antibodies to the alphavirus chikungunya (CHIKV) by PRNT. Two species of fruit bats were sampled, Artibeus jamaicensis and Artibeus lituratus, all roosting in or within 1,000 m of human settlements. Fifteen (36%) of the 42 bats tested for neutralizing antibodies to CHIKV were positive. The CHIKV-seropositive bats lived in localities spanning five of the six parishes. All 43 bats tested for epitope-blocking ELISA antibody to the other alphaviruses were negative, except one positive for Venezuelan equine encephalitis virus. All 50 bats tested for neutralizing antibody to flaviviruses were negative, except one that had a BSQV PRNT 80 titre of 20. The CHIKV serology results indicate that bats living close to and within human settlements were exposed to CHIKV in multiple locations. Importantly, bats for this study were trapped a year after the introduction and peak of the human CHIKV epidemic in Grenada. Thus, our data indicate that bats were exposed to CHIKV possibly during a time of marked decline in human cases. © 2018 Blackwell Verlag GmbH.

  11. Quantification of simian immunodeficiency virus cytotoxic T lymphocyte escape mutant viruses.

    PubMed

    Loh, Liyen; Kent, Stephen J

    2008-08-01

    Escape from cytotoxic T-lymphocyte (CTL) pressure is common in HIV-1 infection of humans and simian immunodeficiency virus (SIV) infections of macaques. CTL escape typically incurs a fitness cost as reversion back to wild-type can occur upon transmission. We utilized sequence-specific primers and DNA probes with real-time polymerase chain reaction (PCR) to sensitively and specifically track wild-type and escape mutant viremia at the Mane-A*17-restricted SIV Gag(371379) epitope AF9 in pigtail macaques. The generation of minor escape mutant populations is detected by the real-time PCR 2 weeks earlier than observed using standard sequencing techniques. We passaged the AF9 CTL escape mutant virus into two naïve Mane-A*17-negative pigtail macaques and showed that reversion to wild-type was rapid during acute infection and then slowed considerably at later stages of the infection. These data help refine our understanding of how CTL escape mutant viruses evolve.

  12. [Atypical mucocutaneous manifestations in neonates and infants with chikungunya fever in the municipalities of Cúcuta, Los Patios and Villa del Rosario, Norte de Santander, Colombia, 2014].

    PubMed

    Muñoz, Claudia Marcela; Castillo, José Orlando; Salas, Daniela; Valderrama, Milena Alexandra; Rangel, Claudia Teresa; Vargas, Heiddy Patricia; Silva, Diana Carolina

    2016-09-01

    Atypical clinical manifestations have been observed in newborns and infants suffering from fever caused by the chikungunya virus. Objective: To describe the cases of fever caused by the chikungunya virus in newborns and infants with atypical mucocutaneous lesions. Materials and methods: We reviewed the clinical records, as well as lab tests and histopathological results, of newborns and infants diagnosed with Chikungunya virus and atypical mucocutaneous lesions in three regional hospitals. Results: Out of 18 suspected cases of chikungunya virus in newborns and infants, 11 were positive and presented atypical mucocutaneous manifestations. Six of the eleven confirmed cases corresponded to children under five months of age. The most common symptoms were fever, skin rash, irritability, and diarrhea. Three of the patients were infected with both dengue and chikungunya viruses. The ulcers occurred in the scalp, abdomen, genital and perianal region. We report mucocutaneous manifestations in newborns and infants diagnosed with fever caused by the chikungunya virus in Colombia. The rapid development of ulcers is most likely due to the immune response to the virus. Special attention should be given to pregnant women presenting symptoms of chikungunya virus infection prior to delivery, and their offspring should be followed-up in order to monitor possible complications.

  13. Independent Emergence of the Cosmopolitan Asian Chikungunya Virus, Philippines 2012.

    PubMed

    Tan, Kim-Kee; Sy, Ava Kristy D; Tandoc, Amado O; Khoo, Jing-Jing; Sulaiman, Syuhaida; Chang, Li-Yen; AbuBakar, Sazaly

    2015-07-23

    Outbreaks involving the Asian genotype Chikungunya virus (CHIKV) caused over one million infections in the Americas recently. The outbreak was preceded by a major nationwide outbreak in the Philippines. We examined the phylogenetic and phylogeographic relationships of representative CHIKV isolates obtained from the 2012 Philippines outbreak with other CHIKV isolates collected globally. Asian CHIKV isolated from the Philippines, China, Micronesia and Caribbean regions were found closely related, herein denoted as Cosmopolitan Asian CHIKV (CACV). Three adaptive amino acid substitutions in nsP3 (D483N), E1 (P397L) and E3 (Q19R) were identified among CACV. Acquisition of the nsP3-483N mutation in Compostela Valley followed by E1-397L/E3-19R in Laguna preceded the nationwide spread in the Philippines. The China isolates possessed two of the amino acid substitutions, nsP3-D483N and E1-P397L whereas the Micronesian and Caribbean CHIKV inherited all the three amino acid substitutions. The unique amino acid substitutions observed among the isolates suggest multiple independent virus dissemination events. The possible biological importance of the specific genetic signatures associated with the rapid global of the virus is not known and warrant future in-depth study and epidemiological follow-up. Molecular evidence, however, supports the Philippines outbreak as the possible origin of the CACV.

  14. Independent Emergence of the Cosmopolitan Asian Chikungunya Virus, Philippines 2012

    PubMed Central

    Tan, Kim-Kee; Sy, Ava Kristy D.; Tandoc, Amado O.; Khoo, Jing-Jing; Sulaiman, Syuhaida; Chang, Li-Yen; AbuBakar, Sazaly

    2015-01-01

    Outbreaks involving the Asian genotype Chikungunya virus (CHIKV) caused over one million infections in the Americas recently. The outbreak was preceded by a major nationwide outbreak in the Philippines. We examined the phylogenetic and phylogeographic relationships of representative CHIKV isolates obtained from the 2012 Philippines outbreak with other CHIKV isolates collected globally. Asian CHIKV isolated from the Philippines, China, Micronesia and Caribbean regions were found closely related, herein denoted as Cosmopolitan Asian CHIKV (CACV). Three adaptive amino acid substitutions in nsP3 (D483N), E1 (P397L) and E3 (Q19R) were identified among CACV. Acquisition of the nsP3-483N mutation in Compostela Valley followed by E1-397L/E3-19R in Laguna preceded the nationwide spread in the Philippines. The China isolates possessed two of the amino acid substitutions, nsP3-D483N and E1-P397L whereas the Micronesian and Caribbean CHIKV inherited all the three amino acid substitutions. The unique amino acid substitutions observed among the isolates suggest multiple independent virus dissemination events. The possible biological importance of the specific genetic signatures associated with the rapid global of the virus is not known and warrant future in-depth study and epidemiological follow-up. Molecular evidence, however, supports the Philippines outbreak as the possible origin of the CACV. PMID:26201250

  15. Suramin is a potent inhibitor of Chikungunya and Ebola virus cell entry.

    PubMed

    Henß, Lisa; Beck, Simon; Weidner, Tatjana; Biedenkopf, Nadine; Sliva, Katja; Weber, Christopher; Becker, Stephan; Schnierle, Barbara S

    2016-08-31

    Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes high fever, rash, and recurrent arthritis in humans. It has efficiently adapted to Aedes albopictus, which also inhabits temperate regions and currently causes large outbreaks in the Caribbean and Latin America. Ebola virus (EBOV) is a member of the filovirus family. It causes the Ebola virus disease (EDV), formerly known as Ebola hemorrhagic fever in humans and has a mortality rate of up to 70 %. The last outbreak in Western Africa was the largest in history and has caused approximately 25,000 cases and 10,000 deaths. For both viral infections no specific treatment or licensed vaccine is currently available. The bis-hexasulfonated naphthylurea, suramin, is used as a treatment for trypanosome-caused African river blindness. As a competitive inhibitor of heparin, suramin has been described to have anti-viral activity. We tested the activity of suramin during CHIKV or Ebola virus infection, using CHIKV and Ebola envelope glycoprotein pseudotyped lentiviral vectors and wild-type CHIKV and Ebola virus. Suramin efficiently inhibited CHIKV and Ebola envelope-mediated gene transfer while vesicular stomatitis virus G protein pseudotyped vectors were only marginally affected. In addition, suramin was able to inhibit wild-type CHIKV and Ebola virus replication in vitro. Inhibition occurred at early time points during CHIKV infection. Suramin, also known as Germanin or Bayer-205, is a market-authorized drug, however shows significant side effects, which probably prevents its use as a CHIKV drug, but due to the high lethality of Ebola virus infections, suramin might be valuable against Ebola infections.

  16. Zika Virus and Chikungunya Virus CoInfections: A Series of Three Cases from a Single Center in Ecuador

    PubMed Central

    Zambrano, Hector; Waggoner, Jesse J.; Almeida, Cristina; Rivera, Lisette; Benjamin, Juan Quintana; Pinsky, Benjamin A.

    2016-01-01

    Zika virus (ZIKV) and chikungunya virus (CHIKV) cocirculate throughout much of the tropical Western Hemisphere; however, few cases of coinfection with these two pathogens have been reported. Herein, we describe three cases of ZIKV–CHIKV coinfection detected at a single center in Ecuador: a patient who developed symptoms on postoperative day 5 from an orthopedic procedure, a woman who had traveled to Ecuador for fertility treatment, and a woman who was admitted for Guillain–Barré syndrome and had ZIKV and CHIKV detected in serum and cerebrospinal fluid. All cases were diagnosed using a multiplex real-time reverse transcription polymerase chain reaction, and ZIKV viremia was detected as late as 16 days after symptom onset. These cases demonstrate the varied clinical presentation of ZIKV–CHIKV coinfections as well as the importance of multiplexed arboviral testing for these pathogens. PMID:27402518

  17. Molecular Docking Studies to Explore Potential Binding Pockets and Inhibitors for Chikungunya Virus Envelope Glycoproteins.

    PubMed

    Nguyen, Phuong T V; Yu, Haibo; Keller, Paul A

    2017-03-11

    The chikungunya virus (CHIKV) envelope glycoproteins are considered important potential targets for anti-CHIKV drug discovery due to their crucial roles in virus attachment and virus entry. In this study, using two available crystal structures of the immature and mature forms of envelope glycoproteins, virtual screenings based on blind dockings and focused dockings were carried out to identify potential binding pockets and hit compounds for the virus. The chemical library database of compounds, NCI Diversity Set II, was used in these docking studies. In addition to reproducing previously reported examples, new binding pockets were identified, e.g., Pocket 2 in the 3N40, and Pocket 2 and Pocket 3 in the 3N42. Convergences in conformational sampling in docking using AutoDock Vina were evaluated. An analysis of docking results was carried out to understand interactions of the envelope glycoproteins complexes. Some key residues for interactions, for example Gly91 and His230, are identified as possessing important roles in the fusion process.

  18. Dengue, Japanese encephalitis and Chikungunya virus antibody prevalence among captive monkey (Macaca nemestrina) colonies of Northern Thailand.

    PubMed

    Nakgoi, Khajornpong; Nitatpattana, Narong; Wajjwalku, Worawidh; Pongsopawijit, Pornsawan; Kaewchot, Supakarn; Yoksan, Sutee; Siripolwat, Voravit; Souris, Marc; Gonzalez, Jean-Paul

    2014-01-01

    The potential of macaque Macaca nemestrina leonina in Thailand to be infected by endemic arboviruses was assessed. The prevalence of antibodies of three arboviruses actively circulating in Thailand was determined by Plaque Reduction Neutralization assay procedures using samples from captive colonies in Northern Thailand. Out of 38 macaques, 9 (24%) presented reacting antibodies against dengue virus, 5 (13%) against Japanese encephalitis virus, and 4 (10%) against Chikungunya virus. Our results indicate that the northern pig-tailed macaque in Thailand can be infected by these arboviruses, inferring therefore that their virus specific vectors have bitten them. Given that, northern pig-tailed macaque represents an abundant population, living in close range to human or in peridomestic setting, they could play a role as potential reservoir host for arboviruses circulating in Thailand. © 2013 Wiley Periodicals, Inc.

  19. Role of monkeys in the sylvatic cycle of chikungunya virus in Senegal.

    PubMed

    Althouse, Benjamin M; Guerbois, Mathilde; Cummings, Derek A T; Diop, Ousmane M; Faye, Ousmane; Faye, Abdourahmane; Diallo, Diawo; Sadio, Bakary Djilocalisse; Sow, Abdourahmane; Faye, Oumar; Sall, Amadou A; Diallo, Mawlouth; Benefit, Brenda; Simons, Evan; Watts, Douglas M; Weaver, Scott C; Hanley, Kathryn A

    2018-03-13

    Arboviruses spillover into humans either as a one-step jump from a reservoir host species into humans or as a two-step jump from the reservoir to an amplification host species and thence to humans. Little is known about arbovirus transmission dynamics in reservoir and amplification hosts. Here we elucidate the role of monkeys in the sylvatic, enzootic cycle of chikungunya virus (CHIKV) in the region around Kédougou, Senegal. Over 3 years, 737 monkeys were captured, aged using anthropometry and dentition, and tested for exposure to CHIKV by detection of neutralizing antibodies. Infant monkeys were positive for CHIKV even when the virus was not detected in a concurrent survey of mosquitoes and when population immunity was too high for monkeys alone to support continuous transmission. We conclude that monkeys in this region serve as amplification hosts of CHIKV. Additional efforts are needed to identify other hosts capable of supporting continuous circulation.

  20. Evidence for natural vertical transmission of chikungunya viruses in field populations of Aedes aegypti in Delhi and Haryana states in India-a preliminary report.

    PubMed

    Jain, Jaspreet; Kushwah, Raja Babu S; Singh, Shashi S; Sharma, Anil; Adak, Tridibes; Singh, Om P; Bhatnagar, Raj Kamal; Subbarao, Sarala K; Sunil, Sujatha

    2016-10-01

    Aedes aegypti and Aedes albopictus are principal vectors for the transmission of chikungunya virus (CHIKV). India is a hub for both dengue and chikungunya infections and there are several reports of co-infection of dengue and chikungunya virus in the clinical scenario. The present pilot entomological survey was conducted to evaluate vertical transmission of CHIKV in Aedes field populations. Aedes immature (larvae and pupae) collection was done in 2012, over a period of six months from selected sites in Delhi and Haryana, India. The immatures collected were reared for adult emergence and species identification was done. A. aegypti male and female mosquitoes were separated and pooled collection spot-wise, RNA extracted and RT PCR performed to test for the presence of CHIKV in the pools. Container index (CI) and minimum infection rate (MIR) were estimated. From study areas that tested positive for CHIKV, adult collections were made and females upon feeding on uninfected blood in laboratory were allowed to lay eggs. The progeny that emerged from these field-collected mothers were tested for CHIKV presence. Our pilot survey showed the existence of A. aegypti population even during peak summer season in a few foci which eventually helped the mosquitoes to tide over adverse environmental conditions and with the start of rainfall, the population exploded within a short period of time. Immatures collected from field and progeny of adults collected from the field were CHIKV positive demonstrating the presence of vertical transmission of chikungunya virus in field population of A. aegypti. The present study further demonstrates the importance of identifying permanent breeding sites for proper Aedes species control. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. IL-1β, IL-6, and RANTES as Biomarkers of Chikungunya Severity

    PubMed Central

    Sun, Yong-Jiang; Kwek, Dyan J. C.; Lim, Poh-Lian; Dimatatac, Frederico; Ng, Lee-Ching; Ooi, Eng-Eong; Choo, Khar-Heng; Her, Zhisheng; Kourilsky, Philippe; Leo, Yee-Sin

    2009-01-01

    Background Little is known about the immunopathogenesis of Chikungunya virus. Circulating levels of immune mediators and growth factors were analyzed from patients infected during the first Singaporean Chikungunya fever outbreak in early 2008 to establish biomarkers associated with infection and/or disease severity. Methods and Findings Adult patients with laboratory-confirmed Chikungunya fever infection, who were referred to the Communicable Disease Centre/Tan Tock Seng Hospital during the period from January to February 2008, were included in this retrospective study. Plasma fractions were analyzed using a multiplex-microbead immunoassay. Among the patients, the most common clinical features were fever (100%), arthralgia (90%), rash (50%) and conjunctivitis (40%). Profiles of 30 cytokines, chemokines, and growth factors were able to discriminate the clinical forms of Chikungunya from healthy controls, with patients classified as non-severe and severe disease. Levels of 8 plasma cytokines and 4 growth factors were significantly elevated. Statistical analysis showed that an increase in IL-1β, IL-6 and a decrease in RANTES were associated with disease severity. Conclusions This is the first comprehensive report on the production of cytokines, chemokines, and growth factors during acute Chikungunya virus infection. Using these biomarkers, we were able to distinguish between mild disease and more severe forms of Chikungunya fever, thus enabling the identification of patients with poor prognosis and monitoring of the disease. PMID:19156204

  2. [Description of the process of preparation and response of local health authorities facing the introduction of the Chikungunya virus in Colombia, 2014].

    PubMed

    Alarcón-Cruz, Ángela P; Prieto-Suárez, Edgar

    2016-06-01

    Objective To describe the process of preparation and response of local health authorities in key public health issues while facing the introduction stage of an unusual virus: Chikungunya in Colombia in 2014. Methods A cross-sectional study was conducted using a survey that was developed for this study and sent to Public Health coordinators and to the person in charge of vector borne-diseases in the country's territorial entities. Results 23 out of the 35 territories at risk from the transmission of Chikungunya agreed to answer the survey. A global review of the survey scores for each evaluated section shows better performances in the areas of knowledge management, comprehensive patient care, epidemiological intelligence, and health promotion. According to the results of this study, the epidemiological surveillance system during the Chikungunya epidemic had a low acceptability and flexibility, possibly contributing to the underreporting of cases. Conclusions In general, knowledge and implementation by local authorities of the Integrated Health Strategy- EGI (Estrategia de Gestión Integral, by its Spanish acronym)- for vector-borne diseases was evident from the themes evaluated in this study. However, it is necessary to reinforce the communication of risks, laboratory, and outbreak and contingencies management areas faced during the introduction of new viruses.

  3. Comparative evaluation of the diagnostic potential of recombinant envelope proteins and native cell culture purified viral antigens of Chikungunya virus.

    PubMed

    Khan, Mohsin; Dhanwani, Rekha; Kumar, Jyoti S; Rao, P V Lakshmana; Parida, Manmohan

    2014-07-01

    Despite the fact that Chikungunya resurgence is associated with epidemic of unprecedented magnitude, there are challenges in the field of its clinical diagnosis. However, serological tests in an ELISA format provide a rapid tool for the diagnosis of Chikungunya infection. Indeed, ELISAs based on recombinant proteins hold a great promise as these methods are cost effective and are free from the risk of handling biohazardous material. In this study, the performance of recombinant CHIKV antigens was compared in various ELISA formats for the diagnosis of Chikungunya. Two recombinant antigens derived from the envelope proteins of Chikungunya virus were prepared and evaluated by comparing their competence for detecting circulating antibodies in serum samples of patients infected with CHIKV using MAC-ELISA and indirect IgM-ELISA. The efficacy of the recombinant antigens was also compared with the native antigen. The indirect antibody capture IgM microplate ELISA revealed ≥90% concordance with the native antigen in detecting the CHIKV specific IgM antibodies whereas the recombinant antigen based MAC-ELISA showed 100% specificity. The recombinant antigens used in this study were effective and reliable targets for the diagnosis of CHIKV infection and also provide an alternative for native antigen use which is potentially biohazardous. © 2013 Wiley Periodicals, Inc.

  4. Mechanism of increased dissemination of chikungunya virus in Aedes albopictus mosquitoes concurrently ingesting microfilariae of Dirofilaria immitis.

    PubMed

    Zytoon, E M; el-Belbasi, H I; Matsumura, T

    1993-08-01

    We investigated whether concurrent ingestion of chikungunya virus and microfilariae of Dirofilaria immitis increases viral dissemination and multiplication in a mosquito vector. The increased rate of dissemination of this virus in mosquitoes concurrently ingesting both agents was found when homogenates of bodies and those of legs only were examined. It was significantly higher than that of controls ingesting the virus alone through the end of the experiment on day 14 after infection. We next studied the mechanism by which the presence of microfilariae enabled the virus to enter into the hemocoel and to reach the salivary glands. We checked our results using histopathologic procedures and electron microscopy by identifying holes produced by the microfilariae that penetrated the midgut epithelial layer. When the midgut of mosquitoes was punctured with a thin needle immediately after the mosquitoes ingested viruses, higher infection rates were observed than in mosquitoes without such punctures.

  5. Assessment of immunogenic potential of Vero adapted formalin inactivated vaccine derived from novel ECSA genotype of Chikungunya virus.

    PubMed

    Tiwari, Mugdha; Parida, Manmohan; Santhosh, S R; Khan, Mohsin; Dash, Paban Kumar; Rao, P V Lakshmana

    2009-04-21

    The recent resurgence of Chikungunya virus (CHIKV) in India and Indian Ocean Islands with unusual clinical severity is a matter of great public health concern. Despite the fact that CHIKV resurgence is associated with epidemic of unprecedented magnitude, no approved licensed vaccine is currently available. In the present study, a Vero cell adapted purified formalin inactivated prototype vaccine candidate was prepared using a current Indian strain implicated with the explosive epidemic during 2006. The bulk preparation of the vaccine candidate was undertaken in microcarrier based spinner culture using cytodex-1 in virus production serum free medium. The inactivation of the virus was accomplished through standard formalin inactivation protocol. The mice were immunized subcutaneously with alhydrogel gel formulation of inactivated virus preparation. The assessment of both humoral and cell-mediated immune response was accomplished through ELISA, plaque reduction neutralization test (PRNT), microcytotoxicity assay and cytokine production assay. The results revealed that formalin inactivated vaccine candidate induced both high titered ELISA (1:51,200) and plaque reduction neutralizing antibodies (1:6400) with peak antibody titer being observed during 6 -- 8 weeks of post-vaccination. In the absence of suitable murine challenge model, the protective efficacy was established by both in vitro and in vivo neutralization tests. Further assessment of cellular immunity through in vitro stimulation of spleenocytes from immunized mice revealed augmentation of high levels of both pro- and anti-inflammatory cytokines, indicating a mixed balance of Th1 and Th2 response. These findings suggest that the formalin inactivated Chikungunya vaccine candidate reported in this study has very good immunogenic potential to neutralize the virus infectivity by augmenting both humoral and cell-mediated immune response.

  6. Zika Virus and Chikungunya Virus CoInfections: A Series of Three Cases from a Single Center in Ecuador.

    PubMed

    Zambrano, Hector; Waggoner, Jesse J; Almeida, Cristina; Rivera, Lisette; Benjamin, Juan Quintana; Pinsky, Benjamin A

    2016-10-05

    Zika virus (ZIKV) and chikungunya virus (CHIKV) cocirculate throughout much of the tropical Western Hemisphere; however, few cases of coinfection with these two pathogens have been reported. Herein, we describe three cases of ZIKV-CHIKV coinfection detected at a single center in Ecuador: a patient who developed symptoms on postoperative day 5 from an orthopedic procedure, a woman who had traveled to Ecuador for fertility treatment, and a woman who was admitted for Guillain-Barré syndrome and had ZIKV and CHIKV detected in serum and cerebrospinal fluid. All cases were diagnosed using a multiplex real-time reverse transcription polymerase chain reaction, and ZIKV viremia was detected as late as 16 days after symptom onset. These cases demonstrate the varied clinical presentation of ZIKV-CHIKV coinfections as well as the importance of multiplexed arboviral testing for these pathogens. © The American Society of Tropical Medicine and Hygiene.

  7. Seroprevalence of antibodies against chikungunya virus in Singapore resident adult population

    PubMed Central

    Kam, Yiu Wing; Lin, Cui; Krishnan, Prabha Unny; Tay, Joanne; Ng, Lee Ching; James, Lyn; Lee, Vernon J. M.; Goh, Kee Tai; Ng, Lisa F. P.; Lin, Raymond T. P.

    2017-01-01

    Objectives We determined the seroprevalence of chikungunya virus (CHIKV) infection in the adult resident population in Singapore following local outbreaks of chikungunya fever (CHIKF) in 2008–2009. Methods Our cross-sectional study involved residual sera from 3,293 adults aged 18–79 years who had participated in the National Health Survey in 2010. Sera were tested for IgG antibodies against CHIKV and dengue virus (DENV) and neutralizing antibodies against CHIKV. Results The prevalence of CHIKV-neutralizing antibodies among Singapore residents aged 18–79 years was 1.9% (95% confidence interval: 1.4%– 2.3%). The CHIKV seroprevalence was highest in the elderly aged 70–79 years at 11.5%, followed by those aged 30–39 years at 3.1%. Men had significantly higher CHIKV seroprevalence than women (2.5% versus 1.3%, p = 0.01). Among the three main ethnic groups, Indians had the highest seroprevalence (3.5%) compared to Chinese (1.6%) and Malays (0.7%) (p = 0.02 and p = 0.01, respectively). Multivariable logistic regression identified adults aged 30–39 years and 70–79 years, men, those of Indian ethnicity and ethnic minority groups, and residence on ground floor of public and private housing apartments as factors that were significantly associated with a higher likelihood of exposure to CHIKV. The overall prevalence of anti-DENV IgG antibodies was 56.8% (95% CI: 55.1%– 58.5%), while 1.5% (95% CI: 1.1%– 2.0%) of adults possessed both neutralizing antibodies against CHIKV and IgG antibodies against DENV. Conclusions Singapore remains highly susceptible to CHIKV infection. There is a need to maintain a high degree of vigilance through disease surveillance and vector control. Findings from such serological study, when conducted on a regular periodic basis, could supplement surveillance to provide insights on CHIKV circulation in at-risk population. PMID:29281644

  8. Four emerging arboviral diseases in North America: Jamestown Canyon, Powassan, chikungunya, and Zika virus diseases

    PubMed Central

    Smith, Daniel E.; Beckham, J. David; Tyler, Kenneth L.

    2016-01-01

    Arthropod-borne viruses, or arboviruses, are viruses that are transmitted through the bites of mosquitoes, ticks, or sandflies. There are numerous arboviruses throughout the world capable of causing human disease spanning different viral families and genera. Recently, Jamestown Canyon, Powassan, chikungunya, and Zika viruses have emerged as increasingly important arboviruses that can cause human disease in North America. Unfortunately, there are currently no proven disease-modifying therapies for these arboviral diseases, so treatment is largely supportive. Given there are also no commercially available vaccines for these four arboviral infections, prevention is the key. To prevent mosquito or tick bites that might result in one of these arboviral diseases, people should wear long-sleeved shirts and pants while outside if feasible, apply insect repellant when going outdoors, using window screens or air conditioning to keep mosquitoes outside, and perform tick checks after being in wooded or brushy outdoor areas. PMID:26903031

  9. Four emerging arboviral diseases in North America: Jamestown Canyon, Powassan, chikungunya, and Zika virus diseases.

    PubMed

    Pastula, Daniel M; Smith, Daniel E; Beckham, J David; Tyler, Kenneth L

    2016-06-01

    Arthropod-borne viruses, or arboviruses, are viruses that are transmitted through the bites of mosquitoes, ticks, or sandflies. There are numerous arboviruses throughout the world capable of causing human disease spanning different viral families and genera. Recently, Jamestown Canyon, Powassan, chikungunya, and Zika viruses have emerged as increasingly important arboviruses that can cause human disease in North America. Unfortunately, there are currently no proven disease-modifying therapies for these arboviral diseases, so treatment is largely supportive. Given there are also no commercially available vaccines for these four arboviral infections, prevention is the key. To prevent mosquito or tick bites that might result in one of these arboviral diseases, people should wear long-sleeved shirts and pants while outside if feasible, apply insect repellant when going outdoors, using window screens or air conditioning to keep mosquitoes outside, and perform tick checks after being in wooded or brushy outdoor areas.

  10. Emergence of chikungunya seropositivity in healthy Malaysian adults residing in outbreak-free locations: Chikungunya seroprevalence results from the Malaysian Cohort

    PubMed Central

    2013-01-01

    Background In 1998, Malaysia experienced its first chikungunya virus (CHIKV) outbreak in the suburban areas followed by another two in 2006 (rural areas) and 2008 (urban areas), respectively. Nevertheless, there is still a lack of documented data regarding the magnitude of CHIKV exposure in the Malaysian population. The aim of this study was to determine the extent of chikungunya virus infection in healthy Malaysian adults residing in outbreak-free locations. Methods A cross sectional study of chikungunya (CHIK) seroprevalence was carried out in 2009 amongst The Malaysian Cohort participants living in four states (Kuala Lumpur, Selangor, Pahang and Negeri Sembilan). A total of 945 participants were randomly identified for the study. Potential risk factors for CHIK infection were determined via questionnaires, and IgG antibodies against CHIK were detected by an enzyme-linked immunosorbent assay. Logistic regression identified risk factors associated with CHIK seropositivity, while geographical information system was used for visual and spatial analysis. Results From the 945 serum samples tested, 5.9% was positive for CHIK IgG. Being male, Malay, rural occupancy and Negeri Sembilan residency were identified as univariate predictors for CHIK seropositivity, while multivariate analysis identified being male and rural occupancy as risk factors. Conclusions This study provided evidence that CHIK is slowly emerging in Malaysia. Although the current baseline seroprevalence is low in this country, increasing number of CHIK cases reported to the Malaysia Ministry of Health imply the possibility of CHIK virus becoming endemic in Malaysia. PMID:23379541

  11. Preparedness for Threat of Chikungunya in the Pacific

    PubMed Central

    Hoy, Damian; Horwood, Paul F.; Ropa, Berry; Hancock, Thane; Guillaumot, Laurent; Rickart, Keith; Frison, Pascal; Pavlin, Boris; Souares, Yvan

    2014-01-01

    Chikungunya virus (CHIKV) caused significant outbreaks of illness during 2005–2007 in the Indian Ocean region. Chikungunya outbreaks have also occurred in the Pacific region, including in Papua New Guinea in 2012; New Caledonia in April 2013; and Yap State, Federated States of Micronesia, in August 2013. CHIKV is a threat in the Pacific, and the risk for further spread is high, given several similarities between the Pacific and Indian Ocean chikungunya outbreaks. Island health care systems have difficulties coping with high caseloads, which highlights the need for early multidisciplinary preparedness. The Pacific Public Health Surveillance Network has developed several strategies focusing on surveillance, case management, vector control, laboratory confirmation, and communication. The management of this CHIKV threat will likely have broad implications for global public health. PMID:25062306

  12. Chikungunya, climate change, and human rights.

    PubMed

    Meason, Braden; Paterson, Ryan

    2014-06-14

    Chikungunya is a re-emerging arbovirus that causes significant morbidity and some mortality. Global climate change leading to warmer temperatures and changes in rainfall patterns allow mosquito vectors to thrive at altitudes and at locations where they previously have not, ultimately leading to a spread of mosquito-borne diseases. While mutations to the chikungunya virus are responsible for some portion of the re-emergence, chikungunya epidemiology is closely tied with weather patterns in Southeast Asia. Extrapolation of this regional pattern, combined with known climate factors impacting the spread of malaria and dengue, summate to a dark picture of climate change and the spread of this disease from south Asia and Africa into Europe and North America. This review describes chikungunya and collates current data regarding its spread in which climate change plays an important part. We also examine human rights obligations of States and others to protect against this disease. Copyright © 2014 Meason, Paterson. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

  13. A Polarized Cell Model for Chikungunya Virus Infection: Entry and Egress of Virus Occurs at the Apical Domain of Polarized Cells

    PubMed Central

    Lim, Pei Jin; Chu, Justin Jang Hann

    2014-01-01

    Chikungunya virus (CHIKV) has resulted in several outbreaks in the past six decades. The clinical symptoms of Chikungunya infection include fever, skin rash, arthralgia, and an increasing incidence of encephalitis. The re-emergence of CHIKV with more severe pathogenesis highlights its potential threat on our human health. In this study, polarized HBMEC, polarized Vero C1008 and non-polarized Vero cells grown on cell culture inserts were infected with CHIKV apically or basolaterally. Plaque assays, viral binding assays and immunofluorescence assays demonstrated apical entry and release of CHIKV in polarized HBMEC and Vero C1008. Drug treatment studies were performed to elucidate both host cell and viral factors involved in the sorting and release of CHIKV at the apical domain of polarized cells. Disruption of host cell myosin II, microtubule and microfilament networks did not disrupt the polarized release of CHIKV. However, treatment with tunicamycin resulted in a bi-directional release of CHIKV, suggesting that N-glycans of CHIKV envelope glycoproteins could serve as apical sorting signals. PMID:24587455

  14. Plasmacytoid dendritic cells control dengue and Chikungunya virus infections via IRF7-regulated interferon responses

    PubMed Central

    Zafirova, Biljana; This, Sébastien; Coléon, Séverin; Décembre, Elodie; Paidassi, Helena; Bouvier, Isabelle; Joubert, Pierre-Emmanuel; Duffy, Darragh; Walzer, Thierry

    2018-01-01

    Type I interferon (IFN-I) responses are critical for the control of RNA virus infections, however, many viruses, including Dengue (DENV) and Chikungunya (CHIKV) virus, do not directly activate plasmacytoid dendritic cells (pDCs), robust IFN-I producing cells. Herein, we demonstrated that DENV and CHIKV infected cells are sensed by pDCs, indirectly, resulting in selective IRF7 activation and IFN-I production, in the absence of other inflammatory cytokine responses. To elucidate pDC immunomodulatory functions, we developed a mouse model in which IRF7 signaling is restricted to pDC. Despite undetectable levels of IFN-I protein, pDC-restricted IRF7 signaling controlled both viruses and was sufficient to protect mice from lethal CHIKV infection. Early pDC IRF7-signaling resulted in amplification of downstream antiviral responses, including an accelerated natural killer (NK) cell-mediated type II IFN response. These studies revealed the dominant, yet indirect role of pDC IRF7-signaling in directing both type I and II IFN responses during arbovirus infections. PMID:29914621

  15. Invasiveness of Aedes aegypti and Aedes albopictus and Vectorial Capacity for Chikungunya Virus

    PubMed Central

    Lounibos, Leon Philip; Kramer, Laura D.

    2016-01-01

    In this review, we highlight biological characteristics of Aedes aegypti and Aedes albopictus, 2 invasive mosquito species and primary vectors of chikungunya virus (CHIKV), that set the tone of these species' invasiveness, vector competence, and vectorial capacity (VC). The invasiveness of both species, as well as their public health threats as vectors, is enhanced by preference for human blood. Vector competence, characterized by the efficiency of an ingested arbovirus to replicate and become infectious in the mosquito, depends largely on vector and virus genetics, and most A. aegypti and A. albopictus populations thus far tested confer vector competence for CHIKV. VC, an entomological analog of the pathogen's basic reproductive rate (R0), is epidemiologically more important than vector competence but less frequently measured, owing to challenges in obtaining valid estimates of parameters such as vector survivorship and host feeding rates. Understanding the complexities of these factors will be pivotal in curbing CHIKV transmission. PMID:27920173

  16. Easy and inexpensive molecular detection of dengue, chikungunya and zika viruses in febrile patients.

    PubMed

    Calvo, Eliana P; Sánchez-Quete, Fernando; Durán, Sandra; Sandoval, Isabel; Castellanos, Jaime E

    2016-11-01

    Dengue (DENV), chikungunya (CHIKV) and zika (ZIKV) are arthropod-borne viruses (arboviruses) sharing a common vector, the mosquito Aedes aegypti. At initial stages, patients infected with these viruses have similar clinical manifestations, however, the outcomes and clinical management of these diseases are different, for this reason early and accurate identification of the causative virus is necessary. This paper reports the development of a rapid and specific nested-PCR for detection of DENV, CHIKV and ZIKV infection in the same sample. A set of six outer primers targeting the C-preM, E1, and E gene respectively was used in a multiplex one-step RT-PCR assay, followed by the second round of amplification with specific inner primers for each virus. The specificity of the present assay was validated with positive and negative serum samples for viruses and supernatants of infected cells. The assay was tested using clinical samples from febrile patients. In these samples, we detected mono and dual infections and a case of triple co-infection DENV-CHIKV-ZIKV. This assay might be a useful and an inexpensive tool for detection of these infections in regions where these arboviruses co-circulate. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Chikungunya Arthritis Mechanisms in the Americas (CAMA): A cross sectional analysis of chikungunya arthritis patients 22 months post-infection demonstrates a lack of viral persistence in synovial fluid

    DTIC Science & Technology

    2017-06-30

    Chikungunya Arthritis Mechanisms in the Americas (CAMA): 1 A cross-sectional analysis of chikungunya arthritis patients 22-months post -infection...school or less level of education (94%). CHIKV arthritis 58 patients (Median 22-months (IQR 21-23) post -CHIKV infection) had moderate disease...rheumatoid arthritis are being tested in this patient population. However, such therapeutics could be 76 dangerous if active virus is still present

  18. Chikungunya and dengue virus infections during pregnancy: seroprevalence, seroincidence and maternal-fetal transmission, southern Thailand, 2009-2010.

    PubMed

    Laoprasopwattana, K; Suntharasaj, T; Petmanee, P; Suddeaugrai, O; Geater, A

    2016-01-01

    Limited information is available on the seroprevalence of chikungunya virus (CHIKV) infection and maternal-fetal transmission incidence of CHIKV and dengue virus (DENV) infections during the 2008-2009 CHIKV outbreak in southern Thailand. A community-based post-epidemic seroprevalence study was conducted in parturient women admitted to the Thepa District Hospital in Songkhla Province, Thailand, for delivery from November 2009 to May 2010. The women were tested for chikungunya (CHIK) IgM/IgG and dengue (DEN) IgM/IgG. Cord blood samples were also tested for CHIK IgM or DEN IgM in women who tested positive for CHIK IgM or DEN IgM, respectively. The seroprevalence of CHIKV infection (CHIK IgM or IgG positive) was 227/319 (71·2%) with pre-outbreak seroprevalence (IgM-/IgG+) of 43·6% and the seroprevalence of DENV infection was 288/319 (90·3%). Complications during pregnancy, newborn outcomes and congenital anomalies were not different in those who had recent, remote or no CHIKV infections. None of the newborns whose mothers were CHIK or DEN IgM positive had cord blood positive for both CHIK and DEN IgM. In conclusion, both CHIKV and DENV are endemic in southern Thailand; during the recent CHIKV outbreak CHIK seroprevalence increased from 43·6% to 71·2%.

  19. Isolation and molecular characterization of Chikungunya virus from the Andaman and Nicobar archipelago, India: evidence of an East, Central, and South African genotype.

    PubMed

    Muruganandam, N; Chaaithanya, I K; Senthil, G S; Shriram, A N; Bhattacharya, D; Jeevabharathi, G S; Sudeep, A B; Pradeepkumar, N; Vijayachari, P

    2011-12-01

    Chikungunya virus (CHIKV) is an Alphavirus belonging to the family Togaviridae. In 2006, CHIKV infection struck the Andaman and Nicobar archipelago, with an attack rate of 60%. There were more than 10 cases with acute flaccid paralysis simulating the Guillian Barre Syndrome. The majority of the patients presented severe joint pain. The cause for such an explosive nature of the outbreak with increased morbidity was not known. The isolation of CHIKV was attempted and succeeded from nine subjects presenting clinical symptoms of Chikungunya fever. The cDNA of all the isolates was sequenced for partial E1 and nsP1 genes. Sequences were aligned based on the double locus sequence typing concept. The phylogenetic analysis shows that sequences of Andaman isolates grouped with the East, Central, and South African genotype of virus isolates from India, Sri Lanka, and Réunion. The genetic distance between Andaman isolates and the Réunion isolates was very small. The phylogenetic analysis confirmed the origin of the isolates responsible for the first ever confirmed CHIKV outbreak in these islands to be the East, Central, and South African genotype. In this manuscript, we discuss the involvement of the East, Central, and South African strain with the Chikungunya fever outbreak in this archipelago and double locus sequence typing as a first time approach.

  20. Seroprevalence of Antibodies against Chikungunya, Dengue, and Rift Valley Fever Viruses after Febrile Illness Outbreak, Madagascar

    PubMed Central

    Girmann, Mirko; Randriamampionona, Njary; Bialonski, Alexandra; Maus, Deborah; Krefis, Anne Caroline; Njarasoa, Christine; Rajanalison, Jeanne Fleury; Ramandrisoa, Herly Daniel; Randriarison, Maurice Lucien; May, Jürgen; Schmidt-Chanasit, Jonas; Rakotozandrindrainy, Raphael

    2012-01-01

    In October 2009, two–3 months after an outbreak of a febrile disease with joint pain on the eastern coast of Madagascar, we assessed serologic markers for chikungunya virus (CHIKV), dengue virus (DENV), and Rift Valley fever virus (RVFV) in 1,244 pregnant women at 6 locations. In 2 eastern coast towns, IgG seroprevalence against CHIKV was 45% and 23%; IgM seroprevalence was 28% and 5%. IgG seroprevalence against DENV was 17% and 11%. No anti-DENV IgM was detected. At 4 locations, 450–1,300 m high, IgG seroprevalence against CHIKV was 0%–3%, suggesting CHIKV had not spread to higher inland-altitudes. Four women had IgG against RVFV, probably antibodies from a 2008 epidemic. Most (78%) women from coastal locations with CHIKV-specific IgG reported joint pain and stiffness; 21% reported no symptoms. CHIKV infection was significantly associated with high bodyweight. The outbreak was an isolated CHIKV epidemic without relevant DENV co-transmission. PMID:23092548

  1. Temperature-sensitive Mutants of Sindbis Virus: Biochemical Correlates of Complementation

    PubMed Central

    Burge, Boyce W.; Pfefferkorn, E. R.

    1967-01-01

    Temperature-sensitive mutants of Sindbis virus fail to grow at a temperature that permits growth of the wild type, but when certain pairs of these mutants, mixed together, infect cells at that temperature, viral growth (i.e., complementation) occurs. The yield from this complementation, however, is of the same order of magnitude as the infectivity in the inoculum. Since in animal virus infections the protein components of the virion probably enter the cell with the viral nucleic acid, it was necessary to demonstrate that the observed complementation required synthesis of new viral protein and nucleic acid rather than some sort of rearrangement of the structural components of the inoculum. To demonstrate that complementation does require new biosynthesis, three biochemical events of normal virus growth have been observed during complementation and correlated with the efficiency of viral growth seen in complementation. These events include: (i) entrance of parental viral ribonucleic acid (RNA) into a double-stranded form; (ii) subsequent synthesis of viral RNA; and (iii) synthesis and subsequent incorporation of viral protein(s) into cell membranes where they were detected by hemadsorption. Although the infecting single-stranded RNA genome of the wild type was converted to a ribonuclease-resistant form, the genome of a mutant (ts-11) incapable of RNA synthesis at a nonpermissive temperature was not so converted. However, during complementation with another mutant also defective in viral RNA synthesis, some of the RNA of mutant ts-11 was converted to a ribonuclease-resistant form, and total synthesis of virus-specific RNA was markedly enhanced. The virus-specific alteration of the cell surface, detected by hemadsorption, was also extensively increased during complementation. These observations support the view that complementation between temperature-sensitive mutants and replication of wild-type virus are similar processes. PMID:5630228

  2. Invasiveness of Aedes aegypti and Aedes albopictus and Vectorial Capacity for Chikungunya Virus.

    PubMed

    Lounibos, Leon Philip; Kramer, Laura D

    2016-12-15

    In this review, we highlight biological characteristics of Aedes aegypti and Aedes albopictus, 2 invasive mosquito species and primary vectors of chikungunya virus (CHIKV), that set the tone of these species' invasiveness, vector competence, and vectorial capacity (VC). The invasiveness of both species, as well as their public health threats as vectors, is enhanced by preference for human blood. Vector competence, characterized by the efficiency of an ingested arbovirus to replicate and become infectious in the mosquito, depends largely on vector and virus genetics, and most A. aegypti and A. albopictus populations thus far tested confer vector competence for CHIKV. VC, an entomological analog of the pathogen's basic reproductive rate (R 0 ), is epidemiologically more important than vector competence but less frequently measured, owing to challenges in obtaining valid estimates of parameters such as vector survivorship and host feeding rates. Understanding the complexities of these factors will be pivotal in curbing CHIKV transmission. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  3. Seroprevalence of antibodies to dengue and chikungunya viruses in Thailand.

    PubMed

    Vongpunsawad, Sompong; Intharasongkroh, Duangnapa; Thongmee, Thanunrat; Poovorawan, Yong

    2017-01-01

    The abundance of Aedes mosquito species enabled widespread transmission of mosquito-borne chikungunya virus (CHIKV) and dengue virus (DENV) in Southeast Asia. Periodic seroprevalence surveys are therefore necessary to assess the viral burden in the population and the effectiveness of public health interventions. Since the current seroprevalence for CHIKV and DENV in Thailand are unknown, we evaluated evidence of past infection among Thais. Eight-hundred and thirty-five serum samples obtained from individuals living in central and southern Thailand were assessed for anti-CHIKV and anti-DENV IgG antibodies using commercial enzyme-linked immunosorbent assays. Overall, 26.8% (224/835) of individuals were seropositive for CHIKV, the majority of whom were also DENV-seropositive (91.1%, 204/224). Approximately half of all adults in their fifth decade of life had attained CHIKV seropositivity. Children under 15 years of age in southern Thailand were significantly more likely to be CHIKV-seropositive compared to those residing in central Thailand. In contrast, 79.2% (661/835) of Thais were DENV-seropositive, 30.9% (204/661) of whom also had antibodies to CHIKV. CHIKV/DENV dual seropositivity among Thais was 24.4% (204/835). The age-standardized seroprevalence for DENV was three times that of CHIKV (80.5% vs. 27.2%). Relatively high CHIKV seroprevalence among adults living in central Thailand revealed an under-recognized CHIKV burden in the region, while the low-to-moderate transmission intensity of DENV (seroprevalence <50% at 9 years) is expected to reduce the impact of DENV vaccination in Thailand. This most recent seroprevalence data provide serological baselines for two of the most common mosquito-borne viruses in this region.

  4. Renal involvement in fatal cases of chikungunya virus infection.

    PubMed

    Mercado, Marcela; Acosta-Reyes, Jorge; Parra, Edgar; Guzmán, Luis; Beltrán, Mauricio; Gasque, Philippe; Mejía-García, Carlos; Viasus, Diego

    2018-06-01

    Information regarding physiopathology and complications in fatal cases of chikungunya virus (CHIKV) is scarce. The aim of this study was to describe the frequency and severity of renal complications in fatal cases associated with CHIKV infection based on the clinical and histopathological features from post-mortem tissue biopsies. This retrospective study included fatal cases associated with CHIKV infection occurring from September 2014 through October 2015, reported to National System for Public Health Surveillance (SIVIGILA) and laboratory-confirmed by the National Institute of Health of Colombia. Medical records from 13 patients were available. Information was collected on history, physical examination, and haematological, biochemical, radiological, and virologic investigation reports. Diagnosis of CHIKV infection was performed by positive CHIKV-PCR on post-mortem tissue in 10 cases, positive CHIKV-PCR in serum in 6 cases and anti-CHIKV virus IgM in 2 cases. Only 3 cases were children (≤5 years old). Four cases had underlying diseases, mainly systemic arterial hypertension. The median value of creatinine at admission was 2.8 mg/dL (interquartile range 1.52-4.51). During hospitalization, 9 cases required ICU admission, 8 vasopressor support and 6 mechanical ventilation. Kidney histopathological findings were mainly acute interstitial nephritis (11 cases), congestion/oedema glomerular (10 cases) and acute tubular necrosis (5 cases). Renal impairment in fatal cases of CHIKV infection is frequent and related mainly to acute interstitial nephritis. These data demonstrate evidence of acquired kidney injuries during CHIKV infection. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. [Expression of human-mouse chimeric antibody directed against Chikungunya virus with site-specific integration system].

    PubMed

    Li, Jian-min; Chen, Wei; Jia, Xiu-jie; An, Xiao-ping; Li, Bing; Fan, Ying-ru; Tong, Yi-gang

    2005-05-01

    To obtain CHO/dhfr(-) cells line with integrated FRT sequence in the chromosome transcription active site and to express human-mouse chimeric antibody directed against Chikungunya Virus by using the cell line. The fusion gene of FRT and HBsAg was constructed by PCR and cloned into the MCS of pCI-neo to construct pCI-FRT-HBsAg. The pCI-FRT-HBsAg was transfected into CHO/dhfr(-) cells and cell clones with high expression of HBsAg were screened by detecting the amount of HBsAg with ELISA. A CHO cell clone with the highest expression was chosen and named as CHO/dhfr(-) FRT(+). pAFRT HFLF, a expression plasmid of chimeric antibody with RFT sequence was transfected into CHO/dhfr(-) FRT(+) cells and cell clones with high expression of the chimeric antibody were screened by increasing concentration of MTX. A CHO cell clone with high expression of the chimeric antibody was cultured in large scale and supernatant was collected from which the chimeric antibody was purified. The purified chimeric antibody was analyzed by SDS-PAGE, Western blot and IFA. A CHO/dhfr(-) cells line with integrated FRT sequence in the chromosome transcription active site was obtained successfully. A cell clone with yield of 5 mg/L of chimeric antibody was obtained, as compared with routine CHO cell expression system with a yield of 2 mg/L. A cell line with integrated FRT sequence in the chromosome transcription active site was obtained and with it human-mouse chimeric antibody directed against Chikungunya virus was expressed. This system lays a solid foundation which can be used for expressing antibodies and other proteins.

  6. Transcriptome analysis of Aedes aegypti in response to mono-infections and co-infections of dengue virus-2 and chikungunya virus.

    PubMed

    Shrinet, Jatin; Srivastava, Pratibha; Sunil, Sujatha

    2017-10-28

    Chikungunya virus (CHIKV) and Dengue virus (DENV) spread via the bite of infected Aedes mosquitoes. Both these viruses exist as co-infections in the host as well as the vector and are known to exploit their cellular machinery for their replication. While there are studies reporting the changes in Aedes transcriptome when infected with DENV and CHIKV individually, the effect both these viruses have on the mosquitoes when present as co-infections is not clearly understood. In the present study, we infected Aedes aegypti mosquitoes with DENV and CHIKV individually and as co-infection through nanoinjections. We performed high throughput RNA sequencing of the infected Aedes aegypti to understand the changes in the Aedes transcriptome during the early stages of infection, i.e., 24 h post infection and compared the transcriptome profiles during DENV and CHIKV mono-infections with that of co-infections. We identified 190 significantly regulated genes identified in CHIKV infected library, 37 genes from DENV library and 100 genes from co-infected library and they were classified into different pathways. Our study reveal that distinct pathways and transcripts are being regulated during the three types of infection states in Aedes aegypti mosquitoes. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Notes from the field: chikungunya virus spreads in the Americas - Caribbean and South America, 2013-2014.

    PubMed

    Fischer, Marc; Staples, J Erin

    2014-06-06

    In December 2013, the World Health Organization reported the first local transmission of chikungunya virus in the Western Hemisphere, with autochthonous cases identified in Saint Martin. Since then, local transmission has been identified in 17 countries or territories in the Caribbean or South America (Anguilla, Antigua and Barbuda, British Virgin Islands, Dominica, Dominican Republic, French Guiana, Guadeloupe, Guyana, Haiti, Martinique, Puerto Rico, Saint Barthelemy, Saint Kitts and Nevis, Saint Lucia, Saint Martin, Saint Vincent and the Grenadines, and Sint Maarten). As of May 30, 2014, a total of 103,018 suspected and 4,406 laboratory-confirmed chikungunya cases had been reported from these areas. The number of reported cases nearly doubled during the previous 2 weeks. More than 95% of the cases have been reported from five jurisdictions: Dominican Republic (38,656 cases), Martinique (30,715), Guadeloupe (24,428), Haiti (6,318), and Saint Martin (4,113). The highest incidences have been reported from Saint Martin (115 cases per 1,000 population), Martinique (76 per 1,000), Saint Barthelemy (74 per 1,000), and Guadeloupe (52 per 1,000). Further expansion of these outbreaks and spread to other countries in the region is likely.

  8. A Novel Agonist of the TRIF Pathway Induces a Cellular State Refractory to Replication of Zika, Chikungunya, and Dengue Viruses

    PubMed Central

    Pryke, Kara M.; Abraham, Jinu; Sali, Tina M.; Gall, Bryan J.; Archer, Iris; Liu, Andrew; Bambina, Shelly; Baird, Jason; Gough, Michael; Chakhtoura, Marita; Haddad, Elias K.; Kirby, Ilsa T.; Nilsen, Aaron; Streblow, Daniel N.; Hirsch, Alec J.; Smith, Jessica L.

    2017-01-01

    ABSTRACT The ongoing concurrent outbreaks of Zika, Chikungunya, and dengue viruses in Latin America and the Caribbean highlight the need for development of broad-spectrum antiviral treatments. The type I interferon (IFN) system has evolved in vertebrates to generate tissue responses that actively block replication of multiple known and potentially zoonotic viruses. As such, its control and activation through pharmacological agents may represent a novel therapeutic strategy for simultaneously impairing growth of multiple virus types and rendering host populations resistant to virus spread. In light of this strategy’s potential, we undertook a screen to identify novel interferon-activating small molecules. Here, we describe 1-(2-fluorophenyl)-2-(5-isopropyl-1,3,4-thiadiazol-2-yl)-1,2-dihydrochromeno[2,3-c]pyrrole-3,9-dione, which we termed AV-C. Treatment of human cells with AV-C activates innate and interferon-associated responses that strongly inhibit replication of Zika, Chikungunya, and dengue viruses. By utilizing genome editing, we investigated the host proteins essential to AV-C-induced cellular states. This showed that the compound requires a TRIF-dependent signaling cascade that culminates in IFN regulatory factor 3 (IRF3)-dependent expression and secretion of type I interferon to elicit antiviral responses. The other canonical IRF3-terminal adaptor proteins STING and IPS-1/MAVS were dispensable for AV-C-induced phenotypes. However, our work revealed an important inhibitory role for IPS-1/MAVS, but not TRIF, in flavivirus replication, implying that TRIF-directed viral evasion may not occur. Additionally, we show that in response to AV-C, primary human peripheral blood mononuclear cells secrete proinflammatory cytokines that are linked with establishment of adaptive immunity to viral pathogens. Ultimately, synthetic innate immune activators such as AV-C may serve multiple therapeutic purposes, including direct antimicrobial responses and facilitation of

  9. Emerging Viruses in the Republic of Suriname: Retrospective and Prospective Study into Chikungunya Circulation and Suspicion of Human Hantavirus Infections, 2008-2012 and 2014.

    PubMed

    Goeijenbier, Marco; Aron, Georgina; Anfasa, Fatih; Lundkvist, Åke; Verner-Carlsson, Jenny; Reusken, Chantal B E M; Martina, Byron E E; van Gorp, Eric C M; Resida, Lesley

    2015-10-01

    Suriname is a country on the northeastern Atlantic coast of South America. It is unique in the sense that different ethnic cultures live together within the country, resulting in high levels of transport of both humans and products between the Asian, African, and European continents as well as the Caribbean. Travel is only one of the many factors present in Suriname contributing to the risk for the emergence or introduction of any infectious disease. Recently, circulation of both chikungunya virus (CHIKV) and hantavirus was reported in areas neighboring Suriname. Here we report a retrospective and prospective study into chikungunya and hantavirus circulation. A chikungunya and hantavirus retrospective serological study was conducted on samples submitted for dengue, leptospirosis, and/or influenza virus diagnostics between 2008 and 2012 to the Bureau of Public Health in Suriname. This was followed by a prospective CHIKV serological and molecular surveillance study until the detection of the first autochthonous CHIKV cases in Suriname in May and June of 2014. None of the tested samples showed the presence of CHIKV antibodies in the retrospective serological study. Prospective testing of CHIKV-suspected patients resulted in the detection of the first autochthonous CHIKV cases in Suriname in May, 2015. In one sample, we were able to isolate and sequence the virus. Retrospective testing for the presence of hantavirus antibodies showed a relative high response in both pan-hantavirus enzyme-linked immunosorbent assay (ELISA) and immunofluorescence assay (IFA). However, neutralization tests did not yield any evidence for infection with either Seoul or Andes hantavirus. Here we report the presence of CHIKV in the republic of Suriname and the first serological indication of hantavirus infections in symptomatic patients.

  10. Chikungunya virus: is this the next emerging disease threat to the americas?

    PubMed

    Girimont, Trina M

    2014-12-01

    Chikungunya fever is a mosquito-borne infection for which no cure or vaccine is available. It made its first appearance in the Americas in December 2013. Seven months later, two locally acquired cases of the disease emerged in the United States. The emergence of chikungunya fever cases in the Americas emphasizes the need for sustained vector control, clear public health information, and disease awareness and surveillance. Copyright 2014, SLACK Incorporated.

  11. Acquired auditory neuropathy spectrum disorder after an attack of chikungunya: case study.

    PubMed

    Prabhu, Prashanth

    2016-01-01

    Auditory neuropathy spectrum disorder (ANSD) is a retrocochlear disorder in which the cochlear functioning is normal but the transmission in the auditory neural pathway is affected. The present study reports of a 14-year-old teenager with acquired ANSD after an attack of chikungunya. He reported symptoms of difficulty in understanding speech, tinnitus and vertigo when exposed to loud sounds. The audiological characteristics suggested auditory neuropathy spectrum disorder with raising audiogram configuration. The results of tinnitus evaluation showed low-pitched tinnitus and it was persistent causing significant handicap to him based on self report tinnitus handicap questionnaire results. The results of depression, anxiety and stress scale also suggested symptoms of mild depression and anxiety. Chikungunya virus is suspected to be neurotropic in nature which can damage auditory nerve cells and may have caused ANSD. The result also shows presence of tullio's phenomenon and absence of cervical vestibular evoked myogenic potentials suggesting damage to the vestibular neuronal system. The possible pathophysiology of chikungunya virus causing ANSD and vestibular symptoms needs to be explored further in future studies.

  12. High Incidence of Chikungunya Virus and Frequency of Viremic Blood Donations during Epidemic, Puerto Rico, USA, 2014

    PubMed Central

    Brès, Vanessa; Lu, Kai; Liss, Nathan M.; Brambilla, Donald J.; Ryff, Kyle R.; Bruhn, Roberta; Velez, Edwin; Ocampo, Derrek; Linnen, Jeffrey M.; Latoni, Gerardo; Petersen, Lyle R.; Williamson, Phillip C.; Busch, Michael P.

    2016-01-01

    Chikungunya virus (CHIKV) caused large epidemics throughout the Caribbean in 2014. We conducted nucleic acid amplification testing (NAAT) for CHIKV RNA (n = 29,695) and serologic testing for IgG against CHIKV (n = 1,232) in archived blood donor samples collected during and after an epidemic in Puerto Rico in 2014. NAAT yields peaked in October with 2.1% of donations positive for CHIKV RNA. A total of 14% of NAAT-reactive donations posed a high risk for virus transmission by transfusion because of high virus RNA copy numbers (104–109 RNA copies/mL) and a lack of specific IgM and IgG responses. Testing of minipools of 16 donations would not have detected 62.5% of RNA-positive donations detectable by individual donor testing, including individual donations without IgM and IgG. Serosurveys before and after the epidemic demonstrated that nearly 25% of blood donors in Puerto Rico acquired CHIKV infections and seroconverted during the epidemic. PMID:27070192

  13. High Incidence of Chikungunya Virus and Frequency of Viremic Blood Donations during Epidemic, Puerto Rico, USA, 2014.

    PubMed

    Simmons, Graham; Brès, Vanessa; Lu, Kai; Liss, Nathan M; Brambilla, Donald J; Ryff, Kyle R; Bruhn, Roberta; Velez, Edwin; Ocampo, Derrek; Linnen, Jeffrey M; Latoni, Gerardo; Petersen, Lyle R; Williamson, Phillip C; Busch, Michael P

    2016-07-01

    Chikungunya virus (CHIKV) caused large epidemics throughout the Caribbean in 2014. We conducted nucleic acid amplification testing (NAAT) for CHIKV RNA (n = 29,695) and serologic testing for IgG against CHIKV (n = 1,232) in archived blood donor samples collected during and after an epidemic in Puerto Rico in 2014. NAAT yields peaked in October with 2.1% of donations positive for CHIKV RNA. A total of 14% of NAAT-reactive donations posed a high risk for virus transmission by transfusion because of high virus RNA copy numbers (10 (4) -10 (9) RNA copies/mL) and a lack of specific IgM and IgG responses. Testing of minipools of 16 donations would not have detected 62.5% of RNA-positive donations detectable by individual donor testing, including individual donations without IgM and IgG. Serosurveys before and after the epidemic demonstrated that nearly 25% of blood donors in Puerto Rico acquired CHIKV infections and seroconverted during the epidemic.

  14. Performance of the Trioplex real-time RT-PCR assay for detection of Zika, dengue, and chikungunya viruses.

    PubMed

    Santiago, Gilberto A; Vázquez, Jesús; Courtney, Sean; Matías, Katia Y; Andersen, Lauren E; Colón, Candimar; Butler, Angela E; Roulo, Rebecca; Bowzard, John; Villanueva, Julie M; Muñoz-Jordan, Jorge L

    2018-04-11

    The emergence and spread of Zika virus (ZIKV) presented a challenge to the diagnosis of ZIKV infections in areas with transmission of dengue (DENV) and chikungunya (CHIKV) viruses. To facilitate detection of ZIKV infections, and differentiate these infections from DENV and CHIKV, we developed the Trioplex real-time RT-PCR assay (Trioplex assay). Here, we describe the optimization of multiplex and singleplex formats of the assay for a variety of chemistries and instruments to facilitate global standardization and implementation. We evaluated the analytical performance of all Trioplex modalities for detection of these three pathogens in serum and whole blood, and for ZIKV in urine. The limit of detection for the three viruses and in different RNA-extraction modalities is near 10 3 genome copy equivalents per milliliter (GCE/mL). Simultaneous testing of more than one specimen type from each patient provides a 6.4% additional diagnostic sensitivity. Overall, the high sensitivity of the Trioplex assay demonstrates the utility of this assay ascertaining Zika cases.

  15. Chikungunya Virus–Vector Interactions

    PubMed Central

    Coffey, Lark L.; Failloux, Anna-Bella; Weaver, Scott C.

    2014-01-01

    Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes chikungunya fever, a severe, debilitating disease that often produces chronic arthralgia. Since 2004, CHIKV has emerged in Africa, Indian Ocean islands, Asia, Europe, and the Americas, causing millions of human infections. Central to understanding CHIKV emergence is knowledge of the natural ecology of transmission and vector infection dynamics. This review presents current understanding of CHIKV infection dynamics in mosquito vectors and its relationship to human disease emergence. The following topics are reviewed: CHIKV infection and vector life history traits including transmission cycles, genetic origins, distribution, emergence and spread, dispersal, vector competence, vector immunity and microbial interactions, and co-infection by CHIKV and other arboviruses. The genetics of vector susceptibility and host range changes, population heterogeneity and selection for the fittest viral genomes, dual host cycling and its impact on CHIKV adaptation, viral bottlenecks and intrahost diversity, and adaptive constraints on CHIKV evolution are also discussed. The potential for CHIKV re-emergence and expansion into new areas and prospects for prevention via vector control are also briefly reviewed. PMID:25421891

  16. [Dengue, Zika and Chikungunya].

    PubMed

    Kantor, Isabel N

    2016-01-01

    Arboviruses are transmitted by arthropods, including those responsible for the current pandemic: alphavirus (Chikungunya) and flaviviruses (dengue and Zika). Its importance increased in the Americas over the past 20 years. The main vectors are Aedes aegypti and A. albopictus. Dengue infection provides long lasting immunity against the specific serotype and temporary to the other three. Subsequent infection by another serotype determines more serious disease. There is a registered vaccine for dengue, Dengvaxia (Sanofi Pasteur). Other two (Butantan and Takeda) are in Phase III in 2016. Zika infection is usually asymptomatic or occurs with rash, conjunctivitis and not very high fever. There is no vaccine or specific treatment. It can be transmitted by parental, sexual and via blood transfusion. It has been associated with microcephaly. Chikungunya causes prolonged joint pain and persistent immune response. Two candidate vaccines are in Phase II. Dengue direct diagnosis is performed by virus isolation, RT-PCR and ELISA for NS1 antigen detection; indirect methods are ELISA-IgM (cross-reacting with other flavivirus), MAC-ELISA, and plaque neutralization. Zika is diagnosed by RT-PCR and virus isolation. Serological diagnosis cross-reacts with other flavivirus. For CHIKV culture, RT-PCR, MAC-ELISA and plaque neutralization are used. Against Aedes organophosphate larvicides (temephos), organophosphorus insecticides (malathion and fenitrothion) and pyrethroids (permethrin and deltamethrin) are usually employed. Resistance has been described to all these products. Vegetable derivatives are less expensive and biodegradable, including citronella oil, which microencapsulated can be preserved from evaporation.

  17. Zika and Chikungunya virus detection in naturally infected Aedes aegypti in Ecuador.

    PubMed

    Cevallos, Varsovia; Ponce, Patricio; Waggoner, Jesse J; Pinsky, Benjamin A; Coloma, Josefina; Quiroga, Cristina; Morales, Diego; Cárdenas, Maria José

    2018-01-01

    The wide and rapid spread of Chikungunya (CHIKV) and Zika (ZIKV) viruses represent a global public health problem, especially for tropical and subtropical environments. The early detection of CHIKV and ZIKV in mosquitoes may help to understand the dynamics of the diseases in high-risk areas, and to design data based epidemiological surveillance to activate the preparedness and response of the public health system and vector control programs. This study was done to detect ZIKV and CHIKV viruses in naturally infected fed female Aedes aegypti (L.) mosquitoes from active epidemic urban areas in Ecuador. Pools (n=193; 22 pools) and individuals (n=22) of field collected Ae. aegypti mosquitoes from high-risk arboviruses infection sites in Ecuador were analyzed for the presence of CHIKV and ZIKV using RT-PCR. Phylogenetic analysis demonstrated that both ZIKV and CHIKV viruses circulating in Ecuador correspond to the Asian lineages. Minimum infection rate (MIR) of CHIKV for Esmeraldas city was 2.3% and the maximum likelihood estimation (MLE) was 3.3%. The minimum infection rate (MIR) of ZIKV for Portoviejo city was 5.3% and for Manta city was 2.1%. Maximum likelihood estimation (MLE) for Portoviejo city was 6.9% and 2.6% for Manta city. Detection of arboviruses and infection rates in the arthropod vectors may help to predict an outbreak and serve as a warning tool in surveillance programs. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Isolation and preliminary characterization of temperature-sensitive mutants of influenza virus.

    PubMed

    Sugiura, A; Tobita, K; Kilbourne, E D

    1972-10-01

    Isolation of temperature-sensitive (ts) mutants was attempted from the WSN strain of influenza A virus which was grown and assayed in MDBK cells. After growth of wild-type virus in the presence of 5-fluorouracil, 15 ts mutants were selected for which the ratio of plaquing efficiency at 39.5 C to that at 33 C was 10(-3) or less. In pairwise crosses of ts mutants, recombination and complementation were either very efficient or undetectable. It is suggested, therefore, that the viral genome consists of physically discrete units and recombination occurs as an exchange of these units. All 15 mutants have been assigned with certainty into five recombination groups. Three mutants are suspected to be double mutants. Any two complementing mutants always recombined with each other, and noncomplementing mutants did not recombine. In physiological tests, mutants showed diverse patterns of functional defects at the nonpermissive temperature. However, it was not always possible to correlate these physiological defects with the results of genetic characterization.

  19. Current status, challenges and perspectives in the development of vaccines against yellow fever, dengue, Zika and chikungunya viruses.

    PubMed

    Silva, José V J; Lopes, Thaísa R R; Oliveira-Filho, Edmilson F de; Oliveira, Renato A S; Durães-Carvalho, Ricardo; Gil, Laura H V G

    2018-06-01

    Emerging and re-emerging viral infections transmitted by insect vectors (arthopode-borne viruses, arbovirus) are a serious threat to global public health. Among them, yellow fever (YFV), dengue (DENV), chikungunya (CHIKV) and Zika (ZIKV) viruses are particularly important in tropical and subtropical regions. Although vector control is one of the most used prophylactic measures against arboviruses, it often faces obstacles, such as vector diversity, uncontrolled urbanization and increasing resistance to insecticides. In this context, vaccines may be the best control strategy for arboviral diseases. Here, we provide a general overview about licensed vaccines and the most advanced vaccine candidates against YFV, DENV, CHIKV and ZIKV. In particular, we highlight vaccine difficulties, the current status of the most advanced strategies and discuss how the molecular characteristics of each virus can influence the choice of the different vaccine formulations. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Isolation and characterization of acyclovir-resistant mutants of herpes simplex virus.

    PubMed

    Field, H J; Darby, G; Wildy, P

    1980-07-01

    Mutants of HSV which are resistant to acyclovir (acycloguanosine) have been isolated following serial passages of several herpes simplex virus (HSV) strains in the presence of the drug. The majority of the mutants isolated are defective in induction of thymidine kinase (TK) and this is consistent with the observation that independently isolated TK- viruses are naturally resistant to ACV. One mutant is described (SC16 R9C2) which is resistant in biochemically transformed cells which express HSV TK. This suggests that its resistance resides at a level other than TK. It is also resistant to phosphonoacetic acid, suggesting that the DNA polymerase locus may be involved. A further mutant is described [Cl (101) P2C5] which induces normal levels of TK, although the nature of resistance of this virus is not yet elucidated.

  1. Circulation of Chikungunya virus in Aedes aegypti in Maranhão, Northeast Brazil.

    PubMed

    Aragão, Carine Fortes; Cruz, Ana Cecília Ribeiro; Neto, Joaquim Pinto Nunes; Monteiro, Hamilton Antonio de Oliveira; da Silva, Eliana Vieira Pinto; da Silva, Sandro Patroca; Andrade, Aylane Tamara Dos Santos; Tadei, Wanderli Pedro; Pinheiro, Valéria Cristina Soares

    2018-06-19

    The simultaneous circulation of Dengue virus (DENV), Chikungunya virus (CHIKV) and Zika virus (ZIKV) arboviruses have placed Brazil among the main worldwide endemic areas. Brazilian Northeast region concentrates the highest incidence of infections caused by CHIKV and ZIKV. In Maranhão, the second biggest northeastern state, there are cases of human infections caused by these three arboviruses and presence of Aedes aegypti and Aedes albopictus vectors. In this context, this study aimed to investigate the circulation of CHIKV, DENV and ZIKV in Ae. aegypti and Ae. albopictus mosquitoes collected in urban areas of Barra do Corda, Caxias, Codó, São Luís and São Mateus do Maranhão municipalities in the state of Maranhão through Quantitative Reverse Transcription Polymerase Chain Reaction (RT-qPCR) technique. 428 Ae. aegypti and 1 Ae. albopictus were collected, which formed 44 pools. Three of these showed positive results for CHIKV: AR832767 (five Ae. aegypti female collected in Caxias), AR832784 and AR832785 (both composed of 20 Ae. aegypti female collected in São Mateus do Maranhão). This study consolidates information about CHIKV circulation in state of Maranhão, as well as the role of Ae. aegypti in the transmission of CHIKV in urban area. Copyright © 2018. Published by Elsevier B.V.

  2. Waiting for chikungunya fever in Argentina: spatio-temporal risk maps

    PubMed Central

    Carbajo, Aníbal E; Vezzani, Darío

    2015-01-01

    Chikungunya virus (CHIKV) transmission has been detected in America in 2013 and recently reached south up to Bolivia, Brazil and Paraguay, bordering countries of Argentina. The presence of the mosquito Aedes aegypti in half of the country together with the regional context drove us to make a rapid assessment of transmission risk. Temperature thresholds for vector breeding and for virus transmission, together with adult activity from the literature, were mapped on a monthly basis to estimate risk. Transmission of chikungunya by Ae. aegypti in the world was seen at monthly mean temperatures from 21-34ºC, with the majority occurring between 26-28ºC. In Argentina temperatures above 21ºC are observed since September in the northeast, expanding south until January and retreating back to the northeast in April. The maximum area under risk encompasses more than half the country and around 32 million inhabitants. Vector adult activity was registered where monthly means temperatures exceeded 13ºC, in the northeast all over the year and in the northern half from September-May. The models herein proposed show that conditions for transmission are already present. Considering the regional context and the historic inability to control dengue in the region, chikungunya fever illness seems unavoidable. PMID:25946252

  3. Fatal Human Case of Zika and Chikungunya Virus Co-Infection with Prolonged Viremia and Viruria.

    PubMed

    Silva, Kelly R; Bica, Blanca E R G; Pimenta, Eduardo S; Serafim, Rodrigo B; Abreu, Mirhelen M; Gonçalves, Jorge L S; Santana, Larissa de S; Cabral-Castro, Mauro J; Peralta, José M; Cavalcanti, Marta G

    2018-06-21

    Zika virus (ZIKV) infection usually presents as a mild and self-limited illness, but it may be associated with severe outcomes. We describe a case of a 30-year-old man with systemic erythematous lupus and common variable immunodeficiency who became infected with both Zika (ZIKV) and Chikungunya (CHIKV) virus during the 2016 outbreak in Rio de Janeiro, Brazil. The patient presented with intense wrist and right ankle arthritis, and ZIKV RNA and virus particles were detected in synovial tissue, blood and urine, and CHIKV RNA in serum sample, at the time of the diagnosis. During the follow up, ZIKV RNA persisted for 275 days post symptoms onset. The patient evolved with severe arthralgia/arthritis and progressive deterioration of renal function. Fatal outcome occurred after 310 days post ZIKV and CHIKV co-infection onset. The results show the development of severe disease and fatal outcome of ZIKV infection in an immunosuppressed adult. The data suggests a correlation between immunodeficiency and prolonged ZIKV RNA shedding in both blood and urine with progressive disease. The results also indicate a possible role for arbovirus co-infections as risk factors for severe and fatal outcomes from ZIKV infection.

  4. Gamma ray-induced small plaque mutants of western equine encephalitis virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simizu, B.; Yamazaki, S.; Suzuki, K.

    1973-12-01

    Small plaque mutants of Western equine encephalitis virus were obtained from the surviving fractions of wild-type virus which was irradiated with gamma rays. The frequency with which small plaque mutants appeared in the surviving fraction increased with the radiation dose. These mutants were not more resistant to radiation than wild-type virus. The growth rate of a mutant, S127, was lower than that of wild-type. Clonally purified mutant virions presented two peaks in a velocity sedimentation profile; peak 1 corresponded to the peak of wild type and peak 2 moved faster than peak 1. Virions of both peaks were infectious andmore » consistently formed small plaques in chicken embryo cells. Virions reisolated from either peak and grown in chicken embryo cells also revealed two peaks in sedimentation analysis. In the electron microscope examination peak 2 proved to consist of giant form particles, each of which contained more than one nucleoid surrounded with a common envelope. Despite this remarkable morphological difference, densities of the wild-type and S127 mutant virions were similar in cesium chloride gradients. The RNAs and proteins of mutant virions could not be distinguished from those of wild types on the basis of size or change. (auth)« less

  5. Inflammation of the external ear in acute chikungunya infection: Experience from the outbreak in Johor Bahru, Malaysia, 2008.

    PubMed

    Javelle, Emilie; Tiong, Tee Hua; Leparc-Goffart, Isabelle; Savini, Hélène; Simon, Fabrice

    2014-04-01

    The re-emerging invalidating chikungunya disease has recently extended to temperate areas. Other alphaviruses can also present with febrile arthalgias. Dengue virus transmitted by the same species of mosquitoes may cocirculate, leading to dual infections and concurrent epidemics. Although these diseases share similar clinical features, their prognoses considerably differ. Prominent and prolonged articular disorders are more consistent with chikungunya virus, whereas haemorrhages make the gravity of dengue infection. Specific symptoms are required, especially when diagnostic tests are not available or performable at a large scale. Indeed, early clinical suspicion of a vector-borne disease is crucial to isolate the first cases in the course of an outbreak, and discrimination between arboviruses help to optimal management of patients. No specific chikungunya clinical sign has been yet reported. We highlight here the high prevalence (about 25%) of acute ear redness in infected people during the 2008 chikungunya outbreak in Jahor Bahru in Malaysia. Nine consenting patients are more precisely described. Ear chondritis could be sensitive diagnostic criterion of the acute stage of chikungunya, every physician - even in occidental non endemic areas - should be aware of. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Limited Evidence for Infection of Urban and Peri-urban Nonhuman Primates with Zika and Chikungunya Viruses in Brazil.

    PubMed

    Moreira-Soto, Andres; Carneiro, Ianei de Oliveira; Fischer, Carlo; Feldmann, Marie; Kümmerer, Beate M; Silva, Nama Santos; Santos, Uilton Góes; Souza, Breno Frederico de Carvalho Dominguez; Liborio, Fernanda de Azevedo; Valença-Montenegro, Mônica Mafra; Laroque, Plautino de Oliveira; da Fontoura, Fernanda Rosa; Oliveira, Alberto Vinicius Dantas; Drosten, Christian; de Lamballerie, Xavier; Franke, Carlos Roberto; Drexler, Jan Felix

    2018-01-01

    Chikungunya virus (CHIKV) and Zika virus (ZIKV) emerged in the Americas in 2013. Limited antigenic variability of CHIKV and ZIKV may restrict urban transmission cycles due to population protective immunity. In Africa, sylvatic transmission cycles involving nonhuman primates (NHP) are known for CHIKV and ZIKV, causing cyclic reemergence in humans. To evaluate whether sylvatic cycles can be expected in Latin America, we tested 207 NHP collected between 2012 and 2017 in urban and peri-urban settings in Brazil for infection with ZIKV and CHIKV. No animal tested positive for viral RNA in genus-specific and species-specific reverse transcription-PCR (RT-PCR) assays. In contrast, six animals (2.9%) from the families Atelidae, Callitrichidae, and Cebidae showed ZIKV-specific antibodies and 11 (5.3%) showed CHIKV-specific antibodies in plaque reduction neutralization tests (PRNT). Reactivity was monotypic against either ZIKV or CHIKV in all cases, opposing unspecific virucidal activity of sera. PRNT endpoint titers were low at 1:40 in all NHP, and positive specimens did not correspond to the likely dispersal route and time of introduction of both arboviruses. All antibody-positive samples were therefore tested against the NHP-associated yellow fever virus (YFV) and Mayaro virus (MAYV) and against the human-associated dengue virus (DENV) by PRNT. Two ZIKV-positive samples were simultaneously DENV positive and two CHIKV-positive samples were simultaneously MAYV positive, at titers of 1:40 to 1:160. This suggested cross-reactive antibodies against heterologous alphaviruses and flaviviruses in 24% of ZIKV-positive/CHIKV-positive sera. In sum, low seroprevalence, invariably low antibody titers, and the distribution of positive specimens call into question the capability of ZIKV and CHIKV to infect New World NHP and establish sylvatic transmission cycles. IMPORTANCE Since 2013, Zika virus (ZIKV) and chikungunya virus (CHIKV) have infected millions of people in the Americas via

  7. The pathogenicity of thymidine kinase-deficient mutants of herpes simplex virus in mice.

    PubMed

    Field, H J; Wildy, P

    1978-10-01

    The pathogenicity for mice of two mutants of herpes simplex virus (type 1 and type 2), which fail to induce thymidine kinase, were compared with their respective parent strains. The mutants were much less virulent than the parents following either intracerebral or peripheral inoculation. The replication of the virus at the site of inoculation and its progression into the nervous system were studied. Following a very large inoculum in the ear, the type 1 mutant was found to establish a latent infection in the cervical dorsal root ganglia. Mice inoculated intracerebrally with small doses of the mutant viruses were solidly immune to challenge with lethal doses of the parent strain.

  8. Surveillance of deaths caused by arboviruses in Brazil: from dengue to chikungunya

    PubMed Central

    Cavalcanti, Luciano Pamplona de Góes; Freitas, André Ricardo Ribas; Brasil, Patrícia; da Cunha, Rivaldo Venâncio

    2017-01-01

    Did death occur DUE TO dengue, or in a patient WITH dengue virus infection? It seems a matter of semantics, but in fact, it underscores how challenging it is to distinguish whether the disease contributed to death, or was itself the underlying cause of death. Can a death be attributed to chikungunya virus, when some deaths occur after the acute phase? Did the virus decompensate the underlying diseases, leading to death? Did prolonged hospitalisation lead to infection, resulting in the patient’s progression to death? Were there iatrogenic complications during patient care? The dengue question, for which there has not yet been a definitive response, resurfaces prominently under the chikungunya surveillance scenario. We are facing an epidemic of a disease that seems to be more lethal than previously thought. The major challenge ahead is to investigate deaths suspected of occurring due to arbovirus infections and to understand the role of each infection in the unfavourable outcome. PMID:28767985

  9. Use of Bead-Based Serologic Assay to Evaluate Chikungunya Virus Epidemic, Haiti.

    PubMed

    Rogier, Eric W; Moss, Delynn M; Mace, Kimberly E; Chang, Michelle; Jean, Samuel E; Bullard, Stevan M; Lammie, Patrick J; Lemoine, Jean Frantz; Udhayakumar, Venkatachalam

    2018-06-01

    The index case of chikungunya virus (CHIKV) in Haiti was reported during early 2014; the vector, the pervasive Aedes aegypti mosquito, promoted rapid spread throughout the country. During December 2014-February 2015, we collected blood samples from 4,438 persons at 154 sites (62 urban, 92 rural) throughout Haiti and measured CHIKV IgG by using a multiplex bead assay. Overall CHIKV seroprevalence was 57.9%; differences between rural (mean 44.9%) and urban (mean 78.4%) areas were pronounced. Logistic modeling identified the urban environment as a strong predictor of CHIKV exposure (adjusted odds ratio 3.34, 95% CI 2.38-4.69), and geographic elevation provided a strong negative correlation. We observed no correlation between age and antibody positivity or titer. Our findings demonstrated through serologic testing the recent and rapid dissemination of the arbovirus throughout the country. These results show the utility of serologic data to conduct epidemiologic studies of quickly spreading mosquitoborne arboviruses.

  10. First Report of the East-Central South African Genotype of Chikungunya Virus in Rio de Janeiro, Brazil.

    PubMed

    Souza, Thiara Manuele Alves; Azeredo, Elzinandes Leal; Badolato-Corrêa, Jessica; Damasco, Paulo Vieira; Santos, Carla; Petitinga-Paiva, Fabienne; Nunes, Priscila Conrado Guerra; Barbosa, Luciana Santos; Cipitelli, Márcio Costa; Chouin-Carneiro, Thais; Faria, Nieli Rodrigues Costa; Nogueira, Rita Maria Ribeiro; de Bruycker-Nogueira, Fernanda; Dos Santos, Flavia Barreto

    2017-02-14

    Chikungunya virus (CHIKV) is an arbovirus that causes an acute febrile syndrome with a severe and debilitating arthralgia. In Brazil, the Asian and East-Central South African (ECSA) genotypes are circulating in the north and northeast of the country, respectively. In 2015, the first autochthonous cases in Rio de Janeiro, Brazil were reported but until now the circulating strains have not been characterized. Therefore, we aimed here to perform the molecular characterization and phylogenetic analysis of CHIKV strains circulating in the 2016 outbreak occurred in the municipality of Rio de Janeiro. The cases analyzed in this study were collected at a private Hospital, from April 2016 to May 2016, during the chikungunya outbreak in Rio de Janeiro, Brazil. All cases were submitted to the Real Time RT-PCR for CHIKV genome detection and to anti-CHIKV IgM ELISA. Chikungunya infection was laboratorially confirmed by at least one diagnostic method and, randomly selected positive cases (n=10), were partially sequenced (CHIKV E1 gene) and analyzed. The results showed that all the samples grouped in ECSA genotype branch and the molecular characterization of the fragment did not reveal the A226V mutation in the Rio de Janeiro strains analyzed, but a K211T amino acid substitution was observed for the first time in all samples and a V156A substitution in two of ten samples. Phylogenetic analysis and molecular characterization reveals the circulation of the ECSA genotype of CHIKV in the city of Rio de Janeiro, Brazil and two amino acids substitutions (K211T and V156A) exclusive to the CHIKV strains obtained during the 2016 epidemic, were reported.

  11. The pathogenicity of thymidine kinase-deficient mutants of herpes simplex virus in mice.

    PubMed Central

    Field, H. J.; Wildy, P.

    1978-01-01

    The pathogenicity for mice of two mutants of herpes simplex virus (type 1 and type 2), which fail to induce thymidine kinase, were compared with their respective parent strains. The mutants were much less virulent than the parents following either intracerebral or peripheral inoculation. The replication of the virus at the site of inoculation and its progression into the nervous system were studied. Following a very large inoculum in the ear, the type 1 mutant was found to establish a latent infection in the cervical dorsal root ganglia. Mice inoculated intracerebrally with small doses of the mutant viruses were solidly immune to challenge with lethal doses of the parent strain. PMID:212476

  12. Identification of Dengue and Chikungunya Cases Among Suspected Cases of Yellow Fever in the Democratic Republic of the Congo.

    PubMed

    Makiala-Mandanda, Sheila; Ahuka-Mundeke, Steve; Abbate, Jessica L; Pukuta-Simbu, Elisabeth; Nsio-Mbeta, Justus; Berthet, Nicolas; Leroy, Eric Maurice; Becquart, Pierre; Muyembe-Tamfum, Jean-Jacques

    2018-05-16

    For more than 95% of acute febrile jaundice cases identified through surveillance for yellow fever, a reemerging arthropod-borne viral disease, no etiological exploration is ever done. The aim of this study was to test for other arthropod-borne viruses that can induce the same symptoms in patients enrolled in the yellow fever surveillance in the Democratic Republic of the Congo (DRC). Of 652 patients included in the surveillance of yellow fever in DRC from January 2003 to January 2012, 453 patients that tested negative for yellow fever virus (YFV) immunoglobulin M (IgM) antibodies were selected for the study. Real-time polymerase chain reaction was performed for the detection of dengue, West Nile, Chikungunya, O'nyong-nyong, Rift Valley fever, Zika, and YFV. The average age of patients was 22.1 years. We reported 16 cases (3.5%; confidence interval [CI]: 0.8-5.2) of dengue (serotypes 1 and 2) and 2 cases (0.4%; CI: 0.0-1.0) of Chikungunya. Three patients were co-infected with the two serotypes of dengue virus. Three cases of dengue were found in early July 2010 from the city of Titule (Oriental province) during a laboratory-confirmed outbreak of yellow fever, suggesting simultaneous circulation of dengue and yellow fever viruses. This study showed that dengue and Chikungunya viruses are potential causes of acute febrile jaundice in the DRC and highlights the need to consider dengue and Chikungunya diagnosis in the integrated disease surveillance and response program in the DRC. A prospective study is necessary to establish the epidemiology of these diseases.

  13. Interferon Response Factors 3 and 7 Protect against Chikungunya Virus Hemorrhagic Fever and Shock

    PubMed Central

    Rudd, Penny A.; Wilson, Jane; Gardner, Joy; Larcher, Thibaut; Babarit, Candice; Le, Thuy T.; Anraku, Itaru; Kumagai, Yutaro; Loo, Yueh-Ming; Gale, Michael; Akira, Shizuo; Khromykh, Alexander A.

    2012-01-01

    Chikungunya virus (CHIKV) infections can produce severe disease and mortality. Here we show that CHIKV infection of adult mice deficient in interferon response factors 3 and 7 (IRF3/7−/−) is lethal. Mortality was associated with undetectable levels of alpha/beta interferon (IFN-α/β) in serum, ∼50- and ∼10-fold increases in levels of IFN-γ and tumor necrosis factor (TNF), respectively, increased virus replication, edema, vasculitis, hemorrhage, fever followed by hypothermia, oliguria, thrombocytopenia, and raised hematocrits. These features are consistent with hemorrhagic shock and were also evident in infected IFN-α/β receptor-deficient mice. In situ hybridization suggested CHIKV infection of endothelium, fibroblasts, skeletal muscle, mononuclear cells, chondrocytes, and keratinocytes in IRF3/7−/− mice; all but the latter two stained positive in wild-type mice. Vaccination protected IRF3/7−/− mice, suggesting that defective antibody responses were not responsible for mortality. IPS-1- and TRIF-dependent pathways were primarily responsible for IFN-α/β induction, with IRF7 being upregulated >100-fold in infected wild-type mice. These studies suggest that inadequate IFN-α/β responses following virus infection can be sufficient to induce hemorrhagic fever and shock, a finding with implications for understanding severe CHIKV disease and dengue hemorrhagic fever/dengue shock syndrome. PMID:22761364

  14. Photochemical Inactivation of Chikungunya Virus in Human Apheresis Platelet Components by Amotosalen and UVA Light

    PubMed Central

    Tsetsarkin, Konstantin A.; Sampson-Johannes, Adam; Sawyer, Lynette; Kinsey, John; Higgs, Stephen; Vanlandingham, Dana L.

    2013-01-01

    Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that recently re-emerged in Africa and rapidly spread into countries of the Indian Ocean basin and South-East Asia. The mean viremic blood donation risk for CHIKV on La Réunion reached 1.5% at the height of the 2005–2006 outbreaks, highlighting the need for development of safety measures to prevent transfusion-transmitted infections. We describe successful inactivation of CHIKV in human platelets and plasma using photochemical treatment with amotosalen and long wavelength UVA illumination. Platelet components in additive solution and plasma units were inoculated with two different strains of high titer CHIKV stock (6.0–8.0 logs/mL), and then treated with amotosalen and exposure to 1.0–3.0 J/cm2 UVA. Based on in vitro assays of infectious virus pre- and post-treatment to identify endpoint dilutions where virus was not detectable, mean viral titers could effectively be reduced by > 6.4 ± 0.6 log10 TCID50/mL in platelets and ≥ 7.6 ± 1.4 logs in plasma, indicating this treatment has the capacity to prevent CHIKV transmission in human blood components collected from infected donors in or traveling from areas of CHIKV transmission. PMID:23530077

  15. [Lessons learned in the control of Aedes aegypti to address dengue and the emergency of chikungunya in Iquitos, Peru].

    PubMed

    Vilcarromero, Stalin; Casanova, Wilma; Ampuero, Julia S; Ramal-Asayag, Cesar; Siles, Crystyan; Díaz, Gloria; Durand, Salomón; Celis-Salinas, Juan C; Astete, Helvio; Rojas, Percy; Vásquez-La Torre, Gabriela; Marín, Johan; Bazán, Isabel; Alegre, Yuri; Morrison, Amy C; Rodriguez-Ferrucci, Hugo

    2015-01-01

    Dengue has affected Iquitos since 1990 causing outbreaks of major impact on public health and for this reason great efforts have been made for its temporal control. Currently, with the expansion of the chikungunya virus in the Americas and the threat of the emergence of the virus in Iquitos, we reflect on lessons learned by way of the activities undertaken in the area of vector control; epidemiological surveillance, diagnosis and clinical management during periods of outbreaks of dengue, in a way that will allow us to better face the threat of an outbreak of chikungunya virus in the largest city in the Peruvian Amazon.

  16. Evidence for chikungunya and dengue transmission in Quelimane, Mozambique: Results from an investigation of a potential outbreak of chikungunya virus

    PubMed Central

    Ali, Sadia; Chelene, Imelda; Monteiro, Vanessa Onofre; Guiliche, Onélia; Muianga, Argentina Felisbela; Mula, Flora; António, Virgílio; Chongo, Inocêncio; Falk, Kerstin; Paploski, Igor A.; Reis, Mitermayer G.; Kitron, Uriel; Kümmerer, Beate M.

    2018-01-01

    Background In January 2016, health authorities from Zambézia province, Mozambique reported the detection of some patients presenting with fever, arthralgia, and a positive result for chikungunya in an IgM-based Rapid Diagnostic Test (RDT). We initiated a study to investigate a potential chikungunya outbreak in the city of Quelimane. Methods/Principal findings From February to June 2016, we conducted a cross-sectional study enrolling febrile patients attending five outpatient health units in Quelimane. Serum from each patient was tested for CHIKV and DENV, using IgM and IgG ELISA and qRT-PCR. Patients were also tested for malaria by RDT. Entomological surveys were performed around patients’ households, and we calculated the proportion of positive ovitraps and the egg density per trap. A total of 163 patients were recruited, of which 99 (60.7%) were female. The median age was 28 years. IgM and IgG anti-CHIKV antibodies were identified in 17 (10.4%) and 103 (63.2%) patients, respectively. Plaque reduction neutralization assay confirmed the presence of anti-CHIKV antibodies in a subset of 11 tested patients with positive IgG results. IgM anti-DENV antibodies were found in 1 (0.9%) of 104 tested patients. Malaria was diagnosed in 35 (21.5%) patients, 2 of whom were also IgM-positive for CHIKV. Older age and lower education level were independently associated with the prevalence of IgG anti-CHIKV antibodies. Immature forms of Aedes aegypti were collected in 16 (20.3%) of 79 surveyed households. We also found that 25.0% (16/64) of the traps were positive, with an average of 90.8 eggs per pallet. Conclusions Our investigation demonstrated that no CHIKV outbreak was ongoing in Quelimane; rather, endemic transmission of the virus has been ongoing. Aedes aegypti mosquitoes are abundant, but dengue cases occurred only sporadically. Further population-based cohort studies are needed to improve our understanding of aspects related to the dynamics of arboviral transmission in

  17. Mosquito Exposure and Chikungunya and Dengue Infection Among Travelers During the Chikungunya Outbreak in the Americas

    PubMed Central

    Lindholm, David A.; Myers, Todd; Widjaja, Susana; Grant, Edward M.; Telu, Kalyani; Lalani, Tahaniyat; Fraser, Jamie; Fairchok, Mary; Ganesan, Anuradha; Johnson, Mark D.; Kunz, Anjali; Tribble, David R.; Yun, Heather C.

    2017-01-01

    Travelers are at risk for arbovirus infection. We prospectively enrolled 267 Department of Defense beneficiaries traveling to chikungunya-outbreak regions in the Americas between December 2013 and May 2015 and assessed travel characteristics and serologic exposure to chikungunya virus (CHIKV) and dengue virus (DENV). Ten ill-returning travelers were also assessed retrospectively. Self-reported mosquito exposure was common (64% of 198 evaluable travelers saw mosquitoes; 53% of 201 reported ≥ 1 bite). Increased exposure was associated with active-duty travelers (odds ratio [OR] = 2.6 [1.3–5.4] for seeing mosquitoes) or travelers visiting friends and relatives (VFR) (OR = 3.5 [1.0–10.0] for high-intensity bite exposure). Arbovirus infection was defined as seroconversion on plaque reduction neutralization testing (PRNT) of pre- and posttravel sera. For ill subjects enrolled posttravel, infection was defined by a positive convalescent PRNT and/or a positive reverse transcription polymerase chain reaction for CHIKV or DENV. We identified seven cases of arbovirus infection: four with CHIKV, five with DENV, and two with both. The composite attack rate for CHIKV and DENV infection was 3.7% of 108 evaluable, immunologically naïve, prospectively assessed travelers; there was serologic and/or polymerase chain reaction evidence of arbovirus infection in three of four evaluable (three of 10 total) ill-returning travelers. We identified both symptomatic and asymptomatic cases. Military purpose of travel and VFR travel accounted for five of seven cases. Pretravel counseling is important and should target higher risk groups. Given a shared vector between CHIKV, DENV, and Zika virus (ZIKV), this study can also help guide counseling for travelers to ZIKV-outbreak regions. PMID:28115671

  18. Limited Evidence for Infection of Urban and Peri-urban Nonhuman Primates with Zika and Chikungunya Viruses in Brazil

    PubMed Central

    2018-01-01

    ABSTRACT Chikungunya virus (CHIKV) and Zika virus (ZIKV) emerged in the Americas in 2013. Limited antigenic variability of CHIKV and ZIKV may restrict urban transmission cycles due to population protective immunity. In Africa, sylvatic transmission cycles involving nonhuman primates (NHP) are known for CHIKV and ZIKV, causing cyclic reemergence in humans. To evaluate whether sylvatic cycles can be expected in Latin America, we tested 207 NHP collected between 2012 and 2017 in urban and peri-urban settings in Brazil for infection with ZIKV and CHIKV. No animal tested positive for viral RNA in genus-specific and species-specific reverse transcription-PCR (RT-PCR) assays. In contrast, six animals (2.9%) from the families Atelidae, Callitrichidae, and Cebidae showed ZIKV-specific antibodies and 11 (5.3%) showed CHIKV-specific antibodies in plaque reduction neutralization tests (PRNT). Reactivity was monotypic against either ZIKV or CHIKV in all cases, opposing unspecific virucidal activity of sera. PRNT endpoint titers were low at 1:40 in all NHP, and positive specimens did not correspond to the likely dispersal route and time of introduction of both arboviruses. All antibody-positive samples were therefore tested against the NHP-associated yellow fever virus (YFV) and Mayaro virus (MAYV) and against the human-associated dengue virus (DENV) by PRNT. Two ZIKV-positive samples were simultaneously DENV positive and two CHIKV-positive samples were simultaneously MAYV positive, at titers of 1:40 to 1:160. This suggested cross-reactive antibodies against heterologous alphaviruses and flaviviruses in 24% of ZIKV-positive/CHIKV-positive sera. In sum, low seroprevalence, invariably low antibody titers, and the distribution of positive specimens call into question the capability of ZIKV and CHIKV to infect New World NHP and establish sylvatic transmission cycles. IMPORTANCE Since 2013, Zika virus (ZIKV) and chikungunya virus (CHIKV) have infected millions of people in the

  19. First Report of the East-Central South African Genotype of Chikungunya Virus in Rio de Janeiro, Brazil

    PubMed Central

    Souza, Thiara Manuele Alves; Azeredo, Elzinandes Leal; Badolato-Corrêa, Jessica; Damasco, Paulo Vieira; Santos, Carla; Petitinga-Paiva, Fabienne; Nunes, Priscila Conrado Guerra; Barbosa, Luciana Santos; Cipitelli, Márcio Costa; Chouin-Carneiro, Thais; Faria, Nieli Rodrigues Costa; Nogueira, Rita Maria Ribeiro; de Bruycker-Nogueira, Fernanda; dos Santos, Flavia Barreto

    2017-01-01

    Background: Chikungunya virus (CHIKV) is an arbovirus that causes an acute febrile syndrome with a severe and debilitating arthralgia. In Brazil, the Asian and East-Central South African (ECSA) genotypes are circulating in the north and northeast of the country, respectively. In 2015, the first autochthonous cases in Rio de Janeiro, Brazil were reported but until now the circulating strains have not been characterized. Therefore, we aimed here to perform the molecular characterization and phylogenetic analysis of CHIKV strains circulating in the 2016 outbreak occurred in the municipality of Rio de Janeiro. Methods: The cases analyzed in this study were collected at a private Hospital, from April 2016 to May 2016, during the chikungunya outbreak in Rio de Janeiro, Brazil. All cases were submitted to the Real Time RT-PCR for CHIKV genome detection and to anti-CHIKV IgM ELISA. Chikungunya infection was laboratorially confirmed by at least one diagnostic method and, randomly selected positive cases (n=10), were partially sequenced (CHIKV E1 gene) and analyzed. Results: The results showed that all the samples grouped in ECSA genotype branch and the molecular characterization of the fragment did not reveal the A226V mutation in the Rio de Janeiro strains analyzed, but a K211T amino acid substitution was observed for the first time in all samples and a V156A substitution in two of ten samples. Conclusions: Phylogenetic analysis and molecular characterization reveals the circulation of the ECSA genotype of CHIKV in the city of Rio de Janeiro, Brazil and two amino acids substitutions (K211T and V156A) exclusive to the CHIKV strains obtained during the 2016 epidemic, were reported. PMID:28286701

  20. Understanding the evolution and spread of chikungunya virus in the Americas using complete genome sequences.

    PubMed

    Sahadeo, N S D; Allicock, O M; De Salazar, P M; Auguste, A J; Widen, S; Olowokure, B; Gutierrez, C; Valadere, A M; Polson-Edwards, K; Weaver, S C; Carrington, C V F

    2017-01-01

    Local transmission of chikungunya virus (CHIKV) was first detected in the Americas in December 2013, after which it spread rapidly throughout the Caribbean islands and American mainland, causing a major chikungunya fever epidemic. Previous phylogenetic analysis of CHIKV from a limited number of countries in the Americas suggests that an Asian genotype strain was responsible, except in Brazil where both Asian and East/Central/South African (ECSA) lineage strains were detected. In this study, we sequenced thirty-three complete CHIKV genomes from viruses isolated in 2014 from fourteen Caribbean islands, the Bahamas and two mainland countries in the Americas. Phylogenetic analyses confirmed that they all belonged to the Asian genotype and clustered together with other Caribbean and mainland sequences isolated during the American outbreak, forming an 'Asian/American' lineage defined by two amino acid substitutions, E2 V368A and 6K L20M, and divided into two well-supported clades. This lineage is estimated to be evolving at a mean rate of 5 × 10 -4 substitutions per site per year (95% higher probability density, 2.9-7.9 × 10 -4 ) and to have arisen from an ancestor introduced to the Caribbean (most likely from Oceania) in about March 2013, 9 months prior to the first report of CHIKV in the Americas. Estimation of evolutionary rates for individual gene regions and selection analyses indicate that (in contrast to the Indian Ocean Lineage that emerged from the ECSA genotype followed by adaptive evolution and with a significantly higher substitution rate) the evolutionary dynamics of the Asian/American lineage are very similar to the rest of the Asian genotype and natural selection does not appear to have played a major role in its emergence. However, several codon sites with evidence of positive selection were identified within the non-structural regions of Asian genotype sequences outside of the Asian/American lineage.

  1. Zika Virus Emergence and Expansion: Lessons Learned from Dengue and Chikungunya May Not Provide All the Answers

    PubMed Central

    Christofferson, Rebecca C.

    2016-01-01

    Following the emergence of Zika in the past decade, there are lessons to be learned from similar emergence events of dengue (DENV) and chikungunya (CHIKV). Specifically, as Zika emerges in the Americas there is a natural tendency to apply the knowledge base of DENV and CHIKV to mitigation and control of a virus with such a similar transmission system. However, there are marked differences that may preclude such broad stroke application of this knowledge base without making potentially faulty assumptions. Herein, Zika virus (ZIKV) transmission is reviewed, and the commonalities among these three arboviruses are discussed. Importantly, the divergence of this particular arbovirus is discussed, as is the need to develop ZIKV-specific knowledge base for mitigation of this disease. Specifically reviewed are 1) emergence and persistence patterns, 2) genetic and phenotypic diversity, 3) vector host range, and finally, 4) alternate transmission routes and added complexity of ZIKV transmission and presentation. PMID:26903610

  2. Disruption of the Opal Stop Codon Attenuates Chikungunya Virus-Induced Arthritis and Pathology

    PubMed Central

    Jones, Jennifer E.; Long, Kristin M.; Whitmore, Alan C.; Sanders, Wes; Thurlow, Lance R.; Brown, Julia A.; Morrison, Clayton R.; Vincent, Heather; Browning, Christian; Moorman, Nathaniel; Lim, Jean K.

    2017-01-01

    ABSTRACT Chikungunya virus (CHIKV) is a mosquito-borne alphavirus responsible for several significant outbreaks of debilitating acute and chronic arthritis and arthralgia over the past decade. These include a recent outbreak in the Caribbean islands and the Americas that caused more than 1 million cases of viral arthralgia. Despite the major impact of CHIKV on global health, viral determinants that promote CHIKV-induced disease are incompletely understood. Most CHIKV strains contain a conserved opal stop codon at the end of the viral nsP3 gene. However, CHIKV strains that encode an arginine codon in place of the opal stop codon have been described, and deep-sequencing analysis of a CHIKV isolate from the Caribbean identified both arginine and opal variants within this strain. Therefore, we hypothesized that the introduction of the arginine mutation in place of the opal termination codon may influence CHIKV virulence. We tested this by introducing the arginine mutation into a well-characterized infectious clone of a CHIKV strain from Sri Lanka and designated this virus Opal524R. This mutation did not impair viral replication kinetics in vitro or in vivo. Despite this, the Opal524R virus induced significantly less swelling, inflammation, and damage within the feet and ankles of infected mice. Further, we observed delayed induction of proinflammatory cytokines and chemokines, as well as reduced CD4+ T cell and NK cell recruitment compared to those in the parental strain. Therefore, the opal termination codon plays an important role in CHIKV pathogenesis, independently of effects on viral replication. PMID:29138302

  3. Chikungunya in the Americas: Recommendations and Conclusions.

    PubMed

    Graham, Barney S; Repik, Patricia M; Yactayo, Sergio

    2016-12-15

    Discovered in 1953, chikungunya virus (CHIKV) circulated in Africa and Southeast Asia, with periodic outbreaks, for many years. Highly efficient transmission following a genetic mutation of the virus in 2005 caused its global spread. Associated with significant morbidity, CHIKV creates a large public health burden, and despite various efforts, there are currently no licensed vaccines nor specific treatments. To garner a better understanding of the virus, identify gaps in knowledge, and guide the development of more-effective interventions, the World Health Organization and National Institute of Allergy and Infectious Diseases assembled global experts for discussion and review. Herein described are the outcomes. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  4. A nonhuman primate model of chikungunya disease

    PubMed Central

    Higgs, Stephen; Ziegler, Sarah A.

    2010-01-01

    Chikungunya disease is a severely debilitating, mosquito-borne, viral illness that has reached epidemic proportions in Africa, Asia, and the islands of the Indian Ocean. A mutation enhancing the ability of the chikungunya virus (CHIKV) to infect and be transmitted by Aedes albopictus has increased the geographical range at risk for infection due to the continuing global spread of this mosquito. Research into disease pathogenesis, vaccine development, and therapeutic design has been hindered by the lack of appropriate animal models of this disease. The meticulous study reported in this issue of the JCI by Labadie et al. is one of the first reports describing CHIKV infection of adult immunocompetent nonhuman primates. Using traditional and modern molecular and immunological approaches, the authors demonstrate that macaques infected with CHIKV are a good model of human CHIKV infection and also show that persistent arthralgia in humans may be caused by persistent CHIKV infection of macrophages. PMID:20179348

  5. Simultaneous detection of Zika, Chikungunya and Dengue viruses by a multiplex real-time RT-PCR assay.

    PubMed

    Pabbaraju, Kanti; Wong, Sallene; Gill, Kara; Fonseca, Kevin; Tipples, Graham A; Tellier, Raymond

    2016-10-01

    In the recent past, arboviruses such as Chikungunya (CHIKV) and Zika (ZIKV) have increased their area of endemicity and presented as an emerging global public health threat. To design an assay for the simultaneous detection of ZIKV, CHIKV and Dengue (DENV) 1-4 from patients with symptoms of arboviral infection. This would be advantageous because of the similar clinical presentation typically encountered with these viruses and their co-circulation in endemic areas. In this study we have developed and validated a triplex real time reverse transcription PCR assay using hydrolysis probes targeting the non-structural 5 (NS5) region of ZIKV, non-structural protein 4 (nsP4) from CHIKV and 3' untranslated region (3'UTR) of DENV 1-4. The 95% LOD by the triplex assay was 15 copies/reaction for DENV-1 and less than 10 copies/reaction for all other viruses. The triplex assay was 100% specific and did not amplify any of the other viruses tested. The assay was reproducible and adaptable to testing different specimen types including serum, plasma, urine, placental tissue, brain tissue and amniotic fluid. This assay can be easily implemented for diagnostic testing of patient samples, even in a high throughput laboratory. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. [First case of chikungunya fever in Hermosillo, Sonora, Mexico].

    PubMed

    Martínez-Medina, Miguel Ángel; Cañedo-Dorame, Ismael Antonio

    2017-01-01

    The Chikungunya is an arbovirus first described during a 1952 outbreak of febrile exantematic disease in southern Tanganyika (now Tanzania). It is a virus within the alphavirus genus of the Togaviridae family, it is usually transmitted to humans by Aedes mosquitoes. Typically, the disease manifests as acute onset of fever and joint pains. This study describes the clinical characteristics the first imported case infected with chikungunya fever (CHIK) in Hermosillo, Sonora, Mexico. We report the case of a 30 years old man seen in our emergency department due to fever, polyarthralgia, rash and headache. This patient has been in Tapachula, Chiapas, a jungle area in southern México, and he returned from a 45 days trip before the onset his symptoms. The chikungunya viral infection (CHIK) was diagnosed by RT-PCR procedure. Paracetamol therapy was administered and his clinical course was self-limited. We concluded that with the increase of mosquito´s habitat by global warming and frequent traveling, CHIK reemerged and showed global distribution recently. This disease must be suspected in patients with compatible clinical symptoms returning from epidemic/endemic areas. CHIK must be diagnosed on the basis of clinical, epidemiological and laboratory criteria.

  7. Genotypic and Phenotypic Characterization of Chikungunya Virus of Different Genotypes from Malaysia

    PubMed Central

    Sam, I-Ching; Loong, Shih-Keng; Michael, Jasmine Chandramathi; Chua, Chong-Long; Wan Sulaiman, Wan Yusoff; Vythilingam, Indra; Chan, Shie-Yien; Chiam, Chun-Wei; Yeong, Yze-Shiuan; AbuBakar, Sazaly; Chan, Yoke-Fun

    2012-01-01

    Background Mosquito-borne Chikungunya virus (CHIKV) has recently re-emerged globally. The epidemic East/Central/South African (ECSA) strains have spread for the first time to Asia, which previously only had endemic Asian strains. In Malaysia, the ECSA strain caused an extensive nationwide outbreak in 2008, while the Asian strains only caused limited outbreaks prior to this. To gain insight into these observed epidemiological differences, we compared genotypic and phenotypic characteristics of CHIKV of Asian and ECSA genotypes isolated in Malaysia. Methods and Findings CHIKV of Asian and ECSA genotypes were isolated from patients during outbreaks in Bagan Panchor in 2006, and Johor in 2008. Sequencing of the CHIKV strains revealed 96.8% amino acid similarity, including an unusual 7 residue deletion in the nsP3 protein of the Asian strain. CHIKV replication in cells and Aedes mosquitoes was measured by virus titration. There were no differences in mammalian cell lines. The ECSA strain reached significantly higher titres in Ae. albopictus cells (C6/36). Both CHIKV strains infected Ae. albopictus mosquitoes at a higher rate than Ae. aegypti, but when compared to each other, the ECSA strain had much higher midgut infection and replication, and salivary gland dissemination, while the Asian strain infected Ae. aegypti at higher rates. Conclusions The greater ability of the ECSA strain to replicate in Ae. albopictus may explain why it spread far more quickly and extensively in humans in Malaysia than the Asian strain ever did, particularly in rural areas where Ae. albopictus predominates. Intergenotypic genetic differences were found at E1, E2, and nsP3 sites previously reported to be determinants of host adaptability in alphaviruses. Transmission of CHIKV in humans is influenced by virus strain and vector species, which has implications for regions with more than one circulating CHIKV genotype and Aedes species. PMID:23209750

  8. Genotypic and phenotypic characterization of Chikungunya virus of different genotypes from Malaysia.

    PubMed

    Sam, I-Ching; Loong, Shih-Keng; Michael, Jasmine Chandramathi; Chua, Chong-Long; Wan Sulaiman, Wan Yusoff; Vythilingam, Indra; Chan, Shie-Yien; Chiam, Chun-Wei; Yeong, Yze-Shiuan; AbuBakar, Sazaly; Chan, Yoke-Fun

    2012-01-01

    Mosquito-borne Chikungunya virus (CHIKV) has recently re-emerged globally. The epidemic East/Central/South African (ECSA) strains have spread for the first time to Asia, which previously only had endemic Asian strains. In Malaysia, the ECSA strain caused an extensive nationwide outbreak in 2008, while the Asian strains only caused limited outbreaks prior to this. To gain insight into these observed epidemiological differences, we compared genotypic and phenotypic characteristics of CHIKV of Asian and ECSA genotypes isolated in Malaysia. CHIKV of Asian and ECSA genotypes were isolated from patients during outbreaks in Bagan Panchor in 2006, and Johor in 2008. Sequencing of the CHIKV strains revealed 96.8% amino acid similarity, including an unusual 7 residue deletion in the nsP3 protein of the Asian strain. CHIKV replication in cells and Aedes mosquitoes was measured by virus titration. There were no differences in mammalian cell lines. The ECSA strain reached significantly higher titres in Ae. albopictus cells (C6/36). Both CHIKV strains infected Ae. albopictus mosquitoes at a higher rate than Ae. aegypti, but when compared to each other, the ECSA strain had much higher midgut infection and replication, and salivary gland dissemination, while the Asian strain infected Ae. aegypti at higher rates. The greater ability of the ECSA strain to replicate in Ae. albopictus may explain why it spread far more quickly and extensively in humans in Malaysia than the Asian strain ever did, particularly in rural areas where Ae. albopictus predominates. Intergenotypic genetic differences were found at E1, E2, and nsP3 sites previously reported to be determinants of host adaptability in alphaviruses. Transmission of CHIKV in humans is influenced by virus strain and vector species, which has implications for regions with more than one circulating CHIKV genotype and Aedes species.

  9. Development of field-based real-time reverse transcription-polymerase chain reaction assays for detection of Chikungunya and O'nyong-nyong viruses in mosquitoes.

    PubMed

    Smith, Darci R; Lee, John S; Jahrling, Jordan; Kulesh, David A; Turell, Michael J; Groebner, Jennifer L; O'Guinn, Monica L

    2009-10-01

    Chikungunya (CHIK) and O'nyong-nyong (ONN) are important emerging arthropod-borne diseases. Molecular diagnosis of these two viruses in mosquitoes has not been evaluated, and the effects of extraneous mosquito tissue on assay performance have not been tested. Additionally, no real-time reverse transcription-polymerase chain reaction (RT-PCR) assay exists for detecting ONN virus (ONNV) RNA. We describe the development of sensitive and specific real-time RT-PCR assays for detecting CHIK and ONN viral RNA in mosquitoes, which have application for field use. In addition, we compared three methods for primer/probe design for assay development by evaluating their sensitivity and specificity. This comparison resulted in development of virus-specific assays that could detect less than one plaque-forming unit equivalent of each of the viruses in mosquitoes. The use of these assays will aid in arthropod-borne disease surveillance and in the control of the associated diseases.

  10. Novel Synthesis and Phenotypic Analysis of Mutant Clouds for Hepatitis E Virus Genotype 1.

    PubMed

    Agarwal, Shubhra; Baccam, Prasith; Aggarwal, Rakesh; Veerapu, Naga Suresh

    2018-02-15

    Many RNA viruses exist as an ensemble of genetically diverse, replicating populations known as a mutant cloud. The genetic diversity (cloud size) and composition of this mutant cloud may influence several important phenotypic features of the virus, including its replication capacity. We applied a straightforward, bacterium-free approach using error-prone PCR coupled with reverse genetics to generate infectious mutant RNA clouds with various levels of genetic diversity from a genotype 1 strain of hepatitis E virus (HEV). Cloning and sequencing of a genomic fragment encompassing 70% of open reading frame 1 ( ORF1 ) or of the full genome from variants in the resultant clouds showed the occurrence of nucleotide mutations at a frequency on the order of 10 -3 per nucleotide copied and the existence of marked genetic diversity, with a high normalized Shannon entropy value. The mutant clouds showed transient replication in cell culture, while wild-type HEV did not. Cross-sectional data from these cell cultures supported the existence of differential effects of clouds of various sizes and compositions on phenotypic characteristics, such as the replication level of (+)-RNA progeny, the amounts of double-stranded RNA (a surrogate for the rate of viral replication) and ORF1 protein, and the expression of interferon-stimulated genes. Since mutant cloud size and composition influenced the viral phenotypic properties, a better understanding of this relationship may help to provide further insights into virus evolution and prediction of emerging viral diseases. IMPORTANCE Several biological or practical limitations currently prevent the study of phenotypic behavior of a mutant cloud in vitro We developed a simple and rapid method for synthesizing mutant clouds of hepatitis E virus (HEV), a single-stranded (+)-RNA [ss(+) RNA] virus, with various and controllable levels of genetic diversity, which could then be used in a cell culture system to study the effects of cloud size and

  11. Vector competence of Italian Aedes albopictus populations for the chikungunya virus (E1-226V).

    PubMed

    Severini, Francesco; Boccolini, Daniela; Fortuna, Claudia; Di Luca, Marco; Toma, Luciano; Amendola, Antonello; Benedetti, Eleonora; Minelli, Giada; Romi, Roberto; Venturi, Giulietta; Rezza, Giovanni; Remoli, Maria Elena

    2018-04-01

    Chikungunya virus (CHIKV) is an emerging arbovirus, belonging to the Togaviridae family, Alphavirus genus, transmitted by Aedes spp. mosquitoes. Since 2007, two different CHIKV strains (E1-226A and E1-226V) have been responsible for outbreaks in European countries, including Italy, sustained by Ae. albopictus mosquitoes. In this study, we assessed the susceptibility to the CHIKV E1-226V, strain responsible for the Italian 2007 outbreak, of eight Ae. albopictus populations collected in Northern, Central, Southern, and Island Italy, by experimental infections. Vector competence was evaluated by estimating infection, dissemination, and transmission rates (IR, DR, TR), through detection of the virus in the bodies, legs plus wings, and saliva, respectively. Additionally, vertical transmission was evaluated by the detection of the virus in the offspring. The results of our study demonstrated that the Italian populations of Ae. albopictus tested were susceptible to CHIKV infection, and can disseminate the virus outside the midgut barrier with high values of IR and DR. Viral infectious RNA was detected in the saliva of three populations from Central, Southern, and Island Italy, also tested for TR and population transmission rate (PTR) values. No progeny of the first and second gonotrophic cycle were positive for CHIKV. This study strongly confirms the role of Ae. albopictus as a potential CHIKV vector in Italy. This may represent a threat, especially considering both the high density of this species, which is widespread throughout the country, and the increasing number of cases of imported arboviruses.

  12. A perspective on targeting non-structural proteins to combat neglected tropical diseases: Dengue, West Nile and Chikungunya viruses.

    PubMed

    Bhakat, Soumendranath; Karubiu, Wilson; Jayaprakash, Venkatesan; Soliman, Mahmoud E S

    2014-11-24

    Neglected tropical diseases are major causes of fatality in poverty stricken regions across Africa, Asia and some part of America. The combined potential health risk associated with arthropod-borne viruses (arboviruses); Dengue virus (DENV), West Nile Virus (WNV) and Chikungunya Virus (CHIKV) is immense. These arboviruses are either emerging or re-emerging in many regions with recent documented outbreaks in the United States. Despite several recent evidences of emergence, currently there are no approved drugs or vaccines available to counter these diseases. Non-structural proteins encoded by these RNA viruses are essential for their replication and maturation and thus may offer ideal targets for developing antiviral drugs. In recent years, several protease inhibitors have been sourced from plant extract, synthesis, computer aided drug design and high throughput screening as well as through drug reposition based approaches to target the non-structural proteins. The protease inhibitors have shown different levels of inhibition and may thus provide template to develop selective and potent drugs against these devastating arboviruses. This review seeks to shed light on the design and development of antiviral drugs against DENV, WNV and CHIKV to date. To the best of our knowledge, this review provides the first comprehensive update on the development of protease inhibitors targeting non-structural proteins of three most devastating arboviruses, DENV, WNV and CHIKV. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  13. Impact of Wolbachia on infection with chikungunya and yellow fever viruses in the mosquito vector Aedes aegypti.

    PubMed

    van den Hurk, Andrew F; Hall-Mendelin, Sonja; Pyke, Alyssa T; Frentiu, Francesca D; McElroy, Kate; Day, Andrew; Higgs, Stephen; O'Neill, Scott L

    2012-01-01

    Incidence of disease due to dengue (DENV), chikungunya (CHIKV) and yellow fever (YFV) viruses is increasing in many parts of the world. The viruses are primarily transmitted by Aedes aegypti, a highly domesticated mosquito species that is notoriously difficult to control. When transinfected into Ae. aegypti, the intracellular bacterium Wolbachia has recently been shown to inhibit replication of DENVs, CHIKV, malaria parasites and filarial nematodes, providing a potentially powerful biocontrol strategy for human pathogens. Because the extent of pathogen reduction can be influenced by the strain of bacterium, we examined whether the wMel strain of Wolbachia influenced CHIKV and YFV infection in Ae. aegypti. Following exposure to viremic blood meals, CHIKV infection and dissemination rates were significantly reduced in mosquitoes with the wMel strain of Wolbachia compared to Wolbachia-uninfected controls. However, similar rates of infection and dissemination were observed in wMel infected and non-infected Ae. aegypti when intrathoracic inoculation was used to deliver virus. YFV infection, dissemination and replication were similar in wMel-infected and control mosquitoes following intrathoracic inoculations. In contrast, mosquitoes with the wMelPop strain of Wolbachia showed at least a 10(4) times reduction in YFV RNA copies compared to controls. The extent of reduction in virus infection depended on Wolbachia strain, titer and strain of the virus, and mode of exposure. Although originally proposed for dengue biocontrol, our results indicate a Wolbachia-based strategy also holds considerable promise for YFV and CHIKV suppression.

  14. Impact of Wolbachia on Infection with Chikungunya and Yellow Fever Viruses in the Mosquito Vector Aedes aegypti

    PubMed Central

    van den Hurk, Andrew F.; Hall-Mendelin, Sonja; Pyke, Alyssa T.; Frentiu, Francesca D.; McElroy, Kate; Day, Andrew; Higgs, Stephen; O'Neill, Scott L.

    2012-01-01

    Incidence of disease due to dengue (DENV), chikungunya (CHIKV) and yellow fever (YFV) viruses is increasing in many parts of the world. The viruses are primarily transmitted by Aedes aegypti, a highly domesticated mosquito species that is notoriously difficult to control. When transinfected into Ae. aegypti, the intracellular bacterium Wolbachia has recently been shown to inhibit replication of DENVs, CHIKV, malaria parasites and filarial nematodes, providing a potentially powerful biocontrol strategy for human pathogens. Because the extent of pathogen reduction can be influenced by the strain of bacterium, we examined whether the wMel strain of Wolbachia influenced CHIKV and YFV infection in Ae. aegypti. Following exposure to viremic blood meals, CHIKV infection and dissemination rates were significantly reduced in mosquitoes with the wMel strain of Wolbachia compared to Wolbachia-uninfected controls. However, similar rates of infection and dissemination were observed in wMel infected and non-infected Ae. aegypti when intrathoracic inoculation was used to deliver virus. YFV infection, dissemination and replication were similar in wMel-infected and control mosquitoes following intrathoracic inoculations. In contrast, mosquitoes with the wMelPop strain of Wolbachia showed at least a 104 times reduction in YFV RNA copies compared to controls. The extent of reduction in virus infection depended on Wolbachia strain, titer and strain of the virus, and mode of exposure. Although originally proposed for dengue biocontrol, our results indicate a Wolbachia-based strategy also holds considerable promise for YFV and CHIKV suppression. PMID:23133693

  15. Mutation of the N-Terminal Region of Chikungunya Virus Capsid Protein: Implications for Vaccine Design.

    PubMed

    Taylor, Adam; Liu, Xiang; Zaid, Ali; Goh, Lucas Y H; Hobson-Peters, Jody; Hall, Roy A; Merits, Andres; Mahalingam, Suresh

    2017-02-21

    Mosquito-transmitted chikungunya virus (CHIKV) is an arthritogenic alphavirus of the Togaviridae family responsible for frequent outbreaks of arthritic disease in humans. Capsid protein, a structural protein encoded by the CHIKV RNA genome, is able to translocate to the host cell nucleolus. In encephalitic alphaviruses, nuclear translocation induces host cell transcriptional shutoff; however, the role of capsid protein nucleolar localization in arthritogenic alphaviruses remains unclear. Using recombinant enhanced green fluorescent protein (EGFP)-tagged expression constructs and CHIKV infectious clones, we describe a nucleolar localization sequence (NoLS) in the N-terminal region of capsid protein, previously uncharacterized in CHIKV. Mutation of the NoLS by site-directed mutagenesis reduced efficiency of nuclear import of CHIKV capsid protein. In the virus, mutation of the capsid protein NoLS (CHIKV-NoLS) attenuated replication in mammalian and mosquito cells, producing a small-plaque phenotype. Attenuation of CHIKV-NoLS is likely due to disruption of the viral replication cycle downstream of viral RNA synthesis. In mice, CHIKV-NoLS infection caused no disease signs compared to wild-type CHIKV (CHIKV-WT)-infected mice; lack of disease signs correlated with significantly reduced viremia and decreased expression of proinflammatory factors. Mice immunized with CHIKV-NoLS, challenged with CHIKV-WT at 30 days postimmunization, develop no disease signs and no detectable viremia. Serum from CHIKV-NoLS-immunized mice is able to efficiently neutralize CHIKV infection in vitro Additionally, CHIKV-NoLS-immunized mice challenged with the related alphavirus Ross River virus showed reduced early and peak viremia postchallenge, indicating a cross-protective effect. The high degree of CHIKV-NoLS attenuation may improve CHIKV antiviral and rational vaccine design. IMPORTANCE CHIKV is a mosquito-borne pathogen capable of causing explosive epidemics of incapacitating joint pain

  16. Imaging of viral neuroinvasion in the zebrafish reveals that Sindbis and chikungunya viruses favour different entry routes

    PubMed Central

    Passoni, Gabriella; Langevin, Christelle; Palha, Nuno; Mounce, Bryan C.; Briolat, Valérie; Affaticati, Pierre; De Job, Elodie; Joly, Jean-Stéphane; Vignuzzi, Marco; Saleh, Maria-Carla; Herbomel, Philippe; Boudinot, Pierre

    2017-01-01

    ABSTRACT Alphaviruses, such as chikungunya virus (CHIKV) and Sindbis virus (SINV), are vector-borne pathogens that cause acute illnesses in humans and are sometimes associated with neuropathies, especially in infants and elderly patients. Little is known about their mechanism of entry into the central nervous system (CNS), even for SINV, which has been used extensively as a model for viral encephalopathies. We previously established a CHIKV infection model in the optically transparent zebrafish larva; here we describe a new SINV infection model in this host. We imaged in vivo the onset and progression of the infection caused by intravenous SINV inoculation. Similar to that described for CHIKV, infection in the periphery was detected early and was transient, whereas CNS infection started at later time points and was persistent or progressive. We then tested the possible mechanisms of neuroinvasion by CHIKV and SINV. Neither virus relied on macrophage-mediated transport to access the CNS. CHIKV, but not SINV, always infects endothelial cells of the brain vasculature. By contrast, axonal transport was much more efficient with SINV than CHIKV, both from the periphery to the CNS and between neural tissues. Thus, the preferred mechanisms of neuroinvasion by these two related viruses are distinct, providing a powerful imaging-friendly system to compare mechanisms and prevention methods of encephalopathies. PMID:28483796

  17. Chikungunya Virus Infections among Patients with Dengue-Like Illness at a Tertiary Care Hospital in the Philippines, 2012–2013

    PubMed Central

    Velasco, John Mark; Valderama, Maria Theresa; Lopez, Maria Nila; Chua, Domingo; Latog, Rene; Roque, Vito; Corpuz, June; Klungthong, Chonticha; Rodpradit, Prinyada; Hussem, Kittinun; Poolpanichupatam, Yongyuth; Macareo, Louis; Fernandez, Stefan; Yoon, In-Kyu

    2015-01-01

    Chikungunya virus (CHIKV) often co-circulates with dengue virus (DENV). A cross-sectional surveillance study was conducted at a tertiary hospital in Manila, Philippines, to describe the prevalence and characteristics of DENV and CHIKV infections among patients seeking care for dengue-like illness. Acute blood samples from patients ≥ 6 months of age clinically diagnosed with dengue from November 2012 to December 2013 underwent reverse transcription polymerase chain reaction (RT-PCR) to detect DENV and CHIKV RNA. A total of 118 patients with clinically diagnosed dengue (age range = 1–89 years, mean = 22 years; male-to-female ratio = 1.51) were tested by DENV RT-PCR; 40 (34%) were DENV PCR-positive (age range = 1–45 years, mean = 17 years). All DENV serotypes were detected: 11 (28%) DENV-1, 6 (15%) DENV-2, 6 (15%) DENV-3, and 17 (42%) DENV-4. Of 112 patients clinically diagnosed with dengue and tested by CHIKV RT-PCR, 11 (10%) were CHIKV PCR-positive (age range = 2–47 years, mean = 20.3 years). No coinfections were detected. Presenting signs/symptoms did not differ between DENV- and CHIKV-positive cases. Sequencing of envelope 1 gene from two CHIKV PCR-positive samples showed Asian genotype. This study highlights the potential for misdiagnosis of medically attended CHIKV infections as DENV infection and the difficulty in clinically differentiating dengue and chikungunya based on presenting signs/symptoms alone. This underscores the necessity for diagnostic laboratory tests to distinguish CHIKV infections in the background of actively co-circulating DENV. PMID:26416109

  18. Characterization of the mutant spectra of a fish RNA virus within individual hosts during natural infections

    USGS Publications Warehouse

    Emmenegger, Eveline J.; Troyer, Ryan M.; Kurath, Gael

    2003-01-01

    Infectious hematopoietic necrosis virus (IHNV) is an RNA virus that causes significant mortalities of salmonids in the Pacific Northwest of North America. RNA virus populations typically contain genetic variants that form a heterogeneous virus pool, referred to as a quasispecies or mutant spectrum. This study characterized the mutant spectra of IHNV populations within individual fish reared in different environmental settings by RT–PCR of genomic viral RNA and determination of partial glycoprotein gene sequences of molecular clones. The diversity of the mutant spectra from ten in vivo populations was low and the average mutation frequencies of duplicate populations did not significantly exceed the background mutation level expected from the methodology. In contrast, two in vitro populations contained variants with an identical mutational hot spot. These results indicated that the mutant spectra of natural IHNV populations is very homogeneous, and does not explain the different magnitudes of genetic diversity observed between the different IHNV genogroups. Overall the mutant frequency of IHNV within its host is one of the lowest reported for RNA viruses.

  19. Increase in cases of Guillain-Barré syndrome during a Chikungunya outbreak, French Polynesia, 2014 to 2015.

    PubMed

    Oehler, Erwan; Fournier, Emmanuel; Leparc-Goffart, Isabelle; Larre, Philippe; Cubizolle, Stéphanie; Sookhareea, Chantal; Lastère, Stéphane; Ghawche, Frédéric

    2015-01-01

    During the recent chikungunya fever outbreak in French Polynesia in October 2014 to March 2015, we observed an abnormally high number of patients with neurological deficit. Clinical presentation and complementary exams were suggestive of Guillain-Barré syndrome (GBS) for nine patients. All nine had a recent dengue-like syndrome and tested positive for chikungunya virus (CHIKV) in serology or RT-PCR. GBS incidence was increased four- to nine-fold during this period, suggesting a link to CHIKV infection.

  20. Seroprevalence of Dengue Virus, West Nile Virus, Chikungunya Virus, and Zika Virus in International Travelers Attending a Travel and Migration Center in 2015-2017, Southern Italy.

    PubMed

    Loconsole, Daniela; Metallo, Angela; De Robertis, Anna Lisa; Morea, Anna; Quarto, Michele; Chironna, Maria

    2018-06-01

    International travelers to areas endemic for vector-borne diseases (VBDs) may be at risk of contracting and spreading these diseases. The aim of this study was to evaluate the prevalence of immunoglobulin M (IgM) and immunoglobulin G (IgG) antibodies that are specific for Dengue Virus (DV), West Nile Virus (WNV), Chikungunya Virus (CHIKV), or Zika Virus (ZV) in a cohort of international travelers. The study enrolled travelers who attended the Travel Medicine and Migration outpatient service of Local Health Unit of Bari, Italy, in March 2015-June 2017 for counseling and vaccine prophylaxis before travel. After receiving informed consent, post-travel blood samples were tested for IgM and IgG antibodies specific for DV, WNV, CHIKV, and ZV. Of the 207 travelers attending the vaccine service, 156 (75%) were enrolled. Of the 156 subjects, 23 (14.7%) had IgM and/or IgG antibodies specific for at least one VBD. Of these, 12 (52%) were asymptomatic. Nineteen (12.2% of the whole cohort), nine (5.8%), nine (5.8%), and two (1.3%) subjects had IgM and/or IgG antibodies specific for DV, WNV, CHIKV, and ZV, respectively. Ten subjects (6.4%) harbored antibodies that were specific for more than one VBD. A significant number of the international travelers were DV-positive. Our findings suggest that international travelers should undergo serological surveillance, particularly those who travel frequently and for long periods to areas that are endemic for hemorrhagic dengue. Due to a possible risk of introducing VBDs into nonendemic areas, increased awareness among physicians and travelers and appropriate laboratory detection are crucial. There are currently no licensed vaccines for these VBDs in Italy or other European countries; the main preventive measures are protection from mosquito bites and vector control.

  1. Nowcasting the spread of chikungunya virus in the Americas.

    PubMed

    Johansson, Michael A; Powers, Ann M; Pesik, Nicki; Cohen, Nicole J; Staples, J Erin

    2014-01-01

    In December 2013, the first locally-acquired chikungunya virus (CHIKV) infections in the Americas were reported in the Caribbean. As of May 16, 55,992 cases had been reported and the outbreak was still spreading. Identification of newly affected locations is paramount to intervention activities, but challenging due to limitations of current data on the outbreak and on CHIKV transmission. We developed models to make probabilistic predictions of spread based on current data considering these limitations. Branching process models capturing travel patterns, local infection prevalence, climate dependent transmission factors, and associated uncertainty estimates were developed to predict probable locations for the arrival of CHIKV-infected travelers and for the initiation of local transmission. Many international cities and areas close to where transmission has already occurred were likely to have received infected travelers. Of the ten locations predicted to be the most likely locations for introduced CHIKV transmission in the first four months of the outbreak, eight had reported local cases by the end of April. Eight additional locations were likely to have had introduction leading to local transmission in April, but with substantial uncertainty. Branching process models can characterize the risk of CHIKV introduction and spread during the ongoing outbreak. Local transmission of CHIKV is currently likely in several Caribbean locations and possible, though uncertain, for other locations in the continental United States, Central America, and South America. This modeling framework may also be useful for other outbreaks where the risk of pathogen spread over heterogeneous transportation networks must be rapidly assessed on the basis of limited information.

  2. Identification of chikungunya virus nsP2 protease inhibitors using structure-base approaches.

    PubMed

    Nguyen, Phuong T V; Yu, Haibo; Keller, Paul A

    2015-04-01

    The nsP2 protease of chikungunya virus (CHIKV) is one of the essential components of viral replication and it plays a crucial role in the cleavage of polyprotein precursors for the viral replication process. Therefore, it is gaining attention as a potential drug design target against CHIKV. Based on the recently determined crystal structure of the nsP2 protease of CHIKV, this study identified potential inhibitors of the virus using structure-based approaches with a combination of molecular docking, virtual screening and molecular dynamics (MD) simulations. The top hit compounds from database searching, using the NCI Diversity Set II, with targeting at five potential binding sites of the nsP2 protease, were identified by blind dockings and focused dockings. These complexes were then subjected to MD simulations to investigate the stability and flexibility of the complexes and to gain a more detailed insight into the interactions between the compounds and the enzyme. The hydrogen bonds and hydrophobic contacts were characterized for the complexes. Through structural alignment, the catalytic residues Cys1013 and His1083 were identified in the N-terminal region of the nsP2 protease. The absolute binding free energies were estimated by the linear interaction energy approach and compared with the binding affinities predicted with docking. The results provide valuable information for the development of inhibitors for CHIKV. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  3. Entomologic investigations of a chikungunya virus epidemic in the Union of the Comoros, 2005.

    PubMed

    Sang, Rosemary C; Ahmed, Ouledi; Faye, Ousmane; Kelly, Cindy L H; Yahaya, Ali Ahmed; Mmadi, Ibrahim; Toilibou, Ali; Sergon, Kibet; Brown, Jennifer; Agata, Naftali; Yakouide, Allarangar; Ball, Mamadou D; Breiman, Robert F; Miller, Barry R; Powers, Ann M

    2008-01-01

    From January to April 2005, an epidemic of chikungunya virus (CHIKV) illness occurred in the Union of Comoros. Entomological studies were undertaken during the peak of the outbreak, from March 11 to March 31, aimed at identifying the primary vector(s) involved in transmission so that appropriate public health measures could be implemented. Adult mosquitoes were collected by backpack aspiration and human landing collection in homes and neighborhoods of clinically ill patients. Water-holding containers were inspected for presence of mosquito larvae. Adult mosquitoes were analyzed by RT-PCR and cultivation in cells for the presence of CHIK virus and/or nucleic acid. A total of 2,326 mosquitoes were collected and processed in 199 pools. The collection consisted of 62.8% Aedes aegypti, 25.5% Culex species, and 10.7% Aedes simpsoni complex, Eretmapodites spp and Anopheles spp. Seven mosquito pools were found to be positive for CHIKV RNA and 1 isolate was obtained. The single CHIKV mosquito isolate was from a pool of Aedes aegypti and the minimum infection rate (MIR) for this species was 4.0, suggesting that Ae. aegypti was the principal vector responsible for the outbreak. This was supported by high container (31.1%), household (68%), and Breteau (126) indices, with discarded tires (58.8%) and small cooking and water storage vessels (31.1%) registering the highest container indices.

  4. Effects of infectious virus dose and bloodmeal delivery method on susceptibility of Aedes aegypti and Aedes albopictus to chikungunya virus.

    PubMed

    Pesko, Kendra; Westbrook, Catherine J; Mores, Christopher N; Lounibos, L Philip; Reiskind, Michael H

    2009-03-01

    Chikungunya virus (CHIKV) is an arbovirus (genus Alphavirus, family Togaviridae) that has recently caused disease outbreaks in the Indian Ocean basin and southern Europe. These outbreaks could be associated with a possible shift in primary vector from Aedes aegypti to Ae. albopictus. To evaluate vector competence differences in possible CHIKV vectors, we evaluated the dose-dependant susceptibility of Florida strains of Ae. albopictus and Ae. aegypti for infection with a La Réunion island strain of CHIKV. Pledget and water-jacketed membrane feeding systems were also evaluated. We show that both Aedes spp. were susceptible to the highest CHIKV doses, whereas only Ae. albopictus developed disseminated infections after exposure to the two lowest doses. Infection rates for both mosquito species were significantly affected by the bloodmeal delivery method used. This information is important in assessing risk of an outbreak of imported CHIKV in the United States, in determining differences in vectorial capacity of these two vector species, and in evaluating arbovirus delivery methods in the laboratory.

  5. Dengue and Chikungunya fever among viral diseases in outpatient febrile children in Kilosa district hospital, Tanzania.

    PubMed

    Chipwaza, Beatrice; Mugasa, Joseph P; Selemani, Majige; Amuri, Mbaraka; Mosha, Fausta; Ngatunga, Steve D; Gwakisa, Paul S

    2014-11-01

    Viral etiologies of fever, including dengue, Chikungunya, influenza, rota and adeno viruses, cause major disease burden in tropical and subtropical countries. The lack of diagnostic facilities in developing countries leads to failure to estimate the true burden of such illnesses, and generally the diseases are underreported. These diseases may have similar symptoms with other causes of acute febrile illnesses including malaria and hence clinical diagnosis without laboratory tests can be difficult. This study aimed to identify viral etiologies as a cause of fever in children and their co-infections with malaria. A cross sectional study was conducted for 6 months at Kilosa district hospital, Tanzania. The participants were febrile children aged 2-13 years presented at the outpatient department. Diagnostic tests such as IgM and IgG ELISA, and PCR were used. A total of 364 patients were enrolled, of these 83(22.8%) had malaria parasites, 76 (20.9%) had presumptive acute dengue infection and among those, 29(38.2%) were confirmed cases. Dengue was more likely to occur in children ≥ 5 years than in <5 years (OR 2.28, 95% CI: 1.35-3.86). Presumptive acute Chikungunya infection was identified in 17(4.7%) of patients. We observed no presenting symptoms that distinguished patients with Chikungunya infection from those with dengue infection or malaria. Co-infections between malaria and Chikungunya, malaria and dengue fever as well as Chikungunya and dengue were detected. Most patients with Chikungunya and dengue infections were treated with antibacterials. Furthermore, our results revealed that 5(5.2%) of patients had influenza virus while 5(12.8%) had rotavirus and 2(5.1%) had adenovirus. Our results suggest that even though viral diseases are a major public health concern, they are not given due recognition as a cause of fever in febrile patients. Emphasis on laboratory diagnostic tests for proper diagnosis and management of febrile patients is recommended.

  6. External quality assessment of dengue and chikungunya diagnostics in the Asia Pacific region, 2015

    PubMed Central

    Soh, Li Ting; Squires, Raynal C; Tan, Li Kiang; Pok, Kwoon Yong; Yang, HuiTing; Liew, Christina; Shah, Aparna Singh; Aaskov, John; Abubakar, Sazaly; Hasabe, Futoshi; Ng, Lee Ching

    2016-01-01

    Objective To conduct an external quality assessment (EQA) of dengue and chikungunya diagnostics among national-level public health laboratories in the Asia Pacific region following the first round of EQA for dengue diagnostics in 2013. Methods Twenty-four national-level public health laboratories performed routine diagnostic assays on a proficiency testing panel consisting of two modules. Module A contained serum samples spiked with cultured dengue virus (DENV) or chikungunya virus (CHIKV) for the detection of nucleic acid and DENV non-structural protein 1 (NS1) antigen. Module B contained human serum samples for the detection of anti-DENV antibodies. Results Among 20 laboratories testing Module A, 17 (85%) correctly detected DENV RNA by reverse transcription polymerase chain reaction (RT–PCR), 18 (90%) correctly determined serotype and 19 (95%) correctly identified CHIKV by RT–PCR. Ten of 15 (66.7%) laboratories performing NS1 antigen assays obtained the correct results. In Module B, 18/23 (78.3%) and 20/20 (100%) of laboratories correctly detected anti-DENV IgM and IgG, respectively. Detection of acute/recent DENV infection by both molecular (RT–PCR) and serological methods (IgM) was available in 19/24 (79.2%) participating laboratories. Discussion Accurate laboratory testing is a critical component of dengue and chikungunya surveillance and control. This second round of EQA reveals good proficiency in molecular and serological diagnostics of these diseases in the Asia Pacific region. Further comprehensive diagnostic testing, including testing for Zika virus, should comprise future iterations of the EQA. PMID:27508088

  7. Disease mapping based on stochastic SIR-SI model for Dengue and Chikungunya in Malaysia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samat, N. A.; Ma'arof, S. H. Mohd Imam

    This paper describes and demonstrates a method for relative risk estimation which is based on the stochastic SIR-SI vector-borne infectious disease transmission model specifically for Dengue and Chikungunya diseases in Malaysia. Firstly, the common compartmental model for vector-borne infectious disease transmission called the SIR-SI model (susceptible-infective-recovered for human populations; susceptible-infective for vector populations) is presented. This is followed by the explanations on the stochastic SIR-SI model which involve the Bayesian description. This stochastic model then is used in the relative risk formulation in order to obtain the posterior relative risk estimation. Then, this relative estimation model is demonstrated using Denguemore » and Chikungunya data of Malaysia. The viruses of these diseases are transmitted by the same type of female vector mosquito named Aedes Aegypti and Aedes Albopictus. Finally, the findings of the analysis of relative risk estimation for both Dengue and Chikungunya diseases are presented, compared and displayed in graphs and maps. The distribution from risk maps show the high and low risk area of Dengue and Chikungunya diseases occurrence. This map can be used as a tool for the prevention and control strategies for both diseases.« less

  8. Disease mapping based on stochastic SIR-SI model for Dengue and Chikungunya in Malaysia

    NASA Astrophysics Data System (ADS)

    Samat, N. A.; Ma'arof, S. H. Mohd Imam

    2014-12-01

    This paper describes and demonstrates a method for relative risk estimation which is based on the stochastic SIR-SI vector-borne infectious disease transmission model specifically for Dengue and Chikungunya diseases in Malaysia. Firstly, the common compartmental model for vector-borne infectious disease transmission called the SIR-SI model (susceptible-infective-recovered for human populations; susceptible-infective for vector populations) is presented. This is followed by the explanations on the stochastic SIR-SI model which involve the Bayesian description. This stochastic model then is used in the relative risk formulation in order to obtain the posterior relative risk estimation. Then, this relative estimation model is demonstrated using Dengue and Chikungunya data of Malaysia. The viruses of these diseases are transmitted by the same type of female vector mosquito named Aedes Aegypti and Aedes Albopictus. Finally, the findings of the analysis of relative risk estimation for both Dengue and Chikungunya diseases are presented, compared and displayed in graphs and maps. The distribution from risk maps show the high and low risk area of Dengue and Chikungunya diseases occurrence. This map can be used as a tool for the prevention and control strategies for both diseases.

  9. A small antigenic determinant of the Chikungunya virus E2 protein is sufficient to induce neutralizing antibodies which are partially protective in mice.

    PubMed

    Weber, Christopher; Büchner, Sarah M; Schnierle, Barbara S

    2015-04-01

    The mosquito-borne Chikungunya virus (CHIKV) causes high fever and severe joint pain in humans. It is expected to spread in the future to Europe and has recently reached the USA due to globalization, climate change and vector switch. Despite this, little is known about the virus life cycle and, so far, there is no specific treatment or vaccination against Chikungunya infections. We aimed here to identify small antigenic determinants of the CHIKV E2 protein able to induce neutralizing immune responses. E2 enables attachment of the virus to target cells and a humoral immune response against E2 should protect from CHIKV infections. Seven recombinant proteins derived from E2 and consisting of linear and/or structural antigens were created, and were expressed in and purified from E. coli. BALB/c mice were vaccinated with these recombinant proteins and the mouse sera were screened for neutralizing antibodies. Whereas a linear N-terminally exposed peptide (L) and surface-exposed parts of the E2 domain A (sA) alone did not induce neutralizing antibodies, a construct containing domain B and a part of the β-ribbon (called B+) was sufficient to induce neutralizing antibodies. Furthermore, domain sA fused to B+ (sAB+) induced the highest amount of neutralizing antibodies. Therefore, the construct sAB+ was used to generate a recombinant modified vaccinia virus Ankara (MVA), MVA-CHIKV-sAB+. Mice were vaccinated with MVA-CHIKV-sAB+ and/or the recombinant protein sAB+ and were subsequently challenged with wild-type CHIKV. Whereas four vaccinations with MVA-CHIKV-sAB+ were not sufficient to protect mice from a CHIKV infection, protein vaccination with sAB+ markedly reduced the viral titers of vaccinated mice. The recombinant protein sAB+ contains important structural antigens for a neutralizing antibody response in mice and its formulation with appropriate adjuvants might lead to a future CHIKV vaccine.

  10. Chikungunya virus RNA and antibody testing at a National Reference Laboratory since the emergence of Chikungunya virus in the Americas.

    PubMed

    Prince, Harry E; Seaton, Brent L; Matud, Jose L; Batterman, Hollis J

    2015-03-01

    Since first reported in the Americas in December 2013, chikungunya virus (CHIKV) infections have been documented in travelers returning from the Caribbean, with many cases identified by CHIKV antibody and/or RNA testing at our laboratory. We used our large data set to characterize the relationship between antibody titers and RNA detection and to estimate IgM persistence. CHIKV RNA was measured by nucleic acid amplification and CHIKV IgG/IgM by indirect immunofluorescence. Of the 1,306 samples submitted for RNA testing in January through September 2014, 393 (30%) were positive; for 166 RNA-positive samples, CHIKV antibody testing was also ordered, and 84% were antibody negative. Of the 6,971 sera submitted for antibody testing in January through September 2014, 1,811 (26%) were IgM positive; 1,461 IgM positives (81%) were also IgG positive. The relationship between the CHIKV antibody titers and RNA detection was evaluated using 376 IgM-positive samples (138 with RNA testing ordered and 238 deidentified and tested for RNA). RNA detection showed no significant association with the IgM titer but was inversely related to the IgG titer; 63% of the IgG negative sera were RNA positive, compared to 36% of sera with low IgG titers (1:10 to 1:80) and 16% with IgG titers of ≥1:160. Using second-sample results from 62 seroconverters, we estimated that CHIKV IgM persists for 110 days (95% confidence interval, 78 to 150 days) after the initial antibody-negative sample. These findings indicate that (i) RNA detection is more sensitive than antibody detection early in CHIKV infection, (ii) in the absence of RNA results, the IgG titer of the IgM-positive samples may be a useful surrogate for viremia, and (iii) CHIKV IgM persists for approximately 4 months after symptom onset. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Modelling the effects of global climate change on Chikungunya transmission in the 21st century.

    PubMed

    Tjaden, Nils B; Suk, Jonathan E; Fischer, Dominik; Thomas, Stephanie M; Beierkuhnlein, Carl; Semenza, Jan C

    2017-06-19

    The arrival and rapid spread of the mosquito-borne viral disease Chikungunya across the Americas is one of the most significant public health developments of recent years, preceding and mirroring the subsequent spread of Zika. Globalization in trade and travel can lead to the importation of these viruses, but climatic conditions strongly affect the efficiency of transmission in local settings. In order to direct preparedness for future outbreaks, it is necessary to anticipate global regions that could become suitable for Chikungunya transmission. Here, we present global correlative niche models for autochthonous Chikungunya transmission. These models were used as the basis for projections under the representative concentration pathway (RCP) 4.5 and 8.5 climate change scenarios. In a further step, hazard maps, which account for population densities, were produced. The baseline models successfully delineate current areas of active Chikungunya transmission. Projections under the RCP 4.5 and 8.5 scenarios suggest the likelihood of expansion of transmission-suitable areas in many parts of the world, including China, sub-Saharan Africa, South America, the United States and continental Europe. The models presented here can be used to inform public health preparedness planning in a highly interconnected world.

  12. Random codon re-encoding induces stable reduction of replicative fitness of Chikungunya virus in primate and mosquito cells.

    PubMed

    Nougairede, Antoine; De Fabritus, Lauriane; Aubry, Fabien; Gould, Ernest A; Holmes, Edward C; de Lamballerie, Xavier

    2013-02-01

    Large-scale codon re-encoding represents a powerful method of attenuating viruses to generate safe and cost-effective vaccines. In contrast to specific approaches of codon re-encoding which modify genome-scale properties, we evaluated the effects of random codon re-encoding on the re-emerging human pathogen Chikungunya virus (CHIKV), and assessed the stability of the resultant viruses during serial in cellulo passage. Using different combinations of three 1.4 kb randomly re-encoded regions located throughout the CHIKV genome six codon re-encoded viruses were obtained. Introducing a large number of slightly deleterious synonymous mutations reduced the replicative fitness of CHIKV in both primate and arthropod cells, demonstrating the impact of synonymous mutations on fitness. Decrease of replicative fitness correlated with the extent of re-encoding, an observation that may assist in the modulation of viral attenuation. The wild-type and two re-encoded viruses were passaged 50 times either in primate or insect cells, or in each cell line alternately. These viruses were analyzed using detailed fitness assays, complete genome sequences and the analysis of intra-population genetic diversity. The response to codon re-encoding and adaptation to culture conditions occurred simultaneously, resulting in significant replicative fitness increases for both re-encoded and wild type viruses. Importantly, however, the most re-encoded virus failed to recover its replicative fitness. Evolution of these viruses in response to codon re-encoding was largely characterized by the emergence of both synonymous and non-synonymous mutations, sometimes located in genomic regions other than those involving re-encoding, and multiple convergent and compensatory mutations. However, there was a striking absence of codon reversion (<0.4%). Finally, multiple mutations were rapidly fixed in primate cells, whereas mosquito cells acted as a brake on evolution. In conclusion, random codon re

  13. Identification of small molecule inhibitors of the Chikungunya virus nsP1 RNA capping enzyme.

    PubMed

    Feibelman, Kristen M; Fuller, Benjamin P; Li, Linfeng; LaBarbera, Daniel V; Geiss, Brian J

    2018-06-01

    Chikungunya virus (CHIKV) is an arthropod-borne alphavirus. Alphaviruses are positive strand RNA viruses that require a 5' cap structure to direct translation of the viral polyprotein and prevent degradation of the viral RNA genome by host cell nucleases. Formation of the 5' RNA cap is orchestrated by the viral protein nsP1, which binds GTP and provides the N-7 methyltransferase and guanylyltransferase activities that are necessary for cap formation. Viruses with aberrant nsP1 activity are unable to replicate effectively suggesting that nsP1 is a promising target for antiviral drug discovery. Given the absence of commercially available antiviral therapies for CHIKV, it is imperative to identify compounds that could be developed as potential therapeutics. This study details a high-throughput screen of 3051 compounds from libraries containing FDA-approved drugs, natural products, and known bioactives against CHIKV nsP1 using a fluorescence polarization-based GTP competition assay. Several small molecule hits from this screen were able to compete with GTP for the CHIKV nsP1 GTP binding site at low molar concentrations. Compounds were also evaluated with an orthogonal assay that measured the ability of nsP1 to perform the guanylation step of the capping reaction in the presence of inhibitor. In addition, live virus assays with CHIKV and closely related alphavirus, Sindbis virus, were used in conjunction with cell toxicity assays to determine the antiviral activity of compounds in cell culture. The naturally derived compound lobaric acid was found to inhibit CHIKV nsP1 GTP binding and guanylation as well as attenuate viral growth in vitro at both 24 hpi and 48 hpi in hamster BHK21 and human Huh 7 cell lines. These data indicate that development of lobaric acid and further exploration of CHIKV nsP1 as a drug target may aid in the progress of anti-alphaviral drug development strategies. Copyright © 2018. Published by Elsevier B.V.

  14. Initial characterization of 17 viruses harboring mutant forms of the immediate-early gene of equine herpesvirus 1.

    PubMed

    Buczynski, Kimberly A; Kim, Seong K; O'Callaghan, Dennis J

    2005-10-01

    The sole immediate-early (IE) gene of equine herpesvirus 1 (EHV-1) encodes a major regulatory protein of 1487 amino acids (aa) capable of modulating gene expression from both early and late promoters and also of trans-repressing its own promoter. Using a specially designed recombination system and a library of IE linker-insertion, deletion, point, and nonsense mutant constructs that encode forms of the IE protein (IEP) harboring mutations within all five regions, 17 mutant viruses were generated and characterized. Ribonuclease protection analyses revealed that all 17 mutants synthesize the IE mRNA in RK-13 cells, whereas those that failed to replicate on non-complementing RK-13 cells displayed a defect in the transcription of either an important early gene (EICP0) and/or an essential late gene (glycoprotein D). Western blot analyses showed that the IEP was synthesized and detectable in cells infected with each mutant virus, including those mutants that failed to replicate on non-complementing RK-13 cells. Eleven of the 17 mutants were capable of growth on non-complementing RK-13 cells, whereas mutant viruses with deletions within the serine-rich tract (SRT), nucleus localization signal (NLS), or DNA-binding domain (DBD) were capable of growth only on the IEP-producing cell line (IE13.1). Lastly, temperature shift experiments revealed that mutant viruses containing deletions within the C-terminus (KyAn1029 and KyAn1411) or within the SRT (KyADeltaSRT2) of the IEP exhibited a temperature-sensitive phenotype in that these viruses, in contrast to the parent KyA, failed to replicate at 39 degrees C. Overall, these results indicate that the C-terminus of the IEP is not essential for IEP function in cell culture, but this region contains elements that enhance the function(s) of the IEP. The initial characterization of these 17 EHV-1 mutants has shown that sequences totaling at least 43% of the IEP are not essential for virus replication in cell culture.

  15. Evaluation of Commercially Available Chikungunya Virus Immunoglobulin M Detection Assays

    PubMed Central

    Johnson, Barbara W.; Goodman, Christin H.; Holloway, Kimberly; de Salazar, P. Martinez; Valadere, Anne M.; Drebot, Michael A.

    2016-01-01

    Commercial chikungunya virus (CHIKV)–specific IgM detection kits were evaluated at the Centers for Disease Control and Prevention (CDC), the Public Health Agency of Canada National Microbiology Laboratory, and the Caribbean Public Health Agency (CARPHA). The Euroimmun Anti-CHIKV IgM ELISA kit had ≥ 95% concordance with all three reference laboratory results. The limit of detection for low CHIK IgM+ samples, as measured by serial dilution of seven sera up to 1:12,800 ranged from 1:800 to 1:3,200. The Euroimmun IIFT kit evaluated at CDC and CARPHA performed well, but required more retesting of equivocal results. The InBios CHIKjj Detect MAC-ELISA had 100% and 98% concordance with CDC and CARPHA results, respectively, and had equal sensitivity to the CDC MAC-ELISA to 1:12,800 dilution in serially diluted samples. The Abcam Anti-CHIKV IgM ELISA had high performance at CARPHA, but at CDC, performance was inconsistent between lots. After replacement of the biotinylated IgM antibody controls with serum containing CHIKV-specific IgM and additional quality assurance/control measures, the Abcam kit was rereleased and reevaluated at CDC. The reformatted Abcam kit had 97% concordance with CDC results and limit of detection of 1:800 to 1:3,200. Two rapid tests and three other CHIKV MAC-ELISAs evaluated at CDC had low sensitivity, as the CDC CHIKV IgM in-house positive controls were below the level of detection. In conclusion, laboratories have options for CHIKV serological diagnosis using validated commercial kits. PMID:26976887

  16. Structure-based design of NS2 mutants for attenuated influenza A virus vaccines.

    PubMed

    Akarsu, Hatice; Iwatsuki-Horimoto, Kiyoko; Noda, Takeshi; Kawakami, Eiryo; Katsura, Hiroaki; Baudin, Florence; Horimoto, Taisuke; Kawaoka, Yoshihiro

    2011-01-01

    We previously characterised the matrix 1 (M1)-binding domain of the influenza A virus NS2/nuclear export protein (NEP), reporting a critical role for the tryptophan (W78) residue that is surrounded by a cluster of glutamate residues in the C-terminal region that interacts with the M1 protein (Akarsu et al., 2003). To gain further insight into the functional role of this interaction, here we used reverse genetics to generate a series of A/WSN/33 (H1N1)-based NS2/NEP mutants for W78 or the C-terminal glutamate residues and assessed their effect on virus growth. We found that simultaneous mutations at three positions (E67S/E74S/E75S) of NS2/NEP were important for inhibition of influenza viral polymerase activity, although the W78S mutant and other glutamate mutants with single substitutions were not. In addition, double and triple substitutions in the NS2/NEP glutamine residues, which resulted in the addition of seven amino acids to the C-terminus of NS1 due to gene overlapping, resulted in virus attenuation in mice. Animal studies with this mutant suggest a potential benefit to incorporating these NS mutations into live vaccines. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Effects of Infectious Virus Dose and Bloodmeal Delivery Method on Susceptibility of Aedes aegypti and Aedes albopictus to Chikungunya Virus

    PubMed Central

    Pesko, Kendra; Westbrook, Catherine J.; Mores, Christopher N.; Lounibos, L. Philip; Reiskind, Michael H.

    2009-01-01

    Chikungunya virus (CHIKV) is an arbovirus (genus Alphavirus, family Togaviridae) that has recently caused disease outbreaks in the Indian Ocean basin and southern Europe. These outbreaks could be associated with a possible shift in primary vector from Aedes aegypti to Ae. albopictus. To evaluate vector competence differences in possible CHIKV vectors, we evaluated the dose-dependant susceptibility of Florida strains of Ae. albopictus and Ae. aegypti for infection with a La Réunion island strain of CHIKV. Pledget and water-jacketed membrane feeding systems were also evaluated. We show that both Aedes spp. were susceptible to the highest CHIKV doses, whereas only Ae. albopictus developed disseminated infections after exposure to the two lowest doses. Infection rates for both mosquito species were significantly affected by the bloodmeal delivery method used. This information is important in assessing risk of an outbreak of imported CHIKV in the United States, in determining differences in vectorial capacity of these two vector species, and in evaluating arbovirus delivery methods in the laboratory. PMID:19351094

  18. Zika, chikungunya and dengue: the causes and threats of new and re-emerging arboviral diseases.

    PubMed

    Paixão, Enny S; Teixeira, Maria Gloria; Rodrigues, Laura C

    2018-01-01

    The recent emergence and re-emergence of viral infections transmitted by vectors-Zika, chikungunya, dengue, Japanese encephalitis, West Nile, yellow fever and others-is a cause for international concern. Using as examples Zika, chikungunya and dengue, we summarise current knowledge on characteristics of the viruses and their transmission, clinical features, laboratory diagnosis, burden, history, possible causes of the spread and the expectation for future epidemics. Arboviruses are transmitted by mosquitoes, are of difficult diagnosis, can have surprising clinical complications and cause severe burden. The current situation is complex, because there is no vaccine for Zika and chikungunya and no specific treatment for the three arboviruses. Vector control is the only comprehensive solution available now and this remains a challenge because up to now this has not been very effective. Until we develop new technologies of control mosquito populations, the globalised and urbanised world we live in will remain vulnerable to the threat of successive arbovirus epidemics.

  19. Zika, chikungunya and dengue: the causes and threats of new and re-emerging arboviral diseases

    PubMed Central

    Paixão, Enny S.; Teixeira, Maria Gloria; Rodrigues, Laura C

    2018-01-01

    The recent emergence and re-emergence of viral infections transmitted by vectors—Zika, chikungunya, dengue, Japanese encephalitis, West Nile, yellow fever and others—is a cause for international concern. Using as examples Zika, chikungunya and dengue, we summarise current knowledge on characteristics of the viruses and their transmission, clinical features, laboratory diagnosis, burden, history, possible causes of the spread and the expectation for future epidemics. Arboviruses are transmitted by mosquitoes, are of difficult diagnosis, can have surprising clinical complications and cause severe burden. The current situation is complex, because there is no vaccine for Zika and chikungunya and no specific treatment for the three arboviruses. Vector control is the only comprehensive solution available now and this remains a challenge because up to now this has not been very effective. Until we develop new technologies of control mosquito populations, the globalised and urbanised world we live in will remain vulnerable to the threat of successive arbovirus epidemics. PMID:29435366

  20. Using Remote Sensing, Weather, and Demographic Data to Create Risk Maps for Zika, Dengue, and Chikungunya in Brazil

    NASA Astrophysics Data System (ADS)

    Manore, C.; Conrad, J.; Del Valle, S.; Ziemann, A.; Fairchild, G.; Generous, E. N.

    2017-12-01

    Mosquito-borne diseases such as Zika, dengue, and chikungunya viruses have dynamics coupled to weather, ecology, human infrastructure, socio-economic demographics, and behavior. We use time-varying remote sensing and weather data, along with demographics and ecozones to predict risk through time for Zika, dengue, and chikungunya outbreaks in Brazil. We use distributed lag methods to quantify the lag between outbreaks and weather. Our statistical model indicates that the relationships between the variables are complex, but that quantifying risk is possible with the right data at appropriate spatio-temporal scales.

  1. Fact Sheet: What Parents Need to Know About Zika Virus

    MedlinePlus

    ... mosquitoes, the same mosquitoes that spread chikungunya and dengue. Mosquitoes become infected when they bite a person ... virus infection or other similar viral diseases like dengue or chikungunya. Should a child infected by the ...

  2. Laboratory-confirmed dengue fever and chikungunya fever cases at the Narita Airport Quarantine Station in 2013.

    PubMed

    Furuichi, Mieko; Makie, Toshio; Honma, Yasuko; Isoda, Takayoshi; Miyake, Satoru

    2015-01-01

    Fourteen patients were laboratory-confirmed cases of imported infectious diseases at the Narita Airport Quarantine Station in 2013. Blood tests were performed on 283 subjects suspected of having imported infectious diseases. Of these, 11 were diagnosed as having dengue fever (dengue) and 3 as having chikungunya fever (chikungunya) using real-time RT-PCR. The possible countries from which dengue virus infections were contracted were Thailand, Laos, Sri Lanka, and some other countries in Southeast Asia and South Asia. The 3 chikungunya cases were also diagnosed in individuals that returned from Southeast Asia. Most of the patients with dengue had a fever of over 38℃. The other symptoms were generalized fatigue, dull headache, pain behind the eyes, arthralgia, and digestive symptoms. Four of the patients were unaware of any mosquito bites. The information obtained from the confirmed cases showed that it is important to consider both the destination to which individuals travelled and the clinical symptoms, regardless of whether the subjects were aware of mosquito bites. The detection rate of chikungunya at the Quarantine Station was higher than that of dengue in all reported cases in Japan.

  3. Arbovirus Surveillance near the Mexico-U.S. Border: Isolation and Sequence Analysis of Chikungunya Virus from Patients with Dengue-like Symptoms in Reynosa, Tamaulipas.

    PubMed

    Laredo-Tiscareño, S Viridiana; Machain-Williams, Carlos; Rodríguez-Pérez, Mario A; Garza-Hernandez, Javier A; Doria-Cobos, Gloria L; Cetina-Trejo, Rosa C; Bacab-Cab, Lucio A; Tangudu, Chandra S; Charles, Jermilia; De Luna-Santillana, Erick J; Garcia-Rejon, Julian E; Blitvich, Bradley J

    2018-05-14

    A total of 1,090 residents of the city of Reynosa, Tamaulipas, on the Mexico-U.S. border presented at hospitals and clinics of the Secretariat of Health, Mexico, in 2015 with symptoms characteristic of dengue. Dengue virus (DENV) antigen was detected by enzyme-linked immunosorbent assay in acute sera from 134 (12.3%) patients. Sera from select patients ( N = 34) were also tested for chikungunya virus (CHIKV) RNA by quantitative reverse transcription-polymerase chain reaction. Thirteen (38.2%) patients, including five DENV antigen-positive patients, were positive. Sera from three CHIKV RNA-positive patients were further assayed by virus isolation in cell culture and CHIKV was recovered on each occasion. The genome of one isolate and structural genes of the other two isolates were sequenced. In conclusion, we present evidence of CHIKV and DENV coinfections in patients who live near the Mexico-U.S. border and provide the first genome sequence of a CHIKV isolate from northern Mexico.

  4. Replication of transformation-defective mutants of the Prague strain of Rous sarcoma virus and isolation of a td mutant from duck-adapted PR-RSV-C.

    PubMed

    Geryk, J; Mazo, A; Svoboda, J; Hlozánek, I

    1980-01-01

    The replication of transformation-defective mutants of the Prague strain of Rous sarcoma virus subgroup C was studied using roller cultures. Under such conditions, 10(5)--10(6) infectous units of virus per 0.2 ml were produced, as revealed in both the reverse transcriptase and 16Q complementation tests. A new td daPR-RSV-C mutant was isolated from duck-adapted PR-RSV-C. This mutant replicated in roller cultures with equal efficiency as the original td PR-RSV-C. It was verified that td daPR-RSV-C does not transform chicken fibroblasts, is not oncogenic for 3-week-old chickens and has subgroup C host-range specificity. Both td mutants replicate in duck cells and reach the same titres.

  5. Surge of Dengue Virus Infection and Chikungunya Fever in Bali in 2010: The Burden of Mosquito-Borne Infectious Diseases in a Tourist Destination

    PubMed Central

    Yoshikawa, Minako Jen; Kusriastuti, Rita

    2013-01-01

    Labor flow and travelers are important factors contributing to the spread of Dengue virus infection and chikungunya fever. Bali Province of Indonesia, a popular resort and tourist destination, has these factors and suffers from mosquito-borne infectious diseases. Using area study approach, a series of fieldwork was conducted in Bali to obtain up-to-date primary disease data, to learn more about public health measures, and to interview health officers, hotel personnel, and other resource persons. The national data including information on two other provinces were obtained for comparison. The health ministry reported 5,810 and 11,697 cases of dengue hemorrhagic fever in Bali in 2009 and 2010, respectively. Moreover, two densely populated tourist areas and one district have shown a particularly high incidence and sharp increases in 2010. Cases of chikungunya fever reported in Bali more than doubled in 2010 from the previous year. Our findings suggest that Bali can benefit from a significant reduction in vector populations and dissemination of disease preventive knowledge among both local residents and foreign visitors. This will require a concerted and trans-border approach, which may prove difficult in the province. PMID:23874141

  6. The neutralizing role of IgM during early Chikungunya virus infection

    PubMed Central

    Chua, Chong-Long; Chiam, Chun-Wei; Chan, Yoke-Fun

    2017-01-01

    The antibody isotype IgM appears earlier than IgG, within days of onset of symptoms, and is important during the early stages of the adaptive immune response. Little is known about the functional role of IgM during infection with chikungunya virus (CHIKV), a recently reemerging arbovirus that has caused large global outbreaks. In this study, we studied antibody responses in 102 serum samples collected during CHIKV outbreaks in Malaysia. We described the neutralizing role of IgM at different times post-infection and examined the independent contributions of IgM and IgG towards the neutralizing capacity of human immune sera during the early phase of infection, including the differences in targets of neutralizing epitopes. Neutralizing IgM starts to appear as early as day 4 of symptoms, and their appearance from day 6 is associated with a reduction in viremia. IgM acts in a complementary manner with the early IgG, but plays the main neutralizing role up to a point between days 4 and 10 which varies between individuals. After this point, total neutralizing capacity is attributable almost entirely to the robust neutralizing IgG response. IgM preferentially binds and targets epitopes on the CHIKV surface E1-E2 glycoproteins, rather than individual E1 or E2. These findings provide insight into the early antibody responses to CHIKV, and have implications for design of diagnostic serological assays. PMID:28182795

  7. Antiviral effect of compounds derived from the seeds of Mammea americana and Tabernaemontana cymosa on Dengue and Chikungunya virus infections.

    PubMed

    Gómez-Calderón, Cecilia; Mesa-Castro, Carol; Robledo, Sara; Gómez, Sergio; Bolivar-Avila, Santiago; Diaz-Castillo, Fredyc; Martínez-Gutierrez, Marlen

    2017-01-18

    The transmission of Dengue virus (DENV) and Chikungunya virus (CHIKV) has increased worldwide, due in part to the lack of a specific antiviral treatment. For this reason, the search for compounds with antiviral potential, either as licensed drugs or in natural products, is a research priority. The objective of this study was to identify some of the compounds that are present in Mammea americana (M. americana) and Tabernaemontana cymosa (T. cymosa) plants and, subsequently, to evaluate their cytotoxicity in VERO cells and their potential antiviral effects on DENV and CHIKV infections in those same cells. Dry ethanolic extracts of M. americana and T. cymosa seeds were subjected to open column chromatographic fractionation, leading to the identification of four compounds: two coumarins, derived from M. americana; and lupeol acetate and voacangine derived from T. cymosa.. The cytotoxicity of each compound was subsequently assessed by the MTT method (at concentrations from 400 to 6.25 μg/mL). Pre- and post-treatment antiviral assays were performed at non-toxic concentrations; the resulting DENV inhibition was evaluated by Real-Time PCR, and the CHIKV inhibition was tested by the plating method. The results were analyzed by means of statistical analysis. The compounds showed low toxicity at concentrations ≤ 200 μg/mL. The compounds coumarin A and coumarin B, which are derived from the M. americana plant, significantly inhibited infection with both viruses during the implementation of the two experimental strategies employed here (post-treatment with inhibition percentages greater than 50%, p < 0.01; and pre-treatment with percentages of inhibition greater than 40%, p < 0.01). However, the lupeol acetate and voacangine compounds, which were derived from the T. cymosa plant, only significantly inhibited the DENV infection during the post-treatment strategy (at inhibition percentages greater than 70%, p < 0.01). In vitro, the coumarins are capable of

  8. Chikungunya

    MedlinePlus

    ... way to prevent chikungunya infection is to avoid mosquito bites: Use insect repellent Wear clothes that cover your arms, legs, and feet Stay in places that have air conditioning or that use window and door screens Centers for Disease Control and Prevention

  9. Risk Factors for the Presence of Chikungunya and Dengue Vectors (Aedes aegypti and Aedes albopictus), Their Altitudinal Distribution and Climatic Determinants of Their Abundance in Central Nepal

    PubMed Central

    Dhimal, Meghnath; Gautam, Ishan; Joshi, Hari Datt; O’Hara, Robert B.; Ahrens, Bodo; Kuch, Ulrich

    2015-01-01

    Background The presence of the recently introduced primary dengue virus vector mosquito Aedes aegypti in Nepal, in association with the likely indigenous secondary vector Aedes albopictus, raises public health concerns. Chikungunya fever cases have also been reported in Nepal, and the virus causing this disease is also transmitted by these mosquito species. Here we report the results of a study on the risk factors for the presence of chikungunya and dengue virus vectors, their elevational ceiling of distribution, and climatic determinants of their abundance in central Nepal. Methodology/Principal Findings We collected immature stages of mosquitoes during six monthly cross-sectional surveys covering six administrative districts along an altitudinal transect in central Nepal that extended from Birgunj (80 m above sea level [asl]) to Dhunche (highest altitude sampled: 2,100 m asl). The dengue vectors Ae. aegypti and Ae. albopictus were commonly found up to 1,350 m asl in Kathmandu valley and were present but rarely found from 1,750 to 2,100 m asl in Dhunche. The lymphatic filariasis vector Culex quinquefasciatus was commonly found throughout the study transect. Physiographic region, month of collection, collection station and container type were significant predictors of the occurrence and co-occurrence of Ae. aegypti and Ae. albopictus. The climatic variables rainfall, temperature, and relative humidity were significant predictors of chikungunya and dengue virus vectors abundance. Conclusions/Significance We conclude that chikungunya and dengue virus vectors have already established their populations up to the High Mountain region of Nepal and that this may be attributed to the environmental and climate change that has been observed over the decades in Nepal. The rapid expansion of the distribution of these important disease vectors in the High Mountain region, previously considered to be non-endemic for dengue and chikungunya fever, calls for urgent actions to

  10. Historical inability to control Aedes aegypti as a main contributor of fast dispersal of chikungunya outbreaks in Latin America.

    PubMed

    Fernández-Salas, Ildefonso; Danis-Lozano, Rogelio; Casas-Martínez, Mauricio; Ulloa, Armando; Bond, J Guillermo; Marina, Carlos F; Lopez-Ordóñez, Teresa; Elizondo-Quiroga, Armando; Torres-Monzón, Jorge A; Díaz-González, Esteban E

    2015-12-01

    The arrival of chikungunya fever (CHIKF) in Latin American countries has been expected to trigger epidemics and challenge health systems. Historically considered as dengue-endemic countries, abundant Aedes aegypti populations make this region highly vulnerable to chikungunya virus (CHIKV) circulation. This review describes the current dengue and CHIKF epidemiological situations, as well as the role of uncontrolled Ae. aegypti and Aedes albopictus vectors in spreading the emerging CHIKV. Comments are included relating to the vector competence of both species and failures of surveillance and vector control measures. Dengue endemicity is a reflection of these abundant and persistent Aedes populations that are now spreading CHIKV in the Americas. This article forms part of a symposium in Antiviral Research on "Chikungunya discovers the New World." Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Chikungunya fever: CNS infection and pathologies of a re-emerging arbovirus.

    PubMed

    Das, Trina; Jaffar-Bandjee, Marie Christine; Hoarau, Jean Jacques; Krejbich Trotot, Pascale; Denizot, Melanie; Lee-Pat-Yuen, Ghislaine; Sahoo, Renubala; Guiraud, Pascale; Ramful, Duksha; Robin, Stephanie; Alessandri, Jean Luc; Gauzere, Bernard Alex; Gasque, Philippe

    2010-06-01

    Chikungunya virus (CHIKV) is transmitted by Aedes mosquitoes and causes an acute symptomatic illness with fever, skin rash, and incapacitating arthralgia, which can evolve into chronic rheumatoid arthritis in elderly patients. This is a tropical disease originally described in central/east Africa in the 1960s, but its 2004 re-emergence in Africa and rapid spread in lands in and around the Indian Ocean (Reunion island, India, Malaysia) as well as Europe (Italy) led to almost 6 million cases worldwide. The risk of importation and spreading diseases with long-term sequelae is even greater today given the global distribution of the vectors (including in the Americas), increased tourism and the apparent capacity of CHIKV to produce high levels of viremia (10(9)-10(12) virus/ml of blood) and new mutants. CHIKV-associated neuropathology was described early in the 1960s, but it is the unprecedented incidence rate in Indian Ocean areas with efficient clinical facilities that allowed a better description of cases with severe encephalitis, meningoencephalitis, peripheral neuropathies and deaths among newborns (mother-to-child infection), infants and elderly patients. Death rates following CHIKV infection were estimated at 1:1000 cases in la Reunion's outbreak. These clinical observations have been corroborated by experimental infection in several mouse models, leading to CNS pathologies. We further describe in this review the capacity of CHIKV to infect neurons and glial cells, delineate the fundamental innate (intrinsic) immune defence mechanisms to protect from infection and argue about the possible mechanisms involved in the encephalopathy. (c) 2010 Elsevier Ltd. All rights reserved.

  12. La Crosse virus (LACV) Gc fusion peptide mutants have impaired growth and fusion phenotypes, but remain neurotoxic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soldan, Samantha S., E-mail: sssoldan@mail.med.upenn.ed; Hollidge, Bradley S.; Department of Neuroscience Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4283

    La Crosse virus is a leading cause of pediatric encephalitis in the Midwestern United States and an emerging pathogen in the American South. The LACV glycoprotein Gc plays a critical role in entry as the virus attachment protein. A 22 amino acid hydrophobic region within Gc (1066-1087) was recently identified as the LACV fusion peptide. To further define the role of Gc (1066-1087) in virus entry, fusion, and neuropathogenesis, a panel of recombinant LACV (rLACV) fusion peptide mutant viruses was generated. Replication of mutant rLACVs was significantly reduced. In addition, the fusion peptide mutants demonstrated decreased fusion phenotypes relative tomore » LACV-WT. Interestingly, these viruses maintained their ability to cause neuronal loss in culture, suggesting that the fusion peptide of LACV Gc is a determinant of properties associated with neuroinvasion (growth to high titer in muscle cells and a robust fusion phenotype), but not necessarily of neurovirulence.« less

  13. High risk for chikungunya virus to initiate an enzootic sylvatic cycle in the tropical Americas

    PubMed Central

    Failloux, Anna-Bella

    2017-01-01

    Background Chikungunya virus (CHIKV) has dispersed in the Americas since 2013, and its range of distribution has overlapped large forested areas. Herein, we assess vector competence of two sylvatic Neotropical mosquito species, Haemagogus leucocelaenus and Aedes terrens, to evaluate the risk of CHIKV to initiate a sylvatic cycle in the continent. Methodology/Principal findings Haemagogus leucocelaenus and Ae. terrens from the state of Rio de Janeiro, Brazil were orally challenged with the two CHIKV lineages circulating in the Americas. Fully engorged females were kept in incubators at 28±1°C and 70±10% humidity and examined at 3 and 7 days after virus exposure. Body (thorax plus abdomen), head and saliva samples were analyzed for respectively determining infection, dissemination and transmission. Both Hg. leucocelaenus and Ae. terrens exhibited high infection and dissemination rates with both CHIKV isolates at 7 dpi, demonstrating that they are susceptible to CHIKV, regardless of the lineage. Remarkably, Hg. leucocelaenus expectorated infectious viral particles as rapidly as 3 days after the infectious blood meal, displaying higher values of transmission rate and efficiency than Ae. terrens. Nevertheless, both species were competent to experimentally transmit both CHIKV genotypes, exhibiting vector competence similar to several American Aedes aegypti. Conclusions/Significance These results point out the high risk for CHIKV to establish a sylvatic transmission cycle in the Americas, which could be a serious health issue as CHIKV would become another zoonotic infection difficult to control in the continent. PMID:28662031

  14. Cryo-EM structures elucidate neutralizing mechanisms of anti-chikungunya human monoclonal antibodies with therapeutic activity

    DOE PAGES

    Long, Feng; Fong, Rachel H.; Austin, Stephen K.; ...

    2015-10-26

    Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes severe acute and chronic disease in humans. Although highly inhibitory murine and human monoclonal antibodies (mAbs) have been generated, the structural basis of their neutralizing activity remains poorly characterized. In this paper, we determined the cryo-EM structures of chikungunya virus-like particles complexed with antibody fragments (Fab) of two highly protective human mAbs, 4J21 and 5M16, that block virus fusion with host membranes. Both mAbs bind primarily to sites within the A and B domains, as well as to the B domain’s β-ribbon connector of the viral glycoprotein E2. The footprints ofmore » these antibodies on the viral surface were consistent with results from loss-of-binding studies using an alanine scanning mutagenesis-based epitope mapping approach. The Fab fragments stabilized the position of the B domain relative to the virus, particularly for the complex with 5M16. Finally, this finding is consistent with a mechanism of neutralization in which anti-CHIKV mAbs that bridge the A and B domains impede movement of the B domain away from the underlying fusion loop on the E1 glycoprotein and therefore block the requisite pH-dependent fusion of viral and host membranes.« less

  15. Dengue and chikungunya viruses in plasma are effectively inactivated after treatment with methylene blue and visible light.

    PubMed

    Fryk, Jesse J; Marks, Denese C; Hobson-Peters, Jody; Prow, Natalie A; Watterson, Daniel; Hall, Roy A; Young, Paul R; Reichenberg, Stefan; Sumian, Chryslain; Faddy, Helen M

    2016-09-01

    Arboviruses, such as dengue viruses (DENV) and chikungunya virus (CHIKV), pose a risk to the safe transfusion of blood components, including plasma. Pathogen inactivation is an approach to manage this transfusion transmission risk, with a number of techniques being used worldwide for the treatment of plasma. In this study, the efficacy of the THERAFLEX MB-Plasma system to inactivate all DENV serotypes (DENV-1, DENV-2, DENV-3, DENV-4) or CHIKV in plasma, using methylene blue and light illumination at 630 nm, was investigated. Pooled plasma units were spiked with DENV-1, DENV-2, DENV-3 DENV-4, or CHIKV and treated with the THERAFLEX MB-Plasma system at four light illumination doses: 20, 40, 60, and 120 (standard dose) J/cm(2) . Pre- and posttreatment samples were collected and viral infectivity was determined. The reduction in viral infectivity was calculated for each dose. Treatment of plasma with the THERAFLEX MB-Plasma system resulted in at least a 4.46-log reduction in all DENV serotypes and CHIKV infectious virus. The residual infectivity for each was at the detection limit of the assay used at 60 J/cm(2) , with dose dependency also observed. Our study demonstrated the THERAFLEX MB-Plasma system can reduce the infectivity of all DENV serotypes and CHIKV spiked into plasma to the detection limit of the assay used at half of the standard illumination dose. This suggests this system has the capacity to be an effective option for managing the risk of DENV or CHIKV transfusion transmission in plasma. © 2016 AABB.

  16. Surveillance for West Nile, Dengue, and Chikungunya Virus Infections, Veneto Region, Italy, 2010

    PubMed Central

    Barzon, Luisa; Capelli, Gioia; Angheben, Andrea; Pacenti, Monia; Napoletano, Giuseppina; Piovesan, Cinzia; Montarsi, Fabrizio; Martini, Simone; Rigoli, Roberto; Cattelan, Anna M.; Rinaldi, Roberto; Conforto, Mario; Russo, Francesca; Palù, Giorgio; Bisoffi, Zeno

    2012-01-01

    In 2010, in Veneto Region, Italy, surveillance of summer fevers was conducted to promptly identify autochthonous cases of West Nile fever and increase detection of imported dengue and chikungunya in travelers. Surveillance highlighted the need to modify case definitions, train physicians, and when a case is identified, implement vector control measures PMID:22469230

  17. In Vivo Imaging of Chikungunya Virus in Mice and Aedes Mosquitoes Using a Renilla Luciferase Clone

    PubMed Central

    Ziegler, Sarah A.; Nuckols, John; McGee, Charles E.; Huang, Yan-Jang Scott; Vanlandingham, Dana L.; Tesh, Robert B.

    2011-01-01

    Abstract Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that in humans causes an acute febrile illness characterized by fever, arthralgia, and rash. It is currently associated with large outbreaks in Asia, Africa, and islands of the Indian Ocean and has been introduced from these tropical regions into Europe, where local transmission has been recorded on two occasions. The underlying basis of the pathogenesis of CHIKV and related alphaviruses that produce similar symptoms remains unclear. By applying new techniques, for example, in vivo imaging in live animals and arthropods, we may improve our understanding of viral pathogenesis in vertebrates and viral replication in mosquitoes. This technical report describes the evaluation of a CHIKV–luciferase clone to visualize infection and dissemination in both Aedes aegypti and Aedes albopictus mosquitoes and mice. In mosquitoes, luciferase activity was seen at 3 and 7 days post-infection in both head and abdomens. In vivo imaging of CHIKV–luciferase was detected in mice for up to 5 days post-infection at the site of inoculation with limited dissemination to the skeletal muscle. PMID:21668347

  18. In vivo imaging of chikungunya virus in mice and Aedes mosquitoes using a Renilla luciferase clone.

    PubMed

    Ziegler, Sarah A; Nuckols, John; McGee, Charles E; Huang, Yan-Jang Scott; Vanlandingham, Dana L; Tesh, Robert B; Higgs, Stephen

    2011-11-01

    Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that in humans causes an acute febrile illness characterized by fever, arthralgia, and rash. It is currently associated with large outbreaks in Asia, Africa, and islands of the Indian Ocean and has been introduced from these tropical regions into Europe, where local transmission has been recorded on two occasions. The underlying basis of the pathogenesis of CHIKV and related alphaviruses that produce similar symptoms remains unclear. By applying new techniques, for example, in vivo imaging in live animals and arthropods, we may improve our understanding of viral pathogenesis in vertebrates and viral replication in mosquitoes. This technical report describes the evaluation of a CHIKV?luciferase clone to visualize infection and dissemination in both Aedes aegypti and Aedes albopictus mosquitoes and mice. In mosquitoes, luciferase activity was seen at 3 and 7 days post-infection in both head and abdomens. In vivo imaging of CHIKV-luciferase was detected in mice for up to 5 days post-infection at the site of inoculation with limited dissemination to the skeletal muscle.

  19. An efficient deletion mutant packaging system for defective herpes simplex virus vectors: Potential applications to human gene therapy and neuronal physiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geller, A.I.; Keyomarsi, K.; Bryan, J.

    1990-11-01

    The authors have previously described a defective herpes simplex virus (HSV-1) vector system that permits that introduction of virtually any gene into nonmitotic cells. pHSVlac, the prototype vector, stably expresses Escherichia coli {beta}-galactosidase from a constitutive promoter in many human cell lines, in cultured rat neurons from throughout the nervous system, and in cells in the adult rat brain. HSV-1 vectors expressing other genes may prove useful for studying neuronal physiology or performing human gene therapy for neurological diseases, such as Parkinson disease or brain tumors. A HSV-1 temperature-sensitive (ts) mutant, ts K, has been used as helper virus; tsmore » mutants revert to wild type. In contrast, HSV-1 deletion mutants essentially cannot revert to wild type; therefore, use of a deletion mutant as helper virus might permit human gene therapy with HSV-1 vectors. They now report an efficient packaging system for HSV-1 VECTORS USING A DELETION MUTANT, d30EBA, as helper virus; virus is grown on the complementing cell line M64A. pHSVlac virus prepared using the deletion mutant packaging system stably expresses {beta}-galactosidase in cultured rat sympathetic neurons and glia. Both D30EBA and ts K contain a mutation in the IE3 gene of HSV-1 strain 17 and have the same phenotype; therefore, changing the helper virus from ts K to D30EBA does not alter the host range or other properties of the HSV-1 vector system.« less

  20. Detection of a chikungunya outbreak in Central Italy, August to September 2017.

    PubMed

    Venturi, Giulietta; Di Luca, Marco; Fortuna, Claudia; Remoli, Maria Elena; Riccardo, Flavia; Severini, Francesco; Toma, Luciano; Del Manso, Martina; Benedetti, Eleonora; Caporali, Maria Grazia; Amendola, Antonello; Fiorentini, Cristiano; De Liberato, Claudio; Giammattei, Roberto; Romi, Roberto; Pezzotti, Patrizio; Rezza, Giovanni; Rizzo, Caterina

    2017-09-01

    An autochthonous chikungunya outbreak is ongoing near Anzio, a coastal town in the province of Rome. The virus isolated from one patient and mosquitoes lacks the A226V mutation and belongs to an East Central South African strain. As of 20 September, 86 cases are laboratory-confirmed. The outbreak proximity to the capital, its late summer occurrence, and diagnostic delays, are favouring transmission. Vector control, enhanced surveillance and restricted blood donations are being implemented in affected areas.

  1. Neurovirulence comparison of chikungunya virus isolates of the Asian and East/Central/South African genotypes from Malaysia.

    PubMed

    Wei Chiam, Chun; Fun Chan, Yoke; Chai Ong, Kien; Thong Wong, Kum; Sam, I-Ching

    2015-11-01

    Chikungunya virus (CHIKV), an alphavirus of the family Togaviridae, causes fever, polyarthritis and rash. There are three genotypes: West African, Asian and East/Central/South African (ECSA). The latter two genotypes have caused global outbreaks in recent years. Recent ECSA CHIKV outbreaks have been associated with severe neurological disease, but it is not known if different CHIKV genotypes are associated with different neurovirulence. In this study, the neurovirulence of Asian (MY/06/37348) and ECSA (MY/08/065) strains of CHIKV isolated in Malaysia were compared. Intracerebral inoculation of either virus into suckling mice was followed by virus titration, histopathology and gene expression analysis of the harvested brains. Both strains of CHIKV replicated similarly, yet mice infected with MY/06/37348 showed higher mortality. Histopathology findings showed that both CHIKV strains spread within the brain (where CHIKV antigen was localized to astrocytes and neurons) and beyond to skeletal muscle. In MY/06/37348-infected mice, apoptosis, which is associated with neurovirulence in alphaviruses, was observed earlier in brains. Comparison of gene expression showed that a pro-apoptotic gene (eIF2αK2) was upregulated at higher levels in MY/06/37348-infected mice, while genes involved in anti-apoptosis (BIRC3), antiviral responses and central nervous system protection (including CD40, IL-10RA, MyD88 and PYCARD) were upregulated more highly in MY/08/065-infected mice. In conclusion, the higher mortality observed following MY/06/37348 infection in mice is due not to higher viral replication in the brain, but to differentially expressed genes involved in host immune responses. These findings may help to identify therapeutic strategies and biomarkers for neurological CHIKV infections.

  2. Mapping of Chikungunya Virus Interactions with Host Proteins Identified nsP2 as a Highly Connected Viral Component

    PubMed Central

    Bouraï, Mehdi; Lucas-Hourani, Marianne; Gad, Hans Henrik; Drosten, Christian; Jacob, Yves; Tafforeau, Lionel; Cassonnet, Patricia; Jones, Louis M.; Judith, Delphine; Couderc, Thérèse; Lecuit, Marc; André, Patrice; Kümmerer, Beate Mareike; Lotteau, Vincent; Desprès, Philippe; Vidalain, Pierre-Olivier

    2012-01-01

    Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that has been responsible for an epidemic outbreak of unprecedented magnitude in recent years. Since then, significant efforts have been made to better understand the biology of this virus, but we still have poor knowledge of CHIKV interactions with host cell components at the molecular level. Here we describe the extensive use of high-throughput yeast two-hybrid (HT-Y2H) assays to characterize interactions between CHIKV and human proteins. A total of 22 high-confidence interactions, which essentially involved the viral nonstructural protein nsP2, were identified and further validated in protein complementation assay (PCA). These results were integrated to a larger network obtained by extensive mining of the literature for reports on alphavirus-host interactions. To investigate the role of cellular proteins interacting with nsP2, gene silencing experiments were performed in cells infected by a recombinant CHIKV expressing Renilla luciferase as a reporter. Collected data showed that heterogeneous nuclear ribonucleoprotein K (hnRNP-K) and ubiquilin 4 (UBQLN4) participate in CHIKV replication in vitro. In addition, we showed that CHIKV nsP2 induces a cellular shutoff, as previously reported for other Old World alphaviruses, and determined that among binding partners identified by yeast two-hybrid methods, the tetratricopeptide repeat protein 7B (TTC7B) plays a significant role in this activity. Altogether, this report provides the first interaction map between CHIKV and human proteins and describes new host cell proteins involved in the replication cycle of this virus. PMID:22258240

  3. An app for climate-based Chikungunya risk monitoring and mapping

    NASA Astrophysics Data System (ADS)

    Soebiyanto, R. P.; Rama, X.; Jepsen, R.; Bijoria, S.; Linthicum, K. J.; Anyamba, A.

    2017-12-01

    There is an increasing concern for reemergence and spread of chikungunya in the last 10 years in Africa, the Indian Ocean, and Asia, and range expansion that now reaches the Caribbean, South America and threatens North America. The outbreak of Chikungunya in 2013 and its spread throughout the Americas has so far resulted in more than 1.7 million suspected cases. This has demonstrated the importance of readiness in assessing potential risk of the emergence of vector-borne diseases. Climate and ecological conditions are now recognized as major contributors to the emergence and re-emergence of various vector-borne diseases including Chikungunya. Variations and persistence of extreme climate conditions provide suitable environment for the increase of certain disease vector populations, which then further amplify vector-borne disease transmission. This highlights the importance of climate anomaly information in assessing regions at risk for Chikungunya. In order to address such issue, we are developing a climate-based app, CHIKRISK, which will help decision makers to answer three critical questions: (i) Where has Chikungunya activity occurred; (ii) Where it is occurring now; (iii) Which regions are currently at risk for Chikungunya. We first develop a database of historical Chikungunya outbreak locations compiled from publicly available information. These records are used to map where Chikungunya activity has occurred over time. We leverage on various satellite-based climate data records - such as rainfall, land surface and near surface temperature to characterize evolving conditions prior to and during Chikungunya activity. Chikungunya outbreak data, climate and ancillary (i.e. population and elevation) data are used to develop analytics capability that will produce risk maps. The CHIKRISK app has the capability to visualize historical Chikungunya activity locations, climate anomaly conditions and Chikungunya risk maps. Currently, the focus of the development is on the

  4. THE BURDEN OF DENGUE AND CHIKUNGUNYA WORLDWIDE: IMPLICATIONS FOR THE SOUTHERN UNITED STATES AND CALIFORNIA

    PubMed Central

    Fredericks, Anthony C.; Fernandez-Sesma, Ana

    2015-01-01

    Dengue virus (DENV) spreads to humans through the bite of an infected Aedes aegypti or Aedes albopictus mosquito and is a growing public health threat to both industrialized and developing nations worldwide. Outbreaks of autochthonous dengue in the United States occurred extensively in the past but over the past three decades have again taken place in Florida, Hawai’i, and Texas as well as in American Samoa, Guam, Northern Mariana Islands, Puerto Rico, and the US Virgin Islands. As the Aedes vectors spread worldwide it is anticipated that DENV as well as other viruses also transmitted by these vectors, such as Chikungunya virus (CHKV), will invade new areas of the world, including the US. In this review, we describe the current burden of dengue disease worldwide and the potential introduction of DENV and CHKV into different areas of the US. Of these areas, the state of California saw the arrival and spread of the Aedes aegypti vector beginning in 2013. This invasion presents a developing situation when considering the state’s number of imported dengue cases and proximity to northern Mexico as well as the rising specter of chikungunya in the Western hemisphere. The distribution of Aedes vectors in California as well as a discussion of several factors contributing to the risk of dengue importation are discussed and evaluated. PMID:25960096

  5. Genetic divergence of Chikungunya viruses in India (1963-2006) with special reference to the 2005-2006 explosive epidemic.

    PubMed

    Arankalle, Vidya A; Shrivastava, Shubham; Cherian, Sarah; Gunjikar, Rashmi S; Walimbe, Atul M; Jadhav, Santosh M; Sudeep, A B; Mishra, Akhilesh C

    2007-07-01

    Re-emergence of Chikungunya (CHIK), caused by CHIK virus, was recorded in India during 2005-2006 after a gap of 32 years, causing 1.3 million cases in 13 states. Several islands of the Indian Ocean reported similar outbreaks in the same period. These outbreaks were attributed to the African genotype of CHIK virus. To examine relatedness of the Indian isolates (IND-06) with Reunion Island isolates (RU), full-genome sequences of five CHIK virus isolates representative of different Indian states were determined. In addition, an isolate obtained from mosquitoes in the year 2000 (Yawat-2000), identified as being of the African genotype, and two older strains isolated in 1963 and 1973 (of the Asian genotype), were sequenced. The IND-06 isolates shared 99.9 % nucleotide identity with RU isolates, confirming involvement of the same strain in these outbreaks. The IND-06 isolates shared 98.2 % identity with the Yawat-2000 isolate. Of two crucial substitutions reported for RU isolates in the E1 region, M269V was noted in the Yawat-2000 and IND-06 isolates, whereas D284E was seen only in the IND-06 isolates. The A226V shift observed with the progression of the epidemic in Reunion Island, probably associated with adaptation to the mosquito vector, was absent in all of the Indian isolates. Three unique substitutions were noted in the IND-06 isolates: two (T128K and T376M) in the Nsp1 region and one (P23S) in the capsid protein. The two Asian strains showed 99.4 % nucleotide identity to each other, indicating relative stability of the virus. No evidence of recombination of the Asian and African genotypes, or of positive selection was observed. The results may help in understanding the association, if any, of the unique mutations with the explosive nature of the CHIK outbreak.

  6. Behavioral, climatic, and environmental risk factors for Zika and Chikungunya virus infections in Rio de Janeiro, Brazil, 2015-16

    PubMed Central

    Abiodun, Gbenga J.; Halai, Umme-Aiman; De Santis, Bianca; Carvalho Sequeira, Patricia; Machado Araujo, Eliane; Alves Sampaio, Simone; Lima de Mendonça, Marco Cesar; Fabri, Allison; Ribeiro, Rita Maria; Harrigan, Ryan; Smith, Thomas B.; Raja Gabaglia, Claudia; Brasil, Patrícia; Bispo de Filippis, Ana Maria; Nielsen-Saines, Karin

    2017-01-01

    The burden of arboviruses in the Americas is high and may result in long-term sequelae with infants disabled by Zika virus infection (ZIKV) and arthritis caused by infection with Chikungunya virus (CHIKV). We aimed to identify environmental drivers of arbovirus epidemics to predict where the next epidemics will occur and prioritize municipalities for vector control and eventual vaccination. We screened sera and urine samples (n = 10,459) from residents of 48 municipalities in the state of Rio de Janeiro for CHIKV, dengue virus (DENV), and ZIKV by molecular PCR diagnostics. Further, we assessed the spatial pattern of arbovirus incidence at the municipal and neighborhood scales and the timing of epidemics and major rainfall events. Lab-confirmed cases included 1,717 infections with ZIKV (43.8%) and 2,170 with CHIKV (55.4%) and only 29 (<1%) with DENV. ZIKV incidence was greater in neighborhoods with little access to municipal water infrastructure (r = -0.47, p = 1.2x10-8). CHIKV incidence was weakly correlated with urbanization (r = 0.2, p = 0.02). Rains began in October 2015 and were followed one month later by the largest wave of ZIKV epidemic. ZIKV cases markedly declined in February 2016, which coincided with the start of a CHIKV outbreak. Rainfall predicted ZIKV and CHIKV with a lead time of 3 weeks each time. The association between rainfall and epidemics reflects vector ecology as the larval stages of Aedes aegypti require pools of water to develop. The temporal dynamics of ZIKV and CHIKV may be explained by the shorter incubation period of the viruses in the mosquito vector; 2 days for CHIKV versus 10 days for ZIKV. PMID:29145452

  7. Tracking the return of Aedes aegypti to Brazil, the major vector of the dengue, chikungunya and Zika viruses

    PubMed Central

    Gloria-Soria, Andrea; Caccone, Adalgisa; Evans, Benjamin; Schama, Renata; Martins, Ademir Jesus; Powell, Jeffrey R.

    2017-01-01

    Background Aedes aegypti, commonly known as “the yellow fever mosquito”, is of great medical concern today primarily as the major vector of dengue, chikungunya and Zika viruses, although yellow fever remains a serious health concern in some regions. The history of Ae. aegypti in Brazil is of particular interest because the country was subjected to a well-documented eradication program during 1940s-1950s. After cessation of the campaign, the mosquito quickly re-established in the early 1970s with several dengue outbreaks reported during the last 30 years. Brazil can be considered the country suffering the most from the yellow fever mosquito, given the high number of dengue, chikungunya and Zika cases reported in the country, after having once been declared “free of Ae. aegypti”. Methodology/Principal findings We used 12 microsatellite markers to infer the genetic structure of Brazilian Ae. aegypti populations, genetic variability, genetic affinities with neighboring geographic areas, and the timing of their arrival and spread. This enabled us to reconstruct their recent history and evaluate whether the reappearance in Brazil was the result of re-invasion from neighboring non-eradicated areas or re-emergence from local refugia surviving the eradication program. Our results indicate a genetic break separating the northern and southern Brazilian Ae. aegypti populations, with further genetic differentiation within each cluster, especially in southern Brazil. Conclusions/Significance Based on our results, re-invasions from non-eradicated regions are the most likely scenario for the reappearance of Ae. aegypti in Brazil. While populations in the northern cluster are likely to have descended from Venezuela populations as early as the 1970s, southern populations seem to have derived more recently from northern Brazilian areas. Possible entry points are also revealed within both southern and northern clusters that could inform strategies to control and monitor this

  8. Tracking the return of Aedes aegypti to Brazil, the major vector of the dengue, chikungunya and Zika viruses.

    PubMed

    Kotsakiozi, Panayiota; Gloria-Soria, Andrea; Caccone, Adalgisa; Evans, Benjamin; Schama, Renata; Martins, Ademir Jesus; Powell, Jeffrey R

    2017-07-01

    Aedes aegypti, commonly known as "the yellow fever mosquito", is of great medical concern today primarily as the major vector of dengue, chikungunya and Zika viruses, although yellow fever remains a serious health concern in some regions. The history of Ae. aegypti in Brazil is of particular interest because the country was subjected to a well-documented eradication program during 1940s-1950s. After cessation of the campaign, the mosquito quickly re-established in the early 1970s with several dengue outbreaks reported during the last 30 years. Brazil can be considered the country suffering the most from the yellow fever mosquito, given the high number of dengue, chikungunya and Zika cases reported in the country, after having once been declared "free of Ae. aegypti". We used 12 microsatellite markers to infer the genetic structure of Brazilian Ae. aegypti populations, genetic variability, genetic affinities with neighboring geographic areas, and the timing of their arrival and spread. This enabled us to reconstruct their recent history and evaluate whether the reappearance in Brazil was the result of re-invasion from neighboring non-eradicated areas or re-emergence from local refugia surviving the eradication program. Our results indicate a genetic break separating the northern and southern Brazilian Ae. aegypti populations, with further genetic differentiation within each cluster, especially in southern Brazil. Based on our results, re-invasions from non-eradicated regions are the most likely scenario for the reappearance of Ae. aegypti in Brazil. While populations in the northern cluster are likely to have descended from Venezuela populations as early as the 1970s, southern populations seem to have derived more recently from northern Brazilian areas. Possible entry points are also revealed within both southern and northern clusters that could inform strategies to control and monitor this important arbovirus vector.

  9. Mapping recent chikungunya activity in the Americas

    USDA-ARS?s Scientific Manuscript database

    To better understand chikungunya activity in the America we mapped recent chikungunya activity in the Americas. This activity is needed to better understand that the relationships between climatic factors and disease outbreak patters are critical to the design and constructing of predictive models....

  10. Mutation of a Conserved Nuclear Export Sequence in Chikungunya Virus Capsid Protein Disrupts Host Cell Nuclear Import.

    PubMed

    Jacobs, Susan C; Taylor, Adam; Herrero, Lara J; Mahalingam, Suresh; Fazakerley, John K

    2017-10-20

    Transmitted by mosquitoes; chikungunya virus (CHIKV) is responsible for frequent outbreaks of arthritic disease in humans. CHIKV is an arthritogenic alphavirus of the Togaviridae family. Capsid protein, a structural protein encoded by the CHIKV RNA genome, is able to translocate to the host cell nucleus. In encephalitic alphaviruses nuclear translocation induces host cell shut off; however, the role of capsid protein nuclear localisation in arthritogenic alphaviruses remains unclear. Using replicon systems, we investigated a nuclear export sequence (NES) in the N-terminal region of capsid protein; analogous to that found in encephalitic alphavirus capsid but uncharacterised in CHIKV. The chromosomal maintenance 1 (CRM1) export adaptor protein mediated CHIKV capsid protein export from the nucleus and a region within the N-terminal part of CHIKV capsid protein was required for active nuclear targeting. In contrast to encephalitic alphaviruses, CHIKV capsid protein did not inhibit host nuclear import; however, mutating the NES of capsid protein (∆NES) blocked host protein access to the nucleus. Interactions between capsid protein and the nucleus warrant further investigation.

  11. Chikungunya from the Caribbean: the importance of appropriate laboratory tests to confirm the diagnosis.

    PubMed

    Magurano, Fabio; Zammarchi, Lorenzo; Baggieri, Melissa; Fortuna, Claudia; Farese, Alberto; Benedetti, Eleonora; Fiorentini, Cristiano; Rezza, Giovanni; Nicoletti, Loredana; Bartoloni, Alessandro

    2015-04-01

    Chikungunya virus (CHIKV) appeared for the first time in the Western Hemisphere--the French West Indies--in December of 2013. From there, the virus has spread to other Caribbean islands. Following the diagnosis of first autochthonous CHIKV cases in the Caribbean island of Saint Martin, a large outbreak is ongoing in the Americas. As of September 12, 2014, a total of 706,093 suspected and 9803 confirmed CHIKV cases have been reported in the Americas. This case study highlights the possibility of false-negative immunochromatographic CHIKV immunoglobulin M (IgM) tests and the need of confirmatory tests for suspected cases. Moreover, a greater spread of virus together with the presence of a mosquito vector (Aedes albopictus) enhances the risk of autochthonous transmission in Europe.

  12. Molecular Mimicry between Chikungunya Virus and Host Components: A Possible Mechanism for the Arthritic Manifestations

    PubMed Central

    Reddy, Vijayalakshmi; Desai, Anita; Krishna, Shankar Susarla; Vasanthapuram, Ravi

    2017-01-01

    Background Chikungunya virus (CHIKV), a reemerging pathogen causes a self limited illness characterized by fever, headache, myalgia and arthralgia. However, 10–20% affected individuals develop persistent arthralgia which contributes to considerable morbidity. The exact molecular mechanisms underlying these manifestations are not well understood. The present study investigated the possible occurrence of molecular mimicry between CHIKV E1 glycoprotein and host human components. Methodology Bioinformatic tools were used to identify peptides of CHIKV E1 exhibiting similarity to host components. Two peptides (A&B) were identified using several bioinformatic tools, synthesised and used to validate the results obtained in silico. An ELISA was designed to assess the immunoreactivity of serum samples from CHIKV patients to these peptides. Further, experiments were conducted in a C57BL/6J experimental mouse model to investigate if peptide A and peptide B were indeed capable of inducing pathology. Findings The serum samples showed reactivity of varying degrees, indicating that these peptides are indeed being recognized by the host immune system during CHIKV infection. Further, these peptides when injected into C57BL/6J mice were able to induce significant inflammation in the muscles of C57BL/6J mice, similar to that observed in animals that were injected with CHIKV alone. Additionally, animals that were primed initially with CHIKV followed by a subsequent injection of the CHIKV peptides exhibited enhanced inflammatory pathology in the skeletal muscles as compared to animals that were injected with peptides or virus alone. Collectively these observations validate the hypothesis that molecular mimicry between CHIKV E1 protein and host proteins does contribute to pathology in CHIKV infection. PMID:28125580

  13. Development of in-house serological methods for diagnosis and surveillance of chikungunya.

    PubMed

    Galo, Saira Saborío; González, Karla; Téllez, Yolanda; García, Nadezna; Pérez, Leonel; Gresh, Lionel; Harris, Eva; Balmaseda, Ángel

    2017-08-21

    To develop and evaluate serological methods for chikungunya diagnosis and research in Nicaragua. Two IgM ELISA capture systems (MAC-ELISA) for diagnosis of acute chikungunya virus (CHIKV) infections, and two Inhibition ELISA Methods (IEM) to measure total antibodies against CHIKV were developed using monoclonal antibodies (mAbs) and hyperimmune serum at the National Virology Laboratory of Nicaragua in 2014-2015. The sensitivity, specificity, predictive values, and agreement of the MAC-ELISAs were obtained by comparing the results of 198 samples (116 positive; 82 negative) with the Centers for Disease Control and Prevention's IgM ELISA (Atlanta, Georgia, United States; CDC-MAC-ELISA). For clinical evaluation of the four serological techniques, 260 paired acute and convalescent phase serum samples of suspected chikungunya cases were used. All four assays were standardized by determining the optimal concentrations of the different reagents. Processing times were substantially reduced compared to the CDC-MAC-ELISA. For the MAC-ELISA systems, a sensitivity of 96.6% and 97.4%, and a specificity of 98.8% and 91.5% were obtained using mAb and hyperimmune serum, respectively, compared with the CDC method. Clinical evaluation of the four serological techniques versus the CDC real-time RT-PCR assay resulted in a sensitivity of 95.7% and a specificity of 88.8%-95.9%. Two MAC-ELISA and two IEM systems were standardized, demonstrating very good quality for chikungunya diagnosis and research demands. This will achieve more efficient epidemiological surveillance in Nicaragua, the first country in Central America to produce its own reagents for serological diagnosis of CHIKV. The methods evaluated here can be applied in other countries and will contribute to sustainable diagnostic systems to combat the disease.

  14. Development of in-house serological methods for diagnosis and surveillance of chikungunya

    PubMed Central

    Galo, Saira Saborío; González, Karla; Téllez, Yolanda; García, Nadezna; Pérez, Leonel; Gresh, Lionel; Harris, Eva; Balmaseda, Ángel

    2017-01-01

    Objective To develop and evaluate serological methods for chikungunya diagnosis and research in Nicaragua. Methods Two IgM ELISA capture systems (MAC-ELISA) for diagnosis of acute chikungunya virus (CHIKV) infections, and two Inhibition ELISA Methods (IEM) to measure total antibodies against CHIKV were developed using monoclonal antibodies (mAbs) and hyperimmune serum at the National Virology Laboratory of Nicaragua in 2014–2015. The sensitivity, specificity, predictive values, and agreement of the MAC-ELISAs were obtained by comparing the results of 198 samples (116 positive; 82 negative) with the Centers for Disease Control and Prevention’s IgM ELISA (Atlanta, Georgia, United States; CDC-MAC-ELISA). For clinical evaluation of the four serological techniques, 260 paired acute and convalescent phase serum samples of suspected chikungunya cases were used. Results All four assays were standardized by determining the optimal concentrations of the different reagents. Processing times were substantially reduced compared to the CDC-MAC-ELISA. For the MAC-ELISA systems, a sensitivity of 96.6% and 97.4%, and a specificity of 98.8% and 91.5% were obtained using mAb and hyperimmune serum, respectively, compared with the CDC method. Clinical evaluation of the four serological techniques versus the CDC real-time RT-PCR assay resulted in a sensitivity of 95.7% and a specificity of 88.8%–95.9%. Conclusion Two MAC-ELISA and two IEM systems were standardized, demonstrating very good quality for chikungunya diagnosis and research demands. This will achieve more efficient epidemiological surveillance in Nicaragua, the first country in Central America to produce its own reagents for serological diagnosis of CHIKV. The methods evaluated here can be applied in other countries and will contribute to sustainable diagnostic systems to combat the disease. PMID:28902269

  15. THE EMERGENCE OF ARTHROPOD-BORNE VIRAL DISEASES: A GLOBAL PROSPECTIVE ON DENGUE, CHIKUNGUNYA AND ZIKA FEVERS

    PubMed Central

    Mayer, Sandra V.; Tesh, Robert B.; Vasilakis, Nikos

    2016-01-01

    Arthropod-borne viruses (arboviruses) present a substantial threat to human and animal health worldwide. Arboviruses can cause a variety of clinical presentations that range from mild to life threatening symptoms. Many arboviruses are present in nature through two distinct cycles, the urban and sylvatic cycle that are maintained in complex biological cycles. In this review we briefly discuss the factors driving the emergence of arboviruses, such as the anthropogenic aspects of unrestrained human population growth, economic expansion and globalization. Also the important aspects of viruses and vectors in the occurrence of arboviruses epidemics. The focus of this review will be on dengue, zika and chikungunya viruses, particularly because these viruses are currently causing a negative impact on public health and economic damage around the world. PMID:27876643

  16. Gene I mutants of peanut chlorotic streak virus, a caulimovirus, replicate in plants but do not move from cell to cell.

    PubMed Central

    Ducasse, D A; Mushegian, A R; Shepherd, R J

    1995-01-01

    Gene I of peanut chlorotic streak virus (PCISV), a caulimovirus, is homologous to gene I of other caulimoviruses and may encode a protein for virus movement. To evaluate the function of gene I, several mutations were created in this gene of an infectious, partially redundant clone of PCISV. Constructs with an in-frame deletion and a single amino acid substitution in gene I were not infectious. To test for replication of these mutants in primarily infected cells, an immunosorbent PCR technique was devised. Virus particles formed by mutants in plants were recovered by binding to antivirus antibodies on a solid matrix and DNase treated to discriminate against residual inoculum, and DNA of trapped virions was subjected to PCR amplification. Gene I mutants were shown to direct formation of encapsidated DNA as revealed by a PCR product. Control gene V mutants (reverse transcriptase essential for replication) did not yield a PCR product. Quantitative PCR allowed estimation of the proportion of cells initially infected by gene I mutants and the amount of extractable virus per cell. It is concluded that PCISV gene I encodes a movement protein and that the immunoselection-PCR technique is useful in studying subliminal virus infection in plants. PMID:7543587

  17. Vectorial status of the Asian tiger mosquito Aedes albopictus of La Réunion Island for Zika virus.

    PubMed

    Vazeille, M; Dehecq, J-S; Failloux, A-B

    2018-06-01

    La Réunion Island has been the scene of unusually large epidemics of dengue and chikungunya viruses with Aedes albopictus as the sole vector. After experimental oral infection, Ae. albopictus from La Réunion Island can disseminate both dengue and chikungunya viruses but not the Asian genotype of Zika virus, suggesting a strong midgut barrier to dissemination. Autochthonous transmission of the Asian genotype of Zika virus is improbable on La Réunion Island. © 2017 The Authors. Medical and Veterinary Entomology published by John Wiley & Sons Ltd on behalf of Royal Entomological Society.

  18. Chikungunya virus transmission potential by local Aedes mosquitoes in the Americas and Europe.

    PubMed

    Vega-Rúa, Anubis; Lourenço-de-Oliveira, Ricardo; Mousson, Laurence; Vazeille, Marie; Fuchs, Sappho; Yébakima, André; Gustave, Joel; Girod, Romain; Dusfour, Isabelle; Leparc-Goffart, Isabelle; Vanlandingham, Dana L; Huang, Yan-Jang S; Lounibos, L Philip; Mohamed Ali, Souand; Nougairede, Antoine; de Lamballerie, Xavier; Failloux, Anna-Bella

    2015-05-01

    Chikungunya virus (CHIKV), mainly transmitted in urban areas by the mosquitoes Aedes aegypti and Aedes albopictus, constitutes a major public health problem. In late 2013, CHIKV emerged on Saint-Martin Island in the Caribbean and spread throughout the region reaching more than 40 countries. Thus far, Ae. aegypti mosquitoes have been implicated as the sole vector in the outbreaks, leading to the hypothesis that CHIKV spread could be limited only to regions where this mosquito species is dominant. We determined the ability of local populations of Ae. aegypti and Ae. albopictus from the Americas and Europe to transmit the CHIKV strain of the Asian genotype isolated from Saint-Martin Island (CHIKV_SM) during the recent epidemic, and an East-Central-South African (ECSA) genotype CHIKV strain isolated from La Réunion Island (CHIKV_LR) as a well-characterized control virus. We also evaluated the effect of temperature on transmission of CHIKV_SM by European Ae. albopictus. We found that (i) Aedes aegypti from Saint-Martin Island transmit CHIKV_SM and CHIKV_LR with similar efficiency, (ii) Ae. aegypti from the Americas display similar transmission efficiency for CHIKV_SM, (iii) American and European populations of the alternative vector species Ae. albopictus were as competent as Ae. aegypti populations with respect to transmission of CHIKV_SM and (iv) exposure of European Ae. albopictus to low temperatures (20°C) significantly reduced the transmission potential for CHIKV_SM. CHIKV strains belonging to the ECSA genotype could also have initiated local transmission in the new world. Additionally, the ongoing CHIKV outbreak in the Americas could potentially spread throughout Ae. aegypti- and Ae. albopictus-infested regions of the Americas with possible imported cases of CHIKV to Ae. albopictus-infested regions in Europe. Colder temperatures may decrease the local transmission of CHIKV_SM by European Ae. albopictus, potentially explaining the lack of autochthonous

  19. Chikungunya Virus Transmission Potential by Local Aedes Mosquitoes in the Americas and Europe

    PubMed Central

    Vega-Rúa, Anubis; Lourenço-de-Oliveira, Ricardo; Mousson, Laurence; Vazeille, Marie; Fuchs, Sappho; Yébakima, André; Gustave, Joel; Girod, Romain; Dusfour, Isabelle; Leparc-Goffart, Isabelle; Vanlandingham, Dana L.; Huang, Yan-Jang S.; Lounibos, L. Philip; Mohamed Ali, Souand; Nougairede, Antoine; de Lamballerie, Xavier; Failloux, Anna-Bella

    2015-01-01

    Background Chikungunya virus (CHIKV), mainly transmitted in urban areas by the mosquitoes Aedes aegypti and Aedes albopictus, constitutes a major public health problem. In late 2013, CHIKV emerged on Saint-Martin Island in the Caribbean and spread throughout the region reaching more than 40 countries. Thus far, Ae. aegypti mosquitoes have been implicated as the sole vector in the outbreaks, leading to the hypothesis that CHIKV spread could be limited only to regions where this mosquito species is dominant. Methodology/Principal Findings We determined the ability of local populations of Ae. aegypti and Ae. albopictus from the Americas and Europe to transmit the CHIKV strain of the Asian genotype isolated from Saint-Martin Island (CHIKV_SM) during the recent epidemic, and an East-Central-South African (ECSA) genotype CHIKV strain isolated from La Réunion Island (CHIKV_LR) as a well-characterized control virus. We also evaluated the effect of temperature on transmission of CHIKV_SM by European Ae. albopictus. We found that (i) Aedes aegypti from Saint-Martin Island transmit CHIKV_SM and CHIKV_LR with similar efficiency, (ii) Ae. aegypti from the Americas display similar transmission efficiency for CHIKV_SM, (iii) American and European populations of the alternative vector species Ae. albopictus were as competent as Ae. aegypti populations with respect to transmission of CHIKV_SM and (iv) exposure of European Ae. albopictus to low temperatures (20°C) significantly reduced the transmission potential for CHIKV_SM. Conclusions/Significance CHIKV strains belonging to the ECSA genotype could also have initiated local transmission in the new world. Additionally, the ongoing CHIKV outbreak in the Americas could potentially spread throughout Ae. aegypti- and Ae. albopictus-infested regions of the Americas with possible imported cases of CHIKV to Ae. albopictus-infested regions in Europe. Colder temperatures may decrease the local transmission of CHIKV_SM by European Ae

  20. A human genome-wide loss-of-function screen identifies effective chikungunya antiviral drugs

    PubMed Central

    Karlas, Alexander; Berre, Stefano; Couderc, Thérèse; Varjak, Margus; Braun, Peter; Meyer, Michael; Gangneux, Nicolas; Karo-Astover, Liis; Weege, Friderike; Raftery, Martin; Schönrich, Günther; Klemm, Uwe; Wurzlbauer, Anne; Bracher, Franz; Merits, Andres; Meyer, Thomas F.; Lecuit, Marc

    2016-01-01

    Chikungunya virus (CHIKV) is a globally spreading alphavirus against which there is no commercially available vaccine or therapy. Here we use a genome-wide siRNA screen to identify 156 proviral and 41 antiviral host factors affecting CHIKV replication. We analyse the cellular pathways in which human proviral genes are involved and identify druggable targets. Twenty-one small-molecule inhibitors, some of which are FDA approved, targeting six proviral factors or pathways, have high antiviral activity in vitro, with low toxicity. Three identified inhibitors have prophylactic antiviral effects in mouse models of chikungunya infection. Two of them, the calmodulin inhibitor pimozide and the fatty acid synthesis inhibitor TOFA, have a therapeutic effect in vivo when combined. These results demonstrate the value of loss-of-function screening and pathway analysis for the rational identification of small molecules with therapeutic potential and pave the way for the development of new, host-directed, antiviral agents. PMID:27177310

  1. A human genome-wide loss-of-function screen identifies effective chikungunya antiviral drugs.

    PubMed

    Karlas, Alexander; Berre, Stefano; Couderc, Thérèse; Varjak, Margus; Braun, Peter; Meyer, Michael; Gangneux, Nicolas; Karo-Astover, Liis; Weege, Friderike; Raftery, Martin; Schönrich, Günther; Klemm, Uwe; Wurzlbauer, Anne; Bracher, Franz; Merits, Andres; Meyer, Thomas F; Lecuit, Marc

    2016-05-12

    Chikungunya virus (CHIKV) is a globally spreading alphavirus against which there is no commercially available vaccine or therapy. Here we use a genome-wide siRNA screen to identify 156 proviral and 41 antiviral host factors affecting CHIKV replication. We analyse the cellular pathways in which human proviral genes are involved and identify druggable targets. Twenty-one small-molecule inhibitors, some of which are FDA approved, targeting six proviral factors or pathways, have high antiviral activity in vitro, with low toxicity. Three identified inhibitors have prophylactic antiviral effects in mouse models of chikungunya infection. Two of them, the calmodulin inhibitor pimozide and the fatty acid synthesis inhibitor TOFA, have a therapeutic effect in vivo when combined. These results demonstrate the value of loss-of-function screening and pathway analysis for the rational identification of small molecules with therapeutic potential and pave the way for the development of new, host-directed, antiviral agents.

  2. Antigenic Variation of East/Central/South African and Asian Chikungunya Virus Genotypes in Neutralization by Immune Sera.

    PubMed

    Chua, Chong-Long; Sam, I-Ching; Merits, Andres; Chan, Yoke-Fun

    2016-08-01

    Chikungunya virus (CHIKV) is a re-emerging mosquito-borne virus which causes epidemics of fever, severe joint pain and rash. Between 2005 and 2010, the East/Central/South African (ECSA) genotype was responsible for global explosive outbreaks across India, the Indian Ocean and Southeast Asia. From late 2013, Asian genotype CHIKV has caused outbreaks in the Americas. The characteristics of cross-antibody efficacy and epitopes are poorly understood. We characterized human immune sera collected during two independent outbreaks in Malaysia of the Asian genotype in 2006 and the ECSA genotype in 2008-2010. Neutralizing capacity was analyzed against representative clinical isolates as well as viruses rescued from infectious clones of ECSA and Asian CHIKV. Using whole virus antigen and recombinant E1 and E2 envelope glycoproteins, we further investigated antibody binding sites, epitopes, and antibody titers. Both ECSA and Asian sera demonstrated stronger neutralizing capacity against the ECSA genotype, which corresponded to strong epitope-antibody interaction. ECSA serum targeted conformational epitope sites in the E1-E2 glycoprotein, and E1-E211K, E2-I2T, E2-H5N, E2-G118S and E2-S194G are key amino acids that enhance cross-neutralizing efficacy. As for Asian serum, the antibodies targeting E2 glycoprotein correlated with neutralizing efficacy, and I2T, H5N, G118S and S194G altered and improved the neutralization profile. Rabbit polyclonal antibody against the N-terminal linear neutralizing epitope from the ECSA sequence has reduced binding capacity and neutralization efficacy against Asian CHIKV. These findings imply that the choice of vaccine strain may impact cross-protection against different genotypes. Immune serum from humans infected with CHIKV of either ECSA or Asian genotypes showed differences in binding and neutralization characteristics. These findings have implications for the continued outbreaks of co-circulating CHIKV genotypes and effective design of

  3. Antigenic Variation of East/Central/South African and Asian Chikungunya Virus Genotypes in Neutralization by Immune Sera

    PubMed Central

    Chua, Chong-Long; Sam, I-Ching; Merits, Andres; Chan, Yoke-Fun

    2016-01-01

    Background Chikungunya virus (CHIKV) is a re-emerging mosquito-borne virus which causes epidemics of fever, severe joint pain and rash. Between 2005 and 2010, the East/Central/South African (ECSA) genotype was responsible for global explosive outbreaks across India, the Indian Ocean and Southeast Asia. From late 2013, Asian genotype CHIKV has caused outbreaks in the Americas. The characteristics of cross-antibody efficacy and epitopes are poorly understood. Methodology/Principal Findings We characterized human immune sera collected during two independent outbreaks in Malaysia of the Asian genotype in 2006 and the ECSA genotype in 2008–2010. Neutralizing capacity was analyzed against representative clinical isolates as well as viruses rescued from infectious clones of ECSA and Asian CHIKV. Using whole virus antigen and recombinant E1 and E2 envelope glycoproteins, we further investigated antibody binding sites, epitopes, and antibody titers. Both ECSA and Asian sera demonstrated stronger neutralizing capacity against the ECSA genotype, which corresponded to strong epitope-antibody interaction. ECSA serum targeted conformational epitope sites in the E1-E2 glycoprotein, and E1-E211K, E2-I2T, E2-H5N, E2-G118S and E2-S194G are key amino acids that enhance cross-neutralizing efficacy. As for Asian serum, the antibodies targeting E2 glycoprotein correlated with neutralizing efficacy, and I2T, H5N, G118S and S194G altered and improved the neutralization profile. Rabbit polyclonal antibody against the N-terminal linear neutralizing epitope from the ECSA sequence has reduced binding capacity and neutralization efficacy against Asian CHIKV. These findings imply that the choice of vaccine strain may impact cross-protection against different genotypes. Conclusion/Significance Immune serum from humans infected with CHIKV of either ECSA or Asian genotypes showed differences in binding and neutralization characteristics. These findings have implications for the continued

  4. Estimating Drivers of Autochthonous Transmission of Chikungunya Virus in its Invasion of the Americas

    PubMed Central

    Perkins, T. Alex; Metcalf, C. Jessica E.; Grenfell, Bryan T.; Tatem, Andrew J.

    2015-01-01

    Background Chikungunya is an emerging arbovirus that has caused explosive outbreaks in Africa and Asia for decades and invaded the Americas just over a year ago. During this ongoing invasion, it has spread to 45 countries where it has been transmitted autochthonously, infecting nearly 1.3 million people in total. Methods Here, we made use of weekly, country-level case reports to infer relationships between transmission and two putative climatic drivers: temperature and precipitation averaged across each country on a monthly basis. To do so, we used a TSIR model that enabled us to infer a parametric relationship between climatic drivers and transmission potential, and we applied a new method for incorporating a probabilistic description of the serial interval distribution into the TSIR framework. Results We found significant relationships between transmission and linear and quadratic terms for temperature and precipitation and a linear term for log incidence during the previous pathogen generation. The lattermost suggests that case numbers three to four weeks ago are largely predictive of current case numbers. This effect is quite nonlinear at the country level, however, due to an estimated mixing parameter of 0.74. Relationships between transmission and the climatic variables that we estimated were biologically plausible and in line with expectations. Conclusions Our analysis suggests that autochthonous transmission of Chikungunya in the Americas can be correlated successfully with putative climatic drivers, even at the coarse scale of countries and using long-term average climate data. Overall, this provides a preliminary suggestion that successfully forecasting the future trajectory of a Chikungunya outbreak and the receptivity of virgin areas may be possible. Our results also provide tentative estimates of timeframes and areas of greatest risk, and our extension of the TSIR model provides a novel tool for modeling vector-borne disease transmission. PMID:25737803

  5. Imported Chikungunya fever case in Greece in June 2014 and public health response

    PubMed Central

    Pervanidou, Danai; Papadopoulou, Elpida; Kavatha, Dimitra; Baka, Agoritsa; Koliopoulos, George; Badieritakis, Evangelos; Michaelakis, Antonios; Gavana, Elpida; Patsoula, Eleni; Tsimpos, Ioannis; Gioksari, Thalia; Kyriazopoulou, Evdoxia; Vakali, Annita; Pavli, Androula; Maltezou, Helena C.; Georgakopoulou, Theano; Hadjichristodoulou, Christos; Kremastinou, Jenny; Papa, Anna

    2016-01-01

    We report about the first imported case of Chikungunya fever in Greece in a Greek traveler returning from the Dominican Republic and the associated public health response. We investigated the case and performed focused epidemiological and entomological investigation in all areas the patient visited during the infectious period, to identify the targeted interventions needed. Entomological investigation revealed the occurrence of the competent vector Aedes albopictus (Diptera: Culicidae) in the environment surrounding the hospital where the patient was admitted and in her workplace. All captured mosquitoes tested negative for Chikungunya virus. We further conducted clinical and laboratory examination of the patient’s co-travelers, gave advice on appropriate personal preventive measures against mosquito bites to the patient and co-travelers and on vector control, and raised awareness among health professionals throughout Greece. The risk of introduction and local transmission of Chikungunya and other arboviruses in Greece and other European countries is present, as the competent vector exists in many parts of Europe. Public health professionals, travel medicine specialists and clinicians should maintain awareness regarding this possibility of importation of arbovirus cases in order to provide the appropriate advice, seek the prompt diagnosis, and implement appropriate interventions. Mobilization of various stakeholders will lead to enhanced epidemiological and entomological surveillance that will allow for improved risk assessment in each area. PMID:27159571

  6. Clinical and histopathological features of fatal cases with dengue and chikungunya virus co-infection in Colombia, 2014 to 2015.

    PubMed

    Mercado, Marcela; Acosta-Reyes, Jorge; Parra, Edgar; Pardo, Lissethe; Rico, Angélica; Campo, Alfonso; Navarro, Edgar; Viasus, Diego

    2016-06-02

    We report clinical features and histopathological findings in fatal cases with dengue (DENV) and chikungunya (CHIKV) co-infection identified at the Colombian National Institute of Health between September 2014 and October 2015. Seven such cases were documented. Dengue serotype 2 virus was identified in six cases. All patients were adults and comorbidities were present in four. Fever, arthralgia or myalgia was present in all cases. The frequency of rash, haemorrhage, oedema, and gastrointestinal symptoms was variable. Laboratory findings such as thrombocytopenia, renal failure, and leukocyte count were also inconsistent between cases. Post-mortem tissue examination documented focal hepatocellular coagulative necrosis in three cases, incipient acute pericarditis in one and tubulointerstitial nephritis in one. This study provides evidence of mortality in patients with DENV and CHIKV co-infection. Fatal cases were characterised by variable clinical and laboratory features. Evaluation of histopathology of autopsy tissues provided evidence of the pathological consequences of the disease.

  7. The Heterologous Expression of the p22 RNA Silencing Suppressor of the Crinivirus Tomato Chlorosis Virus from Tobacco Rattle Virus and Potato Virus X Enhances Disease Severity but Does Not Complement Suppressor-Defective Mutant Viruses.

    PubMed

    Landeo-Ríos, Yazmín; Navas-Castillo, Jesús; Moriones, Enrique; Cañizares, M. Carmen

    2017-11-24

    To counteract host antiviral RNA silencing, plant viruses express suppressor proteins that function as pathogenicity enhancers. The genome of the Tomato chlorosis virus (ToCV) (genus Crinivirus , family Closteroviridae ) encodes an RNA silencing suppressor, the protein p22, that has been described as having one of the longest lasting local suppressor activities when assayed in Nicotiana benthamiana . Since suppression of RNA silencing and the ability to enhance disease severity are closely associated, we analyzed the effect of expressing p22 in heterologous viral contexts. Thus, we studied the effect of the expression of ToCV p22 from viral vectors Tobacco rattle virus (TRV) and Potato virus X (PVX), and from attenuated suppressor mutants in N. benthamiana plants. Our results show that although an exacerbation of disease symptoms leading to plant death was observed in the heterologous expression of ToCV p22 from both viruses, only in the case of TRV did increased viral accumulation occur. The heterologous expression of ToCV p22 could not complement suppressor-defective mutant viruses.

  8. Association of human leukocyte antigen class II allele and haplotypes in chikungunya viral infection in a western Indian population.

    PubMed

    Thanapati, Subrat; Hande, Aparna; Das, Rumki; Gurav, Yogesh; Tripathy, Anuradha S

    2014-05-01

    Genes coding for human leukocyte antigen (HLA) class II molecules are polymorphic and have been shown to influence susceptibility to viral diseases. One hundred patients with acute chikungunya with and without viral load and 250 chikungunya negative controls from western India were studied for the distribution of HLA class II alleles by PCR with sequence-specific primer (SSP) method. Frequency of DRB1*11 allele group (patients vs controls: p=0.002, Pc=0.036, OR=0.21) and haplotype DRB1*11/DQB1*03 (patients vs controls: p=0.007, OR=0.15) were significantly low, while haplotype DRB1*04/DQB1*03 (patients vs controls: p=0.042, OR=1.94) was significantly high in the patient population. HLA DQB1*04 allele was found only in the patient group with viral load (n=17), suggesting possible involvement of the same with chikungunya virus (CHIKV) replication. Association of HLA-DRB1*11 and the emergence of DRB1*11/DQB1*03 & DRB1*04/DQB1*03 as resistant and susceptible haplotypes towards CHIKV infection is being reported for the first time. Our results suggest that genetic susceptibility and/or resistance to chikungunya infection may be modulated by HLA class II alleles.

  9. Altered Gag Polyprotein Cleavage Specificity of Feline Immunodeficiency Virus/Human Immunodeficiency Virus Mutant Proteases as Demonstrated in a Cell-Based Expression System

    PubMed Central

    Lin, Ying-Chuan; Brik, Ashraf; de Parseval, Aymeric; Tam, Karen; Torbett, Bruce E.; Wong, Chi-Huey; Elder, John H.

    2006-01-01

    We have used feline immunodeficiency virus (FIV) protease (PR) as a mutational system to study the molecular basis of substrate-inhibitor specificity for lentivirus PRs, with a focus on human immunodeficiency virus type 1 (HIV-1) PR. Our previous mutagenesis studies demonstrated that discrete substitutions in the active site of FIV PR with structurally equivalent residues of HIV-1 PR dramatically altered the specificity of the mutant PRs in in vitro analyses. Here, we have expanded these studies to analyze the specificity changes in each mutant FIV PR expressed in the context of the natural Gag-Pol polyprotein ex vivo. Expression mutants were prepared in which 4 to 12 HIV-1-equivalent substitutions were made in FIV PR, and cleavage of each Gag-Pol polyprotein was then assessed in pseudovirions from transduced cells. The findings demonstrated that, as with in vitro analyses, inhibitor specificities of the mutants showed increased HIV-1 PR character when analyzed against the natural substrate. In addition, all of the mutant PRs still processed the FIV polyprotein but the apparent order of processing was altered relative to that observed with wild-type FIV PR. Given the importance of the order in which Gag-Pol is processed, these findings likely explain the failure to produce infectious FIVs bearing these mutations. PMID:16873240

  10. Modelling Hepatitis B Virus Antiviral Therapy and Drug Resistant Mutant Strains

    NASA Astrophysics Data System (ADS)

    Bernal, Julie; Dix, Trevor; Allison, Lloyd; Bartholomeusz, Angeline; Yuen, Lilly

    Despite the existence of vaccines, the Hepatitis B virus (HBV) is still a serious global health concern. HBV targets liver cells. It has an unusual replication process involving an RNA pre-genome that the reverse transcriptase domain of the viral polymerase protein translates into viral DNA. The reverse transcription process is error prone and together with the high replication rates of the virus, allows the virus to exist as a heterogeneous population of mutants, known as a quasispecies, that can adapt and become resistant to antiviral therapy. This study presents an individual-based model of HBV inside an artificial liver, and associated blood serum, undergoing antiviral therapy. This model aims to provide insights into the evolution of the HBV quasispecies and the individual contribution of HBV mutations in the outcome of therapy.

  11. Preventing dengue and chikungunya fever among international travelers.

    PubMed

    Tither, Pauline Herold

    2014-11-01

    To describe the vulnerability of U.S. travelers in tropical and subtropical regions of the world to dengue and chikungunya fever, to provide practical recommendations to avoid these mosquito-borne diseases, and to offer a communication tool as an aid for pretravel health consultations. Medical, epidemiological, and entomological research articles and reviews, and reports from government agencies. Dengue and chikungunya fever have growing public health impact around the world. International travelers return to the United States infected with these diseases. Mosquito bite avoidance is the only way to prevent dengue and chikungunya fever. Informed travelers have many options for simple and practical measures to lessen the risk of mosquito bites. A message map can be used as a communication tool for pretravel counseling on the prevention of dengue and chikungunya fever within the time frame of an office visit. In a pretravel health consultation, a nurse practitioner can promote travelers' health and prevent dengue, chikungunya fever, and other mosquito-borne diseases by counseling on the risk of these diseases and giving practical recommendations for prevention using a message map. ©2014 American Association of Nurse Practitioners.

  12. Transcriptomic Analyses Reveal Differential Gene Expression of Immune and Cell Death Pathways in the Brains of Mice Infected with West Nile Virus and Chikungunya Virus

    PubMed Central

    Lim, Stephanie M.; van den Ham, Henk-Jan; Oduber, Minoushka; Martina, Eurydice; Zaaraoui-Boutahar, Fatiha; Roose, Jeroen M.; van IJcken, Wilfred F. J.; Osterhaus, Albert D. M. E.; Andeweg, Arno C.; Koraka, Penelope; Martina, Byron E. E.

    2017-01-01

    West Nile virus (WNV) and chikungunya virus (CHIKV) are arboviruses that are constantly (re-)emerging and expanding their territory. Both viruses often cause a mild form of disease, but severe forms of the disease can consist of neurological symptoms, most often observed in the elderly and young children, respectively, for which the mechanisms are poorly understood. To further elucidate the mechanisms responsible for end-stage WNV and CHIKV neuroinvasive disease, we used transcriptomics to compare the induction of effector pathways in the brain during the early and late stage of disease in young mice. In addition to the more commonly described cell death pathways such as apoptosis and autophagy, we also found evidence for the differential expression of pyroptosis and necroptosis cell death markers during both WNV and CHIKV neuroinvasive disease. In contrast, no evidence of cell dysfunction was observed, indicating that cell death may be the most important mechanism of disease. Interestingly, there was overlap when comparing immune markers involved in neuroinvasive disease to those seen in neurodegenerative diseases. Nonetheless, further validation studies are needed to determine the activation and involvement of these effector pathways at the end stage of disease. Furthermore, evidence for a strong inflammatory response was found in mice infected with WNV and CHIKV. The transcriptomics profile measured in mice with WNV and CHIKV neuroinvasive disease in our study showed strong overlap with the mRNA profile described in the literature for other viral neuroinvasive diseases. More studies are warranted to decipher the role of cell inflammation and cell death in viral neuroinvasive disease and whether common mechanisms are active in both neurodegenerative and brain infectious diseases. PMID:28861067

  13. Transcriptomic Analyses Reveal Differential Gene Expression of Immune and Cell Death Pathways in the Brains of Mice Infected with West Nile Virus and Chikungunya Virus.

    PubMed

    Lim, Stephanie M; van den Ham, Henk-Jan; Oduber, Minoushka; Martina, Eurydice; Zaaraoui-Boutahar, Fatiha; Roose, Jeroen M; van IJcken, Wilfred F J; Osterhaus, Albert D M E; Andeweg, Arno C; Koraka, Penelope; Martina, Byron E E

    2017-01-01

    West Nile virus (WNV) and chikungunya virus (CHIKV) are arboviruses that are constantly (re-)emerging and expanding their territory. Both viruses often cause a mild form of disease, but severe forms of the disease can consist of neurological symptoms, most often observed in the elderly and young children, respectively, for which the mechanisms are poorly understood. To further elucidate the mechanisms responsible for end-stage WNV and CHIKV neuroinvasive disease, we used transcriptomics to compare the induction of effector pathways in the brain during the early and late stage of disease in young mice. In addition to the more commonly described cell death pathways such as apoptosis and autophagy, we also found evidence for the differential expression of pyroptosis and necroptosis cell death markers during both WNV and CHIKV neuroinvasive disease. In contrast, no evidence of cell dysfunction was observed, indicating that cell death may be the most important mechanism of disease. Interestingly, there was overlap when comparing immune markers involved in neuroinvasive disease to those seen in neurodegenerative diseases. Nonetheless, further validation studies are needed to determine the activation and involvement of these effector pathways at the end stage of disease. Furthermore, evidence for a strong inflammatory response was found in mice infected with WNV and CHIKV. The transcriptomics profile measured in mice with WNV and CHIKV neuroinvasive disease in our study showed strong overlap with the mRNA profile described in the literature for other viral neuroinvasive diseases. More studies are warranted to decipher the role of cell inflammation and cell death in viral neuroinvasive disease and whether common mechanisms are active in both neurodegenerative and brain infectious diseases.

  14. A new "American" subgroup of African-lineage Chikungunya virus detected in and isolated from mosquitoes collected in Haiti, 2016.

    PubMed

    White, Sarah Keller; Mavian, Carla; Salemi, Marco; Morris, John Glenn; Elbadry, Maha A; Okech, Bernard A; Lednicky, John A; Dunford, James C

    2018-01-01

    As part of on-going arboviral surveillance activity in a semi-rural region in Haiti, Chikungunya virus (CHIKV)-positive mosquito pools were identified in 2014 (the peak of the Caribbean Asian-clade epidemic), and again in 2016 by RT-PCR. In 2014, CHIKV was only identified in Aedes aegypti (11 positive pools/124 screened). In contrast, in sampling in 2016, CHIKV was not identified in Ae. aegypti, but, rather, in (a) a female Aedes albopictus pool, and (b) a female Culex quinquefasciatus pool. Genomic sequence analyses indicated that the CHIKV viruses in the 2016 mosquito pools were from the East-Central-South African (ECSA) lineage, rather than the Asian lineage. In phylogenetic studies, these ECSA lineage strains form a new ECSA subgroup (subgroup IIa) together with Brazilian ECSA lineage strains from an isolated human outbreak in 2014, and a mosquito pool in 2016. Additional analyses date the most recent common ancestor of the ECSA IIa subgroup around May 2007, and the 2016 Haitian CHIKV genomes around December 2015. Known CHIKV mutations associated with improved Ae. albopictus vector competence were not identified. Isolation of this newly identified lineage from Ae. albopictus is of concern, as this vector has a broader geographic range than Ae. aegypti, especially in temperate areas of North America, and stresses the importance for continued vector surveillance.

  15. The Shift of the Intestinal Microbiome in the Innate Immunity-Deficient Mutant rde-1 Strain of C. elegans upon Orsay Virus Infection.

    PubMed

    Guo, Yuanyuan; Xun, Zhe; Coffman, Stephanie R; Chen, Feng

    2017-01-01

    The status of intestinal microbiota is a determinant of host health. However, the alteration of the gut microbiota caused by the innate immune response to virus infection is unclear. Caenorhabditis elegans and its natural virus Orsay provide an excellent model of host-virus interactions. We evaluated the intestinal microbial community complexity of the wild-type N2 and the innate immunity-deficient mutant rde-1 ( ne219 ) strains of C. elegans upon Orsay virus infection. The gut microbiota diversity was decreased in rde-1 ( ne219 ) mutant animals, and a large number of genes were associated with the difference between infected and uninfected rde-1 ( ne219 ) mutant animals. Therefore, this study provides the first evaluation of the alterations caused by Orsay virus on intestinal microbiota in wildtype and innate immunity-deficient animals using C. elegans as the model species. Our findings indicate that virus infection may alters the microbiome in animals with defective immune response.

  16. The Shift of the Intestinal Microbiome in the Innate Immunity-Deficient Mutant rde-1 Strain of C. elegans upon Orsay Virus Infection

    PubMed Central

    Guo, Yuanyuan; Xun, Zhe; Coffman, Stephanie R.; Chen, Feng

    2017-01-01

    The status of intestinal microbiota is a determinant of host health. However, the alteration of the gut microbiota caused by the innate immune response to virus infection is unclear. Caenorhabditis elegans and its natural virus Orsay provide an excellent model of host–virus interactions. We evaluated the intestinal microbial community complexity of the wild-type N2 and the innate immunity-deficient mutant rde-1 (ne219) strains of C. elegans upon Orsay virus infection. The gut microbiota diversity was decreased in rde-1 (ne219) mutant animals, and a large number of genes were associated with the difference between infected and uninfected rde-1 (ne219) mutant animals. Therefore, this study provides the first evaluation of the alterations caused by Orsay virus on intestinal microbiota in wildtype and innate immunity-deficient animals using C. elegans as the model species. Our findings indicate that virus infection may alters the microbiome in animals with defective immune response. PMID:28611740

  17. Low-fidelity Venezuelan equine encephalitis virus polymerase mutants to improve live-attenuated vaccine safety and efficacy

    PubMed Central

    Kautz, Tiffany F; Guerbois, Mathilde; Khanipov, Kamil; Yun, Ruimei; Warmbrod, Kelsey L; Fofanov, Yuriy; Weaver, Scott C; Forrester, Naomi L

    2018-01-01

    Abstract During RNA virus replication, there is the potential to incorporate mutations that affect virulence or pathogenesis. For live-attenuated vaccines, this has implications for stability, as replication may result in mutations that either restore the wild-type phenotype via reversion or compensate for the attenuating mutations by increasing virulence (pseudoreversion). Recent studies have demonstrated that altering the mutation rate of an RNA virus is an effective attenuation tool. To validate the safety of low-fidelity mutations to increase vaccine attenuation, several mutations in the RNA-dependent RNA-polymerase (RdRp) were tested in the live-attenuated Venezuelan equine encephalitis virus vaccine strain, TC-83. Next generation sequencing after passage in the presence of mutagens revealed a mutant containing three mutations in the RdRp, TC-83 3x, to have decreased replication fidelity, while a second mutant, TC-83 4x displayed no change in fidelity, but shared many phenotypic characteristics with TC-83 3x. Both mutants exhibited increased, albeit inconsistent attenuation in an infant mouse model, as well as increased immunogenicity and complete protection against lethal challenge of an adult murine model compared with the parent TC-83. During serial passaging in a highly permissive model, the mutants increased in virulence but remained less virulent than the parent TC-83. These results suggest that the incorporation of low-fidelity mutations into the RdRp of live-attenuated vaccines for RNA viruses can confer increased immunogenicity whilst showing some evidence of increased attenuation. However, while in theory such constructs may result in more effective vaccines, the instability of the vaccine phenotype decreases the likelihood of this being an effective vaccine strategy. PMID:29593882

  18. Climate change effects on Chikungunya transmission in Europe: geospatial analysis of vector's climatic suitability and virus' temperature requirements.

    PubMed

    Fischer, Dominik; Thomas, Stephanie M; Suk, Jonathan E; Sudre, Bertrand; Hess, Andrea; Tjaden, Nils B; Beierkuhnlein, Carl; Semenza, Jan C

    2013-11-12

    Chikungunya was, from the European perspective, considered to be a travel-related tropical mosquito-borne disease prior to the first European outbreak in Northern Italy in 2007. This was followed by cases of autochthonous transmission reported in South-eastern France in 2010. Both events occurred after the introduction, establishment and expansion of the Chikungunya-competent and highly invasive disease vector Aedes albopictus (Asian tiger mosquito) in Europe. In order to assess whether these outbreaks are indicative of the beginning of a trend or one-off events, there is a need to further examine the factors driving the potential transmission of Chikungunya in Europe. The climatic suitability, both now and in the future, is an essential starting point for such an analysis. The climatic suitability for Chikungunya outbreaks was determined by using bioclimatic factors that influence, both vector and, pathogen. Climatic suitability for the European distribution of the vector Aedes albopictus was based upon previous correlative environmental niche models. Climatic risk classes were derived by combining climatic suitability for the vector with known temperature requirements for pathogen transmission, obtained from outbreak regions. In addition, the longest potential intra-annual season for Chikungunya transmission was estimated for regions with expected vector occurrences.In order to analyse spatio-temporal trends for risk exposure and season of transmission in Europe, climate change impacts are projected for three time-frames (2011-2040, 2041-2070 and 2071-2100) and two climate scenarios (A1B and B1) from the Intergovernmental Panel on Climate Change (IPCC). These climatic projections are based on regional climate model COSMO-CLM, which builds on the global model ECHAM5. European areas with current and future climatic suitability of Chikungunya transmission are identified. An increase in risk is projected for Western Europe (e.g. France and Benelux-States) in the

  19. Characterization of mutant tobacco mosaic virus coat protein that interferes with virus cell-to-cell movement.

    PubMed

    Bendahmane, Mohammed; Szecsi, Judit; Chen, Iju; Berg, R Howard; Beachy, Roger N

    2002-03-19

    Expression of tobacco mosaic virus (TMV) coat protein (CP) in plants confers resistance to infection by TMV and related tobamoviruses. Certain mutants of the CP (CP(T42W)) provide much greater levels of resistance than wild-type (wt) CP. In the present work, infection induced by RNA transcripts of TMV clones that contain wt CP or mutant CP(T42W) fused to the green fluorescent protein (GFP) (TMV-CP:GFP, TMV-CP(T42W):GFP) and clones harboring TMV movement protein (MP):GFP were followed in nontransgenic and transgenic tobacco BY-2 protoplasts and Nicotiana tabaccum Xanthi-nn plants that express wt CP or CP(T42W). On nontransgenic and wt CP transgenic plants, TMV-CP:GFP produced expanding, highly fluorescent disk-shaped areas. On plants expressing CP(T42W), infection by TMV-CP:GFP or TMV-MP:GFP-CP produced infection sites of smaller size that were characterized by low fluorescence, reflecting reduced levels of virus spread and reduced accumulation of both CP:GFP and MP:GFP. TMV-CP(T42W):GFP failed to produce visible infection sites on nontransgenic plants, yet produced normal infection sites on MP-transgenic plants that produce MP. TMV infection of transgenic BY-CP(T42W) protoplasts resulted in very low levels of MP accumulation, whereas on BY-CP protoplasts (containing wt CP), infection produced higher levels of MP than in nontransgenic BY-2 cells. The results suggest that wt CP has a positive effect on the production of MP, whereas the CP(T42W) has a negative effect on MP accumulation and/or function. This effect results in very high levels of resistance to TMV infection in plants containing CP(T42W). This report shows that the CP of a plant virus regulates production of the MP, and that a mutant CP interferes with MP accumulation and cell-to-cell movement of infection.

  20. Chikungunya fever outbreak identified in North Bali, Indonesia.

    PubMed

    Sari, Kartika; Myint, Khin Saw Aye; Andayani, Ayu Rai; Adi, Putu Dwi; Dhenni, Rama; Perkasa, Aditya; Ma'roef, Chairin Nisa; Witari, Ni Putu Diah; Megawati, Dewi; Powers, Ann M; Jaya, Ungke Anton

    2017-07-01

    Chikungunya virus (CHIKV) infections have been reported sporadically within the last 5 years in several areas of Indonesia including Bali. Most of the reports, however, have lacked laboratory confirmation. A recent fever outbreak in a village in the North Bali area was investigated using extensive viral diagnostic testing including both molecular and serological approaches. Ten out of 15 acute febrile illness samples were confirmed to have CHIKV infection by real-time PCR or CHIKV-specific IgM enzyme-linked immunosorbent assay (ELISA). The outbreak strain belonged to the Asian genotype with highest homology to other CHIKV strains currently circulating in Indonesia. The results are of public health concern particularly because Bali is a popular tourist destination in Indonesia and thereby the potential to spread the virus to non-endemic areas is high. KY885022, KY885023, KY885024, KY885025, KY885026, KY885027. © The Author 2017. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Field evaluation of natural human odours and the biogent-synthetic lure in trapping Aedes aegypti, vector of dengue and chikungunya viruses in Kenya.

    PubMed

    Owino, Eunice A; Sang, Rosemary; Sole, Catherine L; Pirk, Christian; Mbogo, Charles; Torto, Baldwyn

    2014-09-23

    Methods currently used in sampling adult Aedes aegypti, the main vector of dengue and chikungunya viruses are limited for effective surveillance of the vector and accurate determination of the extent of virus transmission during outbreaks and inter - epidemic periods. Here, we document the use of natural human skin odours in baited traps to improve sampling of adult Ae. aegypti in two different endemic areas of chikungunya and dengue in Kenya - Kilifi and Busia Counties. The chemistry of the volatiles released from human odours and the Biogent (BG)-commercial lure were also compared. Cotton socks and T-shirts were used to obtain natural human skin volatiles from the feet and trunk of three volunteers (volunteers 1 and 2 in Kilifi and volunteers 2 and 3 in Busia). Using Latin square design, we compared the efficacies of BG sentinel traps baited with carbon dioxide plus (a) no bait, (b) human feet volatiles, (c) human trunk volatiles each against (c) a control (Biogent commercial lure) at the two sites. Coupled gas chromatography-mass spectrometry (GC-MS) was used to identify and compare candidate attractants released by the commercial lure and human odours. Ae. aegypti captured in the trap baited with feet odours from volunteer 2 and trunk odours from the same volunteer were significantly higher than in the control trap in Busia and Kilifi respectively, [IRR = 5.63, 95% CI: 1.15 - 28.30, p = 0.030] and [IRR = 3.99, 95% CI: 0.95-16.69, p = 0.049]. At both sites, Ae. aegypti captures in traps baited with either the feet or trunk odours from volunteers 1 and 3 were not significantly different from the control. Major qualitative differences were observed between the chemical profiles of human odours and the commercial BG-lure. Aldehydes, fatty acids and ketones dominated human odour profiles, whereas the BG-lure released mainly hexanoic acid. Our results suggest that additional candidate attractants are present in human skin volatiles which can help to

  2. Accuracy of Zika virus disease case definition during simultaneous Dengue and Chikungunya epidemics.

    PubMed

    Braga, José Ueleres; Bressan, Clarisse; Dalvi, Ana Paula Razal; Calvet, Guilherme Amaral; Daumas, Regina Paiva; Rodrigues, Nadia; Wakimoto, Mayumi; Nogueira, Rita Maria Ribeiro; Nielsen-Saines, Karin; Brito, Carlos; Bispo de Filippis, Ana Maria; Brasil, Patrícia

    2017-01-01

    Zika is a new disease in the American continent and its surveillance is of utmost importance, especially because of its ability to cause neurological manifestations as Guillain-Barré syndrome and serious congenital malformations through vertical transmission. The detection of suspected cases by the surveillance system depends on the case definition adopted. As the laboratory diagnosis of Zika infection still relies on the use of expensive and complex molecular techniques with low sensitivity due to a narrow window of detection, most suspected cases are not confirmed by laboratory tests, mainly reserved for pregnant women and newborns. In this context, an accurate definition of a suspected Zika case is crucial in order for the surveillance system to gauge the magnitude of an epidemic. We evaluated the accuracy of various Zika case definitions in a scenario where Dengue and Chikungunya viruses co-circulate. Signs and symptoms that best discriminated PCR confirmed Zika from other laboratory confirmed febrile or exanthematic diseases were identified to propose and test predictive models for Zika infection based on these clinical features. Our derived score prediction model had the best performance because it demonstrated the highest sensitivity and specificity, 86·6% and 78·3%, respectively. This Zika case definition also had the highest values for auROC (0·903) and R2 (0·417), and the lowest Brier score 0·096. In areas where multiple arboviruses circulate, the presence of rash with pruritus or conjunctival hyperemia, without any other general clinical manifestations such as fever, petechia or anorexia is the best Zika case definition.

  3. Chikungunya virus dissemination from the midgut of Aedes aegypti is associated with temporal basal lamina degradation during bloodmeal digestion

    PubMed Central

    Dong, Shengzhang; Balaraman, Velmurugan; Kantor, Asher M.; Lin, Jingyi; Grant, DeAna G.; Held, Nicole L.

    2017-01-01

    In the mosquito, the midgut epithelium is the initial tissue to become infected with an arthropod-borne virus (arbovirus) that has been acquired from a vertebrate host along with a viremic bloodmeal. Following its replication in midgut epithelial cells, the virus needs to exit the midgut and infect secondary tissues including the salivary glands before it can be transmitted to another vertebrate host. The viral exit mechanism from the midgut, the midgut escape barrier (MEB), is poorly understood although it is an important determinant of mosquito vector competence for arboviruses. Using chikungunya virus (CHIKV) as a model in Aedes aegypti, we demonstrate that the basal lamina (BL) of the extracellular matrix (ECM) surrounding the midgut constitutes a potential barrier for the virus. The BL, predominantly consisting of collagen IV and laminin, becomes permissive during bloodmeal digestion in the midgut lumen. Bloodmeal digestion, BL permissiveness, and CHIKV dissemination are coincident with increased collagenase activity, diminished collagen IV abundance, and BL shredding in the midgut between 24–32 h post-bloodmeal. This indicates that there may be a window-of-opportunity during which the MEB in Ae. aegypti becomes permissive for CHIKV. Matrix metalloproteinases (MMPs) are the principal extracellular endopeptidases responsible for the degradation/remodeling of the ECM including the BL. We focused on Ae. aegypti (Ae)MMP1, which is expressed in midgut epithelial cells, is inducible upon bloodfeeding, and shows collagenase (gelatinase) activity. However, attempts to inhibit AeMMP activity in general or specifically that of AeMMP1 did not seem to affect its function nor produce an altered midgut escape phenotype. As an alternative, we silenced and overexpressed the Ae. aegypti tissue inhibitor of metalloproteinases (AeTIMP) in the mosquito midgut. AeTIMP was highly upregulated in the midgut during bloodmeal digestion and was able to inhibit MMP activity in vitro

  4. Chikungunya virus-associated encephalitis: A cohort study on La Réunion Island, 2005-2009.

    PubMed

    Gérardin, Patrick; Couderc, Thérèse; Bintner, Marc; Tournebize, Patrice; Renouil, Michel; Lémant, Jérome; Boisson, Véronique; Borgherini, Gianandrea; Staikowsky, Frédérik; Schramm, Frédéric; Lecuit, Marc; Michault, Alain

    2016-01-05

    To estimate the cumulative incidence rate (CIR) of Chikungunya virus (CHIKV)-associated CNS disease during the La Réunion outbreak, and assess the disease burden and patient outcome after 3 years. CHIKV-associated CNS disease was characterized retrospectively in a cohort of patients with positive CHIKV reverse transcriptase PCR or anti-CHIKV immunoglobulin M antibodies in the CSF and fulfilling International Encephalitis Consortium criteria for encephalitis or encephalopathy. Neurologic sequelae were assessed after 3 years. Between September 2005 and June 2006, 57 patients were diagnosed with CHIKV-associated CNS disease, including 24 with CHIKV-associated encephalitis, the latter corresponding to a CIR of 8.6 per 100,000 persons. Patients with encephalitis were observed at both extremes of age categories. CIR per 100,000 persons were 187 and 37 in patients below 1 year and over 65 years, respectively, both far superior to those of cumulated causes of encephalitis in the United States in these age categories. The case-fatality rate of CHIKV-associated encephalitis was 16.6% and the proportion of children discharged with persistent disabilities estimated between 30% and 45%. Beyond the neonatal period, the clinical presentation and outcomes were less severe in infants than in adults. In the context of a large outbreak, CHIKV is a significant cause of CNS disease. As with other etiologies, CHIKV-associated encephalitis case distribution by age follows a U-shaped parabolic curve. © 2015 American Academy of Neurology.

  5. Real-Time Evolution of Zika Virus Disease Outbreak, Roatán, Honduras.

    PubMed

    Brooks, Trevor; Roy-Burman, Arup; Tuholske, Cascade; Busch, Michael P; Bakkour, Sonia; Stone, Mars; Linnen, Jeffrey M; Gao, Kui; Coleman, Jayleen; Bloch, Evan M

    2017-08-01

    A Zika virus disease outbreak occurred in Roatán, Honduras, during September 2015-July 2016. Blood samples and clinical information were obtained from 183 patients given a clinical diagnosis of suspected dengue virus infection. A total of 79 patients were positive for Zika virus, 13 for chikungunya virus, and 6 for dengue virus.

  6. Chikungunya Detection during Dengue Outbreak in Sumatra, Indonesia: Clinical Manifestations and Virological Profile.

    PubMed

    Sasmono, R Tedjo; Perkasa, Aditya; Yohan, Benediktus; Haryanto, Sotianingsih; Yudhaputri, Frilasita A; Hayati, Rahma F; Ma'roef, Chairin Nisa; Ledermann, Jeremy P; Aye Myint, Khin Saw; Powers, Ann M

    2017-11-01

    Chikungunya fever (CHIK) is an acute viral infection caused by infection with chikungunya virus (CHIKV). The disease affects people in areas where certain Aedes species mosquito vectors are present, especially in tropical and subtropical countries. Indonesia has witnessed CHIK disease since the early 1970s with sporadic outbreaks occurring throughout the year. The CHIK clinical manifestation, characterized by fever, headache, and joint pain, is similar to that of dengue (DEN) disease. During a molecular study of a DEN outbreak in Jambi, Sumatra, in early 2015, DENV-negative samples were evaluated for evidence of CHIKV infection. Among 103 DENV-negative samples, eight samples were confirmed (7.8%) as positive for CHIKV by both molecular detection and virus isolation. The mean age of the CHIK patients was 21.3 ± 9.1 (range 11-35 years). The clinical manifestations of the CHIK patients were mild and mimicked DEN, with fever and headache as the main symptoms. Only three out of eight patients presented with classical joint pain. Sequencing of the envelope glycoprotein E1 gene and phylogenetic analysis identified all CHIKV isolates as belonging to the Asian genotype. Overall, our study confirms sustained endemic CHIKV transmission and the presence of multiple arboviruses circulating during a DEN outbreak in Indonesia. The co-circulation of arboviruses poses a public health threat and is likely to cause misdiagnosis and underreporting of CHIK in DEN-endemic areas such as Indonesia.

  7. Real-Time Evolution of Zika Virus Disease Outbreak, Roatán, Honduras

    PubMed Central

    Roy-Burman, Arup; Tuholske, Cascade; Busch, Michael P.; Bakkour, Sonia; Stone, Mars; Linnen, Jeffrey M.; Gao, Kui; Coleman, Jayleen; Bloch, Evan M.

    2017-01-01

    A Zika virus disease outbreak occurred in Roatán, Honduras, during September 2015–July 2016. Blood samples and clinical information were obtained from 183 patients given a clinical diagnosis of suspected dengue virus infection. A total of 79 patients were positive for Zika virus, 13 for chikungunya virus, and 6 for dengue virus. PMID:28514227

  8. Structural Optimizations of Thieno[3,2-b]pyrrole Derivatives for the Development of Metabolically Stable Inhibitors of Chikungunya Virus.

    PubMed

    Ching, Kuan-Chieh; Tran, Thi Ngoc Quy; Amrun, Siti Naqiah; Kam, Yiu-Wing; Ng, Lisa F P; Chai, Christina L L

    2017-04-13

    Chikungunya virus (CHIKV) is a re-emerging vector-borne alphavirus, and there is no approved effective antiviral treatment currently available for CHIKV. We previously reported the discovery of thieno[3,2-b]pyrrole 1b that displayed good antiviral activity against CHIKV infection in vitro. However, it has a short half-life in the presence of human liver microsomes (HLMs) (T 1/2 = 2.91 min). Herein, we report further optimization studies in which potential metabolically labile sites on compound 1b were removed or modified, resulting in the identification of thieno[3,2-b]pyrrole 20 and pyrrolo[2,3-d]thiazole 23c possessing up to 17-fold increase in metabolic half-lives in HLMs and good in vivo pharmacokinetic properties. Compound 20 not only attenuated viral RNA production and displayed broad-spectrum antiviral activity against other alphaviruses and CHIKV isolates but also exhibited limited cytotoxic liability (CC 50 > 100 μM). These studies have identified two compounds that have the potential for further development as antiviral drugs against CHIKV infection.

  9. Anti-chikungunya activity of luteolin and apigenin rich fraction from Cynodon dactylon.

    PubMed

    Murali, Krishnan Saravana; Sivasubramanian, Srinivasan; Vincent, Savariar; Murugan, Shanmugaraj Bala; Giridaran, Bupesh; Dinesh, Sundaram; Gunasekaran, Palani; Krishnasamy, Kaveri; Sathishkumar, Ramalingam

    2015-05-01

    To obtain luteolin and apigenin rich fraction from the ethanolic extract of Cynodon dactylon (L.) (C. dactylon) Pers and evaluate the fraction's cytotoxicity and anti-Chikungunya potential using Vero cells. The ethanolic extract of C. dactylon was subjected to silica gel column chromatography to obtain anti-chikungunya virus (CHIKV) fraction. Reverse phase-HPLC and GC-MS studies were carried out to identify the major phytochemicals in the fraction using phytochemical standards. Cytotoxicity and the potential of the fraction against CHIKV were evaluated in vitro using Vero cells. Reduction in viral replication was assessed by reverse transcriptase-polymerase chain reaction (RT-PCR) after treating the viral infected Vero cells with the fraction. Reverse Phase-HPLC and GC-MS studies confirmed the presence of flavonoids, luteolin and apigenin as major phytochemicals in the anti-CHIKV ethanolic fraction of C. dactylon. The fraction was found to exhibit potent viral inhibitory activity (about 98%) at the concentration of 50 µg/mL as observed by reduction in cytopathic effect, and the cytotoxic concentration of the fraction was found to be 250 µg/mL. RT-PCR analyses indicated that the reduction in viral mRNA synthesis in fraction treated infected cells was much higher than the viral infected control cells. Luteolin and apigenin rich ethanolic fraction from C. dactylon can be utilized as a potential therapeutic agent against CHIKV infection as the fraction does not show cytotoxicity while inhibiting the virus. Copyright © 2015 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  10. Molecular Characterisation of Chikungunya Virus Infections in Trinidad and Comparison of Clinical and Laboratory Features with Dengue and Other Acute Febrile Cases

    PubMed Central

    Sahadeo, Nikita; Mohammed, Hamish; Allicock, Orchid M.; Auguste, Albert J.; Widen, Steven G.; Badal, Kimberly; Pulchan, Krishna; Foster, Jerome E.; Weaver, Scott C.; Carrington, Christine V. F.

    2015-01-01

    Local transmission of Chikungunya virus (CHIKV) was first documented in Trinidad and Tobago (T&T) in July 2014 preceding a large epidemic. At initial presentation, it is difficult to distinguish chikungunya fever (CHIKF) from other acute undifferentiated febrile illnesses (AUFIs), including life-threatening dengue disease. We characterised and compared dengue virus (DENV) and CHIKV infections in 158 patients presenting with suspected dengue fever (DF) and CHIKF at a major hospital in T&T, and performed phylogenetic analyses on CHIKV genomic sequences recovered from 8 individuals. The characteristics of patients with and without PCR-confirmed CHIKV were compared using Pearson’s χ2 and student’s t-tests, and adjusted odds ratios (aORs) and 95% confidence intervals (CIs) were determined using logistic regression. We then compared signs and symptoms of people with RT-qPCR-confirmed CHIKV and DENV infections using the Mann-Whitney U, Pearson’s χ2 and Fisher’s exact tests. Among the 158 persons there were 8 (6%) RT-qPCR-confirmed DENV and 30 (22%) RT-qPCR-confirmed CHIKV infections. Phylogenetic analyses showed that the CHIKV strains belonged to the Asian genotype and were most closely related to a British Virgin Islands strain isolated at the beginning of the 2013/14 outbreak in the Americas. Compared to persons who were RT-qPCR-negative for CHIKV, RT-qPCR-positive individuals were significantly more likely to have joint pain (aOR: 4.52 [95% CI: 1.28–16.00]), less likely to be interviewed at a later stage of illness (days post onset of fever—aOR: 0.56 [0.40–0.78]) and had a lower white blood cell count (aOR: 0.83 [0.71–0.96]). Among the 38 patients with RT-qPCR-confirmed CHIKV or DENV, there were no significant differences in symptomatic presentation. However when individuals with serological evidence of recent DENV or CHIKV infection were included in the analyses, there were key differences in clinical presentation between CHIKF and other AUFIs

  11. Clinical Update on Dengue, Chikungunya, and Zika: What We Know at the Time of Article Submission.

    PubMed

    Liu, Liang E; Dehning, Meaghan; Phipps, Ashley; Swienton, Ray E; Harris, Curtis A; Klein, Kelly R

    2017-06-01

    Mosquito-borne diseases pose a threat to individual health and population health on both a local and a global level. The threat is even more exaggerated during disasters, whether manmade or environmental. With the recent Zika virus outbreak, it is important to highlight other infections that can mimic the Zika virus and to better understand what can be done as public health officials and health care providers. This article reviews the recent literature on the Zika virus as well as chikungunya virus and dengue virus. The present findings give a better understanding of the similarities and differences between the 3 infections in terms of their characteristics, clinical presentation, diagnosis methodology, and treatment and what can be done for prevention. Additionally, the article highlights a special population that has received much focus in the latest outbreak, the pregnant individual. Education and training are instrumental in controlling the outbreak, and early detection can be lifesaving. (Disaster Med Public Health Preparedness. 2017;11:290-299).

  12. Kinetic Analysis of Mouse Brain Proteome Alterations Following Chikungunya Virus Infection before and after Appearance of Clinical Symptoms

    PubMed Central

    Fraisier, Christophe; Koraka, Penelope; Belghazi, Maya; Bakli, Mahfoud; Granjeaud, Samuel; Pophillat, Matthieu; Lim, Stephanie M.; Osterhaus, Albert; Martina, Byron; Camoin, Luc; Almeras, Lionel

    2014-01-01

    Recent outbreaks of Chikungunya virus (CHIKV) infection have been characterized by an increasing number of severe cases with atypical manifestations including neurological complications. In parallel, the risk map of CHIKV outbreaks has expanded because of improved vector competence. These features make CHIKV infection a major public health concern that requires a better understanding of the underlying physiopathological processes for the development of antiviral strategies to protect individuals from severe disease. To decipher the mechanisms of CHIKV infection in the nervous system, a kinetic analysis on the host proteome modifications in the brain of CHIKV-infected mice sampled before and after the onset of clinical symptoms was performed. The combination of 2D-DIGE and iTRAQ proteomic approaches, followed by mass spectrometry protein identification revealed 177 significantly differentially expressed proteins. This kinetic analysis revealed a dramatic down-regulation of proteins before the appearance of the clinical symptoms followed by the increased expression of most of these proteins in the acute symptomatic phase. Bioinformatic analyses of the protein datasets enabled the identification of the major biological processes that were altered during the time course of CHIKV infection, such as integrin signaling and cytoskeleton dynamics, endosome machinery and receptor recycling related to virus transport and synapse function, regulation of gene expression, and the ubiquitin-proteasome pathway. These results reveal the putative mechanisms associated with severe CHIKV infection-mediated neurological disease and highlight the potential markers or targets that can be used to develop diagnostic and/or antiviral tools. PMID:24618821

  13. Exposure of Epitope Residues on the Outer Face of the Chikungunya Virus Envelope Trimer Determines Antibody Neutralizing Efficacy

    PubMed Central

    Fong, Rachel H.; Banik, Soma S. R.; Mattia, Kimberly; Barnes, Trevor; Tucker, David; Liss, Nathan; Lu, Kai; Selvarajah, Suganya; Srinivasan, Surabhi; Mabila, Manu; Miller, Adam; Muench, Marcus O.; Michault, Alain; Rucker, Joseph B.; Paes, Cheryl; Simmons, Graham; Kahle, Kristen M.

    2014-01-01

    ABSTRACT Chikungunya virus (CHIKV) is a reemerging alphavirus that causes a debilitating arthritic disease and infects millions of people and for which no specific treatment is available. Like many alphaviruses, the structural targets on CHIKV that elicit a protective humoral immune response in humans are poorly defined. Here we used phage display against virus-like particles (VLPs) to isolate seven human monoclonal antibodies (MAbs) against the CHIKV envelope glycoproteins E2 and E1. One MAb, IM-CKV063, was highly neutralizing (50% inhibitory concentration, 7.4 ng/ml), demonstrated high-affinity binding (320 pM), and was capable of therapeutic and prophylactic protection in multiple animal models up to 24 h postexposure. Epitope mapping using a comprehensive shotgun mutagenesis library of 910 mutants with E2/E1 alanine mutations demonstrated that IM-CKV063 binds to an intersubunit conformational epitope on domain A, a functionally important region of E2. MAbs against the highly conserved fusion loop have not previously been reported but were also isolated in our studies. Fusion loop MAbs were broadly cross-reactive against diverse alphaviruses but were nonneutralizing. Fusion loop MAb reactivity was affected by temperature and reactivity conditions, suggesting that the fusion loop is hidden in infectious virions. Visualization of the binding sites of 15 different MAbs on the structure of E2/E1 revealed that all epitopes are located at the membrane-distal region of the E2/E1 spike. Interestingly, epitopes on the exposed topmost and outer surfaces of the E2/E1 trimer structure were neutralizing, whereas epitopes facing the interior of the trimer were not, providing a rationale for vaccine design and therapeutic MAb development using the intact CHIKV E2/E1 trimer. IMPORTANCE CHIKV is the most important alphavirus affecting humans, resulting in a chronic arthritic condition that can persist for months or years. In recent years, millions of people have been infected

  14. Mutants of feline immunodeficiency virus resistant to 2',3'-dideoxy-2',3'-didehydrothymidine.

    PubMed Central

    Zhu, Y Q; Remington, K M; North, T W

    1996-01-01

    We selected mutants of feline immunodeficiency virus (FIV) that are resistant to 2',3'-dideoxy-2',3'-didehydrothymidine (d4T). Two mutants were selected in cultured cells with a stepwise increase in d4T concentration, resulting in mutants able to replicate in 100 microM d4T. These mutants were three- to sixfold more resistant to d4T than wild-type FIV. They were also cross-resistant to 3'-azido-3'-deoxythymidine (AZT), 3'-fluoro-2',3'-dideoxythymidine, 2',3'-dideoxycytidine, 2',3'-dideoxyinosine, and 9-(2-phosphonylmethoxyethyl)adenine, and they were highly resistant to phosphonoformic acid (PFA). Plaque-purified mutants were isolated from each of the mutant populations. The mutant phenotype was stable, because both of the plaque-purified mutants remained d4T resistant even after three passages in the absence of d4T. One of the plaque-purified mutants, designated D4R-3c, was further characterized. Compared with wild-type reverse transcriptase (RT), RT purified from D4R-3c was 3-fold resistant to inhibition by the 5'-triphosphate of d4T, 10-fold resistant to inhibition by the 5'-triphosphate of AZT, and 6-fold resistant to PFA. D4R-3c had a single point mutation in the RT-encoding region of the pol gene at position 2474, resulting in a Val to Ile mutation at codon 47 of the FIV RT. The role of this mutation in d4T resistance was confirmed by site-directed mutagenesis. PMID:8878567

  15. Perceived morbidity and community burden after a Chikungunya outbreak: the TELECHIK survey, a population-based cohort study

    PubMed Central

    2011-01-01

    Background Persistent disabilities are key manifestations of Chikungunya virus (CHIKV) infection, especially incapacitating polyarthralgia and fatigue. So far, little is known about their impact on health status. The present study aimed at describing the burden of CHIKV prolonged or late-onset symptoms on the self-perceived health of La Réunion islanders. Methods At 18 months after an outbreak of Chikungunya virus, we implemented the TELECHIK survey; a retrospective cohort study conducted on a random sample of the representative SEROCHIK population-based survey. A total of 1,094 subjects sampled for CHIKV-specific IgG antibodies in the setting of La Réunion island in the Indian Ocean, between August 2006 and October 2006, were interviewed about current symptoms divided into musculoskeletal/rheumatic, fatigue, cerebral, sensorineural, digestive and dermatological categories. Results At the time of interview, 43% of seropositive (CHIK+) subjects reported musculoskeletal pain (vs 17% of seronegative (CHIK-) subjects, P < 0.001), 54% fatigue (vs 46%, P = 0.04), 75% cerebral disorders (vs 57%, P < 0.001), 49% sensorineural impairments (vs 37%, P = 0.001), 18% digestive complaints (vs 15%, P = 0.21), and 36% skin involvement (vs 34%, P = 0.20) on average 2 years after infection (range: 15-34 months). After controlling for confounders such as age, gender, body mass index or major comorbidities in different Poisson regression models, 33% of joint pains were attributable to CHIKV, 10% of cerebral disorders and 7.5% of sensorineural impairments, while Chikungunya did not enhance fatigue states, digestive and skin disorders. Conclusions On average, 2 years after infection 43% to 75% of infected people reported prolonged or late-onset symptoms highly attributable to CHIKV. These manifestations carry a significant burden in the community in the fields of rheumatology, neurology and sensorineural health. PMID:21235760

  16. Co-circulation and simultaneous co-infection of dengue, chikungunya, and zika viruses in patients with febrile syndrome at the Colombian-Venezuelan border.

    PubMed

    Carrillo-Hernández, Marlen Yelitza; Ruiz-Saenz, Julian; Villamizar, Lucy Jaimes; Gómez-Rangel, Sergio Yebrail; Martínez-Gutierrez, Marlen

    2018-01-30

    In Colombia, the dengue virus (DENV) has been endemic for decades, and with the recent entry of the chikungunya virus (CHIKV) (2014) and the Zika virus (ZIKV) (2015), health systems are overloaded because the diagnosis of these three diseases is based on clinical symptoms, and the three diseases share a symptomatology of febrile syndrome. Thus, the objective of this study was to use molecular methods to identify their co-circulation as well as the prevalence of co-infections, in a cohort of patients at the Colombian-Venezuelan border. A total of 157 serum samples from patients with febrile syndrome consistent with DENV were collected after informed consent and processed for the identification of DENV (conventional PCR and real-time PCR), CHIKV (conventional PCR), and ZIKV (real-time PCR). DENV-positive samples were serotyped, and some of those positive for DENV and CHIKV were sequenced. Eighty-two patients were positive for one or more viruses: 33 (21.02%) for DENV, 47 (29.94%) for CHIKV, and 29 (18.47%) for ZIKV. The mean age range of the infected population was statistically higher in the patients infected with ZIKV (29.72 years) than in those infected with DENV or CHIKV (21.09 years). Both co-circulation and co-infection of these three viruses was found. The prevalence of DENV/CHIKV, DENV/ZIKV, and CHIKV/ZIKV co-infection was 7.64%, 6.37%, and 5.10%, with attack rates of 14.90, 12.42, and 9.93 cases per 100,000 inhabitants, respectively. Furthermore, three patients were found to be co-infected with all three viruses (prevalence of 1.91%), with an attack rate of 4.96 cases per 100,000 inhabitants. Our results demonstrate the simultaneous co-circulation of DENV, CHIKV, ZIKV and their co-infections at the Colombian-Venezuelan border. Moreover, it is necessary to improve the differential diagnosis in patients with acute febrile syndrome and to study the possible consequences of this epidemiological overview of the clinical outcomes of these diseases in endemic

  17. Vector competence of populations of Aedes aegypti from three distinct cities in Kenya for chikungunya virus.

    PubMed

    Agha, Sheila B; Chepkorir, Edith; Mulwa, Francis; Tigoi, Caroline; Arum, Samwel; Guarido, Milehna M; Ambala, Peris; Chelangat, Betty; Lutomiah, Joel; Tchouassi, David P; Turell, Michael J; Sang, Rosemary

    2017-08-01

    In April, 2004, chikungunya virus (CHIKV) re-emerged in Kenya and eventually spread to the islands in the Indian Ocean basin, South-East Asia, and the Americas. The virus, which is often associated with high levels of viremia in humans, is mostly transmitted by the urban vector, Aedes aegypti. The expansion of CHIKV presents a public health challenge both locally and internationally. In this study, we investigated the ability of Ae. aegypti mosquitoes from three distinct cities in Kenya; Mombasa (outbreak prone), Kisumu, and Nairobi (no documented outbreak) to transmit CHIKV. Aedes aegypti mosquito populations were exposed to different doses of CHIKV (105.6-7.5 plaque-forming units[PFU]/ml) in an infectious blood meal. Transmission was ascertained by collecting and testing saliva samples from individual mosquitoes at 5, 7, 9, and 14 days post exposure. Infection and dissemination were estimated by testing body and legs, respectively, for individual mosquitoes at selected days post exposure. Tissue culture assays were used to determine the presence of infectious viral particles in the body, leg, and saliva samples. The number of days post exposure had no effect on infection, dissemination, or transmission rates, but these rates increased with an increase in exposure dose in all three populations. Although the rates were highest in Ae. aegypti from Mombasa at titers ≥106.9 PFU/ml, the differences observed were not statistically significant (χ2 ≤ 1.04, DF = 1, P ≥ 0.31). Overall, about 71% of the infected mosquitoes developed a disseminated infection, of which 21% successfully transmitted the virus into a capillary tube, giving an estimated transmission rate of about 10% for mosquitoes that ingested ≥106.9 PFU/ml of CHIKV. All three populations of Ae. aegypti were infectious as early as 5-7 days post exposure. On average, viral dissemination only occurred when body titers were ≥104 PFU/ml in all populations. Populations of Ae. aegypti from Mombasa, Nairobi

  18. Current Strategies for Inhibition of Chikungunya Infection.

    PubMed

    Subudhi, Bharat Bhusan; Chattopadhyay, Soma; Mishra, Priyadarsee; Kumar, Abhishek

    2018-05-03

    Increasing incidences of Chikungunya virus (CHIKV) infection and co-infections with Dengue/Zika virus have highlighted the urgency for CHIKV management. Failure in developing effective vaccines or specific antivirals has fuelled further research. This review discusses updated strategies of CHIKV inhibition and provides possible future directions. In addition, it analyzes advances in CHIKV lifecycle, drug-target development, and potential hits obtained by in silico and experimental methods. Molecules identified with anti-CHIKV properties using traditional/rational drug design and their potential to succeed in subsequent stages of drug development have also been discussed. Possibilities of repurposing existing drugs based on their in vitro findings have also been elucidated. Probable modes of interference of these compounds at various stages of infection, including entry and replication, have been highlighted. The use of host factors as targets to identify antivirals against CHIKV has been addressed. While most of the earlier antivirals were effective in the early phases of the CHIKV life cycle, this review is also focused on drug candidates that are effective at multiple stages of its life cycle. Since most of these antivirals require validation in preclinical and clinical models, the challenges regarding this have been discussed and will provide critical information for further research.

  19. Current Strategies for Inhibition of Chikungunya Infection

    PubMed Central

    Subudhi, Bharat Bhusan; Chattopadhyay, Soma; Mishra, Priyadarsee

    2018-01-01

    Increasing incidences of Chikungunya virus (CHIKV) infection and co-infections with Dengue/Zika virus have highlighted the urgency for CHIKV management. Failure in developing effective vaccines or specific antivirals has fuelled further research. This review discusses updated strategies of CHIKV inhibition and provides possible future directions. In addition, it analyzes advances in CHIKV lifecycle, drug-target development, and potential hits obtained by in silico and experimental methods. Molecules identified with anti-CHIKV properties using traditional/rational drug design and their potential to succeed in subsequent stages of drug development have also been discussed. Possibilities of repurposing existing drugs based on their in vitro findings have also been elucidated. Probable modes of interference of these compounds at various stages of infection, including entry and replication, have been highlighted. The use of host factors as targets to identify antivirals against CHIKV has been addressed. While most of the earlier antivirals were effective in the early phases of the CHIKV life cycle, this review is also focused on drug candidates that are effective at multiple stages of its life cycle. Since most of these antivirals require validation in preclinical and clinical models, the challenges regarding this have been discussed and will provide critical information for further research. PMID:29751486

  20. Alterations of neutral glycolipids in cells infected with syncytium-producing mutants of herpes simplex virus type 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruhlig, M.A.; Person, S.

    1977-11-01

    The isolation of syncytium-producing mutants of herpes simplex virus type 1 (KOS strain), which cause extensive cell fusion during otherwise normal infections, has been reported previously (S. Person, R.W. Knowles, G.S. Read, S.C. Warner, and V.C. Bond, J. Virol. 17:183-190, 1976). Seven of these mutants, plus two syncytial strains obtained elsewhere were used to compare the incorporation of labeled galactose into neutral glycolipids of mock-infected, wild-type-infected, and syncytially infected human embryonic lung cells. Five predominant cellular glycolipid species were observed, denoted GL-1 through GL-5 in order of increasing oligosaccharide chain length; for example, GL-1 and GL-2 correspond to glycolipids thatmore » contain mono- and disaccharide units, respectively. Wild-type virus infection caused an increase in galactose incorporation into GL-1 and GL-2 relative to GL-3 through GL-5. For a single labeling interval from 4 to 10 h after adsorption, syncytial infections generally resulted in a relatively greater incorporation into more complex glycolipids than did wild-type infections. One mutant, syn 20, was compared with wild-type virus throughout infection by using a series of shorter labeling pulses and appeared to delay by at least 2 h the alterations observed during wild-type infections. These alterations are apparently due to defects in synthesis, since prelabeled cellular glycolipids were not differentially degraded during mock or virus infection.« less

  1. Chikungunya Virus: In Vitro Response to Combination Therapy With Ribavirin and Interferon Alfa 2a.

    PubMed

    Gallegos, Karen M; Drusano, George L; D Argenio, David Z; Brown, Ashley N

    2016-10-15

    We evaluated the antiviral activities of ribavirin (RBV) and interferon (IFN) alfa as monotherapy and combination therapy against chikungunya virus (CHIKV). Vero cells were infected with CHIKV in the presence of RBV and/or IFN alfa, and viral production was quantified by plaque assay. A mathematical model was fit to the data to identify drug interactions for effect. We ran simulations using the best-fit model parameters to predict the antiviral activity associated with clinically relevant regimens of RBV and IFN alfa as combination therapy. The model predictions were validated using the hollow fiber infection model (HFIM) system. RBV and IFN alfa were effective against CHIKV as monotherapy at supraphysiological concentrations. However, RBV and IFN alfa were highly synergistic for antiviral effect when administered as combination therapy. Simulations with our mathematical model predicted that a standard clinical regimen of RBV plus IFN alfa would inhibit CHIKV burden by 2.5 log10 following 24 hours of treatment. In the HFIM system, RBV plus IFN alfa at clinical exposures resulted in a 2.1-log10 decrease in the CHIKV burden following 24 hours of therapy. These findings validate the prediction made by the mathematical model. These studies illustrate the promise of RBV plus IFN alfa as a potential therapeutic strategy for the treatment of CHIKV infections. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  2. DPC 681 and DPC 684: Potent, Selective Inhibitors of Human Immunodeficiency Virus Protease Active against Clinically Relevant Mutant Variants

    PubMed Central

    Kaltenbach, Robert F.; Trainor, George; Getman, Daniel; Harris, Greg; Garber, Sena; Cordova, Beverly; Bacheler, Lee; Jeffrey, Susan; Logue, Kelly; Cawood, Pamela; Klabe, Ronald; Diamond, Sharon; Davies, Marc; Saye, Joanne; Jona, Janan; Erickson-Viitanen, Susan

    2001-01-01

    Human immunodeficiency virus (HIV) protease inhibitors (PIs) are important components of many highly active antiretroviral therapy regimens. However, development of phenotypic and/or genotypic resistance can occur, including cross-resistance to other PIs. Development of resistance takes place because trough levels of free drug are inadequate to suppress preexisting resistant mutant variants and/or to inhibit de novo-generated resistant mutant variants. There is thus a need for new PIs, which are more potent against mutant variants of HIV and show higher levels of free drug at the trough. We have optimized a series of substituted sulfonamides and evaluated the inhibitors against laboratory strains and clinical isolates of HIV type 1 (HIV-1), including viruses with mutations in the protease gene. In addition, serum protein binding was determined to estimate total drug requirements for 90% suppression of virus replication (plasma IC90). Two compounds resulting from our studies, designated DPC 681 and DPC 684, are potent and selective inhibitors of HIV protease with IC90s for wild-type HIV-1 of 4 to 40 nM. DPC 681 and DPC 684 showed no loss in potency toward recombinant mutant HIVs with the D30N mutation and a fivefold or smaller loss in potency toward mutant variants with three to five amino acid substitutions. A panel of chimeric viruses constructed from clinical samples from patients who failed PI-containing regimens and containing 5 to 11 mutations, including positions 10, 32, 46, 47, 50, 54, 63, 71, 82, 84, and 90 had mean IC50 values of <20 nM for DPC 681 and DPC 681, respectively. In contrast, marketed PIs had mean IC50 values ranging from 200 nM (amprenavir) to >900 nM (nelfinavir). PMID:11600351

  3. Chikungunya virus nsP4 RNA-dependent RNA polymerase core domain displays detergent-sensitive primer extension and terminal adenylyltransferase activities.

    PubMed

    Chen, Ming Wei; Tan, Yaw Bia; Zheng, Jie; Zhao, Yongqian; Lim, Bee Ting; Cornvik, Tobias; Lescar, Julien; Ng, Lisa Fong Poh; Luo, Dahai

    2017-07-01

    Chikungunya virus (CHIKV) is an important arboviral infectious agent in tropical and subtropical regions, often causing persistent and debilitating disease. The viral enzyme non-structural protein 4 (nsP4), as RNA-dependent RNA polymerase (RdRP), catalyzes the formation of negative-sense, genomic and subgenomic viral RNAs. Here we report a truncated nsP4 construct that is soluble, stable and purified recombinantly from Escherichia coli. Sequence analyses and homology modelling indicate that all necessary RdRP elements are included. Hydrogen/deuterium exchange with mass spectrometry was used to analyze solvent accessibility and flexibility of subdomains. Fluorophore-conjugated RNA ligands were designed and screened by using fluorescence anisotropy to select a suitable substrate for RdRP assays. Assay trials revealed that nsP4 core domain is conditionally active upon choice of detergent species, and carries out both primed extension and terminal adenylyltransferase activities. The polymerization assay can be further developed to screen for antiviral compounds in vitro. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. An Assessment of Household and Individual-Level Mosquito Prevention Methods during the Chikungunya Virus Outbreak in the United States Virgin Islands, 2014-2015.

    PubMed

    Feldstein, Leora R; Rowhani-Rahbar, Ali; Staples, J Erin; Halloran, M Elizabeth; Ellis, Esther M

    2018-03-01

    Recent large-scale chikungunya virus (CHIKV) and Zika virus epidemics in the Americas pose a growing public health threat. Given that mosquito bite prevention and vector control are the main prevention methods available to reduce transmission of these viruses, we assessed adherence to these methods in the United States Virgin Islands (USVI). We interviewed 334 USVI residents between December 2014 and February 2015 to measure differences in mosquito prevention practices by gender, income, presence of CHIKV symptoms, and age. Only 27% (91/334) of participants reported having an air conditioner, and of the 91 with air-conditioners, 18 (20%) reported never using it. Annual household income > $50,000 was associated with owning and using an air conditioner (41%; 95% confidence interval [CI]: 28-53% compared with annual household income ≤ $50,000: 17%; 95% CI: 12-22%). The majority of participants reported the presence of vegetation in their yard or near their home (79%; 265) and a cistern on their property (78%; 259). Only 52 (16%) participants reported wearing mosquito repellent more than once per week. Although the majority (80%; 268) of participants reported having screens on all of their windows and doors, most (82%; 273) of those interviewed still reported seeing mosquitoes in their homes. Given the uniformly low adherence to individual- and household-level mosquito bite prevention measures in the USVI, these findings emphasize the need for improved public health messaging and investment in therapeutic and vaccine research to mitigate vector-borne disease outbreaks.

  5. Epidemiology of Chikungunya Virus Outbreaks in Guadeloupe and Martinique, 2014: An Observational Study in Volunteer Blood Donors.

    PubMed

    Gallian, Pierre; Leparc-Goffart, Isabelle; Richard, Pascale; Maire, Françoise; Flusin, Olivier; Djoudi, Rachid; Chiaroni, Jacques; Charrel, Remi; Tiberghien, Pierre; de Lamballerie, Xavier

    2017-01-01

    During Dec-2013, a chikungunya virus (CHIKV) outbreak was first detected in the French-West Indies. Subsequently, the virus dispersed to other Caribbean islands, continental America and many islands in the Pacific Ocean. Previous estimates of the attack rate were based on declaration of clinically suspected cases. Individual testing for CHIKV RNA of all (n = 16,386) blood donations between Feb-24th 2014 and Jan-31st 2015 identified 0·36% and 0·42% of positives in Guadeloupe and Martinique, respectively. The incidence curves faithfully correlated with those of suspected clinical cases in the general population of Guadeloupe (abrupt epidemic peak), but not in Martinique (flatter epidemic growth). No significant relationship was identified between CHIKV RNA detection and age-classes or blood groups. Prospective (Feb-2014 to Jan-2015; n = 9,506) and retrospective (Aug-2013 to Feb-2014; n = 6,559) seroepidemiological surveys in blood donors identified a final seroprevalence of 48·1% in Guadeloupe and 41·9% in Martinique. Retrospective survey also suggested the absence or limited "silent" CHIKV circulation before the outbreak. Parameters associated with increased seroprevalence were: Gender (M>F), KEL-1, [RH+1/KEL-1], [A/RH+1] and [A/RH+1/KEL-1] blood groups in Martiniquan donors. A simulation model based on observed incidence and actual seroprevalence values predicted 2·5 and 2·3 days of asymptomatic viraemia in Martiniquan and Guadeloupian blood donors respectively. This study, implemented promptly with relatively limited logistical requirements during CHIKV emergence in the Caribbean, provided unique information regarding retrospective and prospective epidemiology, infection risk factors and natural history of the disease. In the stressful context of emerging infectious disease outbreaks, blood donor-based studies can serve as robust and cost-effective first-line tools for public health surveys.

  6. Persistent RNA virus infections: do PAMPS drive chronic disease?

    PubMed Central

    McCarthy, Mary K.; Morrison, Thomas E.

    2017-01-01

    Chronic disease associated with persistent RNA virus infections represents a key public health concern. While human immunodeficiency virus-1 and hepatitis C virus are perhaps the most well-known examples of persistent RNA viruses that cause chronic disease, evidence suggests that many other RNA viruses, including re-emerging viruses such as chikungunya virus, Ebola virus and Zika virus, establish persistent infections. The mechanisms by which RNA viruses drive chronic disease are poorly understood. Here, we discuss how the persistence of viral RNA may drive chronic disease manifestations via the activation of RNA sensing pathways. PMID:28214732

  7. Spatial and temporal distribution of chikungunya activity in the Americas

    USDA-ARS?s Scientific Manuscript database

    To better understand chikungunya activity in the America we mapped recent chikungunya activity in the Americas. This activity is needed to better understand that the relationships between climatic factors and disease outbreak patters are critical to the design and constructing of predictive models....

  8. Laboratory Validation of the Sand Fly Fever Virus Antigen Assay

    DTIC Science & Technology

    2015-12-01

    several commercially available assays from VecTOR Test Systems Inc. for malaria, West Nile virus, Rift Valley fever virus, dengue , chikungunya, and...Sabin AB. 1955. Recent advances in our knowledge of dengue and sandfly fever. Am J Trop Med Hyg 4:198–207. Sather GE. 1970. Catalogue of arthropod

  9. Rapid formation of few polyhedral mutants of Lymantria dispar multinucleocapsid nuclear polyhedrosis virus during serial passage in cell culture

    Treesearch

    James M. Slavicek; Nancy Hayes-Plazolles; Mary Ellen Kelly

    1995-01-01

    Four genotypic variants of Lymantria dispar multimucleocapsid nuclear polyhedrosis virus (LdMNPV) were used to investigate the generation of few polyhedra (FP) mutants during viral propagation in the L. dispar 652Y cell line. Titers of budded virus, the percentage of infected cells producting polyhedra, the amount of polyhedra...

  10. Infectious mutants of cassava latent virus generated in vivo from intact recombinant DNA clones containing single copies of the genome.

    PubMed Central

    Stanley, J; Townsend, R

    1986-01-01

    Intact recombinant DNAs containing single copies of either component of the cassava latent virus genome can elicit infection when mechanically inoculated to host plants in the presence of the appropriate second component. Characterisation of infectious mutant progeny viruses, by analysis of virus-specific supercoiled DNA intermediates, indicates that most if not all of the cloning vector has been deleted, achieved at least in some cases by intermolecular recombination in vivo between DNAs 1 and 2. Significant rearrangements within the intergenic region of DNA 2, predominantly external to the common region, can be tolerated without loss of infectivity suggesting a somewhat passive role in virus multiplication for the sequences in question. Although packaging constraints might impose limits on the amount of DNA within geminate particles, isolation of an infectious coat protein mutant defective in virion production suggests that packaging is not essential for systemic spread of the viral DNA. Images PMID:2875435

  11. DNA Packaging Mutant: Repression of the Vaccinia Virus A32 Gene Results in Noninfectious, DNA-Deficient, Spherical, Enveloped Particles

    PubMed Central

    Cassetti, Maria Cristina; Merchlinsky, Michael; Wolffe, Elizabeth J.; Weisberg, Andrea S.; Moss, Bernard

    1998-01-01

    The vaccinia virus A32 open reading frame was predicted to encode a protein with a nucleoside triphosphate-binding motif and a mass of 34 kDa. To investigate the role of this protein, we constructed a mutant in which the original A32 gene was replaced by an inducible copy. The recombinant virus, vA32i, has a conditional lethal phenotype: infectious virus formation was dependent on isopropyl-β-d-thiogalactopyranoside (IPTG). Under nonpermissive conditions, the mutant synthesized early- and late-stage viral proteins, as well as viral DNA that was processed into unit-length genomes. Electron microscopy of cells infected in the absence of IPTG revealed normal-appearing crescents and immature virus particles but very few with nucleoids. Instead of brick-shaped mature particles with defined core structures, there were numerous electron-dense, spherical particles. Some of these spherical particles were wrapped with cisternal membranes, analogous to intracellular and extracellular enveloped virions. Mutant viral particles, purified by sucrose density gradient centrifugation, had low infectivity and transcriptional activity, and the majority were spherical and lacked DNA. Nevertheless, the particle preparation contained representative membrane proteins, cleaved and uncleaved core proteins, the viral RNA polymerase, the early transcription factor and several enzymes, suggesting that incorporation of these components is not strictly coupled to DNA packaging. PMID:9621036

  12. An app for climate-based Chikungunya risk monitoring and mapping

    USDA-ARS?s Scientific Manuscript database

    There is an increasing concern for reemergence and spread of chikungunya in the last 10 years in Africa, the Indian Ocean, and Asia, and range expansion that now reaches the Caribbean, South America and threatens North America. The outbreak of Chikungunya in 2013 and its spread throughout the Americ...

  13. Knowledge and use of prevention measures for chikungunya virus among visitors — Virgin Islands National Park, 2015

    PubMed Central

    Cherry, Cara C.; Beer, Karlyn D.; Fulton, Corey; Wong, David; Buttke, Danielle; Staples, J. Erin; Ellis, Esther M.

    2016-01-01

    Summary Background In June 2014, the mosquito-borne chikungunya virus (CHIKV) emerged in the U.S. Virgin Islands (USVI), a location where tourists comprise the majority of the population during peak season (January–April). Limited information is available concerning visitors’ CHIKV awareness and prevention measures. Methods We surveyed a convenience sample of Virgin Islands National Park visitors aged ≥18 years. Respondents completed a questionnaire assessing CHIKV knowledge, attitudes, and practices; health information-seeking practices; and demographics. Results Of 783 persons contacted, 443 (57%) completed the survey. Fewer than half (208/441 [47%]) were aware of CHIKV. During trip preparation, 28% of respondents (126/443) investigated USVI-specific health concerns. Compared with persons unaware of CHIKV, CHIKV-aware persons were more likely to apply insect repellent (134/207 [65%] versus 111/231 [48%]; p < 0.001), wear long-sleeves and long pants (84/203 [41%] versus 57/227 [25%]; p < 0.001), and wear insect repellent-treated clothing (36/204 [18%] versus 22/227 [10%]; p = 0.02). Conclusions The majority of visitors surveyed did not research destination-related health concerns and were unaware of CHIKV. However, CHIKV awareness was associated with using multiple prevention measures to reduce disease risk. These findings underscore the importance of providing tourists with disease education upon destination arrival. PMID:27597388

  14. Homologous interference mediated by defective interfering influenza virus derived from a temperature-sensitive mutant of influenza virus.

    PubMed Central

    Nayak, D P; Tobita, K; Janda, J M; Davis, A R; De, B K

    1978-01-01

    A temperature-sensitive group II mutant of influenza virus, ts-52, with a presumed defect in viral RNA synthesis, readily produced von Magnus-type defective interfering virus (DI virus) when passed serially (four times) at high multiplicity in MDBK cells. The defective virus (ts-52 DI virus) had a high hemagglutinin and a low infectivity titer, and strongly interfered with the replication of standard infectious viruses (both ts-52 and wild-type ts+) in co-infected cells. Progeny virus particles produced by co-infection of DI virus and infectious virus were also defective and also had low infectivity, high hemagglutinating activity, and a strong interfering property. Infectious viruses ts+ and ts-52 were indistinguishable from ts-52 DI viruses by sucrose velocity or density gradient analysis. Additionally, these viruses all possessed similar morphology. However, when the RNA of DI viruses was analyzed by use of polyacrylamide gels containing 6 M urea, there was a reduction in the amount of large RNA species (V1 to V4), and a number of new smaller RNA species (D1 to D6) with molecular weights ranging from 2.9 X 10(5) to 1.05 X 10(5) appeared. Since these smaller RNA species (D1 to D6) were absent in some clones of infectious viruses, but were consistently associated with DI viruses and increased during undiluted passages and during co-infection of ts-52 with DI virus, they appeared to be a characteristic of DI viruses. Additionally, the UV target size of interfering activity and infectivity of DI virus indicated that interfering activity was 40 times more resistant to UV irradiation than was infectivity, further implicating small RNA molecules in interference. Our data suggest that the loss of infectivity observed among DI viruses may be due to nonspecific loss of a viral RNA segment(s), and the interfering property of DI viruses may be due to interfering RNA segments (DIRNA, D1 to D6). ts-52 DI virus interfered with the replication of standard virus (ts+) at both

  15. Herpes simplex virus type 1 gene UL14: phenotype of a null mutant and identification of the encoded protein.

    PubMed

    Cunningham, C; Davison, A J; MacLean, A R; Taus, N S; Baines, J D

    2000-01-01

    Herpes simplex virus type 1 (HSV-1) gene UL14 is located between divergently transcribed genes UL13 and UL15 and overlaps the promoters for both of these genes. UL14 also exhibits a substantial overlap of its coding region with that of UL13. It is one of the few HSV-1 genes for which a phenotype and protein product have not been described. Using mass spectrometric and immunological approaches, we demonstrated that the UL14 protein is a minor component of the virion tegument of 32 kDa which is expressed late in infection. In infected cells, the UL14 protein was detected in the nucleus at discrete sites within electron-dense nuclear bodies and in the cytoplasm initially in a diffuse distribution and then at discrete sites. Some of the UL14 protein was phosphorylated. A mutant with a 4-bp deletion in the central region of UL14 failed to produce the UL14 protein and generated small plaques. The mutant exhibited an extended growth cycle at low multiplicity of infection and appeared to be compromised in efficient transit of virus particles from the infected cell. In mice injected intracranially, the 50% lethal dose of the mutant was reduced more than 30,000-fold. Recovery of the mutant from the latently infected sacral ganglia of mice injected peripherally was significantly less than that of wild-type virus, suggesting a marked defect in the establishment of, or reactivation from, latent infection.

  16. Identification of Novel Compounds Inhibiting Chikungunya Virus-Induced Cell Death by High Throughput Screening of a Kinase Inhibitor Library

    PubMed Central

    Gomes, Rafael G. B.; da Silva, Camila T.; Taniguchi, Juliana B.; No, Joo Hwan; Lombardot, Benoit; Schwartz, Olivier; Hansen, Michael A. E.; Freitas-Junior, Lucio H.

    2013-01-01

    Chikungunya virus (CHIKV) is a mosquito-borne arthrogenic alphavirus that causes acute febrile illness in humans accompanied by joint pains and in many cases, persistent arthralgia lasting weeks to years. The re-emergence of CHIKV has resulted in numerous outbreaks in the eastern hemisphere, and threatens to expand in the foreseeable future. Unfortunately, no effective treatment is currently available. The present study reports the use of resazurin in a cell-based high-throughput assay, and an image-based high-content assay to identify and characterize inhibitors of CHIKV-infection in vitro. CHIKV is a highly cytopathic virus that rapidly kills infected cells. Thus, cell viability of HuH-7 cells infected with CHIKV in the presence of compounds was determined by measuring metabolic reduction of resazurin to identify inhibitors of CHIKV-associated cell death. A kinase inhibitor library of 4,000 compounds was screened against CHIKV infection of HuH-7 cells using the resazurin reduction assay, and the cell toxicity was also measured in non-infected cells. Seventy-two compounds showing ≥50% inhibition property against CHIKV at 10 µM were selected as primary hits. Four compounds having a benzofuran core scaffold (CND0335, CND0364, CND0366 and CND0415), one pyrrolopyridine (CND0545) and one thiazol-carboxamide (CND3514) inhibited CHIKV-associated cell death in a dose-dependent manner, with EC50 values between 2.2 µM and 7.1 µM. Based on image analysis, these 6 hit compounds did not inhibit CHIKV replication in the host cell. However, CHIKV-infected cells manifested less prominent apoptotic blebs typical of CHIKV cytopathic effect compared with the control infection. Moreover, treatment with these compounds reduced viral titers in the medium of CHIKV-infected cells by up to 100-fold. In conclusion, this cell-based high-throughput screening assay using resazurin, combined with the image-based high content assay approach identified compounds against CHIKV having a novel

  17. Prevalence of precore-defective mutant of hepatitis B virus in HBV carriers.

    PubMed

    Niitsuma, H; Ishii, M; Saito, Y; Miura, M; Kobayashi, K; Ohori, H; Toyota, T

    1995-08-01

    Two hundred and seventy-three serum specimens from hepatitis B virus (HBV) carriers were examined for the presence of a characteristic one point mutation at nucleotide (nt) 1896 from the EcoRI site of the HBV genome in the precore region (the preC mutant) using restriction fragment length polymorphism (RFLP) analysis. This assay approach could detect preC mutants or wild-type sequences when either form constituted more than 10% of the total sample. Overall, 65.5% (76/116) of HBeAg-positive carriers had only the preC wild-type. All HBeAg-positive asymptomatic carriers (n = 14) had only the preC wild-type. In patients with chronic hepatitis B and in anti-HBe-positive asymptomatic carriers, increased prevalence of the preC mutant was associated with the development of anti-HBe antibodies and normalization of the serum alanine aminotransferase concentration. Furthermore, 27 (29.0%) of 93 HBeAg-negative carriers had unexpectedly preC wild-type sequences only. Direct sequencing of the HBV precore region of HBV specimens from 24 patients revealed no mutation at nt 1896, supporting the specificity of the RFLP analysis. These results suggest that RFLP analysis was accurate for the detection of the preC mutation and that the absence of serum HBeAg cannot be explained solely by the dominance of the preC mutant.

  18. Dengue, chikungunya … and the missing entity - Zika fever: A new emerging threat.

    PubMed

    Tilak, Rina; Ray, Sougat; Tilak, V W; Mukherji, Sandip

    2016-04-01

    Zika virus (ZIKV), a relative newcomer from the flavivirus group that includes dengue, Japanese encepahalitis and yellow fever, is one of the emerging pathogens that is fast transcending geographical boundaries. It is a vector-borne disease transmitted by the same Aedes aegypti and Aedes albopictus, which cause dengue and chikungunya. In addition to the vector-mediated transmission of Zika fever, probable human-to-human transmission through exchange of body fluids, including sexual and perinatal transmission and through blood transfusion, makes containment of this new entity more challenging. Moreover, a high index of suspicion by an astute physician is necessary for diagnosis of Zika fever in view of the similarity of symptoms with dengue and chikungunya, especially in areas, where these two diseases are already endemic. Zika, till recently, has had minimal impact, but its true potential is unfolding with increasing detection of congenital malformities, Guillain-Barré syndrome and other neurological and autoimmune syndromes in patients with recent history of ZIKV infection, or when mothers get infected with Zika during first or second trimester of pregnancy. The association, however, needs to be established, nonetheless it is important that we keep a close vigil on this emerging vector borne disease - the 'ZIKA' fever.

  19. Public reaction to Chikungunya outbreaks in Italy-Insights from an extensive novel data streams-based structural equation modeling analysis.

    PubMed

    Mahroum, Naim; Adawi, Mohammad; Sharif, Kassem; Waknin, Roy; Mahagna, Hussein; Bisharat, Bishara; Mahamid, Mahmud; Abu-Much, Arsalan; Amital, Howard; Luigi Bragazzi, Nicola; Watad, Abdulla

    2018-01-01

    The recent outbreak of Chikungunya virus in Italy represents a serious public health concern, which is attracting media coverage and generating public interest in terms of Internet searches and social media interactions. Here, we sought to assess the Chikungunya-related digital behavior and the interplay between epidemiological figures and novel data streams traffic. Reaction to the recent outbreak was analyzed in terms of Google Trends, Google News and Twitter traffic, Wikipedia visits and edits, and PubMed articles, exploiting structural modelling equations. A total of 233,678 page-views and 150 edits on the Italian Wikipedia page, 3,702 tweets, 149 scholarly articles, and 3,073 news articles were retrieved. The relationship between overall Chikungunya cases, as well as autochthonous cases, and tweets production was found to be fully mediated by Chikungunya-related web searches. However, in the allochthonous/imported cases model, tweet production was not found to be significantly mediated by epidemiological figures, with web searches still significantly mediating tweet production. Inconsistent relationships were detected in mediation models involving Wikipedia usage as a mediator variable. Similarly, the effect between news consumption and tweets production was suppressed by the Wikipedia usage. A further inconsistent mediation was found in the case of the effect between Wikipedia usage and tweets production, with web searches as a mediator variable. When adjusting for the Internet penetration index, similar findings could be obtained, with the important exception that in the adjusted model the relationship between GN and Twitter was found to be partially mediated by Wikipedia usage. Furthermore, the link between Wikipedia usage and PubMed/MEDLINE was fully mediated by GN, differently from what was found in the unadjusted model. In conclusion-a significant public reaction to the current Chikungunya outbreak was documented. Health authorities should be aware of

  20. Public reaction to Chikungunya outbreaks in Italy—Insights from an extensive novel data streams-based structural equation modeling analysis

    PubMed Central

    Sharif, Kassem; Waknin, Roy; Mahagna, Hussein; Bisharat, Bishara; Mahamid, Mahmud; Abu-Much, Arsalan; Amital, Howard; Luigi Bragazzi, Nicola

    2018-01-01

    The recent outbreak of Chikungunya virus in Italy represents a serious public health concern, which is attracting media coverage and generating public interest in terms of Internet searches and social media interactions. Here, we sought to assess the Chikungunya-related digital behavior and the interplay between epidemiological figures and novel data streams traffic. Reaction to the recent outbreak was analyzed in terms of Google Trends, Google News and Twitter traffic, Wikipedia visits and edits, and PubMed articles, exploiting structural modelling equations. A total of 233,678 page-views and 150 edits on the Italian Wikipedia page, 3,702 tweets, 149 scholarly articles, and 3,073 news articles were retrieved. The relationship between overall Chikungunya cases, as well as autochthonous cases, and tweets production was found to be fully mediated by Chikungunya-related web searches. However, in the allochthonous/imported cases model, tweet production was not found to be significantly mediated by epidemiological figures, with web searches still significantly mediating tweet production. Inconsistent relationships were detected in mediation models involving Wikipedia usage as a mediator variable. Similarly, the effect between news consumption and tweets production was suppressed by the Wikipedia usage. A further inconsistent mediation was found in the case of the effect between Wikipedia usage and tweets production, with web searches as a mediator variable. When adjusting for the Internet penetration index, similar findings could be obtained, with the important exception that in the adjusted model the relationship between GN and Twitter was found to be partially mediated by Wikipedia usage. Furthermore, the link between Wikipedia usage and PubMed/MEDLINE was fully mediated by GN, differently from what was found in the unadjusted model. In conclusion—a significant public reaction to the current Chikungunya outbreak was documented. Health authorities should be aware of

  1. Hematologic Parameters and Viral Status for Zika, Chikungunya, Bluetongue, and Epizootic Hemorrhagic Disease in White-tailed Deer ( Odocoileus virginianus) on St John, US Virgin Islands.

    PubMed

    Reuter, Jon D; Nelson, Suzanne L

    2018-05-24

    A population of white-tailed deer ( Odocoileus virginianus) resides throughout the island of St John, US Virgin Islands, predominately in the Virgin Islands National Park. Adult deer ( n=23), ranging from 1 yr to 8 yr old, were assessed to characterize body condition and health. Serologic samples were screened for important viral pathogens in the area, including Zika, chikungunya, bluetongue, and epizootic hemorrhagic disease viruses. Samples were collected in July 2016; males were in velvet and all females were in diestrus. Deer had recovered from a severe drought the previous year but were generally healthy, with a low-level but high incidence of tick parasitism. Marked statistically significant changes in hematocrit and hemoglobin levels were associated with the effects of the anesthetic mixture used for capture. No other statistically significant differences were observed. Serum from four deer induced reduction in Zika virus plaques, suggesting possible exposure. No serum was reactive for chikungunya virus. Bluetongue and epizootic hemorrhagic disease antibodies were present in 50% of the sampled deer, but no clinical signs associated with disease were observed during the study period. These data will be valuable for future dynamic health assessment and may help assess changes to the population, such as those induced by climate change, infectious disease, or other demographic events.

  2. Transmission potential of Zika virus infection in the South Pacific.

    PubMed

    Nishiura, Hiroshi; Kinoshita, Ryo; Mizumoto, Kenji; Yasuda, Yohei; Nah, Kyeongah

    2016-04-01

    Zika virus has spread internationally through countries in the South Pacific and Americas. The present study aimed to estimate the basic reproduction number, R0, of Zika virus infection as a measurement of the transmission potential, reanalyzing past epidemic data from the South Pacific. Incidence data from two epidemics, one on Yap Island, Federal State of Micronesia in 2007 and the other in French Polynesia in 2013-2014, were reanalyzed. R0 of Zika virus infection was estimated from the early exponential growth rate of these two epidemics. The maximum likelihood estimate (MLE) of R0 for the Yap Island epidemic was in the order of 4.3-5.8 with broad uncertainty bounds due to the small sample size of confirmed and probable cases. The MLE of R0 for French Polynesia based on syndromic data ranged from 1.8 to 2.0 with narrow uncertainty bounds. The transmissibility of Zika virus infection appears to be comparable to those of dengue and chikungunya viruses. Considering that Aedes species are a shared vector, this finding indicates that Zika virus replication within the vector is perhaps comparable to dengue and chikungunya. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Identification and characterization of a prevalent hepatitis B virus X protein mutant in Taiwanese patients with hepatocellular carcinoma.

    PubMed

    Yeh, C T; Shen, C H; Tai, D I; Chu, C M; Liaw, Y F

    2000-11-02

    The aim of this study was to investigate whether there was a particular hepatitis B virus (HBV) X protein (HBx) mutant associated with Taiwanese patients with hepatocellular carcinoma (HCC). Initially, the entire coding region of HBx gene from the serum samples of 14 Taiwanese patients were sequenced. A novel mutant, HBx-A31, was preferentially found in patients with HCC. Sera from 67 patients with HCC and 100 patients with chronic hepatitis B were thus subjected for codon 31 analysis using a dual amplification created restriction site method. HBx-A31 was detected more frequently in patients with HCC (52% versus 12%; P<0.001) and in patients with liver cirrhosis (44% versus 6%; P<0.001). Site directed mutagenesis experiment revealed that HBx-A31 was less effective in transactivating HBV enhancer I-X promoter complex, less efficient in supporting HBV replication, and less potent in enhancing TNF-alpha induced increment of CPP32/caspase 3 activities in HepG2 cells. In conclusion, a prevalent HBx mutant was identified in Taiwanese patients with hepatocellular carcinoma. Development of this mutant might represent a strategy of the virus to escape immune surveillance and thus contribute to the process of multiple-step hepatocarcinogenesis.

  4. Suppressing Aedes albopictus, an Emerging Vector of Dengue and Chikungunya Viruses, by a Novel Combination of a Monomolecular Film and an Insect-Growth Regulator

    PubMed Central

    Nelder, Mark; Kesavaraju, Banugopan; Farajollahi, Ary; Healy, Sean; Unlu, Isik; Crepeau, Taryn; Ragavendran, Ashok; Fonseca, Dina; Gaugler, Randy

    2010-01-01

    The Asian tiger mosquito Aedes albopictus (Skuse) is rapidly increasing its global range and importance in transmission of chikungunya and dengue viruses. We tested pellet formulations of a monomolecular film (Agnique) and (S)-methoprene (Altosid) under laboratory and field conditions. In the laboratory, Agnique provided 80% control for 20 days, whereas Altosid, in combination with Agnique, provided 80% control for > 60 days. During field trials, the 1:1 pellet ratio of combined products provided > 95% control for at least 32 days and 50% control for at least 50 days. Altosid remained effective after a 107-day laboratory-induced drought, suggesting that the product serves as a means of control during drought conditions and against spring broods in temperate regions. Agnique and Altosid, when used in tandem for cryptic, difficult-to-treat locations, can provide long-term control of Ae. albopictus larvae and pupae. The possible additive or synergistic effects of the combined products deserve further investigation. PMID:20439963

  5. Interferon-alpha/beta deficiency greatly exacerbates arthritogenic disease in mice infected with wild-type chikungunya virus but not with the cell culture-adapted live-attenuated 181/25 vaccine candidate

    PubMed Central

    Gardner, Christina L.; Burke, Crystal W.; Higgs, Stephen T.; Klimstra, William B.; Ryman, Kate D.

    2012-01-01

    In humans, chikungunya virus (CHIKV) infection causes fever, rash, and acute and persisting polyarthalgia/arthritis associated with joint swelling. We report a new CHIKV disease model in adult mice that distinguishes the wild-type CHIKV-LR strain from the live-attenuated vaccine strain (CHIKV-181/25). Although eight-week old normal mice inoculated in the hind footpad developed no hind limb swelling with either virus, CHIKV-LR replicated in musculoskeletal tissues and caused detectable inflammation. In mice deficient in STAT1-dependent interferon (IFN) responses, CHIKV-LR caused significant swelling of the inoculated and contralateral limbs and dramatic inflammatory lesions, while CHIKV-181/25 vaccine and another arthritogenic alphavirus, Sindbis, failed to induce swelling. IFN responses suppressed CHIKV-LR and CHIKV-181/25 replication equally in dendritic cells in vitro whereas macrophages were refractory to infection independently of STAT1-mediated IFN responses. Glycosaminoglycan (GAG) binding may be a CHIKV vaccine attenuation mechanism as CHIKV-LR infectivity was not dependent upon GAG, while CHIKV-181/25 was highly dependent. PMID:22305131

  6. Easily Accessible Polycyclic Amines that Inhibit the Wild-Type and Amantadine-Resistant Mutants of the M2 Channel of Influenza A Virus

    PubMed Central

    2015-01-01

    Amantadine inhibits the M2 proton channel of influenza A virus, yet most of the currently circulating strains of the virus carry mutations in the M2 protein that render the virus amantadine-resistant. While most of the research on novel amantadine analogues has revolved around the synthesis of novel adamantane derivatives, we have recently found that other polycyclic scaffolds effectively block the M2 proton channel, including amantadine-resistant mutant channels. In this work, we have synthesized and characterized a series of pyrrolidine derivatives designed as analogues of amantadine. Inhibition of the wild-type M2 channel and the A/M2-S31N, A/M2-V27A, and A/M2-L26F mutant forms of the channel were measured in Xenopus oocytes using two-electrode voltage clamp assays. Most of the novel compounds inhibited the wild-type ion channel in the low micromolar range. Of note, two of the compounds inhibited the amantadine-resistant A/M2-V27A and A/M2-L26F mutant ion channels with submicromolar and low micromolar IC50, respectively. None of the compounds was found to inhibit the S31N mutant ion channel. PMID:24941437

  7. Chikugunya and zika virus dissemination in the Americas: different arboviruses reflecting the same spreading routes and poor vector-control policies.

    PubMed

    Fernández-Salas, Ildefonso; Díaz-González, Esteban E; López-Gatell, Hugo; Alpuche-Aranda, Celia

    2016-10-01

    This review gathers the most recent investigations about chikungunya and zika viruses in America and would help in creating new research approaches. Clinical descriptions of chikungunya fever have been performed in the American outbreak observing that fever, polyarthalgia, myalgia and rash are the most common symptoms in the acute phase, while chronic arthralgia has persisted in 37-90% of small cohorts. The Asian origin of American strains of chikungunya virus (CHIKV) and zika virus (ZIKV) evidences a dissemination route in common and both are being transmitted by Aedes aegypti. Regarding zika fever, the association of congenital malformations with previous ZIKV exposure of pregnant women and potential sexual transmission of ZIKV are the most important discoveries in the New World. Massive outbreaks of chikungunya fever in 2014 and then followed by zika fever epidemics of lower magnitude in the next year throughout the American continent have their origins in Asia but may have used Pacific Islands as a path of dissemination. Reports of chronic arthralgia have been little described in the continent and more research is needed to measure the economic and health impact in patients who contracted CHIKV before. On the contrary, zika is menacing newborns' health because of its link with congenital microcephaly and sexual health by prolonged presence of viral particles in semen and urine.

  8. Case Series: Chikungunya and Dengue at a Forward Operating Location

    DTIC Science & Technology

    2015-05-01

    Journal Article 3. DATES COVERED (From – To) November 2014 – January 2015 4. TITLE AND SUBTITLE Case Series: Chikungunya and Dengue at a Forward...series and discusses the significance of this disease in the Americas and diagnostic challenges when other arboviruses such as dengue are present. 15...SUBJECT TERMS Chikungunya, dengue , mosquitoes 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF PAGES 3

  9. Characterizing Functional Domains for TIM-Mediated Enveloped Virus Entry

    PubMed Central

    Moller-Tank, Sven; Albritton, Lorraine M.; Rennert, Paul D.

    2014-01-01

    ABSTRACT T-cell immunoglobulin and mucin domain 1 (TIM-1) and other TIM family members were recently identified as phosphatidylserine (PtdSer)-mediated virus entry-enhancing receptors (PVEERs). These proteins enhance entry of Ebola virus (EBOV) and other viruses by binding PtdSer on the viral envelope, concentrating virus on the cell surface, and promoting subsequent internalization. The PtdSer-binding activity of the immunoglobulin-like variable (IgV) domain is essential for both virus binding and internalization by TIM-1. However, TIM-3, whose IgV domain also binds PtdSer, does not effectively enhance virus entry, indicating that other domains of TIM proteins are functionally important. Here, we investigate the domains supporting enhancement of enveloped virus entry, thereby defining the features necessary for a functional PVEER. Using a variety of chimeras and deletion mutants, we found that in addition to a functional PtdSer-binding domain PVEERs require a stalk domain of sufficient length, containing sequences that promote an extended structure. Neither the cytoplasmic nor the transmembrane domain of TIM-1 is essential for enhancing virus entry, provided the protein is still plasma membrane bound. Based on these defined characteristics, we generated a mimic lacking TIM sequences and composed of annexin V, the mucin-like domain of α-dystroglycan, and a glycophosphatidylinositol anchor that functioned as a PVEER to enhance transduction of virions displaying Ebola, Chikungunya, Ross River, or Sindbis virus glycoproteins. This identification of the key features necessary for PtdSer-mediated enhancement of virus entry provides a basis for more effective recognition of unknown PVEERs. IMPORTANCE T-cell immunoglobulin and mucin domain 1 (TIM-1) and other TIM family members are recently identified phosphatidylserine (PtdSer)-mediated virus entry-enhancing receptors (PVEERs). These proteins enhance virus entry by binding the phospholipid, PtdSer, present on the viral

  10. [AVIAN RECOMBINANT VIRUS H5N1 INFLUENZA (A/VIETNAM/1203/04) AND ITS ESCAPE-MUTANT m13(13) INDUCE EARLY SIGNALING REACTIONS OF THE IMMUNITY IN HUMAN LYMPHOCYTES].

    PubMed

    Sokolova, T M; Poloskov, V V; Shuvalov, A N; Rudneva, I A; Ershov, F I

    2016-01-01

    The innate immune receptors TLR4, TLR7, TLR8, and RIG1 recognized the structures of the influenza viruses in human lymphocytes and were activated by the recombinant avian influenza virus A/Vietnam/1203/04 and its escape-mutant m13(13) during early period of interaction. The stimulated levels are not connected with viral reproduction. Donor cells with the low constitutive immune receptors gene expression levels showed higher stimulation. Inflammation virus effects resulted in. increasing production of TNF-alpha and IFN-gamma by lymphocytes. Signaling gene reactions of the parent and mutant viruses endosomal as well as cytoplasmic receptors are very similar. The mutant virus A/Vietnam/1203/04 (HA S145F), stimulated an increase in the transcription level of the membrane receptor gene TLR4 and a decrease in the level of activation of TNF-alpha gene. Further studies of natural influenza virus isolates are necessary to estimate the role of HA antigenic changes on immune reactions in humans.

  11. Detection and phylogenetic characterization of arbovirus dual-infections among persons during a chikungunya fever outbreak, Haiti 2014.

    PubMed

    White, Sarah K; Mavian, Carla; Elbadry, Maha A; Beau De Rochars, Valery Madsen; Paisie, Taylor; Telisma, Taina; Salemi, Marco; Lednicky, John A; Morris, J Glenn

    2018-05-01

    In the context of recent arbovirus epidemics, questions about the frequency of simultaneous infection of patients with different arbovirus species have been raised. In 2014, a major Chikungunya virus (CHIKV) epidemic impacted the Caribbean and South America. As part of ongoing screening of schoolchildren presenting with acute undifferentiated febrile illness in rural Haiti, we used RT-PCR to identify CHIKV infections in 82 of 100 children with this diagnosis during May-August 2014. Among these, eight were infected with a second arbovirus: six with Zika virus (ZIKV), one with Dengue virus serotype 2, and one with Mayaro virus (MAYV). These dual infections were only detected following culture of the specimen, suggesting low viral loads of the co-infecting species. Phylogenetic analyses indicated that the ZIKV and MAYV strains differ from those detected later in 2014 and 2015, respectively. Moreover, CHIKV and ZIKV strains from co-infected patients clustered monophyletically in their respective phylogeny, and clock calibration traced back the common ancestor of each clade to an overlapping timeframe of introduction of these arboviruses onto the island.

  12. Homeopathic drug therapy. Homeopathy in Chikungunya Fever and Post-Chikungunya Chronic Arthritis: an observational study.

    PubMed

    Wadhwani, Gyandas G

    2013-07-01

    To observe the effect of homeopathic therapy in Chikungunya Fever (CF) and in Post-Chikungunya Chronic Arthritis (PCCA) in a primary health care setting. A prospective observational study was conducted at Delhi Government Homeopathic Dispensary, Aali Village, New Delhi, India, for a period of 6 months, from 1st October 2010 to 31st March 2011. 126 patients (75 CF, 51 PCCA) were enrolled based on predefined inclusion criteria. A single homeopathic medicine was prescribed for each patient after case taking with the help of Materia Medica and/or Repertory. Results were evaluated on the basis of visual analogue scale and symptom scores. Complete recovery was seen in 84.5% CF cases in a mean time of 6.8 days. 90% cases of PCCA recovered completely in a mean time of 32.5 days. Homeopathic therapy may be effective in CF and PCCA. A randomized controlled trial should be considered. Copyright © 2013 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.

  13. Vector competence of Aedes aegypti and Aedes vittatus (Diptera: Culicidae) from Senegal and Cape Verde archipelago for West African lineages of chikungunya virus.

    PubMed

    Diagne, Cheikh T; Faye, Oumar; Guerbois, Mathilde; Knight, Rachel; Diallo, Diawo; Faye, Ousmane; Ba, Yamar; Dia, Ibrahima; Faye, Ousmane; Weaver, Scott C; Sall, Amadou A; Diallo, Mawlouth

    2014-09-01

    To assess the risk of emergence of chikungunya virus (CHIKV) in West Africa, vector competence of wild-type, urban, and non-urban Aedes aegypti and Ae. vittatus from Senegal and Cape Verde for CHIKV was investigated. Mosquitoes were fed orally with CHIKV isolates from mosquitoes (ArD30237), bats (CS13-288), and humans (HD180738). After 5, 10, and 15 days of incubation following an infectious blood meal, presence of CHIKV RNA was determined in bodies, legs/wings, and saliva using real-time reverse transcription-polymerase chain reaction. Aedes vittatus showed high susceptibility (50-100%) and early dissemination and transmission of all CHIKV strains tested. Aedes aegypti exhibited infection rates ranging from 0% to 50%. Aedes aegypti from Cape Verde and Kedougou, but not those from Dakar, showed the potential to transmit CHIKV in saliva. Analysis of biology and competence showed relatively high infective survival rates for Ae. vittatus and Ae. aegypti from Cape Verde, suggesting their efficient vector capacity in West Africa. © The American Society of Tropical Medicine and Hygiene.

  14. Did Zika Virus Mutate to Cause Severe Outbreaks?

    PubMed

    Rossi, Shannan L; Ebel, Gregory D; Shan, Chao; Shi, Pei-Yong; Vasilakis, Nikos

    2018-06-11

    Zika virus (ZIKV) has challenged the assumed knowledge regarding the pathobiology of flaviviruses. Despite causing sporadic and mild disease in the 50 years since its discovery, Zika virus has now caused multiple outbreaks in dozens of countries worldwide. Moreover, the disease severity in recent outbreaks, with neurological disease in adult and devastating congenital malformations in fetuses, was not previously seen. One hypothesis is that the virus has acquired mutations that have increased its virulence. Indeed, mutations in other arboviruses, such as West Nile virus (WNV), chikungunya virus (CHIKV), and Venezuelan equine encephalitis virus (VEEV), have enhanced outbreaks. This possibility, as well as alternative hypotheses, are explored here. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Expanded-spectrum nonnucleoside reverse transcriptase inhibitors inhibit clinically relevant mutant variants of human immunodeficiency virus type 1.

    PubMed

    Corbett, J W; Ko, S S; Rodgers, J D; Jeffrey, S; Bacheler, L T; Klabe, R M; Diamond, S; Lai, C M; Rabel, S R; Saye, J A; Adams, S P; Trainor, G L; Anderson, P S; Erickson-Viitanen, S K

    1999-12-01

    A research program targeted toward the identification of expanded-spectrum nonnucleoside reverse transcriptase inhibitors which possess increased potency toward K103N-containing mutant human immunodeficiency virus (HIV) and which maintain pharmacokinetics consistent with once-a-day dosing has resulted in the identification of the 4-cyclopropylalkynyl-4-trifluoromethyl-3, 4-dihydro-2(1H)quinazolinones DPC 961 and DPC 963 and the 4-cyclopropylalkenyl-4-trifluoromethyl-3, 4-dihydro-2(1H)quinazolinones DPC 082 and DPC 083 for clinical development. DPC 961, DPC 963, DPC 082, and DPC 083 all exhibit low-nanomolar potency toward wild-type virus, K103N and L100I single-mutation variants, and many multiply amino acid-substituted HIV type 1 mutants. This high degree of potency is combined with a high degree of oral bioavailability, as demonstrated in rhesus monkeys and chimpanzees, and with plasma serum protein binding that can result in significant free levels of drug.

  16. Prevalence of Malaria, Dengue, and Chikungunya Significantly Associated with Mosquito Breeding Sites

    PubMed Central

    Islam, Mohammad Nazrul; ZulKifle, Mohammad; Sherwani, Arish Mohammad Khan; Ghosh, Susanta Kumar; Tiwari, Satyanarayan

    2011-01-01

    Objectives: To observe the prevalence of malaria, dengue, and chikungunya and their association with mosquito breeding sites. Methods: The study was observational and analytical. A total of 162 houses and 670 subjects were observed during the study period. One hundred forty-two febrile patients were eligible for the study. After obtaining informed consent from all febrile patients, 140 blood samples were collected to diagnose malaria, dengue, and chikungunya. Larval samples were collected by the standard protocol that follows. Correlation of data was performed by Pearson correlation test. Results: Forty-seven blood samples were found positive: 33 for chikungunya, 3 for dengue, and 11 for malaria. Fifty-one out of 224 larval samples were found positive. Out of the 51 positive samples, 37 were positive for Aedes, 12 were positive for Anopheles, and two were positive for Culex larvae. Interpretation and Conclusion: Mosquito-borne fevers, especially malaria, dengue, and chikungunya, have shown a significant relationship with mosquito breeding sites. PMID:23610486

  17. A Sensitive and Robust High-Throughput Screening Assay for Inhibitors of the Chikungunya Virus nsP1 Capping Enzyme.

    PubMed

    Bullard-Feibelman, Kristen M; Fuller, Benjamin P; Geiss, Brian J

    2016-01-01

    Chikungunya virus (CHIKV) is a mosquito-borne Alphavirus that causes severe and debilitating disease symptoms. Alarmingly, transmission rates of CHIKV have increased dramatically over the last decade resulting in 1.7 million suspected cases in the Western hemisphere alone. There are currently no antivirals for treatment of CHIKV infection and novel anti-alphaviral compounds are badly needed. nsP1 is the alphavirus protein responsible for the methyltransferase and guanylyltransferase activities necessary for formation of the 5' type 0 cap structure added to newly formed viral RNA. Formation of this cap depends on nsP1 binding GTP and transferring a methylated GMP to nascent viral RNA. We have developed a fluorescence polarization-based assay that monitors displacement of a fluorescently-labeled GTP analog in real time. Determining the relative affinities of 15 GTP analogs for nsP1 GTP revealed important structural aspects of GTP that will inform identification of inhibitors able to outcompete GTP for the nsP1 binding site. Validation of the assay for HTS was completed and a secondary orthogonal assay that measures guanylation activity was developed in order to evaluate hits from future drug screens. This platform provides an avenue for identification of potent nsP1 inhibitors, which would potentially provide compounds capable of treating disease caused by CHIKV infection.

  18. Chikungunya: Information for the General Public

    MedlinePlus

    ... air conditioning or window/door screens o Use mosquito repellents on exposed skin o Wear long-sleeved shirts and long pants o Wear permethrin-treated clothing o Empty ... you are sick with chikungunya, avoiding mosquito bites will help prevent further spread of the ...

  19. A Mathematical Model Of Dengue-Chikungunya Co-Infection In A Closed Population

    NASA Astrophysics Data System (ADS)

    Aldila, Dipo; Ria Agustin, Maya

    2018-03-01

    Dengue disease has been a major health problem in many tropical and sub-tropical countries since the early 1900s. On the other hand, according to a 2017 WHO fact sheet, Chikungunya was detected in the first outbreak in 1952 in Tanzania and has continued increasing until now in many tropical and sub-tropical countries. Both these diseases are vector-borne diseases which are spread by the same mosquito, i.e. the female Aedes aegypti. According to the WHO report, there is a great possibility that humans and mosquitos might be infected by dengue and chikungunya at the same time. Here in this article, a mathematical model approach will be used to understand the spread of dengue and chikungunya in a closed population. A model is developed as a nine-dimensional deterministic ordinary differential equation. Equilibrium points and their local stability are analyzed analytically and numerically. We find that the basic reproduction number, the endemic indicator, is given by the maximum of three different basic reproduction numbers of a complete system, i.e. basic reproduction numbers for dengue, chikungunya and for co-infection between dengue and chikungunya. We find that the basic reproduction number for the co-infection sub-system dominates other basic reproduction numbers whenever it is larger than one. Some numerical simulations are provided to confirm these analytical results.

  20. Assessment of the Probability of Autochthonous Transmission of Chikungunya Virus in Canada under Recent and Projected Climate Change

    PubMed Central

    Fazil, Aamir; Gachon, Philippe; Deuymes, Guillaume; Radojević, Milka; Mascarenhas, Mariola; Garasia, Sophiya; Johansson, Michael A.; Ogden, Nicholas H.

    2017-01-01

    Background: Chikungunya virus (CHIKV) is a reemerging pathogen transmitted by Aedes aegypti and Aedes albopictus mosquitoes. The ongoing Caribbean outbreak is of concern due to the potential for infected travelers to spread the virus to countries where vectors are present and the population is susceptible. Although there has been no autochthonous transmission of CHIKV in Canada, there is concern that both Ae. albopictus and CHIKV will become established, particularly under projected climate change. We developed risk maps for autochthonous CHIKV transmission in Canada under recent (1981–2010) and projected climate (2011–2040 and 2041–2070). Methods: The risk for CHIKV transmission was the combination of the climatic suitability for CHIKV transmission potential and the climatic suitability for the presence of Ae. albopictus; the former was assessed using a stochastic model to calculate R0 and the latter was assessed by deriving a suitability indicator (SIG) that captures a set of climatic conditions known to influence the ecology of Ae. albopictus. R0 and SIG were calculated for each grid cell in Canada south of 60°N, for each time period and for two emission scenarios, and combined to produce overall risk categories that were mapped to identify areas suitable for transmission and the duration of transmissibility. Findings: The risk for autochthonous CHIKV transmission under recent climate is very low with all of Canada classified as unsuitable or rather unsuitable for transmission. Small parts of southern coastal British Columbia become progressively suitable with short-term and long-term projected climate; the duration of potential transmission is limited to 1–2 months of the year. Interpretation: Although the current risk for autochthonous CHIKV transmission in Canada is very low, our study could be further supported by the routine surveillance of Ae. albopictus in areas identified as potentially suitable for transmission given our uncertainty on the

  1. External quality assessment studies for laboratory performance of molecular and serological diagnosis of Chikungunya virus infection.

    PubMed

    Jacobsen, Sonja; Patel, Pranav; Schmidt-Chanasit, Jonas; Leparc-Goffart, Isabelle; Teichmann, Anette; Zeller, Herve; Niedrig, Matthias

    2016-03-01

    Since the re-emergence of Chikungunya virus (CHIKV) in Reunion in 2005 and the recent outbreak in the Caribbean islands with an expansion to the Americas the CHIK diagnostic became very important. We evaluate the performance of laboratories regarding molecular and serological diagnostic of CHIK worldwide. A panel of 12 samples for molecular and 13 samples for serology were provided to 60 laboratories in 40 countries for evaluating the sensitivity and specificity of molecular and serology testing. The panel for molecular diagnostic testing was analysed by 56 laboratories returning 60 data sets of results whereas the 56 and 60 data sets were returned for IgG and IgM diagnostic from the participating laboratories. Twenty-three from 60 data sets performed optimal, 7 acceptable and 30 sets of results require improvement. From 50 data sets only one laboratory shows an optimal performance for IgM detection, followed by 9 data sets with acceptable and the rest need for improvement. From 46 IgG serology data sets 20 provide an optimal, 2 an acceptable and 24 require improvement performance. The evaluation of some of the diagnostic performances allows linking the quality of results to the in-house methods or commercial assays used. The external quality assurance for CHIK diagnostics provides a good overview on the laboratory performance regarding sensitivity and specificity for the molecular and serology diagnostic required for the quick and reliable analysis of suspected CHIK patients. Nearly half of the laboratories have to improve their diagnostic profile to achieve a better performance. Copyright © 2016 Z. Published by Elsevier B.V. All rights reserved.

  2. Updates on chikungunya epidemiology, clinical disease, and diagnostics.

    PubMed

    Sam, I-Ching; Kümmerer, Beate M; Chan, Yoke-Fun; Roques, Pierre; Drosten, Christian; AbuBakar, Sazaly

    2015-04-01

    Chikungunya virus (CHIKV) is an Aedes-borne alphavirus, historically found in Africa and Asia, where it caused sporadic outbreaks. In 2004, CHIKV reemerged in East Africa and spread globally to cause epidemics, including, for the first time, autochthonous transmission in Europe, the Middle East, and Oceania. The epidemic strains were of the East/Central/South African genotype. Strains of the Asian genotype of CHIKV continued to cause outbreaks in Asia and spread to Oceania and, in 2013, to the Americas. Acute disease, mainly comprising fever, rash, and arthralgia, was previously regarded as self-limiting; however, there is growing evidence of severe but rare manifestations, such as neurological disease. Furthermore, CHIKV appears to cause a significant burden of long-term morbidity due to persistent arthralgia. Diagnostic assays have advanced greatly in recent years, although there remains a need for simple, accurate, and affordable tests for the developing countries where CHIKV is most prevalent. This review focuses on recent important work on the epidemiology, clinical disease and diagnostics of CHIKV.

  3. Development of 2, 7-Diamino-1, 8-Naphthyridine (DANP) Anchored Hairpin Primers for RT-PCR Detection of Chikungunya Virus Infection.

    PubMed

    Chen, Huixin; Parimelalagan, Mariya; Takei, Fumie; Hapuarachchi, Hapuarachchige Chanditha; Koay, Evelyn Siew-Chuan; Ng, Lee Ching; Ho, Phui San; Nakatani, Kazuhiko; Chu, Justin Jang Hann

    2016-08-01

    A molecular diagnostic platform with DANP-anchored hairpin primer was developed and evaluated for the rapid and cost-effective detection of Chikungunya virus (CHIKV) with high sensitivity and specificity. The molecule 2, 7-diamino-1, 8-naphthyridine (DANP) binds to a cytosine-bulge and emits fluorescence at 450 nm when it is excited by 400 nm light. Thus, by measuring the decline in fluorescence emitted from DANP-primer complexes after PCR reaction, we could monitor the PCR progress. By adapting this property of DANP, we have previously developed the first generation DANP-coupled hairpin RT-PCR assay. In the current study, we improved the assay performance by conjugating the DANP molecule covalently onto the hairpin primer to fix the DANP/primer ratio at 1:1; and adjusting the excitation emission wavelength to 365/430 nm to minimize the background signal and a 'turn-on' system is achieved. After optimizing the PCR cycle number to 30, we not only shortened the total assay turnaround time to 60 minutes, but also further reduced the background fluorescence. The detection limit of our assay was 0.001 PFU per reaction. The DANP-anchored hairpin primer, targeting nsP2 gene of CHIKV genome, is highly specific to CHIKV, having no cross-reactivity to a panel of other RNA viruses tested. In conclusion, we report here a molecular diagnostic assay that is sensitive, specific, rapid and cost effective for CHIKV detection and can be performed where no real time PCR instrumentation is required. Our results from patient samples indicated 93.62% sensitivity and 100% specificity of this method, ensuring that it can be a useful tool for rapid detection of CHIKV for outbreaks in many parts of the world.

  4. Development of 2, 7-Diamino-1, 8-Naphthyridine (DANP) Anchored Hairpin Primers for RT-PCR Detection of Chikungunya Virus Infection

    PubMed Central

    Chen, Huixin; Parimelalagan, Mariya; Takei, Fumie; Hapuarachchi, Hapuarachchige Chanditha; Koay, Evelyn Siew-Chuan; Ng, Lee Ching; Ho, Phui San; Nakatani, Kazuhiko; Chu, Justin Jang Hann

    2016-01-01

    A molecular diagnostic platform with DANP-anchored hairpin primer was developed and evaluated for the rapid and cost-effective detection of Chikungunya virus (CHIKV) with high sensitivity and specificity. The molecule 2, 7-diamino-1, 8-naphthyridine (DANP) binds to a cytosine-bulge and emits fluorescence at 450 nm when it is excited by 400 nm light. Thus, by measuring the decline in fluorescence emitted from DANP—primer complexes after PCR reaction, we could monitor the PCR progress. By adapting this property of DANP, we have previously developed the first generation DANP-coupled hairpin RT-PCR assay. In the current study, we improved the assay performance by conjugating the DANP molecule covalently onto the hairpin primer to fix the DANP/primer ratio at 1:1; and adjusting the excitation emission wavelength to 365/430 nm to minimize the background signal and a ‘turn-on’ system is achieved. After optimizing the PCR cycle number to 30, we not only shortened the total assay turnaround time to 60 minutes, but also further reduced the background fluorescence. The detection limit of our assay was 0.001 PFU per reaction. The DANP-anchored hairpin primer, targeting nsP2 gene of CHIKV genome, is highly specific to CHIKV, having no cross-reactivity to a panel of other RNA viruses tested. In conclusion, we report here a molecular diagnostic assay that is sensitive, specific, rapid and cost effective for CHIKV detection and can be performed where no real time PCR instrumentation is required. Our results from patient samples indicated 93.62% sensitivity and 100% specificity of this method, ensuring that it can be a useful tool for rapid detection of CHIKV for outbreaks in many parts of the world. PMID:27571201

  5. [Dengue, zika, chikungunya and the development of vaccines].

    PubMed

    Kantor, Isabel N

    2018-01-01

    Dengue (DENV), zika (ZIKV) and chikungunya (CHIKV), three arbovirosis transmitted by Aedes mosquitoes, have spread in recent decades in humid tropical and subtropical zones. Dengue is epidemic in subtropical areas of Argentina. DENV infection confers lasting immunity against the infecting serotype but increases the risk of serious disease upon reinfection by any of the other three. The recombinant tetravalent vaccine Dengvaxia® prevents severe dengue and hospitalization in seropositive subjects. In 2017, Dengvaxia was approved in Argentina, for ages 9 to 45, but is not included in the national vaccination calendar. Two other vaccines are in Phase III evaluation: one developed by NIAID / Instituto Butantan and the other by Takeda. ZIKV, a virus associated with microcephaly in newborns in Brazil, circulates since 2016 in Argentina. There is still not effective treatment nor vaccine with proven activity against ZIKV. There has been no active circulation of CHIKV in Argentina in 2017. Outbreaks of CHIKV fever have a complication: the development of chronic post-disease rheumatism. There are not approved vaccines for humans nor effective antiviral therapies. The seriousness of these virosis has contributed to a rapid progress in the knowledge of the infection processes and the immune response. For now, Aedes aegypti and A. albopictus vectors continue to expand, suggesting that the vaccine will be the most effective means of controlling these viruses. Here we summarize information about these arbovirosis in Argentina and Brazil and describe advances in the development and evaluation of vaccines.

  6. Zika Virus: Can India Win the Fight?

    PubMed Central

    Singh, Tulika

    2017-01-01

    Zika virus is an emerging arbovirus of public health importance transmitted by Aedes mosquito which also transmits dengue, chikungunya and yellow fever. The disease has been spreading at an alarming rate in Africa, Pacific Islands, and the Americas. Given the expansion of environments where mosquitoes can live and breed, facilitated by urbanization and globalization, there is potential for major urban epidemics of Zika virus disease to occur globally. World Health Organization (WHO) has declared Zika virus disease to be a Public Health Emergency of International Concern (PHEIC). Our failed attempts to control dengue epidemics in the past call for concern and we need to be to prepared to fight Zika virus before it arrives at our doors. PMID:28553020

  7. Foot-and-Mouth Disease (FMD) Virus 3C Protease Mutant L127P: Implications for FMD Vaccine Development.

    PubMed

    Puckette, Michael; Clark, Benjamin A; Smith, Justin D; Turecek, Traci; Martel, Erica; Gabbert, Lindsay; Pisano, Melia; Hurtle, William; Pacheco, Juan M; Barrera, José; Neilan, John G; Rasmussen, Max

    2017-11-15

    The foot-and-mouth disease virus (FMDV) afflicts livestock in more than 80 countries, limiting food production and global trade. Production of foot-and-mouth disease (FMD) vaccines requires cytosolic expression of the FMDV 3C protease to cleave the P1 polyprotein into mature capsid proteins, but the FMDV 3C protease is toxic to host cells. To identify less-toxic isoforms of the FMDV 3C protease, we screened 3C mutants for increased transgene output in comparison to wild-type 3C using a Gaussia luciferase reporter system. The novel point mutation 3C(L127P) increased yields of recombinant FMDV subunit proteins in mammalian and bacterial cells expressing P1-3C transgenes and retained the ability to process P1 polyproteins from multiple FMDV serotypes. The 3C(L127P) mutant produced crystalline arrays of FMDV-like particles in mammalian and bacterial cells, potentially providing a practical method of rapid, inexpensive FMD vaccine production in bacteria. IMPORTANCE The mutant FMDV 3C protease L127P significantly increased yields of recombinant FMDV subunit antigens and produced virus-like particles in mammalian and bacterial cells. The L127P mutation represents a novel advancement for economical FMD vaccine production. Copyright © 2017 Puckette et al.

  8. Knowledge, Attitude and Practices of Vector-Borne Disease Prevention during the Emergence of a New Arbovirus: Implications for the Control of Chikungunya Virus in French Guiana.

    PubMed

    Fritzell, Camille; Raude, Jocelyn; Adde, Antoine; Dusfour, Isabelle; Quenel, Philippe; Flamand, Claude

    2016-11-01

    During the last decade, French Guiana has been affected by major dengue fever outbreaks. Although this arbovirus has been a focus of many awareness campaigns, very little information is available about beliefs, attitudes and behaviors regarding vector-borne diseases among the population of French Guiana. During the first outbreak of the chikungunya virus, a quantitative survey was conducted among high school students to study experiences, practices and perceptions related to mosquito-borne diseases and to identify socio-demographic, cognitive and environmental factors that could be associated with the engagement in protective behaviors. A cross-sectional survey was administered in May 2014, with a total of 1462 students interviewed. Classrooms were randomly selected using a two-stage selection procedure with cluster samples. A multiple correspondence analysis (MCA) associated with a hierarchical cluster analysis and with an ordinal logistic regression was performed. Chikungunya was less understood and perceived as a more dreadful disease than dengue fever. The analysis identified three groups of individual protection levels against mosquito-borne diseases: "low" (30%), "moderate" (42%) and "high" (28%)". Protective health behaviors were found to be performed more frequently among students who were female, had a parent with a higher educational status, lived in an individual house, and had a better understanding of the disease. This study allowed us to estimate the level of protective practices against vector-borne diseases among students after the emergence of a new arbovirus. These results revealed that the adoption of protective behaviors is a multi-factorial process that depends on both sociocultural and cognitive factors. These findings may help public health authorities to strengthen communication and outreach strategies, thereby increasing the adoption of protective health behaviors, particularly in high-risk populations.

  9. Epidemiology of Zika Virus.

    PubMed

    Younger, David S

    2016-11-01

    Zika virus is an arbovirus belonging to the Flaviviridae family known to cause mild clinical symptoms similar to those of dengue and chikungunya. Zika is transmitted by different species of Aedes mosquitoes. Nonhuman primates and possibly rodents play a role as reservoirs. Direct interhuman transmission has also been reported. Human cases have been reported in Africa and Asia, Easter Island, the insular Pacific region, and Brazil. Its clinical profile is that of a dengue-like febrile illness, but recently associated Guillain-Barre syndrome and microcephaly have appeared. There is neither a vaccine nor prophylactic medications available to prevent Zika virus infection. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Glutamine Deprivation Causes Enhanced Plating Efficiency of a Herpes Simplex Virus Type 1 ICP0-Null Mutant

    PubMed Central

    Bringhurst, Ryan M.; Dominguez, Antonia A.; Schaffer, Priscilla A.

    2008-01-01

    Isoleucine deprivation of cellular monolayers prior to infection has been reported to result in partial complementation of a herpes simplex virus type 1 (HSV-1) ICP0 null (ICP0−) mutant. We now report that glutamine deprivation alone is able to enhance the plating efficiency of an ICP0− virus and that isoleucine deprivation has little or no effect. Because a low glutamine level is associated with stress and because stress is known to induce reactivation, low levels of glutamine may be relevant to the reactivation of HSV-1 from latency. Additionally, we demonstrate that arginine and methionine deprivation result in partial complementation of the ICP0− virus. PMID:18768961

  11. Selection and characterization of a mutant of feline immunodeficiency virus resistant to 2',3'-dideoxycytidine.

    PubMed Central

    Medlin, H K; Zhu, Y Q; Remington, K M; Phillips, T R; North, T W

    1996-01-01

    We have selected and plaque purified a mutant of feline immunodeficiency virus (FIV) that is resistant to 2',3'-dideoxycytidine (ddC). This mutant was selected in cultured cells in the continuous presence of 25 microM ddC. The mutant, designated DCR-5c, was fourfold resistant to ddC, threefold resistant to 2',3'-dideoxyinosine, and more than fourfold resistant to phosphonoformic acid. DCR-5c displayed little or no resistance to (-)-beta-2',3'-dideoxy-3'-thiacytidine, 3'-azido-3'-deoxythymidine, or 9-(2-phosphonylmethoxyethyl) adenine. Reverse transcriptase purified from DCR-5c was less susceptible to inhibition by ddCTP, phosphonoformic acid, ddATP, or azido-dTTP than the wild-type FIV reverse transcriptase. Sequence analysis of DCR-5c revealed a single base change (G to C at nucleotide 2342) in the reverse transcriptase-encoding region of FIV. This mutation results in substitution of His for Asp at codon 3 of FIV reverse transcriptase. The role of this mutation in ddC resistance was confirmed by site-directed mutagenesis. PMID:8849258

  12. Spontaneous and engineered deletions in the 3' noncoding region of tick-borne encephalitis virus: construction of highly attenuated mutants of a flavivirus.

    PubMed

    Mandl, C W; Holzmann, H; Meixner, T; Rauscher, S; Stadler, P F; Allison, S L; Heinz, F X

    1998-03-01

    The flavivirus genome is a positive-strand RNA molecule containing a single long open reading frame flanked by noncoding regions (NCR) that mediate crucial processes of the viral life cycle. The 3' NCR of tick-borne encephalitis (TBE) virus can be divided into a variable region that is highly heterogeneous in length among strains of TBE virus and in certain cases includes an internal poly(A) tract and a 3'-terminal conserved core element that is believed to fold as a whole into a well-defined secondary structure. We have now investigated the genetic stability of the TBE virus 3' NCR and its influence on viral growth properties and virulence. We observed spontaneous deletions in the variable region during growth of TBE virus in cell culture and in mice. These deletions varied in size and location but always included the internal poly(A) element of the TBE virus 3' NCR and never extended into the conserved 3'-terminal core element. Subsequently, we constructed specific deletion mutants by using infectious cDNA clones with the entire variable region and increasing segments of the core element removed. A virus mutant lacking the entire variable region was indistinguishable from wild-type virus with respect to cell culture growth properties and virulence in the mouse model. In contrast, even small extensions of the deletion into the core element led to significant biological effects. Deletions extending to nucleotides 10826, 10847, and 10870 caused distinct attenuation in mice without measurable reduction of cell culture growth properties, which, however, were significantly restricted when the deletion was extended to nucleotide 10919. An even larger deletion (to nucleotide 10994) abolished viral viability. In spite of their high degree of attenuation, these mutants efficiently induced protective immune responses even at low inoculation doses. Thus, 3'-NCR deletions represent a useful technique for achieving stable attenuation of flaviviruses that can be included in the

  13. Crystallization of mutants of Turnip yellow mosaic virus protease/ubiquitin hydrolase designed to prevent protease self-recognition.

    PubMed

    Ayach, Maya; Bressanelli, Stéphane

    2015-04-01

    Processing of the polyprotein of Turnip yellow mosaic virus is mediated by the protease PRO. PRO cleaves at two places, one of which is at the C-terminus of the PRO domain of another polyprotein molecule. In addition to this processing activity, PRO possesses an ubiquitin hydrolase (DUB) activity. The crystal structure of PRO has previously been reported in its polyprotein-processing mode with the C-terminus of one PRO inserted into the catalytic site of the next PRO, generating PRO polymers in the crystal packing of the trigonal space group. Here, two mutants designed to disrupt specific PRO-PRO interactions were generated, produced and purified. Crystalline plates were obtained by seeding and cross-seeding from initial `sea urchin'-like microcrystals of one mutant. The plates diffracted to beyond 2 Å resolution at a synchrotron source and complete data sets were collected for the two mutants. Data processing and analysis indicated that both mutant crystals belonged to the same monoclinic space group, with two molecules of PRO in the asymmetric unit.

  14. Systematic analysis of protein identity between Zika virus and other arthropod-borne viruses.

    PubMed

    Chang, Hsiao-Han; Huber, Roland G; Bond, Peter J; Grad, Yonatan H; Camerini, David; Maurer-Stroh, Sebastian; Lipsitch, Marc

    2017-07-01

    To analyse the proportions of protein identity between Zika virus and dengue, Japanese encephalitis, yellow fever, West Nile and chikungunya viruses as well as polymorphism between different Zika virus strains. We used published protein sequences for the Zika virus and obtained protein sequences for the other viruses from the National Center for Biotechnology Information (NCBI) protein database or the NCBI virus variation resource. We used BLASTP to find regions of identity between viruses. We quantified the identity between the Zika virus and each of the other viruses, as well as within-Zika virus polymorphism for all amino acid k -mers across the proteome, with k ranging from 6 to 100. We assessed accessibility of protein fragments by calculating the solvent accessible surface area for the envelope and nonstructural-1 (NS1) proteins. In total, we identified 294 Zika virus protein fragments with both low proportion of identity with other viruses and low levels of polymorphisms among Zika virus strains. The list includes protein fragments from all Zika virus proteins, except NS3. NS4A has the highest number (190 k -mers) of protein fragments on the list. We provide a candidate list of protein fragments that could be used when developing a sensitive and specific serological test to detect previous Zika virus infections.

  15. Complex antigen presentation pathway for an HLA-A*0201-restricted epitope from Chikungunya 6K protein

    PubMed Central

    Lemonnier, François A.; Esteban, Mariano

    2017-01-01

    Background The adaptive cytotoxic T lymphocyte (CTL)-mediated immune response is critical for clearance of many viral infections. These CTL recognize naturally processed short viral antigenic peptides bound to human leukocyte antigen (HLA) class I molecules on the surface of infected cells. This specific recognition allows the killing of virus-infected cells. The T cell immune T cell response to Chikungunya virus (CHIKV), a mosquito-borne Alphavirus of the Togaviridae family responsible for severe musculoskeletal disorders, has not been fully defined; nonetheless, the importance of HLA class I-restricted immune response in this virus has been hypothesized. Methodology/Principal findings By infection of HLA-A*0201-transgenic mice with a recombinant vaccinia virus that encodes the CHIKV structural polyprotein (rVACV-CHIKV), we identified the first human T cell epitopes from CHIKV. These three novel 6K transmembrane protein-derived epitopes are presented by the common HLA class I molecule, HLA-A*0201. One of these epitopes is processed and presented via a complex pathway that involves proteases from different subcellular locations. Specific chemical inhibitors blocked these events in rVACV-CHIKV-infected cells. Conclusions/Significance Our data have implications not only for the identification of novel Alphavirus and Togaviridae antiviral CTL responses, but also for analyzing presentation of antigen from viruses of different families and orders that use host proteinases to generate their mature envelope proteins. PMID:29084215

  16. Complex antigen presentation pathway for an HLA-A*0201-restricted epitope from Chikungunya 6K protein.

    PubMed

    Lorente, Elena; Barriga, Alejandro; García-Arriaza, Juan; Lemonnier, François A; Esteban, Mariano; López, Daniel

    2017-10-01

    The adaptive cytotoxic T lymphocyte (CTL)-mediated immune response is critical for clearance of many viral infections. These CTL recognize naturally processed short viral antigenic peptides bound to human leukocyte antigen (HLA) class I molecules on the surface of infected cells. This specific recognition allows the killing of virus-infected cells. The T cell immune T cell response to Chikungunya virus (CHIKV), a mosquito-borne Alphavirus of the Togaviridae family responsible for severe musculoskeletal disorders, has not been fully defined; nonetheless, the importance of HLA class I-restricted immune response in this virus has been hypothesized. By infection of HLA-A*0201-transgenic mice with a recombinant vaccinia virus that encodes the CHIKV structural polyprotein (rVACV-CHIKV), we identified the first human T cell epitopes from CHIKV. These three novel 6K transmembrane protein-derived epitopes are presented by the common HLA class I molecule, HLA-A*0201. One of these epitopes is processed and presented via a complex pathway that involves proteases from different subcellular locations. Specific chemical inhibitors blocked these events in rVACV-CHIKV-infected cells. Our data have implications not only for the identification of novel Alphavirus and Togaviridae antiviral CTL responses, but also for analyzing presentation of antigen from viruses of different families and orders that use host proteinases to generate their mature envelope proteins.

  17. Chikungunya and dengue fever among hospitalized febrile patients in northern Tanzania.

    PubMed

    Hertz, Julian T; Munishi, O Michael; Ooi, Eng Eong; Howe, Shiqin; Lim, Wen Yan; Chow, Angelia; Morrissey, Anne B; Bartlett, John A; Onyango, Jecinta J; Maro, Venance P; Kinabo, Grace D; Saganda, Wilbrod; Gubler, Duane J; Crump, John A

    2012-01-01

    Consecutive febrile admissions were enrolled at two hospitals in Moshi, Tanzania. Confirmed acute Chikungunya virus (CHIKV), Dengue virus (DENV), and flavivirus infection were defined as a positive polymerase chain reaction (PCR) result. Presumptive acute DENV infection was defined as a positive anti-DENV immunoglobulin M (IgM) enzyme-linked immunsorbent assay (ELISA) result, and prior flavivirus exposure was defined as a positive anti-DENV IgG ELISA result. Among 870 participants, PCR testing was performed on 700 (80.5%). Of these, 55 (7.9%) had confirmed acute CHIKV infection, whereas no participants had confirmed acute DENV or flavivirus infection. Anti-DENV IgM serologic testing was performed for 747 (85.9%) participants, and of these 71 (9.5%) had presumptive acute DENV infection. Anti-DENV IgG serologic testing was performed for 751 (86.3%) participants, and of these 80 (10.7%) had prior flavivirus exposure. CHIKV infection was more common among infants and children than adults and adolescents (odds ratio [OR] 1.9, P = 0.026) and among HIV-infected patients with severe immunosuppression (OR 10.5, P = 0.007). CHIKV infection is an important but unrecognized cause of febrile illness in northern Tanzania. DENV or other closely related flaviviruses are likely also circulating.

  18. Malaria and Chikungunya Detected Using Molecular Diagnostics Among Febrile Kenyan Children.

    PubMed

    Waggoner, Jesse; Brichard, Julie; Mutuku, Francis; Ndenga, Bryson; Heath, Claire Jane; Mohamed-Hadley, Alisha; Sahoo, Malaya K; Vulule, John; Lefterova, Martina; Banaei, Niaz; Mukoko, Dunstan; Pinsky, Benjamin A; LaBeaud, A Desiree

    2017-01-01

    In sub-Saharan Africa, malaria is frequently overdiagnosed as the cause of an undifferentiated febrile illness, whereas arboviral illnesses are presumed to be underdiagnosed. Sera from 385 febrile Kenyan children, who presented to 1 of 4 clinical sites, were tested using microscopy and real-time molecular assays for dengue virus (DENV), chikungunya virus (CHIKV), malaria, and Leptospira . Malaria was the primary clinical diagnosis for 254 patients, and an arboviral infection (DENV or CHIKV) was the primary diagnosis for 93 patients. In total, 158 patients (41.0%) had malaria and 32 patients (8.3%) had CHIKV infections. Compared with real-time polymerase chain reaction, microscopy demonstrated a percent positive agreement of 49.7%. The percentage of malaria cases detected by microscopy varied significantly between clinical sites. Arboviral infections were the clinical diagnosis for patients on the Indian Ocean coast (91 of 238, 38.2%) significantly more often than patients in the Lake Victoria region (2 of 145, 1.4%; P < .001). However, detection of CHIKV infections was significantly higher in the Lake Victoria region (19 of 145 [13.1%] vs 13 of 239 [5.4%]; P = .012). The clinical diagnosis of patients with an acute febrile illness, even when aided by microscopy, remains inaccurate in malaria-endemic areas, contributing to inappropriate management decisions.

  19. Incorporation of excess wild-type and mutant tRNA(3Lys) into human immunodeficiency virus type 1.

    PubMed Central

    Huang, Y; Mak, J; Cao, Q; Li, Z; Wainberg, M A; Kleiman, L

    1994-01-01

    Human immunodeficiency virus (HIV) particles produced in COS-7 cells transfected with HIV type 1 (HIV-1) proviral DNA contain 8 molecules of tRNA(3Lys) per 2 molecules of genomic RNA and 12 molecules of tRNA1,2Lys per 2 molecules of genomic RNA. When COS-7 cells are transfected with a plasmid containing both HIV-1 proviral DNA and a human tRNA3Lys gene, there is a large increase in the amount of cytoplasmic tRNA3Lys per microgram of total cellular RNA, and the tRNA3Lys content in the virus increases from 8 to 17 molecules per 2 molecules of genomic RNA. However, the total number of tRNALys molecules per 2 molecules of genomic RNA remains constant at 20; i.e., the viral tRNA1,2Lys content decreases from 12 to 3 molecules per 2 molecules of genomic RNA. All detectable tRNA3Lys is aminoacylated in the cytoplasm of infected cells and deacylated in the virus. When COS-7 cells are transfected with a plasmid containing both HIV-1 proviral DNA and a mutant amber suppressor tRNA3Lys gene (in which the anticodon is changed from TTT to CTA), there is also a large increase in the relative concentration of cytoplasmic tRNA3Lys, and the tRNA3Lys content in the virus increases from 8 to 15 molecules per 2 molecules of genomic RNA, with a decrease in viral tRNA1,2Lys from 12 to 5 molecules per 2 molecules of genomic RNA. Thus, the total number of molecules of tRNALys in the virion remains at 20. The alteration of the anticodon has little effect on the viral packaging of this mutant tRNA in spite of the fact that it no longer contains the modified base mcm 5s2U at position 34, and its ability to be aminoacylated is significantly impaired compared with that of wild-type tRNA3Lys. Viral particles which have incorporated either excess wild-type tRNA3Lys or mutant suppressor tRNA3Lys show no differences in viral infectivity compared with wild-type HIV-1. Images PMID:7966556

  20. Occult hepatitis B virus infection and S gene escape mutants in HIV-infected patients after hepatitis B virus vaccination.

    PubMed

    Aghakhani, Arezoo; Mohraz, Minoo; Aghasadeghi, Mohammad Reza; Banifazl, Mohammad; Vahabpour, Rouhollah; Karami, Afsaneh; Foroughi, Maryam; Ramezani, Amitis

    2016-10-01

    Hepatitis B virus (HBV) vaccination is recommended for HIV patients. Despite the relative success of HBV vaccination, breakthrough infections can occur infrequently in patients, and it can be due to occult HBV infection, vaccine unresponsiveness and/or emergence of escape mutants. This study assessed the presence of occult HBV infection and S gene escape mutants in HIV-positive patients after HBV vaccination. Ninety-two HIV-positive patients were enrolled in this study, including 52 responders to HBV vaccine and 40 non-responders. All of the cases received HBV vaccine according to routine HBV vaccination protocols. The presence of HBV-DNA was determined by real-time polymerase chain reaction (PCR). In HBV-DNA positive samples, the most conserved regions of S gene sequences were amplified by nested PCR and PCR products were sequenced. Occult HBV infection was detected in two cases. Glycine to arginine mutation at residue 145 (G145R) within the 'a' region of the S gene was detected in one of the occult HBV infection cases who was in the non-responder group. This study showed that the prevalence of occult HBV infection and vaccine escape mutants was low in our HBV-vaccinated HIV-positive patients in both responder and non-responder groups, so there was no alarming evidence indicating breakthrough HBV infection in our vaccinated HIV-positive cases. © The Author(s) 2016.

  1. Efficient production of infectious viruses requires enzymatic activity of Epstein-Barr virus protein kinase.

    PubMed

    Murata, Takayuki; Isomura, Hiroki; Yamashita, Yoriko; Toyama, Shigenori; Sato, Yoshitaka; Nakayama, Sanae; Kudoh, Ayumi; Iwahori, Satoko; Kanda, Teru; Tsurumi, Tatsuya

    2009-06-20

    The Epstein-Barr virus (EBV) BGLF4 gene product is the only protein kinase encoded by the virus genome. In order to elucidate its physiological roles in viral productive replication, we here established a BGLF4-knockout mutant and a revertant virus. While the levels of viral DNA replication of the deficient mutant were equivalent to those of the wild-type and the revertant, virus production was significantly impaired. Expression of the BGLF4 protein in trans fully complemented the low yield of the mutant virus, while expression of a kinase-dead (K102I) form of the protein failed to restore the virus titer. These results demonstrate that BGLF4 plays a significant role in production of infectious viruses and that the kinase activity is crucial.

  2. Emerging arboviruses in Rio Grande do Sul, Brazil: Chikungunya and Zika outbreaks, 2014-2016.

    PubMed

    Gregianini, Tatiana Schäffer; Ranieri, Tani; Favreto, Cátia; Nunes, Zenaida Marion Alves; Tumioto Giannini, Gabriela Luchiari; Sanberg, Nara Druck; da Rosa, Marilda Tereza Mar; da Veiga, Ana Beatriz Gorini

    2017-11-01

    The recent emergence of arboviruses such as Chikungunya virus (CHIKV) and Zika virus (ZIKV) in Brazil has posed a threat to human health and to the country's economy. Outbreaks occur mainly in tropical areas; however, increasing number of cases have been observed in Rio Grande do Sul (RS), the Southernmost state; therefore, surveillance of these arboviruses is essential for public health measures. In this study, we analyzed 1276 samples from patients with clinically suspected arboviral diseases between 2014 and 2016. Demographic and clinical data were collected and described; cases of microcephaly associated with congenital infection were analyzed. Results show that CHIKV and ZIKV entered RS in 2014 and 2015, respectively, with imported cases confirmed. Autochthonous infections occurred in 2016 for both viruses, with a total of 5 autochthonous cases for CHIKV and 44 for ZIKV. Most patients were older than 21 years; the main symptoms were fever, arthralgia, myalgia, and headache; rash, conjunctivitis, and pruritus were also reported in ZIKV cases. Three cases of congenital Zika syndrome were confirmed in our study, while another 20 cases of microcephaly associated with congenital infection were confirmed (10 positive for syphilis, 6 for toxoplasmosis and 4 for cytomegalovirus). Considering co-circulation of different arbovirus in RS, including Dengue virus, CHIKV, and ZIKV, and the presence of Aedes aegypti and Aedes albopictus in the area, surveillance of patients infected by these viruses contributes to the control and prevention of such diseases. Practical difficulties in diagnosing these infections are discussed. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Specific inhibition of NLRP3 in chikungunya disease reveals a role for inflammasomes in alphavirus-induced inflammation.

    PubMed

    Chen, Weiqiang; Foo, Suan-Sin; Zaid, Ali; Teng, Terk-Shin; Herrero, Lara J; Wolf, Stefan; Tharmarajah, Kothila; Vu, Luan D; van Vreden, Caryn; Taylor, Adam; Freitas, Joseph R; Li, Rachel W; Woodruff, Trent M; Gordon, Richard; Ojcius, David M; Nakaya, Helder I; Kanneganti, Thirumala-Devi; O'Neill, Luke A J; Robertson, Avril A B; King, Nicholas J; Suhrbier, Andreas; Cooper, Matthew A; Ng, Lisa F P; Mahalingam, Suresh

    2017-10-01

    Mosquito-borne viruses can cause severe inflammatory diseases and there are limited therapeutic solutions targeted specifically at virus-induced inflammation. Chikungunya virus (CHIKV), a re-emerging alphavirus responsible for several outbreaks worldwide in the past decade, causes debilitating joint inflammation and severe pain. Here, we show that CHIKV infection activates the NLRP3 inflammasome in humans and mice. Peripheral blood mononuclear cells isolated from CHIKV-infected patients showed elevated NLRP3, caspase-1 and interleukin-18 messenger RNA expression and, using a mouse model of CHIKV infection, we found that high NLRP3 expression was associated with peak inflammatory symptoms. Inhibition of NLRP3 activation using the small-molecule inhibitor MCC950 resulted in reduced CHIKV-induced inflammation and abrogated osteoclastogenic bone loss and myositis, but did not affect in vivo viral replication. Mice treated with MCC950 displayed lower expression levels of the cytokines interleukin-6, chemokine ligand 2 and tumour necrosis factor in joint tissue. Interestingly, MCC950 treatment abrogated disease signs in mice infected with a related arthritogenic alphavirus, Ross River virus, but not in mice infected with West Nile virus-a flavivirus. Here, using mouse models of alphavirus-induced musculoskeletal disease, we demonstrate that NLRP3 inhibition in vivo can reduce inflammatory pathology and that further development of therapeutic solutions targeting inflammasome function could help treat arboviral diseases.

  4. Retrospective survey of Chikungunya disease in Réunion Island hospital staff

    PubMed Central

    STAIKOWSKY, F.; Le ROUX, K.; SCHUFFENECKER, I.; LAURENT, P.; GRIVARD, P.; DEVELAY, A.; MICHAULT, A.

    2008-01-01

    SUMMARY Réunion Island (Indian Ocean) has been suffering from its first known Chikungunya virus (CHIKV) epidemic since February 2005. To achieve a better understanding of the disease, a questionnaire was drawn up for hospital staff members and their household. CHIKV infected about one-third of the studied population, the proportion increasing with age and being higher in women. Presence of a garden was associated with CHIKV infection. The geographical distribution of cases was concordant with insect vector Aedes albopictus distribution. The main clinical signs were arthralgia and fever. The disease evolved towards full recovery in 34·4% of cases, a relapse in 55·6%, or a chronic form in 10%. Paracetamol was used as a painkiller in 95% of cases, sometimes associated with non-steroidal anti-inflammatory drugs, corticoids, or traditional herbal medicine. The survey provided valuable information on the factors that favour transmission, the clinical signs, the importance of relapses and the therapies used. PMID:17433130

  5. CHIKRisk: Global monitoring & mapping of chikungunya risk

    USDA-ARS?s Scientific Manuscript database

    The 2013 Chikungunya outbreak in the Americas demonstrated the importance of readiness in assessing potential risk of the emergence of vector-borne diseases. More thatn 1.7 million suspected cases occurred and the disease spread to 33 countries and territories in 8 months. Climate and ecological con...

  6. Novel rabies virus-neutralizing epitope recognized by human monoclonal antibody: fine mapping and escape mutant analysis.

    PubMed

    Marissen, Wilfred E; Kramer, R Arjen; Rice, Amy; Weldon, William C; Niezgoda, Michael; Faber, Milosz; Slootstra, Jerry W; Meloen, Rob H; Clijsters-van der Horst, Marieke; Visser, Therese J; Jongeneelen, Mandy; Thijsse, Sandra; Throsby, Mark; de Kruif, John; Rupprecht, Charles E; Dietzschold, Bernhard; Goudsmit, Jaap; Bakker, Alexander B H

    2005-04-01

    Anti-rabies virus immunoglobulin combined with rabies vaccine protects humans from lethal rabies infections. For cost and safety reasons, replacement of the human or equine polyclonal immunoglobulin is advocated, and the use of rabies virus-specific monoclonal antibodies (MAbs) is recommended. We produced two previously described potent rabies virus-neutralizing human MAbs, CR57 and CRJB, in human PER.C6 cells. The two MAbs competed for binding to rabies virus glycoprotein. Using CR57 and a set of 15-mer overlapping peptides covering the glycoprotein ectodomain, a neutralization domain was identified between amino acids (aa) 218 and 240. The minimal binding region was identified as KLCGVL (aa 226 to 231), with key residues K-CGV- identified by alanine replacement scanning. The critical binding region of this novel nonconformational rabies virus epitope is highly conserved within rabies viruses of genotype 1. Subsequently, we generated six rabies virus variants escaping neutralization by CR57 and six variants escaping CRJB. The CR57 escape mutants were only partially covered by CRJB, and all CRJB-resistant variants completely escaped neutralization by CR57. Without exception, the CR57-resistant variants showed a mutation at key residues within the defined minimal binding region, while the CRJB escape viruses showed a single mutation distant from the CR57 epitope (N182D) combined with mutations in the CR57 epitope. The competition between CR57 and CRJB, the in vitro escape profile, and the apparent overlap between the recognized epitopes argues against including both CR57 and CRJB in a MAb cocktail aimed at replacing classical immunoglobulin preparations.

  7. Clinical characterization of acute and convalescent illness of confirmed chikungunya cases from Chiapas, S. Mexico: A cross sectional study.

    PubMed

    Danis-Lozano, Rogelio; Díaz-González, Esteban Eduardo; Trujillo-Murillo, Karina Del Carmen; Caballero-Sosa, Sandra; Sepúlveda-Delgado, Jesús; Malo-García, Iliana Rosalía; Canseco-Ávila, Luis Miguel; Salgado-Corsantes, Luis Manuel; Domínguez-Arrevillaga, Sergio; Torres-Zapata, Raúl; Gómez-Cruz, Omar; Fernández-Salas, Ildefonso

    2017-01-01

    The emerging chikungunya virus (CHIKV), is an arbovirus causing intense outbreaks in North America. The situation in Mexico is alarming, and CHIKV threatens to spread further throughout North America. Clinical and biological features of CHIKF outbreaks in Mexico have not been well described; thus, we conducted a cross sectional study of a CHIKV outbreak in Chiapas, Southern Mexico to further characterize these features. We collected blood samples from patients suspected of having chikungunya fever (CHIKF) who presented to Clinical Hospital ISSSTE Dr. Roberto Nettel in Tapachula, Chiapas, Mexico. In addition to the clinical examination, real-time polymerase chain reaction (PCR) standardized for the Asian Chikungunya lineage and/or enzyme-linked immunosorbent assay for immunoglobulin M (IgM) were used to confirm CHIKV diagnosis. Of a total of 850 patients who presented with probably CHIKV at Hospital "Dr. Roberto Nettel", 112 probable CHIKF cases were enrolled in this study from November 2014- June 2015, of which 95 patients (84.8%) were CHIKV positive and 17 were negative (15.2%). Of these 95 CHIKV positive patients, 62 were positive by real-time reverse transcriptase PCR (+qRT-PCR); and 33 were seropositive to +IgM with a negative qRT-PCR. The most frequent symptoms reported were fever (100%), headache (82.3%), polyarthralgia (72.1%), and exanthem (82.3%). Biological abnormalities observed during CHIKV infection were lymphopenia (41.1%), leukopenia (51.6%), elevated transaminases (30.5%-46.3%) and high LDH (46.3%) and CRP (60.0%). Clinical and biological data obtained from this study is providing more useful information for benchmarking purposes with outbreaks from different parts of the world and would be helpful for better patient care and treatment.

  8. Clinical Forms of Chikungunya in Gabon, 2010

    PubMed Central

    Caron, Mélanie; Grard, Gilda; Mombo, Illich; Bikié, Branly; Paupy, Christophe; Becquart, Pierre; Bisvigou, Ulrich; Leroy, Eric Maurice

    2012-01-01

    Background Chikungunya virus (CHIKV) has caused multiple outbreaks in tropical and temperate areas worldwide, but the clinical and biological features of this disease are poorly described, particularly in Africa. We report a prospective study of clinical and biological features during an outbreak that occurred in Franceville, Gabon in 2010. Methodology/Principal Findings We collected, in suspect cases (individuals presenting with at least one of the following symptoms or signs: fever, arthralgias, myalgias, headaches, rash, fatigue, nausea, vomiting, diarrhea, bleeding, or jaundice), blood samples, demographic and clinical characteristics and outcome. Hematological and biochemical tests, blood smears for malaria parasites and quantitative PCR for CHIKV then dengue virus were performed. CHIKV+ patients with concomitant malaria and/or dengue were excluded from the study. From May to July 2010, data on 270 laboratory-confirmed CHIK patients were recorded. Fever and arthralgias were reported by respectively 85% and 90% of patients, while myalgias, rash and hemorrhage were noted in 73%, 42% and 2% of patients. The patients were grouped into 4 clinical categories depending on the existence of fever and/or joint pain. On this basis, mixed forms accounted for 78.5% of cases, arthralgic forms 12.6%, febrile forms 6.7% and unusual forms (without fever and arthralgias) 2.2%. No cases of organ failure or death were reported. Elevated liver enzyme and creatinine levels, anemia and lymphocytopenia were the predominant biological abnormalities, and lymphocytopenia was more severe in patients with high viral loads (p = 0.01). Conclusions/Significance During CHIK epidemics, some patients may not have classical symptoms. The existence of unusual forms and the absence of severe forms of CHIK call for surveillance to detect any change in pathogenicity. PMID:22348166

  9. A method for the generation of ectromelia virus (ECTV) recombinants: in vivo analysis of ECTV vCD30 deletion mutants.

    PubMed

    Alejo, Ali; Saraiva, Margarida; Ruiz-Argüello, Maria Begoña; Viejo-Borbolla, Abel; de Marco, Mar Fernández; Salguero, Francisco Javier; Alcami, Antonio

    2009-01-01

    Ectromelia virus (ECTV) is the causative agent of mousepox, a lethal disease of mice with similarities to human smallpox. Mousepox progression involves replication at the initial site of infection, usually the skin, followed by a rapid spread to the secondary replicative organs, spleen and liver, and finally a dissemination to the skin, where the typical rash associated with this and other orthopoxviral induced diseases appears. Case fatality rate is genetically determined and reaches up to 100% in susceptible mice strains. Like other poxviruses, ECTV encodes a number of proteins with immunomodulatory potential, whose role in mousepox progression remains largely undescribed. Amongst these is a secreted homologue of the cellular tumour necrosis factor receptor superfamily member CD30 which has been proposed to modulate a Th1 immune response in vivo. To evaluate the contribution of viral CD30 (vCD30) to virus pathogenesis in the infected host, we have adapted a novel transient dominant method for the selection of recombinant ECTVs. Using this method, we have generated an ECTV vCD30 deletion mutant, its corresponding revertant control virus as well as a virus encoding the extracellular domain of murine CD30. These viruses contain no exogenous marker DNA sequences in their genomes, as opposed to other ECTVs reported up to date. We show that the vCD30 is expressed as a secreted disulfide linked trimer and that the absence of vCD30 does not impair mousepox induced fatality in vivo. Replacement of vCD30 by a secreted version of mouse CD30 caused limited attenuation of ECTV. The recombinant viruses generated may be of use in the study of the role of the cellular CD30-CD30L interaction in the development of the immune response. The method developed might be useful for the construction of ECTV mutants for the study of additional genes.

  10. Mechanisms of innate immune evasion in re-emerging RNA viruses.

    PubMed

    Ma, Daphne Y; Suthar, Mehul S

    2015-06-01

    Recent outbreaks of Ebola, West Nile, Chikungunya, Middle Eastern Respiratory and other emerging/re-emerging RNA viruses continue to highlight the need to further understand the virus-host interactions that govern disease severity and infection outcome. As part of the early host antiviral defense, the innate immune system mediates pathogen recognition and initiation of potent antiviral programs that serve to limit virus replication, limit virus spread and activate adaptive immune responses. Concordantly, viral pathogens have evolved several strategies to counteract pathogen recognition and cell-intrinsic antiviral responses. In this review, we highlight the major mechanisms of innate immune evasion by emerging and re-emerging RNA viruses, focusing on pathogens that pose significant risk to public health. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Development of a highly sensitive bioluminescent enzyme immunoassay for hepatitis B virus surface antigen capable of detecting divergent mutants.

    PubMed

    Minekawa, Takayuki; Takehara, Shizuka; Takahashi, Masaharu; Okamoto, Hiroaki

    2013-08-01

    Hepatitis B virus (HBV) infections are sometimes overlooked when using commercial kits to measure hepatitis B virus surface antigen (HBsAg) due to their low sensitivities and reactivities to mutant strains of various genotypes. We developed an ultrasensitive bioluminescent enzyme immunoassay (BLEIA) for HBsAg using firefly luciferase, which is adaptable to a variety of HBsAg mutants, by combining four monoclonal antibodies with a polyclonal antibody against HBsAg. The measurement of seroconversion panels showed trace amounts of HBsAg during the early infection phase by the BLEIA because of its high sensitivity of 5 mIU/ml. The BLEIA detected HBsAg as early as did PCR in five of seven series and from 2.1 to 9.4 days earlier than commercial immunoassay methods. During the late infection phase, the BLEIA successfully detected HBsAg even 40 days after the disappearance of HBV DNA and the emergence of antibodies against HBsAg. The HBsAg BLEIA successfully detected all 13 recombinant HBsAg and 45 types of HBsAg mutants with various mutations within amino acids 90 to 164 in the S gene product. Some specimens had higher values determined by the BLEIA than those by a commercial chemiluminescent immunoassay; this suggests that such discrepancies were caused by the dissociation of preS1/preS2 peptides from the particle surface. With its highly sensitive detection of low-titer HBsAg, including various mutants, the HBsAg BLEIA is considered to be useful for the early diagnosis and prevention of HBV infection because of the shorter window of infection prior to detection, which facilitates early prediction of recurrence in HBV-infected individuals.

  12. Ross River virus mutant with a deletion in the E2 gene: properties of the virion, virus-specific macromolecule synthesis, and attenuation of virulence for mice.

    PubMed

    Vrati, S; Faragher, S G; Weir, R C; Dalgarno, L

    1986-06-01

    A mutant of RRV T48 the prototype strain of Ross River virus has been isolated with a 21-nucleotide deletion in the gene coding for the envelope glycoprotein E2. Direct sequencing of the 26 S subgenomic RNA, together with HaeIII and TaqI restriction digest analysis of cDNA to RNAs from cells infected with the mutant virus (RRV dE2) and with RRV T48, were consistent with the deletion being the only major alteration in the mutant genome. The E2 protein of RRV dE2 virions had a higher electrophoretic mobility than that of RRV T48 E2 protein. Neither RRV dE2 nor RRV T48 virions contained more than trace amounts of E3, the small envelope glycoprotein found in Semliki Forest virus. RRV dE2 generated small plaques on Vero cell monolayers; plaque formation was not temperature-sensitive between 32 and 41 degrees. By comparison with RRV T48 the infectivity of RRV dE2 virions was thermolabile at 50 degrees. In BHK cells RRV dE2 grew with similar kinetics to RRV T48. Rates of synthesis of 26 S RNA and 49 S RNA were higher in cells infected with RRV dE2 than in cells infected with RRV T48. Virus-specific protein synthesis and shut-down of host protein synthesis occurred 2-3 hr earlier in RRV dE2-infected cells than in cells infected with RRV T48. Minor differences between the two viruses were observed in the profiles of virus-specific proteins generated in infected cells. In day-old mice RRV dE2 induced less severe symptoms of hind leg paralysis than did RRV T48. A small increase in LD50 and average survival time was observed in RRV dE2-infected mice by comparison with RRV T48 infected mice. Peak titers reached by RRV dE2 in the hind leg muscle, brain, and blood of day-old mice were 3-4 log units less than the titers reached during infection with RRV T48. In week-old mice the differences in virulence between the two strains were magnified: RRV dE2 induced no detectable symptoms even when injected at high doses (8 X 10(6) PFU) whereas the LD50 and average survival time for RRV T

  13. Novel Rabies Virus-Neutralizing Epitope Recognized by Human Monoclonal Antibody: Fine Mapping and Escape Mutant Analysis†

    PubMed Central

    Marissen, Wilfred E.; Kramer, R. Arjen; Rice, Amy; Weldon, William C.; Niezgoda, Michael; Faber, Milosz; Slootstra, Jerry W.; Meloen, Rob H.; Clijsters-van der Horst, Marieke; Visser, Therese J.; Jongeneelen, Mandy; Thijsse, Sandra; Throsby, Mark; de Kruif, John; Rupprecht, Charles E.; Dietzschold, Bernhard; Goudsmit, Jaap; Bakker, Alexander B. H.

    2005-01-01

    Anti-rabies virus immunoglobulin combined with rabies vaccine protects humans from lethal rabies infections. For cost and safety reasons, replacement of the human or equine polyclonal immunoglobulin is advocated, and the use of rabies virus-specific monoclonal antibodies (MAbs) is recommended. We produced two previously described potent rabies virus-neutralizing human MAbs, CR57 and CRJB, in human PER.C6 cells. The two MAbs competed for binding to rabies virus glycoprotein. Using CR57 and a set of 15-mer overlapping peptides covering the glycoprotein ectodomain, a neutralization domain was identified between amino acids (aa) 218 and 240. The minimal binding region was identified as KLCGVL (aa 226 to 231), with key residues K-CGV- identified by alanine replacement scanning. The critical binding region of this novel nonconformational rabies virus epitope is highly conserved within rabies viruses of genotype 1. Subsequently, we generated six rabies virus variants escaping neutralization by CR57 and six variants escaping CRJB. The CR57 escape mutants were only partially covered by CRJB, and all CRJB-resistant variants completely escaped neutralization by CR57. Without exception, the CR57-resistant variants showed a mutation at key residues within the defined minimal binding region, while the CRJB escape viruses showed a single mutation distant from the CR57 epitope (N182D) combined with mutations in the CR57 epitope. The competition between CR57 and CRJB, the in vitro escape profile, and the apparent overlap between the recognized epitopes argues against including both CR57 and CRJB in a MAb cocktail aimed at replacing classical immunoglobulin preparations. PMID:15795253

  14. Chikungunya in the region of the Americas. A challenge for rheumatologists and health care systems.

    PubMed

    Pineda, Carlos; Muñoz-Louis, Roberto; Caballero-Uribe, Carlo V; Viasus, Diego

    2016-10-01

    At the end of 2013, the Pan American Health Organization issued an epidemiological alert due to the detection of the first local cases of Chikungunya in the Americas. By August 2015, autochthonous transmissions were detected in 33 countries and territories of the Americas. Latin America has reported nearly one million cases; only Colombia has issued a report of >200,000 cases during the first 4 months of 2015. In some Latin American and Caribbean countries, Chikungunya becomes a major public health problem. The disease commonly exhibits a self-limited course of arthritis, usually lasting for a few days or that may be prolonged to weeks; however, in 10-60 % of cases, joint pain may become chronic and persist for up to 3-5 years. Human-caused environmental changes, such as climate change, the globalization of international exchange, and disordered urban growth, are some factors that aid in its emergence and dissemination. Outbreaks of Chikungunya comprise a challenge for health care systems and rheumatologists because of the high attack rate on the population and the anticipated development of post-Chikungunya chronic rheumatism. This review emphasizes the rheumatologic clinical manifestations reported in the American continent and highlights the challenges that health care systems face in the absence of an effective vaccine and specific treatment to fight Chikungunya.

  15. Nonstructural protein 2 (nsP2) of Chikungunya virus (CHIKV) enhances protective immunity mediated by a CHIKV envelope protein expressing DNA Vaccine.

    PubMed

    Bao, Huihui; Ramanathan, Aarti A; Kawalakar, Omkar; Sundaram, Senthil G; Tingey, Colleen; Bian, Charoran B; Muruganandam, Nagarajan; Vijayachari, Paluru; Sardesai, Niranjan Y; Weiner, David B; Ugen, Kenneth E; Muthumani, Karuppiah

    2013-02-01

    Chikungunya virus (CHIKV) is an important emerging mosquito-borne alphavirus, indigenous to tropical Africa and Asia. It can cause epidemic fever and acute illness characterized by fever and arthralgias. The epidemic cycle of this infection is similar to dengue and urban yellow fever viral infections. The generation of an efficient vaccine against CHIKV is necessary to prevent and/or control the disease manifestations of the infection. In this report, we studied immune response against a CHIKV-envelope DNA vaccine (pEnv) and the role of the CHIKV nonstructural gene 2 (nsP2) as an adjuvant for the induction of protective immune responses in a relevant mouse challenge model. When injected with the CHIKV pEnv alone, 70% of the immunized mice survived CHIKV challenge, whereas when co-injected with pEnv+pnsP2, 90% of the mice survived viral challenge. Mice also exhibited a delayed onset signs of illness, and a marked decrease in morbidity, suggesting a nsP2 mediated adjuvant effect. Co-injection of the pnsP2 adjuvant with pEnv also qualitatively and quantitatively increased antigen specific neutralizing antibody responses compared to vaccination with pEnv alone. In sum, these novel data imply that the addition of nsP2 to the pEnv vaccine enhances anti-CHIKV-Env immune responses and maybe useful to include in future CHIKV clinical vaccination strategies.

  16. DNA sequence analysis of simian virus 40 mutants with deletions mapping in the leader region of the late viral mRNA's: mutants with deletions similar in size and position exhibit varied phenotypes.

    PubMed

    Barkan, A; Mertz, J E

    1981-02-01

    The nucleotide sequences of 10 viable yet partially defective deletion mutants of simian virus 40 were determined. The deletions mapped within, and, in many cases, 5' to, the predominant leader sequence of the late viral mRNA's. They ranged from 74 to 187 nucleotide pairs in length. Six of the mutants had lost the sequence that corresponds to the "cap" site (5' terminus) of the most abundant class of 16S mRNA's. One of these mutants had a deletion that extended 103 nucleotide pairs into the region preceding this primary cap site and, therefore, was missing many secondary cap sites as well. A seventh mutant lacked the entire major 16S leader sequence except for the first six nucleotides at its 5' end and the last nine at its 3' end. Although these mutants differed in the size and position of their deletions, we were unable to discover any simple correlations between their growth characteristics and their DNA sequences. This finding indicates that the secondary structures of the RNA transcripts may play a more important role than the exact nucleotide sequence of the RNAs in determining how they function within the cell.

  17. Dengue, chikungunya, and Zika virus infections imported to Paris between 2009 and 2016: Characteristics and correlation with outbreaks in the French overseas territories of Guadeloupe and Martinique.

    PubMed

    Vasquez, Victor; Haddad, Elie; Perignon, Alice; Jaureguiberry, Stéphane; Brichler, Ségolène; Leparc-Goffart, Isabelle; Caumes, Eric

    2018-07-01

    Dengue virus (DENV), chikungunya virus (CHIKV), and Zika virus (ZIKV) infections are rapidly expanding across countries and are being diagnosed in returned travellers who represent epidemiological sentinels. The French Territories of America (FTA) such as Guadeloupe and Martinique see high levels of tourism and have experienced three consecutive outbreaks by these viruses in the last decade. This study was performed to evaluate how ill returned travellers could have represented epidemiological sentinels for these three expanding arboviral diseases over eight consecutive years. The degree of correlation between the cases of ill returned travellers arriving at a French tertiary hospital in Paris and the three outbreaks that occurred in the FTA during the study period was estimated. All consecutive ill returned travellers diagnosed at the hospital in Paris with imported DENV, CHIKV, or ZIKV infections from January 2009 to December 2016 were included. Epidemiological and clinical variables were evaluated. Data concerning the incidence of arboviruses in the FTA, as well as the temporal relationship between the occurrence of imported cases and outbreaks in the FTA, were analyzed. Overall, 320 cases of arboviral infection were reported: 216 DENV, 68 CHIKV, and 36 ZIKV. Most of the patients presented with fever and exanthema. One hundred and fifteen patients were exposed in Guadeloupe or Martinique, which were the at-risk destinations in 25% of patients with DENV, 59% of patients with CHIKV, and 58% of patients with ZIKV. The occurrence of cases diagnosed in returning travellers followed the same time pattern as the outbreaks in these areas. A temporal correlation was found between newly diagnosed imported cases of arboviruses and the three corresponding outbreaks that occurred in Martinique and Guadeloupe during 8 consecutive years. Thus, ill returned travellers act as epidemiological sentinels from the beginning up to the end of outbreaks occurring in touristic locations

  18. Clinical characterization of acute and convalescent illness of confirmed chikungunya cases from Chiapas, S. Mexico: A cross sectional study

    PubMed Central

    Trujillo-Murillo, Karina del Carmen; Caballero-Sosa, Sandra; Sepúlveda-Delgado, Jesús; Malo-García, Iliana Rosalía; Canseco-Ávila, Luis Miguel; Salgado-Corsantes, Luis Manuel; Domínguez-Arrevillaga, Sergio; Torres-Zapata, Raúl; Gómez-Cruz, Omar; Fernández-Salas, Ildefonso

    2017-01-01

    Background The emerging chikungunya virus (CHIKV), is an arbovirus causing intense outbreaks in North America. The situation in Mexico is alarming, and CHIKV threatens to spread further throughout North America. Clinical and biological features of CHIKF outbreaks in Mexico have not been well described; thus, we conducted a cross sectional study of a CHIKV outbreak in Chiapas, Southern Mexico to further characterize these features. Methodology/Principal findings We collected blood samples from patients suspected of having chikungunya fever (CHIKF) who presented to Clinical Hospital ISSSTE Dr. Roberto Nettel in Tapachula, Chiapas, Mexico. In addition to the clinical examination, real-time polymerase chain reaction (PCR) standardized for the Asian Chikungunya lineage and/or enzyme-linked immunosorbent assay for immunoglobulin M (IgM) were used to confirm CHIKV diagnosis. Of a total of 850 patients who presented with probably CHIKV at Hospital “Dr. Roberto Nettel”, 112 probable CHIKF cases were enrolled in this study from November 2014- June 2015, of which 95 patients (84.8%) were CHIKV positive and 17 were negative (15.2%). Of these 95 CHIKV positive patients, 62 were positive by real-time reverse transcriptase PCR (+qRT-PCR); and 33 were seropositive to +IgM with a negative qRT-PCR. The most frequent symptoms reported were fever (100%), headache (82.3%), polyarthralgia (72.1%), and exanthem (82.3%). Biological abnormalities observed during CHIKV infection were lymphopenia (41.1%), leukopenia (51.6%), elevated transaminases (30.5%-46.3%) and high LDH (46.3%) and CRP (60.0%). Conclusion Clinical and biological data obtained from this study is providing more useful information for benchmarking purposes with outbreaks from different parts of the world and would be helpful for better patient care and treatment. PMID:29065182

  19. Preliminary results on the control of Aedes spp. in a remote Guatemalan community vulnerable to dengue, chikungunya and Zika virus: community participation and use of low-cost ecological ovillantas for mosquito control

    PubMed Central

    Ulibarri, Gerard; Betanzos, Angel; Betanzos, Mireya; Rojas, Juan Jacobo

    2017-01-01

    Objective: To study the effectiveness of an integrated intervention of health worker training, a low-cost ecological mosquito ovitrap, and community engagement on Aedes spp. mosquito control over 10 months in 2015 in an urban remote community in Guatemala at risk of dengue, chikungunya and Zika virus transmission. Methods: We implemented a three-component integrated intervention consisting of: web-based training of local health personnel in vector control, cluster-randomized assignment of an ecological modified ovitrap (ovillantas: ovi=egg, llanta=tire) or standard ovitraps to capture Aedes spp. mosquito eggs (no efforts have been taken to determine the exact Aedes species at this moment), and community engagement to promote participation of community members and health personnel in the understanding and maintenance of ovitraps for mosquito control. The intervention was implemented in local collaboration with Guatemala’s  Ministry of Health’s Vector Control Programme, and in international collaboration with the National Institute of Public Health in Mexico. Findings: Eighty percent of the 25 local health personnel enrolled in the training programme received accreditation of their improved knowledge of vector control. When ovillantas were used in a cluster of ovitraps (several in proximity), significantly more eggs were trapped by  ecological ovillantas than standard ovitraps over the 10 month (42 week) study period (t=5.2577; p<0.05). Repetitive filtering and recycling of the attractant solution (or water) kept the ovillanta clean, free from algae growth. Among both community members and health workers, the levels of knowledge, interest, and participation in community mosquito control and trapping increased. Recommendations for enhancing and sustaining community mosquito control were identified. Conclusion: Our three-component integrated intervention proved beneficial to this remote community at risk of mosquito-borne diseases such as dengue, chikungunya, and

  20. Nucleotide sequence of a resistance breaking mutant of southern bean mosaic virus.

    PubMed

    Lee, L; Anderson, E J

    1998-01-01

    SBMV-S is a resistance-breaking mutant of an Arkansas isolate of the bean strain of southern bean mosaic virus (SBMV-BARK) that is able to move systemically in Phaseolus vulgaris cvs. Pinto and Great Northern, whereas the wild-type SBMV-BARK causes local necrotic lesions and is restricted to the inoculated leaves of these hosts. Sequence analysis of the 4136 nucleotide genomes of SBMV-BARK and SBMV-S revealed seven nucleotide differences, but only four deduced amino acid changes. A single amino acid change occurred in the C-terminal region of the putative RNA-dependent RNA polymerase and three differences were identified in the N-terminal portion of the virus coat protein. SBMV-BARK and SBMV-S were compared with other sobemoviruses and were found to contain a high level of nucleotide sequence identity (91.3%) to SBMV-B. Unlike SBMV-B however, SBMV-BARK and SBMV-S contained four putative overlapping open reading frames, making them more similar in genome organization to the cowpea strain, SBMV-C. The possibility exists that mutations or even errors, that resulted in mis-identification of open reading frames, occurred in previously published information on nucleotide sequence and genomic organization for SBMV-B.

  1. Transmission risk of two chikungunya lineages by invasive mosquito vectors from Florida and the Dominican Republic

    PubMed Central

    Wiggins, Keenan; Eastmond, Bradley; Velez, Daniel; Lounibos, L. Philip; Lord, Cynthia C.

    2017-01-01

    Between 2014 and 2016 more than 3,800 imported human cases of chikungunya fever in Florida highlight the high risk for local transmission. To examine the potential for sustained local transmission of chikungunya virus (CHIKV) in Florida we tested whether local populations of Aedes aegypti and Aedes albopictus show differences in susceptibility to infection and transmission to two emergent lineages of CHIKV, Indian Ocean (IOC) and Asian genotypes (AC) in laboratory experiments. All examined populations of Ae. aegypti and Ae. albopictus mosquitoes displayed susceptibility to infection, rapid viral dissemination into the hemocoel, and transmission for both emergent lineages of CHIKV. Aedes albopictus had higher disseminated infection and transmission of IOC sooner after ingesting CHIKV infected blood than Ae. aegypti. Aedes aegypti had higher disseminated infection and transmission later during infection with AC than Ae. albopictus. Viral dissemination and transmission of AC declined during the extrinsic incubation period, suggesting that transmission risk declines with length of infection. Interestingly, the reduction in transmission of AC was less in Ae. aegypti than Ae. albopictus, suggesting that older Ae. aegypti females are relatively more competent vectors than similar aged Ae. albopictus females. Aedes aegypti originating from the Dominican Republic had viral dissemination and transmission rates for IOC and AC strains that were lower than for Florida vectors. We identified small-scale geographic variation in vector competence among Ae. aegypti and Ae. albopictus that may contribute to regional differences in risk of CHIKV transmission in Florida. PMID:28749964

  2. Ultrasensitive Quantification of Hepatitis B Virus A1762T/G1764A Mutant by a SimpleProbe PCR Using a Wild-Type-Selective PCR Blocker and a Primer-Blocker-Probe Partial-Overlap Approach ▿

    PubMed Central

    Nie, Hui; Evans, Alison A.; London, W. Thomas; Block, Timothy M.; Ren, Xiangdong David

    2011-01-01

    Hepatitis B virus (HBV) carrying the A1762T/G1764A double mutation in the basal core promoter (BCP) region is associated with HBe antigen seroconversion and increased risk of liver cirrhosis and hepatocellular carcinoma (HCC). Quantification of the mutant viruses may help in predicting the risk of HCC. However, the viral genome tends to have nucleotide polymorphism, which makes it difficult to design hybridization-based assays including real-time PCR. Ultrasensitive quantification of the mutant viruses at the early developmental stage is even more challenging, as the mutant is masked by excessive amounts of the wild-type (WT) viruses. In this study, we developed a selective inhibitory PCR (siPCR) using a locked nucleic acid-based PCR blocker to selectively inhibit the amplification of the WT viral DNA but not the mutant DNA. At the end of siPCR, the proportion of the mutant could be increased by about 10,000-fold, making the mutant more readily detectable by downstream applications such as real-time PCR and DNA sequencing. We also describe a primer-probe partial overlap approach which significantly simplified the melting curve patterns and minimized the influence of viral genome polymorphism on assay accuracy. Analysis of 62 patient samples showed a complete match of the melting curve patterns with the sequencing results. More than 97% of HBV BCP sequences in the GenBank database can be correctly identified by the melting curve analysis. The combination of siPCR and the SimpleProbe real-time PCR enabled mutant quantification in the presence of a 100,000-fold excess of the WT DNA. PMID:21562108

  3. Mutations in the Schmallenberg Virus Gc Glycoprotein Facilitate Cellular Protein Synthesis Shutoff and Restore Pathogenicity of NSs Deletion Mutants in Mice.

    PubMed

    Varela, Mariana; Pinto, Rute Maria; Caporale, Marco; Piras, Ilaria M; Taggart, Aislynn; Seehusen, Frauke; Hahn, Kerstin; Janowicz, Anna; de Souza, William Marciel; Baumgärtner, Wolfgang; Shi, Xiaohong; Palmarini, Massimo

    2016-06-01

    Serial passage of viruses in cell culture has been traditionally used to attenuate virulence and identify determinants of viral pathogenesis. In a previous study, we found that a strain of Schmallenberg virus (SBV) serially passaged in tissue culture (termed SBVp32) unexpectedly displayed increased pathogenicity in suckling mice compared to wild-type SBV. In this study, we mapped the determinants of SBVp32 virulence to the viral genome M segment. SBVp32 virulence is associated with the capacity of this virus to reach high titers in the brains of experimentally infected suckling mice. We also found that the Gc glycoprotein, encoded by the M segment of SBVp32, facilitates host cell protein shutoff in vitro Interestingly, while the M segment of SBVp32 is a virulence factor, we found that the S segment of the same virus confers by itself an attenuated phenotype to wild-type SBV, as it has lost the ability to block the innate immune system of the host. Single mutations present in the Gc glycoprotein of SBVp32 are sufficient to compensate for both the attenuated phenotype of the SBVp32 S segment and the attenuated phenotype of NSs deletion mutants. Our data also indicate that the SBVp32 M segment does not act as an interferon (IFN) antagonist. Therefore, SBV mutants can retain pathogenicity even when they are unable to fully control the production of IFN by infected cells. Overall, this study suggests that the viral glycoprotein of orthobunyaviruses can compensate, at least in part, for the function of NSs. In addition, we also provide evidence that the induction of total cellular protein shutoff by SBV is determined by multiple viral proteins, while the ability to control the production of IFN maps to the NSs protein. The identification of viral determinants of pathogenesis is key to the development of prophylactic and intervention measures. In this study, we found that the bunyavirus Gc glycoprotein is a virulence factor. Importantly, we show that mutations in the Gc

  4. An alphavirus temperature-sensitive capsid mutant reveals stages of nucleocapsid assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Yan, E-mail: yzheng15@students.kgi.edu; Kielian, Margaret, E-mail: margaret.kielian@einstein.yu.edu

    2015-10-15

    Alphaviruses have a nucleocapsid core composed of the RNA genome surrounded by an icosahedral lattice of capsid protein. An insertion after position 186 in the capsid protein produced a strongly temperature-sensitive growth phenotype. Even when the structural proteins were synthesized at the permissive temperature (28 °C), subsequent incubation of the cells at the non-permissive temperature (37 °C) dramatically decreased mutant capsid protein stability and particle assembly. Electron microscopy confirmed the presence of cytoplasmic nucleocapsids in mutant-infected cells cultured at the permissive temperature, but these nucleocapsids were not stable to sucrose gradient separation. In contrast, nucleocapsids isolated from mutant virus particlesmore » had similar stability to that of wildtype virus. Our data support a model in which cytoplasmic nucleocapsids go through a maturation step during packaging into virus particles. The insertion site lies in the interface between capsid proteins in the assembled nucleocapsid, suggesting the region where such a stabilizing transition occurs. - Highlights: • We characterize an alphavirus capsid insertion mutation. • These capsid mutants are highly temperature sensitive for growth. • The insertion affects nucleocapsid stability. • Results suggest that the nucleocapsid is stabilized during virus budding.« less

  5. The midgut transcriptome of Aedes aegypti fed with saline or protein meals containing chikungunya virus reveals genes potentially involved in viral midgut escape.

    PubMed

    Dong, Shengzhang; Behura, Susanta K; Franz, Alexander W E

    2017-05-15

    The mosquito Aedes aegypti is the primary vector for medically important arthropod-borne viruses, including chikungunya virus (CHIKV). Following oral acquisition, an arbovirus has to persistently infect several organs in the mosquito before becoming transmissible to another vertebrate host. A major obstacle an arbovirus has to overcome during its infection cycle inside the mosquito is the midgut escape barrier, representing the exit mechanism arboviruses utilize when disseminating from the midgut. To understand the transcriptomic basis of midgut escape and to reveal genes involved in the process, we conducted a comparative transcriptomic analysis of midgut samples from mosquitoes which had received a saline meal (SM) or a protein meal (PM) (not) containing CHIKV. CHIKV which was orally acquired by a mosquito along with a SM or PM productively infected the midgut epithelium and disseminated to secondary tissues. A total of 27 RNA-Seq libraries from midguts of mosquitoes that had received PM or SM (not) containing CHIKV at 1 and 2 days post-feeding were generated and sequenced. Fewer than 80 genes responded differentially to the presence of CHIKV in midguts of mosquitoes that had acquired the virus along with SM or PM. SM feeding induced differential expression (DE) of 479 genes at day 1 and 314 genes at day 2 when compared to midguts of sugarfed mosquitoes. By comparison, PM feeding induced 6029 DE genes at day 1 and 7368 genes at day 2. Twenty-three DE genes encoding trypsins, metalloproteinases, and serine-type endopeptidases were significantly upregulated in midguts of mosquitoes at day 1 following SM or PM ingestion. Two of these genes were Ae. aegypti late trypsin (AeLT) and serine collagenase 1 precursor (AeSP1). In vitro, recombinant AeLT showed strong matrix metalloproteinase activity whereas recombinant AeSP1 did not. By substituting a bloodmeal for SM, we identified midgut-expressed genes not involved in blood or protein digestion. These included genes

  6. Long-Lasting Immune Protection and Other Epidemiological Findings after Chikungunya Emergence in a Cambodian Rural Community, April 2012

    PubMed Central

    Duong, Veasna; Baisley, Kathy; Nguon, Kunthy; Chan, Siam; Huy, Rekol; Ly, Sovann; Sorn, Sopheak; Som, Leakhann; Buchy, Philippe; Tarantola, Arnaud

    2016-01-01

    The East/Central/South African genotype of Chikungunya virus with the E1-A226V mutation emerged in 2011 in Cambodia and spread in 2012. An outbreak of 190 cases was documented in Trapeang Roka, a rural village. We surveyed 425 village residents within 3–4 weeks after the outbreak, and determined the sensitivity and specificity of case definitions and factors associated with infection by CHIKV. Self-reported clinical presentation consisted mostly of fever, rash and arthralgia. The presence of all three clinical signs or symptoms was identified as the most sensitive (67%) and specific (84%) self-reported diagnostic clinical indicator compared to biological confirmation by MAC-ELISA or RT-PCR used as a reference. Having an indoor occupation was associated with lower odds of infection compared with people who remained at home (adjOR 0.32, 95%CI 0.12–0.82). In contrast with findings from outbreaks in other settings, persons aged above 40 years were less at risk of CHIKV infection, likely reflecting immune protection acquired when Chikungunya circulated in Cambodia before the Khmer Rouge regime in 1975. In view of the very particular history of Cambodia, our epidemiological data from Trapeang Roka are the first to support the persistence of CHIKV antibodies over a period of 40 years. PMID:26752630

  7. Free energy simulations reveal a double mutant avian H5N1 virus hemagglutinin with altered receptor binding specificity.

    PubMed

    Das, Payel; Li, Jingyuan; Royyuru, Ajay K; Zhou, Ruhong

    2009-08-01

    Historically, influenza pandemics have been triggered when an avian influenza virus or a human/avian reassorted virus acquires the ability to replicate efficiently and become transmissible in the human population. Most critically, the major surface glycoprotein hemagglutinin (HA) must adapt to the usage of human-like (alpha-2,6-linked) sialylated glycan receptors. Therefore, identification of mutations that can switch the currently circulating H5N1 HA receptor binding specificity from avian to human might provide leads to the emergence of pandemic H5N1 viruses. To define such mutations in the H5 subtype, here we provide a computational framework that combines molecular modeling with extensive free energy simulations. Our results show that the simulated binding affinities are in good agreement with currently available experimental data. Moreover, we predict that one double mutation (V135S and A138S) in HA significantly enhances alpha-2,6-linked receptor recognition by the H5 subtype. Our simulations indicate that this double mutation in H5N1 HA increases the binding affinity to alpha-2,6-linked sialic acid receptors by 2.6 +/- 0.7 kcal/mol per HA monomer that primarily arises from the electrostatic interactions. Further analyses reveal that introduction of this double mutation results in a conformational change in the receptor binding pocket of H5N1 HA. As a result, a major rearrangement occurs in the hydrogen-bonding network of HA with the human receptor, making the human receptor binding pattern of double mutant H5N1 HA surprisingly similar to that observed in human H1N1 HA. These large scale molecular simulations on single and double mutants thus provide new insights into our understanding toward human adaptation of the avian H5N1 virus. 2009 Wiley Periodicals, Inc.

  8. Rapid and specific detection of Asian- and African-lineage Zika viruses.

    PubMed

    Chotiwan, Nunya; Brewster, Connie D; Magalhaes, Tereza; Weger-Lucarelli, James; Duggal, Nisha K; Rückert, Claudia; Nguyen, Chilinh; Garcia Luna, Selene M; Fauver, Joseph R; Andre, Barb; Gray, Meg; Black, William C; Kading, Rebekah C; Ebel, Gregory D; Kuan, Guillermina; Balmaseda, Angel; Jaenisch, Thomas; Marques, Ernesto T A; Brault, Aaron C; Harris, Eva; Foy, Brian D; Quackenbush, Sandra L; Perera, Rushika; Rovnak, Joel

    2017-05-03

    Understanding the dynamics of Zika virus transmission and formulating rational strategies for its control require precise diagnostic tools that are also appropriate for resource-poor environments. We have developed a rapid and sensitive loop-mediated isothermal amplification (LAMP) assay that distinguishes Zika viruses of Asian and African lineages. The assay does not detect chikungunya virus or flaviviruses such as dengue, yellow fever, or West Nile viruses. The assay conditions allowed direct detection of Zika virus RNA in cultured infected cells; in mosquitoes; in virus-spiked samples of human blood, plasma, saliva, urine, and semen; and in infected patient serum, plasma, and semen samples without the need for RNA isolation or reverse transcription. The assay offers rapid, specific, sensitive, and inexpensive detection of the Asian-lineage Zika virus strain that is currently circulating in the Western hemisphere, and can also detect the African-lineage Zika virus strain using separate, specific primers. Copyright © 2017, American Association for the Advancement of Science.

  9. Rapid and specific detection of Asian- and African-lineage Zika viruses

    PubMed Central

    Chotiwan, Nunya; Brewster, Connie D.; Magalhaes, Tereza; Weger-Lucarelli, James; Duggal, Nisha K.; Rückert, Claudia; Nguyen, Chilinh; Garcia Luna, Selene M.; Fauver, Joseph R.; Andre, Barb; Gray, Meg; Black, William C.; Kading, Rebekah C.; Ebel, Gregory D.; Kuan, Guillermina; Balmaseda, Angel; Jaenisch, Thomas; Marques, Ernesto T. A.; Brault, Aaron C.; Harris, Eva; Foy, Brian D.; Quackenbush, Sandra L.; Perera, Rushika; Rovnak, Joel

    2017-01-01

    Understanding the dynamics of Zika virus transmission and formulating rational strategies for its control require precise diagnostic tools that are also appropriate for resource-poor environments. We have developed a rapid and sensitive loop-mediated isothermal amplification (LAMP) assay that distinguishes Zika viruses of Asian and African lineages. The assay does not detect chikungunya virus or flaviviruses such as dengue, yellow fever, or West Nile viruses. The assay conditions allowed direct detection of Zika virus RNA in cultured infected cells; in mosquitoes; in virus-spiked samples of human blood, plasma, saliva, urine, and semen; and in infected patient serum, plasma, and semen samples without the need for RNA isolation or reverse transcription. The assay offers rapid, specific, sensitive, and inexpensive detection of the Asian-lineage Zika virus strain that is currently circulating in the Western hemisphere, and can also detect the African-lineage Zika virus strain using separate, specific primers. PMID:28469032

  10. 2017 international meeting of the Global Virus Network.

    PubMed

    Catton, Mike; Gray, Glenda; Griffin, Diane; Hasegawa, Hideki; Kent, Stephen J; Mackenzie, Jason; McSweegan, Edward; Mercer, Natalia; Wang, Linfa

    2018-05-01

    The Global Virus Network (GVN) was established in 2011 to strengthen research and responses to emerging viral causes of human disease and to prepare against new viral pandemics. There are now 40 GVN Centers of Excellence and 6 Affiliate laboratories in 24 countries. The 2017 meeting was held from September 25-27 in Melbourne, Australia, and was hosted by the Peter Doherty Institute for Infection and Immunity and the Institut Pasteur. This report highlights the recent accomplishments of GVN researchers in several important areas of medical virology, including the recent Zika epidemic, infections by human papillomavirus, influenza, HIV, hepatitis C, HTLV-1, and chikungunya viruses, and new and emerging viruses in the Australasia region. Plans for the 2018 meeting also are noted. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Mapping global environmental suitability for Zika virus

    PubMed Central

    Messina, Jane P; Kraemer, Moritz UG; Brady, Oliver J; Pigott, David M; Shearer, Freya M; Weiss, Daniel J; Golding, Nick; Ruktanonchai, Corrine W; Gething, Peter W; Cohn, Emily; Brownstein, John S; Khan, Kamran; Tatem, Andrew J; Jaenisch, Thomas; Murray, Christopher JL; Marinho, Fatima; Scott, Thomas W; Hay, Simon I

    2016-01-01

    Zika virus was discovered in Uganda in 1947 and is transmitted by Aedes mosquitoes, which also act as vectors for dengue and chikungunya viruses throughout much of the tropical world. In 2007, an outbreak in the Federated States of Micronesia sparked public health concern. In 2013, the virus began to spread across other parts of Oceania and in 2015, a large outbreak in Latin America began in Brazil. Possible associations with microcephaly and Guillain-Barré syndrome observed in this outbreak have raised concerns about continued global spread of Zika virus, prompting its declaration as a Public Health Emergency of International Concern by the World Health Organization. We conducted species distribution modelling to map environmental suitability for Zika. We show a large portion of tropical and sub-tropical regions globally have suitable environmental conditions with over 2.17 billion people inhabiting these areas. DOI: http://dx.doi.org/10.7554/eLife.15272.001 PMID:27090089

  12. Three Herpes Simplex Virus Type 1 Latency-Associated Transcript Mutants with Distinct and Asymmetric Effects on Virulence in Mice Compared with Rabbits

    PubMed Central

    Perng, Guey-Chuen; Esmaili, Daniel; Slanina, Susan M.; Yukht, Ada; Ghiasi, Homayon; Osorio, Nelson; Mott, Kevin R.; Maguen, Barak; Jin, Ling; Nesburn, Anthony B.; Wechsler, Steven L.

    2001-01-01

    Herpes simplex virus type 1 latency-associated transcript (LAT)-null mutants have decreased reactivation but normal virulence in rabbits and mice. We report here on dLAT1.5, a mutant with LAT nucleotides 76 to 1667 deleted. Following ocular infection of rabbits, dLAT1.5 reactivated at a lower rate than its wild-type parent McKrae (6.1 versus 11.8%; P = 0.0025 [chi-square test]). Reactivation was restored in the marker-rescued virus dLAT1.5R (12.6%; P = 0.53 versus wild type), confirming the importance of the deleted region in spontaneous reactivation. Compared with wild-type or marker-rescued virus, dLAT1.5 had similar or slightly reduced virulence in rabbits (based on survival following ocular infection). In contrast, in mice, dLAT1.5 had increased virulence (P < 0.0001). Thus, deletion of LAT nucleotides 76 to 1667 increased viral virulence in mice but not in rabbits. In contrast, we also report here that LAT2.9A, a LAT mutant that we previously reported to have increased virulence in rabbits (G. C. Perng, S. M. Slanina, A. Yuhkt, B. S. Drolet, W. J. Keleher, H. Ghiasi, A. B. Nesburn, and S. L. Wechsler, J. Virol. 73:920–929, 1999), had decreased virulence in mice (P = 0.03). In addition, we also found that dLAT371, a LAT mutant that we previously reported to have wild-type virulence in rabbits (G. C. Perng, S. M. Slanina, H. Ghiasi, A. B. Nesburn, and S. L. Wechsler, J. Virol. 70:2014–2018, 1996), had decreased virulence in mice (P < 0.05). Thus, these three mutants, each of which encodes a different LAT RNA, have different virulence phenotypes. dLAT1.5 had wild-type virulence in rabbits but increased virulence in mice. In contrast, LAT2.9A had increased virulence in rabbits but decreased virulence in mice, and dLAT371 had wild-type virulence in rabbits but decreased virulence in mice. Taken together, these results suggest that (i) the 5′ end of LAT and/or a gene that overlaps part of this region is involved in viral virulence, (ii) this virulence appears

  13. Guillain-Barré syndrome and other neurological manifestations possibly related to Zika virus infection in municipalities from Bahia, Brazil, 2015.

    PubMed

    Malta, Juliane Maria Alves Siqueira; Vargas, Alexander; Leite, Priscila Leal E; Percio, Jadher; Coelho, Giovanini Evelim; Ferraro, Andréa Helena Argolo; Cordeiro, Tânia Maria de Oliveira; Dias, Jesângeli de Sousa; Saad, Eduardo

    2017-01-01

    to describe the reported cases of Guillain-Barré Syndrome (GBS) and other neurological manifestations with a history of dengue, chikungunya or Zika virus infections, in the Metropolitan Region of Salvador and in the municipality of Feira de Santana, Brazil. this is a descriptive study with data of an investigation conducted by the epidemiological surveillance from March to August 2015; to confirm the neurological manifestations, medical diagnosis records were considered, and to prior infection, clinical and laboratory criteria were used. 138 individuals were investigated, 57 reported infectious process up to 31 days before neurological symptoms - 30 possibly due to Zika, 13 to dengue, 8 to chikungunya and 6 were inconclusive -; GBS was the most frequent neurological condition (n=46), with predominance of male sex (n=32) and the median age was 44. most cases reported a clinical picture consistent with acute Zika virus disease, which preceded the occurrence of neurological symptoms.

  14. Serum metabolomics analysis of patients with chikungunya and dengue mono/co-infections reveals distinct metabolite signatures in the three disease conditions

    NASA Astrophysics Data System (ADS)

    Shrinet, Jatin; Shastri, Jayanthi S.; Gaind, Rajni; Bhavesh, Neel Sarovar; Sunil, Sujatha

    2016-11-01

    Chikungunya and dengue are arboviral infections with overlapping clinical symptoms. A subset of chikungunya infection occurs also as co-infections with dengue, resulting in complications during diagnosis and patient management. The present study was undertaken to identify the global metabolome of patient sera infected with chikungunya as mono infections and with dengue as co-infections. Using nuclear magnetic resonance (NMR) spectroscopy, the metabolome of sera of three disease conditions, namely, chikungunya and dengue as mono-infections and when co-infected were ascertained and compared with healthy individuals. Further, the cohorts were analyzed on the basis of age, onset of fever and joint involvement. Here we show that many metabolites in the serum are significantly differentially regulated during chikungunya mono-infection as well as during chikungunya co-infection with dengue. We observed that glycine, serine, threonine, galactose and pyrimidine metabolisms are the most perturbed pathways in both mono and co-infection conditions. The affected pathways in our study correlate well with the clinical manifestation like fever, inflammation, energy deprivation and joint pain during the infections. These results may serve as a starting point for validations and identification of distinct biomolecules that could be exploited as biomarker candidates thereby helping in better patient management.

  15. ORF4-protein deficient PCV2 mutants enhance virus-induced apoptosis and show differential expression of mRNAs in vitro.

    PubMed

    Gao, Zhangzhao; Dong, Qinfang; Jiang, Yonghou; Opriessnig, Tanja; Wang, Jingxiu; Quan, Yanping; Yang, Zongqi

    2014-04-01

    Porcine circovirus type 2 (PCV2) is the essential infectious agent of PCV associated disease (PCVAD). During previous in vitro studies, 11 RNAs and four viral proteins have been detected in PCV2-infected cells. Open reading frame (ORF) 4 is 180bp in length and has been identified at the transcription and the translation level. It overlaps completely with ORF3, which has a role in virus-induced apoptosis. In this study, start codon mutations (M1-PCV2) or in-frame termination mutations (M2-PCV2) were utilized to construct two ORF4-protein deficient viruses aiming to investigate its role in viral infection. The abilities of M1-PCV2 and M2-PCV2 to replicate, transcribe, express viral proteins, and to cause cellular apoptosis were evaluated. Viral DNA replication curves supported that the ORF4 protein is not essential for viral replication, but inhibits viral replication in the early stage of infection. Comparison of the expression level of ORF3 mRNA among wild-type and ORF4-deficient viruses in infected PK-15 cell demonstrated enhanced ORF3 transcription of both ORF4 mutants suggesting that the ORF4 protein may play an important role by restricting ORF3 transcription thereby preventing virus-induced apoptosis. This is further confirmed by the significantly higher caspase 3 and 8 activities in M1-PCV2 and M2-PCV2 compared to wild-type PCV2. Furthermore, the role of ORF4 in cell apoptosis and a possible interaction with the ORF1 associated Rep protein could perhaps explain the rapid viral growth in the early stage of infection and the higher expression level of ORF1 mRNA in ORF4 protein deficient PCV2 mutants. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Mosquitoes Transmit Unique West Nile Virus Populations during Each Feeding Episode.

    PubMed

    Grubaugh, Nathan D; Fauver, Joseph R; Rückert, Claudia; Weger-Lucarelli, James; Garcia-Luna, Selene; Murrieta, Reyes A; Gendernalik, Alex; Smith, Darci R; Brackney, Doug E; Ebel, Gregory D

    2017-04-25

    Arthropod-borne viruses (arboviruses), such as Zika virus, chikungunya virus, and West Nile virus (WNV), pose continuous threats to emerge and cause large epidemics. Often, these events are associated with novel virus variants optimized for local transmission that first arise as minorities within a host. Thus, the conditions that regulate the frequency of intrahost variants are important determinants of emergence. Here, we describe the dynamics of WNV genetic diversity during its transmission cycle. By temporally sampling saliva from individual mosquitoes, we demonstrate that virus populations expectorated by mosquitoes are highly diverse and unique to each feeding episode. After transmission to birds, however, most genetic diversity is removed by strong purifying selection. Further, transmission of potentially mosquito-adaptive WNV variants is strongly influenced by genetic drift in mosquitoes. These results highlight the complex evolutionary forces a novel virus variant must overcome to alter infection phenotypes at the population level. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. Prolonged protection against Intranasal challenge with influenza virus following systemic immunization or combinations of mucosal and systemic immunizations with a heat-labile toxin mutant.

    PubMed

    Zhou, Fengmin; Goodsell, Amanda; Uematsu, Yasushi; Vajdy, Michael

    2009-04-01

    Seasonal influenza virus infections cause considerable morbidity and mortality in the world, and there is a serious threat of a pandemic influenza with the potential to cause millions of deaths. Therefore, practical influenza vaccines and vaccination strategies that can confer protection against intranasal infection with influenza viruses are needed. In this study, we demonstrate that using LTK63, a nontoxic mutant of the heat-labile toxin from Escherichia coli, as an adjuvant for both mucosal and systemic immunizations, systemic (intramuscular) immunization or combinations of mucosal (intranasal) and intramuscular immunizations protected mice against intranasal challenge with a lethal dose of live influenza virus at 3.5 months after the second immunization.

  18. Generation of herpesvirus entry mediator (HVEM)-restricted herpes simplex virus type 1 mutant viruses: resistance of HVEM-expressing cells and identification of mutations that rescue nectin-1 recognition.

    PubMed

    Uchida, Hiroaki; Shah, Waris A; Ozuer, Ali; Frampton, Arthur R; Goins, William F; Grandi, Paola; Cohen, Justus B; Glorioso, Joseph C

    2009-04-01

    Both initial infection and cell-to-cell spread by herpes simplex virus type 1 (HSV-1) require the interaction of the viral glycoprotein D (gD) with an entry receptor on the cell surface. The two major HSV entry receptors, herpesvirus entry mediator (HVEM) and nectin-1, mediate infection independently but are coexpressed on a variety of cells. To determine if both receptors are active in these instances, we have established mutant viruses that are selectively impaired for recognition of one or the other receptor. In plaque assays, these viruses showed approximately 1,000-fold selectivity for the matched receptor over the mismatched receptor. Separate assays showed that each virus is impaired for both infection and spread through the mismatched receptor. We tested several human tumor cell lines for susceptibility to these viruses and observed that HT29 colon carcinoma cells are susceptible to infection by nectin-1-restricted virus but are highly resistant to HVEM-restricted virus infection, despite readily detectable HVEM expression on the cell surface. HVEM cDNA isolated from HT29 cells rendered HSV-resistant cells permissive for infection by the HVEM-restricted virus, suggesting that HT29 cells lack a cofactor for HVEM-mediated infection or express an HVEM-specific inhibitory factor. Passaging of HVEM-restricted virus on nectin-1-expressing cells yielded a set of gD missense mutations that each restored functional recognition of nectin-1. These mutations identify residues that likely play a role in shaping the nectin-1 binding site of gD. Our findings illustrate the utility of these receptor-restricted viruses in studying the early events in HSV infection.

  19. Zika virus in Brazil and the danger of infestation by Aedes (Stegomyia) mosquitoes.

    PubMed

    Marcondes, Carlos Brisola; Ximenes, Maria de Fátima Freire de Melo

    2016-02-01

    Zika virus, already widely distributed in Africa and Asia, was recently reported in two Northeastern Brazilian: State of Bahia and State of Rio Grande do Norte, and one Southeastern: State of São Paulo. This finding adds a potentially noxious virus to a list of several other viruses that are widely transmitted by Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus in Brazil. The pathology and epidemiology, including the distribution and vectors associated with Zika virus, are reviewed. This review is focused on viruses transmitted by Aedes (Stegomyia) mosquitoes, including dengue, Chikungunya, Zika, Mayaro, and yellow fever virus, to emphasize the risks of occurrence for these arboviruses in Brazil and neighboring countries. Other species of Aedes (Stegomyia) are discussed, emphasizing their involvement in arbovirus transmission and the possibility of adaptation to environments modified by human activities and introduction in Brazil.

  20. Seasonal temperature variation influences climate suitability for dengue, chikungunya, and Zika transmission.

    PubMed

    Huber, John H; Childs, Marissa L; Caldwell, Jamie M; Mordecai, Erin A

    2018-05-01

    Dengue, chikungunya, and Zika virus epidemics transmitted by Aedes aegypti mosquitoes have recently (re)emerged and spread throughout the Americas, Southeast Asia, the Pacific Islands, and elsewhere. Understanding how environmental conditions affect epidemic dynamics is critical for predicting and responding to the geographic and seasonal spread of disease. Specifically, we lack a mechanistic understanding of how seasonal variation in temperature affects epidemic magnitude and duration. Here, we develop a dynamic disease transmission model for dengue virus and Aedes aegypti mosquitoes that integrates mechanistic, empirically parameterized, and independently validated mosquito and virus trait thermal responses under seasonally varying temperatures. We examine the influence of seasonal temperature mean, variation, and temperature at the start of the epidemic on disease dynamics. We find that at both constant and seasonally varying temperatures, warmer temperatures at the start of epidemics promote more rapid epidemics due to faster burnout of the susceptible population. By contrast, intermediate temperatures (24-25°C) at epidemic onset produced the largest epidemics in both constant and seasonally varying temperature regimes. When seasonal temperature variation was low, 25-35°C annual average temperatures produced the largest epidemics, but this range shifted to cooler temperatures as seasonal temperature variation increased (analogous to previous results for diurnal temperature variation). Tropical and sub-tropical cities such as Rio de Janeiro, Fortaleza, and Salvador, Brazil; Cali, Cartagena, and Barranquilla, Colombia; Delhi, India; Guangzhou, China; and Manila, Philippines have mean annual temperatures and seasonal temperature ranges that produced the largest epidemics. However, more temperate cities like Shanghai, China had high epidemic suitability because large seasonal variation offset moderate annual average temperatures. By accounting for seasonal

  1. Domestic and Environmental Factors of Chikungunya-affected Families in Thiruvananthapuram (Rural) District of Kerala, India

    PubMed Central

    Anish, TS; Vijayakumar, K; Leela, Itty Amma KR

    2011-01-01

    Background: The world is experiencing a pandemic of chikungunya which has swept across Indian Ocean and the Indian subcontinent. Kerala the southernmost state of India was affected by the chikungunya epidemic twice, first in 2006 and then in 2007. Kerala has got geography and climate which are highly favorable for the breeding of Aedes albopictus, the suspected vector. Aim: The aim of the study was to highlight the various domestic and environmental factors of the families affected by chikungunya in 2007 in Thiruvananthapuram district (rural) of Kerala. Settings and design:This is a cross-sectional survey conducted in Thiruvananthapuram (rural) district during November 2007. Settings and design: This is a cross-sectional survey conducted in Thiruvananthapuram (rural) district during November 2007 Materials and Methods: Samples were selected from field area under three Primary Health Centers.These areas represent the three terrains of the district namely the highland, midland, and lowland. The sample size was estimated to be 134 houses from each study area.The field area of health workers was selected as clusters and six subcenters from each primary health center were randomly selected (lot method). Results and Conclusions: The proportion of population affected by chikungunya fever is 39.9% (38.9-40.9%). The investigators observed water holding containers in the peri-domestic area of 95.6% of the houses. According to regression (binary logistic) analysis, the area of residence [adjusted odds ratio (OR) = 8.01 (6.06-14.60)], residing in a non-remote area [adjusted OR=0.25 (0.16-0.38)], perceived mosquito menace [adjusted OR=3.07 (2.31-4.64)], and containers/tires outside the house [adjusted OR=5.61 (2.74-27.58)] were the independent predictors of the occurrence of chikungunya in households. PMID:21572606

  2. A Herpes Simplex Virus Type 1 Mutant Expressing a Baculovirus Inhibitor of Apoptosis Gene in Place of Latency-Associated Transcript Has a Wild-Type Reactivation Phenotype in the Mouse

    PubMed Central

    Jin, Ling; Perng, Guey-Chuen; Mott, Kevin R.; Osorio, Nelson; Naito, Julia; Brick, David J.; Carpenter, Dale; Jones, Clinton; Wechsler, Steven L.

    2005-01-01

    The latency-associated transcript (LAT) is essential for the wild-type herpes simplex virus type 1 (HSV-1) high-reactivation phenotype since LAT− mutants have a low-reactivation phenotype. We previously reported that LAT can decrease apoptosis and proposed that this activity is involved in LAT's ability to enhance the HSV-1 reactivation phenotype. The first 20% of the primary 8.3-kb LAT transcript is sufficient for enhancing the reactivation phenotype and for decreasing apoptosis, supporting this proposal. For this study, we constructed an HSV-1 LAT− mutant that expresses the baculovirus antiapoptosis gene product cpIAP under control of the LAT promoter and in place of the LAT region mentioned above. Mice were ocularly infected with this mutant, designated dLAT-cpIAP, and the reactivation phenotype was determined using the trigeminal ganglion explant model. dLAT-cpIAP had a reactivation phenotype similar to that of wild-type virus and significantly higher than that of (i) the LAT− mutant dLAT2903; (ii) dLAT1.5, a control virus containing the same LAT deletion as dLAT-cpIAP, but with no insertion of foreign DNA, thereby controlling for potential readthrough transcription past the cpIAP insert; and (iii) dLAT-EGFP, a control virus identical to dLAT-cpIAP except that it contained the enhanced green fluorescent protein open reading frame (ORF) in place of the cpIAP ORF, thereby controlling for expression of a random foreign gene instead of the cpIAP gene. These results show that an antiapoptosis gene with no sequence similarity to LAT can efficiently substitute for the LAT function involved in enhancing the in vitro-induced HSV-1 reactivation phenotype in the mouse. PMID:16160155

  3. [Confirmed Dengue, Chikungunya and Zika Cases during the Period 2014 to 2016 in Barcelona, Spain].

    PubMed

    González, Roser; Camprubí, Esteve; Fernández, Lidia; Millet, Joan Pau; Peracho, Víctor; Gorrindo, Pilar; Avellanés, Ingrid; Romero, Arancha; Caylà, Joan A

    2017-03-07

    Arbovirus infections are a group of diseases whose incidence is increasing and that entail an important problem for public health. The aim of this study was to describe detected cases of arbovirosis in Barcelona, and surveillance and control actions performed in order to reduce the risk of transmission. Descriptive cross-sectional study of confirmed dengue, chikungunya and Zika cases in Barcelona during 2014-2016 (1st trimester). Suspected cases detected in the city were notified to the Epidemiology Department of the Barcelona Public Health Agency, where an epidemiological survey is undertaken and, if appropriate, Urban Pests Surveillance and Control Department is contacted. They perform an entomological inspection and implement control and monitoring actions. We collected sociodemographical, epidemiological, clinical and entomological variables. In 2014, 50 chikungunya and 20 dengue cases were detected; 25 entomological inspections were carried out in residences and 38 in the street. In 2015, 47 chikungunya, 51 dengue and 2 Zika cases were detected; 27 inspections were carried out in residences and 80 in the street. In 2016, 17 chikungunya, 52 dengue and 48 Zika cases were detected; 50 inspections were carried out in residences and 103 in the street. No autochtonous case was detected. We observed an increasing incidence of arbovirosis cases during the 3-year study period. There was a progressive intensification of vector surveillance and control actions (inspections, sample collection…).

  4. Symptoms of Zika

    MedlinePlus

    ... to other viruses spread through mosquito bites, like dengue and chikungunya. How soon you should be tested ... look for Zika or other similar viruses like dengue or chikungunya. Once a person has been infected, ...

  5. West Nile Virus Encephalitis 16 Years Later.

    PubMed

    Kleinschmidt-DeMasters, Bette K; Beckham, J David

    2015-09-01

    Arboviruses (Arthropod-borne viruses) include several families of viruses (Flaviviridae, Togaviradae, Bunyaviradae, Reoviradae) that are spread by arthropod vectors, most commonly mosquitoes, ticks and sandflies. The RNA genome allows these viruses to rapidly adapt to ever-changing host and environmental conditions. Thus, these virus families are largely responsible for the recent expansion in geographic range of emerging viruses including West Nile virus (WNV), dengue virus and Chikungunya virus. This review will focus on WNV, especially as it has progressively spread westward in North America since its introduction in New York in 1999. By 2003, WNV infections in humans had reached almost all lower 48 contiguous United States (US) and since that time, fluctuations in outbreaks have occurred. Cases decreased between 2008 and 2011, followed by a dramatic flair in 2012, with the epicenter in the Dallas-Fort Worth region of Texas. The 2012 outbreak was associated with an increase in reported neuroinvasive cases. Neuroinvasive disease continues to be a problem particularly in the elderly and immunocompromised populations, although WNV infections also represented the second most frequent cause of pediatric encephalitis in these same years. Neuropathological features in cases from the 2012 epidemic highlight the extent of viral damage that can occur in the CNS. © 2015 International Society of Neuropathology.

  6. Outbreak of Chikungunya in the French Caribbean Islands of Martinique and Guadeloupe: Findings from a Hospital-Based Surveillance System (2013-2015).

    PubMed

    Dorléans, Frédérique; Hoen, Bruno; Najioullah, Fatiha; Herrmann-Storck, Cécile; Schepers, Kinda Maria; Abel, Sylvie; Lamaury, Isabelle; Fagour, Laurence; Césaire, Raymond; Guyomard, Stéphanie; Troudard, Ruth; Adélaïde, Yvette; Romagne, Marie-José; Davidas, Magguy; Rochais, Séverine; Boa, Sylvie; de Saint-Alary, Frédérique; Preira, Annabel; Saint-Martin, Patrick; Vaidie, Amandine; Melin, Mathilde; Daudens-Vaysse, Elise; Rosine, Jacques; Blateau, Alain; Carvalho, Luisiane; Septfons, Alexandra; Paty, Marie-Claire; Leduc, Ghislain; Cassadou, Sylvie; Ledrans, Martine; Cabié, André

    2018-04-23

    Chikungunya virus (CHIKV) emerged in the Caribbean island of Saint-Martin in December 2013. We implemented a hospital-based surveillance system to detect and describe CHIKV cases including severe forms of the infection and deaths in the islands of Martinique and Guadeloupe. A case was defined as a patient with a CHIKV laboratory confirmation cared for in a public hospital for chikungunya for at least 24 hours, and a severe CHIKV case was defined as a CHIKV case presenting one or more organ failures. Sociodemographic, clinical, and laboratory data were collected and cases classified into severe or nonsevere based on medical records. From December 2013 to January 2015, a total of 1,836 hospitalized cases were identified. Rate of hospital admissions for CHIKV infection was 60 per 10,000 suspected clinical CHIKV cases and severity accounted for 12 per 10,000. A total of 74 deaths related to CHIKV infection occurred. Infants and elderly people were more frequently hospitalized compared with others and severity was more frequently reported in elderly subjects and subjects with underlying health condition. Fifteen neonatal infections consecutive to mother-to-child transmission were diagnosed, seven of which were severe. The most vulnerable groups of the population, such as the elderly, infants, individuals with comorbidities, and pregnant women, should remain the main targets of public health priorities.

  7. Unconventional repertoire profile is imprinted during acute chikungunya infection for natural killer cells polarization toward cytotoxicity.

    PubMed

    Petitdemange, Caroline; Becquart, Pierre; Wauquier, Nadia; Béziat, Vivien; Debré, Patrice; Leroy, Eric M; Vieillard, Vincent

    2011-09-01

    Chikungunya virus (CHIKV) is a worldwide emerging pathogen. In humans it causes a syndrome characterized by high fever, polyarthritis, and in some cases lethal encephalitis. Growing evidence indicates that the innate immune response plays a role in controlling CHIKV infection. We show here that CHIKV induces major but transient modifications in NK-cell phenotype and function soon after the onset of acute infection. We report a transient clonal expansion of NK cells that coexpress CD94/NKG2C and inhibitory receptors for HLA-C1 alleles and are correlated with the viral load. Functional tests reveal cytolytic capacity driven by NK cells in the absence of exogenous signals and severely impaired IFN-γ production. Collectively these data provide insight into the role of this unique subset of NK cells in controlling CHIKV infection by subset-specific expansion in response to acute infection, followed by a contraction phase after viral clearance.

  8. Truncation of the human immunodeficiency virus type 1 transmembrane glycoprotein cytoplasmic domain blocks virus infectivity.

    PubMed Central

    Dubay, J W; Roberts, S J; Hahn, B H; Hunter, E

    1992-01-01

    Human immunodeficiency virus type 1 contains a transmembrane glycoprotein with an unusually long cytoplasmic domain. To determine the role of this domain in virus replication, a series of single nucleotide changes that result in the insertion of premature termination codons throughout the cytoplasmic domain has been constructed. These mutations delete from 6 to 192 amino acids from the carboxy terminus of gp41 and do not affect the amino acid sequence of the regulatory proteins encoded by rev and tat. The effects of these mutations on glycoprotein biosynthesis and function as well as on virus infectivity have been examined in the context of a glycoprotein expression vector and the viral genome. All of the mutant glycoproteins were synthesized, processed, and transported to the cell surface in a manner similar to that of the wild-type glycoprotein. With the exception of mutants that remove the membrane anchor domain, all of the mutant glycoproteins retained the ability to cause fusion of CD4-bearing cells. However, deletion of more than 19 amino acids from the C terminus of gp41 blocked the ability of mutant virions to infect cells. This defect in virus infectivity appeared to be due at least in part to a failure of the virus to efficiently incorporate the truncated glycoprotein. Similar data were obtained for mutations in two different env genes and two different target cell lines. These results indicate that the cytoplasmic domain of gp41 plays a critical role during virus assembly and entry in the life cycle of human immunodeficiency virus type 1. Images PMID:1357190

  9. Estimating and mapping the incidence of dengue and chikungunya in Honduras during 2015 using Geographic Information Systems (GIS).

    PubMed

    Zambrano, Lysien I; Sierra, Manuel; Lara, Bredy; Rodríguez-Núñez, Iván; Medina, Marco T; Lozada-Riascos, Carlos O; Rodríguez-Morales, Alfonso J

    Geographical information systems (GIS) use for development of epidemiological maps in dengue has been extensively used, however not in other emerging arboviral diseases, nor in Central America. Surveillance cases data (2015) were used to estimate annual incidence rates of dengue and chikungunya (cases/100,000 pop) to develop the first maps in the departments and municipalities of Honduras. The GIS software used was Kosmo Desktop 3.0RC1 ® . Four thematic maps were developed according departments, municipalities, diseases incidence rates. A total of 19,289 cases of dengue and 85,386 of chikungunya were reported (median, 726 cases/week for dengue and 1460 for chikungunya). Highest peaks were observed at weeks 25th and 27th, respectively. There was association between progression by weeks (p<0.0001). The cumulated crude national rate was estimated in 224.9 cases/100,000 pop for dengue and 995.6 for chikungunya. The incidence rates ratio between chikungunya and dengue is 4.42 (ranging in municipalities from 0.0 up to 893.0 [San Vicente Centenario]). Burden of both arboviral diseases is concentrated in capital Central District (>37%, both). Use of GIS-based epidemiological maps allow to guide decisions-taking for prevention and control of diseases that still represents significant issues in the region and the country, but also in emerging conditions. Copyright © 2016 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  10. Treatment of chikungunya chronic arthritis: A systematic review.

    PubMed

    Sales, Gabriella Maria Pitt Gameiro; Barbosa, Izabel Crystine Pereira; Canejo Neta, Laura Maia Sampaio; Melo, Paloma Lopes de; Leitão, Raphael de Azevedo; Melo, Hugo Moura de Albuquerque

    2018-01-01

    Chikungunya (CHIK) is a tropical arbovirus, transmitted by the female mosquito Aedes aegypti and Aedes albopictus. In Brazil, there have been cases reported since 2014. The initial manifestations of this virus are sudden onset high fever, headache, chills, rashes, myalgia and intense joint pain. Usually, CHIK presents the acute and chronic phases, the latter characterized by bilateral polyarthralgia, which can last for months or even years. During this period, autoimmune diseases can be triggered, making the picture even more complicated. A systematic review was performed on the PubMed and Scielo databases in January 2017. Clinical trials, cohorts, case-control and case reports were included in the study. Expert opinions, societal consensuses and literary reviews were exclusion criteria. Studies were conducted in English, Spanish and Portuguese. The studies were descriptively analyzed and the data was grouped according to methodological similarity. Twenty-four (24) articles were selected and, in compliance with the inclusion and exclusion criteria, 18 were eliminated, with six studies remaining in the present review: five clinical trials and one case report. When the manifestations of CHIK become chronic and, the longer they last, more complications arise. Polyarthralgia can be immaterial, distancing individuals from their daily-life activities. Anti-inflammatory drugs (either steroid or not), in addition to immunosuppressants, homeopathy and physiotherapy are measures of treatment that, according to the literature, have been successful in relieving or extinguishing symptoms. However, it is fundamental that studies of CHIK treatment be further developed.

  11. Pseudorabies virus glycoprotein gIII is a major target antigen for murine and swine virus-specific cytotoxic T lymphocytes.

    PubMed Central

    Zuckermann, F A; Zsak, L; Mettenleiter, T C; Ben-Porat, T

    1990-01-01

    Pseudorabies virus (PrV) is the etiological agent of Aujeszky's disease, a disease that causes heavy economic losses in the swine industry. A rational approach to the generation of an effective vaccine against this virus requires an understanding of the immune response induced by it and of the role of the various viral antigens in inducing such a response. We have constructed mutants of PrV [strain PrV (Ka)] that differ from each other only in expression of the viral nonessential glycoproteins gI, gp63, gX, and gIII (i.e., are otherwise isogenic). These mutants were used to ascertain the importance of each of the nonessential glycoproteins in eliciting a PrV-specific cytotoxic T-lymphocyte (CTL) response in mice and pigs. Immunization of DBA/2 mice and pigs with a thymidine kinase-deficient (TK-) mutant of PrV elicits the formation of cytotoxic cells that specifically lyse syngeneic infected target cells. These PrV-specific cytolytic cells have the phenotype of major histocompatibility complex class I antigen-restricted CTLs. The relative number of CTLs specific for glycoproteins gI, gp63, gX, and gIII induced in mice vaccinated with a TK- mutant of PrV was ascertained by comparing their levels of cytotoxicity against syngeneic cells infected with either wild-type virus or gI-/gp63-, gX-, or gIII- virus deletion mutants. The PrV-specific CLTs were significantly less effective in lysing gIII(-)-infected targets than in lysing gI-/gp63-, gX-, or wild-type-infected targets. The in vitro secondary CTL response of lymphocytes obtained from either mice or pigs 6 or more weeks after immunization with a TK- mutant of PrV was also tested. Lymphocytes obtained from these animals were cultured with different glycoprotein-deficient mutants of PrV, and their cytolytic activities against wild-type-infected targets were ascertained. The importance of each of the nonessential viral glycoproteins in eliciting CTLs was assessed from the effectiveness of each of the virus mutants to

  12. Development and evaluation of a 1-step duplex reverse transcription polymerase chain reaction for differential diagnosis of chikungunya and dengue infection.

    PubMed

    Dash, Paban Kumar; Parida, Manmohan; Santhosh, S R; Saxena, Parag; Srivastava, Ambuj; Neeraja, Mamidi; Lakshmi, V; Rao, P V Lakshmana

    2008-09-01

    Dengue (DEN) and chikungunya (CHIK) have emerged as the 2 most important arboviral infections of global significance. The similarities in clinical presentations, their circulation in the same geographic area, and the transmission through the same vector necessitate an urgent need for the differential diagnosis of these 2 infections. So far, no single assay is reported for differential diagnosis of these 2 infections. In this study, we report the development and evaluation of a 1-step single-tube duplex reverse transcription polymerase chain reaction (D-RT-PCR) assay by targeting E1 gene of CHIK and C-prM gene junction of DEN virus (DENV), respectively. The sensitivity of this assay was found to be better than conventional virus isolation and could detect as low as 100 copies of genomic RNA, which is equivalent to respective virus-specific RT-PCR. The evaluation was carried out with 360 clinical samples from recent CHIK and DEN outbreaks in India. This assay could also be able to detect dual infection of CHIK and DEN in 3 patients. The phylogenetic analysis based on the nucleotide sequencing of D-RT-PCR amplicon could precisely identify the genotypes of all the serotypes of DENV and CHIK viruses (CHIKV). These findings demonstrate the potential clinical and epidemiologic application of D-RT-PCR for rapid sensitive detection, differentiation, and genotyping of DENV and CHIKV in clinical samples.

  13. Zika virus: An emerging infectious disease with serious perinatal and neurologic complications.

    PubMed

    Casale, Thomas B; Teng, Michael N; Morano, Jamie P; Unnasch, Thomas; Lockwood, Charles J

    2018-02-01

    Zika virus (ZIKV) is a flavivirus that is primarily transmitted by Aedes aegypti, the mosquito vector also important in transmission of the flaviviruses responsible for dengue fever, yellow fever, and chikungunya. Because of occurrence in the same geographic regions, serologic cross-reactivity, and similar but often less severe clinical manifestations, such as dengue and chikungunya infections, ZIKV infection likely has gone undetected, misdiagnosed, or both for many years. ZIKV is somewhat unique among flaviviruses in its ability to also be transmitted through sexual contact, nonsexual body fluids, and perinatally. The relatively recent detection of the link between ZIKV infection and Guillain-Barré syndrome and fetal neurological defects, including microcephaly, has prompted intense efforts aimed at the development of new and specific diagnostic tests. Infection with ZIKV has been postulated to lead to a more severe clinical course from other structurally related viruses, especially dengue, and vice versa because of a phenomenon termed antibody-dependent enhancement. Inactivated whole virus, DNA, RNA, and vectored vaccine approaches to prevent ZIKV infection are in development, as are treatments for active disease that are safe in pregnant women. Here we summarize the important epidemiologic and clinical features of ZIKV infection, as well as the progress and challenges in developing rapid point-of-care diagnostic tests and vaccines to prevent disease. We used electronic databases to identify relevant published data regarding ZIKV MeSH searches. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  14. Curcumin is a promising inhibitor of genotype 2 porcine reproductive and respiratory syndrome virus infection.

    PubMed

    Du, Taofeng; Shi, Yunpeng; Xiao, Shuqi; Li, Na; Zhao, Qin; Zhang, Angke; Nan, Yuchen; Mu, Yang; Sun, Yani; Wu, Chunyan; Zhang, Hongtao; Zhou, En-Min

    2017-10-10

    Porcine reproductive and respiratory syndrome virus (PRRSV) could lead to pandemic diseases and huge financial losses to the swine industry worldwide. Curcumin, a natural compound, has been reported to serve as an entry inhibitor of hepatitis C virus, chikungunya virus and vesicular stomatitis virus. In this study, we investigated the potential effect of curcumin on early stages of PRRSV infection. Curcumin inhibited infection of Marc-145 cells and porcine alveolar macrophages (PAMs) by four different genotype 2 PRRSV strains, but had no effect on the levels of major PRRSV receptor proteins on Marc-145 cells and PAMs or on PRRSV binding to Marc-145 cells. However, curcumin did block two steps of the PRRSV infection process: virus internalization and virus-mediated cell fusion. Our results suggested that an inhibition of genotype 2 PRRSV infection by curcumin is virus strain-independent, and mainly inhibited by virus internalization and cell fusion mediated by virus. Collectively, these results demonstrate that curcumin holds promise as a new anti-PRRSV drug.

  15. Epidemiology and neurological complications of infection by the Zika virus: a new emerging neurotropic virus.

    PubMed

    Carod-Artal, Francisco J

    2016-04-01

    The current epidemic outbreak due to Zika virus began in 2015 and since then it has been reported in 31 countries and territories in America. The epidemiological and clinical aspects related to infection by Zika virus are reviewed. Since 2007, 55 countries in America, Asia, Africa and Oceania have detected local transmission of the virus. This epidemic has affected almost 1.5 million people in Brazil. 80% of the cases are asymptomatic. The symptoms of Zika virus disease include fever, maculopapular rash, arthralgia and non-purulent conjunctivitis. The symptoms are usually self-limiting and last one week. An increase in the incidence of cases of microcephaly, retinal lesions and Guillain-Barre syndrome associated with the Zika virus has been reported. Zika-associated Guillain-Barre syndrome in Polynesia is a pure motor axonal variant. The RNA of the Zika virus has been identified in samples of brain tissue, placenta and amniotic liquid of children with microcephaly and in the still-born infants of women infected by Zika during pregnancy. The reverse transcription polymerase chain reaction test is recommended to detect viral RNA, and serological tests (IgM ELISA and neutralising antibodies) should be conducted to confirm infection by Zika. The differential diagnosis includes infection by the dengue and chikungunya viruses. Knowledge about the pathogenic mechanisms involved in infection due to Zika virus and its long-term consequences in adults and newborn infants is still limited.

  16. Autochthonous Chikungunya Transmission and Extreme Climate Events in Southern France.

    PubMed

    Roiz, David; Boussès, Philippe; Simard, Frédéric; Paupy, Christophe; Fontenille, Didier

    2015-06-01

    Extreme precipitation events are increasing as a result of ongoing global warming, but controversy surrounds the relationship between flooding and mosquito-borne diseases. A common view among the scientific community and public health officers is that heavy rainfalls have a flushing effect on breeding sites, which negatively affects vector populations, thereby diminishing disease transmission. During 2014 in Montpellier, France, there were at least 11 autochthonous cases of chikungunya caused by the invasive tiger mosquito Aedes albopictus in the vicinity of an imported case. We show that an extreme rainfall event increased and extended the abundance of the disease vector Ae. albopictus, hence the period of autochthonous transmission of chikungunya. We report results from close monitoring of the adult and egg population of the chikungunya vector Ae. albopictus through weekly sampling over the entire mosquito breeding season, which revealed an unexpected pattern. Statistical analysis of the seasonal dynamics of female abundance in relation to climatic factors showed that these relationships changed after the heavy rainfall event. Before the inundations, accumulated temperatures are the most important variable predicting Ae. albopictus seasonal dynamics. However, after the inundations, accumulated rainfall over the 4 weeks prior to capture predicts the seasonal dynamics of this species and extension of the transmission period. Our empirical data suggests that heavy rainfall events did increase the risk of arbovirus transmission in Southern France in 2014 by favouring a rapid rise in abundance of vector mosquitoes. Further studies should now confirm these results in different ecological contexts, so that the impact of global change and extreme climatic events on mosquito population dynamics and the risk of disease transmission can be adequately understood.

  17. The dengue virus type 2 envelope protein fusion peptide is essential for membrane fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Claire Y.-H., E-mail: CHuang1@cdc.go; Butrapet, Siritorn; Moss, Kelly J.

    The flaviviral envelope (E) protein directs virus-mediated membrane fusion. To investigate membrane fusion as a requirement for virus growth, we introduced 27 unique mutations into the fusion peptide of an infectious cDNA clone of dengue 2 virus and recovered seven stable mutant viruses. The fusion efficiency of the mutants was impaired, demonstrating for the first time the requirement for specific FP AAs in optimal fusion. Mutant viruses exhibited different growth kinetics and/or genetic stabilities in different cell types and adult mosquitoes. Virus particles could be recovered following RNA transfection of cells with four lethal mutants; however, recovered viruses could notmore » re-infect cells. These viruses could enter cells, but internalized virus appeared to be retained in endosomal compartments of infected cells, thus suggesting a fusion blockade. Mutations of the FP also resulted in reduced virus reactivity with flavivirus group-reactive antibodies, confirming earlier reports using virus-like particles.« less

  18. Rational design of a live attenuated dengue vaccine: 2'-o-methyltransferase mutants are highly attenuated and immunogenic in mice and macaques.

    PubMed

    Züst, Roland; Dong, Hongping; Li, Xiao-Feng; Chang, David C; Zhang, Bo; Balakrishnan, Thavamalar; Toh, Ying-Xiu; Jiang, Tao; Li, Shi-Hua; Deng, Yong-Qiang; Ellis, Brett R; Ellis, Esther M; Poidinger, Michael; Zolezzi, Francesca; Qin, Cheng-Feng; Shi, Pei-Yong; Fink, Katja

    2013-01-01

    Dengue virus is transmitted by Aedes mosquitoes and infects at least 100 million people every year. Progressive urbanization in Asia and South-Central America and the geographic expansion of Aedes mosquito habitats have accelerated the global spread of dengue, resulting in a continuously increasing number of cases. A cost-effective, safe vaccine conferring protection with ideally a single injection could stop dengue transmission. Current vaccine candidates require several booster injections or do not provide protection against all four serotypes. Here we demonstrate that dengue virus mutants lacking 2'-O-methyltransferase activity are highly sensitive to type I IFN inhibition. The mutant viruses are attenuated in mice and rhesus monkeys and elicit a strong adaptive immune response. Monkeys immunized with a single dose of 2'-O-methyltransferase mutant virus showed 100% sero-conversion even when a dose as low as 1,000 plaque forming units was administrated. Animals were fully protected against a homologous challenge. Furthermore, mosquitoes feeding on blood containing the mutant virus were not infected, whereas those feeding on blood containing wild-type virus were infected and thus able to transmit it. These results show the potential of 2'-O-methyltransferase mutant virus as a safe, rationally designed dengue vaccine that restrains itself due to the increased susceptibility to the host's innate immune response.

  19. Zika virus: Epidemiological study and its association with public health risk.

    PubMed

    Noor, Rashed; Ahmed, Tasnia

    2018-04-26

    Propagation of Zika virus has become an alarming global public health issue. The infection is spreading rapidly to different countries by several methods, especially by the transmission through traveling. Bangladesh is also at a risk to be affected with such newly viral infections. Though the virus initially appears to cause mild problems, the long term effects are more devastating to the next generation as seen in case of the delivery of the microcephalic babies. Current review discussed the epidemiologic era of the virus; i.e., the administration of Zika virus in the non-human mammals and finally to the human host across the world. Typical sign-symptoms which can often be considered as dengue or chikungunya for their similarities have been stated. The diagnosis of Zika virus, the protective measures taken by mass people as well as the actions that should be endorsed to prevent acquisition of the infection from travelers are discussed. Copyright © 2018. Published by Elsevier Ltd.

  20. Antiviral activity of lanatoside C against dengue virus infection.

    PubMed

    Cheung, Yan Yi; Chen, Karen Caiyun; Chen, Huixin; Seng, Eng Khuan; Chu, Justin Jang Hann

    2014-11-01

    Dengue infection poses a serious threat globally due to its recent rapid spread and rise in incidence. Currently, there is no approved vaccine or effective antiviral drug for dengue virus infection. In response to the urgent need for the development of an effective antiviral for dengue virus, the US Drug Collection library was screened in this study to identify compounds with anti-dengue activities. Lanatoside C, an FDA approved cardiac glycoside was identified as a candidate anti-dengue compound. Our data revealed that lanatoside C has an IC50 of 0.19μM for dengue virus infection in HuH-7 cells. Dose-dependent reduction in dengue viral RNA and viral proteins synthesis were also observed upon treatment with increasing concentrations of lanatoside C. Time of addition study indicated that lanatoside C inhibits the early processes of the dengue virus replication cycle. Furthermore, lanatoside C can effectively inhibit all four serotypes of dengue virus, flavivirus Kunjin, alphavirus Chikungunya and Sindbis virus as well as the human enterovirus 71. These findings suggest that lanatoside C possesses broad spectrum antiviral activity against several groups of positive-sense RNA viruses. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Serological Evidence of Dengue Fever Among Refugees, Hargeysa, Somalia

    DTIC Science & Technology

    1989-01-01

    fever, Sindbis, Chikungunya, yellow HISTORY OF THE DISEASE IN THE fever, and Zika viruses . However, antibody reac- DAM CAMP tive to dengue 2 virus was...fever, Crimean-Congo hemorrhagic fever, Sindbis, Chikungunya, yellow fever, and Zika viruses . However, antibody reactive to dengue 2 virus was detected... ZIKA ) viruses . Further testing of sera for evidence of dengue S Barbera S , MOGAISCIO . viral infection was done by the enzyme immunoassay " (EIA

  2. Generation and characterization of monoclonal antibodies against Rift Valley fever virus nucleoprotein.

    PubMed

    Fafetine, J M; Domingos, A; Antunes, S; Esteves, A; Paweska, J T; Coetzer, J A W; Rutten, V P M G; Neves, L

    2013-11-01

    Due to the unpredictable and explosive nature of Rift Valley fever (RVF) outbreaks, rapid and accurate diagnostic assays for low-resource settings are urgently needed. To improve existing diagnostic assays, monoclonal antibodies (MAbs) specific for the nucleocapsid protein of RVF virus (RVFV) were produced and characterized. Four IgG2a MAbs showed specific binding to denatured nucleocapsid protein, both from a recombinant source and from inactivated RVFV, in Western blot analysis and in an enzyme-linked immunosorbent assay (ELISA). Cross-reactivity with genetically related and non-related arboviruses including Bunyamwera and Calovo viruses (Bunyaviridae family), West Nile and Dengue-2 viruses (Flaviviridae family), and Sindbis and Chikungunya viruses (Togaviridae family) was not detected. These MAbs represent a useful tool for the development of rapid diagnostic assays for early recognition of RVF. © 2013 Blackwell Verlag GmbH.

  3. The Influenza Virus M2 Protein Cytoplasmic Tail Interacts with the M1 Protein and Influences Virus Assembly at the Site of Virus Budding ▿

    PubMed Central

    Chen, Benjamin J.; Leser, George P.; Jackson, David; Lamb, Robert A.

    2008-01-01

    The cytoplasmic tail of the influenza A virus M2 proton-selective ion channel has been shown to be important for virus replication. Previous analysis of M2 cytoplasmic tail truncation mutants demonstrated a defect in incorporation of viral RNA (vRNA) into virions, suggesting a role for M2 in the recruitment of M1-vRNA complexes. To further characterize the effect of the M2 cytoplasmic tail mutations on virus assembly and budding, we constructed a series of alanine substitution mutants of M2 with mutations in the cytoplasmic tail, from residues 71 to 97. Mutant proteins M2-Mut1 and M2-Mut2, with mutations of residues 71 to 73 and 74 to 76, respectively, appeared to have the greatest effect on virus-like particle and virus budding, showing a defect in M1 incorporation. Mutant viruses containing M2-Mut1 and M2-Mut2 failed to replicate in multistep growth analyses on wild-type (wt) MDCK cells and were able to form plaques only on MDCK cells stably expressing wt M2 protein. Compared to wt M2 protein, M2-Mut1 and M2-Mut2 were unable to efficiently coimmunoprecipitate with M1. Furthermore, statistical analysis of planar sheets of membrane from cells infected by virus containing M2-Mut1 revealed a reduction in M1-hemagglutinin (HA) and M2-HA clustering as well as a severe loss of clustering between M1 and M2. These results suggest an essential, direct interaction between the cytoplasmic tail of M2 and M1 that promotes the recruitment of the internal viral proteins and vRNA to the plasma membrane for efficient virus assembly to occur. PMID:18701586

  4. A homolog of the variola virus B22 membrane protein contributes to ectromelia virus pathogenicity in the mouse footpad model.

    PubMed

    Reynolds, Sara E; Earl, Patricia L; Minai, Mahnaz; Moore, Ian; Moss, Bernard

    2017-01-15

    Most poxviruses encode a homolog of a ~200,000-kDa membrane protein originally identified in variola virus. We investigated the importance of the ectromelia virus (ECTV) homolog C15 in a natural infection model. In cultured mouse cells, the replication of a mutant virus with stop codons near the N-terminus (ECTV-C15Stop) was indistinguishable from a control virus (ECTV-C15Rev). However, for a range of doses injected into the footpads of BALB/c mice there was less mortality with the mutant. Similar virus loads were present at the site of infection with mutant or control virus whereas there was less ECTV-C15Stop in popliteal and inguinal lymph nodes, spleen and liver indicating decreased virus spread and replication. The latter results were supported by immunohistochemical analyses. Decreased spread was evidently due to immune modulatory activity of C15, rather than to an intrinsic viral function, as the survival of infected mice depended on CD4+ and CD8+ T cells. Published by Elsevier Inc.

  5. Systematics of Aedes Mosquito Project

    DTIC Science & Technology

    1988-01-25

    viruses , six of which cause human illness (Chikungunya, dengue 1 and 2, Dugbe, Rift Valley Fever, yellow fever and Zika ). Chikungunya, dengue and...superficial and inadequate to accurately identify specimens that are critically needed for mosquito surveys, virus isolation and epidemiological

  6. Chikungunya: an emerging viral infection with varied clinical presentations in Bangladesh: Reports of seven cases.

    PubMed

    Rahim, Muhammad Abdur; Uddin, Khwaja Nazim

    2017-08-15

    Chikungunya is an emerging and rapidly spreading viral infection in many parts of the world including Bangladesh. It shares many epidemiological and clinical characteristics with dengue. So, a sound knowledge is required for its detection and differentiation from dengue, specially in endemic regions. We present seven confirmed cases of chikungunya having different clinical presentations occurring among middle aged males and females from different socio-economic background in Dhaka city, the capital of Bangladesh. All patients had fever and aches and pains. Less common features were rash, diarrhea, vomiting and altered liver biochemistry. Dengue was excluded in six patients. Paracetamol remained the mainstay of treatment during febrile periods, but over 50% of the patients had prolonged joint symptoms requiring non-steroidal anti-inflammatory drugs. In spite of being a self-limiting disease, chikungunya may have different presentations and a protracted clinical course. During the febrile episode, exclusion of dengue is equally important. Physicians should be aware of the condition and public health initiatives are necessary to break the disease transmission.

  7. Relative risk estimation of Chikungunya disease in Malaysia: An analysis based on Poisson-gamma model

    NASA Astrophysics Data System (ADS)

    Samat, N. A.; Ma'arof, S. H. Mohd Imam

    2015-05-01

    Disease mapping is a method to display the geographical distribution of disease occurrence, which generally involves the usage and interpretation of a map to show the incidence of certain diseases. Relative risk (RR) estimation is one of the most important issues in disease mapping. This paper begins by providing a brief overview of Chikungunya disease. This is followed by a review of the classical model used in disease mapping, based on the standardized morbidity ratio (SMR), which we then apply to our Chikungunya data. We then fit an extension of the classical model, which we refer to as a Poisson-Gamma model, when prior distributions for the relative risks are assumed known. Both results are displayed and compared using maps and we reveal a smoother map with fewer extremes values of estimated relative risk. The extensions of this paper will consider other methods that are relevant to overcome the drawbacks of the existing methods, in order to inform and direct government strategy for monitoring and controlling Chikungunya disease.

  8. Genetic studies of cell fusion induced by herpes simplex virus type 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Read, G.S.; Person, S.; Keller, P.M.

    1980-07-01

    Eight cell fusion-causing syn mutants were isolated from the KOS strain of herpes simplex virus type 1. Unlike the wild-type virus, the mutants produced plaques containing multinucleated cells, or syncytia. Fusion kinetics curves were established with a Coulter Counter assay for the mutants and wild-type virus in single infections of human embryonic lung (HEL) cells, for the mutants and wild-type virus in mixed infections (dominance test), and for pairs of mutants in mixed infection and proceeded with an exponential decrease in the number of small single cells. At some later time that was characteristic of the mutant, there was amore » significant reduction in the rate of fusion for all but possibly one of the mutants. Although the wild-type virus did not produce syncytial plaques, it did induce a small amount of fusion that stopped abruptly about 2 h after it started. These data are consistent with the hypothesis that both mutants and wild type induce an active fusion inducer and that the activity of this inducer is subsequently inhibited. The extent of fusion is apparently determined by the length of the interval during which the fusion inducer is active. That fusion is actively inhibited in wild-type infections is indicated by the observation that syn mutant-infected cells fused more readily with uninfected cells than with wild type-infected cells.« less

  9. RNA-Seq analysis of chikungunya virus infection and identification of granzyme A as a major promoter of arthritic inflammation

    PubMed Central

    Schroder, Wayne A.; Ellis, Jonathan J.; Cumming, Helen E.; Poo, Yee Suan; Hertzog, Paul J.; Di Giallonardo, Francesca; Hueston, Linda; Le Grand, Roger; Tang, Bing; Gardner, Joy; Mahalingam, Suresh; Bird, Phillip I.

    2017-01-01

    Chikungunya virus (CHIKV) is an arthritogenic alphavirus causing epidemics of acute and chronic arthritic disease. Herein we describe a comprehensive RNA-Seq analysis of feet and lymph nodes at peak viraemia (day 2 post infection), acute arthritis (day 7) and chronic disease (day 30) in the CHIKV adult wild-type mouse model. Genes previously shown to be up-regulated in CHIKV patients were also up-regulated in the mouse model. CHIKV sequence information was also obtained with up to ≈8% of the reads mapping to the viral genome; however, no adaptive viral genome changes were apparent. Although day 2, 7 and 30 represent distinct stages of infection and disease, there was a pronounced overlap in up-regulated host genes and pathways. Type I interferon response genes (IRGs) represented up to ≈50% of up-regulated genes, even after loss of type I interferon induction on days 7 and 30. Bioinformatic analyses suggested a number of interferon response factors were primarily responsible for maintaining type I IRG induction. A group of genes prominent in the RNA-Seq analysis and hitherto unexplored in viral arthropathies were granzymes A, B and K. Granzyme A-/- and to a lesser extent granzyme K-/-, but not granzyme B-/-, mice showed a pronounced reduction in foot swelling and arthritis, with analysis of granzyme A-/- mice showing no reductions in viral loads but reduced NK and T cell infiltrates post CHIKV infection. Treatment with Serpinb6b, a granzyme A inhibitor, also reduced arthritic inflammation in wild-type mice. In non-human primates circulating granzyme A levels were elevated after CHIKV infection, with the increase correlating with viral load. Elevated granzyme A levels were also seen in a small cohort of human CHIKV patients. Taken together these results suggest granzyme A is an important driver of arthritic inflammation and a potential target for therapy. Trial Registration: ClinicalTrials.gov NCT00281294 PMID:28207896

  10. Evaluation of Two Enzyme-Linked Immunosorbent Assay Kits for Chikungunya Virus IgM Using Samples from Deceased Organ and Tissue Donors.

    PubMed

    Prince, Harry E; Altrich, Michelle L; Nowicki, Marek J

    2016-10-01

    The identification of nearly 3,500 cases of chikungunya virus (CHIKV) infection in U.S. residents returning in 2014 and 2015 from areas in which it is endemic has raised concerns within the transplant community that, should recently infected individuals become organ and/or tissue donors, CHIKV would be transmitted to transplant recipients. Thus, tests designed to detect recent CHIKV infection among U.S. organ and tissue donors may become necessary in the future. Accordingly, we evaluated 2 enzyme-linked immunosorbent assays (ELISAs) for CHIKV IgM readily available in the United States using 1,000 deidentified serum or plasma specimens collected from donors between November 2014 and March 2015. The Euroimmun indirect ELISA identified 38 reactive specimens; however, all 38 were negative for CHIKV IgG and IgM in immunofluorescence assays (IFAs) conducted at a reference laboratory and, thus, were falsely reactive in the Euroimmun CHIKV IgM assay. The InBios IgM-capture ELISA identified 26 reactive samples, and one was still reactive (index ≥ 1.00) when retested using the InBios kit with a background subtraction modification to identify false reactivity. This reactive specimen was CHIKV IgM negative but IgG positive by IFAs at two reference laboratories; plaque reduction neutralization testing (PRNT) demonstrated CHIKV-specific reactivity. The IgG and PRNT findings strongly suggest that the InBios CHIKV IgM-reactive result represents true reactivity, even though the IgM IFA result was negative. If testing organ/tissue donors for CHIKV IgM becomes necessary, the limitations of the currently available CHIKV IgM ELISAs and options for their optimization must be understood to avoid organ/tissue wastage due to falsely reactive results. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  11. Evaluation of Two Enzyme-Linked Immunosorbent Assay Kits for Chikungunya Virus IgM Using Samples from Deceased Organ and Tissue Donors

    PubMed Central

    Altrich, Michelle L.; Nowicki, Marek J.

    2016-01-01

    The identification of nearly 3,500 cases of chikungunya virus (CHIKV) infection in U.S. residents returning in 2014 and 2015 from areas in which it is endemic has raised concerns within the transplant community that, should recently infected individuals become organ and/or tissue donors, CHIKV would be transmitted to transplant recipients. Thus, tests designed to detect recent CHIKV infection among U.S. organ and tissue donors may become necessary in the future. Accordingly, we evaluated 2 enzyme-linked immunosorbent assays (ELISAs) for CHIKV IgM readily available in the United States using 1,000 deidentified serum or plasma specimens collected from donors between November 2014 and March 2015. The Euroimmun indirect ELISA identified 38 reactive specimens; however, all 38 were negative for CHIKV IgG and IgM in immunofluorescence assays (IFAs) conducted at a reference laboratory and, thus, were falsely reactive in the Euroimmun CHIKV IgM assay. The InBios IgM-capture ELISA identified 26 reactive samples, and one was still reactive (index ≥ 1.00) when retested using the InBios kit with a background subtraction modification to identify false reactivity. This reactive specimen was CHIKV IgM negative but IgG positive by IFAs at two reference laboratories; plaque reduction neutralization testing (PRNT) demonstrated CHIKV-specific reactivity. The IgG and PRNT findings strongly suggest that the InBios CHIKV IgM-reactive result represents true reactivity, even though the IgM IFA result was negative. If testing organ/tissue donors for CHIKV IgM becomes necessary, the limitations of the currently available CHIKV IgM ELISAs and options for their optimization must be understood to avoid organ/tissue wastage due to falsely reactive results. PMID:27535838

  12. Wolbachia significantly impacts the vector competence of Aedes aegypti for Mayaro virus.

    PubMed

    Pereira, Thiago Nunes; Rocha, Marcele Neves; Sucupira, Pedro Henrique Ferreira; Carvalho, Fabiano Duarte; Moreira, Luciano Andrade

    2018-05-02

    Wolbachia, an intracellular endosymbiont present in up to 70% of all insect species, has been suggested as a sustainable strategy for the control of arboviruses such as Dengue, Zika and Chikungunya. As Mayaro virus outbreaks have also been reported in Latin American countries, the objective of this study was to evaluate the vector competence of Brazilian field-collected Ae. aegypti and the impact of Wolbachia (wMel strain) upon this virus. Our in vitro studies with Aag2 cells showed that Mayaro virus can rapidly multiply, whereas in wMel-infected Aag2 cells, viral growth was significantly impaired. In addition, C6/36 cells seem to have alterations when infected by Mayaro virus. In vivo experiments showed that field-collected Ae. aegypti mosquitoes are highly permissive to Mayaro virus infection, and high viral prevalence was observed in the saliva. On the other hand, Wolbachia-harboring mosquitoes showed significantly impaired capability to transmit Mayaro virus. Our results suggest that the use of Wolbachia-harboring mosquitoes may represent an effective mechanism for the reduction of Mayaro virus transmission throughout Latin America.

  13. A herpes simplex virus 2 glycoprotein D mutant generated by bacterial artificial chromosome mutagenesis is severely impaired for infecting neuronal cells and infects only Vero cells expressing exogenous HVEM.

    PubMed

    Wang, Kening; Kappel, Justin D; Canders, Caleb; Davila, Wilmer F; Sayre, Dean; Chavez, Mayra; Pesnicak, Lesley; Cohen, Jeffrey I

    2012-12-01

    We constructed a herpes simplex virus 2 (HSV-2) bacterial artificial chromosome (BAC) clone, bHSV2-BAC38, which contains full-length HSV-2 inserted into a BAC vector. Unlike previously reported HSV-2 BAC clones, the virus genome inserted into this BAC clone has no known gene disruptions. Virus derived from the BAC clone had a wild-type phenotype for growth in vitro and for acute infection, latency, and reactivation in mice. HVEM, expressed on epithelial cells and lymphocytes, and nectin-1, expressed on neurons and epithelial cells, are the two principal receptors used by HSV to enter cells. We used the HSV-2 BAC clone to construct an HSV-2 glycoprotein D mutant (HSV2-gD27) with point mutations in amino acids 215, 222, and 223, which are critical for the interaction of gD with nectin-1. HSV2-gD27 infected cells expressing HVEM, including a human epithelial cell line. However, the virus lost the ability to infect cells expressing only nectin-1, including neuronal cell lines, and did not infect ganglia in mice. Surprisingly, we found that HSV2-gD27 could not infect Vero cells unless we transduced the cells with a retrovirus expressing HVEM. High-level expression of HVEM in Vero cells also resulted in increased syncytia and enhanced cell-to-cell spread in cells infected with wild-type HSV-2. The inability of the HSV2-gD27 mutant to infect neuronal cells in vitro or sensory ganglia in mice after intramuscular inoculation suggests that this HSV-2 mutant might be an attractive candidate for a live attenuated HSV-2 vaccine.

  14. A Herpes Simplex Virus 2 Glycoprotein D Mutant Generated by Bacterial Artificial Chromosome Mutagenesis Is Severely Impaired for Infecting Neuronal Cells and Infects Only Vero Cells Expressing Exogenous HVEM

    PubMed Central

    Kappel, Justin D.; Canders, Caleb; Davila, Wilmer F.; Sayre, Dean; Chavez, Mayra; Pesnicak, Lesley; Cohen, Jeffrey I.

    2012-01-01

    We constructed a herpes simplex virus 2 (HSV-2) bacterial artificial chromosome (BAC) clone, bHSV2-BAC38, which contains full-length HSV-2 inserted into a BAC vector. Unlike previously reported HSV-2 BAC clones, the virus genome inserted into this BAC clone has no known gene disruptions. Virus derived from the BAC clone had a wild-type phenotype for growth in vitro and for acute infection, latency, and reactivation in mice. HVEM, expressed on epithelial cells and lymphocytes, and nectin-1, expressed on neurons and epithelial cells, are the two principal receptors used by HSV to enter cells. We used the HSV-2 BAC clone to construct an HSV-2 glycoprotein D mutant (HSV2-gD27) with point mutations in amino acids 215, 222, and 223, which are critical for the interaction of gD with nectin-1. HSV2-gD27 infected cells expressing HVEM, including a human epithelial cell line. However, the virus lost the ability to infect cells expressing only nectin-1, including neuronal cell lines, and did not infect ganglia in mice. Surprisingly, we found that HSV2-gD27 could not infect Vero cells unless we transduced the cells with a retrovirus expressing HVEM. High-level expression of HVEM in Vero cells also resulted in increased syncytia and enhanced cell-to-cell spread in cells infected with wild-type HSV-2. The inability of the HSV2-gD27 mutant to infect neuronal cells in vitro or sensory ganglia in mice after intramuscular inoculation suggests that this HSV-2 mutant might be an attractive candidate for a live attenuated HSV-2 vaccine. PMID:22993162

  15. Identification of infection by Chikungunya, Zika, and Dengue in an area of the Peruvian coast. Molecular diagnosis and clinical characteristics.

    PubMed

    Sánchez-Carbonel, José; Tantaléan-Yépez, Derek; Aguilar-Luis, Miguel Angel; Silva-Caso, Wilmer; Weilg, Pablo; Vásquez-Achaya, Fernando; Costa, Luis; Martins-Luna, Johanna; Sandoval, Isabel; Del Valle-Mendoza, Juana

    2018-03-14

    To assess the presence of Dengue, Chikungunya, and Zika in serum samples of patients with acute febrile illness in Piura, Peru and describe the most common clinical features. Dengue was the most common arbovirus detected in 170/496 (34.3%), followed by Zika in 39/496 (7.9%) and Chikungunya in 23/496 (4.6%). Among the 170 samples positive for Dengue, serotype 2 was the most predominant type present in 97/170 (57.1%) of samples, followed by the serotype 3 in 9/170 (5.3%). Headaches, muscle pain, and joint pain were the most common symptoms associated with fever in patients with Dengue and Zika. No symptoms predominance was observed in patients with Chikungunya.Dengue is considered the most frequent arbovirus in Peru and the number of cases has increased dramatically in the last 5 years. However, it is not the only arbovirus that circulates along the northern coast of Peru. It has also been determined the presence of Zika and Chikungunya in our population, which may suggest the circulation of other arboviruses that have not been detected.

  16. Wolbachia wStri Blocks Zika Virus Growth at Two Independent Stages of Viral Replication.

    PubMed

    Schultz, M J; Tan, A L; Gray, C N; Isern, S; Michael, S F; Frydman, H M; Connor, J H

    2018-05-22

    Mosquito-transmitted viruses are spread globally and present a great risk to human health. Among the many approaches investigated to limit the diseases caused by these viruses are attempts to make mosquitos resistant to virus infection. Coinfection of mosquitos with the bacterium Wolbachia pipientis from supergroup A is a recent strategy employed to reduce the capacity for major vectors in the Aedes mosquito genus to transmit viruses, including dengue virus (DENV), Chikungunya virus (CHIKV), and Zika virus (ZIKV). Recently, a supergroup B Wolbachia w Stri, isolated from Laodelphax striatellus , was shown to inhibit multiple lineages of ZIKV in Aedes albopictus cells. Here, we show that w Stri blocks the growth of positive-sense RNA viruses DENV, CHIKV, ZIKV, and yellow fever virus by greater than 99.9%. w Stri presence did not affect the growth of the negative-sense RNA viruses LaCrosse virus or vesicular stomatitis virus. Investigation of the stages of the ZIKV life cycle inhibited by w Stri identified two distinct blocks in viral replication. We found a reduction of ZIKV entry into w Stri-infected cells. This was partially rescued by the addition of a cholesterol-lipid supplement. Independent of entry, transfected viral genome was unable to replicate in Wolbachia -infected cells. RNA transfection and metabolic labeling studies suggested that this replication defect is at the level of RNA translation, where we saw a 66% reduction in mosquito protein synthesis in w Stri-infected cells. This study's findings increase the potential for application of w Stri to block additional arboviruses and also identify specific blocks in viral infection caused by Wolbachia coinfection. IMPORTANCE Dengue, Zika, and yellow fever viruses are mosquito-transmitted diseases that have spread throughout the world, causing millions of infections and thousands of deaths each year. Existing programs that seek to contain these diseases through elimination of the mosquito population have so

  17. Properties of the simian virus 40 (SV40) large T antigens encoded by SV40 mutants with deletions in gene A.

    PubMed Central

    Cole, C N; Tornow, J; Clark, R; Tjian, R

    1986-01-01

    The biochemical properties of the large T antigens encoded by simian virus 40 (SV40) mutants with deletions at DdeI sites in the SV40 A gene were determined. Mutant large T antigens containing only the first 138 to 140 amino acids were unable to bind to the SV40 origin of DNA replication as were large T antigens containing at their COOH termini 96 or 97 amino acids encoded by the long open reading frame located between 0.22 and 0.165 map units (m.u.). All other mutant large T antigens were able to bind to the SV40 origin of replication. Mutants with in-phase deletions at 0.288 and 0.243 m.u. lacked ATPase activity, but ATPase activity was normal in mutants lacking origin-binding activity. The 627-amino acid large T antigen encoded by dlA2465, with a deletion at 0.219 m.u., was the smallest large T antigen displaying ATPase activity. Mutant large T antigens with the alternate 96- or 97-amino acid COOH terminus also lacked ATPase activity. All mutant large T antigens were found in the nuclei of infected cells; a small amount of large T with the alternate COOH terminus was also located in the cytoplasm. Mutant dlA2465 belonged to the same class of mutants as dlA2459. It was unable to form plaques on CV-1p cells at 37 or 32 degrees C but could form plaques on BSC-1 monolayers at 37 degrees C but not at 32 degrees C. It was positive for viral DNA replication and showed intracistronic complementation with any group A mutant whose large T antigen contained a normal carboxyl terminus. These findings and those of others suggest that both DNA binding and ATPase activity are required for the viral DNA replication function of large T antigen, that these two activities must be located on the same T antigen monomer, and that these two activities are performed by distinct domains of the polypeptide. These domains are distinct and separable from the domain affected by the mutation of dlA2465 and indicate that SV40 large T antigen is made up of at least three separate functional

  18. Increased neurovirulence and reactivation of the herpes simplex virus type 1 latency associated transcript (LAT) negative mutant dLAT2903 with a disrupted LAT miR-H2

    PubMed Central

    Jiang, Xianzhi; Brown, Don; Osorio, Nelson; Hsiang, Chinhui; BenMohamed, Lbachir; Wechsler, Steven L.

    2015-01-01

    At least six microRNAs (miRNAs) appear to be encoded by the latency associated transcript (LAT) of herpes simplex virus type 1 (HSV-1). The gene for ICP0, an important immediate early (IE) viral protein, is antisense to, and overlaps with, the region of LAT from which miRNA H2 (miR-H2) is derived. We recently reported that a mutant (McK-ΔH2) disrupted for miR-H2 on the wild type HSV-1 strain McKrae genomic background has increased ICP0 expression, increased neurovirulence, and slightly more rapid reactivation. We report here that HSV-1 mutants deleted for the LAT promoter nonetheless make significant amounts of miR-H2 during lytic tissue culture infection, presumably via readthrough transcription from an upstream promoter. To determine if miR-H2 might also play a role in the HSV-1 latency-reactivation cycle of a LAT negative mutant, we constructed dLAT-ΔH2, in which miR-H2 is disrupted in dLAT2903 without altering the predicted amino acid sequence of the overlapping ICP0 open reading frame. Similar to McK-ΔH2, dLAT-ΔH2 expressed more ICP0, was more neurovirulent, and had increased reactivation in the mouse TG explant induced reactivation model of HSV-1 compared to its parental virus. Interestingly, although the increased reactivation of McK-ΔH2 compared to its parental wt virus was subtle and only detected at very early times after explant TG induced reactivation, the increased reactivation of dLAT-ΔH2 compared to its dLAT2903 parental virus appeared more robust and was significantly increased even at late times after induction. These results confirm that miR-H2 plays a role in modulating the HSV-1 reactivation phenotype. PMID:26069184

  19. Analysis of rubella virus capsid protein-mediated enhancement of replicon replication and mutant rescue.

    PubMed

    Tzeng, Wen-Pin; Matthews, Jason D; Frey, Teryl K

    2006-04-01

    The rubella virus capsid protein (C) has been shown to complement a lethal deletion (termed deltaNotI) in P150 replicase protein. To investigate this phenomenon, we generated two lines of Vero cells that stably expressed either C (C-Vero cells) or C lacking the eight N-terminal residues (Cdelta8-Vero cells), a construct previously shown to be unable to complement DeltaNotI. In C-Vero cells but not Vero or Cdelta8-Vero cells, replication of a wild-type (wt) replicon expressing the green fluorescent protein (GFP) reporter gene (RUBrep/GFP) was enhanced, and replication of a replicon with deltaNotI (RUBrep/GFP-deltaNotI) was rescued. Surprisingly, replicons with deleterious mutations in the 5' and 3' cis-acting elements were also rescued in C-Vero cells. Interestingly, the Cdelta8 construct localized to the nucleus while the C construct localized in the cytoplasm, explaining the lack of enhancement and rescue in Cdelta8-Vero cells since rubella virus replication occurs in the cytoplasm. Enhancement and rescue in C-Vero cells were at a basic step in the replication cycle, resulting in a substantial increase in the accumulation of replicon-specific RNAs. There was no difference in translation of the nonstructural proteins in C-Vero and Vero cells transfected with the wt and mutant replicons, demonstrating that enhancement and rescue were not due to an increase in the efficiency of translation of the transfected replicon transcripts. In replicon-transfected C-Vero cells, C and the P150 replicase protein associated by coimmunoprecipitation, suggesting that C might play a role in RNA replication, which could explain the enhancement and rescue phenomena. A unifying model that accounts for enhancement of wt replicon replication and rescue of diverse mutations by the rubella virus C protein is proposed.

  20. Two Chikungunya isolates from the outbreak of La Reunion (Indian Ocean) exhibit different patterns of infection in the mosquito, Aedes albopictus.

    PubMed

    Vazeille, Marie; Moutailler, Sara; Coudrier, Daniel; Rousseaux, Claudine; Khun, Huot; Huerre, Michel; Thiria, Julien; Dehecq, Jean-Sébastien; Fontenille, Didier; Schuffenecker, Isabelle; Despres, Philippe; Failloux, Anna-Bella

    2007-11-14

    A Chikungunya (CHIK) outbreak hit La Réunion Island in 2005-2006. The implicated vector was Aedes albopictus. Here, we present the first study on the susceptibility of Ae. albopictus populations to sympatric CHIKV isolates from La Réunion Island and compare it to other virus/vector combinations. We orally infected 8 Ae. albopictus collections from La Réunion and 3 from Mayotte collected in March 2006 with two Chikungunya virus (CHIKV) from La Réunion: (i) strain 05.115 collected in June 2005 with an Alanine at the position 226 of the glycoprotein E1 and (ii) strain 06.21 collected in November 2005 with a substitution A226V. Two other CHIKV isolates and four additional mosquito strains/species were also tested. The viral titer of the infectious blood-meal was 10(7) plaque forming units (pfu)/mL. Dissemination rates were assessed by immunofluorescent staining on head squashes of surviving females 14 days after infection. Rates were at least two times higher with CHIKV 06.21 compared to CHIKV 05.115. In addition, 10 individuals were analyzed every day by quantitative RT-PCR. Viral RNA was quantified on (i) whole females and (ii) midguts and salivary glands of infected females. When comparing profiles, CHIKV 06.21 produced nearly 2 log more viral RNA copies than CHIKV 05.115. Furthermore, females infected with CHIKV 05.115 could be divided in two categories: weakly susceptible or strongly susceptible, comparable to those infected by CHIKV 06.21. Histological analysis detected the presence of CHIKV in salivary glands two days after infection. In addition, Ae. albopictus from La Réunion was as efficient vector as Ae. aegypti and Ae. albopictus from Vietnam when infected with the CHIKV 06.21. Our findings support the hypothesis that the CHIK outbreak in La Réunion Island was due to a highly competent vector Ae. albopictus which allowed an efficient replication and dissemination of CHIKV 06.21.

  1. Two Chikungunya Isolates from the Outbreak of La Reunion (Indian Ocean) Exhibit Different Patterns of Infection in the Mosquito, Aedes albopictus

    PubMed Central

    Vazeille, Marie; Moutailler, Sara; Coudrier, Daniel; Rousseaux, Claudine; Khun, Huot; Huerre, Michel; Thiria, Julien; Dehecq, Jean-Sébastien; Fontenille, Didier; Schuffenecker, Isabelle; Despres, Philippe; Failloux, Anna-Bella

    2007-01-01

    Background A Chikungunya (CHIK) outbreak hit La Réunion Island in 2005–2006. The implicated vector was Aedes albopictus. Here, we present the first study on the susceptibility of Ae. albopictus populations to sympatric CHIKV isolates from La Réunion Island and compare it to other virus/vector combinations. Methodology and Findings We orally infected 8 Ae. albopictus collections from La Réunion and 3 from Mayotte collected in March 2006 with two Chikungunya virus (CHIKV) from La Réunion: (i) strain 05.115 collected in June 2005 with an Alanine at the position 226 of the glycoprotein E1 and (ii) strain 06.21 collected in November 2005 with a substitution A226V. Two other CHIKV isolates and four additional mosquito strains/species were also tested. The viral titer of the infectious blood-meal was 107 plaque forming units (pfu)/mL. Dissemination rates were assessed by immunofluorescent staining on head squashes of surviving females 14 days after infection. Rates were at least two times higher with CHIKV 06.21 compared to CHIKV 05.115. In addition, 10 individuals were analyzed every day by quantitative RT-PCR. Viral RNA was quantified on (i) whole females and (ii) midguts and salivary glands of infected females. When comparing profiles, CHIKV 06.21 produced nearly 2 log more viral RNA copies than CHIKV 05.115. Furthermore, females infected with CHIKV 05.115 could be divided in two categories: weakly susceptible or strongly susceptible, comparable to those infected by CHIKV 06.21. Histological analysis detected the presence of CHIKV in salivary glands two days after infection. In addition, Ae. albopictus from La Réunion was as efficient vector as Ae. aegypti and Ae. albopictus from Vietnam when infected with the CHIKV 06.21. Conclusions Our findings support the hypothesis that the CHIK outbreak in La Réunion Island was due to a highly competent vector Ae. albopictus which allowed an efficient replication and dissemination of CHIKV 06.21. PMID:18000540

  2. Evaluating Liquid and Granular Bacillus thuringiensis var. israelensis Broadcast Applications for Controlling Vectors of Dengue and Chikungunya Viruses in Artificial Containers and Tree Holes.

    PubMed

    Harwood, James F; Farooq, Muhammad; Turnwall, Brent T; Richardson, Alec G

    2015-07-01

    The principal vectors of chikungunya and dengue viruses typically oviposit in water-filled artificial and natural containers, including tree holes. Despite the risk these and similar tree hole-inhabiting mosquitoes present to global public health, surprisingly few studies have been conducted to determine an efficient method of applying larvicides specifically to tree holes. The Stihl SR 450, a backpack sprayer commonly utilized during military and civilian vector control operations, may be suitable for controlling larval tree-hole mosquitoes, as it is capable of delivering broadcast applications of granular and liquid dispersible formulations of Bacillus thuringiensis var. israelensis (Bti) to a large area relatively quickly. We compared the application effectiveness of two granular (AllPro Sustain MGB and VectoBac GR) and two liquid (Aquabac XT and VectoBac WDG) formulations of Bti in containers placed on bare ground, placed beneath vegetative cover, and hung 1.5 or 3 m above the ground to simulate tree holes. Aedes aegypti (L.) larval mortality and Bti droplet and granule density data (when appropriate) were recorded for each formulation. Overall, granular formulations of Bti resulted in higher mortality rates in the simulated tree-hole habitats, whereas applications of granular and liquid formulations resulted in similar levels of larval mortality in containers placed on the ground in the open and beneath vegetation. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.

  3. Knowledge and practice regarding dengue and chikungunya: a cross-sectional study among Healthcare workers and community in Northern Tanzania.

    PubMed

    Kajeguka, Debora C; Desrochers, Rachelle E; Mwangi, Rose; Mgabo, Maseke R; Alifrangis, Michael; Kavishe, Reginald A; Mosha, Franklin W; Kulkarni, Manisha A

    2017-05-01

    To investigate knowledge and prevention practices regarding dengue and chikungunya amongst community members, as well as knowledge, treatment and diagnostic practices among healthcare workers. We conducted a cross-sectional survey with 125 community members and 125 healthcare workers from 13 health facilities in six villages in the Hai district of Tanzania. A knowledge score was generated based on participant responses to a structured questionnaire, with a score of 40 or higher (of 80 and 50 total scores for community members and healthcare workers, respectively) indicating good knowledge. We conducted qualitative survey (n = 40) to further assess knowledge and practice regarding dengue and chikungunya fever. 15.2% (n = 19) of community members had good knowledge regarding dengue, whereas 53.6%, (n = 67) of healthcare workers did. 20.3% (n = 16) of participants from lowland areas and 6.5% (n = 3) from highland areas had good knowledge of dengue (χ 2 = 4.25, P = 0.03). Only 2.4% (n = 3) of all participants had a good knowledge score for chikungunya. In the qualitative study, community members expressed uncertainty about dengue and chikungunya. Some healthcare workers thought that they were new diseases. There is insufficient knowledge regarding dengue and chikungunya fever among community members and healthcare workers. Health promotion activities on these diseases based on Ecological Health Mode components to increase knowledge and improve preventive practices should be developed. © 2017 John Wiley & Sons Ltd.

  4. Community context and sub-neighborhood scale detail to explain dengue, chikungunya and Zika patterns in Cali, Colombia.

    PubMed

    Krystosik, Amy R; Curtis, Andrew; Buritica, Paola; Ajayakumar, Jayakrishnan; Squires, Robert; Dávalos, Diana; Pacheco, Robinson; Bhatta, Madhav P; James, Mark A

    2017-01-01

    Cali, Colombia has experienced chikungunya and Zika outbreaks and hypoendemic dengue. Studies have explained Cali's dengue patterns but lack the sub-neighborhood-scale detail investigated here. Spatial-video geonarratives (SVG) with Ministry of Health officials and Community Health Workers were collected in hotspots, providing perspective on perceptions of why dengue, chikungunya and Zika hotspots exist, impediments to control, and social outcomes. Using spatial video and Google Street View, sub-neighborhood features possibly contributing to incidence were mapped to create risk surfaces, later compared with dengue, chikungunya and Zika case data. SVG captured insights in 24 neighborhoods. Trash and water risks in Calipso were mapped using SVG results. Perceived risk factors included proximity to standing water, canals, poverty, invasions, localized violence and military migration. These risks overlapped case density maps and identified areas that are suitable for transmission but are possibly underreporting to the surveillance system. Resulting risk maps with local context could be leveraged to increase vector-control efficiency- targeting key areas of environmental risk.

  5. Functional Analysis of Glycosylation of Zika Virus Envelope Protein.

    PubMed

    Fontes-Garfias, Camila R; Shan, Chao; Luo, Huanle; Muruato, Antonio E; Medeiros, Daniele B A; Mays, Elizabeth; Xie, Xuping; Zou, Jing; Roundy, Christopher M; Wakamiya, Maki; Rossi, Shannan L; Wang, Tian; Weaver, Scott C; Shi, Pei-Yong

    2017-10-31

    Zika virus (ZIKV) infection causes devastating congenital abnormities and Guillain-Barré syndrome. The ZIKV envelope (E) protein is responsible for viral entry and represents a major determinant for viral pathogenesis. Like other flaviviruses, the ZIKV E protein is glycosylated at amino acid N154. To study the function of E glycosylation, we generated a recombinant N154Q ZIKV that lacks the E glycosylation and analyzed the mutant virus in mammalian and mosquito hosts. In mouse models, the mutant was attenuated, as evidenced by lower viremia, decreased weight loss, and no mortality; however, knockout of E glycosylation did not significantly affect neurovirulence. Mice immunized with the mutant virus developed a robust neutralizing antibody response and were completely protected from wild-type ZIKV challenge. In mosquitoes, the mutant virus exhibited diminished oral infectivity for the Aedes aegypti vector. Collectively, the results demonstrate that E glycosylation is critical for ZIKV infection of mammalian and mosquito hosts. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Mxra8 is a receptor for multiple arthritogenic alphaviruses.

    PubMed

    Zhang, Rong; Kim, Arthur S; Fox, Julie M; Nair, Sharmila; Basore, Katherine; Klimstra, William B; Rimkunas, Rebecca; Fong, Rachel H; Lin, Hueylie; Poddar, Subhajit; Crowe, James E; Doranz, Benjamin J; Fremont, Daved H; Diamond, Michael S

    2018-05-01

    Arthritogenic alphaviruses comprise a group of enveloped RNA viruses that are transmitted to humans by mosquitoes and cause debilitating acute and chronic musculoskeletal disease 1 . The host factors required for alphavirus entry remain poorly characterized 2 . Here we use a genome-wide CRISPR-Cas9-based screen to identify the cell adhesion molecule Mxra8 as an entry mediator for multiple emerging arthritogenic alphaviruses, including chikungunya, Ross River, Mayaro and O'nyong nyong viruses. Gene editing of mouse Mxra8 or human MXRA8 resulted in reduced levels of viral infection of cells and, reciprocally, ectopic expression of these genes resulted in increased infection. Mxra8 bound directly to chikungunya virus particles and enhanced virus attachment and internalization into cells. Consistent with these findings, Mxra8-Fc fusion protein or anti-Mxra8 monoclonal antibodies blocked chikungunya virus infection in multiple cell types, including primary human synovial fibroblasts, osteoblasts, chondrocytes and skeletal muscle cells. Mutagenesis experiments suggest that Mxra8 binds to a surface-exposed region across the A and B domains of chikungunya virus E2 protein, which are a speculated site of attachment. Finally, administration of the Mxra8-Fc protein or anti-Mxra8 blocking antibodies to mice reduced chikungunya and O'nyong nyong virus infection as well as associated foot swelling. Pharmacological targeting of Mxra8 could form a strategy for mitigating infection and disease by multiple arthritogenic alphaviruses.

  7. Zika Virus

    PubMed Central

    2016-01-01

    SUMMARY Zika virus (ZIKV) is an arthropod-borne virus (arbovirus) in the genus Flavivirus and the family Flaviviridae. ZIKV was first isolated from a nonhuman primate in 1947 and from mosquitoes in 1948 in Africa, and ZIKV infections in humans were sporadic for half a century before emerging in the Pacific and the Americas. ZIKV is usually transmitted by the bite of infected mosquitoes. The clinical presentation of Zika fever is nonspecific and can be misdiagnosed as other infectious diseases, especially those due to arboviruses such as dengue and chikungunya. ZIKV infection was associated with only mild illness prior to the large French Polynesian outbreak in 2013 and 2014, when severe neurological complications were reported, and the emergence in Brazil of a dramatic increase in severe congenital malformations (microcephaly) suspected to be associated with ZIKV. Laboratory diagnosis of Zika fever relies on virus isolation or detection of ZIKV-specific RNA. Serological diagnosis is complicated by cross-reactivity among members of the Flavivirus genus. The adaptation of ZIKV to an urban cycle involving humans and domestic mosquito vectors in tropical areas where dengue is endemic suggests that the incidence of ZIKV infections may be underestimated. There is a high potential for ZIKV emergence in urban centers in the tropics that are infested with competent mosquito vectors such as Aedes aegypti and Aedes albopictus. PMID:27029595

  8. Rational Design of a Live Attenuated Dengue Vaccine: 2′-O-Methyltransferase Mutants Are Highly Attenuated and Immunogenic in Mice and Macaques

    PubMed Central

    Chang, David C.; Zhang, Bo; Balakrishnan, Thavamalar; Toh, Ying-Xiu; Jiang, Tao; Li, Shi-Hua; Deng, Yong-Qiang; Ellis, Brett R.; Ellis, Esther M.; Poidinger, Michael; Zolezzi, Francesca; Qin, Cheng-Feng; Shi, Pei-Yong; Fink, Katja

    2013-01-01

    Dengue virus is transmitted by Aedes mosquitoes and infects at least 100 million people every year. Progressive urbanization in Asia and South-Central America and the geographic expansion of Aedes mosquito habitats have accelerated the global spread of dengue, resulting in a continuously increasing number of cases. A cost-effective, safe vaccine conferring protection with ideally a single injection could stop dengue transmission. Current vaccine candidates require several booster injections or do not provide protection against all four serotypes. Here we demonstrate that dengue virus mutants lacking 2′-O-methyltransferase activity are highly sensitive to type I IFN inhibition. The mutant viruses are attenuated in mice and rhesus monkeys and elicit a strong adaptive immune response. Monkeys immunized with a single dose of 2′-O-methyltransferase mutant virus showed 100% sero-conversion even when a dose as low as 1,000 plaque forming units was administrated. Animals were fully protected against a homologous challenge. Furthermore, mosquitoes feeding on blood containing the mutant virus were not infected, whereas those feeding on blood containing wild-type virus were infected and thus able to transmit it. These results show the potential of 2′-O-methyltransferase mutant virus as a safe, rationally designed dengue vaccine that restrains itself due to the increased susceptibility to the host's innate immune response. PMID:23935499

  9. Human T-Cell Leukemia Virus I Tax Protein Sensitizes p53-Mutant Cells to DNA Damage

    PubMed Central

    Mihaylova, Valia T.; Green, Allison M.; Khurgel, Moshe; Semmes, Oliver J.; Kupfer, Gary M.

    2018-01-01

    Mutations in p53 are a common cause of resistance of cancers to standard chemotherapy and, thus, treatment failure. Reports have shown that Tax, a human T-cell leukemia virus type I encoded protein that has been associated with genomic instability and perturbation of transcription and cell cycle, sensitizes HeLa cells to UV treatment. The extent to which Tax can sensitize cells and the mechanism by which it exerts its effect are unknown. In this study, we show that Tax sensitizes p53-mutant cells to a broad range of DNA-damaging agents, including mitomycin C, a bifunctional alkylator, etoposide, a topoisomerase II drug, and UV light, but not ionizing radiation, a double-strand break agent, or vinblastine, a tubulin poison. Tax caused hypersensitivity in all p53-deleted cell lines and several, but not all, mutant-expressed p53–containing cell lines, while unexpectedly being protective in p53 wild-type (wt) cells. The effect observed in p53-deleted lines could be reversed for this by transfection of wt p53. We also show that Tax activates a p53-independent proapoptotic program through decreased expression of the retinoblastoma protein and subsequent increased E2F1 expression. The expression of several proapoptotic proteins was also induced by Tax, including Puma and Noxa, culminating in a substantial increase in Bax dimerization. Our results show that Tax can sensitize p53-mutant cells to DNA damage while protecting p53 wt cells, a side benefit that might result in reduced toxicity in normal cells. Such studies hold the promise of a novel adjunctive therapy that could make cancer chemotherapy more effective. PMID:18559532

  10. West Nile Virus and Other Nationally Notifiable Arboviral Diseases - United States, 2016.

    PubMed

    Burakoff, Alexis; Lehman, Jennifer; Fischer, Marc; Staples, J Erin; Lindsey, Nicole P

    2018-01-12

    Arthropod-borne viruses (arboviruses) are transmitted to humans primarily through the bites of infected mosquitoes and ticks. West Nile virus (WNV) is the leading cause of domestically acquired arboviral disease in the continental United States (1,2). Other arboviruses, including La Crosse, Powassan, Jamestown Canyon, St. Louis encephalitis, and eastern equine encephalitis viruses, cause sporadic cases of disease and occasional outbreaks. This report summarizes surveillance data reported to CDC for 2016 for nationally notifiable arboviruses. It excludes dengue, chikungunya, and Zika viruses, as these are primarily nondomestic viruses typically acquired through travel. Forty-seven states and the District of Columbia (DC) reported 2,240 cases of domestic arboviral disease, including 2,150 (96%) WNV disease cases. Of the WNV disease cases, 1,310 (61%) were classified as neuroinvasive disease (e.g., meningitis, encephalitis, acute flaccid paralysis), for a national incidence of 0.41 cases per 100,000 population. After WNV, the most frequently reported arboviruses were La Crosse (35 cases), Powassan (22), and Jamestown Canyon (15) viruses. Because arboviral diseases continue to cause serious illness, maintaining surveillance is important to direct prevention activities.

  11. Identification of a novel Lymantria dispar nucleopolyhedrovirus mutant that exhibits abnormal polyhedron formation and virion occlusion

    Treesearch

    James M. Slavicek; Melissa J. Mercer; Dana Pohlman; Mary Ellen Kelly; David S. Bischoff

    1998-01-01

    In previous studies on the formation of Lymantria dispar nuclear polyhedrosis virus (LdMNPV) few polyhedra (FP) mutants, several polyhedron formation mutants (PFM) were identified that appeared to be unique. These viral mutants are being characterized to investigate the processes of polyhedron formation and virion occlusion. Ld

  12. Comparative Characterization of the Sindbis Virus Proteome from Mammalian and Invertebrate Hosts Identifies nsP2 as a Component of the Virus Nucleocapsid and Sorting Nexin 5 as a Significant Host Factor for Alphavirus Replication.

    PubMed

    Schuchman, Ryan; Kilianski, Andy; Piper, Amanda; Vancini, Ricardo; Ribeiro, José M C; Sprague, Thomas R; Nasar, Farooq; Boyd, Gabrielle; Hernandez, Raquel; Glaros, Trevor

    2018-05-09

    Recent advances in mass spectrometry methods and instrumentation now allow for more accurate identification of proteins in low abundance. This technology was applied to Sindbis virus, the prototypical alphavirus to investigate the viral proteome. To determine if host proteins are specifically packaged into alphavirus virions, Sindbis virus (SINV) was grown in multiple host cells representing vertebrate and mosquito hosts and total protein content of purified virions was determined. This analysis identified host factors not previously associated with alphavirus entry, replication, or egress. One host protein, sorting nexin 5 (SNX5), was shown to be critical for the replication of three different alphaviruses, Sindbis, Mayaro and Chikungunya virus. The most significant finding was that in addition to the host proteins, SINV non-structural protein 2 (nsP2) was detected within virions grown in all host cells examined. The protein and RNA-interacting capabilities of nsP2 coupled with its presence in the virion support a role for nsP2 during packaging and/or entry of progeny virus. This function has not been identified for this protein. Taken together, this strategy identified at least one host factor integrally involved in alphavirus replication. Identification of other host proteins provides insight into alphavirus-host interactions during viral replication in both vertebrate and invertebrate hosts. This method of virus proteome analysis may also be useful for the identification of protein candidates for host-based therapeutics. IMPORTANCE Pathogenic Alphaviruses, such as Chikungunya and Mayaro virus, continue to plague public health in developing and developed countries alike. Alphaviruses belong to a group of viruses vectored in nature by hematophagous (blood-feeding) insects and are termed Arboviruses (arthropod-borne viruses). This group of viruses contains many human pathogens such as dengue fever, West Nile and Yellow fever viruses. With few exceptions there are

  13. Dengue Hemorrhagic Fever Virus in Saudi Arabia: A Review.

    PubMed

    Al-Tawfiq, Jaffar A; Memish, Ziad A

    2018-02-01

    Dengue fever is a global disease with a spectrum of clinical manifestation ranging from mild febrile disease to a severe disease in the form of dengue hemorrhagic fever and dengue shock syndrome. Dengue virus is one viral hemorrhagic fever that exists in the Kingdom of Saudi Arabia in addition to Alkhurma (Alkhurma) Hemorrhagic Fever, Chikungunya virus, Crimean-Congo Hemorrhagic Fever, and Rift Valley Fever. The disease is limited to the Western and South-western regions of Saudi Arabia, where Aedes aegypti exists. The majority of the cases in Saudi Arabia had mild disease and is related to serotypes 1-3 but not 4. The prospect for Dengue virus control relies on vector control, health education, and possibly vaccine use. Despite extensive collaborative efforts between multiple governmental sectors, including Ministry of Health, Ministry of Municipalities and Rural Affairs, and Ministry of Water, dengue remains a major public health concern in the regions affected.

  14. Diagnosis of Zika Virus Infection by Peptide Array and Enzyme-Linked Immunosorbent Assay

    PubMed Central

    Caciula, Adrian; Price, Adam; Thakkar, Riddhi; Ng, James; Chauhan, Lokendra V.; Jain, Komal; Che, Xiaoyu; Espinosa, Diego A.; Montoya Cruz, Magelda; Balmaseda, Angel; Sullivan, Eric H.; Patel, Jigar J.; Jarman, Richard G.; Rakeman, Jennifer L.; Egan, Christina T.; Reusken, Chantal B. E. M.; Koopmans, Marion P. G.; Harris, Eva; Tokarz, Rafal; Briese, Thomas

    2018-01-01

    ABSTRACT Zika virus (ZIKV) is implicated in fetal stillbirth, microcephaly, intracranial calcifications, and ocular anomalies following vertical transmission from infected mothers. In adults, infection may trigger autoimmune inflammatory polyneuropathy. Transmission most commonly follows the bite of infected Aedes mosquitoes but may also occur through sexual intercourse or receipt of blood products. Definitive diagnosis through detection of viral RNA is possible in serum or plasma within 10 days of disease onset, in whole blood within 3 weeks of onset, and in semen for up to 3 months. Serological diagnosis is nonetheless critical because few patients have access to molecular diagnostics during the acute phase of infection and infection may be associated with only mild or inapparent disease that does not prompt molecular testing. Serological diagnosis is confounded by cross-reactivity of immune sera with other flaviviruses endemic in the areas where ZIKV has recently emerged. Accordingly, we built a high-density microarray comprising nonredundant 12-mer peptides that tile, with one-residue overlap, the proteomes of Zika, dengue, yellow fever, West Nile, Ilheus, Oropouche, and chikungunya viruses. Serological analysis enabled discovery of a ZIKV NS2B 20-residue peptide that had high sensitivity (96.0%) and specificity (95.9%) versus natural infection with or vaccination against dengue, chikungunya, yellow fever, West Nile, tick-borne encephalitis, or Japanese encephalitis virus in a microarray assay and an enzyme-linked immunosorbent assay (ELISA) of early-convalescent-phase sera (2 to 3 weeks after onset of symptomatic infection). PMID:29511073

  15. In vivo and in vitro analyses of a Bombyx mori nucleopolyhedrovirus mutant lacking functional vfgf.

    PubMed

    Katsuma, Susumu; Horie, Satoshi; Daimon, Takaaki; Iwanaga, Masashi; Shimada, Toru

    2006-11-10

    All lepidopteran baculovirus genomes sequenced to date encode a viral fibroblast growth factor homolog (vfgf), suggesting that vfgf may play an important role in the infection cycle of lepidopteran baculoviruses. Here, we describe the characterization of a Bombyx mori nucleopolyhedrovirus (BmNPV) mutant lacking functional vfgf. We constructed a vfgf deletion mutant (BmFGFD) and characterized it in BmN cells and B. mori larvae. We observed that budded virus (BV) production was reduced in BmFGFD-infected BmN cells and B. mori larvae. The larval bioassays also revealed that deletion of vfgf did not reduce the infectivity; however, the mutant virus did take 20 h longer to kill B. mori larvae than wild-type BmNPV, when tested either by BV injection or by polyhedrin-inclusion body ingestion. These results suggest that BmNPV vfgf is involved in efficient virus production in BmN cells and B. mori larvae.

  16. The Chikungunya Epidemic on La Réunion Island in 2005–2006: A Cost-of-Illness Study

    PubMed Central

    Soumahoro, Man-Koumba; Boelle, Pierre-Yves; Gaüzere, Bernard-Alex; Atsou, Kokuvi; Pelat, Camille; Lambert, Bruno; La Ruche, Guy; Gastellu-Etchegorry, Marc; Renault, Philippe; Sarazin, Marianne; Yazdanpanah, Yazdan; Flahault, Antoine; Malvy, Denis; Hanslik, Thomas

    2011-01-01

    Background This study was conducted to assess the impact of chikungunya on health costs during the epidemic that occurred on La Réunion in 2005–2006. Methodology/Principal Findings From data collected from health agencies, the additional costs incurred by chikungunya in terms of consultations, drug consumption and absence from work were determined by a comparison with the expected costs outside the epidemic period. The cost of hospitalization was estimated from data provided by the national hospitalization database for short-term care by considering all hospital stays in which the ICD-10 code A92.0 appeared. A cost-of-illness study was conducted from the perspective of the third-party payer. Direct medical costs per outpatient and inpatient case were evaluated. The costs were estimated in Euros at 2006 values. Additional reimbursements for consultations with general practitioners and drugs were estimated as €12.4 million (range: €7.7 million–€17.1 million) and €5 million (€1.9 million–€8.1 million), respectively, while the cost of hospitalization for chikungunya was estimated to be €8.5 million (€5.8 million–€8.7 million). Productivity costs were estimated as €17.4 million (€6 million–€28.9 million). The medical cost of the chikungunya epidemic was estimated as €43.9 million, 60% due to direct medical costs and 40% to indirect costs (€26.5 million and €17.4 million, respectively). The direct medical cost was assessed as €90 for each outpatient and €2,000 for each inpatient. Conclusions/Significance The medical management of chikungunya during the epidemic on La Réunion Island was associated with an important economic burden. The estimated cost of the reported disease can be used to evaluate the cost/efficacy and cost/benefit ratios for prevention and control programmes of emerging arboviruses. PMID:21695162

  17. Friendly fire: redirecting herpes simplex virus-1 for therapeutic applications.

    PubMed

    Advani, S J; Weichselbaum, R R; Whitley, R J; Roizman, B

    2002-09-01

    Herpes simplex virus-1 (HSV-1) is a relatively large double-stranded DNA virus encoding at least 89 proteins with well characterized disease pathology. An understanding of the functions of viral proteins together with the ability to genetically engineer specific viral mutants has led to the development of attenuated HSV-1 for gene therapy. This review highlights the progress in creating attenuated genetically engineered HSV-1 mutants that are either replication competent (viral non-essential gene deleted) or replication defective (viral essential gene deleted). The choice between a replication-competent or -defective virus is based on the end-goal of the therapeutic intervention. Replication-competent HSV-1 mutants have primarily been employed as antitumor oncolytic viruses, with the lytic nature of the virus harnessed to destroy tumor cells selectively. In replacement gene therapy, replication-defective viruses have been utilized as delivery vectors. The advantages of HSV-1 vectors are that they infect quiescent and dividing cells efficiently and can encode for relatively large transgenes.

  18. Association of Rift Valley fever virus infection with miscarriage in Sudanese women: a cross-sectional study.

    PubMed

    Baudin, Maria; Jumaa, Ammar M; Jomma, Huda J E; Karsany, Mubarak S; Bucht, Göran; Näslund, Jonas; Ahlm, Clas; Evander, Magnus; Mohamed, Nahla

    2016-11-01

    Rift Valley fever virus is an emerging mosquito-borne virus that causes infections in animals and human beings in Africa and the Arabian Peninsula. Outbreaks of Rift Valley fever lead to mass abortions in livestock, but such abortions have not been identified in human beings. Our aim was to investigate the cause of miscarriages in febrile pregnant women in an area endemic for Rift Valley fever. Pregnant women with fever of unknown origin who attended the governmental hospital of Port Sudan, Sudan, between June 30, 2011, and Nov 17, 2012, were sampled at admission and included in this cross-sectional study. Medical records were retrieved and haematological tests were done on patient samples. Presence of viral RNA as well as antibodies against a variety of viruses were analysed. Any association of viral infections, symptoms, and laboratory parameters to pregnancy outcome was investigated using Pearson's χ 2 test. Of 130 pregnant women with febrile disease, 28 were infected with Rift Valley fever virus and 31 with chikungunya virus, with typical clinical and laboratory findings for the infection in question. 15 (54%) of 28 women with an acute Rift Valley fever virus infection had miscarriages compared with 12 (12%) of 102 women negative for Rift Valley fever virus (p<0·0001). In a multiple logistic regression analysis, adjusting for age, haemorrhagic disease, and chikungunya virus infection, an acute Rift Valley fever virus infection was an independent predictor of having a miscarriage (odds ratio 7·4, 95% CI 2·7-20·1; p<0·0001). This study is the first to show an association between infection with Rift Valley fever virus and miscarriage in pregnant women. Further studies are warranted to investigate the possible mechanisms. Our findings have implications for implementation of preventive measures, and evidence-based information to the public in endemic countries should be strongly recommended during Rift Valley fever outbreaks. Schlumberger Faculty for the

  19. Construction of a hepatitis B virus neutralizing chimeric monoclonal antibody recognizing escape mutants of the viral surface antigen (HBsAg).

    PubMed

    Golsaz-Shirazi, Forough; Amiri, Mohammad Mehdi; Farid, Samira; Bahadori, Motahareh; Bohne, Felix; Altstetter, Sebastian; Wolff, Lisa; Kazemi, Tohid; Khoshnoodi, Jalal; Hojjat-Farsangi, Mohammad; Chudy, Michael; Jeddi-Tehrani, Mahmood; Protzer, Ulrike; Shokri, Fazel

    2017-08-01

    Hepatitis B virus (HBV) infection is a global burden on the health-care system and is considered as the tenth leading cause of death in the world. Over 248 million patients are currently suffering from chronic HBV infection worldwide and annual mortality rate of this infection is 686000. The "a" determinant is a hydrophilic region present in all antigenic subtypes of hepatitis B surface antigen (HBsAg), and antibodies against this region can neutralize the virus and are protective against all subtypes. We have recently generated a murine anti-HBs monoclonal antibody (4G4), which can neutralize HBV infection in HepaRG cells and recognize most of the escape mutant forms of HBsAg. Here, we describe the production and characterization of the chimeric human-murine antibody 4G4 (c-4G4). Variable region genes of heavy and light chains of the m-4G4 were cloned and fused to constant regions of human kappa and IgG1 by splice overlap extension (SOE) PCR. The chimeric antibody was expressed in Chinese Hamster Ovary (CHO)-K1 cells and purified from culture supernatant. Competition ELISA proved that both antibodies bind the same epitope within HBsAg. Antigen-binding studies using ELISA and Western blot showed that c-4G4 has retained the affinity and specificity of the parental murine antibody, and displayed a similar pattern of reactivity to 13 escape mutant forms of HBsAg. Both, the parental and c-4G4 showed a comparably high HBV neutralization capacity in cell culture even at the lowest concentration (0.6μg/ml). Due to the ability of c-4G4 to recognize most of the sub-genotypes and escape mutants of HBsAg, this antibody either alone or in combination with other anti-HBs antibodies could be considered as a potent alternative for Hepatitis B immune globulin (HBIG) as an HBV infection prophylactic or for passive immunotherapy against HBV infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Effects of Point Mutations in the Major Capsid Protein of Beet Western Yellows Virus on Capsid Formation, Virus Accumulation, and Aphid Transmission

    PubMed Central

    Brault, V.; Bergdoll, M.; Mutterer, J.; Prasad, V.; Pfeffer, S.; Erdinger, M.; Richards, K. E.; Ziegler-Graff, V.

    2003-01-01

    Point mutations were introduced into the major capsid protein (P3) of cloned infectious cDNA of the polerovirus beet western yellows virus (BWYV) by manipulation of cloned infectious cDNA. Seven mutations targeted sites on the S domain predicted to lie on the capsid surface. An eighth mutation eliminated two arginine residues in the R domain, which is thought to extend into the capsid interior. The effects of the mutations on virus capsid formation, virus accumulation in protoplasts and plants, and aphid transmission were tested. All of the mutants replicated in protoplasts. The S-domain mutant W166R failed to protect viral RNA from RNase attack, suggesting that this particular mutation interfered with stable capsid formation. The R-domain mutant R7A/R8A protected ∼90% of the viral RNA strand from RNase, suggesting that lower positive-charge density in the mutant capsid interior interfered with stable packaging of the complete strand into virions. Neither of these mutants systemically infected plants. The six remaining mutants properly packaged viral RNA and could invade Nicotiana clevelandii systemically following agroinfection. Mutant Q121E/N122D was poorly transmitted by aphids, implicating one or both targeted residues in virus-vector interactions. Successful transmission of mutant D172N was accompanied either by reversion to the wild type or by appearance of a second-site mutation, N137D. This finding indicates that D172 is also important for transmission but that the D172N transmission defect can be compensated for by a “reverse” substitution at another site. The results have been used to evaluate possible structural models for the BWYV capsid. PMID:12584348

  1. Community context and sub-neighborhood scale detail to explain dengue, chikungunya and Zika patterns in Cali, Colombia

    PubMed Central

    Curtis, Andrew; Buritica, Paola; Ajayakumar, Jayakrishnan; Squires, Robert; Dávalos, Diana; Pacheco, Robinson; Bhatta, Madhav P.; James, Mark A.

    2017-01-01

    Background Cali, Colombia has experienced chikungunya and Zika outbreaks and hypoendemic dengue. Studies have explained Cali’s dengue patterns but lack the sub-neighborhood-scale detail investigated here. Methods Spatial-video geonarratives (SVG) with Ministry of Health officials and Community Health Workers were collected in hotspots, providing perspective on perceptions of why dengue, chikungunya and Zika hotspots exist, impediments to control, and social outcomes. Using spatial video and Google Street View, sub-neighborhood features possibly contributing to incidence were mapped to create risk surfaces, later compared with dengue, chikungunya and Zika case data. Results SVG captured insights in 24 neighborhoods. Trash and water risks in Calipso were mapped using SVG results. Perceived risk factors included proximity to standing water, canals, poverty, invasions, localized violence and military migration. These risks overlapped case density maps and identified areas that are suitable for transmission but are possibly underreporting to the surveillance system. Conclusion Resulting risk maps with local context could be leveraged to increase vector-control efficiency- targeting key areas of environmental risk. PMID:28767730

  2. Forecasting Chikungunya spread in the Americas via data-driven empirical approaches.

    PubMed

    Escobar, Luis E; Qiao, Huijie; Peterson, A Townsend

    2016-02-29

    Chikungunya virus (CHIKV) is endemic to Africa and Asia, but the Asian genotype invaded the Americas in 2013. The fast increase of human infections in the American epidemic emphasized the urgency of developing detailed predictions of case numbers and the potential geographic spread of this disease. We developed a simple model incorporating cases generated locally and cases imported from other countries, and forecasted transmission hotspots at the level of countries and at finer scales, in terms of ecological features. By late January 2015, >1.2 M CHIKV cases were reported from the Americas, with country-level prevalences between nil and more than 20 %. In the early stages of the epidemic, exponential growth in case numbers was common; later, however, poor and uneven reporting became more common, in a phenomenon we term "surveillance fatigue." Economic activity of countries was not associated with prevalence, but diverse social factors may be linked to surveillance effort and reporting. Our model predictions were initially quite inaccurate, but improved markedly as more data accumulated within the Americas. The data-driven methodology explored in this study provides an opportunity to generate descriptive and predictive information on spread of emerging diseases in the short-term under simple models based on open-access tools and data that can inform early-warning systems and public health intelligence.

  3. Shallow boomerang-shaped influenza hemagglutinin G13A mutant structure promotes leaky membrane fusion.

    PubMed

    Lai, Alex L; Tamm, Lukas K

    2010-11-26

    Our previous studies showed that an angled boomerang-shaped structure of the influenza hemagglutinin (HA) fusion domain is critical for virus entry into host cells by membrane fusion. Because the acute angle of ∼105° of the wild-type fusion domain promotes efficient non-leaky membrane fusion, we asked whether different angles would still support fusion and thus facilitate virus entry. Here, we show that the G13A fusion domain mutant produces a new leaky fusion phenotype. The mutant fusion domain structure was solved by NMR spectroscopy in a lipid environment at fusion pH. The mutant adopted a boomerang structure similar to that of wild type but with a shallower kink angle of ∼150°. G13A perturbed the structure of model membranes to a lesser degree than wild type but to a greater degree than non-fusogenic fusion domain mutants. The strength of G13A binding to lipid bilayers was also intermediate between that of wild type and non-fusogenic mutants. These membrane interactions provide a clear link between structure and function of influenza fusion domains: an acute angle is required to promote clean non-leaky fusion suitable for virus entry presumably by interaction of the fusion domain with the transmembrane domain deep in the lipid bilayer. A shallower angle perturbs the bilayer of the target membrane so that it becomes leaky and unable to form a clean fusion pore. Mutants with no fixed boomerang angle interacted with bilayers weakly and did not promote any fusion or membrane perturbation.

  4. Shallow Boomerang-shaped Influenza Hemagglutinin G13A Mutant Structure Promotes Leaky Membrane Fusion*

    PubMed Central

    Lai, Alex L.; Tamm, Lukas K.

    2010-01-01

    Our previous studies showed that an angled boomerang-shaped structure of the influenza hemagglutinin (HA) fusion domain is critical for virus entry into host cells by membrane fusion. Because the acute angle of ∼105° of the wild-type fusion domain promotes efficient non-leaky membrane fusion, we asked whether different angles would still support fusion and thus facilitate virus entry. Here, we show that the G13A fusion domain mutant produces a new leaky fusion phenotype. The mutant fusion domain structure was solved by NMR spectroscopy in a lipid environment at fusion pH. The mutant adopted a boomerang structure similar to that of wild type but with a shallower kink angle of ∼150°. G13A perturbed the structure of model membranes to a lesser degree than wild type but to a greater degree than non-fusogenic fusion domain mutants. The strength of G13A binding to lipid bilayers was also intermediate between that of wild type and non-fusogenic mutants. These membrane interactions provide a clear link between structure and function of influenza fusion domains: an acute angle is required to promote clean non-leaky fusion suitable for virus entry presumably by interaction of the fusion domain with the transmembrane domain deep in the lipid bilayer. A shallower angle perturbs the bilayer of the target membrane so that it becomes leaky and unable to form a clean fusion pore. Mutants with no fixed boomerang angle interacted with bilayers weakly and did not promote any fusion or membrane perturbation. PMID:20826788

  5. Deletion of a Cys-His motif from the Alpharetrovirus nucleocapsid domain reveals late domain mutant-like budding defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Eun-Gyung; Linial, Maxine L.

    2006-03-30

    The Rous sarcoma virus (RSV) Gag polyprotein is the only protein required for virus assembly and release. We previously found that deletion of either one of the two Cys-His (CH) motifs in the RSV nucleocapsid (NC) protein did not abrogate Gag-Gag interactions, RNA binding, or packaging but greatly reduced virus production (E-G. Lee, A. Alidina et al., J. Virol. 77: 2010-2020, 2003). In this report, we have further investigated the effects of mutations in the CH motifs on virus assembly and release. Precise deletion of either CH motif, without affecting surrounding basic residues, reduced virus production by approximately 10-fold, similarmore » to levels seen for late (L) domain mutants. Strikingly, transmission electron microscopy revealed that virions of both {delta}CH1 and {delta}CH2 mutants were assembled normally at the plasma membrane but were arrested in budding. Virus particles remained tethered to the membrane or to each other, reminiscent of L domain mutants, although the release defect appears to be independent of the L domain functions. Therefore, two CH motifs are likely to be required for budding independent of a requirement for either Gag-Gag interactions or RNA packaging.« less

  6. A herpes simplex virus type 1 mutant disrupted for microRNA H2 with increased neurovirulence and rate of reactivation

    PubMed Central

    Jiang, Xianzhi; Brown, Don; Osorio, Nelson; Hsiang, Chinhui; Li, Lily; Chan, Lucas; BenMohamed, Lbachir; Wechsler, Steven L.

    2015-01-01

    The herpes simplex virus type 1 (HSV-1) latency associated transcript (LAT) encodes several microRNAs. One of these, miR-H2, overlaps and is antisense to the ICP0 gene, and appears to decrease expression of the ICP0 protein. To determine if miR-H2 plays a role in the HSV-1 latency-reactivation cycle, we constructed a mutant, McK-ΔH2, in which this microRNA has been disrupted without altering the predicted amino acid sequence of ICP0. McK-ΔH2 produced increased amounts of ICP0. Although replication of McK-ΔH2 was similar to that of its wt McKrae parental virus in RS cells and mouse eyes, McK-ΔH2 was more neurovirulent in Swiss Webster mice than McKrae based on the percent of mice that died from herpes encephalitis following ocular infection. In addition, using a mouse TG explant model of induced reactivation, we show here for the first time that miR-H2 appears to play a role in modulating HSV-1 reactivation. Although the percent of TG from which virus reactivated by day 10 after explant was similar for McK-ΔH2, wt McKrae, and the marker rescued virus McK-ΔH2Res, at earlier times significantly more reactivation was seen with McK-ΔH2. Our results suggest that in the context of the virus, miR-H2 downregulates ICP0 and this moderates both HSV-1 neurovirulence and reactivation. PMID:25645379

  7. Health-related impact on quality of life and coping strategies for chikungunya: A qualitative study in Curaçao

    PubMed Central

    Grobusch, Martin P.; Tami, Adriana; Gerstenbluth, Izzy; Bailey, Ajay

    2017-01-01

    Introduction Chikungunya is an emerging public health problem in tropical and subtropical regions, due to ongoing transmission and its incapacitating acute disease phase, and chronic sequelae. The disease is responsible for a major impact on Health Related Quality of Life (HRQoL), which may last several years. To our knowledge, this study is the first qualitative examination of HRQoL and coping strategies of chikungunya-infected individuals. Methods Qualitative research methods consisted of 20 in-depth interviews and seven Focus Group Discussions (FGDs), n = 50. Analysis was based on the principles of the grounded theory. Results Different impacts on HRQoL were reported. The physical and emotional domains of the HRQoL were mainly affected by chikungunya, while social and individual financial consequences were limited. Individual financial impact was limited through the universal health care program of Curaçao. Long-term lingering musculoskeletal and other manifestations caused significant pain and limited mobility. Hence, participants experienced dependency, impairment of normal daily life activities, moodiness, hopelessness, a change of identity, and insecurity about their future. The unpredictable nature and consequences of chikungunya gave rise to various coping strategies. Problem-focused coping styles led to higher uptake of medical care and were linked to more negative impact of HRQoL, whereas emotional coping strategies focusing on acceptance of the situation were linked to less uptake of medical care and more positive impact on HRQoL. Conclusions This study provides an in-depth understanding of acute and long-term HRQoL impact of chikungunya. The results can better inform health promotion policies and interventions. Messages to the public should focus on promoting healthy and efficient coping strategies, in order to prevent additional stress in affected individuals. PMID:28991920

  8. Anti-Chikungunya Viral Activities of Aplysiatoxin-Related Compounds from the Marine Cyanobacterium Trichodesmium erythraeum

    PubMed Central

    Gupta, Deepak Kumar; Kaur, Parveen; Leong, See Ting; Tan, Lik Tong; Prinsep, Michèle R.; Chu, Justin Jang Hann

    2014-01-01

    Tropical filamentous marine cyanobacteria have emerged as a viable source of novel bioactive natural products for drug discovery and development. In the present study, aplysiatoxin (1), debromoaplysiatoxin (2) and anhydrodebromoaplysiatoxin (3), as well as two new analogues, 3-methoxyaplysiatoxin (4) and 3-methoxydebromoaplysiatoxin (5), are reported for the first time from the marine cyanobacterium Trichodesmium erythraeum. The identification of the bloom-forming cyanobacterial strain was confirmed based on phylogenetic analysis of its 16S rRNA sequences. Structural determination of the new analogues was achieved by extensive NMR spectroscopic analysis and comparison with NMR spectral data of known compounds. In addition, the antiviral activities of these marine toxins were assessed using Chikungunya virus (CHIKV)-infected cells. Post-treatment experiments using the debrominated analogues, namely compounds 2, 3 and 5, displayed dose-dependent inhibition of CHIKV when tested at concentrations ranging from 0.1 µM to 10.0 µM. Furthermore, debromoaplysiatoxin (2) and 3-methoxydebromoaplysiatoxin (5) exhibited significant anti-CHIKV activities with EC50 values of 1.3 μM and 2.7 μM, respectively, and selectivity indices of 10.9 and 9.2, respectively. PMID:24394406

  9. Virus evolution and transmission in an ever more connected world

    PubMed Central

    Pybus, Oliver G.; Tatem, Andrew J.; Lemey, Philippe

    2015-01-01

    The frequency and global impact of infectious disease outbreaks, particularly those caused by emerging viruses, demonstrate the need for a better understanding of how spatial ecology and pathogen evolution jointly shape epidemic dynamics. Advances in computational techniques and the increasing availability of genetic and geospatial data are helping to address this problem, particularly when both information sources are combined. Here, we review research at the intersection of evolutionary biology, human geography and epidemiology that is working towards an integrated view of spatial incidence, host mobility and viral genetic diversity. We first discuss how empirical studies have combined viral spatial and genetic data, focusing particularly on the contribution of evolutionary analyses to epidemiology and disease control. Second, we explore the interplay between virus evolution and global dispersal in more depth for two pathogens: human influenza A virus and chikungunya virus. We discuss the opportunities for future research arising from new analyses of human transportation and trade networks, as well as the associated challenges in accessing and sharing relevant spatial and genetic data. PMID:26702033

  10. West Nile Virus and Other Nationally Notifiable Arboviral Diseases - United States, 2015.

    PubMed

    Krow-Lucal, Elisabeth; Lindsey, Nicole P; Lehman, Jennifer; Fischer, Marc; Staples, J Erin

    2017-01-20

    Arthropod-borne viruses (arboviruses) are transmitted to humans primarily through the bites of infected mosquitoes and ticks. The leading cause of domestically acquired arboviral disease in the United States is West Nile virus (WNV) (1). Other arboviruses, including La Crosse, St. Louis encephalitis, Jamestown Canyon, Powassan, and eastern equine encephalitis viruses, also cause sporadic cases and outbreaks. This report summarizes surveillance data reported to CDC in 2015 for nationally notifiable arboviruses. It excludes dengue, chikungunya, and Zika viruses, which are primarily nondomestic viruses typically acquired through travel (and are addressed in other CDC reports). In 2015, 45 states and the District of Columbia (DC) reported 2,282 cases of domestic arboviral disease. Among these cases, 2,175 (95%) were WNV disease and 1,455 (67%) of those were classified as neuroinvasive disease (meningitis, encephalitis, or acute flaccid paralysis). The national incidence of WNV neuroinvasive disease was 0.45 cases per 100,000 population. Because arboviral diseases continue to cause serious illness, maintaining surveillance is important to direct prevention activities such as reduction of vector populations and screening of blood donors.

  11. [Prevalence of transmission of zidovudine-resistant viruses in Switzerland. l'Etude suisse de cohorte VIH].

    PubMed

    Yerly, S; Rakik, A; Kinloch-de-Loes, S; Erb, P; Vernazza, P; Hirschel, B; Perrin, L

    1996-10-26

    Zidovudine (ZDV) was the most widely used anti-HIV drug between 1987 and 1995, and, as already reported, transmission of ZDV-resistant viruses occurs. Several mutations of the reverse transcriptase gene have been identified; one of them affects the 215 codon and is associated with a high degree of resistance. We have determined, using selective PCR, the prevalence of transmission of 215 mutant isolates in 134 patients with primary HIV infection (PHI) and have identified 8 patients with 215 mutant virus between 1989 and 1995 in Switzerland. Mutant resistant viruses have been isolated from patients treated with most antiviral drugs. A systematic search for mutant viruses may provide useful information for the adaptation of treatment strategies.

  12. Leidos Biomed Supports Clinical Trials for Vaccine Against Mosquito-borne Chikungunya | FNLCR Staging

    Cancer.gov

    An experimental vaccine for mosquito-borne chikungunya is being tested at sites in the Caribbean as part of a phase II clinical trial being managed by the Frederick National Lab. No vaccine or treatment currently exists for the viral disease, which c

  13. Structural Basis for a Switch in Receptor Binding Specificity of Two H5N1 Hemagglutinin Mutants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xueyong; Viswanathan, Karthik; Raman, Rahul

    Avian H5N1 influenza viruses continue to spread in wild birds and domestic poultry with sporadic infection in humans. Receptor binding specificity changes are a prerequisite for H5N1 viruses and other zoonotic viruses to be transmitted among humans. Previous reported hemagglutinin (HA) mutants from ferret-transmissible H5N1 viruses of A/Viet Nam/1203/04 and A/Indonesia/5/05 showed slightly increased, but still very weak, binding to human receptors. From mutagenesis and glycan array studies, we previously identified two H5N1 HA mutants that could more effectively switch receptor specificity to human-like α2-6 linked sialosides with avidity comparable to wild-type H5 HA binding to avian-like α2-3 linked sialosides.more » Here, crystal structures of these two H5 HA mutants free and in complex with human and avian glycan receptor analogues reveal the structural basis for their preferential binding to human receptors. These findings suggest continuous surveillance should be maintained to monitor and assess human-to-human transmission potential of H5N1 viruses.« less

  14. Structural Basis for a Switch in Receptor Binding Specificity of Two H5N1 Hemagglutinin Mutants

    DOE PAGES

    Zhu, Xueyong; Viswanathan, Karthik; Raman, Rahul; ...

    2015-11-01

    Avian H5N1 influenza viruses continue to spread in wild birds and domestic poultry with sporadic infection in humans. Receptor binding specificity changes are a prerequisite for H5N1 viruses and other zoonotic viruses to be transmitted among humans. Previous reported hemagglutinin (HA) mutants from ferret-transmissible H5N1 viruses of A/Viet Nam/1203/04 and A/Indonesia/5/05 showed slightly increased, but still very weak, binding to human receptors. From mutagenesis and glycan array studies, we previously identified two H5N1 HA mutants that could more effectively switch receptor specificity to human-like α2-6 linked sialosides with avidity comparable to wild-type H5 HA binding to avian-like α2-3 linked sialosides.more » Here, crystal structures of these two H5 HA mutants free and in complex with human and avian glycan receptor analogues reveal the structural basis for their preferential binding to human receptors. These findings suggest continuous surveillance should be maintained to monitor and assess human-to-human transmission potential of H5N1 viruses.« less

  15. vif-negative human immunodeficiency virus type 1 persistently replicates in primary macrophages, producing attenuated progeny virus.

    PubMed Central

    Chowdhury, I H; Chao, W; Potash, M J; Sova, P; Gendelman, H E; Volsky, D J

    1996-01-01

    The vif gene of human immunodeficiency virus type 1 (HIV-1) is required for efficient infection of primary T lymphocytes. In this study, we investigated in detail the role of vif in productive infection of primary monocyte-derived macrophages (MDM). Viruses carrying missense or deletion mutations in vif were constructed on the background of the monocytotropic recombinant NLHXADA-GP. Using MDM from multiple donors, we found that vif mutants produced in complementing or partially complementing cell lines were approximately 10% as infectious as wild-type virus when assayed for incomplete, complete, and circularized viral DNA molecules by quantitative PCR amplification or for viral core antigen p24 production by enzyme-linked immunosorbent assay. We then determined the structure and infectivity of vif mutant HIV-1 by using MDM exclusively both for virus production and as targets for infection. Biosynthetic labeling and immunoprecipitation analysis of sucrose cushion-purified vif-negative HIV-1 made in MDM revealed that the virus had reduced p24 content compared with wild-type HIV-1. Cell-free MDM-derived vif mutant HIV-1 was infectious in macrophages as determined by the synthesis and maintenance of full-length viral DNA and by the produc- tion of particle-associated viral RNA, but its infectivity was approximately 2,500-fold lower than that of wild-type virus whose titer was determined in parallel by measurement of the viral DNA burden. MDM infected with MDM-derived vif-negative HIV-1 were able to transmit the virus to uninfected MDM by cocultivation, confirming the infectiousness of this virus. We conclude that mutations in vif significantly reduce but do not eliminate the capacity of HIV-1 to replicate and produce infectious progeny virus in primary human macrophages. PMID:8764044

  16. vif-negative human immunodeficiency virus type 1 persistently replicates in primary macrophages, producing attenuated progeny virus.

    PubMed

    Chowdhury, I H; Chao, W; Potash, M J; Sova, P; Gendelman, H E; Volsky, D J

    1996-08-01

    The vif gene of human immunodeficiency virus type 1 (HIV-1) is required for efficient infection of primary T lymphocytes. In this study, we investigated in detail the role of vif in productive infection of primary monocyte-derived macrophages (MDM). Viruses carrying missense or deletion mutations in vif were constructed on the background of the monocytotropic recombinant NLHXADA-GP. Using MDM from multiple donors, we found that vif mutants produced in complementing or partially complementing cell lines were approximately 10% as infectious as wild-type virus when assayed for incomplete, complete, and circularized viral DNA molecules by quantitative PCR amplification or for viral core antigen p24 production by enzyme-linked immunosorbent assay. We then determined the structure and infectivity of vif mutant HIV-1 by using MDM exclusively both for virus production and as targets for infection. Biosynthetic labeling and immunoprecipitation analysis of sucrose cushion-purified vif-negative HIV-1 made in MDM revealed that the virus had reduced p24 content compared with wild-type HIV-1. Cell-free MDM-derived vif mutant HIV-1 was infectious in macrophages as determined by the synthesis and maintenance of full-length viral DNA and by the produc- tion of particle-associated viral RNA, but its infectivity was approximately 2,500-fold lower than that of wild-type virus whose titer was determined in parallel by measurement of the viral DNA burden. MDM infected with MDM-derived vif-negative HIV-1 were able to transmit the virus to uninfected MDM by cocultivation, confirming the infectiousness of this virus. We conclude that mutations in vif significantly reduce but do not eliminate the capacity of HIV-1 to replicate and produce infectious progeny virus in primary human macrophages.

  17. Identification of a novel Lymantria dispar nucleopolyhedrovirus mutant that exhibits abnormal polyhedron formation and virion occlusion.

    PubMed

    Slavicek, J M; Mercer, M J; Pohlman, D; Kelly, M E; Bischoff, D S

    1998-07-01

    In previous studies on the formation of Lymantria dispar nuclear polyhedrosis virus (LdMNPV) few polyhedra (FP) mutants, several polyhedron formation mutants (PFM) were identified that appeared to be unique. These viral mutants are being characterized to investigate the processes of polyhedron formation and virion occlusion. LdMNPV isolate PFM-1 is one of these mutants, and is described in this report. Genetic techniques were used to determine if isolate PFM-1 contained a mutation in the polyhedrin or 25K FP gene. Wild-type viruses were recovered after coinfection of Ld652Y cells with isolate PFM-1 and a FP mutant, and with isolates PFM-1 and PFM-C (isolate PFM-C contains a mutation in the polyhedrin gene). These viruses were analyzed by genomic restriction endonuclease digestion and found to be chimeras of the original PFMs used in the coinfections. Marker rescue studies mapped the mutation in isolate PFM-1 to a genomic region that does not include the polyhedrin or 25K FP genes. Isolate PFM-1 produced approximately 14-fold fewer polyhedra than LdMNPV isolate A21-MPV, an isolate that produces wild-type levels of polyhedra, and approximately 2-fold more polyhedra compared to the FP isolate 122-2. Polyhedra generated by isolate PFM-1 were normal in size and shape but contained very few viral nucleocapsids. The same amount of budded virus (BV) was released from cells infected with isolates PFM-1 and A21-MPV. In contrast, isolate 122-2 yielded significantly more BV than isolates PFM-1 and A21-MPV.

  18. SAT2 Foot-and-Mouth Disease Virus Structurally Modified for Increased Thermostability.

    PubMed

    Scott, Katherine A; Kotecha, Abhay; Seago, Julian; Ren, Jingshan; Fry, Elizabeth E; Stuart, David I; Charleston, Bryan; Maree, Francois F

    2017-05-15

    Foot-and-mouth disease virus (FMDV), particularly strains of the O and SAT serotypes, is notoriously unstable. Consequently, vaccines derived from heat-labile SAT viruses have been linked to the induction of immunity with a poor duration and hence require more frequent vaccinations to ensure protection. In silico calculations predicted residue substitutions that would increase interactions at the interpentamer interface, supporting increased stability. We assessed the stability of the 18 recombinant mutant viruses in regard to their growth kinetics, antigenicity, plaque morphology, genetic stability, and temperature, ionic, and pH stability by using Thermofluor and inactivation assays in order to evaluate potential SAT2 vaccine candidates with improved stability. The most stable mutant for temperature and pH stability was the S2093Y single mutant, while other promising mutants were the E3198A, L2094V, and S2093H single mutants and the F2062Y-H2087M-H3143V triple mutant. Although the S2093Y mutant had the greatest stability, it exhibited smaller plaques, a reduced growth rate, a change in monoclonal antibody footprint, and poor genetic stability properties compared to those of the wild-type virus. However, these factors affecting production can be overcome. The addition of 1 M NaCl was found to further increase the stability of the SAT2 panel of viruses. The S2093Y and S2093H mutants were selected for future use in stabilizing SAT2 vaccines. IMPORTANCE Foot-and-mouth disease virus (FMDV) causes a highly contagious acute vesicular disease in cloven-hoofed livestock and wildlife. The control of the disease by vaccination is essential, especially at livestock-wildlife interfaces. The instability of some serotypes, such as SAT2, affects the quality of vaccines and therefore the duration of immunity. We have shown that we can improve the stability of SAT2 viruses by mutating residues at the capsid interface through predictive modeling. This is an important finding for

  19. SAT2 Foot-and-Mouth Disease Virus Structurally Modified for Increased Thermostability

    PubMed Central

    Scott, Katherine A.; Kotecha, Abhay; Seago, Julian; Ren, Jingshan; Fry, Elizabeth E.; Stuart, David I.; Charleston, Bryan

    2017-01-01

    ABSTRACT Foot-and-mouth disease virus (FMDV), particularly strains of the O and SAT serotypes, is notoriously unstable. Consequently, vaccines derived from heat-labile SAT viruses have been linked to the induction of immunity with a poor duration and hence require more frequent vaccinations to ensure protection. In silico calculations predicted residue substitutions that would increase interactions at the interpentamer interface, supporting increased stability. We assessed the stability of the 18 recombinant mutant viruses in regard to their growth kinetics, antigenicity, plaque morphology, genetic stability, and temperature, ionic, and pH stability by using Thermofluor and inactivation assays in order to evaluate potential SAT2 vaccine candidates with improved stability. The most stable mutant for temperature and pH stability was the S2093Y single mutant, while other promising mutants were the E3198A, L2094V, and S2093H single mutants and the F2062Y-H2087M-H3143V triple mutant. Although the S2093Y mutant had the greatest stability, it exhibited smaller plaques, a reduced growth rate, a change in monoclonal antibody footprint, and poor genetic stability properties compared to those of the wild-type virus. However, these factors affecting production can be overcome. The addition of 1 M NaCl was found to further increase the stability of the SAT2 panel of viruses. The S2093Y and S2093H mutants were selected for future use in stabilizing SAT2 vaccines. IMPORTANCE Foot-and-mouth disease virus (FMDV) causes a highly contagious acute vesicular disease in cloven-hoofed livestock and wildlife. The control of the disease by vaccination is essential, especially at livestock-wildlife interfaces. The instability of some serotypes, such as SAT2, affects the quality of vaccines and therefore the duration of immunity. We have shown that we can improve the stability of SAT2 viruses by mutating residues at the capsid interface through predictive modeling. This is an important

  20. The inevitable colonisation of Singapore by Zika virus.

    PubMed

    Fisher, Dale; Cutter, Jeffery

    2016-11-21

    Singapore is endemic for Dengue virus, with approximately 10,000 to 20,000 annual cases reported in recent years. In 2012, Chikungunya was introduced, although the numbers of cases reported is much fewer. The current Zika virus pandemic originating in Brazil represents a threat to all regions with Aedes mosquitoes, particularly those well connected by travellers. In this respect, it was felt inevitable that Singapore would eventually realise its third endemic flavivirus. In late August 2016, a primary care practitioner observed a cluster of geographically linked patients attending with fever and rash. This resulted in the first identification of locally transmitted Zika in Singapore on August 27, 2016. This prompted a robust response in an attempt to stop further spread, which continued for approximately 10 days until a large number of laboratory-confirmed cases were found as a result of active case finding. Surprisingly, the strain was later identified to be of Asian lineage and distinct from that originating in the Americas, prompting speculation over the epidemiology of this under recognised virus in Asia.

  1. Specific Detection of Naturally Occurring Hepatitis C Virus Mutants with Resistance to Telaprevir and Boceprevir (Protease Inhibitors) among Treatment-Naïve Infected Individuals

    PubMed Central

    Fonseca-Coronado, Salvador; Escobar-Gutiérrez, Alejandro; Ruiz-Tovar, Karina; Cruz-Rivera, Mayra Yolanda; Rivera-Osorio, Pilar; Vazquez-Pichardo, Mauricio; Carpio-Pedroza, Juan Carlos; Ruíz-Pacheco, Juan Alberto; Cazares, Fernando

    2012-01-01

    The use of telaprevir and boceprevir, both protease inhibitors (PI), as part of the specifically targeted antiviral therapy for hepatitis C (STAT-C) has significantly improved sustained virologic response (SVR) rates. However, different clinical studies have also identified several mutations associated with viral resistance to both PIs. In the absence of selective pressure, drug-resistant hepatitis C virus (HCV) mutants are generally present at low frequency, making mutation detection challenging. Here, we describe a mismatch amplification mutation assay (MAMA) PCR method for the specific detection of naturally occurring drug-resistant HCV mutants. MAMA PCR successfully identified the corresponding HCV variants, while conventional methods such as direct sequencing, endpoint limiting dilution (EPLD), and bacterial cloning were not sensitive enough to detect circulating drug-resistant mutants in clinical specimens. Ultradeep pyrosequencing was used to confirm the presence of the corresponding HCV mutants. In treatment-naïve patients, the frequency of all resistant variants was below 1%. Deep amplicon sequencing allowed a detailed analysis of the structure of the viral population among these patients, showing that the evolution of the NS3 is limited to a rather small sequence space. Monitoring of HCV drug resistance before and during treatment is likely to provide important information for management of patients undergoing anti-HCV therapy. PMID:22116161

  2. Characterization of a candidate tetravalent vaccine based on 2'-O-methyltransferase mutants

    PubMed Central

    Züst, Roland; Li, Shi-Hua; Xie, Xuping; Velumani, Sumathy; Chng, Melissa; Toh, Ying-Xiu; Zou, Jing; Dong, Hongping; Shan, Chao; Pang, Jassia; Qin, Cheng-Feng; Newell, Evan W.; Shi, Pei-Yong

    2018-01-01

    Dengue virus (DENV) is one of the most widespread arboviruses. The four DENV serotypes infect about 400 million people every year, causing 96 million clinical dengue cases, of which approximately 500’000 are severe and potentially life-threatening. The only licensed vaccine has a limited efficacy and is only recommended in regions with high endemicity. We previously reported that 2’-O-methyltransferase mutations in DENV-1 and DENV-2 block their capacity to inhibit type I IFNs and render the viruses attenuated in vivo, making them amenable as vaccine strains; here we apply this strategy to all four DENV serotypes to generate a tetravalent, non-chimeric live-attenuated dengue vaccine. 2’-O-methyltransferase mutants of all four serotypes are highly sensitive to type I IFN inhibition in human cells. The tetravalent formulation is attenuated and immunogenic in mice and cynomolgus macaques and elicits a response that protects from virus challenge. These results show the potential of 2’-O-methyltransferase mutant viruses as a safe, tetravalent, non-chimeric dengue vaccine. PMID:29298302

  3. Characterization of a thymidine kinase-deficient mutant of equine herpesvirus 4 and in vitro susceptibility of the virus to antiviral agents.

    PubMed

    Azab, Walid; Tsujimura, Koji; Kato, Kentaro; Arii, Jun; Morimoto, Tomomi; Kawaguchi, Yasushi; Tohya, Yukinobu; Matsumura, Tomio; Akashi, Hiroomi

    2010-02-01

    Equine herpesvirus 4 (EHV-4) is an important equine pathogen that causes respiratory tract disease among horses worldwide. A thymidine kinase (TK)-deletion mutant has been generated by using bacterial artificial chromosome (BAC) technology to investigate the role of TK in pathogenesis. Deletion of TK had virtually no effect on the growth characteristics of WA79DeltaTK in cell culture when compared to the parent virus. Also, virus titers and plaque formation were unaffected in the absence of the TK gene. The sensitivity of EHV-4 to inhibition by acyclovir (ACV) and ganciclovir (GCV) was studied by means of a plaque reduction assay. GCV proved to be more potent and showed a superior anti-EHV-4 activity. On the other hand, ACV showed very poor ability to inhibit EHV-4 replication. As predicted, WA79DeltaTK was insensitive to GCV. Although EHV-4 is normally insensitive to ACV, it showed >20-fold increase in sensitivity when the equine herpesvirus-1 (EHV-1) TK was supplied in trans. Furthermore, both ACV and GCV resulted in a significant reduction of plaque size induced by EHV-4 and 1. Taken together, these data provided direct evidence that GCV is a potent selective inhibitor of EHV-4 and that the virus-encoded TK is an important determinant of the virus susceptibility to nucleoside analogues. Copyright 2009 Elsevier B.V. All rights reserved.

  4. Vaccines in development against West Nile virus.

    PubMed

    Brandler, Samantha; Tangy, Frederic

    2013-09-30

    West Nile encephalitis emerged in 1999 in the United States, then rapidly spread through the North American continent causing severe disease in human and horses. Since then, outbreaks appeared in Europe, and in 2012, the United States experienced a new severe outbreak reporting a total of 5,387 cases of West Nile virus (WNV) disease in humans, including 243 deaths. So far, no human vaccine is available to control new WNV outbreaks and to avoid worldwide spreading. In this review, we discuss the state-of-the-art of West Nile vaccine development and the potential of a novel safe and effective approach based on recombinant live attenuated measles virus (MV) vaccine. MV vaccine is a live attenuated negative-stranded RNA virus proven as one of the safest, most stable and effective human vaccines. We previously described a vector derived from the Schwarz MV vaccine strain that stably expresses antigens from emerging arboviruses, such as dengue, West Nile or chikungunya viruses, and is strongly immunogenic in animal models, even in the presence of MV pre-existing immunity. A single administration of a recombinant MV vaccine expressing the secreted form of WNV envelope glycoprotein elicited protective immunity in mice and non-human primates as early as two weeks after immunization, indicating its potential as a human vaccine.

  5. Current concerns and perspectives on Zika virus co-infection with arboviruses and HIV.

    PubMed

    Rothan, Hussin A; Bidokhti, Mehdi R M; Byrareddy, Siddappa N

    2018-05-01

    Dissemination of vector-borne viruses, such as Zika virus (ZIKV), in tropical and sub-tropical regions has a complicated impact on the immunopathogenesis of other endemic viruses such as dengue virus (DENV), chikungunya virus (CHIKV) and human immunodeficiency virus (HIV). The consequences of the possible co-infections with these viruses have specifically shown significant impact on the treatment and vaccination strategies. ZIKV is a mosquito-borne flavivirus from African and Asian lineages that causes neurological complications in infected humans. Many of DENV and CHIKV endemic regions have been experiencing outbreaks of ZIKV infection. Intriguingly, the mosquitoes, Aedes Aegypti and Aedes Albopictus, can simultaneously transmit all the combinations of ZIKV, DENV, and CHIKV to the humans. The co-circulation of these viruses leads to a complicated immune response due to the pre-existence or co-existence of ZIKV infection with DENV and CHIKV infections. The non-vector transmission of ZIKV, especially, via sexual intercourse and placenta represents an additional burden that may hander the treatment strategies of other sexually transmitted diseases such as HIV. Collectively, ZIKV co-circulation and co-infection with other viruses have inevitable impact on the host immune response, diagnosis techniques, and vaccine development strategies for the control of these co-infections. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Chikungunya Fever: A Clinical and Virological Investigation of Outpatients on Reunion Island, South-West Indian Ocean

    PubMed Central

    Thiberville, Simon-Djamel; Boisson, Veronique; Gaudart, Jean; Simon, Fabrice; Flahault, Antoine; de Lamballerie, Xavier

    2013-01-01

    Background Chikungunya virus (CHIKV) is responsible for acute febrile polyarthralgia and, in a proportion of cases, severe complications including chronic arthritis. CHIKV has spread recently in East Africa, South-West Indian Ocean, South-Asia and autochthonous cases have been reported in Europe. Although almost all patients are outpatients, medical investigations mainly focused on hospitalised patients. Methodology/Principal Findings Here, we detail clinico-biological characteristics of Chikungunya (CHIK) outpatients in Reunion Island (2006). 76 outpatients with febrile arthralgia diagnosed within less than 48 hours were included by general practitioners during the CuraChik clinical trial. CHIK was confirmed in 54 patients and excluded in 22. A detailed clinical and biological follow-up was organised, that included analysis of viral intrahost diversity and telephone survey until day 300. The evolution of acute CHIK included 2 stages: the ‘viral stage’ (day 1–day 4) was associated with rapid decrease of viraemia and improvement of clinical presentation; the ‘convalescent stage’ (day 5–day 14) was associated with no detectable viraemia but a slower clinical improvement. Women and elderly had a significantly higher number of arthralgia at inclusion and at day 300. Based on the study clinico-biological dataset, scores for CHIK diagnosis in patients with recent febrile acute polyarthralgia were elaborated using arthralgia on hands and wrists, a minor or absent myalgia and the presence of lymphopenia (<1G/L) as major orientation criteria. Finally, we observed that CHIKV intra-host genetic diversity increased over time and that a higher viral amino-acid complexity at the acute stage was associated with increased number of arthralgia and intensity of sequelae at day 300. Conclusions/Significance This study provided a detailed picture of clinico-biological CHIK evolution at the acute phase of the disease, allowed the elaboration of scores to assist CHIK

  7. Pathogenesis of virulent and attenuated foot and mouth disease virus in cattle

    USDA-ARS?s Scientific Manuscript database

    The factors defining virulence of foot-and-mouth disease virus (FMDV) in cattle were investigated by comparing the pathogenesis of a mutant, attenuated strain (FMDV-Mut) to the parental, virulent virus from which the mutant was derived (FMDV-WT). After simulated-natural, aerosol inoculation, both vi...

  8. Psychological Distress and Zika, Dengue and Chikungunya Symptoms Following the 2016 Earthquake in Bahía de Caráquez, Ecuador.

    PubMed

    Stewart-Ibarra, Anna M; Hargrave, Anita; Diaz, Avriel; Kenneson, Aileen; Madden, David; Romero, Moory M; Molina, Juan Pablo; Saltos, David Macias

    2017-12-05

    On 16 April 2016, a 7.8 magnitude earthquake struck coastal Ecuador, resulting in significant mortality and morbidity, damages to infrastructure, and psychological trauma. This event coincided with the first outbreak of Zika virus (ZIKV) and co-circulation with dengue virus (DENV) and chikungunya virus (CHIKV). We tested whether the degree of psychological distress was associated with the presence of suspected DENV, CHIKV, ZIKV (DCZ) infections three months after the earthquake. In July 2016, 601 household members from four communities in Bahía de Caráquez, Manabí Province, Ecuador, were surveyed in a post-disaster health evaluation. Information was collected on demographics, physical damages and injuries, chronic diseases, self-reported psychological distress, and DCZ symptoms. We calculated the prevalence of arbovirus and distress symptoms by community. ANOVA was used to compare the mean number of psychological distress symptoms between people with versus without suspected DCZ infections by age, gender, community and the need to sleep outside of the home due to damages. The prevalence of suspected DCZ infections was 9.7% and the prevalence of psychological distress was 58.1%. The average number of psychological distress symptoms was significantly higher among people with suspected DCZ infections in the periurban community of Bella Vista, in women, in adults 40-64 years of age and in individuals not sleeping at home ( p < 0.05). The results of this study highlight the need to investigate the interactions between psychological distress and arboviral infections following natural disasters.

  9. Intracistronic complementation in the simian virus 40 A gene.

    PubMed Central

    Tornow, J; Cole, C N

    1983-01-01

    A set of eight simian virus 40 mutants was constructed with lesions in the A gene, which encodes the large tumor (T) antigen. These mutants have small deletions (3-20 base pairs) at either 0.497, 0.288, or 0.243 map units. Mutants having both in-phase and frameshift mutations at each site were isolated. Neither plaque formation nor replication of the mutant DNAs could be detected after transfection of monkey kidney cells. Another nonviable mutant, dlA2459, had a 14-base-pair deletion at 0.193 map unit and was positive for viral DNA replication. Each of the eight mutants were tested for ability to form plaques after cotransfection with dlA2459 DNA. The four mutants that had in-phase deletions were able to complement dlA2459. The other four, which had frameshift deletions, did not. No plaques were formed after cotransfection of cells with any other pair of group A mutants. This suggests that the defect in dlA2459 defines a distinct functional domain of simian virus 40 T antigen. Images PMID:6312452

  10. The First Reported Outbreak of Chikungunya in the U.S. Virgin Islands, 2014–2015

    PubMed Central

    Feldstein, Leora R.; Ellis, Esther M.; Rowhani-Rahbar, Ali; Halloran, M. Elizabeth; Ellis, Brett R.

    2016-01-01

    The chikungunya virus (CHIKV) epidemic in the Americas is of significant public health importance due to the lack of effective control and prevention strategies, severe disease morbidity among susceptible populations, and potential for persistent arthralgia and long-term impaired physical functionality. Using surveillance data of suspected CHIKV cases, we describe the first reported outbreak in the U.S. Virgin Islands. CHIKV incidence was highest among individuals aged 55–64 years (13.1 cases per 1,000 population) and lowest among individuals aged 0–14 years (1.8 cases per 1,000 population). Incidence was higher among women compared to men (6.6 and 5.0 cases per 1,000 population, respectively). More than half of reported laboratory-positive cases experienced fever lasting 2–7 days, chills/rigor, myalgia, anorexia, and headache. No clinical symptoms apart from the suspected case definition of fever ≥ 38°C and arthralgia were significantly associated with being a reported laboratory-positive case. These results contribute to our knowledge of demographic risk factors and clinical manifestations of CHIKV disease and may aid in mitigating future CHIKV outbreaks in the Caribbean. PMID:27402523

  11. Zika Virus: A Basic Overview of an Emerging Arboviral Infection in the Western Hemisphere.

    PubMed

    Vest, Kelly G

    2016-10-01

    Since February 2015, Zika virus has spread throughout the Western Hemisphere, starting in Brazil. As of March 2016, autochthonous transmission has been reported in at least 31 countries or territories. For countries in the Americas, the spread of Zika virus, a previously unfamiliar disease, follows similar emerging infection introductions of West Nile virus and Chikungunya virus and their spread throughout the American continents and the Caribbean nations. The Pan American Health Organization and the World Health Organization have issued alerts and a Public Health Emergency of International Concern announcement related to the recent cluster of microcephaly cases and other neurological disorders in Brazil that are temporally associated with Zika virus, which highlights the possible adverse impact of viral infection. This article provides an overview of the Zika virus infection and presents the historical background of the virus, a description of the pathogen, the epidemiology and clinical spectrum of Zika virus infection, diagnosis and treatment approaches, and prevention and control measures. Understanding what is known about the virus and its clinical presentation will assist in prevention, detection, and response measures to reduce and control the spread of the virus throughout the Western Hemisphere. (Disaster Med Public Health Preparedness. 2016;page 1 of 6).

  12. Metofluthrin: investigations into the use of a volatile spatial pyrethroid in a global spread of dengue, chikungunya and Zika viruses.

    PubMed

    Buhagiar, Tamara S; Devine, Gregor J; Ritchie, Scott A

    2017-05-30

    Metofluthrin reduces biting activity in Aedes aegypti through the confusion, knockdown, and subsequent kill of a mosquito. A geographical spread in dengue, chikungunya, and Zika viruses, increases intervention demands. Response to a Zika outbreak may require a different strategy than dengue, as high-risk individuals, specifically pregnant women, need to be targeted. In semi-field conditions within a residential property in Cairns, Queensland, the impacts of metofluthrin on biting behaviour of free-flying Wolbachia-infected Ae. aegypti were evaluated. Mortality in Ae. aegypti exposed to metofluthrin over a 22 h period was 100% compared to 2.7% in an untreated room. No biting activity was observed in mosquitoes up to 5 m from the emanator after 10 min of metofluthrin exposure. Use of metofluthrin reduced biting activity up to 8 m, regardless of the host's proximity (near or far) to a dark harbourage area (HA) (P < 0.0001 and P = 0.006), respectively. In the presence or absence of the metofluthrin emanator, the host was most likely bitten when located immediately next to a HA (within 1 m) versus 8 m away from the HA (P = 0.006). The addition of a ceiling fan (0.8 m/s airflow) prevented all biting activity after 10 min of metofluthrin exposure. Previously unexposed Ae. aegypti were less likely to reach the host in a metofluthrin-treated room [Formula: see text]= 31%) compared to an untreated room ([Formula: see text]) (P < 0.0001). In a treated room, if the mosquito had not reached the host within 30 s, they never would. Upon activation, the time required for metofluthrin to infiltrate protected locations within a room causing knockdown in caged mosquitoes, required more time than exposed locations (P < 0.003); however exposed and protected locations do eventually reach equilibrium, affecting mosquitoes equally throughout the room. Metofluthrin is effective in interrupting indoor host-seeking in Ae. aegypti. Metofluthrin's efficacy is increased by

  13. Neurocognitive Outcome of Children Exposed to Perinatal Mother-to-Child Chikungunya Virus Infection: The CHIMERE Cohort Study on Reunion Island

    PubMed Central

    Ramful, Duksha; Boumahni, Brahim; Bintner, Marc; Alessandri, Jean-Luc; Carbonnier, Magali; Tiran-Rajaoefera, Isabelle; Beullier, Gilles; Boya, Irénée; Noormahomed, Tahir; Okoï, Jocelyn; Rollot, Olivier; Cotte, Liliane; Jaffar-Bandjee, Marie-Christine; Michault, Alain; Favier, François; Kaminski, Monique; Fourmaintraux, Alain; Fritel, Xavier

    2014-01-01

    Background Little is known about the neurocognitive outcome in children exposed to perinatal mother-to-child Chikungunya virus (p-CHIKV) infection. Methods The CHIMERE ambispective cohort study compared the neurocognitive function of 33 p-CHIKV-infected children (all but one enrolled retrospectively) at around two years of age with 135 uninfected peers (all enrolled prospectively). Psychomotor development was assessed using the revised Brunet-Lezine scale, examiners blinded to infectious status. Development quotients (DQ) with subscores covering movement/posture, coordination, language, sociability skills were calculated. Predictors of global neurodevelopmental delay (GND, DQ≤85), were investigated using multivariate Poisson regression modeling. Neuroradiologic follow-up using magnetic resonance imaging (MRI) scans was proposed for most of the children with severe forms. Results The mean DQ score was 86.3 (95%CI: 81.0–91.5) in infected children compared to 100.2 (95%CI: 98.0–102.5) in uninfected peers (P<0.001). Fifty-one percent (n = 17) of infected children had a GND compared to 15% (n = 21) of uninfected children (P<0.001). Specific neurocognitive delays in p-CHIKV-infected children were as follows: coordination and language (57%), sociability (36%), movement/posture (27%). After adjustment for maternal social situation, small for gestational age, and head circumference, p-CHIKV infection was found associated with GND (incidence rate ratio: 2.79, 95%CI: 1.45–5.34). Further adjustments on gestational age or breastfeeding did not change the independent effect of CHIKV infection on neurocognitive outcome. The mean DQ of p-CHIKV-infected children was lower in severe encephalopathic children than in non-severe children (77.6 versus 91.2, P<0.001). Of the 12 cases of CHIKV neonatal encephalopathy, five developed a microcephaly (head circumference <−2 standard deviations) and four matched the definition of cerebral palsy. MRI scans showed severe

  14. Multiplexed Isothermal Amplification Based Diagnostic Platform to Detect Zika, Chikungunya, and Dengue 1.

    PubMed

    Yaren, Ozlem; Alto, Barry W; Bradley, Kevin M; Moussatche, Patricia; Glushakova, Lyudmyla; Benner, Steven A

    2018-03-13

    Zika, dengue, and chikungunya viruses are transmitted by mosquitoes, causing diseases with similar patient symptoms. However, they have different downstream patient-to-patient transmission potentials, and require very different patient treatments. Thus, recent Zika outbreaks make it urgent to develop tools that rapidly discriminate these viruses in patients and trapped mosquitoes, to select the correct patient treatment, and to understand and manage their epidemiology in real time. Unfortunately, current diagnostic tests, including those receiving 2016 emergency use authorizations and fast-track status, detect viral RNA by reverse transcription polymerase chain reaction (RT-PCR), which requires instrumentation, trained users, and considerable sample preparation. Thus, they must be sent to "approved" reference laboratories, requiring time. Indeed, in August 2016, the Center for Disease Control (CDC) was asking pregnant women who had been bitten by a mosquito and developed a Zika-indicating rash to wait an unacceptable 2 to 4 weeks before learning whether they were infected. We very much need tests that can be done on site, with few resources, and by trained but not necessarily licensed personnel. This video demonstrates an assay that meets these specifications, working with urine or serum (for patients) or crushed mosquito carcasses (for environmental surveillance), all without much sample preparation. Mosquito carcasses are captured on paper carrying quaternary ammonium groups (Q-paper) followed by ammonia treatment to manage biohazards. These are then directly, without RNA isolation, put into assay tubes containing freeze-dried reagents that need no chain of refrigeration. A modified form of reverse transcription loop-mediated isothermal amplification with target-specific fluorescently tagged displaceable probes produces readout, in 30 min, as a three-color fluorescence signal. This is visualized with a handheld, battery-powered device with an orange filter

  15. Interaction of Hepatitis C Virus Core Protein with Janus Kinase Is Required for Efficient Production of Infectious Viruses

    PubMed Central

    Lee, Choongho

    2013-01-01

    Chronic hepatitis C virus (HCV) infection is responsible for the development of liver cirrhosis and hepatocellular carcinoma. HCV core protein plays not only a structural role in the virion morphogenesis by encapsidating a virus RNA genome but also a non-structural role in HCV-induced pathogenesis by blocking innate immunity. Especially, it has been shown to regulate JAK-STAT signaling pathway through its direct interaction with Janus kinase (JAK) via its proline-rich JAK-binding motif (79PGYPWP84). However, little is known about the physiological significance of this HCV core-JAK association in the context of the virus life cycle. In order to gain an insight, a mutant HCV genome (J6/JFH1-79A82A) was constructed to express the mutant core with a defective JAK-binding motif (79AGYAWP84) using an HCV genotype 2a infectious clone (J6/JFH1). When this mutant HCV genome was introduced into hepatocarcinoma cells, it was found to be severely impaired in its ability to produce infectious viruses in spite of its robust RNA genome replication. Taken together, all these results suggest an essential requirement of HCV core-JAK protein interaction for efficient production of infectious viruses and the potential of using core-JAK blockers as a new anti-HCV therapy. PMID:24009866

  16. Immunization against Genital Herpes with a Vaccine Virus That has Defects in Productive and Latent Infection

    NASA Astrophysics Data System (ADS)

    da Costa, Xavier J.; Jones, Cheryl A.; Knipe, David M.

    1999-06-01

    An effective vaccine for genital herpes has been difficult to achieve because of the limited efficacy of subunit vaccines and the safety concerns about live viruses. As an alternative approach, mutant herpes simplex virus strains that are replication-defective can induce protective immunity. To increase the level of safety and to prove that replication was not needed for immunization, we constructed a mutant herpes simplex virus 2 strain containing two deletion mutations, each of which eliminated viral replication. The double-mutant virus induces protective immunity that can reduce acute viral shedding and latent infection in a mouse genital model, but importantly, the double-mutant virus shows a phenotypic defect in latent infection. This herpes vaccine strain, which is immunogenic but has defects in both productive and latent infection, provides a paradigm for the design of vaccines and vaccine vectors for other sexually transmitted diseases, such as AIDS.

  17. A comparison of compliance rates with anti-vectorial protective measures during travel to regions with dengue or chikungunya activity, and regions endemic for Plasmodium falciparum malaria

    PubMed Central

    Lalani, Tahaniyat; Yun, Heather; Tribble, David; Ganesan, Anuradha; Kunz, Anjali; Fairchok, Mary; Schnaubelt, Elizabeth; Fraser, Jamie; Mitra, Indrani; Kronmann, Karl C.; Burgess, Timothy; Deiss, Robert G.; Riddle, Mark S.; Johnson, Mark D.

    2016-01-01

    Background. There is limited information on compliance rates with anti-vectorial protective measures (AVPMs) during travel to countries with risk of dengue and chikungunya. We evaluated differences in mosquito exposures, and factors associated with AVPM compliance in travellers going to countries where the principal mosquito-borne infectious disease threat is falciparum malaria and those where risk of dengue or chikungunya predominates. Methods. Department of Defence beneficiaries with planned travel to regions where the predominant mosquito-borne infection is falciparum malaria, and those with predominantly dengue or chikungunya risk, were included. Regions were divided into three groups: ‘high-risk falciparum malaria’, ‘low-risk falciparum malaria’ and ‘chikungunya/dengue risk’. Demographics, trip characteristics, arthropod exposure and AVPM compliance were captured using pre- and post-travel surveys. Skin repellent compliance was defined as self-reported use, categorized as ‘often/every day’. A logistic regression model was used to estimate factors associated with AVPM compliance. Results. 183 (9%), 185 (9%) and 149 (7%) travelled to high and low falciparum malaria risk regions, and chikungunya/dengue risk regions, respectively. Overall, 53% (95% CI: 48–57%) and 16% (95% CI: 12–19%) were compliant with repellent use on skin and clothing, respectively. Daytime bites were reported more frequently in chikungunya/dengue risk regions than high malaria risk regions (37% vs. 10%), while night time bites were frequently in high malaria risk regions (53% vs 20%; P < 0.001). Compliance with skin repellents was associated with female gender [RR: 1.54 (95% CI: 1.05–2.28)], observing mosquitoes during travel [RR: 2.77 (95% CI: 1.76–4.36)] and travel during the rainy season [RR: 2.45 (95% CI: 1.66–3.71)]). Conclusions. Poor AVPM compliance was observed in the overall cohort. Compliance with skin repellent use was associated with female gender

  18. Rates of spontaneous mutation among RNA viruses.

    PubMed Central

    Drake, J W

    1993-01-01

    Simple methods are presented to estimate rates of spontaneous mutation from mutant frequencies and population parameters in RNA viruses. Published mutant frequencies yield a wide range of mutation rates per genome per replication, mainly because mutational targets have usually been small and, thus, poor samples of the mutability of the average base. Nevertheless, there is a clear central tendency for lytic RNA viruses (bacteriophage Q beta, poliomyelitis, vesicular stomatitis, and influenza A) to display rates of spontaneous mutation of approximately 1 per genome per replication. This rate is some 300-fold higher than previously reported for DNA-based microbes. Lytic RNA viruses thus mutate at a rate close to the maximum value compatible with viability. Retroviruses (spleen necrosis, murine leukemia, Rous sarcoma), however, mutate at an average rate about an order of magnitude lower than lytic RNA viruses. PMID:8387212

  19. Quasispecies and virus.

    PubMed

    Domingo, Esteban; Perales, Celia

    2018-05-01

    Quasispecies theory has been instrumental in the understanding of RNA virus population dynamics because it considered for the first time mutation as an integral part of the replication process. The key influences of quasispecies theory on experimental virology have been: (1) to disclose the mutant spectrum nature of viral populations and to evaluate its consequences; (2) to unveil collective properties of genome ensembles that can render a mutant spectrum a unit of selection; and (3) to identify new vulnerability points of pathogenic RNA viruses on three fronts: the need to apply multiple selective constraints (in the form of drug combinations) to minimize selection of treatment-escape variants, to translate the error threshold concept into antiviral designs, and to construct attenuated vaccine viruses through alterations of viral polymerase copying fidelity or through displacements of viral genomes towards unfavorable regions of sequence space. These three major influences on the understanding of viral pathogens preceded extensions of quasispecies to non-viral systems such as bacterial and tumor cell collectivities and prions. These developments are summarized here.

  20. Chandipura virus infection causing encephalitis in a tribal population of Odisha in eastern India.

    PubMed

    Dwibedi, Bhagirathi; Sabat, Jyotsnamayee; Hazra, Rupenangshu K; Kumar, Anu; Dinesh, Diwakar Singh; Kar, Shantanu K

    2015-01-01

    The sudden death of 10 children in a tribal village of Kandhamal district, Odisha in eastern India led to this investigation. We conducted a door-to-door survey to identify cases. Antibodies for Chandipura, Japanese encephalitis, dengue, chikungunya and West Nile viruses were tested by ELISA in probable cases. Chandipura virus RNA was tested from both human blood samples and sand flies by reverse transcriptase polymerase chain reaction. We conducted vector surveys in domestic and peridomestic areas, and collected sand flies. Entomological investigations revealed the presence of Phlebotomus argentipes and Sergentomiya sp. Thirty-five patients presented with fever, 12 of them had altered sensorium including 4 who had convulsions. The blood samples of 21 patients were tested; four samples revealed Chandipura virusspecific IgM antibody. Chandipura virus infection causing encephalitis affected this tribal population in eastern India at 1212 m above sea level. Copyright 2015, NMJI.