Science.gov

Sample records for mutant chikungunya virus

  1. Chikungunya Virus

    MedlinePlus

    ... is key! Prevent Infection. Use mosquito repellent. Chikungunya Virus Distribution Chikungunya in the U.S. What's New Surveillance ... Clinical Challenge For Travelers CDC Travelers' Health Chikungunya Virus Home Prevention Transmission Symptoms & Treatment Geographic Distribution Chikungunya ...

  2. Chikungunya virus

    MedlinePlus

    ... 7 days after being bitten by an infected mosquito. The disease is easily spread. Most people who ... and birdbaths. If sleeping outside, sleep under a mosquito net. If you get chikungunya, try to avoid ...

  3. Chikungunya Virus, Southeastern France

    PubMed Central

    Caro, Valérie; Plumet, Sébastien; Thiberge, Jean-Michel; Souarès, Yvan; Failloux, Anna-Bella; Tolou, Hugues J.; Budelot, Michel; Cosserat, Didier; Leparc-Goffart, Isabelle; Desprès, Philippe

    2011-01-01

    In September 2010, autochthonous transmission of chikungunya virus was recorded in southeastern France, where the Aedes albopictus mosquito vector is present. Sequence analysis of the viral genomes of imported and autochthonous isolates indicated new features for the potential emergence and spread of the virus in Europe. PMID:21529410

  4. [The Chikungunya virus].

    PubMed

    Nakouné, E; Finance, C; Le Faou, A; Rihn, B

    2007-01-01

    Chikungunya virus (CHIKV), a member of the Alphavirus genus, represents a real public health problem in tropical regions of the Southeast Asia and Africa. It is transmitted to the man by Aedes mosquitoes and the illness, known as Chikungunya, is characterized by fever, eruptions and invalidating arthralgia. An increased surveillance in tropical and subtropical areas is necessary, as far as we have noticed recently the emergence of this new disease in regions where it had never existed before. The epidemic context is of a high importance for diagnosis. It is very important to know the clinical characteristics of the infection, to detect forms rarely or never described previously. Permanence of a highly technical core in specialized laboratories will allow, fast, specific and differential diagnosis. The knowledge of the epidemiological chain of transmission from reservoir, still unknown, to the host aims to protect populations by limiting the risks of exposure when it is possible. The only prevention measures available are individual protection against mosquitoes and antivectorial fight, in the absence of specific antiviral treatment and vaccine.

  5. Transplacental Chikungunya Virus Antibody Kinetics, Thailand

    PubMed Central

    Endy, Timothy P.; Simasathien, Sriluck; Kerdpanich, Angkool; Polprasert, Napuschon; Aree, Chanchai; Vaughn, David W.; Nisalak, Ananda

    2006-01-01

    Antibodies to chikungunya virus were detected by hemagglutination-inhibition assay in 33.6% of 2,000 infants' cord sera at delivery. Follow-up of 24 seropositive infants showed that the half-life of antibody persistence was 35.5 days. Chikungunya virus infection is common in Thailand, and routine use of diagnostic assays is needed. PMID:17283634

  6. Antiviral Perspectives for Chikungunya Virus

    PubMed Central

    Cherian, Sarah

    2014-01-01

    Chikungunya virus (CHIKV) is a mosquito-borne pathogen that has a major health impact in humans and causes acute febrile illness in humans accompanied by joint pains and, in many cases, persistent arthralgia lasting for weeks to years. CHIKV reemerged in 2005-2006 in several parts of the Indian Ocean islands and India after a gap of 32 years, causing millions of cases. The re-emergence of CHIKV has also resulted in numerous outbreaks in several countries in the eastern hemisphere, with a threat to further expand in the near future. However, there is no vaccine against CHIKV infection licensed for human use, and therapy for CHIKV infection is still mainly limited to supportive care as antiviral agents are yet in different stages of testing or development. In this review we explore the different perspectives for chikungunya treatment and the effectiveness of these treatment regimens and discuss the scope for future directions. PMID:24955364

  7. Neurologic Manifestation of Chikungunya Virus.

    PubMed

    Brizzi, Kate

    2017-02-01

    Chikungunya virus (CHIKV) is a RNA arbovirus that typically causes fevers and arthralgias, but reports of neurologic findings have become increasingly common. This article reviews our current understanding of CHIKV-associated neurologic manifestations. In the last 5 years, CHIKV endemicity has spread to the Americas and the number of cases of CHIKV-related disease has dramatically increased. Evidence suggests increasing neurovirulence of the virus, particularly among the critically ill. The spectrum of neurologic manifestations of the disease includes encephalitis, myelitis, and Guillain-Barre syndrome, but isolated reports of cranial neuropathies and cognitive deficits associated with recent infection also are reported. Though neurologic symptoms associated with CHIKV remain relatively uncommon, their frequency appears to be increasing. Clinicians treating patients with neurologic symptoms from CHIKV endemic areas should be aware of the growing association between CHIKV and neurologic sequelae to help guide diagnostics. Research into the optimal treatment of the disease is needed to inform treatment practices.

  8. Characterization of Reemerging Chikungunya Virus

    PubMed Central

    Sourisseau, Marion; Schilte, Clémentine; Casartelli, Nicoletta; Trouillet, Céline; Guivel-Benhassine, Florence; Rudnicka, Dominika; Sol-Foulon, Nathalie; Roux, Karin Le; Prevost, Marie-Christine; Fsihi, Hafida; Frenkiel, Marie-Pascale; Blanchet, Fabien; Afonso, Philippe V; Ceccaldi, Pierre-Emmanuel; Ozden, Simona; Gessain, Antoine; Schuffenecker, Isabelle; Verhasselt, Bruno; Zamborlini, Alessia; Saïb, Ali; Rey, Felix A; Arenzana-Seisdedos, Fernando; Desprès, Philippe; Michault, Alain; Albert, Matthew L; Schwartz, Olivier

    2007-01-01

    An unprecedented epidemic of chikungunya virus (CHIKV) infection recently started in countries of the Indian Ocean area, causing an acute and painful syndrome with strong fever, asthenia, skin rash, polyarthritis, and lethal cases of encephalitis. The basis for chikungunya disease and the tropism of CHIKV remain unknown. Here, we describe the replication characteristics of recent clinical CHIKV strains. Human epithelial and endothelial cells, primary fibroblasts and, to a lesser extent, monocyte-derived macrophages, were susceptible to infection and allowed viral production. In contrast, CHIKV did not replicate in lymphoid and monocytoid cell lines, primary lymphocytes and monocytes, or monocyte-derived dendritic cells. CHIKV replication was cytopathic and associated with an induction of apoptosis in infected cells. Chloroquine, bafilomycin-A1, and short hairpin RNAs against dynamin-2 inhibited viral production, indicating that viral entry occurs through pH-dependent endocytosis. CHIKV was highly sensitive to the antiviral activity of type I and II interferons. These results provide a general insight into the interaction between CHIKV and its mammalian host. PMID:17604450

  9. Chikungunya virus infection: an overview.

    PubMed

    Caglioti, Claudia; Lalle, Eleonora; Castilletti, Concetta; Carletti, Fabrizio; Capobianchi, Maria Rosaria; Bordi, Licia

    2013-07-01

    Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus belonging to the Togaviridae family, first isolated in Tanzania in 1952. The main vectors are mosquitoes from the Aedes species. Recently, the establishment of an envelope mutation increased infectivity for A. albopictus. CHIKV has recently re-emerged causing millions of infections in countries around the Indian Ocean characterized by climate conditions favourable to high vector density. Importation of human cases to European regions with high density of suitable arthropod vectors (such as A. albopictus) may trigger autochthonous outbreaks. The clinical signs of CHIKV infection include non-specific flu-like symptoms, and a characteristic rash accompanied by joint pain that may last for a long time after the resolution of the infection. The death rate is not particularly high, but excess mortality has been observed in concomitance with large CHIKV outbreaks. Deregulation of innate defense mechanisms, such as cytokine inflammatory response, may participate in the main clinical signs of CHIKV infection, and the establishment of persistent (chronic) disease. There is no specific therapy, and prevention is the main countermeasure. Prevention is based on insect control and in avoiding mosquito bites in endemic countries. Diagnosis is based on the detection of virus by molecular methods or by virus culture on the first days of infection, and by detection of an immune response in later stages. CHIKV infection must be suspected in patients with compatible clinical symptoms returning from epidemic/endemic areas. Differential diagnosis should take into account the cross-reactivity with other viruses from the same antigenic complex (i.e. O'nyong-nyong virus).

  10. The medicinal chemistry of Chikungunya virus.

    PubMed

    da Silva-Júnior, Edeildo F; Leoncini, Giovanni O; Rodrigues, Érica E S; Aquino, Thiago M; Araújo-Júnior, João X

    2017-08-15

    Arthropod-borne viruses (arboviruses) are an important threat to human and animal health globally. Among these, zoonotic diseases account for billions of cases of human illness and millions of deaths every year, representing an increasing public health problem. Chikungunya virus belongs to the genus Alphavirus of the family Togariridae, and is transmitted mainly by the bite of female mosquitoes of the Aedes aegypti and/or A. albopictus species. The focus of this review will be on the medicinal chemistry of Chikungunya virus, including synthetic and natural products, as well as rationally designed compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. New approaches to chikungunya virus vaccine development.

    PubMed

    Garcia, Alexis; Diego, Lema; Judith, Barroso

    2015-01-01

    Chikungunya virus (CHIKV) is a mosquito-borne human pathogen that affects millions of individuals each year by causing non-specific flu-like symptoms, with a characteristic rash accompanied by joint pain that may last for a long time after the resolution of the infection. Despite intense research efforts, no approved vaccine or antiviral therapy is yet available. This review is based on articles retrieved by PubMed and clinical trials since 1980 to present. Virus complexity, protective and non-protective immune responses against the virus, and the most important a new patented approaches for Chikungunya vaccine development are discussed.

  12. Reemergence of Chikungunya Virus in Cambodia

    PubMed Central

    Duong, Veasna; Andries, Anne-Claire; Ngan, Chantha; Sok, Touch; Richner, Beat; Asgari-Jirhandeh, Nima; Bjorge, Steve; Huy, Rekol; Ly, Sovann; Laurent, Denis; Hok, Bunheng; Roces, Maria Concepcion; Ong, Sivuth; Char, Meng Chuor; Deubel, Vincent; Tarantola, Arnaud

    2012-01-01

    Chikungunya virus (CHIKV), probably Asian genotype, was first detected in Cambodia in 1961. Despite no evidence of acute or recent CHIKV infections since 2000, real-time reverse transcription PCR of serum collected in 2011 detected CHIKV, East Central South African genotype. Spatiotemporal patterns and phylogenetic clustering indicate that the virus probably originated in Thailand. PMID:23171736

  13. Chronic arthritis in chikungunya virus infection.

    PubMed

    Mateo, Lourdes; Roure, Silvia

    2017-07-24

    Chikungunya virus infection causes arthralgia and arthritis in the acute phase of the disease but, in more than half of the cases, musculoskeletal manifestations can be prolonged over time and, in some cases, become chronic. Although polyarthralgia is the most frequent chronic manifestation, forms with polyarthritis, tenosynovitis and enthesopathy are also common. To analyze the clinical characteristics of patients with persistent articular manifestations after infection with the Chikungunya virus. Report of 3 cases of chronic arthritis after infection with chikungunya virus diagnosed at outpatient care in a university hospital of Catalonia, all of them imported after exposure in areas of epidemic infection between 2013-2015. All three patients had inflammatory joint pain for more than one year after acute disease (3, 2 and 1 years, respectively). In all cases, it appeared as polyarthritis with involvement of small joints of hands and feet (pseudorheumatoid arthritis-like). Laboratory tests showed a slight elevation of acute phase reactants, and analyses for immune markers were negative. Two of the patients required treatment with glucocorticoids and hydroxychloroquine. The course led to slow clinical improvement, but only one of them came to be completely asymptomatic. In the differential diagnosis of chronic polyarthritis, Chikungunya virus disease should also be considered in areas in which it is not endemic. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Reumatología y Colegio Mexicano de Reumatología. All rights reserved.

  14. Infectious Viral Quantification of Chikungunya Virus-Virus Plaque Assay.

    PubMed

    Kaur, Parveen; Lee, Regina Ching Hua; Chu, Justin Jang Hann

    2016-01-01

    The plaque assay is an essential method for quantification of infectious virus titer. Cells infected with virus particles are overlaid with a viscous substrate. A suitable incubation period results in the formation of plaques, which can be fixed and stained for visualization. Here, we describe a method for measuring Chikungunya virus (CHIKV) titers via virus plaque assays.

  15. Myeloradiculopathy associated with chikungunya virus infection.

    PubMed

    Bank, Anna M; Batra, Ayush; Colorado, Rene A; Lyons, Jennifer L

    2016-02-01

    Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that is endemic to parts of Africa, South and Southeast Asia, and more recently the Caribbean. Patients typically present with fever, rash, and arthralgias, though neurologic symptoms, primarily encephalitis, have been described. We report the case of a 47-year-old woman who was clinically diagnosed with CHIKV while traveling in the Dominican Republic and presented 10 days later with left lower extremity weakness, a corresponding enhancing thoracic spinal cord lesion, and positive CHIKV serologies. She initially responded to corticosteroids, followed by relapsing symptoms and gradual clinical improvement. The time lapse between acute CHIKV infection and the onset of myelopathic sequelae suggests an immune-mediated phenomenon rather than direct activity of the virus itself. Chikungunya virus should be considered in the differential diagnosis of myelopathy in endemic areas. The progression of symptoms despite corticosteroid administration suggests more aggressive immunomodulatory therapies may be warranted at disease onset.

  16. Chikungunya.

    PubMed

    Horwood, P F; Buchy, P

    2015-08-01

    Chikungunya is an acute viral disease characterised by fever and painful arthralgia. The arthritic symptoms associated with chikungunya can be debilitating and may persist for months or even years in some patients. Severe neurological complications such as encephalitis have also been reported during recent large outbreaks. The disease is caused by chikungunya virus (CHIKV), a mosquito-borne alphavirus from the Togaviridae family, which has recently emerged to become one of the most important exotic viral threats worldwide. Chikungunya is endemic throughout Africa, and over the past decade, it has also spread throughout the Indian Ocean, Asia, the South Pacific, southern Europe, the Caribbean and Central America. The rapid emergence of CHIKV has been linked to expansion of the mosquito vector species, Aedes aegypti and Ae. albopictus, throughout most tropical and subtropical regions of the world. Furthermore, mutations in some strains of CHIKV have been associated with increased transmissibility of the virus. The lack of a commercial vaccine and the failure of vector control strategies to limit the expansion of chikungunya have prompted the need for further options to prevent the spread of this disease.

  17. Complete genome sequence of chikungunya virus isolated in the Philippines.

    PubMed

    Kawashima, Kent D; Suarez, Lady-Anne C; Labayo, Hannah Karen M; Liles, Veni R; Salvoza, Noel C; Klinzing, David C; Daroy, Maria Luisa G; Matias, Ronald R; Natividad, Filipinas F

    2014-06-26

    Chikungunya virus is an alphavirus of the Togaviridae family, which causes a febrile illness with arthralgia in humans. We report here on the complete genome sequence of chikungunya virus strain CHIKV-13-112A isolated from a patient in the Philippines who was suspected to have dengue virus. Phylogenetic analysis revealed that the strain is of the Asian genotype.

  18. Complete Genome Sequence of Chikungunya Virus Isolated in the Philippines

    PubMed Central

    Kawashima, Kent D.; Suarez, Lady-Anne C.; Labayo, Hannah Karen M.; Liles, Veni R.; Salvoza, Noel C.; Klinzing, David C.; Natividad, Filipinas F.

    2014-01-01

    Chikungunya virus is an alphavirus of the Togaviridae family, which causes a febrile illness with arthralgia in humans. We report here on the complete genome sequence of chikungunya virus strain CHIKV-13-112A isolated from a patient in the Philippines who was suspected to have dengue virus. Phylogenetic analysis revealed that the strain is of the Asian genotype. PMID:24970822

  19. The Global Virus Network: Challenging chikungunya

    PubMed Central

    McSweegan, Edward; Weaver, Scott C.; Lecuit, Marc; Frieman, Matthew; Morrison, Thomas E.; Hrynkow, Sharon

    2016-01-01

    The recent spread of chikungunya virus to the Western Hemisphere, together with the ongoing Ebola epidemic in West Africa, have highlighted the importance of international collaboration in the detection and management of disease outbreaks. In response to this need, the Global Virus Network (GVN) was formed in 2011. The GVN is a coalition of leading medical virologists in 34 affiliated laboratories in 24 countries, who collaborate to share their resources and expertise. The GVN supports research, promotes training for young scientists, serves as a technical resource for governments, businesses and international organizations, facilitates international scientific cooperation, and advocates for funding and evidence-based public policies. In response to the spread of chikungunya, the GVN formed a task force to identify research gaps and opportunities, including models of infection and disease, candidate vaccines and antivirals, epidemiology and vector control measures. Its members also serve as authoritative sources of information for the public, press, and policy-makers. This article forms part of a symposium in Antiviral Research on “Chikungunya discovers the New World”. PMID:26071007

  20. Antiviral activity of silymarin against chikungunya virus

    PubMed Central

    Lani, Rafidah; Hassandarvish, Pouya; Chiam, Chun Wei; Moghaddam, Ehsan; Chu, Justin Jang Hann; Rausalu, Kai; Merits, Andres; Higgs, Stephen; Vanlandingham, Dana; Abu Bakar, Sazaly; Zandi, Keivan

    2015-01-01

    The mosquito-borne chikungunya virus (CHIKV) causes chikungunya fever, with clinical presentations such as severe back and small joint pain, and debilitating arthritis associated with crippling pains that persist for weeks and even years. Although there are several studies to evaluate the efficacy of drugs against CHIKV, the treatment for chikungunya fever is mainly symptom-based and no effective licensed vaccine or antiviral are available. Here, we investigated the antiviral activity of three types of flavonoids against CHIKV in vitro replication. Three compounds: silymarin, quercetin and kaempferol were evaluated for their in vitro antiviral activities against CHIKV using a CHIKV replicon cell line and clinical isolate of CHIKV of Central/East African genotype. A cytopathic effect inhibition assay was used to determine their activities on CHIKV viral replication and quantitative reverse transcription PCR was used to calculate virus yield. Antiviral activity of effective compound was further investigated by evaluation of CHIKV protein expression using western blotting for CHIKV nsP1, nsP3, and E2E1 proteins. Briefly, silymarin exhibited significant antiviral activity against CHIKV, reducing both CHIKV replication efficiency and down-regulating production of viral proteins involved in replication. This study may have important consequence for broaden the chance of getting the effective antiviral for CHIKV infection. PMID:26078201

  1. Chikungunya virus and prospects for a vaccine

    PubMed Central

    Weaver, Scott C; Osorio, Jorge E; Livengood, Jill A; Chen, Rubing; Stinchcomb, Dan T

    2013-01-01

    In 2004, chikungunya virus (CHIKV) re-emerged from East Africa to cause devastating epidemics of debilitating and often chronic arthralgia that have affected millions of people in the Indian Ocean Basin and Asia. More limited epidemics initiated by travelers subsequently occurred in Italy and France, as well as human cases exported to most regions of the world, including the Americas where CHIKV could become endemic. Because CHIKV circulates during epidemics in an urban mosquito–human cycle, control of transmission relies on mosquito abatement, which is rarely effective. Furthermore, there is no antiviral treatment for CHIKV infection and no licensed vaccine to prevent disease. Here, we discuss the challenges to the development of a safe, effective and affordable chikungunya vaccine and recent progress toward this goal. PMID:23151166

  2. Thiazolidone derivatives as inhibitors of chikungunya virus.

    PubMed

    Jadav, Surender Singh; Sinha, Barij Nayan; Hilgenfeld, Rolf; Pastorino, Boris; de Lamballerie, Xavier; Jayaprakash, Venkatesan

    2015-01-07

    A series of arylalkylidene derivatives of 1,3-thiazolidin-4-one (1-20) were synthesized and tested for their antiviral activity against chikungunya virus (LR2006_OPY1) in Vero cell culture by CPE reduction assay. Five compounds (7-9, 16 and 19) were identified to have anti-ChikV activity at lower micro molar concentration. The compounds 7, 8, 9, 16 and 19 inhibited the virus at 0.42, 4.2, 3.6, 40.1 and 6.8 μM concentrations respectively. Molecular docking simulation has been carried out using the available X-ray crystal structure of the ChikV nsp2 protease, in order to elucidate the possible mechanism of action. Interaction of ligands with ChikV nsp2 protease (PDB Code: 3TRK) suggested the possible mechanism of protease inhibition to act as potent anti-ChikV agents.

  3. Therapeutics and vaccines against chikungunya virus.

    PubMed

    Ahola, Tero; Couderc, Therese; Courderc, Therese; Ng, Lisa F P; Hallengärd, David; Powers, Ann; Lecuit, Marc; Esteban, Mariano; Merits, Andres; Roques, Pierre; Liljeström, Peter

    2015-04-01

    Currently, there are no licensed vaccines or therapies available against chikungunya virus (CHIKV), and these were subjects discussed during a CHIKV meeting recently organized in Langkawi, Malaysia. In this review, we chart the approaches taken in both areas. Because of a sharp increase in new data in these fields, the present paper is complementary to previous reviews by Weaver et al. in 2012 and Kaur and Chu in 2013 . The most promising antivirals so far discovered are reviewed, with a special focus on the virus-encoded replication proteins as potential targets. Within the vaccines in development, our review emphasizes the various strategies in parallel development that are unique in the vaccine field against a single disease.

  4. Mapping interactions of Chikungunya virus nonstructural proteins.

    PubMed

    Sreejith, R; Rana, Jyoti; Dudha, Namrata; Kumar, Kapila; Gabrani, Reema; Sharma, Sanjeev K; Gupta, Amita; Vrati, Sudhanshu; Chaudhary, Vijay K; Gupta, Sanjay

    2012-10-01

    The four nonstructural proteins (nsPs1-4) of Chikungunya virus (CHIKV) play important roles involving enzymatic activities and specific interactions with both viral and host components, during different stages of viral pathogenesis. Elucidation of the presence and/or absence of interactions among nsPs in a systematic manner is thus of scientific interest. In the current study, each pair-wise combination among the four nonstructural proteins of CHIKV was systematically analyzed for possible interactions. Six novel protein interactions were identified for CHIKV, using systems such as yeast two-hybrid, GST pull down and ELISA, three of which have not been previously reported for the genus Alphavirus. These interactions form a network of organized associations that suggest the spatial arrangement of nonstructural proteins in the late replicase complex. The study identified novel interactions as well as concurred with previously described associations in related alphaviruses.

  5. Evidence for homologous recombination in Chikungunya Virus.

    PubMed

    Casal, Pablo E; Chouhy, Diego; Bolatti, Elisa M; Perez, Germán R; Stella, Emma J; Giri, Adriana A

    2015-04-01

    Chikungunya Virus (CHIKV), a mosquito-transmitted alphavirus, causes acute fever and joint pain in humans. Recently, endemic CHIKV infection outbreaks have jeopardized public health in wider geographical regions. Here, we analyze the phylogenetic associations of CHIKV and explore the potential recombination events on 152 genomic isolates deposited in GenBank database. The CHIKV genotypes [West African, Asian, East/Central/South African (ECSA)], and a clear division of ECSA clade into three sub-groups (I-II-III), were defined by Bayesian analysis; similar results were obtained using E1 gene sequences. A nucleotide identity-based approach is provided to facilitate CHIKV classification within ECSA clade. Using seven methods to detect recombination, we found a statistically significant event (p-values range: 1.14×10(-7)-4.45×10(-24)) located within the nsP3 coding region. This finding was further confirmed by phylogenetic networks (PHI Test, p=0.004) and phylogenetic tree incongruence analysis. The recombinant strain, KJ679578/India/2011 (ECSA III), derives from viruses of ECSA III and ECSA I. Our study demonstrates that recombination is an additional mechanism of genetic diversity in CHIKV that might assist in the cross-species transmission process.

  6. Chikungunya virus and its mosquito vectors.

    PubMed

    Higgs, Stephen; Vanlandingham, Dana

    2015-04-01

    Chikungunya virus (CHIKV), a mosquito-borne alphavirus of increasing public health significance, has caused large epidemics in Africa and the Indian Ocean basin; now it is spreading throughout the Americas. The primary vectors of CHIKV are Aedes (Ae.) aegypti and, after the introduction of a mutation in the E1 envelope protein gene, the highly anthropophilic and geographically widespread Ae. albopictus mosquito. We review here research efforts to characterize the viral genetic basis of mosquito-vector interactions, the use of RNA interference and other strategies for the control of CHIKV in mosquitoes, and the potentiation of CHIKV infection by mosquito saliva. Over the past decade, CHIKV has emerged on a truly global scale. Since 2013, CHIKV transmission has been reported throughout the Caribbean region, in North America, and in Central and South American countries, including Brazil, Columbia, Costa Rica, El Salvador, French Guiana, Guatemala, Guyana, Nicaragua, Panama, Suriname, and Venezuela. Closing the gaps in our knowledge of driving factors behind the rapid geographic expansion of CHIKV should be considered a research priority. The abundance of multiple primate species in many of these countries, together with species of mosquito that have never been exposed to CHIKV, may provide opportunities for this highly adaptable virus to establish sylvatic cycles that to date have not been seen outside of Africa. The short-term and long-term ecological consequences of such transmission cycles, including the impact on wildlife and people living in these areas, are completely unknown.

  7. Activity of andrographolide against chikungunya virus infection

    PubMed Central

    Wintachai, Phitchayapak; Kaur, Parveen; Lee, Regina Ching Hua; Ramphan, Suwipa; Kuadkitkan, Atichat; Wikan, Nitwara; Ubol, Sukathida; Roytrakul, Sittiruk; Chu, Justin Jang Hann; Smith, Duncan R.

    2015-01-01

    Chikungunya virus (CHIKV) is a re-emerging mosquito-borne alphavirus that has recently engendered large epidemics around the world. There is no specific antiviral for treatment of patients infected with CHIKV, and development of compounds with significant anti-CHIKV activity that can be further developed to a practical therapy is urgently required. Andrographolide is derived from Andrographis paniculata, a herb traditionally used to treat a number of conditions including infections. This study sought to determine the potential of andrographolide as an inhibitor of CHIKV infection. Andrographolide showed good inhibition of CHIKV infection and reduced virus production by approximately 3log10 with a 50% effective concentration (EC50) of 77 μM without cytotoxicity. Time-of-addition and RNA transfection studies showed that andrographolide affected CHIKV replication and the activity of andrographolide was shown to be cell type independent. This study suggests that andrographolide has the potential to be developed further as an anti-CHIKV therapeutic agent. PMID:26384169

  8. Molecular Characterization of Chikungunya Virus, Philippines, 2011–2013

    PubMed Central

    Sy, Ava Kristy; Saito-Obata, Mariko; Medado, Inez Andrea; Tohma, Kentaro; Dapat, Clyde; Segubre-Mercado, Edelwisa; Tandoc, Amado; Lupisan, Socorro

    2016-01-01

    During 2011–2013, a nationwide outbreak of chikungunya virus infection occurred in the Philippines. The Asian genotype was identified as the predominant genotype; sporadic cases of the East/Central/South African genotype were detected in Mindanao. Further monitoring is needed to define the transmission pattern of this virus in the Philippines. PMID:27088593

  9. Co-infections with Chikungunya and Dengue Viruses, Guatemala, 2015

    PubMed Central

    Signor, Leticia del Carmen Castillo; Williams, Christopher; Donis, Evelin; Cuevas, Luis E.; Adams, Emily R.

    2016-01-01

    We screened serum samples referred to the national reference laboratory in Guatemala that were positive for chikungunya or dengue viruses in June 2015. Co-infection with both viruses was detected by reverse transcription PCR in 46 (32%) of 144 samples. Specimens should be tested for both arboviruses to detect co-infections. PMID:27767914

  10. Molecular Characterization of Chikungunya Virus, Philippines, 2011-2013.

    PubMed

    Sy, Ava Kristy; Saito-Obata, Mariko; Medado, Inez Andrea; Tohma, Kentaro; Dapat, Clyde; Segubre-Mercado, Edelwisa; Tandoc, Amado; Lupisan, Socorro; Oshitani, Hitoshi

    2016-05-01

    During 2011-2013, a nationwide outbreak of chikungunya virus infection occurred in the Philippines. The Asian genotype was identified as the predominant genotype; sporadic cases of the East/Central/South African genotype were detected in Mindanao. Further monitoring is needed to define the transmission pattern of this virus in the Philippines.

  11. Evaluation of Commercially Available Serologic Diagnostic Tests for Chikungunya Virus

    PubMed Central

    Flusin, Olivier; Panella, Amanda; Tenebray, Bernard; Lanciotti, Robert; Leparc-Goffart, Isabelle

    2014-01-01

    Chikungunya virus (CHIKV) is present or emerging in dengue virus–endemic areas. Infections caused by these viruses share some common signs/symptoms, but prognosis, patient care, and persistent symptoms differ. Thus, accurate diagnostic methods are essential for differentiating the infections. We evaluated 4 CHIKV serologic diagnostic tests, 2 of which showed poor sensitivity and specificity. PMID:25418184

  12. Globalization of Chikungunya Virus: Threat to the U.S.

    USDA-ARS?s Scientific Manuscript database

    In August, 2004, Kenyan health authorities and partners identified chikungunya virus as the cause of the febrile epidemic in a coastal island city. The virus is transmitted by Aedes mosquitoes in tropical Africa and Asia; the fever is rarely fatal but can incapacitate for weeks. Control was delayed,...

  13. Prophylaxis and therapy for Chikungunya virus infection.

    PubMed

    Couderc, Thérèse; Khandoudi, Nassirah; Grandadam, Marc; Visse, Catherine; Gangneux, Nicolas; Bagot, Sébastien; Prost, Jean-François; Lecuit, Marc

    2009-08-15

    Chikungunya virus (CHIKV) is a recently reemerged arbovirus responsible for a massive outbreak of infection in the Indian Ocean region and India that has a very significant potential to spread globally because of the worldwide distribution of its mosquito vectors. CHIKV induces a usually self-limited disease in humans that is characterized by fever, arthralgia, myalgia, and rash; however, cases of severe CHIKV infection have recently been described, particularly in adults with underlying condition and neonates born to viremic mothers. Human polyvalent immunoglobulins were purified from plasma samples obtained from donors in the convalescent phase of CHIKV infection, and the preventive and curative effects of these immunoglobulins were investigated in 2 mouse models of CHIKV infection that we developed. CHIKV immunoglobulins contain anti-CHIKV antibodies and exhibit a high in vitro neutralizing activity and a powerful prophylactic and therapeutic efficacy against CHIKV infection in vivo, including in the neonate. Administration of CHIKV immunoglobulins may constitute a safe and efficacious prevention strategy and treatment for individuals exposed to CHIKV who are at risk of severe infection, such as neonates born to viremic mothers and adults with underlying conditions. These results provide a proof-of-concept for purifying human immunoglobulins from plasma samples from patients in the convalescent phase of an emerging infectious disease for which neither prevention nor treatment is available.

  14. Detection of chikungunya virus in saliva and urine.

    PubMed

    Musso, Didier; Teissier, Anita; Rouault, Eline; Teururai, Sylviane; de Pina, Jean-Jacques; Nhan, Tu-Xuan

    2016-06-16

    Saliva and urine have been used for arthropod-borne viruses molecular detection but not yet for chikungunya virus (CHIKV). We investigated the use of saliva and urine for molecular detection of CHIKV during the French Polynesian outbreak. During the French Polynesian chikungunya outbreak (2014-2015), we collected the same day blood and saliva samples from 60 patients with probable chikungunya (47 during the 1st week post symptoms onset and 13 after), urine was available for 39 of them. All samples were tested using a CHIKV reverse-transcription PCR. Forty eight patients had confirmed chikungunya. For confirmed chikungunya presenting during the 1st week post symptoms onset, CHIKV RNA was detected from 86.1 % (31/36) of blood, 58.3 % (21/36) of saliva and 8.3 % (2/24) of urine. Detection rate of CHIKV RNA was significantly higher in blood compared to saliva. For confirmed chikungunya presenting after the 1st week post symptoms onset, CHIKV RNA was detected from 8.3 % (1/12) of blood, 8.3 % (1/12) of saliva and 0 % (0/8) of urine. In contrast to Zika virus (ZIKV), saliva did not increased the detection rate of CHIKV RNA during the 1st week post symptoms onset. In contrast to ZIKV, dengue virus and West Nile virus, urine did not enlarged the window of detection of CHIKV RNA after the 1st week post symptoms onset. Saliva can be used for molecular detection of CHIKV during the 1st week post symptoms onset only if blood is impossible to collect but with a lower sensitivity compared to blood.

  15. Single-Reaction Multiplex Reverse Transcription PCR for Detection of Zika, Chikungunya, and Dengue Viruses.

    PubMed

    Waggoner, Jesse J; Gresh, Lionel; Mohamed-Hadley, Alisha; Ballesteros, Gabriela; Davila, Maria Jose Vargas; Tellez, Yolanda; Sahoo, Malaya K; Balmaseda, Angel; Harris, Eva; Pinsky, Benjamin A

    2016-07-01

    Clinical manifestations of Zika virus, chikungunya virus, and dengue virus infections can be similar. To improve virus detection, streamline molecular workflow, and decrease test costs, we developed and evaluated a multiplex real-time reverse transcription PCR for these viruses.

  16. Surveillance for Chikungunya and Dengue During the First Year of Chikungunya Virus Circulation in Puerto Rico.

    PubMed

    Sharp, Tyler M; Ryff, Kyle R; Alvarado, Luisa; Shieh, Wun-Ju; Zaki, Sherif R; Margolis, Harold S; Rivera-Garcia, Brenda

    2016-12-15

    After chikungunya virus (CHIKV) transmission was detected in Puerto Rico in May 2014, multiple surveillance systems were used to describe epidemiologic trends and CHIKV-associated disease. Of 28 327 cases reported via passive surveillance, 6472 were tested for evidence of CHIKV infection, and results for 4399 (68%) were positive. Of 250 participants in household cluster investigations, 70 (28%) had evidence of recent CHIKV infection. Enhanced surveillance for chikungunya at 2 hospitals identified 1566 patients who tested positive for CHIKV, of whom 10.9% were hospitalized. Enhanced surveillance for fatal cases enabled identification of 31 cases in which CHIKV was detected in blood or tissue specimens. All surveillance systems detected a peak incidence of chikungunya in September 2014 and continued circulation in 2015. Concomitant surveillance for dengue demonstrated low incidence, which had decreased before CHIKV was introduced. Multifaceted chikungunya surveillance in Puerto Rico resolved gaps in traditional passive surveillance and enabled a holistic description of the spectrum of disease associated with CHIKV infection. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  17. Monoclonal Antibodies as Prophylactic and Therapeutic Agents Against Chikungunya Virus.

    PubMed

    Clayton, April M

    2016-12-15

    Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that is responsible for considerable epidemics worldwide and recently emerged in the Americas in 2013. CHIKV may cause long-lasting arthralgia after acute infection. With currently no licensed vaccines or antivirals, the design of effective therapies to prevent or treat CHIKV infection is of utmost importance and will be facilitated by increased understanding of the dynamics of chikungunya. In this article, monoclonal antibodies against CHIKV as viable prophylactic and therapeutic agents will be discussed. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  18. Neutralization Assay for Chikungunya Virus Infection: Plaque Reduction Neutralization Test.

    PubMed

    Azami, Nor Azila Muhammad; Moi, Meng Ling; Takasaki, Tomohiko

    2016-01-01

    Neutralization assay is a technique that detects and quantifies neutralizing antibody in serum samples by calculating the percentage of reduction of virus activity, as the concentration of virus used is usually constant. Neutralizing antibody titer is conventionally determined by calculating the percentage reduction in total virus infectivity by counting and comparing number of plaques (localized area of infection due to cytopathic effect) with a standard amount of virus. Conventional neutralizing test uses plaque-reduction neutralization test (PRNT) to determine neutralizing antibody titers against Chikungunya virus (CHIKV). Here we describe the plaque reduction neutralization assay (PRNT) using Vero cell lines to obtain neutralizing antibody titers.

  19. Chikungunya

    MedlinePlus

    ... risk factor for chikungunya. The disease occurs in Africa, Asia and the Indian subcontinent. In 2007, disease transmission was reported for the first time in Europe, in a localized outbreak in ...

  20. Chikungunya

    MedlinePlus

    ... 7 days after being bitten by an infected mosquito. The most common symptoms are fever and joint ... way to prevent chikungunya infection is to avoid mosquito bites: Use insect repellent Wear clothes that cover ...

  1. Chikungunya Virus in North-Eastern Italy: A Seroprevalence Survey

    PubMed Central

    Moro, Maria Luisa; Gagliotti, Carlo; Silvi, Giuliano; Angelini, Raffaella; Sambri, Vittorio; Rezza, Giovanni; Massimiliani, Erika; Mattivi, Andrea; Grilli, Elisa; Finarelli, Alba Carola; Spataro, Nadir; Pierro, Anna Maria; Seyler, Thomas; Macini, Pierluigi

    2010-01-01

    After an outbreak of Chikungunya infection in Emilia-Romagna Region (North-eastern Italy), a survey was performed to estimate the seroprevalence of antibody to Chikungunya virus and the proportion of asymptomatic infections, to identify factors associated with infection, and evaluate the performance of the surveillance system. The method used was a survey on a random sample of residents of the village with the largest number of reported cases. The prevalence was 10.2% (33 of 325), being higher in older people and males, and lower when window screens and insect repellents were used. Only 18% of infected persons were fully asymptomatic, 85% of the 27 symptomatic confirmed cases satisfied the surveillance case definition, and 63% of the persons meeting the criteria for suspect case were identified by the active surveillance system. This study provides basic parameters for modeling the transmission potential of outbreaks and planning control measures for Chikungunya infection in temperate settings. PMID:20207883

  2. Immunogenicity of Escherichia coli expressed envelope 2 protein of Chikungunya virus

    PubMed Central

    Tripathi, Nagesh K; Priya, Raj; Shrivastava, Ambuj

    2014-01-01

    Chikungunya fever, a re-emerging infection, is an arthropod-borne viral disease prevalent in different parts of the world, particularly Africa and South East Asia. Chikungunya virus envelope 2 protein is involved in binding to host receptors and it contains specific epitopes that elicit virus neutralizing antibodies. A highly immunogenic, recombinant Chikungunya virus envelope 2 protein was produced by bioreactor in Escherichia coli for development of a suitable diagnostic and vaccine candidate. This protein was refolded and further purified to achieve biologically active protein. The biological function of refolded and purified recombinant envelope 2 protein of Chikungunya virus was confirmed by its ability to generate envelope 2 specific antibodies with high titers in animal models. These findings suggest that recombinant envelope 2 protein of Chikungunya virus in combination with compatible adjuvant is highly immunogenic. Thus, recombinant envelope 2 protein can be a potential diagnostic reagent and vaccine candidate against Chikungunya virus infection. PMID:24637708

  3. Detection of Chikungunya Virus Antigen by a Novel Rapid Immunochromatographic Test

    PubMed Central

    Sasaki, Tadahiro; Masrinoul, Promsin; Chantawat, Nantarat; Yoksan, Sutee; Nitatpattana, Narong; Chusri, Sarunyou; Morales Vargas, Ronald E.; Grandadam, Marc; Brey, Paul T.; Soegijanto, Soegeng; Mulyantno, Kris Cahyo; Churrotin, Siti; Kotaki, Tomohiro; Faye, Oumar; Faye, Ousmane; Sow, Abdourahmane; Sall, Amadou Alpha; Puiprom, Orapim; Chaichana, Panjaporn; Kurosu, Takeshi; Kato, Seiji; Kosaka, Mieko; Ramasoota, Pongrama; Ikuta, Kazuyoshi

    2014-01-01

    Chikungunya fever is a mosquito-borne disease of key public health importance in tropical and subtropical countries. Although severe joint pain is the most distinguishing feature of chikungunya fever, diagnosis remains difficult because the symptoms of chikungunya fever are shared by many pathogens, including dengue fever. The present study aimed to develop a new immunochromatographic diagnosis test for the detection of chikungunya virus antigen in serum. Mice were immunized with isolates from patients with Thai chikungunya fever, East/Central/South African genotype, to produce mouse monoclonal antibodies against chikungunya virus. Using these monoclonal antibodies, a new diagnostic test was developed and evaluated for the detection of chikungunya virus. The newly developed diagnostic test reacted with not only the East/Central/South African genotype but also with the Asian and West African genotypes of chikungunya virus. Testing of sera from patients suspected to have chikungunya fever in Thailand (n = 50), Laos (n = 54), Indonesia (n = 2), and Senegal (n = 6) revealed sensitivity, specificity, and real-time PCR (RT-PCR) agreement values of 89.4%, 94.4%, and 91.1%, respectively. In our study using serial samples, a new diagnostic test showed high agreement with the RT-PCR within the first 5 days after onset. A rapid diagnostic test was developed using mouse monoclonal antibodies that react with chikungunya virus envelope proteins. The diagnostic accuracy of our test is clinically acceptable for chikungunya fever in the acute phase. PMID:25411170

  4. Detection of chikungunya virus antigen by a novel rapid immunochromatographic test.

    PubMed

    Okabayashi, Tamaki; Sasaki, Tadahiro; Masrinoul, Promsin; Chantawat, Nantarat; Yoksan, Sutee; Nitatpattana, Narong; Chusri, Sarunyou; Morales Vargas, Ronald E; Grandadam, Marc; Brey, Paul T; Soegijanto, Soegeng; Mulyantno, Kris Cahyo; Churrotin, Siti; Kotaki, Tomohiro; Faye, Oumar; Faye, Ousmane; Sow, Abdourahmane; Sall, Amadou Alpha; Puiprom, Orapim; Chaichana, Panjaporn; Kurosu, Takeshi; Kato, Seiji; Kosaka, Mieko; Ramasoota, Pongrama; Ikuta, Kazuyoshi

    2015-02-01

    Chikungunya fever is a mosquito-borne disease of key public health importance in tropical and subtropical countries. Although severe joint pain is the most distinguishing feature of chikungunya fever, diagnosis remains difficult because the symptoms of chikungunya fever are shared by many pathogens, including dengue fever. The present study aimed to develop a new immunochromatographic diagnosis test for the detection of chikungunya virus antigen in serum. Mice were immunized with isolates from patients with Thai chikungunya fever, East/Central/South African genotype, to produce mouse monoclonal antibodies against chikungunya virus. Using these monoclonal antibodies, a new diagnostic test was developed and evaluated for the detection of chikungunya virus. The newly developed diagnostic test reacted with not only the East/Central/South African genotype but also with the Asian and West African genotypes of chikungunya virus. Testing of sera from patients suspected to have chikungunya fever in Thailand (n = 50), Laos (n = 54), Indonesia (n = 2), and Senegal (n = 6) revealed sensitivity, specificity, and real-time PCR (RT-PCR) agreement values of 89.4%, 94.4%, and 91.1%, respectively. In our study using serial samples, a new diagnostic test showed high agreement with the RT-PCR within the first 5 days after onset. A rapid diagnostic test was developed using mouse monoclonal antibodies that react with chikungunya virus envelope proteins. The diagnostic accuracy of our test is clinically acceptable for chikungunya fever in the acute phase.

  5. Chikungunya virus isolation using simplified cell culture technique in Mauritius.

    PubMed

    Pyndiah, M N; Pursem, V; Meetoo, G; Daby, S; Ramuth, V; Bhinkah, P; Chuttoo, R; Paratian, U

    2012-03-01

    During the chikungunya outbreak of 2005 - 2006, the only laboratory facilities available in Mauritius were virus isolation in cell culture tubes and serology. The laboratory was submerged with large numbers of blood samples. Comparative isolation was made in human embryonic lung (HEL) and VERO cells grown in 96-well plate. Culture on HEL cells was found to be more sensitive and presence of cytopathic effect (CPE) was observed earlier than in VERO cells. Out of the 18 300 blood samples inoculated on HEL, 11 165 were positive. This virus isolation method was of great help for the surveillance and control of the vectors. In cases of an outbreak a cheap, rapid and simple method of isolating chikungunya virus is described.

  6. Assessment of flavaglines as potential chikungunya virus entry inhibitors.

    PubMed

    Wintachai, Phitchayapak; Thuaud, Frédéric; Basmadjian, Christine; Roytrakul, Sittiruk; Ubol, Sukathida; Désaubry, Laurent; Smith, Duncan R

    2015-03-01

    Chikungunya virus (CHIKV) is a re-emerging mosquito-borne alphavirus that recently caused large epidemics in islands in, and countries around, the Indian Ocean. There is currently no specific drug for therapeutic treatment or for use as a prophylactic agent against infection and no commercially available vaccine. Prohibitin has been identified as a receptor protein used by chikungunya virus to enter mammalian cells. Recently, synthetic sulfonyl amidines and flavaglines (FLs), a class of naturally occurring plant compounds with potent anti-cancer and cytoprotective and neuroprotective activities, have been shown to interact directly with prohibitin. This study therefore sought to determine whether three prohibitin ligands (sulfonyl amidine 1 m and the flavaglines FL3 and FL23) were able to inhibit CHIKV infection of mammalian Hek293T/17 cells. All three compounds inhibited infection and reduced virus production when cells were treated before infection but not when added after infection. Pretreatment of cells for only 15 minutes prior to infection followed by washing out of the compound resulted in significant inhibition of entry and virus production. These results suggest that further investigation of prohibitin ligands as potential Chikungunya virus entry inhibitors is warranted.

  7. Concentration of Rift Valley Fever and Chikungunya Viruses by Precipitation

    PubMed Central

    Klein, Frederick; Mahlandt, Bill G.; Cockey, Ralph R.; Lincoln, Ralph E.

    1970-01-01

    Simple and efficient methods for concentrating Rift Valley fever (RVF) virus and chikungunya (CHIK) virus are described. Ammonium sulfate, potassium sulfate, or alcohol was used as a precipitating agent and the precipitate was resuspended to volumes suitable for further processing and purification. The methods permitted concentration of live RVF virus and CHIK virus about 100-fold with negligible losses of virus. RVF virus retained a high level of infectivity with potassium aluminum sulfate and alcohol, but CHIK virus retained a higher infectivity level with ammonium sulfate than with potassium aluminum sulfate. The data indicate that serum plays an important role in the concentration of both viruses, at least when the sulfate methods are used. PMID:5494763

  8. Genetic characterization of Chikungunya virus in the Central African Republic.

    PubMed

    Desdouits, Marion; Kamgang, Basile; Berthet, Nicolas; Tricou, Vianney; Ngoagouni, Carine; Gessain, Antoine; Manuguerra, Jean-Claude; Nakouné, Emmanuel; Kazanji, Mirdad

    2015-07-01

    Chikungunya virus (CHIKV) is an alphavirus transmitted by the bite of mosquito vectors. Over the past 10 years, the virus has gained mutations that enhance its transmissibility by the Aedes albopictus vector, resulting in massive outbreaks in the Indian Ocean, Asia and Central Africa. Recent introduction of competent A. albopictus vectors into the Central African Republic (CAR) pose a threat of a Chikungunya fever (CHIKF) epidemic in this region. We undertook this study to assess the genetic diversity and background of CHIKV strains isolated in the CAR between 1975 and 1984 and also to estimate the ability of local strains to adapt to A. albopictus. Our results suggest that, local CHIKV strains have a genetic background compatible with quick adaptation to A. albopictus, as previously observed in other Central African countries. Intense surveillance of the human and vector populations is necessary to prevent or anticipate the emergence of a massive CHIKF epidemic in the CAR.

  9. Chikungunya virus capsid protein contains nuclear import and export signals

    PubMed Central

    2013-01-01

    Background Chikungunya virus (CHIKV) is an alphavirus of the Togaviridae family. After autoproteolytic cleavage, the CHIKV capsid protein (CP) is involved in RNA binding and assembly of the viral particle. The monomeric CP is approximately 30 kDa in size and is small enough for passive transport through nuclear pores. Some alphaviruses are found to harbor nuclear localization signals (NLS) and transport of these proteins between cellular compartments was shown to be energy dependent. The active nuclear import of cytoplasmic proteins is mediated by karyopherins and their export by exportins. As nuclear and cytoplasmic trafficking may play a role in the life cycle of CHIKV, we have sought to identify nuclear localization and nuclear export signals in CHIKV CP in a virus-free system. Methods EGFP-fusion proteins of CHIKV CP and mutants thereof were created and used to monitor their intracellular localization. Binding of cellular proteins was confirmed in pull-down assays with purified CP using co-immuoprecipitation. Nuclear localization was demonstrated in a virus-free system using fluorescence microscopy. Results Here we show that CHIKV CP is a nuclear-cytoplasmic shuttling protein with an active NLS that binds to karyopherin α (Karα) for its nuclear translocation. We also found that the Karα4 C-terminal NLS binding site is sufficient for this interaction. We further demonstrate that CHIKV CP interacts directly with the export receptor CRM1 to transport this viral protein out of the nucleus via a nuclear export signal (NES). The CHIKV CP NES was mapped between amino acids 143 and 155 of CP. Deduced from in silico analyses we found that the NES has a mode of binding similar to the snurportin-1 CRM1 complex. Conclusions We were able to show that in a virus-free system that the CHIKV capsid protein contains both, a NLS and a NES, and that it is actively transported between the cytoplasma and the nucleus. We conclude that CHIKV CP has the ability to shuttle via

  10. Chikungunya virus capsid protein contains nuclear import and export signals.

    PubMed

    Thomas, Saijo; Rai, Jagdish; John, Lijo; Schaefer, Stephan; Pützer, Brigitte M; Herchenröder, Ottmar

    2013-08-28

    Chikungunya virus (CHIKV) is an alphavirus of the Togaviridae family. After autoproteolytic cleavage, the CHIKV capsid protein (CP) is involved in RNA binding and assembly of the viral particle. The monomeric CP is approximately 30 kDa in size and is small enough for passive transport through nuclear pores. Some alphaviruses are found to harbor nuclear localization signals (NLS) and transport of these proteins between cellular compartments was shown to be energy dependent. The active nuclear import of cytoplasmic proteins is mediated by karyopherins and their export by exportins. As nuclear and cytoplasmic trafficking may play a role in the life cycle of CHIKV, we have sought to identify nuclear localization and nuclear export signals in CHIKV CP in a virus-free system. EGFP-fusion proteins of CHIKV CP and mutants thereof were created and used to monitor their intracellular localization. Binding of cellular proteins was confirmed in pull-down assays with purified CP using co-immuoprecipitation. Nuclear localization was demonstrated in a virus-free system using fluorescence microscopy. Here we show that CHIKV CP is a nuclear-cytoplasmic shuttling protein with an active NLS that binds to karyopherin α (Karα) for its nuclear translocation. We also found that the Karα4 C-terminal NLS binding site is sufficient for this interaction. We further demonstrate that CHIKV CP interacts directly with the export receptor CRM1 to transport this viral protein out of the nucleus via a nuclear export signal (NES). The CHIKV CP NES was mapped between amino acids 143 and 155 of CP. Deduced from in silico analyses we found that the NES has a mode of binding similar to the snurportin-1 CRM1 complex. We were able to show that in a virus-free system that the CHIKV capsid protein contains both, a NLS and a NES, and that it is actively transported between the cytoplasma and the nucleus. We conclude that CHIKV CP has the ability to shuttle via interaction with karyopherins for its

  11. ADP-ribosylhydrolase activity of Chikungunya virus macrodomain is critical for virus replication and virulence.

    PubMed

    McPherson, Robert Lyle; Abraham, Rachy; Sreekumar, Easwaran; Ong, Shao-En; Cheng, Shang-Jung; Baxter, Victoria K; Kistemaker, Hans A V; Filippov, Dmitri V; Griffin, Diane E; Leung, Anthony K L

    2017-02-14

    Chikungunya virus (CHIKV), an Old World alphavirus, is transmitted to humans by infected mosquitoes and causes acute rash and arthritis, occasionally complicated by neurologic disease and chronic arthritis. One determinant of alphavirus virulence is nonstructural protein 3 (nsP3) that contains a highly conserved MacroD-type macrodomain at the N terminus, but the roles of nsP3 and the macrodomain in virulence have not been defined. Macrodomain is a conserved protein fold found in several plus-strand RNA viruses that binds to the small molecule ADP-ribose. Prototype MacroD-type macrodomains also hydrolyze derivative linkages on the distal ribose ring. Here, we demonstrated that the CHIKV nsP3 macrodomain is able to hydrolyze ADP-ribose groups from mono(ADP-ribosyl)ated proteins. Using mass spectrometry, we unambiguously defined its substrate specificity as mono(ADP-ribosyl)ated aspartate and glutamate but not lysine residues. Mutant viruses lacking hydrolase activity were unable to replicate in mammalian BHK-21 cells or mosquito Aedes albopictus cells and rapidly reverted catalytically inactivating mutations. Mutants with reduced enzymatic activity had slower replication in mammalian neuronal cells and reduced virulence in 2-day-old mice. Therefore, nsP3 mono(ADP-ribosyl)hydrolase activity is critical for CHIKV replication in both vertebrate hosts and insect vectors, and for virulence in mice.

  12. Diagnostic Options and Challenges for Dengue and Chikungunya Viruses.

    PubMed

    Mardekian, Stacey K; Roberts, Amity L

    2015-01-01

    Dengue virus (DENV) and Chikungunya virus (CHIKV) are arboviruses that share the same Aedes mosquito vectors and thus overlap in their endemic areas. These two viruses also cause similar clinical presentations, especially in the initial stages of infection, with neither virus possessing any specific distinguishing clinical features. Because the outcomes and management strategies for these two viruses are vastly different, early and accurate diagnosis is imperative. Diagnosis is also important for surveillance, outbreak control, and research related to vaccine and drug development. Available diagnostic tests are aimed at detection of the virus, its antigenic components, or the host immune antibody response. In this review, we describe the recent progress and continued challenges related to the diagnosis of DENV and CHIKV infections.

  13. Severe Sepsis and Septic Shock Associated with Chikungunya Virus Infection, Guadeloupe, 2014.

    PubMed

    Rollé, Amélie; Schepers, Kinda; Cassadou, Sylvie; Curlier, Elodie; Madeux, Benjamin; Hermann-Storck, Cécile; Fabre, Isabelle; Lamaury, Isabelle; Tressières, Benoit; Thiery, Guillaume; Hoen, Bruno

    2016-05-01

    During a 2014 outbreak, 450 patients with confirmed chikungunya virus infection were admitted to the University Hospital of Pointe-à-Pitre, Guadeloupe. Of these, 110 were nonpregnant adults; 42 had severe disease, and of those, 25 had severe sepsis or septic shock and 12 died. Severe sepsis may be a rare complication of chikungunya virus infection.

  14. Severe Sepsis and Septic Shock Associated with Chikungunya Virus Infection, Guadeloupe, 2014

    PubMed Central

    Rollé, Amélie; Schepers, Kinda; Cassadou, Sylvie; Curlier, Elodie; Madeux, Benjamin; Hermann-Storck, Cécile; Fabre, Isabelle; Lamaury, Isabelle; Tressières, Benoit; Thiery, Guillaume

    2016-01-01

    During a 2014 outbreak, 450 patients with confirmed chikungunya virus infection were admitted to the University Hospital of Pointe-à-Pitre, Guadeloupe. Of these, 110 were nonpregnant adults; 42 had severe disease, and of those, 25 had severe sepsis or septic shock and 12 died. Severe sepsis may be a rare complication of chikungunya virus infection. PMID:27088710

  15. Chikungunya virus infection with severe neurologic manifestations: report of four fatal cases.

    PubMed

    Sá, Priscilla Karen de Oliveira; Nunes, Michaela de Miranda; Leite, Ingrid Ramalho; Campelo, Maria das Graças Loureiro das Chagas; Leão, Cláudia Ferreira Ribeiro; Souza, Joelma Rodrigues de; Castellano, Lúcio Roberto; Fernandes, Ana Isabel Vieira

    2017-01-01

    Here, we present four patients with confirmed Chikungunya virus infection showing atypical neurologic manifestations and death. This case series includes patients ranging in age from five to 92 years, with or without comorbidities. This report is important, as very few cases in the literature reporting death due to atypical Chikungunya virus infection are available.

  16. Animal Models of Chikungunya Virus Infection and Disease.

    PubMed

    Haese, Nicole N; Broeckel, Rebecca M; Hawman, David W; Heise, Mark T; Morrison, Thomas E; Streblow, Daniel N

    2016-12-15

    Chikungunya virus (CHIKV) is a reemerging alphavirus that causes acute febrile illness and severe joint pain in humans. Although acute symptoms often resolve within a few days, chronic joint and muscle pain can be long lasting. In the last decade, CHIKV has caused widespread outbreaks of unprecedented scale in the Americas, Asia, and the Indian Ocean island regions. Despite these outbreaks and the continued expansion of CHIKV into new areas, mechanisms of chikungunya pathogenesis and disease are not well understood. Experimental animal models are indispensable to the field of CHIKV research. The most commonly used experimental animal models of CHIKV infection are mice and nonhuman primates; each model has its advantages for studying different aspects of CHIKV disease. This review will provide an overview of animal models used to study CHIKV infection and disease and major advances in our understanding of chikungunya obtained from studies performed in these models. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  17. Chikungunya Fever: Obstetric Considerations on an Emerging Virus.

    PubMed

    Dotters-Katz, Sarah K; Grace, Matthew R; Strauss, Robert A; Chescheir, Nancy; Kuller, Jeffrey A

    2015-07-01

    Chikungunya fever is an increasingly common viral infection transmitted to humans by species of the Aedes mosquitoes. Characterized by fevers, myalgias, arthralgias, headache, and rash, the infection is endemic to tropical areas. However, identification of disease vectors to Europe and the Americas has raised concern for possible spread of chikungunya to these areas. More recently, these concerns have become a reality; with more than 500,000 new cases in the Western hemisphere in the last 2 years, questions have arisen about the implications of infection during pregnancy and delivery. A literature review was performed using MEDLINE in order to gather information regarding the obstetric implications of this infection. It appears that although this virus can cross the placenta in the first and second trimester leading to fetal infection and miscarriage, this is a very rare occurrence. In contrast, active maternal infection within 4 days of delivery conveys a high risk of vertical transmission. Maternal infection during pregnancy does not appear to be more severe than infection on the nonpregnant female. Given the increasing incidence of chikungunya, obstetric providers should be aware of the disease and its implication for the gravid female.

  18. A case of consecutive infection with Zika virus and Chikungunya virus in Bora Bora, French Polynesia.

    PubMed

    Kutsuna, Satoshi; Kato, Yasuyuki; Nakayama, Eri; Taniguchi, Satoshi; Takasaki, Tomohiko; Yamamoto, Kei; Takeshita, Nozomi; Hayakawa, Kayoko; Kanagawa, Shuzo; Ohmagari, Norio

    2017-02-01

    Chikungunya fever (CHIK) and Zika virus (ZIKV) infection have similar endemic areas and clinical manifestations. We report a case of CHIK at 1 year after a ZIKV infection in Bora Bora (French Polynesia), which we diagnosed based on IgM to the CHIK virus and neutralizing antibodies to ZIKV.

  19. Next generation sequencing of DNA-launched Chikungunya vaccine virus

    SciTech Connect

    Hidajat, Rachmat; Nickols, Brian; Forrester, Naomi; Tretyakova, Irina; Weaver, Scott; Pushko, Peter

    2016-03-15

    Chikungunya virus (CHIKV) represents a pandemic threat with no approved vaccine available. Recently, we described a novel vaccination strategy based on iDNA® infectious clone designed to launch a live-attenuated CHIKV vaccine from plasmid DNA in vitro or in vivo. As a proof of concept, we prepared iDNA plasmid pCHIKV-7 encoding the full-length cDNA of the 181/25 vaccine. The DNA-launched CHIKV-7 virus was prepared and compared to the 181/25 virus. Illumina HiSeq2000 sequencing revealed that with the exception of the 3′ untranslated region, CHIKV-7 viral RNA consistently showed a lower frequency of single-nucleotide polymorphisms than the 181/25 RNA including at the E2-12 and E2-82 residues previously identified as attenuating mutations. In the CHIKV-7, frequencies of reversions at E2-12 and E2-82 were 0.064% and 0.086%, while in the 181/25, frequencies were 0.179% and 0.133%, respectively. We conclude that the DNA-launched virus has a reduced probability of reversion mutations, thereby enhancing vaccine safety. - Highlights: • Chikungunya virus (CHIKV) is an emerging pandemic threat. • In vivo DNA-launched attenuated CHIKV is a novel vaccine technology. • DNA-launched virus was sequenced using HiSeq2000 and compared to the 181/25 virus. • DNA-launched virus has lower frequency of SNPs at E2-12 and E2-82 attenuation loci.

  20. Seroprevalence of Chikungunya Virus in a Rural Community in Brazil.

    PubMed

    Cunha, Rivaldo V; Trinta, Karen S; Montalbano, Camila A; Sucupira, Michel V F; de Lima, Maricelia M; Marques, Erenilde; Romanholi, Izilyanne H; Croda, Julio

    2017-01-01

    The emergence of the Chikungunya virus (CHIKV) is currently expanding. In 2015, 38,332 cases of Chikungunya were reported to the Brazilian epidemiological surveillance system. Eighteen months after notification of the first case in the city of Feira de Santana, we conducted the first serosurvey to define the magnitude of transmission in a rural community in Brazil. The serosurvey was conducted in a random sample of 450 residences in the Chapada district, located 100 kilometers from Feira de Santana. We administered questionnaires and tested 120 sera from Chapada district residents for CHIKV IgM- and IgG-specific antibodies. An individual with CHIKV infection was defined as any person with CHIKV IgM or IgG antibodies detected in the serum. One Hundred cases of Chikungunya were reported after prolonged rainfall, which reinforced the relationship between the rainfall index and CHIKV transmission. Eighteen months after the start of the outbreak, we identified a seroprevalence of 20% (95% CI, 15.4-35%). CHIKV IgG- and IgM-specific antibodies were detected in 22/120 (18.3%) and 6/120 (5.0%) individuals, respectively. Among seropositive patients, 13/24 (54.2%) reported fever and joint pain over the previous two years (p<0.01). The rate of symptomatic CHIKV infection was 40.7%. We identified a moderate seroprevalence of Chikungunya in the Chapada district, and in half of the confirmed CHIKV infections, patients reported arthralgia and fever over the previous two years.

  1. Seroprevalence of Chikungunya Virus in a Rural Community in Brazil

    PubMed Central

    Cunha, Rivaldo V.; Trinta, Karen S.; Montalbano, Camila A.; Sucupira, Michel V. F.; de Lima, Maricelia M.; Marques, Erenilde; Romanholi, Izilyanne H.

    2017-01-01

    Background The emergence of the Chikungunya virus (CHIKV) is currently expanding. In 2015, 38,332 cases of Chikungunya were reported to the Brazilian epidemiological surveillance system. Eighteen months after notification of the first case in the city of Feira de Santana, we conducted the first serosurvey to define the magnitude of transmission in a rural community in Brazil. Methodology/Main findings The serosurvey was conducted in a random sample of 450 residences in the Chapada district, located 100 kilometers from Feira de Santana. We administered questionnaires and tested 120 sera from Chapada district residents for CHIKV IgM- and IgG-specific antibodies. An individual with CHIKV infection was defined as any person with CHIKV IgM or IgG antibodies detected in the serum. One Hundred cases of Chikungunya were reported after prolonged rainfall, which reinforced the relationship between the rainfall index and CHIKV transmission. Eighteen months after the start of the outbreak, we identified a seroprevalence of 20% (95% CI, 15.4–35%). CHIKV IgG- and IgM-specific antibodies were detected in 22/120 (18.3%) and 6/120 (5.0%) individuals, respectively. Among seropositive patients, 13/24 (54.2%) reported fever and joint pain over the previous two years (p<0.01). The rate of symptomatic CHIKV infection was 40.7%. Conclusions/Significance We identified a moderate seroprevalence of Chikungunya in the Chapada district, and in half of the confirmed CHIKV infections, patients reported arthralgia and fever over the previous two years. PMID:28107342

  2. [Situational panorama of Mexico against the chikungunya virus pandemic].

    PubMed

    Martínez-Sánchez, Abisai; Martínez-Ramos, Ericay Berenice; Chávez-Angeles, Manuel Gerardo

    2015-01-01

    Recent outbreaks of emerging diseases emphasize the vulnerability of health systems, as is the case of chikungunya fever. The wide geographical incidence of the virus in the last years requires alerting systems for the prevention, diagnosis, control and eradication of the disease. Given the ecological, epidemiological and socio-economic characteristic of Mexico, this disease affects directly or indirectly the health of the population and development of agricultural, livestock, industrial, fishing, oil and tourism activities in the country. Due to this situation it is essential to make a brief analysis on the main clinical data, epidemiological and preventive measures with which our country counts with to confront the situation.

  3. Trigocherrierin A, a potent inhibitor of chikungunya virus replication.

    PubMed

    Bourjot, Mélanie; Leyssen, Pieter; Neyts, Johan; Dumontet, Vincent; Litaudon, Marc

    2014-03-24

    Trigocherrierin A (1) and trigocherriolide E (2), two new daphnane diterpenoid orthoesters (DDOs), and six chlorinated analogues, trigocherrins A, B, F and trigocherriolides A-C, were isolated from the leaves of Trigonostemon cherrieri. Their structures were identified by mass spectrometry, extensive one- and two-dimensional NMR spectroscopy and through comparison with data reported in the literature. These compounds are potent and selective inhibitors of chikungunya virus (CHIKV) replication. Among the DDOs isolated, compound 1 exhibited the strongest anti-CHIKV activity (EC₅₀ = 0.6 ± 0.1 µM, SI = 71.7).

  4. Chikungunya Virus: What You Need to Know

    MedlinePlus

    ... ye) is: A virus spread through Aedes species mosquito bites. Aedes mosquitoes also spread dengue and Zika ... 7 days after being bitten by an infected mosquito. Most patients will feel better within a week. ...

  5. Bovine lactoferrin activity against Chikungunya and Zika viruses.

    PubMed

    Carvalho, Carlos A M; Casseb, Samir M M; Gonçalves, Rafael B; Silva, Eliana V P; Gomes, Andre M O; Vasconcelos, Pedro F C

    2017-07-01

    Chikungunya (CHIKV) and Zika (ZIKV) viruses are arboviruses which have recently broken their sylvatic isolation and gone on to spread rampantly among humans in some urban areas of the world, especially in Latin America. Given the lack of effective interventions against such viruses, the aim of this work was to evaluate the antiviral potential of bovine lactoferrin (bLf) in their infections. Through viability, plaque, immunofluorescence and nucleic acid quantification assays, our data show that bLf exerts a dose-dependent strong inhibitory effect on the infection of Vero cells by the aforementioned arboviruses, reducing their infection efficiency by up to nearly 80 %, with no expressive cytotoxicity, and that such antiviral activity occurs at the levels of input and output of virus particles. These findings reveal that bLf antimicrobial properties are extendable to CHIKV and ZIKV, underlining a generic inhibition mechanism that can be explored to develop a potential strategy against their infections.

  6. Assessing the threat of chikungunya virus emergence in Australia.

    PubMed

    Viennet, Elvina; Knope, Katrina; Faddy, Helen M; Williams, Craig R; Harley, David

    2013-06-30

    Chikungunya virus (CHIKV) is a major threat to Australia given the distribution of competent vectors, and the large number of travellers returning from endemic regions. We describe current knowledge of CHIKV importations into Australia, and quantify reported viraemic cases, with the aim of facilitating the formulation of public health policy and ensuring maintenance of blood safety. Cases reported to the National Notifiable Disease Surveillance System (NNDSS) from 2002 to 2012 were analysed by place, month of acquisition, and place of residence. Rates of chikungunya importation were estimated based on reported cases and on the numbers of short-term movements. Between 2002 and 2012, there were 168 cases of chikungunya virus (CHIKV) imported into Australia. Victoria and New South Wales had the largest number of notifications. The main sources were Indonesia, India and Malaysia. The number of cases increased from 2008 to reach a peak in 2010 (n=64; 40%). Although Indonesia accounted for the majority of CHIKV notifications in Australia, travel from India had the highest CHIKV importation rate (number of imported cases per 100,000 travellers). The Australian population is increasingly at risk from CHIKV. Arrivals from endemic countries have increased concurrently with vector incursions via imported goods, as well as via local movement from the Torres Strait to North Queensland ports. An outbreak of CHIKV could have a significant impact on health, the safety of the blood supply and on tourism. Case and vector surveillance as well as population health responses are crucial for minimising any potential impact of CHIKV establishment in Australia. This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the Commonwealth. Requests and inquiries concerning reproduction and rights should be addressed to the Commonwealth Copyright Administration, Attorney General

  7. Notes from the field: Transmission of chikungunya virus in the continental United States--Florida, 2014.

    PubMed

    Kendrick, Katherine; Stanek, Danielle; Blackmore, Carina

    2014-12-05

    On June 27, 2014, the Florida Department of Health in Miami-Dade County was notified by the Florida Poison Information Center Network of a patient with travel to Southeast Asia who was suspected of having chikungunya virus infection. After further investigation and additional testing, it was determined that the patient had not recently traveled to an endemic area, and this case was confirmed as the first locally acquired chikungunya case in the continental United States. Since the first case of locally acquired chikungunya virus infection in the Americas was reported on the Caribbean island of St. Martin in December 2013, the United States has seen an increase in chikungunya cases among travelers returning from areas where chikungunya has become endemic, particularly the Caribbean and South America. Compared with other states, Florida has seen an especially large number of chikungunya fever cases. During January 1-October 14, 2014, a total of 272 imported cases were reported in Florida, compared with 1,110 reported in the other 47 contiguous states. In addition, 11 locally acquired chikungunya cases have been identified. The recent spread of the virus and the presence of competent mosquito vectors provide the conditions for transmission of chikungunya virus in Florida.

  8. Complete Genome Sequences of 15 Chikungunya Virus Isolates from Puerto Rico.

    PubMed

    Sanders, Wes A; Long, Kristin; Rivera, Brenda; Vincent, Heather A; Heise, Mark T; Rodriguez-Orengo, Jose F; Moorman, Nathaniel J

    2017-07-06

    Here, we report the complete genome sequences of 15 chikungunya virus strains isolated from human plasma from infected patients in Puerto Rico. The results show that currently circulating chikungunya strains in Puerto Rico are closely related. Copyright © 2017 Sanders et al.

  9. Structural Studies of Chikungunya Virus-Like Particles Complexed with Human Antibodies: Neutralization and Cell-to-Cell Transmission

    PubMed Central

    Mangala Prasad, Vidya; Wang, Cheng-I; Akahata, Wataru; Ng, Lisa F. P.

    2015-01-01

    ABSTRACT Chikungunya virus is a positive-stranded RNA alphavirus. Structures of chikungunya virus-like particles in complex with strongly neutralizing antibody Fab fragments (8B10 and 5F10) were determined using cryo-electron microscopy and X-ray crystallography. By fitting the crystallographically determined structures of these Fab fragments into the cryo-electron density maps, we show that Fab fragments of antibody 8B10 extend radially from the viral surface and block receptor binding on the E2 glycoprotein. In contrast, Fab fragments of antibody 5F10 bind the tip of the E2 B domain and lie tangentially on the viral surface. Fab 5F10 fixes the B domain rigidly to the surface of the virus, blocking exposure of the fusion loop on glycoprotein E1 and therefore preventing the virus from becoming fusogenic. Although Fab 5F10 can neutralize the wild-type virus, it can also bind to a mutant virus without inhibiting fusion or attachment. Although the mutant virus is no longer able to propagate by extracellular budding, it can, however, enter the next cell by traveling through junctional complexes without being intercepted by a neutralizing antibody to the wild-type virus, thus clarifying how cell-to-cell transmission can occur. IMPORTANCE Alphaviral infections are transmitted mainly by mosquitoes. Chikungunya virus (CHIKV), which belongs to the Alphavirus genus, has a wide distribution in the Old World that has expanded in recent years into the Americas. There are currently no vaccines or drugs against alphaviral infections. Therefore, a better understanding of CHIKV and its associated neutralizing antibodies will aid in the development of effective treatments. PMID:26537684

  10. Single-Reaction Multiplex Reverse Transcription PCR for Detection of Zika, Chikungunya, and Dengue Viruses

    PubMed Central

    Waggoner, Jesse J.; Gresh, Lionel; Mohamed-Hadley, Alisha; Ballesteros, Gabriela; Davila, Maria Jose Vargas; Tellez, Yolanda; Sahoo, Malaya K.; Balmaseda, Angel; Harris, Eva

    2016-01-01

    Clinical manifestations of Zika virus, chikungunya virus, and dengue virus infections can be similar. To improve virus detection, streamline molecular workflow, and decrease test costs, we developed and evaluated a multiplex real-time reverse transcription PCR for these viruses. PMID:27184629

  11. Chikungunya Virus Infection: An Update on Joint Manifestations and Management

    PubMed Central

    Krutikov, Maria; Manson, Jessica

    2016-01-01

    The advent of sophisticated diagnostics has enabled the discovery of previously unknown arthropod-borne viruses like Chikungunya. This infection has become increasingly prevalent in the last 10 years across the Indian Ocean and has been brought to media attention by a recent outbreak in the Caribbean. The outbreak has been aided by a drastic rise in air travel, allowing infected individuals to transport the virus to previously unaffected regions. In addition, a recently documented viral mutation has allowed its transmission by the Aedes albopictus mosquito, therefore facilitating outbreaks in Southern Europe and the USA. The duration and extent of the arthritis seen peri- and post infection has become a topic of academic interest. Although published data are largely observational, there has been a definite increase in original research focusing on this. Symptoms can persist for years, particularly in older patients with pre-existing medical conditions. The etiology is still not fully understood, but viral persistence and immune activation within synovial fluid have been shown in mouse models. There have been no prospective clinical trials of treatment in humans; however, animal trials are in process. The mainstay of treatment remains anti-inflammatories and steroids where necessary. The clinical presentation seems to mimic common rheumatological conditions like rheumatoid arthritis; therefore recent recommendations suggest the use disease-modifying agents as a common practice for the specific syndrome. This review uses recent published data and draws on our own clinical experience to provide an overview of joint complications of Chikungunya infection. PMID:27824550

  12. Dengue virus serotype 4 and chikungunya virus coinfection in a traveller returning from Luanda, Angola, January 2014.

    PubMed

    Parreira, R; Centeno-Lima, S; Lopes, A; Portugal-Calisto, D; Constantino, A; Nina, J

    2014-03-13

    A concurrent dengue virus serotype 4 and chikungunya virus infection was detected in a woman in her early 50s returning to Portugal from Luanda, Angola, in January 2014. The clinical, laboratory and molecular findings, involving phylogenetic analyses of partial viral genomic sequences amplified by RT-PCR, are described. Although the circulation of both dengue and chikungunya viruses in Angola has been previously reported, to our knowledge this is the first time coinfection with both viruses has been detected there.

  13. Virus Isolation and Preparation of Sucrose-Banded Chikungunya Virus Samples for Transmission Electron Microscopy.

    PubMed

    Lim, Chang-Kweng

    2016-01-01

    Virus isolation and purification is an invaluable technique in virology to detect and characterize viruses. This chapter describes a large-scale Chikungunya virus (CHIKV) propagation and purification methods by using discontinuous sucrose gradient, and sample preparation for transmission electron microscopy. Sucrose-banding yields large quantities of high-titer (10(10) pfu/ml) CHIKV stocks. Such stocks are stable for years when stored at -70 °C.

  14. Chikungunya virus: epidemiology, replication, disease mechanisms, and prospective intervention strategies.

    PubMed

    Silva, Laurie A; Dermody, Terence S

    2017-03-01

    Chikungunya virus (CHIKV), a reemerging arbovirus, causes a crippling musculoskeletal inflammatory disease in humans characterized by fever, polyarthralgia, myalgia, rash, and headache. CHIKV is transmitted by Aedes species of mosquitoes and is capable of an epidemic, urban transmission cycle with high rates of infection. Since 2004, CHIKV has spread to new areas, causing disease on a global scale, and the potential for CHIKV epidemics remains high. Although CHIKV has caused millions of cases of disease and significant economic burden in affected areas, no licensed vaccines or antiviral therapies are available. In this Review, we describe CHIKV epidemiology, replication cycle, pathogenesis and host immune responses, and prospects for effective vaccines and highlight important questions for future research.

  15. Spatial and Temporal Clustering of Chikungunya Virus Transmission in Dominica

    PubMed Central

    Nsoesie, Elaine O.; Ricketts, R. Paul; Brown, Heidi E.; Fish, Durland; Durham, David P.; Ndeffo Mbah, Martial L.; Christian, Trudy; Ahmed, Shalauddin; Marcellin, Clement; Shelly, Ellen; Owers, Katharine; Wenzel, Natasha; Galvani, Alison P.; Brownstein, John S.

    2015-01-01

    Using geo-referenced case data, we present spatial and spatio-temporal cluster analyses of the early spread of the 2013–2015 chikungunya virus (CHIKV) in Dominica, an island in the Caribbean. Spatial coordinates of the locations of the first 417 reported cases observed between December 15th, 2013 and March 11th, 2014, were captured using the Global Positioning System (GPS). We observed a preponderance of female cases, which has been reported for CHIKV outbreaks in other regions. We also noted statistically significant spatial and spatio-temporal clusters in highly populated areas and observed major clusters prior to implementation of intensive vector control programs suggesting early vector control measures, and education had an impact on the spread of the CHIKV epidemic in Dominica. A dynamical identification of clusters can lead to local assessment of risk and provide opportunities for targeted control efforts for nations experiencing CHIKV outbreaks. PMID:26274813

  16. Congenital Chikungunya Virus Infection in Sincelejo, Colombia: A Case Series.

    PubMed

    Villamil-Gómez, Wilmer; Alba-Silvera, Luz; Menco-Ramos, Antonio; Gonzalez-Vergara, Alfonso; Molinares-Palacios, Tatiana; Barrios-Corrales, María; Rodríguez-Morales, Alfonso J

    2015-10-01

    Congenital chikungunya virus (CHIK) infection has been infrequently reported, even more so during the current 2013-15 outbreak in Latin America. In this study, the consequences of CHIK on pregnancy outcomes and particularly consequences in infants born to infected women were assessed in a case series from a single private institution in the north of Colombia. During September 2014 to February 2015, seven pregnant women with serological and reverse transcription-polymerase chain reaction-positive test for CHIK delivered eight infants with CHIK. These newborns required admission to pediatric intensive care, and related support, owing to severe clinical manifestations, which included respiratory distress, sepsis, necrotizing enterocolitis, meningoencephalitis, myocarditis, edema, bullous dermatitis and pericarditis. There were three deaths (case fatality rate of 37.5%). Pregnant women and newborns with CHIK long term should be followed up, given the implications of chronic sequelae (e.g. chronic inflammatory rheumatism in women) as well as recently described neurocognitive impairment in infants.

  17. Next Generation Sequencing of DNA-Launched Chikungunya Vaccine Virus

    PubMed Central

    Hidajat, Rachmat; Nickols, Brian; Forrester, Naomi; Tretyakova, Irina; Weaver, Scott; Pushko, Peter

    2016-01-01

    Chikungunya virus (CHIKV) represents a pandemic threat with no approved vaccine available. Recently, we described a novel vaccination strategy based on iDNA® infectious clone designed to launch a live-attenuated CHIKV vaccine from plasmid DNA in vitro or in vivo. As a proof of concept, we prepared iDNA plasmid pCHIKV-7 encoding the full-length cDNA of the 181/25 vaccine. The DNA-launched CHIKV-7 virus was prepared and compared to the 181/25 virus. Illumina HiSeq2000 sequencing revealed that with the exception of the 3’ untranslated region, CHIKV-7 viral RNA consistently showed a lower frequency of single-nucleotide polymorphisms than the 181/25 RNA including at the E2-12 and E2-82 residues previously identified as attenuating mutations. In the CHIKV-7, frequencies of reversions at E2-12 and E2-82 were 0.064% and 0.086%, while in the 181/25, frequencies were 0.179% and 0.133%, respectively. We conclude that the DNA-launched virus has a reduced probability of reversion mutations, thereby enhancing vaccine safety. PMID:26855330

  18. Attenuated and vectored vaccines protect nonhuman primates against Chikungunya virus

    PubMed Central

    Ljungberg, Karl; Kümmerer, Beate M.; Gosse, Leslie; Dereuddre-Bosquet, Nathalie; Tchitchek, Nicolas; Hallengärd, David; García-Arriaza, Juan; Meinke, Andreas; Esteban, Mariano; Merits, Andres

    2017-01-01

    Chikungunya virus (CHIKV) is rapidly spreading across the globe, and millions are infected. Morbidity due to this virus is a serious threat to public health, but at present, there is no vaccine against this debilitating disease. We have recently developed a number of vaccine candidates, and here we have evaluated 3 of them in a nonhuman primate model. A single immunization with an attenuated strain of CHIKV (Δ5nsP3), a homologous prime-boost immunization with a DNA-launched RNA replicon encoding CHIKV envelope proteins (DREP-E), and a DREP-E prime followed by a recombinant modified vaccinia virus Ankara encoding CHIKV capsid and envelope (MVA-CE) boost all induced protection against WT CHIKV infection. The attenuated Δ5nsP3 virus proved to be safe and did not show any clinical signs typically associated with WT CHIKV infections such as fever, skin rash, lymphopenia, or joint swelling. These vaccines are based on an East/Central/South African strain of Indian Ocean lineage, but they also generated neutralizing antibodies against an isolate of the Asian genotype that now is rapidly spreading across the Americas. These results form the basis for clinical development of an efficacious CHIKV vaccine that generates both humoral and cellular immunity with long-term immunological memory. PMID:28352649

  19. Genome Microevolution of Chikungunya Viruses Causing the Indian Ocean Outbreak

    PubMed Central

    Schuffenecker, Isabelle; Iteman, Isabelle; Michault, Alain; Murri, Séverine; Frangeul, Lionel; Vaney, Marie-Christine; Lavenir, Rachel; Pardigon, Nathalie; Reynes, Jean-Marc; Pettinelli, François; Biscornet, Leon; Diancourt, Laure; Michel, Stéphanie; Duquerroy, Stéphane; Guigon, Ghislaine; Frenkiel, Marie-Pascale; Bréhin, Anne-Claire; Cubito, Nadège; Desprès, Philippe; Kunst, Frank; Rey, Félix A; Zeller, Hervé; Brisse, Sylvain

    2006-01-01

    Background A chikungunya virus outbreak of unprecedented magnitude is currently ongoing in Indian Ocean territories. In Réunion Island, this alphavirus has already infected about one-third of the human population. The main clinical symptom of the disease is a painful and invalidating poly-arthralgia. Besides the arthralgic form, 123 patients with a confirmed chikungunya infection have developed severe clinical signs, i.e., neurological signs or fulminant hepatitis. Methods and Findings We report the nearly complete genome sequence of six selected viral isolates (isolated from five sera and one cerebrospinal fluid), along with partial sequences of glycoprotein E1 from a total of 127 patients from Réunion, Seychelles, Mauritius, Madagascar, and Mayotte islands. Our results indicate that the outbreak was initiated by a strain related to East-African isolates, from which viral variants have evolved following a traceable microevolution history. Unique molecular features of the outbreak isolates were identified. Notably, in the region coding for the non-structural proteins, ten amino acid changes were found, four of which were located in alphavirus-conserved positions of nsP2 (which contains helicase, protease, and RNA triphosphatase activities) and of the polymerase nsP4. The sole isolate obtained from the cerebrospinal fluid showed unique changes in nsP1 (T301I), nsP2 (Y642N), and nsP3 (E460 deletion), not obtained from isolates from sera. In the structural proteins region, two noteworthy changes (A226V and D284E) were observed in the membrane fusion glycoprotein E1. Homology 3D modelling allowed mapping of these two changes to regions that are important for membrane fusion and virion assembly. Change E1-A226V was absent in the initial strains but was observed in >90% of subsequent viral sequences from Réunion, denoting evolutionary success possibly due to adaptation to the mosquito vector. Conclusions The unique molecular features of the analyzed Indian Ocean

  20. Emergence of chikungunya virus in Indian subcontinent after 32 years: A review.

    PubMed

    Lahariya, Chandrakant; Pradhan, S K

    2006-12-01

    An outbreak of chikungunya virus is currently ongoing in many countries in Indian Ocean since January 2005. The current outbreak appears to be the most severe and one of the biggest outbreaks caused by this virus. India, where this virus was last reported in 1973, is also amongst affected countries. Chikungunya virus has affected millions of the people in Africa and Southeast Asia, since it was first reported in 1952 in Tanzania. Even then, natural history of this disease is not fully understood. The intra-outbreak studies, point towards recent changes in the viral genome facilitating the rapid spread and enhanced pathogenecity. The available published scientific literature on chikungunya virus was searched to understand the natural history of this disease, reasons for the current outbreak and the causes behind re-emergence of the virus in India. The paucity of the scientific information on various epidemiological aspects of chikungunya virus threatens off an epidemic as control of spread of virus might be difficult in the absence of appropriate knowledge. There is an immediate need of the research on chikungunya virus, for an effective vaccine besides strengthening the existing diagnostic laboratory facilities. The current outbreak can also be taken as a lesson for establishment of a system for continuous surveillance of diseases, considered disappeared from the countries. The re-emergence and epidemics are unpredictable phenomena but the impact of such events can be ameliorated by appropriate knowledge and by being in the right state of preparedness.

  1. Evidence for Endemic Chikungunya Virus Infections in Bandung, Indonesia

    PubMed Central

    Kosasih, Herman; de Mast, Quirijn; Widjaja, Susana; Sudjana, Primal; Antonjaya, Ungke; Ma'roef, Chairin; Riswari, Silvita Fitri; Porter, Kevin R.; Burgess, Timothy H.; Alisjahbana, Bachti; van der Ven, Andre; Williams, Maya

    2013-01-01

    Chikungunya virus (CHIKV) is known to cause sporadic or explosive outbreaks. However, little is known about the endemic transmission of CHIKV. To ascertain the endemic occurrence of CHIKV transmission, we tested blood samples from patients with a non-dengue febrile illness who participated in a prospective cohort study of factory workers in Bandung, Indonesia. From August 2000 to June 2004, and September 2006 to April 2008, 1901 febrile episodes occurred and 231 (12.2%) dengue cases were identified. The remaining febrile cases were evaluated for possible CHIKV infection by measuring anti-CHIKV IgM and IgG antibodies in acute and convalescent samples. Acute samples of serologically positive cases were subsequently tested for the presence of CHIKV RNA by RT-PCR and/or virus isolation. A total of 135 (7.1%) CHIKV infections were identified, providing an incidence rate of 10.1/1,000 person years. CHIKV infections were identified all year round and tended to increase during the rainy season (January to March). Severe illness was not found and severe arthralgia was not a prominently reported symptom. Serial post-illness samples from nine cases were tested to obtain a kinetic picture of IgM and IgG anti-CHIKV antibodies. Anti-CHIKV IgM antibodies were persistently detected in high titers for approximately one year. Three patients demonstrated evidence of possible sequential CHIKV infections. The high incidence rate and continuous chikungunya cases in this adult cohort suggests that CHIKV is endemically transmitted in Bandung. Further characterization of the circulating strains and surveillance in larger areas are needed to better understand CHIKV epidemiology in Indonesia. PMID:24205417

  2. Preparation of vesicular stomatitis virus pseudotype with Chikungunya virus envelope protein.

    PubMed

    Tong, W; Yin, X-X; Lee, B-J; Li, Y-G

    2015-06-01

    Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes Chikungunya fever (CHIKF) in millions of people mainly in developing countries. CHIKF is characterized by high fever, fatigue, headache, nausea, vomiting, rash, myalgia and severe arthralgia. To date, there is no specific treatment and no licensed vaccine against CHIKV infection. In this study, we developed a safe, efficient and easy neutralization assay of CHIKV based on vesicular stomatitis virus (VSV) pseudotype with CHIKV envelope protein and the green fluorescent protein (GFP) or luciferase as reporter gene, which could be used under a reduced safety level. The VSV pseudotype can be applied to the epidemic survey by measuring the expression of GFP or luciferase activity in infected cells. This system can also be used to study the mechanisms of virus entry.

  3. Chikungunya Virus Vaccines: Viral Vector-Based Approaches.

    PubMed

    Ramsauer, Katrin; Tangy, Frédéric

    2016-12-15

    In 2013, a major chikungunya virus (CHIKV) epidemic reached the Americas. In the past 2 years, >1.7 million people have been infected. In light of the current epidemic, with millions of people in North and South America at risk, efforts to rapidly develop effective vaccines have increased. Here, we focus on CHIKV vaccines that use viral-vector technologies. This group of vaccine candidates shares an ability to potently induce humoral and cellular immune responses by use of highly attenuated and safe vaccine backbones. So far, well-described vectors such as modified vaccinia virus Ankara, complex adenovirus, vesicular stomatitis virus, alphavirus-based chimeras, and measles vaccine Schwarz strain (MV/Schw) have been described as potential vaccines. We summarize here the recent data on these experimental vaccines, with a focus on the preclinical and clinical activities on the MV/Schw-based candidate, which is the first CHIKV-vectored vaccine that has completed a clinical trial. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  4. Independent Emergence of the Cosmopolitan Asian Chikungunya Virus, Philippines 2012.

    PubMed

    Tan, Kim-Kee; Sy, Ava Kristy D; Tandoc, Amado O; Khoo, Jing-Jing; Sulaiman, Syuhaida; Chang, Li-Yen; AbuBakar, Sazaly

    2015-07-23

    Outbreaks involving the Asian genotype Chikungunya virus (CHIKV) caused over one million infections in the Americas recently. The outbreak was preceded by a major nationwide outbreak in the Philippines. We examined the phylogenetic and phylogeographic relationships of representative CHIKV isolates obtained from the 2012 Philippines outbreak with other CHIKV isolates collected globally. Asian CHIKV isolated from the Philippines, China, Micronesia and Caribbean regions were found closely related, herein denoted as Cosmopolitan Asian CHIKV (CACV). Three adaptive amino acid substitutions in nsP3 (D483N), E1 (P397L) and E3 (Q19R) were identified among CACV. Acquisition of the nsP3-483N mutation in Compostela Valley followed by E1-397L/E3-19R in Laguna preceded the nationwide spread in the Philippines. The China isolates possessed two of the amino acid substitutions, nsP3-D483N and E1-P397L whereas the Micronesian and Caribbean CHIKV inherited all the three amino acid substitutions. The unique amino acid substitutions observed among the isolates suggest multiple independent virus dissemination events. The possible biological importance of the specific genetic signatures associated with the rapid global of the virus is not known and warrant future in-depth study and epidemiological follow-up. Molecular evidence, however, supports the Philippines outbreak as the possible origin of the CACV.

  5. Independent Emergence of the Cosmopolitan Asian Chikungunya Virus, Philippines 2012

    PubMed Central

    Tan, Kim-Kee; Sy, Ava Kristy D.; Tandoc, Amado O.; Khoo, Jing-Jing; Sulaiman, Syuhaida; Chang, Li-Yen; AbuBakar, Sazaly

    2015-01-01

    Outbreaks involving the Asian genotype Chikungunya virus (CHIKV) caused over one million infections in the Americas recently. The outbreak was preceded by a major nationwide outbreak in the Philippines. We examined the phylogenetic and phylogeographic relationships of representative CHIKV isolates obtained from the 2012 Philippines outbreak with other CHIKV isolates collected globally. Asian CHIKV isolated from the Philippines, China, Micronesia and Caribbean regions were found closely related, herein denoted as Cosmopolitan Asian CHIKV (CACV). Three adaptive amino acid substitutions in nsP3 (D483N), E1 (P397L) and E3 (Q19R) were identified among CACV. Acquisition of the nsP3-483N mutation in Compostela Valley followed by E1-397L/E3-19R in Laguna preceded the nationwide spread in the Philippines. The China isolates possessed two of the amino acid substitutions, nsP3-D483N and E1-P397L whereas the Micronesian and Caribbean CHIKV inherited all the three amino acid substitutions. The unique amino acid substitutions observed among the isolates suggest multiple independent virus dissemination events. The possible biological importance of the specific genetic signatures associated with the rapid global of the virus is not known and warrant future in-depth study and epidemiological follow-up. Molecular evidence, however, supports the Philippines outbreak as the possible origin of the CACV. PMID:26201250

  6. Identification of Asian genotype of chikungunya virus isolated in Mexico.

    PubMed

    Díaz-Quiñonez, José Alberto; Escobar-Escamilla, Noé; Ortíz-Alcántara, Joanna; Vázquez-Pichardo, Mauricio; de la Luz Torres-Rodríguez, María; Nuñez-León, Alma; Torres-Longoria, Belem; López-Martínez, Irma; Ruiz-Matus, Cuitláhuac; Kuri-Morales, Pablo; Ramírez-González, José Ernesto

    2016-02-01

    We identified 25 autochthonous chikungunya virus cases in Mexico, initially detected by RT-PCR targeting the E1 gene and propagated in C6/36 Aedes albopictus cells, in 2014. To determine the type of virus found, in a previous report, the genomes of 2 CHIKV strains were fully sequenced. Genome sequence analysis revealed that these isolates from Mexico belonged to the Asian genotype, and a phylogenetic association with the circulating strain in the British Virgin Islands was also established in the same year. This was further supported by changes in specific amino acids, E2-V368A and 6K-L20M. For these reasons, it can be inferred that the route of virus entry to Mexico was held across the countries in the Caribbean and Central America. The presence of E1-A226V mutation associated with more efficient replication in the salivary gland of the A. albopictus mosquito was not observed. Interestingly, a newly acquired NSP4-S399C mutation was observed; however, the significance of changes in amino acid found in non-structural proteins in autochthonous strains remains to be elucidated.

  7. Activities of proteasome and m-calpain are essential for Chikungunya virus replication.

    PubMed

    Karpe, Yogesh A; Pingale, Kunal D; Kanade, Gayatri D

    2016-10-01

    Replication of many viruses is dependent on the ubiquitin proteasome system. The present study demonstrates that Chikungunya virus replication increases proteasome activity and induces unfolded protein response (UPR) in cultured cells. Further, it was seen that the virus replication was dependent on the activities of proteasomes and m-calpain. Proteasome inhibition induced accumulation of polyubiquitinated proteins and earlier visualization of UPR.

  8. Design and Validation of Novel Chikungunya Virus Protease Inhibitors.

    PubMed

    Das, Pratyush Kumar; Puusepp, Laura; Varghese, Finny S; Utt, Age; Ahola, Tero; Kananovich, Dzmitry G; Lopp, Margus; Merits, Andres; Karelson, Mati

    2016-12-01

    Chikungunya virus (CHIKV; genus Alphavirus) is the causative agent of chikungunya fever. CHIKV replication can be inhibited by some broad-spectrum antiviral compounds; in contrast, there is very little information about compounds specifically inhibiting the enzymatic activities of CHIKV replication proteins. These proteins are translated in the form of a nonstructural (ns) P1234 polyprotein precursor from the CHIKV positive-strand RNA genome. Active forms of replicase enzymes are generated using the autoproteolytic activity of nsP2. The available three-dimensional (3D) structure of nsP2 protease has made it a target for in silico drug design; however, there is thus far little evidence that the designed compounds indeed inhibit the protease activity of nsP2 and/or suppress CHIKV replication. In this study, a set of 12 compounds, predicted to interact with the active center of nsP2 protease, was designed using target-based modeling. The majority of these compounds were shown to inhibit the ability of nsP2 to process recombinant protein and synthetic peptide substrates. Furthermore, all compounds found to be active in these cell-free assays also suppressed CHIKV replication in cell culture, the 50% effective concentration (EC50) of the most potent inhibitor being ∼1.5 μM. Analysis of stereoisomers of one compound revealed that inhibition of both the nsP2 protease activity and CHIKV replication depended on the conformation of the inhibitor. Combining the data obtained from different assays also indicates that some of the analyzed compounds may suppress CHIKV replication using more than one mechanism.

  9. A Single-Amino-Acid Polymorphism in Chikungunya Virus E2 Glycoprotein Influences Glycosaminoglycan Utilization

    PubMed Central

    Silva, Laurie A.; Khomandiak, Solomiia; Ashbrook, Alison W.; Weller, Romy; Heise, Mark T.; Morrison, Thomas E.

    2014-01-01

    ABSTRACT Chikungunya virus (CHIKV) is a reemerging arbovirus responsible for outbreaks of infection throughout Asia and Africa, causing an acute illness characterized by fever, rash, and polyarthralgia. Although CHIKV infects a broad range of host cells, little is known about how CHIKV binds and gains access to the target cell interior. In this study, we tested whether glycosaminoglycan (GAG) binding is required for efficient CHIKV replication using CHIKV vaccine strain 181/25 and clinical isolate SL15649. Preincubation of strain 181/25, but not SL15649, with soluble GAGs resulted in dose-dependent inhibition of infection. While parental Chinese hamster ovary (CHO) cells are permissive for both strains, neither strain efficiently bound to or infected mutant CHO cells devoid of GAG expression. Although GAGs appear to be required for efficient binding of both strains, they exhibit differential requirements for GAGs, as SL15649 readily infected cells that express excess chondroitin sulfate but that are devoid of heparan sulfate, whereas 181/25 did not. We generated a panel of 181/25 and SL15649 variants containing reciprocal amino acid substitutions at positions 82 and 318 in the E2 glycoprotein. Reciprocal exchange at residue 82 resulted in a phenotype switch; Gly82 results in efficient infection of mutant CHO cells but a decrease in heparin binding, whereas Arg82 results in reduced infectivity of mutant cells and an increase in heparin binding. These results suggest that E2 residue 82 is a primary determinant of GAG utilization, which likely mediates attenuation of vaccine strain 181/25. IMPORTANCE Chikungunya virus (CHIKV) infection causes a debilitating rheumatic disease that can persist for months to years, and yet there are no licensed vaccines or antiviral therapies. Like other alphaviruses, CHIKV displays broad tissue tropism, which is thought to be influenced by virus-receptor interactions. In this study, we determined that cell-surface glycosaminoglycans are

  10. Imported Chikungunya Virus Strains, Taiwan, 2006–2014

    PubMed Central

    Yang, Cheng-Fen; Su, Chien-Ling; Hsu, Tung-Chien; Chang, Shu-Fen; Lin, Chien-Chou

    2016-01-01

    We identified 78 imported chikungunya cases in Taiwan during 2006–2014. Sixty-six (84.6%) cases were initially suspected to be dengue, which indicates the necessity for laboratory diagnostics in differentiation between dengue and chikungunya. Results also emphasize the need for active surveillance of febrile illness at points of entry. PMID:27767908

  11. Clinical Features and Neurologic Complications of Children Hospitalized With Chikungunya Virus in Honduras.

    PubMed

    Samra, José A; Hagood, Nancy L; Summer, Andrea; Medina, Marco T; Holden, Kenton R

    2017-07-01

    The first case of Chikungunya virus in Honduras was identified in 2014. The virus has spread widely across Honduras via the Aedes aegypti mosquito, leading to an outbreak of Chikungunya virus (CHIKV) in 2015 that significantly impacted children. A retrospective chart review of 235 children diagnosed with CHIKV and admitted to the National Autonomous University of Honduras Hospital Escuela (Hospital Escuela) in Tegucigalpa, Honduras, was accomplished with patients who were assessed for clinical features and neurologic complications. Of 235 children admitted to Hospital Escuela with CHIKV, the majority had symptoms of fever, generalized erythematous rash, and irritability. Fourteen percent had clinical arthritis. Ten percent of patients had seizures. Six percent had meningoencephalitis. There were 2 childhood deaths during the course of this study, one from meningoencephalitis and another from myocarditis. Chikungunya virus can cause severe complications in children, the majority of which impact the central nervous system.

  12. Complete Genome Sequence of Chikungunya Virus Isolated from an Aedes aegypti Mosquito during an Outbreak in Yemen, 2011.

    PubMed

    Fahmy, Nermeen T; Klena, John D; Mohamed, Amr S; Zayed, Alia; Villinski, Jeffrey T

    2015-07-16

    Chikungunya virus is recognized as a serious public health problem. The complete genome was sequenced for a chikungunya virus isolated from the mosquito Aedes aegypti during a 2011 outbreak in Al Hodayda, Yemen, which resulted in significant human fatalities. Phylogenetic analysis demonstrated that this Yemeni isolate is most closely related to Indian Ocean strains of the east/central/south African genotype.

  13. Complete Genome Sequence of Chikungunya Virus Isolated from an Aedes aegypti Mosquito during an Outbreak in Yemen, 2011

    PubMed Central

    Klena, John D.; Mohamed, Amr S.; Zayed, Alia; Villinski, Jeffrey T.

    2015-01-01

    Chikungunya virus is recognized as a serious public health problem. The complete genome was sequenced for a chikungunya virus isolated from the mosquito Aedes aegypti during a 2011 outbreak in Al Hodayda, Yemen, which resulted in significant human fatalities. Phylogenetic analysis demonstrated that this Yemeni isolate is most closely related to Indian Ocean strains of the east/central/south African genotype. PMID:26184944

  14. Complete Genome Sequences of Chikungunya Virus Strains Isolated in Mexico: First Detection of Imported and Autochthonous Cases

    PubMed Central

    Ortiz-Alcántara, Joanna; Fragoso-Fonseca, David Esaú; Garcés-Ayala, Fabiola; Escobar-Escamilla, Noé; Vázquez-Pichardo, Mauricio; Núñez-León, Alma; Torres-Rodríguez, María de la Luz; Torres-Longoria, Belem; López-Martínez, Irma; Ruíz-Matus, Cuitláhuac; Kuri-Morales, Pablo; Ramírez-González, José Ernesto

    2015-01-01

    The mosquito-borne chikungunya virus, an alphavirus of the Togaviridae family, is responsible for acute polyarthralgia epidemics. Here, we report the complete genome sequences of two chikungunya virus strains, InDRE04 and InDRE51, identified in the Mexican states of Jalisco and Chiapas in 2014. Phylogenetic analysis showed that both strains belong to the Asian genotype. PMID:25953170

  15. Chikungunya virus disease outbreak in Yap State, Federated States of Micronesia

    PubMed Central

    Pastula, Daniel M.; Hancock, W. Thane; Bel, Martin; Biggs, Holly; Marfel, Maria; Lanciotti, Robert; Laven, Janeen; Chen, Tai-Ho; Staples, J. Erin; Fischer, Marc

    2017-01-01

    Background Chikungunya virus is a mosquito-borne alphavirus which causes an acute febrile illness associated with polyarthralgia. Beginning in August 2013, clinicians from the Yap State Department of Health in the Federated States of Micronesia (FSM) identified an unusual cluster of illness which was subsequently confirmed to be chikungunya virus disease. Chikungunya virus disease previously had not been recognized in FSM. Methodology/Principal findings Information from patients presenting to healthcare facilities was collected and analyzed. During August 11, 2013, to August 10, 2014, a total of 1,761 clinical cases were reported for an attack rate of 155 clinical cases per 1,000 population. Among residents of Yap Main Island, 3% were hospitalized. There were no deaths. The outbreak began on Yap Main Island and rapidly spread throughout Yap Main Island and to three neighboring islands. Conclusions/Significance Chikungunya virus can cause explosive outbreaks with substantial morbidity. Given the increasing globalization of chikungunya virus, strong surveillance systems and access to laboratory testing are essential to detect outbreaks. PMID:28248978

  16. Viremia and Clinical Presentation in Nicaraguan Patients Infected With Zika Virus, Chikungunya Virus, and Dengue Virus

    PubMed Central

    Waggoner, Jesse J.; Gresh, Lionel; Vargas, Maria Jose; Ballesteros, Gabriela; Tellez, Yolanda; Soda, K. James; Sahoo, Malaya K.; Nuñez, Andrea; Balmaseda, Angel; Harris, Eva; Pinsky, Benjamin A.

    2016-01-01

    Background. Zika virus (ZIKV), chikungunya virus (CHIKV), and dengue virus (DENV) cocirculate in Nicaragua. In this study, we sought to compare the quantified viremia and clinical presentation of patients infected with 1 or more of these viruses. Methods. Acute-phase serum samples from 346 patients with a suspected arboviral illness were tested using a multiplex real-time reverse-transcription polymerase chain reaction for ZIKV, CHIKV, and DENV. Viremia was quantitated for each detected virus, and clinical information from request forms submitted with each sample was recorded. Results. A total of 263 patients tested positive for 1 or more viruses: 192 patients tested positive for a single virus (monoinfections) and 71 patients tested positive for 2 or all 3 viruses (coinfections). Quantifiable viremia was lower in ZIKV infections compared with CHIKV or DENV (mean 4.70 vs 6.42 and 5.84 log10 copies/mL serum, respectively; P < .001 for both comparisons), and for each virus, mean viremia was significantly lower in coinfections than in monoinfections. Compared with patients with CHIKV or DENV, ZIKV patients were more likely to have a rash (P < .001) and less likely to be febrile (P < .05) or require hospitalization (P < .001). Among all patients, hospitalized cases had higher viremia than those who did not require hospitalization (7.1 vs 4.1 log10 copies/mL serum, respectively; P < .001). Conclusions. ZIKV, CHIKV, and DENV result in similar clinical presentations, and coinfections may be relatively common. Our findings illustrate the need for accurate, multiplex diagnostics for patient care and epidemiologic surveillance. PMID:27578819

  17. A recombinant measles vaccine expressing chikungunya virus-like particles is strongly immunogenic and protects mice from lethal challenge with chikungunya virus.

    PubMed

    Brandler, Samantha; Ruffié, Claude; Combredet, Chantal; Brault, Jean-Baptiste; Najburg, Valérie; Prevost, Marie-Christine; Habel, André; Tauber, Erich; Desprès, Philippe; Tangy, Frédéric

    2013-08-12

    Chikungunya virus (CHIKV), a mosquito-transmitted alphavirus, recently reemerged in the Indian Ocean, India and Southeast Asia, causing millions of cases of severe polyarthralgia. No specific treatment to prevent disease or vaccine to limit epidemics is currently available. Here we describe a recombinant live-attenuated measles vaccine (MV) expressing CHIKV virus-like particles comprising capsid and envelope structural proteins from the recent CHIKV strain La Reunion. Immunization of mice susceptible to measles virus induced high titers of CHIKV antibodies that neutralized several primary isolates. Specific cellular immune responses were also elicited. A single immunization with this vaccine candidate protected all mice from a lethal CHIKV challenge, and passive transfer of immune sera conferred protection to naïve mice. Measles vaccine is one of the safest and most effective human vaccines. A recombinant MV-CHIKV virus could make a safe and effective vaccine against chikungunya that deserves to be further tested in human trials.

  18. Analysis of coevolution in nonstructural proteins of chikungunya virus.

    PubMed

    Jain, Jaspreet; Mathur, Kalika; Shrinet, Jatin; Bhatnagar, Raj K; Sunil, Sujatha

    2016-06-02

    RNA viruses are characterized by high rate of mutations mainly due to the lack of proofreading repair activities associated with its RNA-dependent RNA-polymerase (RdRp). In case of arboviruses, this phenomenon has lead to the existence of mixed population of genomic variants within the host called quasi-species. The stability of strains within the quasi-species lies on mutations that are positively selected which in turn depend on whether these mutations are beneficial in either or both hosts. Coevolution of amino acids (aa) is one phenomenon that leads to establishment of favorable traits in viruses and leading to their fitness. Fourteen CHIKV clinical samples collected over three years were subjected to RT-PCR, the four non-structural genes amplified and subjected to various genetic analyses. Coevolution analysis showed 30 aa pairs coevolving in nsP1, 23 aa pairs coevolving in nsP2, 239 in nsP3 and 46 aa coevolving pairs in nsP4 when each non-structural protein was considered independently. Further analysis showed that 705 amino acids pairs of the non-structural polyproteins coevolved together with a correlation coefficient of ≥0.5. Functional relevance of these coevolving amino acids in all the nonstructural proteins of CHIKV were predicted using Eukaryotic Linear Motifs (ELMs) of human. The present study was undertaken to study co-evolving amino acids in the non-structural proteins of chikungunya virus (CHIKV), an important arbovirus. It was observed that several amino acids residues were coevolving and shared common functions.

  19. Chikungunya Virus in Febrile Humans and Aedes aegypti Mosquitoes, Yucatan, Mexico

    PubMed Central

    Cigarroa-Toledo, Nohemi; Blitvich, Bradley J.; Cetina-Trejo, Rosa C.; Talavera-Aguilar, Lourdes G.; Baak-Baak, Carlos M.; Torres-Chablé, Oswaldo M.; Hamid, Md-Nafiz; Friedberg, Iddo; González-Martinez, Pedro; Alonzo-Salomon, Gabriela; Rosado-Paredes, Elsy P.; Rivero-Cárdenas, Nubia; Reyes-Solis, Guadalupe C.; Farfan-Ale, Jose A.; Garcia-Rejon, Julian E.

    2016-01-01

    Chikungunya virus (CHIKV) was isolated from 12 febrile humans in Yucatan, Mexico, in 2015. One patient was co-infected with dengue virus type 1. Two additional CHIKV isolates were obtained from Aedes aegypti mosquitoes collected in the homes of patients. Phylogenetic analysis showed that the CHIKV isolates belong to the Asian lineage. PMID:27347760

  20. Experimental Vaccine for Mosquito-Borne Chikungunya Virus Rates Well in Clinical Study | FNLCR

    Cancer.gov

    An experimental vaccine for mosquito-borne chikungunya virus, which spread to the U.S. this year, appears to be safe and well-tolerated while offering protection against the virus, according to the results of a first-in-human clinical trial. The vacc

  1. Co-circulation of Dengue and Chikungunya Viruses, Al Hudaydah, Yemen, 2012.

    PubMed

    Rezza, Giovanni; El-Sawaf, Gamal; Faggioni, Giovanni; Vescio, Fenicia; Al Ameri, Ranya; De Santis, Riccardo; Helaly, Ghada; Pomponi, Alice; Metwally, Dalia; Fantini, Massimo; Qadi, Hussein; Ciccozzi, Massimo; Lista, Florigio

    2014-08-01

    We investigated 400 cases of dengue-like illness in persons hospitalized during an outbreak in Al Hudaydah, Yemen, in 2012. Overall, 116 dengue and 49 chikungunya cases were diagnosed. Dengue virus type 2 was the predominant serotype. The co-circulation of these viruses indicates that mosquitoborne infections represent a public health threat in Yemen.

  2. Co-circulation of Dengue and Chikungunya Viruses, Al Hudaydah, Yemen, 2012

    PubMed Central

    El-Sawaf, Gamal; Faggioni, Giovanni; Vescio, Fenicia; Al Ameri, Ranya; De Santis, Riccardo; Helaly, Ghada; Pomponi, Alice; Metwally, Dalia; Fantini, Massimo; Qadi, Hussein; Ciccozzi, Massimo; Lista, Florigio

    2014-01-01

    We investigated 400 cases of dengue-like illness in persons hospitalized during an outbreak in Al Hudaydah, Yemen, in 2012. Overall, 116 dengue and 49 chikungunya cases were diagnosed. Dengue virus type 2 was the predominant serotype. The co-circulation of these viruses indicates that mosquitoborne infections represent a public health threat in Yemen. PMID:25061762

  3. Emerging Causes of Arbovirus Encephalitis in North America: Powassan, Chikungunya, and Zika Viruses.

    PubMed

    Doughty, Christopher T; Yawetz, Sigal; Lyons, Jennifer

    2017-02-01

    Arboviruses are arthropod-borne viruses transmitted by the bite of mosquitoes, ticks, or other arthropods. Arboviruses are a common and an increasing cause of human illness in North America. Powassan virus, Chikungunya virus, and Zika virus are arboviruses that have all recently emerged as increasing causes of neurologic illness. Powassan virus almost exclusively causes encephalitis, but cases are rare, sporadic, and restricted to portions of North America and Russia. Chikungunya virus has spread widely across the world, causing millions of infections. Encephalitis is a rare manifestation of illness but is more common and severe in neonates and older adults. Zika virus has recently spread through much of the Americas and has been associated mostly with microcephaly and other congenital neurologic complications. Encephalitis occurring in infected adults has also been recently reported. This review will discuss the neuropathogenesis of these viruses, their transmission and geographic distribution, the spectrum of their neurologic manifestations, and the appropriate method of diagnosis.

  4. Chikungunya virus: an update on the biology and pathogenesis of this emerging pathogen.

    PubMed

    Burt, Felicity J; Chen, Weiqiang; Miner, Jonathan J; Lenschow, Deborah J; Merits, Andres; Schnettler, Esther; Kohl, Alain; Rudd, Penny A; Taylor, Adam; Herrero, Lara J; Zaid, Ali; Ng, Lisa F P; Mahalingam, Suresh

    2017-04-01

    Re-emergence of chikungunya virus, a mosquito-transmitted pathogen, is of serious public health concern. In the past 15 years, after decades of infrequent, sporadic outbreaks, the virus has caused major epidemic outbreaks in Africa, Asia, the Indian Ocean, and more recently the Caribbean and the Americas. Chikungunya virus is mainly transmitted by Aedes aegypti mosquitoes in tropical and subtropical regions, but the potential exists for further spread because of genetic adaptation of the virus to Aedes albopictus, a species that thrives in temperate regions. Chikungunya virus represents a substantial health burden to affected populations, with symptoms that include severe joint and muscle pain, rashes, and fever, as well as prolonged periods of disability in some patients. The inflammatory response coincides with raised levels of immune mediators and infiltration of immune cells into infected joints and surrounding tissues. Animal models have provided insights into disease pathology and immune responses. Although host innate and adaptive responses have a role in viral clearance and protection, they can also contribute to virus-induced immune pathology. Understanding the mechanisms of host immune responses is essential for the development of treatments and vaccines. Inhibitory compounds targeting key inflammatory pathways, as well as attenuated virus vaccines, have shown some success in animal models, including an attenuated vaccine strain based on an isolate from La Reunion incorporating an internal ribosome entry sequence that prevents the virus from infecting mosquitoes and a vaccine based on virus-like particles expressing envelope proteins. However, immune correlates of protection, as well as the safety of prophylactic and therapeutic candidates, are important to consider for their application in chikungunya infections. In this Review, we provide an update on chikungunya virus with regard to its epidemiology, molecular virology, virus-host interactions

  5. Outbreak of chikungunya due to virus of Central/East African genotype in Malaysia.

    PubMed

    Noridah, O; Paranthaman, V; Nayar, S K; Masliza, M; Ranjit, K; Norizah, I; Chem, Y K; Mustafa, B; Kumarasamy, V; Chua, K B

    2007-10-01

    Chikungunya is an acute febrile illness caused by an alphavirus which is transmitted by infective Aedes mosquitoes. Two previous outbreaks of chikungunya in Malaysia were due to chikungunya virus of Asian genotype. The present outbreak involved two adjoining areas in the suburb of Ipoh city within the Kinta district of Perak, a state in the northern part of Peninsular Malaysia. Thirty seven residents in the main outbreak area and two patients in the secondary area were laboratory confirmed to be infected with the virus. The index case was a 44-year Indian man who visited Paramakudi, Tamil Naidu, India on 21st November 2006 and returned home on 30th of November 2006, and subsequently developed high fever and joint pain on the 3rd of December 2006. A number of chikungunya virus isolates were isolated from both patients and Aedes albopictus mosquitoes in the affected areas. Molecular study showed that the chikungunya virus causing the Kinta outbreak was of the Central/East African genotype which occurred for the first time in Malaysia.

  6. Chikungunya virus: recent advances in epidemiology, host pathogen interaction and vaccine strategies.

    PubMed

    Deeba, Farah; Islam, Asimul; Kazim, Syed Naqui; Naqvi, Irshad Hussain; Broor, Shobha; Ahmed, Anwar; Parveen, Shama

    2016-04-01

    The Chikungunya virus is a re-emerging alphavirus that belongs to the family Togaviridae. The symptoms include fever, rashes, nausea and joint pain that may last for months. The laboratory diagnosis of the infection is based on the serologic assays, virus isolation and molecular methods. The pathogenesis of the Chikungunya viral infection is not completely understood. Some of the recent investigations have provided information on replication of the virus in various cells and organs. In addition, some recent reports have indicated that the severity of the disease is correlated with the viral load and cytokines. The Chikungunya virus infection re-emerged as an explosive epidemic during 2004-09 affecting millions of people in the Indian Ocean. Subsequent global attention was given to research on this viral pathogen due to its broad area of geographical distribution during this epidemic. Chikungunya viral infection has become a challenge for the public health system because of the absence of a vaccine as well as antiviral drugs. A number of potential vaccine candidates have been tested on humans and animal models during clinical and preclinical trials. In this review, we mainly discuss the host-pathogen relationship, epidemiology and recent advances in the development of drugs and vaccines for the Chikungunya viral infection.

  7. Emergence and potential for spread of Chikungunya virus in Brazil.

    PubMed

    Nunes, Marcio Roberto Teixeira; Faria, Nuno Rodrigues; de Vasconcelos, Janaina Mota; Golding, Nick; Kraemer, Moritz U G; de Oliveira, Layanna Freitas; Azevedo, Raimunda do Socorro da Silva; da Silva, Daisy Elaine Andrade; da Silva, Eliana Vieira Pinto; da Silva, Sandro Patroca; Carvalho, Valéria Lima; Coelho, Giovanini Evelim; Cruz, Ana Cecília Ribeiro; Rodrigues, Sueli Guerreiro; Vianez, Joao Lídio da Silva Gonçalves; Nunes, Bruno Tardelli Diniz; Cardoso, Jedson Ferreira; Tesh, Robert B; Hay, Simon I; Pybus, Oliver G; Vasconcelos, Pedro Fernando da Costa

    2015-04-30

    In December 2013, an outbreak of Chikungunya virus (CHIKV) caused by the Asian genotype was notified in the Caribbean. The outbreak has since spread to 38 regions in the Americas. By September 2014, the first autochthonous CHIKV infections were confirmed in Oiapoque, North Brazil, and in Feira de Santana, Northeast Brazil. We compiled epidemiological and clinical data on suspected CHIKV cases in Brazil and polymerase-chain-reaction-based diagnostic was conducted on 68 serum samples from patients with symptom onset between April and September 2014. Two imported and four autochthonous cases were selected for virus propagation, RNA isolation, full-length genome sequencing, and phylogenetic analysis. We then followed CDC/PAHO guidelines to estimate the risk of establishment of CHIKV in Brazilian municipalities. We detected 41 CHIKV importations and 27 autochthonous cases in Brazil. Epidemiological and phylogenetic analyses indicated local transmission of the Asian CHIKV genotype in Oiapoque. Unexpectedly, we also discovered that the ECSA genotype is circulating in Feira de Santana. The presumed index case of the ECSA genotype was an individual who had recently returned from Angola and developed symptoms in Feira de Santana. We estimate that, if CHIKV becomes established in Brazil, transmission could occur in 94% of municipalities in the country and provide maps of the risk of importation of each strain of CHIKV in Brazil. The etiological strains associated with the early-phase CHIKV outbreaks in Brazil belong to the Asian and ECSA genotypes. Continued surveillance and vector mitigation strategies are needed to reduce the future public health impact of CHIKV in the Americas.

  8. Chikungunya virus transmission between Aedes albopictus and laboratory mice.

    PubMed

    Hugo, Leon E; Prow, Natalie A; Tang, Bing; Devine, Greg; Suhrbier, Andreas

    2016-10-19

    Chikungunya virus (CHIKV) is a mosquito-borne alphavirus associated with epidemics of acute and chronic arthritic disease in humans. Aedes albopictus has emerged as an important new natural vector for CHIKV transmission; however, mouse models for studying transmission have not been developed. Aedes albopictus mosquitoes were infected with CHIKV via membrane feeding and by using infected adult wild-type C57BL/6 mice. Paraffin sections of infected mosquitoes were analysed by immunofluorescent antibody staining using an anti-CHIKV antibody. CHIKV-infected mosquitoes were used to infect adult C57BL/6 and interferon response factor 3 and 7 deficient (IRF3/7(-/-)) mice. Feeding mosquitoes on blood meals with CHIKV titres > 5 log10CCID50/ml, either by membrane feeding or feeding on infected mice, resulted in  ≥ 50 % of mosquitoes becoming infected. However, CHIKV titres in blood meals  ≥ 7 log10CCID50/ml were required before salivary glands showed significant levels of immunofluorescent staining with an anti-CHIKV antibody. Mosquitoes fed on blood meals of 7.5 (but not 5.9) log10CCID50/ml were able efficiently to transmit virus to adult C57BL/6 and IRF3/7(-/-) mice, with the latter mice showing overt signs of arthritis post-infection. The results provide a simple in vivo model for studying transmission of CHIKV from mosquitoes to mammals and also argue against a resistance barrier to CHIKV infection in adult mice.

  9. Chikungunya virus vaccines: Current strategies and prospects for developing plant-made vaccines.

    PubMed

    Salazar-González, Jorge A; Angulo, Carlos; Rosales-Mendoza, Sergio

    2015-07-17

    Chikungunya virus is an emerging pathogen initially found in East Africa and currently spread into the Indian Ocean Islands, many regions of South East Asia, and in the Americas. No licensed vaccines against this eminent pathogen are available and thus intensive research in this field is a priority. This review presents the current scenario on the developments of Chikungunya virus vaccines and identifies the use of genetic engineered plants to develop attractive vaccines. The possible avenues to develop plant-made vaccines with distinct antigenic designs and expression modalities are identified and discussed considering current trends in the field.

  10. Molecular Modeling and Docking Study to Elucidate Novel Chikungunya Virus nsP2 Protease Inhibitors.

    PubMed

    Agarwal, T; Asthana, Somya; Bissoyi, A

    2015-01-01

    Chikungunya is one of the tropical viral infections that severely affect the Asian and African countries. Absence of any suitable drugs or vaccines against Chikungunya virus till date makes it essential to identify and develop novel leads for the same. Recently, nsP2 cysteine protease has been classified as a crucial drug target to combat infections caused by Alphaviruses including Chikungunya virus due to its involvement viral replication. Here in, we investigated the structural aspects of the nsP2 protease through homology modeling based on nsP2 protease from Venezuelan equine encephalitis virus. Further, the ligands were virtually screened based on various pharmacological, ADME/Tox filters and subjected to docking with the modeled Chikungunya nsP2 protease using AutoDock4.2. The interaction profiling of ligand with the protein was carried out using LigPlot(+). The results demonstrated that the ligand with PubChem Id (CID_5808891) possessed highest binding affinity towards Chikungunya nsP2 protease with a good interaction profile with the active site residues. We hereby propose that these compounds could inhibit the nsP2 protease by binding to its active site. Moreover, they may provide structural scaffold for the design of novel leads with better efficacy and specificity for the nsP2 protease.

  11. Molecular Modeling and Docking Study to Elucidate Novel Chikungunya Virus nsP2 Protease Inhibitors

    PubMed Central

    Agarwal, T.; Asthana, Somya; Bissoyi, A.

    2015-01-01

    Chikungunya is one of the tropical viral infections that severely affect the Asian and African countries. Absence of any suitable drugs or vaccines against Chikungunya virus till date makes it essential to identify and develop novel leads for the same. Recently, nsP2 cysteine protease has been classified as a crucial drug target to combat infections caused by Alphaviruses including Chikungunya virus due to its involvement viral replication. Here in, we investigated the structural aspects of the nsP2 protease through homology modeling based on nsP2 protease from Venezuelan equine encephalitis virus. Further, the ligands were virtually screened based on various pharmacological, ADME/Tox filters and subjected to docking with the modeled Chikungunya nsP2 protease using AutoDock4.2. The interaction profiling of ligand with the protein was carried out using LigPlot+. The results demonstrated that the ligand with PubChem Id (CID_5808891) possessed highest binding affinity towards Chikungunya nsP2 protease with a good interaction profile with the active site residues. We hereby propose that these compounds could inhibit the nsP2 protease by binding to its active site. Moreover, they may provide structural scaffold for the design of novel leads with better efficacy and specificity for the nsP2 protease. PMID:26664062

  12. Chikungunya viruses that escape monoclonal antibody therapy are clinically attenuated, stable, and not purified in mosquitoes.

    PubMed

    Pal, Pankaj; Fox, Julie M; Hawman, David W; Huang, Yan-Jang S; Messaoudi, Ilhem; Kreklywich, Craig; Denton, Michael; Legasse, Alfred W; Smith, Patricia P; Johnson, Syd; Axthelm, Michael K; Vanlandingham, Dana L; Streblow, Daniel N; Higgs, Stephen; Morrison, Thomas E; Diamond, Michael S

    2014-08-01

    Chikungunya virus (CHIKV) is a reemerging mosquito-transmitted alphavirus that causes epidemics of debilitating polyarthritis in humans. A prior study identified two anti-CHIKV monoclonal antibodies ([MAbs] CHK-152 and CHK-166) against the E2 and E1 structural proteins, which had therapeutic efficacy in immunocompetent and immunocompromised mice. Combination MAb therapy was required as administration of a single MAb resulted in the rapid selection of neutralization escape variants and treatment failure in mice. Here, we initially evaluated the efficacy of combination MAb therapy in a nonhuman primate model of CHIKV infection. Treatment of rhesus macaques with CHK-152 and CHK-166 reduced viral spread and infection in distant tissue sites and also neutralized reservoirs of infectious virus. Escape viruses were not detected in the residual viral RNA present in tissues and organs of rhesus macaques. To evaluate the possible significance of MAb resistance, we engineered neutralization escape variant viruses (E1-K61T, E2-D59N, and the double mutant E1-K61T E2-D59N) that conferred resistance to CHK-152 and CHK-166 and tested them for fitness in mosquito cells, mammalian cells, mice, and Aedes albopictus mosquitoes. In both cell culture and mosquitoes, the mutant viruses grew equivalently and did not revert to wild-type (WT) sequence. All escape variants showed evidence of mild clinical attenuation, with decreased musculoskeletal disease at early times after infection in WT mice and a prolonged survival time in immunocompromised Ifnar1(-/-) mice. Unexpectedly, this was not associated with decreased infectivity, and consensus sequencing from tissues revealed no evidence of reversion or compensatory mutations. Competition studies with CHIKV WT also revealed no fitness compromise of the double mutant (E1-K61T E2-D59N) neutralization escape variant in WT mice. Collectively, our study suggests that neutralization escape viruses selected during combination MAb therapy with CHK

  13. Chikungunya Viruses That Escape Monoclonal Antibody Therapy Are Clinically Attenuated, Stable, and Not Purified in Mosquitoes

    PubMed Central

    Pal, Pankaj; Fox, Julie M.; Hawman, David W.; Huang, Yan-Jang S.; Messaoudi, Ilhem; Kreklywich, Craig; Denton, Michael; Legasse, Alfred W.; Smith, Patricia P.; Johnson, Syd; Axthelm, Michael K.; Vanlandingham, Dana L.; Streblow, Daniel N.; Higgs, Stephen; Morrison, Thomas E.

    2014-01-01

    ABSTRACT Chikungunya virus (CHIKV) is a reemerging mosquito-transmitted alphavirus that causes epidemics of debilitating polyarthritis in humans. A prior study identified two anti-CHIKV monoclonal antibodies ([MAbs] CHK-152 and CHK-166) against the E2 and E1 structural proteins, which had therapeutic efficacy in immunocompetent and immunocompromised mice. Combination MAb therapy was required as administration of a single MAb resulted in the rapid selection of neutralization escape variants and treatment failure in mice. Here, we initially evaluated the efficacy of combination MAb therapy in a nonhuman primate model of CHIKV infection. Treatment of rhesus macaques with CHK-152 and CHK-166 reduced viral spread and infection in distant tissue sites and also neutralized reservoirs of infectious virus. Escape viruses were not detected in the residual viral RNA present in tissues and organs of rhesus macaques. To evaluate the possible significance of MAb resistance, we engineered neutralization escape variant viruses (E1-K61T, E2-D59N, and the double mutant E1-K61T E2-D59N) that conferred resistance to CHK-152 and CHK-166 and tested them for fitness in mosquito cells, mammalian cells, mice, and Aedes albopictus mosquitoes. In both cell culture and mosquitoes, the mutant viruses grew equivalently and did not revert to wild-type (WT) sequence. All escape variants showed evidence of mild clinical attenuation, with decreased musculoskeletal disease at early times after infection in WT mice and a prolonged survival time in immunocompromised Ifnar1−/− mice. Unexpectedly, this was not associated with decreased infectivity, and consensus sequencing from tissues revealed no evidence of reversion or compensatory mutations. Competition studies with CHIKV WT also revealed no fitness compromise of the double mutant (E1-K61T E2-D59N) neutralization escape variant in WT mice. Collectively, our study suggests that neutralization escape viruses selected during combination MAb therapy

  14. Early Events in Chikungunya Virus Infection—From Virus Cell Binding to Membrane Fusion

    PubMed Central

    van Duijl-Richter, Mareike K. S.; Hoornweg, Tabitha E.; Rodenhuis-Zybert, Izabela A.; Smit, Jolanda M.

    2015-01-01

    Chikungunya virus (CHIKV) is a rapidly emerging mosquito-borne alphavirus causing millions of infections in the tropical and subtropical regions of the world. CHIKV infection often leads to an acute self-limited febrile illness with debilitating myalgia and arthralgia. A potential long-term complication of CHIKV infection is severe joint pain, which can last for months to years. There are no vaccines or specific therapeutics available to prevent or treat infection. This review describes the critical steps in CHIKV cell entry. We summarize the latest studies on the virus-cell tropism, virus-receptor binding, internalization, membrane fusion and review the molecules and compounds that have been described to interfere with virus cell entry. The aim of the review is to give the reader a state-of-the-art overview on CHIKV cell entry and to provide an outlook on potential new avenues in CHIKV research. PMID:26198242

  15. A virus-like particle vaccine for epidemic Chikungunya virus protects nonhuman primates against infection.

    PubMed

    Akahata, Wataru; Yang, Zhi-Yong; Andersen, Hanne; Sun, Siyang; Holdaway, Heather A; Kong, Wing-Pui; Lewis, Mark G; Higgs, Stephen; Rossmann, Michael G; Rao, Srinivas; Nabel, Gary J

    2010-03-01

    Chikungunya virus (CHIKV) has infected millions of people in Africa, Europe and Asia since this alphavirus reemerged from Kenya in 2004. The severity of the disease and the spread of this epidemic virus present a serious public health threat in the absence of vaccines or antiviral therapies. Here, we describe a new vaccine that protects against CHIKV infection of nonhuman primates. We show that selective expression of viral structural proteins gives rise to virus-like particles (VLPs) in vitro that resemble replication-competent alphaviruses. Immunization with these VLPs elicited neutralizing antibodies against envelope proteins from alternative CHIKV strains. Monkeys immunized with VLPs produced high-titer neutralizing antibodies that protected against viremia after high-dose challenge. We transferred these antibodies into immunodeficient mice, where they protected against subsequent lethal CHIKV challenge, indicating a humoral mechanism of protection. Immunization with alphavirus VLP vaccines represents a strategy to contain the spread of CHIKV and related pathogenic viruses in humans.

  16. First Complete Genome Sequence of a Chikungunya Virus Strain Isolated from a Patient Diagnosed with Dengue Virus Infection in Malaysia

    PubMed Central

    Gan, Han Ming; Rohani, Ahmad

    2016-01-01

    Here, we report the complete genome sequence of a chikungunya virus coinfection strain isolated from a dengue virus serotype 2-infected patient in Malaysia. This coinfection strain was determined to be of the Asian genotype and contains a novel insertion in the nsP3 gene. PMID:27563048

  17. Evaluation of Commercially Available Chikungunya Virus Immunoglobulin M Detection Assays

    PubMed Central

    Johnson, Barbara W.; Goodman, Christin H.; Holloway, Kimberly; de Salazar, P. Martinez; Valadere, Anne M.; Drebot, Michael A.

    2016-01-01

    Commercial chikungunya virus (CHIKV)–specific IgM detection kits were evaluated at the Centers for Disease Control and Prevention (CDC), the Public Health Agency of Canada National Microbiology Laboratory, and the Caribbean Public Health Agency (CARPHA). The Euroimmun Anti-CHIKV IgM ELISA kit had ≥ 95% concordance with all three reference laboratory results. The limit of detection for low CHIK IgM+ samples, as measured by serial dilution of seven sera up to 1:12,800 ranged from 1:800 to 1:3,200. The Euroimmun IIFT kit evaluated at CDC and CARPHA performed well, but required more retesting of equivocal results. The InBios CHIKjj Detect MAC-ELISA had 100% and 98% concordance with CDC and CARPHA results, respectively, and had equal sensitivity to the CDC MAC-ELISA to 1:12,800 dilution in serially diluted samples. The Abcam Anti-CHIKV IgM ELISA had high performance at CARPHA, but at CDC, performance was inconsistent between lots. After replacement of the biotinylated IgM antibody controls with serum containing CHIKV-specific IgM and additional quality assurance/control measures, the Abcam kit was rereleased and reevaluated at CDC. The reformatted Abcam kit had 97% concordance with CDC results and limit of detection of 1:800 to 1:3,200. Two rapid tests and three other CHIKV MAC-ELISAs evaluated at CDC had low sensitivity, as the CDC CHIKV IgM in-house positive controls were below the level of detection. In conclusion, laboratories have options for CHIKV serological diagnosis using validated commercial kits. PMID:26976887

  18. Chikungunya Virus Infection and Diabetes Mellitus: A Double Negative Impact

    PubMed Central

    Jean-Baptiste, Eddy; von Oettingen, Julia; Larco, Philippe; Raphaël, Frédérica; Larco, Nancy Charles; Cauvin, Marie Marcelle; Charles, René

    2016-01-01

    The impact of chikungunya virus (CHIKV) infection on diabetic patients (DPs) has not been described. We aimed to compare clinical features of CHIKV infection in DPs and nondiabetic patients (NDPs), and to evaluate its effects on glycemic control among DPs. We recorded clinical information and, in DPs, glycemic control. Forty-six DPs and 53 NDPs aged ≥ 20 years living in Haiti, with acute CHIKV infection, were studied. Diabetes duration was 7.1 ± 6.1 years. The most common acute CHIKV clinical manifestations were arthralgia (100.0% DPs and 98.1% NDPs, P = 1.000) and fever (86.9% DPs and 90.5% NDPs, P = 0.750). In DPs as compared with NDPs, arthralgia was more intense (mean pain score of 6.0/10 ± 2.2 versus 5.1/10 ± 2.0, P = 0.04) and took longer to improve (8.2 ± 3.0 versus 3.5 ± 2.5 days, P < 0.0001). Severe arthralgia was more prevalent (58.7% versus 20.8%, P = 0.0002), as was myalgia (80.4% versus 50.9%, P = 0.003), and fever lasted longer (5.1 ± 1.8 versus 3.7 ± 1.7 days, P = 0.0002). Among DPs, median fasting capillary glucose before versus after disease onset was 132.5 and 167.5 mg/dL (P < 0.001), corresponding to a median increase of 26.8% (interquartile range: 14.4–50.1%). Antidiabetic medication was titrated up in 41.3%. In summary, among DPs, CHIKV infection has a significant negative impact on glycemic control and, compared with NDPs, results in greater morbidity. Close clinical and glycemic observation is recommended in DPs with CHIKV infection. PMID:27729569

  19. Nowcasting the Spread of Chikungunya Virus in the Americas

    PubMed Central

    Johansson, Michael A.; Powers, Ann M.; Pesik, Nicki; Cohen, Nicole J.; Staples, J. Erin

    2014-01-01

    Background In December 2013, the first locally-acquired chikungunya virus (CHIKV) infections in the Americas were reported in the Caribbean. As of May 16, 55,992 cases had been reported and the outbreak was still spreading. Identification of newly affected locations is paramount to intervention activities, but challenging due to limitations of current data on the outbreak and on CHIKV transmission. We developed models to make probabilistic predictions of spread based on current data considering these limitations. Methods and Findings Branching process models capturing travel patterns, local infection prevalence, climate dependent transmission factors, and associated uncertainty estimates were developed to predict probable locations for the arrival of CHIKV-infected travelers and for the initiation of local transmission. Many international cities and areas close to where transmission has already occurred were likely to have received infected travelers. Of the ten locations predicted to be the most likely locations for introduced CHIKV transmission in the first four months of the outbreak, eight had reported local cases by the end of April. Eight additional locations were likely to have had introduction leading to local transmission in April, but with substantial uncertainty. Conclusions Branching process models can characterize the risk of CHIKV introduction and spread during the ongoing outbreak. Local transmission of CHIKV is currently likely in several Caribbean locations and possible, though uncertain, for other locations in the continental United States, Central America, and South America. This modeling framework may also be useful for other outbreaks where the risk of pathogen spread over heterogeneous transportation networks must be rapidly assessed on the basis of limited information. PMID:25111394

  20. Nowcasting the spread of chikungunya virus in the Americas.

    PubMed

    Johansson, Michael A; Powers, Ann M; Pesik, Nicki; Cohen, Nicole J; Staples, J Erin

    2014-01-01

    In December 2013, the first locally-acquired chikungunya virus (CHIKV) infections in the Americas were reported in the Caribbean. As of May 16, 55,992 cases had been reported and the outbreak was still spreading. Identification of newly affected locations is paramount to intervention activities, but challenging due to limitations of current data on the outbreak and on CHIKV transmission. We developed models to make probabilistic predictions of spread based on current data considering these limitations. Branching process models capturing travel patterns, local infection prevalence, climate dependent transmission factors, and associated uncertainty estimates were developed to predict probable locations for the arrival of CHIKV-infected travelers and for the initiation of local transmission. Many international cities and areas close to where transmission has already occurred were likely to have received infected travelers. Of the ten locations predicted to be the most likely locations for introduced CHIKV transmission in the first four months of the outbreak, eight had reported local cases by the end of April. Eight additional locations were likely to have had introduction leading to local transmission in April, but with substantial uncertainty. Branching process models can characterize the risk of CHIKV introduction and spread during the ongoing outbreak. Local transmission of CHIKV is currently likely in several Caribbean locations and possible, though uncertain, for other locations in the continental United States, Central America, and South America. This modeling framework may also be useful for other outbreaks where the risk of pathogen spread over heterogeneous transportation networks must be rapidly assessed on the basis of limited information.

  1. Evaluation of Commercially Available Chikungunya Virus Immunoglobulin M Detection Assays.

    PubMed

    Johnson, Barbara W; Goodman, Christin H; Holloway, Kimberly; de Salazar, P Martinez; Valadere, Anne M; Drebot, Michael A

    2016-07-06

    Commercial chikungunya virus (CHIKV)-specific IgM detection kits were evaluated at the Centers for Disease Control and Prevention (CDC), the Public Health Agency of Canada National Microbiology Laboratory, and the Caribbean Public Health Agency (CARPHA). The Euroimmun Anti-CHIKV IgM ELISA kit had ≥ 95% concordance with all three reference laboratory results. The limit of detection for low CHIK IgM+ samples, as measured by serial dilution of seven sera up to 1:12,800 ranged from 1:800 to 1:3,200. The Euroimmun IIFT kit evaluated at CDC and CARPHA performed well, but required more retesting of equivocal results. The InBios CHIKjj Detect MAC-ELISA had 100% and 98% concordance with CDC and CARPHA results, respectively, and had equal sensitivity to the CDC MAC-ELISA to 1:12,800 dilution in serially diluted samples. The Abcam Anti-CHIKV IgM ELISA had high performance at CARPHA, but at CDC, performance was inconsistent between lots. After replacement of the biotinylated IgM antibody controls with serum containing CHIKV-specific IgM and additional quality assurance/control measures, the Abcam kit was rereleased and reevaluated at CDC. The reformatted Abcam kit had 97% concordance with CDC results and limit of detection of 1:800 to 1:3,200. Two rapid tests and three other CHIKV MAC-ELISAs evaluated at CDC had low sensitivity, as the CDC CHIKV IgM in-house positive controls were below the level of detection. In conclusion, laboratories have options for CHIKV serological diagnosis using validated commercial kits. © The American Society of Tropical Medicine and Hygiene.

  2. Chikungunya virus outbreak in Sint Maarten, 2013-2014.

    PubMed

    Henry, Maria; Francis, Lorraine; Asin, Virginia; Polson-Edwards, Karen; Olowokure, Babatunde

    2017-08-21

    This report describes the outbreak of chikungunya virus (CHIKV) in Sint Maarten, a constituent country of Kingdom of the Netherlands comprising the southern part of the Caribbean island of Saint Martin, from 22 December 2013 (first reported case) through 5 December 2014. The outbreak was first reported by the French overseas collectivity of Saint-Martin in the northern part of the island-the first site in the Americas to report autochthonous transmission of CHIKV. By 5 December 2014, Sint Maarten had reported a total of 658 cases-an overall attack rate of 1.76%. Actual prevalence may have been higher, as some cases may have been misdiagnosed as dengue. Fever and arthralgia affected 71% and 69% of reported cases respectively. Of the 390 laboratory-confirmed cases, 61% were female and the majority were 20-59 years old (mean: 42; range: 4-92). The spread of CHIKV to Sint Maarten was inevitable given the ease of movement of people, and the vector, island-wide. Continuing their history of collaboration, the French and Dutch parts of the island coordinated efforts for prevention and control of the disease. These included a formal agreement to exchange epidemiological information on a regular basis and provide alerts in a timely manner; collaboration among personnel through joint island-wide planning of mosquito control activities, especially along borders; notification of all island visitors, upon their arrival at airports and seaports, of preventative measures to avoid being bitten by mosquitoes; dissemination of educational materials to the public; and island-wide public awareness campaigns, particularly in densely populated areas, for both residents and visitors. The information provided in this report could help increase understanding of the epidemiological characteristics of CHIKV and guide other countries dealing with vector-borne epidemics.

  3. Spread of Chikungunya Virus East/Central/South African Genotype in Northeast Brazil.

    PubMed

    Charlys da Costa, Antonio; Thézé, Julien; Komninakis, Shirley Cavalcante Vasconcelos; Sanz-Duro, Rodrigo Lopes; Felinto, Marta Rejane Lemos; Moura, Lúcia Cristina Corrêa; Barroso, Ivoneide Moreira de Oliveira; Santos, Lucineide Eliziario Correia; Nunes, Mardjane Alves de Lemos; Moura, Adriana Avila; Lourenço, José; Deng, Xutao; Delwart, Eric L; Guimarães, Maria Raquel Dos Anjos Silva; Pybus, Oliver G; Sabino, Ester C; Faria, Nuno R

    2017-10-01

    We investigated an outbreak of exanthematous illness in Maceió by using molecular surveillance; 76% of samples tested positive for chikungunya virus. Genetic analysis of 23 newly generated genomes identified the East/Central/South African genotype, suggesting that this lineage has persisted since mid-2014 in Brazil and may spread in the Americas and beyond.

  4. Detection of East/Central/South African Genotype of Chikungunya Virus in Myanmar, 2010

    PubMed Central

    Tun, Mya Myat Ngwe; Thant, Kyaw Zin; Inoue, Shingo; Nabeshima, Takeshi; Aoki, Kotaro; Kyaw, Aung Kyaw; Myint, Tin; Tar, Thi; Maung, Kay Thwe Thwe; Hayasaka, Daisuke

    2014-01-01

    In 2010, chikungunya virus of the East Central South African genotype was isolated from 4 children in Myanmyar who had dengue-like symptoms. Phylogenetic analysis of the E1 gene revealed that the isolates were closely related to isolates from China, Thailand, and Malaysia that harbor the A226V mutation in this gene. PMID:25062511

  5. Persistent Arthralgia Associated with Chikungunya Virus Outbreak, US Virgin Islands, December 2014-February 2016.

    PubMed

    Feldstein, Leora R; Rowhani-Rahbar, Ali; Staples, J Erin; Weaver, Marcia R; Halloran, M Elizabeth; Ellis, Esther M

    2017-04-01

    After the 2014-2015 outbreak of chikungunya virus in the US Virgin Islands, we compared the prevalence of persistent arthralgia among case-patients and controls. Prevalence was higher in case-patients than controls 6 and 12 months after disease onset. Continued vaccine research to prevent acute illness and long-term sequelae is essential.

  6. Persistent Arthralgia Associated with Chikungunya Virus Outbreak, US Virgin Islands, December 2014–February 2016

    PubMed Central

    Rowhani-Rahbar, Ali; Staples, J. Erin; Weaver, Marcia R.; Halloran, M. Elizabeth; Ellis, Esther M.

    2017-01-01

    After the 2014–2015 outbreak of chikungunya virus in the US Virgin Islands, we compared the prevalence of persistent arthralgia among case-patients and controls. Prevalence was higher in case-patients than controls 6 and 12 months after disease onset. Continued vaccine research to prevent acute illness and long-term sequelae is essential. PMID:28322703

  7. Lymphadenopathy in Patients With Chikungunya Virus Infection Imported From Hispaniola: Case Reports.

    PubMed

    Norman, Francesca F; Monge-Maillo, Begoña; Perez-Molina, Jose-Antonio; de Ory, Fernando; Franco, Leticia; Sánchez-Seco, María-Paz; López-Vélez, Rogelio

    2015-01-01

    Chikungunya virus (CHIKV) is currently spreading in the Caribbean and America. Lymphadenopathy, described in infections with other alphaviruses, is not commonly reported in CHIKV infections. Painful lymphadenopathy was found in three of the first six CHIKV infections from the current outbreak diagnosed at a reference center in Madrid, Spain.

  8. Genomic Assays for Identification of Chikungunya Virus in Blood Donors, Puerto Rico, 2014

    PubMed Central

    Chiu, Charles Y.; Bres, Vanessa; Yu, Guixia; Krysztof, David; Naccache, Samia N.; Lee, Deanna; Pfeil, Jacob; Linnen, Jeffrey M.

    2015-01-01

    A newly developed transcription-mediated amplification assay was used to detect chikungunya virus infection in 3 of 557 asymptomatic donors (0.54%) from Puerto Rico during the 2014–2015 Caribbean epidemic. Viral detection was confirmed by using PCR, microarray, and next-generation sequencing. Molecular clock analysis dated the emergence of the Puerto Rico strains to early 2013. PMID:26196378

  9. Chikungunya virus and West Nile virus infections imported into Belgium, 2007-2012.

    PubMed

    VAN DEN Bossche, D; Cnops, L; Meersman, K; Domingo, C; VAN Gompel, A; VAN Esbroeck, M

    2015-07-01

    Arboviral infections are emerging among tourists travelling to (sub)tropical regions. This study aims to describe the importation of chikungunya virus (CHIKV) and West Nile virus (WNV) into Belgium over a 6-year period from 2007 to 2012. Clinical samples were obtained from travellers presenting at the outpatient clinic of the Institute of Tropical Medicine (ITM), Antwerp, Belgium or submitted to the Central Laboratory for Clinical Biology of the ITM. Testing was performed by serology and/or by real-time reverse transcriptase-polymerase chain reaction. A total of 1288 returning travellers were investigated for CHIKV infection resulting in 34 confirmed and two probable diagnoses (2·80%). Out of 899 patients, four confirmed and one probable imported WNV infections were diagnosed (0·55%). No locally acquired cases have been registered in Belgium until now and the geographical origin of the imported infections reflects the global locations where the viruses are circulating.

  10. Chikungunya Virus Sequences across the First Epidemic in Nicaragua, 2014–2015

    PubMed Central

    Wang, Chunling; Saborio, Saira; Gresh, Lionel; Eswarappa, Meghana; Wu, Diane; Fire, Andrew; Parameswaran, Poornima; Balmaseda, Angel; Harris, Eva

    2016-01-01

    Chikungunya is caused by the mosquito-borne arthrogenic alphavirus, chikungunya virus (CHIKV). Chikungunya was introduced into the Americas in late 2013 and Nicaragua in mid-2014. Here, we sequenced five imported and 30 autochthonous Nicaraguan CHIKV from cases identified in the first epidemic in the country between August 2014 and April 2015. One full-length and two partial genomic sequences were obtained by deep sequencing; Sanger methodology yielded 33 E1 sequences from five imported and 28 autochthonous cases. Phylogenetic analysis indicates that Nicaraguan CHIKV all belonged to the Asian genotype, Caribbean clade. Moreover, E1 gene sequences revealed accumulation of mutations in later months of the epidemic, including four silent mutations in 11 autochthonous cases and three non-synonymous mutations in three autochthonous cases. No mutations contributing to increased transmissibility by Aedes albopictus were identified in the E1 gene. This represents the most comprehensive set of CHIKV sequences available from the Americas to date. PMID:26643533

  11. Ocular involvement associated with an epidemic outbreak of chikungunya virus infection.

    PubMed

    Lalitha, Prajna; Rathinam, Sivakumar; Banushree, Krishnadas; Maheshkumar, Shanmugam; Vijayakumar, Rajendran; Sathe, Padmakar

    2007-10-01

    To study the range of ocular symptoms in a cohort of patients with chikungunya infection. Retrospective, observational case series. Patients attending a tertiary eye care hospital in South India were included in the study. We included adult patients with serologically confirmed chikungunya virus infection who received clinical care at the Aravind Eye Hospital, Madurai, South India. They were assessed for demographic characteristics, ocular symptoms, laboratory parameters, and chikungunya virus infection severity. Patients underwent a complete ophthalmologic examination that included visual acuity, slit-lamp examination, and indirect funduscopic examination. Visual outcome at the end of three months was the main outcome measure. The charts of 37 patients were analyzed based on the clinical picture and the serologic results. Forty patients were included as controls and tested negative. There were 21 males and 16 females with a mean age of 44.17 years. The main ocular symptoms included granulomatous and nongranulomatous anterior uveitis, optic neuritis retrobulbar neuritis, and dendritic lesions. Of the 26 patients who were followed up for three months, the visual acuity improved in 11 patients (42.3%), remained the same in 12 patients (46.15%), and worsened in three patients (11.5%). The main ocular manifestation associated with the recent epidemic outbreak of chikungunya virus infection in South India included granulomatous and nongranulomatous anterior uveitis, optic neuritis, retrobulbar neuritis, and dendritic lesions. The visual prognosis generally was good, with most patients recovering good vision. Further studies are needed to understand the pathogenesis of this disease.

  12. Sequential Chikungunya and Zika Virus Infections in a Traveler from Honduras.

    PubMed

    Norman, Francesca F; Chamorro, Sandra; Vázquez, Ana; Sánchez-Seco, María-Paz; Pérez-Molina, José-Antonio; Monge-Maillo, Begoña; Vivancos, María-Jesús; Rodríguez-Dominguez, Mario; Galán, Juan-Carlos; de Ory, Fernando; López-Vélez, Rogelio

    2016-11-02

    Zika virus (ZIKV) and chikungunya virus (CHIKV) are currently circulating in overlapping areas in the American continents and may both be transmitted by Aedes spp. mosquitoes. The first documented case, to the authors' knowledge, of sequential CHIKV and ZIKV infections diagnosed in a nonendemic area in a returning traveler is reported. The implications for heightened clinical surveillance for these infections and specific patient recommendations are emphasized. © The American Society of Tropical Medicine and Hygiene.

  13. Mosquito Cellular Factors and Functions in Mediating the Infectious entry of Chikungunya Virus

    PubMed Central

    Lee, Regina Ching Hua; Hapuarachchi, Hapuarachchige Chanditha; Chen, Karen Caiyun; Hussain, Khairunnisa' Mohamed; Chen, Huixin; Low, Swee Ling; Ng, Lee Ching; Lin, Raymond; Ng, Mary Mah-Lee; Chu, Justin Jang Hann

    2013-01-01

    Chikungunya virus (CHIKV) is an arthropod-borne virus responsible for recent epidemics in the Asia Pacific regions. A customized gene expression microarray of 18,760 transcripts known to target Aedes mosquito genome was used to identify host genes that are differentially regulated during the infectious entry process of CHIKV infection on C6/36 mosquito cells. Several genes such as epsin I (EPN1), epidermal growth factor receptor pathway substrate 15 (EPS15) and Huntingtin interacting protein I (HIP1) were identified to be differentially expressed during CHIKV infection and known to be involved in clathrin-mediated endocytosis (CME). Transmission electron microscopy analyses further revealed the presence of CHIKV particles within invaginations of the plasma membrane, resembling clathrin-coated pits. Characterization of vesicles involved in the endocytic trafficking processes of CHIKV revealed the translocation of the virus particles to the early endosomes and subsequently to the late endosomes and lysosomes. Treatment with receptor-mediated endocytosis inhibitor, monodansylcadaverine and clathrin-associated drug inhibitors, chlorpromazine and dynasore inhibited CHIKV entry, whereas no inhibition was observed with caveolin-related drug inhibitors. Inhibition of CHIKV entry upon treatment with low-endosomal pH inhibitors indicated that low pH is essential for viral entry processes. CHIKV entry by clathrin-mediated endocytosis was validated via overexpression of a dominant-negative mutant of Eps15, in which infectious entry was reduced, while siRNA-based knockdown of genes associated with CME, low endosomal pH and RAB trafficking proteins exhibited significant levels of CHIKV inhibition. This study revealed, for the first time, that the infectious entry of CHIKV into mosquito cells is mediated by the clathrin-dependent endocytic pathway. PMID:23409203

  14. Cardiovascular involvement and manifestations of systemic Chikungunya virus infection: A systematic review

    PubMed Central

    Alvarez, María Fernanda; Bolívar-Mejía, Adrián; Rodriguez-Morales, Alfonso J.; Ramirez-Vallejo, Eduardo

    2017-01-01

    Background: In the last three years, chikungunya virus disease has been spreading, affecting particularly the Americas, producing more than two million cases. In this setting, not only new disease-related epidemiological patterns have been found, but also new clinical findings have been reported by different research groups. These include findings on the cardiovascular system, including clinical, electrocardiographic and echocardiographic alterations. No previous systemic reviews have been found in major databases about it. Methods: We performed a systematic review looking for reports about cardiovascular compromise during chikungunya disease. Cardiac compromise is not so common in isolated episodes; but countries where chikungunya virus is an epidemic should be well informed about this condition. We used 6 bibliographical databases as resources: Medline/Pubmed, Embase, ScienceDirect, ClinicalKey, Ovid and SciELO. Dengue reports on cardiovascular compromise were included as well, to compare both arbovirus’ organic compromises. Articles that delved mainly into the rheumatic articular and cutaneous complications were not considered, as they were not in line with the purpose of this study. The type of articles included were reviews, meta-analyses, case-controls, cohort studies, case reports and case series. This systematic review does not reach or performed a meta-analysis. Results: Originally based on 737 articles, our reviewed selected 40 articles with 54.2% at least mentioning CHIKV cardiovascular compromise within the systemic compromise. Cardiovascular manifestations can be considered common and have been reported in France, India, Sri Lanka, Malaysia, Colombia, Venezuela and USA, including mainly, but no limited to: hypotension, shock and circulatory collapse, Raynaud phenomenon, arrhythmias, murmurs, myocarditis, dilated cardiomyopathy, congestive insufficiency, heart failure and altered function profile (Troponins, CPK). Conclusions: Physicians should be

  15. Dynamics of Chikungunya Virus Cell Entry Unraveled by Single-Virus Tracking in Living Cells

    PubMed Central

    Hoornweg, Tabitha E.; van Duijl-Richter, Mareike K. S.; Ayala Nuñez, Nilda V.; Albulescu, Irina C.; van Hemert, Martijn J.

    2016-01-01

    ABSTRACT Chikungunya virus (CHIKV) is a rapidly emerging mosquito-borne human pathogen causing major outbreaks in Africa, Asia, and the Americas. The cell entry pathway hijacked by CHIKV to infect a cell has been studied previously using inhibitory compounds. There has been some debate on the mechanism by which CHIKV enters the cell: several studies suggest that CHIKV enters via clathrin-mediated endocytosis, while others show that it enters independently of clathrin. Here we applied live-cell microscopy and monitored the cell entry behavior of single CHIKV particles in living cells transfected with fluorescent marker proteins. This approach allowed us to obtain detailed insight into the dynamic events that occur during CHIKV entry. We observed that almost all particles fused within 20 min after addition to the cells. Of the particles that fused, the vast majority first colocalized with clathrin. The average time from initial colocalization with clathrin to the moment of membrane fusion was 1.7 min, highlighting the rapidity of the cell entry process of CHIKV. Furthermore, these results show that the virus spends a relatively long time searching for a receptor. Membrane fusion was observed predominantly from within Rab5-positive endosomes and often occurred within 40 s after delivery to endosomes. Furthermore, we confirmed that a valine at position 226 of the E1 protein enhances the cholesterol-dependent membrane fusion properties of CHIKV. To conclude, our work confirms that CHIKV enters cells via clathrin-mediated endocytosis and shows that fusion occurs from within acidic early endosomes. IMPORTANCE Since its reemergence in 2004, chikungunya virus (CHIKV) has spread rapidly around the world, leading to millions of infections. CHIKV often causes chikungunya fever, a self-limiting febrile illness with severe arthralgia. Currently, no vaccine or specific antiviral treatment against CHIKV is available. A potential antiviral strategy is to interfere with the cell

  16. Potential Antivirals: Natural Products Targeting Replication Enzymes of Dengue and Chikungunya Viruses.

    PubMed

    Oliveira, Ana Flávia Costa da Silveira; Teixeira, Róbson Ricardo; Oliveira, André Silva de; Souza, Ana Paula Martins de; Silva, Milene Lopes da; Paula, Sérgio Oliveira de

    2017-03-22

    Dengue virus (DENV) and chikungunya virus (CHIKV) are reemergent arboviruses that are transmitted by mosquitoes of the Aedes genus. During the last several decades, these viruses have been responsible for millions of cases of infection and thousands of deaths worldwide. Therefore, several investigations were conducted over the past few years to find antiviral compounds for the treatment of DENV and CHIKV infections. One attractive strategy is the screening of compounds that target enzymes involved in the replication of both DENV and CHIKV. In this review, we describe advances in the evaluation of natural products targeting the enzymes involved in the replication of these viruses.

  17. Global distribution and environmental suitability for chikungunya virus, 1952 to 2015

    PubMed Central

    Golding, N; Pigott, DM; Brady, OJ; Moyes, CL; Johansson, MA; Gething, PW; Velayudhan, R; Khan, K

    2016-01-01

    Chikungunya fever is an acute febrile illness caused by the chikungunya virus (CHIKV), which is transmitted to humans by Aedes mosquitoes. Although chikungunya fever is rarely fatal, patients can experience debilitating symptoms that last from months to years. Here we comprehensively assess the global distribution of chikungunya and produce high-resolution maps, using an established modelling framework that combines a comprehensive occurrence database with bespoke environmental correlates, including up-to-date Aedes distribution maps. This enables estimation of the current total population-at-risk of CHIKV transmission and identification of areas where the virus may spread to in the future. We identified 94 countries with good evidence for current CHIKV presence and a set of countries in the New and Old World with potential for future CHIKV establishment, demonstrated by high environmental suitability for transmission and in some cases previous sporadic reports. Aedes aegypti presence was identified as one of the major contributing factors to CHIKV transmission but significant geographical heterogeneity exists. We estimated 1.3 billion people are living in areas at-risk of CHIKV transmission. These maps provide a baseline for identifying areas where prevention and control efforts should be prioritised and can be used to guide estimation of the global burden of CHIKV. PMID:27239817

  18. Global distribution and environmental suitability for chikungunya virus, 1952 to 2015.

    PubMed

    Nsoesie, Elaine O; Kraemer, Moritz Ug; Golding, Nick; Pigott, David M; Brady, Oliver J; Moyes, Catherine L; Johansson, Michael A; Gething, Peter W; Velayudhan, Raman; Khan, Kamran; Hay, Simon I; Brownstein, John S

    2016-05-19

    Chikungunya fever is an acute febrile illness caused by the chikungunya virus (CHIKV), which is transmitted to humans by Aedes mosquitoes. Although chikungunya fever is rarely fatal, patients can experience debilitating symptoms that last from months to years. Here we comprehensively assess the global distribution of chikungunya and produce high-resolution maps, using an established modelling framework that combines a comprehensive occurrence database with bespoke environmental correlates, including up-to-date Aedes distribution maps. This enables estimation of the current total population-at-risk of CHIKV transmission and identification of areas where the virus may spread to in the future. We identified 94 countries with good evidence for current CHIKV presence and a set of countries in the New and Old World with potential for future CHIKV establishment, demonstrated by high environmental suitability for transmission and in some cases previous sporadic reports. Aedes aegypti presence was identified as one of the major contributing factors to CHIKV transmission but significant geographical heterogeneity exists. We estimated 1.3 billion people are living in areas at-risk of CHIKV transmission. These maps provide a baseline for identifying areas where prevention and control efforts should be prioritised and can be used to guide estimation of the global burden of CHIKV.

  19. Chikungunya, Influenza, Nipah, and Semliki Forest Chimeric Viruses with Vesicular Stomatitis Virus: Actions in the Brain.

    PubMed

    van den Pol, Anthony N; Mao, Guochao; Chattopadhyay, Anasuya; Rose, John K; Davis, John N

    2017-03-15

    Recombinant vesicular stomatitis virus (VSV)-based chimeric viruses that include genes from other viruses show promise as vaccines and oncolytic viruses. However, the critical safety concern is the neurotropic nature conveyed by the VSV glycoprotein. VSVs that include the VSV glycoprotein (G) gene, even in most recombinant attenuated strains, can still show substantial adverse or lethal actions in the brain. Here, we test 4 chimeric viruses in the brain, including those in which glycoprotein genes from Nipah, chikungunya (CHIKV), and influenza H5N1 viruses were substituted for the VSV glycoprotein gene. We also test a virus-like vesicle (VLV) in which the VSV glycoprotein gene is expressed from a replicon encoding the nonstructural proteins of Semliki Forest virus. VSVΔG-CHIKV, VSVΔG-H5N1, and VLV were all safe in the adult mouse brain, as were VSVΔG viruses expressing either the Nipah F or G glycoprotein. In contrast, a complementing pair of VSVΔG viruses expressing Nipah G and F glycoproteins were lethal within the brain within a surprisingly short time frame of 2 days. Intranasal inoculation in postnatal day 14 mice with VSVΔG-CHIKV or VLV evoked no adverse response, whereas VSVΔG-H5N1 by this route was lethal in most mice. A key immune mechanism underlying the safety of VSVΔG-CHIKV, VSVΔG-H5N1, and VLV in the adult brain was the type I interferon response; all three viruses were lethal in the brains of adult mice lacking the interferon receptor, suggesting that the viruses can infect and replicate and spread in brain cells if not blocked by interferon-stimulated genes within the brain.IMPORTANCE Vesicular stomatitis virus (VSV) shows considerable promise both as a vaccine vector and as an oncolytic virus. The greatest limitation of VSV is that it is highly neurotropic and can be lethal within the brain. The neurotropism can be mostly attributed to the VSV G glycoprotein. Here, we test 4 chimeric viruses of VSV with glycoprotein genes from Nipah

  20. Utilization and Assessment of Throat Swab and Urine Specimens for Diagnosis of Chikungunya Virus Infection.

    PubMed

    Raut, Chandrashekhar G; Hanumaiah, H; Raut, Wrunda C

    2016-01-01

    Chikungunya is a mosquito-borne infection with clinical presentation of fever, arthralgia, and rash. The etiological agent Chikungunya virus (CHIKV) is generally transmitted from primates to humans through the bites of infected Aedes aegypti and Aedes albopictus mosquitoes. Outbreaks of Chikungunya occur commonly with varied morbidity, mortality, and sequele according to the epidemiological, ecological, seasonal, and geographical impact. Investigations are required to be conducted as a part of the public health service to understand and report the suspected cases as confirmed by laboratory diagnosis. Holistic sampling at a time of different types would be useful for laboratory testing, result conclusion, and reporting in a valid way. The use of serum samples for virus detection, virus isolation, and serology is routinely practiced, but sometimes serum samples from pediatric and other cases may not be easily available. In such a situation, easily available throat swabs and urine samples could be useful. It is already well reported for measles, rubella, and mumps diseases to have the virus diagnosis from throat swabs and urine. Here, we present the protocols for diagnosis of CHIKV using throat swab and urine specimens.

  1. Zika Virus, Chikungunya Virus, and Dengue Virus in Cerebrospinal Fluid from Adults with Neurological Manifestations, Guayaquil, Ecuador

    PubMed Central

    Acevedo, Nathalie; Waggoner, Jesse; Rodriguez, Michelle; Rivera, Lissette; Landivar, José; Pinsky, Benjamin; Zambrano, Hector

    2017-01-01

    Zika virus (ZIKV), chikungunya virus (CHIKV), and dengue virus (DENV) have been associated with clinical presentations that involve acute neurological complaints. In the current study, we identified ZIKV, CHIKV, and DENV in cerebrospinal fluid (CSF) samples from patients admitted to the Hospital Luis Vernaza (Guayaquil, Ecuador) to the Emergency Room or the Intensive Care Unit, with neurological symptoms and/or concern for acute arboviral infections. Viral RNA from one or more virus was detected in 12/16 patients. Six patients were diagnosed with meningitis or encephalitis, three with Guillain–Barré Syndrome, and one with CNS vasculitis. Two additional patients had a systemic febrile illness including headache that prompted testing of CSF. Two patients, who were diagnosed with encephalitis and meningoencephalitis, died during their hospitalizations. These cases demonstrate the breadth and significance of neurological manifestations associated with ZIKV, CHIKV, and DENV infections. PMID:28174559

  2. Emerging and re-emerging viruses: A global challenge illustrated by Chikungunya virus outbreaks

    PubMed Central

    Devaux, Christian A

    2012-01-01

    In recent decades, the issue of emerging and re-emerging infectious diseases, especially those related to viruses, has become an increasingly important area of concern in public health. It is of significance to anticipate future epidemics by accumulating knowledge through appropriate research and by monitoring their emergence using indicators from different sources. The objective is to alert and respond effectively in order to reduce the adverse impact on the general populations. Most of the emerging pathogens in humans originate from known zoonosis. These pathogens have been engaged in long-standing and highly successful interactions with their hosts since their origins are exquisitely adapted to host parasitism. They developed strategies aimed at: (1) maximizing invasion rate; (2) selecting host traits that can reduce their impact on host life span and fertility; (3) ensuring timely replication and survival both within host and between hosts; and (4) facilitating reliable transmission to progeny. In this context, Arboviruses (or ARthropod-BOrne viruses), will represent with certainty a threat for the coming century. The unprecedented epidemic of Chikungunya virus which occurred between 2005 and 2006 in the French Reunion Island in the Indian Ocean, followed by several outbreaks in other parts of the world, such as India and Southern Europe, has attracted the attention of medical and state authorities about the risks linked to this re-emerging mosquito-borne virus. This is an excellent model to illustrate the issues we are facing today and to improve how to respond tomorrow. PMID:24175207

  3. Tigliane diterpenes from Croton mauritianus as inhibitors of chikungunya virus replication.

    PubMed

    Corlay, Nina; Delang, Leen; Girard-Valenciennes, Emmanuelle; Neyts, Johan; Clerc, Patricia; Smadja, Jacqueline; Guéritte, Françoise; Leyssen, Pieter; Litaudon, Marc

    2014-09-01

    A bioassay-guided purification of an EtOAc extract of the leaves of Croton mauritianus using a chikungunya virus-cell-based assay led to the isolation of 12-O-decanoylphorbol-13-acetate (1) and the new 12-O-decanoyl-7-hydroperoxy-phorbol-5-ene-13-acetate (2), along with loliolide, vomifoliol, dehydrovomifoliol, annuionone D and bluemol C. The planar structure and the relative configuration of compound 2 were elucidated based on spectroscopic analysis, including 1D- and 2D-NMR experiments, mass spectrometry, and comparison with literature data. Compounds 1 and 2 inhibited chikungunya virus-induced cell death in cell culture with EC50s of 2.4±0.3 and 4.0±0.8 μM, respectively.

  4. Oral receptivity of Aedes aegypti from Cape Verde for yellow fever, dengue, and chikungunya viruses.

    PubMed

    Vazeille, Marie; Yébakima, André; Lourenço-de-Oliveira, Ricardo; Andriamahefazafy, Barrysson; Correira, Artur; Rodrigues, Julio Monteiro; Veiga, Antonio; Moreira, Antonio; Leparc-Goffart, Isabelle; Grandadam, Marc; Failloux, Anna-Bella

    2013-01-01

    At the end of 2009, 21,313 cases of dengue-3 virus (DENV-3) were reported in the islands of Cape Verde, an archipelago located in the Atlantic Ocean 570 km from the coast of western Africa. It was the first dengue outbreak ever reported in Cape Verde. Mosquitoes collected in July 2010 in the city of Praia, on the island of Santiago, were identified morphologically as Aedes aegypti formosus. Using experimental oral infections, we found that this vector showed a moderate ability to transmit the epidemic dengue-3 virus, but was highly susceptible to chikungunya and yellow fever viruses.

  5. Impact of Chikungunya virus infection on oral health status: an observational study.

    PubMed

    Katti, Roopa; Shahapur, P R; Udapudi, K L

    2011-01-01

    Chikungunya fever outbreak started in December 2005 in India when the country experienced more than 13 lakhs of Chikungunya infected cases. We undertook this study to describe the impact of Chikungunya virus infection on oral health. The confirmed seropositive patients were included for the study (N = 97). Oral hygiene index simplified, gingival index, plaque index were recorded. Of the 181 tested, 97 were confirmed seropositive for chikungunya infection. Pain and bleeding gums were seen in 55% of the subjects. Of them, 29.1% had poor oral hygiene, 42.27% had severe gingivitis, and 27.84% had severe plaque deposits. Severe gingivitis was observed in patients with chronic disease, this association was statistically significant (χ2 = 6.417, P = 0.040). Our findings showed that about more than half of the tested patients suffered severe pain and bleeding in the oral cavity thereby causing discomfort in chewing. About 1/3 patients had severe gingivitis and foul breath which caused discomfort in carrying out their day-to-day activities.

  6. Performance of the RealStar Chikungunya Virus Real-Time Reverse Transcription-PCR Kit▿

    PubMed Central

    Panning, Marcus; Hess, Markus; Fischer, Waldemar; Grywna, Klaus; Pfeffer, Martin; Drosten, Christian

    2009-01-01

    A novel commercial Chikungunya virus real-time reverse transcription-PCR (RT-PCR) kit was evaluated on a comprehensive panel of original patient samples. The assay was 100% sensitive and specific in comparison to a published real-time RT-PCR. Viral loads from both assays were highly correlated. The kit proved to be suitable for routine use in patient care. PMID:19625474

  7. Autochthonous Transmission of East/Central/South African Genotype Chikungunya Virus, Brazil.

    PubMed

    Cunha, Marcela S; Cruz, Nádia V G; Schnellrath, Laila C; Medaglia, Maria Luiza Gomes; Casotto, Michele E; Albano, Rodolpho M; Costa, Luciana J; Damaso, Clarissa R

    2017-10-01

    We isolated East/Central/South African genotype chikungunya virus during the 2016 epidemic in Rio de Janeiro, Brazil. Genome sequencing revealed unique mutations in the nonstructural protein 4 (NSP4-A481D) and envelope protein 1 (E1-K211T). Moreover, all Brazil East/Central/South isolates shared the exclusive mutations E1-M407L and E2-A103T.

  8. Investigation of twenty selected medicinal plants from Malaysia for anti-Chikungunya virus activity.

    PubMed

    Chan, Yik Sin; Khoo, Kong Soo; Sit, Nam Weng Weng

    2016-09-01

    Chikungunya virus is a reemerging arbovirus transmitted mainly by Aedes mosquitoes. As there are no specific treatments available, Chikungunya virus infection is a significant public health problem. This study investigated 120 extracts from selected medicinal plants for anti-Chikungunya virus activity. The plant materials were subjected to sequential solvent extraction to obtain six different extracts for each plant. The cytotoxicity and antiviral activity of each extract were examined using African monkey kidney epithelial (Vero) cells. The ethanol, methanol and chloroform extracts of Tradescantia spathacea (Commelinaceae) leaves showed the strongest cytopathic effect inhibition on Vero cells, resulting in cell viabilities of 92.6% ± 1.0% (512 μg/ml), 91.5% ± 1.7% (512 μg/ml) and 88.8% ± 2.4% (80 μg/ml) respectively. However, quantitative RT-PCR analysis revealed that the chloroform extract of Rhapis excelsa (Arecaceae) leaves resulted in the highest percentage of reduction of viral load (98.1%), followed by the ethyl acetate extract of Vernonia amygdalina (Compositae) leaves (95.5%). The corresponding 50% effective concentrations (EC50) and selectivity indices for these two extracts were 29.9 ± 0.9 and 32.4 ± 1.3 μg/ml, and 5.4 and 5.1 respectively. Rhapis excelsa and Vernonia amygdalina could be sources of anti-Chikungunya virus agents. [Int Microbiol 19(3):175-182 (2016)]. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  9. Cases of chikungunya virus infection in travellers returning to Spain from Haiti or Dominican Republic, April-June 2014.

    PubMed

    Requena-Méndez, A; Garcia, C; Aldasoro, E; Vicente, J A; Martínez, M J; Pérez-Molina, J A; Calvo-Cano, A; Franco, L; Parrón, I; Molina, A; Ruiz, M; Álvarez, J; Sánchez-Seco, M P; Gascón, J

    2014-07-17

    Ten cases of chikungunya were diagnosed in Spanish travellers returning from Haiti (n=2), the Dominican Republic (n=7) or from both countries (n=1) between April and June 2014. These cases remind clinicians to consider chikungunya in European travellers presenting with febrile illness and arthralgia, who are returning from the Caribbean region and Central America, particularly from Haiti and the Dominican Republic. The presence of Aedes albopictus together with viraemic patients could potentially lead to autochthonous transmission of chikungunya virus in southern Europe.

  10. Chikungunya virus infections among travellers returning to Spain, 2008 to 2014

    PubMed Central

    Fernandez-Garcia, Maria Dolores; Bangert, Mathieu; de Ory, Fernando; Potente, Arantxa; Hernandez, Lourdes; Lasala, Fatima; Herrero, Laura; Molero, Francisca; Negredo, Anabel; Vázquez, Ana; Minguito, Teodora; Balfagón, Pilar; de la Fuente, Jesus; Puente, Sabino; Ramírez de Arellano, Eva; Lago, Mar; Martinez, Miguel; Gascón, Joaquim; Norman, Francesca; Lopez-Velez, Rogelio; Sulleiro, Elena; Pou, Diana; Serre, Nuria; Roblas, Ricardo Fernández; Tenorio, Antonio; Franco, Leticia; Sanchez-Seco, Maria Paz

    2016-01-01

    Since the first documented autochthonous transmission of chikungunya virus in the Caribbean island of Saint Martin in 2013, the infection has been reported within the Caribbean region as well as North, Central and South America. The risk of autochthonous transmission of chikungunya virus becoming established in Spain may be elevated due to the large numbers of travellers returning to Spain from countries affected by the 2013 epidemic in the Caribbean and South America, as well as the existence of the Aedes albopictus vector in certain parts of Spain. We retrospectively analysed the laboratory diagnostic database of the National Centre for Microbiology, Institute of Health Carlos III (CNM-ISCIII) from 2008 to 2014. During the study period, 264 confirmed cases, of 1,371 suspected cases, were diagnosed at the CNM-ISCIII. In 2014 alone, there were 234 confirmed cases. The highest number of confirmed cases were reported from the Dominican Republic (n = 136), Venezuela (n = 30) and Haiti (n = 11). Six cases were viraemic in areas of Spain where the vector is present. This report highlights the need for integrated active case and vector surveillance in Spain and other parts of Europe where chikungunya virus may be introduced by returning travellers. PMID:27631156

  11. Chikungunya virus infections among travellers returning to Spain, 2008 to 2014.

    PubMed

    Fernandez-Garcia, Maria Dolores; Bangert, Mathieu; de Ory, Fernando; Potente, Arantxa; Hernandez, Lourdes; Lasala, Fatima; Herrero, Laura; Molero, Francisca; Negredo, Anabel; Vázquez, Ana; Minguito, Teodora; Balfagón, Pilar; de la Fuente, Jesus; Puente, Sabino; Ramírez de Arellano, Eva; Lago, Mar; Martinez, Miguel; Gascón, Joaquim; Norman, Francesca; Lopez-Velez, Rogelio; Sulleiro, Elena; Pou, Diana; Serre, Nuria; Roblas, Ricardo Fernández; Tenorio, Antonio; Franco, Leticia; Sanchez-Seco, Maria Paz

    2016-09-08

    Since the first documented autochthonous transmission of chikungunya virus in the Caribbean island of Saint Martin in 2013, the infection has been reported within the Caribbean region as well as North, Central and South America. The risk of autochthonous transmission of chikungunya virus becoming established in Spain may be elevated due to the large numbers of travellers returning to Spain from countries affected by the 2013 epidemic in the Caribbean and South America, as well as the existence of the Aedes albopictus vector in certain parts of Spain. We retrospectively analysed the laboratory diagnostic database of the National Centre for Microbiology, Institute of Health Carlos III (CNM-ISCIII) from 2008 to 2014. During the study period, 264 confirmed cases, of 1,371 suspected cases, were diagnosed at the CNM-ISCIII. In 2014 alone, there were 234 confirmed cases. The highest number of confirmed cases were reported from the Dominican Republic (n = 136), Venezuela (n = 30) and Haiti (n = 11). Six cases were viraemic in areas of Spain where the vector is present. This report highlights the need for integrated active case and vector surveillance in Spain and other parts of Europe where chikungunya virus may be introduced by returning travellers.

  12. Development of a multiplex real-time RT-PCR assay for simultaneous detection of dengue and chikungunya viruses.

    PubMed

    Cecilia, D; Kakade, M; Alagarasu, K; Patil, J; Salunke, A; Parashar, D; Shah, P S

    2015-01-01

    Dengue and chikungunya viruses co-circulate and cause infections that start with similar symptoms but progress to radically different outcomes. Therefore, an early diagnostic test that can differentiate between the two is needed. A single-step multiplex real-time RT-PCR assay was developed that can simultaneously detect and quantitate RNA of all dengue virus (DENV) serotypes and chikungunya virus (CHIKV). The sensitivity was 100 % for DENV and 95.8 % for CHIKV, whilst the specificity was 100 % for both viruses when compared with conventional RT-PCR. The detection limit ranged from 1 to 50 plaque-forming units. The assay was successfully used for differential diagnosis of dengue and chikungunya in Pune, where the viruses co-circulate.

  13. Unusual presentation of chikungunya virus infection with concomintant erysipelas in a returning traveler from the Caribbean: a case report.

    PubMed

    Schechter, Marcos C; Workowski, Kimberly A; Fairley, Jessica K

    2014-12-01

    Chikungunya fever is a mosquito-borne febrile illness caused by Chikungunya virus (CHIKV), an alphavirus from the Togaviridae family. It is transmitted by primarily Aedes aegytpi and Aedes albopictus mosquitos [1]. Once of little importance in the Americas, local transmission was identified in the Caribbean in late 2013. More than 1000 travelers returning to the continental United States have been diagnosed with CHIKV. More importantly, there have been 9 documented cases of autochthonous disease in Florida as of September 16, 2014 [2].

  14. Unrecognized Emergence of Chikungunya Virus during a Zika Virus Outbreak in Salvador, Brazil

    PubMed Central

    Prates, Ana Paula P. B.; Paploski, Igor A. D.; Tauro, Laura B.; Silva, Monaise M. O.; Santana, Perla; Rego, Marta F. S.; Reis, Mitermayer G.; Kitron, Uriel

    2017-01-01

    Background Chikungunya virus (CHIKV) entered Brazil in 2014, causing a large outbreak in Feira de Santana, state of Bahia. Although cases have been recorded in Salvador, the capital of Bahia, located ~100 km of Feira de Santana, CHIKV transmission has not been perceived to occur epidemically, largely contrasting with the Zika virus (ZIKV) outbreak and ensuing complications reaching the city in 2015. Methodology/Principal Findings This study aimed to determine the intensity of CHIKV transmission in Salvador between November 2014 and April 2016. Results of all the CHIKV laboratory tests performed in the public sector were obtained and the frequency of positivity was analyzed by epidemiological week. Of the 2,736 tests analyzed, 456 (16.7%) were positive. An increasing in the positivity rate was observed, starting in January/2015, and peaking at 68% in August, shortly after the exanthematous illness outbreak attributed to ZIKV. Conclusions/Significance Public health authorities and health professionals did not immediately detect the increase in CHIKV cases, likely because all the attention was directed to the ZIKV outbreak and ensuing complications. It is important that regions in the world that harbor arbovirus vectors and did not experience intense ZIKV and CHIKV transmission be prepared for the potential co-emergence of these two viruses. PMID:28114414

  15. Unrecognized Emergence of Chikungunya Virus during a Zika Virus Outbreak in Salvador, Brazil.

    PubMed

    Cardoso, Cristiane W; Kikuti, Mariana; Prates, Ana Paula P B; Paploski, Igor A D; Tauro, Laura B; Silva, Monaise M O; Santana, Perla; Rego, Marta F S; Reis, Mitermayer G; Kitron, Uriel; Ribeiro, Guilherme S

    2017-01-01

    Chikungunya virus (CHIKV) entered Brazil in 2014, causing a large outbreak in Feira de Santana, state of Bahia. Although cases have been recorded in Salvador, the capital of Bahia, located ~100 km of Feira de Santana, CHIKV transmission has not been perceived to occur epidemically, largely contrasting with the Zika virus (ZIKV) outbreak and ensuing complications reaching the city in 2015. This study aimed to determine the intensity of CHIKV transmission in Salvador between November 2014 and April 2016. Results of all the CHIKV laboratory tests performed in the public sector were obtained and the frequency of positivity was analyzed by epidemiological week. Of the 2,736 tests analyzed, 456 (16.7%) were positive. An increasing in the positivity rate was observed, starting in January/2015, and peaking at 68% in August, shortly after the exanthematous illness outbreak attributed to ZIKV. Public health authorities and health professionals did not immediately detect the increase in CHIKV cases, likely because all the attention was directed to the ZIKV outbreak and ensuing complications. It is important that regions in the world that harbor arbovirus vectors and did not experience intense ZIKV and CHIKV transmission be prepared for the potential co-emergence of these two viruses.

  16. Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding.

    PubMed

    Mounce, Bryan C; Cesaro, Teresa; Carrau, Lucia; Vallet, Thomas; Vignuzzi, Marco

    2017-03-24

    Several compounds extracted from spices and herbs exhibit antiviral effects in vitro, suggesting potential pharmacological uses. Curcumin, a component of turmeric, has been used as a food additive and herbal supplement due to its potential medicinal properties. Previously, curcumin exhibited antiviral properties against several viruses, including dengue virus and hepatitis C virus, among others. Here, we describe the antiviral effect of curcumin on Zika and chikungunya viruses, two mosquito-borne outbreak viruses. Both viruses responded to treatment of cells with up to 5 μM curumin without impacting cellular viability. We observed that direct treatment of virus with curcumin reduced infectivity of virus in a dose- and time-dependent manner for these enveloped viruses, as well as vesicular stomatitis virus. In contrast, we found no change in infectivity for Coxsackievirus B3, a non-enveloped virus. Derivatives of curcumin also exhibited antiviral activity against enveloped viruses. Further examination revealed that curcumin interfered with the binding of the enveloped viruses to cells in a dose-dependent manner, though the integrity of the viral RNA was maintained. Together, these results expand the family of viruses sensitive to curcumin and provide a mechanism of action for curcumin's effect on these enveloped viruses.

  17. Unusual pattern of chikungunya virus epidemic in the Americas, the Panamanian experience

    PubMed Central

    Denis, Bernardino; Barahona de Mosca, Itza; Rodriguez, Dennys; Cedeño, Israel; Arauz, Dimelza; González, Publio; Cerezo, Lizbeth; Moreno, Lourdes; García, Lourdes; Sáenz, Lisseth E.; Atencio, María Aneth; Rojas-Fermin, Eddy; Vizcaino, Fernando; Perez, Nicolas; Moreno, Brechla; López-Vergès, Sandra; Valderrama, Anayansi; Armién, Blas

    2017-01-01

    Background Chikungunya virus (CHIKV) typically causes explosive epidemics of fever, rash and polyarthralgia after its introduction into naïve populations. Since its introduction in Panama in May of 2014, few autochthonous cases have been reported; most of them were found within limited outbreaks in Panama City in 2014 and Puerto Obaldia town, near the Caribbean border with Colombia in 2015. In order to confirm that Panama had few CHIKV cases compared with neighboring countries, we perform an epidemiological analysis of chikungunya cases reported from May 2014 to July 2015. Moreover, to understand this paucity of confirmed CHIKV cases, a vectorial analysis in the counties where these cases were reported was performed. Methods Chikungunya cases were identified at medical centers and notified to health authorities. Sera samples were analyzed at Gorgas Memorial Institute for viral RNA and CHIKV-specific antibody detection. Results A total of 413 suspected cases of CHIKV infections were reported, with incidence rates of 0.5 and 0.7 per 100,000 inhabitants in 2014 and 2015, respectively. During this period, 38.6% of CHIKV cases were autochthonous with rash and polyarthralgia as predominant symptoms. CHIKV and DENV incidence ratios were 1:306 and 1:34, respectively. A phylogenetic analysis of E1/E2 genomic segment indicates that the outbreak strains belong to the Asian genotype and cluster together with CHIKV isolates from other American countries during the same period. Statistical analysis of the National Vector Control program at the district level shows low and medium vector infestation level for most of the counties with CHIKV cases. This index was lower than for neighboring countries. Conclusions Previous training of clinical, laboratory and vector workers allowed a good caption and detection of the chikungunya cases and fast intervention. It is possible that low/medium vector infestation level could explain in part the paucity of chikungunya infections in Panama

  18. [Aedes albopictus, vector of chikungunya and dengue viruses in Reunion Island: biology and control].

    PubMed

    Delatte, H; Paupy, C; Dehecq, J S; Thiria, J; Failloux, A B; Fontenille, D

    2008-03-01

    Chikungunya virus (CHIKV) and dengue virus (DENV) are mosquito-borne viruses transmitted by the Aedes genus. Dengue is considered as the most important arbovirus disease throughout the World. Chikungunya, known from epidemics in continental Africa and Asia, has up to now been poorly studied. It has been recently responsible for the severe 2004-2007 epidemic reported in the Indian Ocean (IO), which has caused several serious health and economic problems. This unprecedented epidemic of the IO has shown severe health troubles with morbidity and death associated, which had never been observed before. The two major vectors of those arboviruses in the IO area are Aedes aegypti and Aedes albopictus. The latest is considered as the main vector in most of the islands of the area, especially in Reunion Island. Ae. albopictus showed strong ecological plasticity. Small disposable containers were the principal urban breeding sites, and preferred natural developmental sites were bamboo stumps and rock holes in peri-urban and gully areas. The virus has been isolated from field collected Ae. albopictus females, and in two out of 500 pools of larvae, demonstrating vertical transmission. Experimental works showed that both Ae. albopictus and Ae. aegypti from west IO islands are efficient vectors of dengue and chikungunya viruses. Since 2006 and all along the epidemic of CHIKV, measures for the control of larvae (temephos then Bacillus thuringiensis) and adults (fenitrothion, then deltamethrine) of Ae. albopictus where applied along with individual and collective actions (by the use of repellents, and removal of breeding sites around houses) in Reunion Island. In order to prevent such epidemics, a preventive plan for arboviruses upsurge is ongoing processed. This plan would allow a quicker response to the threat and adapt it according to the virus and its specific vector.

  19. Phylogenetic analysis of Chikungunya virus in Colombia: Evidence of purifying selection in the E1 gene.

    PubMed

    Laiton-Donato, Katherine; Usme-Ciro, José A; Rico, Angélica; Pardo, Lissethe; Martínez, Camilo; Salas, Daniela; Ardila, Susanne; Páez, Andrés

    2015-10-23

    Chikungunya virus (CHIKV) is a single-stranded positive sense RNA virus that belongs to the Alphavirus genus of the family Togaviridae. Its genome is 11.8 kb in length, and three genotypes have been identified worldwide: Asian, East/Central/South African (ECSA) and West African. Chikungunya fever is an acute febrile disease transmitted by Aedes spp. that usually presents with polyarthralgia and cutaneous eruption. Following introduction of the virus to the Americas in 2013, the first cases in Colombia occurred in September of 2014, and they reached a cumulative total of 399,932 cases by June of 2015.  To identify the genotype or genotypes responsible for the current epidemic in Colombia and to describe the genetic variability of the virus in the country.  Serum samples from patients presenting with symptoms compatible with Chikungunya fever during 2014-2015 were selected for the study. RT-PCR products of the E1 gene from these samples were used for sequencing and subsequent phylogenetic and adaptive evolution analyses.  The study identified only the presence of the Asian genotype in Colombia. Comparing the Colombian sequences with other sequences from the Americas revealed an average of 0.001 base substitutions per site, with 99.7% and 99.9% nucleotide identity and 99.9% amino acid identity. The adaptive evolution analysis indicated that the E1 gene is under strong purifying selection.  The first epidemic of Chikunguya fever in Colombia was caused by the circulation of the virus Asian genotype. Further genotypic surveillance of the virus in Colombia is required to detect possible changes in its epidemiology, fitness and pathogenicity.

  20. A chikungunya fever vaccine utilizing an insect-specific virus platform.

    PubMed

    Erasmus, Jesse H; Auguste, Albert J; Kaelber, Jason T; Luo, Huanle; Rossi, Shannan L; Fenton, Karla; Leal, Grace; Kim, Dal Y; Chiu, Wah; Wang, Tian; Frolov, Ilya; Nasar, Farooq; Weaver, Scott C

    2017-02-01

    Traditionally, vaccine development involves tradeoffs between immunogenicity and safety. Live-attenuated vaccines typically offer rapid and durable immunity but have reduced safety when compared to inactivated vaccines. In contrast, the inability of inactivated vaccines to replicate enhances safety at the expense of immunogenicity, often necessitating multiple doses and boosters. To overcome these tradeoffs, we developed the insect-specific alphavirus, Eilat virus (EILV), as a vaccine platform. To address the chikungunya fever (CHIKF) pandemic, we used an EILV cDNA clone to design a chimeric virus containing the chikungunya virus (CHIKV) structural proteins. The recombinant EILV/CHIKV was structurally identical at 10 Å to wild-type CHIKV, as determined by single-particle cryo-electron microscopy, and it mimicked the early stages of CHIKV replication in vertebrate cells from attachment and entry to viral RNA delivery. Yet the recombinant virus remained completely defective for productive replication, providing a high degree of safety. A single dose of EILV/CHIKV produced in mosquito cells elicited rapid (within 4 d) and long-lasting (>290 d) neutralizing antibodies that provided complete protection in two different mouse models. In nonhuman primates, EILV/CHIKV elicited rapid and robust immunity that protected against viremia and telemetrically monitored fever. Our EILV platform represents the first structurally native application of an insect-specific virus in preclinical vaccine development and highlights the potential application of such viruses in vaccinology.

  1. First report of naturally infected Aedes aegypti with chikungunya virus genotype ECSA in the Americas.

    PubMed

    Costa-da-Silva, André Luis; Ioshino, Rafaella Sayuri; Petersen, Vivian; Lima, Antonio Fernando; Cunha, Marielton Dos Passos; Wiley, Michael R; Ladner, Jason T; Prieto, Karla; Palacios, Gustavo; Costa, Danuza Duarte; Suesdek, Lincoln; Zanotto, Paolo Marinho de Andrade; Capurro, Margareth Lara

    2017-06-01

    The worldwide expansion of new emergent arboviruses such as Chikungunya and Zika reinforces the importance in understanding the role of mosquito species in spreading these pathogens in affected regions. This knowledge is essential for developing effective programs based on species specificity to avoid the establishment of endemic transmission cycles sustained by the identified local vectors. Although the first autochthonous transmission of Chikungunya virus was described in 2014 in the north of Brazil, the main outbreaks were reported in 2015 and 2016 in the northeast of Brazil. During 5 days of February 2016, we collected mosquitoes in homes of 6 neighborhoods of Aracaju city, the capital of Sergipe state. Four mosquito species were identified but Culex quinquefasciatus and Aedes aegypti were the most abundant. Field-caught mosquitoes were tested for Chikungunya (CHIKV), Zika (ZIKV) and Dengue viruses (DENV) by qRT-PCR and one CHIKV-infected Ae. aegypti female was detected. The complete sequence of CHIKV genome was obtained from this sample and phylogenetic analysis revealed that this isolate belongs to the East-Central-South-African (ECSA) genotype. Our study describes the first identification of a naturally CHIKV-infected Ae. aegypti in Brazil and the first report of a CHIKV from ECSA genotype identified in this species in the Americas. These findings support the notion of Ae. aegypti being a vector involved in CHIKV outbreaks in northeast of Brazil.

  2. Identification of Chikungunya virus strains circulating in Kelantan, Malaysia in 2009.

    PubMed

    Apandi, Y; Lau, S K; Izmawati, N; Amal, N M; Faudzi, Y; Mansor, Wan; Hani, M H; Zainah, S

    2010-11-01

    Malaysia experienced its first outbreak of chikungunya virus (CHIKV) infection in late 1998 in Klang District in Selangor; six years later the virus re-emerged in the state of Perak. All the CHIKV isolates in 1988 and 2006 shared high sequence similarities and belonged to the Asian genotype. In 2007 and 2008 CHIKV infection again reemerged but the genotype was the Central/East African genotype. This strain was found to be similar to the strains causing outbreaks in the India Ocean. In 2009, the strains circulating in Malaysia, including the state of Kelantan, based on the partial E1 gene, also belong to the Central/East African genotype.

  3. Mutation of the N-Terminal Region of Chikungunya Virus Capsid Protein: Implications for Vaccine Design.

    PubMed

    Taylor, Adam; Liu, Xiang; Zaid, Ali; Goh, Lucas Y H; Hobson-Peters, Jody; Hall, Roy A; Merits, Andres; Mahalingam, Suresh

    2017-02-21

    Mosquito-transmitted chikungunya virus (CHIKV) is an arthritogenic alphavirus of the Togaviridae family responsible for frequent outbreaks of arthritic disease in humans. Capsid protein, a structural protein encoded by the CHIKV RNA genome, is able to translocate to the host cell nucleolus. In encephalitic alphaviruses, nuclear translocation induces host cell transcriptional shutoff; however, the role of capsid protein nucleolar localization in arthritogenic alphaviruses remains unclear. Using recombinant enhanced green fluorescent protein (EGFP)-tagged expression constructs and CHIKV infectious clones, we describe a nucleolar localization sequence (NoLS) in the N-terminal region of capsid protein, previously uncharacterized in CHIKV. Mutation of the NoLS by site-directed mutagenesis reduced efficiency of nuclear import of CHIKV capsid protein. In the virus, mutation of the capsid protein NoLS (CHIKV-NoLS) attenuated replication in mammalian and mosquito cells, producing a small-plaque phenotype. Attenuation of CHIKV-NoLS is likely due to disruption of the viral replication cycle downstream of viral RNA synthesis. In mice, CHIKV-NoLS infection caused no disease signs compared to wild-type CHIKV (CHIKV-WT)-infected mice; lack of disease signs correlated with significantly reduced viremia and decreased expression of proinflammatory factors. Mice immunized with CHIKV-NoLS, challenged with CHIKV-WT at 30 days postimmunization, develop no disease signs and no detectable viremia. Serum from CHIKV-NoLS-immunized mice is able to efficiently neutralize CHIKV infection in vitro Additionally, CHIKV-NoLS-immunized mice challenged with the related alphavirus Ross River virus showed reduced early and peak viremia postchallenge, indicating a cross-protective effect. The high degree of CHIKV-NoLS attenuation may improve CHIKV antiviral and rational vaccine design.IMPORTANCE CHIKV is a mosquito-borne pathogen capable of causing explosive epidemics of incapacitating joint pain

  4. First Report of Aedes aegypti Transmission of Chikungunya Virus in the Americas.

    PubMed

    Díaz-González, Esteban E; Kautz, Tiffany F; Dorantes-Delgado, Alicia; Malo-García, Iliana R; Laguna-Aguilar, Maricela; Langsjoen, Rose M; Chen, Rubing; Auguste, Dawn I; Sánchez-Casas, Rosa M; Danis-Lozano, Rogelio; Weaver, Scott C; Fernández-Salas, Ildefonso

    2015-12-01

    During a chikungunya fever outbreak in late 2014 in Chiapas, Mexico, entomovirological surveillance was performed to incriminate the vector(s). In neighborhoods, 75 households with suspected cases were sampled for mosquitoes, of which 80% (60) harbored Aedes aegypti and 2.7% (2) Aedes albopictus. A total of 1,170 Ae. aegypti and three Ae. albopictus was collected and 81 pools were generated. Although none of the Ae. albopictus pools were chikungunya virus (CHIKV)-positive, 18 Ae. aegypti pools (22.8%) contained CHIKV, yielding an infection rate of 32.3/1,000 mosquitoes. A lack of herd immunity in conjunction with high mosquito populations, poor vector control services in this region, and targeted collections in locations of human cases may explain the high infection rate in this vector. Consistent with predictions from experimental studies, Ae. aegypti appears to be the principal vector of CHIKV in southern Mexico, while the role of Ae. albopictus remains unknown.

  5. Detection of Wolbachia in Aedes albopictus and Their Effects on Chikungunya Virus

    PubMed Central

    Ahmad, Noor Afizah; Vythilingam, Indra; Lim, Yvonne A. L.; Zabari, Nur Zatil Aqmar M.; Lee, Han Lim

    2017-01-01

    Wolbachia-based vector control strategies have been proposed as a means to augment the currently existing measures for controlling dengue and chikungunya vectors. Prior to utilizing Wolbachia as a novel vector control strategy, it is crucial to understand the Wolbachia–mosquito interactions. In this study, field surveys were conducted to screen for the infection status of Wolbachia in field-collected Aedes albopictus. The effects of Wolbachia in its native host toward the replication and dissemination of chikungunya virus (CHIKV) was also studied. The prevalence of Wolbachia-infected field-collected Ae. albopictus was estimated to be 98.6% (N = 142) for females and 95.1% (N = 102) for males in the population studied. The Ae. albopictus were naturally infected with both wAlbA and wAlbB strains. We also found that the native Wolbachia has no impact on CHIKV infection and minimal effect on CHIKV dissemination to secondary organs. PMID:27920393

  6. First Report of Aedes aegypti Transmission of Chikungunya Virus in the Americas

    PubMed Central

    Díaz-González, Esteban E.; Kautz, Tiffany F.; Dorantes-Delgado, Alicia; Malo-García, Iliana R.; Laguna-Aguilar, Maricela; Langsjoen, Rose M.; Chen, Rubing; Auguste, Dawn I.; Sánchez-Casas, Rosa M.; Danis-Lozano, Rogelio; Weaver, Scott C.; Fernández-Salas, Ildefonso

    2015-01-01

    During a chikungunya fever outbreak in late 2014 in Chiapas, Mexico, entomovirological surveillance was performed to incriminate the vector(s). In neighborhoods, 75 households with suspected cases were sampled for mosquitoes, of which 80% (60) harbored Aedes aegypti and 2.7% (2) Aedes albopictus. A total of 1,170 Ae. aegypti and three Ae. albopictus was collected and 81 pools were generated. Although none of the Ae. albopictus pools were chikungunya virus (CHIKV)–positive, 18 Ae. aegypti pools (22.8%) contained CHIKV, yielding an infection rate of 32.3/1,000 mosquitoes. A lack of herd immunity in conjunction with high mosquito populations, poor vector control services in this region, and targeted collections in locations of human cases may explain the high infection rate in this vector. Consistent with predictions from experimental studies, Ae. aegypti appears to be the principal vector of CHIKV in southern Mexico, while the role of Ae. albopictus remains unknown. PMID:26416113

  7. [Chikungunya virus infection in the Indian Ocean: lessons learned and perspectives].

    PubMed

    Gaüzère, B A; Gérardin, P; Vandroux, D; Aubry, P

    2012-03-01

    After a brief overview of the history of arbovirus epidemics in the Indian Ocean in XIXth and XXth centuries, a full evaluation of the chikungunya epidemic that occurred in 2005-2006 is provided including both lessons learned and future perspectives. On the positive side, the epidemic has allowed improvement of clinical and pathophysiological knowledge, epidemiological surveillance, vector control, awareness of entomology, avenues for research, and understanding of economic and societal repercussions. On the negative side, the epidemic revealed the limitations of a health care system in an island setting, need for an effective sanitary policy, low public-spiritedness, poor diffusion and understanding of public health announcements, endemization of chikungunya virus in the Indian Ocean, absence of vaccine, and global spread of tropical disease. Discussion of perspectives for future arbovirus disease outbreaks in the Indian Ocean is set against the background of climatic change, unequal socioeconomic progress, and high population growth in the Indian Ocean region.

  8. Evaluation of three commercially-available chikungunya virus immunoglobulin G immunoassays.

    PubMed

    De Salazar, Pablo M; Valadere, Anne Marie; Goodman, Christin H; Johnson, Barbara W

    2017-08-21

    The emergence of chikungunya virus in the Americas means the affected population is at risk of developing severe, chronic, rheumatologic disease, even months after acute infection. Accurate diagnostic methods for past infections are essential for differential diagnosis and consequence management. This study evaluated three commercially-available chikungunya Immunoglobulin G immunoassays by comparing them to an in-house Enzyme-Linked ImmunoSorbent Assay conducted by the Centers for Disease Control and Prevention (Atlanta, Georgia, United States). Results showed sensitivity and specificity values ranging from 92.8% - 100% and 81.8% - 90.9%, respectively, with a significant number of false-positives ranging from 12.5% - 22%. These findings demonstrate the importance of evaluating commercial kits, especially regarding emerging infectious diseases whose medium and long-term impact on the population is unclear.

  9. Nanopatch-targeted skin vaccination against West Nile Virus and Chikungunya virus in mice.

    PubMed

    Prow, Tarl W; Chen, Xianfeng; Prow, Natalie A; Fernando, Germain J P; Tan, Cindy S E; Raphael, Anthony P; Chang, David; Ruutu, Merja P; Jenkins, Derek W K; Pyke, Alyssa; Crichton, Michael L; Raphaelli, Kristin; Goh, Lucas Y H; Frazer, Ian H; Roberts, Michael S; Gardner, Joy; Khromykh, Alexander A; Suhrbier, Andreas; Hall, Roy A; Kendall, Mark A F

    2010-08-16

    The 'Nanopatch' (NP) comprises arrays of densely packed projections with a defined geometry and distribution designed to physically target vaccines directly to thousands of epidermal and dermal antigen presenting cells (APCs). These miniaturized arrays are two orders of magnitude smaller than standard needles-which deliver most vaccines-and are also much smaller than current microneedle arrays. The NP is dry-coated with antigen, adjuvant, and/or DNA payloads. After the NP was pressed onto mouse skin, a protein payload co-localized with 91.4 + or - 4.1 APC mm(-2) (or 2925 in total) representing 52% of the delivery sites within the NP contact area, agreeing well with a probability-based model used to guide the device design; it then substantially increases as the antigen diffuses in the skin to many more cells. APC co-localizing with protein payloads rapidly disappears from the application area, suggesting APC migration. The NP also delivers DNA payloads leading to cutaneous expression of encoded proteins within 24 h. The efficiency of NP immunization is demonstrated using an inactivated whole chikungunya virus vaccine and a DNA-delivered attenuated West Nile virus vaccine. The NP thus offers a needle-free, versatile, highly effective vaccine delivery system that is potentially inexpensive and simple to use.

  10. Long-term persistence of Chikungunya virus neutralizing antibodies in human populations of North Eastern Thailand.

    PubMed

    Nitatpattana, Narong; Kanjanopas, Kobkan; Yoksan, Sutee; Satimai, Wichai; Vongba, Narong; Langdatsuwan, Sasiporn; Nakgoi, Khajornpong; Ratchakum, Supot; Wauquier, Nadia; Souris, Marc; Auewarakul, Prasert; Gonzalez, Jean-Paul

    2014-10-21

    Chikungunya virus (CHIKV) outbreak recurrences in Thailand are unpredictable and separated by unexplained and often long silent epidemiological periods that can last for several years. These silent periods could be explained in part by the fact that infection with one CHIKV strain confers lasting natural immunity, even against other CHIKV strains. In this study we evaluated the persistence of CHIKV-specific neutralizing antibodies in the population of Chumpae District, Khon Kaen Province, nineteen years after a CHIKV outbreak occurred in the same area in 1991. Overall 39% (44/111) of 111 former patients had neutralizing antibodies reacting against CHIKV ECSA strain. Consistently high titers of neutralizing antibodies were found in 75% (33/44) of all positively-reacting sera, 70% of which (23/33) were collected from individuals amongst the >60 years old age group. Although the prevalence found in Pong Haeng village (70%) was significantly higher than the prevalence detected in the Nong Thum village (14%), control study villages without known previous Chikungunya epidemics had a high Chikungunya neutralizing antibody prevalence (65%). More than one-third of the pre-exposed population had persisting natural immunity that was more likely boosted by recent and repetitive exposure to the emerging ECSA CHIKV in Thailand. Also, Chikungunya virus appears to largely circulate in the country with a great variability appears between villages or area probably associated with the vector abundance and efficiency. Altogether these results show a potential for a lifelong immunity against CHIKV. Given the rapid spread of the highly pathogenic ECSA strain in Southern Thailand, the development of CHIK vaccine is strongly recommended.

  11. Molecular characterization of Chikungunya virus isolates from clinical samples and adult Aedes albopictus mosquitoes emerged from larvae from Kerala, South India.

    PubMed

    Niyas, Kudukkil P; Abraham, Rachy; Unnikrishnan, Ramakrishnan Nair; Mathew, Thomas; Nair, Sajith; Manakkadan, Anoop; Issac, Aneesh; Sreekumar, Easwaran

    2010-08-13

    Chikungunya virus (CHIKV), an arthritogenic alphavirus, is transmitted to humans by infected Aedes (Ae.) aegypti and Ae.albopictus mosquitoes. In the study, reverse-transcription PCR (RT PCR) and virus isolation detected CHIKV in patient samples and also in adult Ae.albopictus mosquitoes that was derived from larvae collected during a chikungunya (CHIK) outbreak in Kerala in 2009. The CHIKV strains involved in the outbreak were the East, Central and South African (ECSA) genotype that had the E1 A226V mutation. The viral strains from the mosquitoes and CHIK patients from the same area showed a close relationship based on phylogenetic analysis. Genetic characterization by partial sequencing of non-structural protein 2 (nsP2; 378 bp), envelope E1 (505 bp) and E2 (428 bp) identified one critical mutation in the E2 protein coding region of these CHIKV strains. This novel, non-conservative mutation, L210Q, consistently present in both human and mosquito-derived samples studied, was within the region of the E2 protein (amino acids E2 200-220) that determines mosquito cell infectivity in many alpha viruses. Our results show the involvement of Ae. albopictus in this outbreak in Kerala and appearance of CHIKV with novel genetic changes. Detection of virus in adult mosquitoes, emerged in the laboratory from larvae, also points to the possibility of transovarial transmission (TOT) of mutant CHIKV strains in mosquitoes.

  12. Virus replicon particle based Chikungunya virus neutralization assay using Gaussia luciferase as readout

    PubMed Central

    2013-01-01

    Background Chikungunya virus (CHIKV) has been responsible for large epidemic outbreaks causing fever, headache, rash and severe arthralgia. So far, no specific treatment or vaccine is available. As nucleic acid amplification can only be used during the viremic phase of the disease, serological tests like neutralization assays are necessary for CHIKV diagnosis and for determination of the immune status of a patient. Furthermore, neutralization assays represent a useful tool to validate the efficacy of potential vaccines. As CHIKV is a BSL3 agent, neutralization assays with infectious virus need to be performed under BSL3 conditions. Our aim was to develop a neutralization assay based on non-infectious virus replicon particles (VRPs). Methods VRPs were produced by cotransfecting baby hamster kidney-21 cells with a CHIKV replicon expressing Gaussia luciferase (Gluc) and two helper RNAs expressing the CHIKV capsid protein or the remaining structural proteins, respectively. The resulting single round infectious particles were used in CHIKV neutralization assays using secreted Gluc as readout. Results Upon cotransfection of a CHIKV replicon expressing Gluc and the helper RNAs VRPs could be produced efficiently under optimized conditions at 32°C. Infection with VRPs could be measured via Gluc secreted into the supernatant. The successful use of VRPs in CHIKV neutralization assays was demonstrated using a CHIKV neutralizing monoclonal antibody or sera from CHIKV infected patients. Comparison of VRP based neutralization assays in 24- versus 96-well format using different amounts of VRPs revealed that in the 96-well format a high multiplicity of infection is favored, while in the 24-well format reliable results are also obtained using lower infection rates. Comparison of different readout times revealed that evaluation of the neutralization assay is already possible at the same day of infection. Conclusions A VRP based CHIKV neutralization assay using Gluc as readout

  13. Virus replicon particle based Chikungunya virus neutralization assay using Gaussia luciferase as readout.

    PubMed

    Gläsker, Sabine; Lulla, Aleksei; Lulla, Valeria; Couderc, Therese; Drexler, Jan Felix; Liljeström, Peter; Lecuit, Marc; Drosten, Christian; Merits, Andres; Kümmerer, Beate Mareike

    2013-07-15

    Chikungunya virus (CHIKV) has been responsible for large epidemic outbreaks causing fever, headache, rash and severe arthralgia. So far, no specific treatment or vaccine is available. As nucleic acid amplification can only be used during the viremic phase of the disease, serological tests like neutralization assays are necessary for CHIKV diagnosis and for determination of the immune status of a patient. Furthermore, neutralization assays represent a useful tool to validate the efficacy of potential vaccines. As CHIKV is a BSL3 agent, neutralization assays with infectious virus need to be performed under BSL3 conditions. Our aim was to develop a neutralization assay based on non-infectious virus replicon particles (VRPs). VRPs were produced by cotransfecting baby hamster kidney-21 cells with a CHIKV replicon expressing Gaussia luciferase (Gluc) and two helper RNAs expressing the CHIKV capsid protein or the remaining structural proteins, respectively. The resulting single round infectious particles were used in CHIKV neutralization assays using secreted Gluc as readout. Upon cotransfection of a CHIKV replicon expressing Gluc and the helper RNAs VRPs could be produced efficiently under optimized conditions at 32°C. Infection with VRPs could be measured via Gluc secreted into the supernatant. The successful use of VRPs in CHIKV neutralization assays was demonstrated using a CHIKV neutralizing monoclonal antibody or sera from CHIKV infected patients. Comparison of VRP based neutralization assays in 24- versus 96-well format using different amounts of VRPs revealed that in the 96-well format a high multiplicity of infection is favored, while in the 24-well format reliable results are also obtained using lower infection rates. Comparison of different readout times revealed that evaluation of the neutralization assay is already possible at the same day of infection. A VRP based CHIKV neutralization assay using Gluc as readout represents a fast and useful method to

  14. Genetic analysis of chikungunya viruses imported to mainland China in 2008.

    PubMed

    Zheng, Kui; Li, Jiandong; Zhang, Quanfu; Liang, Mifang; Li, Chuan; Lin, Miao; Huang, Jicheng; Li, Hua; Xiang, Dapeng; Wang, Ninlan; Hong, Ye; Huang, Li; Li, Xiaobo; Pan, Deguan; Song, Wei; Dai, Jun; Guo, Boxuan; Li, Dexin

    2010-01-18

    Chikungunya virus (CHIKV) has caused large outbreaks worldwide in recent years, especially on the islands of the Indian Ocean and India. The virus is transmitted by mosquitoes (Aedes aegypti), which are widespread in China, with an especially high population density in southern China. Analyses of full-length viral sequences revealed the acquisition of a single adaptive mutation providing a selective advantage for the transmission of CHIKV by this species. No outbreaks due to the local transmission of CHIKV have been reported in China, and no cases of importation were detected on mainland China before 2008. We followed the spread of imported CHIKV in southern China and analyzed the genetic character of the detected viruses to evaluate their potential for evolution. The importation of CHIKV to mainland China was first detected in 2008. The genomic sequences of four of the imported viruses were identified, and phylogenetic analysis demonstrated that the sequences were clustered in the Indian Ocean group; however, seven amino acid changes were detected in the nonstructural protein-coding region, and five amino acid changes were noted in the structural protein-coding regions. In particular, a novel substitution in E2 was detected (K252Q), which may impact the neurovirulence of CHIKV. The adaptive mutation A226V in E1 was observed in two imported cases of chikungunya disease. Laboratory-confirmed CHIKV infections among travelers visiting China in 2008 were presented, new mutations in the viral nucleic acids and proteins may represent adaptive mutations for human or mosquito hosts.

  15. Development of Neutralization Assay Using an eGFP Chikungunya Virus

    PubMed Central

    Deng, Cheng-Lin; Liu, Si-Qing; Zhou, Dong-Gen; Xu, Lin-Lin; Li, Xiao-Dan; Zhang, Pan-Tao; Li, Peng-Hui; Ye, Han-Qing; Wei, Hong-Ping; Yuan, Zhi-Ming; Qin, Cheng-Feng; Zhang, Bo

    2016-01-01

    Chikungunya virus (CHIKV), a member of the Alphavirus genus, is an important human emerging/re-emerging pathogen. Currently, there are no effective antiviral drugs or vaccines against CHIKV infection. Herein, we construct an infectious clone of CHIKV and an eGFP reporter CHIKV (eGFP-CHIKV) with an isolated strain (assigned to Asian lineage) from CHIKV-infected patients. The eGFP-CHIKV reporter virus allows for direct visualization of viral replication through the levels of eGFP expression. Using a known CHIKV inhibitor, ribavirin, we confirmed that the eGFP-CHIKV reporter virus could be used to identify inhibitors against CHIKV. Importantly, we developed a novel and reliable eGFP-CHIKV reporter virus-based neutralization assay that could be used for rapid screening neutralizing antibodies against CHIKV. PMID:27367716

  16. Chikungunya Virus-associated Long-term Arthralgia: A 36-month Prospective Longitudinal Study

    PubMed Central

    Madec, Yoann; Carpentier, Florence; Kassab, Somar; Albert, Matthew L.; Lecuit, Marc; Michault, Alain

    2013-01-01

    Background Arthritogenic alphaviruses, including Chikungunya virus (CHIKV), are responsible for acute fever and arthralgia, but can also lead to chronic symptoms. In 2006, a Chikungunya outbreak occurred in La Réunion Island, during which we constituted a prospective cohort of viremic patients (n = 180) and defined the clinical and biological features of acute infection. Individuals were followed as part of a longitudinal study to investigate in details the long-term outcome of Chikungunya. Methodology/Principal Findings Patients were submitted to clinical investigations 4, 6, 14 and 36 months after presentation with acute CHIKV infection. At 36 months, 22 patients with arthralgia and 20 patients without arthralgia were randomly selected from the cohort and consented for blood sampling. During the 3 years following acute infection, 60% of patients had experienced symptoms of arthralgia, with most reporting episodic relapse and recovery periods. Long-term arthralgias were typically polyarthralgia (70%), that were usually symmetrical (90%) and highly incapacitating (77%). They were often associated with local swelling (63%), asthenia (77%) or depression (56%). The age over 35 years and the presence of arthralgia 4 months after the disease onset are risk factors of long-term arthralgia. Patients with long-term arthralgia did not display biological markers typically found in autoimmune or rheumatoid diseases. These data helped define the features of CHIKV-associated chronic arthralgia and permitted an estimation of the economic burden associated with arthralgia. Conclusions/Significance This study demonstrates that chronic arthralgia is a frequent complication of acute Chikungunya disease and suggests that it results from a local rather than systemic inflammation. PMID:23556021

  17. Zika and Chikungunya virus co-infection in a traveller returning from Colombia, 2016: virus isolation and genetic analysis

    PubMed Central

    Iovine, Nicole M.; Shah, Kairav; White, Sarah K.; Paisie, Taylor; Salemi, Marco; Morris Jr, J. Glenn; Lednicky, John A.

    2016-01-01

    Introduction: Zika virus (ZIKV) and Chikungunya virus (CHIKV) can share the same mosquito vector, and co-infections by these viruses can occur in humans. While infections with these viruses share commonalities, CHIKV is unique in causing arthritis and arthralgias that may persist for a year or more. These infections are commonly diagnosed by RT–PCR-based methods during the acute phase of infection. Even with the high specificity and sensitivity characteristic of PCR, false negatives can occur, highlighting the need for additional diagnostic methods for confirmation. Case presentation: On her return to the USA, a traveller to Colombia, South America developed an illness consistent with Zika, Chikungunya and/or Dengue. RT-PCR of her samples was positive only for ZIKV. However, arthralgias persisted for months, raising concerns about co-infection with CHIKV or Mayaro viruses. Cell cultures inoculated with her original clinical samples demonstrated two types of cytopathic effects, and both ZIKV and CHIKV were identified in the supernatants. On phylogenetic analyses, both viruses were found to be related to strains found in Colombia. Conclusion: These findings highlight the need to consider CHIKV co-infection in patients with prolonged rheumatological symptoms after diagnosis with ZIKV, and the usefulness of cell culture as an amplification step for low-viremia blood and other samples. PMID:28348794

  18. Species-specific impact of the autophagy machinery on Chikungunya virus infection.

    PubMed

    Judith, Delphine; Mostowy, Serge; Bourai, Mehdi; Gangneux, Nicolas; Lelek, Mickaël; Lucas-Hourani, Marianne; Cayet, Nadège; Jacob, Yves; Prévost, Marie-Christine; Pierre, Philippe; Tangy, Frédéric; Zimmer, Christophe; Vidalain, Pierre-Olivier; Couderc, Thérèse; Lecuit, Marc

    2013-06-01

    Chikungunya virus (CHIKV) is a recently re-emerged arbovirus that triggers autophagy. Here, we show that CHIKV interacts with components of the autophagy machinery during its replication cycle, inducing a cytoprotective effect. The autophagy receptor p62 protects cells from death by binding ubiquitinated capsid and targeting it to autophagolysosomes. By contrast, the human autophagy receptor NDP52--but not its mouse orthologue--interacts with the non-structural protein nsP2, thereby promoting viral replication. These results highlight the distinct roles of p62 and NDP52 in viral infection, and identify NDP52 as a cellular factor that accounts for CHIKV species specificity.

  19. Low Seroprevalence Indicates Vulnerability of Eastern and Central Sudan to Infection with Chikungunya Virus.

    PubMed

    Adam, Awadalkareem; Seidahmed, Osama M E; Weber, Christopher; Schnierle, Barbara; Schmidt-Chanasit, Jonas; Reiche, Sven; Jassoy, Christian

    2016-04-01

    Outbreaks of infections with chikungunya virus (CHIKV) have previously been reported from Sudan but the prevalence in the general population is unknown. We investigated the seroprevalence of CHIKV infection in 379 serum samples from patients with fever in the outpatient clinics of three hospitals in eastern and central Sudan. The seroprevalence was 1.8%, indicating that CHIKV infections are rare in these parts of Sudan. As the vector Aedes aegypti is endemic in this area, the population is at risk for a CHIKV epidemic.

  20. Chikungunya virus impacts the diversity of symbiotic bacteria in mosquito vector.

    PubMed

    Zouache, Karima; Michelland, Rory J; Failloux, Anna-Bella; Grundmann, Genevieve L; Mavingui, Patrick

    2012-05-01

    Mosquitoes transmit numerous arboviruses including dengue and chikungunya virus (CHIKV). In recent years, mosquito species Aedes albopictus has expanded in the Indian Ocean region and was the principal vector of chikungunya outbreaks in La Reunion and neighbouring islands in 2005 and 2006. Vector-associated bacteria have recently been found to interact with transmitted pathogens. For instance, Wolbachia modulates the replication of viruses or parasites. However, there has been no systematic evaluation of the diversity of the entire bacterial populations within mosquito individuals particularly in relation to virus invasion. Here, we investigated the effect of CHIKV infection on the whole bacterial community of Ae. albopictus. Taxonomic microarrays and quantitative PCR showed that members of Alpha- and Gammaproteobacteria phyla, as well as Bacteroidetes, responded to CHIKV infection. The abundance of bacteria from the Enterobacteriaceae family increased with CHIKV infection, whereas the abundance of known insect endosymbionts like Wolbachia and Blattabacterium decreased. Our results clearly link the pathogen propagation with changes in the dynamics of the bacterial community, suggesting that cooperation or competition occurs within the host, which may in turn affect the mosquito traits like vector competence.

  1. Inhibitors of alphavirus entry and replication identified with a stable Chikungunya replicon cell line and virus-based assays.

    PubMed

    Pohjala, Leena; Utt, Age; Varjak, Margus; Lulla, Aleksei; Merits, Andres; Ahola, Tero; Tammela, Päivi

    2011-01-01

    Chikungunya virus (CHIKV), an alphavirus, has recently caused epidemic outbreaks and is therefore considered a re-emerging pathogen for which no effective treatment is available. In this study, a CHIKV replicon containing the virus replicase proteins together with puromycin acetyltransferase, EGFP and Renilla luciferase marker genes was constructed. The replicon was transfected into BHK cells to yield a stable cell line. A non-cytopathic phenotype was achieved by a Pro718 to Gly substitution and a five amino acid insertion within non-structural protein 2 (nsP2), obtained through selection for stable growth. Characterization of the replicon cell line by Northern blotting analysis revealed reduced levels of viral RNA synthesis. The CHIKV replicon cell line was validated for antiviral screening in 96-well format and used for a focused screen of 356 compounds (natural compounds and clinically approved drugs). The 5,7-dihydroxyflavones apigenin, chrysin, naringenin and silybin were found to suppress activities of EGFP and Rluc marker genes expressed by the CHIKV replicon. In a concomitant screen against Semliki Forest virus (SFV), their anti-alphaviral activity was confirmed and several additional inhibitors of SFV with IC₅₀ values between 0.4 and 24 µM were identified. Chlorpromazine and five other compounds with a 10H-phenothiazinyl structure were shown to inhibit SFV entry using a novel entry assay based on a temperature-sensitive SFV mutant. These compounds also reduced SFV and Sindbis virus-induced cytopathic effect and inhibited SFV virion production in virus yield experiments. Finally, antiviral effects of selected compounds were confirmed using infectious CHIKV. In summary, the presented approach for discovering alphaviral inhibitors enabled us to identify potential lead structures for the development of alphavirus entry and replication phase inhibitors as well as demonstrated the usefulness of CHIKV replicon and SFV as biosafe surrogate models for anti

  2. Four emerging arboviral diseases in North America: Jamestown Canyon, Powassan, chikungunya, and Zika virus diseases.

    PubMed

    Pastula, Daniel M; Smith, Daniel E; Beckham, J David; Tyler, Kenneth L

    2016-06-01

    Arthropod-borne viruses, or arboviruses, are viruses that are transmitted through the bites of mosquitoes, ticks, or sandflies. There are numerous arboviruses throughout the world capable of causing human disease spanning different viral families and genera. Recently, Jamestown Canyon, Powassan, chikungunya, and Zika viruses have emerged as increasingly important arboviruses that can cause human disease in North America. Unfortunately, there are currently no proven disease-modifying therapies for these arboviral diseases, so treatment is largely supportive. Given there are also no commercially available vaccines for these four arboviral infections, prevention is the key. To prevent mosquito or tick bites that might result in one of these arboviral diseases, people should wear long-sleeved shirts and pants while outside if feasible, apply insect repellant when going outdoors, using window screens or air conditioning to keep mosquitoes outside, and perform tick checks after being in wooded or brushy outdoor areas.

  3. Four emerging arboviral diseases in North America: Jamestown Canyon, Powassan, chikungunya, and Zika virus diseases

    PubMed Central

    Smith, Daniel E.; Beckham, J. David; Tyler, Kenneth L.

    2016-01-01

    Arthropod-borne viruses, or arboviruses, are viruses that are transmitted through the bites of mosquitoes, ticks, or sandflies. There are numerous arboviruses throughout the world capable of causing human disease spanning different viral families and genera. Recently, Jamestown Canyon, Powassan, chikungunya, and Zika viruses have emerged as increasingly important arboviruses that can cause human disease in North America. Unfortunately, there are currently no proven disease-modifying therapies for these arboviral diseases, so treatment is largely supportive. Given there are also no commercially available vaccines for these four arboviral infections, prevention is the key. To prevent mosquito or tick bites that might result in one of these arboviral diseases, people should wear long-sleeved shirts and pants while outside if feasible, apply insect repellant when going outdoors, using window screens or air conditioning to keep mosquitoes outside, and perform tick checks after being in wooded or brushy outdoor areas. PMID:26903031

  4. Longitudinal Analysis of Natural Killer Cells in Dengue Virus-Infected Patients in Comparison to Chikungunya and Chikungunya/Dengue Virus-Infected Patients

    PubMed Central

    Petitdemange, Caroline; Wauquier, Nadia; Devilliers, Hervé; Yssel, Hans; Mombo, Illich; Caron, Mélanie; Nkoghé, Dieudonné; Debré, Patrice; Leroy, Eric; Vieillard, Vincent

    2016-01-01

    Background Dengue virus (DENV) is the most prominent arbovirus worldwide, causing major epidemics in South-East Asia, South America and Africa. In 2010, a major DENV-2 outbreak occurred in Gabon with cases of patients co-infected with chikungunya virus (CHIKV). Although the innate immune response is thought to be of primordial importance in the development and outcome of arbovirus-associated pathologies, our knowledge of the role of natural killer (NK) cells during DENV-2 infection is in its infancy. Methodology We performed the first extensive comparative longitudinal characterization of NK cells in patients infected by DENV-2, CHIKV or both viruses. Hierarchical clustering and principal component analyses were performed to discriminate between CHIKV and DENV-2 infected patients. Principal Findings We observed that both activation and differentiation of NK cells are induced during the acute phase of infection by DENV-2 and CHIKV. Combinatorial analysis however, revealed that both arboviruses induced two different signatures of NK-cell responses, with CHIKV more associated with terminal differentiation, and DENV-2 with inhibitory KIRs. We show also that intracellular production of interferon-γ (IFN-γ) by NK cells is strongly stimulated in acute DENV-2 infection, compared to CHIKV. Conclusions/Significance Although specific differences were observed between CHIKV and DENV-2 infections, the significant remodeling of NK cell populations observed here suggests their potential roles in the control of both infections. PMID:26938618

  5. Vector Competence of Aedes aegypti and Aedes polynesiensis Populations from French Polynesia for Chikungunya Virus

    PubMed Central

    Richard, Vaea; Paoaafaite, Tuterarii; Cao-Lormeau, Van-Mai

    2016-01-01

    Background From October 2014 to March 2015, French Polynesia experienced for the first time a chikungunya outbreak. Two Aedes mosquitoes may have contributed to chikungunya virus (CHIKV) transmission in French Polynesia: the worldwide distributed Ae. aegypti and the Polynesian islands-endemic Ae. polynesiensis mosquito. Methods To investigate the vector competence of French Polynesian populations of Ae. aegypti and Ae. polynesiensis for CHIKV, mosquitoes were exposed per os at viral titers of 7 logs tissue culture infectious dose 50%. At 2, 6, 9, 14 and 21 days post-infection (dpi), saliva was collected from each mosquito and inoculated onto C6/36 mosquito cells to check for the presence of CHIKV infectious particles. Legs and body (thorax and abdomen) of each mosquito were also collected at the different dpi and submitted separately to viral RNA extraction and CHIKV real-time RT-PCR. Results CHIKV infection rate, dissemination and transmission efficiencies ranged from 7–90%, 18–78% and 5–53% respectively for Ae. aegypti and from 39–41%, 3–17% and 0–14% respectively for Ae. polynesiensis, depending on the dpi. Infectious saliva was found as early as 2 dpi for Ae. aegypti and from 6 dpi for Ae. polynesiensis. Our laboratory results confirm that the French Polynesian population of Ae. aegypti is highly competent for CHIKV and they provide clear evidence for Ae. polynesiensis to act as an efficient CHIKV vector. Conclusion As supported by our findings, the presence of two CHIKV competent vectors in French Polynesia certainly contributed to enabling this virus to quickly disseminate from the urban/peri-urban areas colonized by Ae. aegypti to the most remote atolls where Ae. polynesiensis is predominating. Ae. polynesiensis was probably involved in the recent chikungunya outbreaks in Samoa and the Cook Islands. Moreover, this vector may contribute to the risk for CHIKV to emerge in other Polynesian islands like Fiji, and more particularly Wallis where there

  6. A comprehensive immunoinformatics and target site study revealed the corner-stone toward Chikungunya virus treatment.

    PubMed

    Hasan, Md Anayet; Khan, Md Arif; Datta, Amit; Mazumder, Md Habibul Hasan; Hossain, Mohammad Uzzal

    2015-05-01

    Recent concerning facts of Chikungunya virus (CHIKV); a Togaviridae family alphavirus has proved this as a worldwide emerging threat which causes Chikungunya fever and devitalizing arthritis. Despite severe outbreaks and lack of antiviral drug, a mere progress has been made regarding to an epitope-based vaccine designed for CHIKV. In this study, we aimed to design an epitope-based vaccine that can trigger a significant immune response as well as to prognosticate inhibitor that can bind with potential drug target sites by using various immunoinformatics and docking simulation tools. Initially, whole proteome of CHIKV was retrieved from database and perused to identify the most immunogenic protein. Structural properties of the selected protein were analyzed. The capacity to induce both humoral and cell-mediated immunity by T cell and B cell were checked for the selected protein. The peptide region spanning 9 amino acids from 397 to 405 and the sequence YYYELYPTM were found as the most potential B cell and T cell epitopes respectively. This peptide could interact with as many as 19 HLAs and showed high population coverage ranging from 69.50% to 84.94%. By using in silico docking techniques the epitope was further assessed for binding against HLA molecules to verify the binding cleft interaction. In addition with this, the allergenicity of the epitopes was also evaluated. In the post therapeutic strategy, three dimensional structure was predicted along with validation and verification that resulted in molecular docking study to identify the potential drug binding sites and suitable therapeutic inhibitor against targeted protein. Finally, pharmacophore study was also performed in quest of seeing potent drug activity. However, this computational epitope-based peptide vaccine designing and target site prediction against CHIKV opens up a new horizon which may be the prospective way in Chikungunya virus research; the results require validation by in vitro and in vivo

  7. Vector Competence of Aedes aegypti and Aedes polynesiensis Populations from French Polynesia for Chikungunya Virus.

    PubMed

    Richard, Vaea; Paoaafaite, Tuterarii; Cao-Lormeau, Van-Mai

    2016-05-01

    From October 2014 to March 2015, French Polynesia experienced for the first time a chikungunya outbreak. Two Aedes mosquitoes may have contributed to chikungunya virus (CHIKV) transmission in French Polynesia: the worldwide distributed Ae. aegypti and the Polynesian islands-endemic Ae. polynesiensis mosquito. To investigate the vector competence of French Polynesian populations of Ae. aegypti and Ae. polynesiensis for CHIKV, mosquitoes were exposed per os at viral titers of 7 logs tissue culture infectious dose 50%. At 2, 6, 9, 14 and 21 days post-infection (dpi), saliva was collected from each mosquito and inoculated onto C6/36 mosquito cells to check for the presence of CHIKV infectious particles. Legs and body (thorax and abdomen) of each mosquito were also collected at the different dpi and submitted separately to viral RNA extraction and CHIKV real-time RT-PCR. CHIKV infection rate, dissemination and transmission efficiencies ranged from 7-90%, 18-78% and 5-53% respectively for Ae. aegypti and from 39-41%, 3-17% and 0-14% respectively for Ae. polynesiensis, depending on the dpi. Infectious saliva was found as early as 2 dpi for Ae. aegypti and from 6 dpi for Ae. polynesiensis. Our laboratory results confirm that the French Polynesian population of Ae. aegypti is highly competent for CHIKV and they provide clear evidence for Ae. polynesiensis to act as an efficient CHIKV vector. As supported by our findings, the presence of two CHIKV competent vectors in French Polynesia certainly contributed to enabling this virus to quickly disseminate from the urban/peri-urban areas colonized by Ae. aegypti to the most remote atolls where Ae. polynesiensis is predominating. Ae. polynesiensis was probably involved in the recent chikungunya outbreaks in Samoa and the Cook Islands. Moreover, this vector may contribute to the risk for CHIKV to emerge in other Polynesian islands like Fiji, and more particularly Wallis where there is no Ae. aegypti.

  8. Seroprevalence of Anti-Chikungunya Virus Antibodies in Children and Adults in Managua, Nicaragua, After the First Chikungunya Epidemic, 2014-2015

    PubMed Central

    Ojeda, Sergio; Melendez, Marlon; Sanchez, Nery; Collado, Damaris; Garcia, Nadezna; Mercado, Juan Carlos; Gordon, Aubree; Balmaseda, Angel; Harris, Eva

    2016-01-01

    Chikungunya is a viral disease transmitted by Aedes aegypti and Ae. albopictus mosquitoes. In late 2013, chikungunya virus (CHIKV) was introduced into the Caribbean island of St. Martin. Since then, approximately 2 million chikungunya cases have been reported by the Pan American Health Organization, and most countries in the Americas report autochthonous transmission of CHIKV. In Nicaragua, the first imported case was described in July 2014 and the first autochthonous case in September 2014. Here, we conducted two studies to analyze the seroprevalence of anti-CHIKV antibodies after the first chikungunya epidemic in a community-based cohort study (ages 2–14 years) and in a cross-sectional survey of persons aged ≥15 years in the same area of Managua, Nicaragua. Routine annual serum samples collected from 3,362 cohort participants in March/April 2014 and 2015, and 848 age-stratified samples collected from persons ≥15 years old at the end of May-beginning of June 2015 were used to estimate the seroprevalence of anti-CHIKV antibodies after the first epidemic (October 2014 to February 2015 in the study population). Using an Inhibition ELISA assay that measures total anti-CHIKV antibodies, the seroprevalence was significantly higher in those aged ≥15 (13.1% (95%CI: 10.9, 15.5)) than in the pediatric population (6.1% (95%CI: 5.3, 6.9)). The proportion of inapparent infections was 58.3% (95%CI: 51.5, 65.1) in children and 64.9% (95%CI: 55.2, 73.7) in the ≥15 study population. We identified age, water availability, household size, and socioeconomic status as factors associated with the presence of anti-CHIKV antibodies. Overall, this is the first report of CHIKV seropositivity in continental Latin America and provides useful information for public health authorities in the region. PMID:27322692

  9. Seroprevalence of Anti-Chikungunya Virus Antibodies in Children and Adults in Managua, Nicaragua, After the First Chikungunya Epidemic, 2014-2015.

    PubMed

    Kuan, Guillermina; Ramirez, Stephania; Gresh, Lionel; Ojeda, Sergio; Melendez, Marlon; Sanchez, Nery; Collado, Damaris; Garcia, Nadezna; Mercado, Juan Carlos; Gordon, Aubree; Balmaseda, Angel; Harris, Eva

    2016-06-01

    Chikungunya is a viral disease transmitted by Aedes aegypti and Ae. albopictus mosquitoes. In late 2013, chikungunya virus (CHIKV) was introduced into the Caribbean island of St. Martin. Since then, approximately 2 million chikungunya cases have been reported by the Pan American Health Organization, and most countries in the Americas report autochthonous transmission of CHIKV. In Nicaragua, the first imported case was described in July 2014 and the first autochthonous case in September 2014. Here, we conducted two studies to analyze the seroprevalence of anti-CHIKV antibodies after the first chikungunya epidemic in a community-based cohort study (ages 2-14 years) and in a cross-sectional survey of persons aged ≥15 years in the same area of Managua, Nicaragua. Routine annual serum samples collected from 3,362 cohort participants in March/April 2014 and 2015, and 848 age-stratified samples collected from persons ≥15 years old at the end of May-beginning of June 2015 were used to estimate the seroprevalence of anti-CHIKV antibodies after the first epidemic (October 2014 to February 2015 in the study population). Using an Inhibition ELISA assay that measures total anti-CHIKV antibodies, the seroprevalence was significantly higher in those aged ≥15 (13.1% (95%CI: 10.9, 15.5)) than in the pediatric population (6.1% (95%CI: 5.3, 6.9)). The proportion of inapparent infections was 58.3% (95%CI: 51.5, 65.1) in children and 64.9% (95%CI: 55.2, 73.7) in the ≥15 study population. We identified age, water availability, household size, and socioeconomic status as factors associated with the presence of anti-CHIKV antibodies. Overall, this is the first report of CHIKV seropositivity in continental Latin America and provides useful information for public health authorities in the region.

  10. Detection of Persistent Chikungunya Virus RNA but not Infectious Virus in Experimental Vertical Transmission in Aedes aegypti from Malaysia

    PubMed Central

    Wong, Hui Vern; Vythilingam, Indra; Sulaiman, Wan Yusof Wan; Lulla, Aleksei; Merits, Andres; Chan, Yoke Fun; Sam, I-Ching

    2016-01-01

    Vertical transmission may contribute to the maintenance of arthropod-borne viruses, but its existence in chikungunya virus (CHIKV) is unclear. Experimental vertical transmission of infectious clones of CHIKV in Aedes aegypti mosquitoes from Malaysia was investigated. Eggs and adult progeny from the second gonotrophic cycles of infected parental mosquitoes were tested. Using polymerase chain reaction (PCR), 56.3% of pooled eggs and 10% of adult progeny had detectable CHIKV RNA, but no samples had detectable infectious virus by plaque assay. Transfected CHIKV RNA from PCR-positive eggs did not yield infectious virus in BHK-21 cells. Thus, vertical transmission of viable CHIKV was not demonstrated. Noninfectious CHIKV RNA persists in eggs and progeny of infected Ae. aegypti, but the mechanism and significance are unknown. There is insufficient evidence to conclude that vertical transmission exists in CHIKV, as positive results reported in previous studies were almost exclusively based only on viral RNA detection. PMID:26598564

  11. A novel DANP-coupled hairpin RT-PCR for rapid detection of Chikungunya virus.

    PubMed

    Chen, Huixin; Takei, Fumie; Koay, Evelyn Siew-Chuan; Nakatani, Kazuhiko; Chu, Justin Jang Hann

    2013-03-01

    Chikungunya has re-emerged as an important arboviral infection of global health significance. Because of lack of a vaccine and effective treatment, rapid diagnosis plays an important role in early clinical management of patients. In this study, we have developed a novel molecular diagnostic platform that ensures a rapid and cost-effective one-step RT-PCR assay, with high sensitivity and specificity, for the early detection of the Chikungunya virus (CHIKV). It uses 2,7-diamino-1,8-naphthyridine derivative (DANP)-labeled cytosine-bulge hairpin primers to amplify the nsP2 region of the CHIKV genome, followed by measurement of the fluorescence emitted from DANP-primer complexes after PCRs. The detection limit of our assay was 0.01 plaque-forming units per reaction of CHIKV. Furthermore, the HP-nsP2 primers were highly specific in detecting CHIKV, without any cross-reactivity with the panel of RNA viruses validated in this study. The feasibility of the DANP-coupled hairpin RT-PCR for clinical diagnosis was evaluated using clinical serum samples from CHIKV-infected patients, and the specificity and sensitivity were 100% (95% CI, 80.0% to 100%) and 95.5% (95% CI, 75.1% to 99.8%), respectively. These findings confirmed its potential as a point-of-care clinical molecular diagnostic assay for CHIKV in acute-phase patient serum samples.

  12. Early clearance of Chikungunya virus in children is associated with a strong innate immune response.

    PubMed

    Simarmata, Diane; Ng, David Chun Ern; Kam, Yiu-Wing; Lee, Bernett; Sum, Magdline Sia Henry; Her, Zhisheng; Chow, Angela; Leo, Yee-Sin; Cardosa, Jane; Perera, David; Ooi, Mong H; Ng, Lisa F P

    2016-05-16

    Chikungunya fever (CHIKF) is a global infectious disease which can affect a wide range of age groups. The pathological and immunological response upon Chikungunya virus (CHIKV) infection have been reported over the last few years. However, the clinical profile and immune response upon CHIKV infection in children remain largely unknown. In this study, we analyzed the clinical and immunological response, focusing on the cytokine/chemokine profile in a CHIKV-infected pediatric cohort from Sarawak, Malaysia. Unique immune mediators triggered upon CHIKV infection were identified through meta-analysis of the immune signatures between this pediatric group and cohorts from previous outbreaks. The data generated from this study revealed that a broad spectrum of cytokines/chemokines is up-regulated in a sub-group of virus-infected children stratified according to their viremic status during hospitalization. Furthermore, different immune mediator profiles (the levels of pro-inflammatory cytokines, chemokines and growth and other factors) were observed between children and adults. This study gives an important insight to understand the immune response of CHIKV infection in children and would aid in the development of better prognostics and clinical management for children.

  13. Early clearance of Chikungunya virus in children is associated with a strong innate immune response

    PubMed Central

    Simarmata, Diane; Ng, David Chun Ern; Kam, Yiu-Wing; Lee, Bernett; Sum, Magdline Sia Henry; Her, Zhisheng; Chow, Angela; Leo, Yee-Sin; Cardosa, Jane; Perera, David; Ooi, Mong H.; Ng, Lisa F. P.

    2016-01-01

    Chikungunya fever (CHIKF) is a global infectious disease which can affect a wide range of age groups. The pathological and immunological response upon Chikungunya virus (CHIKV) infection have been reported over the last few years. However, the clinical profile and immune response upon CHIKV infection in children remain largely unknown. In this study, we analyzed the clinical and immunological response, focusing on the cytokine/chemokine profile in a CHIKV-infected pediatric cohort from Sarawak, Malaysia. Unique immune mediators triggered upon CHIKV infection were identified through meta-analysis of the immune signatures between this pediatric group and cohorts from previous outbreaks. The data generated from this study revealed that a broad spectrum of cytokines/chemokines is up-regulated in a sub-group of virus-infected children stratified according to their viremic status during hospitalization. Furthermore, different immune mediator profiles (the levels of pro-inflammatory cytokines, chemokines and growth and other factors) were observed between children and adults. This study gives an important insight to understand the immune response of CHIKV infection in children and would aid in the development of better prognostics and clinical management for children. PMID:27180811

  14. Curcumin and Boswellia serrata gum resin extract inhibit chikungunya and vesicular stomatitis virus infections in vitro.

    PubMed

    von Rhein, Christine; Weidner, Tatjana; Henß, Lisa; Martin, Judith; Weber, Christopher; Sliva, Katja; Schnierle, Barbara S

    2016-01-01

    Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes chikungunya fever and has infected millions of people mainly in developing countries. The associated disease is characterized by rash, high fever, and severe arthritis that can persist for years. CHIKV has adapted to Aedes albopictus, which also inhabits temperate regions including Europe and the United States of America. CHIKV has recently caused large outbreaks in Latin America. No treatment or licensed CHIKV vaccine exists. Traditional medicines are known to have anti-viral effects; therefore, we examined whether curcumin or Boswellia serrata gum resin extract have antiviral activity against CHIKV. Both compounds blocked entry of CHIKV Env-pseudotyped lentiviral vectors and inhibited CHIKV infection in vitro. In addition, vesicular stomatitis virus vector particles and viral infections were also inhibited to the same extent, indicating a broad antiviral activity. Although the bioavailability of these compounds is rather poor, they might be used as a lead structure to develop more effective antiviral drugs or might be used topically to prevent CHIKV spread in the skin after mosquito bites.

  15. A smartphone-based diagnostic platform for rapid detection of Zika, chikungunya, and dengue viruses

    PubMed Central

    Priye, Aashish; Bird, Sara W.; Light, Yooli K.; Ball, Cameron S.; Negrete, Oscar A.; Meagher, Robert J.

    2017-01-01

    Current multiplexed diagnostics for Zika, dengue, and chikungunya viruses are situated outside the intersection of affordability, high performance, and suitability for use at the point-of-care in resource-limited settings. Consequently, insufficient diagnostic capabilities are a key limitation facing current Zika outbreak management strategies. Here we demonstrate highly sensitive and specific detection of Zika, chikungunya, and dengue viruses by coupling reverse-transcription loop-mediated isothermal amplification (RT-LAMP) with our recently developed quenching of unincorporated amplification signal reporters (QUASR) technique. We conduct reactions in a simple, inexpensive and portable “LAMP box” supplemented with a consumer class smartphone. The entire assembly can be powered by a 5 V USB source such as a USB power bank or solar panel. Our smartphone employs a novel algorithm utilizing chromaticity to analyze fluorescence signals, which improves the discrimination of positive/negative signals by 5-fold when compared to detection with traditional RGB intensity sensors or the naked eye. The ability to detect ZIKV directly from crude human sample matrices (blood, urine, and saliva) demonstrates our device’s utility for widespread clinical deployment. Together, these advances enable our system to host the key components necessary to expand the use of nucleic acid amplification-based detection assays towards point-of-care settings where they are needed most. PMID:28317856

  16. A smartphone-based diagnostic platform for rapid detection of Zika, chikungunya, and dengue viruses.

    PubMed

    Priye, Aashish; Bird, Sara W; Light, Yooli K; Ball, Cameron S; Negrete, Oscar A; Meagher, Robert J

    2017-03-20

    Current multiplexed diagnostics for Zika, dengue, and chikungunya viruses are situated outside the intersection of affordability, high performance, and suitability for use at the point-of-care in resource-limited settings. Consequently, insufficient diagnostic capabilities are a key limitation facing current Zika outbreak management strategies. Here we demonstrate highly sensitive and specific detection of Zika, chikungunya, and dengue viruses by coupling reverse-transcription loop-mediated isothermal amplification (RT-LAMP) with our recently developed quenching of unincorporated amplification signal reporters (QUASR) technique. We conduct reactions in a simple, inexpensive and portable "LAMP box" supplemented with a consumer class smartphone. The entire assembly can be powered by a 5 V USB source such as a USB power bank or solar panel. Our smartphone employs a novel algorithm utilizing chromaticity to analyze fluorescence signals, which improves the discrimination of positive/negative signals by 5-fold when compared to detection with traditional RGB intensity sensors or the naked eye. The ability to detect ZIKV directly from crude human sample matrices (blood, urine, and saliva) demonstrates our device's utility for widespread clinical deployment. Together, these advances enable our system to host the key components necessary to expand the use of nucleic acid amplification-based detection assays towards point-of-care settings where they are needed most.

  17. Complete Genome Sequences of Two Chikungunya Viruses Isolated in the Central African Republic in the 1970s and 1980s

    PubMed Central

    Desdouits, Marion; Nakouné, Emmanuel; Gessain, Antoine; Kazanji, Mirdad; Berthet, Nicolas

    2017-01-01

    ABSTRACT Some arboviruses threaten human global health with potentially explosive emergence. Analysis of whole-genome sequences of decades-old isolates might contribute to the understanding of the complex dynamics which drive their circulation and emergence. Here, we report the whole-genome sequences of two Chikungunya viruses isolated in the Central African Republic in the 1970s and 1980s. PMID:28254965

  18. Molecular epidemiology of chikungunya virus in Malaysia since its first emergence in 1998.

    PubMed

    Chem, Y K; Zainah, S; Berendam, S J; Rogayah, T A R Tengku; Khairul, A H; Chua, K B

    2010-03-01

    Malaysia experienced the first outbreak of chikungunya (CHIK) in Klang in late 1998 due to CHIK virus of Asian genotype. The CHIK virus of Asian genotype reemerged causing outbreak in Bangan Panchor, Perak in March 2006. CHIK virus of Central/East African genotype was first detected from a patient who returned from India in August 2006. In December 2006, CHIK virus of Central/East African genotype was re-introduced into Malaysia from India and caused an outbreak in Kinta district, Perak but was successfully controlled following an early detection and institution of intensive vector control measures. In late April 2008, CHIK virus of Central/East African genotype was laboratory confirmed as the cause of CHIK outbreak in Johore which spread to other parts of Malaysia by August 2008. Phylogenetic analysis based on the 254-bp fragment of the virus envelope protein gene as the genetic marker showed that three different strains of CHIK virus of Central/East African genotype were introduced into Malaysia on three separate occasions from 2006 to 2008. The strain that was introduced into Johor state was responsible for its subsequent spread to other parts of Malaysia, inclusive of Sarawak.

  19. How Chikungunya Virus Virology Affects Its Epidemiology and Transmission: Implications for Influencing Public Health.

    PubMed

    Powers, Ann M

    2016-12-15

    Chikungunya virus has been causing a series of ongoing epidemics around the globe for the past 12 years. During that time, estimates indicate that >4 million cases occurred worldwide. Despite the magnitude of these outbreaks and the broad interest in understanding the virus and disease, significant gaps still exist in our knowledge base. An in-depth understanding of the basic virological elements that can affect the epidemiology of the agent is critical for future development of control and treatment products. This work describes how knowledge of various viral genetic and structural elements has begun to advance the development of vaccines and therapeutics and suggests that further knowledge is needed to provide additional options. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  20. Chikungunya Virus Glycoproteins Pseudotype with Lentiviral Vectors and Reveal a Broad Spectrum of Cellular Tropism

    PubMed Central

    Wang, Hua; Liu, Shuangchun; Yu, Lianhua; Sun, Lingfen; Qu, Ying

    2014-01-01

    Background Outbreaks of the Chikungunya virus (CHIKV) infection has been documented in over 40 countries, resulting in clinical symptoms characterized by fever and joint pain. Diagnosing CHIKV in a clinical lab setting is often omitted because of the high lab safety requirement. An infection system that mimics CHIKV infection will permit clinical evaluation of the production of neutralizing antibody for both disease diagnostics and treatment. Methodology/Principal Findings We generated a CHIKV construct expressing CHIKV structural proteins. This construct permits the production of CHIKV pseudo-viral particles with a luciferase reporter. The pseudo-virus was able to infect a wide range of cell lines. The pseudovirus could be neutralized by the addition of neutralizing antibodies from patients. Conclusions Taken together, we have developed a powerful system that can be handled at biosafety level 2 laboratories for evaluation of existence of CHIKV neutralizing antibodies. PMID:25333782

  1. Utilization of an Eilat Virus-Based Chimera for Serological Detection of Chikungunya Infection

    PubMed Central

    Erasmus, Jesse H.; Needham, James; Raychaudhuri, Syamal; Diamond, Michael S.; Beasley, David W. C.; Morkowski, Stan; Salje, Henrik; Fernandez Salas, Ildefonso; Kim, Dal Young; Frolov, Ilya; Nasar, Farooq; Weaver, Scott C.

    2015-01-01

    In December of 2013, chikungunya virus (CHIKV), an alphavirus in the family Togaviridae, was introduced to the island of Saint Martin in the Caribbean, resulting in the first autochthonous cases reported in the Americas. As of January 2015, local and imported CHIKV has been reported in 50 American countries with over 1.1 million suspected cases. CHIKV causes a severe arthralgic disease for which there are no approved vaccines or therapeutics. Furthermore, the lack of a commercially available, sensitive, and affordable diagnostic assay limits surveillance and control efforts. To address this issue, we utilized an insect-specific alphavirus, Eilat virus (EILV), to develop a diagnostic antigen that does not require biosafety containment facilities to produce. We demonstrated that EILV/CHIKV replicates to high titers in insect cells and can be applied directly in enzyme-linked immunosorbent assays without inactivation, resulting in highly sensitive detection of recent and past CHIKV infection, and outperforming traditional antigen preparations. PMID:26492074

  2. Isolation and characterization of broad and ultrapotent human monoclonal antibodies with therapeutic activity against chikungunya virus

    PubMed Central

    Smith, Scott A.; Silva, Laurie A.; Fox, Julie M.; Flyak, Andrew; Kose, Nurgun; Sapparapu, Gopal; Khomadiak, Solomiia; Ashbrook, Alison W.; Kahle, Kristen M.; Fong, Rachel H.; Swayne, Sherri; Doranz, Benjamin J.; McGee, Charles E.; Heise, Mark T.; Pal, Pankaj; Brien, James D.; Austin, S. Kyle; Diamond, Michael S.; Dermody, Terence S.; Crowe, James E.

    2015-01-01

    SUMMARY Chikungunya virus (CHIKV) is a mosquito-transmitted RNA virus that causes acute febrile infection associated with polyarthralgia in humans. Mechanisms of protective immunity against CHIKV are poorly understood, and no effective therapeutics or vaccines are available. We isolated and characterized human monoclonal antibodies (mAbs) that neutralize CHIKV infectivity. Among the 30 mAbs isolated, 13 had broad and ultrapotent neutralizing activity (IC50 < 10 ng/mL), and all of these mapped to domain A of the E2 envelope protein. Potent inhibitory mAbs blocked post-attachment steps required for CHIKV membrane fusion, and several were protective in a lethal challenge model in immunocompromised mice, even when administered at late time points after infection. These highly protective mAbs could be considered for prevention or treatment of CHIKV infection, and their epitope location in domain A of E2 could be targeted for rational structure-based vaccine development. PMID:26159721

  3. Utilization of an Eilat Virus-Based Chimera for Serological Detection of Chikungunya Infection.

    PubMed

    Erasmus, Jesse H; Needham, James; Raychaudhuri, Syamal; Diamond, Michael S; Beasley, David W C; Morkowski, Stan; Salje, Henrik; Fernandez Salas, Ildefonso; Kim, Dal Young; Frolov, Ilya; Nasar, Farooq; Weaver, Scott C

    2015-01-01

    In December of 2013, chikungunya virus (CHIKV), an alphavirus in the family Togaviridae, was introduced to the island of Saint Martin in the Caribbean, resulting in the first autochthonous cases reported in the Americas. As of January 2015, local and imported CHIKV has been reported in 50 American countries with over 1.1 million suspected cases. CHIKV causes a severe arthralgic disease for which there are no approved vaccines or therapeutics. Furthermore, the lack of a commercially available, sensitive, and affordable diagnostic assay limits surveillance and control efforts. To address this issue, we utilized an insect-specific alphavirus, Eilat virus (EILV), to develop a diagnostic antigen that does not require biosafety containment facilities to produce. We demonstrated that EILV/CHIKV replicates to high titers in insect cells and can be applied directly in enzyme-linked immunosorbent assays without inactivation, resulting in highly sensitive detection of recent and past CHIKV infection, and outperforming traditional antigen preparations.

  4. Dengue virus serotype 3 and Chikungunya virus co-infection in a traveller returning from India to Portugal, November 2016.

    PubMed

    Paulo, Catarina Oliveira; Zé-Zé, Líbia; Jordão, Sofia; Pena, Eduarda Ruiz; Neves, Isabel; Alves, Maria João

    2017-01-01

    We report a case of a laboratory-confirmed Dengue and Chikungunya viruses co-infection imported from India to Portugal in early November 2016. The patient developed fever, retro-orbital pain and generalized myalgia after returning from Delhi, Jaipur, Agra, Rishikesh, Goa and Mumbai. This case highlights the importance of these arboviruses to public health in India where high rates of co-infection have been reported in the last few years, and demonstrates how challenging the laboratory diagnosis of imported co-infection cases can be in non-endemic areas.

  5. Outbreak of Chikungunya virus in the north Caribbean area of Colombia: clinical presentation and phylogenetic analysis.

    PubMed

    Mattar, Salim; Miranda, Jorge; Pinzon, Hernando; Tique, Vanesa; Bolanos, Amada; Aponte, Jose; Arrieta, German; Gonzalez, Marco; Barrios, Katerine; Contreras, Hector; Alvarez, Jaime; Aleman, Ader

    2015-10-29

    The Caribbean area of Colombia has been severely affected by a Chikungunya virus (CHIKV) outbreak since 2014. The study was carried out on 100 patients during a fever outbreak from August to September 2014 in two small rural villages in the northern Caribbean area of Colombia. The molecular assays performed by reverse transcription polymerase chain reaction (RT-PCR) on acute patient sera were collected within one to five days of the appearance of symptoms. Sequence analyses were carried out based on phylogenetic analyses of genes NS1 and E2. For serological assays, 49 (49%) patients at ≥ 6 days of disease onset were tested with NovaLisa Chikungunya IgG/IgM µ-capture enzyme-linked immunosorbent assay (ELISA). The main signs or symptoms associated with Chikungunya infection were arthralgia of the lower limbs (96%), fever (91%), arthralgia of the upper limbs (85%), rash (64%), and headache (57%). Ninety-four percent (46/49) of patients were positive for either IgM or IgG; the remaining three (6%) patients were seronegative. Viral loads were detected in 25 patients. Based on phylogenetic analysis of NS1 and E2, the characterization of the Colombian CHIKV indicated that it was a strain closely related to the British Virgin Islands strain and to the Asian genotype. This study shows the phylogenetic and clinical description of CHIKV in Colombia. The main symptoms shown were: arthralgia, fever, and rash. CHIKV sequences detected in Colombian patients were within the Asian genotype and closely related to the British Virgin Islands strain.

  6. A Chikungunya Fever Vaccine Utilizing an Insect-Specific Virus Platform

    PubMed Central

    Erasmus, Jesse H.; Auguste, Albert J.; Kaelber, Jason T.; Luo, Huanle; Rossi, Shannan L.; Fenton, Karla; Leal, Grace; Kim, Dal Y.; Chiu, Wah; Wang, Tian; Frolov, Ilya; Nasar, Farooq; Weaver, Scott C.

    2016-01-01

    Traditionally, vaccine development involves tradeoffs between immunogenicity and safety. Live-attenuated vaccines typically offer rapid and durable immunity but reduced safety, while the inability of inactivated vaccines to replicate enhances safety at the expense of immunogenicity, often necessitating multiple doses and boosters. To overcome these tradeoffs, we developed the insect-specific alphavirus, Eilat virus (EILV), as a vaccine platform. To address the chikungunya virus (CHIKV) pandemic, we used an EILV cDNA clone to design a chimeric virus containing the CHIKV structural proteins. The recombinant EILV/CHIKV virus was structurally identical at 10Å to wild-type CHIKV by single particle cryoelectron microscopy, mimicked the early stages of CHIKV replication in vertebrate cells from attachment and entry to viral RNA delivery, yet remained completely defective for productive replication, providing a high degree of safety. A single dose of EILV/CHIKV produced in mosquito cells elicited rapid (within 4 days) and long-lasting (>290 days) neutralizing antibodies that provided complete protection in two different mouse models. In nonhuman primates, EILV/CHIKV elicited rapid and robust immunity that protected against viremia and telemetrically-monitored fever. Our EILV platform represents the first structurally native application of an insect-specific virus in preclinical vaccine development and highlights the potential application of such viruses in vaccinology. PMID:27991917

  7. Specific detection of chikungunya virus using a RT-PCR/nested PCR combination.

    PubMed

    Pfeffer, M; Linssen, B; Parke, M D; Kinney, R M

    2002-02-01

    Chikungunya (CHIK) virus is enzootic in many countries in Asia and throughout tropical Africa. In Asia the virus is transmitted from primates to humans almost exclusively by Aedes aegypti, while various aedine mosquito species are responsible for human infections in Africa. The clinical picture is characterized by a sudden onset of fever, rash and severe pain in the joints which may persist in a small proportion of cases. Although not listed as a haemorrhagic fever virus, illness caused by CHIK virus can be confused with diseases such as dengue or yellow fever, based on the similarity of the symptoms. Thus, laboratory confirmation of suspected cases is required to launch control measures during an epidemic. CHIK virus diagnosis based on virus isolation is very sensitive, yet requires at least a week in conjunction with virus identification using monovalent sera. We developed a reverse transcription-polymerase chain reaction (RT-PCR) assay which amplifies a 427-bp fragment of the E2 gene. Specificity was confirmed by testing representative strains of all known alphavirus species. To verify further the viral origin of the amplicon and to enhance sensitivity, a nested PCR was performed subsequently. This RT-PCR/nested PCR combination was able to amplify a CHIK virus-specific 172-bp amplicon from a sample containing as few as 10 genome equivalents. This assay was successfully applied to four CHIK virus isolates from Asia and Africa as well as to a vaccine strain developed by USAMRIID. Our method can be completed in less than two working days and may serve as a sensitive alternative in CHIK virus diagnosis.

  8. Vertical transmission of Indian Ocean Lineage of chikungunya virus in Aedes aegypti and Aedes albopictus mosquitoes.

    PubMed

    Chompoosri, Jakkrawarn; Thavara, Usavadee; Tawatsin, Apiwat; Boonserm, Rungfar; Phumee, Atchara; Sangkitporn, Somchai; Siriyasatien, Padet

    2016-04-23

    The re-emergence of chikungunya (CHIK) fever in Thailand has been caused by a novel lineage of chikungunya virus (CHIKV) termed the Indian Ocean Lineage (IOL). The Aedes albopictus mosquito is thought to be a primary vector of CHIK fever in Thailand, whereas Ae. aegypti acts as a secondary vector of the virus. The vertical transmission is believed to be a primary means to maintain CHIKV in nature and may be associated with an increased risk of outbreak. Therefore, the goal of this study was to analyze the potential of these two Thai mosquito species to transmit the virus vertically and to determine the number of successive mosquito generations for the virus transmission. Two-hundred-and-fifty female Ae. aegypti and Ae. albopictus mosquitoes were artificially fed a mixture of human blood and CHIKV IOL. Mosquito larvae and adults were sampled and screened for CHIKV by one-step qRT-PCR. LLC-MK2 cell line was used to isolate CHIKV in the mosquitoes each generation. The virus isolate was identified by immunocytochemical staining and was confirmed by sequencing. Both mosquito species fed on human blood without CHIKV and uninfected LLC-MK2 cells were used as controls. Aedes aegypti and Ae. albopictus mosquitoes were able to transmit CHIKV vertically to F5 and F6 progenies, respectively. The virus isolated from the two mosquito species caused cytopathic effect in LLC-MK2 cells by 2 days post-infection and immunocytochemical staining showed the reaction between CHIKV IOL antigen and specific monoclonal antibody in the infected cells. DNA sequence confirmed the virus transmitted vertically as CHIKV IOL with E1-A226V mutation. No CHIKV infection was observed in both mosquito species and LLC-MK2 cells from control groups. The study demonstrated that Ae. aegypti and Ae. albopictus mosquitoes from Thailand are capable of transmitting CHIKV IOL vertically in the laboratory. Our results showed that Ae. albopictus is more susceptible and has a greater ability to transmit the virus

  9. The Antiviral Alkaloid Berberine Reduces Chikungunya Virus-Induced Mitogen-Activated Protein Kinase Signaling.

    PubMed

    Varghese, Finny S; Thaa, Bastian; Amrun, Siti Naqiah; Simarmata, Diane; Rausalu, Kai; Nyman, Tuula A; Merits, Andres; McInerney, Gerald M; Ng, Lisa F P; Ahola, Tero

    2016-11-01

    Chikungunya virus (CHIKV) has infected millions of people in the tropical and subtropical regions since its reemergence in the last decade. We recently identified the nontoxic plant alkaloid berberine as an antiviral substance against CHIKV in a high-throughput screen. Here, we show that berberine is effective in multiple cell types against a variety of CHIKV strains, also at a high multiplicity of infection, consolidating the potential of berberine as an antiviral drug. We excluded any effect of this compound on virus entry or on the activity of the viral replicase. A human phosphokinase array revealed that CHIKV infection specifically activated the major mitogen-activated protein kinase (MAPK) signaling pathways extracellular signal-related kinase (ERK), p38 and c-Jun NH2-terminal kinase (JNK). Upon treatment with berberine, this virus-induced MAPK activation was markedly reduced. Subsequent analyses with specific inhibitors of these kinases indicated that the ERK and JNK signaling cascades are important for the generation of progeny virions. In contrast to specific MAPK inhibitors, berberine lowered virus-induced activation of all major MAPK pathways and resulted in a stronger reduction in viral titers. Further, we assessed the in vivo efficacy of berberine in a mouse model and measured a significant reduction of CHIKV-induced inflammatory disease. In summary, we demonstrate the efficacy of berberine as a drug against CHIKV and highlight the importance of the MAPK signaling pathways in the alphavirus infectious cycle. Chikungunya virus (CHIKV) is a mosquito-borne virus that causes severe and persistent muscle and joint pain and has recently spread to the Americas. No licensed drug exists to counter this virus. In this study, we report that the alkaloid berberine is antiviral against different CHIKV strains and in multiple human cell lines. We demonstrate that berberine collectively reduced the virus-induced activation of cellular mitogen-activated protein kinase

  10. Mathematical Model of Three Age-Structured Transmission Dynamics of Chikungunya Virus

    PubMed Central

    Agusto, Folashade B.; Easley, Shamise; Freeman, Kenneth; Thomas, Madison

    2016-01-01

    We developed a new age-structured deterministic model for the transmission dynamics of chikungunya virus. The model is analyzed to gain insights into the qualitative features of its associated equilibria. Some of the theoretical and epidemiological findings indicate that the stable disease-free equilibrium is globally asymptotically stable when the associated reproduction number is less than unity. Furthermore, the model undergoes, in the presence of disease induced mortality, the phenomenon of backward bifurcation, where the stable disease-free equilibrium of the model coexists with a stable endemic equilibrium when the associated reproduction number is less than unity. Further analysis of the model indicates that the qualitative dynamics of the model are not altered by the inclusion of age structure. This is further emphasized by the sensitivity analysis results, which shows that the dominant parameters of the model are not altered by the inclusion of age structure. However, the numerical simulations show the flaw of the exclusion of age in the transmission dynamics of chikungunya with regard to control implementations. The exclusion of age structure fails to show the age distribution needed for an effective age based control strategy, leading to a one size fits all blanket control for the entire population. PMID:27190548

  11. Genetic Characterization of Northwestern Colombian Chikungunya Virus Strains from the 2014-2015 Epidemic.

    PubMed

    Rodas, Juan D; Kautz, Tiffany; Camacho, Erwin; Paternina, Luis; Guzmán, Hilda; Díaz, Francisco J; Blanco, Pedro; Tesh, Robert; Weaver, Scott C

    2016-09-07

    Chikungunya fever, an acute and often chronic arthralgic disease caused by the mosquito-borne alphavirus, chikungunya virus (CHIKV), spread into the Americas in late 2013. Since then it has caused epidemics in nearly all New World countries, the second largest being Colombia with over 450,000 suspected cases beginning in September, 2014, and focused in Bolivar Department in the north. We examined 32 human sera from suspected cases, including diverse age groups and both genders, and sequenced the CHIKV envelope glycoprotein genes, known determinants of vector host range. As expected for Asian lineage CHIKV strains, these isolates lacked known Aedes albopictus-adaptive mutations. All the Colombian strains were closely related to those from the Virgin Islands, Saint Lucia, Mexico, Puerto Rico, and Brazil, consistent with a single, point-source introduction from the southeast Asia/Pacific region. Two substitutions in the E2 and E1 envelope glycoprotein genes were found in the Colombian strains, especially E1-K211E involving a residue shown previously to affect epistatically the penetrance of the E1-A226V A. albopictus-adaptive substitution. We also identified two amino acid substitutions unique to all American CHIKV sequences: E2-V368A and 6K-L20M. Only one codon, 6K-47, had a high nonsynonymous substitution rate suggesting positive selection.

  12. Detection of Wolbachia in Aedes albopictus and Their Effects on Chikungunya Virus.

    PubMed

    Ahmad, Noor Afizah; Vythilingam, Indra; Lim, Yvonne A L; Zabari, Nur Zatil Aqmar M; Lee, Han Lim

    2017-01-11

    Wolbachia-based vector control strategies have been proposed as a means to augment the currently existing measures for controlling dengue and chikungunya vectors. Prior to utilizing Wolbachia as a novel vector control strategy, it is crucial to understand the Wolbachia-mosquito interactions. In this study, field surveys were conducted to screen for the infection status of Wolbachia in field-collected Aedes albopictus The effects of Wolbachia in its native host toward the replication and dissemination of chikungunya virus (CHIKV) was also studied. The prevalence of Wolbachia-infected field-collected Ae. albopictus was estimated to be 98.6% (N = 142) for females and 95.1% (N = 102) for males in the population studied. The Ae. albopictus were naturally infected with both wAlbA and wAlbB strains. We also found that the native Wolbachia has no impact on CHIKV infection and minimal effect on CHIKV dissemination to secondary organs. © The American Society of Tropical Medicine and Hygiene.

  13. Infectious Chikungunya Virus in the Saliva of Mice, Monkeys and Humans.

    PubMed

    Gardner, Joy; Rudd, Penny A; Prow, Natalie A; Belarbi, Essia; Roques, Pierre; Larcher, Thibaut; Gresh, Lionel; Balmaseda, Angel; Harris, Eva; Schroder, Wayne A; Suhrbier, Andreas

    2015-01-01

    Chikungunya virus (CHIKV) is a reemerging, ordinarily mosquito-transmitted, alphavirus that occasionally produces hemorrhagic manifestations, such as nose bleed and bleeding gums, in human patients. Interferon response factor 3 and 7 deficient (IRF3/7-/-) mice, which are deficient for interferon α/β responses, reliably develop hemorrhagic manifestations after CHIKV infection. Here we show that infectious virus was present in the oral cavity of CHIKV infected IRF3/7-/- mice, likely due to hemorrhagic lesions in the olfactory epithelium that allow egress of infected blood into the nasal, and subsequently, oral cavities. In addition, IRF3/7-/- mice were more susceptible to infection with CHIKV via intranasal and oral routes, with IRF3/7-/- mice also able to transmit virus mouse-to-mouse without an arthropod vector. Cynomolgus macaques often show bleeding gums after CHIKV infection, and analysis of saliva from several infected monkeys also revealed the presence of viral RNA and infectious virus. Furthermore, saliva samples collected from several acute CHIKV patients with hemorrhagic manifestations were found to contain viral RNA and infectious virus. Oral fluids can therefore be infectious during acute CHIKV infections, likely due to hemorrhagic manifestations in the oral/nasal cavities.

  14. Chikungunya Virus Infection: First Detection of Imported and Autochthonous Cases in Panama

    PubMed Central

    Díaz, Yamilka; Carrera, Jean-Paul; Cerezo, Lizbeth; Arauz, Dimelza; Guerra, Ilka; Cisneros, Julio; Armién, Blas; Botello, Ana Margarita; Araúz, Ana Belén; Gonzalez, Vladimir; López, Yamileth; Moreno, Lourdes; López-Vergès, Sandra; Moreno, Brechla A.

    2015-01-01

    Chikungunya virus (CHIKV) is a mosquito-borne pathogen that was only endemic in Africa and south Asia until 2005 and 2006, when the virus spread into the Indian Ocean islands, Europe, and Asia. Autochthonous CHIKV transmission in the Caribbean islands was reported in December of 2013. In Panama, two febrile cases were detected in May of 2014: one traveling from Haiti, and the other traveling from the Dominican Republic. After other imported cases were detected, the first autochthonous case was reported in August of the same year. We detected CHIKV viral RNA and isolated the virus from serum samples. The phylogenetic analysis of the two imported isolates and one autochthonous CHIKV isolate indicated that the viruses belong to the Asian lineage in the Caribbean clade and are related to viruses recently identified in Saint Martin island, British Virgin Islands, China, and the Philippines. Although the circulating CHIKV lineages in the Americas have not yet been described, our results suggest that the Asian lineage is circulating in most American countries reporting autochthonous infection. PMID:25601996

  15. Cross-Inhibition of Chikungunya Virus Fusion and Infection by Alphavirus E1 Domain III Proteins

    PubMed Central

    Sánchez-San Martín, Claudia; Nanda, Soumya; Zheng, Yan; Fields, Whitney

    2013-01-01

    Alphaviruses are small enveloped RNA viruses that include important emerging human pathogens, such as chikungunya virus (CHIKV). These viruses infect cells via a low-pH-triggered membrane fusion reaction, making this step a potential target for antiviral therapies. The E1 fusion protein inserts into the target membrane, trimerizes, and refolds to a hairpin-like conformation in which the combination of E1 domain III (DIII) and the stem region (DIII-stem) pack against a core trimer composed of E1 domains I and II (DI/II). Addition of exogenous DIII proteins from Semliki Forest virus (SFV) has been shown to inhibit E1 hairpin formation and SFV fusion and infection. Here we produced and characterized DIII and DI/II proteins from CHIKV and SFV. Unlike SFV DIII, both core trimer binding and fusion inhibition by CHIKV DIII required the stem region. CHIKV DIII-stem and SFV DIII-stem showed efficient cross-inhibition of SFV, Sindbis virus, and CHIKV infections. We developed a fluorescence anisotropy-based assay for the binding of SFV DIII-stem to the core trimer and used it to demonstrate the relatively high affinity of this interaction (Kd [dissociation constant], ∼85 nM) and the importance of the stem region. Together, our results support the conserved nature of the key contacts of DIII-stem in the alphavirus E1 homotrimer and describe a sensitive and quantitative in vitro assay for this step in fusion protein refolding. PMID:23637415

  16. Infectious Chikungunya Virus in the Saliva of Mice, Monkeys and Humans

    PubMed Central

    Gardner, Joy; Rudd, Penny A.; Prow, Natalie A.; Belarbi, Essia; Roques, Pierre; Larcher, Thibaut; Gresh, Lionel; Balmaseda, Angel; Harris, Eva; Schroder, Wayne A.; Suhrbier, Andreas

    2015-01-01

    Chikungunya virus (CHIKV) is a reemerging, ordinarily mosquito-transmitted, alphavirus that occasionally produces hemorrhagic manifestations, such as nose bleed and bleeding gums, in human patients. Interferon response factor 3 and 7 deficient (IRF3/7-/-) mice, which are deficient for interferon α/β responses, reliably develop hemorrhagic manifestations after CHIKV infection. Here we show that infectious virus was present in the oral cavity of CHIKV infected IRF3/7-/- mice, likely due to hemorrhagic lesions in the olfactory epithelium that allow egress of infected blood into the nasal, and subsequently, oral cavities. In addition, IRF3/7-/- mice were more susceptible to infection with CHIKV via intranasal and oral routes, with IRF3/7-/- mice also able to transmit virus mouse-to-mouse without an arthropod vector. Cynomolgus macaques often show bleeding gums after CHIKV infection, and analysis of saliva from several infected monkeys also revealed the presence of viral RNA and infectious virus. Furthermore, saliva samples collected from several acute CHIKV patients with hemorrhagic manifestations were found to contain viral RNA and infectious virus. Oral fluids can therefore be infectious during acute CHIKV infections, likely due to hemorrhagic manifestations in the oral/nasal cavities. PMID:26447467

  17. Easy and inexpensive molecular detection of dengue, chikungunya and zika viruses in febrile patients.

    PubMed

    Calvo, Eliana P; Sánchez-Quete, Fernando; Durán, Sandra; Sandoval, Isabel; Castellanos, Jaime E

    2016-11-01

    Dengue (DENV), chikungunya (CHIKV) and zika (ZIKV) are arthropod-borne viruses (arboviruses) sharing a common vector, the mosquito Aedes aegypti. At initial stages, patients infected with these viruses have similar clinical manifestations, however, the outcomes and clinical management of these diseases are different, for this reason early and accurate identification of the causative virus is necessary. This paper reports the development of a rapid and specific nested-PCR for detection of DENV, CHIKV and ZIKV infection in the same sample. A set of six outer primers targeting the C-preM, E1, and E gene respectively was used in a multiplex one-step RT-PCR assay, followed by the second round of amplification with specific inner primers for each virus. The specificity of the present assay was validated with positive and negative serum samples for viruses and supernatants of infected cells. The assay was tested using clinical samples from febrile patients. In these samples, we detected mono and dual infections and a case of triple co-infection DENV-CHIKV-ZIKV. This assay might be a useful and an inexpensive tool for detection of these infections in regions where these arboviruses co-circulate.

  18. Aedes hensilli as a Potential Vector of Chikungunya and Zika Viruses

    PubMed Central

    Ledermann, Jeremy P.; Guillaumot, Laurent; Yug, Lawrence; Saweyog, Steven C.; Tided, Mary; Machieng, Paul; Pretrick, Moses; Marfel, Maria; Griggs, Anne; Bel, Martin; Duffy, Mark R.; Hancock, W. Thane; Ho-Chen, Tai; Powers, Ann M.

    2014-01-01

    An epidemic of Zika virus (ZIKV) illness that occurred in July 2007 on Yap Island in the Federated States of Micronesia prompted entomological studies to identify both the primary vector(s) involved in transmission and the ecological parameters contributing to the outbreak. Larval and pupal surveys were performed to identify the major containers serving as oviposition habitat for the likely vector(s). Adult mosquitoes were also collected by backpack aspiration, light trap, and gravid traps at select sites around the capital city. The predominant species found on the island was Aedes (Stegomyia) hensilli. No virus isolates were obtained from the adult field material collected, nor did any of the immature mosquitoes that were allowed to emerge to adulthood contain viable virus or nucleic acid. Therefore, laboratory studies of the probable vector, Ae. hensilli, were undertaken to determine the likelihood of this species serving as a vector for Zika virus and other arboviruses. Infection rates of up to 86%, 62%, and 20% and dissemination rates of 23%, 80%, and 17% for Zika, chikungunya, and dengue-2 viruses respectively, were found supporting the possibility that this species served as a vector during the Zika outbreak and that it could play a role in transmitting other medically important arboviruses. PMID:25299181

  19. Aedes hensilli as a potential vector of Chikungunya and Zika viruses.

    PubMed

    Ledermann, Jeremy P; Guillaumot, Laurent; Yug, Lawrence; Saweyog, Steven C; Tided, Mary; Machieng, Paul; Pretrick, Moses; Marfel, Maria; Griggs, Anne; Bel, Martin; Duffy, Mark R; Hancock, W Thane; Ho-Chen, Tai; Powers, Ann M

    2014-10-01

    An epidemic of Zika virus (ZIKV) illness that occurred in July 2007 on Yap Island in the Federated States of Micronesia prompted entomological studies to identify both the primary vector(s) involved in transmission and the ecological parameters contributing to the outbreak. Larval and pupal surveys were performed to identify the major containers serving as oviposition habitat for the likely vector(s). Adult mosquitoes were also collected by backpack aspiration, light trap, and gravid traps at select sites around the capital city. The predominant species found on the island was Aedes (Stegomyia) hensilli. No virus isolates were obtained from the adult field material collected, nor did any of the immature mosquitoes that were allowed to emerge to adulthood contain viable virus or nucleic acid. Therefore, laboratory studies of the probable vector, Ae. hensilli, were undertaken to determine the likelihood of this species serving as a vector for Zika virus and other arboviruses. Infection rates of up to 86%, 62%, and 20% and dissemination rates of 23%, 80%, and 17% for Zika, chikungunya, and dengue-2 viruses respectively, were found supporting the possibility that this species served as a vector during the Zika outbreak and that it could play a role in transmitting other medically important arboviruses.

  20. Suramin is a potent inhibitor of Chikungunya and Ebola virus cell entry.

    PubMed

    Henß, Lisa; Beck, Simon; Weidner, Tatjana; Biedenkopf, Nadine; Sliva, Katja; Weber, Christopher; Becker, Stephan; Schnierle, Barbara S

    2016-08-31

    Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes high fever, rash, and recurrent arthritis in humans. It has efficiently adapted to Aedes albopictus, which also inhabits temperate regions and currently causes large outbreaks in the Caribbean and Latin America. Ebola virus (EBOV) is a member of the filovirus family. It causes the Ebola virus disease (EDV), formerly known as Ebola hemorrhagic fever in humans and has a mortality rate of up to 70 %. The last outbreak in Western Africa was the largest in history and has caused approximately 25,000 cases and 10,000 deaths. For both viral infections no specific treatment or licensed vaccine is currently available. The bis-hexasulfonated naphthylurea, suramin, is used as a treatment for trypanosome-caused African river blindness. As a competitive inhibitor of heparin, suramin has been described to have anti-viral activity. We tested the activity of suramin during CHIKV or Ebola virus infection, using CHIKV and Ebola envelope glycoprotein pseudotyped lentiviral vectors and wild-type CHIKV and Ebola virus. Suramin efficiently inhibited CHIKV and Ebola envelope-mediated gene transfer while vesicular stomatitis virus G protein pseudotyped vectors were only marginally affected. In addition, suramin was able to inhibit wild-type CHIKV and Ebola virus replication in vitro. Inhibition occurred at early time points during CHIKV infection. Suramin, also known as Germanin or Bayer-205, is a market-authorized drug, however shows significant side effects, which probably prevents its use as a CHIKV drug, but due to the high lethality of Ebola virus infections, suramin might be valuable against Ebola infections.

  1. Landscape Ecology of Sylvatic Chikungunya Virus and Mosquito Vectors in Southeastern Senegal

    PubMed Central

    Diallo, Diawo; Sall, Amadou A.; Buenemann, Michaela; Chen, Rubing; Faye, Oumar; Diagne, Cheikh T.; Faye, Ousmane; Ba, Yamar; Dia, Ibrahima; Watts, Douglas; Weaver, Scott C.; Hanley, Kathryn A.; Diallo, Mawlouth

    2012-01-01

    The risk of human infection with sylvatic chikungunya (CHIKV) virus was assessed in a focus of sylvatic arbovirus circulation in Senegal by investigating distribution and abundance of anthropophilic Aedes mosquitoes, as well as the abundance and distribution of CHIKV in these mosquitoes. A 1650 km2 area was classified into five land cover classes: forest, barren, savanna, agriculture and village. A total of 39,799 mosquitoes was sampled from all classes using human landing collections between June 2009 and January 2010. Mosquito diversity was extremely high, and overall vector abundance peaked at the start of the rainy season. CHIKV was detected in 42 mosquito pools. Our data suggest that Aedes furcifer, which occurred abundantly in all land cover classes and landed frequently on humans in villages outside of houses, is probably the major bridge vector responsible for the spillover of sylvatic CHIKV to humans. PMID:22720097

  2. Western Blot Detection of Human Anti-Chikungunya Virus Antibody with Recombinant Envelope 2 Protein.

    PubMed

    Yang, Zhaoshou; Lee, Jihoo; Ahn, Hye-Jin; Chong, Chom-Kyu; Dias, Ronaldo F; Nam, Ho-Woo

    2016-04-01

    Chikungunya virus (CHIKV), a tropical pathogen, has re-emerged and has massive outbreaks abruptly all over the world. Containing many dominant epitopes, the envelope E2 protein of CHIKV has been explored for the vaccination or diagnosis. In the present study, the antigenicity of a recombinant expressed intrinsically disorder domain (IUD) of E2 was tested for the detection of the antibody against CHIKV through western blot method. The gene of the IUD of E2 was inserted into 2 different vectors and expressed as recombinant GST-E2 and recombinant MBP-E2 fusion protein, respectively. Two kinds of fusion proteins were tested with 30 CHIKV patient sera and 30 normal sera, respectively. Both proteins were detected by 25 patients sera (83.3%) and 1 normal serum (3.3%). This test showed a relatively high sensitivity and very high specificity of the recombinant E2 proteins to be used as diagnostic antigens against CHIKV infection.

  3. Congenital Chikungunya Virus Infection after an Outbreak in Salvador, Bahia, Brazil

    PubMed Central

    Lyra, Priscila Pinheiro Ribeiro; Campos, Gúbio Soares; Bandeira, Igor Dórea; Sardi, Silvia Ines; Costa, Lilian Ferreira de Moura; Santos, Flávia Rocha; Ribeiro, Carlos Alexandre Santos; Jardim, Alena Maria Barreto; Santiago, Ana Cecília Travassos; de Oliveira, Patrícia Maria Ribeiro; Moreira, Lícia Maria Oliveira

    2016-01-01

    There is little information about the congenital chikungunya virus (CHIKV) transmission. We describe two cases of well-documented congenital CHIKV infection in Salvador-Brazil, where CHIKV has been identified since 2014. The outbreak in the city led to the clinical CHIKV diagnoses of both pregnant women 2 days before delivery. Urine and blood samples from the mothers and newborns were collected and tested for reverse transcription-polymerase chain reaction (PCR) analysis for Zika, dengue, and CHIKV. Both neonates and mothers had positive urine and serum PCR results for CHIKV. The newborns had significant perinatal complications and were admitted to the neonatal intensive care unit. The purpose of our case report is to show how severe congenital CHIKV infection can be and the importance to include CHIKV infection in the differential diagnosis of neonatal sepsis when mothers have clinical signs of the disease and live in an affected area. PMID:27555980

  4. Seroprevalence and entomological study on Chikungunya virus at the Croatian littoral.

    PubMed

    Vilibic-Cavlek, Tatjana; Pem-Novosel, Iva; Kaic, Bernard; Babić-Erceg, Andrea; Kucinar, Jasmina; Klobucar, Ana; Medic, Alan; Pahor, Djana; Barac-Juretic, Katija; Gjenero-Margan, Ira

    2015-06-01

    During 2011-2012, a total of 1008 serum samples from randomly selected inhabitants of seven Croatian counties located on the Adriatic Coast were tested for the presence of chikungunya virus (CHIKV) IgG antibodies using indirect immunofluorescence assay. Nine participants (0.9%) from four counties were found to be seropositive to CHIKV. Seroprevalence varied from 0.5% to 1.8% between counties. Additionally, a total of 3,699 mosquitoes were captured in 126 localities from August 16 to September 24, 2011. Three mosquito species were found: Ae. albopictus (3010/81.4%), Cx. pipiens (688/18.6%) and only one specimen of the Cs. longiareolata. Female mosquitoes (N = 1,748) were pooled. All pools tested negative for CHIKV RNA using a real-time RT-PCR.

  5. Dysregulated TGF-β Production Underlies the Age-Related Vulnerability to Chikungunya Virus

    PubMed Central

    Uhrlaub, Jennifer L.; Pulko, Vesna; DeFilippis, Victor R.; Streblow, Daniel N.; Coleman, Gary D.; Lindo, John F.; Vickers, Ivan; Anzinger, Joshua J.; Nikolich-Žugich, Janko

    2016-01-01

    Chikungunya virus (CHIKV) is a re-emerging global pathogen with pandemic potential, which causes fever, rash and debilitating arthralgia. Older adults over 65 years are particularly susceptible to severe and chronic CHIKV disease (CHIKVD), accounting for >90% of all CHIKV-related deaths. There are currently no approved vaccines or antiviral treatments available to limit chronic CHIKVD. Here we show that in old mice excessive, dysregulated TGFβ production during acute infection leads to a reduced immune response and subsequent chronic disease. Humans suffering from CHIKV infection also exhibited high TGFβ levels and a pronounced age-related defect in neutralizing anti-CHIKV antibody production. In vivo reduction of TGFβ levels minimized acute joint swelling, restored neutralizing antibody production and diminished chronic joint pathology in old mice. This study identifies increased and dysregulated TGFβ secretion as one key mechanism contributing to the age-related loss of protective anti-CHIKV-immunity leading to chronic CHIKVD. PMID:27736984

  6. Zika Virus and Chikungunya Virus CoInfections: A Series of Three Cases from a Single Center in Ecuador.

    PubMed

    Zambrano, Hector; Waggoner, Jesse J; Almeida, Cristina; Rivera, Lisette; Benjamin, Juan Quintana; Pinsky, Benjamin A

    2016-10-05

    Zika virus (ZIKV) and chikungunya virus (CHIKV) cocirculate throughout much of the tropical Western Hemisphere; however, few cases of coinfection with these two pathogens have been reported. Herein, we describe three cases of ZIKV-CHIKV coinfection detected at a single center in Ecuador: a patient who developed symptoms on postoperative day 5 from an orthopedic procedure, a woman who had traveled to Ecuador for fertility treatment, and a woman who was admitted for Guillain-Barré syndrome and had ZIKV and CHIKV detected in serum and cerebrospinal fluid. All cases were diagnosed using a multiplex real-time reverse transcription polymerase chain reaction, and ZIKV viremia was detected as late as 16 days after symptom onset. These cases demonstrate the varied clinical presentation of ZIKV-CHIKV coinfections as well as the importance of multiplexed arboviral testing for these pathogens. © The American Society of Tropical Medicine and Hygiene.

  7. Molecular Docking Studies to Explore Potential Binding Pockets and Inhibitors for Chikungunya Virus Envelope Glycoproteins.

    PubMed

    Nguyen, Phuong T V; Yu, Haibo; Keller, Paul A

    2017-03-11

    The chikungunya virus (CHIKV) envelope glycoproteins are considered important potential targets for anti-CHIKV drug discovery due to their crucial roles in virus attachment and virus entry. In this study, using two available crystal structures of the immature and mature forms of envelope glycoproteins, virtual screenings based on blind dockings and focused dockings were carried out to identify potential binding pockets and hit compounds for the virus. The chemical library database of compounds, NCI Diversity Set II, was used in these docking studies. In addition to reproducing previously reported examples, new binding pockets were identified, e.g., Pocket 2 in the 3N40, and Pocket 2 and Pocket 3 in the 3N42. Convergences in conformational sampling in docking using AutoDock Vina were evaluated. An analysis of docking results was carried out to understand interactions of the envelope glycoproteins complexes. Some key residues for interactions, for example Gly91 and His230, are identified as possessing important roles in the fusion process.

  8. Zika and chikungunya: mosquito-borne viruses in a changing world.

    PubMed

    Shragai, Talya; Tesla, Blanka; Murdock, Courtney; Harrington, Laura C

    2017-07-01

    The reemergence and growing burden of mosquito-borne virus infections have incited public fear and growing research efforts to understand the mechanisms of infection-associated health outcomes and to provide better approaches for mosquito vector control. While efforts to develop therapeutics, vaccines, and novel genetic mosquito-control technologies are underway, many important underlying ecological questions remain that could significantly enhance our understanding and ability to predict and prevent transmission. Here, we review the current knowledge about the transmission ecology of two recent arbovirus invaders, the chikungunya and Zika viruses. We introduce the viruses and mosquito vectors, highlighting viral biology, historical routes of transmission, and viral mechanisms facilitating rapid global invasion. In addition, we review factors contributing to vector global invasiveness and transmission efficiency. We conclude with a discussion of how human-induced biotic and abiotic environmental changes facilitate mosquito-borne virus transmission, emphasizing critical gaps in understanding. These knowledge gaps are tremendous; much of our data on basic mosquito ecology in the field predate 1960, and the mosquitoes themselves, as well as the world they live in, have substantially changed. A concerted investment in understanding the basic ecology of these vectors, which serve as the main drivers of pathogen transmission in both wildlife and human populations, is now more important than ever. © 2017 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals Inc. on behalf of The New York Academy of Sciences.

  9. Deciphering the host-pathogen protein interface in chikungunya virus-mediated sickness.

    PubMed

    Rana, Jyoti; Sreejith, R; Gulati, Sahil; Bharti, Isha; Jain, Surangna; Gupta, Sanjay

    2013-06-01

    Successful infection with chikungunya virus (CHIKV) depends largely on the ability of this virus to manipulate cellular processes in its favour through specific interactions with several host factors. The knowledge of virus-host interactions is of particular value for understanding the interface through which therapeutic strategies could be applied. In the current study, the authors have employed a computational method to study the protein interactions between CHIKV and both its human host and its mosquito vector. In this structure-based study, 2028 human and 86 mosquito proteins were predicted to interact with those of CHIKV through 3918 and 112 unique interactions, respectively. This approach could predict 40 % of the experimentally confirmed CHIKV-host interactions along with several novel interactions, suggesting the involvement of CHIKV in intracellular cell signaling, programmed cell death, and transcriptional and translational regulation. The data corresponded to those obtained in earlier studies for HIV and dengue viruses using the same methodology. This study provides a conservative set of potential interactions that can be employed for future experimental studies with a view to understanding CHIKV biology.

  10. Genomic evolution and phenotypic distinctions of Chikungunya viruses causing the Indian Ocean outbreak.

    PubMed

    Powers, Ann M

    2011-08-01

    In our current global community with the rapid movement of products and people across and between continents, the emergence of a human pathogen can have devastating consequences. One dramatic example of this has been the emergence of Chikungunya virus (CHIKV), which causes a severe, prolonged, and debilitating arthralgic disease. This virus emerged in a large outbreak on the east coast of Africa in 2004; over the subsequent seven years, CHIKV has spread across the Indian Ocean, the Indian subcontinent, Southeast Asia and even reached Europe, leaving more than two million people affected. Because CHIKV has a small genome, currently available tools to analyze complete viral genomes have provided scientists with unique opportunities to understand the epidemiology, pathogenesis and transmission of the virus. The most commonly used application of these cutting edge tools has been to track the movement of the virus over time and space. While this is an important concept for identifying areas that remain at risk for outbreaks, these postgenomic era tools can also be applied to the highly significant tasks of understanding how viral microevolutionary changes can affect both invertebrate transmission and vertebrate virulence. Significant alterations in the patterns of CHIKV movement have already been identified using microevolutionary studies. These approaches now need to be further expanded to aid in expanding vaccine, therapeutic and control options. This review will highlight some of the most significant recent research developments obtained using these cutting edge approaches for CHIKV.

  11. Nonhuman Primate Models of Chikungunya Virus Infection and Disease (CHIKV NHP Model)

    PubMed Central

    Broeckel, Rebecca; Haese, Nicole; Messaoudi, Ilhem; Streblow, Daniel N.

    2015-01-01

    Chikungunya virus (CHIKV) is a positive-sense RNA virus transmitted by Aedes mosquitoes. CHIKV is a reemerging Alphavirus that causes acute febrile illness and severe and debilitating polyarthralgia of the peripheral joints. Huge epidemics and the rapid spread of CHIKV seen in India and the Indian Ocean region established CHIKV as a global health concern. This concern was further solidified by the recent incursion of the virus into the Western hemisphere, a region without pre-existing immunity. Nonhuman primates (NHPs) serve as excellent animal models for understanding CHIKV pathogenesis and pre-clinical assessment of vaccines and therapeutics. NHPs present advantages over rodent models because they are a natural amplification host for CHIKV and they share significant genetic and physiological homology with humans. CHIKV infection in NHPs results in acute fever, rash, viremia and production of type I interferon. NHPs develop CHIKV-specific B and T-cells, generating neutralizing antibodies and CHIKV-specific CD4+ and CD8+ T-cells. CHIKV establishes a persistent infection in NHPs, particularly in cynomolgus macaques, because infectious virus could be recovered from spleen, liver, and muscle as late as 44 days post infection. NHPs are valuable models that are useful in preclinical testing of vaccines and therapeutics and uncovering the details of CHIKV pathogenesis. PMID:26389957

  12. Antagonism of the Sodium-Potassium ATPase Impairs Chikungunya Virus Infection

    PubMed Central

    Ashbrook, Alison W.; Lentscher, Anthony J.; Zamora, Paula F.; Silva, Laurie A.; May, Nicholas A.; Bauer, Joshua A.; Morrison, Thomas E.

    2016-01-01

    ABSTRACT Chikungunya virus (CHIKV) is a reemerging alphavirus that has caused epidemics of fever, arthralgia, and rash worldwide. There are currently no licensed vaccines or antiviral therapies available for the prevention or treatment of CHIKV disease. We conducted a high-throughput, chemical compound screen that identified digoxin, a cardiac glycoside that blocks the sodium-potassium ATPase, as a potent inhibitor of CHIKV infection. Treatment of human cells with digoxin or a related cardiac glycoside, ouabain, resulted in a dose-dependent decrease in infection by CHIKV. Inhibition by digoxin was cell type-specific, as digoxin treatment of either murine or mosquito cells did not diminish CHIKV infection. Digoxin displayed antiviral activity against other alphaviruses, including Ross River virus and Sindbis virus, as well as mammalian reovirus and vesicular stomatitis virus. The digoxin-mediated block to CHIKV and reovirus infection occurred at one or more postentry steps, as digoxin inhibition was not bypassed by fusion of CHIKV at the plasma membrane or infection with cell surface-penetrating reovirus entry intermediates. Selection of digoxin-resistant CHIKV variants identified multiple mutations in the nonstructural proteins required for replication complex formation and synthesis of viral RNA. These data suggest a role for the sodium-potassium ATPase in promoting postentry steps of CHIKV replication and provide rationale for modulation of this pathway as a broad-spectrum antiviral strategy. PMID:27222471

  13. Genetic divergence of Chikungunya virus plaque variants from the Comoros Island (2005).

    PubMed

    Wasonga, Caroline; Inoue, Shingo; Rumberia, Cecilia; Michuki, George; Kimotho, James; Ongus, Juliette R; Sang, Rosemary; Musila, Lillian

    2015-12-01

    Chikungunya virus (CHIKV) from a human sample collected during the 2005 Chikungunya outbreak in the Comoros Island, showed distinct and reproducible large (L2) and small (S7) plaques which were characterized in this study. The parent strain and plaque variants were analysed by in vitro growth kinetics in different cell lines and their genetic similarity assessed by whole genome sequencing, comparative sequence alignment and phylogenetic analysis. In vitro growth kinetic assays showed similar growth patterns of both plaque variants in Vero cells but higher viral titres of S7 compared to L2 in C6/36 cells. Amino acids (AA) alignments of the CHIKV plaque variants and S27 African prototype strain, showed 30 AA changes in the non-structural proteins (nsP) and 22 AA changes in the structural proteins. Between L2 and S7, only two AAs differences were observed. A missense substitution (C642Y) of L2 in the nsP2, involving a conservative AA substitution and a nonsense substitution (R524X) of S7 in the nsP3, which has been shown to enhance O'nyong-nyong virus infectivity and dissemination in Anopheles mosquitoes. The phenotypic difference observed in plaque size could be attributed to one of these AA substitutions. Phylogenetic analysis showed that the parent strain and its variants clustered closely together with each other and with Indian Ocean CHIKV strains indicating circulation of isolates with close evolutionary relatedness in the same outbreak. These observations pave way for important functional studies to understand the significance of the identified genetic changes in virulence and viral transmission in mosquito and mammalian hosts.

  14. Understanding the evolution and spread of chikungunya virus in the Americas using complete genome sequences.

    PubMed

    Sahadeo, N S D; Allicock, O M; De Salazar, P M; Auguste, A J; Widen, S; Olowokure, B; Gutierrez, C; Valadere, A M; Polson-Edwards, K; Weaver, S C; Carrington, C V F

    2017-01-01

    Local transmission of chikungunya virus (CHIKV) was first detected in the Americas in December 2013, after which it spread rapidly throughout the Caribbean islands and American mainland, causing a major chikungunya fever epidemic. Previous phylogenetic analysis of CHIKV from a limited number of countries in the Americas suggests that an Asian genotype strain was responsible, except in Brazil where both Asian and East/Central/South African (ECSA) lineage strains were detected. In this study, we sequenced thirty-three complete CHIKV genomes from viruses isolated in 2014 from fourteen Caribbean islands, the Bahamas and two mainland countries in the Americas. Phylogenetic analyses confirmed that they all belonged to the Asian genotype and clustered together with other Caribbean and mainland sequences isolated during the American outbreak, forming an 'Asian/American' lineage defined by two amino acid substitutions, E2 V368A and 6K L20M, and divided into two well-supported clades. This lineage is estimated to be evolving at a mean rate of 5 × 10(-4) substitutions per site per year (95% higher probability density, 2.9-7.9 × 10(-4)) and to have arisen from an ancestor introduced to the Caribbean (most likely from Oceania) in about March 2013, 9 months prior to the first report of CHIKV in the Americas. Estimation of evolutionary rates for individual gene regions and selection analyses indicate that (in contrast to the Indian Ocean Lineage that emerged from the ECSA genotype followed by adaptive evolution and with a significantly higher substitution rate) the evolutionary dynamics of the Asian/American lineage are very similar to the rest of the Asian genotype and natural selection does not appear to have played a major role in its emergence. However, several codon sites with evidence of positive selection were identified within the non-structural regions of Asian genotype sequences outside of the Asian/American lineage.

  15. Comprehensive Genome Scale Phylogenetic Study Provides New Insights on the Global Expansion of Chikungunya Virus.

    PubMed

    Chen, Rubing; Puri, Vinita; Fedorova, Nadia; Lin, David; Hari, Kumar L; Jain, Ravi; Rodas, Juan David; Das, Suman R; Shabman, Reed S; Weaver, Scott C

    2016-12-01

    Since the India and Indian Ocean outbreaks of 2005 and 2006, the global distribution of chikungunya virus (CHIKV) and the locations of epidemics have dramatically shifted. First, the Indian Ocean lineage (IOL) caused sustained epidemics in India and has radiated to many other countries. Second, the Asian lineage has caused frequent outbreaks in the Pacific islands and in 2013 was introduced into the Caribbean, followed by rapid spread to nearly all of the neotropics. Further, CHIKV epidemics, as well as exported cases, have been reported in central Africa after a long period of perceived silence. To understand these changes and to anticipate the future of the virus, the exact distribution, genetic diversity, transmission routes, and future epidemic potential of CHIKV require further assessment. To do so, we conducted the most comprehensive phylogenetic analysis to date, examined CHIKV evolution and transmission, and explored distinct genetic factors associated with the emergence of the East/Central/South African (ECSA) lineage, the IOL, and the Asian lineage. Our results reveal contrasting evolutionary patterns among the lineages, with growing genetic diversities observed in each, and suggest that CHIKV will continue to be a major public health threat with the potential for further emergence and spread. Chikungunya fever is a reemerging infectious disease that is transmitted by Aedes mosquitoes and causes severe health and economic burdens in affected populations. Since the unprecedented Indian Ocean and Indian subcontinent outbreaks of 2005 and 2006, CHIKV has further expanded its geographic range, including to the Americas in 2013. Its evolution and transmission during and following these epidemics, as well as the recent evolution and spread of other lineages, require optimal assessment. Using newly obtained genome sequences, we provide a comprehensive update of the global distribution of CHIKV genetic diversity and analyze factors associated with recent

  16. Understanding the evolution and spread of chikungunya virus in the Americas using complete genome sequences

    PubMed Central

    Sahadeo, N. S. D.; Allicock, O. M.; De Salazar, P. M.; Auguste, A. J.; Widen, S.; Olowokure, B.; Gutierrez, C.; Valadere, A. M.; Polson-Edwards, K.; Weaver, S. C.

    2017-01-01

    Abstract Local transmission of chikungunya virus (CHIKV) was first detected in the Americas in December 2013, after which it spread rapidly throughout the Caribbean islands and American mainland, causing a major chikungunya fever epidemic. Previous phylogenetic analysis of CHIKV from a limited number of countries in the Americas suggests that an Asian genotype strain was responsible, except in Brazil where both Asian and East/Central/South African (ECSA) lineage strains were detected. In this study, we sequenced thirty-three complete CHIKV genomes from viruses isolated in 2014 from fourteen Caribbean islands, the Bahamas and two mainland countries in the Americas. Phylogenetic analyses confirmed that they all belonged to the Asian genotype and clustered together with other Caribbean and mainland sequences isolated during the American outbreak, forming an ‘Asian/American’ lineage defined by two amino acid substitutions, E2 V368A and 6K L20M, and divided into two well-supported clades. This lineage is estimated to be evolving at a mean rate of 5 × 10−4 substitutions per site per year (95% higher probability density, 2.9–7.9 × 10−4) and to have arisen from an ancestor introduced to the Caribbean (most likely from Oceania) in about March 2013, 9 months prior to the first report of CHIKV in the Americas. Estimation of evolutionary rates for individual gene regions and selection analyses indicate that (in contrast to the Indian Ocean Lineage that emerged from the ECSA genotype followed by adaptive evolution and with a significantly higher substitution rate) the evolutionary dynamics of the Asian/American lineage are very similar to the rest of the Asian genotype and natural selection does not appear to have played a major role in its emergence. However, several codon sites with evidence of positive selection were identified within the non-structural regions of Asian genotype sequences outside of the Asian/American lineage. PMID:28480053

  17. Chikungunya Virus Infection of Cell Lines: Analysis of the East, Central and South African Lineage

    PubMed Central

    Wikan, Nitwara; Sakoonwatanyoo, Prirayapak; Ubol, Sukathida; Yoksan, Sutee; Smith, Duncan R.

    2012-01-01

    Chikungunya virus (CHIKV) is a re-emerging mosquito borne alphavirus that has caused large scale epidemics in the countries around the Indian Ocean, as well as leading to autochthonous transmission in some European countries. The transmission of the disease has been driven by the emergence of an African lineage of CHIKV with enhanced transmission and dissemination in Aedes mosquito hosts. Two main genotypes of this lineage have been circulating, characterized by the presence of a substitution of a valine for an alanine at position 226 of the E1 protein. The outbreak, numbering in millions of cases in the infected areas, has been associated with increasing numbers of cases with non-classical presentation including encephalitis and meningitis. This study sought to compare the original Ross strain with two isolates from the recent outbreak of chikungunya fever in respect of infectivity and the induction of apoptosis in eight mammalian cell lines and two insect cell lines, in addition to generating a comprehensive virus production profile for one of the newer isolates. Results showed that in mammalian cells there were few differences in either tropism or pathogenicity as assessed by induction of apoptosis with the exception of Hela cells were the recent valine isolate showed less infectivity. The Aedes albopictus C6/36 cell line was however significantly more permissive for both of the more recent isolates than the Ross strain. The results suggest that the increased infectivity seen in insect cells derives from an evolution of the CHIKV genome not solely associated with the E1:226 substitution. PMID:22299053

  18. Role of gregarine parasite Ascogregarina culicis (Apicomplexa: Lecudinidae) in the maintenance of Chikungunya virus in vector mosquito.

    PubMed

    Moury, D T; Singh, D K; Yadav, P; Gokhale, M D; Barde, P V; Narayan, N B; Thakare, J P; Mishra, A C; Shouche, Y S

    2003-01-01

    Ascogregarina culicis and Ascogregarina taiwanensis are common gregarine parasites of Aedes aegypti and Aedes albopictus mosquitoes, respectively. These mosquito species are also known to transmit dengue and Chikungunya viruses. The sporozoites of these parasites invade the midgut epithelial cells and develop intracellularly and extracellularly in the gut to complete their life cycles. The midgut is also the primary site for virus replication in the vector mosquitoes. Therefore, studies were carried out with a view to determine the possible role of these gregarines in the vertical transmission of dengue and Chikungunya viruses from larval to adult stage. Experiments were performed by exposing first instar mosquito larvae to suspensions containing parasite oocysts and viruses. Since Ascogregarina sporozoites invade the midgut of first instar larvae, the vertical transmission was determined by feeding the uninfected first instar larvae on the freshly prepared homogenates from mosquitoes, which were dually infected with viruses and the parasite oocysts. Similarly, the role of protozoan parasites in the vertical transmission of viruses was determined by exposing fresh first instar larvae to the dried pellets of homogenates prepared from the mosquitoes dually infected with viruses and the parasite oocysts. Direct vertical transmission and the vertical transmission of CHIK virus through the oocyst of the parasites were observed in the case of Ae. aegypti mosquitoes. It is suggested that As. culicis may have an important role in the maintenance of CHIK virus during the inter-epidemic period.

  19. The wMel Strain of Wolbachia Reduces Transmission of Chikungunya Virus in Aedes aegypti

    PubMed Central

    Aliota, Matthew T.; Walker, Emma C.; Uribe Yepes, Alexander; Dario Velez, Ivan; Christensen, Bruce M.; Osorio, Jorge E.

    2016-01-01

    Background New approaches to preventing chikungunya virus (CHIKV) are needed because current methods are limited to controlling mosquito populations, and they have not prevented the invasion of this virus into new locales, nor have they been sufficient to control the virus upon arrival. A promising candidate for arbovirus control and prevention relies on the introduction of the intracellular bacterium Wolbachia into Aedes aegypti mosquitoes. This primarily has been proposed as a tool to control dengue virus (DENV) transmission; however, evidence suggests Wolbachia infections confer protection for Ae. aegypti against CHIKV. Although this approach holds much promise for limiting virus transmission, at present our understanding of the ability of CHIKV to infect, disseminate, and be transmitted by wMel-infected Ae. aegypti currently being used at Wolbachia release sites is limited. Methodology/Principal Findings Using Ae. aegypti infected with the wMel strain of Wolbachia that are being released in Medellin, Colombia, we report that these mosquitoes have reduced vector competence for CHIKV, even with extremely high viral titers in the bloodmeal. In addition, we examined the dynamics of CHIKV infection over the course of four to seven days post feeding. Wolbachia-infected mosquitoes remained non-infective over the duration of seven days, i.e., no infectious virus was detected in the saliva when exposed to bloodmeals of moderate viremia, but CHIKV-exposed, wild type mosquitoes did have viral loads in the saliva consistent with what has been reported elsewhere. Finally, the presence of wMel infection had no impact on the lifespan of mosquitoes as compared to wild type mosquitoes following CHIKV infection. Conclusions/Significance These results could have an impact on vector control strategies in areas where Ae. aegypti are transmitting both DENV and CHIKV; i.e., they argue for further exploration, both in the laboratory and the field, on the feasibility of expanding this

  20. The wMel Strain of Wolbachia Reduces Transmission of Chikungunya Virus in Aedes aegypti.

    PubMed

    Aliota, Matthew T; Walker, Emma C; Uribe Yepes, Alexander; Velez, Ivan Dario; Christensen, Bruce M; Osorio, Jorge E

    2016-04-01

    New approaches to preventing chikungunya virus (CHIKV) are needed because current methods are limited to controlling mosquito populations, and they have not prevented the invasion of this virus into new locales, nor have they been sufficient to control the virus upon arrival. A promising candidate for arbovirus control and prevention relies on the introduction of the intracellular bacterium Wolbachia into Aedes aegypti mosquitoes. This primarily has been proposed as a tool to control dengue virus (DENV) transmission; however, evidence suggests Wolbachia infections confer protection for Ae. aegypti against CHIKV. Although this approach holds much promise for limiting virus transmission, at present our understanding of the ability of CHIKV to infect, disseminate, and be transmitted by wMel-infected Ae. aegypti currently being used at Wolbachia release sites is limited. Using Ae. aegypti infected with the wMel strain of Wolbachia that are being released in Medellin, Colombia, we report that these mosquitoes have reduced vector competence for CHIKV, even with extremely high viral titers in the bloodmeal. In addition, we examined the dynamics of CHIKV infection over the course of four to seven days post feeding. Wolbachia-infected mosquitoes remained non-infective over the duration of seven days, i.e., no infectious virus was detected in the saliva when exposed to bloodmeals of moderate viremia, but CHIKV-exposed, wild type mosquitoes did have viral loads in the saliva consistent with what has been reported elsewhere. Finally, the presence of wMel infection had no impact on the lifespan of mosquitoes as compared to wild type mosquitoes following CHIKV infection. These results could have an impact on vector control strategies in areas where Ae. aegypti are transmitting both DENV and CHIKV; i.e., they argue for further exploration, both in the laboratory and the field, on the feasibility of expanding this technology beyond DENV.

  1. Expression and biochemical characterization of nsP2 cysteine protease of Chikungunya virus.

    PubMed

    Pastorino, Boris A M; Peyrefitte, Christophe N; Almeras, Lionel; Grandadam, Marc; Rolland, Dominique; Tolou, Hugues J; Bessaud, Maël

    2008-02-01

    Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes epidemic fever, rash and polyarthralgia in Africa and Asia. Although it is known since the 1950s, new epidemiological and clinical features reported during the recent outbreak in the Indian Ocean can be regarded as the emergence of a new disease. Numerous severe forms of the infection have been described that put emphasis on the lack of efficient antiviral therapy. Among the virus-encoded enzymes, nsP2 constitutes an attractive target for the development of antiviral drugs. It is a multifunctional protein of approximately 90 kDa with a helicase motif in the N-terminal portion of the protein while the papain-like protease activity resides in the C-terminal portion. The nsP2 proteinase is an essential enzyme whose proteolytic activity is critical for virus replication. In this work, a recombinant CHIKV nsP2pro and a C-terminally truncated variant were expressed in Escherichia coli and purified by metal-chelate chromatography. The enzymatic properties of the proteinase were then determined using specific synthetic fluorogenic substrates. This study constitutes the first characterization of a recombinant CHIKV nsP2 cysteine protease, which may be useful for future drug screening.

  2. Photochemical inactivation of chikungunya virus in human apheresis platelet components by amotosalen and UVA light.

    PubMed

    Tsetsarkin, Konstantin A; Sampson-Johannes, Adam; Sawyer, Lynette; Kinsey, John; Higgs, Stephen; Vanlandingham, Dana L

    2013-06-01

    Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that recently re-emerged in Africa and rapidly spread into countries of the Indian Ocean basin and South-East Asia. The mean viremic blood donation risk for CHIKV on La Réunion reached 1.5% at the height of the 2005-2006 outbreaks, highlighting the need for development of safety measures to prevent transfusion-transmitted infections. We describe successful inactivation of CHIKV in human platelets and plasma using photochemical treatment with amotosalen and long wavelength UVA illumination. Platelet components in additive solution and plasma units were inoculated with two different strains of high titer CHIKV stock (6.0-8.0 logs/mL), and then treated with amotosalen and exposure to 1.0-3.0 J/cm² UVA. Based on in vitro assays of infectious virus pre- and post-treatment to identify endpoint dilutions where virus was not detectable, mean viral titers could effectively be reduced by > 6.4 ± 0.6 log₁₀ TCID₅₀/mL in platelets and ≥ 7.6 ± 1.4 logs in plasma, indicating this treatment has the capacity to prevent CHIKV transmission in human blood components collected from infected donors in or traveling from areas of CHIKV transmission.

  3. Seroprevalence of antibodies against Chikungunya, Dengue, and Rift Valley fever viruses after febrile illness outbreak, Madagascar.

    PubMed

    Schwarz, Norbert G; Girmann, Mirko; Randriamampionona, Njary; Bialonski, Alexandra; Maus, Deborah; Krefis, Anne Caroline; Njarasoa, Christine; Rajanalison, Jeanne Fleury; Ramandrisoa, Herly Daniel; Randriarison, Maurice Lucien; May, Jürgen; Schmidt-Chanasit, Jonas; Rakotozandrindrainy, Raphael

    2012-11-01

    In October 2009, two-3 months after an outbreak of a febrile disease with joint pain on the eastern coast of Madagascar, we assessed serologic markers for chikungunya virus (CHIKV), dengue virus (DENV), and Rift Valley fever virus (RVFV) in 1,244 pregnant women at 6 locations. In 2 eastern coast towns, IgG seroprevalence against CHIKV was 45% and 23%; IgM seroprevalence was 28% and 5%. IgG seroprevalence against DENV was 17% and 11%. No anti-DENV IgM was detected. At 4 locations, 450-1,300 m high, IgG seroprevalence against CHIKV was 0%-3%, suggesting CHIKV had not spread to higher inland-altitudes. Four women had IgG against RVFV, probably antibodies from a 2008 epidemic. Most (78%) women from coastal locations with CHIKV-specific IgG reported joint pain and stiffness; 21% reported no symptoms. CHIKV infection was significantly associated with high bodyweight. The outbreak was an isolated CHIKV epidemic without relevant DENV co-transmission.

  4. Interferon Response Factors 3 and 7 Protect against Chikungunya Virus Hemorrhagic Fever and Shock

    PubMed Central

    Rudd, Penny A.; Wilson, Jane; Gardner, Joy; Larcher, Thibaut; Babarit, Candice; Le, Thuy T.; Anraku, Itaru; Kumagai, Yutaro; Loo, Yueh-Ming; Gale, Michael; Akira, Shizuo; Khromykh, Alexander A.

    2012-01-01

    Chikungunya virus (CHIKV) infections can produce severe disease and mortality. Here we show that CHIKV infection of adult mice deficient in interferon response factors 3 and 7 (IRF3/7−/−) is lethal. Mortality was associated with undetectable levels of alpha/beta interferon (IFN-α/β) in serum, ∼50- and ∼10-fold increases in levels of IFN-γ and tumor necrosis factor (TNF), respectively, increased virus replication, edema, vasculitis, hemorrhage, fever followed by hypothermia, oliguria, thrombocytopenia, and raised hematocrits. These features are consistent with hemorrhagic shock and were also evident in infected IFN-α/β receptor-deficient mice. In situ hybridization suggested CHIKV infection of endothelium, fibroblasts, skeletal muscle, mononuclear cells, chondrocytes, and keratinocytes in IRF3/7−/− mice; all but the latter two stained positive in wild-type mice. Vaccination protected IRF3/7−/− mice, suggesting that defective antibody responses were not responsible for mortality. IPS-1- and TRIF-dependent pathways were primarily responsible for IFN-α/β induction, with IRF7 being upregulated >100-fold in infected wild-type mice. These studies suggest that inadequate IFN-α/β responses following virus infection can be sufficient to induce hemorrhagic fever and shock, a finding with implications for understanding severe CHIKV disease and dengue hemorrhagic fever/dengue shock syndrome. PMID:22761364

  5. Human keratinocytes restrict chikungunya virus replication at a post-fusion step

    SciTech Connect

    Bernard, Eric; Simmons, Graham; Chazal, Nathalie; and others

    2015-02-15

    Transmission of chikungunya virus (CHIKV) to humans is initiated by puncture of the skin by a blood-feeding Aedes mosquito. Despite the growing knowledge accumulated on CHIKV, the interplay between skin cells and CHIKV following inoculation still remains unclear. In this study we questioned the behavior of human keratinocytes, the predominant cell population in the skin, following viral challenge. We report that CHIKV rapidly elicits an innate immune response in these cells leading to the enhanced transcription of type I/II and type III interferon genes. Concomitantly, we show that despite viral particles internalization into Rab5-positive endosomes and efficient fusion of virus and cell membranes, keratinocytes poorly replicate CHIKV as attested by absence of nonstructural proteins and genomic RNA synthesis. Accordingly, human keratinocytes behave as an antiviral defense against CHIKV infection rather than as a primary targets for initial replication. This picture significantly differs from that reported for Dengue and West Nile mosquito-borne viruses. - Highlights: • Human keratinocytes support endocytosis of CHIKV and fusion of viral membranes. • CHIKV replication is blocked at a post entry step in these cells. • Infection upregulates type-I, –II and –III IFN genes expression. • Keratinocytes behave as immune sentinels against CHIKV.

  6. Zika and Chikungunya Virus Detection in Naturally Infected Aedes aegypti in Ecuador.

    PubMed

    Cevallos, Varsovia; Ponce, Patricio; Waggoner, Jesse J; Pinsky, Benjamin A; Coloma, Josefina; Quiroga, Cristina; Morales, Diego; Cárdenas, Maria José

    2017-10-02

    The wide and rapid spread of Chikungunya (CHIKV) and Zika (ZIKV) viruses represent a global public health problem, especially for tropical and subtropical environments. The early detection of CHIKV and ZIKV in mosquitoes may help to understand the dynamics of the diseases in high-risk areas, and to design data based epidemiological surveillance to activate the preparedness and response of the public health system and vector control programs. This study was done to detect ZIKV and CHIKV viruses in naturally infected fed female Aedes aegypti (L.) mosquitoes from active epidemic urban areas in Ecuador. Pools (n=193; 22 pools) and individuals (n=22) of field collected Ae. aegypti mosquitoes from high-risk arboviruses infection sites in Ecuador were analyzed for the presence of CHIKV and ZIKV using RT-PCR. Phylogenetic analysis demonstrated that both ZIKV and CHIKV viruses circulating in Ecuador correspond to the Asian lineages. Minimum infection rate (MIR) of CHIKV for Esmeraldas city was 2.3% and the maximum likelihood estimation (MLE) was 3.3%. The minimum infection rate (MIR) of ZIKV for Portoviejo city was 5.3% and for Manta city was 2.1%. Maximum likelihood estimation (MLE) for Portoviejo city was 6.9% and 2.6% for Manta city. Detection of arboviruses and infection rates in the arthropod vectors may help to predict an outbreak and serve as a warning tool in surveillance programs. Copyright © 2017. Published by Elsevier B.V.

  7. Differential Analysis of the Secretome of WRL68 Cells Infected with the Chikungunya Virus

    PubMed Central

    Thio, Christina Li-Ping; Yusof, Rohana; Ashrafzadeh, Ali; Bahari, Syareena; Abdul-Rahman, Puteri Shafinaz; Karsani, Saiful Anuar

    2015-01-01

    The Chikungunya virus (CHIKV) is an arthropod borne virus. In the last 50 years, it has been the cause of numerous outbreaks in tropical and temperate regions, worldwide. There is limited understanding regarding the underlying molecular mechanisms involved in CHIKV replication and how the virus interacts with its host. In the present study, comparative proteomics was used to identify secreted host proteins that changed in abundance in response to early CHIKV infection. Two-dimensional gel electrophoresis was used to analyse and compare the secretome profiles of WRL-68 cells infected with CHIKV against mock control WRL-68 cells. The analysis identified 25 regulated proteins in CHIKV infected cells. STRING network analysis was then used to predict biological processes that may be affected by these proteins. The processes predicted to be affected include signal transduction, cellular component and extracellular matrix (ECM) organization, regulation of cytokine stimulus and immune response. These results provide an initial view of CHIKV may affect the secretome of infected cells during early infection. The results presented here will compliment earlier results from the study of late host response. However, functional characterization will be necessary to further enhance our understanding of the roles played by these proteins in the early stages of CHIKV infection in humans. PMID:26083627

  8. That Which Bends Up: A Case Report and Literature Review of Chikungunya Virus.

    PubMed

    Peper, Shana M; Monson, Benjamin J; Van Schooneveld, Trevor; Smith, Christopher J

    2016-05-01

    We present a case of chikungunya virus (CHIKV) in a 39-year-old female who developed an acute febrile illness marked by polyarthralgia and rash after returning from Saint Lucia. This epidemic-prone pathogen is increasingly likely to be encountered by primary care and hospital physicians in the coming months. The virus was first locally transmitted in the Caribbean in December 2013 and has since spread to 44 countries and 47 US states, affecting a suspected 1.2 million people. A mosquito-borne virus, CHIKV causes a severe and symmetric polyarthralgia that can relapse for months to years, creating debilitating illness and profound socioeconomic consequences. Current treatment is limited to supportive measures, which are dependent on nonsteroidal anti-inflammatory drugs. Research into immunomodulatory agents, antiviral therapies, and vaccines is ongoing. Prevention remains key in slowing the spread of disease. Patient education should focus on personal protective measures, such as insect repellant and remaining indoors, while public health departments should implement strategies to control vector breeding grounds. Given the possibility of relapsing and debilitating disease, general internists should consider CHIKV in the differential diagnosis of a returning traveler with acute onset of fever, polyarthralgia, and rash.

  9. Seroprevalence of Antibodies against Chikungunya, Dengue, and Rift Valley Fever Viruses after Febrile Illness Outbreak, Madagascar

    PubMed Central

    Girmann, Mirko; Randriamampionona, Njary; Bialonski, Alexandra; Maus, Deborah; Krefis, Anne Caroline; Njarasoa, Christine; Rajanalison, Jeanne Fleury; Ramandrisoa, Herly Daniel; Randriarison, Maurice Lucien; May, Jürgen; Schmidt-Chanasit, Jonas; Rakotozandrindrainy, Raphael

    2012-01-01

    In October 2009, two–3 months after an outbreak of a febrile disease with joint pain on the eastern coast of Madagascar, we assessed serologic markers for chikungunya virus (CHIKV), dengue virus (DENV), and Rift Valley fever virus (RVFV) in 1,244 pregnant women at 6 locations. In 2 eastern coast towns, IgG seroprevalence against CHIKV was 45% and 23%; IgM seroprevalence was 28% and 5%. IgG seroprevalence against DENV was 17% and 11%. No anti-DENV IgM was detected. At 4 locations, 450–1,300 m high, IgG seroprevalence against CHIKV was 0%–3%, suggesting CHIKV had not spread to higher inland-altitudes. Four women had IgG against RVFV, probably antibodies from a 2008 epidemic. Most (78%) women from coastal locations with CHIKV-specific IgG reported joint pain and stiffness; 21% reported no symptoms. CHIKV infection was significantly associated with high bodyweight. The outbreak was an isolated CHIKV epidemic without relevant DENV co-transmission. PMID:23092548

  10. Imipramine Inhibits Chikungunya Virus Replication in Human Skin Fibroblasts through Interference with Intracellular Cholesterol Trafficking.

    PubMed

    Wichit, Sineewanlaya; Hamel, Rodolphe; Bernard, Eric; Talignani, Loïc; Diop, Fodé; Ferraris, Pauline; Liegeois, Florian; Ekchariyawat, Peeraya; Luplertlop, Natthanej; Surasombatpattana, Pornapat; Thomas, Frédéric; Merits, Andres; Choumet, Valérie; Roques, Pierre; Yssel, Hans; Briant, Laurence; Missé, Dorothée

    2017-06-09

    Chikungunya virus (CHIKV) is an emerging arbovirus of the Togaviridae family that poses a present worldwide threat to human in the absence of any licensed vaccine or antiviral treatment to control viral infection. Here, we show that compounds interfering with intracellular cholesterol transport have the capacity to inhibit CHIKV replication in human skin fibroblasts, a major viral entry site in the human host. Pretreatment of these cells with the class II cationic amphiphilic compound U18666A, or treatment with the FDA-approved antidepressant drug imipramine resulted in a near total inhibition of viral replication and production at the highest concentration used without any cytotoxic effects. Imipramine was found to affect both the fusion and replication steps of the viral life cycle. The key contribution of cholesterol availability to the CHIKV life cycle was validated further by the use of fibroblasts from Niemann-Pick type C (NPC) patients in which the virus was unable to replicate. Interestingly, imipramine also strongly inhibited the replication of several Flaviviridae family members, including Zika, West Nile and Dengue virus. Together, these data show that this compound is a potential drug candidate for anti-arboviral treatment.

  11. High Level of Vector Competence of Aedes aegypti and Aedes albopictus from Ten American Countries as a Crucial Factor in the Spread of Chikungunya Virus

    PubMed Central

    Vega-Rúa, Anubis; Zouache, Karima; Girod, Romain

    2014-01-01

    ABSTRACT Chikungunya virus (CHIKV) causes a major public health problem. In 2004, CHIKV began an unprecedented global expansion and has been responsible for epidemics in Africa, Asia, islands in the Indian Ocean region, and surprisingly, in temperate regions, such as Europe. Intriguingly, no local transmission of chikungunya virus (CHIKV) had been reported in the Americas until recently, despite the presence of vectors and annually reported imported cases. Here, we assessed the vector competence of 35 American Aedes aegypti and Aedes albopictus mosquito populations for three CHIKV genotypes. We also compared the number of viral particles of different CHIKV strains in mosquito saliva at two different times postinfection. Primarily, viral dissemination rates were high for all mosquito populations irrespective of the tested CHIKV isolate. In contrast, differences in transmission efficiency (TE) were underlined in populations of both species through the Americas, suggesting the role of salivary glands in selecting CHIKV for highly efficient transmission. Nonetheless, both mosquito species were capable of transmitting all three CHIKV genotypes, and TE reached alarming rates as high as 83.3% and 96.7% in A. aegypti and A. albopictus populations, respectively. A. albopictus better transmitted the epidemic mutant strain CHIKV_0621 of the East-Central-South African (ECSA) genotype than did A. aegypti, whereas the latter species was more capable of transmitting the original ECSA CHIKV_115 strain and also the Asian genotype CHIKV_NC. Therefore, a high risk of establishment and spread of CHIKV throughout the tropical, subtropical, and even temperate regions of the Americas is more real than ever. IMPORTANCE Until recently, the Americas had never reported chikungunya (CHIK) autochthonous transmission despite its global expansion beginning in 2004. Large regions of the continent are highly infested with Aedes aegypti and Aedes albopictus mosquitoes, and millions of dengue (DEN

  12. Sequential Adaptive Mutations Enhance Efficient Vector Switching by Chikungunya Virus and Its Epidemic Emergence

    PubMed Central

    Tsetsarkin, Konstantin A.; Weaver, Scott C.

    2011-01-01

    The adaptation of Chikungunya virus (CHIKV) to a new vector, the Aedes albopictus mosquito, is a major factor contributing to its ongoing re-emergence in a series of large-scale epidemics of arthritic disease in many parts of the world since 2004. Although the initial step of CHIKV adaptation to A. albopictus was determined to involve an A226V amino acid substitution in the E1 envelope glycoprotein that first arose in 2005, little attention has been paid to subsequent CHIKV evolution after this adaptive mutation was convergently selected in several geographic locations. To determine whether selection of second-step adaptive mutations in CHIKV or other arthropod-borne viruses occurs in nature, we tested the effect of an additional envelope glycoprotein amino acid change identified in Kerala, India in 2009. This substitution, E2-L210Q, caused a significant increase in the ability of CHIKV to develop a disseminated infection in A. albopictus, but had no effect on CHIKV fitness in the alternative mosquito vector, A. aegypti, or in vertebrate cell lines. Using infectious viruses or virus-like replicon particles expressing the E2-210Q and E2-210L residues, we determined that E2-L210Q acts primarily at the level of infection of A. albopictus midgut epithelial cells. In addition, we observed that the initial adaptive substitution, E1-A226V, had a significantly stronger effect on CHIKV fitness in A. albopictus than E2-L210Q, thus explaining the observed time differences required for selective sweeps of these mutations in nature. These results indicate that the continuous CHIKV circulation in an A. albopictus-human cycle since 2005 has resulted in the selection of an additional, second-step mutation that may facilitate even more efficient virus circulation and persistence in endemic areas, further increasing the risk of more severe and expanded CHIK epidemics. PMID:22174678

  13. Seroprevalence of Infections with Dengue, Rift Valley Fever and Chikungunya Viruses in Kenya, 2007

    PubMed Central

    Ochieng, Caroline; Ahenda, Petronella; Vittor, Amy Y.; Nyoka, Raymond; Gikunju, Stella; Wachira, Cyrus; Waiboci, Lilian; Umuro, Mamo; Kim, Andrea A.; Nderitu, Leonard; Juma, Bonventure; Montgomery, Joel M.; Breiman, Robert F.; Fields, Barry

    2015-01-01

    Arthropod-borne viruses are a major constituent of emerging infectious diseases worldwide, but limited data are available on the prevalence, distribution, and risk factors for transmission in Kenya and East Africa. In this study, we used 1,091 HIV-negative blood specimens from the 2007 Kenya AIDS Indicator Survey (KAIS 2007) to test for the presence of IgG antibodies to dengue virus (DENV), chikungunya virus (CHIKV) and Rift Valley fever virus (RVFV).The KAIS 2007 was a national population-based survey conducted by the Government of Kenya to provide comprehensive information needed to address the HIV/AIDS epidemic. Antibody testing for arboviruses was performed on stored blood specimens from KAIS 2007 through a two-step sandwich IgG ELISA using either commercially available kits or CDC-developed assays. Out of the 1,091 samples tested, 210 (19.2%) were positive for IgG antibodies against at least one of the three arboviruses. DENV was the most common of the three viruses tested (12.5% positive), followed by RVFV and CHIKV (4.5% and 0.97%, respectively). For DENV and RVFV, the participant’s province of residence was significantly associated (P≤.01) with seropositivity. Seroprevalence of DENV and RVFV increased with age, while there was no correlation between province of residence/age and seropositivity for CHIKV. Females had twelve times higher odds of exposure to CHIK as opposed to DENV and RVFV where both males and females had the same odds of exposure. Lack of education was significantly associated with a higher odds of previous infection with either DENV or RVFV (p <0.01). These data show that a number of people are at risk of arbovirus infections depending on their geographic location in Kenya and transmission of these pathogens is greater than previously appreciated. This poses a public health risk, especially for DENV. PMID:26177451

  14. Native Wolbachia from Aedes albopictus Blocks Chikungunya Virus Infection In Cellulo

    PubMed Central

    Raquin, Vincent; Valiente Moro, Claire; Saucereau, Yoann; Tran, Florence-Hélène; Potier, Patrick; Mavingui, Patrick

    2015-01-01

    Wolbachia, a widespread endosymbiont of terrestrial arthropods, can protect its host against viral and parasitic infections, a phenotype called "pathogen blocking". However, in some cases Wolbachia may have no effect or even enhance pathogen infection, depending on the host-Wolbachia-pathogen combination. The tiger mosquito Aedes albopictus is naturally infected by two strains of Wolbachia, wAlbA and wAlbB, and is a competent vector for different arboviruses such as dengue virus (DENV) and Chikungunya virus (CHIKV). Interestingly, it was shown in some cases that Ae. albopictus native Wolbachia strains are able to inhibit DENV transmission by limiting viral replication in salivary glands, but no such impact was measured on CHIKV replication in vivo. To better understand the Wolbachia/CHIKV/Ae. albopictus interaction, we generated a cellular model using Ae. albopictus derived C6/36 cells that we infected with the wAlbB strain. Our results indicate that CHIKV infection is negatively impacted at both RNA replication and virus assembly/secretion steps in presence of wAlbB. Using FISH, we observed CHIKV and wAlbB in the same mosquito cells, indicating that the virus is still able to enter the cell in the presence of the bacterium. Further work is needed to decipher molecular pathways involved in Wolbachia-CHIKV interaction at the cellular level, but this cellular model can be a useful tool to study the mechanism behind virus blocking phenotype induced by Wolbachia. More broadly, this underlines that despite Wolbachia antiviral potential other complex interactions occur in vivo to determine mosquito vector competence in Ae. albopictus. PMID:25923352

  15. Native Wolbachia from Aedes albopictus Blocks Chikungunya Virus Infection In Cellulo.

    PubMed

    Raquin, Vincent; Valiente Moro, Claire; Saucereau, Yoann; Tran, Florence-Hélène; Potier, Patrick; Mavingui, Patrick

    2015-01-01

    Wolbachia, a widespread endosymbiont of terrestrial arthropods, can protect its host against viral and parasitic infections, a phenotype called "pathogen blocking". However, in some cases Wolbachia may have no effect or even enhance pathogen infection, depending on the host-Wolbachia-pathogen combination. The tiger mosquito Aedes albopictus is naturally infected by two strains of Wolbachia, wAlbA and wAlbB, and is a competent vector for different arboviruses such as dengue virus (DENV) and chikungunya virus (CHIKV). Interestingly, it was shown in some cases that Ae. albopictus native Wolbachia strains are able to inhibit DENV transmission by limiting viral replication in salivary glands, but no such impact was measured on CHIKV replication in vivo. To better understand the Wolbachia/CHIKV/Ae. albopictus interaction, we generated a cellular model using Ae. albopictus derived C6/36 cells that we infected with the wAlbB strain. Our results indicate that CHIKV infection is negatively impacted at both RNA replication and virus assembly/secretion steps in presence of wAlbB. Using FISH, we observed CHIKV and wAlbB in the same mosquito cells, indicating that the virus is still able to enter the cell in the presence of the bacterium. Further work is needed to decipher molecular pathways involved in Wolbachia-CHIKV interaction at the cellular level, but this cellular model can be a useful tool to study the mechanism behind virus blocking phenotype induced by Wolbachia. More broadly, this put into question the ecological role of Wolbachia symbiont in Ae. albopictus, but also the ability of the CHIKV to counteract Wolbachia's antiviral potential in vivo.

  16. A Virus-Like Particle Vaccine Elicits Broad Neutralizing Antibody Responses in Humans to All Chikungunya Virus Genotypes.

    PubMed

    Goo, Leslie; Dowd, Kimberly A; Lin, Tsai-Yu; Mascola, John R; Graham, Barney S; Ledgerwood, Julie E; Pierson, Theodore C

    2016-11-15

    Chikungunya virus (CHIKV) is an alphavirus that has emerged as a global health burden. There are 3 CHIKV genotypes: Asian, West African, and Eastern/Central/South African. No licensed CHIKV vaccine is available, and whether the antibody response elicited by one genotype can neutralize heterologous genotypes is unclear. We assessed neutralizing antibody (NAb) responses of volunteers in a phase 1 study of a CHIKV vaccine against 9 viral strains representing all 3 genotypes. Minimal differences in vaccine-elicited NAb responses were observed among genotypes, suggesting that vaccination with a single CHIKV strain can elicit cross-protective NAbs against all 3 genotypes. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  17. Point of sampling detection of Zika virus within a multiplexed kit capable of detecting dengue and chikungunya.

    PubMed

    Yaren, Ozlem; Alto, Barry W; Gangodkar, Priyanka V; Ranade, Shatakshi R; Patil, Kunal N; Bradley, Kevin M; Yang, Zunyi; Phadke, Nikhil; Benner, Steven A

    2017-04-20

    Zika, dengue, and chikungunya are three mosquito-borne viruses having overlapping transmission vectors. They cause diseases having similar symptoms in human patients, but requiring different immediate management steps. Therefore, rapid (< one hour) discrimination of these three viruses in patient samples and trapped mosquitoes is needed. The need for speed precludes any assay that requires complex up-front sample preparation, such as extraction of nucleic acids from the sample. Also precluded in robust point-of-sampling assays is downstream release of the amplicon mixture, as this risks contamination of future samples that will give false positives. Procedures are reported that directly test urine and plasma (for patient diagnostics) or crushed mosquito carcasses (for environmental surveillance). Carcasses are captured on paper samples carrying quaternary ammonium groups (Q-paper), which may be directly introduced into the assay. To avoid the time and instrumentation requirements of PCR, the procedure uses loop-mediated isothermal amplification (LAMP). Downstream detection is done in sealed tubes, with dTTP-dUTP mixtures in the LAMP with a thermolabile uracil DNA glycosylase (UDG); this offers a second mechanism to prevent forward contamination. Reverse transcription LAMP (RT-LAMP) reagents are distributed dry without requiring a continuous chain of refrigeration. The tests detect viral RNA in unprocessed urine and other biological samples, distinguishing Zika, chikungunya, and dengue in urine and in mosquitoes infected with live Zika and chikungunya viruses. The limits of detection (LODs) are ~0.71 pfu equivalent viral RNAs for Zika, ~1.22 pfu equivalent viral RNAs for dengue, and ~38 copies of chikungunya viral RNA. A handheld, battery-powered device with an orange filter was constructed to visualize the output. Preliminary data showed that this architecture, working with pre-prepared tubes holding lyophilized reagent/enzyme mixtures and shipped without a chain

  18. School-Based Health Education in Yucatan, Mexico about the Chikungunya Virus and Mosquito Illness Prevention.

    PubMed

    Choo, Monica Seungah; Blackwood, R Alexander

    2017-05-31

    The Chikungunya virus (CHIKV) has been rapidly spreading throughout Latin America, utilizing pre-existing vectors to infiltrate the immunologically naïve populations. With the current rise of the Zika Virus, there is an urgent need for more rigorous vector control efforts to prevent further Zika breakout. We designed a school-based education module on CHIKV and mosquito prevention and presented it to the local students of ages of 6-18 in a rural town called Sudzal in Yucatan, Mexico. We distributed questionnaires before and after education to test the students' knowledge of CHIKV and mosquito prevention. Chi-squared test was performed to determine the efficacy of the presentation in increasing their knowledge. The education presentation has proven to effectively educate the local residents in several critical methods of mosquito prevention, increasing the average test scores by 67% post-education. These include applying repellent, staying hydrated during recuperation, and cleaning indoor water containers to eliminate breeding sites (P<0.001). Furthermore, the questionnaire captured the residents' behavioral patterns regarding CHIKV and mosquito prevention and identified cultural, ecological, and socioeconomic factors hindering effective implementation of vector control.

  19. A phenotypic assay to identify Chikungunya virus inhibitors targeting the nonstructural protein nsP2.

    PubMed

    Lucas-Hourani, Marianne; Lupan, Alexandru; Desprès, Philippe; Thoret, Sylviane; Pamlard, Olivier; Dubois, Joëlle; Guillou, Catherine; Tangy, Frédéric; Vidalain, Pierre-Olivier; Munier-Lehmann, Hélène

    2013-02-01

    Chikungunya virus (CHIKV) is a mosquito-transmitted pathogen responsible for an acute infection of abrupt onset, characterized by high fever, polyarthralgia, myalgia, headaches, chills, and rash. In 2006, CHIKV was responsible for an epidemic outbreak of unprecedented magnitude in the Indian Ocean, stressing the need for therapeutic approaches. Since then, we have acquired a better understanding of CHIKV biology, but we are still missing active molecules against this reemerging pathogen. We recently reported that the nonstructural nsP2 protein of CHIKV induces a transcriptional shutoff that allows the virus to block cellular antiviral response. This was demonstrated using various luciferase-based reporter gene assays, including a trans-reporter system where Gal4 DNA binding domain is fused to Fos transcription factor. Here, we turned this assay into a high-throughput screening system to identify small molecules targeting nsP2-mediated shutoff. Among 3040 molecules tested, we identified one natural compound that partially blocks nsP2 activity and inhibits CHIKV replication in vitro. This proof of concept suggests that similar functional assays could be developed to target other viral proteins mediating a cellular shutoff and identify innovative therapeutic molecules.

  20. Identification of chikungunya virus nsP2 protease inhibitors using structure-base approaches.

    PubMed

    Nguyen, Phuong T V; Yu, Haibo; Keller, Paul A

    2015-04-01

    The nsP2 protease of chikungunya virus (CHIKV) is one of the essential components of viral replication and it plays a crucial role in the cleavage of polyprotein precursors for the viral replication process. Therefore, it is gaining attention as a potential drug design target against CHIKV. Based on the recently determined crystal structure of the nsP2 protease of CHIKV, this study identified potential inhibitors of the virus using structure-based approaches with a combination of molecular docking, virtual screening and molecular dynamics (MD) simulations. The top hit compounds from database searching, using the NCI Diversity Set II, with targeting at five potential binding sites of the nsP2 protease, were identified by blind dockings and focused dockings. These complexes were then subjected to MD simulations to investigate the stability and flexibility of the complexes and to gain a more detailed insight into the interactions between the compounds and the enzyme. The hydrogen bonds and hydrophobic contacts were characterized for the complexes. Through structural alignment, the catalytic residues Cys1013 and His1083 were identified in the N-terminal region of the nsP2 protease. The absolute binding free energies were estimated by the linear interaction energy approach and compared with the binding affinities predicted with docking. The results provide valuable information for the development of inhibitors for CHIKV.

  1. Conformer and pharmacophore based identification of peptidomimetic inhibitors of chikungunya virus nsP2 protease.

    PubMed

    Dhindwal, Sonali; Kesari, Pooja; Singh, Harvijay; Kumar, Pravindra; Tomar, Shailly

    2016-12-02

    Chikungunya virus nsP2 replication protein is a cysteine protease, which cleaves the nonstructural nsP1234 polyprotein into functional replication components. The cleavage and processing of nsP1234 by nsP2 protease is essential for the replication and proliferation of the virus. Thus, ChikV nsP2 protease is a promising target for antiviral drug discovery. In this study, the crystal structure of the C-terminal domain of ChikV nsP2 protease (PDB ID: 4ZTB) was used for structure based identification and rational designing of peptidomimetic inhibitors against nsP2 protease. The interactions of the junction residues of nsP3/4 polyprotein in the active site of nsP2 protease have been mimicked to identify and design potential inhibitory molecules. Molecular docking of the nsP3/4 junction peptide in the active site of ChikV nsP2 protease provided the structural insight of the probable binding mode of nsP3/4 peptide and pigeonholed the molecular interactions critical for the substrate binding. Further, the shape and pharmacophoric properties of the viral nsP3/4 substrate peptide were taken into consideration and the mimetic molecules were identified and designed. The designed mimetic compounds were then analyzed by docking and their binding affinity was assessed by molecular dynamics simulations.

  2. Rapid spread of chikungunya virus following its resurgence during 2006 in West Bengal, India.

    PubMed

    Taraphdar, Debjani; Sarkar, Arindam; Mukhopadhyay, Bansi B; Chakrabarti, Shekhar; Chatterjee, Shyamalendu

    2012-03-01

    Re-emergence of chikungunya virus (CHIKV) in West Bengal was detected after almost 40 years when an outbreak of fever occurred in Baduria village (West Bengal, India) in October 2006. The symptoms of CHIKV infection are similar to those of dengue virus (DENV) infection. Serum samples were tested for detection of IgM antibody to CHIKV and DENV and the aetiological agent was detected as CHIKV. RT-PCR was carried out for confirmation of CHIKV infection. By 2009, CHIKV had spread rapidly within ten districts of West Bengal. Middle-aged women (age group 31-40 years) were predominantly affected. Here we report the analysis of 2134 serum samples collected during 2006-2009 from the different districts of West Bengal, among which IgM antibody to CHIKV and DENV was detected in 403 and 199 samples, respectively. This report highlights the gradual dominating activity of CHIKV with dengue-like clinical features in dengue-endemic regions such as West Bengal.

  3. Invasiveness of Aedes aegypti and Aedes albopictus and Vectorial Capacity for Chikungunya Virus.

    PubMed

    Lounibos, Leon Philip; Kramer, Laura D

    2016-12-15

    In this review, we highlight biological characteristics of Aedes aegypti and Aedes albopictus, 2 invasive mosquito species and primary vectors of chikungunya virus (CHIKV), that set the tone of these species' invasiveness, vector competence, and vectorial capacity (VC). The invasiveness of both species, as well as their public health threats as vectors, is enhanced by preference for human blood. Vector competence, characterized by the efficiency of an ingested arbovirus to replicate and become infectious in the mosquito, depends largely on vector and virus genetics, and most A. aegypti and A. albopictus populations thus far tested confer vector competence for CHIKV. VC, an entomological analog of the pathogen's basic reproductive rate (R0), is epidemiologically more important than vector competence but less frequently measured, owing to challenges in obtaining valid estimates of parameters such as vector survivorship and host feeding rates. Understanding the complexities of these factors will be pivotal in curbing CHIKV transmission. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  4. Establishment of a Novel Primary Human Skeletal Myoblast Cellular Model for Chikungunya Virus Infection and Pathogenesis.

    PubMed

    Hussain, Khairunnisa' Mohamed; Lee, Regina Ching Hua; Ng, Mary Mah-Lee; Chu, Justin Jang Hann

    2016-02-19

    Chikungunya virus (CHIKV) is a re-emerging arbovirus known to cause chronic myalgia and arthralgia and is now considered endemic in countries across Asia and Africa. The tissue tropism of CHIKV infection in humans remains, however, ill-defined. Due to the fact that myositis is commonly observed in most patients infected with CHIKV, we sought to develop a clinically relevant cellular model to better understand the pathogenesis of CHIKV infection. In this study, primary human skeletal muscle myoblasts (HSMM) were established as a novel human primary cell line that is highly permissive to CHIKV infection, with maximal amounts of infectious virions observed at 16 hours post infection. Genome-wide microarray profiling analyses were subsequently performed to identify and map genes that are differentially expressed upon CHIKV infection. Infection of HSMM cells with CHIKV resulted in altered expressions of host genes involved in skeletal- and muscular-associated disorders, innate immune responses, cellular growth and death, host metabolism and virus replication. Together, this study has shown the establishment of a clinically relevant primary human cell model that paves the way for the further analysis of host factors and their involvement in the various stages of CHIKV replication cycle and viral pathogenesis.

  5. Genome-Wide Analysis of Codon Usage and Influencing Factors in Chikungunya Viruses

    PubMed Central

    Tong, Yigang

    2014-01-01

    Chikungunya virus (CHIKV) is an arthropod-borne virus of the family Togaviridae that is transmitted to humans by Aedes spp. mosquitoes. Its genome comprises a 12 kb single-strand positive-sense RNA. In the present study, we report the patterns of synonymous codon usage in 141 CHIKV genomes by calculating several codon usage indices and applying multivariate statistical methods. Relative synonymous codon usage (RSCU) analysis showed that the preferred synonymous codons were G/C and A-ended. A comparative analysis of RSCU between CHIKV and its hosts showed that codon usage patterns of CHIKV are a mixture of coincidence and antagonism. Similarity index analysis showed that the overall codon usage patterns of CHIKV have been strongly influenced by Pan troglodytes and Aedes albopictus during evolution. The overall codon usage bias was low in CHIKV genomes, as inferred from the analysis of effective number of codons (ENC) and codon adaptation index (CAI). Our data suggested that although mutation pressure dominates codon usage in CHIKV, patterns of codon usage in CHIKV are also under the influence of natural selection from its hosts and geography. To the best of our knowledge, this is first report describing codon usage analysis in CHIKV genomes. The findings from this study are expected to increase our understanding of factors involved in viral evolution, and fitness towards hosts and the environment. PMID:24595095

  6. Simplified Bryostatin Analogues Protect Cells from Chikungunya Virus-Induced Cell Death.

    PubMed

    Staveness, Daryl; Abdelnabi, Rana; Schrier, Adam J; Loy, Brian A; Verma, Vishal A; DeChristopher, Brian A; Near, Katherine E; Neyts, Johan; Delang, Leen; Leyssen, Pieter; Wender, Paul A

    2016-04-22

    Chikungunya virus (CHIKV) is a mosquito-borne alphavirus showing a recent resurgence and rapid spread worldwide. While vaccines are under development, there are currently no therapies to treat this disease, except for over-the-counter (OTC) analgesics, which alleviate the devastating arthritic and arthralgic symptoms. To identify novel inhibitors of the virus, analogues of the natural product bryostatin 1, a clinical lead for the treatment of cancer, Alzheimer's disease, and HIV eradication, were investigated for in vitro antiviral activity and were found to be among the most potent inhibitors of CHIKV replication reported to date. Bryostatin-based therapeutic efforts and even recent anti-CHIKV strategies have centered on modulation of protein kinase C (PKC). Intriguingly, while the C ring of bryostatin primarily drives interactions with PKC, A- and B-ring functionality in these analogues has a significant effect on the observed cell-protective activity. Significantly, bryostatin 1 itself, a potent pan-PKC modulator, is inactive in these assays. These new findings indicate that the observed anti-CHIKV activity is not solely mediated by PKC modulation, suggesting possible as yet unidentified targets for CHIKV therapeutic intervention. The high potency and low toxicity of these bryologs make them promising new leads for the development of a CHIKV treatment.

  7. Simplified Bryostatin Analogues Protect Cells from Chikungunya Virus-Induced Cell Death

    PubMed Central

    2016-01-01

    Chikungunya virus (CHIKV) is a mosquito-borne alphavirus showing a recent resurgence and rapid spread worldwide. While vaccines are under development, there are currently no therapies to treat this disease, except for over-the-counter (OTC) analgesics, which alleviate the devastating arthritic and arthralgic symptoms. To identify novel inhibitors of the virus, analogues of the natural product bryostatin 1, a clinical lead for the treatment of cancer, Alzheimer’s disease, and HIV eradication, were investigated for in vitro antiviral activity and were found to be among the most potent inhibitors of CHIKV replication reported to date. Bryostatin-based therapeutic efforts and even recent anti-CHIKV strategies have centered on modulation of protein kinase C (PKC). Intriguingly, while the C ring of bryostatin primarily drives interactions with PKC, A- and B-ring functionality in these analogues has a significant effect on the observed cell-protective activity. Significantly, bryostatin 1 itself, a potent pan-PKC modulator, is inactive in these assays. These new findings indicate that the observed anti-CHIKV activity is not solely mediated by PKC modulation, suggesting possible as yet unidentified targets for CHIKV therapeutic intervention. The high potency and low toxicity of these bryologs make them promising new leads for the development of a CHIKV treatment. PMID:26900625

  8. Viremia in North American Mammals and Birds after Experimental Infection with Chikungunya Viruses

    PubMed Central

    Bosco-Lauth, Angela M.; Nemeth, Nicole M.; Kohler, Dennis J.; Bowen, Richard A.

    2016-01-01

    Chikungunya virus (CHIKV) is an arthropod-borne virus, which is known to cause severe disease only in humans. To investigate its potential zoonotic host range and evaluate reservoir competence among these hosts, experimental infections were performed on individuals from nine avian and 12 mammalian species representing both domestic and wild animals common to North America. Hamsters and inbred mice have previously been shown to develop viremia after inoculation with CHIKV and were used as positive controls for infection. Aside from big brown bats (Eptesicus fuscus), none of the mammals or birds developed detectable viremia or overt clinical disease. However, most mammals and a smaller proportion of birds developed neutralizing antibody responses to CHIKV. On the basis of these results, it seems unlikely that CHIKV poses a significant health threat to most domestic animals or wildlife and that the species examined do not likely contribute to natural transmission cycles. Additional studies should further evaluate bats and wild rodents as potential reservoir hosts for CHIKV transmission during human epidemics. PMID:26666699

  9. Viremia in North American Mammals and Birds After Experimental Infection with Chikungunya Viruses.

    PubMed

    Bosco-Lauth, Angela M; Nemeth, Nicole M; Kohler, Dennis J; Bowen, Richard A

    2016-03-01

    Chikungunya virus (CHIKV) is an arthropod-borne virus, which is known to cause severe disease only in humans. To investigate its potential zoonotic host range and evaluate reservoir competence among these hosts, experimental infections were performed on individuals from nine avian and 12 mammalian species representing both domestic and wild animals common to North America. Hamsters and inbred mice have previously been shown to develop viremia after inoculation with CHIKV and were used as positive controls for infection. Aside from big brown bats (Eptesicus fuscus), none of the mammals or birds developed detectable viremia or overt clinical disease. However, most mammals and a smaller proportion of birds developed neutralizing antibody responses to CHIKV. On the basis of these results, it seems unlikely that CHIKV poses a significant health threat to most domestic animals or wildlife and that the species examined do not likely contribute to natural transmission cycles. Additional studies should further evaluate bats and wild rodents as potential reservoir hosts for CHIKV transmission during human epidemics. © The American Society of Tropical Medicine and Hygiene.

  10. Establishment of a Novel Primary Human Skeletal Myoblast Cellular Model for Chikungunya Virus Infection and Pathogenesis

    PubMed Central

    Hussain, Khairunnisa’ Mohamed; Lee, Regina Ching Hua; Ng, Mary Mah-Lee; Chu, Justin Jang Hann

    2016-01-01

    Chikungunya virus (CHIKV) is a re-emerging arbovirus known to cause chronic myalgia and arthralgia and is now considered endemic in countries across Asia and Africa. The tissue tropism of CHIKV infection in humans remains, however, ill-defined. Due to the fact that myositis is commonly observed in most patients infected with CHIKV, we sought to develop a clinically relevant cellular model to better understand the pathogenesis of CHIKV infection. In this study, primary human skeletal muscle myoblasts (HSMM) were established as a novel human primary cell line that is highly permissive to CHIKV infection, with maximal amounts of infectious virions observed at 16 hours post infection. Genome-wide microarray profiling analyses were subsequently performed to identify and map genes that are differentially expressed upon CHIKV infection. Infection of HSMM cells with CHIKV resulted in altered expressions of host genes involved in skeletal- and muscular-associated disorders, innate immune responses, cellular growth and death, host metabolism and virus replication. Together, this study has shown the establishment of a clinically relevant primary human cell model that paves the way for the further analysis of host factors and their involvement in the various stages of CHIKV replication cycle and viral pathogenesis. PMID:26892458

  11. Phylogeny of Dengue and Chikungunya viruses in Al Hudayda governorate, Yemen.

    PubMed

    Ciccozzi, Massimo; Lo Presti, Alessandra; Cella, Eleonora; Giovanetti, Marta; Lai, Alessia; El-Sawaf, Gamal; Faggioni, Giovanni; Vescio, Fenicia; Al Ameri, Ranya; De Santis, Riccardo; Helaly, Ghada; Pomponi, Alice; Metwally, Dalia; Fantini, Massimo; Qadi, Hussein; Zehender, Gianguglielmo; Lista, Florigio; Rezza, Giovanni

    2014-10-01

    Yemen, which is located in the southwestern end of the Arabian Peninsula, is one of countries most affected by recurrent epidemics caused by emerging vector-borne viruses. Dengue virus (DENV) outbreaks have been reported with increasing frequency in several governorates since the year 2000, and the Chikungunya virus (CHIKV) has been also responsible of large outbreaks and it is now a major public health problem in Yemen. We report the results of the phylogenetic analysis of DENV-2 and CHIKV isolates (NS1 and E1 genes, respectively) detected in an outbreak occurred in Al-Hudayda in 2012. Estimates of the introduction date of CHIKV and DENV-2, and the phylogeographic analysis of DENV-2 are also presented. Phylogenetic analysis showed that the Yemen isolates of DENV belonged to the lineage 2 Cosmopolitan subtype, whereas CHIKV isolates from Yemen belonged to the ECSA genotype. All the CHIKV isolates from Yemen were statistically supported and dated back to the year 2010 (95% HPD: 2009-2011); these sequences showed an alanine in the aminoacid position 226 of the E1 protein. Phylogeographic analysis of DENV-2 virus showed that cluster 1, which included Yemen isolates, dated back to 2003 Burkina Faso strains (95% HPD 1999-2007). The Yemen, cluster dated back to 2011 (95% HPD 2009-2012). Our study sheds light on the global spatiotemporal dynamics of DENV-2 and CHIKV in Yemen. This study reinforces both the need to monitor the spread of CHIKV and DENV, and to apply significant measures for vector control.

  12. Potential of Aedes aegypti and Aedes albopictus populations in the Central African Republic to transmit enzootic chikungunya virus strains.

    PubMed

    Ngoagouni, Carine; Kamgang, Basile; Kazanji, Mirdad; Paupy, Christophe; Nakouné, Emmanuel

    2017-03-27

    Major chikungunya outbreaks have affected several Central African countries during the past decade. The chikungunya virus (CHIKV) was isolated from humans and sylvan mosquitoes in the Central African Republic (CAR) during the 1970 and 1980s but has not been found recently, despite the presence of Aedes albopictus since 2010. The risk of a massive chikungunya epidemic is therefore potentially high, as the human populations are immunologically naïve and because of the presence of the mosquito vector. In order to estimate the risk of a large outbreak, we assessed the vector competence of local Ae. aegypti and Ae. albopictus populations for ancient local strains of CHIKV in CAR. Mosquitoes were orally infected with the virus, and its presence in mosquito saliva was analysed 7 and 14 days post-infection (dpi) by quantitative reverse transcriptase polymerase chain reaction. The two species had similar infection rates at 7 and 14 days, and the dissemination rate of both vectors was ≥ 80% at 14 dpi. Only females followed up to 14 dpi had CHKV in their saliva. These results confirm the risk of transmission of enzootic CHIKV by anthropophilic vectors such as Ae. aegypti and Ae. albopictus.

  13. Mutation of the N-Terminal Region of Chikungunya Virus Capsid Protein: Implications for Vaccine Design

    PubMed Central

    Liu, Xiang; Zaid, Ali; Goh, Lucas Y. H.; Hobson-Peters, Jody; Hall, Roy A.; Merits, Andres

    2017-01-01

    ABSTRACT Mosquito-transmitted chikungunya virus (CHIKV) is an arthritogenic alphavirus of the Togaviridae family responsible for frequent outbreaks of arthritic disease in humans. Capsid protein, a structural protein encoded by the CHIKV RNA genome, is able to translocate to the host cell nucleolus. In encephalitic alphaviruses, nuclear translocation induces host cell transcriptional shutoff; however, the role of capsid protein nucleolar localization in arthritogenic alphaviruses remains unclear. Using recombinant enhanced green fluorescent protein (EGFP)-tagged expression constructs and CHIKV infectious clones, we describe a nucleolar localization sequence (NoLS) in the N-terminal region of capsid protein, previously uncharacterized in CHIKV. Mutation of the NoLS by site-directed mutagenesis reduced efficiency of nuclear import of CHIKV capsid protein. In the virus, mutation of the capsid protein NoLS (CHIKV-NoLS) attenuated replication in mammalian and mosquito cells, producing a small-plaque phenotype. Attenuation of CHIKV-NoLS is likely due to disruption of the viral replication cycle downstream of viral RNA synthesis. In mice, CHIKV-NoLS infection caused no disease signs compared to wild-type CHIKV (CHIKV-WT)-infected mice; lack of disease signs correlated with significantly reduced viremia and decreased expression of proinflammatory factors. Mice immunized with CHIKV-NoLS, challenged with CHIKV-WT at 30 days postimmunization, develop no disease signs and no detectable viremia. Serum from CHIKV-NoLS-immunized mice is able to efficiently neutralize CHIKV infection in vitro. Additionally, CHIKV-NoLS-immunized mice challenged with the related alphavirus Ross River virus showed reduced early and peak viremia postchallenge, indicating a cross-protective effect. The high degree of CHIKV-NoLS attenuation may improve CHIKV antiviral and rational vaccine design. PMID:28223458

  14. NTPase and 5'-RNA triphosphatase activities of Chikungunya virus nsP2 protein.

    PubMed

    Karpe, Yogesh A; Aher, Pankaj P; Lole, Kavita S

    2011-01-01

    Chikungunya virus (CHIKV) is an insect borne virus (genus: Alphavirus) which causes acute febrile illness in humans followed by a prolonged arthralgic disease that affects the joints of the extremities. Re-emergence of the virus in the form of outbreaks in last 6-7 years has posed a serious public health problem. CHIKV has a positive sense single stranded RNA genome of about 12,000 nt. Open reading frame 1 of the viral genome encodes a polyprotein precursor, nsP1234, which is processed further into different non structural proteins (nsP1, nsP2, nsP3 and nsP4). Sequence based analyses have shown helicase domain at the N-terminus and protease domain at C-terminus of nsP2. A detailed biochemical analysis of NTPase/RNA helicase and 5'-RNA phosphatase activities of recombinant CHIKV-nsP2T protein (containing conserved NTPase/helicase motifs in the N-terminus and partial papain like protease domain at the C-terminus) was carried out. The protein could hydrolyze all NTPs except dTTP and showed better efficiency for ATP, dATP, GTP and dGTP hydrolysis. ATP was the most preferred substrate by the enzyme. CHIKV-nsP2T also showed 5'-triphosphatase (RTPase) activity that specifically removes the γ-phosphate from the 5' end of RNA. Both NTPase and RTPase activities of the protein were completely dependent on Mg(2+) ions. RTPase activity was inhibited by ATP showing sharing of the binding motif by NTP and RNA. Both enzymatic activities were drastically reduced by mutations in the NTP binding motif (GKT) and co-factor, Mg(2+) ion binding motif (DEXX) suggesting that they have a common catalytic site.

  15. Multiple Immune Factors Are Involved in Controlling Acute and Chronic Chikungunya Virus Infection

    PubMed Central

    Poo, Yee Suan; Rudd, Penny A.; Gardner, Joy; Wilson, Jane A. C.; Larcher, Thibaut; Colle, Marie-Anne; Le, Thuy T.; Nakaya, Helder I.; Warrilow, David; Allcock, Richard; Bielefeldt-Ohmann, Helle; Schroder, Wayne A.; Khromykh, Alexander A.; Lopez, José A.; Suhrbier, Andreas

    2014-01-01

    The recent epidemic of the arthritogenic alphavirus, chikungunya virus (CHIKV) has prompted a quest to understand the correlates of protection against virus and disease in order to inform development of new interventions. Herein we highlight the propensity of CHIKV infections to persist long term, both as persistent, steady-state, viraemias in multiple B cell deficient mouse strains, and as persistent RNA (including negative-strand RNA) in wild-type mice. The knockout mouse studies provided evidence for a role for T cells (but not NK cells) in viraemia suppression, and confirmed the role of T cells in arthritis promotion, with vaccine-induced T cells also shown to be arthritogenic in the absence of antibody responses. However, MHC class II-restricted T cells were not required for production of anti-viral IgG2c responses post CHIKV infection. The anti-viral cytokines, TNF and IFNγ, were persistently elevated in persistently infected B and T cell deficient mice, with adoptive transfer of anti-CHIKV antibodies unable to clear permanently the viraemia from these, or B cell deficient, mice. The NOD background increased viraemia and promoted arthritis, with B, T and NK deficient NOD mice showing high-levels of persistent viraemia and ultimately succumbing to encephalitic disease. In wild-type mice persistent CHIKV RNA and negative strand RNA (detected for up to 100 days post infection) was associated with persistence of cellular infiltrates, CHIKV antigen and stimulation of IFNα/β and T cell responses. These studies highlight that, secondary to antibodies, several factors are involved in virus control, and suggest that chronic arthritic disease is a consequence of persistent, replicating and transcriptionally active CHIKV RNA. PMID:25474568

  16. Antiviral Hammerhead Ribozymes Are Effective for Developing Transgenic Suppression of Chikungunya Virus in Aedes aegypti Mosquitoes

    PubMed Central

    Mishra, Priya; Furey, Colleen; Balaraman, Velmurugan; Fraser, Malcolm J.

    2016-01-01

    The chikungunya virus (CHIKV) is an emerging pathogen with widespread distribution in regions of Africa, India, and Asia that threatens to spread into temperate climates with the introduction of its major vector, Aedes albopictus. CHIKV causes a disease frequently misdiagnosed as dengue fever, with potentially life-threatening symptoms that can result in a longer-term debilitating arthritis. The increasing risk of spread from endemic regions via human travel and commerce and the current absence of a vaccine put a significant proportion of the world population at risk for this disease. In this study we designed and tested hammerhead ribozymes (hRzs) targeting CHIKV structural protein genes of the RNA genome as potential antivirals both at the cellular and in vivo level. We employed the CHIKV strain 181/25, which exhibits similar infectivity rates in both Vero cell cultures and mosquitoes. Virus suppression assay performed on transformed Vero cell clones of all seven hRzs demonstrated that all are effective at inhibiting CHIKV in Vero cells, with hRz #9 and #14 being the most effective. piggyBac transformation vectors were constructed using the Ae. aegypti t-RNAval Pol III promoted hRz #9 and #14 effector genes to establish a total of nine unique transgenic Higgs White Eye (HWE) Ae. aegypti lines. Following confirmation of transgene expression by real-time polymerase chain reaction (RT-PCR), comparative TCID50-IFA analysis, in situ Immuno-fluorescent Assays (IFA) and analysis of salivary CHIKV titers demonstrated effective suppression of virus replication at 7 dpi in heterozygous females of each of these transgenic lines compared with control HWE mosquitoes. This report provides a proof that appropriately engineered hRzs are powerful antiviral effector genes suitable for population replacement strategies PMID:27294950

  17. Chikungunya virus susceptibility & variation in populations of Aedes aegypti (Diptera: Culicidae) mosquito from India.

    PubMed

    Gokhale, Mangesh D; Paingankar, Mandar S; Sudeep, Anakathil B; Parashar, Deepti

    2015-12-01

    Although having immense clinical relevance, yet only a few studies have been targeted to understand the chikungunya virus (CHIKV) susceptibility and growth in Aedes aegypti populations from India. This study was undertaken to investigate CHIKV susceptibility and growth kinetics in Ae. aegypti along with genetic heterogeneity of Ae. aegypti populations. Dose dependent CHIKV susceptibility and growth kinetic studies for three CHIKV strains reported from India were carried out in Ae. aegypti mosquito populations. The phenotypic variation and genetic heterogeneity in five Ae. aegypti populations were investigated using multivariate morphometrics and allozyme variation studies. The dissemination and growth kinetics studies of the three CHIKV strains showed no selective advantage for a particular strain of CHIKV in Ae. aegypti. At 100 per cent infection rate, five geographic Ae. aegypti populations showed differences in dissemination to three CHIKV strains. Morphometric studies revealed phenotypic variation in all the studied populations. The allelic frequencies, F statistics, and Nei's genetic identity values showed that genetic differences between the populations were small, but significant. The results obtained in this study suggest that genetic background of the vector strongly influences the CHIKV susceptibility in Ae. aegypti.

  18. A Systematic Meta-analysis of Immune Signatures in Patients With Acute Chikungunya Virus Infection

    PubMed Central

    Teng, Terk-Shin; Kam, Yiu-Wing; Lee, Bernett; Hapuarachchi, Hapuarachchige Chanditha; Wimal, Abeyewickreme; Ng, Lee-Ching; Ng, Lisa F. P.

    2015-01-01

    Background. Individuals infected with chikungunya virus (CHIKV) normally exhibit a variety of clinical manifestations during the acute phase of infection. However, studies in different patient cohorts have revealed that disease manifestations vary in frequency. Methods. Disease profiles between patients with acute CHIKV-infection and febrile patients without CHIKV were compared and examined to determine whether any clinical presentations were associated with the clinical outcome of CHIKV infection. Circulatory immune mediators profiles were then characterized and compared with data from 14 independent patient cohort studies. The particular immune mediator signature that defines acute CHIKV infection was determined. Results. Our findings revealed a specific pattern of clinical presentations of joint-specific arthralgia from this CHIKV cohort. More importantly, we identified an immune mediator signature dominated by proinflammatory cytokines, which include interferon α and γ and interleukin 2, 2R, 6, 7, 12, 15, 17, and 18, across different patient cohorts of CHIKV load associated with arthralgia. Conclusions. To our knowledge, this is the first study that associated levels of CHIKV load with arthralgia as an indicator of acute CHIKV infection. Importantly, our findings also revealed specific immune mediator signatures that can be used to better define CHIKV infection. PMID:25635123

  19. The neutralizing role of IgM during early Chikungunya virus infection

    PubMed Central

    Chua, Chong-Long; Chiam, Chun-Wei; Chan, Yoke-Fun

    2017-01-01

    The antibody isotype IgM appears earlier than IgG, within days of onset of symptoms, and is important during the early stages of the adaptive immune response. Little is known about the functional role of IgM during infection with chikungunya virus (CHIKV), a recently reemerging arbovirus that has caused large global outbreaks. In this study, we studied antibody responses in 102 serum samples collected during CHIKV outbreaks in Malaysia. We described the neutralizing role of IgM at different times post-infection and examined the independent contributions of IgM and IgG towards the neutralizing capacity of human immune sera during the early phase of infection, including the differences in targets of neutralizing epitopes. Neutralizing IgM starts to appear as early as day 4 of symptoms, and their appearance from day 6 is associated with a reduction in viremia. IgM acts in a complementary manner with the early IgG, but plays the main neutralizing role up to a point between days 4 and 10 which varies between individuals. After this point, total neutralizing capacity is attributable almost entirely to the robust neutralizing IgG response. IgM preferentially binds and targets epitopes on the CHIKV surface E1-E2 glycoproteins, rather than individual E1 or E2. These findings provide insight into the early antibody responses to CHIKV, and have implications for design of diagnostic serological assays. PMID:28182795

  20. Chikungunya virus susceptibility & variation in populations of Aedes aegypti (Diptera: Culicidae) mosquito from India

    PubMed Central

    Gokhale, Mangesh D.; Paingankar, Mandar S.; Sudeep, Anakathil B.; Parashar, Deepti

    2015-01-01

    Background & objectives: Although having immense clinical relevance, yet only a few studies have been targeted to understand the chikungunya virus (CHIKV) susceptibility and growth in Aedes aegypti populations from India. This study was undertaken to investigate CHIKV susceptibility and growth kinetics in Ae. aegypti along with genetic heterogeneity of Ae. aegypti populations. Methods: Dose dependent CHIKV susceptibility and growth kinetic studies for three CHIKV strains reported from India were carried out in Ae. aegypti mosquito populations. The phenotypic variation and genetic heterogeneity in five Ae. aegypti populations were investigated using multivariate morphometrics and allozyme variation studies. Results: The dissemination and growth kinetics studies of the three CHIKV strains showed no selective advantage for a particular strain of CHIKV in Ae. aegypti. At 100 per cent infection rate, five geographic Ae. aegypti populations showed differences in dissemination to three CHIKV strains. Morphometric studies revealed phenotypic variation in all the studied populations. The allelic frequencies, F statistics, and Nei's genetic identity values showed that genetic differences between the populations were small, but significant. Interpretation & conclusions: The results obtained in this study suggest that genetic background of the vector strongly influences the CHIKV susceptibility in Ae. aegypti. PMID:26905240

  1. Serological Evidence of Chikungunya Virus among Acute Febrile Patients in Southern Mozambique.

    PubMed

    Gudo, Eduardo Samo; Pinto, Gabriela; Vene, Sirkka; Mandlaze, Arcildo; Muianga, Argentina Felisbela; Cliff, Julie; Falk, Kerstin

    2015-01-01

    In the last two decades, chikungunya virus (CHIKV) has rapidly expanded to several geographical areas, causing frequent outbreaks in sub-Saharan Africa, South East Asia, South America, and Europe. Therefore, the disease remains heavily neglected in Mozambique, and no recent study has been conducted. Between January and September 2013, acute febrile patients with no other evident cause of fever and attending a health center in a suburban area of Maputo city, Mozambique, were consecutively invited to participate. Paired acute and convalescent serum samples were requested from each participant. Convalescent samples were initially screened for anti-CHIKV IgG using a commercial indirect immunofluorescence test, and if positive, the corresponding acute sample was screened using the same test. Four hundred patients were enrolled. The median age of study participants was 26 years (IQR: 21-33 years) and 57.5% (224/391) were female. Paired blood samples were obtained from 209 patients, of which 26.4% (55/208) were presented anti-CHIKV IgG antibodies in the convalescent sample. Seroconversion or a four-fold titer rise was confirmed in 9 (4.3%) patients. The results of this study strongly suggest that CHIKV is circulating in southern Mozambique. We recommend that CHIKV should be considered in the differential diagnosis of acute febrile illness in Mozambique and that systematic surveillance for CHIKV should be implemented.

  2. Characterization of Aedes aegypti Innate-Immune Pathways that Limit Chikungunya Virus Replication

    PubMed Central

    McFarlane, Melanie; Arias-Goeta, Camilo; Martin, Estelle; O'Hara, Zoe; Lulla, Aleksei; Mousson, Laurence; Rainey, Stephanie M.; Misbah, Suzana; Schnettler, Esther; Donald, Claire L.; Merits, Andres; Kohl, Alain; Failloux, Anna-Bella

    2014-01-01

    Replication of arboviruses in their arthropod vectors is controlled by innate immune responses. The RNA sequence-specific break down mechanism, RNA interference (RNAi), has been shown to be an important innate antiviral response in mosquitoes. In addition, immune signaling pathways have been reported to mediate arbovirus infections in mosquitoes; namely the JAK/STAT, immune deficiency (IMD) and Toll pathways. Very little is known about these pathways in response to chikungunya virus (CHIKV) infection, a mosquito-borne alphavirus (Togaviridae) transmitted by aedine species to humans resulting in a febrile and arthralgic disease. In this study, the contribution of several innate immune responses to control CHIKV replication was investigated. In vitro experiments identified the RNAi pathway as a key antiviral pathway. CHIKV was shown to repress the activity of the Toll signaling pathway in vitro but neither JAK/STAT, IMD nor Toll pathways were found to mediate antiviral activities. In vivo data further confirmed our in vitro identification of the vital role of RNAi in antiviral defence. Taken together these results indicate a complex interaction between CHIKV replication and mosquito innate immune responses and demonstrate similarities as well as differences in the control of alphaviruses and other arboviruses by mosquito immune pathways. PMID:25058001

  3. Characterization of Aedes aegypti innate-immune pathways that limit Chikungunya virus replication.

    PubMed

    McFarlane, Melanie; Arias-Goeta, Camilo; Martin, Estelle; O'Hara, Zoe; Lulla, Aleksei; Mousson, Laurence; Rainey, Stephanie M; Misbah, Suzana; Schnettler, Esther; Donald, Claire L; Merits, Andres; Kohl, Alain; Failloux, Anna-Bella

    2014-07-01

    Replication of arboviruses in their arthropod vectors is controlled by innate immune responses. The RNA sequence-specific break down mechanism, RNA interference (RNAi), has been shown to be an important innate antiviral response in mosquitoes. In addition, immune signaling pathways have been reported to mediate arbovirus infections in mosquitoes; namely the JAK/STAT, immune deficiency (IMD) and Toll pathways. Very little is known about these pathways in response to chikungunya virus (CHIKV) infection, a mosquito-borne alphavirus (Togaviridae) transmitted by aedine species to humans resulting in a febrile and arthralgic disease. In this study, the contribution of several innate immune responses to control CHIKV replication was investigated. In vitro experiments identified the RNAi pathway as a key antiviral pathway. CHIKV was shown to repress the activity of the Toll signaling pathway in vitro but neither JAK/STAT, IMD nor Toll pathways were found to mediate antiviral activities. In vivo data further confirmed our in vitro identification of the vital role of RNAi in antiviral defence. Taken together these results indicate a complex interaction between CHIKV replication and mosquito innate immune responses and demonstrate similarities as well as differences in the control of alphaviruses and other arboviruses by mosquito immune pathways.

  4. Serological Evidence of Chikungunya Virus among Acute Febrile Patients in Southern Mozambique

    PubMed Central

    Gudo, Eduardo Samo; Pinto, Gabriela; Vene, Sirkka; Mandlaze, Arcildo; Muianga, Argentina Felisbela; Cliff, Julie; Falk, Kerstin

    2015-01-01

    Background In the last two decades, chikungunya virus (CHIKV) has rapidly expanded to several geographical areas, causing frequent outbreaks in sub-Saharan Africa, South East Asia, South America, and Europe. Therefore, the disease remains heavily neglected in Mozambique, and no recent study has been conducted. Methods Between January and September 2013, acute febrile patients with no other evident cause of fever and attending a health center in a suburban area of Maputo city, Mozambique, were consecutively invited to participate. Paired acute and convalescent serum samples were requested from each participant. Convalescent samples were initially screened for anti-CHIKV IgG using a commercial indirect immunofluorescence test, and if positive, the corresponding acute sample was screened using the same test. Results Four hundred patients were enrolled. The median age of study participants was 26 years (IQR: 21–33 years) and 57.5% (224/391) were female. Paired blood samples were obtained from 209 patients, of which 26.4% (55/208) were presented anti-CHIKV IgG antibodies in the convalescent sample. Seroconversion or a four-fold titer rise was confirmed in 9 (4.3%) patients. Conclusion The results of this study strongly suggest that CHIKV is circulating in southern Mozambique. We recommend that CHIKV should be considered in the differential diagnosis of acute febrile illness in Mozambique and that systematic surveillance for CHIKV should be implemented. PMID:26473605

  5. In Vivo Imaging of Chikungunya Virus in Mice and Aedes Mosquitoes Using a Renilla Luciferase Clone

    PubMed Central

    Ziegler, Sarah A.; Nuckols, John; McGee, Charles E.; Huang, Yan-Jang Scott; Vanlandingham, Dana L.; Tesh, Robert B.

    2011-01-01

    Abstract Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that in humans causes an acute febrile illness characterized by fever, arthralgia, and rash. It is currently associated with large outbreaks in Asia, Africa, and islands of the Indian Ocean and has been introduced from these tropical regions into Europe, where local transmission has been recorded on two occasions. The underlying basis of the pathogenesis of CHIKV and related alphaviruses that produce similar symptoms remains unclear. By applying new techniques, for example, in vivo imaging in live animals and arthropods, we may improve our understanding of viral pathogenesis in vertebrates and viral replication in mosquitoes. This technical report describes the evaluation of a CHIKV–luciferase clone to visualize infection and dissemination in both Aedes aegypti and Aedes albopictus mosquitoes and mice. In mosquitoes, luciferase activity was seen at 3 and 7 days post-infection in both head and abdomens. In vivo imaging of CHIKV–luciferase was detected in mice for up to 5 days post-infection at the site of inoculation with limited dissemination to the skeletal muscle. PMID:21668347

  6. Antiviral Activity of Diterpene Esters on Chikungunya Virus and HIV Replication.

    PubMed

    Nothias-Scaglia, Louis-Félix; Pannecouque, Christophe; Renucci, Franck; Delang, Leen; Neyts, Johan; Roussi, Fanny; Costa, Jean; Leyssen, Pieter; Litaudon, Marc; Paolini, Julien

    2015-06-26

    Recently, new daphnane, tigliane, and jatrophane diterpenoids have been isolated from various Euphorbiaceae species, of which some have been shown to be potent inhibitors of chikungunya virus (CHIKV) replication. To further explore this type of compound, the antiviral activity of a series of 29 commercially available natural diterpenoids was evaluated. Phorbol-12,13-didecanoate (11) proved to be the most potent inhibitor, with an EC50 value of 6.0 ± 0.9 nM and a selectivity index (SI) of 686, which is in line with the previously reported anti-CHIKV potency for the structurally related 12-O-tetradecanoylphorbol-13-acetate (13). Most of the other compounds exhibited low to moderate activity, including an ingenane-type diterpene ester, compound 28, with an EC50 value of 1.2 ± 0.1 μM and SI = 6.4. Diterpene compounds are known also to inhibit HIV replication, so the antiviral activities of compounds 1-29 were evaluated also against HIV-1 and HIV-2. Tigliane- (4β-hydroxyphorbol analogues 10, 11, 13, 15, 16, and 18) and ingenane-type (27 and 28) diterpene esters were shown to inhibit HIV replication in vitro at the nanomolar level. A Pearson analysis performed with the anti-CHIKV and anti-HIV data sets demonstrated a linear relationship, which supported the hypothesis made that PKC may be an important target in CHIKV replication.

  7. Exposure to chikungunya virus and adult longevity in Aedes aegypti (L.) and Aedes albopictus (Skuse).

    PubMed

    Reiskind, Michael H; Westbrook, Catherine J; Lounibos, L Philip

    2010-06-01

    Chikungunya virus (CHIKV) recently emerged as a global threat to public health through its adaptation to the cosmopolitan mosquito Aedes albopictus Skuse. Aedes albopictus is highly susceptible to the emergent strain of CHIKV, relative to the historical vector of CHIKV, Aedes aegypti (L.). We hypothesized that the high susceptibility of Ae. albopictus to CHIKV may have a cost in terms of longevity and fecundity among infected vs non-infected mosquitoes, relative to Ae. aegypti. We performed a longevity experiment comparing Ae. aegypti and Ae. albopictus exposed to the emergent strain of CHIKV (LR-2006OPY1). We found a small but significant decrease in longevity of Ae. albopictus, but not Ae. aegypti, in response to exposure to CHIKV. We did not observe significant differences in numbers of eggs laid by either species in response to exposure. Longevity and body titer of infected Ae. albopictus were significantly negatively correlated, such that individuals that lived longer had lower viral body titers when they died. The cost of exposure, while not high, suggests there may be physiological constraints in the evolution of viral infectiousness in its insect vector.

  8. Re-emergence of Chikungunya virus in South-east Asia: virological evidence from Sri Lanka and Singapore.

    PubMed

    Hapuarachchi, H C; Bandara, K B A T; Sumanadasa, S D M; Hapugoda, M D; Lai, Yee-Ling; Lee, Kim-Sung; Tan, Li-Kiang; Lin, Raymond T P; Ng, Lisa F P; Bucht, Göran; Abeyewickreme, Wimaladharma; Ng, Lee-Ching

    2010-04-01

    Chikungunya fever swept across many South and South-east Asian countries, following extensive outbreaks in the Indian Ocean Islands in 2005. However, molecular epidemiological data to explain the recent spread and evolution of Chikungunya virus (CHIKV) in the Asian region are still limited. This study describes the genetic Characteristics and evolutionary relationships of CHIKV strains that emerged in Sri Lanka and Singapore during 2006-2008. The viruses isolated in Singapore also included those imported from the Maldives (n=1), India (n=2) and Malaysia (n=31). All analysed strains belonged to the East, Central and South African (ECSA) lineage and were evolutionarily more related to Indian than to Indian Ocean Islands strains. Unique genetic characteristics revealed five genetically distinct subpopulations of CHIKV in Sri Lanka and Singapore, which were likely to have emerged through multiple, independent introductions. The evolutionary network based on E1 gene sequences indicated the acquisition of an alanine to valine 226 substitution (E1-A226V) by virus strains of the Indian sublineage as a key evolutionary event that contributed to the transmission and spatial distribution of CHIKV in the region. The E1-A226V substitution was found in 95.7 % (133/139) of analysed isolates in 2008, highlighting the widespread establishment of mutated CHIKV strains in Sri Lanka, Singapore and Malaysia. As the E1-A226V substitution is known to enhance the transmissibility of CHIKV by Aedes albopictus mosquitoes, this observation has important implications for the design of vector control strategies to fight the virus in regions at risk of chikungunya fever.

  9. Chikungunya vaccines in development

    PubMed Central

    Schwameis, Michael; Buchtele, Nina; Wadowski, Patricia Pia; Schoergenhofer, Christian; Jilma, Bernd

    2016-01-01

    ABSTRACT Chikungunya virus has become a global health threat, spreading to the industrial world of Europe and the Americas; no treatment or prophylactic vaccine is available. Since the late 1960s much effort has been put into the development of a vaccine, and several heterogeneous strategies have already been explored. Only two candidates have recently qualified to enter clinical phase II trials, a chikungunya virus-like particle-based vaccine and a recombinant live attenuated measles virus-vectored vaccine. This review focuses on the current status of vaccine development against chikungunya virus in humans and discusses the diversity of immunization strategies, results of recent human trials and promising vaccine candidates. PMID:26554522

  10. Re-emergence of Chikungunya and O'nyong-nyong viruses: evidence for distinct geographical lineages and distant evolutionary relationships.

    PubMed

    Powers, A M; Brault, A C; Tesh, R B; Weaver, S C

    2000-02-01

    Chikungunya (CHIK) virus is a member of the genus Alphavirus in the family TOGAVIRIDAE: Serologically, it is most closely related to o'nyong-nyong (ONN) virus and is a member of the Semliki Forest antigenic complex. CHIK virus is believed to be enzootic throughout much of Africa and historical evidence indicates that it spread to other parts of the world from this origin. Strains from Africa and Asia are reported to differ biologically, indicating that distinct lineages may exist. To examine the relatedness of CHIK and ONN viruses using genetic data, we conducted phylogenetic studies on isolates obtained throughout Africa and Southeast Asia. Analyses revealed that ONN virus is indeed distinct from CHIK viruses, and these viruses probably diverged thousands of years ago. Two distinct CHIK virus lineages were delineated, one containing all isolates from western Africa and the second comprising all southern and East African strains, as well as isolates from Asia. Phylogenetic trees corroborated historical evidence that CHIK virus originated in Africa and subsequently was introduced into Asia. Within the eastern Africa and southern Africa/Asia lineage, Asian strains grouped together in a genotype distinct from the African groups. These different geographical genotypes exhibit differences in their transmission cycles: in Asia, the virus appears to be maintained in an urban cycle with Aedes aegypti mosquito vectors, while CHIK virus transmission in Africa involves a sylvatic cycle, primarily with AE: furcifer and AE: africanus mosquitoes.

  11. Chikungunya: epidemiology

    PubMed Central

    Petersen, Lyle R.; Powers, Ann M.

    2016-01-01

    Chikungunya virus is a mosquito-borne alphavirus that causes fever and debilitating joint pains in humans. Joint pains may last months or years. It is vectored primarily by the tropical and sub-tropical mosquito, Aedes aegypti, but is also found to be transmitted by Aedes albopictus, a mosquito species that can also be found in more temperate climates. In recent years, the virus has risen from relative obscurity to become a global public health menace affecting millions of persons throughout the tropical and sub-tropical world and, as such, has also become a frequent cause of travel-associated febrile illness. In this review, we discuss our current understanding of the biological and sociological underpinnings of its emergence and its future global outlook. PMID:26918158

  12. Molecular Characterisation of Clinical Isolates of Chikungunya Virus: A Study from Tertiary Care Hospitals in Southern India

    PubMed Central

    Peerapur, B.V.

    2016-01-01

    Introduction Indian ocean islands and India have experienced massive severe Chikungunya outbreak from 2005 up till now and then Chikungunya became epidemic in India. The mutations that occurred in E1 gene were responsible for increased infectivity, virulence and host adaptability. It is important to find out the genotype and its probable evolvement and novel mutations in the E1 gene reported during 2006-2009 from the current isolates, which may affect the local protein structure. Aim To perform Molecular diagnosis and Molecular Characterisation of Chikungunya virus isolates. Materials and Methods A total of 33 samples were included in the study. RNA was isolated from 33 serum samples and Real time PCR was carried out. Further, Nested PCR and E1 partial gene sequencing was performed. Phylogenetic analysis, mutational analysis and protein modelling studies were carried out. Results Out of 33 samples tested, 31 were found positive for CHIK RNA. Phylogenetic analysis showed that isolates belongs to ECSA genotype and E1K211E, E1M269V and E1D284E mutations were observed from all the isolates. Conclusion The isolates may have evolved from ECSA Reunion island strains and identified unique mutations in E1 gene were maintained. These mutations have not affected local protein structure. PMID:27134872

  13. Ubiquitin-Conjugating Enzyme E2 L3 is Downregulated by the Chikungunya Virus nsP2 Protease.

    PubMed

    Ramphan, Suwipa; Khongwichit, Sarawut; Saisawang, Chonticha; Kovanich, Duangnapa; Ketterman, Albert J; Ubol, Sukathida; Auewarakul, Prasert; Roytrakul, Sittiruk; Smith, Duncan R; Kuadkitkan, Atichat

    2017-10-04

    Chikungunya virus (CHIKV) is a mosquito transmitted alphavirus that causes chikungunya fever in humans. The CHIKV nonstructural protein 2 (nsP2) is a multifunctional protein that additionally modulates the host cell to dampen the innate immune response and inhibit other cellular processes. To further investigate the interactions of nsP2 with host cells, the protease domain of CHIKV nsP2 (nsP2-pro) was transfected into Hela cells, and differential protein expression was detected by 2-dimension (2D) polyacrylamide gel electrophoresis. A total of 21 differentially regulated (6 upregulated, 15 downregulated) spots were observed, of which 5 were identified by mass spectrometry. The downregulation of one of the identified proteins, ubiquitin-conjugating enzyme E2 L3 (UBE2L3) was confirmed by western blotting of both nsP2-pro transfection and CHIKV natural infection, and the downregulation of UBE2L3 was additionally shown to require an enzymatically active nsP2 protease domain. Transfection of full length UBE2L3 into HEK293T/17 cells prior to CHIKV infection reduced levels of infection and E protein expression but did not alter RNA genome levels. These results suggest that UBE2L3 is a cellular target of the CHIKV nsP2 protease, and this possibly mediates the pathogenesis of chikungunya fever. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. Selective transduction of astrocytic and neuronal CNS subpopulations by lentiviral vectors pseudotyped with Chikungunya virus envelope.

    PubMed

    Eleftheriadou, Ioanna; Dieringer, Michael; Poh, Xuan Ying; Sanchez-Garrido, Julia; Gao, Yunan; Sgourou, Argyro; Simmons, Laura E; Mazarakis, Nicholas D

    2017-04-01

    Lentiviral vectors are gene delivery vehicles that integrate into the host genome of dividing and non-dividing mammalian cells facilitating long-term transgene expression. Lentiviral vector versatility is greatly increased by incorporating heterologous viral envelope proteins onto the vector particles instead of the native envelope, conferring on these pseudotyped vectors a modified tropism and host range specificity. We investigated the pseudotyping efficiency of HIV-1 based lentiviral vectors with alphaviral envelope proteins from the Chikungunya Virus (CHIKV-G) and Sindbis Virus (SINV-G). Following vector production optimisation, titres for the CHIKV-G pseudotype were comparable to the VSV-G pseudotype but those for the SINV-G pseudotype were significantly lower. High titre CHIKV-G pseudotyped vector efficiently transduced various human and mouse neural cell lines and normal human astrocytes (NHA) in vitro. Although transduction was broad, tropism for NHAs was observed. In vivo stereotaxic delivery in striatum, thalamus and hippocampus respectively in the adult rat brain revealed localised transduction restricted to striatal astrocytes and hippocampal dentate granule neurons. Transduction of different subtypes of granule neurons from precursor to post-mitotic stages of differentiation was evident in the sub-granular zone and dentate granule cell layer. No significant inflammatory response was observed, but comparable to that of VSV-G pseudotyped lentiviral vectors. Robust long-term expression followed for three months post-transduction along with absence of neuroinflammation, coupled to the selective and unique neuron/glial tropism indicates that these vectors could be useful for modelling and gene therapy studies in the CNS.

  15. pH-dependent entry of chikungunya virus into Aedes albopictus cells.

    PubMed

    Gay, Bernard; Bernard, Eric; Solignat, Maxime; Chazal, Nathalie; Devaux, Christian; Briant, Laurence

    2012-08-01

    The chikungunya virus (CHIKV) recently caused explosive outbreaks in Indian Ocean islands and India. During these episodes, the virus was mainly spread to humans through the bite of the mosquito Aedes albopictus. Concomitantly to the description of symptoms of an unexpected severity in infants and elderly patients, a viral genome microevolution has been highlighted, in particular consisting in the acquisition of an A226V mutation in the gene encoding envelope glycoprotein E1, which was later found to confer an increased fitness for A. albopictus. We previously decrypted the entry pathway used by CHIKV to infect human epithelial cells and showed that these mechanisms are modulated by the E1-A226V mutation. In this report we investigated the conditions for CHIKV entry into mosquito cells and we assessed the consequence of E1 gene mutation on these parameters. Our main findings indicate that CHIKV infection of A. albopictus cell lines is sensitive to Bafilomycin A1 and chloroquine and to membrane cholesterol depletion. The E1-226V mutated LR-OPY1 isolate collected during the 2005 outbreak in La Réunion replicated more efficiently than the 37997 African reference strain in C6/36 cells. Moreover, the LR-OPY1 strain displayed greater membrane cholesterol dependence and was more sensitive to inhibition of endosomal pH acidification. Finally, using electron microscopy, we imaged CHIKV entry into C6/36 cells. Our data support that CHIKV is endocyted into A. albopictus cells and requires membrane cholesterol as well as a low-pH environment for entry. These features are modulated in some extent by the A226V mutation in the E1 gene of the LR-OPY1 isolate. Altogether, our data provide information regarding the pathways used by CHIKV to infect A. albopictus cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Network mapping among the functional domains of Chikungunya virus nonstructural proteins.

    PubMed

    Rana, Jyoti; Rajasekharan, Sreejith; Gulati, Sahil; Dudha, Namrata; Gupta, Amita; Chaudhary, Vijay Kumar; Gupta, Sanjay

    2014-10-01

    Formation of virus specific replicase complex is among the most important steps that determines the fate of viral transcription and replication during Chikungunya virus (CHIKV) infection. In the present study, the authors have computationally generated a 3D structure of CHIKV late replicase complex on the basis of the interactions identified among the domains of CHIKV nonstructural proteins (nsPs) which make up the late replicase complex. The interactions among the domains of CHIKV nsPs were identified using systems such as pull down, protein interaction ELISA, and yeast two-hybrid. The structures of nsPs were generated using I-TASSER and the biological assembly of the replicase complex was determined using ZRANK and RDOCK. A total of 36 interactions among the domains and full length proteins were tested and 12 novel interactions have been identified. These interactions included the homodimerization of nsP1 and nsP4 through their respective C-ter domains; the associations of nsP2 helicase domain and C-ter domain of nsP4 with methyltransferase and membrane binding domains of nsP1; the interaction of nsP2 protease domain with C-ter domain of nsP4; and the interaction of nsP3 macro and alphavirus unique domains with the C-ter domain of nsP1. The novel interactions identified in the current study form a network of organized associations that suggest the spatial arrangement of nsPs in the late replicase complex of CHIKV.

  17. γδ T Cells Play a Protective Role in Chikungunya Virus-Induced Disease

    PubMed Central

    Ferris, Martin T.; Whitmore, Alan C.; Montgomery, Stephanie A.; Thurlow, Lance R.; McGee, Charles E.; Rodriguez, Carlos A.; Lim, Jean K.; Heise, Mark T.

    2015-01-01

    ABSTRACT Chikungunya virus (CHIKV) is an alphavirus responsible for causing epidemic outbreaks of polyarthralgia in humans. Because CHIKV is initially introduced via the skin, where γδ T cells are prevalent, we evaluated the response of these cells to CHIKV infection. CHIKV infection led to a significant increase in γδ T cells in the infected foot and draining lymph node that was associated with the production of proinflammatory cytokines and chemokines in C57BL/6J mice. γδ T cell−/− mice demonstrated exacerbated CHIKV disease characterized by less weight gain and greater foot swelling than occurred in wild-type mice, as well as a transient increase in monocytes and altered cytokine/chemokine expression in the foot. Histologically, γδ T cell−/− mice had increased inflammation-mediated oxidative damage in the ipsilateral foot and ankle joint compared to wild-type mice which was independent of differences in CHIKV replication. These results suggest that γδ T cells play a protective role in limiting the CHIKV-induced inflammatory response and subsequent tissue and joint damage. IMPORTANCE Recent epidemics, including the 2004 to 2007 outbreak and the spread of CHIKV to naive populations in the Caribbean and Central and South America with resultant cases imported into the United States, have highlighted the capacity of CHIKV to cause explosive epidemics where the virus can spread to millions of people and rapidly move into new areas. These studies identified γδ T cells as important to both recruitment of key inflammatory cell populations and dampening the tissue injury due to oxidative stress. Given the importance of these cells in the early response to CHIKV, this information may inform the development of CHIKV vaccines and therapeutics. PMID:26491151

  18. Mosquito saliva induced cutaneous events augment Chikungunya virus replication and disease progression.

    PubMed

    Agarwal, Ankita; Joshi, Gaurav; Nagar, Durga P; Sharma, Ajay K; Sukumaran, D; Pant, Satish C; Parida, Man Mohan; Dash, Paban Kumar

    2016-06-01

    Chikungunya virus (CHIKV) is transmitted when infected mosquito probes the host skin. While probing, mosquito saliva is expectorated into host skin along with virus which contains cocktail of molecules having anti-hemostatic and immunomodulatory properties. As mosquito saliva is a critical factor during natural arboviral infection, therefore we investigated mosquito saliva induced cutaneous events that modulate CHIKV infection. The effect of mosquito saliva on CHIKV infection was examined through inoculation of suckling mice subcutaneously with either CHIKV alone or uninfected mosquito bite followed by CHIKV. Histopathological evaluation of skin revealed infiltration of transmigrated inflammatory cells. Dermal blood vessels were hyperemic and adnexa showed degenerating lesions. Severe hemorrhage was observed in dermis and hypodermis in mosquito bite+CHIKV group compared to CHIKV group. Analysis of cytokines in skin showed significant downregulation of inflammatory genes like TLR-3, IL-2, IFN-γ, TNF-α and IFN-β in mosquito bite+CHIKV group compared to CHIKV group. In contrast, significant upregulation of anti-inflammatory genes like IL-4 and IL-10 was observed. These early events might have been responsible for increased dissemination of CHIKV to serum and peripheral organs as demonstrated through >10-fold higher viremia, antigen localization, cellular infiltration and degenerative changes. Thus mosquito saliva induced early cellular infiltration and associated cytokines augment CHIKV pathogenesis in a mouse model. This mosquito improved CHIKV mouse model simulates the realistic conditions that occur naturally during infected mosquito bite to a host. It will lead to better understanding of CHIKV pathobiology and promote the evaluation of novel medical countermeasures against emerging CHIKV. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Molecular Mimicry between Chikungunya Virus and Host Components: A Possible Mechanism for the Arthritic Manifestations

    PubMed Central

    Reddy, Vijayalakshmi; Desai, Anita; Krishna, Shankar Susarla; Vasanthapuram, Ravi

    2017-01-01

    Background Chikungunya virus (CHIKV), a reemerging pathogen causes a self limited illness characterized by fever, headache, myalgia and arthralgia. However, 10–20% affected individuals develop persistent arthralgia which contributes to considerable morbidity. The exact molecular mechanisms underlying these manifestations are not well understood. The present study investigated the possible occurrence of molecular mimicry between CHIKV E1 glycoprotein and host human components. Methodology Bioinformatic tools were used to identify peptides of CHIKV E1 exhibiting similarity to host components. Two peptides (A&B) were identified using several bioinformatic tools, synthesised and used to validate the results obtained in silico. An ELISA was designed to assess the immunoreactivity of serum samples from CHIKV patients to these peptides. Further, experiments were conducted in a C57BL/6J experimental mouse model to investigate if peptide A and peptide B were indeed capable of inducing pathology. Findings The serum samples showed reactivity of varying degrees, indicating that these peptides are indeed being recognized by the host immune system during CHIKV infection. Further, these peptides when injected into C57BL/6J mice were able to induce significant inflammation in the muscles of C57BL/6J mice, similar to that observed in animals that were injected with CHIKV alone. Additionally, animals that were primed initially with CHIKV followed by a subsequent injection of the CHIKV peptides exhibited enhanced inflammatory pathology in the skeletal muscles as compared to animals that were injected with peptides or virus alone. Collectively these observations validate the hypothesis that molecular mimicry between CHIKV E1 protein and host proteins does contribute to pathology in CHIKV infection. PMID:28125580

  20. Loss of Glycosaminoglycan Receptor Binding after Mosquito Cell Passage Reduces Chikungunya Virus Infectivity

    PubMed Central

    Acharya, Dhiraj; Paul, Amber M.; Anderson, John F.; Huang, Faqing; Bai, Fengwei

    2015-01-01

    Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that can cause fever and chronic arthritis in humans. CHIKV that is generated in mosquito or mammalian cells differs in glycosylation patterns of viral proteins, which may affect its replication and virulence. Herein, we compare replication, pathogenicity, and receptor binding of CHIKV generated in Vero cells (mammal) or C6/36 cells (mosquito) through a single passage. We demonstrate that mosquito cell-derived CHIKV (CHIKVmos) has slower replication than mammalian cell-derived CHIKV (CHIKVvero), when tested in both human and murine cell lines. Consistent with this, CHIKVmos infection in both cell lines produce less cytopathic effects and reduced antiviral responses. In addition, infection in mice show that CHIKVmos produces a lower level of viremia and less severe footpad swelling when compared with CHIKVvero. Interestingly, CHIKVmos has impaired ability to bind to glycosaminoglycan (GAG) receptors on mammalian cells. However, sequencing analysis shows that this impairment is not due to a mutation in the CHIKV E2 gene, which encodes for the viral receptor binding protein. Moreover, CHIKVmos progenies can regain GAG receptor binding capability and can replicate similarly to CHIKVvero after a single passage in mammalian cells. Furthermore, CHIKVvero and CHIKVmos no longer differ in replication when N-glycosylation of viral proteins was inhibited by growing these viruses in the presence of tunicamycin. Collectively, these results suggest that N-glycosylation of viral proteins within mosquito cells can result in loss of GAG receptor binding capability of CHIKV and reduction of its infectivity in mammalian cells. PMID:26484530

  1. A Review of Chikungunya Virus-induced Arthralgia: Clinical Manifestations, Therapeutics, and Pathogenesis

    PubMed Central

    Goupil, Brad A.; Mores, Christopher N.

    2016-01-01

    Background: Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that circulates predominantly in tropical and subtropical regions, potentially affecting over 1 billion people. Recently, an outbreak began in the western hemisphere and has resulted in over 1.8 million reported suspected cases. Infection often results in severe fever, rash and debilitating polyarthralgia lasting weeks to months. Additionally, the current literature reports that CHIKV can result in a severe chronic arthralgia and/or arthritis that can last months to years following the initial infection. Objective: The purpose of this review is to evaluate the literature and summarize the current state of knowledge regarding CHIKV-associated disease, including clinical presentation, diagnosis, risk factors for development of severe disease, treatment, and pathogenesis in human patients. Additionally, recommendations are presented regarding avenues for clinical research to help further elucidate the pathogenesis of joint disease associated with CHIKV infection. Conclusion: While there is an association between initial CHIKV infection and acute disease, a causal relationship with development of chronic arthralgia has not been established at this time. Potential causes of chronic CHIKV-induced arthritis have been postulated, including viral persistence, induction of autoimmune disease, and exacerbation of pre-existing joint disease. While there are numerous reports of chronic CHIKV-associated arthralgia and/or arthritis, there is currently no evidence of a definitive link between initial infection and development of chronic disease. Additional, prospective clinical research on CHIKV-associated disease is necessary to further determine the potential role of virus and development of chronic joint disease. PMID:28077980

  2. Dengue, Japanese encephalitis and Chikungunya virus antibody prevalence among captive monkey (Macaca nemestrina) colonies of Northern Thailand.

    PubMed

    Nakgoi, Khajornpong; Nitatpattana, Narong; Wajjwalku, Worawidh; Pongsopawijit, Pornsawan; Kaewchot, Supakarn; Yoksan, Sutee; Siripolwat, Voravit; Souris, Marc; Gonzalez, Jean-Paul

    2014-01-01

    The potential of macaque Macaca nemestrina leonina in Thailand to be infected by endemic arboviruses was assessed. The prevalence of antibodies of three arboviruses actively circulating in Thailand was determined by Plaque Reduction Neutralization assay procedures using samples from captive colonies in Northern Thailand. Out of 38 macaques, 9 (24%) presented reacting antibodies against dengue virus, 5 (13%) against Japanese encephalitis virus, and 4 (10%) against Chikungunya virus. Our results indicate that the northern pig-tailed macaque in Thailand can be infected by these arboviruses, inferring therefore that their virus specific vectors have bitten them. Given that, northern pig-tailed macaque represents an abundant population, living in close range to human or in peridomestic setting, they could play a role as potential reservoir host for arboviruses circulating in Thailand. © 2013 Wiley Periodicals, Inc.

  3. Prevalence of dengue and chikungunya virus infections in north-eastern Tanzania: a cross sectional study among participants presenting with malaria-like symptoms.

    PubMed

    Kajeguka, Debora C; Kaaya, Robert D; Mwakalinga, Steven; Ndossi, Rogathe; Ndaro, Arnold; Chilongola, Jaffu O; Mosha, Franklin W; Schiøler, Karin L; Kavishe, Reginald A; Alifrangis, Michael

    2016-04-26

    In spite of increasing reports of dengue and chikungunya activity in Tanzania, limited research has been done to document the general epidemiology of dengue and chikungunya in the country. This study aimed at determining the sero-prevalence and prevalence of acute infections of dengue and chikungunya virus among participants presenting with malaria-like symptoms (fever, headache, rash, vomit, and joint pain) in three communities with distinct ecologies of north-eastern Tanzania. Cross sectional studies were conducted among 1100 participants (aged 2-70 years) presenting with malaria-like symptoms at health facilities at Bondo dispensary (Bondo, Tanga), Hai hospital (Hai, Kilimanjaro) and TPC hospital (Lower Moshi). Participants who were malaria negative using rapid diagnostic tests (mRDT) were screened for sero-positivity towards dengue and chikungunya Immunoglobulin G and M (IgG and IgM) using ELISA-based kits. Participants with specific symptoms defined as probable dengue and/or chikungunya by WHO (fever and various combinations of symptoms such as headache, rash, nausea/vomit, and joint pain) were further screened for acute dengue and chikungunya infections by PCR. Out of a total of 1100 participants recruited, 91.2 % (n = 1003) were malaria negative by mRDT. Out of these, few of the participants (<5 %) were dengue IgM or IgG positive. A total of 381 participants had fever out of which 8.7 % (33/381) met the defined criteria for probable dengue, though none (0 %) was confirmed to be acute cases. Chikungunya IgM positives among febrile participants were 12.9 % (49/381) while IgG positives were at 3.7 % (14/381). A total of 74.2 % (283/381) participants met the defined criteria for probable chikungunya and 4.2 % (11/263) were confirmed by PCR to be acute chikungunya cases. Further analyses revealed that headache and joint pain were significantly associated with chikungunya IgM seropositivity. In north-eastern Tanzania, mainly chikungunya virus appears

  4. Chikungunya virus: is this the next emerging disease threat to the americas?

    PubMed

    Girimont, Trina M

    2014-12-01

    Chikungunya fever is a mosquito-borne infection for which no cure or vaccine is available. It made its first appearance in the Americas in December 2013. Seven months later, two locally acquired cases of the disease emerged in the United States. The emergence of chikungunya fever cases in the Americas emphasizes the need for sustained vector control, clear public health information, and disease awareness and surveillance. Copyright 2014, SLACK Incorporated.

  5. Chikungunya risk for Brazil

    PubMed Central

    Azevedo, Raimunda do Socorro da Silva; Oliveira, Consuelo Silva; Vasconcelos, Pedro Fernando da Costa

    2015-01-01

    This study aimed to show, based on the literature on the subject, the potential for dispersal and establishment of the chikungunya virus in Brazil. The chikungunya virus, a Togaviridae member of the genus Alphavirus, reached the Americas in 2013 and, the following year, more than a million cases were reported. In Brazil, indigenous transmission was registered in Amapa and Bahia States, even during the period of low rainfall, exposing the whole country to the risk of virus spreading. Brazil is historically infested by Ae. aegypti and Ae. albopictus, also dengue vectors. Chikungunya may spread, and it is important to take measures to prevent the virus from becoming endemic in the country. Adequate care for patients with chikungunya fever requires training general practitioners, rheumatologists, nurses, and experts in laboratory diagnosis. Up to November 2014, more than 1,000 cases of the virus were reported in Brazil. There is a need for experimental studies in animal models to understand the dynamics of infection and the pathogenesis as well as to identify pathophysiological mechanisms that may contribute to identifying effective drugs against the virus. Clinical trials are needed to identify the causal relationship between the virus and serious injuries observed in different organs and joints. In the absence of vaccines or effective drugs against the virus, currently the only way to prevent the disease is vector control, which will also reduce the number of cases of dengue fever. PMID:26398876

  6. Chikungunya risk for Brazil.

    PubMed

    Azevedo, Raimunda do Socorro da Silva; Oliveira, Consuelo Silva; Vasconcelos, Pedro Fernando da Costa

    2015-01-01

    This study aimed to show, based on the literature on the subject, the potential for dispersal and establishment of the chikungunya virus in Brazil. The chikungunya virus, a Togaviridae member of the genusAlphavirus, reached the Americas in 2013 and, the following year, more than a million cases were reported. In Brazil, indigenous transmission was registered in Amapa and Bahia States, even during the period of low rainfall, exposing the whole country to the risk of virus spreading. Brazil is historically infested by Ae. aegypti and Ae. albopictus, also dengue vectors. Chikungunya may spread, and it is important to take measures to prevent the virus from becoming endemic in the country. Adequate care for patients with chikungunya fever requires training general practitioners, rheumatologists, nurses, and experts in laboratory diagnosis. Up to November 2014, more than 1,000 cases of the virus were reported in Brazil. There is a need for experimental studies in animal models to understand the dynamics of infection and the pathogenesis as well as to identify pathophysiological mechanisms that may contribute to identifying effective drugs against the virus. Clinical trials are needed to identify the causal relationship between the virus and serious injuries observed in different organs and joints. In the absence of vaccines or effective drugs against the virus, currently the only way to prevent the disease is vector control, which will also reduce the number of cases of dengue fever.

  7. Genetic characterization of 2006-2008 isolates of Chikungunya virus from Kerala, South India, by whole genome sequence analysis.

    PubMed

    Sreekumar, E; Issac, Aneesh; Nair, Sajith; Hariharan, Ramkumar; Janki, M B; Arathy, D S; Regu, R; Mathew, Thomas; Anoop, M; Niyas, K P; Pillai, M R

    2010-02-01

    Chikungunya virus (CHIKV), a positive-stranded alphavirus, causes epidemic febrile infections characterized by severe and prolonged arthralgia. In the present study, six CHIKV isolates (2006 RGCB03, RGCB05; 2007 RGCB80, RGCB120; 2008 RGCB355, RGCB356) from three consecutive Chikungunya outbreaks in Kerala, South India, were analyzed for genetic variations by sequencing the 11798 bp whole genome of the virus. A total of 37 novel mutations were identified and they were predominant in the 2007 and 2008 isolates among the six isolates studied. The previously identified E1 A226V critical mutation, which enhances mosquito adaptability, was present in the 2007 and 2008 samples. An important observation was the presence of two coding region substitutions, leading to nsP2 L539S and E2 K252Q change. These were identified in three isolates (2007 RGCB80 and RGCB120; 2008 RGCB355) by full-genome analysis, and also in 13 of the 31 additional samples (42%), obtained from various parts of the state, by sequencing the corresponding genomic regions. These mutations showed 100% co-occurrence in all these samples. In phylogenetic analysis, formation of a new genetic clade by these isolates within the East, Central and South African (ECSA) genotypes was observed. Homology modeling followed by mapping revealed that at least 20 of the identified mutations fall into functionally significant domains of the viral proteins and are predicted to affect protein structure. Eighteen of the identified mutations in structural proteins, including the E2 K252Q change, are predicted to disrupt T-cell epitope immunogenicity. Our study reveals that CHIK virus with novel genetic changes were present in the severe Chikungunya outbreaks in 2007 and 2008 in South India.

  8. Arbovirus Surveillance and First Report of Chikungunya Virus in Wild Populations of Aedes aegypti from Guerrero, Mexico.

    PubMed

    Dzul-Manzanilla, Felipe; Martínez, Norma E; Cruz-Nolasco, Maximina; Gutiérrez-Castro, Cipriano; López-Damián, Leonardo; Ibarra-López, Jesús; Martini, Andres; Torres-Leyva, Joel; Bibiano-Marín, Wilbert; Tornez-Benitez, Citlalli; Ayora-Talavera, Guadalupe; Manrique-Saide, Pablo

    2015-09-01

    We carried out dengue (DENV) and chikungunya virus (CHIKV) surveillance in wild populations of Aedes aegypti from Guerrero, Mexico, from 2012 to 2014 following a standard national protocol of the Mexican Dengue Control Program. A total of 284 pools (15-30 specimens/pool) of female mosquitoes were tested with real-time reverse transcriptase-polymerase chain reaction to detect DENV and CHIKV. We report for the 1st time the detection of CHIKV from field-collected mosquitoes at Acapulco and Juchitán in 2014. Results from DENV are also reported.

  9. A case of chikungunya virus disease presenting with remarkable acute arthritis of a previously damaged finger joint.

    PubMed

    Eyer-Silva, Walter de Araujo; Pinto, Henrique de Barros; Silva, Guilherme Almeida Rosa da; Ferry, Fernando Raphael de Almeida

    2016-01-01

    Chikungunya virus (CHIKV) is a mosquito-borne arthritogenic alphavirus that has recently been introduced to Brazil. We report the case of a 36-year-old male patient from the City of Rio de Janeiro who developed molecularly-confirmed CHIKV disease and whose clinical picture was remarkable because of acute arthritis of an interphalangeal joint that had been damaged by trauma 8 years previously. This case illustrates that acute CHIKV disease may preferentially target previously damaged joints. Careful study of individual cases may provide valuable information on the presentation and management of this emerging zoonosis in Brazil.

  10. DNA vaccine initiates replication of live attenuated chikungunya virus in vitro and elicits protective immune response in mice.

    PubMed

    Tretyakova, Irina; Hearn, Jason; Wang, Eryu; Weaver, Scott; Pushko, Peter

    2014-06-15

    Chikungunya virus (CHIKV) causes outbreaks of chikungunya fever worldwide and represents an emerging pandemic threat. Vaccine development against CHIKV has proved challenging. Currently there is no approved vaccine or specific therapy for the disease. To develop novel experimental CHIKV vaccine, we used novel immunization DNA (iDNA) infectious clone technology, which combines the advantages of DNA and live attenuated vaccines. Here we describe an iDNA vaccine composed of plasmid DNA that encode the full-length infectious genome of live attenuated CHIKV clone 181/25 downstream from a eukaryotic promoter. The iDNA approach was designed to initiate replication of live vaccine virus from the plasmid in vitro and in vivo. Experimental CHIKV iDNA vaccines were prepared and evaluated in cultured cells and in mice. Transfection with 10 ng of iDNA was sufficient to initiate replication of vaccine virus in vitro. Vaccination of BALB/c mice with a single 10 μg of CHIKV iDNA plasmid resulted in seroconversion, elicitation of neutralizing antibodies, and protection from experimental challenge with a neurovirulent CHIKV. Live attenuated CHIKV 181/25 vaccine can be delivered in vitro and in vivo by using DNA vaccination. The iDNA approach appears to represent a promising vaccination strategy for CHIK and other alphaviral diseases. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. 3D Modeling of dengue virus NS4B and Chikungunya virus nsP4: identification of a common drug target and designing a single antiviral inhibitor.

    PubMed

    Satheesh, Garisekurthi; Prabhu, Nagu P; Venkataramana, Musturi

    2014-01-01

    Dengue and chikungunya virus infections are one of the major causes of morbidity and mortality in tropical and sub-tropical regions of the world. These two viruses belong to two different families with many similarities and dissimilarities. Both are enveloped viruses and the mode of transmission is also by the same mosquito species. Especially in case of symptom expression, there is confusion between these two viruses. Reports indicate the overlapping endemic areas and co-infections of both viruses in a single patient. The above factors indicate that there is a need for developing a single drug/vaccine for both the viruses. As a first report in this direction, we have used the bioinformatics tools to identify a common target in both the viruses for a single inhibitor molecule. Phylogenetic and distance based analyses using the nucleotide sequences of arthropod and non-arthropod borne viruses indicated a common origin of evolutionary point for mosquito borne viruses, irrespective of their families. Similarly, the amino acid sequences of non-structural protein-4B (NS4B) of dengue virus and non-structural protein-P4 (nsP4) of chikungunya virus showed a common evolutionary origin. Modeled and superimposed 3D-structures of above two proteins showed a common alpha helix. Virtual screening of selected molecules was done to identify the molecules which can bind to the identified common helix and found that N-(p-tolylmethyl)-3-[(3-pyridylmethylamino)methyl]benzamide (TPB) has significant binding characteristics to the common helix. Molecular simulations indicated that both the protein-TPB complexes were stable. Therefore, we propose that TPB or its analogues could act as antiviral agents against both the viruses.

  12. Vector competence of populations of Aedes aegypti from three distinct cities in Kenya for chikungunya virus.

    PubMed

    Agha, Sheila B; Chepkorir, Edith; Mulwa, Francis; Tigoi, Caroline; Arum, Samwel; Guarido, Milehna M; Ambala, Peris; Chelangat, Betty; Lutomiah, Joel; Tchouassi, David P; Turell, Michael J; Sang, Rosemary

    2017-08-01

    In April, 2004, chikungunya virus (CHIKV) re-emerged in Kenya and eventually spread to the islands in the Indian Ocean basin, South-East Asia, and the Americas. The virus, which is often associated with high levels of viremia in humans, is mostly transmitted by the urban vector, Aedes aegypti. The expansion of CHIKV presents a public health challenge both locally and internationally. In this study, we investigated the ability of Ae. aegypti mosquitoes from three distinct cities in Kenya; Mombasa (outbreak prone), Kisumu, and Nairobi (no documented outbreak) to transmit CHIKV. Aedes aegypti mosquito populations were exposed to different doses of CHIKV (105.6-7.5 plaque-forming units[PFU]/ml) in an infectious blood meal. Transmission was ascertained by collecting and testing saliva samples from individual mosquitoes at 5, 7, 9, and 14 days post exposure. Infection and dissemination were estimated by testing body and legs, respectively, for individual mosquitoes at selected days post exposure. Tissue culture assays were used to determine the presence of infectious viral particles in the body, leg, and saliva samples. The number of days post exposure had no effect on infection, dissemination, or transmission rates, but these rates increased with an increase in exposure dose in all three populations. Although the rates were highest in Ae. aegypti from Mombasa at titers ≥106.9 PFU/ml, the differences observed were not statistically significant (χ2 ≤ 1.04, DF = 1, P ≥ 0.31). Overall, about 71% of the infected mosquitoes developed a disseminated infection, of which 21% successfully transmitted the virus into a capillary tube, giving an estimated transmission rate of about 10% for mosquitoes that ingested ≥106.9 PFU/ml of CHIKV. All three populations of Ae. aegypti were infectious as early as 5-7 days post exposure. On average, viral dissemination only occurred when body titers were ≥104 PFU/ml in all populations. Populations of Ae. aegypti from Mombasa, Nairobi

  13. Detection of Chikungunya virus in Aedes aegypti during 2011 outbreak in Al Hodayda, Yemen.

    PubMed

    Zayed, Alia; Awash, Abdullah A; Esmail, Mohammed A; Al-Mohamadi, Hani A; Al-Salwai, Mostafa; Al-Jasari, Adel; Medhat, Iman; Morales-Betoulle, Maria E; Mnzava, Abraham

    2012-07-01

    In October 2010, the Ministry of Public Health and Population reported an outbreak of dengue-like acute febrile illness in Al Hodayda governorate. By January 2011, a total of 1542 cases had been recorded from 19 of the 26 districts in the governorate with 104 purportedly associated deaths. In response this event, in January 2011 entomological investigations aimed at identifying the primary vector and the epidemic associated etiological agent were carried out. Based on the reported cases and the progress of the outbreak in the governorate, mosquito collection was undertaken in two of the most recent outbreak areas; Al Khokha district (130km south of Al Hodayda) and Al Muneera district (100km north). Mosquito adults were collected from houses using BG-sentinel™ traps, aspiration of resting mosquitoes and knock-down spraying. Indoor and outdoor containers adjacent to the houses were inspected for larvae. Subsequently mosquito pools were analyzed by RT-PCR for detection of the four dengue virus serotypes (DENV-1, DENV-2, DENV-3, DENV-4), and for Chikungunya virus (CHIKV). Aedes aegypti was the dominant mosquito species collected. Four pools represent 40% of the tested pools, all containing adult female Ae. aegypti, were positive for CHIKV. Three CHIKV isolates were obtained from the RNA positive mosquito pools and identified by rRT-PCR. This finding marks the first record of CHIKV isolated from Ae. aegypti in Yemen. The larval container and Breteau indices in the visited localities surveyed were estimated at 53.8 and 100, respectively. The emergence of this unprecedented CHIKV epidemic in Al Hodayda is adding up another arboviral burden to the already existing vector-borne diseases. Considering the governorate as one focal port in the Red Sea region, the spread of the disease to other areas in Yemen and in neighboring countries is anticipated. Public health education and simple measures to detect and prevent mosquito breeding in water storage containers could prevent

  14. Sphingosine kinase 2 is a chikungunya virus host factor co-localized with the viral replication complex

    PubMed Central

    Reid, St Patrick; Tritsch, Sarah R; Kota, Krishna; Chiang, Chih-Yuan; Dong, Lian; Kenny, Tara; Brueggemann, Ernest E; Ward, Michael D; Cazares, Lisa H; Bavari, Sina

    2015-01-01

    Chikungunya virus (CHIKV) is a re-emerging alphavirus which causes severe and prolonged arthralgic febrile illness. The recent global spread of the virus and lack of approved therapeutic options makes it imperative to gain greater insight into the molecular mechanisms underlying CHIKV pathogenesis, in particular host factors recruited by the virus. In the current study, we identify sphingosine kinase 2 (SK2) as a CHIKV host factor co-localized with the viral replication complex (VRC) during infection. SK2 was demonstrated to co-localize with viral RNA and nonstructural proteins. Targeted impairment of SK2 expression or function significantly inhibited CHIKV infection. Furthermore, affinity purification-mass spectrometry studies revealed that SK2 associates with a number of proteins involved in cellular gene expression specifically during viral infection, suggesting a role in replication. Collectively these results identify SK2 as a novel CHIKV host factor. PMID:26576339

  15. Chronic joint disease caused by persistent Chikungunya virus infection is controlled by the adaptive immune response.

    PubMed

    Hawman, David W; Stoermer, Kristina A; Montgomery, Stephanie A; Pal, Pankaj; Oko, Lauren; Diamond, Michael S; Morrison, Thomas E

    2013-12-01

    Chikungunya virus (CHIKV) is a reemerging mosquito-borne pathogen that causes incapacitating disease in humans characterized by intense joint pain that can persist for weeks, months, or even years. Although there is some evidence of persistent CHIKV infection in humans suffering from chronic rheumatologic disease symptoms, little is known about chronic disease pathogenesis, and no specific therapies exist for acute or chronic CHIKV disease. To investigate mechanisms of chronic CHIKV-induced disease, we utilized a mouse model and defined the duration of CHIKV infection in tissues and the associated histopathological changes. Although CHIKV RNA was readily detectable in a variety of tissues very early after infection, CHIKV RNA persisted specifically in joint-associated tissues for at least 16 weeks. Inoculation of Rag1(-/-) mice, which lack T and B cells, resulted in higher viral levels in a variety of tissues, suggesting that adaptive immunity controls the tissue specificity and persistence of CHIKV infection. The presence of CHIKV RNA in tissues of wild-type and Rag1(-/-) mice was associated with histopathological evidence of synovitis, arthritis, and tendonitis; thus, CHIKV-induced persistent arthritis is not mediated primarily by adaptive immune responses. Finally, we show that prophylactic administration of CHIKV-specific monoclonal antibodies prevented the establishment of CHIKV persistence, whereas therapeutic administration had tissue-specific efficacy. These findings suggest that chronic musculoskeletal tissue pathology is caused by persistent CHIKV infection and controlled by adaptive immune responses. Our results have significant implications for the development of strategies to mitigate the disease burden associated with CHIKV infection in humans.

  16. Accuracy of Zika virus disease case definition during simultaneous Dengue and Chikungunya epidemics

    PubMed Central

    Bressan, Clarisse; Dalvi, Ana Paula Razal; Calvet, Guilherme Amaral; Daumas, Regina Paiva; Rodrigues, Nadia; Wakimoto, Mayumi; Nogueira, Rita Maria Ribeiro; Nielsen-Saines, Karin; Brito, Carlos

    2017-01-01

    Background Zika is a new disease in the American continent and its surveillance is of utmost importance, especially because of its ability to cause neurological manifestations as Guillain-Barré syndrome and serious congenital malformations through vertical transmission. The detection of suspected cases by the surveillance system depends on the case definition adopted. As the laboratory diagnosis of Zika infection still relies on the use of expensive and complex molecular techniques with low sensitivity due to a narrow window of detection, most suspected cases are not confirmed by laboratory tests, mainly reserved for pregnant women and newborns. In this context, an accurate definition of a suspected Zika case is crucial in order for the surveillance system to gauge the magnitude of an epidemic. Methodology We evaluated the accuracy of various Zika case definitions in a scenario where Dengue and Chikungunya viruses co-circulate. Signs and symptoms that best discriminated PCR confirmed Zika from other laboratory confirmed febrile or exanthematic diseases were identified to propose and test predictive models for Zika infection based on these clinical features. Results and discussion Our derived score prediction model had the best performance because it demonstrated the highest sensitivity and specificity, 86·6% and 78·3%, respectively. This Zika case definition also had the highest values for auROC (0·903) and R2 (0·417), and the lowest Brier score 0·096. Conclusions In areas where multiple arboviruses circulate, the presence of rash with pruritus or conjunctival hyperemia, without any other general clinical manifestations such as fever, petechia or anorexia is the best Zika case definition. PMID:28650987

  17. Inhibitory effects of a peptide-fusion protein (Latarcin-PAP1-Thanatin) against chikungunya virus.

    PubMed

    Rothan, Hussin A; Bahrani, Hirbod; Shankar, Esaki M; Rahman, Noorsaadah Abd; Yusof, Rohana

    2014-08-01

    Chikungunya virus (CHIKV) outbreaks have led to a serious economic burden, as the available treatment strategies can only alleviate disease symptoms, and no effective therapeutics or vaccines are currently available for human use. Here, we report the use of a new cost-effective approach involving production of a recombinant antiviral peptide-fusion protein that is scalable for the treatment of CHIKV infection. A peptide-fusion recombinant protein LATA-PAP1-THAN that was generated by joining Latarcin (LATA) peptide with the N-terminus of the PAP1 antiviral protein, and the Thanatin (THAN) peptide to the C-terminus, was produced in Escherichia coli as inclusion bodies. The antiviral LATA-PAP1-THAN protein showed 89.0% reduction of viral plaque formation compared with PAP1 (46.0%), LATA (67.0%) or THAN (79.3%) peptides alone. The LATA-PAP1-THAN protein reduced the viral RNA load that was 0.89-fold compared with the untreated control cells. We also showed that PAP1 resulted in 0.44-fold reduction, and THAN and LATA resulting in 0.78-fold and 0.73-fold reductions, respectively. The LATA-PAP1-THAN protein inhibited CHIKV replication in the Vero cells at an EC50 of 11.2μg/ml, which is approximately half of the EC50 of PAP1 (23.7μg/ml) and protected the CHIKV-infected mice at the dose of 0.75mg/ml. We concluded that production of antiviral peptide-fusion protein in E. coli as inclusion bodies could accentuate antiviral activities, enhance cellular internalisation, and could reduce product toxicity to host cells and is scalable to epidemic response quantities.

  18. Accuracy of Zika virus disease case definition during simultaneous Dengue and Chikungunya epidemics.

    PubMed

    Braga, José Ueleres; Bressan, Clarisse; Dalvi, Ana Paula Razal; Calvet, Guilherme Amaral; Daumas, Regina Paiva; Rodrigues, Nadia; Wakimoto, Mayumi; Nogueira, Rita Maria Ribeiro; Nielsen-Saines, Karin; Brito, Carlos; Bispo de Filippis, Ana Maria; Brasil, Patrícia

    2017-01-01

    Zika is a new disease in the American continent and its surveillance is of utmost importance, especially because of its ability to cause neurological manifestations as Guillain-Barré syndrome and serious congenital malformations through vertical transmission. The detection of suspected cases by the surveillance system depends on the case definition adopted. As the laboratory diagnosis of Zika infection still relies on the use of expensive and complex molecular techniques with low sensitivity due to a narrow window of detection, most suspected cases are not confirmed by laboratory tests, mainly reserved for pregnant women and newborns. In this context, an accurate definition of a suspected Zika case is crucial in order for the surveillance system to gauge the magnitude of an epidemic. We evaluated the accuracy of various Zika case definitions in a scenario where Dengue and Chikungunya viruses co-circulate. Signs and symptoms that best discriminated PCR confirmed Zika from other laboratory confirmed febrile or exanthematic diseases were identified to propose and test predictive models for Zika infection based on these clinical features. Our derived score prediction model had the best performance because it demonstrated the highest sensitivity and specificity, 86·6% and 78·3%, respectively. This Zika case definition also had the highest values for auROC (0·903) and R2 (0·417), and the lowest Brier score 0·096. In areas where multiple arboviruses circulate, the presence of rash with pruritus or conjunctival hyperemia, without any other general clinical manifestations such as fever, petechia or anorexia is the best Zika case definition.

  19. Whole-Genome Sequencing Analysis from the Chikungunya Virus Caribbean Outbreak Reveals Novel Evolutionary Genomic Elements

    PubMed Central

    Stapleford, Kenneth A.; Moratorio, Gonzalo; Henningsson, Rasmus; Chen, Rubing; Matheus, Séverine; Enfissi, Antoine; Weissglas-Volkov, Daphna; Isakov, Ofer; Blanc, Hervé; Mounce, Bryan C.; Dupont-Rouzeyrol, Myrielle; Shomron, Noam; Weaver, Scott; Fontes, Magnus; Rousset, Dominique; Vignuzzi, Marco

    2016-01-01

    Background Chikungunya virus (CHIKV), an alphavirus and member of the Togaviridae family, is capable of causing severe febrile disease in humans. In December of 2013 the Asian Lineage of CHIKV spread from the Old World to the Americas, spreading rapidly throughout the New World. Given this new emergence in naïve populations we studied the viral genetic diversity present in infected individuals to understand how CHIKV may have evolved during this continuing outbreak. Methodology/Principle Findings We used deep-sequencing technologies coupled with well-established bioinformatics pipelines to characterize the minority variants and diversity present in CHIKV infected individuals from Guadeloupe and Martinique, two islands in the center of the epidemic. We observed changes in the consensus sequence as well as a diverse range of minority variants present at various levels in the population. Furthermore, we found that overall diversity was dramatically reduced after single passages in cell lines. Finally, we constructed an infectious clone from this outbreak and identified a novel 3’ untranslated region (UTR) structure, not previously found in nature, that led to increased replication in insect cells. Conclusions/Significance Here we preformed an intrahost quasispecies analysis of the new CHIKV outbreak in the Caribbean. We identified novel variants present in infected individuals, as well as a new 3’UTR structure, suggesting that CHIKV has rapidly evolved in a short period of time once it entered this naïve population. These studies highlight the need to continue viral diversity surveillance over time as this epidemic evolves in order to understand the evolutionary potential of CHIKV. PMID:26807575

  20. Identification of Functional Determinants in the Chikungunya Virus E2 Protein

    PubMed Central

    Weber, Christopher; Berberich, Eva; von Rhein, Christine; Henß, Lisa; Hildt, Eberhard; Schnierle, Barbara S.

    2017-01-01

    Background Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes high fever, rash, and recurrent arthritis in humans. It has efficiently adapted to Aedes albopictus, which also inhabits temperate regions, including Europe and the United States of America. In the past, CHIKV has mainly affected developing countries, but has recently caused large outbreaks in the Caribbean and Latin America. No treatment or licensed CHIKV vaccine exists. Methodology/Principal Findings Here, we have identified determinants in the CHIKV cell-attachment protein E2 that facilitate cell binding. The extracellular part of the E2 gene is subdivided into the three domains, A, B, and C. These domains were expressed in E. coli and as Fc-fusion proteins generated from HEK293T cells and used for cell-binding assays. Domains A and B bound to all cells tested, independently of their permissiveness to CHIKV infection. Domain C did not bind to cells at all. Furthermore, CHIKV cell entry was promoted by cell-surface glycosaminoglycans (GAGs) and domain B interacted exclusively with GAG-expressing cells. Domain A also bound, although only moderately, to GAG-deficient cells. Soluble GAGs were able to inhibit CHIKV infection up to 90%; however, they enhanced the transduction rate of CHIKV Env pseudotyped vectors in GAG-negative cells. Conclusion/Significance These data imply that CHIKV uses at least two mechanisms to enter cells, one GAG-dependent, via initial attachment through domain B, and the other GAG-independent, via attachment of domain A. These data give indications that CHIKV uses multiple mechanisms to enter cells and shows the potential of GAGs as lead structures for developing antiviral drugs. PMID:28114368

  1. [The expansion of vector-borne diseases and the implications for blood transfusion safety: The case of West Nile Virus, dengue and chikungunya].

    PubMed

    Paty, M-C

    2013-05-01

    Arbovirus infections are increasing in prevalence worldwide. This presents new risks for blood transfusion. This article describes the epidemiology and surveillance of West Nile Virus, dengue and chikungunya and their role in the risk management of transfusions. Arboviruses are RNA viruses and very adaptable by nature. The majority of arbovirus infections are zoonoses. The risk of transmission is multifactorial and concerns the virus, vectors, animal reservoirs, the environment and human behaviour. In recent years, West Nile Virus has become established and widespread in North America, the number of cases of dengue worldwide has increased dramatically, and major epidemics of chikungunya have occurred in the Indian Ocean and Asia. The transmission of dengue and chikungunya is demonstrated in temperate zones. All arboviruses are potentially transmissible by transfusion due to their capacity to induce an asymptomatic viremic phase. The risk of West Nile Virus transmission via transfusion is recognised and prevention measures are well established. The risk of transmission via transfusion of dengue and chikungunya is real but difficult to quantify and the optimum prevention strategy is currently the subject of research. Access to up-to-date epidemiological data is an essential aid to decision-making, especially for donors returning from endemic areas to Europe. The challenge is to define and implement appropriate measures in unpredictable situations.

  2. Reduced Incidence of Chikungunya Virus Infection in Communities with Ongoing Aedes Aegypti Mosquito Trap Intervention Studies - Salinas and Guayama, Puerto Rico, November 2015-February 2016.

    PubMed

    Lorenzi, Olga D; Major, Chelsea; Acevedo, Veronica; Perez-Padilla, Janice; Rivera, Aidsa; Biggerstaff, Brad J; Munoz-Jordan, Jorge; Waterman, Stephen; Barrera, Roberto; Sharp, Tyler M

    2016-05-13

    Aedes species mosquitoes transmit chikungunya virus, as well as dengue and Zika viruses, and bite most often during the day.* Infectious mosquito bites frequently occur in and around homes (1,2). Caribbean countries first reported local transmission of chikungunya virus in December 2013, and soon after, chikungunya virus spread throughout the Americas (3). Puerto Rico reported its first laboratory-positive chikungunya case in May 2014 (4), and subsequently identified approximately 29,000 suspected cases throughout the island by the end of 2015.(†) Because conventional vector control approaches often fail to result in effective and sustainable prevention of infection with viruses transmitted by Aedes mosquitoes (5), and to improve surveillance of mosquito population densities, CDC developed an Autocidal Gravid Ovitrap (AGO) (6) to attract and capture the female Aedes aegypti mosquitoes responsible for transmission of infectious agents to humans (Figure). The AGO trap is a simple, low-cost device that requires no use of pesticides and no servicing for an extended period of time (6).

  3. Enhanced production of Chikungunya virus-like particles using a high-pH adapted spodoptera frugiperda insect cell line.

    PubMed

    Wagner, James M; Pajerowski, J David; Daniels, Christopher L; McHugh, Patrick M; Flynn, Jessica A; Balliet, John W; Casimiro, Danilo R; Subramanian, Shyamsundar

    2014-01-01

    Chikungunya virus-like particles (VLPs) have potential to be used as a prophylactic vaccine based on testing in multiple animal models and are currently being evaluated for human use in a Phase I clinical trial. The current method for producing these enveloped alphavirus VLPs by transient gene expression in mammalian cells presents challenges for scalable and robust industrial manufacturing, so the insect cell baculovirus expression vector system was evaluated as an alternative expression technology. Subsequent to recombinant baculovirus infection of Sf21 cells in standard culture media (pH 6.2-6.4), properly processed Chikungunya structural proteins were detected and assembled capsids were observed. However, an increase in culture pH to 6.6-6.8 was necessary to produce detectable concentrations of assembled VLPs. Since this elevated production pH exceeds the optimum for growth medium stability and Sf21 culture, medium modifications were made and a novel insect cell variant (SfBasic) was derived by exposure of Sf21 to elevated culture pH for a prolonged period of time. The high-pH adapted SfBasic insect cell line described herein is capable of maintaining normal cell growth into the typical mammalian cell culture pH range of 7.0-7.2 and produces 11-fold higher Chikungunya VLP yields relative to the parental Sf21 cell line. After scale-up into stirred tank bioreactors, SfBasic derived VLPs were chromatographically purified and shown to be similar in size and structure to a VLP standard derived from transient gene expression in HEK293 cells. Total serum anti-Chikungunya IgG and neutralizing titers from guinea pigs vaccinated with SfBasic derived VLPs or HEK293 derived VLPs were not significantly different with respect to production method, suggesting that this adapted insect cell line and production process could be useful for manufacturing Chikungunya VLPs for use as a vaccine. The adaptation of Sf21 to produce high levels of recombinant protein and VLPs in an

  4. Evaluation of chikungunya virus infection in children from India during 2009-2010: A cross sectional observational study.

    PubMed

    Raghavendhar, B Siva; Ray, Pratima; Ratagiri, Vinod H; Sharma, B S; Kabra, Sushil K; Lodha, Rakesh

    2016-06-01

    Chikungunya virus, a small (about 60-70 nm diameter), spherical, enveloped, positive, single stranded RNA virus is transmitted by Aedes mosquitoes. After a short period of incubation (3-5 days) symptoms like fever with joint pains and others start appearing. After a gap of 20 years, this virus re-emerged during 2006-2008 in India causing a major outbreak of CHIKV in India. This study was conducted subsequent to the major outbreak in order to evaluate the proportion of chikungunya virus infection in children with suggestive symptoms at three geographical locations of India. Lineage of circulating strains and changes in the E1 structural polypeptide were also determined. Blood samples were collected (in Sodium citrate vacutainer tubes) during 1st June 2009 to 31st May 2010 from children (age 0 ≤ 18 years) suspected to have chikungunya infection, that is, those who presented with sudden onset of fever and/or joint pain, myalgia, and headache from three regions of India, All India Institute of Medical Sciences (AIIMS) in New Delhi, Karnataka Institute of Medical Sciences (KIMS) in Hubli and Sawai Mansingh Medical College (SMS) in Jaipur. Detection of CHIKV antibodies in all acute-phase patient plasma samples was done by IgM ELISA and for samples within ≤5 days of fever, a one-step RT-PCR was carried out on a block thermo-cycler targeting 294 bp region of E1 gene that codes for the viral envelope protein. Comparison of nucleotide and amino acid sequences from few positive samples of two regions was done with African S-27 reference strain using BioEdit. A phylogenetic tree was constructed using MEGA 6 by using the Maximum Likelihood method based on the Kimura 2-parameter model. Out of the 723 acute phase samples tested from three geographical locations of India, Chikungunya virus infection was detected in 249/723 (34.44%) subjects by either IgM Elisa (180/723) or RT-PCR (69/412). RT-PCR was employed in samples collected from children with ≤5 days of fever. Maximum

  5. Chikungunya Virus Transmission Potential by Local Aedes Mosquitoes in the Americas and Europe

    PubMed Central

    Vega-Rúa, Anubis; Lourenço-de-Oliveira, Ricardo; Mousson, Laurence; Vazeille, Marie; Fuchs, Sappho; Yébakima, André; Gustave, Joel; Girod, Romain; Dusfour, Isabelle; Leparc-Goffart, Isabelle; Vanlandingham, Dana L.; Huang, Yan-Jang S.; Lounibos, L. Philip; Mohamed Ali, Souand; Nougairede, Antoine; de Lamballerie, Xavier; Failloux, Anna-Bella

    2015-01-01

    Background Chikungunya virus (CHIKV), mainly transmitted in urban areas by the mosquitoes Aedes aegypti and Aedes albopictus, constitutes a major public health problem. In late 2013, CHIKV emerged on Saint-Martin Island in the Caribbean and spread throughout the region reaching more than 40 countries. Thus far, Ae. aegypti mosquitoes have been implicated as the sole vector in the outbreaks, leading to the hypothesis that CHIKV spread could be limited only to regions where this mosquito species is dominant. Methodology/Principal Findings We determined the ability of local populations of Ae. aegypti and Ae. albopictus from the Americas and Europe to transmit the CHIKV strain of the Asian genotype isolated from Saint-Martin Island (CHIKV_SM) during the recent epidemic, and an East-Central-South African (ECSA) genotype CHIKV strain isolated from La Réunion Island (CHIKV_LR) as a well-characterized control virus. We also evaluated the effect of temperature on transmission of CHIKV_SM by European Ae. albopictus. We found that (i) Aedes aegypti from Saint-Martin Island transmit CHIKV_SM and CHIKV_LR with similar efficiency, (ii) Ae. aegypti from the Americas display similar transmission efficiency for CHIKV_SM, (iii) American and European populations of the alternative vector species Ae. albopictus were as competent as Ae. aegypti populations with respect to transmission of CHIKV_SM and (iv) exposure of European Ae. albopictus to low temperatures (20°C) significantly reduced the transmission potential for CHIKV_SM. Conclusions/Significance CHIKV strains belonging to the ECSA genotype could also have initiated local transmission in the new world. Additionally, the ongoing CHIKV outbreak in the Americas could potentially spread throughout Ae. aegypti- and Ae. albopictus-infested regions of the Americas with possible imported cases of CHIKV to Ae. albopictus-infested regions in Europe. Colder temperatures may decrease the local transmission of CHIKV_SM by European Ae

  6. Chikungunya virus transmission potential by local Aedes mosquitoes in the Americas and Europe.

    PubMed

    Vega-Rúa, Anubis; Lourenço-de-Oliveira, Ricardo; Mousson, Laurence; Vazeille, Marie; Fuchs, Sappho; Yébakima, André; Gustave, Joel; Girod, Romain; Dusfour, Isabelle; Leparc-Goffart, Isabelle; Vanlandingham, Dana L; Huang, Yan-Jang S; Lounibos, L Philip; Mohamed Ali, Souand; Nougairede, Antoine; de Lamballerie, Xavier; Failloux, Anna-Bella

    2015-05-01

    Chikungunya virus (CHIKV), mainly transmitted in urban areas by the mosquitoes Aedes aegypti and Aedes albopictus, constitutes a major public health problem. In late 2013, CHIKV emerged on Saint-Martin Island in the Caribbean and spread throughout the region reaching more than 40 countries. Thus far, Ae. aegypti mosquitoes have been implicated as the sole vector in the outbreaks, leading to the hypothesis that CHIKV spread could be limited only to regions where this mosquito species is dominant. We determined the ability of local populations of Ae. aegypti and Ae. albopictus from the Americas and Europe to transmit the CHIKV strain of the Asian genotype isolated from Saint-Martin Island (CHIKV_SM) during the recent epidemic, and an East-Central-South African (ECSA) genotype CHIKV strain isolated from La Réunion Island (CHIKV_LR) as a well-characterized control virus. We also evaluated the effect of temperature on transmission of CHIKV_SM by European Ae. albopictus. We found that (i) Aedes aegypti from Saint-Martin Island transmit CHIKV_SM and CHIKV_LR with similar efficiency, (ii) Ae. aegypti from the Americas display similar transmission efficiency for CHIKV_SM, (iii) American and European populations of the alternative vector species Ae. albopictus were as competent as Ae. aegypti populations with respect to transmission of CHIKV_SM and (iv) exposure of European Ae. albopictus to low temperatures (20°C) significantly reduced the transmission potential for CHIKV_SM. CHIKV strains belonging to the ECSA genotype could also have initiated local transmission in the new world. Additionally, the ongoing CHIKV outbreak in the Americas could potentially spread throughout Ae. aegypti- and Ae. albopictus-infested regions of the Americas with possible imported cases of CHIKV to Ae. albopictus-infested regions in Europe. Colder temperatures may decrease the local transmission of CHIKV_SM by European Ae. albopictus, potentially explaining the lack of autochthonous

  7. High Rates of O’Nyong Nyong and Chikungunya Virus Transmission in Coastal Kenya

    PubMed Central

    LaBeaud, A. Desiree; Banda, Tamara; Brichard, Julie; Muchiri, Eric M.; Mungai, Peter L.; Mutuku, Francis M.; Borland, Erin; Gildengorin, Ginny; Pfeil, Sarah; Teng, Crystal Y.; Long, Kristin; Heise, Mark; Powers, Ann M.; Kitron, Uriel; King, Charles H.

    2015-01-01

    Background Chikungunya virus (CHIKV) and o’nyong nyong virus (ONNV) are mosquito-borne alphaviruses endemic in East Africa that cause acute febrile illness and arthritis. The objectives of this study were to measure the seroprevalence of CHIKV and ONNV in coastal Kenya and link it to demographics and other risk factors. Methodology Demographic and exposure questionnaires were administered to 1,848 participants recruited from two village clusters (Milalani-Nganja and Vuga) in 2009. Sera were tested for alphavirus exposure using standardized CHIKV IgG ELISA protocols and confirmed with plaque reduction neutralization tests (PRNT). Logistic regression models were used to determine the variables associated with seropositivity. Weighted K test for global clustering of houses with alphavirus positive participants was performed for distance ranges of 50–1,000 meters, and G* statistic and kernel density mapping were used to identify locations of higher seroprevalence. Principal Findings 486 (26%) participants were seropositive by IgG ELISA. Of 443 PRNT confirmed positives, 25 samples (6%) were CHIKV+, 250 samples (56%) were ONNV+, and 168 samples (38%) had high titers for both. Age was significantly associated with seropositivity (OR 1.01 per year, 95% C.I. 1.00–1.01); however, younger adults were more likely to be seropositive than older adults. Males were less likely to be seropositive (p<0.05; OR 0.79, 95% C.I. 0.64–0.97). Adults who owned a bicycle (p<0.05; OR 1.37, 95% C.I. 1.00–1.85) or motor vehicle (p<0.05; OR 4.64, 95% C.I. 1.19–18.05) were more likely to be seropositive. Spatial analysis demonstrated hotspots of transmission within each village and clustering among local households in Milalani-Nganja, peaking at the 200–500m range. Conclusions/Significance Alphavirus exposure, particularly ONNV exposure, is common in coastal Kenya with ongoing interepidemic transmission of both ONNV and CHIKV. Women and adults were more likely to be seropositive

  8. A Rodent Model of Chikungunya Virus Infection in RAG1 -/- Mice, with Features of Persistence, for Vaccine Safety Evaluation

    PubMed Central

    Leal, Grace; Alcorn, Maria D. H.; Weaver, Scott C.

    2015-01-01

    Chikungunya virus (CHIKV) is a positive sense, single stranded RNA virus in the genus Alphavirus, and the etiologic agent of epidemics of severe arthralgia in Africa, Asia, Europe and, most recently, the Americas. CHIKV causes chikungunya fever (CHIK), a syndrome characterized by rash, fever, and debilitating, often chronic arthritis. In recent outbreaks, CHIKV has been recognized to manifest more neurologic signs of illness in the elderly and those with co-morbidities. The syndrome caused by CHIKV is often self-limited; however, many patients develop persistent arthralgia that can last for months or years. These characteristics make CHIKV not only important from a human health standpoint, but also from an economic standpoint. Despite its importance as a reemerging disease, there is no licensed vaccine or specific treatment to prevent CHIK. Many studies have begun to elucidate the pathogenesis of CHIKF and the mechanism of persistent arthralgia, including the role of the adaptive immune response, which is still poorly understood. In addition, the lack of an animal model for chronic infection has limited studies of CHIKV pathogenesis as well as the ability to assess the safety of vaccine candidates currently under development. To address this deficiency, we used recombination activating gene 1 (RAG1-/-) knockout mice, which are deficient in both T and B lymphocytes, to develop a chronic CHIKV infection model. Here, we describe this model as well as its use in evaluating the safety of a live-attenuated vaccine candidate. PMID:26115459

  9. A Novel Agonist of the TRIF Pathway Induces a Cellular State Refractory to Replication of Zika, Chikungunya, and Dengue Viruses

    PubMed Central

    Pryke, Kara M.; Abraham, Jinu; Sali, Tina M.; Gall, Bryan J.; Archer, Iris; Liu, Andrew; Bambina, Shelly; Baird, Jason; Gough, Michael; Chakhtoura, Marita; Haddad, Elias K.; Kirby, Ilsa T.; Nilsen, Aaron; Streblow, Daniel N.; Hirsch, Alec J.; Smith, Jessica L.

    2017-01-01

    ABSTRACT The ongoing concurrent outbreaks of Zika, Chikungunya, and dengue viruses in Latin America and the Caribbean highlight the need for development of broad-spectrum antiviral treatments. The type I interferon (IFN) system has evolved in vertebrates to generate tissue responses that actively block replication of multiple known and potentially zoonotic viruses. As such, its control and activation through pharmacological agents may represent a novel therapeutic strategy for simultaneously impairing growth of multiple virus types and rendering host populations resistant to virus spread. In light of this strategy’s potential, we undertook a screen to identify novel interferon-activating small molecules. Here, we describe 1-(2-fluorophenyl)-2-(5-isopropyl-1,3,4-thiadiazol-2-yl)-1,2-dihydrochromeno[2,3-c]pyrrole-3,9-dione, which we termed AV-C. Treatment of human cells with AV-C activates innate and interferon-associated responses that strongly inhibit replication of Zika, Chikungunya, and dengue viruses. By utilizing genome editing, we investigated the host proteins essential to AV-C-induced cellular states. This showed that the compound requires a TRIF-dependent signaling cascade that culminates in IFN regulatory factor 3 (IRF3)-dependent expression and secretion of type I interferon to elicit antiviral responses. The other canonical IRF3-terminal adaptor proteins STING and IPS-1/MAVS were dispensable for AV-C-induced phenotypes. However, our work revealed an important inhibitory role for IPS-1/MAVS, but not TRIF, in flavivirus replication, implying that TRIF-directed viral evasion may not occur. Additionally, we show that in response to AV-C, primary human peripheral blood mononuclear cells secrete proinflammatory cytokines that are linked with establishment of adaptive immunity to viral pathogens. Ultimately, synthetic innate immune activators such as AV-C may serve multiple therapeutic purposes, including direct antimicrobial responses and facilitation of

  10. Full length and protease domain activity of chikungunya virus nsP2 differ from other alphavirus nsP2 proteases in recognition of small peptide substrates

    PubMed Central

    Saisawang, Chonticha; Sillapee, Pornpan; Sinsirimongkol, Kwanhathai; Ubol, Sukathida; Smith, Duncan R.; Ketterman, Albert J.

    2015-01-01

    Alphavirus nsP2 proteins are multifunctional and essential for viral replication. The protease role of nsP2 is critical for virus replication as only the virus protease activity is used for processing of the viral non-structural polypeptide. Chikungunya virus is an emerging disease problem that is becoming a world-wide health issue. We have generated purified recombinant chikungunya virus nsP2 proteins, both full length and a truncated protease domain from the C-terminus of the nsP2 protein. Enzyme characterization shows that the protease domain alone has different properties compared with the full length nsP2 protease. We also show chikungunya nsP2 protease possesses different substrate specificity to the canonical alphavirus nsP2 polyprotein cleavage specificity. Moreover, the chikungunya nsP2 also appears to differ from other alphavirus nsP2 in its distinctive ability to recognize small peptide substrates. PMID:26182358

  11. Full length and protease domain activity of chikungunya virus nsP2 differ from other alphavirus nsP2 proteases in recognition of small peptide substrates.

    PubMed

    Saisawang, Chonticha; Sillapee, Pornpan; Sinsirimongkol, Kwanhathai; Ubol, Sukathida; Smith, Duncan R; Ketterman, Albert J

    2015-04-22

    Alphavirus nsP2 proteins are multifunctional and essential for viral replication. The protease role of nsP2 is critical for virus replication as only the virus protease activity is used for processing of the viral non-structural polypeptide. Chikungunya virus is an emerging disease problem that is becoming a world-wide health issue. We have generated purified recombinant chikungunya virus nsP2 proteins, both full length and a truncated protease domain from the C-terminus of the nsP2 protein. Enzyme characterization shows that the protease domain alone has different properties compared with the full length nsP2 protease. We also show chikungunya nsP2 protease possesses different substrate specificity to the canonical alphavirus nsP2 polyprotein cleavage specificity. Moreover, the chikungunya nsP2 also appears to differ from other alphavirus nsP2 in its distinctive ability to recognize small peptide substrates.

  12. Fatal cases of Chikungunya virus infection in Colombia: Diagnostic and treatment challenges.

    PubMed

    Hoz, Juan M de la; Bayona, Brayan; Viloria, Samir; Accini, José L; Juan-Vergara, Homero San; Viasus, Diego

    2015-08-01

    Although Chikungunya infection is emerging as an important public health problem in many countries, it is not regarded as a life-threatening disease. Information dealing with fatal cases is scarce. We herein describe three patients with Chickungunya infection who presented with multiple organ failure and died within 24h of admission. Two cases had positive anti-dengue IgM, but dengue coinfection was rejected based on the clinical features and results of real-time reverse transcription polymerase chain reaction. These cases illustrate the challenges of the diagnosis and management of severe Chikungunya infection.

  13. Zika Virus Emergence and Expansion: Lessons Learned from Dengue and Chikungunya May Not Provide All the Answers.

    PubMed

    Christofferson, Rebecca C

    2016-07-06

    Following the emergence of Zika in the past decade, there are lessons to be learned from similar emergence events of dengue (DENV) and chikungunya (CHIKV). Specifically, as Zika emerges in the Americas there is a natural tendency to apply the knowledge base of DENV and CHIKV to mitigation and control of a virus with such a similar transmission system. However, there are marked differences that may preclude such broad stroke application of this knowledge base without making potentially faulty assumptions. Herein, Zika virus (ZIKV) transmission is reviewed, and the commonalities among these three arboviruses are discussed. Importantly, the divergence of this particular arbovirus is discussed, as is the need to develop ZIKV-specific knowledge base for mitigation of this disease. Specifically reviewed are 1) emergence and persistence patterns, 2) genetic and phenotypic diversity, 3) vector host range, and finally, 4) alternate transmission routes and added complexity of ZIKV transmission and presentation. © The American Society of Tropical Medicine and Hygiene.

  14. Real-Time Whole-Body Visualization of Chikungunya Virus Infection and Host Interferon Response in Zebrafish

    PubMed Central

    Palha, Nuno; Guivel-Benhassine, Florence; Briolat, Valérie; Lutfalla, Georges; Sourisseau, Marion; Ellett, Felix; Wang, Chieh-Huei; Lieschke, Graham J.; Herbomel, Philippe; Schwartz, Olivier; Levraud, Jean-Pierre

    2013-01-01

    Chikungunya Virus (CHIKV), a re-emerging arbovirus that may cause severe disease, constitutes an important public health problem. Herein we describe a novel CHIKV infection model in zebrafish, where viral spread was live-imaged in the whole body up to cellular resolution. Infected cells emerged in various organs in one principal wave with a median appearance time of ∼14 hours post infection. Timing of infected cell death was organ dependent, leading to a shift of CHIKV localization towards the brain. As in mammals, CHIKV infection triggered a strong type-I interferon (IFN) response, critical for survival. IFN was mainly expressed by neutrophils and hepatocytes. Cell type specific ablation experiments further demonstrated that neutrophils play a crucial, unexpected role in CHIKV containment. Altogether, our results show that the zebrafish represents a novel valuable model to dynamically visualize replication, pathogenesis and host responses to a human virus. PMID:24039582

  15. Neutralizing monoclonal antibodies to the E2 protein of chikungunya virus protects against disease in a mouse model.

    PubMed

    Goh, Lucas Y H; Hobson-Peters, Jody; Prow, Natalie A; Gardner, Joy; Bielefeldt-Ohmann, Helle; Pyke, Alyssa T; Suhrbier, Andreas; Hall, Roy A

    2013-12-01

    Chikungunya virus (CHIKV) recently caused the largest epidemic ever recorded for this virus involving an estimated 1.4-6.5million cases, with imported cased reported in over 40 countries. The number of monoclonal antibodies specific for this re-emerging alphavirus is currently limited. Herein we describe the generation and characterisation of five monoclonal antibodies specific for the E2 glycoprotein of CHIKV. The antibodies detected a range of CHIKV isolates in several assays including ELISA, Western blot, immunofluorescence assay (IFA) and immunohistochemistry (IHC) without evidence of cross-reactivity with other alphaviruses. Four antibodies also neutralised CHIKV in vitro, two of which provided complete protection against arthritis in a CHIKV mouse model when administered prior to infection. Given the current shortage of widely available reagents for CHIKV, these specific antibodies will be useful not only in research, but may also provide the basis for new diagnostics and treatments.

  16. Dengue and Chikungunya Virus Infections among Young Febrile Adults Evaluated for Acute HIV-1 Infection in Coastal Kenya

    PubMed Central

    Ngoi, Carolyne N.; Price, Matt A.; Fields, Barry; Bonventure, Juma; Ochieng, Caroline; Mwashigadi, Grace; Hassan, Amin S.; Thiong’o, Alexander N.; Micheni, Murugi; Mugo, Peter; Graham, Susan; Sanders, Eduard J.

    2016-01-01

    Background Fever is common among patients seeking care in sub-Saharan Africa (sSA), but causes other than malaria are rarely diagnosed. We assessed dengue and chikungunya virus infections among young febrile adults evaluated for acute HIV infection (AHI) and malaria in coastal Kenya. Methods We tested plasma samples obtained in a cross-sectional study from febrile adult patients aged 18–35 years evaluated for AHI and malaria at urgent care seeking at seven health facilities in coastal Kenya in 2014–2015. Dengue virus (DENV) and chikungunya virus (CHIKV) were amplified using quantitative real-time reverse-transcription polymerase chain reaction. We conducted logistic regression analyses to determine independent predictors of dengue virus infection. Results 489 samples that were negative for both AHI and malaria were tested, of which 43 (8.8%, 95% confidence interval [CI]: 6.4–11.7) were positive for DENV infection. No participant was positive for CHIKV infection. DENV infections were associated with clinic visits in the rainy season (adjusted odds ratio (AOR) = 3.0, 95% CI: 1.3–6.5) and evaluation at a private health facility (AOR 5.2, 95% CI: 2.0–13.1) or research health facility (AOR = 25.6, 95% CI: 8.9–73.2) instead of a public health facility. Conclusion A high prevalence of DENV infections was found in febrile young adult patients evaluated for AHI. Our data suggests that DENV, along with AHI and malaria, should be considered in the differential diagnosis of the adult patient seeking care for fever in coastal Kenya. PMID:27942016

  17. First Report of the East-Central South African Genotype of Chikungunya Virus in Rio de Janeiro, Brazil

    PubMed Central

    Souza, Thiara Manuele Alves; Azeredo, Elzinandes Leal; Badolato-Corrêa, Jessica; Damasco, Paulo Vieira; Santos, Carla; Petitinga-Paiva, Fabienne; Nunes, Priscila Conrado Guerra; Barbosa, Luciana Santos; Cipitelli, Márcio Costa; Chouin-Carneiro, Thais; Faria, Nieli Rodrigues Costa; Nogueira, Rita Maria Ribeiro; de Bruycker-Nogueira, Fernanda; dos Santos, Flavia Barreto

    2017-01-01

    Background: Chikungunya virus (CHIKV) is an arbovirus that causes an acute febrile syndrome with a severe and debilitating arthralgia. In Brazil, the Asian and East-Central South African (ECSA) genotypes are circulating in the north and northeast of the country, respectively. In 2015, the first autochthonous cases in Rio de Janeiro, Brazil were reported but until now the circulating strains have not been characterized. Therefore, we aimed here to perform the molecular characterization and phylogenetic analysis of CHIKV strains circulating in the 2016 outbreak occurred in the municipality of Rio de Janeiro. Methods: The cases analyzed in this study were collected at a private Hospital, from April 2016 to May 2016, during the chikungunya outbreak in Rio de Janeiro, Brazil. All cases were submitted to the Real Time RT-PCR for CHIKV genome detection and to anti-CHIKV IgM ELISA. Chikungunya infection was laboratorially confirmed by at least one diagnostic method and, randomly selected positive cases (n=10), were partially sequenced (CHIKV E1 gene) and analyzed. Results: The results showed that all the samples grouped in ECSA genotype branch and the molecular characterization of the fragment did not reveal the A226V mutation in the Rio de Janeiro strains analyzed, but a K211T amino acid substitution was observed for the first time in all samples and a V156A substitution in two of ten samples. Conclusions: Phylogenetic analysis and molecular characterization reveals the circulation of the ECSA genotype of CHIKV in the city of Rio de Janeiro, Brazil and two amino acids substitutions (K211T and V156A) exclusive to the CHIKV strains obtained during the 2016 epidemic, were reported. PMID:28286701

  18. Infection pattern and transmission potential of chikungunya virus in two New World laboratory-adapted Aedes aegypti strains

    PubMed Central

    Dong, Shengzhang; Kantor, Asher M.; Lin, Jingyi; Passarelli, A. Lorena; Clem, Rollie J.; Franz, Alexander W. E.

    2016-01-01

    Chikungunya virus (CHIKV) is an emerging mosquito-borne virus belonging to the Togaviridae, which is transmitted to humans by Aedes aegypti and Ae. albopictus. We describe the infection pattern of CHIKV in two New World Ae. aegypti strains, HWE and ORL. Both mosquito strains were susceptible to the virus but showed different infection patterns in midguts and salivary glands. Even though acquisition of a bloodmeal showed moderate levels of apoptosis in midgut tissue, there was no obvious additional CHIKV-induced apoptosis detectable during midgut infection. Analysis of expression of apoptosis-related genes suggested that CHIKV infection dampens rather than promotes apoptosis in the mosquito midgut. In both mosquito strains, the virus was present in saliva within two days post-oral infection. HWE and ORL mosquitoes exhibited no salivary gland infection barrier; however, only 60% (HWE) to 65% (ORL) of the females had released the virus in their saliva at one week post-oral acquisition, suggesting a salivary gland escape barrier. CHIKV induced an apoptotic response in salivary glands of HWE and ORL mosquitoes, demonstrating that the virus caused pathology in its natural vector. PMID:27102548

  19. Surveillance for West Nile, dengue, and chikungunya virus infections, Veneto Region, Italy, 2010.

    PubMed

    Gobbi, Federico; Barzon, Luisa; Capelli, Gioia; Angheben, Andrea; Pacenti, Monia; Napoletano, Giuseppina; Piovesan, Cinzia; Montarsi, Fabrizio; Martini, Simone; Rigoli, Roberto; Cattelan, Anna M; Rinaldi, Roberto; Conforto, Mario; Russo, Francesca; Palù, Giorgio; Bisoffi, Zeno

    2012-04-01

    In 2010, in Veneto Region, Italy, surveillance of summer fevers was conducted to promptly identify autochthonous cases of West Nile fever and increase detection of imported dengue and chikungunya in travelers. Surveillance highlighted the need to modify case definitions, train physicians, and when a case is identified, implement vector control measures.

  20. Surveillance for West Nile, Dengue, and Chikungunya Virus Infections, Veneto Region, Italy, 2010

    PubMed Central

    Barzon, Luisa; Capelli, Gioia; Angheben, Andrea; Pacenti, Monia; Napoletano, Giuseppina; Piovesan, Cinzia; Montarsi, Fabrizio; Martini, Simone; Rigoli, Roberto; Cattelan, Anna M.; Rinaldi, Roberto; Conforto, Mario; Russo, Francesca; Palù, Giorgio; Bisoffi, Zeno

    2012-01-01

    In 2010, in Veneto Region, Italy, surveillance of summer fevers was conducted to promptly identify autochthonous cases of West Nile fever and increase detection of imported dengue and chikungunya in travelers. Surveillance highlighted the need to modify case definitions, train physicians, and when a case is identified, implement vector control measures PMID:22469230

  1. Impact of Chikungunya virus infection on health status and quality of life: a retrospective cohort study.

    PubMed

    Soumahoro, Man-Koumba; Gérardin, Patrick; Boëlle, Pierre-Yves; Perrau, Joelle; Fianu, Adrian; Pouchot, Jacques; Malvy, Denis; Flahault, Antoine; Favier, François; Hanslik, Thomas

    2009-11-11

    Persistent symptoms, mainly joint and muscular pain and depression, have been reported several months after Chikungunya virus (CHIKV) infection. Their frequency and their impact on quality of life have not been compared with those of an unexposed population. In the present study, we aimed to describe the frequency of prolonged clinical manifestations of CHIKV infection and to measure the impact on quality of life and health care consumption in comparison with that of an unexposed population, more than one year after infection. In a retrospective cohort study, 199 subjects who had serologically confirmed CHIKV infection (CHIK+) were compared with 199 sero-negative subjects (CHIK-) matched for age, gender and area of residence in La Réunion Island. Following an average time of 17 months from the acute phase of infection, participants were interviewed by telephone about current symptoms, medical consumption during the last 12 months and quality of life assessed by the 12-items Short-Form Health Survey (SF-12) scale. At the time of study, 112 (56%) CHIK+ persons reported they were fully recovered. CHIK+ complained more frequently than CHIK- of arthralgia (relative risk = 1.9; 95% confidence interval: 1.6-2.2), myalgia (1.9; 1.5-2.3), fatigue (2.3; 1.8-3), depression (2.5; 1.5-4.1) and hair loss (3.8; 1.9-7.6). There was no significant difference between CHIK+ and CHIK- subjects regarding medical consumption in the past year. The mean (SD) score of the SF-12 Physical Component Summary was 46.4 (10.8) in CHIK+ versus 49.1 (9.3) in CHIK- (p = 0.04). There was no significant difference between the two groups for the Mental Component Summary. More than one year following the acute phase of infection, CHIK+ subjects reported more disabilities than those who were CHIK-. These persistent disabilities, however, have no significant influence on medical consumption, and the impact on quality of life is moderate.

  2. Long-term sequelae of chikungunya virus disease: A systematic review.

    PubMed

    van Aalst, Mariëlle; Nelen, Charlotte Marieke; Goorhuis, Abraham; Stijnis, Cornelis; Grobusch, Martin Peter

    The acute phase of chikungunya is well documented; less so are its long-term effects. This systematic literature review provides an overview of the currently available data. We performed an electronic search in PubMed/Medline and checked reference lists. We included studies in English on long-term sequelae of chikungunya in adults and on long-term sequelae of congenital infection from 2000 to 2016. Case reports, reviews and studies with a follow-up shorter than 6 weeks were excluded. In total, 37 studies were included; with follow-up periods ranging from 1.5 to 72 months. Most studies were questionnaire-based studies only, in which clinical diagnoses such as arthritis, alopecia and depression were mostly recorded without professional verification. Persisting arthralgia/arthritis (arthralgia/joint stiffness plus joint swelling) was the most frequent problem encountered. Further frequently mentioned sequelae were alopecia and depression. Quality of life was reduced in many for months to years after the acute phase of chikungunya. Female gender, older age, some co-morbidities and the severity of the acute phase were associated with persistent arthralgia. Congenital infection was associated with neurocognitive dysfunctioning in early childhood. Chikungunya leads to (self-perceived) long-term sequelae in a considerable proportion of patients, impacting significantly on quality of life. Long-term chikungunya sequelae must be taken into account when dealing with this disease because of its important effect on public and individual health. Prospective large-scale, long-term studies with objective assessment of signs and symptoms attributed to the disease are needed to optimally quantify and qualify these problems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Possible peptide chain termination mutants in thymide kinase gene of a mammalian virus, herpes simplex virus.

    PubMed

    Summers, W P; Wagner, M; Summers, W C

    1975-10-01

    Mutations in the viral gene coding for the thymidine kinase (ATP:thymidine 5'-phosphotransferase, EC 2.7.1.75) induced by herpes simplex virus have been obtained by selection of virus resistant to bromodeoxyuridine when grown in thymidine-kinase-deficient LMTK- mouse cells. Proteins labeled after infection of Vero (monkey) cells with herpes simplex virus were analyzed by gel electrophoresis and one protein of about 40,000 daltons was consistently altered in a number of thymidine-kinase-deficient mutants. Many viral mutants lacked this peptide and one class of these mutants induced the synthesis of new shorter peptides. Revertant virus could be selected which simultaneously regained the ability to induce thymidine kinase activity, regained the intact thymidine kinase peptide, and lost the ability to synthesize the shorter peptide fragment. These mutants comprise a class of animal virus mutants which have the properties expected of peptide chain termination mutants.

  4. Possible peptide chain termination mutants in thymide kinase gene of a mammalian virus, herpes simplex virus.

    PubMed Central

    Summers, W P; Wagner, M; Summers, W C

    1975-01-01

    Mutations in the viral gene coding for the thymidine kinase (ATP:thymidine 5'-phosphotransferase, EC 2.7.1.75) induced by herpes simplex virus have been obtained by selection of virus resistant to bromodeoxyuridine when grown in thymidine-kinase-deficient LMTK- mouse cells. Proteins labeled after infection of Vero (monkey) cells with herpes simplex virus were analyzed by gel electrophoresis and one protein of about 40,000 daltons was consistently altered in a number of thymidine-kinase-deficient mutants. Many viral mutants lacked this peptide and one class of these mutants induced the synthesis of new shorter peptides. Revertant virus could be selected which simultaneously regained the ability to induce thymidine kinase activity, regained the intact thymidine kinase peptide, and lost the ability to synthesize the shorter peptide fragment. These mutants comprise a class of animal virus mutants which have the properties expected of peptide chain termination mutants. Images PMID:172894

  5. In silico study on anti-Chikungunya virus activity of hesperetin.

    PubMed

    Oo, Adrian; Hassandarvish, Pouya; Chin, Sek Peng; Lee, Vannajan Sanghiran; Abu Bakar, Sazaly; Zandi, Keivan

    2016-01-01

    The re-emerging, Aedes spp. transmitted Chikungunya virus (CHIKV) has recently caused large outbreaks in a wide geographical distribution of the world including countries in Europe and America. Though fatalities associated with this self-remitting disease were rarely reported, quality of patients' lives have been severely diminished by polyarthralgia recurrence. Neither effective antiviral treatment nor vaccines are available for CHIKV. Our previous in vitro screening showed that hesperetin, a bioflavonoid exhibits inhibitory effect on the virus intracellular replication. Here, we present a study using the computational approach to identify possible target proteins for future mechanistic studies of hesperetin. 3D structures of CHIKV nsP2 (3TRK) and nsP3 (3GPG) were retrieved from Protein Data Bank (PDB), whereas nsP1, nsP4 and cellular factor SPK2 were modeled using Iterative Threading Assembly Refinement (I-TASSER) server based on respective amino acids sequence. We performed molecular docking on hesperetin against all four CHIKV non-structural proteins and SPK2. Proteins preparation and subsequent molecular docking were performed using Discovery Studio 2.5 and AutoDock Vina 1.5.6. The Lipinski's values of the ligand were computed and compared with the available data from PubChem. Two non-structural proteins with crystal structures 3GPG and 3TRK in complexed with hesperetin, demonstrated favorable free energy of binding from the docking study, were further explored using molecular dynamics (MD) simulations. We observed that hesperetin interacts with different types of proteins involving hydrogen bonds, pi-pi effects, pi-cation bonding and pi-sigma interactions with varying binding energies. Among all five tested proteins, our compound has the highest binding affinity with 3GPG at -8.5 kcal/mol. The ligand used in this study also matches the Lipinski's rule of five in addition to exhibiting closely similar properties with that of in PubChem. The docking simulation

  6. In silico study on anti-Chikungunya virus activity of hesperetin

    PubMed Central

    Oo, Adrian; Hassandarvish, Pouya; Chin, Sek Peng; Abu Bakar, Sazaly

    2016-01-01

    Background The re-emerging, Aedes spp. transmitted Chikungunya virus (CHIKV) has recently caused large outbreaks in a wide geographical distribution of the world including countries in Europe and America. Though fatalities associated with this self-remitting disease were rarely reported, quality of patients’ lives have been severely diminished by polyarthralgia recurrence. Neither effective antiviral treatment nor vaccines are available for CHIKV. Our previous in vitro screening showed that hesperetin, a bioflavonoid exhibits inhibitory effect on the virus intracellular replication. Here, we present a study using the computational approach to identify possible target proteins for future mechanistic studies of hesperetin. Methods 3D structures of CHIKV nsP2 (3TRK) and nsP3 (3GPG) were retrieved from Protein Data Bank (PDB), whereas nsP1, nsP4 and cellular factor SPK2 were modeled using Iterative Threading Assembly Refinement (I-TASSER) server based on respective amino acids sequence. We performed molecular docking on hesperetin against all four CHIKV non-structural proteins and SPK2. Proteins preparation and subsequent molecular docking were performed using Discovery Studio 2.5 and AutoDock Vina 1.5.6. The Lipinski’s values of the ligand were computed and compared with the available data from PubChem. Two non-structural proteins with crystal structures 3GPG and 3TRK in complexed with hesperetin, demonstrated favorable free energy of binding from the docking study, were further explored using molecular dynamics (MD) simulations. Results We observed that hesperetin interacts with different types of proteins involving hydrogen bonds, pi-pi effects, pi-cation bonding and pi-sigma interactions with varying binding energies. Among all five tested proteins, our compound has the highest binding affinity with 3GPG at −8.5 kcal/mol. The ligand used in this study also matches the Lipinski’s rule of five in addition to exhibiting closely similar properties with that of

  7. Persistent Arthralgia Induced by Chikungunya Virus Infection is Associated with Interleukin-6 and Granulocyte Macrophage Colony-Stimulating Factor

    PubMed Central

    Chow, Angela; Her, Zhisheng; Ong, Edward K. S.; Chen, Jin-miao; Dimatatac, Frederico; Kwek, Dyan J. C.; Barkham, Timothy; Yang, Henry; Rénia, Laurent; Leo, Yee-Sin

    2011-01-01

    Background. Chikungunya virus (CHIKV) infection induces arthralgia. The involvement of inflammatory cytokines and chemokines has been suggested, but very little is known about their secretion profile in CHIKV-infected patients. Methods. A case-control longitudinal study was performed that involved 30 adult patients with laboratory-confirmed Chikungunya fever. Their profiles of clinical disease, viral load, and immune mediators were investigated. Results. When patients were segregated into high viral load and low viral load groups during the acute phase, those with high viremia had lymphopenia, lower levels of monocytes, neutrophilia, and signs of inflammation. The high viral load group was also characterized by a higher production of pro-inflammatory cytokines, such as interferon-α and interleukin (IL)–6, during the acute phase. As the disease progressed to the chronic phase, IL-17 became detectable. However, persistent arthralgia was associated with higher levels of IL-6 and granulocyte macrophage colony-stimulating factor, whereas patients who recovered fully had high levels of Eotaxin and hepatocyte growth factor. Conclusions. The level of CHIKV viremia during the acute phase determined specific patterns of pro-inflammatory cytokines, which were associated with disease severity. At the chronic phase, levels of IL-6, and granulocyte macrophage colony-stimulating factor found to be associated with persistent arthralgia provide a possible explanation for the etiology of arthralgia that plagues numerous CHIKV-infected patients. PMID:21288813

  8. Notes from the field: chikungunya virus spreads in the Americas - Caribbean and South America, 2013-2014.

    PubMed

    Fischer, Marc; Staples, J Erin

    2014-06-06

    In December 2013, the World Health Organization reported the first local transmission of chikungunya virus in the Western Hemisphere, with autochthonous cases identified in Saint Martin. Since then, local transmission has been identified in 17 countries or territories in the Caribbean or South America (Anguilla, Antigua and Barbuda, British Virgin Islands, Dominica, Dominican Republic, French Guiana, Guadeloupe, Guyana, Haiti, Martinique, Puerto Rico, Saint Barthelemy, Saint Kitts and Nevis, Saint Lucia, Saint Martin, Saint Vincent and the Grenadines, and Sint Maarten). As of May 30, 2014, a total of 103,018 suspected and 4,406 laboratory-confirmed chikungunya cases had been reported from these areas. The number of reported cases nearly doubled during the previous 2 weeks. More than 95% of the cases have been reported from five jurisdictions: Dominican Republic (38,656 cases), Martinique (30,715), Guadeloupe (24,428), Haiti (6,318), and Saint Martin (4,113). The highest incidences have been reported from Saint Martin (115 cases per 1,000 population), Martinique (76 per 1,000), Saint Barthelemy (74 per 1,000), and Guadeloupe (52 per 1,000). Further expansion of these outbreaks and spread to other countries in the region is likely.

  9. Characterisation of a chikungunya virus from a German patient returning from Mauritius and development of a serological test.

    PubMed

    Kowalzik, Stefan; Xuan, Nghia Vu; Weissbrich, Benedikt; Scheiner, Barbara; Schied, Tanja; Drosten, Christian; Müller, Andreas; Stich, August; Rethwilm, Axel; Bodem, Jochen

    2008-12-01

    We have isolated a Chikungunya (Chik) virus from a patient who returned to Germany after a three-month visit to Mauritius in spring 2006. Upon return she developed a transient fever up to 40 degrees C. This was followed by myalgia and joint pain. IgG antibodies in serum to Chik virus were undetectable. Virus (Chik-Wü1) was isolated on Vero cells. We molecularly cloned the whole genome of Chik-Wü1 from viral RNA by RT-PCR. The complete sequence was determined and functional domains of the genome were assigned. Chik-Wü1 clearly belongs to the group of viruses analysed from the recent Indian Ocean outbreak. In order to develop tools useful for further characterization of Chik-Wü1, we bacterially expressed and purified the capsid (C) and envelope (E) proteins and established an immunoblot assay. Twenty-two of 30 serum samples from Chik virus-infected patients that scored positive in indirect immunofluorescence previously were also reactive in immunoblot analysis with recombinant C and E2 antigens.

  10. A perspective on targeting non-structural proteins to combat neglected tropical diseases: Dengue, West Nile and Chikungunya viruses.

    PubMed

    Bhakat, Soumendranath; Karubiu, Wilson; Jayaprakash, Venkatesan; Soliman, Mahmoud E S

    2014-11-24

    Neglected tropical diseases are major causes of fatality in poverty stricken regions across Africa, Asia and some part of America. The combined potential health risk associated with arthropod-borne viruses (arboviruses); Dengue virus (DENV), West Nile Virus (WNV) and Chikungunya Virus (CHIKV) is immense. These arboviruses are either emerging or re-emerging in many regions with recent documented outbreaks in the United States. Despite several recent evidences of emergence, currently there are no approved drugs or vaccines available to counter these diseases. Non-structural proteins encoded by these RNA viruses are essential for their replication and maturation and thus may offer ideal targets for developing antiviral drugs. In recent years, several protease inhibitors have been sourced from plant extract, synthesis, computer aided drug design and high throughput screening as well as through drug reposition based approaches to target the non-structural proteins. The protease inhibitors have shown different levels of inhibition and may thus provide template to develop selective and potent drugs against these devastating arboviruses. This review seeks to shed light on the design and development of antiviral drugs against DENV, WNV and CHIKV to date. To the best of our knowledge, this review provides the first comprehensive update on the development of protease inhibitors targeting non-structural proteins of three most devastating arboviruses, DENV, WNV and CHIKV.

  11. The conserved macrodomains of the non-structural proteins of Chikungunya virus and other pathogenic positive strand RNA viruses function as mono-ADP-ribosylhydrolases

    PubMed Central

    Eckei, Laura; Krieg, Sarah; Bütepage, Mareike; Lehmann, Anne; Gross, Annika; Lippok, Barbara; Grimm, Alexander R.; Kümmerer, Beate M.; Rossetti, Giulia; Lüscher, Bernhard; Verheugd, Patricia

    2017-01-01

    Human pathogenic positive single strand RNA ((+)ssRNA) viruses, including Chikungunya virus, pose severe health problems as for many neither efficient vaccines nor therapeutic strategies exist. To interfere with propagation, viral enzymatic activities are considered potential targets. Here we addressed the function of the viral macrodomains, conserved folds of non-structural proteins of many (+)ssRNA viruses. Macrodomains are closely associated with ADP-ribose function and metabolism. ADP-ribosylation is a post-translational modification controlling various cellular processes, including DNA repair, transcription and stress response. We found that the viral macrodomains possess broad hydrolase activity towards mono-ADP-ribosylated substrates of the mono-ADP-ribosyltransferases ARTD7, ARTD8 and ARTD10 (aka PARP15, PARP14 and PARP10, respectively), reverting this post-translational modification both in vitro and in cells. In contrast, the viral macrodomains possess only weak activity towards poly-ADP-ribose chains synthesized by ARTD1 (aka PARP1). Unlike poly-ADP-ribosylglycohydrolase, which hydrolyzes poly-ADP-ribose chains to individual ADP-ribose units but cannot cleave the amino acid side chain - ADP-ribose bond, the different viral macrodomains release poly-ADP-ribose chains with distinct efficiency. Mutational and structural analyses identified key amino acids for hydrolase activity of the Chikungunya viral macrodomain. Moreover, ARTD8 and ARTD10 are induced by innate immune mechanisms, suggesting that the control of mono-ADP-ribosylation is part of a host-pathogen conflict. PMID:28150709

  12. Mutations Conferring a Noncytotoxic Phenotype on Chikungunya Virus Replicons Compromise Enzymatic Properties of Nonstructural Protein 2

    PubMed Central

    Utt, Age; Das, Pratyush Kumar; Varjak, Margus; Lulla, Valeria; Lulla, Aleksei

    2014-01-01

    ABSTRACT Chikungunya virus (CHIKV) (genus Alphavirus) has a positive-sense RNA genome. CHIKV nonstructural protein 2 (nsP2) proteolytically processes the viral nonstructural polyprotein, possesses nucleoside triphosphatase (NTPase), RNA triphosphatase, and RNA helicase activities, and induces cytopathic effects in vertebrate cells. Although alphaviral nsP2 mutations can result in a noncytotoxic phenotype, the effects of such mutations on nsP2 enzymatic activities are not well understood. In this study, we introduced a P718G (PG) mutation and selected for additional mutations in CHIKV nsP2 that resulted in a CHIKV replicon with a noncytotoxic phenotype in BHK-21 cells. Combinations of PG and either an E116K (EK) substitution or a GEEGS sequence insertion after residue T648 (5A) markedly reduced RNA synthesis; however, neither PG nor 5A prevented nsP2 nuclear translocation. Introducing PG into recombinant nsP2 inhibited proteolytic cleavage of nsP1/nsP2 and nsP3/nsP4 sites, reduced GTPase and RNA helicase activities, and abolished RNA stimulation of GTPase activity. 5A and EK modulated the effects of PG. However, only the RNA helicase activity of nsP2 was reduced by both of these mutations, suggesting that defects in this activity may be linked to a noncytotoxic phenotype. These results increase our understanding of the molecular basis for the cytotoxicity that accompanies alphaviral replication. Furthermore, adaptation of the CHIKV replicon containing both 5A and PG allowed the selection of a CHIKV replicon with adaptive mutations in nsP1 and nsP3 that enable persistence in human cell line. Such cell lines represent valuable experimental systems for discovering host factors and for screening inhibitors of CHIKV replication at lower biosafety levels. IMPORTANCE CHIKV is a medically important pathogen that causes febrile illness and can cause chronic arthritis. No approved vaccines or antivirals are available for CHIKV. The attenuation of CHIKV is critical to the

  13. Evaluation of Simultaneous Transmission of Chikungunya Virus and Dengue Virus Type 2 in Infected Aedes aegypti and Aedes albopictus (Diptera: Culicidae).

    PubMed

    Nuckols, J T; Huang, Y-J S; Higgs, S; Miller, A L; Pyles, R B; Spratt, H M; Horne, K M; Vanlandingham, D L

    2015-05-01

    The simultaneous transmission of chikungunya virus (CHIKV) and dengue viruses (DENV) has been a major public health concern because of their sympatric distribution and shared mosquito vectors. Groups of Aedes aegypti (L.) and Aedes albopictus (Skuse) were orally infected with 1.5 × 10(5) PFU/ml of CHIKV and 3.2 × 10(6) FFU/ml of DENV-2 simultaneously or separately in inverse orders and evaluated for dissemination and transmission by qRT-PCR. Simultaneous dissemination of both viruses was detected for all groups in Ae. aegypti and Ae. albopictus while cotransmission of CHIKV and DENV-2 only occurred at low rates after sequential but not simultaneous infection.

  14. Concurrent Infection with Plasmodium vivax and the Dengue and Chikungunya Viruses in a Paediatric Patient from New Delhi, India in 2016.

    PubMed

    Tazeen, Ayesha; Abdullah, Mohd; Hisamuddin, Malik; Ali, Sher; Naqvi, Irshad H; Verma, Hirday N; Ahmed, Anwar; Parveen, Shama

    2017-09-15

    Dengue and chikungunya fevers are transmitted by the common mosquito vector Aedes and malaria by Anopheles. Concurrent infections are reported due to co-circulation of these pathogens, especially in endemic regions. We report a rare case of triple infection with 3 arthropod-borne pathogens (Plasmodium vivax and the dengue and chikungunya viruses) in a 3-year-old child from New Delhi, India, in August 2016. The viruses were identified by RT-PCR and the parasite by microscopy and antigen detection. The dengue virus serotype 3 sequence was clustered in the genotype III by the phylogenetic analysis. Mixed infection with multiple pathogens is a challenge for accurate diagnosis due to the overlapping clinical symptoms. The accurate and timely diagnosis of multiple pathogens in such cases is important for rapid and effective patient management. © 2017 S. Karger AG, Basel.

  15. Clinical and histopathological features of fatal cases with dengue and chikungunya virus co-infection in Colombia, 2014 to 2015.

    PubMed

    Mercado, Marcela; Acosta-Reyes, Jorge; Parra, Edgar; Pardo, Lissethe; Rico, Angélica; Campo, Alfonso; Navarro, Edgar; Viasus, Diego

    2016-06-02

    We report clinical features and histopathological findings in fatal cases with dengue (DENV) and chikungunya (CHIKV) co-infection identified at the Colombian National Institute of Health between September 2014 and October 2015. Seven such cases were documented. Dengue serotype 2 virus was identified in six cases. All patients were adults and comorbidities were present in four. Fever, arthralgia or myalgia was present in all cases. The frequency of rash, haemorrhage, oedema, and gastrointestinal symptoms was variable. Laboratory findings such as thrombocytopenia, renal failure, and leukocyte count were also inconsistent between cases. Post-mortem tissue examination documented focal hepatocellular coagulative necrosis in three cases, incipient acute pericarditis in one and tubulointerstitial nephritis in one. This study provides evidence of mortality in patients with DENV and CHIKV co-infection. Fatal cases were characterised by variable clinical and laboratory features. Evaluation of histopathology of autopsy tissues provided evidence of the pathological consequences of the disease.

  16. Seroprevalence of Asian Lineage Chikungunya Virus Infection on Saint Martin Island, 7 Months after the 2013 Emergence

    PubMed Central

    Gay, Noellie; Rousset, Dominique; Huc, Patricia; Matheus, Séverine; Ledrans, Martine; Rosine, Jacques; Cassadou, Sylvie; Noël, Harold

    2016-01-01

    At the end of 2013, chikungunya virus (CHIKV) emerged in Saint Martin Island, Caribbean. The Asian lineage was identified. Seven months after this introduction, the seroprevalence was 16.9% in the population of Saint Martin and 39.0% of infections remained asymptomatic. This moderate attack rate and the apparent limited size of the outbreak in Saint Martin could be explained by control measures involved to lower the exposure of the inhabitants. Other drivers such as climatic factors and population genetic factors should be explored. The substantial rate of asymptomatic infections recorded points to a potential source of infection that can both spread in new geographic areas and maintain an inconspicuous endemic circulation in the Americas. PMID:26643536

  17. Imaging of viral neuroinvasion in the zebrafish reveals that Sindbis and chikungunya viruses favour different entry routes.

    PubMed

    Passoni, Gabriella; Langevin, Christelle; Palha, Nuno; Mounce, Bryan C; Briolat, Valérie; Affaticati, Pierre; De Job, Elodie; Joly, Jean-Stéphane; Vignuzzi, Marco; Saleh, Maria-Carla; Herbomel, Philippe; Boudinot, Pierre; Levraud, Jean-Pierre

    2017-07-01

    Alphaviruses, such as chikungunya virus (CHIKV) and Sindbis virus (SINV), are vector-borne pathogens that cause acute illnesses in humans and are sometimes associated with neuropathies, especially in infants and elderly patients. Little is known about their mechanism of entry into the central nervous system (CNS), even for SINV, which has been used extensively as a model for viral encephalopathies. We previously established a CHIKV infection model in the optically transparent zebrafish larva; here we describe a new SINV infection model in this host. We imaged in vivo the onset and progression of the infection caused by intravenous SINV inoculation. Similar to that described for CHIKV, infection in the periphery was detected early and was transient, whereas CNS infection started at later time points and was persistent or progressive. We then tested the possible mechanisms of neuroinvasion by CHIKV and SINV. Neither virus relied on macrophage-mediated transport to access the CNS. CHIKV, but not SINV, always infects endothelial cells of the brain vasculature. By contrast, axonal transport was much more efficient with SINV than CHIKV, both from the periphery to the CNS and between neural tissues. Thus, the preferred mechanisms of neuroinvasion by these two related viruses are distinct, providing a powerful imaging-friendly system to compare mechanisms and prevention methods of encephalopathies. © 2017. Published by The Company of Biologists Ltd.

  18. Epidemiology of Chikungunya in the Americas.

    PubMed

    Yactayo, Sergio; Staples, J Erin; Millot, Véronique; Cibrelus, Laurence; Ramon-Pardo, Pilar

    2016-12-15

    Chikungunya virus (CHIKV) emerged in the Americas in late 2013 to cause substantial acute and chronic morbidity. About 1.1 million cases of chikungunya were reported within a year, including severe cases and deaths. The burden of chikungunya is unclear owing to inadequate disease surveillance and underdiagnosis. Virus evolution, globalization, and climate change may further CHIKV spread. No approved vaccine or antiviral therapeutics exist. Early detection and appropriate management could reduce the burden of severe atypical and chronic arthritic disease. Improved surveillance and risk assessment are needed to mitigate the impact of chikungunya. © 2016 World Health Organization; licensee Oxford Journals.

  19. Epidemiology of Chikungunya in the Americas

    PubMed Central

    Yactayo, Sergio; Staples, J. Erin; Millot, Véronique; Cibrelus, Laurence; Ramon-Pardo, Pilar

    2016-01-01

    Chikungunya virus (CHIKV) emerged in the Americas in late 2013 to cause substantial acute and chronic morbidity. About 1.1 million cases of chikungunya were reported within a year, including severe cases and deaths. The burden of chikungunya is unclear owing to inadequate disease surveillance and underdiagnosis. Virus evolution, globalization, and climate change may further CHIKV spread. No approved vaccine or antiviral therapeutics exist. Early detection and appropriate management could reduce the burden of severe atypical and chronic arthritic disease. Improved surveillance and risk assessment are needed to mitigate the impact of chikungunya. PMID:27920170

  20. Homology modeling, molecular dynamics, e-pharmacophore mapping and docking study of Chikungunya virus nsP2 protease.

    PubMed

    Singh, Kh Dhanachandra; Kirubakaran, Palani; Nagarajan, Shanthi; Sakkiah, Sugunadevi; Muthusamy, Karthikeyan; Velmurgan, Devadasan; Jeyakanthan, Jeyaraman

    2012-01-01

    To date, no suitable vaccine or specific antiviral drug is available to treat Chikungunya viral (CHIKV) fever. Hence, it is essential to identify drug candidates that could potentially impede CHIKV infection. Here, we present the development of a homology model of nsP2 protein based on the crystal structure of the nsP2 protein of Venezuelan equine encephalitis virus (VEEV). The protein modeled was optimized using molecular dynamics simulation; the junction peptides of a nonstructural protein complex were then docked in order to investigate the possible protein-protein interactions between nsP2 and the proteins cleaved by nsP2. The modeling studies conducted shed light on the binding modes, and the critical interactions with the peptides provide insight into the chemical features needed to inhibit the CHIK virus infection. Energy-optimized pharmacophore mapping was performed using the junction peptides. Based on the results, we propose the pharmacophore features that must be present in an inhibitor of nsP2 protease. The resulting pharmacophore model contained an aromatic ring, a hydrophobic and three hydrogen-bond donor sites. Using these pharmacophore features, we screened a large public library of compounds (Asinex, Maybridge, TOSLab, Binding Database) to find a potential ligand that could inhibit the nsP2 protein. The compounds that yielded a fitness score of more than 1.0 were further subjected to Glide HTVS and Glide XP. Here, we report the best four compounds based on their docking scores; these compounds have IDs of 27943, 21362, ASN 01107557 and ASN 01541696. We propose that these compounds could bind to the active site of nsP2 protease and inhibit this enzyme. Furthermore, the backbone structural scaffolds of these four lead compounds could serve as building blocks when designing drug-like molecules for the treatment of Chikungunya viral fever.

  1. Mosquito co-infection with Zika and chikungunya virus allows simultaneous transmission without affecting vector competence of Aedes aegypti.

    PubMed

    Göertz, Giel P; Vogels, Chantal B F; Geertsema, Corinne; Koenraadt, Constantianus J M; Pijlman, Gorben P

    2017-06-01

    Zika virus (ZIKV) and chikungunya virus (CHIKV) are highly pathogenic arthropod-borne viruses that are currently a serious health burden in the Americas, and elsewhere in the world. ZIKV and CHIKV co-circulate in the same geographical regions and are mainly transmitted by Aedes aegypti mosquitoes. There is a growing number of case reports of ZIKV and CHIKV co-infections in humans, but it is uncertain whether co-infection occurs via single or multiple mosquito bites. Here we investigate the potential of Ae. aegypti mosquitoes to transmit both ZIKV and CHIKV in one bite, and we assess the consequences of co-infection on vector competence. First, growth curves indicated that co-infection with CHIKV negatively affects ZIKV production in mammalian, but not in mosquito cells. Next, Ae. aegypti mosquitoes were infected with ZIKV, CHIKV, or co-infected via an infectious blood meal or intrathoracic injections. Infection and transmission rates, as well as viral titers of positive mosquitoes, were determined at 14 days after blood meal or 7 days after injection. Saliva and bodies of (co-)infected mosquitoes were scored concurrently for the presence of ZIKV and/or CHIKV using a dual-colour immunofluorescence assay. The results show that orally exposed Ae. aegypti mosquitoes are highly competent, with transmission rates of up to 73% for ZIKV, 21% for CHIKV, and 12% of mosquitoes transmitting both viruses in one bite. However, simultaneous oral exposure to both viruses did not change infection and transmission rates compared to exposure to a single virus. Intrathoracic injections indicate that the selected strain of Ae. aegypti has a strong salivary gland barrier for CHIKV, but a less profound barrier for ZIKV. This study shows that Ae. aegypti can transmit both ZIKV and CHIKV via a single bite. Furthermore, co-infection of ZIKV and CHIKV does not influence the vector competence of Ae. aegypti.

  2. Impact of Autocidal Gravid Ovitraps on Chikungunya Virus Incidence in Aedes aegypti (Diptera: Culicidae) in Areas With and Without Traps.

    PubMed

    Barrera, Roberto; Acevedo, Veronica; Felix, Gilberto E; Hemme, Ryan R; Vazquez, Jesus; Munoz, Jorge L; Amador, Manuel

    2017-03-01

    Puerto Rico detected the first confirmed case of chikungunya virus (CHIKV) in May 2014 and the virus rapidly spread throughout the island. The invasion of CHIKV allowed us to observe Aedes aegypti (L.) densities, infection rates, and impact of vector control in urban areas using CDC autocidal gravid ovitraps (AGO traps) for mosquito control over several years. Because local mosquitoes can only get the virus from infectious residents, detecting the presence of virus in mosquitoes functions as a proxy for the presence of virus in people. We monitored the incidence of CHIKV in gravid females of Ae. aegypti in four neighborhoods-two with three AGO traps per home in most homes and two nearby neighborhoods without AGO mosquito control traps. Monitoring of mosquito density took place weekly using sentinel AGO traps from June to December 2014. In all, 1,334 pools of female Ae. aegypti (23,329 individuals) were processed by real-time reverse transcription PCR to identify CHIKV and DENV RNA. Density of Ae. aegypti females was 10.5 times lower (91%) in the two areas with AGO control traps during the study. Ten times (90.9%) more CHIKV-positive pools were identified in the nonintervention areas (50/55 pools) than in intervention areas (5/55). We found a significant linear relationship between the number of positive pools and both density of Ae. aegypti and vector index (average number of expected infected mosquitoes per trap per week). Temporal and spatial patterns of positive CHIKV pools suggested limited virus circulation in areas with AGO traps. Published by Oxford University Press on behalf of Entomological Society of America 2016 This work is written by US Government employees and is in the public domain in the US.

  3. Computer-aided identification, design and synthesis of a novel series of compounds with selective antiviral activity against chikungunya virus.

    PubMed

    Bassetto, Marcella; De Burghgraeve, Tine; Delang, Leen; Massarotti, Alberto; Coluccia, Antonio; Zonta, Nicola; Gatti, Valerio; Colombano, Giampiero; Sorba, Giovanni; Silvestri, Romano; Tron, Gian Cesare; Neyts, Johan; Leyssen, Pieter; Brancale, Andrea

    2013-04-01

    Chikungunya virus (CHIKV) is an Arbovirus that is transmitted to humans primarily by the mosquito species Aedes aegypti. Infection with this pathogen is often associated with fever, rash and arthralgia. Neither a vaccine nor an antiviral drug is available for the prevention or treatment of this disease. Albeit considered a tropical pathogen, adaptation of the virus to the mosquito species Aedes albopictus, which is also very common in temperate zones, has resulted in recent outbreaks in Europe and the US. In the present study, we report on the discovery of a novel series of compounds that inhibit CHIKV replication in the low μM range. In particular, we initially performed a virtual screening simulation of ∼5 million compounds on the CHIKV nsP2, the viral protease, after which we investigated and explored the Structure-Activity Relationships of the hit identified in silico. Overall, a series of 26 compounds, including the original hit, was evaluated in a virus-cell-based CPE reduction assay. The study of such selective inhibitors will contribute to a better understanding of the CHIKV replication cycle and may represents a first step towards the development of a clinical candidate drug for the treatment of this disease.

  4. A Field-Deployable Reverse Transcription Recombinase Polymerase Amplification Assay for Rapid Detection of the Chikungunya Virus

    PubMed Central

    Faye, Oumar; Prüger, Pauline; Kaiser, Marco; Thaloengsok, Sasikanya; Ubol, Sukathida; Sakuntabhai, Anavaj; Leparc-Goffart, Isabelle; Hufert, Frank T.; Sall, Amadou A.; Weidmann, Manfred; Niedrig, Matthias

    2016-01-01

    Background Chikungunya virus (CHIKV) is a mosquito-borne virus currently transmitted in about 60 countries. CHIKV causes acute flu-like symptoms and in many cases prolonged musculoskeletal and joint pain. Detection of the infection is mostly done using RT-RCR or ELISA, which are not suitable for point-of-care diagnosis. Methodology/Principal Findings In this study, a reverse transcription recombinase polymerase amplification (RT-RPA) assay for the detection of the CHIKV was developed. The assay sensitivity, specificity, and cross-reactivity were tested. CHIKV RT-RPA assay detected down to 80 genome copies/reaction in a maximum of 15 minutes. It successfully identified 18 isolates representing the three CHIKV genotypes. No cross-reactivity was detected to other alphaviruses and arboviruses except O'nyong'nyong virus, which could be differentiated by a modified RPA primer pair. Seventy-eight samples were screened both by RT-RPA and real-time RT-PCR. The diagnostic sensitivity and specificity of the CHIKV RT-RPA assay were determined at 100%. Conclusions/Significance The developed RT-RPA assay represents a promising method for the molecular detection of CHIKV at point of need. PMID:27685649

  5. Longitudinal Analysis of the Human Antibody Response to Chikungunya Virus Infection: Implications for Serodiagnosis and Vaccine Development

    PubMed Central

    Kam, Yiu-Wing; Lee, Wendy W. L.; Simarmata, Diane; Harjanto, Sumitro; Teng, Terk-Shin; Tolou, Hugues; Chow, Angela; Lin, Raymond T. P.; Leo, Yee-Sin; Rénia, Laurent

    2012-01-01

    Chikungunya virus (CHIKV) is an alphavirus which causes chronic and incapacitating arthralgia in humans. Although previous studies have shown that antibodies against the virus are produced during and after infection, the fine specificity of the antibody response against CHIKV is not known. Here, using plasma from patients at different times postinfection, we characterized the antibody response against various proteins of the virus. We have shown that the E2 and E3 glycoproteins and the capsid and nsP3 proteins are targets of the anti-CHIKV antibody response. Moreover, we have identified the different regions in these proteins which contain the linear epitopes recognized by the anti-CHIKV antibodies and determined their structural localization. Data also illustrated the effect of a single K252Q amino acid change at the E2 glycoprotein that was able to influence antibody binding and interaction between the antibodies and epitope because of the changes of epitope-antibody binding capacity. This study provides important knowledge that will not only aid in the understanding of the immune response to CHIKV infection but also provide new knowledge in the design of modern vaccine development. Furthermore, these pathogen-specific epitopes could be used for future seroepidemiological studies that will unravel the molecular mechanisms of human immunity and protection from CHIKV disease. PMID:23015702

  6. Aedes Aegypti saliva enhances chikungunya virus replication in human skin fibroblasts via inhibition of the type I interferon signaling pathway.

    PubMed

    Wichit, Sineewanlaya; Diop, Fodé; Hamel, Rodolphe; Talignani, Loïc; Ferraris, Pauline; Cornelie, Sylvie; Liegeois, Florian; Thomas, Frédéric; Yssel, Hans; Missé, Dorothée

    2017-09-01

    Chikungunya virus (CHIKV) transmission occurs through the bite of an infected Aedes mosquito which injects virus-containing saliva into the skin of the human host during blood feeding. In the present study, we have determined the effect of Aedes aegypti saliva on CHIKV replication in human skin fibroblasts, a major cell type for viral entry, which mimics the events that occur during natural transmission. A significant increase in the expression of viral transcripts and infectious viral particles was observed in fibroblasts infected with CHIKV in the presence of saliva, as compared with those infected with virus alone. CHIKV-infected human fibroblasts were found to express significantly increased levels of various type I IFN-responsive genes, as demonstrated by specific PCR array analysis. In contrast, the expression of these genes was markedly decreased in cells infected with CHIKV in the presence of mosquito saliva. Moreover, Western blotting analysis revealed that STAT2 and its phosphorylated form were down-regulated in the presence of mosquito saliva. Our data demonstrate for the first time the significance of Aedes aegypti saliva in promoting CHIKV infection via down-regulation of several type I IFN-responsive genes in infected human skin fibroblasts via the JAK-STAT signaling pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. High Incidence of Chikungunya Virus and Frequency of Viremic Blood Donations during Epidemic, Puerto Rico, USA, 2014.

    PubMed

    Simmons, Graham; Brès, Vanessa; Lu, Kai; Liss, Nathan M; Brambilla, Donald J; Ryff, Kyle R; Bruhn, Roberta; Velez, Edwin; Ocampo, Derrek; Linnen, Jeffrey M; Latoni, Gerardo; Petersen, Lyle R; Williamson, Phillip C; Busch, Michael P

    2016-07-01

    Chikungunya virus (CHIKV) caused large epidemics throughout the Caribbean in 2014. We conducted nucleic acid amplification testing (NAAT) for CHIKV RNA (n = 29,695) and serologic testing for IgG against CHIKV (n = 1,232) in archived blood donor samples collected during and after an epidemic in Puerto Rico in 2014. NAAT yields peaked in October with 2.1% of donations positive for CHIKV RNA. A total of 14% of NAAT-reactive donations posed a high risk for virus transmission by transfusion because of high virus RNA copy numbers (10 (4) -10 (9) RNA copies/mL) and a lack of specific IgM and IgG responses. Testing of minipools of 16 donations would not have detected 62.5% of RNA-positive donations detectable by individual donor testing, including individual donations without IgM and IgG. Serosurveys before and after the epidemic demonstrated that nearly 25% of blood donors in Puerto Rico acquired CHIKV infections and seroconverted during the epidemic.

  8. High Incidence of Chikungunya Virus and Frequency of Viremic Blood Donations during Epidemic, Puerto Rico, USA, 2014

    PubMed Central

    Brès, Vanessa; Lu, Kai; Liss, Nathan M.; Brambilla, Donald J.; Ryff, Kyle R.; Bruhn, Roberta; Velez, Edwin; Ocampo, Derrek; Linnen, Jeffrey M.; Latoni, Gerardo; Petersen, Lyle R.; Williamson, Phillip C.; Busch, Michael P.

    2016-01-01

    Chikungunya virus (CHIKV) caused large epidemics throughout the Caribbean in 2014. We conducted nucleic acid amplification testing (NAAT) for CHIKV RNA (n = 29,695) and serologic testing for IgG against CHIKV (n = 1,232) in archived blood donor samples collected during and after an epidemic in Puerto Rico in 2014. NAAT yields peaked in October with 2.1% of donations positive for CHIKV RNA. A total of 14% of NAAT-reactive donations posed a high risk for virus transmission by transfusion because of high virus RNA copy numbers (104–109 RNA copies/mL) and a lack of specific IgM and IgG responses. Testing of minipools of 16 donations would not have detected 62.5% of RNA-positive donations detectable by individual donor testing, including individual donations without IgM and IgG. Serosurveys before and after the epidemic demonstrated that nearly 25% of blood donors in Puerto Rico acquired CHIKV infections and seroconverted during the epidemic. PMID:27070192

  9. Emergence of HA mutants during influenza virus pneumonia.

    PubMed

    Manríquez, Maria Eugenia Vázquez; Makino, Akiko; Tanaka, Motoko; Abe, Yasuhisa; Yoshida, Hiroyuki; Morioka, Ichiro; Arakawa, Soichi; Takeshima, Yasuhiro; Iwata, Kentaro; Takasaki, Jin; Manabe, Toshie; Nakaya, Takaaki; Nakamura, Shota; Iglesias, Anjarath Lorena Higuera; Rossales, Rosa Maria Rivera; Mirabal, Erika Pena; Ito, Tateki; Kitazawa, Toshio; Oka, Teruaki; Yamashita, Makoto; Kudo, Koichiro; Shinya, Kyoko

    2012-01-01

    During the influenza pandemic of 2009, the number of viral pneumonia cases showed a marked increase in comparison with seasonal influenza viruses. Mutations at amino acid 222 (D222G mutations) in the virus hemagglutinin (HA) molecule, known to alter the receptor-recognition properties of the virus, were detected in a number of the more severely-affected patients in the early phases of the pandemic. To understand the background for the emergence of the mutant amino acid D222G in human lungs, we conducted histological examinations on lung specimens of patients from Mexico who had succumbed in the pandemic. Prominent regenerative and hyperplastic changes in the alveolar type II pneumocytes, which express avian-type sialoglycan receptors in the respiratory tract of severely affected individuals, were observed in the Mexican patients. An infection model utilizing guinea pigs, which was chosen in order to best simulate the sialic acid distribution of severe pneumonia in human patients, demonstrated an increase of D222G mutants and a delay in the diminution of mutants in the lower respiratory tract in comparison to the upper respiratory tract. Our data suggests that the predominance of avian-type sialoglycan receptors in the pneumonic lungs may contribute to the emergence of viral HA mutants. This data comprehensively illustrates the mechanisms for the emergence of mutants in the clinical samples.

  10. Immunochemical Characterization of Plaque Mutants of Simian Virus 40

    PubMed Central

    Ozer, H. L.; Takemoto, K. K.; Kirschstein, R. L.; Axelrod, D.

    1969-01-01

    Analysis of large and small plaque mutants of simian virus 40 using antisera prepared against each has revealed quantitative and possibly qualitative antigenic differences for each plaque type. A sensitive micro radioisotope precipitation test permitted evaluation of immunochemical similarities and differences of capsid antigens by inhibition of precipitation. PMID:4306300

  11. Identification of potential molecular associations between chikungunya virus non-structural protein 2 and human host proteins.

    PubMed

    Rana, J; Gulati, S; Rajasekharan, S; Gupta, A; Chaudhary, V; Gupta, S

    2017-01-01

    Chikungunya virus (CHIKV) non-structural protein 2 (nsP2) is considered to be the master regulator of viral RNA replication and host responses generated during viral infection. This protein has two main functional domains: an N-terminal domain which exhibits NTPase, RNA triphosphatase and helicase activities and a C-terminal protease domain. Understanding how CHIKV nsP2 interacts with its host proteins is essential for elucidating all the required processes for viral replication and pathogenesis along with the identification of potential targets for antiviral therapy. In current study yeast two-hybrid (Y2H) screening of a human fetal brain cDNA library was performed using nsP2 protein as bait. The analysis identified seven host proteins (CCDC130, CPNE6, POLR2C, MAPK9, EIF4A2, EEF1A1 and EIF3I) as putative interactors of CHIKV nsP2 which were selected for further analysis based on their roles in host cellular machinery. The gene ontology analysis indicates that these proteins are mainly involved in apoptosis, transcription and translational mechanism of host cell. Domain mapping of nsP2 revealed that these associations are not random connections but instead they have functional significance. Further studies to identify the amino acid residues and their chemical interactions that may help in opening new possibilities for preventing these interactions, thus reducing chances of chikungunya infection were performed. This study expands the understanding of CHIKV-host interactions and is important for rational approaches of discovering new antiviral agents.

  12. Identification and genetic characterization of chikungunya virus from Aedes mosquito vector collected in the Lucknow district, North India.

    PubMed

    Nyari, N; Maan, H S; Sharma, S; Pandey, S N; Dhole, T N

    2016-06-01

    Chikungunya fever is an emerging mosquito-borne disease caused by the infection with chikungunya virus (CHIKV). The CHIKV has been rarely detected in mosquito vectors from Northern India, since vector surveillance is an effective strategy in controlling and preventing CHIKV transmission. Thus, virological investigation for CHIKV among mosquitoes of Aedes (A.) species was carried out in the Lucknow district during March 2010 to October 2011. We collected adult mosquitoes from areas with CHIKV positive patients. The adult Aedes mosquito samples were pooled, homogenized, clarified and tested for CHIKV by nonstructural protein 1 (nsP1) gene based polymerase chain reaction (PCR). A total 91 mosquito pools comprising of adult A. aegypti and A. albopictus were tested for CHIKV. The partial envelope protein (E1) gene sequences of mosquito-borne CHIKV strains were analyzed for genotyping. Of 91 pools, 6 pools of A. aegypti; and 2 pools of A. albopictus mosquitoes were identified positive for CHIKV by PCR. The phylogenetic analysis revealed clustering of CHIKV strains in two sub-lineages within the monophyletic East-Central South African (ECSA) genotype. Novel amino acid changes at the positions 294 (P294L) and 295 (S295F) were observed during analysis of amino acid sequence of the partial E1 gene. This study demonstrates the genetic diversity of circulating CHIKV strains and reports the first detection of CHIKV strains in Aedes vector species from the state of Uttar Pradesh. These findings have implication for vector control strategies to mitigate vector population to prevent the likelihood of CHIKV epidemic in the near future.

  13. Mefenamic acid in combination with ribavirin shows significant effects in reducing chikungunya virus infection in vitro and in vivo.

    PubMed

    Rothan, Hussin A; Bahrani, Hirbod; Abdulrahman, Ammar Y; Mohamed, Zulqarnain; Teoh, Teow Chong; Othman, Shatrah; Rashid, Nurshamimi Nor; Rahman, Noorsaadah A; Yusof, Rohana

    2016-03-01

    Chikungunya virus (CHIKV) infection is a persistent problem worldwide due to efficient adaptation of the viral vectors, Aedes aegypti and Aedes albopictus mosquitoes. Therefore, the absence of effective anti-CHIKV drugs to combat chikungunya outbreaks often leads to a significant impact on public health care. In this study, we investigated the antiviral activity of drugs that are used to alleviate infection symptoms, namely, the non-steroidal anti-inflammatory drugs (NSAIDs), on the premise that active compounds with potential antiviral and anti-inflammatory activities could be directly subjected for human use to treat CHIKV infections. Amongst the various NSAID compounds, Mefenamic acid (MEFE) and Meclofenamic acid (MECLO) showed considerable antiviral activity against viral replication individually or in combination with the common antiviral drug, Ribavirin (RIBA). The 50% effective concentration (EC50) was estimated to be 13 μM for MEFE, 18 μM for MECLO and 10 μM for RIBA, while MEFE + RIBA (1:1) exhibited an EC50 of 3 μM, and MECLO + RIBA (1:1) was 5 μM. Because MEFE is commercially available and its synthesis is easier compared with MECLO, MEFE was selected for further in vivo antiviral activity analysis. Treatment with MEFE + RIBA resulted in a significant reduction of hypertrophic effects by CHIKV on the mouse liver and spleen. Viral titre quantification in the blood of CHIKV-infected mice through the plaque formation assay revealed that treatment with MEFE + RIBA exhibited a 6.5-fold reduction compared with untreated controls. In conclusion, our study demonstrated that MEFE in combination with RIBA exhibited significant anti-CHIKV activity by impairing viral replication in vitro and in vivo. Indeed, this finding may lead to an even broader application of these combinatorial treatments against other viral infections.

  14. Tracking the return of Aedes aegypti to Brazil, the major vector of the dengue, chikungunya and Zika viruses.

    PubMed

    Kotsakiozi, Panayiota; Gloria-Soria, Andrea; Caccone, Adalgisa; Evans, Benjamin; Schama, Renata; Martins, Ademir Jesus; Powell, Jeffrey R

    2017-07-01

    Aedes aegypti, commonly known as "the yellow fever mosquito", is of great medical concern today primarily as the major vector of dengue, chikungunya and Zika viruses, although yellow fever remains a serious health concern in some regions. The history of Ae. aegypti in Brazil is of particular interest because the country was subjected to a well-documented eradication program during 1940s-1950s. After cessation of the campaign, the mosquito quickly re-established in the early 1970s with several dengue outbreaks reported during the last 30 years. Brazil can be considered the country suffering the most from the yellow fever mosquito, given the high number of dengue, chikungunya and Zika cases reported in the country, after having once been declared "free of Ae. aegypti". We used 12 microsatellite markers to infer the genetic structure of Brazilian Ae. aegypti populations, genetic variability, genetic affinities with neighboring geographic areas, and the timing of their arrival and spread. This enabled us to reconstruct their recent history and evaluate whether the reappearance in Brazil was the result of re-invasion from neighboring non-eradicated areas or re-emergence from local refugia surviving the eradication program. Our results indicate a genetic break separating the northern and southern Brazilian Ae. aegypti populations, with further genetic differentiation within each cluster, especially in southern Brazil. Based on our results, re-invasions from non-eradicated regions are the most likely scenario for the reappearance of Ae. aegypti in Brazil. While populations in the northern cluster are likely to have descended from Venezuela populations as early as the 1970s, southern populations seem to have derived more recently from northern Brazilian areas. Possible entry points are also revealed within both southern and northern clusters that could inform strategies to control and monitor this important arbovirus vector.

  15. Tracking the return of Aedes aegypti to Brazil, the major vector of the dengue, chikungunya and Zika viruses

    PubMed Central

    Gloria-Soria, Andrea; Caccone, Adalgisa; Evans, Benjamin; Schama, Renata; Martins, Ademir Jesus; Powell, Jeffrey R.

    2017-01-01

    Background Aedes aegypti, commonly known as “the yellow fever mosquito”, is of great medical concern today primarily as the major vector of dengue, chikungunya and Zika viruses, although yellow fever remains a serious health concern in some regions. The history of Ae. aegypti in Brazil is of particular interest because the country was subjected to a well-documented eradication program during 1940s-1950s. After cessation of the campaign, the mosquito quickly re-established in the early 1970s with several dengue outbreaks reported during the last 30 years. Brazil can be considered the country suffering the most from the yellow fever mosquito, given the high number of dengue, chikungunya and Zika cases reported in the country, after having once been declared “free of Ae. aegypti”. Methodology/Principal findings We used 12 microsatellite markers to infer the genetic structure of Brazilian Ae. aegypti populations, genetic variability, genetic affinities with neighboring geographic areas, and the timing of their arrival and spread. This enabled us to reconstruct their recent history and evaluate whether the reappearance in Brazil was the result of re-invasion from neighboring non-eradicated areas or re-emergence from local refugia surviving the eradication program. Our results indicate a genetic break separating the northern and southern Brazilian Ae. aegypti populations, with further genetic differentiation within each cluster, especially in southern Brazil. Conclusions/Significance Based on our results, re-invasions from non-eradicated regions are the most likely scenario for the reappearance of Ae. aegypti in Brazil. While populations in the northern cluster are likely to have descended from Venezuela populations as early as the 1970s, southern populations seem to have derived more recently from northern Brazilian areas. Possible entry points are also revealed within both southern and northern clusters that could inform strategies to control and monitor this

  16. Random Codon Re-encoding Induces Stable Reduction of Replicative Fitness of Chikungunya Virus in Primate and Mosquito Cells

    PubMed Central

    Nougairede, Antoine; De Fabritus, Lauriane; Aubry, Fabien; Gould, Ernest A.; Holmes, Edward C.; de Lamballerie, Xavier

    2013-01-01

    Large-scale codon re-encoding represents a powerful method of attenuating viruses to generate safe and cost-effective vaccines. In contrast to specific approaches of codon re-encoding which modify genome-scale properties, we evaluated the effects of random codon re-encoding on the re-emerging human pathogen Chikungunya virus (CHIKV), and assessed the stability of the resultant viruses during serial in cellulo passage. Using different combinations of three 1.4 kb randomly re-encoded regions located throughout the CHIKV genome six codon re-encoded viruses were obtained. Introducing a large number of slightly deleterious synonymous mutations reduced the replicative fitness of CHIKV in both primate and arthropod cells, demonstrating the impact of synonymous mutations on fitness. Decrease of replicative fitness correlated with the extent of re-encoding, an observation that may assist in the modulation of viral attenuation. The wild-type and two re-encoded viruses were passaged 50 times either in primate or insect cells, or in each cell line alternately. These viruses were analyzed using detailed fitness assays, complete genome sequences and the analysis of intra-population genetic diversity. The response to codon re-encoding and adaptation to culture conditions occurred simultaneously, resulting in significant replicative fitness increases for both re-encoded and wild type viruses. Importantly, however, the most re-encoded virus failed to recover its replicative fitness. Evolution of these viruses in response to codon re-encoding was largely characterized by the emergence of both synonymous and non-synonymous mutations, sometimes located in genomic regions other than those involving re-encoding, and multiple convergent and compensatory mutations. However, there was a striking absence of codon reversion (<0.4%). Finally, multiple mutations were rapidly fixed in primate cells, whereas mosquito cells acted as a brake on evolution. In conclusion, random codon re

  17. Antiviral effect of compounds derived from the seeds of Mammea americana and Tabernaemontana cymosa on Dengue and Chikungunya virus infections.

    PubMed

    Gómez-Calderón, Cecilia; Mesa-Castro, Carol; Robledo, Sara; Gómez, Sergio; Bolivar-Avila, Santiago; Diaz-Castillo, Fredyc; Martínez-Gutierrez, Marlen

    2017-01-18

    The transmission of Dengue virus (DENV) and Chikungunya virus (CHIKV) has increased worldwide, due in part to the lack of a specific antiviral treatment. For this reason, the search for compounds with antiviral potential, either as licensed drugs or in natural products, is a research priority. The objective of this study was to identify some of the compounds that are present in Mammea americana (M. americana) and Tabernaemontana cymosa (T. cymosa) plants and, subsequently, to evaluate their cytotoxicity in VERO cells and their potential antiviral effects on DENV and CHIKV infections in those same cells. Dry ethanolic extracts of M. americana and T. cymosa seeds were subjected to open column chromatographic fractionation, leading to the identification of four compounds: two coumarins, derived from M. americana; and lupeol acetate and voacangine derived from T. cymosa.. The cytotoxicity of each compound was subsequently assessed by the MTT method (at concentrations from 400 to 6.25 μg/mL). Pre- and post-treatment antiviral assays were performed at non-toxic concentrations; the resulting DENV inhibition was evaluated by Real-Time PCR, and the CHIKV inhibition was tested by the plating method. The results were analyzed by means of statistical analysis. The compounds showed low toxicity at concentrations ≤ 200 μg/mL. The compounds coumarin A and coumarin B, which are derived from the M. americana plant, significantly inhibited infection with both viruses during the implementation of the two experimental strategies employed here (post-treatment with inhibition percentages greater than 50%, p < 0.01; and pre-treatment with percentages of inhibition greater than 40%, p < 0.01). However, the lupeol acetate and voacangine compounds, which were derived from the T. cymosa plant, only significantly inhibited the DENV infection during the post-treatment strategy (at inhibition percentages greater than 70%, p < 0.01). In vitro, the coumarins are capable of

  18. A Polarized Cell Model for Chikungunya Virus Infection: Entry and Egress of Virus Occurs at the Apical Domain of Polarized Cells

    PubMed Central

    Lim, Pei Jin; Chu, Justin Jang Hann

    2014-01-01

    Chikungunya virus (CHIKV) has resulted in several outbreaks in the past six decades. The clinical symptoms of Chikungunya infection include fever, skin rash, arthralgia, and an increasing incidence of encephalitis. The re-emergence of CHIKV with more severe pathogenesis highlights its potential threat on our human health. In this study, polarized HBMEC, polarized Vero C1008 and non-polarized Vero cells grown on cell culture inserts were infected with CHIKV apically or basolaterally. Plaque assays, viral binding assays and immunofluorescence assays demonstrated apical entry and release of CHIKV in polarized HBMEC and Vero C1008. Drug treatment studies were performed to elucidate both host cell and viral factors involved in the sorting and release of CHIKV at the apical domain of polarized cells. Disruption of host cell myosin II, microtubule and microfilament networks did not disrupt the polarized release of CHIKV. However, treatment with tunicamycin resulted in a bi-directional release of CHIKV, suggesting that N-glycans of CHIKV envelope glycoproteins could serve as apical sorting signals. PMID:24587455

  19. Suppression of chikungunya virus replication and differential innate responses of human peripheral blood mononuclear cells during co-infection with dengue virus.

    PubMed

    Ruiz Silva, Mariana; Aguilar Briseño, José A; Upasani, Vinit; van der Ende-Metselaar, Heidi; Smit, Jolanda M; Rodenhuis-Zybert, Izabela A

    2017-06-01

    Dengue and chikungunya are viral diseases transmitted to humans by infected Aedes spp. mosquitoes. With an estimated 390 million infected people per year dengue virus (DENV) currently causes the most prevalent arboviral disease. During the last decade chikungunya virus (CHIKV) has caused large outbreaks and has expanded its territory causing millions of cases in Asia, Africa and America. The viruses share a common mosquito vector and during the acute phase cause similar flu-like symptoms that can proceed to more severe or debilitating symptoms. The growing overlap in the geographical distribution of these mosquito-borne infections has led to an upsurge in reported cases of DENV/CHIKV co-infections. Unfortunately, at present we have little understanding of consequences of the co-infections to the human host. The overall aim of this study was to define viral replication dynamics and the innate immune signature involved in concurrent DENV and CHIKV infections in human peripheral blood mononuclear cells (PBMCs). We demonstrate that concomitant infection resulted in a significant reduction of CHIKV progeny and moderate enhancement of DENV production. Remarkably, the inhibitory effect of DENV on CHIKV infection occurred independently of DENV replication. Furthermore, changes in type I IFN, IL-6, IL-8, TNF-α, MCP-1 and IP-10 production were observed during concomitant infections. Notably, co-infections led to a significant increase in the levels of TNF-α and IL-6, cytokines that are widely considered to play a crucial role in the early pathogenesis of both viral diseases. In conclusion, our study reveals the interplay of DENV/CHIKV during concomitant infection and provides a framework to investigate viral interaction during co-infections.

  20. Evidence for natural vertical transmission of chikungunya viruses in field populations of Aedes aegypti in Delhi and Haryana states in India-a preliminary report.

    PubMed

    Jain, Jaspreet; Kushwah, Raja Babu S; Singh, Shashi S; Sharma, Anil; Adak, Tridibes; Singh, Om P; Bhatnagar, Raj Kamal; Subbarao, Sarala K; Sunil, Sujatha

    2016-10-01

    Aedes aegypti and Aedes albopictus are principal vectors for the transmission of chikungunya virus (CHIKV). India is a hub for both dengue and chikungunya infections and there are several reports of co-infection of dengue and chikungunya virus in the clinical scenario. The present pilot entomological survey was conducted to evaluate vertical transmission of CHIKV in Aedes field populations. Aedes immature (larvae and pupae) collection was done in 2012, over a period of six months from selected sites in Delhi and Haryana, India. The immatures collected were reared for adult emergence and species identification was done. A. aegypti male and female mosquitoes were separated and pooled collection spot-wise, RNA extracted and RT PCR performed to test for the presence of CHIKV in the pools. Container index (CI) and minimum infection rate (MIR) were estimated. From study areas that tested positive for CHIKV, adult collections were made and females upon feeding on uninfected blood in laboratory were allowed to lay eggs. The progeny that emerged from these field-collected mothers were tested for CHIKV presence. Our pilot survey showed the existence of A. aegypti population even during peak summer season in a few foci which eventually helped the mosquitoes to tide over adverse environmental conditions and with the start of rainfall, the population exploded within a short period of time. Immatures collected from field and progeny of adults collected from the field were CHIKV positive demonstrating the presence of vertical transmission of chikungunya virus in field population of A. aegypti. The present study further demonstrates the importance of identifying permanent breeding sites for proper Aedes species control. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Kinetic Analysis of Mouse Brain Proteome Alterations Following Chikungunya Virus Infection before and after Appearance of Clinical Symptoms

    PubMed Central

    Fraisier, Christophe; Koraka, Penelope; Belghazi, Maya; Bakli, Mahfoud; Granjeaud, Samuel; Pophillat, Matthieu; Lim, Stephanie M.; Osterhaus, Albert; Martina, Byron; Camoin, Luc; Almeras, Lionel

    2014-01-01

    Recent outbreaks of Chikungunya virus (CHIKV) infection have been characterized by an increasing number of severe cases with atypical manifestations including neurological complications. In parallel, the risk map of CHIKV outbreaks has expanded because of improved vector competence. These features make CHIKV infection a major public health concern that requires a better understanding of the underlying physiopathological processes for the development of antiviral strategies to protect individuals from severe disease. To decipher the mechanisms of CHIKV infection in the nervous system, a kinetic analysis on the host proteome modifications in the brain of CHIKV-infected mice sampled before and after the onset of clinical symptoms was performed. The combination of 2D-DIGE and iTRAQ proteomic approaches, followed by mass spectrometry protein identification revealed 177 significantly differentially expressed proteins. This kinetic analysis revealed a dramatic down-regulation of proteins before the appearance of the clinical symptoms followed by the increased expression of most of these proteins in the acute symptomatic phase. Bioinformatic analyses of the protein datasets enabled the identification of the major biological processes that were altered during the time course of CHIKV infection, such as integrin signaling and cytoskeleton dynamics, endosome machinery and receptor recycling related to virus transport and synapse function, regulation of gene expression, and the ubiquitin-proteasome pathway. These results reveal the putative mechanisms associated with severe CHIKV infection-mediated neurological disease and highlight the potential markers or targets that can be used to develop diagnostic and/or antiviral tools. PMID:24618821

  2. Mechanism and role of MCP-1 upregulation upon chikungunya virus infection in human peripheral blood mononuclear cells

    PubMed Central

    Ruiz Silva, Mariana; van der Ende-Metselaar, Heidi; Mulder, H. Lie; Smit, Jolanda M.; Rodenhuis-Zybert, Izabela A.

    2016-01-01

    Monocyte chemoattractant protein-1 (MCP-1/CCL2)-mediated migration of monocytes is essential for immunological surveillance of tissues. During chikungunya virus (CHIKV) infection however, excessive production of MCP-1 has been linked to disease pathogenesis. High MCP-1 serum levels are detected during the viremic phase of CHIKV infection and correlate with the virus titre. In vitro CHIKV infection was also shown to stimulate MCP-1 production in whole blood; yet the role and the mechanism of MCP-1 production upon infection of human peripheral blood mononuclear cells remain unknown. Here we found that active CHIKV infection stimulated production of MCP-1 in monocytes. Importantly however, we found that communication with other leukocytes is crucial to yield MCP-1 by monocytes upon CHIKV infection. Indeed, blocking interferon-α/β receptor or the JAK1/JAK2 signalling downstream of the receptor abolished CHIKV-mediated MCP-1 production. Additionally, we show that despite the apparent correlation between IFN type I, CHIKV replication and MCP-1, modulating the levels of the chemokine did not influence CHIKV infection. In summary, our data disclose the complexity of MCP-1 regulation upon CHIKV infection and point to a crucial role of IFNβ in the chemokine secretion. We propose that balance between these soluble factors is imperative for an appropriate host response to CHIKV infection. PMID:27558873

  3. Chikungunya virus nonstructural protein 2 inhibits type I/II interferon-stimulated JAK-STAT signaling.

    PubMed

    Fros, Jelke J; Liu, Wen Jun; Prow, Natalie A; Geertsema, Corinne; Ligtenberg, Maarten; Vanlandingham, Dana L; Schnettler, Esther; Vlak, Just M; Suhrbier, Andreas; Khromykh, Alexander A; Pijlman, Gorben P

    2010-10-01

    Chikungunya virus (CHIKV) is an emerging human pathogen transmitted by mosquitoes. Like that of other alphaviruses, CHIKV replication causes general host shutoff, leading to severe cytopathicity in mammalian cells, and inhibits the ability of infected cells to respond to interferon (IFN). Recent research, however, suggests that alphaviruses may have additional mechanisms to circumvent the host's antiviral IFN response. Here we show that CHIKV replication is resistant to inhibition by interferon once RNA replication has been established and that CHIKV actively suppresses the antiviral IFN response by preventing IFN-induced gene expression. Both CHIKV infection and CHIKV replicon RNA replication efficiently blocked STAT1 phosphorylation and/or nuclear translocation in mammalian cells induced by either type I or type II IFN. Expression of individual CHIKV nonstructural proteins (nsPs) showed that nsP2 was a potent inhibitor of IFN-induced JAK-STAT signaling. In addition, mutations in CHIKV-nsP2 (P718S) and Sindbis virus (SINV)-nsP2 (P726S) that render alphavirus replicons noncytopathic significantly reduced JAK-STAT inhibition. This host shutoff-independent inhibition of IFN signaling by CHIKV is likely to have an important role in viral pathogenesis.

  4. The viral capping enzyme nsP1: a novel target for the inhibition of chikungunya virus infection

    PubMed Central

    Delang, L.; Li, C.; Tas, A.; Quérat, G.; Albulescu, I. C.; De Burghgraeve, T.; Guerrero, N. A. Segura; Gigante, A.; Piorkowski, G.; Decroly, E.; Jochmans, D.; Canard, B.; Snijder, E. J.; Pérez-Pérez, M. J.; van Hemert, M. J.; Coutard, B.; Leyssen, P.; Neyts, J.

    2016-01-01

    The chikungunya virus (CHIKV) has become a substantial global health threat due to its massive re-emergence, the considerable disease burden and the lack of vaccines or therapeutics. We discovered a novel class of small molecules ([1,2,3]triazolo[4,5-d]pyrimidin-7(6H)-ones) with potent in vitro activity against CHIKV isolates from different geographical regions. Drug-resistant variants were selected and these carried a P34S substitution in non-structural protein 1 (nsP1), the main enzyme involved in alphavirus RNA capping. Biochemical assays using nsP1 of the related Venezuelan equine encephalitis virus revealed that the compounds specifically inhibit the guanylylation of nsP1. This is, to the best of our knowledge, the first report demonstrating that the alphavirus capping machinery is an excellent antiviral drug target. Considering the lack of options to treat CHIKV infections, this series of compounds with their unique (alphavirus-specific) target offers promise for the development of therapy for CHIKV infections. PMID:27545976

  5. Increased number of cases of Chikungunya virus (CHIKV) infection imported from the Caribbean and Central America to northern Italy, 2014.

    PubMed

    Rossini, G; Gaibani, P; Vocale, C; Finarelli, A C; Landini, M P

    2016-07-01

    This report describes an increased number of cases of Chikungunya virus (CHIKV) infection imported in northern Italy (Emilia-Romagna region) during the period May-September 2014, indicating that the recent spread of CHIKV and its establishment in the Caribbean and in central America, resulted in a high number of imported cases in Europe, thus representing a threat to public health. From May to September 2014, 14 imported cases of CHIKV infection were diagnosed; the patients were returning to Italy from Dominican Republic (n = 6), Haiti (n = 3), Guadeloupe (n = 2), Martinique (n = 1), Puerto Rico (n = 1) and Venezuela (n = 1). Phylogenetic analysis performed on the envelope protein (E1) gene sequences, obtained from plasma samples from two patients, indicated that the virus strain belongs to the Caribbean clade of the Asian genotype currently circulating in the Caribbean and Americas. The rise in the number of imported cases of CHIKV infection should increase healthcare professionals' awareness of the epidemiological situation and clinical presentation of CHIKV infection in order to enhance surveillance and early diagnosis in the forthcoming season of vector activity in Europe and North America.

  6. Therapeutic administration of a recombinant human monoclonal antibody reduces the severity of chikungunya virus disease in rhesus macaques

    PubMed Central

    Kreklywich, Craig N.; Sukulpovi-Petty, Soila; Legasse, Alfred; Smith, Patricia P.; Denton, Michael; Corvey, Carsten; Krishnan, Shiv; Colgin, Lois M. A.; Ducore, Rebecca M.; Lewis, Anne D.; Axthelm, Michael K.; Mandron, Marie; Cortez, Pierre; Rothblatt, Jonathan; Rao, Ercole; Focken, Ingo; Carter, Kara; Sapparapau, Gopal; Crowe, James E.; Diamond, Michael S.

    2017-01-01

    Chikungunya virus (CHIKV) is a mosquito-borne virus that causes a febrile syndrome in humans associated with acute and chronic debilitating joint and muscle pain. Currently no licensed vaccines or therapeutics are available to prevent or treat CHIKV infections. We recently isolated a panel of potently neutralizing human monoclonal antibodies (mAbs), one (4N12) of which exhibited prophylactic and post-exposure therapeutic activity against CHIKV in immunocompromised mice. Here, we describe the development of an engineered CHIKV mAb, designated SVIR001, that has similar antigen binding and neutralization profiles to its parent, 4N12. Because therapeutic administration of SVIR001 in immunocompetent mice significantly reduced viral load in joint tissues, we evaluated its efficacy in a rhesus macaque model of CHIKV infection. Rhesus macaques that were treated after infection with SVIR001 showed rapid elimination of viremia and less severe joint infiltration and disease compared to animals treated with SVIR002, an isotype control mAb. SVIR001 reduced viral burden at the site of infection and at distant sites and also diminished the numbers of activated innate immune cells and levels of pro-inflammatory cytokines and chemokines. SVIR001 therapy; however, did not substantively reduce the induction of CHIKV-specific B or T cell responses. Collectively, these results show promising therapeutic activity of a human anti-CHIKV mAb in rhesus macaques and provide proof-of-principle for its possible use in humans to treat active CHIKV infections. PMID:28628616

  7. The viral capping enzyme nsP1: a novel target for the inhibition of chikungunya virus infection.

    PubMed

    Delang, L; Li, C; Tas, A; Quérat, G; Albulescu, I C; De Burghgraeve, T; Guerrero, N A Segura; Gigante, A; Piorkowski, G; Decroly, E; Jochmans, D; Canard, B; Snijder, E J; Pérez-Pérez, M J; van Hemert, M J; Coutard, B; Leyssen, P; Neyts, J

    2016-08-22

    The chikungunya virus (CHIKV) has become a substantial global health threat due to its massive re-emergence, the considerable disease burden and the lack of vaccines or therapeutics. We discovered a novel class of small molecules ([1,2,3]triazolo[4,5-d]pyrimidin-7(6H)-ones) with potent in vitro activity against CHIKV isolates from different geographical regions. Drug-resistant variants were selected and these carried a P34S substitution in non-structural protein 1 (nsP1), the main enzyme involved in alphavirus RNA capping. Biochemical assays using nsP1 of the related Venezuelan equine encephalitis virus revealed that the compounds specifically inhibit the guanylylation of nsP1. This is, to the best of our knowledge, the first report demonstrating that the alphavirus capping machinery is an excellent antiviral drug target. Considering the lack of options to treat CHIKV infections, this series of compounds with their unique (alphavirus-specific) target offers promise for the development of therapy for CHIKV infections.

  8. Mechanism and role of MCP-1 upregulation upon chikungunya virus infection in human peripheral blood mononuclear cells.

    PubMed

    Ruiz Silva, Mariana; van der Ende-Metselaar, Heidi; Mulder, H Lie; Smit, Jolanda M; Rodenhuis-Zybert, Izabela A

    2016-08-25

    Monocyte chemoattractant protein-1 (MCP-1/CCL2)-mediated migration of monocytes is essential for immunological surveillance of tissues. During chikungunya virus (CHIKV) infection however, excessive production of MCP-1 has been linked to disease pathogenesis. High MCP-1 serum levels are detected during the viremic phase of CHIKV infection and correlate with the virus titre. In vitro CHIKV infection was also shown to stimulate MCP-1 production in whole blood; yet the role and the mechanism of MCP-1 production upon infection of human peripheral blood mononuclear cells remain unknown. Here we found that active CHIKV infection stimulated production of MCP-1 in monocytes. Importantly however, we found that communication with other leukocytes is crucial to yield MCP-1 by monocytes upon CHIKV infection. Indeed, blocking interferon-α/β receptor or the JAK1/JAK2 signalling downstream of the receptor abolished CHIKV-mediated MCP-1 production. Additionally, we show that despite the apparent correlation between IFN type I, CHIKV replication and MCP-1, modulating the levels of the chemokine did not influence CHIKV infection. In summary, our data disclose the complexity of MCP-1 regulation upon CHIKV infection and point to a crucial role of IFNβ in the chemokine secretion. We propose that balance between these soluble factors is imperative for an appropriate host response to CHIKV infection.

  9. [Escape mutants of hepatitis B virus].

    PubMed

    Jaramillo, Carlos Mario; Navas, María-Cristina

    2015-04-01

    The hepatitis B virus (HBV) infection is a public health problem worldwide. Considering HBV morbidity and mortality and the economic consequences .of this infection, policies and strategies to control it have been implemented, especially in regions where HBV infection is endemic, with high rates of vertical and horizontal infection. One of these strategies is the development of the recombinant vaccine. A 92% of the countries in the world have implemented the vaccine with a global coverage of 69%. The escape variants of HBV correspond to isolates with mutations in the sequence coding for the "a" determinant; these mutations result in changes in the amino acid sequence of the surface antigen (HBsAg) that prevent neutralization of viral particles by antibodies generated in response to vaccination or infection. The escape variants can infect vaccinated individuals and have been identified in the population of countries with different epidemiological patterns.

  10. Defining the Risk of Zika and Chikungunya Virus Transmission in Human Population Centers of the Eastern United States

    PubMed Central

    Manore, Carrie A.; Ostfeld, Richard S.; Agusto, Folashade B.; Gaff, Holly; LaDeau, Shannon L.

    2017-01-01

    The recent spread of mosquito-transmitted viruses and associated disease to the Americas motivates a new, data-driven evaluation of risk in temperate population centers. Temperate regions are generally expected to pose low risk for significant mosquito-borne disease; however, the spread of the Asian tiger mosquito (Aedes albopictus) across densely populated urban areas has established a new landscape of risk. We use a model informed by field data to assess the conditions likely to facilitate local transmission of chikungunya and Zika viruses from an infected traveler to Ae. albopictus and then to other humans in USA cities with variable human densities and seasonality. Mosquito-borne disease occurs when specific combinations of conditions maximize virus-to-mosquito and mosquito-to-human contact rates. We develop a mathematical model that captures the epidemiology and is informed by current data on vector ecology from urban sites. The model demonstrates that under specific but realistic conditions, fifty-percent of introductions by infectious travelers to a high human, high mosquito density city could initiate local transmission and 10% of the introductions could result in 100 or more people infected. Despite the propensity for Ae. albopictus to bite non-human vertebrates, we also demonstrate that local virus transmission and human outbreaks may occur when vectors feed from humans even just 40% of the time. Inclusion of human behavioral changes and mitigations were not incorporated into the models and would likely reduce predicted infections. This work demonstrates how a conditional series of non-average events can result in local arbovirus transmission and outbreaks of human disease, even in temperate cities. PMID:28095405

  11. Chikungunya virus induces IPS-1-dependent innate immune activation and protein kinase R-independent translational shutoff.

    PubMed

    White, Laura K; Sali, Tina; Alvarado, David; Gatti, Evelina; Pierre, Philippe; Streblow, Daniel; Defilippis, Victor R

    2011-01-01

    Chikungunya virus (CHIKV) is an arthritogenic mosquito-transmitted alphavirus that is undergoing reemergence in areas around the Indian Ocean. Despite the current and potential danger posed by this virus, we know surprisingly little about the induction and evasion of CHIKV-associated antiviral immune responses. With this in mind we investigated innate immune reactions to CHIKV in human fibroblasts, a demonstrable in vivo target of virus replication and spread. We show that CHIKV infection leads to activation of the transcription factor interferon regulatory factor 3 (IRF3) and subsequent transcription of IRF3-dependent antiviral genes, including beta interferon (IFN-β). IRF3 activation occurs by way of a virus-induced innate immune signaling pathway that includes the adaptor molecule interferon promoter stimulator 1 (IPS-1). Despite strong transcriptional upregulation of these genes, however, translation of the corresponding proteins is not observed. We further demonstrate that translation of cellular (but not viral) genes is blocked during infection and that although CHIKV is found to trigger inactivation of the translational molecule eukaryotic initiation factor subunit 2α by way of the double-stranded RNA sensor protein kinase R, this response is not required for the block to protein synthesis. Furthermore, overall diminution of cellular RNA synthesis is also observed in the presence of CHIKV and transcription of IRF3-dependent antiviral genes appears specifically blocked late in infection. We hypothesize that the observed absence of IFN-β and antiviral proteins during infection results from an evasion mechanism exhibited by CHIKV that is dependent on widespread shutoff of cellular protein synthesis and a targeted block to late synthesis of antiviral mRNA transcripts.

  12. Dengue and Chikungunya Vector Control Pocket Guide

    USDA-ARS?s Scientific Manuscript database

    This technical guide consolidates information and procedures for surveillance and control of mosquitoes that transmit dengue and chikungunya viruses. The guide focuses on mosquitoes that transmit dengue but also makes reference to chikungunya and yellow fever because the pathogens that cause these ...

  13. Chikungunya fever presenting with protracted severe pruritus.

    PubMed

    Cunha, Burke A; Leonichev, Victoria B; Raza, Muhammad

    2016-01-01

    Travelers returning from the tropics often present with rash/fever. Those with rash/fever and myalgias/arthralgias are most likely due to chikungunya fever, dengue fever, or Zika virus. In these arthropod viral transmitted infections, the rash may be pruritic. The case presented here is that of chikungunya fever remarkable for the intensity and duration of her pruritis.

  14. Isolation and molecular characterization of Chikungunya virus from the Andaman and Nicobar archipelago, India: evidence of an East, Central, and South African genotype.

    PubMed

    Muruganandam, N; Chaaithanya, I K; Senthil, G S; Shriram, A N; Bhattacharya, D; Jeevabharathi, G S; Sudeep, A B; Pradeepkumar, N; Vijayachari, P

    2011-12-01

    Chikungunya virus (CHIKV) is an Alphavirus belonging to the family Togaviridae. In 2006, CHIKV infection struck the Andaman and Nicobar archipelago, with an attack rate of 60%. There were more than 10 cases with acute flaccid paralysis simulating the Guillian Barre Syndrome. The majority of the patients presented severe joint pain. The cause for such an explosive nature of the outbreak with increased morbidity was not known. The isolation of CHIKV was attempted and succeeded from nine subjects presenting clinical symptoms of Chikungunya fever. The cDNA of all the isolates was sequenced for partial E1 and nsP1 genes. Sequences were aligned based on the double locus sequence typing concept. The phylogenetic analysis shows that sequences of Andaman isolates grouped with the East, Central, and South African genotype of virus isolates from India, Sri Lanka, and Réunion. The genetic distance between Andaman isolates and the Réunion isolates was very small. The phylogenetic analysis confirmed the origin of the isolates responsible for the first ever confirmed CHIKV outbreak in these islands to be the East, Central, and South African genotype. In this manuscript, we discuss the involvement of the East, Central, and South African strain with the Chikungunya fever outbreak in this archipelago and double locus sequence typing as a first time approach.

  15. [Description of the process of preparation and response of local health authorities facing the introduction of the Chikungunya virus in Colombia, 2014].

    PubMed

    Alarcón-Cruz, Ángela P; Prieto-Suárez, Edgar

    2016-06-01

    Objective To describe the process of preparation and response of local health authorities in key public health issues while facing the introduction stage of an unusual virus: Chikungunya in Colombia in 2014. Methods A cross-sectional study was conducted using a survey that was developed for this study and sent to Public Health coordinators and to the person in charge of vector borne-diseases in the country's territorial entities. Results 23 out of the 35 territories at risk from the transmission of Chikungunya agreed to answer the survey. A global review of the survey scores for each evaluated section shows better performances in the areas of knowledge management, comprehensive patient care, epidemiological intelligence, and health promotion. According to the results of this study, the epidemiological surveillance system during the Chikungunya epidemic had a low acceptability and flexibility, possibly contributing to the underreporting of cases. Conclusions In general, knowledge and implementation by local authorities of the Integrated Health Strategy- EGI (Estrategia de Gestión Integral, by its Spanish acronym)- for vector-borne diseases was evident from the themes evaluated in this study. However, it is necessary to reinforce the communication of risks, laboratory, and outbreak and contingencies management areas faced during the introduction of new viruses.

  16. [Co-infection by Chikungunya virus (CHIK-V) and dengue virus (DEN-V) during a recent outbreak in Cali, Colombia: Report of a fatal case].

    PubMed

    Rosso, Fernando; Pacheco, Robinson; Rodríguez, Sarita; Bautista, Diego

    2016-08-01

    The recent outbreaks of Chikungunya (CHIK-V) virus in endemic areas of dengue (DEN-V) could increase the risk of co-infection. CHIK infection has been considered not severe and with very unusual mortality, however DEN is associated with severe manifestations and increased mortality. Little is known about coinfection. It is possible that co-infection could generate severe cases. We present a case report of co-infection DEN-V -3 and CHIK-V in an elderly patient who developed acute renal failure, dengue shock syndrome (DSS), progresses to multiple organ failure and died. With the recent emergence of CHIK-V in Colombia, the possibility of co-infection with DEN-V should be suspected, especially in severe cases.

  17. Characterization of synthetic Chikungunya viruses based on the consensus sequence of recent E1-226V isolates.

    PubMed

    Scholte, Florine E M; Tas, Ali; Martina, Byron E E; Cordioli, Paolo; Narayanan, Krishna; Makino, Shinji; Snijder, Eric J; van Hemert, Martijn J

    2013-01-01

    Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that re-emerged in 2004 and has caused massive outbreaks in recent years. The lack of a licensed vaccine or treatment options emphasize the need to obtain more insight into the viral life cycle and CHIKV-host interactions. Infectious cDNA clones are important tools for such studies, and for mechanism of action studies on antiviral compounds. Existing CHIKV cDNA clones are based on a single genome from an individual clinical isolate, which is expected to have evolved specific characteristics in response to the host environment, and possibly also during subsequent cell culture passaging. To obtain a virus expected to have the general characteristics of the recent E1-226V CHIKV isolates, we have constructed a new CHIKV full-length cDNA clone, CHIKV LS3, based on the consensus sequence of their aligned genomes. Here we report the characterization of this synthetic virus and a green fluorescent protein-expressing variant (CHIKV LS3-GFP). Their characteristics were compared to those of natural strain ITA07-RA1, which was isolated during the 2007 outbreak in Italy. In cell culture the synthetic viruses displayed phenotypes comparable to the natural isolate, and in a mouse model they caused lethal infections that were indistinguishable from infections with a natural strain. Compared to ITA07-RA1 and clinical isolate NL10/152, the synthetic viruses displayed similar sensitivities to several antiviral compounds. 3-deaza-adenosine was identified as a new inhibitor of CHIKV replication. Cyclosporin A had no effect on CHIKV replication, suggesting that cyclophilins -opposite to what was found for other +RNA viruses- do not play an essential role in CHIKV replication. The characterization of the consensus sequence-based synthetic viruses and their comparison to natural isolates demonstrated that CHIKV LS3 and LS3-GFP are suitable and representative tools to study CHIKV-host interactions, screen for antiviral compounds and

  18. Characterization of Synthetic Chikungunya Viruses Based on the Consensus Sequence of Recent E1-226V Isolates

    PubMed Central

    Scholte, Florine E. M.; Tas, Ali; Martina, Byron E. E.; Cordioli, Paolo; Narayanan, Krishna; Makino, Shinji; Snijder, Eric J.; van Hemert, Martijn J.

    2013-01-01

    Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that re-emerged in 2004 and has caused massive outbreaks in recent years. The lack of a licensed vaccine or treatment options emphasize the need to obtain more insight into the viral life cycle and CHIKV-host interactions. Infectious cDNA clones are important tools for such studies, and for mechanism of action studies on antiviral compounds. Existing CHIKV cDNA clones are based on a single genome from an individual clinical isolate, which is expected to have evolved specific characteristics in response to the host environment, and possibly also during subsequent cell culture passaging. To obtain a virus expected to have the general characteristics of the recent E1-226V CHIKV isolates, we have constructed a new CHIKV full-length cDNA clone, CHIKV LS3, based on the consensus sequence of their aligned genomes. Here we report the characterization of this synthetic virus and a green fluorescent protein-expressing variant (CHIKV LS3-GFP). Their characteristics were compared to those of natural strain ITA07-RA1, which was isolated during the 2007 outbreak in Italy. In cell culture the synthetic viruses displayed phenotypes comparable to the natural isolate, and in a mouse model they caused lethal infections that were indistinguishable from infections with a natural strain. Compared to ITA07-RA1 and clinical isolate NL10/152, the synthetic viruses displayed similar sensitivities to several antiviral compounds. 3-deaza-adenosine was identified as a new inhibitor of CHIKV replication. Cyclosporin A had no effect on CHIKV replication, suggesting that cyclophilins -opposite to what was found for other +RNA viruses- do not play an essential role in CHIKV replication. The characterization of the consensus sequence-based synthetic viruses and their comparison to natural isolates demonstrated that CHIKV LS3 and LS3-GFP are suitable and representative tools to study CHIKV-host interactions, screen for antiviral compounds and

  19. Simultaneous detection and quantitation of Chikungunya, dengue and West Nile viruses by multiplex RT-PCR assays and dengue virus typing using high resolution melting.

    PubMed

    Naze, F; Le Roux, K; Schuffenecker, I; Zeller, H; Staikowsky, F; Grivard, P; Michault, A; Laurent, P

    2009-12-01

    Chikungunya (CHIKV), Dengue (DENV) and West Nile (WNV) viruses are arthropod-borne viruses that are able to emerge or re-emerge in many regions due to climatic changes and increase in travel. Since these viruses produce similar clinical signs it is important for physicians and epidemiologists to differentiate them rapidly. A molecular method was developed for their detection and quantitation in plasma samples and a DENV typing technique were developed. The method consisted in performing two multiplex real-time one-step RT-PCR assays, to detect and quantify the three viruses. Both assays were conducted in a single run, from a single RNA extract containing a unique coextracted and coamplified composite internal control. The quantitation results were close to the best detection thresholds obtained with simplex RT-PCR techniques. The differentiation of DENV types was performed using a High Resolution Melting technique. The assays enable the early diagnosis of the three arboviruses during viremia, including cases of coinfection. The method is rapid, specific and highly sensitive with a potential for clinical diagnosis and epidemiological surveillance. A DENV positive sample can be typed conveniently using the High Resolution Melting technique using the same apparatus.

  20. Transcriptome analysis of Aedes aegypti in response to mono-infections and co-infections of dengue virus-2 and chikungunya virus.

    PubMed

    Shrinet, Jatin; Srivastava, Pratibha; Sunil, Sujatha

    2017-02-01

    Chikungunya virus (CHIKV) and Dengue virus (DENV) spread via the bite of infected Aedes mosquitoes. Both these viruses exist as co-infections in the host as well as the vector and are known to exploit their cellular machinery for their replication. While there are studies reporting the changes in Aedes transcriptome when infected with DENV and CHIKV individually, the effect both these viruses have on the mosquitoes when present as co-infections is not clearly understood. In the present study, we infected Aedes aegypti mosquitoes with DENV and CHIKV individually and as co-infection through nanoinjections. We performed high throughput RNA sequencing of the infected Aedes aegypti to understand the changes in the Aedes transcriptome during the early stages of infection, i.e., 24 h post infection and compared the transcriptome profiles during DENV and CHIKV mono-infections with that of co-infections. We identified 190 significantly regulated genes identified in CHIKV infected library, 37 genes from DENV library and 100 genes from co-infected library and they were classified into different pathways. Our study reveal that distinct pathways and transcripts are being regulated during the three types of infection states in Aedes aegypti mosquitoes.

  1. Dengue and chikungunya viruses in plasma are effectively inactivated after treatment with methylene blue and visible light.

    PubMed

    Fryk, Jesse J; Marks, Denese C; Hobson-Peters, Jody; Prow, Natalie A; Watterson, Daniel; Hall, Roy A; Young, Paul R; Reichenberg, Stefan; Sumian, Chryslain; Faddy, Helen M

    2016-09-01

    Arboviruses, such as dengue viruses (DENV) and chikungunya virus (CHIKV), pose a risk to the safe transfusion of blood components, including plasma. Pathogen inactivation is an approach to manage this transfusion transmission risk, with a number of techniques being used worldwide for the treatment of plasma. In this study, the efficacy of the THERAFLEX MB-Plasma system to inactivate all DENV serotypes (DENV-1, DENV-2, DENV-3, DENV-4) or CHIKV in plasma, using methylene blue and light illumination at 630 nm, was investigated. Pooled plasma units were spiked with DENV-1, DENV-2, DENV-3 DENV-4, or CHIKV and treated with the THERAFLEX MB-Plasma system at four light illumination doses: 20, 40, 60, and 120 (standard dose) J/cm(2) . Pre- and posttreatment samples were collected and viral infectivity was determined. The reduction in viral infectivity was calculated for each dose. Treatment of plasma with the THERAFLEX MB-Plasma system resulted in at least a 4.46-log reduction in all DENV serotypes and CHIKV infectious virus. The residual infectivity for each was at the detection limit of the assay used at 60 J/cm(2) , with dose dependency also observed. Our study demonstrated the THERAFLEX MB-Plasma system can reduce the infectivity of all DENV serotypes and CHIKV spiked into plasma to the detection limit of the assay used at half of the standard illumination dose. This suggests this system has the capacity to be an effective option for managing the risk of DENV or CHIKV transfusion transmission in plasma. © 2016 AABB.

  2. Mapping of Chikungunya Virus Interactions with Host Proteins Identified nsP2 as a Highly Connected Viral Component

    PubMed Central

    Bouraï, Mehdi; Lucas-Hourani, Marianne; Gad, Hans Henrik; Drosten, Christian; Jacob, Yves; Tafforeau, Lionel; Cassonnet, Patricia; Jones, Louis M.; Judith, Delphine; Couderc, Thérèse; Lecuit, Marc; André, Patrice; Kümmerer, Beate Mareike; Lotteau, Vincent; Desprès, Philippe; Vidalain, Pierre-Olivier

    2012-01-01

    Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that has been responsible for an epidemic outbreak of unprecedented magnitude in recent years. Since then, significant efforts have been made to better understand the biology of this virus, but we still have poor knowledge of CHIKV interactions with host cell components at the molecular level. Here we describe the extensive use of high-throughput yeast two-hybrid (HT-Y2H) assays to characterize interactions between CHIKV and human proteins. A total of 22 high-confidence interactions, which essentially involved the viral nonstructural protein nsP2, were identified and further validated in protein complementation assay (PCA). These results were integrated to a larger network obtained by extensive mining of the literature for reports on alphavirus-host interactions. To investigate the role of cellular proteins interacting with nsP2, gene silencing experiments were performed in cells infected by a recombinant CHIKV expressing Renilla luciferase as a reporter. Collected data showed that heterogeneous nuclear ribonucleoprotein K (hnRNP-K) and ubiquilin 4 (UBQLN4) participate in CHIKV replication in vitro. In addition, we showed that CHIKV nsP2 induces a cellular shutoff, as previously reported for other Old World alphaviruses, and determined that among binding partners identified by yeast two-hybrid methods, the tetratricopeptide repeat protein 7B (TTC7B) plays a significant role in this activity. Altogether, this report provides the first interaction map between CHIKV and human proteins and describes new host cell proteins involved in the replication cycle of this virus. PMID:22258240

  3. Mapping of Chikungunya virus interactions with host proteins identified nsP2 as a highly connected viral component.

    PubMed

    Bouraï, Mehdi; Lucas-Hourani, Marianne; Gad, Hans Henrik; Drosten, Christian; Jacob, Yves; Tafforeau, Lionel; Cassonnet, Patricia; Jones, Louis M; Judith, Delphine; Couderc, Thérèse; Lecuit, Marc; André, Patrice; Kümmerer, Beate Mareike; Lotteau, Vincent; Desprès, Philippe; Tangy, Frédéric; Vidalain, Pierre-Olivier

    2012-03-01

    Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that has been responsible for an epidemic outbreak of unprecedented magnitude in recent years. Since then, significant efforts have been made to better understand the biology of this virus, but we still have poor knowledge of CHIKV interactions with host cell components at the molecular level. Here we describe the extensive use of high-throughput yeast two-hybrid (HT-Y2H) assays to characterize interactions between CHIKV and human proteins. A total of 22 high-confidence interactions, which essentially involved the viral nonstructural protein nsP2, were identified and further validated in protein complementation assay (PCA). These results were integrated to a larger network obtained by extensive mining of the literature for reports on alphavirus-host interactions. To investigate the role of cellular proteins interacting with nsP2, gene silencing experiments were performed in cells infected by a recombinant CHIKV expressing Renilla luciferase as a reporter. Collected data showed that heterogeneous nuclear ribonucleoprotein K (hnRNP-K) and ubiquilin 4 (UBQLN4) participate in CHIKV replication in vitro. In addition, we showed that CHIKV nsP2 induces a cellular shutoff, as previously reported for other Old World alphaviruses, and determined that among binding partners identified by yeast two-hybrid methods, the tetratricopeptide repeat protein 7B (TTC7B) plays a significant role in this activity. Altogether, this report provides the first interaction map between CHIKV and human proteins and describes new host cell proteins involved in the replication cycle of this virus.

  4. Correlation of phylogenetic clade diversification and in vitro infectivity differences among Cosmopolitan genotype strains of Chikungunya virus.

    PubMed

    Abraham, Rachy; Manakkadan, Anoop; Mudaliar, Prashant; Joseph, Iype; Sivakumar, Krishnankutty Chandrika; Nair, Radhakrishnan Reghunathan; Sreekumar, Easwaran

    2016-01-01

    Cosmopolitan genotypes of Chikungunya virus caused the large-scale febrile disease outbreaks in the last decade in Asian and African continents. Molecular analyses of these strains had revealed significant genetic diversification and occurrence of novel mosquito-adaptive mutations. In the present study we looked into whether the genetic diversification has implications in the infectivity phenotype. A detailed sequence and phylogenetic analyses of these virus strains of Indian Ocean lineage from Kerala, South India from the years 2008 to 2013 identified three distinct genetic clades (I, II and III), which had presence of clade-specific amino acid changes. The E2 envelope protein of the strains from the years 2012 to 2013 had a K252Q or a novel K252H change. This site is reported to affect mosquito cell infectivity. Most of these strains also had the E2 G82R mutation, a mutation previously identified to increase mammalian cell infectivity, and a novel mutation E2 N72S. Positive selection was identified in four sites in the envelope proteins (E1 K211E, A226V and V291I; E2 K252Q/H). In infectivity analysis, we found that strains from clade III had enhanced cytopathogenicity in HEK293 and Vero cells than by strains representing other two clades. These two strains formed smaller sized plaques and had distinctly higher viral protein expression, infectious virus production and apoptosis induction in HEK293 cells. They had novel mutations R171Q in the nsP1; I539S in nsP2; N409T in nsP3; and N72S in E2. Our study identifies a correlation between phylogenetic clade diversification and differences in mammalian cell infectivity phenotype among Cosmopolitan genotype CHIKV strains.

  5. Neurovirulence comparison of chikungunya virus isolates of the Asian and East/Central/South African genotypes from Malaysia.

    PubMed

    Chiam, Chun Wei; Chan, Yoke Fun; Ong, Kien Chai; Wong, Kum Thong; Sam, I-Ching

    2015-11-01

    Chikungunya virus (CHIKV), an alphavirus of the family Togaviridae, causes fever, polyarthritis and rash. There are three genotypes: West African, Asian and East/Central/South African (ECSA). The latter two genotypes have caused global outbreaks in recent years. Recent ECSA CHIKV outbreaks have been associated with severe neurological disease, but it is not known if different CHIKV genotypes are associated with different neurovirulence. In this study, the neurovirulence of Asian (MY/06/37348) and ECSA (MY/08/065) strains of CHIKV isolated in Malaysia were compared. Intracerebral inoculation of either virus into suckling mice was followed by virus titration, histopathology and gene expression analysis of the harvested brains. Both strains of CHIKV replicated similarly, yet mice infected with MY/06/37348 showed higher mortality. Histopathology findings showed that both CHIKV strains spread within the brain (where CHIKV antigen was localized to astrocytes and neurons) and beyond to skeletal muscle. In MY/06/37348-infected mice, apoptosis, which is associated with neurovirulence in alphaviruses, was observed earlier in brains. Comparison of gene expression showed that a pro-apoptotic gene (eIF2αK2) was upregulated at higher levels in MY/06/37348-infected mice, while genes involved in anti-apoptosis (BIRC3), antiviral responses and central nervous system protection (including CD40, IL-10RA, MyD88 and PYCARD) were upregulated more highly in MY/08/065-infected mice. In conclusion, the higher mortality observed following MY/06/37348 infection in mice is due not to higher viral replication in the brain, but to differentially expressed genes involved in host immune responses. These findings may help to identify therapeutic strategies and biomarkers for neurological CHIKV infections.

  6. Chikungunya virus-associated encephalitis: A cohort study on La Réunion Island, 2005-2009.

    PubMed

    Gérardin, Patrick; Couderc, Thérèse; Bintner, Marc; Tournebize, Patrice; Renouil, Michel; Lémant, Jérome; Boisson, Véronique; Borgherini, Gianandrea; Staikowsky, Frédérik; Schramm, Frédéric; Lecuit, Marc; Michault, Alain

    2016-01-05

    To estimate the cumulative incidence rate (CIR) of Chikungunya virus (CHIKV)-associated CNS disease during the La Réunion outbreak, and assess the disease burden and patient outcome after 3 years. CHIKV-associated CNS disease was characterized retrospectively in a cohort of patients with positive CHIKV reverse transcriptase PCR or anti-CHIKV immunoglobulin M antibodies in the CSF and fulfilling International Encephalitis Consortium criteria for encephalitis or encephalopathy. Neurologic sequelae were assessed after 3 years. Between September 2005 and June 2006, 57 patients were diagnosed with CHIKV-associated CNS disease, including 24 with CHIKV-associated encephalitis, the latter corresponding to a CIR of 8.6 per 100,000 persons. Patients with encephalitis were observed at both extremes of age categories. CIR per 100,000 persons were 187 and 37 in patients below 1 year and over 65 years, respectively, both far superior to those of cumulated causes of encephalitis in the United States in these age categories. The case-fatality rate of CHIKV-associated encephalitis was 16.6% and the proportion of children discharged with persistent disabilities estimated between 30% and 45%. Beyond the neonatal period, the clinical presentation and outcomes were less severe in infants than in adults. In the context of a large outbreak, CHIKV is a significant cause of CNS disease. As with other etiologies, CHIKV-associated encephalitis case distribution by age follows a U-shaped parabolic curve. © 2015 American Academy of Neurology.

  7. Regulation of Viral Replication, Apoptosis and Pro-Inflammatory Responses by 17-AAG during Chikungunya Virus Infection in Macrophages.

    PubMed

    Nayak, Tapas K; Mamidi, Prabhudutta; Kumar, Abhishek; Singh, Laishram Pradeep K; Sahoo, Subhransu S; Chattopadhyay, Soma; Chattopadhyay, Subhasis

    2017-01-06

    Chikungunya virus (CHIKV) infection has re-emerged as a major public health concern due to its recent worldwide epidemics and lack of control measures. Although CHIKV is known to infect macrophages, regulation of CHIKV replication, apoptosis and immune responses towards macrophages are not well understood. Accordingly, the Raw264.7 cells, a mouse macrophage cell line, were infected with CHIKV and viral replication as well as new viral progeny release was assessed by flow cytometry and plaque assay, respectively. Moreover, host immune modulation and apoptosis were studied through flow cytometry, Western blot and ELISA. Our current findings suggest that expression of CHIKV proteins were maximum at 8 hpi and the release of new viral progenies were remarkably increased around 12 hpi. The induction of Annexin V binding, cleaved caspase-3, cleaved caspase-9 and cleaved caspase-8 in CHIKV infected macrophages suggests activation of apoptosis through both intrinsic and extrinsic pathways. The pro-inflammatory mediators (TNF and IL-6) MHC-I/II and B7.2 (CD86) were also up-regulated during infection over time. Further, 17-AAG, a potential HSP90 inhibitor, was found to regulate CHIKV infection, apoptosis and pro-inflammatory cytokine/chemokine productions of host macrophages significantly. Hence, the present findings might bring new insight into the therapeutic implication in CHIKV disease biology.

  8. Knowledge and use of prevention measures for chikungunya virus among visitors — Virgin Islands National Park, 2015

    PubMed Central

    Cherry, Cara C.; Beer, Karlyn D.; Fulton, Corey; Wong, David; Buttke, Danielle; Staples, J. Erin; Ellis, Esther M.

    2016-01-01

    Summary Background In June 2014, the mosquito-borne chikungunya virus (CHIKV) emerged in the U.S. Virgin Islands (USVI), a location where tourists comprise the majority of the population during peak season (January–April). Limited information is available concerning visitors’ CHIKV awareness and prevention measures. Methods We surveyed a convenience sample of Virgin Islands National Park visitors aged ≥18 years. Respondents completed a questionnaire assessing CHIKV knowledge, attitudes, and practices; health information-seeking practices; and demographics. Results Of 783 persons contacted, 443 (57%) completed the survey. Fewer than half (208/441 [47%]) were aware of CHIKV. During trip preparation, 28% of respondents (126/443) investigated USVI-specific health concerns. Compared with persons unaware of CHIKV, CHIKV-aware persons were more likely to apply insect repellent (134/207 [65%] versus 111/231 [48%]; p < 0.001), wear long-sleeves and long pants (84/203 [41%] versus 57/227 [25%]; p < 0.001), and wear insect repellent-treated clothing (36/204 [18%] versus 22/227 [10%]; p = 0.02). Conclusions The majority of visitors surveyed did not research destination-related health concerns and were unaware of CHIKV. However, CHIKV awareness was associated with using multiple prevention measures to reduce disease risk. These findings underscore the importance of providing tourists with disease education upon destination arrival. PMID:27597388

  9. Knowledge and use of prevention measures for chikungunya virus among visitors - Virgin Islands National Park, 2015.

    PubMed

    Cherry, Cara C; Beer, Karlyn D; Fulton, Corey; Wong, David; Buttke, Danielle; Staples, J Erin; Ellis, Esther M

    In June 2014, the mosquito-borne chikungunya virus (CHIKV) emerged in the U.S. Virgin Islands (USVI), a location where tourists comprise the majority of the population during peak season (January-April). Limited information is available concerning visitors' CHIKV awareness and prevention measures. We surveyed a convenience sample of Virgin Islands National Park visitors aged ≥18 years. Respondents completed a questionnaire assessing CHIKV knowledge, attitudes, and practices; health information-seeking practices; and demographics. Of 783 persons contacted, 443 (57%) completed the survey. Fewer than half (208/441 [47%]) were aware of CHIKV. During trip preparation, 28% of respondents (126/443) investigated USVI-specific health concerns. Compared with persons unaware of CHIKV, CHIKV-aware persons were more likely to apply insect repellent (134/207 [65%] versus 111/231 [48%]; p < 0.001), wear long-sleeves and long pants (84/203 [41%] versus 57/227 [25%]; p < 0.001), and wear insect repellent-treated clothing (36/204 [18%] versus 22/227 [10%]; p = 0.02). The majority of visitors surveyed did not research destination-related health concerns and were unaware of CHIKV. However, CHIKV awareness was associated with using multiple prevention measures to reduce disease risk. These findings underscore the importance of providing tourists with disease education upon destination arrival. Published by Elsevier Ltd.

  10. Collaborative study for the characterization of a chikungunya virus RNA reference reagent for use in nucleic acid testing.

    PubMed

    Añez, G; Jiang, Z; Heisey, D A R; Kerby, S; Rios, M

    2015-11-01

    Infections with the mosquito-borne chikungunya virus (CHIKV) can cause febrile illness or be asymptomatic. Laboratory diagnosis of CHIKV is often made with laboratory-developed nucleic acid amplification technology (NAT) assays because there are no U.S. Food and Drug Administration (FDA)-approved diagnostic or blood screening assays. We aimed to produce a well-characterized CHIKV RNA reference reagent (CHIKV-RR) for use in NAT assays. A CHIKV RNA-RR consisting of cell culture-grown, heat-inactivated CHIKV diluted in human plasma was assessed by 8 laboratories in a collaborative study. The participants were asked to test the CHIKV-RR using their NAT assay(s) by qualitative testing (determination of RNA end-point by testing log and half-log dilutions followed by calculation of estimated NAT-detectable units/ml, after adjustment for the sample volume used for testing), and by quantitative testing, when available. Results from the testing showed that the CHIKV-RR had an estimated overall mean of 7.56 log10 detectable units/ml, ranging from 6.2 log10 to 8.6 log10. The Center for Biologics for Evaluation and Research/FDA CHIKV RNA-RR for NAT was established with a concentration of 7.56 log10 detectable units/ml. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  11. Regulation of Viral Replication, Apoptosis and Pro-Inflammatory Responses by 17-AAG during Chikungunya Virus Infection in Macrophages

    PubMed Central

    Nayak, Tapas K.; Mamidi, Prabhudutta; Kumar, Abhishek; Singh, Laishram Pradeep K.; Sahoo, Subhransu S.; Chattopadhyay, Soma; Chattopadhyay, Subhasis

    2017-01-01

    Chikungunya virus (CHIKV) infection has re-emerged as a major public health concern due to its recent worldwide epidemics and lack of control measures. Although CHIKV is known to infect macrophages, regulation of CHIKV replication, apoptosis and immune responses towards macrophages are not well understood. Accordingly, the Raw264.7 cells, a mouse macrophage cell line, were infected with CHIKV and viral replication as well as new viral progeny release was assessed by flow cytometry and plaque assay, respectively. Moreover, host immune modulation and apoptosis were studied through flow cytometry, Western blot and ELISA. Our current findings suggest that expression of CHIKV proteins were maximum at 8 hpi and the release of new viral progenies were remarkably increased around 12 hpi. The induction of Annexin V binding, cleaved caspase-3, cleaved caspase-9 and cleaved caspase-8 in CHIKV infected macrophages suggests activation of apoptosis through both intrinsic and extrinsic pathways. The pro-inflammatory mediators (TNF and IL-6) MHC-I/II and B7.2 (CD86) were also up-regulated during infection over time. Further, 17-AAG, a potential HSP90 inhibitor, was found to regulate CHIKV infection, apoptosis and pro-inflammatory cytokine/chemokine productions of host macrophages significantly. Hence, the present findings might bring new insight into the therapeutic implication in CHIKV disease biology. PMID:28067803

  12. Transcription Profiling for Defensins of Aedes aegypti (Diptera: Culicidae) During Development and in Response to Infection With Chikungunya and Zika Viruses.

    PubMed

    Zhao, Liming; Alto, Barry W; Smartt, Chelsea T; Shin, Dongyoung

    2017-09-06

    Aedes aegypti (L.) is a vector of chikungunya, dengue, yellow fever and Zika viruses. These viruses encounter a variety of induced defense responses from the innate immune system of the mosquito. We cloned defensin A from Ae. aegypti using laboratory populations originating from Key West and Orlando, Florida. To characterize inducible immune defensin peptides, we examined the defensin A (DefA) and defensin C (DefC) expression through time course studies using quantitative real-time PCR. We observed that ingestion of chikungunya virus (CHIKV) and Zika virus (ZIKV) infected blood triggered early upregulated expression of DefA and DefC at 3 h after blood feeding. At 10-d post infection, there was significant downregulation of DefA and DefC in CHIKV-infected females and significant upregulation of DefA and DefC in ZIKV-infected females compared with control mosquitoes fed uninfected blood. Our studies demonstrate that the relative activity of DefA and DefC changed depending on whether Ae. aegypti was infected with CHIKV or ZIKV, suggesting differences in antiviral defense responses. In addition, we also examined DefA and DefC gene expression during the different developmental stages. Significant qualitative and quantitative differences were found in DefA and DefC transcripts between Key West and Orlando strains. We found that adult males consistently had higher expression than adult females of different ages. Together, these data show that members of the Ae. aegypti defensin gene family play a role in both Zika and chikungunya antiviral response. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Residue 82 of the Chikungunya Virus E2 Attachment Protein Modulates Viral Dissemination and Arthritis in Mice

    PubMed Central

    Ashbrook, Alison W.; Burrack, Kristina S.; Silva, Laurie A.; Montgomery, Stephanie A.; Heise, Mark T.; Morrison, Thomas E.

    2014-01-01

    ABSTRACT Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that has reemerged to cause profound epidemics of fever, rash, and arthralgia throughout sub-Saharan Africa, Southeast Asia, and the Caribbean. Like other arthritogenic alphaviruses, mechanisms of CHIKV pathogenesis are not well defined. Using the attenuated CHIKV strain 181/25 and virulent strain AF15561, we identified a residue in the E2 viral attachment protein that is a critical determinant of viral replication in cultured cells and pathogenesis in vivo. Viruses containing an arginine at E2 residue 82 displayed enhanced infectivity in mammalian cells but reduced infectivity in mosquito cells and diminished virulence in a mouse model of CHIKV disease. Mice inoculated with virus containing an arginine at this position exhibited reduced swelling at the site of inoculation with a concomitant decrease in the severity of necrosis in joint-associated tissues. Viruses containing a glycine at E2 residue 82 produced higher titers in the spleen and serum at early times postinfection. Using wild-type and glycosaminoglycan (GAG)-deficient Chinese hamster ovary (CHO) cell lines and soluble GAGs, we found that an arginine at residue 82 conferred greater dependence on GAGs for infection of mammalian cells. These data suggest that CHIKV E2 interactions with GAGs diminish dissemination to lymphoid tissue, establishment of viremia, and activation of inflammatory responses early in infection. Collectively, these results suggest a function for GAG utilization in regulating CHIKV tropism and host responses that contribute to arthritis. IMPORTANCE CHIKV is a reemerging alphavirus of global significance with high potential to spread into new, immunologically naive populations. The severity of CHIKV disease, particularly its propensity for chronic musculoskeletal manifestations, emphasizes the need for identification of genetic determinants that dictate CHIKV virulence in the host. To better understand mechanisms of

  14. Epistatic roles of E2 glycoprotein mutations in adaption of chikungunya virus to Aedes albopictus and Ae. aegypti mosquitoes.

    PubMed

    Tsetsarkin, Konstantin A; McGee, Charles E; Volk, Sara M; Vanlandingham, Dana L; Weaver, Scott C; Higgs, Stephen

    2009-08-31

    Between 2005 and 2007 Chikungunya virus (CHIKV) caused its largest outbreak/epidemic in documented history. An unusual feature of this epidemic is the involvement of Ae. albopictus as a principal vector. Previously we have demonstrated that a single mutation E1-A226V significantly changed the ability of the virus to infect and be transmitted by this vector when expressed in the background of well characterized CHIKV strains LR2006 OPY1 and 37997. However, in the current study we demonstrate that introduction of the E1-A226V mutation into the background of an infectious clone derived from the Ag41855 strain (isolated in Uganda in 1982) does not significantly increase infectivity for Ae. albopictus. In order to elucidate the genetic determinants that affect CHIKV sensitivity to the E1-A226V mutation in Ae. albopictus, the genomes of the LR2006 OPY1 and Ag41855 strains were used for construction of chimeric viruses and viruses with a specific combination of point mutations at selected positions. Based upon the midgut infection rates of the derived viruses in Ae. albopictus and Ae. aegypti mosquitoes, a critical role of the mutations at positions E2-60 and E2-211 on vector infection was revealed. The E2-G60D mutation was an important determinant of CHIKV infectivity for both Ae. albopictus and Ae. aegypti, but only moderately modulated the effect of the E1-A226V mutation in Ae. albopictus. However, the effect of the E2-I211T mutation with respect to mosquito infections was much more specific, strongly modifying the effect of the E1-A226V mutation in Ae. albopictus. In contrast, CHIKV infectivity for Ae. aegypti was not influenced by the E2-1211T mutation. The occurrence of the E2-60G and E2-211I residues among CHIKV isolates was analyzed, revealing a high prevalence of E2-211I among strains belonging to the Eastern/Central/South African (ECSA) clade. This suggests that the E2-211I might be important for adaptation of CHIKV to some particular conditions prevalent in

  15. MUTATIONS IN THE E2 GLYCOPROTEIN AND THE 3' UNTRANSLATED REGION ENHANCE CHIKUNGUNYA VIRUS VIRULENCE IN MICE.

    PubMed

    Hawman, David W; Carpentier, Kathryn S; Fox, Julie M; May, Nicholas A; Sanders, Wes; Montgomery, Stephanie A; Moorman, Nathaniel J; Diamond, Michael S; Morrison, Thomas E

    2017-07-26

    Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes debilitating musculoskeletal pain and inflammation and can persist for months to years after acute infection. Although studies in humans and experimentally-infected animals suggest that CHIKV infection persists in musculoskeletal tissues, the mechanisms for this remain poorly understood. To evaluate this further, we isolated CHIKV from the serum of persistently infected Rag1(-/-) mice at day 28. When inoculated into naïve WT mice, this persistently circulating CHIKV strain displayed a capacity for earlier dissemination and greater pathogenicity compared with the parental virus. Sequence analysis revealed a nonsynonymous mutation in the E2 glycoprotein (E2 K200R) and a deletion within the 3' untranslated region (3' -UTR). Introduction of these changes into the parental virus conferred enhanced virulence in mice although a primary tropism for musculoskeletal tissues was maintained. The E2 K200R mutation was largely responsible for enhanced viral dissemination and pathogenicity, although these effects were augmented by the 3' -UTR deletion. Finally, studies in Irf3/Irf7(-/-) and Ifnar1(-/-) mice suggest that the E2 K200R mutation enhances viral dissemination from the site of inoculation independently of IRF3, IRF7, and IFNAR1 mediated responses. As our findings reveal viral determinants of CHIKV dissemination and pathogenicity, their further study should help to elucidate host-virus interactions that determine acute and chronic CHIKV infection.IMPORTANCE CHIKV is a globally-spreading, mosquito-transmitted virus that causes debilitating acute and chronic musculoskeletal disease in humans. The viral genetic determinants that dictate acute and chronic disease severity are not understood. To improve our understanding of CHIKV pathogenesis, we evaluated a CHIKV strain isolated from the serum of chronically-infected immunocompromised mice. Sequence analysis of this persistent CHIKV strain identified

  16. Development and Evaluation of a SYBR Green-Based Real-Time Multiplex RT-PCR Assay for Simultaneous Detection and Serotyping of Dengue and Chikungunya Viruses.

    PubMed

    Chen, Huixin; Parimelalagan, Mariya; Lai, Yee Ling; Lee, Kim Sung; Koay, Evelyn Siew-Chuan; Hapuarachchi, Hapuarachchige C; Ng, Lee Ching; Ho, Phui San; Chu, Justin Jang Hann

    2015-11-01

    Chikungunya virus (CHIKV) and dengue virus (DENV) have emerged as the two most important arbovirus diseases of global health significance. Similar clinical manifestations, transmission vectors, geographical distribution, and seasonal correlation often result in misdiagnosis of chikungunya infections as dengue cases and vice versa. In this study, we developed a rapid and accurate laboratory confirmative method to simultaneously detect, quantify, and differentiate DENV serotypes 1, 2, 3, and 4 and CHIKV. This SYBR Green I-based one-step multiplex real-time RT-PCR assay is highly sensitive and specific for CHIKV and DENV. Melting temperature analysis of PCR amplicons was used to serotype DENV and to differentiate from CHIKV. The detection limit of the assay was 20, 10, 50, 5, and 10 RNA copies/reaction for DENV-1, DENV-2, DENV-3, DENV-4, and CHIKV, respectively. Our assay did not cross-react with a panel of viruses that included other flaviviruses, alphaviruses, influenza viruses, human enteroviruses, and human coronaviruses. The feasibility of using this assay for clinical diagnosis was evaluated in DENV- and CHIKV-positive patient sera. Accordingly, the assay sensitivity for DENV-1, DENV-2, DENV-3, DENV-4, and CHIKV was 89.66%, 96.67%, 96.67%, 94.12%, and 95.74%, respectively, with 100% specificity. These findings confirmed the potential of our assay to be used as a rapid test for simultaneous detection and serotyping of DENV and CHIKV in clinical samples.

  17. Do Two Screening Tools for Chikungunya Virus Infection that were Developed among Younger Population Work Equally as Well in Patients Aged over 65 Years?

    PubMed Central

    Najioullah, Fatiha; Bousquet, Lionel; Malmontet, Thomas; Fournet, Benoît; Césaire, Raymond; Fanon, Jean-Luc; Dramé, Moustapha

    2017-01-01

    Background Chikungunya is an endemo-epidemic infection, which is still considered as an emerging public health problem. The aim of this study was to evaluate in a 65+ population, the accuracy of two chikungunya screening scores that were developed in younger people. Methods It was performed in the Martinique University Hospitals from retrospective cases. Patients were 65+, admitted to acute care units, for suspected Chikungunya virus infection (CVI) in 2014, with biological testing using Reverse Transcription Polymerase Chain Reaction. Mayotte tool and Reunion Island tool were also computed. Sensitivity, specificity, positive predictive value, negative predictive value, and Youden’s statistic were calculated. Results In all, 687 patients were included, 68% with confirmed CVI, and 32% with laboratory-unconfirmed CVI. Fever (73.1%) and arthralgia (51.4%) were the most frequent symptoms. Sensitivity ranged from 6% (fever+headache) to 49% (fever+polyarthralgia); and Youden’s index ranged from 1% (fever + headache) to 30% (fever+polyarthralgia). PPV and NPV ranged from 70% to 95%, and from 32% to 43%, respectively. Conclusion Performances were very poor for both tools, although specificity was good to excellent. Our results suggest that screening scores developed in young population are not accurate in identifying CVI in older people. PMID:28056031

  18. Development and characterization of monoclonal antibody against non-structural protein-2 of Chikungunya virus and its application.

    PubMed

    Chattopadhyay, Soma; Kumar, Abhishek; Mamidi, Prabhudutta; Nayak, Tapas Kumar; Das, Indrani; Chhatai, Jagamohan; Basantray, Itishree; Bramha, Umarani; Maiti, Prasanta Kumar; Singh, Sujay; Suryawanshi, Amol Ratnakar; Chattopadhyay, Subhasis

    2014-04-01

    The recent epidemics of Chikungunya viruses (CHIKV) with unprecedented magnitude and unusual clinical severity have raised a great public health concern worldwide, especially due to unavailability of vaccine or specific therapy. This emphasizes the need to understand the biological processes of this virus in details. Although CHIKV associated research has been initiated, the availability of CHIKV specific reagents for in-depth investigation of viral infection and replication are scanty. For Alphavirus replication, non-structural protein 2 (nsP2) is known to play a key regulatory role among all other non-structural proteins. The current study describes the development and characterization of nsP2 specific monoclonal antibody (mAb) against a synthetic peptide of CHIKV. Reactivity and efficacy of this mAb have been demonstrated by ELISA, Western blot, Flow cytometry and Immunofluorescence assay. Time kinetic study confirms that this mAb is highly sensitive to CHIKV-nsP2 as this protein has been detected very early during viral replication in infected cells. Homology analysis of the selected epitope sequence reveals that it is conserved among all the CHIKV strains of different genotypes, while analysis with other Alphavirus sequences shows that none of them are 100% identical to the epitope sequence. Moreover, using the mAb, three isoforms of CHIKV-nsP2 have been detected in 2D blot analysis during infection in mammalian cells. Accordingly, it can be suggested that the mAb reported in this study can be a sensitive and specific tool for experimental investigations of CHIKV replication and infection.

  19. Epidemiology of Chikungunya Virus Outbreaks in Guadeloupe and Martinique, 2014: An Observational Study in Volunteer Blood Donors

    PubMed Central

    Gallian, Pierre; Leparc-Goffart, Isabelle; Richard, Pascale; Maire, Françoise; Flusin, Olivier; Djoudi, Rachid; Chiaroni, Jacques; Charrel, Remi; Tiberghien, Pierre; de Lamballerie, Xavier

    2017-01-01

    Background During Dec-2013, a chikungunya virus (CHIKV) outbreak was first detected in the French-West Indies. Subsequently, the virus dispersed to other Caribbean islands, continental America and many islands in the Pacific Ocean. Previous estimates of the attack rate were based on declaration of clinically suspected cases. Methods/Principal findings Individual testing for CHIKV RNA of all (n = 16,386) blood donations between Feb-24th 2014 and Jan-31st 2015 identified 0·36% and 0·42% of positives in Guadeloupe and Martinique, respectively. The incidence curves faithfully correlated with those of suspected clinical cases in the general population of Guadeloupe (abrupt epidemic peak), but not in Martinique (flatter epidemic growth). No significant relationship was identified between CHIKV RNA detection and age-classes or blood groups. Prospective (Feb-2014 to Jan-2015; n = 9,506) and retrospective (Aug-2013 to Feb-2014; n = 6,559) seroepidemiological surveys in blood donors identified a final seroprevalence of 48·1% in Guadeloupe and 41·9% in Martinique. Retrospective survey also suggested the absence or limited "silent" CHIKV circulation before the outbreak. Parameters associated with increased seroprevalence were: Gender (M>F), KEL-1, [RH+1/KEL-1], [A/RH+1] and [A/RH+1/KEL-1] blood groups in Martiniquan donors. A simulation model based on observed incidence and actual seroprevalence values predicted 2·5 and 2·3 days of asymptomatic viraemia in Martiniquan and Guadeloupian blood donors respectively. Conclusions/Significance This study, implemented promptly with relatively limited logistical requirements during CHIKV emergence in the Caribbean, provided unique information regarding retrospective and prospective epidemiology, infection risk factors and natural history of the disease. In the stressful context of emerging infectious disease outbreaks, blood donor-based studies can serve as robust and cost-effective first-line tools for public health surveys. PMID

  20. Chikungunya Virus 3′ Untranslated Region: Adaptation to Mosquitoes and a Population Bottleneck as Major Evolutionary Forces

    PubMed Central

    Chen, Rubing; Wang, Eryu; Tsetsarkin, Konstantin A.; Weaver, Scott C.

    2013-01-01

    The 3′ untranslated genome region (UTR) of arthropod-borne viruses is characterized by enriched direct repeats (DRs) and stem-loop structures. Despite many years of theoretical and experimental study, on-going positive selection on the 3′UTR had never been observed in ‘real-time,’ and the role of the arbovirus 3′UTR remains poorly understood. We observed a lineage-specific 3′UTR sequence pattern in all available Asian lineage of the mosquito-borne alphavirus, chikungunya virus (CHIKV) (1958–2009), including complicated mutation and duplication patterns of the long DRs. Given that a longer genome is usually associated with less efficient replication, we hypothesized that the fixation of these genetic changes in the Asian lineage 3′UTR was due to their beneficial effects on adaptation to vectors or hosts. Using reverse genetic methods, we examined the functional importance of each direct repeat. Our results suggest that adaptation to mosquitoes, rather than to mammalian hosts, is a major evolutionary force on the CHIKV 3′UTR. Surprisingly, the Asian 3′UTR appeared to be inferior to its predicted ancestral sequence for replication in both mammals and mosquitoes, suggesting that its fixation in Asia was not a result of directional selection. Rather, it may have resulted from a population bottleneck during its introduction from Africa to Asia. We propose that this introduction of a 3′UTR with deletions led to genetic drift and compensatory mutations associated with the loss of structural/functional constraints, followed by two independent beneficial duplications and fixation due to positive selection. Our results provide further evidence that the limited epidemic potential of the Asian CHIKV strains resulted from founder effects that reduced its fitness for efficient transmission by mosquitoes there. PMID:24009512

  1. Dried-blood spots: a cost-effective field method for the detection of Chikungunya virus circulation in remote areas.

    PubMed

    Andriamandimby, Soa Fy; Heraud, Jean-Michel; Randrianasolo, Laurence; Rafisandratantsoa, Jean Théophile; Andriamamonjy, Seta; Richard, Vincent

    2013-01-01

    In 2005, there were outbreaks of febrile polyarthritis due to Chikungunya virus (CHIKV) in the Comoros Islands. CHIKV then spread to other islands in the Indian Ocean: La Réunion, Mauritius, Seychelles and Madagascar. These outbreaks revealed the lack of surveillance and preparedness of Madagascar and other countries. Thus, it was decided in 2007 to establish a syndrome-based surveillance network to monitor dengue-like illness. This study aims to evaluate the use of capillary blood samples blotted on filter papers for molecular diagnosis of CHIKV infection. Venous blood samples can be difficult to obtain and the shipment of serum in appropriate temperature conditions is too costly for most developing countries. Venous blood and dried-blood blotted on filter paper (DBFP) were collected during the last CHIKV outbreak in Madagascar (2010) and as part of our routine surveillance of dengue-like illness. All samples were tested by real-time RT-PCR and results with serum and DBFP samples were compared for each patient. The sensitivity and specificity of tests performed with DBFP, relative to those with venous samples (defined as 100%) were 93.1% (95% CI:[84.7-97.7]) and 94.4% (95% CI:[88.3-97.7]), respectively. The Kappa coefficient 0.87 (95% CI:[0.80-0.94]) was excellent. This study shows that DBFP specimens can be used as a cost-effective alternative sampling method for the surveillance and monitoring of CHIKV circulation and emergence in developing countries, and probably also for other arboviruses. The loss of sensitivity is insignificant and involved a very small number of patients, all with low viral loads. Whether viruses can be isolated from dried blood spots remains to be determined.

  2. Epidemiology of Chikungunya Virus Outbreaks in Guadeloupe and Martinique, 2014: An Observational Study in Volunteer Blood Donors.

    PubMed

    Gallian, Pierre; Leparc-Goffart, Isabelle; Richard, Pascale; Maire, Françoise; Flusin, Olivier; Djoudi, Rachid; Chiaroni, Jacques; Charrel, Remi; Tiberghien, Pierre; de Lamballerie, Xavier

    2017-01-01

    During Dec-2013, a chikungunya virus (CHIKV) outbreak was first detected in the French-West Indies. Subsequently, the virus dispersed to other Caribbean islands, continental America and many islands in the Pacific Ocean. Previous estimates of the attack rate were based on declaration of clinically suspected cases. Individual testing for CHIKV RNA of all (n = 16,386) blood donations between Feb-24th 2014 and Jan-31st 2015 identified 0·36% and 0·42% of positives in Guadeloupe and Martinique, respectively. The incidence curves faithfully correlated with those of suspected clinical cases in the general population of Guadeloupe (abrupt epidemic peak), but not in Martinique (flatter epidemic growth). No significant relationship was identified between CHIKV RNA detection and age-classes or blood groups. Prospective (Feb-2014 to Jan-2015; n = 9,506) and retrospective (Aug-2013 to Feb-2014; n = 6,559) seroepidemiological surveys in blood donors identified a final seroprevalence of 48·1% in Guadeloupe and 41·9% in Martinique. Retrospective survey also suggested the absence or limited "silent" CHIKV circulation before the outbreak. Parameters associated with increased seroprevalence were: Gender (M>F), KEL-1, [RH+1/KEL-1], [A/RH+1] and [A/RH+1/KEL-1] blood groups in Martiniquan donors. A simulation model based on observed incidence and actual seroprevalence values predicted 2·5 and 2·3 days of asymptomatic viraemia in Martiniquan and Guadeloupian blood donors respectively. This study, implemented promptly with relatively limited logistical requirements during CHIKV emergence in the Caribbean, provided unique information regarding retrospective and prospective epidemiology, infection risk factors and natural history of the disease. In the stressful context of emerging infectious disease outbreaks, blood donor-based studies can serve as robust and cost-effective first-line tools for public health surveys.

  3. Development of field-based real-time reverse transcription-polymerase chain reaction assays for detection of Chikungunya and O'nyong-nyong viruses in mosquitoes.

    PubMed

    Smith, Darci R; Lee, John S; Jahrling, Jordan; Kulesh, David A; Turell, Michael J; Groebner, Jennifer L; O'Guinn, Monica L

    2009-10-01

    Chikungunya (CHIK) and O'nyong-nyong (ONN) are important emerging arthropod-borne diseases. Molecular diagnosis of these two viruses in mosquitoes has not been evaluated, and the effects of extraneous mosquito tissue on assay performance have not been tested. Additionally, no real-time reverse transcription-polymerase chain reaction (RT-PCR) assay exists for detecting ONN virus (ONNV) RNA. We describe the development of sensitive and specific real-time RT-PCR assays for detecting CHIK and ONN viral RNA in mosquitoes, which have application for field use. In addition, we compared three methods for primer/probe design for assay development by evaluating their sensitivity and specificity. This comparison resulted in development of virus-specific assays that could detect less than one plaque-forming unit equivalent of each of the viruses in mosquitoes. The use of these assays will aid in arthropod-borne disease surveillance and in the control of the associated diseases.

  4. A case of ADEM following Chikungunya fever.

    PubMed

    Maity, Pranab; Roy, Pinaki; Basu, Arindam; Das, Biman; Ghosh, U S

    2014-05-01

    Chikungunya most often is a self-limiting febrile illness with polyarthritis and the virus is not known to be neurotropic. We are reporting a case of chikugunya fever presenting as acute demyelinating encephalomyelitis(ADEM) which is very rare.

  5. Chikungunya: Information for the General Public

    MedlinePlus

    ... 7 days after being bitten by an infected mosquito • The most common symptoms are fever and severe ... to prevent chikungunya virus infection or disease • Reduce mosquito exposure o Use air conditioning or window/door ...

  6. Cellular and molecular mechanisms of chikungunya pathogenesis.

    PubMed

    Lum, Fok-Moon; Ng, Lisa F P

    2015-08-01

    Chikungunya virus (CHIKV) is an arthropod-borne virus that causes chikungunya fever, a disease characterized by the onset of fever and rashes, with arthralgia as its hallmark symptom. CHIKV has re-emerged over the past decade, causing numerous outbreaks around the world. Since late 2013, CHIKV has reached the shores of the Americas, causing more than a million cases of infection. Despite concentrated efforts to understand the pathogenesis of the disease, further outbreaks remain a threat. This review highlights important findings regarding CHIKV-associated immunopathogenesis and offers important insights into future directions. This article forms part of a symposium in Antiviral Research on "Chikungunya discovers the New World."

  7. Antigenic Variation of East/Central/South African and Asian Chikungunya Virus Genotypes in Neutralization by Immune Sera

    PubMed Central

    Chua, Chong-Long; Sam, I-Ching; Merits, Andres; Chan, Yoke-Fun

    2016-01-01

    Background Chikungunya virus (CHIKV) is a re-emerging mosquito-borne virus which causes epidemics of fever, severe joint pain and rash. Between 2005 and 2010, the East/Central/South African (ECSA) genotype was responsible for global explosive outbreaks across India, the Indian Ocean and Southeast Asia. From late 2013, Asian genotype CHIKV has caused outbreaks in the Americas. The characteristics of cross-antibody efficacy and epitopes are poorly understood. Methodology/Principal Findings We characterized human immune sera collected during two independent outbreaks in Malaysia of the Asian genotype in 2006 and the ECSA genotype in 2008–2010. Neutralizing capacity was analyzed against representative clinical isolates as well as viruses rescued from infectious clones of ECSA and Asian CHIKV. Using whole virus antigen and recombinant E1 and E2 envelope glycoproteins, we further investigated antibody binding sites, epitopes, and antibody titers. Both ECSA and Asian sera demonstrated stronger neutralizing capacity against the ECSA genotype, which corresponded to strong epitope-antibody interaction. ECSA serum targeted conformational epitope sites in the E1-E2 glycoprotein, and E1-E211K, E2-I2T, E2-H5N, E2-G118S and E2-S194G are key amino acids that enhance cross-neutralizing efficacy. As for Asian serum, the antibodies targeting E2 glycoprotein correlated with neutralizing efficacy, and I2T, H5N, G118S and S194G altered and improved the neutralization profile. Rabbit polyclonal antibody against the N-terminal linear neutralizing epitope from the ECSA sequence has reduced binding capacity and neutralization efficacy against Asian CHIKV. These findings imply that the choice of vaccine strain may impact cross-protection against different genotypes. Conclusion/Significance Immune serum from humans infected with CHIKV of either ECSA or Asian genotypes showed differences in binding and neutralization characteristics. These findings have implications for the continued

  8. Case Series: Chikungunya and Dengue at a Forward Operating Location

    DTIC Science & Technology

    2015-05-01

    ABSTRACT Chikungunya virus is a mosquito borne arbovirus in the genus Alphavirus. In humans, infection with chikungunya virus causes a painful but...SUBJECT TERMS Chikungunya, dengue, mosquitoes 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF PAGES 3... mosquitoes around the lodging area. Patient 5 On 27 November 2014, a 24-year-old patient presented at the clinic with a fever of 102.6°F (39.2°C). His

  9. The C-terminal domain of chikungunya virus nsP2 independently governs viral RNA replication, cytopathicity, and inhibition of interferon signaling.

    PubMed

    Fros, Jelke J; van der Maten, Erika; Vlak, Just M; Pijlman, Gorben P

    2013-09-01

    Alphavirus nonstructural protein 2 (nsP2) has pivotal roles in viral RNA replication, host cell shutoff, and inhibition of antiviral responses. Mutations that individually rendered other alphaviruses noncytopathic were introduced into chikungunya virus nsP2. Results show that (i) nsP2 mutation P718S only in combination with KR649AA or adaptive mutation D711G allowed noncytopathic replicon RNA replication, (ii) prohibiting nsP2 nuclear localization abrogates inhibition of antiviral interferon-induced JAK-STAT signaling, and (iii) nsP2 independently affects RNA replication, cytopathicity, and JAK-STAT signaling.

  10. Application of real-time RT-PCR in vector surveillance and assessment of replication kinetics of an emerging novel ECSA genotype of Chikungunya virus in Aedes aegypti.

    PubMed

    Agarwal, Ankita; Singh, Anil K; Sharma, Shashi; Soni, Manisha; Thakur, Ashish K; Gopalan, N; Parida, M M; Rao, P V L; Dash, Paban K

    2013-11-01

    Chikungunya has emerged as one of the most important arboviral infection of global significance. Expansion of Chikungunya virus endemic areas can be ascribed to naive population, increasing vector population and adaptability of virus to new vector. In this study, a SYBR Green I based quantitative RT-PCR assay was developed. The assay was found to be 10-fold more sensitive than conventional RT-PCR and no cross reactivity was observed with related alphaviruses and flaviviruses. The detection efficiency of the assay was impervious to mosquitoes of different pool sizes. Vector surveillance has resulted in detection of CHIKV RNA in Aedes aegypti, confirming its vectorial potential for CHIKV in northern India. The assessment of the assay was further carried out by studying the competence of Indian Ae. aegypti for CHIKV, which revealed 100% infection rate and dissemination rate with 60% transmission rate. The replication kinetics of CHIKV in different anatomical sites of Ae. aegypti revealed highest titre at day 6 post infection in midgut and at day 10 post infection in saliva, legs and wings. The implementation of the assay in detecting lower viral load makes it a remarkable tool for surveillance of virus activity in mosquitoes.

  11. Kinetic characterization of trans-proteolytic activity of Chikungunya virus capsid protease and development of a FRET-based HTS assay

    PubMed Central

    Aggarwal, Megha; Sharma, Rajesh; Kumar, Pravindra; Parida, Manmohan; Tomar, Shailly

    2015-01-01

    Chikungunya virus (CHIKV) capsid protein (CVCP) is a serine protease that possesses cis-proteolytic activity essential for the structural polyprotein processing and plays a key role in the virus life cycle. CHIKV being an emerging arthropod-borne pathogenic virus, is a public health concern worldwide. No vaccines or specific antiviral treatment is currently available for chikungunya disease. Thus, it is important to develop inhibitors against CHIKV enzymes to block key steps in viral reproduction. In view of this, CVCP was produced recombinantly and purified to homogeneity. A fluorescence resonance energy transfer (FRET)-based proteolytic assay was developed for high throughput screening (HTS). A FRET peptide substrate (DABCYL-GAEEWSLAIE-EDANS) derived from the cleavage site present in the structural polyprotein of CVCP was used. The assay with a Z’ factor of 0.64 and coefficient of variation (CV) is 8.68% can be adapted to high throughput format for automated screening of chemical libraries to identify CVCP specific protease inhibitors. Kinetic parameters Km and kcat/Km estimated using FRET assay were 1.26 ± 0.34 μM and 1.11 × 103 M−1 sec−1 respectively. The availability of active recombinant CVCP and cost effective fluorogenic peptide based in vitro FRET assay may serve as the basis for therapeutics development against CHIKV. PMID:26439734

  12. Differential Phosphatidylinositol-3-Kinase-Akt-mTOR Activation by Semliki Forest and Chikungunya Viruses Is Dependent on nsP3 and Connected to Replication Complex Internalization

    PubMed Central

    Biasiotto, Roberta; Eng, Kai; Neuvonen, Maarit; Götte, Benjamin; Rheinemann, Lara; Mutso, Margit; Utt, Age; Varghese, Finny; Balistreri, Giuseppe; Merits, Andres; Ahola, Tero; McInerney, Gerald M.

    2015-01-01

    ABSTRACT Many viruses affect or exploit the phosphatidylinositol-3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) pathway, a crucial prosurvival signaling cascade. We report that this pathway was strongly activated in cells upon infection with the Old World alphavirus Semliki Forest virus (SFV), even under conditions of complete nutrient starvation. We mapped this activation to the hyperphosphorylated/acidic domain in the C-terminal tail of SFV nonstructural protein nsP3. Viruses with a deletion of this domain (SFV-Δ50) but not of other regions in nsP3 displayed a clearly delayed and reduced capacity of Akt stimulation. Ectopic expression of the nsP3 of SFV wild type (nsP3-wt), but not nsP3-Δ50, equipped with a membrane anchor was sufficient to activate Akt. We linked PI3K-Akt-mTOR stimulation to the intracellular dynamics of viral replication complexes, which are formed at the plasma membrane and subsequently internalized in a process blocked by the PI3K inhibitor wortmannin. Replication complex internalization was observed upon infection of cells with SFV-wt and SFV mutants with deletions in nsP3 but not with SFV-Δ50, where replication complexes were typically accumulated at the cell periphery. In cells infected with the closely related chikungunya virus (CHIKV), the PI3K-Akt-mTOR pathway was only moderately activated. Replication complexes of CHIKV were predominantly located at the cell periphery. Exchanging the hypervariable C-terminal tail of nsP3 between SFV and CHIKV induced the phenotype of strong PI3K-Akt-mTOR activation and replication complex internalization in CHIKV. In conclusion, infection with SFV but not CHIKV boosts PI3K-Akt-mTOR through the hyperphosphorylated/acidic domain of nsP3 to drive replication complex internalization. IMPORTANCE SFV and CHIKV are very similar in terms of molecular and cell biology, e.g., regarding replication and molecular interactions, but are strikingly different regarding pathology: CHIKV is a relevant human

  13. Chikungunya fever outbreak, Bhutan, 2012.

    PubMed

    Wangchuk, Sonam; Chinnawirotpisan, Piyawan; Dorji, Tshering; Tobgay, Tashi; Dorji, Tandin; Yoon, In-Kyu; Fernandez, Stefan

    2013-10-01

    In 2012, chikungunya virus (CHIKV) was reported for the first time in Bhutan. IgM ELISA results were positive for 36/210 patient samples; PCR was positive for 32/81. Phylogenetic analyses confirmed that Bhutan CHIKV belongs to the East/Central/South African genotype. Appropriate responses to future outbreaks require a system of surveillance and improved laboratory capacity.

  14. Incrimination of Aedes (Stegomyia) hensilli Farner as an epidemic vector of Chikungunya virus on Yap Island, Federated States of Micronesia, 2013.

    PubMed

    Savage, Harry M; Ledermann, Jeremy P; Yug, Laurence; Burkhalter, Kristen L; Marfel, Maria; Hancock, W Thane

    2015-02-01

    Two species of Aedes (Stegomyia) were collected in response to the first chikungunya virus (CHIKV) outbreak on Yap Island: the native species Ae. hensilli Farner and the introduced species Ae. aegypti (L.). Fourteen CHIKV-positive mosquito pools were detected. Six pools were composed of female Ae. hensilli, six pools were composed of female Ae. aegypti, one pool was composed of male Ae. hensilli, and one pool contained female specimens identified as Ae. (Stg.) spp. Infection rates were not significantly different between female Ae. hensilli and Ae. aegypti. The occurrence of human cases in all areas of Yap Island and the greater number of sites that yielded virus from Ae. hensilli combined with the ubiquitous distribution of this species incriminate Ae. hensilli as the most important vector of CHIKV during the outbreak. Phylogenic analysis shows that virus strains on Yap are members of the Asia lineage and closely related to strains currently circulating in the Caribbean.

  15. Incrimination of Aedes (Stegomyia) hensilli Farner as an Epidemic Vector of Chikungunya Virus on Yap Island, Federated States of Micronesia, 2013

    PubMed Central

    Savage, Harry M.; Ledermann, Jeremy P.; Yug, Laurence; Burkhalter, Kristen L.; Marfel, Maria; Hancock, W. Thane

    2015-01-01

    Two species of Aedes (Stegomyia) were collected in response to the first chikungunya virus (CHIKV) outbreak on Yap Island: the native species Ae. hensilli Farner and the introduced species Ae. aegypti (L.). Fourteen CHIKV-positive mosquito pools were detected. Six pools were composed of female Ae. hensilli, six pools were composed of female Ae. aegypti, one pool was composed of male Ae. hensilli, and one pool contained female specimens identified as Ae. (Stg.) spp. Infection rates were not significantly different between female Ae. hensilli and Ae. aegypti. The occurrence of human cases in all areas of Yap Island and the greater number of sites that yielded virus from Ae. hensilli combined with the ubiquitous distribution of this species incriminate Ae. hensilli as the most important vector of CHIKV during the outbreak. Phylogenic analysis shows that virus strains on Yap are members of the Asia lineage and closely related to strains currently circulating in the Caribbean. PMID:25404070

  16. Chikungunya virus non-structural protein 2-mediated host shut-off disables the unfolded protein response.

    PubMed

    Fros, Jelke J; Major, Lee D; Scholte, Florine E M; Gardner, Joy; van Hemert, Martijn J; Suhrbier, Andreas; Pijlman, Gorben P

    2015-03-01

    The unfolded protein response (UPR) is a cellular defence mechanism against high concentrations of misfolded protein in the endoplasmic reticulum (ER). In the presence of misfolded proteins, ER-transmembrane proteins PERK and IRE1α become activated. PERK phosphorylates eIF2α leading to a general inhibition of cellular translation, whilst the expression of transcription factor ATF4 is upregulated. Active IRE1α splices out an intron from XBP1 mRNA, to produce a potent transcription factor. Activation of the UPR increases the production of several proteins involved in protein folding, degradation and apoptosis. Here, we demonstrated that transient expression of chikungunya virus (CHIKV) (family Togaviridae, genus Alphavirus) envelope glycoproteins induced the UPR and that CHIKV infection resulted in the phosphorylation of eIF2α and partial splicing of XBP1 mRNA. However, infection with CHIKV did not increase the expression of ATF4 and known UPR target genes (GRP78/BiP, GRP94 and CHOP). Moreover, nuclear XBP1 was not observed during CHIKV infection. Even upon stimulation with tunicamycin, the UPR was efficiently inhibited in CHIKV-infected cells. Individual expression of CHIKV non-structural proteins (nsPs) revealed that nsP2 alone was sufficient to inhibit the UPR. Mutations that rendered nsP2 unable to cause host-cell shut-off prevented nsP2-mediated inhibition of the UPR. This indicates that initial UPR induction takes place in the ER but that expression of functional UPR transcription factors and target genes is efficiently inhibited by CHIKV nsP2.

  17. Persistent arthralgia and related risks factors in laboratory-confirmed cases of Chikungunya virus infection in Mexico.

    PubMed

    Murillo-Zamora, Efrén; Mendoza-Cano, Oliver; Trujillo-Hernández, Benjamín; Alberto Sánchez-Piña, Ramón; Guzmán-Esquivel, José

    2017-06-08

    To estimate the cumulative incidence of persistent arthralgia at 6 months from acute Chikungunya virus (CHIKV) infection and to evaluate the association of clinical markers with the risk of long-term arthralgia. This multicenter retrospective cohort study was conducted in the Mexican state of Colima. A total of 136 individuals aged 15 years and older with serologically confirmed CHIKV infection were enrolled. Participants were interviewed at 6 months from the onset of symptoms, and self-reported persistent arthralgia (PA) was the main binary outcome. A self-report numeric rating scale (NRS) ranging from 0 to 10 was used to estimate the severity of articular pain. The cumulative incidence of PA was 41.9%. Severe pain (NRS ≥ 7) presented in 36.8% of participants with PA. In multiple analysis, individuals aged 40 years and older (risk ratio (RR) = 1.60; 95% confidence interval (CI), 1.03-2.48) and those with articular pain at 3 months post-infection (RR = 3.95; 95% CI, 1.95-8.01) had a significantly increased risk of PA at 6 months from CHIKV infection. To the best of our knowledge, this is first report of a CHIKV-associated long-term outcome in Mexico, where the incidence of the infection has been high. This is also the first study in Latin America evaluating several factors associated with the risk of PA. Our findings may be useful in health care settings to stratify the risk of chronic arthralgia secondary to CHIKV infection and to identify patients who would benefit clinically from early medical intervention.

  18. RNA-Seq analysis of chikungunya virus infection and identification of granzyme A as a major promoter of arthritic inflammation

    PubMed Central

    Schroder, Wayne A.; Ellis, Jonathan J.; Cumming, Helen E.; Poo, Yee Suan; Hertzog, Paul J.; Di Giallonardo, Francesca; Hueston, Linda; Le Grand, Roger; Tang, Bing; Gardner, Joy; Mahalingam, Suresh; Bird, Phillip I.

    2017-01-01

    Chikungunya virus (CHIKV) is an arthritogenic alphavirus causing epidemics of acute and chronic arthritic disease. Herein we describe a comprehensive RNA-Seq analysis of feet and lymph nodes at peak viraemia (day 2 post infection), acute arthritis (day 7) and chronic disease (day 30) in the CHIKV adult wild-type mouse model. Genes previously shown to be up-regulated in CHIKV patients were also up-regulated in the mouse model. CHIKV sequence information was also obtained with up to ≈8% of the reads mapping to the viral genome; however, no adaptive viral genome changes were apparent. Although day 2, 7 and 30 represent distinct stages of infection and disease, there was a pronounced overlap in up-regulated host genes and pathways. Type I interferon response genes (IRGs) represented up to ≈50% of up-regulated genes, even after loss of type I interferon induction on days 7 and 30. Bioinformatic analyses suggested a number of interferon response factors were primarily responsible for maintaining type I IRG induction. A group of genes prominent in the RNA-Seq analysis and hitherto unexplored in viral arthropathies were granzymes A, B and K. Granzyme A-/- and to a lesser extent granzyme K-/-, but not granzyme B-/-, mice showed a pronounced reduction in foot swelling and arthritis, with analysis of granzyme A-/- mice showing no reductions in viral loads but reduced NK and T cell infiltrates post CHIKV infection. Treatment with Serpinb6b, a granzyme A inhibitor, also reduced arthritic inflammation in wild-type mice. In non-human primates circulating granzyme A levels were elevated after CHIKV infection, with the increase correlating with viral load. Elevated granzyme A levels were also seen in a small cohort of human CHIKV patients. Taken together these results suggest granzyme A is an important driver of arthritic inflammation and a potential target for therapy. Trial Registration: ClinicalTrials.gov NCT00281294 PMID:28207896

  19. High rates of co-infection of Dengue and Chikungunya virus in Odisha and Maharashtra, India during 2013.

    PubMed

    Saswat, Tanuja; Kumar, Abhishek; Kumar, Sameer; Mamidi, Prabhudutta; Muduli, Sagarika; Debata, Nagen Kumar; Pal, Niladri Shekhar; Pratheek, B M; Chattopadhyay, Subhasis; Chattopadhyay, Soma

    2015-10-01

    Dengue viral (DENV) infection is endemic in different parts of India and because of similar primary signs and symptoms, Chikungunya virus (CHIKV) is mostly undiagnosed. Hence, we investigated 204 suspected Dengue cases in a hospital based cross-sectional study in Odisha, India in 2013. It was observed that 50 samples were positive for DENV only, 28 were positive for CHIKV only and interestingly, 28 patients were co-infected with both DENV and CHIKV. Additionally, a total of 18 confirmed Dengue samples from Maharashtra, India were screened for CHIKV and out of those, 15 were co-infected. All CHIKV strains were of East Central South African (ECSA) type and serotype 2 (genotype IV) was predominant in the DENV samples. Additionally, Dengue serotype 1 and 3 were also detected during this time. Further, sequence analysis of E1 gene of CHIKV strains revealed that two substitution mutations (M269V and D284E) were observed in almost 50% strains and they were from co-infected patients. Similarly, sequence analysis of C-prM gene showed the presence of five substitution mutations, (G70S, L72F, N90S, S93N and I150L) in all serotype 1 and two consistent mutations (A101V and V112A) in serotype 2 Dengue samples. Together, it appears that a significantly high number of dengue patients (43, 44.8%) were co-infected with DENV and CHIKV during this study. This emphasizes the need of a routine diagnosis of CHIKV along with DENV for febrile patients. This will be useful in early and proper recognition of infecting pathogen to study the correlation of clinical symptoms with single or co-infection which will ultimately help to implement proper patient care in future.

  20. Versatile Trans-Replication Systems for Chikungunya Virus Allow Functional Analysis and Tagging of Every Replicase Protein

    PubMed Central

    Utt, Age; Quirin, Tania; Saul, Sirle; Hellström, Kirsi; Ahola, Tero; Merits, Andres

    2016-01-01

    Chikungunya virus (CHIKV; genus Alphavirus, family Togaviridae) has recently caused several major outbreaks affecting millions of people. There are no licensed vaccines or antivirals, and the knowledge of the molecular biology of CHIKV, crucial for development of efficient antiviral strategies, remains fragmentary. CHIKV has a 12 kb positive-strand RNA genome, which is translated to yield a nonstructural (ns) or replicase polyprotein. CHIKV structural proteins are expressed from a subgenomic RNA synthesized in infected cells. Here we have developed CHIKV trans-replication systems, where replicase expression and RNA replication are uncoupled. Bacteriophage T7 RNA polymerase or cellular RNA polymerase II were used for production of mRNAs for CHIKV ns polyprotein and template RNAs, which are recognized by CHIKV replicase and encode for reporter proteins. CHIKV replicase efficiently amplified such RNA templates and synthesized large amounts of subgenomic RNA in several cell lines. This system was used to create tagged versions of ns proteins including nsP1 fused with enhanced green fluorescent protein and nsP4 with an immunological tag. Analysis of these constructs and a matching set of replicon vectors revealed that the replicases containing tagged ns proteins were functional and maintained their subcellular localizations. When cells were co-transfected with constructs expressing template RNA and wild type or tagged versions of CHIKV replicases, formation of characteristic replicase complexes (spherules) was observed. Analysis of mutations associated with noncytotoxic phenotype in CHIKV replicons showed that a low level of RNA replication is not a pre-requisite for reduced cytotoxicity. The CHIKV trans-replicase does not suffer from genetic instability and represents an efficient, sensitive and reliable tool for studies of different aspects of CHIKV RNA replication process. PMID:26963103

  1. Versatile Trans-Replication Systems for Chikungunya Virus Allow Functional Analysis and Tagging of Every Replicase Protein.

    PubMed

    Utt, Age; Quirin, Tania; Saul, Sirle; Hellström, Kirsi; Ahola, Tero; Merits, Andres

    2016-01-01

    Chikungunya virus (CHIKV; genus Alphavirus, family Togaviridae) has recently caused several major outbreaks affecting millions of people. There are no licensed vaccines or antivirals, and the knowledge of the molecular biology of CHIKV, crucial for development of efficient antiviral strategies, remains fragmentary. CHIKV has a 12 kb positive-strand RNA genome, which is translated to yield a nonstructural (ns) or replicase polyprotein. CHIKV structural proteins are expressed from a subgenomic RNA synthesized in infected cells. Here we have developed CHIKV trans-replication systems, where replicase expression and RNA replication are uncoupled. Bacteriophage T7 RNA polymerase or cellular RNA polymerase II were used for production of mRNAs for CHIKV ns polyprotein and template RNAs, which are recognized by CHIKV replicase and encode for reporter proteins. CHIKV replicase efficiently amplified such RNA templates and synthesized large amounts of subgenomic RNA in several cell lines. This system was used to create tagged versions of ns proteins including nsP1 fused with enhanced green fluorescent protein and nsP4 with an immunological tag. Analysis of these constructs and a matching set of replicon vectors revealed that the replicases containing tagged ns proteins were functional and maintained their subcellular localizations. When cells were co-transfected with constructs expressing template RNA and wild type or tagged versions of CHIKV replicases, formation of characteristic replicase complexes (spherules) was observed. Analysis of mutations associated with noncytotoxic phenotype in CHIKV replicons showed that a low level of RNA replication is not a pre-requisite for reduced cytotoxicity. The CHIKV trans-replicase does not suffer from genetic instability and represents an efficient, sensitive and reliable tool for studies of different aspects of CHIKV RNA replication process.

  2. Genome-Wide Screening Uncovers the Significance of N-sulfation of Heparan Sulfate as a Host Cell Factor for Chikungunya Virus Infection.

    PubMed

    Tanaka, Atsushi; Tumkosit, Uranan; Nakamura, Shota; Motooka, Daisuke; Kishishita, Natsuko; Priengprom, Thongkoon; Sa-Ngasang, Areerat; Kinoshita, Taroh; Takeda, Naokazu; Maeda, Yusuke

    2017-04-12

    The molecular mechanisms underlying chikungunya virus (CHIKV) infection are poorly characterized. In this study, we analyzed the host factors involved in CHIKV infection using genome-wide screening. Human haploid HAP1 cells, into which an exon-trapping vector was introduced, were challenged with a vesicular stomatitis virus pseudotype bearing the CHIKV E3-E1 envelope proteins. Analysis of genes enriched in the cells resistant to the pseudotyped virus infection unveiled a critical role of N-sulfation of heparan sulfate (HS) for the infectivity of a clinically isolated CHIKV Thai #16856 strain to HAP1 cells. Knockout of NDST1 that catalyzes N-sulfation of HS greatly decreased the binding and infectivity of CHIKV Thai#16856 strain but not infectivity of Japanese encephalitis virus (JEV) and yellow fever virus (YFV). Whereas glycosaminoglycans were commonly required for efficient infectivity of CHIKV, JEV and YFV as shown by using B3GAT3 knockout cells, the tropism for N-sulfate was specific to CHIKV. Expression of chondroitin sulfate (CS) in NDST1-knockout HAP1 cells did not restore the binding of CHIKV Thai#16856 strain and the infectivity of its pseudotype but restored the infectivity of authentic CHIKV Thai#16856, suggesting that CS functions at the later steps after the CHIKV binding. Among the genes enriched in this screening, we found that TM9SF2 is critical for N-sulfation of HS and therefore for CHIKV infection, because it is involved in proper localization and stability of NDST1. Determination of the significance of and the relevant proteins to N-sulfation of HS may contribute to understanding mechanisms of CHIKV propagation, cell tropism and pathogenesis.IMPORTANCE Recent outbreaks of chikungunya fever have increased its clinical importance. Chikungunya virus (CHIKV) utilizes host glycosaminoglycans to bind efficiently to its target cells. However, the substructure in glycosaminoglycans required for CHIKV infection have not been characterized. Here, we

  3. Development and evaluation of one-step multiplex real-time RT-PCR assay for simultaneous detection of Zika virus and Chikungunya virus.

    PubMed

    Liu, Si-Qing; Li, Xiao; Deng, Cheng-Lin; Yuan, Zhi-Ming; Zhang, Bo

    2017-10-05

    Zika virus (ZIKV) and chikungunya virus (CHIKV) are important human pathogens and mosquito-borne arboviruses, which have resembling history, common vectors, circulating regions, and indistinguishable clinical symptoms. Wide geographical range that is suitable for ZIKV and CHIKV transmission underlines the concern about the impact of epidemic and endemic infections on burden of public health. In the present study, a highly sensitive and specific one-step multiplex real-time RT-PCR assay was developed and evaluated for simultaneous detection and quantification of ZIKV and CHIKV. The single reaction assay employs two pairs of primers and two TaqMan probes that differentiate ZIKV and CHIKV infections. The entire viral genomic RNA in vitro transcribed from full-length infectious clones were used to generate the standard curves for absolute quantification in subsequent tests. The detection limit of the one-step multiplex assay was 1 and 0.5 PFU for infectious ZIKV and CHIKV, respectively. The assessment of specificity indicated this assay is highly specific to targeted viruses showing no amplification of a variety of other flaviviruses. Our assay was able to detect geographically separated and phylogenetically diverse strains of ZIKV and CHIKV. On the applicability of monitoring viral multiplication in cells and testing clinical samples, the one-step multiplex assay provided efficient and accurate determination. The one-step multiplex real-time RT-PCR assay offers a valuable tool for detection of ZIKV and CHIKV and potentially contributes to general surveillance and clinical treatment. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. Attenuated temperature-sensitive respiratory syncytial virus mutants generated by cold adaptation.

    PubMed

    Randolph, V B; Kandis, M; Stemler-Higgins, P; Kennelly, M S; McMullen, Y M; Speelman, D J; Weeks-Levy, C

    1994-09-01

    Two strains of respiratory syncytial virus (RSV), RSV 2B and RSV 3A (representing subgroup B and A virus respectively) were cold-adapted by passaging in Vero cells for up to 42 weeks at successively lower temperatures down to 20 degrees C. Successful cold adaptation of the virus population was dependent on the amount of time the cultures were maintained at the various low temperatures, as well as on the strain of virus used. Temperature-sensitive (TS) mutants appeared in the cold passaged virus populations; however, the majority of the virus variants remained predominantly non-TS. Four RSV 2B and three RSV 3A TS mutants were selected for further characterization. These seven TS mutants retained their fusion phenotype and two major neutralizing antibody epitopes, and displayed varying levels of temperature sensitivity. Six of the seven mutants had a cold-adapted (CA) phenotype. All of the RSV 2B mutants were highly attenuated in cotton rats and two of the mutants elicited relatively high levels of neutralizing antibody and were able to protect rats against virus challenge. The RSV 3A TS mutants grew well in the nose but poorly in the cotton rat lungs, as did the parental 3A virus. All 3A mutants elicited high titers of neutralizing antibody and provided complete protection against virus challenge. These mutants showed varying levels of temperature sensitivity in vitro and attenuation in vivo and represent potential vaccine candidates.

  5. Characterization of vesicular stomatitis virus mutants by partial proteolysis.

    PubMed Central

    Metzel, P S; Reichmann, M E

    1981-01-01

    Structural proteins of temperature-sensitive (ts) mutants of vesicular stomatitis virus, Indiana serotype, were compared with those of wild-type and revertant virions by electrophoresis on polyacrylamide gels of partial digests with Staphylococcus aureus V8 protease. Mutants of complementation groups III (tsG31 and tsG33), II (tsG22), and IV (tsG41) differed from the wild-type virion in peptide profiles of their M, NS, and N proteins, respectively. The differences were only detectable over a narrow range of enzyme-substrate ratios and were due to peptides transiently generated during incomplete digestion. Proteins of revertants to tsG31, tsG22, and tsG41 exhibited the wild-type virion peptide pattern, indicating that reversion had restored their original conformation. However, in the case of tsG22, the NS peptide profile reverted to the wild-type phenotype only partially, suggesting that a silent mutation might have taken place during either the original chemical mutagenesis or the following repeated laboratory passages. The apparent alteration in protein conformation and its restoration upon reversion of the mutants indicated that the lesions of groups III and IV were located in the M and N proteins, respectively. Moreover, for the first time, the site of mutation of group II could be positively identified as the NS protein cistron. Images PMID:6260980

  6. Prevalence and clinical presentation of Rickettsia, Coxiella, Leptospira, Bartonella and chikungunya virus infections among hospital-based febrile patients from December 2008 to November 2009 in Bangladesh.

    PubMed

    Faruque, Labib Imran; Zaman, Rashid Uz; Gurley, Emily S; Massung, Robert F; Alamgir, A S M; Galloway, Renee L; Powers, Ann M; Bai, Ying; Kosoy, Michael; Nicholson, William L; Rahman, Mahmudur; Luby, Stephen P

    2017-02-13

    We conducted a study to identify Rickettsia, Coxiella, Leptospira, Bartonella, and Chikungunya virus infections among febrile patients presenting at hospitals in Bangladesh. We collected blood samples from patients at six tertiary hospitals from December 2008 to November 2009 and performed laboratory tests at the United States Centers for Disease Control and Prevention (CDC). Out of 720 enrolled patients, 263 (37%) were infected with Rickettsia; 132 patients had immunofluorescence antibody titer >64 against spotted fever, 63 patients against scrub typhus fever and 10 patients against typhus fever. Ten patients were identified with Coxiella. We isolated Leptospira from two patients and Bartonella from one patient. Ten patients had antibodies against Chikungunya virus. The proportion of patients who died was higher with rickettsial fever (5%) compared to those without a diagnosis of rickettsial infection (2%). None of the patients were initially diagnosed with rickettsial fever. Rickettsial infections are frequent yet under-recognized cause of febrile illness in Bangladesh. Clinical guidelines should be revised so that local clinicians can diagnose rickettsial infections and provide appropriate drug treatment.

  7. Inhibition of Chikungunya Virus-Induced Cell Death by Salicylate-Derived Bryostatin Analogues Provides Additional Evidence for a PKC-Independent Pathway.

    PubMed

    Staveness, Daryl; Abdelnabi, Rana; Near, Katherine E; Nakagawa, Yu; Neyts, Johan; Delang, Leen; Leyssen, Pieter; Wender, Paul A

    2016-04-22

    Chikungunya virus (CHIKV) has been spreading rapidly, with over one million confirmed or suspected cases in the Americas since late 2013. Infection with CHIKV causes devastating arthritic and arthralgic symptoms. Currently, there is no therapy to treat this disease, and the only medications focus on relief of symptoms. Recently, protein kinase C (PKC) modulators have been reported to inhibit CHIKV-induced cell death in cell assays. The salicylate-derived bryostatin analogues described here are structurally simplified PKC modulators that are more synthetically accessible than the natural product bryostatin 1, a PKC modulator and clinical lead for the treatment of cancer, Alzheimer's disease, and HIV eradication. Evaluation of the anti-CHIKV activity of these salicylate-derived bryostatin analogues in cell culture indicates that they are among the most potent cell-protective agents reported to date. Given that they are more accessible and significantly more active than the parent natural product, they represent new therapeutic leads for controlling CHIKV infection. Significantly, these analogues also provide evidence for the involvement of a PKC-independent pathway. This adds a fundamentally distinct aspect to the importance or involvement of PKC modulation in inhibition of chikungunya virus replication, a topic of recent and growing interest.

  8. Comparative analysis of the anti-chikungunya virus activity of novel bryostatin analogs confirms the existence of a PKC-independent mechanism.

    PubMed

    Abdelnabi, Rana; Staveness, Daryl; Near, Katherine E; Wender, Paul A; Delang, Leen; Neyts, Johan; Leyssen, Pieter

    2016-11-15

    Previously, we reported that salicylate-based analogs of bryostatin protect cells from chikungunya virus (CHIKV)-induced cell death. Interestingly, 'capping' the hydroxyl group at C26 of a lead bryostatin analog, a position known to be crucial for binding to and modulation of protein kinase C (PKC), did not abrogate the anti-CHIKV activity of the scaffold, putatively indicating the involvement of a pathway independent of PKC. The work detailed in this study demonstrates that salicylate-derived analog 1 and two capped analogs (2 and 3) are not merely cytoprotective compounds, but act as selective and specific inhibitors of CHIKV replication. Further, a detailed comparative analysis of the effect of the non-capped versus the two capped analogs revealed that compound 1 acts both at early and late stages in the chikungunya virus replication cycle, while the capped analogs only interfere with a later stage process. Co-dosing with the PKC inhibitors sotrastaurin and Gö6976 counteracts the antiviral activity of compound 1 without affecting that of capped analogs 2 and 3, providing further evidence that the latter elicit their anti-CHIKV activity independently of PKC. Remarkably, treatment of CHIKV-infected cells with a combination of compound 1 and a capped analog resulted in a pronounced synergistic antiviral effect. Thus, these salicylate-based bryostatin analogs can inhibit CHIKV replication through a novel, yet still elusive, non-PKC dependent pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Development and Validation of a Quantitative, One-Step, Multiplex, Real-Time Reverse Transcriptase PCR Assay for Detection of Dengue and Chikungunya Viruses

    PubMed Central

    Myers, Todd; Guevara, Carolina; Jungkind, Donald; Williams, Maya; Houng, Huo-Shu

    2016-01-01

    Dengue virus (DENV) and chikungunya virus (CHIKV) are important human pathogens with common transmission vectors and similar clinical presentations. Patient care may be impacted by the misdiagnosis of DENV and CHIKV in areas where both viruses cocirculate. In this study, we have developed and validated a one-step multiplex reverse transcriptase PCR (RT-PCR) to simultaneously detect, quantify, and differentiate between four DENV serotypes (pan-DENV) and chikungunya virus. The assay uses TaqMan technology, employing two forward primers, three reverse primers, and four fluorophore-labeled probes in a single-reaction format. Coextracted and coamplified RNA was used as an internal control (IC), and in vitro-transcribed DENV and CHIKV RNAs were used to generate standard curves for absolute quantification. The diagnostic 95% limits of detection (LOD) within the linear range were 50 and 60 RNA copies/reaction for DENV (serotypes 1 to 4) and CHIKV, respectively. Our assay was able to detect 53 different strains of DENV, representing four serotypes, and six strains of CHIKV. No cross-reactivity was observed with related flaviviruses and alphaviruses, To evaluate diagnostic sensitivity and specificity, 89 clinical samples positive or negative for DENV (serotypes 1 to 4) and CHIKV by the standard virus isolation method were tested in our assay. The multiplex RT-PCR assay showed 95% sensitivity and 100% specificity for DENV and 100% sensitivity and specificity for CHIKV. With an assay turnaround time of less than 2 h, including extraction of RNA, the multiplex quantitative RT-PCR assay provides rapid diagnosis for the differential detection of two clinically indistinguishable diseases, whose geographical occurrence is increasingly overlapping. PMID:27098955

  10. wMel limits zika and chikungunya virus infection in a Singapore Wolbachia-introgressed Ae. aegypti strain, wMel-Sg.

    PubMed

    Tan, Cheong Huat; Wong, PeiSze Jeslyn; Li, Meizhi Irene; Yang, HuiTing; Ng, Lee Ching; O'Neill, Scott Leslie

    2017-05-01

    Zika (ZIKV) and Chikungunya (CHIKV) viruses are emerging Aedes-borne viruses that are spreading outside their known geographic range and causing wide-scale epidemics. It has been reported that these viruses can be transmitted efficiently by Ae. aegypti. Recent studies have shown that Ae. aegypti when transinfected with certain Wolbachia strains shows a reduced replication and dissemination of dengue (DENV), Chikungunya (CHIKV), and Yellow Fever (YFV) viruses. The aim of this study was to determine whether the wMel strain of Wolbachia introgressed onto a Singapore Ae. aegypti genetic background was able to limit ZIKV and CHIKV infection in the mosquito. Five to seven-day old mosquitoes either infected or uninfected with wMel Wolbachia were orally infected with a Ugandan strain of ZIKV and several outbreak strains of CHIKV. The midgut and salivary glands of each mosquito were sampled at days 6, 9 and 13 days post infectious blood meal to determine midgut infection and salivary glands dissemination rates, respectively. In general, all wild type Ae. aegypti were found to have high ZIKV and CHIKV infections in their midguts and salivary glands, across all sampling days, compared to Wolbachia infected counterparts. Median viral titre for all viruses in Wolbachia infected mosquitoes were significantly lower across all time points when compared to wild type mosquitoes. Most significantly, all but two and one of the wMel infected mosquitoes had no detectable ZIKV and CHIKV, respectively, in their salivary glands at 14 days post-infectious blood meal. Our results showed that wMel limits both ZIKV and CHIKV infection when introgressed into a Singapore Ae. aegypti genetic background. These results also strongly suggest that female Aedes aegypti carrying Wolbachia will have a reduced capacity to transmit ZIKV and CHIKV.

  11. Chikungunya fever from Malaysia.

    PubMed

    Yamamoto, Kouta; Matumoto, Kentaro; Lim, Chang-Kweng; Moi, Meng Ling; Kotaki, Akira; Takasaki, Tomohiko

    2010-01-01

    An adult Malaysian woman returned to Japan from Kuala Lumpur and had onset of dengue fever-like symptoms including high fever, malaise and arthritis in early January 2009. Serum obtained on the following day was tested at the National Institute of Infectious Diseases in Tokyo, where it was determined to be positive for chikungunya virus (CHIKV) RNA. IgM antibody against CHIKV was negative on January 6 and sero-converted to be positive on January 14, confirming a recent CHIKV infection. Except for arthralgia, all her symptoms resolved uneventfully within 10 days.

  12. Deletion Mutants of Schmallenberg Virus Are Avirulent and Protect from Virus Challenge

    PubMed Central

    Kraatz, Franziska; Wernike, Kerstin; Hechinger, Silke; König, Patricia; Granzow, Harald; Reimann, Ilona

    2014-01-01

    ABSTRACT Since its emergence, Schmallenberg virus (SBV), a novel insect-transmitted orthobunyavirus which predominantly infects ruminants, has caused a large epidemic in European livestock. Newly developed inactivated vaccines are available, but highly efficacious and safe live vaccines are still not available. Here, the properties of novel recombinant SBV mutants lacking the nonstructural protein NSs (rSBVΔNSs) or NSm (rSBVΔNSm) or both of these proteins (rSBVΔNSs/ΔNSm) were tested in vitro and in vivo in type I interferon receptor knockout mice (IFNAR−/−) and in a vaccination/challenge trial in cattle. As for other bunyaviruses, both nonstructural proteins of SBV are not essential for viral growth in vitro. In interferon-defective BHK-21 cells, rSBVΔNSs and rSBVΔNSm replicated to levels comparable to that of the parental rSBV; the double mutant virus, however, showed a mild growth defect, resulting in lower final virus titers. Additionally, both mutants with an NSs deletion induced high levels of interferon and showed a marked growth defect in interferon-competent sheep SFT-R cells. Nevertheless, in IFNAR−/− mice, all mutants were virulent, with the highest mortality rate for rSBVΔNSs and a reduced virulence for the NSm-deleted virus. In cattle, SBV lacking NSm caused viremia and seroconversion comparable to those caused by the wild-type virus, while the NSs and the combined NSs/NSm deletion mutant induced no detectable virus replication or clinical disease after immunization. Furthermore, three out of four cattle immunized once with the NSs deletion mutant and all animals vaccinated with the virus lacking both nonstructural proteins were fully protected against a challenge infection. Therefore, the double deletion mutant will provide the basis for further developments of safe and efficacious modified live SBV vaccines which could be also a model for other viruses of the Simbu serogroup and related orthobunyaviruses. IMPORTANCE SBV induces only

  13. Chikungunya virus nsP3 & nsP4 interacts with HSP-90 to promote virus replication: HSP-90 inhibitors reduce CHIKV infection and inflammation in vivo.

    PubMed

    Rathore, Abhay P S; Haystead, Timothy; Das, Pratyush K; Merits, Andres; Ng, Mah-Lee; Vasudevan, Subhash G

    2014-03-01

    The global emergence of Chikungunya virus (CHIKV) infection is alarming and currently there is no licensed vaccine or antiviral treatment available to mitigate this disease. CHIKV infection typically results in high viral load with an outcome of high fever, skin rashes, muscle pain, and sequelae of prolonged arthritis, which occurs in >90% of the infected cases. In this study, using biochemical pull-downs, mass-spectrometry, and microscopic imaging techniques, we have identified novel interactions between CHIKV nsP3 or nsP4 proteins with the host stress-pathway chaperone HSP-90 protein. Indeed, silencing of HSP-90 transcripts using siRNA disrupts CHIKV replication in cultured cells. Furthermore, drugs targeting HSP-90, such as commercially available geldanamycin, as well as other specific HSP-90 inhibitor drugs that had been obtained from a purinome mining approach (HS-10 and SNX-2112) showed dramatic reduction in viral titers and reduced inflammation in a CHIKV mouse model of severe infection and musculopathy. The detailed study of the underlying molecular mechanism of these viral and host protein interactions may provide a platform to develop novel therapeutics against CHIKV infection. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. In vivo fitness and virulence of a drug-resistant herpes simplex virus 1 mutant.

    PubMed

    Pesola, Jean M; Coen, Donald M

    2007-05-01

    Two important issues regarding a virus mutant that is resistant to an antiviral drug are its ability to replicate in animal hosts (in vivo fitness) relative to other genetic variants, including wild type, and its ability to cause disease. These issues have been investigated for a herpes simplex virus 1 mutant that is resistant to thiourea compounds, which inhibit encapsidation of viral DNA. Following corneal inoculation of mice, the mutant virus replicated very similarly to its wild-type parent in the eye, trigeminal ganglion and brain. The mutant virus was as lethal to mice as its wild-type parent following this route of inoculation. Indeed, it exhibited increased virulence. Thus, unlike most drug-resistant virus mutants, this mutant retained in vivo fitness and virulence.

  15. Deglycosylation of the NS1 protein of dengue 2 virus, strain 16681: construction and characterization of mutant viruses.

    PubMed

    Crabtree, M B; Kinney, R M; Miller, B R

    2005-04-01

    The dengue 2 virus (DENV-2) NS1 glycoprotein contains two potential sites for N-linked glycosylation at Asn-130 and Asn-207. NS1 produced in infected cells is glycosylated at both of these sites. We used site-directed mutagenesis of a DENV-2, strain 16681, full length infectious clone to create mutant viruses lacking the Asn-130, Asn-207 or both of these NS1 glycosylation sites in order to investigate the effects of deglycosylation. Ablation of both NS1 glycosylation sites resulted in unstable viruses that acquired numerous additional mutations; these viruses were not further characterized. Viruses altered at the Asn-130 site exhibited growth characteristics similar to the wild-type (WT) 16681 virus in LLC-MK(2) cells and reduced growth in C6/36 cells. Viruses mutated at the Asn-207 site achieved similar titers in LLC-MK(2) cells compared to WT, however, the appearance of cytopathic effect was delayed and growth of these viruses in C6/36 cells was also reduced compared to WT virus. The plaque size of mutant viruses altered at the Asn-130 site did not differ from that of the WT virus, while mutants altered at the Asn-207 site exhibited a reduced and mixed plaque size. Temperature sensitivity studies comparing the growth of the viruses at 37 degrees C and 39 degrees C showed no significant differences compared to the WT virus. Immunofluorescent antibody staining of infected cells showed that for WT 16681 virus or the Asn-130 site mutant viruses NS1 was located throughout the cytoplasm, however, Asn-207 site mutant virus NS1 protein appeared to be localized to the perinuclear region. Viruses deglycosylated at either site exhibited a significant reduction in mouse neurovirulence compared to the WT virus. The results of our studies indicate that glycosylation of the DENV-2 virus NS1 protein may influence NS1 protein processing/transport as well as the pathogenicity of the virus.

  16. Evidence of vertical transmission and co-circulation of chikungunya and dengue viruses in field populations of Aedes aegypti (L.) from Guerrero, Mexico.

    PubMed

    Dzul-Manzanilla, Felipe; Martínez, Norma E; Cruz-Nolasco, Maximina; Gutiérrez-Castro, Cipriano; López-Damián, Leonardo; Ibarra-López, Jesús; Martini-Jaimes, Andres; Bibiano-Marín, Wilbert; Tornez-Benitez, Citlalli; Vazquez-Prokopec, Gonzalo M; Manrique-Saide, Pablo

    2016-02-01

    We report results of the entomo-virological surveillance system in Aedes aegypti local populations performed by the Ministry of Health of Guerrero. Indoor-adult Ae. aegypti collected at Acapulco, Zihuatanejo, Coyuca de Benitez and Atoyac de Alvarez (dry season, 2015) were processed for dengue virus (DENV) and chikungunya virus (CHIKV) using RT-PCR. We identified different seroptypes of DENV (2, 3 and 4), CHIKV and their co-circulation in field-caught mosquitoes across a significant geographic area. Pools of males were positive for CHIKV and DENV 3 and 4 suggesting vertical transmission. Entomo-virological surveillance in Guerrero has identified early circulation of CHIKV and DENV and provided a trigger for timely and focalized vector control actions. © The Author 2015. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Enrichment of a Precore-Minus Mutant of Duck Hepatitis B Virus in Experimental Mixed Infections

    PubMed Central

    Zhang, Yong-Yuan; Summers, Jesse

    1999-01-01

    A precore-deficient mutant of duck hepatitis B virus (DHBV) produced by site-directed mutagenesis was tested for its ability to compete with wild-type virus in a mixed infection of 3-day-old ducklings. The mutation was shown to produce a cis-acting defect, resulting in a replication rate that was about one-half that of wild-type virus. Accordingly, wild-type virus was rapidly selected during the spread of infection. During the chronic phase of the infection, however, two selection patterns were seen. In 4 of 10 ducks, the wild-type virus slowly replaced the precore mutant. In another four ducks, the precore mutant virus slowly replaced the wild-type virus. In the remaining two ducklings, ratios of wild-type and precore mutant virus fluctuated, with wild-type virus slowly predominating. The replacement of wild-type virus