Science.gov

Sample records for mutant epidermal growth

  1. Anti-oncogenic activity of signalling-defective epidermal growth factor receptor mutants.

    PubMed Central

    Redemann, N; Holzmann, B; von Rüden, T; Wagner, E F; Schlessinger, J; Ullrich, A

    1992-01-01

    Overexpression and autocrine activation of the epidermal growth factor receptor (EGF-R) cause transformation of cultured cells and correlate with tumor progression in cancer patients. Dimerization and transphosphorylation are crucial events in the process by which receptors with tyrosine kinase activity generate normal and transforming cellular signals. Interruption of this process by inactive receptor mutants offers the potential to inhibit ligand-induced cellular responses. Using recombinant retroviruses, we have examined the effects of signalling-incompetent EGF-R mutants on the growth-promoting and transforming potential of ligand-activated, overexpressed wild-type EGF-R and the v-erbB oncogene product. Expression of a soluble extracellular EGF-R domain had little if any effect on the growth and transformation of NIH 3T3 cells by either tyrosine kinase. However, both a kinase-negative EGF-R point mutant (HERK721A) and an EGF-R lacking 533 C-terminal amino acids efficiently inhibited wild-type EGF-R-mediated, de novo DNA synthesis and cell transformation in a dose-dependent manner. Furthermore, coexpression with the v-erbBES4 oncogene product in NIH 3T3 cells resulted in transphosphorylation of the HERK721A mutant receptor and reduced soft-agar colony growth but had no effect in a focus formation assay. These results demonstrate that signalling-defective receptor tyrosine kinase mutants differentially interfere with oncogenic signals generated by either overexpressed EGF-R or the retroviral v-erbBES4 oncogene product. Images PMID:1346334

  2. Mutant p53 amplifies Epidermal Growth Factor Receptor family signaling to promote mammary tumorigenesis

    PubMed Central

    Yallowitz, Alisha; Li, Dun; Lobko, Antony; Nemajerova, Alice; Marchenko, Natalia

    2016-01-01

    The epidermal growth factor receptor family (ErbB2/Her2 and EGFR/ErbB1/Her1) often modulates the transcriptional program involved in promoting mammary tumorigenesis. In humans, more than 70% of ErbB2-positive sporadic breast cancers harbor p53 mutations, which correlate with poor prognosis. Also, the extremely high incidence of ErbB2-positive breast cancer in women with p53 germ-line mutations (Li-Fraumeni Syndrome) suggests the key role of mutant p53 specifically in ErbB2-mediated mammary tumorigenesis. To examine the role of mutant p53 during ErbB2-mediated mammary tumorigenesis we introduced a mutant p53 R172H allele into a (MMTV)-ErbB2/Neu mouse model. We show in heterozygous p53 mice that mutp53 R172H is a more potent activator of ErbB2-mediated mammary tumorigenesis than simple loss of p53. The more aggressive disease in mutant p53 animals was reflected by earlier tumor onset, increased mammary tumor multiplicity, and shorter survival. We provide molecular evidence that mutant p53 amplifies ErbB2 and EGFR signaling to promote the expansion of mammary stem cells and induce cancer cell proliferation. This study therefore identifies mutant p53 as an essential player in ErbB2 and EGFR-mediated breast cancer and indicates the potential translational importance of targeting mutant p53 in this subset of breast cancer patients. PMID:25573952

  3. Nucleotide-binding properties of kinase-deficient epidermal-growth-factor-receptor mutants.

    PubMed

    Cheng, K; Koland, J G

    1998-02-15

    The nucleotide-binding properties of wild-type epidermal- growth-factor (EGF)-receptor protein tyrosine kinase (PTK) and EGF-receptor mutants with site-specific amino acid substitutions known to attenuate protein kinase activity were analysed by a fluorescence competition assay employing the nucleotide analogue 2'(3')-O-(2,4,6-trinitrophenyl)adenosine 5'-triphosphate. Binding affinities for ATP and Mn.ATP complex were determined for the PTK domains of the wild-type and two mutant proteins. Surprisingly, mutation of the highly conserved Lys-721 residue in the nucleotide-binding site of the EGF- receptor PTK domain did not abolish ATP and Mn.ATP binding, although the binding affinity for the Mn.ATP complex was significantly reduced. A second kinase-inactivating mutation that targeted the highly conserved Asp-813 residue had little effect on the nucleotide-binding properties of the EGF-receptor PTK domain. These results indicated that the principle effect of these two kinase-inactivating amino acid substitutions is not to block nucleotide binding, but is instead an inhibition of the phospho-transfer reaction.

  4. Nucleotide-binding properties of kinase-deficient epidermal-growth-factor-receptor mutants.

    PubMed Central

    Cheng, K; Koland, J G

    1998-01-01

    The nucleotide-binding properties of wild-type epidermal- growth-factor (EGF)-receptor protein tyrosine kinase (PTK) and EGF-receptor mutants with site-specific amino acid substitutions known to attenuate protein kinase activity were analysed by a fluorescence competition assay employing the nucleotide analogue 2'(3')-O-(2,4,6-trinitrophenyl)adenosine 5'-triphosphate.Binding affinities for ATP and Mn.ATP complex were determined for the PTK domains of the wild-type and two mutant proteins. Surprisingly, mutation of the highly conserved Lys-721 residue in the nucleotide-binding site of the EGF- receptor PTK domain did not abolish ATP and Mn.ATP binding, although the binding affinity for the Mn.ATP complex was significantly reduced. A second kinase-inactivating mutation that targeted the highly conserved Asp-813 residue had little effect on the nucleotide-binding properties of the EGF-receptor PTK domain. These results indicated that the principle effect of these two kinase-inactivating amino acid substitutions is not to block nucleotide binding, but is instead an inhibition of the phospho-transfer reaction. PMID:9461530

  5. Loss of Mig6 accelerates initiation and progression of mutant epidermal growth factor receptor-driven lung adenocarcinoma

    PubMed Central

    Maity, Tapan K.; Venugopalan, Abhilash; Linnoila, Ilona; Cultraro, Constance M.; Giannakou, Andreas; Nemati, Roxanne; Zhang, Xu; Webster, Joshua D.; Ritt, Daniel; Ghosal, Sarani; Hoschuetzky, Heinz; Simpson, R. Mark; Biswas, Romi; Politi, Katerina; Morrison, Deborah K.; Varmus, Harold E.; Guha, Udayan

    2015-01-01

    Somatic mutations in the epidermal growth factor receptor (EGFR) kinase domain drive lung adenocarcinoma. We have previously identified MIG6, an inhibitor of ERBB signaling and a potential tumor suppressor, as a target for phosphorylation by mutant EGFRs. Here we demonstrate that Mig6 is a tumor suppressor for the initiation and progression of mutant EGFR-driven lung adenocarcinoma in mouse models. Mutant EGFR-induced lung tumor formation was accelerated in Mig6-deficient mice, even with Mig6 haploinsufficiency. We demonstrate that constitutive phosphorylation of MIG6 at Y394/395 in EGFR-mutant human lung adenocarcinoma cell lines is associated with an increased interaction of MIG6 with mutant EGFR, which may stabilize EGFR protein. MIG6 also fails to promote mutant EGFR degradation. We propose a model whereby increased tyrosine phosphorylation of MIG6 decreases its capacity to inhibit mutant EGFR. Nonetheless, the residual inhibition is sufficient for Mig6 to delay mutant EGFR-driven tumor initiation and progression in mouse models. PMID:25735773

  6. Exome sequencing deciphers a germline MET mutation in familial epidermal growth factor receptor-mutant lung cancer.

    PubMed

    Tode, Naoki; Kikuchi, Toshiaki; Sakakibara, Tomohiro; Hirano, Taizou; Inoue, Akira; Ohkouchi, Shinya; Tamada, Tsutomu; Okazaki, Tatsuma; Koarai, Akira; Sugiura, Hisatoshi; Niihori, Tetsuya; Aoki, Yoko; Nakayama, Keiko; Matsumoto, Kunio; Matsubara, Yoichi; Yamamoto, Masayuki; Watanabe, Akira; Nukiwa, Toshihiro; Ichinose, Masakazu

    2017-03-13

    Lung cancer accompanied by somatic activating mutations in the epidermal growth factor receptor (EGFR) gene, which is associated with a significant clinical response to the targeted therapy, is frequently found in never-smoking Asian women with adenocarcinoma. Although this implies genetic factors underlying the carcinogenesis, the etiology remains unclear. To gain insight into the pathogenic mechanisms, we sequenced the exomes in the peripheral-blood DNA from six siblings, four affected and two unaffected siblings, of a kindred with familial EGFR-mutant lung adenocarcinoma. We identified a heterozygous missense mutation in MET proto-oncogene, p.Asn375Lys, in all four affected siblings. Combined with somatic loss of heterozygosity for MET, the higher allele frequency in a Japanese sequencing database supports a causative role of the MET mutation in EGFR-mutant lung cancer. Functional assays showed that the mutation reduces the binding affinity of MET for its ligand, hepatocyte growth factor, and damages the subsequent cellular processes including proliferation, clonogenicity, motility, and tumorigenicity. The MET mutation was further observed to abrogate the ERBB3-mediated AKT signal transduction, which is shared downstream by EGFR. These findings provide an etiological view that the MET mutation is involved in the pathogenesis of EGFR-mutant lung cancer because it generates oncogenic stress that induces compensatory EGFR activation. The identification of MET in a kindred with familial EGFR-mutant lung cancer is insightful to explore the pathogenic mechanism of not only familial, but also sporadic EGFR-mutant lung cancer by underscoring MET-related signaling molecules. This article is protected by copyright. All rights reserved.

  7. Sensitivity of epidermal growth factor receptor and ErbB2 exon 20 insertion mutants to Hsp90 inhibition.

    PubMed

    Xu, W; Soga, S; Beebe, K; Lee, M-J; Kim, Y S; Trepel, J; Neckers, L

    2007-09-17

    The mature epidermal growth factor receptor (EGFR) neither associates with nor requires the molecular chaperone heat-shock protein 90 (Hsp90). Mutations in EGFR exons 18, 19, and 21 confer Hsp90 chaperone dependence. In non-small cell lung cancer (NSCLC), these mutations are associated with enhanced sensitivity to EGFR inhibitors in vitro and with clinical response in vivo. Although less prevalent, insertions in EGFR exon 20 have also been described in NSCLC. These mutations, however, confer resistance to EGFR inhibitors. In NSCLC, exon 20 insertions have also been identified in the EGFR family member ErbB2. Here, we examined the sensitivity of exon 20 insertion mutants to an Hsp90 inhibitor currently in the clinic. Our data demonstrate that both EGFR and ErbB2 exon 20 insertion mutants retain dependence on Hsp90 for stability and downstream-signalling capability, and remain highly sensitive to Hsp90 inhibition. Use of Hsp90 inhibitors should be considered in NSCLC harbouring exon 20 insertions in either EGFR or ErbB2.

  8. Epidermal growth factor impairs palatal shelf adhesion and fusion in the Tgf-β 3 null mutant.

    PubMed

    Barrio, M Carmen; Del Río, Aurora; Murillo, Jorge; Maldonado, Estela; López-Gordillo, Yamila; Paradas-Lara, Irene; Hernandes, Luzmarina; Catón, Javier; Martínez-Álvarez, Concepción

    2014-01-01

    The cleft palate presented by transforming growth factor-β3 (Tgf-β3) null mutant mice is caused by altered palatal shelf adhesion, cell proliferation, epithelial-to-mesenchymal transformation and cell death. The expression of epidermal growth factor (EGF), transforming growth factor-β1 (Tgf-β1) and muscle segment homeobox-1 (Msx-1) is modified in the palates of these knockout mice, and the cell proliferation defect is caused by the change in EGF expression. In this study, we aimed to determine whether this change in EGF expression has any effect on the other mechanisms altered in Tgf-β3 knockout mouse palates. We tested the effect of inhibiting EGF activity in vitro in the knockout palates via the addition of Tyrphostin AG 1478. We also investigated possible interactions between EGF, Tgf-β1 and Msx-1 in Tgf-β3 null mouse palate cultures. The results show that the inhibition of EGF activity in Tgf-β3 null mouse palate cultures improves palatal shelf adhesion and fusion, with a particular effect on cell death, and restores the normal distribution pattern of Msx-1 in the palatal mesenchyme. Inhibition of TGF-β1 does not affect either EGF or Msx-1 expression.

  9. Anti-synthetic peptide antibody reacting at the fusion junction of deletion-mutant epidermal growth factor receptors in human glioblastoma

    SciTech Connect

    Humphrey, P.A.; Zalutsky, M.R.; Fuller, G.N.; Archer, G.E.; Friedman, H.S.; Kwatra, M.M.; Bigner, S.H.; Bigner, D.D. ); Wong, A.J. ); Vogelstein, B. )

    1990-06-01

    The authors have investigated human gliomas that amplify and rearrange the epidermal growth factor receptor gene, with generation of an in-frame deletion mutation of 802 nucleotides in the external domain. This in-frame deletion mutation generates a local amino acid sequence at the fusion junction of what normally were distant polypeptide sequences in the intact epidermal growth factor receptor. This 14-amino acid peptide was chemically synthesized, coupled to keyhole limpet hemocyanin, and used as an immunogen in rabbits. The elicited antibody reacted specifically with the fusion peptide in ELISA. The anti-fusion junction peptide antibody was purified by passage of the antiserum over a peptide affinity column with acidic elution. The purified antibody selectively bound the glioma deletion mutant as compared to the intact epidermal growth factor receptor as assessed by immunocytochemistry, immunofluorescence, immunoprecipitation with gel electrophoresis, and binding experiments using radioiodinated antibody. These data indicate that it is feasible to generate site-specific anti-peptide antibodies that are highly selective for mutant proteins in human tumors. The anti-peptide antibody described here, and other mutation site-specific antibodies, should be ideal candidates for tumor immunoimaging and immunotherapy.

  10. Next-generation epidermal growth factor receptor tyrosine kinase inhibitors in epidermal growth factor receptor -mutant non-small cell lung cancer.

    PubMed

    Tan, Chee-Seng; Cho, Byoung-Chul; Soo, Ross A

    2016-03-01

    Since the discovery of sensitizing EGFR mutations as a predictive marker of sensitivity to EGFR tyrosine kinase inhibitors (TKIs), the field of targeted therapy in non-small cell lung cancer (NSCLC) has been revolutionized. Patients harbouring these sensitizing mutations treated with EGFR TKI have derived significant clinical outcome when compared with standard platinum based chemotherapy doublets. However disease progression invariably occurs at a median of about 9-13 months from initiation treatment, if acquired resistance commonly due to the development of EGFR T790M mutation. A novel class of "third generation" EGFR TKIs have been developed that is sensitising and T790M mutant-specific whilst sparing WT EGFR, representing a significant breakthrough in the treatment in NSCLC patients with acquired resistance harboring these genotypes. Early phase clinical data suggest the third generation EGFR TKIs such as osimertinib, rociletinib, and HM61713 are highly efficacious and well tolerated. Another promising class of EGFR TKI such as AZD3759 has been designed to penetrate blood brain barrier to treat brain metastases and leptomeningeal disease and has showed promising responses in patients with brain metastases. Acquired resistance to third generation EGFR TKIs has been reported including EGFR C797S. Given its non-invasive nature, plasma ctDNA is being explored as a possible approach to detect T790M mutation and to also inform on novel molecular mechansims of tertiary resistance to third generation EGFR TKIs. An understanding of the mechanisms of acquired resistance to the third-generation EGFR TKIs will greatly aid in the development of the next generation of EGFR TKIs.

  11. Nexus of signaling and endocytosis in oncogenesis driven by non-small cell lung cancer-associated epidermal growth factor receptor mutants

    PubMed Central

    Chung, Byung Min; Tom, Eric; Zutshi, Neha; Bielecki, Timothy Alan; Band, Vimla; Band, Hamid

    2014-01-01

    Epidermal growth factor receptor (EGFR) controls a wide range of cellular processes, and aberrant EGFR signaling as a result of receptor overexpression and/or mutation occurs in many types of cancer. Tumor cells in non-small cell lung cancer (NSCLC) patients that harbor EGFR kinase domain mutations exhibit oncogene addiction to mutant EGFR, which confers high sensitivity to tyrosine kinase inhibitors (TKIs). As patients invariably develop resistance to TKIs, it is important to delineate the cell biological basis of mutant EGFR-induced cellular transformation since components of these pathways can serve as alternate therapeutic targets to preempt or overcome resistance. NSCLC-associated EGFR mutants are constitutively-active and induce ligand-independent transformation in nonmalignant cell lines. Emerging data suggest that a number of factors are critical for the mutant EGFR-dependent tumorigenicity, and bypassing the effects of TKIs on these pathways promotes drug resistance. For example, activation of downstream pathways such as Akt, Erk, STAT3 and Src is critical for mutant EGFR-mediated biological processes. It is now well-established that the potency and spatiotemporal features of cellular signaling by receptor tyrosine kinases such as EGFR, as well as the specific pathways activated, is determined by the nature of endocytic traffic pathways through which the active receptors traverse. Recent evidence indicates that NSCLC-associated mutant EGFRs exhibit altered endocytic trafficking and they exhibit reduced Cbl ubiquitin ligase-mediated lysosomal downregulation. More recent work has shown that mutant EGFRs undergo ligand-independent traffic into the endocytic recycling compartment, a behavior that plays a key role in Src pathway activation and oncogenesis. These studies are beginning to delineate the close nexus between signaling and endocytic traffic of EGFR mutants as a key driver of oncogenic processes. Therefore, in this review, we will discuss the links

  12. Loss of BRCA1 leads to an increase in epidermal growth factor receptor expression in mammary epithelial cells, and epidermal growth factor receptor inhibition prevents estrogen receptor-negative cancers in BRCA1-mutant mice

    PubMed Central

    2011-01-01

    Introduction Women who carry a BRCA1 mutation typically develop "triple-negative" breast cancers (TNBC), defined by the absence of estrogen receptor (ER), progesterone receptor and Her2/neu. In contrast to ER-positive tumors, TNBCs frequently express high levels of epidermal growth factor receptor (EGFR). Previously, we found a disproportionate fraction of progenitor cells in BRCA1 mutation carriers with EGFR overexpression. Here we examine the role of EGFR in mammary epithelial cells (MECs) in the emergence of BRCA1-related tumors and as a potential target for the prevention of TNBC. Methods Cultures of MECs were used to examine EGFR protein levels and promoter activity in response to BRCA1 suppression with inhibitory RNA. EGFR was assessed by immunoblot and immunofluorescence analysis, real-time reverse transcriptase-polymerase chain reaction assay (RT-PCR) and flow cytometry. Binding of epidermal growth factor (EGF) to subpopulations of MECs was examined by Scatchard analysis. The responsiveness of MECs to the EGFR inhibitor erlotinib was assessed in vitro in three-dimensional cultures and in vivo. Mouse mammary tumor virus-Cre recombinase (MMTV-Cre) BRCA1flox/flox p53+/- mice were treated daily with erlotinib or vehicle control, and breast cancer-free survival was analyzed using the Kaplan-Meier method. Results Inhibition of BRCA1 in MECs led to upregulation of EGFR with an inverse correlation of BRCA1 with cellular EGFR protein levels (r2 = 0.87) and to an increase in cell surface-expressed EGFR. EGFR upregulation in response to BRCA1 suppression was mediated by transcriptional and posttranslational mechanisms. Aldehyde dehydrogenase 1 (ALDH1)-positive MECs expressed higher levels of EGFR than ALDH1-negative MECs and were expanded two- to threefold in the BRCA1-inhibited MEC population. All MECs were exquisitely sensitive to EGFR inhibition with erlotinib in vitro. EGFR inhibition in MMTV-Cre BRCA1flox/flox p53+/- female mice starting at age 3 months increased

  13. Chemically Induced Conditional Rescue of the Reduced Epidermal Fluorescence8 Mutant of Arabidopsis Reveals Rapid Restoration of Growth and Selective Turnover of Secondary Metabolite Pools1[C][OPEN

    PubMed Central

    Kim, Jeong Im; Ciesielski, Peter N.; Donohoe, Bryon S.; Chapple, Clint; Li, Xu

    2014-01-01

    The phenylpropanoid pathway is responsible for the biosynthesis of diverse and important secondary metabolites including lignin and flavonoids. The reduced epidermal fluorescence8 (ref8) mutant of Arabidopsis (Arabidopsis thaliana), which is defective in a lignin biosynthetic enzyme p-coumaroyl shikimate 3′-hydroxylase (C3′H), exhibits severe dwarfism and sterility. To better understand the impact of perturbation of phenylpropanoid metabolism on plant growth, we generated a chemically inducible C3′H expression construct and transformed it into the ref8 mutant. Application of dexamethasone to these plants greatly alleviates the dwarfism and sterility and substantially reverses the biochemical phenotypes of ref8 plants, including the reduction of lignin content and hyperaccumulation of flavonoids and p-coumarate esters. Induction of C3′H expression at different developmental stages has distinct impacts on plant growth. Although early induction effectively restored the elongation of primary inflorescence stem, application to 7-week-old plants enabled them to produce new rosette inflorescence stems. Examination of hypocotyls of these plants revealed normal vasculature in the newly formed secondary xylem, presumably restoring water transport in the mutant. The ref8 mutant accumulates higher levels of salicylic acid than the wild type, but depletion of this compound in ref8 did not relieve the mutant’s growth defects, suggesting that the hyperaccumulation of salicylic acid is unlikely to be responsible for dwarfism in this mutant. PMID:24381065

  14. Update on recent preclinical and clinical studies of T790M mutant-specific irreversible epidermal growth factor receptor tyrosine kinase inhibitors.

    PubMed

    Liao, Bin-Chi; Lin, Chia-Chi; Lee, Jih-Hsiang; Yang, James Chih-Hsin

    2016-12-03

    The first- and second-generation epidermal growth factor receptor tyrosine kinase inhibitors (1/2G EGFR-TKIs) gefitinib, erlotinib, and afatinib have all been approved as standard first-line treatments for advanced EGFR mutation-positive non-small cell lung cancer. The third-generation (3G) EGFR-TKIs have been developed to overcome the EGFR T790M mutation, which is the most common mechanism of acquired resistance to 1/2G EGFR-TKI treatment. This resistance mutation develops in half of the patients who respond to 1/2G EGFR-TKI therapy. The structures of the novel 3G EGFR-TKIs are different from those of 1/2G EGFR-TKIs. Particularly, 3G EGFR-TKIs have lower affinity to wild-type EGFR, and are therefore associated with lower rates of skin and gastrointestinal toxicities. However, many of the adverse events (AEs) that are observed in patients receiving 3G EGFR-TKIs have not been observed in patients receiving 1/2G EGFR-TKIs. Although preclinical studies have revealed many possible mechanisms for these AEs, the causes of some AEs remain unknown. Many mechanisms of resistance to 3G EGFR-TKI therapy have also been reported. Here, we have reviewed the recent clinical and preclinical developments related to novel 3G EGFR-TKIs, including osimertinib, rociletinib, olmutinib, EGF816, and ASP8273.

  15. Molecular determinants of drug-specific sensitivity for epidermal growth factor receptor (EGFR) exon 19 and 20 mutants in non-small cell lung cancer.

    PubMed

    Tsigelny, Igor F; Wheler, Jennifer J; Greenberg, Jerry P; Kouznetsova, Valentina L; Stewart, David J; Bazhenova, Lyudmila; Kurzrock, Razelle

    2015-03-20

    We hypothesized that aberrations activating epidermal growth factor receptor (EGFR) via dimerization would be more sensitive to anti-dimerization agents (e.g., cetuximab). EGFR exon 19 abnormalities (L747_A750del; deletes amino acids LREA) respond to reversible EGFR kinase inhibitors (TKIs). Exon 20 in-frame insertions and/or duplications (codons 767 to 774) and T790M mutations are clinically resistant to reversible/some irreversible TKIs. Their impact on protein function/therapeutic actionability are not fully elucidated.In our study, the index patient with non-small cell lung cancer (NSCLC) harbored EGFR D770_P772del_insKG (exon 20). A twenty patient trial (NSCLC cohort) (cetuximab-based regimen) included two participants with EGFR TKI-resistant mutations ((i) exon 20 D770>GY; and (ii) exon 19 LREA plus exon 20 T790M mutations). Structural modeling predicted that EGFR exon 20 anomalies (D770_P772del_insKG and D770>GY), but not T790M mutations, stabilize the active dimer configuration by increasing the interaction between the kinase domains, hence sensitizing to an agent preventing dimerization. Consistent with predictions, the two patients harboring D770_P772del_insKG and D770>GY, respectively, responded to an EGFR antibody (cetuximab)-based regimen; the T790M-bearing patient showed no response to cetuximab combined with erlotinib. In silico modeling merits investigation of its ability to optimize therapeutic selection based on structural/functional implications of different aberrations within the same gene.

  16. Synthesis and biological evaluation of azole-diphenylpyrimidine derivatives (AzDPPYs) as potent T790M mutant form of epidermal growth factor receptor inhibitors.

    PubMed

    Song, Zhendong; Jin, Yue; Ge, Yang; Wang, Changyuan; Zhang, Jianbin; Tang, Zeyao; Peng, Jinyong; Liu, Kexin; Li, Yanxia; Ma, Xiaodong

    2016-11-01

    A series of novel azole-diphenylpyrimidine derivatives (AzDPPYs) were synthesized and biologically evaluated as potent EGFR(T790M) inhibitors. Among these analogues, the most active inhibitor 6e not only displayed high activity against EGFR(T790M/L858R) kinase (IC50=3.3nM), but also was able to repress the replication of H1975 cells harboring EGFR(T790M) mutation at a concentration of 0.118μmol/L. In contrast to the lead compound rociletinib, 6e slightly reduces the key EGFRT790M-minduced drug resistance. Significantly, inhibitor 6e demonstrates high selectivity (SI=299.3) for T790M-containing EGFR mutants over wild type EGFR, hinting that it will cause less side effects.

  17. Epidermal Growth Factor and Intestinal Barrier Function

    PubMed Central

    Liu, Hu; Yang, Shufen; Li, Zuohua; Zhong, Jinfeng

    2016-01-01

    Epidermal growth factor (EGF) is a 53-amino acid peptide that plays an important role in regulating cell growth, survival, migration, apoptosis, proliferation, and differentiation. In addition, EGF has been established to be an effective intestinal regulator helping to protect intestinal barrier integrity, which was essential for the absorption of nutrients and health in humans and animals. Several researches have demonstrated that EGF via binding to the EGF receptor and subsequent activation of Ras/MAPK, PI3K/AKT, PLC-γ/PKC, and STATS signal pathways regulates intestinal barrier function. In this review, the relationship between epidermal growth factor and intestinal development and intestinal barrier is described, to provide a better understanding of the effects of EGF on intestine development and health. PMID:27524860

  18. CrkII signals from epidermal growth factor receptor to Ras.

    PubMed Central

    Kizaka-Kondoh, S; Matsuda, M; Okayama, H

    1996-01-01

    A rat fibroblast mutant defective in oncogenic transformation and signaling from epidermal growth factor receptor to Ras has been isolated. The mutant contains dominant negative-type point mutations in the C-terminal SH3 domain of one crkII gene. Among the adapters tested, the mutant is complemented only by crkII cDNA. Expression of the mutated crkII in parent cells generates the phenotype indistinguishable from the mutant cell. Yet overexpression or reduced expression of Grb2 in the mutant before and after complementation with crkII have little effect on its phenotype. We conclude that adapter molecules are highly specific and that the oncogenic growth signal from epidermal growth factor receptor to Ras is predominantly mediated by CrkII in rat fibroblast. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:8901553

  19. Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor–Resistant Disease

    PubMed Central

    Ohashi, Kadoaki; Maruvka, Yosef E.; Michor, Franziska; Pao, William

    2013-01-01

    Purpose EGFR-mutant lung cancer was first described as a new clinical entity in 2004. Here, we present an update on new controversies and conclusions regarding the disease. Methods This article reviews the clinical implications of EGFR mutations in lung cancer with a focus on epidermal growth factor receptor tyrosine kinase inhibitor resistance. Results The discovery of EGFR mutations has altered the ways in which we consider and treat non–small-cell lung cancer (NSCLC). Patients whose metastatic tumors harbor EGFR mutations are expected to live longer than 2 years, more than double the previous survival rates for lung cancer. Conclusion The information presented in this review can guide practitioners and help them inform their patients about EGFR mutations and their impact on the treatment of NSCLC. Efforts should now concentrate on making EGFR-mutant lung cancer a chronic rather than fatal disease. PMID:23401451

  20. [Epidermal growth factor, innovation and safety].

    PubMed

    Esquirol Caussa, Jordi; Herrero Vila, Elisabeth

    2015-10-05

    Bioidentical recombinant human epidermal growth factor (rhEGF) is available in concentrations and purity suitable for therapeutic use in long time stable formulations. Beneficial effects in several skin pathologies and lesions have been reported (traumatic and surgical wound healing, laser induced wounds, abnormal scars, keloids, radiation or chemotherapy induced dermatitis, post inflammatory hyperpigmentation or for skin aging damage repairing) and also may be considered for the treatment of several oropharingeal and high gastroesophageal tract mucosa diseases (mouth sores, pharyngeal fistulas, ulcers), and several corneal or conjunctive mucosa lesions. rhEGF has not shown any important side or collateral effects in humans or in laboratory experimentation animals, showing optimal tolerability and safety with continuous use for months. Compounding gives advantages of versatility, individualization, personalization, molecular stability, safety and effectiveness in ideal conditions, showing good tissue penetration, both on intact skin and skin lesions that expose the lower planes to the surface. rhEGF compounds can be considered for prevention or as a treatment of diverse skin and mucosa diseases and conditions through compounding preparations.

  1. Epidermal Vascular Endothelial Growth Factor Production Is Required for Permeability Barrier Homeostasis, Dermal Angiogenesis, and the Development of Epidermal Hyperplasia

    PubMed Central

    Elias, Peter M.; Arbiser, Jack; Brown, Barbara E.; Rossiter, Heidemarie; Man, Mao-Qiang; Cerimele, Francesca; Crumrine, Debra; Gunathilake, Roshan; Choi, Eung Ho; Uchida, Yoshikazu; Tschachler, Erwin; Feingold, Kenneth R.

    2008-01-01

    Primary abnormalities in permeability barrier function appear to underlie atopic dermatitis and epidermal trauma; a concomitant barrier dysfunction could also drive other inflammatory dermatoses, including psoriasis. Central to this outside-inside view of disease pathogenesis is the epidermal generation of cytokines/growth factors, which in turn signal downstream epidermal repair mechanisms. Yet, this cascade, if sustained, signals downstream epidermal hyperplasia and inflammation. We found here that acute barrier disruption rapidly stimulates mRNA and protein expression of epidermal vascular endothelial growth factor-A (VEGF-A) in normal hairless mice, a specific response to permeability barrier requirements because up-regulation is blocked by application of a vapor-impermeable membrane. Moreover, epidermal vegf−/− mice display abnormal permeability barrier homeostasis, attributable to decreased VEGF signaling of epidermal lamellar body production; a paucity of dermal capillaries with reduced vascular permeability; and neither angiogenesis nor epidermal hyperplasia in response to repeated tape stripping (a model of psoriasiform hyperplasia). These results support a central role for epidermal VEGF in the maintenance of epidermal permeability barrier homeostasis and a link between epidermal VEGF production and both dermal angiogenesis and the development of epidermal hyperplasia. Because psoriasis is commonly induced by external trauma [isomorphic (Koebner) phenomenon] and is associated with a prominent permeability barrier abnormality, excess VEGF production, prominent angiogenesis, and epidermal hyperplasia, these results could provide a potential outside-inside mechanistic basis for the development of psoriasis. PMID:18688025

  2. Oncogenic fingerprint of epidermal growth factor receptor pathway and emerging epidermal growth factor receptor blockade resistance in colorectal cancer

    PubMed Central

    Sobani, Zain A; Sawant, Ashwin; Jafri, Mikram; Correa, Amit Keith; Sahin, Ibrahim Halil

    2016-01-01

    Epidermal growth factor receptor (EGFR) has been an attractive target for treatment of epithelial cancers, including colorectal cancer (CRC). Evidence from clinical trials indicates that cetuximab and panitumumab (anti-EGFR monoclonal antibodies) have clinical activity in patients with metastatic CRC. The discovery of intrinsic EGFR blockade resistance in Kirsten RAS (KRAS)-mutant patients led to the restriction of anti-EGFR antibodies to KRAS wild-type patients by Food and Drug Administration and European Medicine Agency. Studies have since focused on the evaluation of biomarkers to identify appropriate patient populations that may benefit from EGFR blockade. Accumulating evidence suggests that patients with mutations in EGFR downstream signaling pathways including KRAS, BRAF, PIK3CA and PTEN could be intrinsically resistant to EGFR blockade. Recent whole genome studies also suggest that dynamic alterations in signaling pathways downstream of EGFR leads to distinct oncogenic signatures and subclones which might have some impact on emerging resistance in KRAS wild-type patients. While anti-EGFR monoclonal antibodies have a clear potential in the management of a subset of patients with metastatic CRC, further studies are warranted to uncover exact mechanisms related to acquired resistance to EGFR blockade. PMID:27777877

  3. Epidermal growth factor receptor mutation enhances expression of vascular endothelial growth factor in lung cancer.

    PubMed

    Hung, Ming-Szu; Chen, I-Chuan; Lin, Paul-Yann; Lung, Jr-Hau; Li, Ya-Chin; Lin, Yu-Ching; Yang, Cheng-Ta; Tsai, Ying-Huang

    2016-12-01

    Epidermal growth factor receptor (EGFR) activation has been demonstrated to have a critical role in tumor angiogenesis. In the present study, the correlation between EGFR mutations and vascular endothelial growth factor (VEGF) was investigated in lung cancer cell lines and non-small-cell lung cancer (NSCLC) tumor tissues. VEGF levels were significantly increased in culture medium of lung cancer cells and NSCLC tissues with EGFR mutations (H1650 vs. A549, P=0.0399; H1975 vs. A549, P<0.0001). Stable lung cancer cell lines expressing mutant (exon 19 deletion, E746-A750; exon 21 missense mutation, L858R) and wild-type EGFR genes were established. Significantly increased expression of VEGF and stronger inhibitory effects of gefitinib to VEGF expression were observed in exon 19 deletion stable lung cancer cells (exon 19 deletion vs. wild-type EGFR, P=0.0005). The results of the present study may provide an insight into the association of mutant EGFR and VEGF expression in lung cancer, and may assist with further development of targeted therapy for NSCLC in the future.

  4. Transforming growth factor alpha and epidermal growth factor levels in bladder cancer and their relationship to epidermal growth factor receptor.

    PubMed Central

    Mellon, J. K.; Cook, S.; Chambers, P.; Neal, D. E.

    1996-01-01

    We have examined levels of epidermal growth factor (EGF) and transforming growth factor alpha (TGF-alpha) in neoplastic and non-neoplastic bladder tissue using a standard radioimmunoassay technique. Tumour samples had much higher TGF-alpha levels compared with EGF and TGF-alpha levels in malignant tissue were significantly higher than in benign bladder samples. There was, in addition, a difference in mean EGF levels from 'normal' bladder samples from non-tumour bearing areas of bladder in patients with bladder cancer compared with 'normal' bladder tissue obtained at the time of organ retrieval surgery. Levels of EGF and TGF-alpha did not correlate with levels of EGF receptor (EGFR) as determined by a radioligand binding method but levels of TGF-alpha > 10 ng gm-1 of tumour tissue did correlate with EGFR positivity defined using immunohistochemistry. These data suggest that TGF-alpha is the likely ligand for EGFR in bladder tumours. PMID:8605103

  5. Coregulation of Epidermal Growth Factor Receptor/Human Epidermal Growth Factor Receptor 2 (HER2) Levels and Locations: Quantitative Analysis of HER2 Overexpression Effects

    SciTech Connect

    Hendriks, Bart S.; Opresko, Lee; Wiley, H. S.; Lauffenburger, Douglas A.

    2003-03-01

    Elevated expression of human epidermal growth factor receptor 2 (HER2) is know to alter cell signalilng and behavioral responses implicated in tumor progression. However, multiple diverse mechanisms may be involved in these overall effects, including signaling by HER2 itself, modulation of signalilng by epidermal growth factor receptor (EGFR) and modification of trafficking dynamics for both EGFR and HER2. Continued....

  6. The targeted overexpression of a Claudin mutant in the epidermis of transgenic mice elicits striking epidermal and hair follicle abnormalities.

    PubMed

    Troy, Tammy-Claire; Turksen, Kursad

    2007-06-01

    Skin is one of the largest organs of the body, and is formed during development through a highly orchestrated process involving mesenchymal-epithelial interactions, cell commitment, and terminal differentiation. It protects against microorganism invasion and UV irradiation, inhibits water loss, regulates body temperature, and is an important part of the immune system. Using transgenic mouse technology, we have demonstrated that Claudin (Cldn)-containing tight junctions (TJs) are intricately involved in cell signaling during epidermal differentiation and that an epidermal suprabasal overexpression of Cldn6 results in a perturbed epidermal terminal differentiation program with distinct phenotypic abnormalities. To delineate the role of the Cldn cytoplasmic tail domain in epidermal differentiation, we engineered transgenic mice targeting the overexpression of a Cldn6 cytoplasmic tail-truncation mutant in the epidermis. Transgenic mice were characterized by a lethal barrier dysfunction in addition to the existence of hyperproliferative squamous invaginations/cysts replacing hair follicles. Immunohistochemical analysis revealed an epidermal cytoplasmic accumulation of Cldn6, Cldn11, Cldn12, and Cldn18, downregulation of Cldn1 and aberrant expression of various classical markers of epidermal differentiation; namely the basal keratins as well as K1, involucrin, loricrin, and filaggrin. Collectively these studies suggest an important role for Cldns in epidermal/hair follicle differentiation programs likely involving cross talk to signaling pathways (e.g., Notch) directing cell fate selection and differentiation.

  7. Is there a role for epidermal growth factor receptor tyrosine kinase inhibitors in epidermal growth factor receptor wild-type non-small cell lung cancer?

    PubMed Central

    Arriola, Edurne; Taus, Álvaro; Casadevall, David

    2015-01-01

    Non-small cell lung cancer (NSCLC) is the most common type of lung cancer with a world-wide annual incidence of around 1.3 million. The majority of patients are diagnosed with advanced disease and survival remains poor. However, relevant advances have occurred in recent years through the identification of biomarkers that predict for benefit of therapeutic agents. This is exemplified by the efficacy of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors for the treatment of EGFR mutant patients. These drugs have also shown efficacy in unselected populations but this point remains controversial. Here we have reviewed the clinical data that demonstrate a small but consistent subgroup of EGFR wild-type patients with NSCLC that obtain a clinical benefit from these drugs. Moreover, we review the biological rationale that may explain this benefit observed in the clinical setting. PMID:26266101

  8. Epidermal growth in the bottlenose dolphin, Tursiops truncatus

    SciTech Connect

    Hicks, B.D.; St. Aubin, D.J.; Geraci, J.R.; Brown, W.R.

    1985-07-01

    Epidermal growth in two mature female bottlenose dolphins, Tursiops truncatus, was investigated by following the movement of a cohort of tritiated thymidine-labeled epidermal cells for 59 days. The majority of the cells migrated in a cluster which was estimated to reach the skin surface in 73 days. The authors calculate that the outermost cell layer is sloughed 12 times per day. Turnover time and sloughing rate are estimated to be 1.7 times longer and 8.5 times faster than the respective values for epidermal cell kinetics in humans. This apparent inconsistency of slow transit time and rapid sloughing rate is reconciled by the convoluted structure of the stratum germinativum in the dolphin which results in a ratio of germinatival to superficial cells of 876:1. The stratum germinativum of dolphin epidermis appears to lack morphologically distinct, spatially segregated subpopulations of anchoring and stem cells. Dolphin epidermis has a large capacity for cell population, relatively long turnover time, and rapid sloughing rate. The adaptive advantages of these characteristics are discussed.

  9. Requirement of Stat3 but not Stat1 activation for epidermal growth factor receptor- mediated cell growth In vitro.

    PubMed Central

    Grandis, J R; Drenning, S D; Chakraborty, A; Zhou, M Y; Zeng, Q; Pitt, A S; Tweardy, D J

    1998-01-01

    Stimulation of epidermal growth factor receptor (EGFR) by ligand(s) leads to activation of signaling molecules including Stat1 and Stat3, two members of the signal transducers and activators of transcription (STAT) protein family. Activation of Stat1 and Stat3 was constitutive in transformed squamous epithelial cells, which produce elevated levels of TGF-alpha, and was enhanced by the addition of exogenous TGF-alpha. Targeting of Stat3 using antisense oligonucleotides directed against the translation initiation site, resulted in significant growth inhibition. In addition, cells stably transfected with dominant negative mutant Stat3 constructs failed to proliferate in vitro. In contrast, targeting of Stat1 using either antisense or dominant-negative strategies had no effect on cell growth. Thus, TGF-alpha/EGFR-mediated autocrine growth of transformed epithelial cells is dependent on activation of Stat3 but not Stat1. PMID:9769331

  10. Nerve growth factor and epidermal growth factor stimulate clusterin gene expression in PC12 cells.

    PubMed Central

    Gutacker, C; Klock, G; Diel, P; Koch-Brandt, C

    1999-01-01

    Clusterin (apolipoprotein J) is an extracellular glycoprotein that might exert functions in development, cell death and lipid transport. Clusterin gene expression is elevated at sites of tissue remodelling, such as differentiation and apoptosis; however, the signals responsible for this regulation have not been identified. We use here the clusterin gene as a model system to examine expression in PC12 cells under the control of differentiation and proliferation signals produced by nerve growth factor (NGF) and by epidermal growth factor (EGF) respectively. NGF induced clusterin mRNA, which preceded neurite outgrowth typical of neuronal differentiation. EGF also activated the clusterin mRNA, demonstrating that both proliferation and differentiation signals regulate the gene. To localize NGF- and EGF-responsive elements we isolated the clusterin promoter and tested it in PC12 cell transfections. A 2.5 kb promoter fragment and two 1.5 and 0.3 kb deletion mutants were inducible by NGF and EGF. The contribution to this response of a conserved activator protein 1 (AP-1) motif located in the 0.3 kb fragment was analysed by mutagenesis. The mutant promoter was not inducible by NGF or EGF, which identifies the AP-1 motif as an element responding to both factors. Binding studies with PC12 nuclear extracts showed that AP-1 binds to this sequence in the clusterin promoter. These findings suggest that NGF and EGF, which give differential gene regulation in PC12 cells, resulting in neuronal differentiation and proliferation respectively, use the common Ras/extracellular signal-regulated kinase/AP-1 signalling pathway to activate clusterin expression. PMID:10215617

  11. Astrocyte Mitogen Inhibitor Related to Epidermal Growth Factor Receptor

    NASA Astrophysics Data System (ADS)

    Nieto-Sampedro, Manuel

    1988-06-01

    Epidermal growth factor (EGF) is a well-characterized polypeptide hormone with diverse biological activities, including stimulation of astrocyte division. A soluble astrocyte mitogen inhibitor, immunologically related to the EGF receptor, is present in rat brain. Injury to the brain causes a time-dependent reduction in the levels of this inhibitor and the concomitant appearance of EGF receptor on the astrocyte surface. Intracerebral injection of antibody capable of binding the inhibitor caused the appearance of numerous reactive astrocytes. EGF receptor-related inhibitors may play a key role in the control of glial cell division in both normal and injured brain.

  12. Production of human epidermal growth factor using adenoviral based system

    PubMed Central

    Negahdari, Babak; Shahosseini, Zahra; Baniasadi, Vahid

    2016-01-01

    Epidermal growth factor (EGF), a growth factor involved in cell growth and differentiation, is a small polypeptide with molecular weight of approximately 6 kDa known to be present in a number of different mammalian species. Experimental studies in animals and humans have demonstrated that the topical application of EGF accelerates the rate of epidermal regeneration of partial-thickness wounds and second-degree burns. Due to its commercial applications, Human EGF (hEGF) has been cloned in several forms. In the present study, adenoviral based expression system was used to produce biologically active recombinant hEGF. The presence of secreted recombinant hEGF was confirmed by a dot blot and its expression level was determined by enzyme-linked immuno-sorbent assay. Moreover, biological activity of secreted hEGF was evaluated by a proliferation assay performed on A549 cells. For production of hEGF in a secretory form, a chimeric gene coding for the hEGF fused to the signal peptide was expressed using adenoviral based method. This method enables the production of hEGF at the site of interest and moreover it could be used for cell proliferation and differentiation assays in tissue engineering research experiments instead of using commercially available EGF. PMID:27051431

  13. Human corpus luteum: presence of epidermal growth factor receptors and binding characteristics

    SciTech Connect

    Ayyagari, R.R.; Khan-Dawood, F.S.

    1987-04-01

    Epidermal growth factor receptors are present in many reproductive tissues but have not been demonstrated in the human corpus luteum. To determine the presence of epidermal growth factor receptors and its binding characteristics, we carried out studies on the plasma cell membrane fraction of seven human corpora lutea (days 16 to 25) of the menstrual cycle. Specific epidermal growth factor receptors were present in human corpus luteum. Insulin, nerve growth factor, and human chorionic gonadotropin did not competitively displace epidermal growth factor binding. The optimal conditions for corpus luteum-epidermal growth factor receptor binding were found to be incubation for 2 hours at 4 degrees C with 500 micrograms plasma membrane protein and 140 femtomol /sup 125/I-epidermal growth factor per incubate. The number (mean +/- SEM) of epidermal growth factor binding sites was 12.34 +/- 2.99 X 10(-19) mol/micrograms protein; the dissociation constant was 2.26 +/- 0.56 X 10(-9) mol/L; the association constant was 0.59 +/- 0.12 X 10(9) L/mol. In two regressing corpora lutea obtained on days 2 and 3 of the menstrual cycle, there was no detectable specific epidermal growth factor receptor binding activity. Similarly no epidermal growth factor receptor binding activity could be detected in ovarian stromal tissue. Our findings demonstrate that specific receptors for epidermal growth factor are present in the human corpus luteum. The physiologic significance of epidermal growth factor receptors in human corpus luteum is unknown, but epidermal growth factor may be involved in intragonadal regulation of luteal function.

  14. The xipotl Mutant of Arabidopsis Reveals a Critical Role for Phospholipid Metabolism in Root System Development and Epidermal Cell Integrity

    PubMed Central

    Cruz-Ramírez, Alfredo; López-Bucio, José; Ramírez-Pimentel, Gabriel; Zurita-Silva, Andrés; Sánchez-Calderon, Lenin; Ramírez-Chávez, Enrique; González-Ortega, Emmanuel; Herrera-Estrella, Luis

    2004-01-01

    Phosphocholine (PCho) is an essential metabolite for plant development because it is the precursor for the biosynthesis of phosphatidylcholine, which is the major lipid component in plant cell membranes. The main step in PCho biosynthesis in Arabidopsis thaliana is the triple, sequential N-methylation of phosphoethanolamine, catalyzed by S-adenosyl-l-methionine:phosphoethanolamine N-methyltransferase (PEAMT). In screenings performed to isolate Arabidopsis mutants with altered root system architecture, a T-DNA mutagenized line showing remarkable alterations in root development was isolated. At the seedling stage, the mutant phenotype is characterized by a short primary root, a high number of lateral roots, and short epidermal cells with aberrant morphology. Genetic and biochemical characterization of this mutant showed that the T-DNA was inserted at the At3g18000 locus (XIPOTL1), which encodes PEAMT (XIPOTL1). Further analyses revealed that inhibition of PCho biosynthesis in xpl1 mutants not only alters several root developmental traits but also induces cell death in root epidermal cells. Epidermal cell death could be reversed by phosphatidic acid treatment. Taken together, our results suggest that molecules produced downstream of the PCho biosynthesis pathway play key roles in root development and act as signals for cell integrity. PMID:15295103

  15. Upregulation of epidermal growth factor receptor 4 in oral leukoplakia

    PubMed Central

    Kobayashi, Hiroshi; Kumagai, Kenichi; Gotoh, Akito; Eguchi, Takanori; Yamada, Hiroyuki; Hamada, Yoshiki; Suzuki, Satsuki; Suzuki, Ryuji

    2013-01-01

    In the present study, we investigate the expression profile of the epidermal growth factor receptor family, which comprises EGFR/ErbB1, HER2/ErbB2, HER3/ErbB3 and HER4/ErbB4 in oral leukoplakia (LP). The expression of four epidermal growth factor receptor (EGFR) family genes and their ligands were measured in LP tissues from 14 patients and compared with levels in 10 patients with oral lichen planus (OLP) and normal oral mucosa (NOM) from 14 healthy donors by real-time polymerase chain reaction (PCR) and immunohistochemistry. Synchronous mRNA coexpression of ErbB1, ErbB2, ErbB3 and ErbB4 was detected in LP lesions. Out of the receptors, only ErbB4 mRNA and protein was more highly expressed in LP compared with NOM tissues. These were strongly expressed by epithelial keratinocytes in LP lesions, as shown by immunohistochemistry. Regarding the ligands, the mRNA of Neuregulin2 and 4 were more highly expressed in OLP compared with NOM tissues. Therefore, enhanced ErbB4 on the keratinocytes and synchronous modulation of EGFR family genes may contribute to the pathogenesis and carcinogenesis of LP. PMID:23492901

  16. Novel monoclonal antibodies recognizing the active conformation of epidermal growth factor receptor.

    PubMed

    Ise, Nobuyuki; Omi, Kazuya; Miwa, Kyoko; Honda, Hideo; Higashiyama, Shigeki; Goishi, Katsutoshi

    2010-04-09

    The precise regulation of epidermal growth factor receptor (EGFR) is crucial for its function in cellular growth control. Although many antibodies against EGFR have been developed and used to analyze its regulation and function, it is not yet easy to analyze activated EGFR specifically. Activated EGFR has been mainly detected by its phosphorylation state using anti-phospho-EGFR and anti-phosphotyrosine antibodies. In the present study, we have established novel monoclonal antibodies which recognize the activated EGFR independently of its phosphorylation. Our antibodies detected active state of EGFR in immunoprecipitation and immunofluorescence, by recognizing the epitopes which are exposed through the conformational change induced by ligand-binding. Furthermore, we found that our antibodies preferentially detected the conformation of constitutively active EGFR mutants found in lung cancer cell lines. These results indicate that our antibodies may become novel research and diagnostic tools for detecting and analyzing the conformation of active EGFR in various cells and tissues.

  17. A dominant negative mutation suppresses the function of normal epidermal growth factor receptors by heterodimerization.

    PubMed Central

    Kashles, O; Yarden, Y; Fischer, R; Ullrich, A; Schlessinger, J

    1991-01-01

    Recent studies provide evidence that defective receptors can function as a dominant negative mutation suppressing the action of wild-type receptors. This causes various diminished responses in cell culture and developmental disorders in murine embryogenesis. Here, we describe a model system and a potential mechanism underlying the dominant suppressing response caused by defective epidermal growth factor (EGF) receptors. We used cultured 3T3 cells coexpressing human wild-type receptors and an inactive deletion mutant lacking most of the cytoplasmic domain. When expressed alone, EGF was able to stimulate the dimerization of either wild-type or mutant receptors in living cells as revealed by chemical covalent cross-linking experiments. In response to EGF, heterodimers and homodimers of wild-type and mutant receptors were observed in cells coexpressing both receptor species. However, only homodimers of wild-type EGF receptors underwent EGF-induced tyrosine autophosphorylation in living cells. These results indicate that the integrity of both receptor moieties within receptor dimers is essential for kinase activation and autophosphorylation. Moreover, the presence of mutant receptors in cells expressing wild-type receptors diminished the number of high-affinity binding sites for EGF, reduced the rate of receptor endocytosis and degradation, and diminished biological signalling via EGF receptors. We propose that heterodimerization with defective EGF receptors functions as a dominant negative mutation suppressing the activation and response of normal receptors by formation of unproductive heterodimers. Images PMID:1705006

  18. Epidermal Growth Factor Receptor Mutation Enhances Expression of Cadherin-5 in Lung Cancer Cells.

    PubMed

    Hung, Ming-Szu; Chen, I-Chuan; Lung, Jr-Hau; Lin, Paul-Yann; Li, Ya-Chin; Tsai, Ying-Huang

    2016-01-01

    Epidermal growth factor receptor (EGFR) activation has been shown to play a critical role in tumor angiogenesis. In this study, we investigate the correlation between EGFR mutations and cadherin-5 (CDH5), which is an angiogenic factor, in lung cancer cells. Increased expression CDH5 is observed in lung cancer cells with EGFR mutations. Stable lung cancer cell lines expressing mutant (exon 19 deletion E746-A750, and exon 21 missense mutation L858R) and wild type EGFR genes are established. A significantly higher expression of CDH5 is observed in exon 19 deletion stable lung cancer cells and mouse xenografts. Further studies show that expression of CDH5 is decreased after the inhibition of EGFR and downstream Akt pathways in lung cancer cells with EGFR mutation. In addition, mutant EGFR genes potentiates angiogenesis in lung cancer cells, which is inhibited by CDH5 siRNA, and potentiates migration and invasion in lung cancer cells. Our study shows that mutant EGFR genes are associated with overexpression of CDH5 through increased phosphorylation of EGFR and downstream Akt pathways. Our result may provide an insight into the association of mutant EGFR and CDH5 expression in lung cancer and aid further development of target therapy for NSCLC in the future.

  19. Growth of melanocytes in human epidermal cell cultures

    SciTech Connect

    Staiano-Coico, L.; Hefton, J.M.; Amadeo, C.; Pagan-Charry, I.; Madden, M.R.; Cardon-Cardo, C. )

    1990-08-01

    Epidermal cell cultures were grown in keratinocyte-conditioned medium for use as burn wound grafts; the melanocyte composition of the grafts was studied under a variety of conditions. Melanocytes were identified by immunohistochemistry based on a monoclonal antibody (MEL-5) that has previously been shown to react specifically with melanocytes. During the first 7 days of growth in primary culture, the total number of melanocytes in the epidermal cultures decreased to 10% of the number present in normal skin. Beginning on day 2 of culture, bipolar melanocytes were present at a mean cell density of 116 +/- 2/mm2; the keratinocyte to melanocyte ratio was preserved during further primary culture and through three subpassages. Moreover, exposure of cultures to mild UVB irradiation stimulated the melanocytes to proliferate, suggesting that the melanocytes growing in culture maintained their responsiveness to external stimuli. When the sheets of cultured cells were enzymatically detached from the plastic culture flasks before grafting, melanocytes remained in the basal layer of cells as part of the graft applied to the patient.

  20. The epidermal growth factor receptor family: Biology driving targeted therapeutics

    PubMed Central

    Wieduwilt, M. J.; Moasser, M. M.

    2011-01-01

    The epidermal growth factor family of receptor tyrosine kinases (ErbBs) plays essential roles in regulating cell proliferation, survival, differentiation and migration. The ErbB receptors carry out both redundant and restricted functions in mammalian development and in the maintenance of tissues in the adult mammal. Loss of regulation of the ErbB receptors underlies many human diseases, most notably cancer. Our understanding of the function and complex regulation of these receptors has fueled the development of targeted therapeutic agents for human malignancies in the last 15 years. Here we review the biology of ErbB receptors, including their structure, signaling, regulation, and roles in development and disease, then briefly touch on their increasing roles as targets for cancer therapy. PMID:18259690

  1. Cell and molecular biology of epidermal growth factor receptor.

    PubMed

    Ceresa, Brian P; Peterson, Joanne L

    2014-01-01

    The epidermal growth factor receptor (EGFR) has been one of the most intensely studied cell surface receptors due to its well-established roles in developmental biology, tissue homeostasis, and cancer biology. The EGFR has been critical for creating paradigms for numerous aspects of cell biology, such as ligand binding, signal transduction, and membrane trafficking. Despite this history of discovery, there is a continual stream of evidence that only the surface has been scratched. New ways of receptor regulation continue to be identified, each of which is a potential molecular target for manipulating EGFR signaling and the resultant changes in cell and tissue biology. This chapter is an update on EGFR-mediated signaling, and describes some recent developments in the regulation of receptor biology.

  2. Epidermal Growth Factor Receptor Fate Is Controlled by Hrs Tyrosine Phosphorylation Sites That Regulate Hrs Degradation▿

    PubMed Central

    Stern, Kathryn A.; Visser Smit, Gina D.; Place, Trenton L.; Winistorfer, Stanley; Piper, Robert C.; Lill, Nancy L.

    2007-01-01

    Hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) is an endosomal protein essential for the efficient sorting of activated growth factor receptors into the lysosomal degradation pathway. Hrs undergoes ligand-induced tyrosine phosphorylation on residues Y329 and Y334 downstream of epidermal growth factor receptor (EGFR) activation. It has been difficult to investigate the functional roles of phosphoHrs, as only a small proportion of the cellular Hrs pool is detectably phosphorylated. Using an HEK 293 model system, we found that ectopic expression of the protein Cbl enhances Hrs ubiquitination and increases Hrs phosphorylation following cell stimulation with EGF. We exploited Cbl's expansion of the phosphoHrs pool to determine whether Hrs tyrosine phosphorylation controls EGFR fate. In structure-function studies of Cbl and EGFR mutants, the level of Hrs phosphorylation and rapidity of apparent Hrs dephosphorylation correlated directly with EGFR degradation. Differential expression of wild-type versus Y329,334F mutant Hrs in Hrs-depleted cells revealed that one or both tyrosines regulate ligand-dependent Hrs degradation, as well as EGFR degradation. By modulating Hrs ubiquitination, phosphorylation, and protein levels, Cbl may control the composition of the endosomal sorting machinery and its ability to target EGFR for lysosomal degradation. PMID:17101784

  3. [Epidermal growth factor receptor expression and epidermal growth factor blood plasma content in simple and complex endometrial hyperplasia].

    PubMed

    Dznelashvili, N; Kasradze, D; Tavartkiladze, A; Mariamidze, A

    2014-01-01

    The goal of our study was to concurrently determine the prognostic significance of Epidermal Growth Factor Receptor (EGFR) expression in endometrium and Epidermal Growth Factor (EGF) blood content in simple and complex hyperplasia. In order to detect EGFR expression, immunohistochemical examination of endometrial scarp from 35 patients was done along with HPLC (High performance liquid chromatography) method, for measuring EGF blood plasma content. The numerical data obtained were processed statistically using computer program SPSS-12. According to the results: 1. A significant/marked increase in EGF blood plasma level together with pronounced EGFR expression in simple endometrial hyperplasia (without atypia) suggests that simple hyperplasia is likely to transform into complex form, while unchanged level of EGF against the background of mild EGFR expression is probably indicative of not very bad prognosis. 2. Normal indices of EGF blood plasma level in simple endometrial hyperplasia (without atypia), accompanied by mild EGFR expression is suggestive of good prognosis. 3. A sharp or extremely sharp increase in EGF blood plasma level with pronounced EGFR expression in complex endometrial hyperplasia (without atypia) is likely to indicate poor prognosis that may lead to the transformation into atypical form. However, unchanged EGF blood plasma level against the background of mild EGFR expression in complex endometrial hyperplasia (without atypia) is likely to point to not very bad prognosis. 4. A marked increase in EGF blood plasma level with a pronounced EGFR expression in complex endometrial hyperplasia (without atypia) is likely to indicate poor prognosis that may lead to the transformation into atypical form. Because it is evident that drastic increase in EGF blood plasma level is not necessary, other factor should be suspected to play the major role, i.e the substance that will (or will not) withstand neoplasia.

  4. Epidermal homeostasis: the role of the growth hormone and insulin-like growth factor systems.

    PubMed

    Edmondson, Stephanie R; Thumiger, Susan P; Werther, George A; Wraight, Christopher J

    2003-12-01

    GH and IGF-I and -II were first identified by their endocrine activity. Specifically, IGF-I was found to mediate the linear growth-promoting actions of GH. It is now evident that these two growth factor systems also exert widespread activity throughout the body and that their actions are not always interconnected. The literature highlights the importance of the GH and IGF systems in normal skin homeostasis, including dermal/epidermal cross-talk. GH activity, sometimes mediated via IGF-I, is primarily evident in the dermis, particularly affecting collagen synthesis. In contrast, IGF action is an important feature of the dermal and epidermal compartments, predominantly enhancing cell proliferation, survival, and migration. The locally expressed IGF binding proteins play significant and complex roles, primarily via modulation of IGF actions. Disturbances in GH and IGF signaling pathways are implicated in the pathophysiology of several skin perturbations, particularly those exhibiting epidermal hyperplasia (e.g., psoriasis, carcinomas). Additionally, many studies emphasize the potential use of both growth factors in the treatment of skin wounds; for example, burn patients. This overview concerns the role and mechanisms of action of the GH and IGF systems in skin and maintenance of epidermal integrity in both health and disease.

  5. Transgenic Soybean Production of Bioactive Human Epidermal Growth Factor (EGF)

    PubMed Central

    He, Yonghua; Schmidt, Monica A.; Erwin, Christopher; Guo, Jun; Sun, Raphael; Pendarvis, Ken; Warner, Brad W.; Herman, Eliot M.

    2016-01-01

    Necrotizing enterocolitis (NEC) is a devastating condition of premature infants that results from the gut microbiome invading immature intestinal tissues. This results in a life-threatening disease that is frequently treated with the surgical removal of diseased and dead tissues. Epidermal growth factor (EGF), typically found in bodily fluids, such as amniotic fluid, salvia and mother’s breast milk, is an intestinotrophic growth factor and may reduce the onset of NEC in premature infants. We have produced human EGF in soybean seeds to levels biologically relevant and demonstrated its comparable activity to commercially available EGF. Transgenic soybean seeds expressing a seed-specific codon optimized gene encoding of the human EGF protein with an added ER signal tag at the N’ terminal were produced. Seven independent lines were grown to homozygous and found to accumulate a range of 6.7 +/- 3.1 to 129.0 +/- 36.7 μg EGF/g of dry soybean seed. Proteomic and immunoblot analysis indicates that the inserted EGF is the same as the human EGF protein. Phosphorylation and immunohistochemical assays on the EGF receptor in HeLa cells indicate the EGF protein produced in soybean seed is bioactive and comparable to commercially available human EGF. This work demonstrates the feasibility of using soybean seeds as a biofactory to produce therapeutic agents in a soymilk delivery platform. PMID:27314851

  6. Aqueous stability of human epidermal growth factor 1-48.

    PubMed

    Senderoff, R I; Wootton, S C; Boctor, A M; Chen, T M; Giordani, A B; Julian, T N; Radebaugh, G W

    1994-12-01

    Human epidermal growth factor 1-48 (hEGF 1-48, Des(49-53)hEGF) is a single chain polypeptide (48 amino acids; 3 disulfide bonds; 5445 Da) possessing a broad spectrum of biologic activity including the stimulation of cell proliferation and tissue growth. In this study, three primary aqueous degradation products of hEGF 1-48 were isolated using isocratic, reverse phase/ion-pair HPLC. The degradation products were characterized using amino acid sequencing, electrospray ionization mass spectrometry, isoelectric focusing, and degradation kinetics. Results indicate that hEGF 1-48 degrades via oxidation (Met21), deamidation (Asn1), and succinimide formation (Asp11). The relative contribution of each degradation pathway to the overall stability of hEGF 1-48 changes as a function of solution pH and storage condition. Succinimide formation at Asp11 is favored at pH < 6 in which aspartic acid is present mostly in its protonated form. Deamidation of Asn1 is favored at pH > 6. The relative contribution of Met21 oxidation is increased with decreasing temperature, storage as a frozen solution (-20 degrees C), and exposure to fluorescent light.

  7. Polychlorinated Biphenyls Disrupt Hepatic Epidermal Growth Factor Receptor Signaling.

    PubMed

    Hardesty, Josiah E; Wahlang, Banrida; Falkner, K Cameron; Clair, Heather B; Clark, Barbara J; Ceresa, Brian P; Prough, Russell A; Cave, Matthew C

    2016-07-26

    1. Polychlorinated biphenyls (PCBs) are persistent environmental pollutants that disrupt hepatic xenobiotic and intermediary metabolism, leading to metabolic syndrome and nonalcoholic steatohepatitis (NASH). 2. Since phenobarbital indirectly activates Constitutive Androstane Receptor (CAR) by antagonizing growth factor binding to the epidermal growth factor receptor (EGFR), we hypothesised that PCBs may also diminish EGFR signaling. 3. The effects of the PCB mixture Aroclor 1260 on the protein phosphorylation cascade triggered by EGFR activation were determined in murine (in vitro and in vivo) and human models (in vitro). EGFR tyrosine residue phosphorylation was decreased by PCBs in all models tested. 4. The IC50 values for Aroclor 1260 concentrations that decreased Y1173 phosphorylation of EGFR were similar in murine AML-12 and human HepG2 cells (∼2-4 μg/mL). Both dioxin and non-dioxin-like PCB congeners decreased EGFR phosphorylation in cell culture. 5. PCB treatment reduced phosphorylation of downstream EGFR effectors including Akt and mTOR, as well as other phosphoprotein targets including STAT3 and c-RAF in vivo. 6. PCBs diminish EGFR signaling in human and murine hepatocyte models and may dysregulate critical phosphoprotein regulators of energy metabolism and nutrition, providing a new mechanism of action in environmental diseases.

  8. Epidermal growth factor and its receptors in human pancreatic carcinoma

    SciTech Connect

    Chen, Y.F.; Pan, G.Z.; Hou, X.; Liu, T.H.; Chen, J.; Yanaihara, C.; Yanaihara, N. )

    1990-05-01

    The role of epidermal growth factor (EGF) in oncogenesis and progression of malignant tumors is a subject of vast interest. In this study, radioimmunoassay and radioreceptor assay of EGF were established. EGF contents in malignant and benign pancreatic tumors, in normal pancreas tissue, and in culture media of a human pancreatic carcinoma cell line were determined. EGF receptor binding studies were performed. It was shown that EGF contents in pancreatic carcinomas were significantly higher than those in normal pancreas or benign pancreatic tumors. EGF was also detected in the culture medium of a pancreatic carcinoma cell line. The binding of 125I-EGF to the pancreatic carcinoma cells was time and temperature dependent, reversible, competitive, and specific. Scatchard analysis showed that the dissociation constant of EGF receptor was 2.1 X 10(-9) M, number of binding sites was 1.3 X 10(5) cell. These results indicate that there is an over-expression of EGF/EGF receptors in pancreatic carcinomas, and that an autocrine regulatory mechanism may exist in the growth-promoting effect of EGF on tumor cells.

  9. Anti-Epidermal Growth Factor Receptor Gene Therapy for Glioblastoma

    PubMed Central

    Hicks, Martin J.; Chiuchiolo, Maria J.; Ballon, Douglas; Dyke, Jonathan P.; Aronowitz, Eric; Funato, Kosuke; Tabar, Viviane; Havlicek, David; Fan, Fan; Sondhi, Dolan; Kaminsky, Stephen M.; Crystal, Ronald G.

    2016-01-01

    Glioblastoma multiforme (GBM) is the most common and aggressive primary intracranial brain tumor in adults with a mean survival of 14 to 15 months. Aberrant activation of the epidermal growth factor receptor (EGFR) plays a significant role in GBM progression, with amplification or overexpression of EGFR in 60% of GBM tumors. To target EGFR expressed by GBM, we have developed a strategy to deliver the coding sequence for cetuximab, an anti-EGFR antibody, directly to the CNS using an adeno-associated virus serotype rh.10 gene transfer vector. The data demonstrates that single, local delivery of an anti-EGFR antibody by an AAVrh.10 vector coding for cetuximab (AAVrh.10Cetmab) reduces GBM tumor growth and increases survival in xenograft mouse models of a human GBM EGFR-expressing cell line and patient-derived GBM. AAVrh10.CetMab-treated mice displayed a reduction in cachexia, a significant decrease in tumor volume and a prolonged survival following therapy. Adeno-associated-directed delivery of a gene encoding a therapeutic anti-EGFR monoclonal antibody may be an effective strategy to treat GBM. PMID:27711187

  10. Heparin-binding epidermal growth factor-like growth factor, a v-Jun target gene, induces oncogenic transformation

    PubMed Central

    Fu, Shu-ling; Bottoli, Ivan; Goller, Martin; Vogt, Peter K.

    1999-01-01

    Jun is a transcription factor belonging to the activator protein 1 family. A mutated version of Jun (v-Jun) transduced by the avian retrovirus ASV17 induces oncogenic transformation in avian cell cultures and sarcomas in young galliform birds. The oncogenicity of Jun probably results from transcriptional deregulation of v-Jun-responsive target genes. Here we describe the identification and characterization of a growth-related v-Jun target, a homolog of heparin-binding epidermal growth factor-like growth factor (HB-EGF). HB-EGF is strongly expressed in chicken embryo fibroblasts (CEF) transformed by v-Jun. HB-EGF expression is not detectable or is marginal in nontransformed CEF. Using a hormone-inducible Jun-estrogen receptor chimera, we found that HB-EGF expression is correlated with v-Jun activity. In this system, induction of v-Jun is followed within 1 hr by elevated levels of HB-EGF. In CEF infected with various Jun mutants, HB-EGF expression is correlated with the oncogenic potency of the mutant. Constitutive expression of HB-EGF conveys to CEF the ability to grow in soft agar and to form multilayered foci of transformed cells on a solid substrate. These observations suggest that HB-EGF is an effector of Jun-induced oncogenic transformation. PMID:10318950

  11. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation.

    PubMed

    Gaviglio, Angela L; Knelson, Erik H; Blobe, Gerard C

    2017-02-07

    High-risk neuroblastoma is characterized by undifferentiated neuroblasts and low Schwannian stroma content. The tumor stroma contributes to the suppression of tumor growth by releasing soluble factors that promote neuroblast differentiation. Here we identify heparin-binding epidermal growth factor-like growth factor (HBEGF) as a potent prodifferentiating factor in neuroblastoma. HBEGF mRNA expression is decreased in human neuroblastoma tumors compared with benign tumors, with loss correlating with decreased survival. HBEGF protein is expressed only in stromal compartments of human neuroblastoma specimens, with tissue from high-stage disease containing very little stroma or HBEGF expression. In 3 human neuroblastoma cell lines (SK-N-AS, SK-N-BE2, and SH-SY5Y), soluble HBEGF is sufficient to promote neuroblast differentiation and decrease proliferation. Heparan sulfate proteoglycans and heparin derivatives further enhance HBEGF-induced differentiation by forming a complex with the epidermal growth factor receptor, leading to activation of the ERK1/2 and STAT3 pathways and up-regulation of the inhibitor of DNA binding transcription factor. These data support a role for loss of HBEGF in the neuroblastoma tumor microenvironment in neuroblastoma pathogenesis.-Gaviglio, A. L., Knelson, E. H., Blobe, G. C. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation.

  12. Development of the epidermal growth factor receptor inhibitor OSI-774.

    PubMed

    Grünwald, Viktor; Hidalgo, Manuel

    2003-06-01

    The epidermal growth factor receptor (EGFR) is a transmembrane receptor involved in the regulation of a complex array of essential biological processes such as cell proliferation and survival. Dysregulation of the EGFR signaling network has been frequently reported in multiple human cancers and has been associated with the processes of tumor development, growth, proliferation, metastasis, and angiogenesis. Inhibition of the EGFR was associated with antitumor effects in preclinical models. On the basis of these data, therapeutics targeting the EGFR were explored in clinical trials. OSI-774 is a small-molecule selective inhibitor of the EGFR tyrosine kinase. In preclinical studies, OSI-774 inhibited the phosphorylation of the EGFR in a dose-dependent and concentration-dependent manner resulting in cell cycle arrest and induction of apoptosis. In in vivo studies, this agent caused tumor growth inhibition and showed synergistic effects when combined with conventional chemotherapy. Subsequent single-agent phase I studies and phase I studies in combination with chemotherapy showed that the agent has a good safety profile and induced tumor growth inhibition in a substantial number of patients with a variety of different solid tumors. Preliminary reports from phase II studies confirmed the excellent tolerability of OSI-774 and showed encouraging preliminary activity. Phase III studies have either been completed or are ongoing in several tumor types such as lung cancer and pancreatic cancer. In summary, OSI-774 is a novel inhibitor of the EGFR tyrosine kinase that has shown promising activity in initial studies and is currently undergoing full development as an anticancer drug.

  13. Dynamic tracing for epidermal growth factor receptor mutations in urinary circulating DNA in gastric cancer patients.

    PubMed

    Shi, Xiu-Qin; Xue, Wen-Hua; Zhao, Song-Feng; Zhang, Xiao-Jian; Sun, Wukong

    2017-02-01

    The mutations of epidermal growth factor receptor are detected in gastric cancer, indicating its suitability as a target for receptor tyrosine kinase inhibitors, as well as a marker for clinical outcome of chemotherapeutic treatments. However, extraction of quality tumor tissue for molecular processes remains challenging. Here, we aimed to examine the clinical relevance of urinary cell-free DNA as an alternative tumor material source used specifically for monitoring epidermal growth factor receptor mutations. Therefore, 120 gastric cancer patients with epidermal growth factor receptor mutations and 100 healthy controls were recruited for the study. The gastric patients also received epidermal growth factor receptor inhibitor treatment for a serial monitoring study. Paired primary tumor specimens were obtained with blood and urine samples, which were taken at a 1-month interval for a duration of 12 months. We found that urinary cell-free DNA yielded a close agreement of 92% on epidermal growth factor receptor mutation status when compared to primary tissue at baseline, and of 99% epidermal growth factor receptor mutation status when compared to plasma samples at different time points. Thus, our data suggest that urinary cell-free DNA may be a reliable source for screening and monitoring epidermal growth factor receptor mutations in the primary gastric cancer.

  14. Epidermal growth factor receptor and KRAS mutations in Brazilian lung cancer patients

    PubMed Central

    Bacchi, Carlos E.; Ciol, Heloísa; Queiroga, Eduardo M.; Benine, Lucimara C.; Silva, Luciana H.; Ojopi, Elida B.

    2012-01-01

    OBJECTIVE: Epidermal growth factor receptor is involved in the pathogenesis of non-small cell lung cancer and has recently emerged as an important target for molecular therapeutics. The KRAS oncogene also plays an important role in the development of lung cancer. The aim of this study was to evaluate the frequency of epidermal growth factor receptor and KRAS mutations in a population of Brazilian patients with non-small cell lung cancer. METHODS: A total of 207 specimens from Brazilian patients with non-small cell lung cancer were analyzed for activating epidermal growth factor receptor and KRAS somatic mutations, and their associations with clinicopathological characteristics (including age, gender, ethnicity, smoking habits, and histological subtype) were examined. RESULTS: We identified 63 cases (30.4%) with epidermal growth factor receptor mutations and 30 cases (14.6%) with KRAS mutations. The most frequent epidermal growth factor receptor mutation we detected was a deletion in exon 19 (60.3%, 38 patients), followed by an L858R amino acid substitution in exon 21 (27%, 17 patients). The most common types of KRAS mutations were found in codon 12. There were no significant differences in epidermal growth factor receptor or KRAS mutations by gender or primary versus metastatic lung cancer. There was a higher prevalence of KRAS mutations in the non-Asian patients. Epidermal growth factor receptor mutations were more prevalent in adenocarcinomas than in non-adenocarcinoma histological types. Being a non-smoker was significantly associated with the prevalence of epidermal growth factor receptor mutations, but the prevalence of KRAS mutations was significantly associated with smoking. CONCLUSIONS: This study is the first to examine the prevalence of epidermal growth factor receptor and KRAS mutations in a Brazilian population sample with non-small cell lung cancer. PMID:22666783

  15. Modeling the epidermal growth factor -- epidermal growth factor receptor l2 domain interaction: implications for the ligand binding process.

    PubMed

    Jorissen, Robert N; Treutlein, Herbert R; Epa, V Chandana; Burgess, Antony W

    2002-06-01

    Signaling from the epidermal growth factor (EGF) receptor is triggered by the binding of ligands such as EGF or transforming growth factor alpha (TGF-alpha) and subsequent receptor dimerization. An understanding of these processes has been hindered by the lack of structural information about the ligand-bound, dimerized EGF receptor. Using an NMR-derived structure of EGF and a homology model of the major ligand binding domain of the EGF receptor and experimental data, we modeled the binding of EGF to this EGF receptor fragment. In this low resolution model of the complex, EGF sits across the second face of the EGF receptor L2 domain and EGF residues 10-16, 36-37, 40-47 bind to this face. The structural model is largely consistent with previously published NMR data describing the residues of TGF-alpha which interact strongly with the EGF receptor. Other EGF residues implicated in receptor binding are accounted by our proposal that the ligand binding is a two-step process with the EGF binding to at least one other site of the receptor. This three-dimensional model is expected to be useful in the design of ligand-based antagonists of the receptor.

  16. Distribution and release of epidermal growth factor in man.

    PubMed Central

    Konturek, J W; Bielanski, W; Konturek, S J; Bogdal, J; Oleksy, J

    1989-01-01

    Epidermal growth factor (EGF) is localised in man to salivary and Brunner's glands. It is present in large concentrations in saliva and duodenal contents but the mechanisms of its release have been little studied. This study carried out on four groups of healthy subjects was designed to determine the distribution and the release of immunoreactive EGF (IR-EGF) in salivary, gastric, duodenal, and pancreatic secretions. Under basal conditions, the concentrations of IR-EGF in salivary, gastric, duodenal and pancreatic secretions were; 2.7 (0.4), 0.42 (0.12), 21 (5) and 8.5 (1.2) ng/ml, respectively. Chewing of Parafilm* significantly increased salivary but not gastric or duodenal EGF output while atropinisation led to the reduction in basal salivary and duodenal EGF output without affecting the increment in EGF release induced by chewing. Cigarette smoking caused a marked reduction in basal salivary and duodenal EGF output. Infusion of pentagastrin increased salivary and duodenal EGF output and this was blocked by the addition of somatostatin. Injection of secretin lead to an increase in pancreatic output of EGF. We conclude that in man the major sources of EGF are salivary glands, duodenum, and pancreas and that the release of EGF remains under neurohormonal control. PMID:2806986

  17. Computational modeling reveals molecular details of epidermal growth factor binding

    PubMed Central

    Mayawala, Kapil; Vlachos, Dionisios G; Edwards, Jeremy S

    2005-01-01

    Background The ErbB family of receptors are dysregulated in a number of cancers, and the signaling pathway of this receptor family is a critical target for several anti-cancer drugs. Therefore a detailed understanding of the mechanisms of receptor activation is critical. However, despite a plethora of biochemical studies and recent single particle tracking experiments, the early molecular mechanisms involving epidermal growth factor (EGF) binding and EGF receptor (EGFR) dimerization are not as well understood. Herein, we describe a spatially distributed Monte Carlo based simulation framework to enable the simulation of in vivo receptor diffusion and dimerization. Results Our simulation results are in agreement with the data from single particle tracking and biochemical experiments on EGFR. Furthermore, the simulations reveal that the sequence of receptor-receptor and ligand-receptor reaction events depends on the ligand concentration, receptor density and receptor mobility. Conclusion Our computer simulations reveal the mechanism of EGF binding on EGFR. Overall, we show that spatial simulation of receptor dynamics can be used to gain a mechanistic understanding of receptor activation which may in turn enable improved cancer treatments in the future. PMID:16318625

  18. Saccharin and Cyclamate Inhibit Binding of Epidermal Growth Factor

    NASA Astrophysics Data System (ADS)

    Lee, L. S.

    1981-02-01

    The binding of 125I-labeled mouse epidermal growth factor (EGF) to 18 cell lines, including HeLa (human carcinoma), MDCK (dog kidney cells), HTC (rat hepatoma), K22 (rat liver), HF (human foreskin), GM17 (human skin fibroblasts), XP (human xeroderma pigmentosum fibroblasts), and 3T3-L1 (mouse fibroblasts), was inhibited by saccharin and cyclamate. The human cells were more sensitive to inhibition by these sweeteners than mouse or rat cells. EGF at doses far above the physiological levels reversed the inhibition in rodent cells but not in HeLa cells. In HeLa cells, the doses of saccharin and cyclamate needed for 50% inhibition were 3.5 and 9.3 mg/ml, respectively. Glucose, 2-deoxyglucose, sucrose, and xylitol did not inhibit EGF binding. Previous studies have shown that phorbol esters, strongly potent tumor promoters, also inhibit EGF binding to tissue culture cells. To explain the EGF binding inhibition by such greatly dissimilar molecules as phorbol esters, saccharin, and cyclamate, it is suggested that they operate through the activation of a hormone response control unit.

  19. Epidermal Growth Factor Regulates Hematopoietic Regeneration Following Radiation Injury

    PubMed Central

    Doan, Phuong L.; Himburg, Heather A.; Helms, Katherine; Russell, J. Lauren; Fixsen, Emma; Quarmyne, Mamle; Harris, Jeffrey R.; Deoliviera, Divino; Sullivan, Julie M.; Chao, Nelson J.; Kirsch, David G.; Chute, John P.

    2013-01-01

    The mechanisms which regulate HSC regeneration following myelosuppressive injury are not well understood. We identified epidermal growth factor (EGF) to be highly enriched in the bone marrow (BM) serum of mice bearing deletion of Bak and Bax in Tie2+ cells (Tie2Cre;Bak1−/−;Baxfl/− mice), which displayed radioprotection of the HSC pool and 100% survival following lethal dose total body irradiation (TBI). BM HSCs from wild type mice expressed functional EGFR and systemic administration of EGF promoted the recovery of the HSC pool in vivo and the improved survival of mice following TBI. Conversely, administration of erlotinib, an EGFR antagonist, significantly decreased both HSC regeneration and mice survival following TBI. VavCre;EGFRfl/+ mice also demonstrated delayed recovery of BM stem/progenitor cells following TBI compared to VavCre;EGFR+/+ mice. Mechanistically, EGF reduced radiation-induced apoptosis of HSCs and mediated this effect via repression of the proapoptotic protein, PUMA. EGFR signaling regulates HSC regeneration following myelosuppressive injury. PMID:23377280

  20. Epidermal Growth Factor Receptor in Prostate Cancer Derived Exosomes

    PubMed Central

    Kharmate, Geetanjali; Hosseini-Beheshti, Elham; Caradec, Josselin; Chin, Mei Yieng; Tomlinson Guns, Emma S.

    2016-01-01

    Exosomes proteins and microRNAs have gained much attention as diagnostic tools and biomarker potential in various malignancies including prostate cancer (PCa). However, the role of exosomes and membrane-associated receptors, particularly epidermal growth factor receptor (EGFR) as mediators of cell proliferation and invasion in PCa progression remains unexplored. EGFR is frequently overexpressed and has been associated with aggressive forms of PCa. While PCa cells and tissues express EGFR, it is unknown whether exosomes derived from PCa cells or PCa patient serum contains EGFR. The aim of this study was to detect and characterize EGFR in exosomes derived from PCa cells, LNCaP xenograft and PCa patient serum. Exosomes were isolated from conditioned media of different PCa cell lines; LNCaP xenograft serum as well as patient plasma/serum by differential centrifugation and ultracentrifugation on a sucrose density gradient. Exosomes were confirmed by electron microscopy, expression of exosomal markers and NanoSight™ analysis. EGFR expression was determined by western blot analysis and ELISA. This study demonstrates that exosomes may easily be derived from PCa cell lines, serum obtained from PCa xenograft bearing mice and clinical samples derived from PCa patients. Presence of exosomal EGFR in PCa patient exosomes may present a novel approach for measuring of the disease state. Our work will allow to build on this finding for future understanding of PCa exosomes and their potential role in PCa progression and as minimal invasive biomarkers for PCa. PMID:27152724

  1. The ontogeny of epidermal growth factor receptors during mouse development

    SciTech Connect

    Adamson, E.D.; Meek, J.

    1984-05-01

    In an attempt to understand the role(s) of epidermal growth factor (EGF) in vivo during murine development, we have examined the /sup 125/I-EGF binding characteristics of EGF-receptors in membrane preparations of tissues from the 12th day of gestation to parturition. Using autoradiography, the earliest time that we could detect EGF-receptors was on trophoblast cells cultured for 3 days as blastocyst outgrowths. Trophoblast eventually forms a large portion of the placenta, where EGF-receptors have long been recognized. We measured the number and affinity of EGF-receptors on tissues dissected from conceptuses from the 12th day of gestation in order to identify a stage when tissues may be most sensitive to EGF. Whereas the number of EGF receptors increases during gestation for all tissues examined, the affinity of the receptors declines for carcass and placenta and remains relatively unchanged for brain and liver. This suggests that EGF may function differently throughout development. Our hypothesis is that EGF (or its embryonic equivalent) initially stimulates proliferation in embryonic cells and then stimulates differentiation as the tissues mature. In the adult, its main role could be to stimulate tissue repair after damage.

  2. Epidermal Growth Factor Receptor Cell Survival Signaling Requires Phosphatidylcholine Biosynthesis

    PubMed Central

    Crook, Matt; Upadhyay, Awani; Ido, Liyana J.; Hanna-Rose, Wendy

    2016-01-01

    Identification of pro-cell survival signaling pathways has implications for cancer, cardiovascular, and neurodegenerative disease. We show that the Caenorhabditis elegans epidermal growth factor receptor LET-23 (LET-23 EGFR) has a prosurvival function in counteracting excitotoxicity, and we identify novel molecular players required for this prosurvival signaling. uv1 sensory cells in the C. elegans uterus undergo excitotoxic death in response to activation of the OSM-9/OCR-4 TRPV channel by the endogenous agonist nicotinamide. Activation of LET-23 EGFR can effectively prevent this excitotoxic death. We investigate the roles of signaling pathways known to act downstream of LET-23 EGFR in C. elegans and find that the LET-60 Ras/MAPK pathway, but not the IP3 receptor pathway, is required for efficient LET-23 EGFR activity in its prosurvival function. However, activation of LET-60 Ras/MAPK pathway does not appear to be sufficient to fully mimic LET-23 EGFR activity. We screen for genes that are required for EGFR prosurvival function and uncover a role for phosphatidylcholine biosynthetic enzymes in EGFR prosurvival function. Finally, we show that exogenous application of phosphatidylcholine is sufficient to prevent some deaths in this excitotoxicity model. Our work implicates regulation of lipid synthesis downstream of EGFR in cell survival and death decisions. PMID:27605519

  3. Epidermal growth factor deficiency associated with diabetes mellitus.

    PubMed Central

    Kasayama, S; Ohba, Y; Oka, T

    1989-01-01

    The production of epidermal growth factor (EGF) in the submandibular gland and its circulating level were studied in diabetic mice. In genetically diabetic (C57BL/KsJ db/db) mice, EGF concentrations in the submandibular gland and plasma were reduced to 13% and 30% of the control levels, respectively. In streptozotocin-treated diabetic mice, they were reduced to 18% and 20% of controls, respectively, 5 weeks after the drug injection. Furthermore, levels of submandibular prepro-EGF mRNA in these diabetic mice were decreased almost in parallel with the glandular EGF concentrations, while there was no change in the levels of submandibular beta-actin mRNA and kidney prepro-EGF mRNA. In addition, histological examination of the submandibular glands indicated that the size of the granular convoluted tubules, which produce EGF, was substantially reduced in the diabetic mice. Insulin administration to streptozotocin-treated mice almost completely reversed the decrease in EGF content in the submandibular gland, substantially elevated the level of the glandular prepro-EGF mRNA and plasma EGF concentration, and increased the size of the granular convoluted tubules in the gland. These results indicate that EGF deficiency occurs in diabetes mellitus and that insulin may be important in maintaining the normal level of EGF in the submandibular gland and plasma. Images PMID:2477846

  4. Epidermal growth factor prevents prepartum luteolysis in the rat

    PubMed Central

    Ribeiro, M. L.; Aisemberg, J.; Billi, S.; Farina, M. G.; Meiss, R.; McCann, S.; Rettori, V.; Villalón, M.; Franchi, A. M.

    2005-01-01

    We have previously reported that intrauterine (i/u) administration of epidermal growth factor (EGF 500 ng) on day (d) 21 of pregnancy delayed 19.0 ± 0.6 h the onset of labor. Progesterone (P) is secreted by ovarian corpora lutea (CL) throughout gestation in the rat. Prepartum CL regression due to increased uterine cyclooxygenase I and prostaglandin F2α results in P withdrawal followed by labor. The aims of the present work were (i) to study whether EGF delayed-onset of labor was mediated by a mechanism that prevented CL regression; (ii) to determine amniotic fluid (AF) EGF in pregnant rats. Rats on d21 of pregnancy received i/u EGF (500 ng) and were killed 0, 4, 8, 12, 24, and 48 h later. Control AF from rats on d13 and 18–22 of pregnancy was obtained. EGF decreased uterine prostaglandin F2α synthesis 8 h after treatment. Twelve hours after EGF injection, P reached its highest serum level and uterine cyclooxygenase I expression was undetectable. CL from rats killed 8 and 12 h after EGF were similar to those from rats on d13 of pregnancy, when serum P is maximum. EGF in AF increased throughout gestation, reached a maximum on d21, and decreased before the onset of labor. We suggest that the effect of EGF on the onset of labor was mediated by an early effect on the uterus that prevented prepartum CL regression. PMID:15911754

  5. Argos inhibits epidermal growth factor receptor signalling by ligand sequestration.

    PubMed

    Klein, Daryl E; Nappi, Valerie M; Reeves, Gregory T; Shvartsman, Stanislav Y; Lemmon, Mark A

    2004-08-26

    The epidermal growth factor receptor (EGFR) has critical functions in development and in many human cancers. During development, the spatial extent of EGFR signalling is regulated by feedback loops comprising both well-understood activators and less well-characterized inhibitors. In Drosophila melanogaster the secreted protein Argos functions as the only known extracellular inhibitor of EGFR, with clearly identified roles in multiple stages of development. Argos is only expressed when the Drosophila EGFR (DER) is activated at high levels, and downregulates further DER signalling. Although there is ample genetic evidence that Argos inhibits DER activation, the biochemical mechanism has not been established. Here we show that Argos inhibits DER signalling without interacting directly with the receptor, but instead by sequestering the DER-activating ligand Spitz. Argos binds tightly to the EGF motif of Spitz and forms a 1:1 (Spitz:Argos) complex that does not bind DER in vitro or at the cell surface. Our results provide an insight into the mechanism of Argos function, and suggest new strategies for EGFR inhibitor design.

  6. Intranasal epidermal growth factor treatment rescues neonatal brain injury

    NASA Astrophysics Data System (ADS)

    Scafidi, Joseph; Hammond, Timothy R.; Scafidi, Susanna; Ritter, Jonathan; Jablonska, Beata; Roncal, Maria; Szigeti-Buck, Klara; Coman, Daniel; Huang, Yuegao; McCarter, Robert J.; Hyder, Fahmeed; Horvath, Tamas L.; Gallo, Vittorio

    2014-02-01

    There are no clinically relevant treatments available that improve function in the growing population of very preterm infants (less than 32 weeks' gestation) with neonatal brain injury. Diffuse white matter injury (DWMI) is a common finding in these children and results in chronic neurodevelopmental impairments. As shown recently, failure in oligodendrocyte progenitor cell maturation contributes to DWMI. We demonstrated previously that the epidermal growth factor receptor (EGFR) has an important role in oligodendrocyte development. Here we examine whether enhanced EGFR signalling stimulates the endogenous response of EGFR-expressing progenitor cells during a critical period after brain injury, and promotes cellular and behavioural recovery in the developing brain. Using an established mouse model of very preterm brain injury, we demonstrate that selective overexpression of human EGFR in oligodendrocyte lineage cells or the administration of intranasal heparin-binding EGF immediately after injury decreases oligodendroglia death, enhances generation of new oligodendrocytes from progenitor cells and promotes functional recovery. Furthermore, these interventions diminish ultrastructural abnormalities and alleviate behavioural deficits on white-matter-specific paradigms. Inhibition of EGFR signalling with a molecularly targeted agent used for cancer therapy demonstrates that EGFR activation is an important contributor to oligodendrocyte regeneration and functional recovery after DWMI. Thus, our study provides direct evidence that targeting EGFR in oligodendrocyte progenitor cells at a specific time after injury is clinically feasible and potentially applicable to the treatment of premature children with white matter injury.

  7. Epidermal growth factor-stimulated protein phosphorylation in rat hepatocytes

    SciTech Connect

    Connelly, P.A.; Sisk, R.B.; Johnson, R.M.; Garrison, J.C.

    1987-05-01

    Epidermal growth factor (EGF) causes a 6-fold increase in the phosphorylation state of a cytosolic protein (pp36, M/sub r/ = 36,000, pI = 5.5) in hepatocytes isolated from fasted, male, Wistar rats. Stimulation of /sup 32/P incorporation is observed as early as 1 min following treatment of hepatocytes with EGF and is still present at 30 min after exposure to the growth factor. The phosphate incorporated into pp36 in response to EGF is located predominantly in serine but not tyrosine residues. Phosphorylation of pp36 does not occur in response to insulin or to agents which specifically activate the cAMP-dependent protein kinase (S/sub p/ -cAMPS), protein kinase C (PMA) or Ca/sup 2 +//calmodulin-dependent protein kinases (A23187) in these cells. Prior treatment of hepatocytes with the cAMP analog, S/sub p/-cAMPS, or ADP-ribosylation of N/sub i/, the inhibitory GTP-binding protein of the adenylate cyclase complex, does not prevent EGF-stimulated phosphorylation of pp36. However, as seen in other cell types, pretreatment of hepatocytes with PMA abolishes all EGF-mediated responses including phosphorylation of pp36. These results suggest that EGP specifically activates an uncharacterized, serine protein kinase in hepatocytes that is distal to the intrinsic EGF receptor tyrosine protein kinase. The rapid activation of this kinase suggests that it may play an important role in the early response of the cell to EGF.

  8. Addressing epidermal growth factor receptor tyrosine kinase inhibitor resistance in non-small cell lung cancer.

    PubMed

    Noda, Shoko; Kanda, Shintaro

    2016-01-01

    Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have significantly improved the survival of patients with advanced non-small cell lung cancer (NSCLC) harboring EGFR activating mutations. However, nearly all EGFR-mutant NSCLC tumors eventually acquire resistance to the currently used EGFR-TKIs and subsequently progress clinically. Acquired resistance to EGFR-TKIs is thus a huge issue in the treatment of EGFR-mutant NSCLC at present. On one hand, T790M second-site mutation has been recognized as a key mechanism of EGFR-TKI resistance, and third generation EGFR-TKIs such as osimertinib and rociletinib have been developed to overcome tumor cells harboring the T790M mutation. On the other hand, combination with cytotoxic chemotherapy is also expected as another strategy for preventing the acquired resistance to current EGFR-TKIs and prolonging the survival benefits by EGFR-TKIs. Here, we review updated strategies for preventing or overcoming acquired resistance to EGFR-TKIs.

  9. Regulation of epidermal growth factor receptor down-regulation by UBPY-mediated deubiquitination at endosomes.

    PubMed

    Mizuno, Emi; Iura, Takanobu; Mukai, Akiko; Yoshimori, Tamotsu; Kitamura, Naomi; Komada, Masayuki

    2005-11-01

    Ligand-activated receptor tyrosine kinases undergo endocytosis and are transported via endosomes to lysosomes for degradation. This "receptor down-regulation" process is crucial to terminate the cell proliferation signals produced by activated receptors. During the process, ubiquitination of the receptors serves as a sorting signal for their trafficking from endosomes to lysosomes. Here, we describe the role of a deubiquitinating enzyme UBPY/USP8 in the down-regulation of epidermal growth factor (EGF) receptor (EGFR). Overexpression of UBPY reduced the ubiquitination level of EGFR and delayed its degradation in EGF-stimulated cells. Immunopurified UBPY deubiquitinated EGFR in vitro. In EGF-stimulated cells, UBPY underwent ubiquitination and bound to EGFR. Overexpression of Hrs or a dominant-negative mutant of SKD1, proteins that play roles in the endosomal sorting of ubiquitinated receptors, caused the accumulation of endogenous UBPY on exaggerated endosomes. A catalytically inactive UBPY mutant clearly localized on endosomes, where it overlapped with EGFR when cells were stimulated with EGF. Finally, depletion of endogenous UBPY by RNA interference resulted in elevated ubiquitination and accelerated degradation of EGF-activated EGFR. We conclude that UBPY negatively regulates the rate of EGFR down-regulation by deubiquitinating EGFR on endosomes.

  10. Epidermal growth factor receptor degradation: an alternative view of oncogenic pathways.

    PubMed

    Kirisits, Andreas; Pils, Dietmar; Krainer, Michael

    2007-01-01

    Positive regulation of epidermal growth factor receptor signalling is related to many human malignancies. Besides overexpression and gain of function mutations, the escape from negative regulation through an increase in epidermal growth factor receptor stability has evolved as yet another key factor contributing to enhanced receptor activity. Intensive research over the past years has provided considerable evidence concerning the molecular mechanisms which provide epidermal growth factor receptor degradation. c-Cbl mediated ubiquitination, endocytosis via clathrin-coated pits, endosomal sorting and lysosomal degradation have become well-investigated cornerstones. Recent findings on the interdependency of the endosomal sorting complexes required for transport in multivesicular body sorting, stress the topicality of receptor tyrosine kinase downregulation. Here, we review the degradation pathway of the epidermal growth factor receptor, following the receptor from ligand binding to the lysosome and illustrating different modes of oncogenic deregulation.

  11. Evidence for epidermal growth factor (EGF)-induced intermolecular autophosphorylation of the EGF receptors in living cells.

    PubMed Central

    Honegger, A M; Schmidt, A; Ullrich, A; Schlessinger, J

    1990-01-01

    In response to epidermal growth factor (EGF) stimulation, the intrinsic protein tyrosine kinase of EGF receptor is activated, leading to tyrosine phosphorylation of several cellular substrate proteins, including the EGF receptor molecule itself. To test the mechanism of EGF receptor autophosphorylation in living cells, we established transfected cell lines coexpressing a kinase-negative point mutant of EGF receptor (K721A) with an active EGF receptor mutant lacking 63 amino acids from its carboxy terminus. The addition of EGF to these cells caused tyrosine phosphorylation of the kinase-negative mutant by the active receptor molecule, demonstrating EGF receptor cross-phosphorylation in living cells. After internalization the kinase-negative mutant and CD63 have separate trafficking pathways. This limits their association and the extent of cross-phosphorylation of K721A by CD63. The coexpression of the kinase-negative mutant together with active EGF receptors in the same cells suppressed the mitogenic response toward EGF as compared with that in cells that express active receptors alone. The presence of the kinase-negative mutant functions as a negative dominant mutation suppressing the response of active EGF receptors, probably by interfering with EGF-induced signal transduction. It appears, therefore, that crucial events of signal transduction occur before K721A and active EGF receptors are separated by their different endocytic itineraries. Images PMID:2164634

  12. Epidermal Growth Factor Receptor Overexpression as a Target for Auger Electron Radiotherapy of Breast Cancer

    DTIC Science & Technology

    1999-08-01

    proportion of estrogen receptor-negative and hormone-resistant breast cancers. Our objective is to construct a human epidermal growth factor (hEGF...61 5 INTRODUCTION Overexpression of the epidermal growth factor receptor (EGFR) occurs in a high proportion of estrogen receptor-negative and...Lac Iq promotor induced by isopropyl-b- D -thiogalactopyranoside (IPTG). The DNA sequence of the final hEGF-CH1 construct was confirmed (FUi. 2). BamHJ

  13. MICAL-like1 mediates epidermal growth factor receptor endocytosis

    PubMed Central

    Abou-Zeid, Nancy; Pandjaitan, Rudy; Sengmanivong, Lucie; David, Violaine; Le Pavec, Gwenaelle; Salamero, Jean; Zahraoui, Ahmed

    2011-01-01

    Small GTPase Rabs are required for membrane protein sorting/delivery to precise membrane domains. Rab13 regulates epithelial tight junction assembly and polarized membrane transport. Here we report that Molecule Interacting with CasL (MICAL)-like1 (MICAL-L1) interacts with GTP-Rab13 and shares a similar domain organization with MICAL. MICAL-L1 has a calponin homology (CH), LIM, proline rich and coiled-coil domains. It is associated with late endosomes. Time-lapse video microscopy shows that green fluorescent protein–Rab7 and mcherry-MICAL-L1 are present within vesicles that move rapidly in the cytoplasm. Depletion of MICAL-L1 by short hairpin RNA does not alter the distribution of a late endosome/lysosome-associated protein but affects the trafficking of epidermal growth factor receptor (EGFR). Overexpression of MICAL-L1 leads to the accumulation of EGFR in the late endosomal compartment. In contrast, knocking down MICAL-L1 results in the distribution of internalized EGFR in vesicles spread throughout the cytoplasm and promotes its degradation. Our data suggest that the N-terminal CH domain associates with the C-terminal Rab13 binding domain (RBD) of MICAL-L1. The binding of Rab13 to RBD disrupts the CH/RBD interaction, and may induce a conformational change in MICAL-L1, promoting its activation. Our results provide novel insights into the MICAL-L1/Rab protein complex that can regulate EGFR trafficking at late endocytic pathways. PMID:21795389

  14. Epidermal growth factor receptor in glioma: signal transduction, neuropathology, imaging, and radioresistance.

    PubMed

    Hatanpaa, Kimmo J; Burma, Sandeep; Zhao, Dawen; Habib, Amyn A

    2010-09-01

    Aberrant epidermal growth factor receptor (EGFR) signaling is common in cancer. Increased expression of wild type and mutant EGFR is a widespread feature of diverse types of cancer. EGFR signaling in cancer has been the focus of intense investigation for decades primarily for two reasons. First, aberrant EGFR signaling is likely to play an important role in the pathogenesis of cancer, and therefore, the mechanisms of EGFR-mediated oncogenic signaling are of interest. Second, the EGFR signaling system is an attractive target for therapeutic intervention. EGFR gene amplification and overexpression are a particularly striking feature of glioblastoma (GBM), observed in approximately 40% of tumors. GBM is the most common primary malignant tumor of the central nervous system in adults. In approximately 50% of tumors with EGFR amplification, a specific EGFR mutant (EGFRvIII, also known as EGFR type III, de2-7, Delta EGFR) can be detected. This mutant is highly oncogenic and is generated from a deletion of exons 2 to 7 of the EGFR gene, which results in an in-frame deletion of 267 amino acids from the extracellular domain of the receptor. EGFRvIII is unable to bind ligand, and it signals constitutively. Although EGFRvIII has the same signaling domain as the wild type receptor, it seems to generate a distinct set of downstream signals that may contribute to an increased tumorigenicity. In this review, we discuss recent progress in key aspects of EGFR signaling in GBM, focusing on neuropathology, signal transduction, imaging of the EGFR, and the role of the EGFR in mediating resistance to radiation therapy in GBM.

  15. [Epidermal growth factor during pregnancy- a predictor of fetal growth retardation?].

    PubMed

    Huter, O; Kölle, D; Brezinka, C; Artner-Dworzak, E

    1998-01-01

    Epidermal growth factor (EGF) in urine was measured at 4-week intervals in 83 women referred for suspected intrauterine growth retardation (IUGR); 138 women with normal singleton pregnancies and newborns of normal weight served as controls. Of the 83 women, 30 delivered babies with weight below the 10th percentile after week 37. During pregnancy these women had shown significantly lower EGF levels than women who delivered normal-weight babies. However, due to the wide distribution of individual EGF data, no clear clinical cut-off point between normal and IUGR values could be established.

  16. Differential Effects of Myopathy-Associated Caveolin-3 Mutants on Growth Factor Signaling

    PubMed Central

    Brauers, Eva; Dreier, Agnes; Roos, Andreas; Wormland, Berthold; Weis, Joachim; Krüttgen, Alexander

    2010-01-01

    Caveolin-3 is an important scaffold protein of cholesterol-rich caveolae. Mutations of caveolin-3 cause hereditary myopathies that comprise remarkably different pathologies. Growth factor signaling plays an important role in muscle physiology; it is influenced by caveolins and cholesterol-rich rafts and might thus be affected by caveolin-3 dysfunction. Prompted by the observation of a marked chronic peripheral neuropathy in a patient suffering from rippling muscle disease due to the R26Q caveolin-3 mutation and because TrkA is expressed by neuronal cells and skeletal muscle fibers, we performed a detailed comparative study on the effect of pathogenic caveolin-3 mutants on the signaling and trafficking of the TrkA nerve growth factor receptor and, for comparison, of the epidermal growth factor receptor. We found that the R26Q mutant slightly and the P28L strongly reduced nerve growth factor signaling in TrkA-transfected cells. Surface biotinylation experiments revealed that the R26Q caveolin-3 mutation markedly reduced the internalization of TrkA, whereas the P28L did not. Moreover, P28L expression led to increased, whereas R26Q expression decreased, epidermal growth factor signaling. Taken together, we found differential effects of the R26Q and P28L caveolin-3 mutants on growth factor signaling. Our findings are of clinical interest because they might help explain the remarkable differences in the degree of muscle lesions caused by caveolin-3 mutations and also the co-occurrence of peripheral neuropathy in the R26Q caveolinopathy case presented. PMID:20472890

  17. Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum.

    PubMed

    Agarie, Sakae; Shimoda, Toshifumi; Shimizu, Yumi; Baumann, Kathleen; Sunagawa, Haruki; Kondo, Ayumu; Ueno, Osamu; Nakahara, Teruhisa; Nose, Akihiro; Cushman, John C

    2007-01-01

    The aerial surfaces of the common or crystalline ice plant Mesembryanthemum crystallinum L., a halophytic, facultative crassulacean acid metabolism species, are covered with specialized trichome cells called epidermal bladder cells (EBCs). EBCs are thought to serve as a peripheral salinity and/or water storage organ to improve survival under high salinity or water deficit stress conditions. However, the exact contribution of EBCs to salt tolerance in the ice plant remains poorly understood. An M. crystallinum mutant lacking EBCs was isolated from plant collections mutagenized by fast neutron irradiation. Light and electron microscopy revealed that mutant plants lacked EBCs on all surfaces of leaves and stems. Dry weight gain of aerial parts of the mutant was almost half that of wild-type plants after 3 weeks of growth at 400 mM NaCl. The EBC mutant also showed reduced leaf succulence and leaf and stem water contents compared with wild-type plants. Aerial tissues of wild-type plants had approximately 1.5-fold higher Na(+) and Cl(-) content than the mutant grown under 400 mM NaCl for 2 weeks. Na(+) and Cl(-) partitioning into EBCs of wild-type plants resulted in lower concentrations of these ions in photosynthetically active leaf tissues than in leaves of the EBC-less mutant, particularly under conditions of high salt stress. Potassium, nitrate, and phosphate ion content decreased with incorporation of NaCl into tissues in both the wild type and the mutant, but the ratios of Na(+)/K(+) and Cl(-)/NO(3)(-)content were maintained only in the leaf and stem tissues of wild-type plants. The EBC mutant showed significant impairment in plant productivity under salt stress as evaluated by seed pod and seed number and average seed weight. These results clearly show that EBCs contribute to succulence by serving as a water storage reservoir and to salt tolerance by maintaining ion sequestration and homeostasis within photosynthetically active tissues of M. crystallinum.

  18. Rapid and delayed effects of epidermal growth factor on gluconeogenesis.

    PubMed Central

    Soler, C; Soley, M

    1993-01-01

    Most reports on the effects of epidermal growth factor (EGF) on gluconeogenesis have indicated that such effects depend on the substrate used and are only observable after a lag time of 30-40 min. Recently, an immediate and transient effect of EGF on glucose synthesis was described in a perfused liver system. Here we extend the study of the effect of EGF on gluconeogenesis to isolated hepatocytes from fasted rats. The delayed effect of EGF on gluconeogenesis was studied by adding the substrate 40 min after the peptide. Under these conditions EGF increased glucose synthesis from pyruvate, decreased it when the substrate was lactate or glycerol and did not modify gluconeogensis from fructose or dihydroxyacetone. EGF did not affect the metabolic flux through glycolysis, determined as the production of lactate+pyruvate from 30 mM glucose. Furthermore, EGF did not modify the metabolic flux through pyruvate kinase, determined as the production of lactate+pyruvate from 1 mM dihydroxyacetone. The differing effects of EGF on gluconeogenesis depending on the substrate used can be explained by the effects of EGF on the cytosolic redox state (measured as the lactate/pyruvate ratio). About 20 min after the addition of EGF, the mitochondrial redox state (measured as the 3-hydroxybutyrate/acetoacetate ratio) decreased. This effect of EGF was blocked by ammonium, which also abolished the effect of the peptide on gluconeogenesis. Thus the effect of EGF at the mitochondrial level appears to be necessary for its effects on gluconeogenesis. Taken together, our results indicate that the delayed effects of EGF on gluconeogenesis are secondary to the effects of the peptide at both the mitochondrial and cytosolic levels. In addition to these delayed effects, we observed that EGF rapidly and transiently stimulated glucose synthesis from lactate, decreased the cytosolic redox state and increased oxygen consumption. All of these rapid effects required the presence of extracellular calcium

  19. Multiple requirements for SHPTP2 in epidermal growth factor-mediated cell cycle progression.

    PubMed Central

    Bennett, A M; Hausdorff, S F; O'Reilly, A M; Freeman, R M; Neel, B G

    1996-01-01

    Using transient overexpression and microinjection approaches, we examined SHPTP2's function in growth factor signaling. Overexpression of catalytically inactive SHPTP2 (PTP2CS) but not catalytically inactive SHPTP1, inhibited mitogen-activated protein (MAP) kinase activation and Elk-1 transactivation following epidermal growth factor (EGF) stimulation of 293 cells. An SHPTP2 mutant with both C-terminal tyrosyl phosphorylation sites converted to phenylalanine (PTP2YF) was also without effect; moreover, PTP2YF rescued PTP2CS-induced inhibition of EGF-induced Elk-1 transactivation. PTP2CS did not inhibit transactivation by activated Ras, suggesting that SHPTP2 acts upstream of or parallel to Ras. Neither PTP2CS nor PTP2YF inhibited platelet-derived growth factor (PDGF)-induced Elk-1 transactivation. Thus, protein-tyrosine phosphatase activity, but not tyrosyl phosphorylation of SHPTP2, is required for the immediate-early responses to EGF but not to PDGF. To determine whether SHPTP2 is required later in the cell cycle, we assessed S-phase entry in NIH 3T3 cells microinjected with anti-SHPTP2 antibodies or with a glutathione S-transferase (GST) fusion protein encoding both SH2 domains (GST-SH2). Microinjection of anti-SHPTP2 antibodies prior to stimulation inhibited EGF- but no PDGF- or serum-induced S-phase entry. Anti-SHPTP2 antibodies or GST-SH2 fusion protein could inhibit EGF-induced S-phase entry for up to 8 h after EGF addition. Although MAP kinase activation was detected shortly after EGF stimulation, no MAP kinase activation was detected around the restriction point. Therefore, SHPTP2 is absolutely required for immediate-early and late events induced by some, but not all, growth factors, and the immediate-early and late signal transduction pathways regulated by SHPTP2 are distinguishable. PMID:8622663

  20. Epidermal growth factor receptors destined for the nucleus are internalized via a clathrin-dependent pathway

    SciTech Connect

    De Angelis Campos, Ana Carolina; Rodrigues, Michele Angela; Andrade, Carolina de; Miranda de Goes, Alfredo; Nathanson, Michael H.; Gomes, Dawidson A.

    2011-08-26

    Highlights: {yields} EGF and its receptor translocates to the nucleus in liver cells. {yields} Real time imaging shows that EGF moves to the nucleus. {yields} EGF moves with its receptor to the nucleus. {yields} Dynamin and clathrin are necessary for EGFR nuclear translocation. -- Abstract: The epidermal growth factor (EGF) transduces its actions via the EGF receptor (EGFR), which can traffic from the plasma membrane to either the cytoplasm or the nucleus. However, the mechanism by which EGFR reaches the nucleus is unclear. To investigate these questions, liver cells were analyzed by immunoblot of cell fractions, confocal immunofluorescence and real time confocal imaging. Cell fractionation studies showed that EGFR was detectable in the nucleus after EGF stimulation with a peak in nuclear receptor after 10 min. Movement of EGFR to the nucleus was confirmed by confocal immunofluorescence and labeled EGF moved with the receptor to the nucleus. Small interference RNA (siRNA) was used to knockdown clathrin in order to assess the first endocytic steps of EGFR nuclear translocation in liver cells. A mutant dynamin (dynamin K44A) was also used to determine the pathways for this traffic. Movement of labeled EGF or EGFR to the nucleus depended upon dynamin and clathrin. This identifies the pathway that mediates the first steps for EGFR nuclear translocation in liver cells.

  1. The Epidermal Growth Factor Receptor Increases Cytokine Production and Cutaneous Inflammation in Response to Ultraviolet Irradiation

    PubMed Central

    El-Abaseri, Taghrid Bahig; Repertinger, Susan K.; Hansen, Laura A.

    2013-01-01

    The epidermal growth factor receptor (EGFR) is activated in cutaneous keratinocytes upon ultraviolet (UV) exposure and has been implicated in ultraviolet-(UV-)induced inflammation and skin tumorigenesis. Egfr mutant mice and EGFR inhibitors were used to investigate the hypothesis that EGFR activation augments inflammation following UV irradiation. Topical treatment of mouse skin with the EGFR inhibitor AG1478 before UV exposure suppressed UV-induced erythema, edema, mast cell infiltration, and neutrophil infiltration. Genetic ablation of Egfr and EGFR inhibition by AG1478 also suppressed the increase in the proinflammatory cytokines tumor necrosis factor α (TNF-α), interleukin-1α, KC (murine IL-8), and cyclooxygenase-2 (COX-2) after UV exposure of cultured keratinocytes. Finally, genetic ablation of inhibition of EGFR in cultured keratinocytes decreased p38 activation after UV, while inhibition of p38 kinase reduced COX-2 expression after UV. These data demonstrate that EGFR regulates multiple aspects of UV-induced inflammation and suggest activation of p38 kinase leading to increased COX-2 and cytokine expression as one mechanism through which it acts. PMID:23878744

  2. Effects of population growth on the success of invading mutants.

    PubMed

    Ashcroft, Peter; Smith, Cassandra E R; Garrod, Matthew; Galla, Tobias

    2017-03-18

    Understanding if and how mutants reach fixation in populations is an important question in evolutionary biology. We study the impact of population growth has on the success of mutants. To systematically understand the effects of growth we decouple competition from reproduction; competition follows a birth-death process and is governed by an evolutionary game, while growth is determined by an externally controlled branching rate. In stochastic simulations we find non-monotonic behaviour of the fixation probability of mutants as the speed of growth is varied; the right amount of growth can lead to a higher success rate. These results are observed in both coordination and coexistence game scenarios, and we find that the 'one-third law' for coordination games can break down in the presence of growth. We also propose a simplified description in terms of stochastic differential equations to approximate the individual-based model.

  3. Nuclear transportation of exogenous epidermal growth factor receptor and androgen receptor via extracellular vesicles.

    PubMed

    Read, Jolene; Ingram, Alistair; Al Saleh, Hassan A; Platko, Khrystyna; Gabriel, Kathleen; Kapoor, Anil; Pinthus, Jehonathan; Majeed, Fadwa; Qureshi, Talha; Al-Nedawi, Khalid

    2017-01-01

    Epidermal growth factor receptor (EGFR) plays a central role in the progression of several human malignancies. Although EGFR is a membrane receptor, it undergoes nuclear translocation, where it has a distinct signalling pathway. Herein, we report a novel mechanism by which cancer cells can directly transport EGFR to the nucleus of other cells via extracellular vesicles (EVs). The transported receptor is active and stimulates the nuclear EGFR pathways. Interestingly, the translocation of EGFR via EVs occurs independently of the nuclear localisation sequence that is required for nuclear translocation of endogenous EGFR. Also, we found that the mutant receptor EGFRvIII could be transported to the nucleus of other cells via EVs. To assess the role of EVs in the regulation of an actual nuclear receptor, we studied the regulation of androgen receptor (AR). We found that full-length AR and mutant variant ARv7 are secreted in EVs derived from prostate cancer cell lines and could be transported to the nucleus of AR-null cells. The EV-derived AR was able to bind the androgen-responsive promoter region of prostate specific antigen, and recruit RNA Pol II, an indication of active transcription. The nuclear-translocated AR via EVs enhanced the proliferation of acceptor cells in the absence of androgen. Finally, we provide evidence that nuclear localisation of AR could occur in vivo via orthotopically-injected EVs in male SCID mice prostate glands. To our knowledge, this is the first study showing the nuclear translocation of nuclear receptors via EVs, which significantly extends the role of EVs as paracrine transcriptional regulators.

  4. Effect of an epidermal growth factor receptor inhibitor in mouse models of lung cancer.

    PubMed

    Yan, Ying; Lu, Yan; Wang, Min; Vikis, Haris; Yao, Ruisheng; Wang, Yian; Lubet, Ronald A; You, Ming

    2006-12-01

    Gefitinib (Iressa, ZD1839) is a potent high-affinity competitive tyrosine kinase inhibitor aimed primarily at epidermal growth factor receptor (EGFR). Inhibitors in this class have recently been approved for clinical use in the treatment of advanced non-small cell lung cancer as monotherapy following failure of chemotherapy. We examined the efficacy of gefitinib on lung tumorigenesis in mouse models using both postinitiation and progression protocols. Gefitinib was given at a dose of 200 mg/kg body weight (i.g.) beginning either 2 or 12 weeks following carcinogen initiation. In the postinitiation protocol, gefitinib significantly inhibited both tumor multiplicity (approximately 70%) and tumor load (approximately 90%) in A/J or p53-mutant mice (P < 0.0001). Interestingly, gefitinib was also highly effective against lung carcinogenesis in the progression protocol when individual animals already have multiple preinvasive lesions in the lung. Gefitinib exhibited approximately 60% inhibition of tumor multiplicity and approximately 80% inhibition of tumor load when compared with control mice (both P < 0.0001). These data show that gefitinib is a potent chemopreventive agent in both wild-type and p53-mutant mice and that a delayed administration was still highly effective. Analyses of mutations in the EGFR and K-ras genes in lung tumors from either control or treatment groups showed no mutations in EGFR and consistent mutation in K-ras. Using an oligonucleotide array on control and gefitinib-treated lesions showed that gefitinib treatment failed to alter the activity or the expression level of EGFR. In contrast, gefitinib treatment significantly altered the expression of a series of genes involved in cell cycle, cell proliferation, cell transformation, angiogenesis, DNA synthesis, cell migration, immune responses, and apoptosis. Thus, gefitinib showed highly promising chemopreventive and chemotherapeutic activity in this mouse model of lung carcinogenesis.

  5. UBPY-mediated epidermal growth factor receptor (EGFR) de-ubiquitination promotes EGFR degradation.

    PubMed

    Alwan, Husam A J; van Leeuwen, Jeroen E M

    2007-01-19

    Whereas poly-ubiquitination targets protein substrates for proteasomal degradation, mono-ubiquitination is known to regulate protein trafficking in the endosomal system and to target cargo proteins for lysosomal degradation. The role of the de-ubiquitinating enzymes AMSH and UBPY in endosomal trafficking of cargo proteins such as the epidermal growth factor receptor (EGFR) has only very recently been the subject of study and is already a matter of debate. Although one report (Mizuno, E., Iura, T., Mukai, A., Yoshimori, T., Kitamura, N., and Komada, M. (2005) Mol. Biol. Cell 16, 5163-5174) concludes that UBPY negatively regulates EGFR degradation by de-ubiquitinating the EGFR on endosomes, another report (Row, P. E., Prior, I. A., McCullough, J., Clague, M. J., and Urbe, S. (2006) J. Biol. Chem. 281, 12618-12624) concludes that UBPY-mediated EGFR de-ubiquitination is essential for EGFR degradation. Here, we demonstrate that Usp8/UBPY, the mammalian ortholog of budding yeast Ubp4/Doa4, constitutively co-precipitates in a bivalent manner with the EGFR. Moreover, UBPY is a substrate for Src-family tyrosine kinases that are activated after ligand-induced EGFR activation. Using overexpression of three different recombinant dominant negative UBPY mutants (UBPY C748A mutant, UBPY 1-505, and UBPY 640-1080) in NIH3T3 and HEK293 cells, we demonstrate that UBPY affects both constitutive and ligand-induced (i) EGFR ubiquitination, (ii) EGFR expression levels, and (iii) the appearance of intermediate EGFR degradation products as well as (iv) downstream mitogen-activated protein kinase signal transduction. Our findings provide further evidence in favor of the model that UBPY-mediated EGFR de-ubiquitination promotes EGFR degradation.

  6. H-Ras Mediates the Inhibitory Effect of Epidermal Growth Factor on the Epithelial Na+ Channel

    PubMed Central

    Lee, Il-Ha; Song, Sung-Hee; Cook, David I.; Dinudom, Anuwat

    2015-01-01

    The present study investigates the role of small G-proteins of the Ras family in the epidermal growth factor (EGF)-activated cellular signalling pathway that downregulates activity of the epithelial Na+ channel (ENaC). We found that H-Ras is a key component of this EGF-activated cellular signalling mechanism in M1 mouse collecting duct cells. Expression of a constitutively active H-Ras mutant inhibited the amiloride-sensitive current. The H-Ras-mediated signalling pathway that inhibits activity of ENaC involves c-Raf, and that the inhibitory effect of H-Ras on ENaC is abolished by the MEK1/2 inhibitor, PD98059. The inhibitory effect of H-Ras is not mediated by Nedd4-2, a ubiquitin protein ligase that regulates the abundance of ENaC at the cell surface membrane, or by a negative effect of H-Ras on proteolytic activation of the channel. The inhibitory effects of EGF and H-Ras on ENaC, however, were not observed in cells in which expression of caveolin-1 (Cav-1) had been knocked down by siRNA. These findings suggest that the inhibitory effect of EGF on ENaC-dependent Na+ absorption is mediated via the H-Ras/c-Raf, MEK/ERK signalling pathway, and that Cav-1 is an essential component of this EGF-activated signalling mechanism. Taken together with reports that mice expressing a constitutive mutant of H-Ras develop renal cysts, our findings suggest that H-Ras may play a key role in the regulation of renal ion transport and renal development. PMID:25774517

  7. Increased Serum Levels of Epidermal Growth Factor in Children with Autism

    ERIC Educational Resources Information Center

    Iseri, Elvan; Guney, Esra; Ceylan, Mehmet F.; Yucel, Aysegul; Aral, Arzu; Bodur, Sahin; Sener, Sahnur

    2011-01-01

    The etiology of autism is unclear, however autism is considered as a multifactorial disorder that is influenced by neurological, environmental, immunological and genetic factors. Growth factors, including epidermal growth factor (EGF), play an important role in the celluler proliferation and the differentiation of the central and peripheral…

  8. Problem-Solving Test: The Role of Ubiquitination in Epidermal Growth Factor Receptor Trafficking

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2012-01-01

    Terms to be familiar with before you start to solve the test: growth factor signaling, epidermal growth factor, tyrosine protein kinase, tyrosine phosphorylation, ubiquitin, monoubiquitination, polyubiquitination, site-directed mutagenesis, transfection, expression vector, cDNA, immunoprecipitation, SDS-polyacrylamide gel electrophoresis, Western…

  9. Megalencephalic leukoencephalopathy with subcortical cysts protein-1 regulates epidermal growth factor receptor signaling in astrocytes.

    PubMed

    Lanciotti, Angela; Brignone, Maria Stefania; Visentin, Sergio; De Nuccio, Chiara; Catacuzzeno, Luigi; Mallozzi, Cinzia; Petrini, Stefania; Caramia, Martino; Veroni, Caterina; Minnone, Gaetana; Bernardo, Antonietta; Franciolini, Fabio; Pessia, Mauro; Bertini, Enrico; Petrucci, Tamara Corinna; Ambrosini, Elena

    2016-04-15

    Mutations in the MLC1 gene, which encodes a protein expressed in brain astrocytes, are the leading cause of MLC, a rare leukodystrophy characterized by macrocephaly, brain edema, subcortical cysts, myelin and astrocyte vacuolation. Although recent studies indicate that MLC1 protein is implicated in the regulation of cell volume changes, the exact role of MLC1 in brain physiology and in the pathogenesis of MLC disease remains to be clarified. In preliminary experiments, we observed that MLC1 was poorly expressed in highly proliferating astrocytoma cells when compared with primary astrocytes, and that modulation of MLC1 expression influenced astrocyte growth. Because volume changes are key events in cell proliferation and during brain development MLC1 expression is inversely correlated to astrocyte progenitor proliferation levels, we investigated the possible role for MLC1 in the control of astrocyte proliferation. We found that overexpression of wild type but not mutant MLC1 in human astrocytoma cells hampered cell growth by favoring epidermal growth factor receptor (EGFR) degradation and by inhibiting EGF-induced Ca(+) entry, ERK1/2 and PLCγ1 activation, and calcium-activated KCa3.1 potassium channel function, all molecular pathways involved in astrocyte proliferation stimulation. Interestingly, MLC1 did not influence AKT, an EGFR-stimulated kinase involved in cell survival. Moreover, EGFR expression was higher in macrophages derived from MLC patients than from healthy individuals. Since reactive astrocytes proliferate and re-express EGFR in response to different pathological stimuli, the present findings provide new information on MLC pathogenesis and unravel an important role for MLC1 in other brain pathological conditions where astrocyte activation occurs.

  10. USP17 is required for clathrin mediated endocytosis of epidermal growth factor receptor

    PubMed Central

    Jaworski, Jakub; de la Vega, Michelle; Fletcher, Sarah J.; McFarlane, Cheryl; Greene, Michelle K.; Smyth, Andrew W.; Van Schaeybroeck, Sandra; Johnston, James A.; Scott, Christopher J.; Rappoport, Joshua Z.; Burrows, James F.

    2014-01-01

    Previously we have shown that expression of the deubiquitinating enzyme USP17 is required for cell proliferation and motility. More recently we reported that USP17 deubiquitinates RCE1 isoform 2 and thus regulates the processing of ‘CaaX’ motif proteins. Here we now show that USP17 expression is induced by epidermal growth factor and that USP17 expression is required for clathrin mediated endocytosis of epidermal growth factor receptor. In addition, we show that USP17 is required for the endocytosis of transferrin, an archetypal substrate for clathrin mediated endocytosis, and that USP17 depletion impedes plasma membrane recruitment of the machinery required for clathrin mediated endocytosis. Thus, our data reveal that USP17 is necessary for epidermal growth factor receptor and transferrin endocytosis via clathrin coated pits, indicate this is mediated via the regulation of the recruitment of the components of the endocytosis machinery and suggest USP17 may play a general role in receptor endocytosis. PMID:25026282

  11. Role of mucosal prostaglandins and DNA synthesis in gastric cytoprotection by luminal epidermal growth factor.

    PubMed Central

    Konturek, S J; Brzozowski, T; Piastucki, I; Dembinski, A; Radecki, T; Dembinska-Kiec, A; Zmuda, A; Gregory, H

    1981-01-01

    This study compares the effect of epidermal growth factor and prostaglandins (PGE2 or PGI2), applied topically to gastric mucosa, on gastric secretion and formation of ASA-induced gastric ulcerations in rats. Epidermal growth factor given topically in non-antisecretory doses prevented dose-dependently the formation of ASA-induced ulcers without affecting prostaglandin generation but with a significant rise in DNA synthesis in the oxyntic mucosa. The anti-ulcer effect of topical prostaglandins was also accompanied by an increase in DNA synthesis. This study indicates that topical epidermal growth factor, like PGE2 or PGI2, is cytoprotective and that this cytoprotection is not mediated by the inhibition of gastric secretion or prostaglandin formation but related to the increase in DNA synthesis in oxyntic mucosa. PMID:7030877

  12. Transforming growth factor alpha and epidermal growth factor levels in normal human gastrointestinal mucosa.

    PubMed Central

    Cartlidge, S. A.; Elder, J. B.

    1989-01-01

    Acid soluble proteins from 23 samples of normal human gastrointestinal mucosa derived from four normal adult organ donors were extracted and subjected to specific radiommunoassays for transforming growth factor alpha (TGF alpha) and urogastrone epidermal growth factor (URO-EGF). All tissues were found to contain immunoreactive TGF alpha and levels ranged from 57 to 4,776 pg-1 wet weight of tissue. Although levels varied between tissue donors, the distribution of TGF alpha throughout the gastrointestinal tract appeared similar in all cases. URO-EGF levels were much lower (0-216 pg g-1 wet weight). TGF alpha levels in extracts of gastrointestinal mucosa from a 7-year-old female donor were higher and the observed distribution was markedly different from adult levels. URO-EGF was not detected in mucosal or submucosal tissue extracts from this patient. Further studies in juveniles are indicated. PMID:2803941

  13. Transmembrane signalling at the epidermal growth factor receptor. Positive regulation by the C-terminal phosphotyrosine residues.

    PubMed Central

    Magni, M; Pandiella, A; Helin, K; Meldolesi, J; Beguinot, L

    1991-01-01

    Mutant epidermal growth factor (EGF) receptors (obtained by substitution of one, two or three C-terminal autophosphorylable tyrosine residues with phenylalanine residues or by deletion of the C-terminal 19 amino acids, including the distal tyrosine) were expressed in mouse NIH-3T3 fibroblast clones at densities comparable (less than 25% difference) with those in control clones expressing the wild-type receptor. Total EGF-induced phosphorylation of the mutated receptors was not appreciably changed with respect to controls, whereas autophosphorylation at tyrosine residues was decreased, especially in the double and the triple mutants. In the latter mutant, expression of the EGF-receptor-activated lipolytic enzyme phospholipase C gamma was unchanged, whereas its tyrosine phosphorylation induced by the growth factor was lowered to approx. 25% of that in the controls. In all of the cell clones employed, the accumulation of inositol phosphates induced by treatment with fetal calf serum varied only slightly, whereas the same effect induced by EGF was consistently lowered in those lines expressing mutated receptors. This decrease was moderate for those receptors missing only the distal tyrosine (point and deletion mutants), intermediate in the dual mutants and almost complete in the triple mutants. Likewise, increases in intracellular Ca2+ concentrations [( Ca2+]i) induced by fibroblast growth factor were approximately the same in all of the clones, whereas those induced by EGF were decreased in the mutants, again in proportion to the loss of the phosphorylable C-terminal tyrosine residues. The same trend occurred with membrane hyperpolarization, an effect secondary to the increase in [Ca2+]i via the activation of Ca2(+)-dependent K+ channels. We conclude that C-terminal autophosphorylable tyrosine residues play a positive role in the regulation of transmembrane signalling at the EGF receptor. The stepwise decrease in signal generation observed in single, double and triple

  14. TERATOGENIC RESPONSES ARE MODULATED IN MICE LACKING EXPRESSION OF EPIDERMAL GROWTH FACTOR (EGF) AND TRANSFORMING GROWTH FACTOR-ALPHA (TGF)

    EPA Science Inventory

    TITLE:
    TERATOGENIC RESPONSES ARE MODULATED IN MICE LACKING EXPRESSION OF EPIDERMAL GROWTH FACTOR (EGF) AND TRANSFORMING GROWTH FACTOR-ALPHA (TGF). AUTHORS (ALL): Abbott, Barbara D.1; Best, Deborah S.1; Narotsky, Michael G.1. SPONSOR NAME: None INSTITUTIONS (ALL): 1. Repro Tox ...

  15. Phospholipase C-epsilon augments epidermal growth factor-dependent cell growth by inhibiting epidermal growth factor receptor down-regulation.

    PubMed

    Yun, Sanguk; Hong, Won-Pyo; Choi, Jang Hyun; Yi, Kye Sook; Chae, Suhn-Kee; Ryu, Sung Ho; Suh, Pann-Ghill

    2008-01-04

    The down-regulation of the epidermal growth factor (EGF) receptor is critical for the termination of EGF-dependent signaling, and the dysregulation of this process can lead to oncogenesis. In the present study, we suggest a novel mechanism for the regulation of EGF receptor down-regulation by phospholipase C-epsilon. The overexpression of PLC-epsilon led to an increase in receptor recycling and decreased the down-regulation of the EGF receptor in COS-7 cells. Adaptor protein complex 2 (AP2) was identified as a novel binding protein that associates with the PLC-epsilon RA2 domain independently of Ras. The interaction of PLC-epsilon with AP2 was responsible for the suppression of EGF receptor down-regulation, since a perturbation in this interaction abolished this effect. Enhanced EGF receptor stability by PLC-epsilon led to the potentiation of EGF-dependent growth in COS-7 cells. Finally, the knockdown of PLC-epsilon in mouse embryo fibroblast cells elicited a severe defect in EGF-dependent growth. Our results indicated that PLC-epsilon could promote EGF-dependent cell growth by suppressing receptor down-regulation.

  16. Growth factor control of epidermal growth factor receptor kinase activity via an intramolecular mechanism.

    PubMed

    Koland, J G; Cerione, R A

    1988-02-15

    The mechanism by which the protein kinase activity of the epidermal growth factor (EGF) receptor is activated by binding of growth factor was investigated. Detergent-solubilized receptor in monomeric form was isolated by sucrose density gradient centrifugation and both its kinase and autophosphorylation activities monitored. In a low ionic strength medium and with MnCl2 as an activator, the activity of the monomeric receptor was EGF-independent. However, with 0.25 M ammonium sulfate present, the MnCl2-stimulated kinase activity was strikingly EGF-dependent. In contrast, the kinase activity expressed in the presence of MgCl2 showed growth factor control in the absence of added salt. Under the conditions of these experiments there was apparently little tendency for growth factor to induce aggregation of the receptor, indicating that the allosteric activation of the receptor kinase by EGF occurred via an intramolecular mechanism. Whereas detergent-solubilized receptor was the subject of these studies, the kinase activity of cell surface receptors might also be controlled by an intramolecular mechanism. These results indicate that an individual receptor molecule has the potential to function as a transmembrane signal transducer.

  17. MECHANISMS OF ZN-INDUCED SIGNAL INITIATION THROUGH THE EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR)

    EPA Science Inventory

    MECHANISMS OF Zn-INDUCED SIGNAL INITIATION THROUGH THE EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR)
    James M. Samet*, Lee M. Graves? and Weidong Wu?. *Human Studies Division, NHEERL, ORD, Research Triangle Park, NC 27711, and ?Center for Environmental Medicine, University of North C...

  18. Phosphorylation and Activation of RhoA by ERK in Response to Epidermal Growth Factor Stimulation

    PubMed Central

    Tong, Junfeng; Li, Laiji; Ballermann, Barbara; Wang, Zhixiang

    2016-01-01

    The small GTPase RhoA has been implicated in various cellular activities, including the formation of stress fibers, cell motility, and cytokinesis. In addition to the canonical GTPase cycle, recent findings have suggested that phosphorylation further contributes to the tight regulation of Rho GTPases. Indeed, RhoA is phosphorylated on serine 188 (188S) by a number of protein kinases. We have recently reported that Rac1 is phosphorylated on threonine 108 (108T) by extracellular signal-regulated kinases (ERK) in response to epidermal growth factor (EGF) stimulation. Here, we provide evidence that RhoA is phosphorylated by ERK on 88S and 100T in response to EGF stimulation. We show that ERK interacts with RhoA and that this interaction is dependent on the ERK docking site (D-site) at the C-terminus of RhoA. EGF stimulation enhanced the activation of the endogenous RhoA. The phosphomimetic mutant, GFP-RhoA S88E/T100E, when transiently expressed in COS-7 cells, displayed higher GTP-binding than wild type RhoA. Moreover, the expression of GFP-RhoA S88E/T100E increased actin stress fiber formation in COS-7 cells, which is consistent with its higher activity. In contrast to Rac1, phosphorylation of RhoA by ERK does not target RhoA to the nucleus. Finally, we show that regardless of the phosphorylation status of RhoA and Rac1, substitution of the RhoA PBR with the Rac1 PBR targets RhoA to the nucleus and substitution of Rac1 PBR with RhoA PBR significantly reduces the nuclear localization of Rac1. In conclusion, ERK phosphorylates RhoA on 88S and 100T in response to EGF, which upregulates RhoA activity. PMID:26816343

  19. Specific epidermal growth factor receptor autophosphorylation sites promote mouse colon epithelial cell chemotaxis and restitution.

    PubMed

    Yamaoka, Toshimitsu; Frey, Mark R; Dise, Rebecca S; Bernard, Jessica K; Polk, D Brent

    2011-08-01

    Upon ligand binding, epidermal growth factor (EGF) receptor (R) autophosphorylates on COOH-terminal tyrosines, generating docking sites for signaling partners that stimulate proliferation, restitution, and chemotaxis. Specificity for individual EGFR tyrosines in cellular responses has been hypothesized but not well documented. Here we tested the requirement for particular tyrosines, and associated downstream pathways, in mouse colon epithelial cell chemotactic migration. We compared these requirements to those for the phenotypically distinct restitution (wound healing) migration. Wild-type, Y992/1173F, Y1045F, Y1068F, and Y1086F EGFR constructs were expressed in EGFR(-/-) cells; EGF-induced chemotaxis or restitution were determined by Boyden chamber or modified scratch wound assay, respectively. Pharmacological inhibitors of p38, phospholipase C (PLC), Src, MEK, JNK/SAPK, phosphatidylinositol 3-kinase (PI 3-kinase), and protein kinase C (PKC) were used to block EGF-stimulated signaling. Pathway activation was determined by immunoblot analysis. Unlike wild-type EGFR, Y992/1173F and Y1086F EGFR did not stimulate colon epithelial cell chemotaxis toward EGF; Y1045F and Y1068F EGFR partially stimulated chemotaxis. Only wild-type EGFR promoted colonocyte restitution. Inhibition of p38, PLC, and Src, or Grb2 knockdown, blocked chemotaxis; JNK, PI 3-kinase, and PKC inhibitors or c-Cbl knockdown blocked restitution but not chemotaxis. All four EGFR mutants stimulated downstream signaling in response to EGF, but Y992/1173F EGFR was partially defective in PLCγ activation whereas both Y1068F and Y1086F EGFR failed to activate Src. We conclude that specific EGFR tyrosines play key roles in determining cellular responses to ligand. Chemotaxis and restitution, which have different migration phenotypes and physiological consequences, have overlapping but not identical EGFR signaling requirements.

  20. Structure-Activity Relationship of Indole-Tethered Pyrimidine Derivatives that Concurrently Inhibit Epidermal Growth Factor Receptor and Other Angiokinases

    PubMed Central

    Song, Jiho; Yoo, Jakyung; Kwon, Ara; Kim, Doran; Nguyen, Hong Khanh; Lee, Bong-Yong; Suh, Wonhee; Min, Kyung Hoon

    2015-01-01

    Antiangiogenic agents have been widely investigated in combination with standard chemotherapy or targeted cancer agents for better management of advanced cancers. Therapeutic agents that concurrently inhibit epidermal growth factor receptor and other angiokinases could be useful alternatives to combination therapies for epidermal growth factor receptor-dependent cancers. Here, we report the synthesis of an indole derivative of pazopanib using a bioisosteric replacement strategy, which was designated MKP101. MKP101 inhibited not only the epidermal growth factor receptor with an IC50 value of 43 nM but also inhibited angiokinases as potently as pazopanib. In addition, MKP101 effectively inhibited vascular endothelial growth factor-induced endothelial proliferation, tube formation, migration of human umbilical vein endothelial cells and proliferation of HCC827, an epidermal growth factor receptor-addicted cancer cell line. A docking model of MKP101 and the kinase domain of the epidermal growth factor receptor was generated to predict its binding mode, and validated by synthesizing and evaluating MKP101 derivatives. Additionally, a study of structure-activity relationships of indolylamino or indolyloxy pyrimidine analogues derived from MKP101 demonstrated that selectivity for epidermal growth factor receptor and other angiokinases, especially vascular endothelial growth factor receptor 2 depends on the position of substituents on pyrimidine and the type of link between pyrimidine and the indole moiety. We believe that this study could provide a basis for developing angiokinase inhibitors having high affinity for the epidermal growth factor receptor, from the pyrimidine scaffold. PMID:26401847

  1. Essential role of c-Cbl in amphiregulin-induced recycling and signaling of the endogenous epidermal growth factor receptor.

    PubMed

    Baldys, Aleksander; Göoz, Monika; Morinelli, Thomas A; Lee, Mi-Hye; Raymond, John R; Luttrell, Louis M; Raymond, John R

    2009-02-24

    The intracellular processing of the epidermal growth factor receptor (EGFR) induced by epidermal growth factor (EGF) and transforming growth factor-alpha (TGF-alpha) has been studied meticulously, with the former resulting in EGFR degradation and the latter in EGFR recycling to the plasma membrane. However, little is known about how other EGF family growth factors affect the trafficking of the EGFR. Additionally, although both EGF and TGF-alpha have been shown to effectively induce initial c-Cbl (ubiquitin ligase)-mediated ubiquitination of the EGFR, limited information is available regarding the role of c-Cblin the trafficking and signaling of recycling EGFR. Thus, in this study, we investigated the roles of c-Cblin endogenous EGFR trafficking and signaling after stimulation with amphiregulin (AR). We demonstrated that a physiological concentration of AR induced recycling of the endogenous EGFR to the plasma membrane, which correlated closely with transient association of the EGFR with c-Cbl and transient EGFR ubiquitination. Most importantly, we used c-Cbl small interfering RNA (siRNA) duplexes and ac-Cbl dominant negative mutant to show that c-Cbl is critical for the efficient transition of the EGFR from early endosomes to a recycling pathway and that c-Cbl regulates the duration of extracellular signal regulated kinase 1/2 mitogen-activated protein kinase (ERK1/2 MAPK) phosphorylation. These data support novel functions of c-Cbl in mediating recycling of EGF receptors to the plasma membrane, as well as in mediating the duration of activation (transient vs sustained) of ERK1/2 MAPK phosphorylation.

  2. Rat Prolactinoma cell growth regulation by Epidermal Growth Factor receptor ligands

    PubMed Central

    Vlotides, George; Siegel, Emily; Donangelo, Ines; Gutman, Shiri; Ren, Song-Guang; Melmed, Shlomo

    2008-01-01

    Epidermal growth factor (EGF) regulates pituitary development, hormone synthesis and cell proliferation. Although ErbB receptor family members are expressed in pituitary tumors, effects of EGF signaling on pituitary tumors are not known. Immunoprecipitation and Western blot confirmed EGFR and p185c-neu protein expression in GH3 lacto-somatotroph but not in ACTH-secreting AtT20 pituitary tumor cells. EGF (5 nM) selectively enhanced baseline (~ 4-fold) and serum-induced (> 6-fold) PRL mRNA levels, while gefitinib, an EGFR antagonist, suppressed serum-induced cell proliferation and Pttg1 expression, blocked PRL gene expression, and reversed EGF-mediated somatotroph-lactotroph phenotype switching. Downstream EGFR signaling by ERK, but not PI3K or PKC, mediated the gefitinib-response. Tumors in athymic mice implanted sc with GH3 cells resulted in weight gain accompanied by increased serum PRL, GH and IGF-I levels. Gefitinib decreased tumor volumes and peripheral hormone levels by ~ 30% and restored normal mouse body weight patterns. Mice treated with gefitinib exhibited decreased tumor tissue ERK1/2 phosphorylation and downregulated tumor PRL and Pttg1 mRNA abundance. These results show that EGFR inhibition controls tumor growth and PRL secretion in experimental lacto-somatotroph tumors. EGFR inhibitors could therefore be useful for control of PRL secretion and tumor load in prolactinomas resistant to dopaminergic treatment, or for those prolactinomas undergoing rare malignant transformation. PMID:18676863

  3. [Enhancement of epidermal regeneration by recombinant vaccinia virus growth factor].

    PubMed

    Petrov, V S; Cheshenko, I O; Omigov, V V; Azaev, M Sh; Krendel'shchikov, A V; Ovechkina, L G; Cheshenko, N V; Malygin, E G

    1998-01-01

    Examining the specific activity has showed that recombinant vaccinia virus growth factor binds to appropriate receptors on the A-431 cell surface and prompts the healing acceleration of degree III burns in rats. This recombinant factor did not demonstrate pyrogenicity or toxicogenicity in tests on rabbits, guinea-pits, noninbred albino mice.

  4. Nuclear Ribosome Biogenesis Mediated by the DIM1A rRNA Dimethylase Is Required for Organized Root Growth and Epidermal Patterning in Arabidopsis[C][W

    PubMed Central

    Wieckowski, Yana; Schiefelbein, John

    2012-01-01

    Position-dependent patterning of hair and non-hair cells in the Arabidopsis thaliana root epidermis is a powerful system to study the molecular basis of cell fate specification. Here, we report an epidermal patterning mutant affecting the ADENOSINE DIMETHYL TRANSFERASE 1A (DIM1A) rRNA dimethylase gene, predicted to participate in rRNA posttranscriptional processing and base modification. Consistent with a role in ribosome biogenesis, DIM1A is preferentially expressed in regions of rapid growth, and its product is nuclear localized with nucleolus enrichment. Furthermore, DIM1A preferentially accumulates in the developing hair cells, and the dim1A point mutant alters the cell-specific expression of the transcriptional regulators GLABRA2, CAPRICE, and WEREWOLF. Together, these findings suggest that establishment of cell-specific gene expression during root epidermis development is dependent upon proper ribosome biogenesis, possibly due to the sensitivity of the cell fate decision to relatively small differences in gene regulatory activities. Consistent with its effect on the predicted S-adenosyl-l-Met binding site, dim1A plants lack the two 18S rRNA base modifications but exhibit normal pre-rRNA processing. In addition to root epidermal defects, the dim1A mutant exhibits abnormal root meristem division, leaf development, and trichome branching. Together, these findings provide new insights into the importance of rRNA base modifications and translation regulation for plant growth and development. PMID:22829145

  5. Nuclear ribosome biogenesis mediated by the DIM1A rRNA dimethylase is required for organized root growth and epidermal patterning in Arabidopsis.

    PubMed

    Wieckowski, Yana; Schiefelbein, John

    2012-07-01

    Position-dependent patterning of hair and non-hair cells in the Arabidopsis thaliana root epidermis is a powerful system to study the molecular basis of cell fate specification. Here, we report an epidermal patterning mutant affecting the ADENOSINE DIMETHYL TRANSFERASE 1A (DIM1A) rRNA dimethylase gene, predicted to participate in rRNA posttranscriptional processing and base modification. Consistent with a role in ribosome biogenesis, DIM1A is preferentially expressed in regions of rapid growth, and its product is nuclear localized with nucleolus enrichment. Furthermore, DIM1A preferentially accumulates in the developing hair cells, and the dim1A point mutant alters the cell-specific expression of the transcriptional regulators GLABRA2, CAPRICE, and WEREWOLF. Together, these findings suggest that establishment of cell-specific gene expression during root epidermis development is dependent upon proper ribosome biogenesis, possibly due to the sensitivity of the cell fate decision to relatively small differences in gene regulatory activities. Consistent with its effect on the predicted S-adenosyl-l-Met binding site, dim1A plants lack the two 18S rRNA base modifications but exhibit normal pre-rRNA processing. In addition to root epidermal defects, the dim1A mutant exhibits abnormal root meristem division, leaf development, and trichome branching. Together, these findings provide new insights into the importance of rRNA base modifications and translation regulation for plant growth and development.

  6. Impact of active smoking on survival of patients with metastatic lung adenocarcinoma harboring an epidermal growth factor receptor (EGFR) mutation.

    PubMed

    Erdogan, Bulent; Kodaz, Hilmi; Karabulut, Senem; Cinkaya, Ahmet; Tozkir, Hilmi; Tanriverdi, Ozgur; Cabuk, Devrim; Hacioglu, Muhammed Bekir; Turkmen, Esma; Hacibekiroglu, Ilhan; Uzunoglu, Sernaz; Cicin, Irfan

    2016-11-10

    Lung cancer in smokers and non-smokers demonstrates distinct genetic profiles, and cigarette smoking affects epidermal growth factor receptor (EGFR) function and causes secondary EGFR tyrosine kinase resistance. We evaluated the effect of active smoking in patients with metastatic lung adenocarcinoma. A total of 132 metastatic lung adenocarcinoma patients, diagnosed between 2008 and 2013, with known EGFR mutation status, were evaluated retrospectively. Among these patients, 40 had an activating EGFR mutation. Patients who continued smoking during the treatment were defined as active smokers. Former smokers and never smokers were together defined as non-smokers. The outcomes of the treatment in relation to the EGFR mutation and smoking status were evaluated. The median follow-up time was 10.5 months. The overall response rate for the first-line therapy was significantly higher among the EGFR-mutant patients (p = 0.01), however, smoking status had no impact on the response rate (p = 0.1). The EGFR-mutant active smokers progressed earlier than the non-smokers (p < 0.01). The overall survival (OS) of the non-smokers and patients treated with erlotinib was significantly longer (p = 0.02 and p = 0.01, respectively). Smoking status did not affect the OS in EGFR wild type tumors (p = 0.49) but EGFR-mutant non-smokers had a longer OS than the active smokers (p = 0.01).The active smokers treated with erlotinib had poorer survival than the non-smokers (p = 0.03). Multivariate analysis of EGFR-mutant patients showed that erlotinib treatment at any line and non-smoking were independent prognostic factors for the OS (p = 0.04 and p = 0.01, respectively). Smoking during treatment is a negative prognostic factor in metastatic lung adenocarcinoma with an EGFR mutation.

  7. Association Study of Polymorphisms of Epidermal Growth Factor and Epidermal Growth Factor Receptor With Benign Prostatic Hyperplasia in a Korean Population

    PubMed Central

    2016-01-01

    Purpose Recent studies have suggested that specific single-nucleotide polymorphisms (SNPs) contribute to the clinical features of benign prostatic hyperplasia (BPH). In this study, we investigated the relationships of genetic polymorphisms of the epidermal growth factor (EGF) gene and the epidermal growth factor receptor (EGFR) gene with BPH. Methods A total of 218 patients with BPH were enrolled in this study. We evaluated the relationship between eight SNPs in the EGF and EGFR genes and prostate volume, prostate-specific antigen (PSA), and International Prostate Symptom Score of BPH patients. Each SNP was genotyped by direct sequencing. Statistical analysis applying codominant, dominant, recessive, and log-additive models was performed via logistic regression. Results The rs11568943 and rs11569017 SNPs in the EGF gene showed significant associations with prostate volume (rs11568943: P=0.038 in the log-additive model, P=0.024 in the allele distribution; rs11569017, P=0.031 in the dominant model, P=0.028 in the log-additive model, P=0.020 in the allele distribution). Additionally, the rs3756261, rs11568943, and rs11569017 SNPs of the EGF gene and the rs2293347 SNP of the EGFR gene were associated with PSA levels (P<0.05 in each model, respectively). Conclusions These results suggest that the EGF gene may affect prostate volume. In addition, the EGF and EGFR genes may be associated with PSA levels in patients with BPH. PMID:28043105

  8. Pleiotropic Phenotypes of the sticky peel Mutant Provide New Insight into the Role of CUTIN DEFICIENT2 in Epidermal Cell Function in Tomato1[W][OA

    PubMed Central

    Nadakuduti, Satya Swathi; Pollard, Mike; Kosma, Dylan K.; Allen, Charles; Ohlrogge, John B.; Barry, Cornelius S.

    2012-01-01

    Plant epidermal cells have evolved specialist functions associated with adaptation to stress. These include the synthesis and deposition of specialized metabolites such as waxes and cutin together with flavonoids and anthocyanins, which have important roles in providing a barrier to water loss and protection against UV radiation, respectively. Characterization of the sticky peel (pe) mutant of tomato (Solanum lycopersicum) revealed several phenotypes indicative of a defect in epidermal cell function, including reduced anthocyanin accumulation, a lower density of glandular trichomes, and an associated reduction in trichome-derived terpenes. In addition, pe mutant fruit are glossy and peels have increased elasticity due to a severe reduction in cutin biosynthesis and altered wax deposition. Leaves of the pe mutant are also cutin deficient and the epicuticular waxes contain a lower proportion of long-chain alkanes. Direct measurements of transpiration, together with chlorophyll-leaching assays, indicate increased cuticular permeability of pe leaves. Genetic mapping revealed that the pe locus represents a new allele of CUTIN DEFICIENT2 (CD2), a member of the class IV homeodomain-leucine zipper gene family, previously only associated with cutin deficiency in tomato fruit. CD2 is preferentially expressed in epidermal cells of tomato stems and is a homolog of Arabidopsis (Arabidopsis thaliana) ANTHOCYANINLESS2 (ANL2). Analysis of cuticle composition in leaves of anl2 revealed that cutin accumulates to approximately 60% of the levels observed in wild-type Arabidopsis. Together, these data provide new insight into the role of CD2 and ANL2 in regulating diverse metabolic pathways and in particular, those associated with epidermal cells. PMID:22623518

  9. Pleiotropic phenotypes of the sticky peel mutant provide new insight into the role of CUTIN DEFICIENT2 in epidermal cell function in tomato.

    PubMed

    Nadakuduti, Satya Swathi; Pollard, Mike; Kosma, Dylan K; Allen, Charles; Ohlrogge, John B; Barry, Cornelius S

    2012-07-01

    Plant epidermal cells have evolved specialist functions associated with adaptation to stress. These include the synthesis and deposition of specialized metabolites such as waxes and cutin together with flavonoids and anthocyanins, which have important roles in providing a barrier to water loss and protection against UV radiation, respectively. Characterization of the sticky peel (pe) mutant of tomato (Solanum lycopersicum) revealed several phenotypes indicative of a defect in epidermal cell function, including reduced anthocyanin accumulation, a lower density of glandular trichomes, and an associated reduction in trichome-derived terpenes. In addition, pe mutant fruit are glossy and peels have increased elasticity due to a severe reduction in cutin biosynthesis and altered wax deposition. Leaves of the pe mutant are also cutin deficient and the epicuticular waxes contain a lower proportion of long-chain alkanes. Direct measurements of transpiration, together with chlorophyll-leaching assays, indicate increased cuticular permeability of pe leaves. Genetic mapping revealed that the pe locus represents a new allele of CUTIN DEFICIENT2 (CD2), a member of the class IV homeodomain-leucine zipper gene family, previously only associated with cutin deficiency in tomato fruit. CD2 is preferentially expressed in epidermal cells of tomato stems and is a homolog of Arabidopsis (Arabidopsis thaliana) ANTHOCYANINLESS2 (ANL2). Analysis of cuticle composition in leaves of anl2 revealed that cutin accumulates to approximately 60% of the levels observed in wild-type Arabidopsis. Together, these data provide new insight into the role of CD2 and ANL2 in regulating diverse metabolic pathways and in particular, those associated with epidermal cells.

  10. Predicting response to epidermal growth factor receptor-targeted therapy in colorectal cancer.

    PubMed

    Adams, Richard; Maughan, Tim

    2007-04-01

    The discovery over 20 years ago by the Nobel Laureate Stanley Cohen of epidermal growth factor and its receptor, followed by the recognition that this receptor is overexpressed in multiple cancer types, has been of phenomenal significance. From these events the 'Holy Grail' of targeted therapy has looked increasingly realistic. Over the last 5 years this work has come of age with the licensing of multiple agents targeting this important mitogenic pathway in multiple tumor types. However, these agents and the technology behind them, while impressive, have resulted in lower clinical response rates than anticipated. In this review we will focus on the epidermal growth factor receptor-targeted therapies in colorectal cancer, why our expectations from these therapies have not yet been fulfilled and how we may predict those cancers that are likely to respond or be resistant to these therapies through a greater appreciation of the intricacy, diversity and dynamism of cellular signaling mechanisms.

  11. Expression of an Exogenous Growth Hormone Gene by Transplantable Human Epidermal Cells

    NASA Astrophysics Data System (ADS)

    Morgan, Jeffrey R.; Barrandon, Yann; Green, Howard; Mulligan, Richard C.

    1987-09-01

    Retrovirus-mediated gene transfer was used to introduce a recombinant human growth hormone gene into cultured human keratinocytes. The transduced keratinocytes secreted biologically active growth hormone into the culture medium. When grafted as an epithelial sheet onto athymic mice, these cultured keratinocytes reconstituted an epidermis that was similar in appearance to that resulting from normal cells, but from which human growth hormone could be extracted. Transduced epidermal cells may prove to be a general vehicle for the delivery of gene products by means of grafting.

  12. Tyrosine kinase activity is essential for the association of phospholipase C-gamma with the epidermal growth factor receptor.

    PubMed Central

    Margolis, B; Bellot, F; Honegger, A M; Ullrich, A; Schlessinger, J; Zilberstein, A

    1990-01-01

    Epidermal growth factor (EGF) treatment of NIH 3T3 cells transfected with wild-type EGF receptor induced tyrosine phosphorylation of phospholipase C-gamma (PLC-gamma). The EGF receptor and PLC-gamma were found to be physically associated such that antibodies directed against PLC-gamma or the EGF receptor coimmunoprecipitated both proteins. The association between PLC-gamma and wild-type EGF receptor was dependent on the concentration of EGF, but EGF did not enhance the association between PLC-gamma and a kinase-negative mutant of the EGF receptor. Oligomerization of the EGF receptor was not sufficient to induce association of the EGF receptor with PLC-gamma, since the kinase-negative mutant receptor underwent normal dimerization in response to EGF yet did not associate with PLC-gamma. The form of PLC-gamma associated with the EGF receptor appeared to be primarily the non-tyrosine-phosphorylated form. It is concluded that the kinase activity of the EGF receptor is essential for association of PLC-gamma with the EGF receptor, possibly by stimulating receptor autophosphorylation. Images PMID:2153914

  13. A case of colorectal cancer with double-activating epidermal growth factor receptor mutations.

    PubMed

    Rai, Kammei; Fujiwara, Keiichi; Tsushima, Mizuho; Kudo, Kenichiro; Mizuta, Makoto; Matsuo, Kiyoshi; Yonei, Toshiro; Yamadori, Ichiro; Kiura, Katsuyuki; Sato, Toshio

    2011-09-01

    We describe the case of a 72-year-old woman with locally advanced lung tumor mimicking primary lung cancer. She was diagnosed with rectal cancer at the age of 65 years and was initially treated with platinum-based chemotherapy and thoracic irradiation as a treatment for primary lung cancer. One year later, a thyroid tumor was detected in her right thyroid lobe and was confirmed to have metastasized from rectal cancer based on pathological findings. Therefore, we suspected that she had metachronous double cancers and treated her with conventional chemotherapy for colorectal cancer. However, new life-threatening multiple lung metastases appeared. We treated her with the drug erlotinib because additional genetic analysis against primary lung tumor revealed typical double-activating epidermal growth factor receptor mutations. Histological review by immunostaining concluded that the primary lung tumor was composed of metastatic tumors from rectal cancer. In addition, genetic analysis revealed that the primary rectal cancer contained nearly the same types of double-activating epidermal growth factor receptor mutations as were present in the lung tumor. This is the first report of a case of rectal adenocarcinoma with double-activating epidermal growth factor receptor mutations.

  14. Attenuation of epidermal growth factor (EGF) signaling by growth hormone (GH).

    PubMed

    González, Lorena; Miquet, Johanna G; Irene, Pablo E; Díaz, M Eugenia; Rossi, Soledad P; Sotelo, Ana I; Frungieri, Mónica B; Hill, Cristal M; Bartke, Andrzej; Turyn, Daniel

    2017-05-01

    Transgenic mice overexpressing growth hormone (GH) show increased hepatic protein content of the epidermal growth factor receptor (EGFR), which is broadly associated with cell proliferation and oncogenesis. However, chronically elevated levels of GH result in desensitization of STAT-mediated EGF signal and similar response of ERK1/2 and AKT signaling to EGF compared to normal mice. To ascertain the mechanisms involved in GH attenuation of EGF signaling and the consequences on cell cycle promotion, phosphorylation of signaling mediators was studied at different time points after EGF stimulation, and induction of proteins involved in cell cycle progression was assessed in normal and GH-overexpressing transgenic mice. Results from kinetic studies confirmed the absence of STAT3 and 5 activation and comparable levels of ERK1/2 phosphorylation upon EGF stimulation, which was associated with diminished or similar induction of c-MYC, c-FOS, c-JUN, CYCLIN D1 and CYCLIN E in transgenic compared to normal mice. Accordingly, kinetics of EGF-induced c-SRC and EGFR phosphorylation at activating residues demonstrated that activation of these proteins was lower in the transgenic mice with respect to normal animals. In turn, EGFR phosphorylation at serine 1046/1047, which is implicated in the negative regulation of the receptor, was increased in the liver of GH-overexpressing transgenic mice both in basal conditions and upon EGF stimulus. Increased basal phosphorylation and activation of the p38-mitogen-activated protein kinase might account for increased Ser 1046/1047 EGFR. Hyperphosphorylation of EGFR at serine residues would represent a compensatory mechanism triggered by chronically elevated levels of GH to mitigate the proliferative response induced by EGF.

  15. Effects of epidermal growth factor on neural crest cells in tissue culture

    SciTech Connect

    Erickson, C.A.; Turley, E.A.

    1987-04-01

    Epidermal growth factor (EGF) stimulates the release of hyaluronic acid (HA) and chondroitin sulfate proteoglycan (CSPG) from quail trunk neural crest cultures in a dose-dependent fashion. It also promotes the expression of cell-associated heparan sulfate proteoglycan (HSPG) as detected by immunofluorescence and immunoprecipitation of the /sup 3/H-labeled proteoglycan. Furthermore, EGF stimulates (/sup 3/H)thymidine incorporation into total cell DNA. These results raise the possibility that EGF or an analogous growth factor is involved in regulation of neural crest cell morphogenesis.

  16. Signal transduction by epidermal growth factor and heregulin via the kinase-deficient ErbB3 protein.

    PubMed Central

    Kim, H H; Vijapurkar, U; Hellyer, N J; Bravo, D; Koland, J G

    1998-01-01

    The role of protein tyrosine kinase activity in ErbB3-mediated signal transduction was investigated. ErbB3 was phosphorylated in vivo in response to either heregulin (HRG) in cells expressing both ErbB3 and ErbB2, or epidermal growth factor (EGF) in cells expressing both ErbB3 and EGF receptor. A recombinant receptor protein (ErbB3-K/M, in which K/M stands for Lys-->Met amino acid substitution) containing an inactivating mutation in the putative ATP-binding site was also phosphorylated in response to HRG and EGF. Both the wild-type ErbB3 and mutant ErbB3-K/M proteins transduced signals to phosphatidylinositol 3-kinase, Shc and mitogen-activated protein kinases. Separate kinase-inactivating mutations in the EGF receptor and ErbB2 proteins abolished ErbB3 phosphorylation and signal transduction activated by EGF and HRG respectively. Hence the protein tyrosine kinase activity necessary for growth factor signalling via the ErbB3 protein seems to be provided by coexpressed EGF and ErbB2 receptor proteins. PMID:9693119

  17. Signal transduction by epidermal growth factor and heregulin via the kinase-deficient ErbB3 protein.

    PubMed

    Kim, H H; Vijapurkar, U; Hellyer, N J; Bravo, D; Koland, J G

    1998-08-15

    The role of protein tyrosine kinase activity in ErbB3-mediated signal transduction was investigated. ErbB3 was phosphorylated in vivo in response to either heregulin (HRG) in cells expressing both ErbB3 and ErbB2, or epidermal growth factor (EGF) in cells expressing both ErbB3 and EGF receptor. A recombinant receptor protein (ErbB3-K/M, in which K/M stands for Lys-->Met amino acid substitution) containing an inactivating mutation in the putative ATP-binding site was also phosphorylated in response to HRG and EGF. Both the wild-type ErbB3 and mutant ErbB3-K/M proteins transduced signals to phosphatidylinositol 3-kinase, Shc and mitogen-activated protein kinases. Separate kinase-inactivating mutations in the EGF receptor and ErbB2 proteins abolished ErbB3 phosphorylation and signal transduction activated by EGF and HRG respectively. Hence the protein tyrosine kinase activity necessary for growth factor signalling via the ErbB3 protein seems to be provided by coexpressed EGF and ErbB2 receptor proteins.

  18. Effects of cerulein and epidermal growth factor on pancreatic growth in the reserpinized rat model.

    PubMed

    Bérubé, F L; Benrezzak, O; Vanier, M; Morisset, J

    1993-07-01

    This study was undertaken to determine the effect of reserpine on rat pancreatic growth, to evaluate if reserpine-caused alterations can be prevented by epidermal growth factor (EGF) and/or cerulein treatment, to evaluate the time course of rat pancreas recovery after reserpine, and to determine if EGF and/or cerulein treatment can accelerate such a recovery. In the first experiment, three groups of male Sprague-Dawley rats (250-265 g) were used. Ad libitum-fed control animals received the reserpine vehicle, and one experimental group received reserpine (1 mg kg-1 day-1 for 7 days) while the other, pair-fed group received the reserpine vehicle with a reduced amount of food to result in malnourishment. Rats from each of these three groups were also assigned to one of four treatments consisting of saline, EGF (10 micrograms kg-1), cerulein (1 microgram kg-1), or a combination (same doses) twice a day for 7 days. In the morning of the 8th day, after an overnight fat, rats were killed. In the second experiment, rats were selected and treated with reserpine or the vehicle as described in experiment 1; after the 7-day treatment, a first cohort of animals was allowed a 30-day recovery period. Three other groups (an ad libitum-fed control, a pair-fed, and a reserpine group) were allowed a 6-day recovery period during which they were treated subcutaneously, twice a day, with either saline, EGF (10 micrograms kg-1), cerulein (1 microgram kg-1), or a combination (same doses). On the morning of the 31st or 7th day, after an overnight fat, rats were killed. After death, all pancreata were examined for weight and protein, amylase, chymotrypsinogen, RNA, and DNA content. In the ad libitum-fed control group, EGF caused pancreatic hypertrophy, whereas cerulein was associated with hypertrophy and hyperplasia. In the pair-fed malnourished group, the EGF effect was limited to slight increases in pancreatic weight and cell mass whereas cerulein caused hypertrophy; EGF plus cerulein

  19. The aqueous extract of Brucea javanica suppresses cell growth and alleviates tumorigenesis of human lung cancer cells by targeting mutated epidermal growth factor receptor

    PubMed Central

    Kim, Seung-Hun; Liu, Chun-Yen; Fan, Po-Wei; Hsieh, Chang-Heng; Lin, Hsuan-Yuan; Lee, Ming-Chung; Fang, Kang

    2016-01-01

    As a practical and safe herbal medicine, the seeds of Brucea javanica (L.) Merr., were used to cure patients suffering from infectious diseases such as malaria. Recent advances revealed that the herb could also be a useful cancer therapy agent. The study demonstrated that aqueous B. javanica (BJ) extract attenuated the growth of human non-small-lung cancer cells bearing mutant L858R/T790M epidermal growth factor receptor (EGFR). The reduced cell viability in H1975 cells was attributed to apoptosis. Transfection of EGFR small hairpin RNA reverted the sensitivities. When nude mice were fed BJ extract, the growth of xenograft tumors, as established by H1975 cells, was suppressed. Additional histological examination and fluorescence analysis of the resected tissues proved that the induced apoptosis mitigated tumor growth. The work proved that the BJ extract exerted its effectiveness by targeting lung cancer cells carrying mutated EGFR while alleviating tumorigenesis. Aqueous BJ extract is a good candidate to overcome drug resistance in patients undergoing target therapy. PMID:27843300

  20. Designed ankyrin repeat proteins: a novel tool for testing epidermal growth factor receptor 2 expression in breast cancer.

    PubMed

    Theurillat, Jean-Philippe; Dreier, Birgit; Nagy-Davidescu, Gabriela; Seifert, Burkhardt; Behnke, Silvia; Zürrer-Härdi, Ursina; Ingold, Fabienne; Plückthun, Andreas; Moch, Holger

    2010-09-01

    Designed ankyrin repeat proteins are a novel class of specific binding molecules, which display increased thermodynamic stability, smaller size and at least equal target affinity compared to immunoglobulins, making them potentially powerful tools in diagnostic pathology and therapeutic oncology. Here, we investigated whether designed ankyrin repeat proteins can reliably identify the amplification status of the epidermal growth factor receptor 2 in breast cancer. Designed ankyrin repeat proteins specific for epidermal growth factor receptor 2 were tested in paraffin-embedded tissue sections. Detection using enzymatic biotinylation proved to be most specific and sensitive. The affinity of the designed ankyrin repeat proteins was found crucial, but for a picomolar binder no further gain was found by making it multivalent. The best designed ankyrin repeat protein, G3 (K(D) 90 pM) was compared on breast cancer tissue microarrays (n=792) to an FDA-approved rabbit monoclonal antibody against epidermal growth factor receptor 2 (clone 4B5; Ventana Medical Systems) and correlated with corresponding epidermal growth factor receptor 2 amplification status measured by fluorescent in situ hybridization. Amplification status and epidermal growth factor receptor 2 expression measured by designed ankyrin repeat protein and antibody correlated strongly with each other (P<0.0001 each), the correlation between designed ankyrin repeat protein and amplification status being the strongest (0.87 compared to 0.77 for the antibody, Kendall's tau-beta). Using a modified scoring system for the designed ankyrin repeat protein, we show that the designed ankyrin repeat protein detects a positive epidermal growth factor receptor 2 amplification status with similar sensitivity and significantly higher specificity than the antibody (P=0.0005). This study suggests that designed ankyrin repeat proteins provide a valuable alternative to antibodies for the detection of epidermal growth factor receptor

  1. Psoralens potentiate ultraviolet light-induced inhibition of epidermal growth factor binding

    SciTech Connect

    Laskin, J.D.; Lee, E.; Laskin, D.L.; Gallo, M.A.

    1986-11-01

    The psoralens, when activated by ultraviolet light of 320-400 nm (UVA light), are potent modulators of epidermal cell growth and differentiation. Previously, we reported that, in mammalian cells, these compounds bind to specific saturable high-affinity cellular receptor sites. In the present studies, we demonstrate that binding of psoralens to their receptors followed by UVA light activation is associated with inhibition of epidermal growth factor (EGF) receptor binding. Inhibition of EGF binding, which required UVA light, was rapid and dependent on the dose of UVA light (0.5-2.0 J/cm2), as well as the concentration of psoralens (10 nM to 1 microM). Higher doses of UVA light (2.0-6.0 J/cm2) by themselves were also inhibitory, indicating that psoralens potentiate the UVA-induced inhibition of EGF binding. A number of biologically active analogs of psoralen, including 8-methoxypsoralen, 5-methoxypsoralen, and 4,5',8-trimethylpsoralen, when activated by UVA light, were found to be inhibitors of binding. Inhibition of EGF binding by psoralens was observed in a variety of human and mouse cell culture lines known to possess psoralen receptors. In the epidermal-derived line PAM 212, at least two populations of receptors with different affinities for EGF were found. Psoralens and UVA light selectively inhibited binding to the higher-affinity EGF receptors, an effect analogous to that of the phorbol ester tumor promoters. As observed with phorbol esters, photoactivated psoralens appeared to inhibit EGF binding by an indirect mechanism. These data demonstrate that the psoralens and UVA light have direct biological effects on cell-surface membranes. Since EGF is a growth-regulatory peptide, the ability of psoralens and UVA light to inhibit EGF binding may underlie the biologic effects of these agents in the skin.

  2. Epidermal Growth Factor Receptor Mutated Advanced Non-Small Cell Lung Cancer: A Changing Treatment Paradigm.

    PubMed

    Pakkala, Suchita; Ramalingam, Suresh S

    2017-02-01

    Activating mutations in the epidermal growth factor receptor (EGFR) are present in approximately 15% of US patients with lung adenocarcinoma. EGFR tyrosine kinase inhibitors are associated with high response rate and progression-free survival for patients with non-small cell lung cancer with this genotype. Gefitinib, erlotinib, and afatinib are the EGFR tyrosine kinase inhibitors that are presently in clinical use. Understanding resistance mechanisms has led to the identification of a secondary mutational target, T790M, in more than half of patients, for which osimertinib has been approved. This article reviews the current treatments, resistance mechanisms, and strategies to overcome resistance.

  3. Epidermal Growth Factor Receptor Overexpression as a Target for Auger Electron Radiotherapy of Breast Cancer

    DTIC Science & Technology

    2002-08-01

    pharmacokinetics of ’In-DTPA-hEGF after s.c. injection was studied in non-tumor bearing athymic mice. The mice were first anaesthetized by s.c. injection of...induction of apoptosis [1,23]. DNA damage caused by Auger electron-emitting radiopharmaceuticals is dependent on the proximity of the radionuclide decay...S.H. Kaufmnann, Y.L. Ottaviano, Y. Furuya, J.A. Buckley, J.T. Isaacs, N.E. Davidson. Epidermal growth factor-mediated apoptosis of MDA-MB-468 human

  4. Dermatologic Reactions to Targeted Therapy: A Focus on Epidermal Growth Factor Receptor Inhibitors and Nursing Care.

    PubMed

    Barton-Burke, Margaret; Ciccolini, Kathryn; Mekas, Maria; Burke, Sean

    2017-03-01

    Cancer treatments usually have side effects of bone marrow depression, mucositis, hair loss, and gastrointestinal issues. Rarely do we think of skin side effects until patients have been treated successfully with epidermal growth factor receptor inhibitors (EGFRi). Those reactions include papulopustular rash, hair changes, radiation dermatitis enhancement, pruritus, mucositis, xerosis, fissures, and paronychia. This article discusses the common skin reactions seen when using EGFRi and presents an overview of skin as the largest and important organ of the body, including an overview of skin assessment, pathophysiology of the skin reactions, nursing care involved, and introduction to oncodermatology.

  5. Nanostructured materials detect epidermal growth factor receptor, neuron specific enolase and carcinoembryonic antigen

    NASA Astrophysics Data System (ADS)

    Stefan-van Staden, Raluca-Ioana; Comnea-Stancu, Ionela Raluca; Surdu-Bob, Carmen Cristina; Badulescu, Marius

    2015-09-01

    New nanostructured materials based on thin films of Cu and Ni deposited on textile material (veil), as well as gold nanostructured microspheres were used for the design of new stochastic sensors. The stochastic sensors were able to detect simultaneously a panel of biomarkers comprising epidermal growth factor receptor, neuron specific enolase, and carcinoembryonic antigen from whole blood samples with high reliabilities - recovery tests higher than 97.00%, with a RSD (%) lower than 0.1%. The stochastic sensors had shown high sensitivities and low determination levels for the detection of the proposed panel of biomarkers making early detection of lung cancer possible by fast screening of whole blood.

  6. Heparin-binding epidermal growth factor and Src family kinases in proliferation of renal epithelial cells.

    PubMed

    Zhuang, Shougang; Kinsey, Gilbert R; Rasbach, Kyle; Schnellmann, Rick G

    2008-03-01

    Our recent studies have shown that proliferation of renal proximal tubular cells (RPTC) in the absence of growth factors requires activation of the epidermal growth factor (EGF) receptor. We sought to identify the endogenous EGF receptor ligand and investigate the mechanism(s) by which RPTC proliferate in different models. RPTC expressed both pro- and cleaved forms of heparin-binding epidermal growth factor (HB-EGF) and several metalloproteinases (MMP-2, -3, -9, and ADAM10, ADAM17) that have been reported to cleave HB-EGF. Treatment of RPTC with CRM 197, an inhibitor of HB-EGF binding to the EGF receptor, or downregulation of HB-EGF with small interfering RNA inhibited RPTC proliferation following plating. Furthermore, GM6001 (pan-MMP inhibitor), tumor-necrosis factor protease inhibitor-1 (TAPI-1; MMP and ADAM17 inhibitor), and GW280264X (ADAM10 and -17 inhibitor), but not GI254023X (ADAM10 inhibitor), attenuated the proliferation after plating. Although EGF receptor activation is required for RPTC proliferation after oxidant injury, CRM197, GM6001, and TAPI-1 did not block this response. In contrast, inhibition of Src with PP1 blocked EGF receptor activation and RPTC proliferation after oxidant injury. In addition, PP1 treatment attenuated HB-EGF-enhanced RPTC proliferation. We suggest that RPTC proliferation after plating is mediated by HB-EGF produced through an autocrine/paracrine mechanism and RPTC proliferation following oxidant injury is mediated by Src without involvement of HB-EGF.

  7. Altered (/sup 125/I)epidermal growth factor binding and receptor distribution in psoriasis

    SciTech Connect

    Nanney, L.B.; Stoscheck, C.M.; Magid, M.; King, L.E. Jr.

    1986-03-01

    Stimulation of growth and differentiation of human epidermis by epidermal growth factor (EGF) is mediated by its binding to specific receptors. Whether EGF receptors primarily mediate cell division or differentiation in hyperproliferative disease such as psoriasis vulgaris is unclear. To study the pathogenesis of psoriasis, 4-mm2 punch biopsy specimens of normal, uninvolved, and involved psoriatic skin were assayed for EGF receptors by autoradiographic, immunohistochemical, and biochemical methods. Using autoradiographic and immunohistochemical methods, basal keratinocytes were found to contain the greatest number of EGF binding sites and immunoreactive receptors as compared to the upper layers of the epidermis in both normal epidermis and psoriatic skin. No EGF receptor differences between normal and psoriatic epidermis were observed in this layer. In the upper layers of the epidermis, a 2-fold increase in EGF binding capacity was observed in psoriatic skin as compared with normal thin or thick skin. Biochemical methods indicated that (/sup 125/I)EGF binding was increased in psoriatic epidermis as compared with similar thickness normal epidermis when measured on a protein basis. Epidermal growth factor was shown to increase phosphorylation of the EGF receptor in skin. EGF receptors retained in the nonmitotic stratum spinosum and parakeratotic stratum corneum may reflect the incomplete, abnormal differentiation that occurs in active psoriatic lesions. Alternatively, retained EGF receptors may play a direct role in inhibiting cellular differentiation in the suprabasal layers.

  8. The metalloendopeptidase nardilysin (NRDc) is potently inhibited by heparin-binding epidermal growth factor-like growth factor (HB-EGF).

    PubMed Central

    Hospital, Véronique; Nishi, Eiichiro; Klagsbrun, Michael; Cohen, Paul; Seidah, Nabil G; Prat, Annik

    2002-01-01

    Nardilysin (N-arginine dibasic convertase, or NRDc) is a cytosolic and cell-surface metalloendopeptidase that, in vitro, cleaves substrates upstream of Arg or Lys in basic pairs. NRDc differs from most of the other members of the M16 family of metalloendopeptidases by a 90 amino acid acidic domain (DAC) inserted close to its active site. At the cell surface, NRDc binds heparin-binding epidermal growth factor-like growth factor (HB-EGF) and enhances HB-EGF-induced cell migration. An active-site mutant of NRDc fulfills this function as well as wild-type NRDc, indicating that the enzyme activity is not required for this process. We now demonstrate that NRDc starts at Met(49). Furthermore, we show that HB-EGF not only binds to NRDc but also potently inhibits its enzymic activity. NRDc-HB-EGF interaction involves the 21 amino acid heparin-binding domain (P21) of the growth factor, the DAC of NRDc and most probably its active site. Only disulphide-bonded P21 dimers are inhibitory. We also show that Ca(2+), via the DAC, regulates both NRDc activity and HB-EGF binding. We conclude that the DAC is thus a key regulatory element for the two distinct functions that NRDc fulfills, i.e. as an HB-EGF modulator and a peptidase. PMID:12095415

  9. The metalloendopeptidase nardilysin (NRDc) is potently inhibited by heparin-binding epidermal growth factor-like growth factor (HB-EGF).

    PubMed

    Hospital, Véronique; Nishi, Eiichiro; Klagsbrun, Michael; Cohen, Paul; Seidah, Nabil G; Prat, Annik

    2002-10-01

    Nardilysin (N-arginine dibasic convertase, or NRDc) is a cytosolic and cell-surface metalloendopeptidase that, in vitro, cleaves substrates upstream of Arg or Lys in basic pairs. NRDc differs from most of the other members of the M16 family of metalloendopeptidases by a 90 amino acid acidic domain (DAC) inserted close to its active site. At the cell surface, NRDc binds heparin-binding epidermal growth factor-like growth factor (HB-EGF) and enhances HB-EGF-induced cell migration. An active-site mutant of NRDc fulfills this function as well as wild-type NRDc, indicating that the enzyme activity is not required for this process. We now demonstrate that NRDc starts at Met(49). Furthermore, we show that HB-EGF not only binds to NRDc but also potently inhibits its enzymic activity. NRDc-HB-EGF interaction involves the 21 amino acid heparin-binding domain (P21) of the growth factor, the DAC of NRDc and most probably its active site. Only disulphide-bonded P21 dimers are inhibitory. We also show that Ca(2+), via the DAC, regulates both NRDc activity and HB-EGF binding. We conclude that the DAC is thus a key regulatory element for the two distinct functions that NRDc fulfills, i.e. as an HB-EGF modulator and a peptidase.

  10. CD95 death receptor and epidermal growth factor receptor (EGFR) in liver cell apoptosis and regeneration.

    PubMed

    Reinehr, Roland; Häussinger, Dieter

    2012-02-01

    Recent evidence suggests that signaling pathways towards cell proliferation and cell death are much more interconnected than previously thought. Whereas not only death receptors such as CD95 (Fas, APO-1) can couple to both, cell death and proliferation, also growth factor receptors such as the epidermal growth factor receptor (EGFR) are involved in these opposing kinds of cell fate. EGFR is briefly discussed as a growth factor receptor involved in liver cell proliferation during liver regeneration. Then the role of EGFR in activating CD95 death receptor in liver parenchymal cells (PC) and hepatic stellate cells (HSC), which represent a liver stem/progenitor cell compartment, is described summarizing different ways of CD95- and EGFR-dependent signaling in the liver. Here, depending on the hepatic cell type (PC vs. HSC) and the respective signaling context (sustained vs. transient JNK activation) CD95-/EGFR-mediated signaling ends up in either liver cell apoptosis or cell proliferation.

  11. Phenotypic analysis of Arabidopsis mutants: quantitative analysis of root growth.

    PubMed

    Doerner, Peter

    2008-03-01

    INTRODUCTIONThe growth of plant roots is very easy to measure and is particularly straightforward in Arabidopsis thaliana, because the increase in organ size is essentially restricted to one dimension. The precise measurement of root apical growth can be used to accurately determine growth activity (the rate of growth at a given time) during development in mutants, transgenic backgrounds, or in response to experimental treatments. Root growth is measured in a number of ways, the simplest of which is to grow the seedlings in a Petri dish and record the position of the advancing root tip at appropriate time points. The increase in root length is measured with a ruler and the data are entered into Microsoft Excel for analysis. When dealing with large numbers of seedlings, however, this procedure can be tedious, as well as inaccurate. An alternative approach, described in this protocol, uses "snapshots" of the growing plants, which are taken using gel-documentation equipment (i.e., a video camera with a frame-grabber unit, now commonly used to capture images from ethidium-bromide-stained electrophoresis gels). The images are analyzed using publicly available software (NIH-Image), which allows the user simply to cut and paste data into Microsoft Excel.

  12. Human keratinocyte growth factor effects in a porcine model of epidermal wound healing

    PubMed Central

    Staiano-Coico, L.; Krueger, J. G.; Rubin, J. S.; D'limi, S.; Vallat, V. P.; Valentino, L.; Fahey, T.; Hawes, A.; Kingston, G.; Madden, M. R.; Mathwich, M.; Gottlieb, A.; Aaronson, S. A.

    1993-01-01

    Keratinocyte growth factor (KGF) is a member of the fibroblast growth factor (FGF) family (hence the alternative designation FGF-7). It is produced by stromal cells, but acts as a mitogen for epithelial cells. We examined the effects of topically applied KGF on healing of wounds in a porcine model. In partial-thickness wounds, KGF stimulated the rate of reepithelialization (p < 0.0002), associated with a thickening of the epidermis (p < 0.0001). Epidermis from KGF-treated full-thickness wound sites was significantly thicker (0.31 +/- 0.22 mm) compared with mirror image control sites (0.18 +/- 0.12 mm) (p < 0.0001). Moreover, the majority (77%) of KGF-treated wounds exhibited epidermis with a deep rete ridge pattern as compared with control sites. These effects were observed as early as 14 d and persisted for at least 4 wk. KGF treatment also increased the number of serrated basal cells associated with increased deposition of collagen fibers in the superficial dermis adjacent to the acanthotic epidermis. Electron microscopy revealed better developed hemidesmosomes associated with thicker bundles of tonofilaments in the serrated cells. The pattern of epidermal thickening observed in KGF-treated wounds resembled psoriasis. Psoriasis is a disease associated with epidermal thickening, parakeratosis as well as hyperproliferation that extends beyond the basal layer. In striking contrast to psoriasis, KGF-treated wounds exhibited normal orthokeratotic maturation, and proliferation was localized to the basal cells. Our present findings have significant implications concerning the role of KGF as a paracrine modulator of epidermal proliferation and differentiation. PMID:8350059

  13. The direct interaction of phospholipase C-gamma 1 with phospholipase D2 is important for epidermal growth factor signaling.

    PubMed

    Jang, Il Ho; Lee, Sukmook; Park, Jong Bae; Kim, Jong Hyun; Lee, Chang Sup; Hur, Eun-Mi; Kim, Il Shin; Kim, Kyong-Tai; Yagisawa, Hitoshi; Suh, Pann-Ghill; Ryu, Sung Ho

    2003-05-16

    The epidermal growth factor (EGF) receptor has an important role in cellular proliferation, and the enzymatic activity of phospholipase C (PLC)-gamma1 is regarded to be critical for EGF-induced mitogenesis. In this study, we report for the first time a phospholipase complex composed of PLC-gamma1 and phospholipase D2 (PLD2). PLC-gamma1 is co-immunoprecipitated with PLD2 in COS-7 cells. The results of in vitro binding analysis and co-immunoprecipitation analysis in COS-7 cells show that the Src homology (SH) 3 domain of PLC-gamma1 binds to the proline-rich motif within the Phox homology (PX) domain of PLD2. The interaction between PLC-gamma1 and PLD2 is EGF stimulation-dependent and potentiates EGF-induced inositol 1,4,5-trisphosphate (IP(3)) formation and Ca(2+) increase. Mutating Pro-145 and Pro-148 within the PX domain of PLD2 to leucines disrupts the interaction between PLC-gamma1 and PLD2 and fails to potentiate EGF-induced IP(3) formation and Ca(2+) increase. However, neither PLD2 wild type nor PLD2 mutant affects the EGF-induced tyrosine phosphorylation of PLC-gamma1. These findings suggest that, upon EGF stimulation, PLC-gamma1 directly interacts with PLD2 and this interaction is important for PLC-gamma1 activity.

  14. Multidrug transporter ABCG2 prevents tumor cell death induced by the epidermal growth factor receptor inhibitor Iressa (ZD1839, Gefitinib).

    PubMed

    Elkind, N Barry; Szentpétery, Zsófia; Apáti, Agota; Ozvegy-Laczka, Csilla; Várady, György; Ujhelly, Olga; Szabó, Katalin; Homolya, László; Váradi, András; Buday, László; Kéri, György; Német, Katalin; Sarkadi, Balázs

    2005-03-01

    Iressa (ZD1839, Gefitinib), used in clinics to treat non-small cell lung cancer patients, is a tyrosine kinase receptor inhibitor that leads to specific decoupling of epidermal growth factor receptor (EGFR) signaling. Recent data indicate that Iressa is especially effective in tumors with certain EGFR mutations; however, a subset of these tumors does not respond to Iressa. In addition, certain populations have an elevated risk of side effects during Iressa treatment. The human ABCG2 (BCRP/MXR/ABCP) transporter causes cancer drug resistance by actively extruding a variety of cytotoxic drugs, and it functions physiologically to protect our tissues from xenobiotics. Importantly, ABCG2 modifies absorption, distribution, and toxicity of several pharmacologic agents. Previously, we showed that ABCG2 displays a high-affinity interaction with several tyrosine kinase receptor inhibitors, including Iressa. Here, we show that the expression of ABCG2, but not its nonfunctional mutant, protects the EGFR signaling-dependent A431 tumor cells from death on exposure to Iressa. This protection is reversed by the ABCG2-specific inhibitor, Ko143. These data, reinforced with cell biology and biochemical experiments, strongly suggest that ABCG2 can actively pump Iressa. Therefore, variable expression and polymorphisms of ABCG2 may significantly modify the antitumor effect as well as the absorption and tissue distribution of Iressa.

  15. Impact of epidermal growth factor receptor and transforming growth factor-α on hepatitis C virus-induced hepatocarcinogenesis.

    PubMed

    Badawy, Afkar Abdel-Ghany; El-Hindawi, Ali; Hammam, Olfat; Moussa, Mona; Gabal, Samia; Said, Noha

    2015-10-01

    Epidermal growth factor receptor system plays a central hepato-protective and pro-regenerative role in liver. Transforming growth factor-α (TGF-α) is an important autocrine growth regulator of hepatocytes that plays a role in development of hepatocellular carcinoma (HCC) among patients with chronic hepatitis C (CHC). This study was done on 40 core liver biopsies from patients with CHC, 20 liver specimens from HCC cases on top of CHC as well as five normal controls. All were immunohistochemically stained with epidermal growth factor receptor (EGFR) and TGF-α antibodies. Some selected HCC cases were submitted for FISH technique to detect EGFR gene alteration. By immunohistochemistry EGFR and TGF-α were overexpressed in HCC and cirrhotic cases compared to CHC cases without cirrhosis. Also, their expression was stronger in CHC cases with higher grades of activity and stages of fibrosis compared to lower ones. FISH positive results for EGFR were detected in 33.3% of the examined HCC cases. EGFR and TGF-α can be used as predictive markers for activity, fibrosis, and carcinogenesis in CHC patients. Overexpression of EGFR in HCC patients can be promising in selecting those who can get benefit from anti-EGFR target therapy.

  16. Structural, biochemical, and clinical characterization of epidermal growth factor receptor (EGFR) exon 20 insertion mutations in lung cancer.

    PubMed

    Yasuda, Hiroyuki; Park, Eunyoung; Yun, Cai-Hong; Sng, Natasha J; Lucena-Araujo, Antonio R; Yeo, Wee-Lee; Huberman, Mark S; Cohen, David W; Nakayama, Sohei; Ishioka, Kota; Yamaguchi, Norihiro; Hanna, Megan; Oxnard, Geoffrey R; Lathan, Christopher S; Moran, Teresa; Sequist, Lecia V; Chaft, Jamie E; Riely, Gregory J; Arcila, Maria E; Soo, Ross A; Meyerson, Matthew; Eck, Michael J; Kobayashi, Susumu S; Costa, Daniel B

    2013-12-18

    Epidermal growth factor receptor (EGFR) gene mutations (G719X, exon 19 deletions/insertions, L858R, and L861Q) predict favorable responses to EGFR tyrosine kinase inhibitors (TKIs) in advanced non-small cell lung cancer (NSCLC). However, EGFR exon 20 insertion mutations (~10% of all EGFR mutations) are generally associated with insensitivity to available TKIs (gefitinib, erlotinib, and afatinib). The basis of this primary resistance is poorly understood. We studied a broad subset of exon 20 insertion mutations, comparing in vitro TKI sensitivity with responses to gefitinib and erlotinib in NSCLC patients, and found that most are resistant to EGFR TKIs. The crystal structure of a representative TKI-insensitive mutant (D770_N771insNPG) reveals an unaltered adenosine triphosphate-binding pocket, and the inserted residues form a wedge at the end of the C helix that promotes the active kinase conformation. Unlike EGFR-L858R, D770_N771insNPG activates EGFR without increasing its affinity for EGFR TKIs. Unexpectedly, we find that EGFR-A763_Y764insFQEA is highly sensitive to EGFR TKIs in vitro, and patients whose NSCLCs harbor this mutation respond to erlotinib. Analysis of the A763_Y764insFQEA mutant indicates that the inserted residues shift the register of the C helix in the N-terminal direction, altering the structure in the region that is also affected by the TKI-sensitive EGFR-L858R. Our studies reveal intricate differences between EGFR mutations, their biology, and their response to EGFR TKIs.

  17. Stepwise Progress in Epidermal Growth Factor Receptor/Radiation Studies for Head and Neck Cancer

    SciTech Connect

    Harari, Paul M.

    2007-10-01

    The U.S. Food and Drug Administration approval of four new epidermal growth factor receptor (EGFR) inhibitors for cancer therapy (cetuximab, panitumumab, gefitinib, and erlotinib) over the last 3 years is a remarkable milestone in oncology. Indeed, molecular inhibition of EGFR signaling represents one of the most promising current arenas for the development of molecular-targeted cancer therapies. Epidermal growth factor receptor inhibitors from both the monoclonal antibody and tyrosine kinase inhibitor class have demonstrated clinical activity in the treatment of a broad spectrum of common human malignancies. For the discipline of radiation oncology, the 2006 report of a phase III trial demonstrating a survival advantage for advanced head and neck cancer patients with the addition of weekly cetuximab during a 7-week course of radiation is particularly gratifying. Indeed, this is the first phase III trial to confirm a survival advantage with the addition of a molecular-targeted agent to radiation. Furthermore, this result seems to have been achieved with only a modest increment in overall treatment toxicity and with very high compliance to the prescribed treatment regimen. Nevertheless, much remains to be learned regarding the rational integration of EGFR inhibitors into cancer treatment regimens, as well as methods to optimize the selection of patients most likely to benefit from EGFR inhibitor strategies.

  18. Combining chemotherapy with epidermal growth factor receptor inhibition in advanced non-small cell lung cancer

    PubMed Central

    Leung, Linda; Loong, Herbert

    2012-01-01

    Treatment of advanced stage lung cancer is changing rapidly. With the new found knowledge on molecular targets such as the epidermal growth factor receptor (EGFR), effective therapy is now available in a selected population with the target mutation. Single-agent epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) is a standard first-line therapy for patients with activating-EGFR mutation such as base-pair deletion in exon 19 or point mutation at exon 21. At the same time, this class of drugs may be combined with chemotherapy. Studies on the concurrent combination of chemotherapy and EGFR-TKI confirmed a lack of efficacy. A phase II study on sequential intercalated combination has demonstrated an improvement in progression-free survival (PFS), but this needs to be validated by the ongoing phase III study. The third approach is to combine EGFR-TKI as maintenance therapy after tumour response or stable disease to cytotoxic chemotherapy. Two phase III studies have shown improvement in PFS, but the use of biomarkers for the selection of maintenance therapy remains debatable. Cetuximab is a monoclonal antibody against EGFR and its combination with chemotherapy was shown to improve overall survival in an unselected population. A new biomarker using the H-score will help to select patients for this combination. PMID:22754591

  19. Immunohistochemical localization of epidermal growth factor and its receptor during odontogenesis in the rat.

    PubMed

    Cobo, J; Hernández, L C; del Valle, M E; Vijande, M; Vega, J A

    1992-10-01

    The expression of epidermal growth factor (EGF) and epidermal growth factor receptor (EGFr) in developing teeth has been immunohistochemically studied in rat embryos (E-16 to E-21). Both EGF and EGFr showed a similar pattern of distribution. A very weak immunostaining was observed in the dental germ cells during the bud, cap, and bell teeth stages, as well as in few ectomesenchymal cells. In developed, but not erupted teeth, a moderate immunoreactivity for EGF and EGFr was present in the odontoblasts, in the ameloblasts and in the internal epithelial cells, but it was stronger in the dentine. In addition, the presence of EGF/EGFr was also observed in the intercalated ducts of salivary glands, primarily the submaxillary gland, in the maxillary bone cells, and in the cells of the peripheral and central nervous system. These results suggest that EGF has little or no effect during the early periods of tooth differentiation, whereas it is probably involved in the production of dentine. Moreover, EGF/EGFr seem to participate in the maturation and differentiation of other embryonic tissues such as tissues of the nervous system and bone.

  20. Identification of the epidermal growth factor receptor as the receptor for Salmonella Rck-dependent invasion.

    PubMed

    Wiedemann, Agnès; Mijouin, Lily; Ayoub, Mohammed Akli; Barilleau, Emilie; Canepa, Sylvie; Teixeira-Gomes, Ana Paula; Le Vern, Yves; Rosselin, Manon; Reiter, Eric; Velge, Philippe

    2016-12-01

    The Salmonella Rck outer membrane protein binds to the cell surface, which leads to bacterial internalization via a Zipper mechanism. This invasion process requires induction of cellular signals, including phosphorylation of tyrosine proteins, and activation of c-Src and PI3K, which arises as a result of an interaction with a host cell surface receptor. In this study, epidermal growth factor receptor (EGFR) was identified as the cell signaling receptor required for Rck-mediated adhesion and internalization. First, Rck-mediated adhesion and internalization were shown to be altered when EGFR expression and activity were modulated. Then, immunoprecipitations were performed to demonstrate the Rck-EGFR interaction. Furthermore, surface plasmon resonance biosensor and homogeneous time-resolved fluorescence technologies were used to demonstrate the direct interaction of Rck with the extracellular domain of human EGFR. Finally, our study strongly suggests a noncompetitive binding of Rck and EGF to EGFR. Overall, these results demonstrate that Rck is able to bind to EGFR and thereby establish a tight adherence to provide a signaling cascade, which leads to internalization of Rck-expressing bacteria.-Wiedemann, A., Mijouin, L., Ayoub, M. A., Barilleau, E., Canepa, S., Teixeira-Gomes, A. P., Le Vern, Y., Rosselin, M., Reiter, E., Velge, P. Identification of the epidermal growth factor receptor as the receptor for Salmonella Rck-dependent invasion.

  1. Sensitivities to various epidermal growth factor receptor-tyrosine kinase inhibitors of uncommon epidermal growth factor receptor mutations L861Q and S768I: What is the optimal epidermal growth factor receptor-tyrosine kinase inhibitor?

    PubMed

    Banno, Eri; Togashi, Yosuke; Nakamura, Yu; Chiba, Masato; Kobayashi, Yoshihisa; Hayashi, Hidetoshi; Terashima, Masato; de Velasco, Marco A; Sakai, Kazuko; Fujita, Yoshihiko; Mitsudomi, Tetsuya; Nishio, Kazuto

    2016-08-01

    Most patients with non-small cell lung cancer (NSCLC) harboring common epidermal growth factor receptor (EGFR) mutations, such as deletions in exon 19 or the L858R mutation in exon 21, respond dramatically to EGFR tyrosine kinase inhibitors (EGFR-TKI), and their sensitivities to various EGFR-TKI have been well characterized. Our previous article showed the in vitro sensitivities of EGFR exon 18 mutations to EGFR-TKI, but little information regarding the sensitivities of other uncommon EGFR mutations is available. First, stable transfectant Ba/F3 cell lines harboring EGFR L858R (Ba/F3-L858R), L861Q (Ba/F3-L861Q) or S768I (Ba/F3-S768I) mutations were created and their drug sensitivities to various EGFR-TKI were examined. Both the Ba/F3-L861Q and Ba/F3-S768I cell lines were less sensitive to erlotinib, compared with the Ba/F3-L858R cell line, but their sensitivities to afatinib were similar to that of the Ba/F3-L858R cell line. The Ba/F3-L861Q cell line was similarly sensitive and the Ba/F3-S768I cell line was less sensitive to osimertinib, compared with the Ba/F3-L858R cell line. The results of western blot analyses were consistent with these sensitivities. Next, similar experiments were also performed using the KYSE270 (L861Q) and KYSE 450 (S768I) cell lines, and their results were compatible with those of the transfectant Ba/F3 cell lines. Our findings suggest that NSCLC harboring the EGFR L861Q mutation might be sensitive to afatinib or osimertinib and that NSCLC harboring the EGFR S768I mutation might be sensitive to afatinib. Overall, afatinib might be the optimal EGFR-TKI against these uncommon EGFR mutations.

  2. Direct identification of residues of the epidermal growth factor receptor in close proximity to the amino terminus of bound epidermal growth factor.

    PubMed Central

    Woltjer, R L; Lukas, T J; Staros, J V

    1992-01-01

    We have recently developed a kinetically controlled, step-wise affinity cross-linking technique for specific, high-yield, covalent linkage of murine epidermal growth factor (mEGF) via its N terminus to the EGF receptor. EGF receptor from A431 cells was cross-linked to radiolabeled mEGF (125I-mEGF) by this technique and the 125I-mEGF-receptor complex was purified and denatured. Tryptic digestion of this preparation gave rise to a unique radiolabeled peptide that did not comigrate with trypsin-treated 125I-mEGF in SDS/Tricine gels but that could be immunoprecipitated with antibodies to mEGF. The immunoprecipitated peptide was isolated by electrophoresis in SDS/Tricine gels, eluted, and sequenced. The sequence was found to correspond to that of a tryptic peptide of the EGF receptor beginning with Gly-85, which is in domain I, a region N terminal to the first cysteine-rich region of the receptor. Selective loss of signal in the 17th sequencing cycle suggests that the point of attachment of N-terminally modified 125I-mEGF to the receptor is Tyr-101. The data presented here provide identification by direct protein microsequencing of a site of interaction of EGF and the EGF receptor. Images PMID:1380167

  3. The epidermal growth factor receptor (EGFR) in head and neck cancer: its role and treatment implications

    PubMed Central

    Zimmermann, Michel; Zouhair, Abderrahim; Azria, David; Ozsahin, Mahmut

    2006-01-01

    Epidermal growth factor receptor (EGFR) is a member of the ErbB family of receptors. Its stimulation by endogenous ligands, EGF or transforming growth factor-alpha (TGF-α) results in activation of intracellular tyrosine kinase, therefore, cell cycle progression. High levels of EGFR expression are correlated with poor prognosis and resistance to radiation therapy in a variety of cancers, mostly in squamous-cell carcinoma of the head and neck (SCCHN). Blocking the EGFR by a monoclonal antibody results in inhibition of the stimulation of the receptor, therefore, in inhibition of cell proliferation, enhanced apoptosis, and reduced angiogenesis, invasiveness and metastases. The EGFR is a prime target for new anticancer therapy in SCCHN, and other agents in development include small molecular tyrosine kinase inhibitors and antisense therapies. PMID:16722544

  4. Cloning of human epidermal growth factor as a bacterial secretory protein, its properties and mutagenesis

    SciTech Connect

    Engler, D.A.; Matsunami, R.K.; Campion, S.R.; Foote, R.S.; Mural, R.J.; Larimer, F.W.; Stevens, A.; Niyogi, S.K.

    1987-05-01

    A chimeric gene, containing the DNA coding for the human epidermal growth factor (EGF) and that for the signal peptide of E. coli alkaline phosphatase, was constructed by the annealing and subsequent ligation of appropriate DNA oligonucleotides synthesized in an automated DNA synthesizer. The gene was then cloned into a bacterial plasmid under the transcriptional control of the E. coli trp-lac (tac) promoter, and then transformed into E. coli. Following induction with isopropylthiogalactoside, the secretion of EGF into the E. coli periplasmic space and some into the growth medium was confirmed by its specific binding to the EGF receptor and stimulation of the EGF receptor tyrosine kinase activity. The size and physicochemical properties of the purified protein mimicked those of authentic human EGF. Studies of structure/function relationships by specific alterations of targeted amino acid residues in the EGF molecule have been initiated by utilizing site-directed mutagenesis.

  5. Construction of transforming growth factor alpha (TGF-alpha) phage library and identification of high binders of epidermal growth factor receptor (EGFR) by phage display.

    PubMed

    Tang, X B; Dallaire, P; Hoyt, D W; Sykes, B D; O'Connor-McCourt, M; Malcolm, B A

    1997-10-01

    TGF-alpha, a 50 amino acid growth factor containing 3 disulfide bonds, was fused to the N-terminal domain of the pIII protein of fusN, a derivative of phagemid fd-tet, to form a TGF-alpha phage. The fusion phage showed binding activity to epidermal growth factor receptor (EGFR). A library of approximately 4 x 10(7) variants of TGF-alpha was generated with substitutions of total of 10 amino acids located in the C-loop region. This C-loop subdomain of TGF-alpha consists of a small antiparallel double hairpin structure involving interactions between intra-polypeptide segments. Mutants isolated from the phage library with greatly increased binding affinity were selected through panning with A431 cells (a cell line expressing an elevated number of EGFRs). Following two rounds of stringent selection, variant phages with higher binding affinity than wild type TGF-alpha were identified and the phage DNAs were sequenced for the alignment analysis. Absolute selection at position 42 as Arg, preferential selection at position 38 and 45 as Tyr or Phe with aromatic side chain and selection at position 41 with acidic residues, were obtained. Although an amino acid residue with smaller side chain at position 35 and one with larger side chain at position 36 were preferred, the steric hindering of the structure in side chains was minimized between these adjacent amino acids.

  6. Proliferative response and oncogene expression induced by epidermal growth factor in EL2 rat fibroblasts.

    PubMed

    Liboi, E; Pelosi, E; Testa, U; Peschle, C; Rossi, G B

    1986-06-01

    Extensive evidence supports a two-step model for the control of fibroblast growth, which includes first the action of a competence factor (e.g., platelet-derived growth factor) followed by the stimulus of a progression factor (e.g., epidermal growth factor [EGF]). We investigated whether this model may be applied to the euploid EL2 fibroblast line recently isolated from rat embryos (E. Liboi, M. Caruso, and C. Basilico, Mol. Cell. Biol. 4:2925-2928, 1984). Our results clearly show that EGF alone leads EL2 cells to proliferate in serum-free conditions at a rate corresponding to 50 to 60% of that observed in the presence of 10% calf serum. It is of interest that, when resting EL2 cells were exposed to EGF, transcription of both c-myc and c-fos was markedly induced. Altogether, these observations suggest that, in contrast with the model of fibroblast growth mentioned above, EL2 cells require the presence of a single growth factor (EGF) for induction of DNA synthesis, and the expression of myc and fos proto-oncogenes may represent an obligatory step in the pathway of commitment of EL2 cells to proliferation. In addition, we showed that EGF may induce EL2 cells to acquire some properties of transformed cells, such as growth in agar and loss of contact inhibition. This suggests that the particular response to EGF of the EL2 line may be strictly connected with the expression of a transformed phenotype.

  7. The kinetics of the hydrogen/deuterium exchange of epidermal growth factor receptor ligands.

    PubMed

    Iloro, Ibon; Narváez, Daniel; Guillén, Nancy; Camacho, Carlos M; Guillén, Lalisse; Cora, Elsa; Pastrana-Ríos, Belinda

    2008-05-15

    Five highly homologous epidermal growth factor receptor ligands were studied by mass spectral analysis, hydrogen/deuterium (H/D) exchange via attenuated total reflectance Fourier transform-infrared spectroscopy, and two-dimensional correlation analysis. These studies were performed to determine the order of events during the exchange process, the extent of H/D exchange, and associated kinetics of exchange for a comparative analysis of these ligands. Furthermore, the secondary structure composition of amphiregulin (AR) and heparin-binding-epidermal growth factor (HB-EGF) was determined. All ligands were found to have similar contributions of 3(10)-helix and random coil with varying contributions of beta-sheets and beta-turns. The extent of exchange was 40%, 65%, 55%, 65%, and 98% for EGF, transforming growth factor-alpha (TGF-alpha), AR, HB-EGF, and epiregulin (ER), respectively. The rate constants were determined and classified as fast, intermediate, and slow: for EGF the 0.20 min(-1) (Tyr), 0.09 min(-1) (Arg, beta-turns), and 1.88 x 10(-3) min(-1) (beta-sheets and 3(10)-helix); and for TGF-alpha 0.91 min(-1) (Tyr), 0.27 min(-1) (Arg, beta-turns), and 1.41 x 10(-4) min(-1) (beta-sheets). The time constants for AR 0.47 min(-1) (Tyr), 0.04 min(-1) (Arg), and 1.00 x 10(-4) min(-1) (buried 3(10)-helix, beta-turns, and beta-sheets); for HB-EGF 0.89 min(-1) (Tyr), 0.14 min(-1) (Arg and 3(10)-helix), and 1.00 x 10(-3) min(-1) (buried 3(10)-helix, beta-sheets, and beta-turns); and for epiregulin 0.16 min(-1) (Tyr), 0.03 min(-1) (Arg), and 1.00 x 10(-4) min(-1) (3(10)-helix and beta-sheets). These results provide essential information toward understanding secondary structure, H/D exchange kinetics, and solvation of these epidermal growth factor receptor ligands in their unbound state.

  8. The expression of epidermal growth factor receptors and their ligands (epidermal growth factor, neuregulin, amphiregulin) in the bitch uterus during the estrus cycle.

    PubMed

    Sağsöz, Hakan; Liman, Narin; Saruhan, Berna Güney; Küçükaslan, İbrahim

    2014-06-30

    In order to study the possible role of EGFR receptors in the bitch reproductive process, we have analyzed the expression pattern and localization of EGFR receptors and some of their ligands epidermal growth factor (EGF), neuregulin (NRG), amphiregulin (AREG), in the uterus during the estrus cycle using immunohistochemistry. The immunostaining for receptors and ligands of EGFR/ligand system was confined to membrane and cytoplasm of the target cells. Variations were observed, not only at the different stages of the estrous cycle, but also in the different tissue compartments of the uterus. However, it was detected that the immunostainings for NRG and AREG in the different cells do not show important differences at stages of the estrus cycle. In the luminal epithelium, strong immunostaining for ErbB1/HER1, ErbB2/HER2, ErbB4/HER4 and EGF was found at estrus. In the glandular epithelium, strong immunostaining for ErbB4/HER4 was observed at diestrus, while strong immunostaining for EGF was detected in both of estrus and diestrus. ErbB3/HER3 immunoreactivity in the stromal cells was higher at diestrus and anestrus, while ErbB4/HER4 immunoreactivity was lower at anestrus. In the myometrium, the highest levels of immunoreactivity of ErbB2/HER2 were found at estrus, while ErbB3/HER3 immunoreactivity was higher at anestrus. EGF immunoreactivity was lower at anestrus compared to other stage of cycle. Altered EGFR/ligand system expression during the estrus cycle suggests this growth factor system is a potent regulator of proliferation and differentiation events during preparation for implantation of bitch uterus.

  9. Ricinus communis-based biopolymer and epidermal growth factor regulations on bone defect repair: A rat tibia model

    NASA Astrophysics Data System (ADS)

    Mendoza-Barrera, C.; Meléndez-Lira, M.; Altuzar, V.; Tomás, S. A.

    2003-01-01

    We report the effect of the addition of an epidermal growth factor to a Ricinus communis-based biopolymer in the healing of a rat tibia model. Bone repair and osteointegration after a period of three weeks were evaluated employing photoacoustic spectroscopy and x-ray diffraction. A parallel study was performed at 1, 2, 3, 4, 5, 6, 7, and 8 weeks with energy dispersive x-ray spectroscopy. We conclude that the use of an epidermal growth factor (group EGF) in vivo accelerates the process of bony repair in comparison with other groups, and that the employment of the Ricinus communis-based biopolymer as a bone substitute decreases bone production.

  10. Epidermal growth factor receptor inhibitors trigger a type I interferon response in human skin

    PubMed Central

    Pastore, Saveria

    2016-01-01

    The Epidermal Growth Factor Receptor (EGFR) is centrally involved in the regulation of key processes of the epithelia, including cell proliferation, survival, differentiation, and also tumorigenesis. Humanized antibodies and small-molecule inhibitors targeting EGFR were developed to disrupt these functions in cancer cells and are currently used in the treatment of diverse metastatic epithelial cancers. By contrast, these drugs possess significant skin-specific toxic effects, comprising the establishment of a persistent inflammatory milieu. So far, the molecular mechanisms underlying these epiphenomena have been investigated rather poorly. Here we showed that keratinocytes respond to anti-EGFR drugs with the development of a type I interferon molecular signature. Upregulation of the transcription factor IRF1 is early implicated in the enhanced expression of interferon-kappa, leading to persistent activation of STAT1 and further amplification of downstream interferon-induced genes, including anti-viral effectors and chemokines. When anti-EGFR drugs are associated to TNF-α, whose expression is enhanced by the drugs themselves, all these molecular events undergo a dramatic enhancement by synergy mechanisms. Finally, high levels of interferon-kappa can be observed in epidermal keratinocytes and also in leukocytes infiltrating the upper dermis of cetuximab-driven skin lesions. Our data suggest that dysregulated activation of type I interferon innate immunity is implicated in the molecular processes triggered by anti-EGFR drugs and leading to persistent skin inflammation. PMID:27322144

  11. Arsenite and insulin exhibit opposing effects on epidermal growth factor receptor and keratinocyte proliferative potential

    SciTech Connect

    Patterson, Timothy J.; Rice, Robert H. . E-mail: rhrice@ucdavis.edu

    2007-05-15

    Previous work has suggested that arsenic exposure contributes to skin carcinogenesis by preserving the proliferative potential of human epidermal keratinocytes, thereby slowing the exit of putative target stem cells into the differentiation pathway. To find a molecular basis for this action, present work has explored the influence of arsenite on keratinocyte responses to epidermal growth factor (EGF). The ability of cultured keratinocytes to found colonies upon passaging several days after confluence was preserved by arsenite and EGF in an additive fashion, but neither was effective when the receptor tyrosine kinase activity was inhibited. Arsenite prevented the loss of EGF receptor protein and phosphorylation of tyrosine 1173, preserving its capability to signal. The level of nuclear {beta}-catenin was higher in cells treated with arsenite and EGF in parallel to elevated colony forming ability, and expression of a dominant negative {beta}-catenin suppressed the increase in both colony forming ability and yield of putative stem cells induced by arsenite and EGF. As judged by expression of three genes regulated by {beta}-catenin, this transcription factor had substantially higher activity in the arsenite/EGF-treated cells. Trivalent antimony exhibited the same effects as arsenite. A novel finding is that insulin in the medium induced the loss of EGF receptor protein, which was largely prevented by arsenite exposure.

  12. Rotational diffusion of receptors for epidermal growth factor measured by time-resolved phosphorescence depolarization

    NASA Astrophysics Data System (ADS)

    Zidovetzki, Raphael; Johnson, David A.; Arndt-Jovin, Donna J.; Jovin, Thomas M.

    1991-06-01

    The cell surface receptor for epidermal growth factor (EGFR) is one of the most studied integral membrane proteins. The receptor is widely distributed in cells and tissues of mammalian and avian tissues and plays an important role in growth control. Binding of the epidermal growth factor (EGF) to EGFR initiates a complex biological response, which includes self-phosphorylation of the receptor due to an intrinsic tyrosine kinase activity, phosphorylation of other membrane proteins, increased intake of metabolites, and increased proliferation. Complete amino acid sequence of EGFR revealed a high degree of homology with viral oncogenes and allowed tentative identification of an external hormone binding domain, a transmembrane domain, and a cytoplasmic domain that includes tyrosine kinase activity. EGF binding induces rapid aggregation of EGFR, a process which was also observed on other receptor systems. These and other observations led to a hypothesis that microaggregation of EGFR is a necessary prerequisite for the biological response of EGF. A direct approach to study the processes of oligomerization of cell membrane proteins is to measure their mobility under various conditions. The lateral mobility of the EGFR was studied on mouse 3T3 fibroblasts and on A431 cells. However, an examination of the equations for the lateral and rotational diffusion in membranes shows that only rotational diffusion is strongly dependent on the size of the diffusing entity. A method of measuring protein rotational diffusion by time-resolved phosphorescence has proved to be very useful in the analysis of both in vivo and in vitro systems. The authors apply this method to study the mobility of EGFR on living A431 cells and membrane preparations.

  13. Discovery of Novel Human Epidermal Growth Factor Receptor-2 Inhibitors by Structure-based Virtual Screening

    PubMed Central

    Shi, Zheng; Yu, Tian; Sun, Rong; Wang, Shan; Chen, Xiao-Qian; Cheng, Li-Jia; Liu, Rong

    2016-01-01

    Background: Human epidermal growth factor receptor-2 (HER2) is a trans-membrane receptor like protein, and aberrant signaling of HER2 is implicated in many human cancers, such as ovarian cancer, gastric cancer, and prostate cancer, most notably breast cancer. Moreover, it has been in the spotlight in the recent years as a promising new target for therapy of breast cancer. Objective: Since virtual screening has become an integral part of the drug discovery process, it is of great significant to identify novel HER2 inhibitors by structure-based virtual screening. Materials and Methods: In this study, we carried out a series of elegant bioinformatics approaches, such as virtual screening and molecular dynamics (MD) simulations to identify HER2 inhibitors from Food and Drug Administration-approved small molecule drug as potential “new use” drugs. Results: Molecular docking identified top 10 potential drugs which showed spectrum affinity to HER2. Moreover, MD simulations suggested that ZINC08214629 (Nonoxynol-9) and ZINC03830276 (Benzonatate) might exert potential inhibitory effects against HER2-targeted anti-breast cancer therapeutics. Conclusion: Together, our findings may provide successful application of virtual screening studies in the lead discovery process, and suggest that our discovered small molecules could be effective HER2 inhibitor candidates for further study. SUMMARY A series of elegant bioinformatics approaches, including virtual screening and molecular dynamics (MD) simulations were took advantage to identify human epidermal growth factor receptor-2 (HER2) inhibitors. Molecular docking recognized top 10 candidate compounds, which showed spectrum affinity to HER2. Further, MD simulations suggested that ZINC08214629 (Nonoxynol-9) and ZINC03830276 (Benzonatate) in candidate compounds were identified as potential “new use” drugs against HER2-targeted anti-breast cancer therapeutics. Abbreviations used: HER2: Human epidermal growth factor receptor-2

  14. The F-BAR Protein PACSIN2 Regulates Epidermal Growth Factor Receptor Internalization

    PubMed Central

    de Kreuk, Bart-Jan; Anthony, Eloise C.; Geerts, Dirk; Hordijk, Peter L.

    2012-01-01

    Signaling via growth factor receptors, including the epidermal growth factor (EGF) receptor, is key to various cellular processes, such as proliferation, cell survival, and cell migration. In a variety of human diseases such as cancer, aberrant expression and activation of growth factor receptors can lead to disturbed signaling. Intracellular trafficking is crucial for proper signaling of growth factor receptors. As a result, the level of cell surface expression of growth factor receptors is an important determinant for the outcome of downstream signaling. BAR domain-containing proteins represent an important family of proteins that regulate membrane dynamics. In this study, we identify a novel role for the F-BAR protein PACSIN2 in the regulation of EGF receptor signaling. We show that internalized EGF as well as the (activated) EGF receptor translocated to PACSIN2-positive endosomes. Furthermore, loss of PACSIN2 increased plasma membrane expression of the EGF receptor in resting cells and increased EGF-induced phosphorylation of the EGF receptor. As a consequence, EGF-induced activation of Erk and Akt as well as cell proliferation were enhanced in PACSIN2-depleted cells. In conclusion, this study identifies a novel role for the F-BAR-domain protein PACSIN2 in regulating EGF receptor surface levels and EGF-induced downstream signaling. PMID:23129763

  15. Oak ellagitannins suppress the phosphorylation of the epidermal growth factor receptor in human colon carcinoma cells.

    PubMed

    Fridrich, Diana; Glabasnia, Arne; Fritz, Jessica; Esselen, Melanie; Pahlke, Gudrun; Hofmann, Thomas; Marko, Doris

    2008-05-14

    The ellagitannins castalagin and vescalagin, and the C-glycosides grandinin and roburin E as well as ellagic acid were found to potently inhibit the growth of human colon carcinoma cells (HT29) in vitro. In a cell-free system these compounds were identified as potent inhibitors of the protein tyrosine kinase activity of the epidermal growth factor receptor (EGFR) with IC 50 values in the low nanomolar range. To address the question of whether the interference with the activity of the isolated EGFR also plays a role within intact cells, effects on the phosphorylation status of the EGFR, as a measure for its activity, were determined in HT29 cells. As exemplified for castalagin and grandinin, both the nonglycosylated and the glycosylated ellagitannins effectively suppressed EGFR phosphorylation, but only at concentrations > or =10 microM, thus, in a concentration range where growth inhibition was observed. These results indicate that the suppression of EGFR-mediated signaling might contribute to the growth inhibitory effects of these compounds present in oak-matured wines and spirits such as whiskey. In contrast, despite substantial growth inhibitory properties, ellagic acid did not significantly affect EGFR phosphorylation in HT29 cells up to 100 microM.

  16. Cbl competitively inhibits epidermal growth factor-induced activation of phospholipase C-gamma1.

    PubMed

    Choi, Jang Hyun; Bae, Sun Sik; Park, Jong Bae; Ha, Sang Hoon; Song, Hebok; Kim, Jae-Ho; Cocco, Lucio; Ryu, Sung Ho; Suh, Pann-Ghill

    2003-04-30

    Phospholipase C-gamma1 (PLC-gamma1) plays pivotal roles in cellular growth and proliferation through its two Src homology (SH) 2 domains and its single SH3 domain, which interact with signaling molecules in response to various growth factors and hormones. However, the role of the SH domains in the growth factor-induced regulation of PLC-gamma1 is unclear. By peptide-mass fingerprinting analysis we have identified Cbl as a binding protein for the SH3 domain of PLC-gamma1 from rat pheochromatocyte PC12 cells. Association of Cbl with PLC-gamma1 was induced by epidermal growth factor (EGF) but not by nerve growth factor (NGF). Upon EGF stimulation, both Cbl and PLC-gamma1 were recruited to the activated EGF receptor through their SH2 domains. Mutation of the SH2 domains of either Cbl or PLC-gamma1 abrogated the EGF-induced interaction of PLC-gamma1 with Cbl, indicating that SH2-mediated translocation is essential for the association of PLC-gamma1 and Cbl. Overexpression of Cbl attenuated EGF-induced tyrosine phosphorylation and the subsequent activation of PLC-gamma1 by interfering competitively with the interaction between PLC-gamma1 and EGFR. Taken together, these results provide the first indications that Cbl may be a negative regulator of intracellular signaling following EGF-induced PLC-gamma1 activation.

  17. Epidermal growth factor released in human dental pulp following orthodontic force.

    PubMed

    Derringer, Kathryn; Linden, Roger

    2007-02-01

    This study investigated the role of human epidermal growth factor (EGF) in the angiogenic response of the dental pulp to orthodontic force. The release of angiogenic growth factor EGF in human dental pulp following orthodontic force application was examined using neutralizing antibody anti-human (anti-h) EGF to block its effects. The dental pulps from 10 premolar teeth from 10 patients (equal numbers of males and females aged 11-14 years), treated with a straightwire fixed appliance for 2 weeks and extracted for orthodontic reasons, were divided vertically, and sections from each half-pulp were individually co-cultured with a section of rat aorta in collagen surrounded by growth media. Anti-h EGF was added to the media of the co-cultures from one-half of each pulp from each tooth from each patient; the remaining co-cultures from the other half of each pulp without anti-h EGF were used as the controls. Cultures were examined daily by light microscopy for angiogenic growth and number of microvessels. The addition of anti-h EGF to the growth media in the co-cultures resulted in a significant reduction (P < 0.05, Wilcoxon signed rank test) in pulpal and rat aorta microvessel numbers, compared with the control co-cultures. The results indicate that EGF released following orthodontic force application plays a part in the angiogenic response of the pulp.

  18. Epidermal growth factor and hepatocyte growth factor receptors collaborate to induce multiple biological responses in bovine mammary epithelial cells.

    PubMed

    Accornero, P; Martignani, E; Miretti, S; Starvaggi Cucuzza, L; Baratta, M

    2009-08-01

    The aim of this work was to explore whether epidermal growth factor (EGF) and hepatocyte growth factor (HGF) could increase the biological responses of a mammary epithelial cell line of bovine origin when added simultaneously. We also investigated a possible molecular mechanism underlying this cooperation. The development of mammary gland requires several circulating and locally produced hormones. Hepatocyte growth factor and its tyrosine kinase receptor, mesenchymal-epithelial transition factor (MET), are expressed and temporally regulated during mammary development and differentiation. Epidermal growth factor receptor and its ligands have also been implicated in the growth and morphogenesis of the mammary epithelium. Both EGF and HGF seem to exert a morphogenic program in this tissue; therefore, we hypothesized that these cytokines could act cooperatively in bovine mammary epithelial cells. We have already shown that the bovine BME-UV cell line, a nontumorigenic mammary epithelial line, expresses both MET and EGF receptor. Simultaneous treatment with HGF and EGF elicited an increase in proliferation, dispersion, degradation of extracellular matrix, and motility. Following EGF treatment, BME-UV mammary cells exhibited an increase in MET expression at both the mRNA and protein levels. Long-term treatment of BME-UV cells with HGF and EGF together increased the level of activation of the extracellular signal-regulated kinase 1/2 and protein kinase B signaling pathways when compared with HGF or EGF alone. These data outline a possible cooperative role of the EGF and HGF pathways and indicate that cross-talk between their respective receptors may modulate mammary gland development in the cow.

  19. Amphiregulin triggered epidermal growth factor receptor activation confers in vivo crizotinib-resistance of EML4-ALK lung cancer and circumvention by epidermal growth factor receptor inhibitors.

    PubMed

    Taniguchi, Hirokazu; Takeuchi, Shinji; Fukuda, Koji; Nakagawa, Takayuki; Arai, Sachiko; Nanjo, Shigeki; Yamada, Tadaaki; Yamaguchi, Hiroyuki; Mukae, Hiroshi; Yano, Seiji

    2017-01-01

    Crizotinib, a first-generation anaplastic lymphoma kinase (ALK) tyrosine-kinase inhibitor, is known to be effective against echinoderm microtubule-associated protein-like 4 (EML4)-ALK-positive non-small cell lung cancers. Nonetheless, the tumors subsequently become resistant to crizotinib and recur in almost every case. The mechanism of the acquired resistance needs to be deciphered. In this study, we established crizotinib-resistant cells (A925LPE3-CR) via long-term administration of crizotinib to a mouse model of pleural carcinomatous effusions; this model involved implantation of the A925LPE3 cell line, which harbors the EML4-ALK gene rearrangement. The resistant cells did not have the secondary ALK mutations frequently occurring in crizotinib-resistant cells, and these cells were cross-resistant to alectinib and ceritinib as well. In cell clone #2, which is one of the clones of A925LPE3-CR, crizotinib sensitivity was restored via the inhibition of epidermal growth factor receptor (EGFR) by means of an EGFR tyrosine-kinase inhibitor (erlotinib) or an anti-EGFR antibody (cetuximab) in vitro and in the murine xenograft model. Cell clone #2 did not have an EGFR mutation, but the expression of amphiregulin (AREG), one of EGFR ligands, was significantly increased. A knockdown of AREG with small interfering RNAs restored the sensitivity to crizotinib. These data suggest that overexpression of EGFR ligands such as AREG can cause resistance to crizotinib, and that inhibition of EGFR signaling may be a promising strategy to overcome crizotinib resistance in EML4-ALK lung cancer.

  20. Increased expression of epidermal growth factor receptor induces sequestration of extracellular signal-related kinases and selective attenuation of specific epidermal growth factor-mediated signal transduction pathways.

    PubMed

    Habib, Amyn A; Chun, Soo Jin; Neel, Benjamin G; Vartanian, Timothy

    2003-01-01

    Increased expression of the epidermal growth factor receptor (EGFR) is common in cancer and correlates with neoplastic progression. Although the biology of this receptor has been the subject of intense investigation, surprisingly little is known about how increased expression of the wild-type EGFR affects downstream signal transduction in cells. We show that increasing the expression of the receptor results in dramatic shifts in signaling with attenuation of EGF-induced Ras, extracellular signal-related kinases (ERKs), and Akt activation, as well as amplification of STAT1 and STAT3 signaling. In this study, we focus on the mechanism of attenuated ERK signaling and present evidence suggesting that the mechanism of attenuated ERK signaling in EGFR-overexpressing cells is a sequestration of ERKs at the cell membrane in EGFR-containing complexes. Increased expression of the EGFR results in an aberrant localization of ERKs to the cell membrane. Furthermore, ERKs become associated with the EGFR in a physical complex in EGFR-overexpressing cells but not in control cells. The EGFR-ERK association is detected in unstimulated cells or on exposure to a low concentration of EGF; under these conditions, ERK activation is minimal. Exposure of these cells to saturating concentrations of EGF results in a decreased membrane localization of ERKs, a concomitant dissociation of ERKs from the EGFR, and restores ERK activation. A similar association can be detected between the EGFR and MEK1 in receptor-overexpressing cells, suggesting that multiple components of the ERK signaling pathway may become trapped in complexes with the EGFR. These findings can be demonstrated in cells transfected to express high levels of the EGFR as well as in cancer cells which naturally overexpress the EGFR and, thus, may be representative of altered EGFR signaling in human cancer.

  1. Salinity stiffens the epidermal cell walls of salt-stressed maize leaves: is the epidermis growth-restricting?

    PubMed

    Zörb, Christian; Mühling, Karl H; Kutschera, Ulrich; Geilfus, Christoph-Martin

    2015-01-01

    As a result of salt (NaCl)-stress, sensitive varieties of maize (Zea mays L.) respond with a strong inhibition of organ growth. The reduction of leaf elongation investigated here has several causes, including a modification of the mechanical properties of the cell wall. Among the various tissues that form the leaf, the epidermis plays a special role in controlling organ growth, because it is thought to form a rigid outer leaf coat that can restrict elongation by interacting with the inner cell layers. This study was designed to determine whether growth-related changes in the leaf epidermis and its cell wall correspond to the overall reduction in cell expansion of maize leaves during an osmotic stress-phase induced by salt treatment. Two different maize varieties contrasting in their degree of salt resistance (i.e., the hybrids Lector vs. SR03) were compared in order to identify physiological features contributing to resistance towards salinity. Wall loosening-related parameters, such as the capacity of the epidermal cell wall to expand, β-expansin abundance and apoplastic pH values, were analysed. Our data demonstrate that, in the salt-tolerant maize hybrid which maintained leaf growth under salinity, the epidermal cell wall was more extensible under salt stress. This was associated with a shift of the epidermal apoplastic pH into a range more favourable for acid growth. The more sensitive hybrid that displayed a pronounced leaf growth-reduction was shown to have stiffer epidermal cell walls under stress. This may be attributable to the reduced abundance of cell wall-loosening β-expansin proteins following a high salinity-treatment in the nutrient solution (100 mM NaCl, 8 days). This study clearly documents that salt stress impairs epidermal wall-loosening in growth-reduced maize leaves.

  2. Salinity Stiffens the Epidermal Cell Walls of Salt-Stressed Maize Leaves: Is the Epidermis Growth-Restricting?

    PubMed Central

    Zörb, Christian; Mühling, Karl H.; Kutschera, Ulrich; Geilfus, Christoph-Martin

    2015-01-01

    As a result of salt (NaCl)-stress, sensitive varieties of maize (Zea mays L.) respond with a strong inhibition of organ growth. The reduction of leaf elongation investigated here has several causes, including a modification of the mechanical properties of the cell wall. Among the various tissues that form the leaf, the epidermis plays a special role in controlling organ growth, because it is thought to form a rigid outer leaf coat that can restrict elongation by interacting with the inner cell layers. This study was designed to determine whether growth-related changes in the leaf epidermis and its cell wall correspond to the overall reduction in cell expansion of maize leaves during an osmotic stress-phase induced by salt treatment. Two different maize varieties contrasting in their degree of salt resistance (i.e., the hybrids Lector vs. SR03) were compared in order to identify physiological features contributing to resistance towards salinity. Wall loosening-related parameters, such as the capacity of the epidermal cell wall to expand, β-expansin abundance and apoplastic pH values, were analysed. Our data demonstrate that, in the salt-tolerant maize hybrid which maintained leaf growth under salinity, the epidermal cell wall was more extensible under salt stress. This was associated with a shift of the epidermal apoplastic pH into a range more favourable for acid growth. The more sensitive hybrid that displayed a pronounced leaf growth-reduction was shown to have stiffer epidermal cell walls under stress. This may be attributable to the reduced abundance of cell wall-loosening β-expansin proteins following a high salinity-treatment in the nutrient solution (100 mM NaCl, 8 days). This study clearly documents that salt stress impairs epidermal wall-loosening in growth-reduced maize leaves. PMID:25760715

  3. Studying the Stoichiometry of Epidermal Growth Factor Receptor in Intact Cells using Correlative Microscopy.

    PubMed

    Peckys, Diana B; de Jonge, Niels

    2015-09-11

    This protocol describes the labeling of epidermal growth factor receptor (EGFR) on COS7 fibroblast cells, and subsequent correlative fluorescence microscopy and environmental scanning electron microscopy (ESEM) of whole cells in hydrated state. Fluorescent quantum dots (QDs) were coupled to EGFR via a two-step labeling protocol, providing an efficient and specific protein labeling, while avoiding label-induced clustering of the receptor. Fluorescence microscopy provided overview images of the cellular locations of the EGFR. The scanning transmission electron microscopy (STEM) detector was used to detect the QD labels with nanoscale resolution. The resulting correlative images provide data of the cellular EGFR distribution, and the stoichiometry at the single molecular level in the natural context of the hydrated intact cell. ESEM-STEM images revealed the receptor to be present as monomer, as homodimer, and in small clusters. Labeling with two different QDs, i.e., one emitting at 655 nm and at 800 revealed similar characteristic results.

  4. Epidermal Growth Factor Receptor Transactivation: Mechanisms, Pathophysiology, and Potential Therapies in the Cardiovascular System.

    PubMed

    Forrester, Steven J; Kawai, Tatsuo; O'Brien, Shannon; Thomas, Walter; Harris, Raymond C; Eguchi, Satoru

    2016-01-01

    Epidermal growth factor receptor (EGFR) activation impacts the physiology and pathophysiology of the cardiovascular system, and inhibition of EGFR activity is emerging as a potential therapeutic strategy to treat diseases including hypertension, cardiac hypertrophy, renal fibrosis, and abdominal aortic aneurysm. The capacity of G protein-coupled receptor (GPCR) agonists, such as angiotensin II (AngII), to promote EGFR signaling is called transactivation and is well described, yet delineating the molecular processes and functional relevance of this crosstalk has been challenging. Moreover, these critical findings are dispersed among many different fields. The aim of our review is to highlight recent advancements in defining the signaling cascades and downstream consequences of EGFR transactivation in the cardiovascular renal system. We also focus on studies that link EGFR transactivation to animal models of the disease, and we discuss potential therapeutic applications.

  5. Trophic action of epidermal growth factor on the pancreas and gastroduodenal mucosa in rats.

    PubMed Central

    Dembiński, A; Gregory, H; Konturek, S J; Polański, M

    1982-01-01

    1. Epidermal growth factor (EGF) infused subcutaneously in a dose of 10 micrograms/kg . h but not 1 microgram/kg . h inhibited spontaneous gastric acid and pepsin secretion, whereas when given intragastrically in a dose of 10 micrograms/kg . h it failed to affect this secretion. 2. EGF injected intraperitoneally at 8 h intervals for 24 h significantly stimulated DNA synthesis in the gastroduodenal mucosa and the pancreas, whereas when administered intragastrically it stimulated DNA synthesis only in the gastroduodenal mucosa but not in the pancreas. 3. Chronic parenteral administration of EGF significantly increased the DNA and RNA contents of the gastroduodenal mucosa and the pancreas. 4. This study demonstrates that parenteral EGF is a potent inhibitor of gastric secretion and trophic agent for the gastroduodenal mucosa and pancreas, and that the gastric inhibitory and trophic effects of EGF are the results of two separate mechanisms. PMID:6180163

  6. Epidermal growth factor (EGF) inhibits stimulated thyroid hormone secretion in the mouse

    SciTech Connect

    Ahren, B.

    1987-07-01

    It is known that epidermal growth factor (EGF) inhibits iodide uptake in the thyroid follicular cells and lowers plasma levels of thyroid hormones upon infusion into sheep and ewes. In this study, the effects of EGF on basal and stimulated thyroid hormone secretion were investigated in the mouse. Mice were pretreated with /sup 125/I and thyroxine; the subsequent release of /sup 125/I is an estimation of thyroid hormone secretion. It was found that basal radioiodine secretion was not altered by intravenous injection of EGF (5 micrograms/animal). However, the radioiodine secretion stimulated by both TSH (120 microU/animal) and vasoactive intestinal peptide (VIP; 5 micrograms/animal) were inhibited by EGF (5 micrograms/animal). At a lower dose level (0.5 microgram/animal), EGF had no influence on stimulated radioiodine secretion. In conclusion, EGF inhibits stimulated thyroid hormone secretion in the mouse.

  7. Heparin stimulates epidermal growth factor receptor-mediated phosphorylation of tyrosine and threonine residues.

    PubMed

    Revis-Gupta, S; Abdel-Ghany, M; Koland, J; Racker, E

    1991-07-15

    We have described previously that in extracts of A431 cells epidermal growth factor (EGF) stimulates the phosphorylation of tyrosine as well as of threonine residues in the EGF receptor and in lipocortin 1. We now report that heparin at low concentrations also stimulates the autophosphorylation of the EGF receptor and of the recombinant 56-kDa domain of the EGF receptor that lacks the EGF binding site. To study the stimulations of phosphorylation of threonine residues, a fusion protein was prepared with glutathione S-transferase (GST) and an EGF receptor fragment, TK8 (residues 647-688), that contains the threonine phosphorylation site but no tyrosine. We show that the phosphorylation of threonine residues in GST-TK8 by extracts of A431 cells is stimulated by heparin but not by EGF. These and other results suggest that heparin acts as a chaperone, a substrate modulator, that enhances the susceptibility of the substrate to phosphorylation by protein kinases.

  8. Activation of the epidermal growth factor receptor by hydrogels in artificial tears

    PubMed Central

    PALUS, JENNIFER S.; CHAY, EDWARD Y.; HEALEY, JEFFREY; SULLENBERGER, REBECCA; KLARLUND, JES K.

    2008-01-01

    Most formulations of artificial tears include high-molecular weight hydrophilic polymers (hydrogels) that are usually thought to serve to enhance viscosity and to act as demulcents. A few reports have indicated that application of some of the polymers accelerates healing of wounds in epithelia. Since activation of the epidermal growth factor (EGF) receptor is critical for spontaneous corneal epithelial wound healing, we tested commonly used hydrogels for their ability to activate the EGF receptor and enhance closure of wounds. Five structurally unrelated hydrogels used in artificial tears were found to activate the EGF receptor. Importantly, two of the hydrogels enhanced wound healing in an organ culture model. We propose that the efficacy of hydrogels in treating dry eye may be related to their ability to activate the EGF receptor, and that hydrogels are inexpensive, safe agents to promote healing of wounds in the cornea and possibly in other tissues. PMID:18242602

  9. Effective Delivery of Doxycycline and Epidermal Growth Factor for Expedited Healing of Chronic Wounds

    NASA Astrophysics Data System (ADS)

    Kulkarni, Abhilash

    The problems and high medical costs associated with chronic wounds necessitate an economical bioactive wound dressing. A new strategy was investigated to inhibit MMP-9 proteases and to release epidermal growth factor (EGF) to enhance healing. Doxycycline (DOX) and EGF were encapsulated on polyacrylic acid modified polyurethane film (PAA-PU) using Layer-by-Layer (LbL) assembly. The number of bilayers tuned the concentration of DOX and EGF released over time with over 94% bioactivity of EGF retained over 4 days. A simple wound model in which MMP-9 proteases were added to cell culture containing fibroblast cells demonstrated that DOX inhibited the proteases providing a protective environment for the released EGF to stimulate cell migration and proliferation at a faster healing rate. In the presence of DOX, only small amounts of the highly bioactive EGF are sufficient to close the wound. Results show that this is new and promising bioactive dressing for effective wound management.

  10. Identification of a minimal promoter element of the mouse epidermal growth factor gene.

    PubMed Central

    Pascall, J C; Brown, K D

    1997-01-01

    We have previously generated a transgenic mouse line (EGF/Tag) in which simian virus 40 (SV40) T-antigen expression is directed by the mouse epidermal growth factor (EGF) gene promoter. In these mice, cellular hyperproliferation is observed in the submaxillary gland associated with SV40 T-antigen expression. In addition, SV40 T-antigen-expressing tumours of prostatic origin are seen. We have now derived immortalized cell lines from these tissues and have used the cells to perform a functional analysis of the EGF gene promoter. Cells were transfected with EGF promoter/reporter constructs, and an element located between 51 and 35 bases upstream of the EGF mRNA start site required for basal activity of the promoter was identified. Electrophoretic mobility-shift analysis suggests that three proteins bind to this region, one of which is either Sp1 or a closely related protein. PMID:9210411

  11. Characterization of epidermal growth factor receptors on plasma membranes isolated from rat gastric mucosa

    SciTech Connect

    Hori, R.; Nomura, H.; Iwakawa, S.; Okumura, K. )

    1990-06-01

    The binding of human epidermal growth factor (hEGF), beta-urogastrone, to plasma membranes isolated from rat gastric mucosa was studied to characterize gastric EGF receptors. The binding of ({sup 125}I)hEGF was temperature dependent, reversible, and saturable. A single class of binding sites for EGF with a dissociation constant of 0.42 nM and maximal binding capacity of 42 fmol/mg protein was suggested. There was little change in the binding of ({sup 125}I)hEGF upon addition of peptide hormones (secretin, insulin), antiulcer drugs (cimetidine), or an ulcer-inducing reagent (aspirin). Cross-linking of ({sup 125}I)hEGF to gastric plasma membranes with the use of disuccinimidyl suberate resulted in the labeling of a protein of 150 kDa. These results indicate the presence of EGF receptors on plasma membranes of rat gastric mucosa.

  12. A transcription factor active on the epidermal growth factor receptor gene.

    PubMed Central

    Kageyama, R; Merlino, G T; Pastan, I

    1988-01-01

    We have developed an in vitro transcription system for the epidermal growth factor receptor (EGFR) oncogene by using nuclear extracts of A431 human epidermoid carcinoma cells, which overproduce EGFR. We found that a nuclear factor, termed EGFR-specific transcription factor (ETF), specifically stimulated EGFR transcription by 5- to 10-fold. In this report, ETF, purified by using sequence-specific oligonucleotide affinity chromatography, is shown by renaturing material eluted from a NaDodSO4/polyacrylamide gel to be a protein with a molecular mass of 120 kDa. ETF binds to the promoter region, as measured by DNase I "footprinting" and gel-mobility-shift assays, and specifically stimulates the transcription of the EGFR gene in a reconstituted in vitro transcription system. These results suggest that ETF could play a role in the overexpression of the cellular oncogene EGFR. Images PMID:3393529

  13. Oropharyngeal cancers: relationship between epidermal growth factor receptor alterations and human papillomavirus status.

    PubMed

    Mirghani, H; Amen, F; Moreau, F; Guigay, J; Hartl, D M; Lacau St Guily, J

    2014-04-01

    High-risk human papillomavirus (HR-HPV), particularly type 16, is now recognised as a causative agent in a subset of oropharyngeal squamous cell carcinomas (OPSCCs). These tumours are on the increase and generally have a better prognosis than their HPV negative counterparts. This raises the question of de escalation therapy to reduce long term consequences in a younger cohort of patients with a long life expectancy. Several clinical trials with anti-epidermal growth factor receptor (EGFR) therapies, particularly cetuximab, are ongoing. Few data exist on the relationship between EGFR and HPV induced oropharyngeal cancers. We summarise the main studies in relation to EGFR alterations (gene copy number, protein expression and mutations) and the impact on prognosis of HPV positive tumours that express high levels of EGFR. We also discuss the opportunity of targeting this pathway in light of recent studies.

  14. Study of the biological effectiveness of a nanosilver-epidermal growth factor sustained-release carrier.

    PubMed

    Zhou, Jian-DA; Wang, Shao-Hua; Liu, Rui; Zhou, Chun-Jiao; Cao, Ke; Liu, Jin-Yan; Chen, Yao; Chen, Feng-Hua

    2013-04-01

    The aim of the present study was to elucidate the biological effectiveness and character of a nanosilver-epidermal growth factor (EGF) sustained-release carrier. This was synthesized using the self-assembly method and then characterized by transmission electron microscopy and UV spectrophotometry. The biological activity of the sustained release carrier was determined through cytological, bacteriological and wound-healing experiments. The results showed that the nanosilver-EGF sustained-release carrier was well dispersed with uniform particle size and that it had good antibacterial properties similar to those of nanosilver. The nanosilver-EGF sustained-release carrier is superior to EGFs in effectively promoting cell division and proliferation. The results of the wound-healing experiments provide evidence of its curative effects.

  15. Recycling of epidermal growth factor in a human pancreatic carcinoma cell line

    SciTech Connect

    Korc, M.; Magun, B.E.

    1985-09-01

    PANC-1 human pancreatic carcinoma cells readily bound and internalized /sup 125/I-labeled epidermal growth factor (EGF). Bound /sup 125/I-labeled EGF was then partially processed to a number of high molecular weight acidic species. Percoll gradient centrifugation of cell homogenates indicated that the majority of /sup 125/I activity localized to several intracellular vesicular compartments. Both intact EGF and its processed species were subsequently released into the incubation medium. A major portion of the released radioactivity was capable of rebinding to the cell. Only a small amount of bound /sup 125/I-labeled EGF was degraded to low molecular weight products, and this degradation was completely blocked by methylamine. These findings suggest that in PANC-1 cells, bound EGF undergoes only limited processing. Both intact EGF and its major processed species bypass the cellular degradative pathways, are slowly released from the cell, and then rebind to the cell.

  16. Epidermal growth factor receptor subunit locations determined in hydrated cells with environmental scanning electron microscopy.

    PubMed

    Peckys, Diana B; Baudoin, Jean-Pierre; Eder, Magdalena; Werner, Ulf; de Jonge, Niels

    2013-01-01

    Imaging single epidermal growth factor receptors (EGFR) in intact cells is presently limited by the available microscopy methods. Environmental scanning electron microscopy (ESEM) of whole cells in hydrated state in combination with specific labeling with gold nanoparticles was used to localize activated EGFRs in the plasma membranes of COS7 and A549 cells. The use of a scanning transmission electron microscopy (STEM) detector yielded a spatial resolution of 3 nm, sufficient to identify the locations of individual EGFR dimer subunits. The sizes and distribution of dimers and higher order clusters of EGFRs were determined. The distance between labels bound to dimers amounted to 19 nm, consistent with a molecular model. A fraction of the EGFRs was found in higher order clusters with sizes ranging from 32-56 nm. ESEM can be used for quantitative whole cell screening studies of membrane receptors, and for the study of nanoparticle-cell interactions in general.

  17. QSAR and 3D QSAR of inhibitors of the epidermal growth factor receptor

    NASA Astrophysics Data System (ADS)

    Pinto-Bazurco, Mariano; Tsakovska, Ivanka; Pajeva, Ilza

    This article reports quantitative structure-activity relationships (QSAR) and 3D QSAR models of 134 structurally diverse inhibitors of the epidermal growth factor receptor (EGFR) tyrosine kinase. Free-Wilson analysis was used to derive the QSAR model. It identified the substituents in aniline, the polycyclic system, and the substituents at the 6- and 7-positions of the polycyclic system as the most important structural features. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were used in the 3D QSAR modeling. The steric and electrostatic interactions proved the most important for the inhibitory effect. Both QSAR and 3D QSAR models led to consistent results. On the basis of the statistically significant models, new structures were proposed and their inhibitory activities were predicted.

  18. A GC-rich element confers epidermal growth factor responsiveness to transcription from the gastrin promoter.

    PubMed Central

    Merchant, J L; Demediuk, B; Brand, S J

    1991-01-01

    Epidermal growth factor (EGF) and transforming growth factor alpha are important determinants of mucosal integrity in the gastrointestinal tract, and they act both directly and indirectly to prevent ulceration in the stomach. Consistent with this physiological role, EGF stimulates transcription of gastrin, a peptide hormone which regulates gastric acid secretion and mucosal growth. EGF stimulation of gastrin transcription is mediated by a GC-rich gastrin EGF response element (gERE) (GGGGCGGGGTGGGGGG) which lies between -54 and -68 in the human gastrin promoter. The gERE sequence also confers weaker responsiveness to phorbol ester stimulation. The gERE sequence differs from previously described EGF response elements. The gERE DNA sequence specifically interacts with a GH4 DNA-binding protein distinct from previously described transcription factors (Egr-1 and AP2) which bind GC-rich sequences and mediate transcriptional activation by growth factors. Furthermore, the gERE element does not bind the Sp1 transcription factor even though the gERE sequence contains a high-affinity Sp1-binding site (GGCGGG). Images PMID:2017173

  19. Radiosensitizing effect of lapatinib in human epidermal growth factor receptor 2-positive breast cancer cells

    PubMed Central

    Park, Ji Min; Kim, Dan Hyo; Kim, In Ah

    2016-01-01

    Trastuzumab has been widely used for the treatment of human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancer, however, it cannot easily cross the blood-brain barrier (BBB) and is known to increase the incidence of brain metastases. In contrast, lapatinib has a low molecular weight and can cross the BBB and it could be useful to treat brain metastases in patients with HER2-positive breast cancer. To explore the impact of lapatinib on radiation response, we conducted an in vitro experiment using SKBR3 and BT474 breast carcinoma cells exhibiting HER2/neu amplification. Lapatinib down-regulated phosphorylated (p)-HER2, p-epidermal growth factor receptor, p-AKT, and p-extracellular signal-regulated kinase. Pretreatment of lapatinib increased the radiosensitivity of SKBR3 (sensitizer enhancement ratio [SER]: 1.21 at a surviving fraction of 0.5) and BT474 (SER: 1.26 at a surviving fraction of 0.5) cells and hindered the repair of DNA damage, as suggested by the prolongation of radiation-induced γH2AX foci and the down-regulation of phosphorylated DNA-dependent protein kinase, catalytic subunit (p-DNAPKcs). Increases in radiation-induced apoptosis and senescence were suggested to be the major modes of cell death induced by the combination of lapatinib and radiation. Furthermore, lapatinib did not radiosensitize a HER2- negative breast cancer cell line or normal human astrocytes. These findings suggest that lapatinib can potentiate radiation-induced cell death in HER2-overexpressing breast cancer cells and may increase the efficacy of radiotherapy. A phase II clinical trial using lapatinib concurrently with whole-brain radiation therapy (WBRT) is currently being conducted. PMID:27738326

  20. Nitric oxide reversibly inhibits the epidermal growth factor receptor tyrosine kinase.

    PubMed Central

    Estrada, C; Gómez, C; Martín-Nieto, J; De Frutos, T; Jiménez, A; Villalobo, A

    1997-01-01

    Although it has been demonstrated that NO inhibits the proliferation of different cell types, the mechanisms of its anti-mitotic action are not well understood. In this work we have studied the possible interaction of NO with the epidermal growth factor receptor (EGFR), using transfected fibroblasts which overexpress the human EGFR. The NO donors S-nitroso-N-acetylpenicillamine (SNAP), 1,1-diethyl-2-hydroxy-2-nitrosohydrazine (DEA-NO) and N-¿4-[1-(3-aminopropyl)-2-hydroxy-2-nitrosohydrazino]butyl¿propane -1, 3-diamine (DETA-NO) inhibited DNA synthesis of fibroblasts growing in the presence of fetal calf serum, epidermal growth factor (EGF) or EGF plus insulin, as assessed by [methyl-3H]thymidine incorporation. Neither 8-bromo-cGMP nor the cGMP-phosphodiesterase inhibitor zaprinast mimicked this effect, suggesting that NO is unlikely to inhibit cell proliferation via a cGMP-dependent pathway. SNAP, DEA-NO and DETA-NO also inhibited the transphosphorylation of the EGFR and its tyrosine kinase activity toward the exogenous substrate poly-l-(Glu-Tyr), as measured in permeabilized cells using [gamma-32P]ATP as phosphate donor. In contrast, 3-[morpholinosydnonimine hydrochloride] (SIN-1), a peroxynitrite-forming compound, did not significantly inhibit either DNA synthesis or the EGFR tyrosine kinase activity. The inhibitory action of DEA-NO on the EGFR tyrosine kinase was prevented by haemoglobin, an NO scavenger, but not by superoxide dismutase, and was reversed by dithiothreitol. The binding of EGF to its receptor was unaffected by DEA-NO. The inhibitory action of DEA-NO on the EGF-dependent transphosphorylation of the receptor was also demonstrated in intact cells by immunoblot analysis using an anti-phosphotyrosine antibody. Taken together, these results suggest that NO, but not peroxynitrite, inhibits in a reversible manner the EGFR tyrosine kinase activity by S-nitrosylation of the receptor. PMID:9291107

  1. Cloning, Expression, and Cost Effective Purification of Authentic Human Epidermal Growth Factor With High Activity

    PubMed Central

    Pouranvari, Sara; Ebrahimi, Firouz; Javadi, Gholamreza; Maddah, Bozorgmehr

    2016-01-01

    Background: Epidermal growth factor (EGF) plays a fundamental role in the healing of wounds relating to skin damage, the cornea, and the gastrointestinal tract. Objectives: The aim of this study is the cloning, expression, and purification of recombinant human EGF (rhEGF), and an assessment of its activity. Materials and Methods: In the present experimental study, a synthetic pET28a (+) -hEGF construct was prepared. In order to ligate hEGF into pET24a (+), the PCR technique was performed, using special primers that possess restriction enzyme sites, which are also located in appropriate sites in pET24a (+). After transferring this construct into E. coli cells, protein expression was performed under standard conditions. Protein solubilization was done by urea. hEGF purification and refolding were carried out using gradient dialysis against the urea. We used RP-HPLC to compare between rhEGF and commercial rhEGF as a control. Finally, an MTT assay was performed to assess the viability of the NIH 3T3 cells treated with various concentrations of rhEGF. Results: Dialysis after urea solubilization caused precipitation of unwanted proteins, resulting in achievement of purified EGF with > 90% purity, without the need for expensive and time-consuming process. The MTT assay results showed that our rhEGF activate significantly higher proliferation of NIH 3T3 cells in comparison to the control (P-values were < 0.0001), in total concentrations and times evaluated Conclusions: Via our purification protocol, a sufficient amount of bioactive recombinant human epidermal growth factor was obtained in just a few affordable steps, with superlative purity. PMID:27247796

  2. Platelet Derived Growth Factor-B and Human Epidermal Growth Factor Receptor-2 Polymorphisms in Gall Bladder Cancer.

    PubMed

    Mishra, Kumudesh; Behari, Anu; Kapoor, Vinay Kumar; Khan, M Salman; Prakash, Swayam; Agrawal, Suraksha

    2015-01-01

    Gall bladder cancer (GBC) is a gastro-intestinal cancer with high prevalence among north Indian women. Platelet derived growth factor-B (PDGFB) and human epidermal growth factor receptor-2 (HER2) may play roles in the etiology of GBC through the inflammation-hyperplasia-dysplasia-carcinoma pathway. To study the association of PDGFB and HER2 polymorphisms with risk of GBC, 200 cases and 300 controls were considered. PDGFB +286A>G and +1135A>C polymorphisms were investigated with an amplification refractory mutation system and the HER2 Ile655Val polymorphism by restriction fragment length polymorphism. Significant risk associations for PDGFB +286 GG (OR=5.25) and PDGFB +1135 CC (OR=3.19) genotypes were observed for GBC. Gender wise stratification revealed susceptibility for recessive models of PDGFB +1135A>C (OR=3.00) and HER2 Ile655Val (OR=2.52) polymorphisms among female GBC cases. GBC cases with gall stones were predisposed to homozygous +286 GG and +1135 CC genotypes. Significant risk associations were found for ACIle (OR=1.48), GAVal (OR=1.70), GAIle (OR=2.00) haplotypes with GBC cases and GCIle haplotype with female GBC cases (OR=10.37, P=<0.0001). Pair-wise linkage disequilibrium revealed negative associations among variant alleles. On multi-dimensional reduction analysis, a three factor model revealed significant gene-gene interaction for PDGFB +286A>G, PDGFB +1135A>C and HER2 Ile165Val SNPs with GBC. Protein-protein interaction showed significant association of PDGFB and HER2 with the epidermal growth factor receptor signaling pathway.

  3. The carboxy-terminal domains of erbB-2 and epidermal growth factor receptor exert different regulatory effects on intrinsic receptor tyrosine kinase function and transforming activity.

    PubMed Central

    Di Fiore, P P; Segatto, O; Lonardo, F; Fazioli, F; Pierce, J H; Aaronson, S A

    1990-01-01

    The erbB-2 gene product, gp185erbB-2, displays a potent transforming effect when overexpressed in NIH 3T3 cells. In addition, it possesses constitutively high levels of tyrosine kinase activity in the absence of exogenously added ligand. In this study, we demonstrate that its carboxy-terminal domain exerts an enhancing effect on erbB-2 kinase and transforming activities. A premature termination mutant of the erbB-2 protein, lacking the entire carboxy-terminal domain (erbB-2 delta 1050), showed a 40-fold reduction in transforming ability and a lowered in vivo kinase activity for intracellular substrates. When the carboxy-terminal domain of erbB-2 was substituted for its analogous region in the epidermal growth factor receptor (EGFR) (EGFR/erbB-2COOH chimera), it conferred erbB-2-like properties to the EGFR, including transforming ability in the absence of epidermal growth factor, elevated constitutive autokinase activity in vivo and in vitro, and constitutive ability to phosphorylate phospholipase C-gamma. Conversely, a chimeric erbB-2 molecule bearing an EGFR carboxy-terminal domain (erbB-2/EGFRCOOH chimera) showed reduced transforming and kinase activity with respect to the wild-type erbB-2 and was only slightly more efficient than the erbB-2 delta 1050 mutant. Thus, we conclude that the carboxy-terminal domains of erbB-2 and EGFR exert different regulatory effects on receptor kinase function and biological activity. The up regulation of gp185erbB-2 enzymatic activity exerted by its carboxy-terminal domain can explain, at least in part, its constitutive level of kinase activity. Images PMID:2188097

  4. Tannic acid, a potent inhibitor of epidermal growth factor receptor tyrosine kinase.

    PubMed

    Yang, Er Bin; Wei, Liu; Zhang, Kai; Chen, Yu Zong; Chen, Wei Ning

    2006-03-01

    Increasing evidence supports the hypothesis that tannic acid, a plant polyphenol, exerts anticarcinogenic activity in chemically induced cancers. In the present study, tannic acid was found to strongly inhibit tyrosine kinase activity of epidermal growth factor receptor (EGFr) in vitro (IC50 = 323 nM). In contrast, the inhibition by tannic acid of p60(c-src) tyrosine kinase (IC50 = 14 microM) and insulin receptor tyrosine kinase (IC50 = 5 microM) was much weaker. The inhibition of EGFr tyrosine kinase by tannic acid was competitive with respect to ATP and non-competitive with respect to peptide substrate. In cultured cells, growth factor-induced tyrosine phosphorylation of growth factor receptors, including EGFr, platelet-derived growth factor receptor, and basic fibroblast growth factor receptor, was inhibited by tannic acid. No inhibition of insulin-induced tyrosine phosphorylation of insulin receptor and insulin-receptor substrate-1 was observed. EGF-stimulated growth of HepG2 cells was inhibited in the presence of tannic acid. The inhibition of serine/threonine-specific protein kinases, including cAMP-dependent protein kinase, protein kinase C and mitogen-activated protein kinase, by tannic acid was only detected at relatively high concentration, IC50 being 3, 325 and 142 microM respectively. The molecular modeling study suggested that tannic acid could be docked into the ATP binding pockets of either EGFr or insulin receptor. These results demonstrate that tannic acid is an in vitro potent inhibitor of EGFr tyrosine kinase.

  5. Differential expression of epidermal growth factor-related proteins in human colorectal tumors.

    PubMed Central

    Ciardiello, F; Kim, N; Saeki, T; Dono, R; Persico, M G; Plowman, G D; Garrigues, J; Radke, S; Todaro, G J; Salomon, D S

    1991-01-01

    Amphiregulin (AR) and cripto are proteins that are structurally related to epidermal growth factor (EGF) and transforming growth factor alpha (TGF-alpha). AR is also functionally related to this family of growth regulatory molecules and is able to bind and activate the 170-kDa EGF receptor (EGFR). Human EGFR-3 (HER3)/ERBB3 is a recently identified protein related to the EGFR that is widely expressed in breast carcinomas and is a candidate receptor for EGF-like growth factors. Differential expression of these putative ligands and receptors in transformed cells suggests that they may function in an autocrine manner to regulate tumor cell growth. Specific mRNA transcripts for TGF-alpha [4.8 kilobases (kb)], AR (1.4 kb), cripto (2.2 kb), and HER3 (6.2 kb) were expressed in a majority of human colon cancer cell lines. HER3 mRNA was detected in 55% of primary or metastatic human colorectal carcinomas but in only 22% of normal colon mucosa and 32% of normal liver samples. In contrast, cripto and AR mRNA were expressed in 60-70% of primary or metastatic human colorectal cancers but in only 2-7% of normal human colonic mucosa. Immunostaining also detected AR protein in primary and metastatic colorectal tumors but not in normal colon or uninvolved liver. These findings suggest that cripto and AR may be useful markers to discriminate between normal and malignant colonic epithelium and may provide a selective growth advantage for colorectal carcinomas. Images PMID:1715580

  6. Ductal morphogenesis in the mouse mammary gland: evidence supporting a role for epidermal growth factor.

    PubMed

    Coleman, S; Silberstein, G B; Daniel, C W

    1988-06-01

    Epidermal growth factor (EGF) is a potent mitogen for a variety of cells in vitro, but studies on its effects in vivo and its possible role as a natural growth regulator are few. Using slow-release plastic implants, capable of delivering EGF to small regions of the gland over a period of several days, we have shown that EGF reinitiated ductal growth and morphogenesis in growth-static glands of ovariectomized mice. The effects of implanted EGF were confined to the zone around the implant and were time and dose dependent. Unimplanted glands in the same animal were unaffected. Local effects included (1) the formation of new ductal growth points (end buds), (2) the restoration of normal end bud histomorphology and the reappearance of a stem (cap) cell layer, (3) the reinitiation of epithelial DNA synthesis, and (4) an increase in ductal diameter. No lobulo-alveolar or hyperplastic growth was seen. Competitive binding assays and autoradiography were used to characterize EGF receptor activity in growing and static glands. High and low affinity receptors were demonstrated in each tissue, while 125I-EGF autoradiography revealed differential, specific binding of the ligand to certain epithelial and stromal elements. In the epithelium, label was concentrated in the cap cells of the end buds and in myoepithelial cells of the mammary ducts. Stromal cell label was heaviest adjacent to the epithelium in the end bud flank and subtending ducts, suggesting the induction of stromal EGF receptors by mammary epithelium. Because exogenous EGF is both a mitogenic and morphogenetic factor in this tissue and can serve as a locally acting substitute for known systemic mammogens such as estrogen and prolactin, it must be considered a strong candidate for a naturally occurring mammary tissue mitogen.

  7. Chronic systemic treatment with epidermal growth factor in pigs causes pronounced urothelial growth with accumulation of glycoconjugates.

    PubMed Central

    Vinter-Jensen, L.; Juhl, C. O.; Djurhuus, J. C.; Poulsen, S. S.; Dajani, E. Z.; Brown, K. D.; Orntoft, T. F.; Teglbjaerg, P. S.; Nexø, E.

    1995-01-01

    Epidermal growth factor (EGF) is present in large amounts in the urine, but the effects of systemically administered EGF on the urinary tract have not been described previously. In the present paper, we describe a potent growth induction of EGF on the urinary tract. Goettingen minipigs were treated with solvent (n = 5), EGF 30 micrograms/kg/day (n = 6) for 4 weeks, or EGF 30 micrograms/kg/day for 5 weeks followed by 3 weeks of recovery (n = 5). The ureters and bladders were examined by routine histology and electron microscopy and were immunostained for proliferating cell nuclear antigen. Four weeks of EGF treatment increased the median cross sectional area of the ureter fourfold with growth of all wall layers. The urothelium was widened from 5 cell layers in the controls to 10 in the EGF-treated animals. Proliferating cell nuclear antigen immunostaining revealed an increased mitotic activity in the basal zone of the urothelium. In the luminal zone, glycoconjugates accumulated in goblet cells, in cells with intracytoplasmic lumina, and beneath the luminal cell membrane in the umbrella cells. Our studies present a new experimental approach to growth induction of the urinary tract. The findings implicate the EGF system in regulating urothelial growth and glycoconjugate biosynthesis. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7485396

  8. Epidermal growth factor acts as a corticotropin-releasing factor in chronically catheterized fetal lambs.

    PubMed Central

    Polk, D H; Ervin, M G; Padbury, J F; Lam, R W; Reviczky, A L; Fisher, D A

    1987-01-01

    Epidermal growth factor (EGF) has been reported to stimulate adrenocorticotropin hormone (ACTH), growth hormone and prolactin secretion from pituitary tissue in vitro, and in large doses evokes ACTH secretion in adult sheep in vivo. In order to assess a possible role for EGF in the pituitary hyperfunction characteristic of the in utero fetus, we measured changes in plasma immunoreactive ACTH concentrations after acute administration of saline, purified mouse EGF or synthetic ovine corticotropin releasing factor (CRF) to chronically catheterized fetal sheep. Both CRF and EGF were associated with increases in plasma immunoreactive ACTH concentrations. Peak values 60 min after 10-micrograms injections of either EGF or CRF increased from baseline ACTH values of 61 +/- 11 pg/ml to 191 +/- 37 and 178 +/- 25 pg/ml, respectively. Dose-response studies indicate that at low doses (less than 20 micrograms) EGF is as potent a stimulus for ACTH release as CRF. EGF infusion was not associated with detectable changes in circulating CRF, catecholamines, arginine vasopressin levels, or plasma growth hormone concentrations. We speculate that EGF may be important in the regulation of pituitary function in the developing mammalian fetus. PMID:3029180

  9. Epidermal growth factor controls smooth muscle alpha-isoactin expression in BC3H1 cells

    PubMed Central

    1988-01-01

    We have examined the effects of epidermal growth factor (EGF), platelet- derived growth factor, and insulin on the differentiation of a mouse vascular smooth muscle-like cell line, the BC3H1 cells. On the basis of cell morphology and smooth muscle alpha-isoactin synthesis, we demonstrate that EGF at physiological concentrations prevents the differentiation of these cells, whereas platelet-derived growth factor has no apparent effect. The induction of alpha-isoactin synthesis by serum deprivation is inhibited by EGF in a dose-dependent manner with a half-maximal effect at 3-5 ng/ml and a maximal inhibition at approximately 30 ng/ml. Northern analysis also shows that EGF blocks the accumulation of alpha-isoactin mRNA normally observed during cell differentiation. Addition of EGF to differentiated cells results in a repression of alpha-isoactin synthesis, a stimulation of beta- and gamma-isoactin synthesis, and the stabilization of the nonmuscle isoactins. The synthesis of creatine phosphokinase, a muscle-specific noncontractile protein, is also regulated by EGF in a similar fashion. Modulation by EGF of alpha-isoactin expression is not affected by aphidicolin and is therefore independent of its mitogenic effect on these cells. Insulin is not required for observation of the EGF- dependent effects but instead seems to promote differentiation. Our results show that EGF can replace serum in controlling the differentiation of BC3H1 cells. PMID:3279054

  10. Death of serum-free mouse embryo cells caused by epidermal growth factor deprivation

    PubMed Central

    1991-01-01

    Serum-free mouse embryo (SFME) cells, derived in medium in which serum is replaced with growth factors and other supplements, are proastroblasts that are acutely dependent on epidermal growth factor (EGF) for survival. Ultrastructurally, an early change found in SFME cells deprived of EGF was a loss of polysomes which sedimentation analysis confirmed to be a shift from polysomes to monosomes. The ribosomal shift was not accompanied by decreased steady-state level of cytoplasmic actin mRNA examined as an indicator of cellular mRNA level. With time the cells became small and severely degenerate and exhibited nuclear morphology characteristic of apoptosis. Genomic DNA isolated from cultures undergoing EGF deprivation-dependent cell death exhibited a pattern of fragmentation resulting from endonuclease activation characteristic of cells undergoing apoptosis or programmed cell death. Flow cytometric analysis indicated that cultures in the absence of EGF contained almost exclusively G1-phase cells. Some of the phenomena associated with EGF deprivation of SFME cells are similar to those observed upon NGF deprivation of nerve cells in culture, suggesting that these neuroectodermal-derived cell types share common mechanisms of proliferative control involving peptide growth factor-dependent survival. PMID:2016341

  11. Characterization of a comparative model of the extracellular domain of the epidermal growth factor receptor.

    PubMed

    Jorissen, R N; Epa, V C; Treutlein, H R; Garrett, T P; Ward, C W; Burgess, A W

    2000-02-01

    The Epidermal Growth Factor (EGF) receptor is a tyrosine kinase that mediates the biological effects of ligands such as EGF and transforming growth factor alpha. An understanding of the molecular basis of its action has been hindered by a lack of structural and mutational data on the receptor. We have constructed comparative models of the four extracellular domains of the EGF receptor that are based on the structure of the first three domains of the insulin-like growth factor-1 (IGF-1) receptor. The first and third domains of the EGF receptor, L1 and L2, are right-handed beta helices. The second and fourth domains of the EGF receptor, S1 and S2, consist of the modules held together by disulfide bonds, which, except for the first module of the S1 domain, form rod-like structures. The arrangement of the L1 and S1 domains of the model are similar to that of the first two domains of the IGF-1 receptor, whereas that of the L2 and S2 domains appear to be significantly different. Using the EGF receptor model and limited information from the literature, we have proposed a number of regions that may be involved in the functioning of the receptor. In particular, the faces containing the large beta sheets in the L1 and L2 domains have been suggested to be involved with ligand binding of EGF to its receptor.

  12. Characterization of a comparative model of the extracellular domain of the epidermal growth factor receptor.

    PubMed Central

    Jorissen, R. N.; Epa, V. C.; Treutlein, H. R.; Garrett, T. P.; Ward, C. W.; Burgess, A. W.

    2000-01-01

    The Epidermal Growth Factor (EGF) receptor is a tyrosine kinase that mediates the biological effects of ligands such as EGF and transforming growth factor alpha. An understanding of the molecular basis of its action has been hindered by a lack of structural and mutational data on the receptor. We have constructed comparative models of the four extracellular domains of the EGF receptor that are based on the structure of the first three domains of the insulin-like growth factor-1 (IGF-1) receptor. The first and third domains of the EGF receptor, L1 and L2, are right-handed beta helices. The second and fourth domains of the EGF receptor, S1 and S2, consist of the modules held together by disulfide bonds, which, except for the first module of the S1 domain, form rod-like structures. The arrangement of the L1 and S1 domains of the model are similar to that of the first two domains of the IGF-1 receptor, whereas that of the L2 and S2 domains appear to be significantly different. Using the EGF receptor model and limited information from the literature, we have proposed a number of regions that may be involved in the functioning of the receptor. In particular, the faces containing the large beta sheets in the L1 and L2 domains have been suggested to be involved with ligand binding of EGF to its receptor. PMID:10716183

  13. Intracellular processing of epidermal growth factor by early wound healing cells

    SciTech Connect

    Seyfer, A.E.; Nassaux, P.; Emory, R.; Wray, H.L.; Schaudies, R.P. )

    1990-01-01

    Epidermal growth factor (EGF) is a potent 53-amino-acid residue polypeptide that has been implicated in normal wound healing. Although past studies have shown that locally applied EGF accelerates wound healing, these studies have not examined intracellular events related to the processing of the growth factor. The objective of this study was to characterize both initial and later postbinding intracellular processing of EGF by a responsive cell line (osteoblasts) that is important in the healing of wounds. Cloned mouse calvarial osteoblasts (MC-3TC-E1) were incubated with radiolabeled EGF, with and without preincubation with nonlabeled EGF, for specific time intervals. Cell-associated radioactivity was characterized by nondenaturing polyacrylamide gel electrophoresis. Results showed that EGF is processed as three distinct species and that the relative proportions of these species are altered at later time periods when compared with initial processing. The patterns, similar to those reported for human fibroblasts, indicate a possible common pathway for the mitogenic signal in cells associated with the early events of wound healing. In addition, these data represent the first direct evidence that preexposure of cells to nonlabeled EGF alters the processing of radiolabeled EGF. This is significant, because cells must be exposed to EGF for 5 to 8 hours to elicit a growth response. Such data may help to explain the lag phase of wound healing.

  14. Thyroid hormone regulation of epidermal growth factor receptor levels in mouse mammary glands

    SciTech Connect

    Vonderhaar, B.K.; Tang, E.; Lyster, R.R.; Nascimento, M.C.

    1986-08-01

    The specific binding of iodinated epidermal growth factor ((/sup 125/I)iodo-EGF) to membranes prepared from the mammary glands and spontaneous breast tumors of euthyroid and hypothyroid mice was measured in order to determine whether thyroid hormones regulate the EGF receptor levels in vivo. Membranes from hypothyroid mammary glands of mice at various developmental ages bound 50-65% less EGF than those of age-matched euthyroid controls. Treatment of hypothyroid mice with L-T4 before killing restored binding to the euthyroid control level. Spontaneous breast tumors arising in hypothyroid mice also bound 30-40% less EGF than tumors from euthyroid animals even after in vitro desaturation of the membranes of endogenous growth factors with 3 M MgCl2 treatment. The decrease in binding in hypothyroid membranes was due to a decrease in the number of binding sites, not to a change in affinity of the growth factor for its receptor, as determined by Scatchard analysis of the binding data. Both euthyroid and hypothyroid membranes bound EGF primarily to a single class of high affinity sites (dissociation constant (Kd) = 0.7-1.8 nM). Euthyroid membranes bound 28.4 +/- (SE) 0.6 fmol/mg protein, whereas hypothyroid membranes bound 15.5 +/- 1.0 fmol/mg protein. These data indicate that EGF receptor levels in normal mammary glands and spontaneous breast tumors in mice are subject to regulation by thyroid status.

  15. Nimotuzumab enhances temozolomide-induced growth suppression of glioma cells expressing mutant EGFR in vivo.

    PubMed

    Nitta, Yusuke; Shimizu, Saki; Shishido-Hara, Yukiko; Suzuki, Kaori; Shiokawa, Yoshiaki; Nagane, Motoo

    2016-03-01

    A mutant form of epidermal growth factor receptor (EGFR), EGFRvIII, is common in glioblastoma (GBM) and confers enhanced tumorigenic activity and drug resistance. Nimotuzumab, an anti-EGFR antibody, has shown preclinical and clinical activity to GBM, but its specific activity against EGFRvIII has not been fully investigated. Human glioma U87MG or LNZ308 cells overexpressing either wild-type (wt) EGFR or EGFRvIII were treated with nimotuzumab, temozolomide, or both. Expression and phosphorylation status of molecules were determined by Western blot analysis. Methylation status of promoter region of O(6) -methylguanine-DNA methyltransferase (MGMT) was detected by methylation-specific PCR. Antitumor activity was tested using nude mice bearing either subcutaneous or intracerebral xenografts along with analyses of EGFR phosphorylation status, proliferation, apoptosis, and vessel density. Nimotuzumab treatment resulted in reduction of EGFRvIII tyrosine phosphorylation with a decrease in Akt phosphorylation that was greater than that of wtEGFR. Correspondingly, antitumor effects, growth suppression and survival elongation, were more significant in mice bearing either subcutaneous or intracerebral tumor expressing EGFRvIII than in those expressing wtEGFR. These effects were markedly increased when temozolomide was combined with nimotuzumab. The post-treatment recurrent brain tumors exhibited a decrease in expression of the mismatch repair (MMR) proteins, MSH6 and MLH1, but their methylated MGMT status did not changed. Nimotuzumab has in vivo antitumor activity against GBM, especially those expressing EGFRvIII, when combined with temozolomide. This could provide a basis for preselection of patients with GBM by EGFR status who might benefit from the nimotuzumab and temozolomide combination therapy.

  16. Growth and development of maize that contains mutant tubulin genes

    SciTech Connect

    Susan M. Wick

    2004-07-23

    Mutant maize plants containing a Mu transposon disrupting one of the five beta tubulin genes of interest were followed for several generations and hybridized with each other to produce plants containing disruptions in both copies of a single gene or disruption of more than one tubulin gene. Seedlings of some of these plants were grown under chilling conditions for a few weeks. After DOE funding ended, plants have been assessed to see whether mutant are more or less tolerant to chilling. Other mutant plants will be assessed for their male and female fertility relative to non-mutant siblings or other close relatives.

  17. The Mediator Kinase Module Restrains Epidermal Growth Factor Receptor Signaling and Represses Vulval Cell Fate Specification in Caenorhabditis elegans

    PubMed Central

    Grants, Jennifer M.; Ying, Lisa T. L.; Yoda, Akinori; You, Charlotte C.; Okano, Hideyuki; Sawa, Hitoshi; Taubert, Stefan

    2016-01-01

    Cell signaling pathways that control proliferation and determine cell fates are tightly regulated to prevent developmental anomalies and cancer. Transcription factors and coregulators are important effectors of signaling pathway output, as they regulate downstream gene programs. In Caenorhabditis elegans, several subunits of the Mediator transcriptional coregulator complex promote or inhibit vulva development, but pertinent mechanisms are poorly defined. Here, we show that Mediator’s dissociable cyclin dependent kinase 8 (CDK8) module (CKM), consisting of cdk-8, cic-1/Cyclin C, mdt-12/dpy-22, and mdt-13/let-19, is required to inhibit ectopic vulval cell fates downstream of the epidermal growth factor receptor (EGFR)-Ras-extracellular signal-regulated kinase (ERK) pathway. cdk-8 inhibits ectopic vulva formation by acting downstream of mpk-1/ERK, cell autonomously in vulval cells, and in a kinase-dependent manner. We also provide evidence that the CKM acts as a corepressor for the Ets-family transcription factor LIN-1, as cdk-8 promotes transcriptional repression by LIN-1. In addition, we find that CKM mutation alters Mediator subunit requirements in vulva development: the mdt-23/sur-2 subunit, which is required for vulva development in wild-type worms, is dispensable for ectopic vulva formation in CKM mutants, which instead display hallmarks of unrestrained Mediator tail module activity. We propose a model whereby the CKM controls EGFR-Ras-ERK transcriptional output by corepressing LIN-1 and by fine tuning Mediator specificity, thus balancing transcriptional repression vs. activation in a critical developmental signaling pathway. Collectively, these data offer an explanation for CKM repression of EGFR signaling output and ectopic vulva formation and provide the first evidence of Mediator CKM-tail module subunit crosstalk in animals. PMID:26715664

  18. Protein kinase C and epidermal growth factor stimulation of Raf1 potentiates adenylyl cyclase type 6 activation in intact cells.

    PubMed

    Beazely, Michael A; Alan, Jamie K; Watts, Val J

    2005-01-01

    Adenylyl cyclase type 6 (AC6) activity is inhibited by protein kinase C (PKC) in vitro; however, in intact cells, PKC activation does not inhibit the activity of transiently expressed AC6. To investigate the effects of PKC activation on AC6 activity in intact cells, we constructed human embryonic kidney (HEK) 293 cells that stably express wild-type AC6 (AC6-WT) or an AC6 mutant lacking a PKC and cyclic AMP-dependent protein kinase (PKA) phosphorylation site, Ser674 (AC6-S674A). In contrast to in vitro observations, we observed a PKC-mediated enhancement of forskolin- and isoproterenol-stimulated cyclic AMP accumulation in HEK-AC6 cells. Phorbol 12-myristate 13-acetate also potentiated cyclic AMP accumulation in cells expressing endogenous AC6, including Chinese hamster ovary cells and differentiated Cath.a differentiated cells. In HEK-AC6-S674A cells, the potentiation of AC6 stimulation was significantly greater than in cells expressing AC6-WT. The positive effect of PKC activation on AC6 activity seemed to involve Raf1 kinase because the Raf1 inhibitor 3-(3,5-dibromo-4-hydroxybenzylidene-5-iodo-1,3-dihydro-indol-2-one (GW5074) inhibited the PKC potentiation of AC6 activity. Furthermore, the forskolin-stimulated activity of a recombinant AC6 in which the putative Raf1 regulatory sites have been eliminated was not potentiated by activation of PKC. The ability of Raf1 to regulate AC6 may involve a direct interaction because AC6 and a constitutively active Raf1 construct were coimmunoprecipitated. In addition, we report that epidermal growth factor receptor activation also enhances AC6 signaling in a Raf1-dependent manner. These data suggest that Raf1 potentiates drug-stimulated cyclic AMP accumulation in cells expressing AC6 after activation of multiple signaling pathways.

  19. The Mediator Kinase Module Restrains Epidermal Growth Factor Receptor Signaling and Represses Vulval Cell Fate Specification in Caenorhabditis elegans.

    PubMed

    Grants, Jennifer M; Ying, Lisa T L; Yoda, Akinori; You, Charlotte C; Okano, Hideyuki; Sawa, Hitoshi; Taubert, Stefan

    2016-02-01

    Cell signaling pathways that control proliferation and determine cell fates are tightly regulated to prevent developmental anomalies and cancer. Transcription factors and coregulators are important effectors of signaling pathway output, as they regulate downstream gene programs. In Caenorhabditis elegans, several subunits of the Mediator transcriptional coregulator complex promote or inhibit vulva development, but pertinent mechanisms are poorly defined. Here, we show that Mediator's dissociable cyclin dependent kinase 8 (CDK8) module (CKM), consisting of cdk-8, cic-1/Cyclin C, mdt-12/dpy-22, and mdt-13/let-19, is required to inhibit ectopic vulval cell fates downstream of the epidermal growth factor receptor (EGFR)-Ras-extracellular signal-regulated kinase (ERK) pathway. cdk-8 inhibits ectopic vulva formation by acting downstream of mpk-1/ERK, cell autonomously in vulval cells, and in a kinase-dependent manner. We also provide evidence that the CKM acts as a corepressor for the Ets-family transcription factor LIN-1, as cdk-8 promotes transcriptional repression by LIN-1. In addition, we find that CKM mutation alters Mediator subunit requirements in vulva development: the mdt-23/sur-2 subunit, which is required for vulva development in wild-type worms, is dispensable for ectopic vulva formation in CKM mutants, which instead display hallmarks of unrestrained Mediator tail module activity. We propose a model whereby the CKM controls EGFR-Ras-ERK transcriptional output by corepressing LIN-1 and by fine tuning Mediator specificity, thus balancing transcriptional repression vs. activation in a critical developmental signaling pathway. Collectively, these data offer an explanation for CKM repression of EGFR signaling output and ectopic vulva formation and provide the first evidence of Mediator CKM-tail module subunit crosstalk in animals.

  20. Expression and effects of epidermal growth factor on human periodontal ligament cells.

    PubMed

    Teramatsu, Yoko; Maeda, Hidefumi; Sugii, Hideki; Tomokiyo, Atsushi; Hamano, Sayuri; Wada, Naohisa; Yuda, Asuka; Yamamoto, Naohide; Koori, Katsuaki; Akamine, Akifumi

    2014-09-01

    Repair of damaged periodontal ligament (PDL) tissue is an essential challenge in tooth preservation. Various researchers have attempted to develop efficient therapies for healing and regenerating PDL tissue based on tissue engineering methods focused on targeting signaling molecules in PDL stem cells and other mesenchymal stem cells. In this context, we investigated the expression of epidermal growth factor (EGF) in normal and surgically wounded PDL tissues and its effect on chemotaxis and expression of osteoinductive and angiogenic factors in human PDL cells (HPDLCs). EGF as well as EGF receptor (EGFR) expression was observed in HPDLCs and entire PDL tissue. In a PDL tissue-injured model of rat, EGF and IL-1β were found to be upregulated in a perilesional pattern. Interleukin-1β induced EGF expression in HPDLCs but not EGFR. It also increased transforming growth factor-α (TGF-α) and heparin-binding EGF-like growth factor (HB-EGF) expression. Transwell assays demonstrated the chemotactic activity of EGF on HPDLCs. In addition, EGF treatment significantly induced secretion of bone morphogenetic protein 2 and vascular endothelial growth factor, and gene expression of interleukin-8 (IL-8), and early growth response-1 and -2 (EGR-1/2). Human umbilical vein endothelial cells developed well-formed tube networks when cultured with the supernatant of EGF-treated HPDLCs. These results indicated that EGF upregulated under inflammatory conditions plays roles in the repair of wounded PDL tissue, suggesting its function as a prospective agent to allow the healing and regeneration of this tissue.

  1. Nanoconjugation prolongs endosomal signaling of the epidermal growth factor receptor and enhances apoptosis

    NASA Astrophysics Data System (ADS)

    Wu, L.; Xu, F.; Reinhard, B. M.

    2016-07-01

    It is becoming increasingly clear that intracellular signaling can be subject to strict spatial control. As the covalent attachment of a signaling ligand to a nanoparticle (NP) impacts ligand-receptor binding, uptake, and trafficking, nanoconjugation provides new opportunities for manipulating intracellular signaling in a controlled fashion. To establish the effect of nanoconjugation on epidermal growth factor (EGF) mediated signaling, we investigate here the intracellular fate of nanoconjugated EGF (NP-EGF) and its bound receptor (EGFR) by quantitative correlated darkfield/fluorescence microscopy and density-based endosomal fractionation. We demonstrate that nanoconjugation prolongs the dwell time of phosphorylated receptors in the early endosomes and that the retention of activated EGFR in the early endosomes is accompanied by an EGF mediated apoptosis at effective concentrations that do not induce apoptosis in the case of free EGF. Overall, these findings indicate nanoconjugation as a rational strategy for modifying signaling that acts by modulating the temporo-spatial distribution of the activated EGF-EGFR ligand-receptor complex.It is becoming increasingly clear that intracellular signaling can be subject to strict spatial control. As the covalent attachment of a signaling ligand to a nanoparticle (NP) impacts ligand-receptor binding, uptake, and trafficking, nanoconjugation provides new opportunities for manipulating intracellular signaling in a controlled fashion. To establish the effect of nanoconjugation on epidermal growth factor (EGF) mediated signaling, we investigate here the intracellular fate of nanoconjugated EGF (NP-EGF) and its bound receptor (EGFR) by quantitative correlated darkfield/fluorescence microscopy and density-based endosomal fractionation. We demonstrate that nanoconjugation prolongs the dwell time of phosphorylated receptors in the early endosomes and that the retention of activated EGFR in the early endosomes is accompanied by an EGF

  2. BMP-7 attenuates liver fibrosis via regulation of epidermal growth factor receptor.

    PubMed

    Wang, Li-Ping; Dong, Jin-Zhong; Xiong, Li-Jun; Shi, Ke-Qing; Zou, Zhuo-Lin; Zhang, Sai-Nan; Cao, Su-Ting; Lin, Zhuo; Chen, Yong-Ping

    2014-01-01

    The aim of this study was to elucidate the effect of bone morphogenetic protein-7 (BMP-7) on liver fibrosis induced by carbon tetrachloride (CCl4) in vivo and on the hepatic stellate cells (HSC) activation in vitro. In vivo, thirty male ICR mice were randomly allocated to three groups, the control group (n = 6), the CCl4 group (n = 18) and the BMP-7+CCl4 group (n = 6). The model of liver fibrosis was induced by intraperitoneal injection with CCl4 three times per week lasting for 12 weeks in CCl4 group and the BMP-7+CCl4 group. After 8 weeks injection with CCl4, mice were intraperitoneal injected with human recombinant BMP-7 in BMP-7+CCl4 group. Meanwhile, mice in the CCl4 group were only intraperitoneal injection with equal amount of saline. The degree of liver fibrosis was assessed by HE and Masson's staining. PCR and western blot were used to detect mRNA and protein levels. In BMP-7+CCl4 group, serum levels of alanine aminotransferase (ALT) and aminotransferase (AST) were decreased and serum albumin (Alb) was increased. Meanwhile, the expressions of transforming growth factor-β1 (TGF-β1) and α-smooth muscle actin (α-SMA) were down-regulated by BMP-7 intervention as compared to the CCl4 group (P < 0.05). Furthermore, BMP-7 also suppressed the expression of epidermal growth factor receptor (EGFR) and phosphorylated-epidermal growth factor receptor (pEGFR). HE and Masson stain showed that liver damage was alleviated in BMP-7+CCl4 group. In vitro study, expression of EGFR, TGF-β1 and α-SMA were down regulated by BMP-7 dose-dependently, indicating it might effect on suppression of HSC activation. Therefore, our data indicate BMP-7 was capable of inhibiting liver fibrosis and suppressing HSCs activation, and these effects might rely on its crosstalk with EGFR and TGF-β1. We suggest that BMP-7 may be a potential reagentfor the prevention and treatment of liver fibrosis.

  3. Ferritin Mutants of Escherichia coli Are Iron Deficient and Growth Impaired, and fur Mutants are Iron Deficient

    PubMed Central

    Abdul-Tehrani, Hossein; Hudson, Aaron J.; Chang, Yung-Sheng; Timms, Andrew R.; Hawkins, Chris; Williams, John M.; Harrison, Pauline M.; Guest, John R.; Andrews, Simon C.

    1999-01-01

    Escherichia coli contains at least two iron storage proteins, a ferritin (FtnA) and a bacterioferritin (Bfr). To investigate their specific functions, the corresponding genes (ftnA and bfr) were inactivated by replacing the chromosomal ftnA and bfr genes with disrupted derivatives containing antibiotic resistance cassettes in place of internal segments of the corresponding coding regions. Single mutants (ftnA::spc and bfr::kan) and a double mutant (ftnA::spc bfr::kan) were generated and confirmed by Western and Southern blot analyses. The iron contents of the parental strain (W3110) and the bfr mutant increased by 1.5- to 2-fold during the transition from logarithmic to stationary phase in iron-rich media, whereas the iron contents of the ftnA and ftnA bfr mutants remained unchanged. The ftnA and ftnA bfr mutants were growth impaired in iron-deficient media, but this was apparent only after the mutant and parental strains had been precultured in iron-rich media. Surprisingly, ferric iron uptake regulation (fur) mutants also had very low iron contents (2.5-fold less iron than Fur+ strains) despite constitutive expression of the iron acquisition systems. The iron deficiencies of the ftnA and fur mutants were confirmed by Mössbauer spectroscopy, which further showed that the low iron contents of ftnA mutants are due to a lack of magnetically ordered ferric iron clusters likely to correspond to FtnA iron cores. In combination with the fur mutation, ftnA and bfr mutations produced an enhanced sensitivity to hydroperoxides, presumably due to an increase in production of “reactive ferrous iron.” It is concluded that FtnA acts as an iron store accommodating up to 50% of the cellular iron during postexponential growth in iron-rich media and providing a source of iron that partially compensates for iron deficiency during iron-restricted growth. In addition to repressing the iron acquisition systems, Fur appears to regulate the demand for iron, probably by controlling

  4. Prolactin decreases epidermal growth factor receptor kinase activity via a phosphorylation-dependent mechanism.

    PubMed

    Quijano, V J; Sheffield, L G

    1998-01-09

    Previously, we have shown that prolactin inhibits epidermal growth factor (EGF)-induced mitogenesis in mouse mammary epithelial cells without altering the response to other growth promoting agents. This effect has been associated with reduced EGF-induced EGF receptor (EGFR) tyrosine phosphorylation, Grb-2 association, and Ras activation. Our current hypothesis is that prolactin induces an alteration in EGFR kinase activity via a phosphorylation-dependent mechanism. To test this hypothesis, we treated normal murine mammary gland cells with or without 100 ng/ml prolactin. EGFR isolated by wheat germ agglutinin affinity chromatography from nontreated cells exhibited substantial ligand-induced phosphorylation, and EGFR isolated from prolactin-treated cells displayed minimal EGF-induced EGFR phosphorylation, as well as decreased kinase activity toward exogenous substrates. The observed decrease in ligand-induced EGFR phosphorylation could not be attributed to either differential amounts of EGFR, decreased EGF binding affinity, or the presence of a phosphotyrosine phosphatase or ATPase. EGFR isolated from prolactin-treated cells exhibited increased phosphorylation on threonine. Removal of this phosphorylation with alkaline phosphatase restored EGFR kinase activity to levels observed in nontreated cells. Therefore, these results suggest that prolactin antagonizes EGF signaling by increasing EGFR threonine phosphorylation and decreasing EGF-induced EGFR tyrosine phosphorylation.

  5. Epidermal growth factor receptors on PC12 cells: alteration of binding properties by lectins

    SciTech Connect

    Vale, R.D.; Shooter, E.M.

    1983-01-01

    The PC12 cell line displays cell surface receptors for both nerve growth factor (NGF) and epidermal growth factor (EGF). It has been previously shown that the lectin wheat germ agglutinin (WGA) alters the properties of NGF receptors on these cells. We now report that preincubations with either WGA or concanavalin A (Con A) decrease the binding of /sup 125/I-EGF to PC12 cells by greater than 50%. The inhibition of binding occurred at 37 degrees C and 4 degrees C and could be blocked or reversed by the addition of sugars which bind specifically to WGA or Con A. Scatchard analysis revealed that these lectins decreased binding primarily by lowering the affinity of the receptor and to a lesser extent by decreasing receptor number. Succinylation of Con A (sCon A) produced a derivative that was less effective than the native lectin in decreasing EGF binding; however, addition of an antibody against Con A restored the ability of sCon A to decrease binding. Similar to results obtained with /sup 125/I-NGF binding, WGA but not Con A was found to increase, by severalfold, the proportion of /sup 125/I-EGF binding that is resistant to solubilization by Triton X-100 detergent. A potential association of the EGF receptor with cytoskeletal elements is discussed which could account for such results.

  6. High Efficient Expression, Purification, and Functional Characterization of Native Human Epidermal Growth Factor in Escherichia coli.

    PubMed

    Ma, Yi; Yu, Jieying; Lin, Jinglian; Wu, Shaomin; Li, Shan; Wang, Jufang

    2016-01-01

    Human epidermal growth factor (hEGF) is a small, mitotic growth polypeptide that promotes the proliferation of various cells and is widely applied in clinical practices. However, high efficient expression of native hEGF in Escherichia coli has not been successful, since three disulfide bonds in monomer hEGF made it unable to fold into correct 3D structure using in vivo system. To tackle this problem, we fused Mxe GyrA intein (Mxe) at the C-terminal of hEGF followed by small ubiquitin-related modifier (SUMO) and 10x His-tag to construct a chimeric protein hEGF-Mxe-SUMO-H10. The fusion protein was highly expressed at the concentration of 281 mg/L and up to 59.5% of the total cellular soluble proteins. The fusion protein was purified by affinity chromatography and 29.4 mg/L of native hEGF can be released by thiol induced N-terminal cleavage without any proteases. The mitotic activity in Balb/c 3T3 cells is proliferated by commercial and recombinant hEGF measured with methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay which indicated that recombinant hEGF protein stimulates the cell proliferation similar to commercial protein. This study significantly improved the yield and reduced the cost of hEGF in the recombinant E. coli system and could be a better strategy to produce native hEGF for pharmaceutical development.

  7. Taurine and Epidermal Growth Factor Belong to the Signature of First-Episode Psychosis

    PubMed Central

    Koido, Kati; Innos, Jürgen; Haring, Liina; Zilmer, Mihkel; Ottas, Aigar; Vasar, Eero

    2016-01-01

    This study evaluated the levels of two amino acid derivatives taurine and spermine in first-episode psychosis (FEP) patients and their response to antipsychotic treatment. The levels of taurine and spermine were significantly up-regulated in antipsychotic-naïve FEP patients compared to control subjects (CS). Treatment of FEP patients with antipsychotic drugs significantly reduced the positive symptoms of schizophrenia. This positive effect was accompanied by a significant reduction of taurine and spermine to the levels measured in CS. General linear model was used to establish associations of taurine and spermine with the levels of cytokines and growth factors, measured in our previous experiments using the same study sample. There was a strong association between taurine and epidermal growth factor (EGF). Both biomarkers significantly correlated with the disease symptoms as well as with the effectiveness of antipsychotic treatment. Accordingly one can conclude that taurine and EGF belong to the signature of FEP. Most probably they reflect altered oxidative stress and corrupted function of N-methyl-D-aspartate (NMDA) receptors in FEP. PMID:27471446

  8. High Efficient Expression, Purification, and Functional Characterization of Native Human Epidermal Growth Factor in Escherichia coli

    PubMed Central

    Ma, Yi; Yu, Jieying; Lin, Jinglian; Wu, Shaomin

    2016-01-01

    Human epidermal growth factor (hEGF) is a small, mitotic growth polypeptide that promotes the proliferation of various cells and is widely applied in clinical practices. However, high efficient expression of native hEGF in Escherichia coli has not been successful, since three disulfide bonds in monomer hEGF made it unable to fold into correct 3D structure using in vivo system. To tackle this problem, we fused Mxe GyrA intein (Mxe) at the C-terminal of hEGF followed by small ubiquitin-related modifier (SUMO) and 10x His-tag to construct a chimeric protein hEGF-Mxe-SUMO-H10. The fusion protein was highly expressed at the concentration of 281 mg/L and up to 59.5% of the total cellular soluble proteins. The fusion protein was purified by affinity chromatography and 29.4 mg/L of native hEGF can be released by thiol induced N-terminal cleavage without any proteases. The mitotic activity in Balb/c 3T3 cells is proliferated by commercial and recombinant hEGF measured with methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay which indicated that recombinant hEGF protein stimulates the cell proliferation similar to commercial protein. This study significantly improved the yield and reduced the cost of hEGF in the recombinant E. coli system and could be a better strategy to produce native hEGF for pharmaceutical development. PMID:27766259

  9. Induction of pancreatic cancer cell migration by an autocrine epidermal growth factor receptor activation.

    PubMed

    Stock, Anna-Maria; Hahn, Stephan A; Troost, Gabriele; Niggemann, Bernd; Zänker, Kurt S; Entschladen, Frank

    2014-08-15

    Pancreatic cancer is characterized by aggressive local invasion and early metastasis formation. Active migration of the pancreatic cancer cells is essential for these processes. We have shown previously that the pancreatic cancer cells lines CFPAC1 and IMIM-PC2 show high migratory activity, and we have investigated herein the reason for this observation. Cell migration was assessed using a three-dimensional, collagen-based assay and computer-assisted cell tracking. The expression of receptor tyrosine kinases was determined by flow-cytometry and cytokine release was measured by an enzyme-linked immunoassay. Receptor function was blocked by antibodies or pharmacological enzyme inhibitors. Both cells lines express the epidermal growth factor receptor (EGFR) as well as its family-member ErbB2 and the platelet-derived growth factor receptor (PDGFR)α, whereas only weak expression was detected for ErbB3 and no expression of PDGFRβ. Pharmacological inhibition of the EGFR or ErbB2 significantly reduced the migratory activity in both cell lines, as did an anti-EGFR antibody. Interestingly, combination of the latter with an anti-PDGFR antibody led to an even more pronounced reduction. Both cell lines release detectable amounts of EGF. Thus, the high migratory activity of the investigated pancreatic cancer cell lines is due to autocrine EGFR activation and possibly of other receptor tyrosine kinases.

  10. Mass production of human epidermal growth factor using fed-batch cultures of recombinant Escherichia coli.

    PubMed

    Shimizu, N; Fukuzono, S; Harada, Y; Fujimori, K; Gotoh, K; Yamazaki, Y

    1991-06-05

    Fed-batch cultures of recombinant E. coli HB101 harboring expression plasmid pTRLBT1 or pTREBT1, with acetate concentration monitoring, are investigated to obtain high cell density and large amounts of human epidermal growth factor (hEGF). The expression plasmid pTRlBT1 contains a synthetic hEGF gene attached downstream of the N-terminal fragment of the trp L gene preceded by the trp promoter. The expression plasmid pTREBT1 contains the same coding sequence attached downstream of the N-terminal fragment of the trp E gene preceded by the trp promoter, trp L gene, and attenuator region. E. coli harboring pTREBT1 produces 0.56 mg/L hEGE and immediately degrades it. On the other hand E. coli harboring pTRLBT1 produces 6.8 mg/L hEGF and does not decompose it. Prominent inclusion bodies are observed in E. coli cells harboring pTRLBT1 using an election microscope. To Cultivate E. coli harboring pTRLBT1, a fed-batch culture system, divided into a cell growth step and an hEGF production step, is carried out. The cells grow smoothly without acetate-induced inhibition. Cell concentration and hEGF quantity reach the high values of 21 g/L and 60 mg/L, respectively.

  11. Epidermal growth factor increases coactivation of the androgen receptor in recurrent prostate cancer.

    PubMed

    Gregory, Christopher W; Fei, Xiaoyin; Ponguta, Liliana A; He, Bin; Bill, Heather M; French, Frank S; Wilson, Elizabeth M

    2004-02-20

    Growth of normal and neoplastic prostate is mediated by the androgen receptor (AR), a ligand-dependent transcription factor activated by high affinity androgen binding. The AR is highly expressed in recurrent prostate cancer cells that proliferate despite reduced circulating androgen. In this report, we show that epidermal growth factor (EGF) increases androgen-dependent AR transactivation in the recurrent prostate cancer cell line CWR-R1 through a mechanism that involves a post-transcriptional increase in the p160 coactivator transcriptional intermediary factor 2/glucocorticoid receptor interacting protein 1 (TIF2/GRIP1). Site-specific mutagenesis and selective MAPK inhibitors linked the EGF-induced increase in AR transactivation to phosphorylation of TIF2/GRIP1. EGF signaling increased the coimmunoprecipitation of TIF2 and AR. AR transactivation and its stimulation by EGF were reduced by small interfering RNA inhibition of TIF2/GRIP1 expression. The data indicate that EGF signaling through MAPK increases TIF2/GRIP1 coactivation of AR transactivation in recurrent prostate cancer.

  12. Expression of epidermal growth factor receptor in canine osteosarcoma: association with clinicopathological parameters and prognosis.

    PubMed

    Selvarajah, Gayathri T; Verheije, Monique H; Kik, Marja; Slob, Adri; Rottier, Peter J M; Mol, Jan A; Kirpensteijn, Jolle

    2012-08-01

    Expression of epidermal growth factor receptor (EGFR) is associated with aggressive growth and metastasis of a range of tumours, including osteosarcomas (OS), although some studies have reported no relevance to clinicopathological events or prognosis. The present study evaluated EGFR mRNA and protein expression in a panel of OS cell lines, normal bones, frozen primary OS and tissue microarrays. EGFR expression was significantly elevated in primary OS compared to normal bones and in metastases of OS to the lungs in comparison with extrapulmonary sites. However, there were no clinical or pathological associations with mRNA expression levels in frozen tumours. Tissue microarray analysis demonstrated that a subset of canine OS with high EGFR expression was associated with significantly shorter survival times and disease-free intervals. Cytoplasmic expression of EGFR was present in 75% of metastases and was similar to expression in primary tumours. EGFR expression alone is not a reliable predictor of outcome and other markers are necessary for further prognostic stratification of dogs with OS. However, these findings suggest that a subset of dogs may benefit from anti-EGFR adjuvant therapies.

  13. ErbB2 resembles an autoinhibited invertebrate epidermal growth factor receptor

    SciTech Connect

    Alvarado, Diego; Klein, Daryl E.; Lemmon, Mark A.

    2009-09-25

    The orphan receptor tyrosine kinase ErbB2 (also known as HER2 or Neu) transforms cells when overexpressed, and it is an important therapeutic target in human cancer. Structural studies have suggested that the oncogenic (and ligand-independent) signalling properties of ErbB2 result from the absence of a key intramolecular 'tether' in the extracellular region that autoinhibits other human ErbB receptors, including the epidermal growth factor (EGF) receptor. Although ErbB2 is unique among the four human ErbB receptors, here we show that it is the closest structural relative of the single EGF receptor family member in Drosophila melanogaster (dEGFR). Genetic and biochemical data show that dEGFR is tightly regulated by growth factor ligands, yet a crystal structure shows that it, too, lacks the intramolecular tether seen in human EGFR, ErbB3 and ErbB4. Instead, a distinct set of autoinhibitory interdomain interactions hold unliganded dEGFR in an inactive state. All of these interactions are maintained (and even extended) in ErbB2, arguing against the suggestion that ErbB2 lacks autoinhibition. We therefore suggest that normal and pathogenic ErbB2 signalling may be regulated by ligands in the same way as dEGFR. Our findings have important implications for ErbB2 regulation in human cancer, and for developing therapeutic approaches that target novel aspects of this orphan receptor.

  14. Epidermal growth factor receptor expression in radiation-induced dog lung tumors by immunocytochemical localization

    SciTech Connect

    Leung, F.L.; Park, J.F.; Dagle, G.E.

    1993-06-01

    In studies to determine the role of growth factors in radiation-induced lung cancer, epidermal growth factor (EGFR) expression was examined by immunocytochemistry in 51 lung tumors from beagle dogs exposed to inhaled plutonium; 21 of 51 (41%) tumors were positive for EGFR. The traction of tumors positive for EGFR and the histological type of EGFR-positive tumors in the plutonium-exposed dogs were not different from spontaneous dog lung tumors, In which 36% were positive for EGFR. EGFR involvement in Pu-induced lung tumors appeared to be similar to that in spontaneous lung tumors. However, EGFR-positive staining was observed in only 1 of 16 tumors at the three lowest Pu exposure levels, compared to 20 of 35 tumors staining positive at the two highest Pu exposure levels. The results in dogs were in good agreement with the expression of EGFR reported in human non-small cell carcinoma of the lung, suggesting that Pu-induced lung tumors in the dog may be a suitable animal model to investigate the role of EGFR expression in lung carcinogenesis. In humans, EGFR expression in lung tumors has been primarily related to histological tumor types. In individual dogs with multiple primary lung tumors, the tumors were either all EGFR positive or EGFR negative, suggesting that EGFR expression may be related to the response of the individual dog as well as to the histological type of tumor.

  15. Reformulating Tylocrebrine in Epidermal Growth Factor Receptor Targeted Polymeric Nanoparticles Improves Its Therapeutic Index.

    PubMed

    Kirtane, Ameya R; Wong, Henry L; Guru, Bharath Raja; Lis, Lev G; Georg, Gunda I; Gurvich, Vadim J; Panyam, Jayanth

    2015-08-03

    Several promising anticancer drug candidates have been sidelined owing to their poor physicochemical properties or unfavorable pharmacokinetics, resulting in high overall cost of drug discovery and development. Use of alternative formulation strategies that alleviate these issues can help advance new molecules to the clinic at a significantly lower cost. Tylocrebrine is a natural product with potent anticancer activity. Its clinical trial was discontinued following the discovery of severe central nervous system toxicities. To improve the safety and potency of tylocrebrine, we formulated the drug in polymeric nanoparticles targeted to the epidermal growth factor receptor (EGFR) overexpressed on several types of tumors. Through in vitro studies in different cancer cell lines, we found that EGFR targeted nanoparticles were significantly more effective in killing tumor cells than the free drug. In vivo pharmacokinetic studies revealed that encapsulation in nanoparticles resulted in lower brain penetration and enhanced tumor accumulation of the drug. Further, targeted nanoparticles were characterized by significantly enhanced tumor growth inhibitory activity in a mouse xenograft model of epidermoid cancer. These results suggest that the therapeutic index of drugs that were previously considered unusable could be significantly improved by reformulation. Application of novel formulation strategies to previously abandoned drugs provides an opportunity to advance new molecules to the clinic at a lower cost. This can significantly increase the repertoire of treatment options available to cancer patients.

  16. ADAM binding protein Eve-1 is required for ectodomain shedding of epidermal growth factor receptor ligands.

    PubMed

    Tanaka, Motonari; Nanba, Daisuke; Mori, Seiji; Shiba, Fumio; Ishiguro, Hiroshi; Yoshino, Koichiro; Matsuura, Nariaki; Higashiyama, Shigeki

    2004-10-01

    A disintegrin and metalloproteases (ADAMs) are implicated in the ectodomain shedding of epidermal growth factor receptor (EGFR) ligands in EGFR transactivation. However, the activation mechanisms of ADAMs remain elusive. To analyze the regulatory mechanisms of ADAM activation, we performed yeast two-hybrid screening using the cytoplasmic domain of ADAM12 as bait, and identified a protein that we designated Eve-1. Two cDNAs were cloned and characterized. They encode alternatively spliced isoforms of Eve-1, called Eve-1a and Eve-1b, that have four and five tandem Src homology 3 (SH3) domains in the carboxyl-terminal region, respectively, and seven proline-rich SH3 domain binding motifs in the amino-terminal region. The short forms of Eve-1, Eve-1c and Eve-1d, translated at Met-371 are human counterparts of mouse Sh3d19. Northern blot analysis demonstrated that Eve-1 is abundantly expressed in skeletal muscle and heart. Western blot analysis revealed the dominant production of Eve-1c in human cancer cell lines. Knockdown of Eve-1 by small interfering RNA in HT1080 cells reduced the shedding of proHB-EGF induced by angiotensin II and 12-O-tetradecanoylphorbol-13-acetate, as well as the shedding of pro-transforming growth factor-alpha, promphiregulin, and proepiregulin by 12-O-tetradecanoylphorbol-13-acetate, suggesting that Eve-1 plays a role in positively regulating the activity of ADAMs in the signaling of EGFR-ligand shedding.

  17. Epidermal growth factor facilitates melanoma lymph node metastasis by influencing tumor lymphangiogenesis.

    PubMed

    Bracher, Andreas; Cardona, Ana Soler; Tauber, Stefanie; Fink, Astrid M; Steiner, Andreas; Pehamberger, Hubert; Niederleithner, Heide; Petzelbauer, Peter; Gröger, Marion; Loewe, Robert

    2013-01-01

    Alterations in epidermal growth factor (EGF) expression are known to be of prognostic relevance in human melanoma, but EGF-mediated effects on melanoma have not been extensively studied. As lymph node metastasis usually represents the first major step in melanoma progression, we were trying to identify a potential role of primary tumor-derived EGF in the mediation of melanoma lymph node metastases. Stable EGF knockdown (EGFkd) in EGF-high (M24met) and EGF-low (A375) expressing melanoma cells was generated. Only in EGF-high melanoma cells, EGFkd led to a significant reduction of lymph node metastasis and primary tumor lymphangiogenesis in vivo, as well as impairment of tumor cell migration in vitro. Moreover, EGF-induced sprouting of lymphatic but not of blood endothelial cells was abolished using supernatants of M24met EGFkd cells. In addition, M24met EGFkd tumors showed reduced vascular endothelial growth factor-C (VEGF-C) expression levels. Similarly, in human primary melanomas, a direct correlation between EGF/VEGF-C and EGF/Prox-1 expression levels was found. Finally, melanoma patients with lymph node micrometastases undergoing sentinel node biopsy were found to have significantly elevated EGF serum levels as compared with sentinel lymph node-negative patients. Our data indicate that tumor-derived EGF is important in mediating melanoma lymph node metastasis.

  18. Epidermal growth factor receptor inhibitor protects against abdominal aortic aneurysm in a mouse model.

    PubMed

    Obama, Takashi; Tsuji, Toshiyuki; Kobayashi, Tomonori; Fukuda, Yamato; Takayanagi, Takehiko; Taro, Yoshinori; Kawai, Tatsuo; Forrester, Steven J; Elliott, Katherine J; Choi, Eric; Daugherty, Alan; Rizzo, Victor; Eguchi, Satoru

    2015-05-01

    Angiotensin II (Ang II) has been implicated in the development of abdominal aortic aneurysm (AAA). In vascular smooth muscle cells (VSMC), Ang II activates epidermal growth factor receptor (EGFR) mediating growth promotion. We hypothesized that inhibition of EGFR prevents Ang II-dependent AAA. C57BL/6 mice were co-treated with Ang II and β-aminopropionitrile (BAPN) to induce AAA with or without treatment with EGFR inhibitor, erlotinib. Without erlotinib, 64.3% of mice were dead due to aortic rupture. All surviving mice had AAA associated with EGFR activation. Erlotinib-treated mice did not die and developed far fewer AAA. The maximum diameters of abdominal aortas were significantly shorter with erlotinib treatment. In contrast, both erlotinib-treated and non-treated mice developed hypertension. The erlotinib treatment of abdominal aorta was associated with lack of EGFR activation, endoplasmic reticulum (ER) stress, oxidative stress, interleukin-6 induction and matrix deposition. EGFR activation in AAA was also observed in humans. In conclusion, EGFR inhibition appears to protect mice from AAA formation induced by Ang II plus BAPN. The mechanism seems to involve suppression of vascular EGFR and ER stress.

  19. Epidermal growth factor elevates intracellular pH in chicken granulosa cells.

    PubMed

    Li, M; Morley, P; Asem, E K; Tsang, B K

    1991-08-01

    Many bioregulators, such as epidermal growth factor (EGF), induce intracellular alkalinization by activating a membrane bound Na+/H+ antiporter. The present studies were designed to examine the influence of EGF on intracellular pH (pHi) in chicken granulosa cells. pHi in granulosa cells from the two largest preovulatory follicles of hens was determined spectrofluorometrically using the dye 2',7'-bis(carboxyethyl-5(6)-carboxyfluorescein. The resting pHi was 6.81 +/- 0.006 (n = 30) when the extracellular pH and sodium concentration (Na+o) were 7.3 and 144 mM, respectively. EGF (5-100 ng/ml) induced a concentration-dependent increase in pHi, which reached a maximum of 0.217 +/- 0.009 pH units at a concentration of 100 ng/ml EGF. Cytosolic alkalinization was observed within 10 min of the addition of EGF and lasted over the 60 min observation period. The increase in pHi was dependent upon the presence of Na+o, since the EGF effect was attenuated when Na+o was substituted with equimolar concentrations of nonpermeant choline chloride. The EGF-induced pHi change was also inhibited by amiloride, dimethyl amiloride, and ethylisopropyl amiloride, inhibitors of the Na+/H+ antiporter. The alkalinization effect of EGF was mimicked by transforming growth factor-alpha but not by insulin, insulin-like growth factor-I, or transforming growth factor-beta. These studies suggest for the first time that intracellular alkalinization resulting from activation of the Na+/H+ antiporter may be a part of the transmembrane signaling pathway in the action of EGF on chicken granulosa cells.

  20. Parabens and Human Epidermal Growth Factor Receptor Ligand Cross-Talk in Breast Cancer Cells

    PubMed Central

    Pan, Shawn; Yuan, Chaoshen; Tagmount, Abderrahmane; Rudel, Ruthann A.; Ackerman, Janet M.; Yaswen, Paul; Vulpe, Chris D.; Leitman, Dale C.

    2015-01-01

    Background: Xenoestrogens are synthetic compounds that mimic endogenous estrogens by binding to and activating estrogen receptors. Exposure to estrogens and to some xenoestrogens has been associated with cell proliferation and an increased risk of breast cancer. Despite evidence of estrogenicity, parabens are among the most widely used xenoestrogens in cosmetics and personal-care products and are generally considered safe. However, previous cell-based studies with parabens do not take into account the signaling cross-talk between estrogen receptor α (ERα) and the human epidermal growth factor receptor (HER) family. Objectives: We investigated the hypothesis that the potency of parabens can be increased with HER ligands, such as heregulin (HRG). Methods: The effects of HER ligands on paraben activation of c-Myc expression and cell proliferation were determined by real-time polymerase chain reaction, Western blots, flow cytometry, and chromatin immunoprecipitation assays in ERα- and HER2-positive human BT-474 breast cancer cells. Results: Butylparaben (BP) and HRG produced a synergistic increase in c-Myc mRNA and protein levels in BT-474 cells. Estrogen receptor antagonists blocked the synergistic increase in c-Myc protein levels. The combination of BP and HRG also stimulated proliferation of BT-474 cells compared with the effects of BP alone. HRG decreased the dose required for BP-mediated stimulation of c-Myc mRNA expression and cell proliferation. HRG caused the phosphorylation of serine 167 in ERα. BP and HRG produced a synergistic increase in ERα recruitment to the c-Myc gene. Conclusion: Our results show that HER ligands enhanced the potency of BP to stimulate oncogene expression and breast cancer cell proliferation in vitro via ERα, suggesting that parabens might be active at exposure levels not previously considered toxicologically relevant from studies testing their effects in isolation. Citation: Pan S, Yuan C, Tagmount A, Rudel RA, Ackerman JM

  1. Both epidermal growth factor and insulin-like growth factor receptors are dispensable for structural intestinal adaptation

    PubMed Central

    Sun, Raphael C.; Diaz-Miron, Jose L.; Choi, Pamela M.; Sommovilla, Joshua; Guo, Jun; Erwin, Christopher R.; Warner, Brad W.

    2015-01-01

    Purpose Intestinal adaptation structurally represents increases in crypt depth and villus height in response to small bowel resection (SBR). Previously, we found that neither epidermal growth factor receptor (EGFR) nor insulin-like growth factor 1 receptor (IGF1R) function was individually required for normal adaptation. In this study, we sought to determine the effect of disrupting both EGFR and IGF1R expression on resection-induced adaptation. Methods Intestinal-specific EGFR and IGF1R double knockout mice (EGFR/IGF1R-IKO) (n=6) and wild-type (WT) control mice (n=7) underwent 50% proximal SBR. On postoperative day (POD) 7, structural adaptation was scored by measuring crypt depth and villus height. Rates of crypt cell proliferation, apoptosis, and submucosal capillary density were also compared. Results After 50% SBR, normal adaptation occurred in both WT and EGFR/IGF1R-IKO. Rates of proliferation and apoptosis were no different between the two groups. The angiogenic response was less in the EGFR/IGF1R-IKO compared to WT mice. Conclusion Disrupted expression of EGFR and IGF1R in the intestinal epithelial cells does not affect resection-induced structural adaptation but attenuates angiogenesis after SBR. These findings suggest that villus growth is driven by receptors and pathways that occur outside the epithelial cell component, while angiogenic responses may be influenced by epithelial-endothelial crosstalk. PMID:25818318

  2. Modulation of cultured porcine granulosa cell responsiveness to follicle stimulating hormone and epidermal growth factor

    SciTech Connect

    Buck, P.A.

    1986-01-01

    Ovarian follicular development is dependent upon the coordinated growth and differentiation of the granulosa cells which line the follicle. Follicle stimulating hormone (FSH) induces granulosa cell differentiation both in vivo and in vitro. Epidermal growth factor (EGF) stimulates granulosa cell proliferation in vitro. The interaction of these two effectors upon selected parameters of growth and differentiation was examined in monolayer cultures of porcine granulose cells. Analysis of the EGF receptor by /sup 125/I-EGF binding revealed that the receptor was of high affinity with an apparent dissociation constant of 4-6 x 10/sup -10/ M. The average number of receptors per cell varied with the state of differentiation both in vivo and in vitro; highly differentiated cells bound two-fold less /sup 125/I-EGF and this effect was at least partially induced by FSH in vitro. EGF receptor function was examined by assessing EGF effects on cell number and /sup 3/H-thymidine incorporation. EGF stimulated thymidine incorporation in both serum-free and serum-supplemented culture, but only in serum-supplemented conditions was cell number increased. EGF receptor function was inversely related to the state of differentiation and was attenuated by FSH. The FSH receptor was examined by /sup 125/I-FSH binding. EGF increased FSH receptor number, and lowered the affinity of the receptor. The function of these receptors was assessed by /sup 125/I-hCG binding and progesterone radioimmunoassay. If EGF was present continuously in the cultures. FSH receptor function was attenuated regardless of FSH receptor number. A preliminary effort to examine the mechanism of this interaction was performed by analyzing hormonally controlled protein synthesis with /sup 35/S-methionine labeling, SDS polyacrylamide gel electrophoresis and fluorography. FSH promoted the expression of a 27,000 dalton protein. This effect was attenuated by EGF.

  3. Growth performance of early-weaned pigs is enhanced by feeding epidermal growth factor-expressing Lactococcus lactis fermentation product.

    PubMed

    Bedford, Andrea; Huynh, Evanna; Fu, Molei; Zhu, Cuilan; Wey, Doug; de Lange, Cornelis; Li, Julang

    2014-03-10

    We have previously generated epidermal growth factor expressing Lactococcus lactis (EGF-LL) using bioengineering approach, and shown that feeding newly-weaned piglets EGF-LL improves digestive function. To address concerns over the use of genetically modified organisms (GMO), the objective of the current study was to investigate the effect of feeding the EGF-LL fermentation product, after removal of the genetically modified EGF-LL, on growth performance and intestine development of newly-weaned piglets. One hundred and twenty newly-weaned piglets were fed ad libitum according to a 2-phase feeding program. Four pens were assigned to each of three treatments: (1) complete EGF-LL fermentation product (Ferm), (2) supernatant of EGF-LL fermentation product, after removal of EGF-LL (Supern), or (3) blank M17GE media (Control). EGF-LL or its fermented supernatant was administrated to piglets in the first 3 weeks post-weaning; their growth performance was monitored throughout treatment, and for the following week. Daily body weight gain (254.8g vs. 200.5g) and Gain:Feed (0.541kg/kg vs. 0.454kg/kg) of pigs on the Supern group were significantly improved compared to that of Control, although no difference was observed between the Ferm and Control pigs. Intestinal sucrase activity was increased in Supern- compared to Control group (166.3±62.1 vs. 81.4±56.5nmol glucose released/mg protein; P<0.05). The lack of growth response with Ferm pigs may be attributed to an overload of bacteria (daily dose included 4.56×10(10)CFU/kg BW/day EGF-LL). These results suggest that GMO-free EGF-LL fermentation product is effective in increasing growth performance of early-weaned piglets.

  4. Mutations in the Polybasic Juxtamembrane Sequence of Both Plasma Membrane- and Endoplasmic Reticulum-localized Epidermal Growth Factor Receptors Confer Ligand-independent Cell Transformation*

    PubMed Central

    Bryant, Kirsten L.; Antonyak, Marc A.; Cerione, Richard A.; Baird, Barbara; Holowka, David

    2013-01-01

    Deregulation of ErbB receptor-tyrosine kinases is a hallmark of many human cancers. Conserved in the ErbB family is a cluster of basic amino acid residues in the cytoplasmic juxtamembrane region. We found that charge-silencing mutagenesis within this juxtamembrane region of the epidermal growth factor receptor (EGFR) results in the generation of a mutant receptor (EGFR Mut R1-6) that spontaneously transforms NIH 3T3 cells in a ligand-independent manner. A similar mutant with one additional basic residue, EGFR Mut R1-5, fails to exhibit ligand-independent transformation. The capacity of EGFR Mut R1-6 to mediate this transformation is maintained when this mutant is retained in the endoplasmic reticulum via a single point mutation, L393H, which we describe. We show that EGFR Mut R1-6 with or without L393H exhibits enhanced basal tyrosine phosphorylation when ectopically expressed, and the ligand-independent transforming activity of EGFR Mut R1-6 is sensitive to inhibition of EGFR kinase activity and is particularly dependent on PI3K and mTOR activity. Similar to EGFR Mut R1-6/L393H in NIH 3T3 cells, EGFR variant type III, a highly oncogenic mutant form of EGFR linked to human brain cancers, confers transforming activity while it is wholly endoplasmic reticulum-retained in U87 cells. Our findings highlight the importance of the polybasic juxtamembrane sequence in regulating the oncogenic potential of EGFR signaling. PMID:24142702

  5. Regulation of Epidermal Growth Factor Receptor Signaling by Endocytosis and Intracellular Trafficking

    SciTech Connect

    Burke, Patrick; Schooler, Kevin; Wiley, H S.

    2001-06-01

    Ligand activation of the epidermal growth factor receptor (EGFR) leads to its rapid internalization and eventual delivery to lysosomes. This process is thought to be a mechanism to attenuate signaling, but signals could potentially be generated following endocytosis. To directly evaluate EGFR signaling during receptor trafficking, we developed a technique to rapidly and selectively isolate internalized EGFR and associated molecules using reversibly-biotinylated anti-EGFR antibodies. In addition, we developed antibodies specific to tyrosine-phosphorylated EGFR. Using a combination of fluorescence imaging and affinity precipitation approaches, we evaluated the state of EGFR activation and substrate association during trafficking in epithelial cells. We found that following internalization, EGFR remained active in the early endosomes. However, receptors were inactivated prior to degradation, apparently due to ligand removal from endosomes. Adapter molecules, such as Shc, were associated with EGFR both at the cell surface and within endosomes. Some molecules, such as Grb2, were primarily found associated with surface EGFR, while others, such as Eps8, were only found with intracellular receptors. During the inactivation phase, c-Cbl became EGFR-associated, consistent with its postulated role in receptor attenuation. We conclude that the association of the EGFR with different proteins is compartment-specific . In addition, ligand loss is the proximal cause of EGFR inactivation. Thus, regulated trafficking could potentially influence the pattern as well as the duration of signal transduction.

  6. KRAS mutational status as a predictor of epidermal growth factor receptor inhibitor efficacy in colorectal cancer.

    PubMed

    Baynes, Roy D; Gansert, Jennifer

    2009-01-01

    Inhibitors of the epidermal growth factor receptor (EGFR) have demonstrated promising potential in the treatment of advanced colorectal cancer. However, a proportion of patients do not respond to therapy with EGFR inhibitors, and therefore, there has been interest in identifying those patients most likely to benefit from therapy with these agents. KRAS, a member of the RAS family of signaling proteins, plays an important role in EGFR-mediated regulation of cellular proliferation and survival. Although there is still some debate regarding the prognostic importance of KRAS mutations in patients with metastatic colorectal cancer, several recent phase 2 and 3 studies have identified the presence of mutations at codons 12 and 13 of KRAS as predictors of poor response to the anti-EGFR monoclonal antibodies panitumumab and cetuximab. Patients with wild-type KRAS were found to have significantly better progression-free survival, overall survival, and/or objective response rate compared with patients harboring KRAS mutations. As a result, there has been growing interest in the development of KRAS mutational status as a biomarker for predicting patient response to EGFR-targeted therapy. Screening colorectal tumors for the absence of KRAS mutations may help identify patients most likely to benefit from anti-EGFR therapies.

  7. Epidermal growth factor upregulates production of supernumerary hair cells in neonatal rat organ of corti explants.

    PubMed

    Lefebvre, P P; Malgrange, B; Thiry, M; Van De Water, T R; Moonen, G

    2000-03-01

    The organ of Corti is highly ordered, with a single row of inner hair cells and three rows of outer hair cells. The number of hair cells produced was thought to be limited by the time of their terminal mitosis (i.e. E14 in the mouse). However, exogenous application of retinoic acid has been shown to stimulate the formation of supernumerary hair cells in organ of Corti explants from E13 to E16 mouse embryos. Using late embryonic and neonatal rat organ of Corti explants, we investigated the potential for production of supernumerary hair cells in more mature auditory sensory epithelia. When newborn rat organ of Corti explants were cultured under control conditions, an area of supernumerary hair cells was observed in a segment of organ of Corti that was at the junction between the basal and middle turns. In these areas of supernumerary hair cells the number of hair cells increased per unit of length, but remained constant per surface unit, further demonstrating the supernumerary character of this phenomenon. Organ of Corti explants treated with epidermal growth factor (EGF) showed a 50% increase in the length of the organ of Corti segment containing supernumerary hair cells. Upregulation of supernumerary hair cell formation by EGF was found to start and be maximal at birth (P0) and to disappear by 2 days after birth (P2). Treatment of EGF stimulated P0 explants with an antimitotic drug, cytosine arabinoside (ARAc), demonstrated that the production of supernumerary hair cells occurred independently of cell division.

  8. Notch-1 regulates transcription of the epidermal growth factor receptor through p53.

    PubMed

    Purow, Benjamin W; Sundaresan, Tilak K; Burdick, Michael J; Kefas, Benjamin A; Comeau, Laurey D; Hawkinson, Michael P; Su, Qin; Kotliarov, Yuri; Lee, Jeongwu; Zhang, Wei; Fine, Howard A

    2008-05-01

    The Notch pathway plays a key role in the development and is increasingly recognized for its importance in cancer. We demonstrated previously the overexpression of Notch-1 and its ligands in gliomas and showed that their knockdown inhibits glioma cell proliferation and survival. To elucidate the mechanisms downstream of Notch-1 in glioma cells, we performed microarray profiling of glioma cells transfected with Notch-1 small interfering RNA. Notable among downregulated transcripts was the epidermal growth factor receptor (EGFR), known to be overexpressed or amplified in gliomas and prominent in other cancers as well. Further studies confirmed that Notch-1 inhibition decreased EGFR messenger RNA (mRNA) and EGFR protein in glioma and other cell lines. Transfection with Notch-1 increased EGFR expression. Additionally, we found a significant correlation in levels of EGFR and Notch-1 mRNA in primary high-grade human gliomas. Subsequent experiments showed that p53, an activator of the EGFR promoter, is regulated by Notch-1. Experiments with p53-positive and -null cell lines confirmed that p53 partially mediates the effects of Notch-1 on EGFR expression. These results show for the first time that Notch-1 upregulates EGFR expression and also demonstrate Notch-1 regulation of p53 in gliomas. These observations have significant implications for understanding the mechanisms of Notch in cancer and development.

  9. Effects of hyperthermia on binding, internalization, and degradation of epidermal growth factor. [/sup 125/I

    SciTech Connect

    Magun, B.E.; Fennie, C.W.

    1981-04-01

    /sup 125/I-epidermal growth factor was used as a molecular probe to study the effects of hyperthermia and local anesthetics on cultured Rat-1 cells. Heating cells at 45/sup 0/C for times up to 1 h caused a continuous decrease in EGF binding. Scatchard analysis showed that the decreased binding resulted from a decrease in the affinity of the EGF receptors rather than from a decrease in receptor number. Exposure to 42/sup 0/C had no effect on degradation. We compared the effects of heat to those caused by the local anesthetics procaine the lidocaine, which have been shown to prevent EGF degradation. Because procaine and lidocaine have been shown by others to potentiate the killing effects of hyperthermia on tumors and in cultured cells, we suggest that hyperthermia and the local anesthetics may act at the same cellular site. By inhibiting the action of lysosomes, hyperthermia and local anesthetics may permit potentially toxic materials to enter the cell by endocytosis, where they would accumulate and induce lethal damage.

  10. The Influence of Adnectin Binding on the Extracellular Domain of Epidermal Growth Factor Receptor

    NASA Astrophysics Data System (ADS)

    Iacob, Roxana E.; Chen, Guodong; Ahn, Joomi; Houel, Stephane; Wei, Hui; Mo, Jingjie; Tao, Li; Cohen, Daniel; Xie, Dianlin; Lin, Zheng; Morin, Paul E.; Doyle, Michael L.; Tymiak, Adrienne A.; Engen, John R.

    2014-12-01

    The precise and unambiguous elucidation and characterization of interactions between a high affinity recognition entity and its cognate protein provides important insights for the design and development of drugs with optimized properties and efficacy. In oncology, one important target protein has been shown to be the epidermal growth factor receptor (EGFR) through the development of therapeutic anticancer antibodies that are selective inhibitors of EGFR activity. More recently, smaller protein derived from the 10th type III domain of human fibronectin termed an adnectin has also been shown to inhibit EGFR in clinical studies. The mechanism of EGFR inhibition by either an adnectin or an antibody results from specific binding of the high affinity protein to the extracellular portion of EGFR (exEGFR) in a manner that prevents phosphorylation of the intracellular kinase domain of the receptor and thereby blocks intracellular signaling. Here, the structural changes induced upon binding were studied by probing the solution conformations of full length exEGFR alone and bound to a cognate adnectin through hydrogen/deuterium exchange mass spectrometry (HDX MS). The effects of binding in solution were identified and compared with the structure of a bound complex determined by X-ray crystallography.

  11. The effect of indomethacin on the secretion of human salivary epidermal growth factor.

    PubMed

    Gilchrist, W; Burkhalter, E; Eaton, C; Schaudies, R P; Maydonovitch, C; Andrada, F; Maged, A R; Wong, R K

    1994-01-01

    Ulceration associated with nonsteroidal anti-inflammatory drug (NSAID) use is a common problem in elderly patients. The postulated cause of NSAID ulceration is multifactorial but is probably related to the inhibition of the cyclo-oxygenase pathway and a subsequent decrease in mucosal prostaglandin levels. Epidermal growth factor (EGF), on the other hand, has been shown to be gastroprotective, stimulating DNA synthesis, and preventing ASA-induced gastric ulceration. Since EGF is important in gastric mucosal protection, we questioned whether the potential ulcerogenic properties of indomethacin were related in part to decreasing salivary EGF. Twenty healthy male volunteers with no gastrointestinal complaints received indomethacin 50 mg P.O. t.i.d. for 3 consecutive days. Saliva and serum were collected before indomethacin treatment and repeated 2 h after the last indomethacin dose. Stimulated salivary samples were collected for 15 min in fasted subjects and assayed for EGF, whereas serum indomethacin levels were determined by high-performance liquid chromatography. EGF levels significantly decreased by 33% after indomethacin (p < 0.03), and this decrement was linearly related to serum indomethacin concentrations (r = 0.58; p < 0.048). Salivary output did not change after indomethacin treatment. Based on this data, we concluded that indomethacin's ulcerogenic properties may be related to its prostaglandin inhibitory properties as well as its ability to decrease salivary EGF output.

  12. Epidermal growth factor-like, corneal wound healing substance in mouse tears.

    PubMed Central

    Tsutsumi, O; Tsutsumi, A; Oka, T

    1988-01-01

    We have identified the presence of a putative corneal wound healing substance in mouse tears, which has a molecular size and immunological properties similar to those of epidermal growth factor (EGF). The substance was capable of binding to EGF receptors in mouse parenchymal cells and this binding was inhibited by anti-EGF serum. The concentration of the EGF-like substance in the tears of male and female mice was estimated to be 79.3 +/- 7.0 (SD) ng/ml and 76.5 +/- 8.1 (SD) ng/ml, respectively, by EGF radioimmunoassay. Removal of the submandibular glands, which produce large amounts of EGF, reduced plasma EGF to an undetectable level and also decreased the concentration of the EGF-like substance in tears to 27.3 +/- 3.9 (SD) ng/ml in male mice and 25.8 +/- 3.7 (SD) ng/ml in female mice. Approximately 50% of sialoadenectomized (submandibular glands removed) male mice with deep corneal wounds developed severe ocular lesions or loss of sight whereas none of normal male mice with similar wounds did. Topical application of EGF to deeply wounded eyes of sialoadenectomized mice eliminated the various complications and restored the healing rate and incidence of recovery to virtually normal levels. Images PMID:3258318

  13. Inhibition of epidermal growth factor receptor attenuates atherosclerosis via decreasing inflammation and oxidative stress.

    PubMed

    Wang, Lintao; Huang, Zhouqing; Huang, Weijian; Chen, Xuemei; Shan, Peiren; Zhong, Peng; Khan, Zia; Wang, Jingying; Fang, Qilu; Liang, Guang; Wang, Yi

    2017-04-04

    Atherosclerosis is a progressive disease leading to loss of vascular homeostasis and entails fibrosis, macrophage foam cell formation, and smooth muscle cell proliferation. Recent studies have reported that epidermal growth factor receptor (EGFR) is involved vascular pathophysiology and in the regulation of oxidative stress in macrophages. Although, oxidative stress and inflammation play a critical role in the development of atherosclerosis, the underlying mechanisms are complex and not completely understood. In the present study, we have elucidated the role of EGFR in high-fat diet-induced atherosclerosis in apolipoprotein E null mice. We show increased EGFR phosphorylation and activity in atherosclerotic lesion development. EGFR inhibition prevented oxidative stress, macrophage infiltration, induction of pro-inflammatory cytokines, and SMC proliferation within the lesions. We further show that EGFR is activated through toll-like receptor 4. Disruption of toll-like receptor 4 or the EGFR pathway led to reduced inflammatory activity and foam cell formation. These studies provide evidence that EGFR plays a key role on the pathogenesis of atherosclerosis, and suggests that EGFR may be a potential therapeutic target in the prevention of atherosclerosis development.

  14. Direct interaction of avermectin with epidermal growth factor receptor mediates the penetration resistance in Drosophila larvae

    PubMed Central

    Chen, Li-Ping; Wang, Pan; Sun, Ying-Jian; Wu, Yi-Jun

    2016-01-01

    With the widespread use of avermectins (AVMs) for managing parasitic and agricultural pests, the resistance of worms and insects to AVMs has emerged as a serious threat to human health and agriculture worldwide. The reduced penetration of AVMs is one of the main reasons for the development of the resistance to the chemicals. However, the detailed molecular mechanisms remain elusive. Here, we use the larvae of Drosophila melanogaster as the model organism to explore the molecular mechanisms underlying the development of penetration resistance to AVMs. We clearly show that the chitin layer is thickened and the efflux transporter P-glycoprotein (P-gp) is overexpressed in the AVM-resistant larvae epidermis. We reveal that the activation of the transcription factor Relish by the over-activated epidermal growth factor receptor (EGFR)/AKT/ERK pathway induces the overexpression of the chitin synthases DmeCHS1/2 and P-gp in the resistant larvae. Interestingly, we discover for the first time, to the best of our knowledge, that AVM directly interacts with EGFR and leads to the activation of the EGFR/AKT/ERK pathway, which activates the transcription factor Relish and induces the overexpression of DmeCHS1/2 and P-gp. These findings provide new insights into the molecular mechanisms underlying the development of penetration resistance to drugs. PMID:27249340

  15. Plasma Epidermal Growth Factor Decreased in the Early Stage of Parkinson’s Disease

    PubMed Central

    Jiang, Qian-Wen; Wang, Cheng; Zhou, Yi; Hou, Miao-Miao; Wang, Xi; Tang, Hui-Dong; Wu, Yi-Wen; Ma, Jian-Fang; Chen, Sheng-Di

    2015-01-01

    Epidermal growth factor (EGF) is a neurotrophic factor that plays an important role in Parkinson’s disease (PD). We measured plasma EGF level in PD, essential tremor (ET) and normal controls to investigate whether it changes in PD and whether it is associated with motor and non-motor symptoms of PD. 100 patients with PD, 40 patients with ET as disease control and 76 healthy persons were enrolled in the present study. Motor and non-motor symptoms were assessed by different scales. Plasma EGF levels of three groups were measured by enzyme-linked immunosorbent assay kit. Spearman test and linear logistics regression model were used to test the correlation of EGF with motor and non-motor symptoms of PD. Plasma EGF level was significantly decreased in early PD patients compared with normal control, but not in advanced PD patients. Interestingly, plasma EGF level was significantly increased in advanced PD and total PD patients compared with ET patients, but not in early PD patients. In addition, plasma EGF level was correlated with UPDRS-III scores in PD. Also plasma EGF level was correlated with UPDRS-III scores and NMS scores in early PD. Our results suggested that plasma EGF decreased in the early stage of PD and increased later on in the PD disease course. Also, plasma EGF level was increased significantly in PD compared with ET patients and correlated with motor and non-motor symptoms in early PD. PMID:26029474

  16. Brain metastasis in human epidermal growth factor receptor 2-positive breast cancer: from biology to treatment

    PubMed Central

    Koo, Taeryool

    2016-01-01

    Overexpression of human epidermal growth factor receptor 2 (HER2) is found in about 20% of breast cancer patients. With treatment using trastuzumab, an anti-HER2 monoclonal antibody, systemic control is improved. Nonetheless, the incidence of brain metastasis does not be improved, rather seems to be increased in HER2-positive breast cancer. The mainstay treatment for brain metastases is radiotherapy. According to the number of metastatic lesions and performance status of patients, radiosurgery or whole brain radiotherapy can be performed. The concurrent use of a radiosensitizer further improves intracranial control. Due to its large molecular weight, trastuzumab has a limited ability to cross the blood-brain barrier. However, small tyrosine kinase inhibitors such as lapatinib, has been noted to be a promising agent that can be used as a radiosensitizer to affect HER2-positive breast cancer. This review will outline general management of brain metastases and will focus on preclinical findings regarding the radiosensitizing effect of small molecule HER2 targeting agents. PMID:27104161

  17. Fluorescence techniques used to measure interactions between hydroxyapatite nanoparticles and epidermal growth factor receptors.

    PubMed

    Kathawala, Mustafa H; Khoo, Stella P K; Sudhaharan, Thankiah; Zhao, Xinxin; Say Chye Loo, Joachim; Ahmed, Sohail; Woei Ng, Kee

    2015-01-01

    The potential applications of nanomaterials in therapeutics are immense and to fully explore this potential, it is important to understand the interaction of nanoparticles with cellular components. To examine the interaction between nanoparticles and cell membrane receptors, this report describes the use of advanced fluorescence techniques to measure interactions between hydroxyapatite (HA) nanoparticles and epidermal growth factor receptors (EGFRs), as a model system. FITC-labelled HA nanoparticles and monomeric red fluorescent protein (mRFP)-conjugated EGFRs expressed in Chinese hamster ovary cells (CHO-K1) were generated and their interaction measured using acceptor photobleaching-fluorescence resonance energy transfer (AP-FRET) and fluorescence lifetime imaging microscopy-fluorescence resonance energy transfer (FLIM-FRET). Results confirmed that hydroxyapatite nanoparticles not only interacted with EGFR but also attenuated downstream EGFR signalling, possibly by hindering normal dimerization of EGFR. Furthermore, the extent of signal attenuation suggested correlation with specific surface area of the nanoparticles, whereby greater specific surface area resulted in greater downstream signal attenuation. This novel demonstration establishes fluorescence techniques as a viable method to study nanoparticle interactions with proteins such as cell surface receptors. The approach described herein can be extended to study interactions between any fluorescently labelled nanoparticle-biomolecule pair.

  18. Epidermal Growth Factor Signaling towards Proliferation: Modeling and Logic Inference Using Forward and Backward Search.

    PubMed

    Riesco, Adrián; Santos-Buitrago, Beatriz; De Las Rivas, Javier; Knapp, Merrill; Santos-García, Gustavo; Talcott, Carolyn

    2017-01-01

    In biological systems, pathways define complex interaction networks where multiple molecular elements are involved in a series of controlled reactions producing responses to specific biomolecular signals. These biosystems are dynamic and there is a need for mathematical and computational methods able to analyze the symbolic elements and the interactions between them and produce adequate readouts of such systems. In this work, we use rewriting logic to analyze the cellular signaling of epidermal growth factor (EGF) and its cell surface receptor (EGFR) in order to induce cellular proliferation. Signaling is initiated by binding the ligand protein EGF to the membrane-bound receptor EGFR so as to trigger a reactions path which have several linked elements through the cell from the membrane till the nucleus. We present two different types of search for analyzing the EGF/proliferation system with the help of Pathway Logic tool, which provides a knowledge-based development environment to carry out the modeling of the signaling. The first one is a standard (forward) search. The second one is a novel approach based on narrowing, which allows us to trace backwards the causes of a given final state. The analysis allows the identification of critical elements that have to be activated to provoke proliferation.

  19. Contributions of the Epidermal Growth Factor Receptor to Acquisition of Platinum Resistance in Ovarian Cancer Cells

    PubMed Central

    Granados, Michaela L.; Hudson, Laurie G.; Samudio-Ruiz, Sabrina L.

    2015-01-01

    Acquisition of platinum resistance following first line platinum/taxane therapy is commonly observed in ovarian cancer patients and prevents clinical effectiveness. There are few options to prevent platinum resistance; however, demethylating agents have been shown to resensitize patients to platinum therapy thereby demonstrating that DNA methylation is a critical contributor to the development of platinum resistance. We previously reported the Epidermal Growth Factor Receptor (EGFR) is a novel regulator of DNA methyltransferase (DNMT) activity and DNA methylation. Others have shown that EGFR activation is linked to cisplatin treatment and platinum resistance. We hypothesized that cisplatin induced activation of the EGFR mediates changes in DNA methylation associated with the development of platinum resistance. To investigate this, we evaluated EGFR signaling and DNMT activity after acute cisplatin exposure. We also developed an in vitro model of platinum resistance to examine the effects of EGFR inhibition on acquisition of cisplatin resistance. Acute cisplatin treatment activates the EGFR and downstream signaling pathways, and induces an EGFR mediated increase in DNMT activity. Cisplatin resistant cells also showed increased DNMT activity and global methylation. EGFR inhibition during repeated cisplatin treatments generated cells that were more sensitive to cisplatin and did not develop increases in DNA methylation or DNMT activity compared to controls. These findings suggest that activation of EGFR during platinum treatment contributes to the development of platinum resistance. Furthermore, EGFR inhibition may be an effective strategy at attenuating the development of platinum resistance thereby enhancing the effectiveness of chemotherapeutic treatment in ovarian cancer. PMID:26351843

  20. Regulation of epidermal growth factor receptor signalling by inducible feedback inhibitors.

    PubMed

    Segatto, Oreste; Anastasi, Sergio; Alemà, Stefano

    2011-06-01

    Signalling by the epidermal growth factor receptor (EGFR) controls morphogenesis and/or homeostasis of several tissues from worms to mammals. The correct execution of these programmes requires the generation of EGFR signals of appropriate strength and duration. This is obtained through a complex circuitry of positive and negative feedback regulation. Feedback inhibitory mechanisms restrain EGFR activity in time and space, which is key to ensuring that receptor outputs are commensurate to the cell and tissue needs. Here, we focus on the emerging field of inducible negative feedback regulation of the EGFR in mammals. In mammalian cells, four EGFR inducible feedback inhibitors (IFIs), namely LRIG1, RALT (also known as MIG6 and ERRFI1), SOCS4 and SOCS5, have been discovered recently. EGFR IFIs are expressed de novo in the context of early or delayed transcriptional responses triggered by EGFR activation. They all bind to the EGFR and suppress receptor signalling through several mechanisms, including catalytic inhibition and receptor downregulation. Here, we review the mechanistic basis of IFI signalling and rationalise the function of IFIs in light of gene-knockout studies that assign LRIG1 and RALT an essential role in restricting cell proliferation. Finally, we discuss how IFIs might participate in system control of EGFR signalling and highlight the emerging roles for IFIs in the suppression of EGFR-driven tumorigenesis.

  1. Inhibition of acid formation by epidermal growth factor in the isolated rabbit gastric glands.

    PubMed Central

    Dembiński, A; Drozdowicz, D; Gregory, H; Konturek, S J; Warzecha, Z

    1986-01-01

    The effects of epidermal growth factor (EGF) on basal and stimulated (with histamine, dibutyryl cyclic AMP, and high concentrations of K+) acid formation have been studied in isolated glands from the rabbit gastric mucosa. The changes in the accumulation of [14C]aminopyrine [14C]AP have been used as an indirect measurement of acid production in the glands. Unstimulated gastric glands accumulated [14C]AP indicating the existence of basal acid production in these glands, and EGF caused a small but significant reduction in basal [14C]AP uptake. A similar reduction of basal [14C]AP uptake was observed after exposure to omeprazole but not after ranitidine or prostaglandin E2 (PGE2). Histamine, dibutyryl cyclic AMP and K+ caused a strong and dose-dependent stimulation of acid formation by the glands. EGF, like omeprazole, reduced dose-dependently the [14C]AP accumulation stimulated by both histamine and dibutyryl cyclic AMP, while ranitidine and PGE2 reduced histamine- but not dibutyryl-cyclic-AMP-stimulated accumulation of [14C]AP. In the absence of other external stimuli, an increased K+ concentration enhanced [14C]AP accumulation to levels similar to those produced by histamine and this effect was not changed by EGF, ranitidine or PGE2 but was inhibited by omeprazole. We conclude that EGF interferes with the final steps of acid production between cyclic nucleotides and proton pump of the parietal cells. PMID:3025433

  2. Enhancement in gastric mucosal epidermal growth factor receptor expression by sulglycotide.

    PubMed

    Slomiany, B L; Piotrowski, J; Czajkowski, A; Murty, V L; Majka, J; Slomiany, A

    1994-05-01

    The effect of intragastric administration of sulglycotide, a cytoprotective sulfated glycopeptide, on the expression of gastric mucosal epidermal growth factor receptor was investigated. The experiments were conducted with groups of rats, one receiving twice daily for 5 consecutive days a dose of 200mg/kg sulglycotide, and the other only vehicle. Mucosal cell membranes were isolated from the stomachs at 16, 40 and 88h after the last dose, and used for EGF receptor assays. The binding assays revealed a marked increase in mucosal EGF receptor expression with sulglycotide. Compared to the controls, the sulglycotide-treated group showed a 4-fold increase in the EGF receptor expression at 16h after the last dose of sulglycotide, a 4.7-fold increase in the EGF receptor was observed by the 40h, and a 4.2-fold increase was still evident at 88h following the treatment. The results demonstrate that sulglycotide exhibits remarkable ability to enhance the gastric mucosal expression of EGF receptor.

  3. Epidermal growth factor (EGF) as a potential targeting agent for delivery of boron to malignant gliomas

    SciTech Connect

    Capala, J.; Barth, R.F.; Adams, D.M.; Bailey, M.Q.; Soloway, A.H.; Carlsson, J.

    1994-12-31

    The majority of high grade gliomas express an amplified epidermal growth factor receptor (EGFR) gene, and this often is associated with an increase in cell surface receptor expression. The rapid internalization and degradation of EGF-EGFR complexes, as well as their high affinity make EGF a potential targeting agent for delivery of {sup 10}B to tumor cells with an amplified number of EGFR. Human glioma cells can expresses as many as 10{sup 5} {minus}10{sup 6} EGF receptors per cell, and if these could be saturated with boronated EGF, then > 10{sup 8} boron atoms would be delivered per cell. Since EGF has a comparatively low molecular weight ({approximately} 6 kD), this has allowed us to construct relatively small bioconjugates containing {approximately} 900 boron atoms per EGF molecule{sup 3}, which also had high affinity for EGFR on tumor cells. In the present study, the feasibility of using EGF receptors as a potential target for therapy of gliomas was investigated by in vivo scintigraphic studies using {sup 131}I{minus} or {sup 99m}{Tc}-labeled EGF in a rat brain tumor model. Our results indicate that intratumorally delivered boron- EGF conjugates might be useful for targeting EGFR on glioma cells if the boron containing moiety of the conjugates persisted intracellularly. Further studies are required, however, to determine if this approach can be used for BNCT of the rat glioma.

  4. Structural basis of interactions between epidermal growth factor receptor and SH2 domain proteins.

    PubMed

    Sierke, S L; Longo, G M; Koland, J G

    1993-02-26

    The structural basis of the interactions between the activated epidermal growth factor (EGF) receptor and SH2 domain proteins was investigated. The c-src SH2 domain (second domain of src homology) was expressed as a recombinant fusion protein, and an in vitro assay was developed to monitor EGF receptor/SH2 domain interactions. EGF receptor tyrosine kinase domain (TKD) forms expressed in the baculovirus/insect cell system were shown to bind to the SH2 domain when phosphorylated. These TKD/SH2 domain interactions were characterized by dissociation constants of 60-320 nM. Deletion analysis indicated that the entire SH2 domain was required for recognition of the phosphorylated TKD. The binding of a highly truncated TKD protein to the SH2 domain suggested that the sites recognized by the SH2 domain included the EGF receptor autophosphorylation site, tyr992. A phosphorylated EGF receptor peptide containing tyr992 was also shown to interact with the SH2 domain. This residue may therefore mediate interactions between the EGF receptor and tyrosine kinases in the src family.

  5. Enhancement of drug sensitivity of human malignancies by epidermal growth factor.

    PubMed Central

    Kröning, R.; Jones, J. A.; Hom, D. K.; Chuang, C. C.; Sanga, R.; Los, G.; Howell, S. B.; Christen, R. D.

    1995-01-01

    We have previously shown that epidermal growth factor (EGF) enhances the in vitro and in vivo sensitivity of human ovarian carcinoma 2008 cells to cisplatin. EGF was found to enhance selectively the in vivo toxicity of cisplatin to 2008 cell xenografts without altering the toxicity of cisplatin to non-malignant target tissues such as the kidney or bone marrow. We now show that recombinant human EGF (rhEGF) enhances the cisplatin sensitivity of cell lines representative of many other types of malignancies in addition to ovarian carcinoma, including cancers of the head and neck, cervix, colon, pancreas and prostate, as well as non-small-cell carcinoma of the lung. In addition, rhEGF was found to sensitise cells to other platinum-containing drugs and several other classes of chemotherapeutic agents. rhEGF sensitised 2008 cells not only to cisplatin, but also to carboplatin and tetraplatin, as well as taxol, melphalan and 5-fluorouracil. We conclude that modulation of drug sensitivity by rhEGF is observed in cell lines representative of many human malignancies and for multiple classes of chemotherapeutic agents, indicating that it alters one or more components of the cellular damage response that are both common between cell lines and classes of drugs and fundamental to survival. Images Figure 2 PMID:7669570

  6. Effect of epidermal growth factor against radiotherapy-induced oral mucositis in rats

    SciTech Connect

    Lee, Sang-wook; Jung, Kwon Il; Kim, Yeun Wha B.S.; Jung, Heun Don; Kim, Hyun Sook; Hong, Joon Pio . E-mail: joonphong@amc.seoul.kr

    2007-03-15

    Purpose: We tested the efficacy of oral recombinant human epidermal growth factor (rhEGF) against radiation-induced oral mucositis in a rat model. Methods and Materials: Each of 35 Sprague-Dawley rats, 7 to 8 weeks of age and weighing 178 {+-} 5 grams, was irradiated once in the head region with 25 Gy, using a 4-MV therapeutic linear accelerator at a rate of 2 Gy/min. The irradiated rats were randomly divided into four groups: those receiving no treatment (Group 1), those treated with vehicle only three times per day (Group 2), and those treated with 50 {mu}g/mL (Group 3), or 100 {mu}g/mL (Group 4) rhEGF three times per day. Results: Rats were monitored for survival rate and daily activity, including hair loss, sensitivity, and anorexia. We found that survival rate and oral intake were significantly increased and histologic changes were significantly decreased in the rhEGF-treated rats. There was no difference, however, between rats treated with 50 {mu}g/mL or 100 {mu}g/mL rhEGF. Conclusion: These findings suggest that orally administered rhEGF decreased radiation-induced oral mucositis in rats.

  7. Molecular basis for multimerization in the activation of the epidermal growth factor receptor

    PubMed Central

    Huang, Yongjian; Bharill, Shashank; Karandur, Deepti; Peterson, Sean M; Marita, Morgan; Shi, Xiaojun; Kaliszewski, Megan J; Smith, Adam W; Isacoff, Ehud Y; Kuriyan, John

    2016-01-01

    The epidermal growth factor receptor (EGFR) is activated by dimerization, but activation also generates higher-order multimers, whose nature and function are poorly understood. We have characterized ligand-induced dimerization and multimerization of EGFR using single-molecule analysis, and show that multimerization can be blocked by mutations in a specific region of Domain IV of the extracellular module. These mutations reduce autophosphorylation of the C-terminal tail of EGFR and attenuate phosphorylation of phosphatidyl inositol 3-kinase, which is recruited by EGFR. The catalytic activity of EGFR is switched on through allosteric activation of one kinase domain by another, and we show that if this is restricted to dimers, then sites in the tail that are proximal to the kinase domain are phosphorylated in only one subunit. We propose a structural model for EGFR multimerization through self-association of ligand-bound dimers, in which the majority of kinase domains are activated cooperatively, thereby boosting tail phosphorylation. DOI: http://dx.doi.org/10.7554/eLife.14107.001 PMID:27017828

  8. [Targeting of epidermal growth factor receptor and applications in ORL cancer].

    PubMed

    Tortochaux, Jacques; Aunoble, Bénédicte; Rolhion, Christine; Bourhis, Jean

    2003-11-01

    EGFR (epidermal growth factor receptor) is a transmembrane glycoprotein highly expressed in head and neck squamous cell carcinoma (HNSCC). Once triggered by ligands, tyrosine kinase located at their inner part is phosphorylated, initiating signal transduction pathways towards the nucleus. Two categories of EGFR inhibitors are affordable: the former group includes monoclonal antibodies whereas the latter regards tyrosine kinase inhibitors (ITK). Acting more as cytostatic than cytotoxic agents, they may potentiate both chemotherapy (CT) and radiation therapy (RT). Characterized by a spectrum of toxicity that does not overlap that of CT or RT, they may be associated with these treatments. First clinical trials have demonstrated the feasibility of their administration. Side-effects merely consist of skin reactions and digestive symptoms; their intensity is generally mild and they resolve at the completion of treatment. As of yet, response rates are sometimes astounding but are still disparate. Randomized studies are ongoing. A better definition of EGFR status is warranted. Other data regarding interactions between her-family members, ligands parameters and the cascade regulation of signal transduction would certainly enable to better define the clinical applications of this new therapeutical approach.

  9. Distribution of epidermal growth factor binding sites in the adult rat anterior pituitary gland

    SciTech Connect

    Chabot, J.G.; Walker, P.; Pelletier, G.

    1986-01-01

    The distribution of epidermal growth (EGF) binding sites was studied in the pituitary gland using light and electron microscope autoradiography which was performed at different time intervals (2 to 60 min) after intravenous (IV) injection of (/sup 125/I)EGF into adult rats. At the light microscopic level, the labeling was found over cells of the anterior pituitary gland. The time-course study performed by light microscope autoradiography showed that the maximal values were reached at the 2 min time interval. At this time interval, most silver grains were found at the periphery of the target cells. After, the number of silver grains decreased progressively and the localization of silver grains in the cytoplasm indicated the internalization of (/sup 125/I)EGF. Electron microscope autoradiography showed that labeling was mostly restricted to mammotrophs and somatotrophs. Control experiments indicated that the autoradiographic labeling was due specific interaction of (/sup 125/I)EGF with its binding site. These results indicate that EGF binding sites are present in at least two anterior pituitary cell types and suggest that EGF can exert a physiological role in the pituitary gland.

  10. GBM heterogeneity as a function of variable epidermal growth factor receptor variant III activity

    PubMed Central

    Lindberg, Olle R.; McKinney, Andrew; Engler, Jane R.; Koshkakaryan, Gayane; Gong, Henry; Robinson, Aaron E.; Ewald, Andrew J.; Huillard, Emmanuelle; James, C. David; Molinaro, Annette M.; Shieh, Joseph T.; Phillips, Joanna J.

    2016-01-01

    Abnormal activation of the epidermal growth factor receptor (EGFR) due to a deletion of exons 2-7 of EGFR (EGFRvIII) is a common alteration in glioblastoma (GBM). While this alteration can drive gliomagenesis, tumors harboring EGFRvIII are heterogeneous. To investigate the role for EGFRvIII activation in tumor phenotype we used a neural progenitor cell-based murine model of GBM driven by EGFR signaling and generated tumor progenitor cells with high and low EGFRvIII activation, pEGFRHi and pEGFRLo. In vivo, ex vivo, and in vitro studies suggested a direct association between EGFRvIII activity and increased tumor cell proliferation, decreased tumor cell adhesion to the extracellular matrix, and altered progenitor cell phenotype. Time-lapse confocal imaging of tumor cells in brain slice cultures demonstrated blood vessel co-option by tumor cells and highlighted differences in invasive pattern. Inhibition of EGFR signaling in pEGFRHi promoted cell differentiation and increased cell-matrix adhesion. Conversely, increased EGFRvIII activation in pEGFRLo reduced cell-matrix adhesion. Our study using a murine model for GBM driven by a single genetic driver, suggests differences in EGFR activation contribute to tumor heterogeneity and aggressiveness. PMID:27738329

  11. Effects of epidermal growth factor on glycolysis in A431 cells.

    PubMed

    Baulida, J; Onetti, R; Bassols, A

    1992-03-31

    A431 cells were treated with epidermal growth factor (EGF) to study the mechanism by which this factor accelerates the glycolytic flux. After EGF treatment, fructose-2,6-bisphosphate (Fru-2,6-P2) levels rose up to 2-fold. This change correlated with an increase in phosphofructokinase-2 activity, which was not due to a change in the transcription or translation of the enzyme, neither in the amount of enzyme. PK-C does not appear to be involved in the signalling mechanism since EGF was equally potent in PK-C depleted cells than in control cells. The increase in Fru-2,6-P2 levels was lower and more transient in cells treated with EGF in a calcium-free medium than in the presence of the cation, and it was restored by the addition of calcium to the medium. These results suggest a possible role for calcium-mediated pathways in the control of Fru-2,6-P2 levels in A431 cells.

  12. Llgl1 prevents metaplastic survival driven by epidermal growth factor dependent migration

    PubMed Central

    Greenwood, Erin; Russ, Atlantis; Pandey, Ritu; Schroeder, Joyce

    2016-01-01

    We have previously demonstrated that Llgl1 loss results in a gain of mesenchymal phenotypes and a loss of apicobasal and planar polarity. We now demonstrate that these changes represent a fundamental shift in cellular phenotype. Llgl1 regulates the expression of multiple cell identity markers, including CD44, CD49f, and CD24, and the nuclear translocation of TAZ and Slug. Cells lacking Llgl1 form mammospheres, where survival and transplantability is dependent upon the Epidermal Growth Factor Receptor (EGFR). Additionally, Llgl1 loss allows cells to grow in soft-agar and maintain prolonged survival as orthotopic transplants in NOD-SCIDmice. Lineage tracing and wound healing experiments demonstrate that mammosphere survival is due to enhanced EGF-dependent migration. The loss of Llgl1 drives EGFR mislocalization and an EGFR mislocalization point mutation (P667A) drives these same phenotypes, including activation of AKT and TAZ nuclear translocation. Together, these data indicate that the loss of Llgl1 results in EGFR mislocalization, promoting pre-neoplastic changes. PMID:27542214

  13. The Under-Appreciated Promiscuity of the Epidermal Growth Factor Receptor Family

    PubMed Central

    Kennedy, Sean P.; Hastings, Jordan F.; Han, Jeremy Z. R.; Croucher, David R.

    2016-01-01

    Each member of the epidermal growth factor receptor (EGFR) family plays a key role in normal development, homeostasis, and a variety of pathophysiological conditions, most notably in cancer. According to the prevailing dogma, these four receptor tyrosine kinases (RTKs; EGFR, ERBB2, ERBB3, and ERBB4) function exclusively through the formation of homodimers and heterodimers within the EGFR family. These combinatorial receptor interactions are known to generate increased interactome diversity and therefore influence signaling output, subcellular localization and function of the heterodimer. This molecular plasticity is also thought to play a role in the development of resistance toward targeted cancer therapies aimed at these known oncogenes. Interestingly, many studies now challenge this dogma and suggest that the potential for EGFR family receptors to interact with more distantly related RTKs is much greater than currently appreciated. Here we discuss how the promiscuity of these oncogenic receptors may lead to the formation of many unexpected receptor pairings and the significant implications for the efficiency of many targeted cancer therapies. PMID:27597943

  14. Recurrent exposure to nicotine differentiates human bronchial epithelial cells via epidermal growth factor receptor activation

    SciTech Connect

    Martinez-Garcia, Eva; Irigoyen, Marta; Anso, Elena; Martinez-Irujo, Juan Jose; Rouzaut, Ana

    2008-05-01

    Cigarette smoking is the major preventable cause of lung cancer in developed countries. Nicotine (3-(1-methyl-2-pyrrolidinyl)-pyridine) is one of the major alkaloids present in tobacco. Besides its addictive properties, its effects have been described in panoply of cell types. In fact, recent studies have shown that nicotine behaves as a tumor promoter in transformed epithelial cells. This research focuses on the effects of acute repetitive nicotine exposure on normal human bronchial epithelial cells (NHBE cells). Here we show that treatment of NHBE cells with recurrent doses of nicotine up to 500 {mu}M triggered cell differentiation towards a neuronal-like phenotype: cells emitted filopodia and expressed neuronal markers such as neuronal cell adhesion molecule, neurofilament-M and the transcription factors neuronal N and Pax-3. We also demonstrate that nicotine treatment induced NF-kB translocation to the nucleus, phosphorylation of the epidermal growth factor receptor (EGFR), and accumulation of heparin binding-EGF in the extracellular medium. Moreover, addition of AG1478, an inhibitor of EGFR tyrosine phosphorylation, or cetuximab, a monoclonal antibody that precludes ligand binding to the same receptor, prevented cell differentiation by nicotine. Lastly, we show that differentiated cells increased their adhesion to the extracellular matrix and their protease activity. Given that several lung pathologies are strongly related to tobacco consumption, these results may help to better understand the damaging consequences of nicotine exposure.

  15. Recombinant Human Epidermal Growth Factor Accelerates Recovery of Mouse Small Intestinal Mucosa After Radiation Damage

    SciTech Connect

    Lee, Kang Kyoo; Jo, Hyang Jeong; Hong, Joon Pio; Lee, Sang-wook Sohn, Jung Sook; Moon, Soo Young; Yang, Sei Hoon; Shim, Hyeok; Lee, Sang Ho; Ryu, Seung-Hee; Moon, Sun Rock

    2008-07-15

    Purpose: To determine whether systemically administered recombinant human epidermal growth factor (rhEGF) accelerates the recovery of mouse small intestinal mucosa after irradiation. Methods and Materials: A mouse mucosal damage model was established by administering radiation to male BALB/c mice with a single dose of 15 Gy applied to the abdomen. After irradiation, rhEGF was administered subcutaneously at various doses (0.04, 0.2, 1.0, and 5.0 mg/kg/day) eight times at 2- to 3-day intervals. The evaluation methods included histologic changes of small intestinal mucosa, change in body weight, frequency of diarrhea, and survival rate. Results: The recovery of small intestinal mucosa after irradiation was significantly improved in the mice treated with a high dose of rhEGF. In the mice that underwent irradiation without rhEGF treatment, intestinal mucosal ulceration, mucosal layer damage, and severe inflammation occurred. The regeneration of villi was noticeable in mice treated with more than 0.2 mg/kg rhEGF, and the villi recovered fully in mice given more than 1 mg/kg rhEGF. The frequency of diarrhea persisting for more than 3 days was significantly greater in the radiation control group than in the rhEGF-treated groups. Conclusions: Systemic administration of rhEGF accelerates recovery from mucosal damage induced by irradiation. We suggest that rhEGF treatment shows promise for the reduction of small intestinal damage after irradiation.

  16. Epidermal Growth Factor Signaling towards Proliferation: Modeling and Logic Inference Using Forward and Backward Search

    PubMed Central

    Riesco, Adrián; Santos-Buitrago, Beatriz; De Las Rivas, Javier; Knapp, Merrill; Talcott, Carolyn

    2017-01-01

    In biological systems, pathways define complex interaction networks where multiple molecular elements are involved in a series of controlled reactions producing responses to specific biomolecular signals. These biosystems are dynamic and there is a need for mathematical and computational methods able to analyze the symbolic elements and the interactions between them and produce adequate readouts of such systems. In this work, we use rewriting logic to analyze the cellular signaling of epidermal growth factor (EGF) and its cell surface receptor (EGFR) in order to induce cellular proliferation. Signaling is initiated by binding the ligand protein EGF to the membrane-bound receptor EGFR so as to trigger a reactions path which have several linked elements through the cell from the membrane till the nucleus. We present two different types of search for analyzing the EGF/proliferation system with the help of Pathway Logic tool, which provides a knowledge-based development environment to carry out the modeling of the signaling. The first one is a standard (forward) search. The second one is a novel approach based on narrowing, which allows us to trace backwards the causes of a given final state. The analysis allows the identification of critical elements that have to be activated to provoke proliferation. PMID:28191459

  17. The Effect of Micro-Spicule Containing Epidermal Growth Factor on Periocular Wrinkles

    PubMed Central

    Ha, Jeong-Min; Lim, Cho-Ah; Han, Kyuboem; Ha, Jong-Cheon; Lee, Hae-Eul; Lee, Young; Seo, Young-Joon; Kim, Chang-Deok; Lee, Jeung-Hoon

    2017-01-01

    Background Micro-needle patches have been recently used to increase skin permeability, which improves drug delivery, and for cosmetic purposes. However, these patches may often have limited efficacy due to insufficient skin penetration and reduced compliance caused by discomfort. Objective We evaluated the efficacy and the safety of soluble micro-spicule containing epidermal growth factor (MS-EGF) for the treatment of periocular wrinkles. Methods Twenty healthy volunteers aged 33 to 54 years were enrolled in a randomized, controlled, split-face study. For 4 weeks, a periocular wrinkle was treated daily with either a soluble MS-EGF cream or a cream containing EGF alone. All subjects underwent 8 weeks of follow-up. Efficacy was assessed using an ultrasonic measurement of dermal depth and density, digital skin image analysis, 5-point photonumeric scale for periocular wrinkles and subjective satisfaction. Results MS-EGF group showed statistically significant increase of dermal depth and density compared to EGF alone group after 4 and 8 weeks. In addition, there was a marked improvement shown in clinical and 3-dimensional skin image in MS-EGF group. The treatments were well-tolerated; no significant side-effect was noted. Conclusion The MS-EGF formulation may represent an effective and biocompatible advance in the treatment of periocular wrinkles. PMID:28392646

  18. Src and epidermal growth factor receptor mediate the pro-invasive activity of Bcl-w.

    PubMed

    Kim, Eun Mi; Park, Jong Kuk; Hwang, Sang-Gu; Um, Hong-Duck

    2016-01-01

    Members of the Bcl-2 family are established regulators of cell death. However, recent studies have shown that they can also regulate cell migration, invasion, and cancer metastasis. These functions of cancer cells are promoted by pro-survival Bcl-2 proteins (Bcl-2, Bcl-XL, and Bcl-w) but are suppressed by pro-apoptotic members (Bax and Bak). We have previously shown that Bcl-w and Bcl-XL enhance the ability of respiratory complex-I to produce reactive oxygen species (ROS), stimulating the phosphoinositide 3-kinase (PI3K)-dependent invasion pathway. Here, we show that Bcl-w overexpression increases the phosphorylation of epidermal growth factor receptor (EGFR) and Src, and their interaction. Our results show that ROS production induced by Bcl-w activates Src, which then binds to and phosphorylates EGFR, leading to stimulation of the PI3K-dependent invasion pathway. Importantly, Bcl-w-induced cell invasion was prevented by treating cells with gefitinib (Iressa, ZD1839), an anticancer drug that directly inhibits EGFR. We also show that Bcl-XL can stimulate Src and EGFR phosphorylation, and that this function of Bcl-XL and Bcl-w is antagonized by Bax and Bak. Overall, this study demonstrates the involvement of Src and EGFR in the regulation of cellular invasiveness by Bcl-2 proteins, suggesting that chemotherapeutics targeting EGFR may be useful in preventing the progression of cancers that have altered Bcl-2 protein functions.

  19. Recombinant modular transporters on the basis of epidermal growth factor for targeted intracellular delivery of photosensitizers

    NASA Astrophysics Data System (ADS)

    Gilyazova, Dinara G.; Rosenkranz, Andrey A.; Gulak, Pavel V.; Lunin, Vladimir G.; Sergienko, Olga V.; Grin, Mikhail A.; Mironov, Andrey F.; Rubin, Andrey B.; Sobolev, Alexander S.

    2005-08-01

    The search for new pharmaceuticals has raised interest in locally-acting drugs which act over short distances within the cell, and for which different cell compartments have different sensitivities. Thus, photosensitizers used in anti-cancer therapy should be transported to the most sensitive subcellular compartments where their action is most pronounced. Earlier, we described the effects of bacterially expressed modular recombinant transporters for photosensitizers comprising a-melanocyte-stimulating hormone as an internalizable, cell-specific ligand, an optimized nuclear localization sequence, an Escherichia coli hemoglobin-like protein as a carrier, and an endosomolytic amphipathic polypeptide. These transporters delivered photosensitizers into the murine melanoma cells nuclei to result in cytotoxic effects 2 orders of magnitude greater than those of nonmodified photosensitizers. Here we describe new transporters possessing the same modules except for a ligand that is replaced with epidermal growth factor specific for other cancer cell types. The new transporter modules retained their functional activities within the chimera, this transporter delivered photosensitizers into the human carcinoma cells nuclei to result in photocytotoxic effects almost 3 orders of magnitude greater than those of nonmodified photosensitizers. The obtained results show that ligand modules of such transporters are interchangeable, meaning that they can be tailored for particular applications.

  20. Epidermal growth factor receptor and DNA double strand break repair: the cell's self-defence.

    PubMed

    Szumiel, Irena

    2006-10-01

    The purpose of this review is to discuss the relation between the repair of DNA double strand breaks (DSB)--the main lethal lesion inflicted by ionising radiation-and the function of receptors of epidermal growth factor (EGFR) and similar ligands (other members of the ERBB family). The reviewed experimental data support the assumption that in mammalian cells, one consequence of EGFR/ERBB activation by X-rays is its internalisation and nuclear translocation together with DNA-dependent protein kinase (DNA-PK) subunits present in lipid rafts or cytoplasm. The effect of EGFR/ERBB stimulation on DSB rejoining would be due to an increase in the nuclear content of DNA-PK subunits and hence, in activity increase of the DNA-PK dependent non-homologous end-joining (D-NHEJ) system. Such mechanism explains the radiosensitising action of "membrane-active drugs", hypertonic media, and other agents that affect nuclear translocation of proteins. Also, one radiosensitising effect of the recently introduced into clinical practice EGFR/ERBB inhibitors would consist on counteracting the nuclear translocation of DNA-PK subunits. In result, D-NHEJ may be less active in inhibitor-treated cells and this will contribute to an enhanced lethal effect of irradiation. The reviewed observations point to a heretofore not understood mechanism of the cell's self-defence against X-rays which can be exploited in combined radio- and chemotherapy.

  1. A novel insertion mutation on exon 20 of epidermal growth factor receptor, conferring resistance to erlotinib.

    PubMed

    Khan, Nawazish A; Mirshahidi, Saied; Mirshahidi, Hamid R

    2014-05-01

    The epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein tyrosine kinase receptor. The small-molecule tyrosine kinase receptor inhibitors (TKIs) are in clinical use to treat non-small cell lung cancer with EGFR mutations. Variable tumor responses to erlotinib and gefitinib have been observed. The response to these TKIs varies by the type of EGFR mutations found in the tumor. The deletion on exon 19 and the L858R substitution on exon 21 constitute the most frequent mutations and are known to show good response to TKIs. However, mutations on exon 20 are less common and seem to respond poorly to TKIs. In clinical settings, the reported response of exon 20 mutations to reversible TKIs (both gefitinib and erlotinib) remains inconstant. The type of coexisting mutation seems to affect the response of these insertions to TKIs. We herein present a case of disease progression despite the use of erlotinib in a female patient who had a novel insertion mutation on exon 20. Our patient was a never-smoker and was identified to have a Pro772_His773insGlnCysPro mutation on exon 20. She had previously been treated with cisplatin and gemcitabine and then with carboplatin and pemetrexed. She was treated with erlotinib upon intolerance to second-line chemotherapy and did not respond. Our patient had a novel insertion mutation on exon 20, which was found to be resistant to erlotinib.

  2. Irreversible inhibition of epidermal growth factor receptor activity by 3-aminopropanamides.

    PubMed

    Carmi, Caterina; Galvani, Elena; Vacondio, Federica; Rivara, Silvia; Lodola, Alessio; Russo, Simonetta; Aiello, Stefania; Bordi, Fabrizio; Costantino, Gabriele; Cavazzoni, Andrea; Alfieri, Roberta R; Ardizzoni, Andrea; Petronini, Pier Giorgio; Mor, Marco

    2012-03-08

    Irreversible epidermal growth factor receptor (EGFR) inhibitors contain a reactive warhead which covalently interacts with a conserved cysteine residue in the kinase domain. The acrylamide fragment, a commonly employed warhead, effectively alkylates Cys797 of EGFR, but its reactivity can cause rapid metabolic deactivation or nonspecific reactions with off-targets. We describe here a new series of irreversible inhibitors containing a 3-aminopropanamide linked in position 6 to 4-anilinoquinazoline or 4-anilinoquinoline-3-carbonitrile driving portions. Some of these compounds proved to be as efficient as their acrylamide analogues in inhibiting EGFR-TK (TK = tyrosine kinase) autophosphorylation in A549 lung cancer cells. Moreover, several 3-aminopropanamides suppressed proliferation of gefitinib-resistant H1975 cells, harboring the T790M mutation in EGFR, at significantly lower concentrations than did gefitinib. A prototypical compound, N-(4-(3-bromoanilino)quinazolin-6-yl)-3-(dimethylamino)propanamide (5), did not show covalent binding to cell-free EGFR-TK in a fluorescence assay, while it underwent selective activation in the intracellular environment, releasing an acrylamide derivative which can react with thiol groups.

  3. Genetic profiling and epidermal growth factor receptor-directed therapy in nonsmall cell lung cancer.

    PubMed

    Cadranel, J; Zalcman, G; Sequist, L

    2011-01-01

    The principle of preferentially selecting patients most likely to benefit from therapy according to their genetic profile has led to substantial clinical benefit in some tumour types, and has potential to considerably refine treatment in advanced nonsmall cell lung cancer (NSCLC). Effective, reliable use of molecular biomarkers to inform clinical practice requires the standardisation of testing methods and careful assessment of biomarkers' predictive and prognostic value. Although a number of studies have shown that patients with activating mutations in exons 18-21 of the epidermal growth factor receptor (EGFR) gene respond particularly well to gefitinib and erlotinib, a prospective, randomised study was needed to differentiate between the prognostic and predictive value of EGFR mutations. From one such study, it appeared that mutational testing should become standard at diagnosis, at least for adenocarcinoma patients with a never or low smoking history, as clinical predictors are insufficient to optimise treatment. However, outstanding questions remain: what are the treatment options for patients with tumours resistant to erlotinib/gefitinib? What conclusions about treatment can we draw from EGFR copy number or KRAS mutation status? What role should anti-EGFR antibodies play in NSCLC treatment, and in which patients? This review considers current evidence linking biomarker profile to efficacy of EGFR-targeted therapy in NSCLC, and clinical implications of recent findings.

  4. Epidermal growth factor gene is a newly identified candidate gene for gout

    PubMed Central

    Han, Lin; Cao, Chunwei; Jia, Zhaotong; Liu, Shiguo; Liu, Zhen; Xin, Ruosai; Wang, Can; Li, Xinde; Ren, Wei; Wang, Xuefeng; Li, Changgui

    2016-01-01

    Chromosome 4q25 has been identified as a genomic region associated with gout. However, the associations of gout with the genes in this region have not yet been confirmed. Here, we performed two-stage analysis to determine whether variations in candidate genes in the 4q25 region are associated with gout in a male Chinese Han population. We first evaluated 96 tag single nucleotide polymorphisms (SNPs) in eight inflammatory/immune pathway- or glucose/lipid metabolism-related genes in the 4q25 region in 480 male gout patients and 480 controls. The SNP rs12504538, located in the elongation of very-long-chain-fatty-acid-like family member 6 gene (Elovl6), was found to be associated with gout susceptibility (Padjusted = 0.00595). In the second stage of analysis, we performed fine mapping analysis of 93 tag SNPs in Elovl6 and in the epidermal growth factor gene (EGF) and its flanking regions in 1017 male patients gout and 1897 healthy male controls. We observed a significant association between the T allele of EGF rs2298999 and gout (odds ratio = 0.77, 95% confidence interval = 0.67–0.88, Padjusted = 6.42 × 10−3). These results provide the first evidence for an association between the EGF rs2298999 C/T polymorphism and gout. Our findings should be validated in additional populations. PMID:27506295

  5. Characterization of human epidermal growth factor in human serum and urine under native conditions.

    PubMed

    Aybay, Cemalettin; Karakus, Resul; Yucel, Aysegul

    2006-07-01

    The objective of this study was to investigate the molecular nature of the human epidermal growth factor (EGF) in serum and urine samples of normal subjects. Recombinant EGF emerged as a single peak and did not interact with human IgG1 and albumin up to the concentration of 12 microg/ml. Freshly separated human serum contained only trace amounts of EGF. However, EGF appeared and increased in serum separated from blood after spontaneous overnight clotting. The authentic 6 kDa form of EGF made up nearly 40% of the total EGF in serum and revealed relatively homogeneous feature. The remaining immunoreactive fractions corresponded to 160 kDa proEGF. Immunoreactive EGF in blood seemed to be associated with the EGF release from platelets. TSKgel G3000SW chromatography of freshly-voided morning and day urines revealed that urine samples mainly contained two major form of EGF; a high-molecular-weight (HMW) and low-molecular-weight (LMW) forms. In the sense of molecular nature of EGF contents, morning urine was more heterogeneous than day urine of the same individuals. The LMW form of EGF in morning urine, in which its proportion was more than 90% of the total EGF, revealed further heterogeneous feature generally containing three to four different components.

  6. Transforming growth factor alpha induces collagen degradation and cell migration in differentiating human epidermal raft cultures.

    PubMed Central

    Turksen, K; Choi, Y; Fuchs, E

    1991-01-01

    When cultured on plastic and treated with transforming growth factor alpha (TGF alpha), human keratinocytes exhibit an increase in proliferation at the colony periphery, apparently as a consequence of enhanced cell migration (Barrandon and Green, 1987). To investigate the effects of TGF alpha on a differentiating stratified squamous epithelium and to begin to examine the molecular basis mediating this influence, we cultured human epidermal cells on a gelled lattice of collagen and fibroblasts, floating on the air-liquid interface. Under these conditions, raft cultures differentiate and exhibit morphological and biochemical features of human skin in vivo (Asselineau et al., 1986; Kopan et al., 1987). When 3-wk-old raft cultures were treated with TGF alpha, basal cells showed a marked increase in cell proliferation. At elevated concentrations of TGF alpha, the organization of cells within the artificial tissue changed and islands of basal cells entered the collagen matrix. Biochemical analysis of the response revealed that type I collagenase and gelatinase were induced by keratinocytes within 12 h after TGF alpha treatment. In contrast, invasion of basal cells into the collagen matrix was not significant until 48-72 h post-treatment, suggesting that collagenase and gelatinase production may be a prerequisite to this phenomenon. These results have important implications for the possible role of TGF alpha in squamous cell carcinoma and tumor invasion. Images PMID:1663788

  7. Dialkoxyquinazolines: Screening Epidermal Growth Factor ReceptorTyrosine Kinase Inhibitors for Potential Tumor Imaging Probes

    SciTech Connect

    VanBrocklin, Henry F.; Lim, John K.; Coffing, Stephanie L.; Hom,Darren L.; Negash, Kitaw; Ono, Michele Y.; Hanrahan, Stephen M.; Taylor,Scott E.; Vanderpoel, Jennifer L.; Slavik, Sarah M.; Morris, Andrew B.; Riese II, David J.

    2005-09-01

    The epidermal growth factor receptor (EGFR), a long-standingdrug development target, is also a desirable target for imaging. Sixteendialkoxyquinazoline analogs, suitable for labeling with positron-emittingisotopes, have been synthesized and evaluated in a battery of in vitroassays to ascertain their chemical and biological properties. Thesecharacteristics provided the basis for the adoption of a selection schemato identify lead molecules for labeling and in vivo evaluation. A newEGFR tyrosine kinase radiometric binding assay revealed that all of thecompounds possessed suitable affinity (IC50 = 0.4 - 51 nM) for the EGFRtyrosine kinase. All of the analogs inhibited ligand-induced EGFRtyrosine phosphorylation (IC50 = 0.8 - 20 nM). The HPLC-estimatedoctanol/water partition coefficients ranged from 2.0-5.5. Four compounds,4-(2'-fluoroanilino)- and 4-(3'-fluoroanilino)-6,7-diethoxyquinazoline aswell as 4-(3'-chloroanilino)- and4-(3'-bromoanilino)-6,7-dimethoxyquinazoline, possess the bestcombination of characteristics that warrant radioisotope labeling andfurther evaluation in tumor-bearing mice.

  8. Targeting the Epidermal Growth Factor Receptor in Epithelial Ovarian Cancer: Current Knowledge and Future Challenges

    PubMed Central

    Siwak, Doris R.; Carey, Mark; Hennessy, Bryan T.; Nguyen, Catherine T.; McGahren Murray, Mollianne J.; Nolden, Laura; Mills, Gordon B.

    2010-01-01

    The epidermal growth factor receptor is overexpressed in up to 60% of ovarian epithelial malignancies. EGFR regulates complex cellular events due to the large number of ligands, dimerization partners, and diverse signaling pathways engaged. In ovarian cancer, EGFR activation is associated with increased malignant tumor phenotype and poorer patient outcome. However, unlike some other EGFR-positive solid tumors, treatment of ovarian tumors with anti-EGFR agents has induced minimal response. While the amount of information regarding EGFR-mediated signaling is considerable, current data provides little insight for the lack of efficacy of anti-EGFR agents in ovarian cancer. More comprehensive, systematic, and well-defined approaches are needed to dissect the roles that EGFR plays in the complex signaling processes in ovarian cancer as well as to identify biomarkers that can accurately predict sensitivity toward EGFR-targeted therapeutic agents. This new knowledge could facilitate the development of rational combinatorial therapies to sensitize tumor cells toward EGFR-targeted therapies. PMID:20037743

  9. Epidermal growth factor receptor expression in different subtypes of oral lichenoid disease

    PubMed Central

    Cortés-Ramírez, Dionisio A.; Rodríguez-Tojo, María J.; Coca-Meneses, Juan C.; Marichalar-Mendia, Xabier

    2014-01-01

    The oral lichenoid disease (OLD) includes different chronic inflammatory processes such as oral lichen planus (OLP) and oral lichenoid lesions (OLL), both entities with controversial diagnosis and malignant potential. Epidermal growth factor receptor (EFGR) is an important oral carcinogenesis biomarker and overexpressed in several oral potentially malignant disorders. Objectives: To analyze the EGFR expression in the OLD to find differences between OLP and OLL, and to correlate it with the main clinical and pathological features. Material and Methods: Forty-four OLD cases were studied and classified according to their clinical (Group C1: only papular lesions / Group C2: papular and other lesions) and histopathological features (Group HT: OLP-typical / Group HC: OLP-compatible) based in previous published criteria. Standard immunohistochemical identification of EGFR protein was performed. Comparative and descriptive statistical analyses were performed. Results: Thirty-five cases (79.5%) showed EGFR overexpression without significant differences between clinical and histopathological groups (p<0.05). Histological groups showed significant differences in the EGFR expression pattern (p=0.016). Conlusions: All OLD samples showed high EGFR expression. The type of clinical lesion was not related with EGFR expression; however, there are differences in the EGFR expression pattern between histological groups that may be related with a different biological profile and malignant risk. Key words:Oral lichenoid disease, oral lichen planus, oral lichenoid lesion, oral carcinogenesis, EGFR. PMID:24880441

  10. Immune Responses to Epidermal Growth Factor Receptor (EGFR) and Their Application for Cancer Treatment.

    PubMed

    Sasada, Tetsuro; Azuma, Koichi; Ohtake, Junya; Fujimoto, Yuki

    2016-01-01

    Epidermal growth factor receptor (EGFR) is a prototypic cell-surface receptor belonging to the ErbB/HER onocogene family. Overexpression or somatic mutations of EGFR have been reported to play an important role in tumorigenesis in various types of epithelial cancers. Therefore, targeting of EGFR with specific blocking antibodies or inhibitors have been developing for treatment for EGFR-associated tumors. Immune responses to HER2, another molecule of the ErbB/HER onocogene family, have been well studied, but only limited information on the immune responses to EGFR in cancer has been currently available. In this review, we have summarized the available data and discussed potential clinical importance of the anti-EGFR immune responses and EGFR-mediated immune regulation in cancer. Several lines of evidence suggest that cellular and humoral immune responses to EGFR might be useful as a marker and/or target for cancer therapy against EGFR-associated tumors. In addition, recent studies suggest the critical roles of EGFR-mediated signaling in regulation of expression of an immune checkpoint molecule, programmed death-ligand 1 (PD-L1) in tumor cells. Further studies are warranted to clarify the impact of the anti-EGFR immune responses and EGFR-mediated immunomodulation for clinical application for cancer treatment.

  11. Inhibition of Epidermal Growth Factor Receptor Improves Myelination and Attenuates Tissue Damage of Spinal Cord Injury.

    PubMed

    Zhang, Si; Ju, Peijun; Tjandra, Editha; Yeap, Yeeshan; Owlanj, Hamed; Feng, Zhiwei

    2016-10-01

    Preventing demyelination and promoting remyelination of denuded axons are promising therapeutic strategies for spinal cord injury (SCI). Epidermal growth factor receptor (EGFR) inhibition was reported to benefit the neural functional recovery and the axon regeneration after SCI. However, its role in de- and remyelination of axons in injured spinal cord is unclear. In the present study, we evaluated the effects of EGFR inhibitor, PD168393 (PD), on the myelination in mouse contusive SCI model. We found that expression of myelin basic protein (MBP) in the injured spinal cords of PD treated mice was remarkably elevated. The density of glial precursor cells and oligodendrocytes (OLs) was increased and the cell apoptosis in lesions was attenuated after PD168393 treatment. Moreover, PD168393 treatment reduced both the numbers of OX42 + microglial cells and glial fibrillary acidic protein + astrocytes in damaged area of spinal cords. We thus conclude that the therapeutic effects of EGFR inhibition after SCI involves facilitating remyelination of the injured spinal cord, increasing of oligodendrocyte precursor cells and OLs, as well as suppressing the activation of astrocytes and microglia/macrophages.

  12. Immunotoxin Therapies for the Treatment of Epidermal Growth Factor Receptor-Dependent Cancers

    PubMed Central

    Simon, Nathan; FitzGerald, David

    2016-01-01

    Many epithelial cancers rely on enhanced expression of the epidermal growth factor receptor (EGFR) to drive proliferation and survival pathways. Development of therapeutics to target EGFR signaling has been of high importance, and multiple examples have been approved for human use. However, many of the current small molecule or antibody-based therapeutics are of limited effectiveness due to the inevitable development of resistance and toxicity to normal tissues. Recombinant immunotoxins are therapeutic molecules consisting of an antibody or receptor ligand joined to a protein cytotoxin, combining the specific targeting of a cancer-expressed receptor with the potent cell killing of cytotoxic enzymes. Over the decades, many bacterial- or plant-based immunotoxins have been developed with the goal of targeting the broad range of cancers reliant upon EGFR overexpression. Many examples demonstrate excellent anti-cancer properties in preclinical development, and several EGFR-targeted immunotoxins have progressed to human trials. This review summarizes much of the past and current work in the development of immunotoxins for targeting EGFR-driven cancers. PMID:27153091

  13. Phthalocyanine-Peptide Conjugates for Epidermal Growth Factor Receptor Targeting1

    PubMed Central

    Ongarora, Benson G.; Fontenot, Krystal R.; Hu, Xiaoke; Sehgal, Inder; Satyanarayana-Jois, Seetharama D.; Vicente, M. Graça H.

    2012-01-01

    Four phthalocyanine (Pc)-peptide conjugates designed to target the epidermal growth factor receptor (EGFR) were synthesized and evaluated in vitro using four cell lines: human carcinoma A431 and HEp2, human colorectal HT-29, and kidney Vero (negative control) cells. Two peptide ligands for EGFR were investigated: EGFR-L1 and -L2, bearing 6 and 13 amino acid residues, respectively. The peptides and Pc-conjugates were shown to bind to EGFR using both theoretical (Autodock) and experimental (SPR) investigations. The Pc-EGFR-L1 conjugates 5a and 5b efficiently targeted EGFR and were internalized, in part due to their cationic charge, whereas the uncharged Pc-EGFR-L2 conjugates 4b and 6a poorly targeted EGFR maybe due to their low aqueous solubility. All conjugates were non-toxic (IC50 > 100 µM) to HT-29 cells, both in the dark and upon light activation (1 J/cm2). Intravenous (iv) administration of conjugate 5b into nude mice bearing A431 and HT-29 human tumor xenografts resulted in a near-IR fluorescence signal at ca. 700 nm, 24 h after administration. Our studies show that Pc-EGFR-L1 conjugates are promising near-IR fluorescent contrast agents for CRC, and potentially other EGFR over-expressing cancers. PMID:22468711

  14. The Nuclear Epidermal Growth Factor Receptor Signaling Network and its Role in Cancer

    PubMed Central

    Brand, Toni M.; Iida, Mari; Li, Chunrong; Wheeler, Deric L.

    2012-01-01

    The epidermal growth factor receptor (EGFR) is a member of the EGFR family of receptor tyrosine kinases (RTKs). EGFR activation via ligand binding results in signaling through various pathways ultimately resulting in cellular proliferation, survival, angiogenesis, invasion, and metastasis. Aberrant expression or activity of EGFR has been strongly linked to the etiology of several human epithelial cancers including but not limited to head and neck squamous cell carcinoma (HNSCC), non-small cell lung cancer (NSCLC), colorectal cancer (CRC), breast cancer, pancreatic cancer and brain cancer. Thus intense efforts have been made to inhibit the activity of EGFR by designing antibodies against the ligand binding domains (cetuximab and panitumumab) or small molecules against the tyrosine kinase domains (erlotinib, gefitinib, and lapatinib). Although targeting membrane bound EGFR has shown benefit a new and emerging role for the EGFR is now being elucidated. In this review we will summarize the current knowledge of the nuclear EGFR signaling network, including how it is trafficked to the nucleus, the functions it serves in the nucleus, and how these functions impact cancer progression, survival and response to chemotherapeutics. PMID:22127113

  15. Direct visualization of the phosphorylated epidermal growth factor receptor during its internalization in A-431 cells

    PubMed Central

    1987-01-01

    Epidermal growth factor (EGF) rapidly stimulates receptor autophosphorylation in A-431 cells. After 1 min the phosphorylated receptor can be identified at the plasma membrane using an anti- phosphotyrosine antibody. With further incubation at 37 degrees C, approximately 50% of the phosphorylated EGF receptor was internalized (t1/2 = 5 min) and associated with the tubulovesicular system and later with multivesicular bodies, but not the nucleus. During this period, there was no change in the extent or sites of phosphorylation. At all times the phosphotyrosine remained on the cytoplasmic side of the membrane, opposite to the EGF ligand identified by anti-EGF antibody. These data indicate that (a) the tyrosine-phosphorylated EGF receptor is internalized in its activated form providing a mechanism for translocation of the receptor kinase to substrates in the cell interior; (b) the internalized receptor remains intact for at least 60 min, does not associate with the nucleus, and does not generate any tyrosine-phosphorylated fragments; and (c) tyrosine phosphorylation alone is not the signal for receptor internalization. PMID:2447100

  16. Inhibition of epidermal growth factor receptor attenuates atherosclerosis via decreasing inflammation and oxidative stress

    PubMed Central

    Wang, Lintao; Huang, Zhouqing; Huang, Weijian; Chen, Xuemei; Shan, Peiren; Zhong, Peng; Khan, Zia; Wang, Jingying; Fang, Qilu; Liang, Guang; Wang, Yi

    2017-01-01

    Atherosclerosis is a progressive disease leading to loss of vascular homeostasis and entails fibrosis, macrophage foam cell formation, and smooth muscle cell proliferation. Recent studies have reported that epidermal growth factor receptor (EGFR) is involved vascular pathophysiology and in the regulation of oxidative stress in macrophages. Although, oxidative stress and inflammation play a critical role in the development of atherosclerosis, the underlying mechanisms are complex and not completely understood. In the present study, we have elucidated the role of EGFR in high-fat diet-induced atherosclerosis in apolipoprotein E null mice. We show increased EGFR phosphorylation and activity in atherosclerotic lesion development. EGFR inhibition prevented oxidative stress, macrophage infiltration, induction of pro-inflammatory cytokines, and SMC proliferation within the lesions. We further show that EGFR is activated through toll-like receptor 4. Disruption of toll-like receptor 4 or the EGFR pathway led to reduced inflammatory activity and foam cell formation. These studies provide evidence that EGFR plays a key role on the pathogenesis of atherosclerosis, and suggests that EGFR may be a potential therapeutic target in the prevention of atherosclerosis development. PMID:28374780

  17. Epidermal growth factor binding and receptor distribution in the mouse reproductive tract during development

    SciTech Connect

    Bossert, N.L.; Nelson, K.G.; Ross, K.A.; Takahashi, T.; McLachlan, J.A. )

    1990-11-01

    The ontogeny of the epidermal growth factor (EGF) receptor in the different cell types in the neonatal and immature mouse uterus and vagina was examined. Immunohistochemical examination of prenatal and neonatal reproductive tracts with a polyclonal antibody to the EGF receptor shows immunoreactive EGF receptors as early as Day 13 of gestation. Autoradiographic analysis of tissue sections at 3 to 17 days of age (the day of birth is Day 1) demonstrates that both uterine and vaginal epithelial and stromal cells are capable of binding 125I-labeled EGF. Both the 125I-labeled EGF autoradiography and immunohistochemistry in whole tissue show higher EGF receptor levels in the uterine epithelium than the uterine stroma. The presence of EGF receptors was also confirmed by affinity labeling and Scatchard analysis of isolated uterine cell types at 7 and/or 17 days of age. However, in contrast to the autoradiography and immunohistochemistry data of intact tissue, the affinity labeling and Scatchard data of isolated cells indicate that the uterine stroma contains higher levels of EGF receptor than that of the uterine epithelium. The reason for this discrepancy between the different techniques is, as yet, unknown. Regardless of the differences in the actual numbers of EGF receptors obtained, our data demonstrate that the developing mouse reproductive tract contains immunoreactive EGF receptors that are capable of binding 125I-labeled EGF.

  18. A genetic screen for zebrafish mutants with hepatic steatosis identifies a locus required for larval growth.

    PubMed

    Hugo, Sarah E; Schlegel, Amnon

    2017-03-01

    In a screen for zebrafish larval mutants with excessive liver lipid accumulation (hepatic steatosis), we identified harvest moon (hmn). Cytoplasmic lipid droplets, surrounded by multivesicular structures and mitochondria whose cristae appeared swollen, are seen in hmn mutant hepatocytes. Whole body triacylglycerol is increased in hmn mutant larvae. When we attempted to raise mutants, which were morphologically normal at the developmental stage that the screen was conducted, to adulthood, we observed that most hmn mutants do not survive to the juvenile period when raised. An arrest in growth occurs in the late larval period without obvious organ defects. Maternal zygotic mutants have no additional defects, suggesting that the mutation affects a late developmental process. The developmental window between embryogenesis and the metamorphosis remains under-studied, and hmn mutants might be useful for exploring the molecular and anatomic processes occurring during this transition period.

  19. Platelet-derived growth factor mimics phorbol diester action on epidermal growth factor receptor phosphorylation at threonine-654

    SciTech Connect

    Davis, R.J.; Czech, M.P.

    1985-06-01

    Addition of platelet-derived growth factor (PDGF) to quiescent WI-38 human fetal lung fibroblasts mimics the effect of tumor-promoting phorbol diesters to inhibit the high-affinity binding of SVI-labeled epidermal growth factor ( SVI-EGF). PDGF, like phorbol diesters, was found to increase the phosphorylation state of EGF receptors immunoprecipitated from intact fibroblasts that were labeled to equilibrium with (TSP)phosphate. Phosphoamino acid analysis of the EGF receptors indicated that both PDGF and phorbol diesters increased the level of (TSP)phosphoserine and (TSP)phosphothreonine. Phosphopeptide mapping of the EGF receptor demonstrated that PDGF increased the phosphorylation of several sites and induced the phosphorylation of a site that was not observed to be phosphorylated on EGF receptors isolated from control cells. This latter phosphorylation site on the EGF receptor was identified as threonine-654. These results are consistent with the hypothesis that increases in diacylglycerol and CaS levels caused by addition of PDGF to fibroblasts activate protein kinase C and that this kinase, at least in part, mediates the effect of PDGF on the phosphorylation of the EGF receptor. The data further suggest that protein kinase C may play an important role in the regulation of cellular metabolism and proliferation by PDGF.

  20. Mammary tumorigenesis induced by fibroblast growth factor receptor 1 requires activation of the epidermal growth factor receptor.

    PubMed

    Bade, Lindsey K; Goldberg, Jodi E; Dehut, Hazel A; Hall, Majken K; Schwertfeger, Kathryn L

    2011-09-15

    Fibroblast growth factor receptor 1 (FGFR1) is an oncoprotein with known involvement in mammary tumorigenesis. To understand how FGFR1 signaling promotes mammary tumorigenesis, an inducible FGFR1 (iFGFR1) system was created previously. Previous studies have demonstrated that upon iFGFR1 activation in vivo, the epidermal growth factor (EGF) ligands amphiregulin (AREG) and epiregulin (EREG) are upregulated. Both AREG and EREG interact with the EGF receptor (EGFR). Here, we investigated whether the FGFR1-induced increase in AREG and EREG expression might coordinately increase EGFR signaling to promote mammary tumorigenesis. Treatment of mouse mammary epithelial cells with either AREG or EREG conferred a greater migratory potential, increased cellular proliferation and increased extracellular regulated kinase 1/2 (ERK1/2) activation. These effects could be blocked with the EGFR-specific inhibitor erlotinib, suggesting that they are EGFR-dependent. In transgenic mice with iFGFR1 under the control of the mouse mammary tumor virus (MMTV) promoter, iFGFR1 activation also led to increased mammary epithelial cell proliferation that was inhibited with erlotinib. Taken together, these data suggest that AREG and EREG mediate tumorigenic phenotypes by activating EGFR signaling, and that the oncogenic potential of FGFR1 requires EGFR activation to promote mammary tumorigenesis.

  1. Heparin-Binding Epidermal Growth Factor-Like Growth Factor Enhances Aquaporin 3 Expression and Function During Mouse Embryo Implantation.

    PubMed

    Fang, Chuan-Xiang; Nong, Ying-Qi; Liu, Feng-Hua; Fan, Lin; Chen, Ye

    2017-03-01

    Aquaporin 3 (AQP3) is highly expressed in peri-implantation blastocyst trophoblastic cells, indicating its role in cytotrophoblast invasion during embryo implantation. However, the mechanism underlying the regulation of AQP3 expression during embryo implantation remains unclear. In this study, an in vitro co-culture system of blastocysts on a monolayer of uterine endometrial cells was used to mimic in vivo process of embryo attachment and invasion to uterine endometrium and treated with different concentrations of heparin-binding epidermal growth factor-like growth factor (HB-EGF). The results showed that HB-EGF enhanced AQP3 expression in blastocysts in a dose-dependent manner and promoted the attachment and outgrowth of blastocysts on the monolayer of uterine endometrial cells. When the AQP3 activity was inhibited by copper sulfate, both the attachment and outgrowth of blastocysts were inhibited. Furthermore, HB-EGF induced the phosphorylation of EGF receptor (EGFR) and extracellular signal-regulated kinase (ERK). PD153035 (EGFR inhibitor) and U0126 (ERK inhibitor) inhibited AQP3 expression and also the attachment and outgrowth of blastocysts. Collectively, our findings provide the first evidence that HB-EGF stimulates EGFR/ERK signaling to promote AQP3 expression in trophoblastic cells, and AQP3 plays a vital role in HB-EGF-induced embryo implantation.

  2. Influence of macrocyclization on allosteric, juxtamembrane-derived, stapled peptide inhibitors of the epidermal growth factor receptor (EGFR).

    PubMed

    Sinclair, Julie K-L; Schepartz, Alanna

    2014-09-19

    The hydrocarbon-stapled peptide E1(S) allosterically inhibits the kinase activity of the epidermal growth factor receptor (EGFR) by blocking a distant but essential protein-protein interaction: a coiled coil formed from the juxtamembrane segment (JM) of each member of the dimeric partnership.1 Macrocyclization is not required for activity: the analogous unstapled (but alkene-bearing) peptide is equipotent in cell viability, immunoblot, and bipartite display experiments to detect coiled coil formation on the cell surface.

  3. Conformational changes accompany phosphorylation of the epidermal growth factor receptor C-terminal domain

    PubMed Central

    Lee, Nam Y.; Koland, John G.

    2005-01-01

    The precise regulation of epidermal growth factor receptor (EGFR) signaling is crucial to its function in cellular growth control. Various studies have suggested that the C-terminal phosphorylation domain, itself a substrate for the EGFR kinase activity, exerts a regulatory influence upon it, although the molecular mechanism for this regulation is unknown. The fluorescence resonance energy transfer (FRET) technique was employed to examine how C-terminal domain conformational changes in the context of receptor activation and autophosphorylation might regulate EGFR enzymatic activity. A novel FRET reporter system was devised in which recombinant purified EGFR intracellular domain (ICD) proteins of varying C-terminal lengths were site-specifically labeled at their extreme C termini with blue fluorescent protein (BFP) and a fluorescent nucleotide analog, 2′(3′)-O-(2,4,6-trinitrophenyl)-adenosine 5′-triphosphate (TNP-ATP), binding at their active sites. This novel BFP/TNP-ATP FRET pair demonstrated efficient energy transfer as evidenced by appreciable BFP-donor quenching by bound TNP-ATP. In particular, a marked reduction in energy transfer was observed for the full-length BFP-labeled EGFR-ICD protein upon phosphorylation, likely reflecting its movement away from the active site. The estimated distances from the BFP module to the TNP-ATP-occupied active site for the full-length and C-terminally truncated proteins also reveal the possible folding geometry of this domain with respect to the kinase core. The present studies demonstrate the first use of BFP/TNP-ATP as a FRET reporter system. Furthermore, the results described here provide biophysical evidence for phosphorylation-dependent conformational changes in the C-terminal phosphorylation domain and its likely interaction with the kinase core. PMID:16199664

  4. Conformational changes accompany phosphorylation of the epidermal growth factor receptor C-terminal domain.

    PubMed

    Lee, Nam Y; Koland, John G

    2005-11-01

    The precise regulation of epidermal growth factor receptor (EGFR) signaling is crucial to its function in cellular growth control. Various studies have suggested that the C-terminal phosphorylation domain, itself a substrate for the EGFR kinase activity, exerts a regulatory influence upon it, although the molecular mechanism for this regulation is unknown. The fluorescence resonance energy transfer (FRET) technique was employed to examine how C-terminal domain conformational changes in the context of receptor activation and autophosphorylation might regulate EGFR enzymatic activity. A novel FRET reporter system was devised in which recombinant purified EGFR intracellular domain (ICD) proteins of varying C-terminal lengths were site-specifically labeled at their extreme C termini with blue fluorescent protein (BFP) and a fluorescent nucleotide analog, 2'(3')-O-(2,4,6-trinitrophenyl)-adenosine 5'-triphosphate (TNP-ATP), binding at their active sites. This novel BFP/TNP-ATP FRET pair demonstrated efficient energy transfer as evidenced by appreciable BFP-donor quenching by bound TNP-ATP. In particular, a marked reduction in energy transfer was observed for the full-length BFP-labeled EGFR-ICD protein upon phosphorylation, likely reflecting its movement away from the active site. The estimated distances from the BFP module to the TNP-ATP-occupied active site for the full-length and C-terminally truncated proteins also reveal the possible folding geometry of this domain with respect to the kinase core. The present studies demonstrate the first use of BFP/TNP-ATP as a FRET reporter system. Furthermore, the results described here provide biophysical evidence for phosphorylation-dependent conformational changes in the C-terminal phosphorylation domain and its likely interaction with the kinase core.

  5. Epidermal growth factor receptor endocytic traffic perturbation by phosphatidate phosphohydrolase inhibition: new strategy against cancer.

    PubMed

    Shaughnessy, Ronan; Retamal, Claudio; Oyanadel, Claudia; Norambuena, Andrés; López, Alejandro; Bravo-Zehnder, Marcela; Montecino, Fabian J; Metz, Claudia; Soza, Andrea; González, Alfonso

    2014-05-01

    Epidermal growth factor receptor (EGFR) exaggerated (oncogenic) function is currently targeted in cancer treatment with drugs that block receptor ligand binding or tyrosine kinase activity. Because endocytic trafficking is a crucial regulator of EGFR function, its pharmacological perturbation might provide a new anti-tumoral strategy. Inhibition of phosphatidic acid (PA) phosphohydrolase (PAP) activity has been shown to trigger PA signaling towards type 4 phosphodiesterase (PDE4) activation and protein kinase A inhibition, leading to internalization of empty/inactive EGFR. Here, we used propranolol, its l- and d- isomers and desipramine as PAP inhibitors to further explore the effects of PAP inhibition on EGFR endocytic trafficking and its consequences on EGFR-dependent cancer cell line models. PAP inhibition not only made EGFR inaccessible to stimuli but also prolonged the signaling lifetime of ligand-activated EGFR in recycling endosomes. Strikingly, such endocytic perturbations applied in acute/intermittent PAP inhibitor treatments selectively impaired cell proliferation/viability sustained by an exaggerated EGFR function. Phospholipase D inhibition with FIPI (5-fluoro-2-indolyl des-chlorohalopemide) and PDE4 inhibition with rolipram abrogated both the anti-tumoral and endocytic effects of PAP inhibition. Prolonged treatments with a low concentration of PAP inhibitors, although without detectable endocytic effects, still counteracted cell proliferation, induced apoptosis and decreased anchorage-independent growth of cells bearing EGFR oncogenic influences. Overall, our results show that PAP inhibitors can counteract EGFR oncogenic traits, including receptor overexpression or activating mutations resistant to current tyrosine kinase inhibitors, perturbing EGFR endocytic trafficking and perhaps other as yet unknown processes, depending on treatment conditions. This puts PAP activity forward as a new suitable target against EGFR-driven malignancy.

  6. Oxidant and antioxidant events during epidermal growth factor therapy to cutaneous wound healing in rats.

    PubMed

    Kalay, Zeynep; Cevher, Sule Coskun

    2012-08-01

    Cutaneous wound healing is a highly complex process, which includes inflammation, cell proliferation, matrix deposition and remodelling phases. Various growth factors, like epidermal growth factor (EGF), play an important role during wound healing. However, little is known about relationship between EGF and oxidant-antioxidant events in cutaneous wound healing models. Thus we planned to evaluate the connection between EGF therapy and oxidative stress in dermal tissue followed by wounding. Fifty-four adult male Wistar-albino rats were randomly divided into three groups: control, untreated and topical EGF administrated group. A linear full-thickness excision of 40 mm in length on both sides of spinal cord was made on the back of each rat and sutured under anaesthesia and sterile conditions. Excision was closed with 4/0 atraumatic silk suture. EGF solution was freshly prepared at 10 ng/ml dose in thilotears gel under aseptic conditions. Following the surgery, 1 ml of EGF solution was administered to wound strips one time in everyday. The animals were euthanised and wound tissues were collected on days 1, 5, 7 and 14. Thiobarbituric acid reactive substans (TBARS), glutathione (GSH), reactive nitrogen oxide species (NOx), ascorbic acid levels and superoxide dismutase activity were measured spectrophotometrically. TBARS levels decreased and NOx levels increased on day 5 after operation, and GSH levels were increased on day 14 in EGF administered group compared with untreated group. Our data showed that EGF may act like an antioxidant by scavenging toxic oxidation products in wound tissue. In addition, it may contribute healing of the wound tissue in earlier stages and suggest a potential effective role for antioxidant therapies, especially until day 5.

  7. Sphingosine-1-phosphate mediates epidermal growth factor-induced muscle satellite cell activation.

    PubMed

    Nagata, Yosuke; Ohashi, Kazuya; Wada, Eiji; Yuasa, Yuki; Shiozuka, Masataka; Nonomura, Yoshiaki; Matsuda, Ryoichi

    2014-08-01

    Skeletal muscle can regenerate repeatedly due to the presence of resident stem cells, called satellite cells. Because satellite cells are usually quiescent, they must be activated before participating in muscle regeneration in response to stimuli such as injury, overloading, and stretch. Although satellite cell activation is a crucial step in muscle regeneration, little is known of the molecular mechanisms controlling this process. Recent work showed that the bioactive lipid sphingosine-1-phosphate (S1P) plays crucial roles in the activation, proliferation, and differentiation of muscle satellite cells. We investigated the role of growth factors in S1P-mediated satellite cell activation. We found that epidermal growth factor (EGF) in combination with insulin induced proliferation of quiescent undifferentiated mouse myoblast C2C12 cells, which are also known as reserve cells, in serum-free conditions. Sphingosine kinase activity increased when reserve cells were stimulated with EGF. Treatment of reserve cells with the D-erythro-N,N-dimethylsphingosine, Sphingosine Kinase Inhibitor, or siRNA duplexes specific for sphingosine kinase 1, suppressed EGF-induced C2C12 activation. We also present the evidence showing the S1P receptor S1P2 is involved in EGF-induced reserve cell activation. Moreover, we demonstrated a combination of insulin and EGF promoted activation of satellite cells on single myofibers in a manner dependent on SPHK and S1P2. Taken together, our observations show that EGF-induced satellite cell activation is mediated by S1P and its receptor.

  8. Single-Tube Mutation Scanning of The Epidermal Growth Factor Receptor Gene Using Multiplex LATE-PCR and Lights-On/Lights-Off Probes

    PubMed Central

    Tetrault, Shana M.; Rice, John E.; Wangh, Lawrence J.; Sanchez, J. Aquiles

    2014-01-01

    Background Numerous mutations in exons 18-21 of the epidermal growth factor receptor (EGFR) gene determine the response of many patients with non-small cell lung carcinoma (NSCLC) to anti-EGFR tyrosine kinase inhibitors (TKIs). This paper describes a single closed-tube assay for simultaneous mutational scanning of EGFR exons 18-21. Methods The assay first co-amplifies all four exons as separate single-stranded DNA products using Linear-After-The-Exponential (LATE)-PCR. The amplicons are then interrogated at endpoint along their length using sets of Lights-On/Lights-Off probes of a different color for each exon. The four resulting fluorescent signatures are unique for each underlying DNA sequence. Every mutation in a target potentially alters its unique fluorescent signature thereby revealing the presence of the mutation. Results The assay readily detects mutations which cause sensitivity or resistance to TKIs and can distinguish these clinically important genetic changes from silent mutations which have no impact on protein function. The assay identifies as little as 5% mutant sequences in mixtures of normal DNA and mutant DNA prepared from cancer cell lines. Proof-of-principle experiments demonstrate mutation identification in formalin-fixed, paraffin-embedded NSCLC biopsies. Conclusion The LATE-PCR EGFR assay described here represents a new type of highly informative, single-tube diagnostic test for mutational scanning of multiple gene coding regions and/or multiple gene targets for personalized cancer therapies. PMID:25411647

  9. A single amino acid substitution is sufficient to modify the mitogenic properties of the epidermal growth factor receptor to resemble that of gp185erbB-2.

    PubMed Central

    Di Fiore, P P; Helin, K; Kraus, M H; Pierce, J H; Artrip, J; Segatto, O; Bottaro, D P

    1992-01-01

    The epidermal growth factor (EGF) receptor (EGFR) and the erbB-2 gene product, gp185erbB-2, exhibit distinct abilities to stimulate mitogenesis in different target cells. By using chimeric molecules between these two receptors, we have previously shown that their intracellular juxtamembrane regions are responsible for this specificity. Here we describe a genetically engineered EGFR mutant containing a threonine for arginine substitution at position 662 in the EGFR juxtamembrane domain, corresponding to threonine 694 in gp185erbB-2. This mutant, designated EGFRThr662, displayed affinity for EGF binding and catalytic properties that were indistinguishable from those of the wild type EGFR. However, EGFRThr662 behaved much as gp185erbB-2 in a number of bioassays which readily distinguish between the mitogenic effects of EGFR and gp185erbB-2. Moreover, significant differences were detected in the pattern of intracellular proteins phosphorylated on tyrosine in vivo by EGFR and EGFRThr662 in response to EGF. Thus, small differences in the primary sequence of two closely related receptors have dramatic effects on their ability to couple with mitogenic pathways. Images PMID:1356764

  10. Discordance of Mutation Statuses of Epidermal Growth Factor Receptor and K-ras between Primary Adenocarcinoma of Lung and Brain Metastasis.

    PubMed

    Rau, Kun-Ming; Chen, Han-Ku; Shiu, Li-Yen; Chao, Tsai-Ling; Lo, Yi-Ping; Wang, Chin-Chou; Lin, Meng-Chih; Huang, Chao-Cheng

    2016-04-07

    Mutations on epidermal growth factor receptor (EGFR) of adenocarcinomas of lung have been found to be associated with increased sensitivity to EGFR tyrosine kinase inhibitors and K-ras mutations may correlate with primary resistance. We aimed to explore the discordant mutation statuses of EGFR and K-ras between primary tumors and matched brain metastases in adenocarcinomas of lung. We used a sensitive Scorpion ARMS method to analyze EGFR mutation, and Sanger sequencing followed by allele-specific real-time polymerase chain reaction to analyze K-ras mutation. Forty-nine paired tissues with both primary adenocarcinoma of lung and matched brain metastasis were collected. Thirteen patients (26.5%) were discordant for the status of EGFR between primary and metastatic sites. K-ras gene could be checked in paired specimens from 33 patients, thirteen patients (39.6%) were discordant for the status of K-ras. In primary lung adenocarcinoma, there were 14 patients of mutant EGFR had mutant K-ras synchronously. This study revealed that the status of EGFR mutation in lung adenocarcinomas is relatively consistent between primary and metastatic sites compared to K-ras mutation. However, there are still a few cases of adenocarcinoma of lung showing discordance for the status of EGFR mutation. Repeated analysis of EGFR mutation is highly recommended if tissue from metastatic or recurrent site is available for the evaluation of target therapy.

  11. Epidermal Growth Factor Receptor Inhibition in the Management of Squamous Cell Carcinoma of the Lung

    PubMed Central

    Spaans, Johanna N.

    2016-01-01

    Molecular therapies targeting epidermal growth factor receptor (EGFR) have had a profound impact on the management of advanced non-small cell lung cancer (NSCLC). EGFR inhibition with EGFR tyrosine kinase inhibitors (EGFR-TKIs) and anti-EGFR monoclonal antibodies (mAbs) in squamous NSCLC (sqNSCLC) remains controversial in patients whose tumors are not known to harbor EGFR mutations. Recent meta-analyses of EGFR-inhibition randomized trials that are adequately powered for histological subgroup analysis and anti-EGFR trials limited to patients with squamous histology afford the opportunity to revisit EGFR treatment in sqNSCLC. In unselected patients with sqNSCLC who are not eligible for chemotherapy, EGFR-TKI therapy is a valid treatment option over placebo or best supportive care, with improved progression-free survival noted in randomized controlled trials in both the first- and second-line setting and improved overall survival (OS) in the second-line setting. In patients eligible for chemotherapy, first-line combination regimens with anti-EGFR mAbs have been shown to improve OS over chemotherapy alone in patients with squamous histology in meta-analysis and more recently in the SQUIRE sqNSCLC trial (chemotherapy with and without necitumumab). In sqNSCLC patients who respond to induction chemotherapy, maintenance therapy with erlotinib delays disease progression and may improve the survival of patients with stable disease. In the second-line setting, survival outcomes are comparable between chemotherapy and EGFR-TKIs in meta-analysis, with the latter being more tolerable as a second-line therapy. Newer-generation EGFR-TKI therapies may further benefit patients with sqNSCLC who have failed first-line chemotherapy, given the positive trial results from LUX-Lung 8 (afatinib vs. erlotinib). EGFR is a valid therapeutic target in unselected/EGFR wild-type patients with squamous cell carcinoma of the lung. With the recent approval of immune checkpoint inhibitors in the

  12. Effect of Lactobacillus acidophilus & epidermal growth factor on experimentally induced Clostridium difficile infection

    PubMed Central

    Kaur, Sukhminderjit; Vaishnavi, Chetana; Prasad, Kaushal Kishor; Ray, Pallab; Kochhar, Rakesh

    2011-01-01

    Background & objectives: Clostridium difficile-associated disease (CDAD) remains an important nosocomial ailment. Antimicrobial therapy used for CDAD gives inconsistent results. This experimental study was planned to investigate the beneficial effects of Lactobacillus acidophilus and epidermal growth factor (EGF) for CDAD management. Methods: Among 10 groups of BALB/c mice (6 in each), group 1 served as controls receiving no inoculum. Animals in groups 2-10 received C. difficile, those in groups 3, 6 and 9 received L. acidophilus and those in groups 4, 7 and 10 received EGF after C. difficile inoculation. Animals in groups 5-7 were pre-treated with ampicillin and those in groups 8-10 with lansoprazole prior to C. difficile. The animals were killed and investigated for colonisation by C. difficile and toxin production, myeloperoxidase (MPO) activity and histopathology. Results: Colonisation by C. difficile was found to be significantly different (P<0.001) in the various groups. C. difficile toxin titres and MPO activity were significantly lower in animals given L. acidophilus and EGF after ampicillin (groups 6 and 7) and lansoprazole (groups 9 and 10). The severity of acute inflammation was also significantly less (P<0.05) in caecal and colonic segments of animals in groups 6 and 7 compared to those in group 5. Although the severity of acute inflammation was less in the caecal and colonic segment of animals in groups 9 and 10, the reduction was not significant compared to group 8. Interpretation & conclusions: Our findings showed that the administration of L. acidophilus and EGF reduced the severity of C. difficile infection in the experimental animals. PMID:21537099

  13. Intralesional epidermal growth factor for diabetic foot wounds: the first cases in Turkey

    PubMed Central

    Ertugrul, Bulent M.; Buke, Cagri; Ersoy, Ozlem Saylak; Ay, Bengisu; Demirez, Dilek Senen; Savk, Oner

    2015-01-01

    Background Intralesional recombinant epidermal growth factor (EGF) was produced in the Centre for Genetic Engineering and Biotechnology (CIGB), Cuba, in 1988 and licensed in 2006. Because it may accelerate wound healing, it is a potential new treatment option in patients with a diabetic foot wound (whether infected or not) as an adjunct to standard treatment (i.e. debridement, antibiotics). We conducted the initial evaluation of EGF for diabetic foot wounds in Turkey. Methods We enrolled 17 patients who were hospitalized in various medical centers for a foot ulcer and/or infection and for whom below the knee amputation was suggested to all except one. All patients received 75 μg intralesional EGF three times per week on alternate days. Results The appearance of new granulation tissue on the wound site (≥75%) was observed in 13 patients (76%), and complete wound closure was observed in 3 patients (18%), yielding a ‘complete recovery’ rate of 94%. The most common side effects were tremor (n=10, 59%) and nausea (n=6, 35%). In only one case,a serious side effect requiring cessation of EGF treatment was noted. That patient experienced severe hypotension at the 16th application session, and treatment was discontinued. At baseline, a total of 21 causative bacteria were isolated from 15 patients, whereascultures were sterile in two patients. The most frequently isolated species was Pseudomonas aeruginosa. Conclusion Thus, this preliminary study suggests that EGF seems to be a potential adjunctive treatment option in patients with limb-threatening diabetic foot wounds. PMID:26268583

  14. Human epidermal growth factor receptor 2/neu protein expression in meningiomas: An immunohistochemical study

    PubMed Central

    Telugu, Ramesh Babu; Chowhan, Amit Kumar; Rukmangadha, Nandyala; Patnayak, Rashmi; Phaneendra, Bobbidi Venkata; Prasad, Bodapati Chandra Mowliswara; Reddy, Mandyam Kumaraswamy

    2016-01-01

    Background: Meningiomas are common slow-growing primary central nervous system tumors that arise from the meningothelial cells of the arachnoid and spinal cord. Human epidermal growth factor receptor 2 (HER2) or HER2/neu (also known as c-erbB2) is a 185-kD transmembrane glycoprotein with tyrosine kinase activity expressed in meningiomas and various other tumors. It can be used in targeted therapy for HER2/neu positive meningiomas. Aim: To correlate the expression of HER2/neu protein in meningiomas with gender, location, histological subtypes, and grade. Materials and Methods: It was 3½ years prospective (March 2010–October 2011) and retrospective (May 2008–February 2010) study of histopathologically diagnosed intracranial and intraspinal meningiomas. Clinical details of all the cases were noted from the computerized hospital information system. Immunohistochemistry for HER2/neu protein was performed along with scoring. Statistical analysis was done using Chi-square test to look for any association of HER2/neu with gender, location, grade, and various histological subtypes of meningiomas at 5% level of significance. Results: A total of 100 cases of meningiomas were found during the study period. Of which, 80 were Grade I, 18 were Grade II, and 2 were Grade III meningiomas as per the World Health Organization 2007 criteria. The female-male ratio was 1.9:1 and the mean age was 47.8 years. HER2/neu protein was expressed in 75% of Grade I and 72.2% of Grade II and none of Grade III meningiomas. About 72.7% brain invasive meningiomas showed HER2/neu immunopositivity. Conclusion: HER2/neu protein was expressed in 73% of meningiomas. Statistically significant difference of HER2/neu expression was not seen between females and males of Grade I and Grade II/III meningiomas, intracranial and spinal tumors, Grade I and Grade II/III cases, and various histological subtypes of meningiomas. PMID:27695231

  15. Epidermal growth factor receptor is overexpressed in neuroblastoma tissues and cells.

    PubMed

    Zheng, Chao; Shen, Ruling; Li, Kai; Zheng, Na; Zong, Yuqing; Ye, Danrong; Wang, Qingcheng; Wang, Zuopeng; Chen, Lian; Ma, Yangyang

    2016-08-01

    Neuroblastoma is the most common abdominal malignant tumor in childhood. Immunotoxin (IT) that targets the tumor cell surface receptor is a new supplementary therapeutic treatment approach. The purpose of this study is to detect the expression of epidermal growth factor receptor (EGFR) in neuroblastoma cell lines and tissues, and to explore if IT therapy can be used to treat refractory neuroblastoma. The EGFR expression in human neuroblastoma tissue samples was detected by immunohistochemistry staining. The positive rate of EGFR expression was 81.0% in neuroblastoma tissue and 50.0% in gangliocytoma, respectively, but without statistical significance between them (P > 0.05). The positive rate of EGFR expression in favorable type and unfavorable type was 62.5% and 92.3%, respectively, but they were not statistically different (P > 0.05). Results from pre-chemotherapy and post-chemotherapy samples showed that there was no significant statistical difference (P > 0.05) between them in the EGFR expression. Furthermore, the EGFR expression levels in five neuroblastoma cell lines were measured using cell-based ELISA assay and western blot analysis. The results showed that the expression of EGFR was higher in KP-N-NS and BE(2)-C than those in other cell lines. Our results revealed that there are consistent and widespread expressions of EGFR in neuroblastoma tissues as well as in neuroblastoma cell lines, suggesting that it is possible to develop future treatment strategies of neuroblastoma by targeting at the EGFR.

  16. The multiple roles of epidermal growth factor repeat O-glycans in animal development

    PubMed Central

    Haltom, Amanda R; Jafar-Nejad, Hamed

    2015-01-01

    The epidermal growth factor (EGF)-like repeat is a common, evolutionarily conserved motif found in secreted proteins and the extracellular domain of transmembrane proteins. EGF repeats harbor six cysteine residues which form three disulfide bonds and help generate the three-dimensional structure of the EGF repeat. A subset of EGF repeats harbor consensus sequences for the addition of one or more specific O-glycans, which are initiated by O-glucose, O-fucose or O-N-acetylglucosamine. These glycans are relatively rare compared to mucin-type O-glycans. However, genetic experiments in model organisms and cell-based assays indicate that at least some of the glycosyltransferases involved in the addition of O-glycans to EGF repeats play important roles in animal development. These studies, combined with state-of-the-art biochemical and structural biology experiments have started to provide an in-depth picture of how these glycans regulate the function of the proteins to which they are linked. In this review, we will discuss the biological roles assigned to EGF repeat O-glycans and the corresponding glycosyltransferases. Since Notch receptors are the best studied proteins with biologically-relevant O-glycans on EGF repeats, a significant part of this review is devoted to the role of these glycans in the regulation of the Notch signaling pathway. We also discuss recently identified proteins other than Notch which depend on EGF repeat glycans to function properly. Several glycosyltransferases involved in the addition or elongation of O-glycans on EGF repeats are mutated in human diseases. Therefore, mechanistic understanding of the functional roles of these carbohydrate modifications is of interest from both basic science and translational perspectives. PMID:26175457

  17. Chemical allergens stimulate human epidermal keratinocytes to produce lymphangiogenic vascular endothelial growth factor.

    PubMed

    Bae, Ok-Nam; Ahn, Seyeon; Jin, Sun Hee; Hong, Soo Hyun; Lee, Jinyoung; Kim, Eun-Sun; Jeong, Tae Cheon; Chun, Young-Jin; Lee, Ai-Young; Noh, Minsoo

    2015-03-01

    Allergic contact dermatitis (ACD) is a cell-mediated immune response that involves skin sensitization in response to contact with various allergens. Angiogenesis and lymphangiogenesis both play roles in the allergic sensitization process. Epidermal keratinocytes can produce vascular endothelial growth factor (VEGF) in response to UV irradiation and during wound healing. However, the effect of haptenic chemical allergens on the VEGF production of human keratinocytes, which is the primary contact site of toxic allergens, has not been thoroughly researched. We systematically investigated whether immune-regulatory cytokines and chemical allergens would lead to the production of VEGF in normal human keratinocytes (NHKs) in culture. VEGF production significantly increased when NHKs were treated with IFNγ, IL-1α, IL-4, IL-6, IL-17A, IL-22 or TNFα. Among the human sensitizers listed in the OECD Test Guideline (TG) 429, we found that CMI/MI, DNCB, 4-phenylenediamine, cobalt chloride, 2-mercaptobenzothiazole, citral, HCA, cinnamic alcohol, imidazolidinyl urea and nickel chloride all significantly upregulated VEGF production in NHKs. In addition, common human haptenic allergens such as avobenzone, formaldehyde and urushiol, also induced the keratinocyte-derived VEGF production. VEGF upregulation by pro-inflammatory stimuli, IFNγ, DNCB or formaldehyde is preceded by the production of IL-8, an acute inflammatory phase cytokine. Lymphangiogenic VEGF-C gene transcription was significantly increased when NHKs were treated with formaldehyde, DNCB or urushiol, while transcription of VEGF-A and VEGF-B did not change. Therefore, the chemical allergen-induced VEGF upregulation is mainly due to the increase in lymphangiogenic VEGF-C transcription in NHKs. These results suggest that keratinocyte-derived VEGF may regulate the lymphangiogenic process during the skin sensitization process of ACD.

  18. Molecular Determinants of Epidermal Growth Factor Binding: A Molecular Dynamics Study

    PubMed Central

    Sanders, Jeffrey M.; Wampole, Matthew E.; Thakur, Mathew L.; Wickstrom, Eric

    2013-01-01

    The epidermal growth factor receptor (EGFR) is a member of the receptor tyrosine kinase family that plays a role in multiple cellular processes. Activation of EGFR requires binding of a ligand on the extracellular domain to promote conformational changes leading to dimerization and transphosphorylation of intracellular kinase domains. Seven ligands are known to bind EGFR with affinities ranging from sub-nanomolar to near micromolar dissociation constants. In the case of EGFR, distinct conformational states assumed upon binding a ligand is thought to be a determining factor in activation of a downstream signaling network. Previous biochemical studies suggest the existence of both low affinity and high affinity EGFR ligands. While these studies have identified functional effects of ligand binding, high-resolution structural data are lacking. To gain a better understanding of the molecular basis of EGFR binding affinities, we docked each EGFR ligand to the putative active state extracellular domain dimer and 25.0 ns molecular dynamics simulations were performed. MM-PBSA/GBSA are efficient computational approaches to approximate free energies of protein-protein interactions and decompose the free energy at the amino acid level. We applied these methods to the last 6.0 ns of each ligand-receptor simulation. MM-PBSA calculations were able to successfully rank all seven of the EGFR ligands based on the two affinity classes: EGF>HB-EGF>TGF-α>BTC>EPR>EPG>AR. Results from energy decomposition identified several interactions that are common among binding ligands. These findings reveal that while several residues are conserved among the EGFR ligand family, no single set of residues determines the affinity class. Instead we found heterogeneous sets of interactions that were driven primarily by electrostatic and Van der Waals forces. These results not only illustrate the complexity of EGFR dynamics but also pave the way for structure-based design of therapeutics targeting EGF

  19. Epidermal growth factor receptor plays an anabolic role in bone metabolism in vivo.

    PubMed

    Zhang, Xianrong; Tamasi, Joseph; Lu, Xin; Zhu, Ji; Chen, Haiyan; Tian, Xiaoyan; Lee, Tang-Cheng; Threadgill, David W; Kream, Barbara E; Kang, Yibin; Partridge, Nicola C; Qin, Ling

    2011-05-01

    While the epidermal growth factor receptor (EGFR)-mediated signaling pathway has been shown to have vital roles in many developmental and pathologic processes, its functions in the development and homeostasis of the skeletal system has been poorly defined. To address its in vivo role, we constructed transgenic and pharmacologic mouse models and used peripheral quantitative computed tomography (pQCT), micro-computed tomography (µCT) and histomorphometry to analyze their trabecular and cortical bone phenotypes. We initially deleted the EGFR in preosteoblasts/osteoblasts using a Cre/loxP system (Col-Cre Egfr(f/f)), but no bone phenotype was observed because of incomplete deletion of the Egfr genomic locus. To further reduce the remaining osteoblastic EGFR activity, we introduced an EGFR dominant-negative allele, Wa5, and generated Col-Cre Egfr(Wa5/f) mice. At 3 and 7 months of age, both male and female mice exhibited a remarkable decrease in tibial trabecular bone mass with abnormalities in trabecular number and thickness. Histologic analyses revealed decreases in osteoblast number and mineralization activity and an increase in osteoclast number. Significant increases in trabecular pattern factor and structural model index indicate that trabecular microarchitecture was altered. The femurs of these mice were shorter and smaller with reduced cortical area and periosteal perimeter. Moreover, colony-forming unit-fibroblast (CFU-F) assay indicates that these mice had fewer bone marrow mesenchymal stem cells and committed progenitors. Similarly, administration of an EGFR inhibitor into wild-type mice caused a significant reduction in trabecular bone volume. In contrast, Egfr(Dsk5/+) mice with a constitutively active EGFR allele displayed increases in trabecular and cortical bone content. Taken together, these data demonstrate that the EGFR signaling pathway is an important bone regulator and that it primarily plays an anabolic role in bone metabolism.

  20. High affinity nanobodies against human epidermal growth factor receptor selected on cells by E. coli display

    PubMed Central

    Salema, Valencio; Mañas, Carmen; Cerdán, Lidia; Piñero-Lambea, Carlos; Marín, Elvira; Roovers, Rob C.; Van Bergen en Henegouwen, Paul M.P.; Fernández, Luis Ángel

    2016-01-01

    ABSTRACT Most therapeutic antibodies (Abs) target cell surface proteins on tumor and immune cells. Cloning of Ab gene libraries in E. coli and their display on bacteriophages is commonly used to select novel therapeutic Abs binding target antigens, either purified or expressed on cells. However, the sticky nature of bacteriophages renders phage display selections on cells challenging. We previously reported an E. coli display system for expression of VHHs (i.e., nanobodies, Nbs) on the surface of bacteria and selection of high-affinity clones by magnetic cell sorting (MACS). Here, we demonstrate that E. coli display is also an attractive method for isolation of Nbs against cell surface antigens, such as the epidermal growth factor receptor (EGFR), upon direct selection and screening of Ab libraries on live cells. We employ a whole cell-based strategy using a VHH library obtained by immunization with human tumor cells over-expressing EGFR (i.e., A431), and selection of bacterial clones bound to murine fibroblast NIH-3T3 cells transfected with human EGFR, after depletion of non-specific clones on untransfected cells. This strategy resulted in the isolation of high-affinity Nbs binding distinct epitopes of EGFR, including Nbs competing with the ligand, EGF, as characterized by flow cytometry of bacteria displaying the Nbs and binding assays with purified Nbs using surface plasmon resonance. Hence, our study demonstrates that E. coli display of VHH libraries and selection on cells enables efficient isolation and characterization of high-affinity Nbs against cell surface antigens. PMID:27472381

  1. Characterization of mechanical behavior of an epithelial monolayer in response to epidermal growth factor stimulation

    SciTech Connect

    Yang, Ruiguo; Chen, Jennifer Y.; Xi, Ning; Lai, King Wai Chiu; Qu, Chengeng; Fung, Carmen Kar Man; Penn, Lynn S.; Xi, Jun

    2012-03-10

    Cell signaling often causes changes in cellular mechanical properties. Knowledge of such changes can ultimately lead to insight into the complex network of cell signaling. In the current study, we employed a combination of atomic force microscopy (AFM) and quartz crystal microbalance with dissipation monitoring (QCM-D) to characterize the mechanical behavior of A431 cells in response to epidermal growth factor receptor (EGFR) signaling. From AFM, which probes the upper portion of an individual cell in a monolayer of cells, we observed increases in energy dissipation, Young's modulus, and hysteresivity. Increases in hysteresivity imply a shift toward a more fluid-like mechanical ordering state in the bodies of the cells. From QCM-D, which probes the basal area of the monolayer of cells collectively, we observed decreases in energy dissipation factor. This result suggests a shift toward a more solid-like state in the basal areas of the cells. The comparative analysis of these results indicates a regionally specific mechanical behavior of the cell in response to EGFR signaling and suggests a correlation between the time-dependent mechanical responses and the dynamic process of EGFR signaling. This study also demonstrates that a combination of AFM and QCM-D is able to provide a more complete and refined mechanical profile of the cells during cell signaling. -- Highlights: Black-Right-Pointing-Pointer The EGF-induced cellular mechanical response is regionally specific. Black-Right-Pointing-Pointer The EGF-induced cellular mechanical response is time and dose dependent. Black-Right-Pointing-Pointer A combination of AFM and QCM-D provides a more complete mechanical profile of cells.

  2. Structure and dynamics of the epidermal growth factor receptor C-terminal phosphorylation domain.

    PubMed

    Lee, Nam Y; Hazlett, Theodore L; Koland, John G

    2006-05-01

    The C-terminal phosphorylation domain of the epidermal growth factor receptor is believed to regulate protein kinase activity as well as mediate the assembly of signal transduction complexes. The structure and dynamics of this proposed autoregulatory domain were examined by labeling the extreme C terminus of the EGFR intracellular domain (ICD) with an extrinsic fluorophore. Fluorescence anisotropy decay analysis of the nonphosphorylated EGFR-ICD yielded two rotational correlation times: a longer time, consistent with the global rotational motion of a 60- to 70-kDa protein with an elongated globular conformation, and a shorter time, presumably contributed by segmental motion near the fluorophore. A C-terminally truncated form of EGFR-ICD yielded a slow component consistent with the rotational motion of the 38-kDa kinase core. These findings suggested a structural arrangement of the EGFR-ICD in which the C-terminal phosphorylation domain interacts with the kinase core to move as an extended structure. A marked reduction in the larger correlation time of EGFR-ICD was observed upon its autophosphorylation. This dynamic component was faster than predicted for the globular motion of the 62-kDa EGFR-ICD, suggesting an increase in the mobility of the C-terminal domain and a likely displacement of this domain from the kinase core. The interaction between the SH2 domain of c-Src and the phosphorylated EGFR C-terminal domain was shown to impede its mobility. Circular dichroism spectroscopy indicated that the EGFR C-terminal domain possessed a significant level of secondary structure in the form of alpha-helices and beta-sheets, with a marginal change in beta-sheet content occurring upon phosphorylation.

  3. Structure and dynamics of the epidermal growth factor receptor C-terminal phosphorylation domain

    PubMed Central

    Lee, Nam Y.; Hazlett, Theodore L.; Koland, John G.

    2006-01-01

    The C-terminal phosphorylation domain of the epidermal growth factor receptor is believed to regulate protein kinase activity as well as mediate the assembly of signal transduction complexes. The structure and dynamics of this proposed autoregulatory domain were examined by labeling the extreme C terminus of the EGFR intracellular domain (ICD) with an extrinsic fluorophore. Fluorescence anisotropy decay analysis of the nonphosphorylated EGFR-ICD yielded two rotational correlation times: a longer time, consistent with the global rotational motion of a 60- to 70-kDa protein with an elongated globular conformation, and a shorter time, presumably contributed by segmental motion near the fluorophore. A C-terminally truncated form of EGFR-ICD yielded a slow component consistent with the rotational motion of the 38-kDa kinase core. These findings suggested a structural arrangement of the EGFR-ICD in which the C-terminal phosphorylation domain interacts with the kinase core to move as an extended structure. A marked reduction in the larger correlation time of EGFR-ICD was observed upon its autophosphorylation. This dynamic component was faster than predicted for the globular motion of the 62-kDa EGFR-ICD, suggesting an increase in the mobility of the C-terminal domain and a likely displacement of this domain from the kinase core. The interaction between the SH2 domain of c-Src and the phosphorylated EGFR C-terminal domain was shown to impede its mobility. Circular dichroism spectroscopy indicated that the EGFR C-terminal domain possessed a significant level of secondary structure in the form of α-helices and β-sheets, with a marginal change in β-sheet content occurring upon phosphorylation. PMID:16597832

  4. Epidermal Growth Factor Receptor-Dependent Mutual Amplification between Netrin-1 and the Hepatitis C Virus

    PubMed Central

    Plissonnier, Marie-Laure; Lahlali, Thomas; Michelet, Maud; Lebossé, Fanny; Cottarel, Jessica; Beer, Melanie; Neveu, Grégory; Durantel, David; Bartosch, Birke; Accardi, Rosita; Clément, Sophie; Paradisi, Andrea; Devouassoux-Shisheboran, Mojgan; Einav, Shirit; Mehlen, Patrick; Zoulim, Fabien; Parent, Romain

    2016-01-01

    Hepatitis C virus (HCV) is an oncogenic virus associated with the onset of hepatocellular carcinoma (HCC). The present study investigated the possible link between HCV infection and Netrin-1, a ligand for dependence receptors that sustains tumorigenesis, in particular in inflammation-associated tumors. We show that Netrin-1 expression is significantly elevated in HCV+ liver biopsies compared to hepatitis B virus (HBV+) and uninfected samples. Furthermore, Netrin-1 was upregulated in all histological stages of HCV+ hepatic lesions, from minimal liver fibrosis to cirrhosis and HCC, compared to histologically matched HCV- tissues. Both cirrhosis and HCV contributed to the induction of Netrin-1 expression, whereas anti-HCV treatment resulted in a reduction of Netrin-1 expression. In vitro, HCV increased the level and translation of Netrin-1 in a NS5A-La-related protein 1 (LARP1)-dependent fashion. Knockdown and forced expression experiments identified the receptor uncoordinated receptor-5 (UNC5A) as an antagonist of the Netrin-1 signal, though it did not affect the death of HCV-infected cells. Netrin-1 enhanced infectivity of HCV particles and promoted viral entry by increasing the activation and decreasing the recycling of the epidermal growth factor receptor (EGFR), a protein that is dysregulated in HCC. Netrin-1 and HCV are, therefore, reciprocal inducers in vitro and in patients, as seen from the increase in viral morphogenesis and viral entry, both phenomena converging toward an increase in the level of infectivity of HCV virions. This functional association involving a cancer-related virus and Netrin-1 argues for evaluating the implication of UNC5 receptor ligands in other oncogenic microbial species. PMID:27031829

  5. Presenilin 1 regulates epidermal growth factor receptor turnover and signaling in the endosomal-lysosomal pathway.

    PubMed

    Repetto, Emanuela; Yoon, Il-Sang; Zheng, Hui; Kang, David E

    2007-10-26

    Mutations in the gene encoding presenilin 1 (PS1) cause the most aggressive form of early-onset familial Alzheimer disease. In addition to its well established role in Abeta production and Notch proteolysis, PS1 has been shown to mediate other physiological activities, such as regulation of the Wnt/beta-catenin signaling pathway, modulation of phosphatidylinositol 3-kinase/Akt and MEK/ERK signaling, and trafficking of select membrane proteins and/or intracellular vesicles. In this study, we present evidence that PS1 is a critical regulator of a key signaling receptor tyrosine kinase, epidermal growth factor receptor (EGFR). Specifically, EGFR levels were robustly increased in fibroblasts deficient in both PS1 and PS2 (PS(-/-)) due to delayed turnover of EGFR protein. Stable transfection of wild-type PS1 but not PS2 corrected EGFR to levels comparable to PS(+/+) cells, while FAD PS1 mutations showed partial loss of activity. The C-terminal fragment of PS1 was sufficient to fully reduce EGFR levels. In addition, the rapid ligand-induced degradation of EGFR was markedly delayed in PS(-/-) cells, resulting in prolonged signal activation. Despite the defective turnover of EGFR, ligand-induced autophosphorylation, ubiquitination, and endocytosis of EGFR were not affected by the lack of PS1. Instead, the trafficking of EGFR from early endosomes to lysosomes was severely delayed by PS1 deficiency. Elevation of EGFR was also seen in brains of adult mice conditionally ablated in PS1 and in skin tumors associated with the loss of PS1. These findings demonstrate a critical role of PS1 in the trafficking and turnover of EGFR and suggest potential pathogenic effects of elevated EGFR as well as perturbed endosomal-lysosomal trafficking in cell cycle control and Alzheimer disease.

  6. Effect of epidermal growth factor receptor gene polymorphisms on prognosis in glioma patients

    PubMed Central

    Li, Jingjie; Yan, Mengdan; Xie, Zhilan; Zhu, Yuanyuan; Chen, Chao; Jin, Tianbo

    2016-01-01

    Previous studies suggested that single nucleotide polymorphisms (SNPs) in epidermal growth factor receptor (EGFR) are associated with risk of glioma. However, the associations between these SNPs and glioma patient prognosis have not yet been fully investigated. Therefore, the present study was aimed to evaluate the effects of EGFR polymorphisms on the glioma patient prognosis. We retrospectively evaluated 269 glioma patients and investigated associations between EGFR SNPs and patient prognosis using Cox proportional hazard models and Kaplan-Meier curves. Univariate analysis revealed that age, gross-total resection and chemotherapy were associated with the prognosis of glioma patients (p < 0.05). In addition, four EGFR SNPs (rs11506105, rs3752651, rs1468727 and rs845552) correlated with overall survival (OS) (Log-rank p = 0.011, 0.020, 0.008, and 0.009, respectively) and progression-free survival PFS (Log-rank p = 0.026, 0.024, 0.019 and 0.009, respectively). Multivariate analysis indicated that the rs11506105 G/G genotype, the rs3752651 and rs1468727 C/C genotype and the rs845552 A/A genotype correlated inversely with OS and PFS. In addition, OS among patients with the rs730437 C/C genotype (p = 0.030) was significantly lower OS than among patients with A/A genotype. These data suggest that five EGFR SNPs (rs11506105, rs3752651, rs1468727, rs845552 and rs730437) correlated with glioma patient prognosis, and should be furthered validated in studies of ethnically diverse patients. PMID:27437777

  7. Tissue transcriptome-driven identification of epidermal growth factor as a chronic kidney disease biomarker.

    PubMed

    Ju, Wenjun; Nair, Viji; Smith, Shahaan; Zhu, Li; Shedden, Kerby; Song, Peter X K; Mariani, Laura H; Eichinger, Felix H; Berthier, Celine C; Randolph, Ann; Lai, Jennifer Yi-Chun; Zhou, Yan; Hawkins, Jennifer J; Bitzer, Markus; Sampson, Matthew G; Thier, Martina; Solier, Corinne; Duran-Pacheco, Gonzalo C; Duchateau-Nguyen, Guillemette; Essioux, Laurent; Schott, Brigitte; Formentini, Ivan; Magnone, Maria C; Bobadilla, Maria; Cohen, Clemens D; Bagnasco, Serena M; Barisoni, Laura; Lv, Jicheng; Zhang, Hong; Wang, Hai-Yan; Brosius, Frank C; Gadegbeku, Crystal A; Kretzler, Matthias

    2015-12-02

    Chronic kidney disease (CKD) affects 8 to 16% people worldwide, with an increasing incidence and prevalence of end-stage kidney disease (ESKD). The effective management of CKD is confounded by the inability to identify patients at high risk of progression while in early stages of CKD. To address this challenge, a renal biopsy transcriptome-driven approach was applied to develop noninvasive prognostic biomarkers for CKD progression. Expression of intrarenal transcripts was correlated with the baseline estimated glomerular filtration rate (eGFR) in 261 patients. Proteins encoded by eGFR-associated transcripts were tested in urine for association with renal tissue injury and baseline eGFR. The ability to predict CKD progression, defined as the composite of ESKD or 40% reduction of baseline eGFR, was then determined in three independent CKD cohorts. A panel of intrarenal transcripts, including epidermal growth factor (EGF), a tubule-specific protein critical for cell differentiation and regeneration, predicted eGFR. The amount of EGF protein in urine (uEGF) showed significant correlation (P < 0.001) with intrarenal EGF mRNA, interstitial fibrosis/tubular atrophy, eGFR, and rate of eGFR loss. Prediction of the composite renal end point by age, gender, eGFR, and albuminuria was significantly (P < 0.001) improved by addition of uEGF, with an increase of the C-statistic from 0.75 to 0.87. Outcome predictions were replicated in two independent CKD cohorts. Our approach identified uEGF as an independent risk predictor of CKD progression. Addition of uEGF to standard clinical parameters improved the prediction of disease events in diverse CKD populations with a wide spectrum of causes and stages.

  8. Epidermal growth factor receptor activity is necessary for mouse basal cell proliferation

    PubMed Central

    Brechbuhl, Heather M.; Li, Bilan; Smith, Russell W.

    2014-01-01

    ERB family receptors (EGFR, ERB-B2, ERB-B3, and ERB-B4) regulate epithelial cell function in many tissue types. In the human airway epithelium, changes in ERB receptor expression are associated with epithelial repair defects. However, the specific role(s) played by ERB receptors in repair have not been determined. We aimed to determine whether ERB receptors regulate proliferation of the tracheobronchial progenitor, the basal cell. Receptor tyrosine kinase arrays were used to evaluate ERB activity in normal and naphthalene (NA)-injured mouse trachea and in air-liquid interface cultures. Roles for epidermal growth factor (EGF), EGFR, and ERB-B2 in basal cell proliferation were evaluated in vitro. NA injury and transgenic expression of an EGFR-dominant negative (DN) receptor were used to evaluate roles for EGFR signaling in vivo. EGFR and ERB-B2 were active in normal and NA-injured trachea and were the only active ERB receptors detected in proliferating basal cells in vitro. EGF was necessary for basal cell proliferation in vitro. The EGFR inhibitor, AG1478, decreased proliferation by 99, and the Erb-B2 inhibitor, AG825, decreased proliferation by ∼66%. In vivo, EGFR-DN expression in basal cells significantly decreased basal cell proliferation after NA injury. EGF and EGFR are necessary for basal cell proliferation. The EGFR/EGFR homo- and the EGFR/ERB-B2 heterodimer account for ∼34 and 66%, respectively, of basal cell proliferation in vitro. Active EGFR is necessary for basal cell proliferation after NA injury. We conclude that EGFR activation is necessary for mouse basal cell proliferation and normal epithelial repair. PMID:25217659

  9. Tissue transcriptome-driven identification of epidermal growth factor as a chronic kidney disease biomarker

    PubMed Central

    Smith, Shahaan; Zhu, Li; Shedden, Kerby; Song, Peter X. K.; Mariani, Laura H.; Eichinger, Felix H.; Berthier, Celine C.; Randolph, Ann; Lai, Jennifer Yi-Chun; Zhou, Yan; Hawkins, Jennifer J.; Bitzer, Markus; Sampson, Matthew G.; Thier, Martina; Solier, Corinne; Duran-Pacheco, Gonzalo C.; Duchateau-Nguyen, Guillemette; Essioux, Laurent; Schott, Brigitte; Formentini, Ivan; Magnone, Maria C.; Bobadilla, Maria; Cohen, Clemens D.; Bagnasco, Serena M.; Barisoni, Laura; Lv, Jicheng; Zhang, Hong; Brosius, Frank C.; Gadegbeku, Crystal A.; Kretzler, Matthias

    2016-01-01

    Chronic kidney disease (CKD) affects 8 to 16% people worldwide, with an increasing incidence and prevalence of end-stage kidney disease (ESKD). The effective management of CKD is confounded by the inability to identify patients at high risk of progression while in early stages of CKD. To address this challenge, a renal biopsy transcriptome-driven approach was applied to develop noninvasive prognostic biomarkers for CKD progression. Expression of intrarenal transcripts was correlated with the baseline estimated glomerular filtration rate (eGFR) in 261 patients. Proteins encoded by eGFR-associated transcripts were tested in urine for association with renal tissue injury and baseline eGFR. The ability to predict CKD progression, defined as the composite of ESKD or 40% reduction of baseline eGFR, was then determined in three independent CKD cohorts. A panel of intrarenal transcripts, including epidermal growth factor (EGF), a tubule-specific protein critical for cell differentiation and regeneration, predicted eGFR. The amount of EGF protein in urine (uEGF) showed significant correlation (P < 0.001) with intrarenal EGF mRNA, interstitial fibrosis/tubular atrophy, eGFR, and rate of eGFR loss. Prediction of the composite renal end point by age, gender, eGFR, and albuminuria was significantly (P < 0.001) improved by addition of uEGF, with an increase of the C-statistic from 0.75 to 0.87. Outcome predictions were replicated in two independent CKD cohorts. Our approach identified uEGF as an independent risk predictor of CKD progression. Addition of uEGF to standard clinical parameters improved the prediction of disease events in diverse CKD populations with a wide spectrum of causes and stages. PMID:26631632

  10. Protein Expression Signatures for Inhibition of Epidermal Growth Factor Receptor-mediated Signaling*

    PubMed Central

    Myers, Matthew V.; Manning, H. Charles; Coffey, Robert J.; Liebler, Daniel C.

    2012-01-01

    Analysis of cellular signaling networks typically involves targeted measurements of phosphorylated protein intermediates. However, phosphoproteomic analyses usually require affinity enrichment of phosphopeptides and can be complicated by artifactual changes in phosphorylation caused by uncontrolled preanalytical variables, particularly in the analysis of tissue specimens. We asked whether changes in protein expression, which are more stable and easily analyzed, could reflect network stimulation and inhibition. We employed this approach to analyze stimulation and inhibition of the epidermal growth factor receptor (EGFR) by EGF and selective EGFR inhibitors. Shotgun analysis of proteomes from proliferating A431 cells, EGF-stimulated cells, and cells co-treated with the EGFR inhibitors cetuximab or gefitinib identified groups of differentially expressed proteins. Comparisons of these protein groups identified 13 proteins whose EGF-induced expression changes were reversed by both EGFR inhibitors. Targeted multiple reaction monitoring analysis verified differential expression of 12 of these proteins, which comprise a candidate EGFR inhibition signature. We then tested these 12 proteins by multiple reaction monitoring analysis in three other models: 1) a comparison of DiFi (EGFR inhibitor-sensitive) and HCT116 (EGFR-insensitive) cell lines, 2) in formalin-fixed, paraffin-embedded mouse xenograft DiFi and HCT116 tumors, and 3) in tissue biopsies from a patient with the gastric hyperproliferative disorder Ménétrier's disease who was treated with cetuximab. Of the proteins in the candidate signature, a core group, including c-Jun, Jagged-1, and Claudin 4, were decreased by EGFR inhibitors in all three models. Although the goal of these studies was not to validate a clinically useful EGFR inhibition signature, the results confirm the hypothesis that clinically used EGFR inhibitors generate characteristic protein expression changes. This work further outlines a prototypical

  11. Modeling Cellular Noise Underlying Heterogeneous Cell Responses in the Epidermal Growth Factor Signaling Pathway

    PubMed Central

    Iwamoto, Kazunari; Shindo, Yuki; Takahashi, Koichi

    2016-01-01

    Cellular heterogeneity, which plays an essential role in biological phenomena, such as drug resistance and migration, is considered to arise from intrinsic (i.e., reaction kinetics) and extrinsic (i.e., protein variability) noise in the cell. However, the mechanistic effects of these types of noise to determine the heterogeneity of signal responses have not been elucidated. Here, we report that the output of epidermal growth factor (EGF) signaling activity is modulated by cellular noise, particularly by extrinsic noise of particular signaling components in the pathway. We developed a mathematical model of the EGF signaling pathway incorporating regulation between extracellular signal-regulated kinase (ERK) and nuclear pore complex (NPC), which is necessary for switch-like activation of the nuclear ERK response. As the threshold of switch-like behavior is more sensitive to perturbations than the graded response, the effect of biological noise is potentially critical for cell fate decision. Our simulation analysis indicated that extrinsic noise, but not intrinsic noise, contributes to cell-to-cell heterogeneity of nuclear ERK. In addition, we accurately estimated variations in abundance of the signal proteins between individual cells by direct comparison of experimental data with simulation results using Apparent Measurement Error (AME). AME was constant regardless of whether the protein levels varied in a correlated manner, while covariation among proteins influenced cell-to-cell heterogeneity of nuclear ERK, suppressing the variation. Simulations using the estimated protein abundances showed that each protein species has different effects on cell-to-cell variation in the nuclear ERK response. In particular, variability of EGF receptor, Ras, Raf, and MEK strongly influenced cellular heterogeneity, while others did not. Overall, our results indicated that cellular heterogeneity in response to EGF is strongly driven by extrinsic noise, and that such heterogeneity

  12. Role of epidermal growth factor receptor in lung cancer and targeted therapies

    PubMed Central

    Liu, Tie-Cheng; Jin, Xin; Wang, Yan; Wang, Ke

    2017-01-01

    Lung cancer is the foremost cause of cancer-related deaths world-wide. Both, the major forms of lung cancer, Non-small cell lung cancer (NSCLC) and Small cell lung cancers (SCLC), have responded effectively to chemo-, radiation and adjuvant-therapies. Tumor removal through surgery also appeared as a good therapeutic strategy. However, these therapies demonstrated unfavourable side-effects, and hence novel drugs targeting lung cancer emerged essential. Activation of epidermal growth factor receptor (EGFR)-tyrosine kinases is a key reason for lung cancer progression. Two important strategies that have attenuated lung cancers were through treatments with EGFR-tyrosine kinase-inhibitors, erlotinib and gefitinib, or EGFR-neutralizing antibodies, cetuximab and bevacizumab. A major advantage with erlotinib and gefitinib was their role in second and third-line treatments following chemotherapies. Phase II/III clinical trials showed that combinatorial treatment of tyrosine kinase (TK)-inhibitors with chemotherapeutics, such as docetaxel and pemetrexed, caused significant improvements in progression-free survival and overall survival.Phase I and II clinical studies also revealed that combination of tyrosine kinase-inhibitors with the EGFR-targeted antibodies was an effective approach for treating lung cancer. However, patients having T790M-mutations within EGFR gene were resistant to erlotinib and gefitinib. Alternatively, another second-generation EGFR-tyrosine kinase-inhibitor, afatinib, that could circumvent the problem of drug resistance has been developed as lung cancer therapy. The current review focuses on the role of EGFR in lung cancer progression and apprises about the EGFR-targeted therapies. The review also informs on the adverse side-effects of these therapies and enlightens the need for safer therapeutic regimens to eradicate this dreaded disease. PMID:28337370

  13. Epidermal growth factor counteracts the glycogenic effect of insulin in parenchymal hepatocyte cultures.

    PubMed Central

    Chowdhury, M H; Agius, L

    1987-01-01

    Rat parenchymal hepatocytes in monolayer culture were used to study the metabolic effects of epidermal growth factor (EGF) and insulin on ketogenesis, gluconeogenesis and glycogen metabolism. EGF, unlike insulin, did not inhibit ketogenesis from palmitate or gluconeogenesis from pyruvate in hepatocyte cultures. It also had no effect on these pathways in the presence of insulin. In contrast, EGF potently counteracted the stimulation of [14C]pyruvate incorporation into glycogen by insulin, and also glycogen deposition from both gluconeogenic precursors and glucose. The EGF concentration causing half-maximal effect was about 0.1 nM. The anti-glycogenic effect of EGF was observed after both long-term (24 h) and short-term (1 h) exposure to EGF, and was more marked in the presence of insulin than in its absence. EGF did not displace bound insulin, suggesting that it neither competes for the insulin receptor nor affects the affinity of the receptor for insulin. EGF did not alter cellular cyclic AMP; and inhibition of cyclic AMP phosphodiesterase activity did not prevent the anti-glycogenic effect of EGF. In liver-derived dividing epithelial cells, Hep-G2 cells and fibroblasts, which have no capacity for gluconeogenesis, EGF did not counteract the stimulatory effect of insulin on [14C]glucose incorporation into glycogen, and in the epithelial cells EGF increased [14C]glucose incorporation into glycogen. The counter-effect of EGF on the glycogenic action of insulin in parenchymal hepatocytes may be due to a direct effect on glycogen metabolism or to an interaction with the post-receptor events in insulin action. PMID:2827626

  14. Epidermal growth factor precursor in mouse lactating mammary gland alveolar cells

    SciTech Connect

    Brown, C.F.; Teng, C.T.; Pentecost, B.T.; DiAugustine, R.P. )

    1989-07-01

    Previous studies have demonstrated that high levels of epidermal growth factor (EGF) occur in human and rodent milk and that oral administration of this polypeptide stimulates rodent gastrointestinal development. It is not known whether EGF in milk originates from cells of the lactating mammary gland or is sequestered from an extramammary source. In the present study, prepro-EGF mRNA (approximately 4.7 kilobases) was detected in the CD-1 mouse mammary gland throughout the period of lactation; by comparison, negligible levels of this EGF transcript were found in the gland during pregnancy. Low levels of EGF immunoreactivity (4-5 ng/g wet wt tissue) were extracted from lactating (day 18) mammary glands with dilute acetic acid. Immunolocalization was evident with antisera to either EGF or two other regions of the EGF precursor in essentially all alveolar cells of the lactating gland. The most prominent staining with antiserum to EGF was observed along the luminal borders of cells; this pattern of cellular staining required proteolytic pretreatment of tissue sections. Western blot analyses of cell membranes isolated from the day 16 lactating mammary gland revealed an EGF-immunoreactive band at about 145K, which was equivalent in size to the EGF precursor found in mouse kidney cell membranes. Despite these findings, labeling of lactating mammary gland mince with L-(35S)methionine and cysteine for up to 4 h did not reveal any specific bands in immunoprecipitates. These cumulative findings suggest that the precursor form of EGF occurs in alveolar cells of lactating mammary gland and that this protein is translocated to the cell membrane.

  15. High affinity nanobodies against human epidermal growth factor receptor selected on cells by E. coli display.

    PubMed

    Salema, Valencio; Mañas, Carmen; Cerdán, Lidia; Piñero-Lambea, Carlos; Marín, Elvira; Roovers, Rob C; Van Bergen En Henegouwen, Paul M P; Fernández, Luis Ángel

    2016-10-01

    Most therapeutic antibodies (Abs) target cell surface proteins on tumor and immune cells. Cloning of Ab gene libraries in E. coli and their display on bacteriophages is commonly used to select novel therapeutic Abs binding target antigens, either purified or expressed on cells. However, the sticky nature of bacteriophages renders phage display selections on cells challenging. We previously reported an E. coli display system for expression of VHHs (i.e., nanobodies, Nbs) on the surface of bacteria and selection of high-affinity clones by magnetic cell sorting (MACS). Here, we demonstrate that E. coli display is also an attractive method for isolation of Nbs against cell surface antigens, such as the epidermal growth factor receptor (EGFR), upon direct selection and screening of Ab libraries on live cells. We employ a whole cell-based strategy using a VHH library obtained by immunization with human tumor cells over-expressing EGFR (i.e., A431), and selection of bacterial clones bound to murine fibroblast NIH-3T3 cells transfected with human EGFR, after depletion of non-specific clones on untransfected cells. This strategy resulted in the isolation of high-affinity Nbs binding distinct epitopes of EGFR, including Nbs competing with the ligand, EGF, as characterized by flow cytometry of bacteria displaying the Nbs and binding assays with purified Nbs using surface plasmon resonance. Hence, our study demonstrates that E. coli display of VHH libraries and selection on cells enables efficient isolation and characterization of high-affinity Nbs against cell surface antigens.

  16. Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions.

    PubMed Central

    Pinkas-Kramarski, R; Soussan, L; Waterman, H; Levkowitz, G; Alroy, I; Klapper, L; Lavi, S; Seger, R; Ratzkin, B J; Sela, M; Yarden, Y

    1996-01-01

    The ErbB family includes two receptors, ErbB-1 and ErbB-3, that respectively bind to epidermal growth factor and Neu differentiation factor, and an orphan receptor, ErbB-2. Unlike ErbB-1 and ErbB-2, the intrinsic tyrosine kinase of ErbB-3 is catalytically impaired. By using interleukin-3-dependent cells that ectopically express the three ErbB proteins or their combinations, we found that ErbB-3 is devoid of any biological activity but both ErbB-1 and ErbB-2 can reconstitute its extremely potent mitogenic activity. Transactivation of ErbB-3 correlates with heterodimer formation and is reflected in receptor phosphorylation and the transregulation of ligand affinity. Inter-receptor interactions enable graded proliferative and survival signals: heterodimers are more potent than homodimers, and ErbB-3-containing complexes, especially the ErbB-2/ErbB-3 heterodimer, are more active than ErbB-1 complexes. Nevertheless, ErbB-1 signaling displays dominance over ErbB-3 when the two receptors are coexpressed. Although all receptor combinations activate the mitogen-activated protein kinases ERK and c-Jun kinase, they differ in their rate of endocytosis and in coupling to intervening signaling proteins. It is conceivable that combinatorial receptor interactions diversify signal transduction and confer double regulation, in cis and in trans, of the superior mitogenic activity of the kinase-defective ErbB-3. Images PMID:8665853

  17. Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity

    SciTech Connect

    Wang, Deng-Liang; Song, Yan-Ling; Zhu, Zhi; Li, Xi-Lan; Zou, Yuan; Yang, Hai-Tao; Wang, Jiang-Jie; Yao, Pei-Sen; Pan, Ru-Jun; Yang, Chaoyong James; Kang, De-Zhi

    2014-10-31

    Highlights: • This is the first report of DNA aptamer against EGFR in vitro. • Aptamer can bind targets with high affinity and selectivity. • DNA aptamers are more stable, cheap and efficient than RNA aptamers. • Our selected DNA aptamer against EGFR has high affinity with K{sub d} 56 ± 7.3 nM. • Our selected DNA aptamer against EGFR has high selectivity. - Abstract: Epidermal growth factor receptor (EGFR/HER1/c-ErbB1), is overexpressed in many solid cancers, such as epidermoid carcinomas, malignant gliomas, etc. EGFR plays roles in proliferation, invasion, angiogenesis and metastasis of malignant cancer cells and is the ideal antigen for clinical applications in cancer detection, imaging and therapy. Aptamers, the output of the systematic evolution of ligands by exponential enrichment (SELEX), are DNA/RNA oligonucleotides which can bind protein and other substances with specificity. RNA aptamers are undesirable due to their instability and high cost of production. Conversely, DNA aptamers have aroused researcher’s attention because they are easily synthesized, stable, selective, have high binding affinity and are cost-effective to produce. In this study, we have successfully identified DNA aptamers with high binding affinity and selectivity to EGFR. The aptamer named TuTu22 with K{sub d} 56 ± 7.3 nM was chosen from the identified DNA aptamers for further study. Flow cytometry analysis results indicated that the TuTu22 aptamer was able to specifically recognize a variety of cancer cells expressing EGFR but did not bind to the EGFR-negative cells. With all of the aforementioned advantages, the DNA aptamers reported here against cancer biomarker EGFR will facilitate the development of novel targeted cancer detection, imaging and therapy.

  18. A Functional Polymorphism in the Epidermal Growth Factor Gene is Associated with Risk for Hepatocellular Carcinoma

    PubMed Central

    Dayyeh, Barham K. Abu; Yang, May; Fuchs, Bryan C.; Karl, Daniel L.; Yamada, Suguru; Sninsky, John J.; O'Brien, Thomas R.; Dienstag, Jules L.; Tanabe, Kenneth K.; Chung, Raymond T.

    2011-01-01

    Background & Aims A single nucleotide polymorphism 61*G (rs4444903) in the Epidermal Growth Factor (EGF) gene has been associated, in 2 case-control studies, with hepatocellular carcinoma (HCC). We tested associations between demographic, clinical, and genetic data and development of HCC, and developed a simple predictive model in a cohort of patients with chronic hepatitis C and advanced fibrosis. Methods Black and white subjects from the HALT-C trial (n=816) were followed prospectively for development of a definite or presumed case of HCC for a median time period of 6.1 years. We used the Cox proportional hazards regression model to determine the hazard ratio for risk of HCC and to develop prediction models. Results Subjects with EGF genotype G/G had a higher adjusted risk for HCC than those with genotype A/A (hazard ratio, 2.10; 95% confidence interval, 1.05–4.23; P=0.03). After adjusting for EGF genotype, blacks had no increased risk of HCC risk, compared with whites. Higher serum levels of EGF were observed among subjects with at least one G allele (P=0.08); the subset of subjects with EGF G/G genotype and above-median serum levels of EGF had the highest risk of HCC. We developed a simple prediction model that included the EGF genotype to identify patients at low, intermediate, and high risk for HCC; 6-year cumulative HCC incidences were 2.3%, 10.4%, and 26%, respectively. Conclusions We associated the EGF genotype G/G with increased risk for HCC; differences in its frequency among black and white subjects might account for differences in HCC incidence between these groups. We developed a model that incorporates EGF genotype and demographic and clinical variables to identify patients at low, intermediate, and high risk for HCC. PMID:21440548

  19. Heparin-binding epidermal growth factor-like growth factor/diphtheria toxin receptor expression by acute myeloid leukemia cells.

    PubMed

    Vinante, F; Rigo, A; Papini, E; Cassatella, M A; Pizzolo, G

    1999-03-01

    Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is an EGF family member expressed by numerous cell types that binds to EGF receptor 1 (HER-1) or 4 (HER-4) inducing mitogenic and/or chemotactic activities. Membrane-bound HB-EGF retains growth activity and adhesion capabilities and the unique property of being the receptor for diphtheria toxin (DT). The interest in studying HB-EGF in acute leukemia stems from these mitogenic, chemotactic, and receptor functions. We analyzed the expression of HB-EGF in L428, Raji, Jurkat, Karpas 299, L540, 2C8, HL-60, U937, THP-1, ML-3, and K562 cell lines and in primary blasts from 12 acute myeloid leukemia (AML) cases, by reverse-transcriptase polymerase chain reaction (RT-PCR) and Northern blot and by the evaluation of sensitivity to DT. The release of functional HB-EGF was assessed by evaluation of its proliferative effects on the HB-EGF-sensitive Balb/c 3T3 cell line. HB-EGF was expressed by all myeloid and T, but not B (L428, Raji), lymphoid cell lines tested, as well as by the majority (8 of 12) of ex vivo AML blasts. Cell lines (except for the K562 cell line) and AML blasts expressing HB-EGF mRNA underwent apoptotic death following exposure to DT, thus demonstrating the presence of the HB-EGF molecule on their membrane. Leukemic cells also released a fully functional HB-EGF molecule that was mitogenic for the Balb/c 3T3 cell line. Factors relevant to the biology of leukemic growth, such as tumor necrosis factor-alpha (TNF-alpha), 1alpha,25-(OH)2D3, and especially all-trans retinoic acid (ATRA), upregulated HB-EGF mRNA in HL-60 or ML-3 cells. Granulocyte-macrophage colony-stimulating factor (GM-CSF) induced HB-EGF mRNA and acquisition of sensitivity to DT in one previously HB-EGF-negative leukemia case. Moreover, the U937 and Karpas 299 cell lines expressed HER-4 mRNA. This work shows that HB-EGF is a growth factor produced by primary leukemic cells and regulated by ATRA, 1alpha, 25-(OH)2D3, and GM-CSF.

  20. Sphingosine-1-phosphate mediates epidermal growth factor-induced muscle satellite cell activation

    SciTech Connect

    Nagata, Yosuke Ohashi, Kazuya; Wada, Eiji; Yuasa, Yuki; Shiozuka, Masataka; Nonomura, Yoshiaki; Matsuda, Ryoichi

    2014-08-01

    Skeletal muscle can regenerate repeatedly due to the presence of resident stem cells, called satellite cells. Because satellite cells are usually quiescent, they must be activated before participating in muscle regeneration in response to stimuli such as injury, overloading, and stretch. Although satellite cell activation is a crucial step in muscle regeneration, little is known of the molecular mechanisms controlling this process. Recent work showed that the bioactive lipid sphingosine-1-phosphate (S1P) plays crucial roles in the activation, proliferation, and differentiation of muscle satellite cells. We investigated the role of growth factors in S1P-mediated satellite cell activation. We found that epidermal growth factor (EGF) in combination with insulin induced proliferation of quiescent undifferentiated mouse myoblast C2C12 cells, which are also known as reserve cells, in serum-free conditions. Sphingosine kinase activity increased when reserve cells were stimulated with EGF. Treatment of reserve cells with the D-erythro-N,N-dimethylsphingosine, Sphingosine Kinase Inhibitor, or siRNA duplexes specific for sphingosine kinase 1, suppressed EGF-induced C2C12 activation. We also present the evidence showing the S1P receptor S1P2 is involved in EGF-induced reserve cell activation. Moreover, we demonstrated a combination of insulin and EGF promoted activation of satellite cells on single myofibers in a manner dependent on SPHK and S1P2. Taken together, our observations show that EGF-induced satellite cell activation is mediated by S1P and its receptor. - Highlights: • EGF in combination with insulin induces proliferation of quiescent C2C12 cells. • Sphingosine kinase activity increases when reserve cells are stimulated with EGF. • EGF-induced activation of reserve cells is dependent on sphingosine kinase and ERK. • The S1P receptor S1P2 is involved in EGF-induced reserve cell activation. • EGF-induced reserve cell activation is mediated by S1P and its

  1. Proliferation of human neuroblastomas mediated by the epidermal growth factor receptor.

    PubMed

    Ho, Ruth; Minturn, Jane E; Hishiki, Tomoro; Zhao, Huaqing; Wang, Qun; Cnaan, Avital; Maris, John; Evans, Audrey E; Brodeur, Garrett M

    2005-11-01

    Neuroblastoma is a common solid tumor of childhood that is derived from the neural crest. Expression of epidermal growth factor (EGF) receptors (EGFRs) has been associated with enhanced cell growth and aggressive behavior in other tumors. Here, we examined the expression profile of EGFRs in neuroblastoma cell lines and primary tumors. We found that all 13 neuroblastoma cell lines examined expressed EGFR1 (HER1), most at readily detectable levels. Low levels of other human EGFR family receptors were also detected in almost all cell lines. All primary tumors examined expressed readily detectable levels of HER1 and HER3 and lower levels of HER2 and HER4. EGF had a significant effect on the proliferation of neuroblastoma cell lines in vitro. EGF treatment (100 ng/mL) of the cell lines SY5Y and NLF significantly increased cell number (P < 0.01). EGF stimulated more cells to enter S and G2-M phase, as suggested by flow cytometry, indicating that EGF increases cell number by increasing proliferation, with no appreciable change in apoptosis. EGF exposure resulted in receptor autophosphorylation and activation of both the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/AKT pathways. Exposure to 0.5 micromol/L ZD1839, a HER1-specific inhibitor, caused a 40% to 50% reduction in the number of SY5Y and NLF cells grown in medium containing 10% fetal bovine serum (P < 0.01). Even at 0.01 micromol/L, ZD1839 inhibited autophosphorylation of HER1 by EGF. At 0.1 micromol/L, it also blocked phosphorylation of AKT, but not MAPK, in NLF cells. Additional studies showed that the PI3K/AKT-specific inhibitor LY294002 had a more profound effect than the MAPK-specific inhibitor U0126 in blocking EGF-induced cell proliferation. This suggests that the PI3K/AKT pathway is the main signaling pathway responsible for the proliferation effects of EGF in neuroblastomas. Our results also indicate that ZD1839 is a potent inhibitor of neuroblastoma cell proliferation

  2. Genetic Screening for Bacterial Mutants in Liquid Growth Media By Fluorescence-Activated Cell Sorting

    PubMed Central

    Abuaita, Basel H.; Withey, Jeffrey H.

    2010-01-01

    Many bacterial pathogens have defined in vitro virulence inducing conditions in liquid media which lead to production of virulence factors important during an infection. Identifying mutants that no longer respond to virulence inducing conditions will increase our understanding of bacterial pathogenesis. However, traditional genetic screens require growth on solid media. Bacteria in a single colony are in every phase of the growth curve, which complicates the analysis and make screens for growth phase-specific mutants problematic. Here, we utilize fluorescence-activated cell sorting in conjunction with random transposon mutagenesis to isolate bacteria grown in liquid media that are defective in virulence activation. This method permits analysis of an entire bacterial population in real time and selection of individual bacterial mutants with the desired gene expression profile at any time point after induction. We have used this method to identify Vibrio cholerae mutants defective in virulence induction. PMID:21094189

  3. Blockade of the epidermal growth factor receptor tyrosine kinase suppresses tumorigenesis in MMTV/Neu + MMTV/TGF-α bigenic mice

    PubMed Central

    Lenferink, Anne E. G.; Simpson, Jean F.; Shawver, Laura K.; Coffey, Robert J.; Forbes, James T.; Arteaga, Carlos L.

    2000-01-01

    Overexpression of ErbB-2/Neu has been causally associated with mammary epithelial transformation. Here we report that blockade of the epidermal growth factor receptor (EGFR) kinase with AG-1478 markedly delays breast tumor formation in mouse mammary tumor virus (MMTV)/Neu + MMTV/transforming growth factor α bigenic mice. This delay was associated with inhibition of EGFR and Neu signaling, reduction of cyclin-dependent kinase 2 (Cdk2) and mitogen-activated protein kinase (MAPK) activities and cyclin D1, and an increase in the levels of the Cdk inhibitor p27Kip1. In addition, BrdUrd incorporation into tumor cell nuclei was prevented with no signs of tumor cell apoptosis. These observations prompted us to investigate the stability of p27. Recombinant p27 was degraded rapidly in vitro by untreated but not by AG-1478-treated tumor lysates. Proteasome depletion of the tumor lysates, addition of the specific MEK1/2 inhibitor U-0126, or a T187A mutation in recombinant p27 all prevented p27 degradation. Cdk2 and MAPK precipitates from untreated tumor lysates phosphorylated recombinant wild-type p27 but not the T187A mutant in vitro. Cdk2 and MAPK precipitates from AG-1478-treated tumors were unable to phosphorylate p27 in vitro. These data suggest that increased signaling by ErbB receptors up-regulates MAPK activity, which, in turn, phosphorylates and destabilizes p27, thus contributing to dysregulated cell cycle progression. PMID:10931950

  4. Oncogenic K-Ras signals through epidermal growth factor receptor and wild-type H-Ras to promote radiation survival in pancreatic and colorectal carcinoma cells.

    PubMed

    Cengel, Keith A; Voong, K Rahn; Chandrasekaran, Sanjay; Maggiorella, Laurence; Brunner, Thomas B; Stanbridge, Eric; Kao, Gary D; McKenna, W Gillies; Bernhard, Eric J

    2007-04-01

    Pancreatic and colorectal carcinomas frequently express oncogenic/mutant K-Ras that contributes to both tumorigenesis and clinically observed resistance to radiation treatment. We have previously shown that farnesyltransferase inhibitors (FTI) radiosensitize many pancreatic and colorectal cancer cell lines that express oncogenic K-ras at doses that inhibit the prenylation and activation of H-Ras but not K-Ras. In the present study, we have examined the mechanism of FTI-mediated radiosensitization in cell lines that express oncogenic K-Ras and found that wild-type H-Ras is a contributor to radiation survival in tumor cells that express oncogenic K-Ras. In these experiments, inhibiting the expression of oncogenic K-Ras, wild-type H-Ras, or epidermal growth factor receptor (EGFR) led to similar levels of radiosensitization as treatment with the FTI tipifarnib. Treatment with the EGFR inhibitor gefitinib led to similar levels of radiosensitization, and the combinations of tipifarnib or gefitinib plus inhibition of K-Ras, H-Ras, or EGFR expression did not provide additional radiosensitization compared with tipifarnib or gefitinib alone. Finally, supplementing culture medium with the EGFR ligand transforming growth factor alpha was able to reverse the radiosensitizing effect of inhibiting K-ras expression. Taken together, these findings suggest that EGFR-activated H-Ras signaling is initiated by oncogenic K-Ras to promote radiation survival in pancreatic and colorectal cancers.

  5. Oncogenic K-Ras Signals through Epidermal Growth Factor Receptor and Wild-Type H-Ras to Promote Radiation Survival in Pancreatic and Colorectal Carcinoma Cells1

    PubMed Central

    Cengel, Keith A.; Voong, K. Rahn; Chandrasekaran, Sanjay; Maggiorella, Laurence; Brunner, Thomas B.; Stanbridge, Eric; Kao, Gary D.; McKenna, W. Gillies; Bernhard, Eric J.

    2007-01-01

    Pancreatic and colorectal carcinomas frequently express oncogenic/mutant K-Ras that contributes to both tumorigenesis and clinically observed resistance to radiation treatment. We have previously shown that farnesyltransferase inhibitors (FTI) radiosensitize many pancreatic and colorectal cancer cell lines that express oncogenic K-ras at doses that inhibit the prenylation and activation of H-Ras but not K-Ras. In the present study, we have examined the mechanism of FTI-mediated radiosensitization in cell lines that express oncogenic K-Ras and found that wild-type H-Ras is a contributor to radiation survival in tumor cells that express oncogenic K-Ras. In these experiments, inhibiting the expression of oncogenic K-Ras, wild-type H-Ras, or epidermal growth factor receptor (EGFR) led to similar levels of radiosensitization as treatment with the FTI tipifarnib. Treatment with the EGFR inhibitor gefitinib led to similar levels of radiosensitization, and the combinations of tipifarnib or gefitinib plus inhibition of K-Ras, H-Ras, or EGFR expression did not provide additional radiosensitization compared with tipifarnib or gefitinib alone. Finally, supplementing culture medium with the EGFR ligand transforming growth factor α was able to reverse the radiosensitizing effect of inhibiting K-ras expression. Taken together, these findings suggest that EGFR-activated H-Ras signaling is initiated by oncogenic K-Ras to promote radiation survival in pancreatic and colorectal cancers. PMID:17460778

  6. Glioma Specific Extracellular Missense Mutations in the First Cysteine Rich Region of Epidermal Growth Factor Receptor (EGFR) Initiate Ligand Independent Activation.

    PubMed

    Ymer, Susie I; Greenall, Sameer A; Cvrljevic, Anna; Cao, Diana X; Donoghue, Jacqui F; Epa, V Chandana; Scott, Andrew M; Adams, Timothy E; Johns, Terrance G

    2011-04-18

    The epidermal growth factor receptor (EGFR) is overexpressed or mutated in glioma. Recently, a series of missense mutations in the extracellular domain (ECD) of EGFR were reported in glioma patients. Some of these mutations clustered within a cysteine-rich region of the EGFR targeted by the therapeutic antibody mAb806. This region is only exposed when EGFR activates and appears to locally misfold during activation. We expressed two of these mutations (R324L and E330K) in NR6 mouse fibroblasts, as they do not express any EGFR-related receptors. Both mutants were autophosphorylated in the absence of ligand and enhanced cell survival and anchorage-independent and xenograft growth. The ECD truncation that produces the de2-7EGFR (or EGFRvIII), the most common EGFR mutation in glioma, generates a free cysteine in this same region. Using a technique optimized for detecting disulfide-bonded dimers, we definitively demonstrated that the de2-7EGFR is robustly dimerized and that ablation of the free cysteine prevents dimerization and activation. Modeling of the R324L mutation suggests it may cause transient breaking of disulfide bonds, leading to similar disulfide-bonded dimers as seen for the de2-7EGFR. These ECD mutations confirm that the cysteine-rich region of EGFR around the mAb806 epitope has a significant role in receptor activation.

  7. Glioma Specific Extracellular Missense Mutations in the First Cysteine Rich Region of Epidermal Growth Factor Receptor (EGFR) Initiate Ligand Independent Activation

    PubMed Central

    Ymer, Susie I.; Greenall, Sameer A.; Cvrljevic, Anna; Cao, Diana X.; Donoghue, Jacqui F.; Epa, V. Chandana; Scott, Andrew M.; Adams, Timothy E.; Johns, Terrance G.

    2011-01-01

    The epidermal growth factor receptor (EGFR) is overexpressed or mutated in glioma. Recently, a series of missense mutations in the extracellular domain (ECD) of EGFR were reported in glioma patients. Some of these mutations clustered within a cysteine-rich region of the EGFR targeted by the therapeutic antibody mAb806. This region is only exposed when EGFR activates and appears to locally misfold during activation. We expressed two of these mutations (R324L and E330K) in NR6 mouse fibroblasts, as they do not express any EGFR-related receptors. Both mutants were autophosphorylated in the absence of ligand and enhanced cell survival and anchorage-independent and xenograft growth. The ECD truncation that produces the de2-7EGFR (or EGFRvIII), the most common EGFR mutation in glioma, generates a free cysteine in this same region. Using a technique optimized for detecting disulfide-bonded dimers, we definitively demonstrated that the de2-7EGFR is robustly dimerized and that ablation of the free cysteine prevents dimerization and activation. Modeling of the R324L mutation suggests it may cause transient breaking of disulfide bonds, leading to similar disulfide-bonded dimers as seen for the de2-7EGFR. These ECD mutations confirm that the cysteine-rich region of EGFR around the mAb806 epitope has a significant role in receptor activation. PMID:24212795

  8. Growth and cell survival are unevenly impaired in pixie mutant wing discs.

    PubMed

    Coelho, Carmen M A; Kolevski, Benjamin; Bunn, Caroline; Walker, Cherryl; Dahanukar, Anupama; Leevers, Sally J

    2005-12-01

    It is largely unknown how growth slows and then stops in vivo. Similar to most organs, Drosophila imaginal discs undergo a fast, near-exponential growth phase followed by a slow growth phase before final target size is reached. We have used a genetic approach to study the role of an ABC-E protein, Pixie, in wing disc growth. pixie mutants, like mutants in ribosomal proteins genes (known as Minutes), show severe developmental delay with relatively mild alterations in final body size. Intriguingly, pixie mutant wing imaginal discs show complex regional and temporal defects in growth and cell survival that are compensated to result in near-normal final size. In S2 cells, Pixie, like its yeast homolog RLI1, is required for translation. However, a comparison of the growth of eukaryotic translation initiation factor eIF4A and pixie mutant clones in wing discs suggests that only a subset of translation regulators, including pixie, mediate regional differences in growth and cell survival in wing discs. Interestingly, some of the regional effects on pixie mutant clone growth are enhanced in a Minute background. Our results suggest that the role of Pixie is not merely to allow growth, as might be expected for a translation regulator. Instead, Pixie also behaves as a target of putative constraining signals that slow disc growth during late larval life. We propose a model in which a balance of growth inhibitors and promoters determines tissue growth rates and cell survival. An alteration in this balance slows growth before final disc size is reached.

  9. Mutant tristetraprolin: a potent inhibitor of malignant glioma cell growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Malignant gliomas rely on the production of certain critical growth factors including VEGF, interleukin (IL)-6 and IL-8, to fuel rapid tumor growth, angiogenesis, and treatment resistance. Post-transcriptional regulation through adenine and uridine-rich elements of the 3' untranslated region is one ...

  10. Modulation of transferrin secretion by epidermal growth factor in immature rat Sertoli cells in vitro.

    PubMed

    Onoda, M; Suarez-Quian, C A

    1994-03-01

    The modulation of transferrin secretion by FSH and epidermal growth factor (EGF) was studied in highly pure, primary cultures of immature rat Sertoli cells grown on a reconstituted basement membrane (Matrigel) in bicameral chambers. Sertoli cell purity was assessed by (1) morphometry, (2) alkaline phosphatase cytochemistry (a specific marker enzyme for peritubular cells) and (3) immunocytochemistry for the alpha-isoform of smooth muscle actin in contaminating peritubular cells. Results revealed a less than 0.5% peritubular cell contamination. During initial periods of culture with EGF or FSH alone or in combination, both EGF and FSH alone maintained transferrin secretion over basal values and their effects were additive. At subsequent times, EGF alone maintained transferrin secretion, but to less extent than did FSH alone, and inhibited significantly the ability of FSH to maintain transferrin secretion. The ratio of polarized transferrin secretion in response to FSH, EGF, or in combination was also examined. FSH significantly reversed the polarity of transferrin secretion, whereas EGF, although significantly reducing the ratio of apical to basal transferrin secretion, did not lead to a preferential basal secretion of transferrin. The change in the apical:basal transferrin secretion ratio, however, was not due to a reversal of the apically secreted transferrin towards a basal direction, but rather to an increase in the total basally secreted transferrin. The effects of cell density effects on transferrin secretion were then examined. At low cell density, the relative ability of EGF and FSH together to maintain transferrin secretion was greater than at high cell density, but overall transferrin secretion was greater as cell density increased. The inhibition of FSH by EGF on transferrin secretion was also density dependent: EGF significantly inhibited FSH effects at low cell density, but failed to do so at high cell density. These results suggest that regulation of

  11. Chemical allergens stimulate human epidermal keratinocytes to produce lymphangiogenic vascular endothelial growth factor

    SciTech Connect

    Bae, Ok-Nam; Ahn, Seyeon; Jin, Sun Hee; Hong, Soo Hyun; Lee, Jinyoung; Kim, Eun-Sun; Jeong, Tae Cheon; Chun, Young-Jin; Lee, Ai-Young; Noh, Minsoo

    2015-03-01

    Allergic contact dermatitis (ACD) is a cell-mediated immune response that involves skin sensitization in response to contact with various allergens. Angiogenesis and lymphangiogenesis both play roles in the allergic sensitization process. Epidermal keratinocytes can produce vascular endothelial growth factor (VEGF) in response to UV irradiation and during wound healing. However, the effect of haptenic chemical allergens on the VEGF production of human keratinocytes, which is the primary contact site of toxic allergens, has not been thoroughly researched. We systematically investigated whether immune-regulatory cytokines and chemical allergens would lead to the production of VEGF in normal human keratinocytes (NHKs) in culture. VEGF production significantly increased when NHKs were treated with IFNγ, IL-1α, IL-4, IL-6, IL-17A, IL-22 or TNFα. Among the human sensitizers listed in the OECD Test Guideline (TG) 429, we found that CMI/MI, DNCB, 4-phenylenediamine, cobalt chloride, 2-mercaptobenzothiazole, citral, HCA, cinnamic alcohol, imidazolidinyl urea and nickel chloride all significantly upregulated VEGF production in NHKs. In addition, common human haptenic allergens such as avobenzone, formaldehyde and urushiol, also induced the keratinocyte-derived VEGF production. VEGF upregulation by pro-inflammatory stimuli, IFNγ, DNCB or formaldehyde is preceded by the production of IL-8, an acute inflammatory phase cytokine. Lymphangiogenic VEGF-C gene transcription was significantly increased when NHKs were treated with formaldehyde, DNCB or urushiol, while transcription of VEGF-A and VEGF-B did not change. Therefore, the chemical allergen-induced VEGF upregulation is mainly due to the increase in lymphangiogenic VEGF-C transcription in NHKs. These results suggest that keratinocyte-derived VEGF may regulate the lymphangiogenic process during the skin sensitization process of ACD. - Highlights: • Pro-inflammatory cytokines induced VEGF production in normal human

  12. Expression of T-Lymphocyte Markers in Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer

    PubMed Central

    Lee, Changro; Kim, Joo Heung; Lim, Sung Mook; Park, Hyung Seok; Kim, Seung Il; Park, Byeong-Woo

    2016-01-01

    Purpose The present study aimed to examine the clinical implications of CD4, CD8, and FOXP3 expression on the prognosis of human epidermal growth factor receptor 2 (HER2)-positive breast cancer using a web-based database, and to compare the immunohistochemical expression of T-lymphocyte markers using primary and metastatic HER2-positive tumor tissues before and after HER2-targeted therapy. Methods Using the cBioPortal for Cancer Genomics and Kaplan-Meier plotter, the mRNA expression, association between T-lymphocyte markers, and survival in HER2-positive cancers were investigated according to various cutoff levels. Immunohistochemistry analysis was performed using paired primary and metastatic tissues of 29 HER2-positive tumors treated with systemic chemotherapy and HER2-directed therapy. Results HER2 mRNA was mutually exclusive of T-lymphocyte markers, and a significant correlation between T-cell markers was observed in the cBioPortal for Cancer Genomics. According to analysis of the Kaplan-Meier plotter, the impact of T-lymphocyte marker expression on survival was statistically insignificant in clinical HER2-positive tumors, irrespective of the cutoff levels. However, in the intrinsic HER2-positive subtype, the individual analyses of T-cell markers except for FOXP3 and combined analysis showed significantly favorable survival irrespective of cutoff points. Although the small clinical sample size made it difficult to show the statistical relevance of immunohistochemistry findings, good responses to neoadjuvant treatments might be associated with positive expression of combined T-lymphocyte markers, and approximately half of the samples showed discordance of combined markers between baseline and resistant tumors. Conclusion T-lymphocyte markers could be favorable prognostic factors in HER2-positive breast cancers; however, a consensus on patient section criteria, detection methods, and cutoff value could not be reached. The resistance to HER2-directed therapy might

  13. Yes and Lyn play a role in nuclear translocation of the epidermal growth factor receptor.

    PubMed

    Iida, M; Brand, T M; Campbell, D A; Li, C; Wheeler, D L

    2013-02-07

    The epidermal growth factor receptor (EGFR) is a central regulator of tumor progression in human cancers. Cetuximab is an anti-EGFR antibody that has been approved for use in oncology. Previously we investigated mechanisms of resistance to cetuximab using a model derived from the non-small cell lung cancer line NCI-H226. We demonstrated that cetuximab-resistant clones (Ctx(R)) had increased nuclear localization of the EGFR. This process was mediated by Src family kinases (SFKs), and nuclear EGFR had a role in resistance to cetuximab. To better understand SFK-mediated nuclear translocation of EGFR, we investigated which SFK member(s) controlled this process as well as the EGFR tyrosine residues that are involved. Analyses of mRNA and protein expression indicated upregulation of the SFK members Yes (v-Yes-1 yamaguchi sarcoma viral oncogene) and Lyn (v-yes-1 Yamaguchi sarcoma viral-related oncogene homolog) in all Ctx(R) clones. Further, immunoprecipitation analysis revealed that EGFR interacts with Yes and Lyn in Ctx(R) clones, but not in cetuximab-sensitive (Ctx(S)) parental cells. Using RNAi interference, we found that knockdown of either Yes or Lyn led to loss of EGFR translocation to the nucleus. Conversely, overexpression of Yes or Lyn in low nuclear EGFR-expressing Ctx(S) parental cells led to increased nuclear EGFR. Chromatin immunoprecipitation (ChIP) assays confirmed nuclear EGFR complexes associated with the promoter of the known EGFR target genes B-Myb and iNOS. Further, all Ctx(R) clones exhibited upregulation of B-Myb and iNOS at the mRNA and protein levels. siRNAs directed at Yes or Lyn led to decreased binding of EGFR complexes to the B-Myb and iNOS promoters based on ChIP analyses. SFKs have been shown to phosphorylate EGFR on tyrosines 845 and 1101 (Y845 and Y1101), and mutation of Y1101, but not Y845, impaired nuclear entry of the EGFR. Taken together, our findings demonstrate that Yes and Lyn phosphorylate EGFR at Y1101, which influences EGFR

  14. The status of epidermal growth factor receptor in borderline ovarian tumours

    PubMed Central

    Showeil, Rania; Romano, Claudia; Valganon, Mikel; Lambros, Maryou; Trivedi, Pritesh; Van Noorden, Susan; Sriraksa, Ruethairat; El-Kaffash, Dalal; El-Etreby, Nour; Natrajan, Rachael; Foroni, Letizia; Osborne, Richard; El-Bahrawy, Mona

    2016-01-01

    The majority of borderline ovarian tumours (BOTs) behave in a benign fashion, but some may show aggressive behavior. The reason behind this has not been elucidated. The epidermal growth factor receptor (EGFR) is known to contribute to cell survival signals as well as metastatic potential of some tumours. EGFR expression and gene status have not been thoroughly investigated in BOTs as it has in ovarian carcinomas. In this study we explore protein expression as well as gene mutations and amplifications of EGFR in BOTs in comparison to a subset of other epithelial ovarian tumours. We studied 85 tumours, including 61 BOTs, 10 low grade serous carcinomas (LGSCs), 9 high grade serous carcinomas (HGSCs) and 5 benign epithelial tumours. EGFR protein expression was studied using immunohistochemistry. Mutations were investigated by Sanger sequencing exons 18-21 of the tyrosine kinase domain of EGFR. Cases with comparatively higher protein expression were examined for gene amplification by chromogenic in situ hybridization. We also studied the tumours for KRAS and BRAF mutations. Immunohistochemistry results revealed both cytoplasmic and nuclear EGFR expression with variable degrees between tumours. The level of nuclear localization was relatively higher in BOTs and LGSCs as compared to HGSCs or benign tumours. The degree of nuclear expression of BOTs showed no significant difference from that in LGSCs (mean ranks 36.48, 33.05, respectively, p=0.625), but was significantly higher than in HGSCs (mean ranks: 38.88, 12.61 respectively, p< 0.001) and benign tumours (mean ranks: 35.18, 13.00 respectively, p= 0.010). Cytoplasmic expression level was higher in LGSCs. No EGFR gene mutations or amplification were identified, yet different polymorphisms were detected. Five different types of point mutations in the KRAS gene and the V600E BRAF mutation were detected exclusively in BOTs and LGSCs. Our study reports for the first time nuclear localization of EGFR in BOTs. The nuclear

  15. Regulation of transferrin receptor expression at the cell surface by insulin-like growth factors, epidermal growth factor and platelet-derived growth factor

    SciTech Connect

    Davis, R.J.; Kuck, L.; Faucher, M.; Czech, M.P.

    1986-05-01

    Addition of platelet-derived growth factor (PDGF), recombinant insulin-like growth factor I (rIGF-I) or epidermal growth factor (EGF) to BALB/c 3T3 fibroblasts causes a marked increase in the binding of (/sup 125/I) diferric transferrin to cell surface receptors. This effect is very rapid and is complete within 5 minutes. The effect is transient with (/sup 125/I) diferric transferrin binding returning to control values within 25 minutes. In contrast, PDGF and rIGF-I cause a prolonged stimulation of (/sup 125/I) diferric transferrin binding that could be observed up to 2 hours. The increase in the binding of (/sup 125/I) diferric transferrin caused by growth factors was investigated by analysis of the binding isotherm. EGF, PDGF and rIGF-I were found to increase the cell surface expression of transferrin receptors rather than to alter the affinity of the transferrin receptors. Furthermore, PDGF and rIGF-I stimulated the sustained uptake of (/sup 59/Fe) diferric transferrin by BALB/c 3T3 fibroblasts. Thus, the effect of these growth factors to increase the cell surface expression of the transferrin receptor appears to have an important physiological consequence.

  16. Survival, growth, and localization of epiphytic fitness mutants of pseudomonas syringae on leaves

    SciTech Connect

    Beattie, G.A.; Lindow, S.E. )

    1994-10-01

    Among 82 epiphytic fitness mutants of a Pseudomonas syringae pv. syringae strain that were characterized in a previous study, 4 mutants were particularly intolerant of the stresses associated with dry leaf surfaces. These four mutants each exhibited distinctive behaviors when inoculated into and into plant leaves. For example, while non showed measurable growth on dry potato leaf surfaces, they grew to different population sizes in the intercellular space of bean leaves and on dry bean leaf surfaces, and one mutant appeared incapable of growth in both environments although it grew well on moist bean leaves. The presence of the parental strain did not influence the survival of the mutants immediately following exposure of leaves to dry, high-light incubation conditions, suggesting that the reduced survival of the mutants did not result from an inability to produce extracellular factors in planta. On moist bean leaves that were colonized by either a mutant or the wild type, the proportion of the total epiphytic population that was located in sizes protected from a surface sterilant was smaller for the mutants than for the wild type, indicating that the mutants were reduced in their ability to locate, multiply in, and/or survive in such protected sites. This reduced ability was only one of possible several factors contributing to the reduced epiphytic fitness of each mutant. Their reduced fitness was not specific to the host plant bean, since they also exhibited reduced fitness on the nonhost plant potato; the functions altered in these strains are thus of interest for their contribution to the general fitness of bacterial epiphytes. 52 refs., 6 figs., 1 tab.

  17. Urinary epidermal growth factor (hEGF) levels in patients with carcinomas of the breast, colon and rectum.

    PubMed Central

    Sweetenham, J. W.; Davies, D. E.; Warnes, S.; Alexander, P.

    1990-01-01

    A specific two-site ELISA for human epidermal growth factor (hEGF) has been used to measure urinary hEGF/creatinine ratios in 30 normal subjects, 30 hospital in-patients with breast cancer and 30 hospital in-patients with colonic or rectal cancer. There was no significant difference between patients with breast cancer and controls. Although a statistically significant difference between patients with colorectal cancer and controls was observed, the biological significance of this observation is doubtful. No clear effect of the presence of breast or colorectal carcinoma on the urinary excretion of hEGF has been observed. PMID:2206955

  18. Structural characterization and biological activity of recombinant human epidermal growth factor proteins with different N-terminal sequences.

    PubMed

    Svoboda, M; Bauhofer, A; Schwind, P; Bade, E; Rasched, I; Przybylski, M

    1994-05-18

    The primary structures and molecular homogeneity of recombinant human epidermal growth factors from different suppliers were characterized and their biological activities evaluated by a standard DNA synthesis assay. Molecular weight determinations using 252Cf-plasma-desorption and electrospray mass spectrometry in combination with N- and C-terminal sequence analysis and determination of intramolecular disulfide bridges revealed that one recombinant protein had the correct human-identical structure (54 aa residues; 6347 Da). In contrast, a second recombinant protein (7020 Da) was found to contain a pentapeptide (KKYPR) insert following its N-terminal methionine. This structural variant showed a significant reduction in its capacity to stimulate DNA synthesis.

  19. Targeting Epidermal Growth Factor Receptor in triple negative breast cancer: New discoveries and practical insights for drug development.

    PubMed

    Costa, Ricardo; Shah, Ami N; Santa-Maria, Cesar A; Cruz, Marcelo R; Mahalingam, Devalingam; Carneiro, Benedito A; Chae, Young Kwang; Cristofanilli, Massimo; Gradishar, William J; Giles, Francis J

    2017-02-01

    Triple negative breast cancer (TNBC) accounts for 10-20% of cases in breast cancer. Despite recent advances in the treatment of hormonal receptor+ and HER2+ breast cancers, there are no targeted therapies available for TNBC. Evidence supports that most patients with TNBC express the transmembrane Epidermal Growth Factor Receptor (EGFR). However, early phase clinical trials failed to demonstrate significant activity of EGFR-targeted monoclonal antibodies and/or tyrosine kinase inhibitors. Here, we review the recent discoveries related to the underlying biology of the EGFR pathway in TNBC, clinical progress to date and suggest rational future approaches for investigational therapies in TNBC.

  20. Addition of Epidermal Growth Factor Improves the Rate of Sulfur Mustard Wound Healing in an In Vitro Model

    DTIC Science & Technology

    2008-03-26

    diabetic foot ulcers .41 A phase IV, postmarketing surveillance study of REGEN-D 150 confirmed faster healing of diabetic foot ulcers and an increase in...untreated control corneas . However, lower doses of KGF had no effect, nor did the 100 ng/mL of KGF dose, after the day 2 time point. This study also...recombinant human epidermal growth factor (REGEN-DTM 150) in healing diabetic foot ulcers . Wounds. 2006;18(7):186–96. 42. Mohan VK. Recombinant human

  1. Reduced heme levels underlie the exponential growth defect of the Shewanella oneidensis hfq mutant.

    PubMed

    Brennan, Christopher M; Mazzucca, Nicholas Q; Mezoian, Taylor; Hunt, Taylor M; Keane, Meaghan L; Leonard, Jessica N; Scola, Shelby E; Beer, Emma N; Perdue, Sarah; Pellock, Brett J

    2014-01-01

    The RNA chaperone Hfq fulfills important roles in small regulatory RNA (sRNA) function in many bacteria. Loss of Hfq in the dissimilatory metal reducing bacterium Shewanella oneidensis strain MR-1 results in slow exponential phase growth and a reduced terminal cell density at stationary phase. We have found that the exponential phase growth defect of the hfq mutant in LB is the result of reduced heme levels. Both heme levels and exponential phase growth of the hfq mutant can be completely restored by supplementing LB medium with 5-aminolevulinic acid (5-ALA), the first committed intermediate synthesized during heme synthesis. Increasing expression of gtrA, which encodes the enzyme that catalyzes the first step in heme biosynthesis, also restores heme levels and exponential phase growth of the hfq mutant. Taken together, our data indicate that reduced heme levels are responsible for the exponential growth defect of the S. oneidensis hfq mutant in LB medium and suggest that the S. oneidensis hfq mutant is deficient in heme production at the 5-ALA synthesis step.

  2. Pollen tube and root-hair tip growth is disrupted in a mutant of Arabidopsis thaliana.

    PubMed Central

    Schiefelbein, J; Galway, M; Masucci, J; Ford, S

    1993-01-01

    The expansion of both root hairs and pollen tubes occurs by a process known as tip growth. In this report, an Arabidopsis thaliana mutant (tip1) is described that displays defects in both root-hair and pollen-tube growth. The root hairs of the tip1 mutant plants are shorter than those of the wild-type plants and branched at their base. The tip1 pollen-tube growth defect was identified by the aberrant segregation ratio of phenotypically normal to mutant seeds in siliques from self-pollinated, heterozygous plants. Homozygous mutant seeds are not randomly distributed in the siliques, comprising only 14.4% of the total seeds, 5.3% of the seeds from the bottom half, and 2.2% of the seeds from the bottom quarter of the heterozygous siliques. Studies of pollen-tube growth in vivo showed that mutant pollen tubes grow more slowly than wild-type pollen through the transmitting tissue of wild-type flowers. Cosegregation studies indicate that the root-hair and pollen-tube defects are caused by the same genetic lesion. Based on these findings, the TIP1 gene is likely to encode a product involved in a fundamental aspect of tip growth in plant cells. PMID:8022944

  3. Reduced Heme Levels Underlie the Exponential Growth Defect of the Shewanella oneidensis hfq Mutant

    PubMed Central

    Mezoian, Taylor; Hunt, Taylor M.; Keane, Meaghan L.; Leonard, Jessica N.; Scola, Shelby E.; Beer, Emma N.; Perdue, Sarah; Pellock, Brett J.

    2014-01-01

    The RNA chaperone Hfq fulfills important roles in small regulatory RNA (sRNA) function in many bacteria. Loss of Hfq in the dissimilatory metal reducing bacterium Shewanella oneidensis strain MR-1 results in slow exponential phase growth and a reduced terminal cell density at stationary phase. We have found that the exponential phase growth defect of the hfq mutant in LB is the result of reduced heme levels. Both heme levels and exponential phase growth of the hfq mutant can be completely restored by supplementing LB medium with 5-aminolevulinic acid (5-ALA), the first committed intermediate synthesized during heme synthesis. Increasing expression of gtrA, which encodes the enzyme that catalyzes the first step in heme biosynthesis, also restores heme levels and exponential phase growth of the hfq mutant. Taken together, our data indicate that reduced heme levels are responsible for the exponential growth defect of the S. oneidensis hfq mutant in LB medium and suggest that the S. oneidensis hfq mutant is deficient in heme production at the 5-ALA synthesis step. PMID:25356668

  4. Recombinant porcine epidermal growth factor-secreting Lactococcus lactis promotes the growth performance of early-weaned piglets

    PubMed Central

    2014-01-01

    Background Epidermal growth factor (EGF) is an important growth factor in regulation of cell proliferation, differentiation, survival and apoptosis. Studies showed that food-grade Lactococcus lactis (L. lactis) and NICE expression system have superior performance in exogenous protein expression. This study aimed to construct and express porcine EGF (pEGF), and use L. lactis as vehicle for producing and delivering pEGF. Furthermore, investigating biological activity of pEGF and exploring applications feasibility of combination effects of L. lactis and pEGF on early weaned piglets’ production. Results A recombinant Lactococcus lactis which produced and secreted pEGF at 1000 ng/ml in culture supernatant was generated. Secreted pEGF was a fully biologically active protein, as demonstrated by its capacity to stimulate L929 mouse fibroblast cell line proliferation in vitro. For in vivo study, forty piglets were randomly allocated to control, antibiotic control, empty vector-expressing L. lactis (LL-EV) and pEGF-secreting L. lactis (LL-pEGF). After 14 d of rearing, final body weight and average daily gain in LL-pEGF were greater (P < 0.05, 8.95 vs. 8.37 kg, 206.1 vs. 157.7 g/day, respectively) than those in control, but no significant differences between LL-pEGF, LL-EV and antibiotic control. Overall period average daily feed intake was higher in LL-pEGF, LL-EV and antibiotic control than in control (P < 0.05, 252.9, 255.6, 250.0, 207.3 g/day, respectively). No significant difference was observed on ADFI/ADG. LL-pEGF increased villous height in the duodenum, jejunum and ileum than in control and LL-EV (P < 0.05). Sucrase in the 3 intestinal segments, aminopeptidase A in the duodenum and Jejunum, aminopeptidase N and dipeptidase IV in the duodenum in LL-pEGF were higher than those in control (P < 0.05). Furthermore, Escherichia coli and Enterococcus counts decreased in the ileum and Lactobacillus increased in the ileum and cecum digesta in LL-pEGF compare with the

  5. Epidermal growth factor-dependent association of phosphatidylinositol 3-kinase with the erbB3 gene product.

    PubMed

    Kim, H H; Sierke, S L; Koland, J G

    1994-10-07

    The ErbB3 protein is a member of the ErbB subfamily of receptor protein tyrosine kinases. In the present study, the mechanism by which the ErbB3 protein is phosphorylated and the signal-transducing functions of this phosphorylated protein were investigated. When phosphorylated by the epidermal growth factor receptor in vitro, the ErbB3 protein strongly associated with the regulatory p85 subunit and the catalytic activity of phosphatidylinositol (PI) 3-kinase. The association of PI 3-kinase with ErbB3 in human breast cancer cells was found to be correlated with the constitutive phosphorylation of ErbB3 on tyrosine residues. In MDA-MB-468 breast cancer cells in which the ErbB3 protein is not constitutively phosphorylated, stimulation with epidermal growth factor led to the phosphorylation of ErbB3 on tyrosine residues and the formation of a functional signal transduction complex involving the ErbB3 protein and PI 3-kinase. These results suggest that the ErbB3 protein can be phosphorylated on tyrosine residues by a cross-phosphorylation mechanism and that the phosphorylated ErbB3 protein can couple other growth factor receptor protein tyrosine kinases to the PI 3-kinase pathway in a manner similar to the insulin receptor substrate 1 protein.

  6. In vivo analysis of Argos structure-function. Sequence requirements for inhibition of the Drosophila epidermal growth factor receptor.

    PubMed

    Howes, R; Wasserman, J D; Freeman, M

    1998-02-13

    The Drosophila Argos protein is the only known extracellular inhibitor of the epidermal growth factor receptor (EGFR). It is structurally related to the activating ligands, in that it is a secreted protein with a single epidermal growth factor (EGF) domain. To understand the mechanism of Argos inhibition, we have investigated which regions of the protein are essential. A series of deletions were made and tested in vivo; furthermore, by analyzing chimeric proteins between Argos and the activating ligand, Spitz (a transforming growth factor-alpha-like factor), we have examined what makes one inhibitory and the other activating. Our results reveal that Argos has structural requirements that differ from all known EGFR activating ligands; domains flanking the EGF domain are essential for its function. We have also defined the important regions of the atypical Argos EGF domain. The extended B-loop is necessary, whereas the C-loop can be replaced with the equivalent Spitz region without substantially affecting Argos function. Comparison of the argos genes from Drosophila melanogaster and the housefly, Musca domestica, supports our structure-function analysis. These studies are a prerequisite for understanding how Argos inhibits the Drosophila EGFR and provide a basis for designing mammalian EGFR inhibitors.

  7. Listeria monocytogenes mutants with altered growth phenotypes at refrigeration temperature and high salt concentrations.

    PubMed

    Burall, Laurel S; Laksanalamai, Pongpan; Datta, Atin R

    2012-02-01

    Listeria monocytogenes can survive and grow in refrigerated temperatures and high-salt environments. In an effort to better understand the associated mechanisms, a library of ∼ 5,200 transposon mutants of LS411, a food isolate from the Jalisco cheese outbreak, were screened for their ability to grow in brain heart infusion (BHI) broth at 5°C or in the presence of 7% NaCl and two mutants with altered growth profiles were identified. The LS522 mutant has a transposon insertion between secA2 and iap and showed a significant reduction in growth in BHI broth at 5°C and in the presence of 7% NaCl. Reverse transcriptase quantitative PCR (RT-qPCR) revealed a substantial reduction in the expression of iap. Additionally, a hypothetical gene (met), containing a putative S-adenosylmethionine-dependent methyltransferase domain, downstream of iap had downregulated expression. In-frame deletion mutants of iap and met were created in LS411. The LS560 (LS411 Δiap) mutant showed reduced growth at 5°C and in the presence of 7% salt, confirming its role in cold and salt growth attenuation. Surprisingly, the LS655 (LS411 Δmet) mutant showed slightly increased growth during refrigeration, though no alteration was seen in salt growth relative to the wild-type strain. The LS527 mutant, containing an insertion 36 bp upstream of the gbu operon, showed reduced expression of the gbu transcript by RT-qPCR and also showed growth reduction at 5°C and in the presence of 7% salt. This attenuation was severely exacerbated when the mutant was grown under the combined stresses. Analysis of the gbu operon deletion mutant showed decreased growth in 7% salt and refrigeration, supporting the previously characterized role for this gene in cold and salt adaptation. These studies indicate the potential for an intricate relationship between environmental stress regulation and virulence in L. monocytogenes.

  8. Establishment of a 2-week canine skin organ culture model and its pharmacological modulation by epidermal growth factor and dexamethasone.

    PubMed

    Abramo, Francesca; Pirone, Andrea; Lenzi, Carla; Vannozzi, Iacopo; Della Valle, Maria Federica; Miragliotta, Vincenzo

    2016-09-01

    Although canine skin models are already available as either monocellular or organotypic cultures, they only partly recapitulate normal skin morphological features and function. The objective of this study was to establish a canine serum-free skin organ culture model and verify whether dexamethasone could rescue epidermal growth factor-induced changes. The study of morphological changes as a response to pharmacological substances may indeed help to investigate skin physiology and pathology. Normal skin was obtained from five client-owned dogs subjected to surgical procedures unrelated to dermatological conditions. Two experimental designs were performed: (i) two-week viability of the skin culture; (ii) dexamethasone (DMS) inhibition of epidermal growth factor (EGF)-induced effects. Serum-free submerged organ cultures were established in Williams' E medium supplemented with penicillin-streptomycin, insulin, hydrocortisone and l-glutamine. General morphological features of skin anatomical structures were well maintained up to day 14, scattered pyknotic nuclei were visible in the epidermis from day 7. Normal keratinocyte differentiation was confirmed by cytokeratin (K) 10, K14 and loricrin immunostaining. Epidermal thickness did not decrease throughout the study. A decrease in keratinocyte proliferation was observed at day 7 and 14. Treatment with EGF induced both keratinocyte proliferation and thickening of the epidermis; both responses were counteracted by DMS. Treatment with EGF increased the length of epithelial tongues at the edge of the skin explants; this effect was further enhanced by DMS supplementation. Our findings demonstrate the potential use of a full-thickness canine skin organ culture model for the study of skin physiology and pharmacological response to exogenous compounds, especially in the field of re-epithelialisation and keratinization disorders.

  9. Heparin-binding epidermal growth factor-like growth factor and hepatocyte growth factor inhibit cholestatic liver injury in mice through different mechanisms

    PubMed Central

    Sakamoto, Kouichi; Khai, Ngin Cin; Wang, Yuqing; Irie, Rie; Takamatsu, Hideo; Matsufuji, Hiroshi; Kosai, Ken-Ichiro

    2016-01-01

    In contrast to hepatocyte growth factor (HGF), the therapeutic potential and pathophysiologic roles of heparin-binding epidermal growth factor-like growth factor (HB-EGF) in liver diseases remain relatively unknown. To address the lack of effective pharmacologic treatments for cholestatic liver injuries, as well as to clarify the biologic features of these growth factors, we explored the effects of HB-EGF and HGF in mice with cholestatic liver injury induced by bile duct ligation (BDL). The mice were assessed 3, 5 and/or 14 days after BDL (acute, subacute and/or chronic phases, respectively) and intravenous injection of adenoviral vector expressing LacZ (control), HB-EGF, HGF, or HB-EGF and HGF. HB-EGF, HGF, or a combination of the growth factors exerted potent antioncotic (antinecrotic), antiapoptotic, anticholestatic, and regenerative effects on hepatocytes in vivo, whereas no robust antiapoptotic or regenerative effects were detected in interlobular bile ducts. Based on serum transaminase levels, the acute protective effects of HB-EGF on hepatocytes were greater than those of HGF. On the other hand, liver fibrosis and cholestasis during the chronic phase were more potently inhibited by HGF compared with HB-EGF. Compared with either growth factor alone, combining HB-EGF and HGF produced greater anticholestatic and regenerative effects during the chronic phase. Taken together, these findings suggest that HB-EGF and HGF inhibited BDL-induced cholestatic liver injury, predominantly by exerting acute cytoprotective and chronic antifibrotic effects, respectively; combining the growth factors enhanced the anticholestatic effects and liver regeneration during the chronic phase. Our results contribute to a better understanding of the pathophysiologic roles of HB-EGF and HGF, as well as to the development of novel effective therapies for cholestatic liver injuries. PMID:27779646

  10. Death-associated protein kinase 1 promotes growth of p53-mutant cancers.

    PubMed

    Zhao, Jing; Zhao, Dekuang; Poage, Graham M; Mazumdar, Abhijit; Zhang, Yun; Hill, Jamal L; Hartman, Zachary C; Savage, Michelle I; Mills, Gordon B; Brown, Powel H

    2015-07-01

    Estrogen receptor-negative (ER-negative) breast cancers are extremely aggressive and associated with poor prognosis. In particular, effective treatment strategies are limited for patients diagnosed with triple receptor-negative breast cancer (TNBC), which also carries the worst prognosis of all forms of breast cancer; therefore, extensive studies have focused on the identification of molecularly targeted therapies for this tumor subtype. Here, we sought to identify molecular targets that are capable of suppressing tumorigenesis in TNBCs. Specifically, we found that death-associated protein kinase 1 (DAPK1) is essential for growth of p53-mutant cancers, which account for over 80% of TNBCs. Depletion or inhibition of DAPK1 suppressed growth of p53-mutant but not p53-WT breast cancer cells. Moreover, DAPK1 inhibition limited growth of other p53-mutant cancers, including pancreatic and ovarian cancers. DAPK1 mediated the disruption of the TSC1/TSC2 complex, resulting in activation of the mTOR pathway. Our studies demonstrated that high DAPK1 expression causes increased cancer cell growth and enhanced signaling through the mTOR/S6K pathway; evaluation of multiple breast cancer patient data sets revealed that high DAPK1 expression associates with worse outcomes in individuals with p53-mutant cancers. Together, our data support targeting DAPK1 as a potential therapeutic strategy for p53-mutant cancers.

  11. Treatment choice in epidermal growth factor receptor mutation-positive non-small cell lung carcinoma: latest evidence and clinical implications

    PubMed Central

    Juan, Oscar; Popat, Sanjay

    2017-01-01

    Discovery of sensitizing mutations in epidermal growth factor receptor (EGFR) and the subsequent development of EGFR tyrosine kinase inhibitors (TKIs) have substantially changed the treatment of lung cancer. First-line treatment with EGFR TKIs (gefitinib, erlotinib and afatinib) has demonstrated a superior response rate and progression-free survival (PFS) compared with chemotherapy in EGFR-mutation positive patients. However, a number of open questions remain, such as choice between the three EGFR TKIs licensed, treatment of patients unsuitable for chemotherapy due to morbidity or advanced age, management of acquired resistance and optimal biological sample to determine EGFR status. Recently the first head-to-head trial comparing gefitinib and afatinib (LUX-Lung 7) has been reported. Moreover, third-generation EGFR TKIs such as osimertinib, rociletinib, olmutinib and ASP8273, with preferential activity against T790M mutant tumours, the commonest resistance mechanism to EGFR TKIs, have shown promising results in early clinical trials, with osimertinib now licensed. In this review, we summarize latest advances in the treatment of EGFR-mutation positive patients focusing on controversial areas and emerging challenges to optimally treat these patients in the future. PMID:28344665

  12. Cell-free synthesis of functional human epidermal growth factor receptor: Investigation of ligand-independent dimerization in Sf21 microsomal membranes using non-canonical amino acids

    PubMed Central

    Quast, Robert B.; Ballion, Biljana; Stech, Marlitt; Sonnabend, Andrei; Varga, Balázs R.; Wüstenhagen, Doreen A.; Kele, Péter; Schiller, Stefan M.; Kubick, Stefan

    2016-01-01

    Cell-free protein synthesis systems represent versatile tools for the synthesis and modification of human membrane proteins. In particular, eukaryotic cell-free systems provide a promising platform for their structural and functional characterization. Here, we present the cell-free synthesis of functional human epidermal growth factor receptor and its vIII deletion mutant in a microsome-containing system derived from cultured Sf21 cells. We provide evidence for embedment of cell-free synthesized receptors into microsomal membranes and asparagine-linked glycosylation. Using the cricket paralysis virus internal ribosome entry site and a repetitive synthesis approach enrichment of receptors inside the microsomal fractions was facilitated thereby providing analytical amounts of functional protein. Receptor tyrosine kinase activation was demonstrated by monitoring receptor phosphorylation. Furthermore, an orthogonal cell-free translation system that provides the site-directed incorporation of p-azido-L-phenylalanine is characterized and applied to investigate receptor dimerization in the absence of a ligand by photo-affinity cross-linking. Finally, incorporated azides are used to generate stable covalently linked receptor dimers by strain-promoted cycloaddition using a novel linker system. PMID:27670253

  13. SHIP2 (SH2 Domain-containing Inositol Phosphatase 2) SH2 Domain Negatively Controls SHIP2 Monoubiquitination in Response to Epidermal Growth Factor*

    PubMed Central

    De Schutter, Julie; Guillabert, Aude; Imbault, Virginie; Degraef, Chantal; Erneux, Christophe; Communi, David; Pirson, Isabelle

    2009-01-01

    The SH2 domain containing inositol 5-phosphatase SHIP2 contains several interacting domains that are important for scaffolding properties. We and others have previously reported that SHIP2 interacts with the E3 ubiquitin ligase c-Cbl. Here, we identified human SHIP2 monoubiquitination on lysine 315. SHIP2 could also be polyubiquitinated but was not degraded by the 26 S proteasome. Furthermore, we identified a ubiquitin-interacting motif at the C-terminal end of SHIP2 that confers ubiquitin binding capacity. However, this ubiquitin-interacting motif is dispensable for its monoubiquitination. We showed that neither c-Cbl nor Nedd4-1 play the role of ubiquitin ligase for SHIP2. Strikingly, monoubiquitination of the ΔSH2-SHIP2 mutant (lacking the N-terminal SH2 domain) is strongly increased, suggesting an intrinsic inhibitory effect of the SHIP2 SH2 domain on its monoubiquitination. Moreover, SHIP2 monoubiquitination was increased upon 30 min of epidermal growth factor stimulation. This correlates with the loss of interaction between the SHIP2 SH2 domain and c-Cbl. In this model, c-Cbl could mask the monoubiquitination site and thereby prevent SHIP2 monoubiquitination. The present study thus reveals an unexpected and novel role of SHIP2 SH2 domain in the regulation of its newly identified monoubiquitination. PMID:19880507

  14. The MIT domain of UBPY constitutes a CHMP binding and endosomal localization signal required for efficient epidermal growth factor receptor degradation.

    PubMed

    Row, Paula E; Liu, Han; Hayes, Sebastian; Welchman, Rebecca; Charalabous, Panagoula; Hofmann, Kay; Clague, Michael J; Sanderson, Christopher M; Urbé, Sylvie

    2007-10-19

    We have identified and characterized a Microtubule Interacting and Transport (MIT) domain at the N terminus of the deubiquitinating enzyme UBPY/USP8. In common with other MIT-containing proteins such as AMSH and VPS4, UBPY can interact with CHMP proteins, which are known to regulate endosomal sorting of ubiquitinated receptors. Comparison of binding preferences for the 11 members of the human CHMP family between the UBPY MIT domain and another ubiquitin isopeptidase, AMSH, reveals common interactions with CHMP1A and CHMP1B but a distinct selectivity of AMSH for CHMP3/VPS24, a core subunit of the ESCRT-III complex, and UBPY for CHMP7. We also show that in common with AMSH, UBPY deubiquitinating enzyme activity can be stimulated by STAM but is unresponsive to its cognate CHMPs. The UBPY MIT domain is dispensable for its catalytic activity but is essential for its localization to endosomes. This is functionally significant as an MIT-deleted UBPY mutant is unable to rescue its binding partner STAM from proteasomal degradation or reverse a block to epidermal growth factor receptor degradation imposed by small interfering RNA-mediated depletion of UBPY.

  15. Higher order Arabidopsis 14-3-3 mutants show 14-3-3 involvement in primary root growth both under control and abiotic stress conditions

    PubMed Central

    van Kleeff, P. J. M.; Jaspert, N.; Li, K. W.; Rauch, S.; Oecking, C.; de Boer, A. H.

    2014-01-01

    Arabidopsis 14-3-3 proteins are a family of conserved proteins that interact with numerous partner proteins in a phospho-specific manner, and can affect the target proteins in a number of ways; e.g. modification of enzymatic activity. We isolated T-DNA insertion lines in six 14-3-3 genes within the non-epsilon group that phylogenetically group in three closely related gene pairs. In total, 6 single, 3 double, 12 triple, and 3 quadruple mutants were generated. The mutants were phenotyped for primary root growth on control plates: single and double mutants were indistinguishable from WT, whereas six triples and all quadruples showed a shorter primary root. In addition, length of the first epidermal cell with a visible root hair bulge (LEH) was used to determine primary root elongation on medium containing mannitol and 1-aminocyclopropane-1-carboxylic acid (ACC). This analysis showed clear differences depending on the stress and 14-3-3 gene combinations. Next to the phenotypic growth analyses, a 14-3-3 pull-down assay on roots treated with and without mannitol showed that mannitol stress strongly affects the 14-3-3 interactome. In conclusion, we show gene specificity and functional redundancy among 14-3-3 proteins in primary root elongation under control and under abiotic stress conditions and changes in the 14-3-3 interactome during the onset of stress adaptation. PMID:25189593

  16. Pharmacological characterization of MP-412 (AV-412), a dual epidermal growth factor receptor and ErbB2 tyrosine kinase inhibitor.

    PubMed

    Suzuki, Tsuyoshi; Fujii, Akihiro; Ohya, Junichi; Amano, Yusaku; Kitano, Yasunori; Abe, Daisuke; Nakamura, Hideo

    2007-12-01

    Epidermal growth factor receptor (EGFR) and ErbB2 are currently recognized as validated target molecules in cancer treatment strategies. MP-412 (AV-412) is a potent dual inhibitor of EGFR and ErbB2 tyrosine kinases, including the mutant EGFR(L858R,T790M), which is clinically resistant to the EGFR-specific kinase inhibitors erlotinib and gefitinib. In an enzyme assay, MP-412 inhibited the EGFR variants and ErbB2 in the nanomolar range with over 100-fold selectivity compared with other kinases, apart from abl and flt-1, which were both moderately sensitive to the compound. In cells, MP-412 inhibited autophosphorylation of EGFR and ErbB2 with IC(50) of 43 and 282 nM, respectively. It also inhibited epidermal growth factor (EGF)-dependent cell proliferation with an IC(50) of 100 nM. Moreover, MP-412 abrogated EGFR signaling in the gefitinib-resistant H1975 cell line, which harbors a double mutation of L858R and T790M in EGFR. In animal studies using cancer xenograft models, MP-412 (30 mg/kg) demonstrated complete inhibition of tumor growth of the A431 and BT-474 cell lines, which overexpress EGFR and ErbB2, respectively. MP-412 suppressed autophosphorylation of EGFR and ErbB2 at the dose corresponding to its antitumor efficacy. When various dosing schedules were applied, MP-412 showed significant effects with daily and every-other-day schedules, but not with a once-weekly schedule, suggesting that frequent dosing is preferable for this compound. Furthermore, MP-412 showed a significant antitumor effect on the ErbB2-overexpressing breast cancer KPL-4 cell line, which is resistant to gefitinib. These studies indicate that MP-412 has potential as a therapeutic agent for the treatment of cancers expressing EGFR and ErbB2, especially those resistant to the first generation of small-molecule inhibitors.

  17. c-fos sequence necessary for basal expression and induction by epidermal growth factor, 12-O-tetradecanoyl phorbol-13-acetate and the calcium ionophore.

    PubMed Central

    Fisch, T M; Prywes, R; Roeder, R G

    1987-01-01

    We have investigated the sequence requirements for induction of the human c-fos gene by epidermal growth factor (EGF), 12-O-tetradecanoyl-13-acetate (TPA), and the calcium ionophore A23187 by transfecting c-fos promoter mutants into HeLa and A431 cells. Induction by both EGF and TPA in HeLa cells required the presence of the c-fos enhancer located at -317 to -298 relative to the mRNA cap site. A23187, however, did not induce expression of the transfected gene, even though it strongly induced expression of the endogenous gene, suggesting that it has different requirements for induction than do EGF and TPA. We have also investigated the role of promoter sequences downstream of the enhancer in general expression and induction of c-fos. A sequence between -97 and -76, which includes an 8-base-pair perfect direct repeat, was needed for efficient general expression but not for induction of the gene. A factor in nuclear extracts that bound specifically to this sequence was detected by a gel mobility shift assay. A 7-base-pair sequence, located between -63 and -57 relative to the mRNA cap site and previously shown to be important for general expression of mouse c-fos, was also important for general expression of the human gene. In addition, this element was important for inducibility by EGF and TPA, since induction was significantly reduced when internal deletion mutants that retained the enhancer but lacked the -63 to -57 sequence element were analyzed in transfecting assays. Images PMID:3119989

  18. A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice

    PubMed Central

    Holland, Eric C.; Hively, Wendy P.; DePinho, Ronald A.; Varmus, Harold E.

    1998-01-01

    The epidermal growth factor receptor (EGFR) gene is amplified or mutated in 30%–50% of human gliobastoma multiforme (GBM). These mutations are associated usually with deletions of the INK4a–ARF locus, which encodes two gene products (p16INK4a and p19ARF) involved in cell-cycle arrest and apoptosis. We have investigated the role of EGFR mutation in gliomagenesis, using avian retroviral vectors to transfer a mutant EGFR gene to glial precursors and astrocytes in transgenic mice expressing tv-a, a gene encoding the retrovirus receptor. TVA, under control of brain cell type-specific promoters. We demonstrate that expression of a constitutively active, mutant form of EGFR in cells in the glial lineage can induce lesions with many similarities to human gliomas. These lesions occur more frequently with gene transfer to mice expressing tv-a from the progenitor-specific nestin promoter than to mice expressing tv-a from the astrocyte-specific glial fibrillary acidic protein (GFAP) promoter, suggesting that tumors arise more efficiently from immature cells in the glial lineage. Furthermore, EGFR-induced gliomagenesis appears to require additional mutations in genes encoding proteins involved in cell-cycle arrest pathways. We have produced these combinations by simultaneously infecting tv-a transgenic mice with vectors carrying cdk4 and EGFR or by infecting tv-a transgenic mice bearing a disrupted INK4a–ARF locus with the EGFR-carrying vector alone. Moreover, EGFR-induced gliomagenesis does not occur in conjunction with p53 deficiency, unless the mice are also infected with a vector carrying cdk4. The gliomagenic combinations of genetic lesions required in mice are similar to those found in human gliomas. PMID:9851974

  19. Phosphorylation of Rac1 T108 by Extracellular Signal-Regulated Kinase in Response to Epidermal Growth Factor: a Novel Mechanism To Regulate Rac1 Function

    PubMed Central

    Tong, Junfeng; Li, Laiji; Ballermann, Barbara

    2013-01-01

    Accumulating evidence has implicated Rho GTPases, including Rac1, in many aspects of cancer development. Recent findings suggest that phosphorylation might further contribute to the tight regulation of Rho GTPases. Interestingly, sequence analysis of Rac1 shows that Rac1 T108 within the 106PNTP109 motif is likely an extracellular signal-regulated kinase (ERK) phosphorylation site and that Rac1 also has an ERK docking site, 183KKRKRKCLLL192 (D site), at the C terminus. Indeed, we show here that both transfected and endogenous Rac1 interacts with ERK and that this interaction is mediated by its D site. Green fluorescent protein (GFP)-Rac1 is threonine (T) phosphorylated in response to epidermal growth factor (EGF), and EGF-induced Rac1 threonine phosphorylation is dependent on the activation of ERK. Moreover, mutant Rac1 with the mutation of T108 to alanine (A) is not threonine phosphorylated in response to EGF. In vitro ERK kinase assay further shows that pure active ERK phosphorylates purified Rac1 but not mutant Rac1 T108A. We also show that Rac1 T108 phosphorylation decreases Rac1 activity, partially due to inhibiting its interaction with phospholipase C-γ1 (PLC-γ1). T108 phosphorylation targets Rac1 to the nucleus, which isolates Rac1 from other guanine nucleotide exchange factors (GEFs) and hinders Rac1's role in cell migration. We conclude that Rac1 T108 is phosphorylated by ERK in response to EGF, which plays an important role in regulating Rac1. PMID:24043306

  20. Induction of PD-L1 expression by epidermal growth factor receptor–mediated signaling in esophageal squamous cell carcinoma

    PubMed Central

    Zhang, Wencheng; Pang, Qingsong; Yan, Cihui; Wang, Qifeng; Yang, Jingsong; Yu, Shufei; Liu, Xiao; Yuan, Zhiyong; Wang, Ping; Xiao, Zefen

    2017-01-01

    Purpose The purpose of this study was to investigate the potential effect of activation of epidermal growth factor receptor (EGFR) signaling pathway on the expression of programmed death-ligand 1 (PD-L1) in esophageal squamous cell carcinoma (ESCC) cells with EGFR overexpression. Methods Flow cytometry and Western blot methods were used to assess PD-L1 expression on ESCC cells when EGFR signaling pathway was activated by epidermal growth factor (EGF) with or without EGFR-specific inhibitor AG-1478, and then EGFR signaling array was applied to analyze the potential signaling pathways involved. Results This study found that PD-L1 expression increased significantly in an EGFR-dependent manner by the activation of EGFR signaling and decreased sharply when EGFR signaling was blocked. The upregulated expression of PD-L1 was not associated with EGFR-STAT3 signaling pathway, but may be affected by EGFR–PI3K–AKT, EGFR–Ras–Raf–Erk, and EGR–PLC-γ signaling pathways. Conclusion The expression of PD-L1 can be regulated by EGFR signaling activation in ESCC, which indicates an important role for EGFR-mediated immune escape and potential molecular pathways for EGFR-targeted therapy and immunotherapy. PMID:28243112

  1. Role of capsaicin sensitive nerves in epidermal growth factor effects on gastric mucosal injury and blood flow

    PubMed Central

    Kang, J; Teng, C; Chen, F; Wee, A

    1998-01-01

    Background—Epidermal growth factor (EGF) and capsaicin protect against experimental gastric mucosal injury. Capsaicin exerts its gastroprotective effect by stimulating afferent neurones leading to release of calcitonin gene related peptide (CGRP) which causes gastric hyperaemia. EGF also causes gastric hyperaemia but whether it acts via capsaicin sensitive neurones is unknown. 
Aims—To assess the influence of: (1) capsaicin desensitisation on EGF effects on gastric mucosal injury and gastric mucosal blood flow; and (2) close arterial infusion of hCGRP8-37, a CGRP antagonist, on EGF effects on gastric mucosal blood flow. 
Methods—The absolute ethanol induced gastric mucosal injury model in the rat was used. Gastric mucosal damage was assessed by planimetry and light microscopy. Gastric mucosal blood flow was measured by laser Doppler flowmetry in a gastric chamber preparation. 
Results—Capsaicin desensitisation abolished the gastroprotective and gastric hyperaemic effects of EGF. Close arterial infusion of hCGRP8-37 antagonised the hyperaemic effect of both capsaicin and EGF. 
Conclusion—Results show that EGF may exert its gastroprotective and gastric hyperaemic effects via capsaicin sensitive afferent neurones. 

 Keywords: capsaicin; epidermal growth factor; gastric mucosal injury; gastric mucosal blood flow; calcitonin gene related peptide antagonist; rat PMID:9577339

  2. Epidermal growth factor receptor gene polymorphisms are associated with prognostic features of breast cancer

    PubMed Central

    2014-01-01

    Background The epidermal growth factor receptor (EGFR) is differently expressed in breast cancer, and its presence may favor cancer progression. We hypothesized that two EGFR functional polymorphisms, a (CA)n repeat in intron 1, and a single nucleotide polymorphism, R497K, may affect EGFR expression and breast cancer clinical profile. Methods The study population consisted of 508 Brazilian women with unilateral breast cancer, and no distant metastases. Patients were genotyped for the (CA)n and R497K polymorphisms, and the associations between (CA)n polymorphism and EGFR transcript levels (n = 129), or between either polymorphism and histopathological features (n = 505) were evaluated. The REMARK criteria of tumor marker evaluation were followed. Results (CA)n lengths ranged from 14 to 24 repeats, comprehending 11 alleles and 37 genotypes. The most frequent allele was (CA)16 (0.43; 95% CI = 0.40–0.46), which was set as the cut-off length to define the Short allele. Variant (CA)n genotypes had no significant effect in tumoral EGFR mRNA levels, but patients with two (CA)n Long alleles showed lower chances of being negative for progesterone receptor (ORadjusted = 0.42; 95% CI = 0.19–0.91). The evaluation of R497K polymorphism indicated a frequency of 0.21 (95% CI = 0.19 – 0.24) for the variant (Lys) allele. Patients with variant R497K genotypes presented lower proportion of worse lymph node status (pN2 or pN3) when compared to the reference genotype Arg/Arg (ORadjusted = 0.32; 95% CI = 0.17–0.59), which resulted in lower tumor staging (ORadjusted = 0.34; 95% CI = 0.19-0.63), and lower estimated recurrence risk (OR = 0.50; 95% CI = 0.30-0.81). The combined presence of both EGFR polymorphisms (Lys allele of R497K and Long/Long (CA)n) resulted in lower TNM status (ORadjusted = 0.22; 95% CI = 0.07-0.75) and lower ERR (OR = 0.25; 95% CI = 0.09-0.71). When tumors were stratified according to biological

  3. A mutant ('lab strain') of the hyperthermophilic archaeon Pyrococcus furiosus, lacking flagella, has unusual growth physiology.

    PubMed

    Lewis, Derrick L; Notey, Jaspreet S; Chandrayan, Sanjeev K; Loder, Andrew J; Lipscomb, Gina L; Adams, Michael W W; Kelly, Robert M

    2015-03-01

    A mutant ('lab strain') of the hyperthermophilic archaeon Pyrococcus furiosus DSM3638 exhibited an extended exponential phase and atypical cell aggregation behavior. Genomic DNA from the mutant culture was sequenced and compared to wild-type (WT) DSM3638, revealing 145 genes with one or more insertions, deletions, or substitutions (12 silent, 33 amino acid substitutions, and 100 frame shifts). Approximately, half of the mutated genes were transposases or hypothetical proteins. The WT transcriptome revealed numerous changes in amino acid and pyrimidine biosynthesis pathways coincidental with growth phase transitions, unlike the mutant whose transcriptome reflected the observed prolonged exponential phase. Targeted gene deletions, based on frame-shifted ORFs in the mutant genome, in a genetically tractable strain of P. furiosus (COM1) could not generate the extended exponential phase behavior observed for the mutant. For example, a putative radical SAM family protein (PF2064) was the most highly up-regulated ORF (>25-fold) in the WT between exponential and stationary phase, although this ORF was unresponsive in the mutant; deletion of this gene in P. furiosus COM1 resulted in no apparent phenotype. On the other hand, frame-shifting mutations in the mutant genome negatively impacted transcription of a flagellar biosynthesis operon (PF0329-PF0338).Consequently, cells in the mutant culture lacked flagella and, unlike the WT, showed minimal evidence of exopolysaccharide-based cell aggregation in post-exponential phase. Electron microscopy of PF0331-PF0337 deletions in P. furiosus COM1 showed that absence of flagella impacted normal cell aggregation behavior and, furthermore, indicated that flagella play a key role, beyond motility, in the growth physiology of P. furiosus.

  4. Fabrication and surface modification of poly lactic acid (PLA) scaffolds with epidermal growth factor for neural tissue engineering

    PubMed Central

    Haddad, Tanit; Noel, Samantha; Liberelle, Benoît; El Ayoubi, Rouwayda; Ajji, Abdellah

    2016-01-01

    ABSTRACT In an effort to design biomaterials that may promote repair of the central nervous system, 3-dimensional scaffolds made of electrospun poly lactic acid nanofibers with interconnected pores were fabricated. These scaffolds were functionalized with polyallylamine to introduce amine groups by wet chemistry. Experimental conditions of the amination protocol were thoroughly studied and selected to introduce a high amount of amine group while preserving the mechanical and structural properties of the scaffold. Subsequent covalent grafting of epidermal growth factor was then performed to further tailor these aminated structures. The scaffolds were then tested for their ability to support Neural Stem-Like Cells (NSLCs) culture. Of interest, NSLCs were able to proliferate on these EGF-grafted substrates and remained viable up to 14 d even in the absence of soluble growth factors in the medium. PMID:27740881

  5. The expression of epidermal growth factor (EGF) and its receptor (EGFR) during post-natal testes development in the yak.

    PubMed

    Pan, Y; Cui, Y; Yu, S; Zhang, Q; Fan, J; Abdul Rasheed, B; Yang, K

    2014-12-01

    Growth factors play critical role in cell proliferation, regulate tissue differentiation and modulate organogenesis. Several growth factors have been identified in the testes of various mammalian species in last few years. In present investigation, the objective was to determine the expression of epidermal growth factor (EGF) and the epidermal growth factor receptor (EGFR) in yak testicular tissue by relative quantitative real time polymerase chain reaction (RT-PCR), Western blot (WB) and immunohistochemistry (IHC) from mRNA and protein levels. The testicular tissues were collected from male yak at 6 and 24 months old. Results of RT-PCR and WB showed that the expression quantity of EGF and EGFR at 24 months of age was higher than at 6 months, and the increase rate of EGFR on mRNA and protein levels was higher than the increase rate EGF during post-natal testes development. Positive staining for EGF and EGFR was very low and mainly localized to Leydig cells testes at 6 months of age with immunohistochemistry, and seminiferous tubules were not observed. At 24 month of age, both the EGF and EGFR could be detected in Leydig cells, peritubular myoid cells, sertoli cells and germ cells of the yak testes. However, EGF and EGFR were localized to preferential adluminal compartment and basal compartment in the seminiferous tubules, respectively. In conclusion, the findings in present studies suggest that EGF and EGFR as important paracrine and/or autocrine regulators in yak testes development and spermatogenesis.

  6. Growth and immunity conferred by a Plasmodium falciparum temperature sensitive mutant in Panamanian owl monkeys.

    PubMed

    Inselburg, J; Rossan, R N; Escajadillo, A

    1989-05-01

    We have compared the growth of the wild type Plasmodium falciparum strain Honduras 1 and a previously isolated temperature sensitive mutant of it, AP1-16, in Panamanian owl monkeys. We examined serially infected splenectomized and normal animals that were initially infected with cultured parasites that had been grown in a mixture of owl monkey and human erythrocytes. Initial infections in splenectomized monkeys were marked by multiple recrudescences. The mutant grew less well than the wild type in the splenectomized monkeys, as determined by lower peak and total parasitemias. In the splenectomized monkeys tested by rechallenge with the wild type parasite, the mutant stimulated a comparable degree of protection. That protection was manifested in 2 ways. There was a marked reduction in the level of the primary parasitemia in the rechallenged monkeys and an absence of recrudescent parasitemias after the primary parasitemia. The potential value of generating and studying temperature sensitive P. falciparum strains that show attenuated growth is considered.

  7. Study of lung-metastasized prostate cancer cell line chemotaxis to epidermal growth factor with a BIOMEMS device

    NASA Astrophysics Data System (ADS)

    Tata, Uday; Rao, Smitha M. N.; Sharma, Akash; Pabba, Krishna; Pokhrel, Kushal; Adhikari, Bandita; Lin, Victor K.; Chiao, J.-C.

    2012-09-01

    Understanding the effects of different growth factors on cancer metastasis will enable researchers to develop effective post-surgery therapeutic strategies to stop the spread of cancer. Conventional Boyden chamber assays to evaluate cell motility in metastasis studies require high volumes of reagents and are impractical for high-throughput analysis. A microfluidic device was designed for arrayed assaying of prostate cancer cell migration towards different growth factors. The device was created with polydimethylsiloxane (PDMS) and featured two wells connected by 10 micro channels. One well was for cell seeding and the other well for specific growth factors. Each channel has a width of 20 μm, a length of 1 mm and a depth of 10 μm. The device was placed on a culture dish and primed with growth media. Lung-metastasized cells in suspension of RPMI 1640 media1 supplemented with 2% of fetal bovine serum (FBS) were seeded in the cell wells. Cell culture media with epidermal growth factor (EGF) of 25, 50, 75, 100 and 125 ng ml-1 concentrations were individually added in the respective growth factor wells. A 5-day time-lapsed study of cell migration towards the chemoattractant was performed. The average numbers of cells per device in the microchannels were obtained for each attractant condition. The results indicated migration of cells increased from 50 to 100 ng ml-1 of EGF and significantly decreased at 125 ng ml-1 of EGF, as compared to control.

  8. In Vivo Growth of Porcine Reproductive and Respiratory Syndrome Virus Engineered Nsp2 Deletion Mutants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prior studies on PRRSV strain VR-2332 nonstructural protein 2 (nsp2) had shown that as much as 403 amino acids could be removed from the hypervariable region without losing virus viability in vitro. We utilized selected nsp2 deletion mutants to examine in vivo growth. Young swine (4 pigs/group; 5 co...

  9. Recent advances in the epidermal growth factor receptor/ligand system biology on skin homeostasis and keratinocyte stem cell regulation.

    PubMed

    Nanba, Daisuke; Toki, Fujio; Barrandon, Yann; Higashiyama, Shigeki

    2013-11-01

    The epidermal growth factor (EGF) receptor/ligand system stimulates multiple pathways of signal transduction, and is activated by various extracellular stimuli and inter-receptor crosstalk signaling. Aberrant activation of EGF receptor (EGFR) signaling is found in many tumor cells, and humanized neutralizing antibodies and synthetic small compounds against EGFR are in clinical use today. However, these drugs are known to cause a variety of skin toxicities such as inflammatory rash, skin dryness, and hair abnormalities. These side effects demonstrate the multiple EGFR-dependent homeostatic functions in human skin. The epidermis and hair follicles are self-renewing tissues, and keratinocyte stem cells are crucial for maintaining these homeostasis. A variety of molecules associated with the EGF receptor/ligand system are involved in epidermal homeostasis and hair follicle development, and the modulation of EGFR signaling impacts the behavior of keratinocyte stem cells. Understanding the roles of the EGF receptor/ligand system in skin homeostasis is an emerging issue in dermatology to improve the current therapy for skin disorders, and the EGFR inhibitor-associated skin toxicities. Besides, controlling of keratinocyte stem cells by modulating the EGF receptor/ligand system assures advances in regenerative medicine of the skin. We present an overview of the recent progress in the field of the EGF receptor/ligand system on skin homeostasis and regulation of keratinocyte stem cells.

  10. Potent endogenous allelopathic compounds in Lepidium sativum seed exudate: effects on epidermal cell growth in Amaranthus caudatus seedlings.

    PubMed

    Iqbal, Amjad; Fry, Stephen C

    2012-04-01

    Many plants exude allelochemicals--compounds that affect the growth of neighbouring plants. This study reports further studies of the reported effect of cress (Lepidium sativum) seed(ling) exudates on seedling growth in Amaranthus caudatus and Lactuca sativa. In the presence of live cress seedlings, both species grew longer hypocotyls and shorter roots than cress-free controls. The effects of cress seedlings were allelopathic and not due to competition for resources. Amaranthus seedlings grown in the presence of cress allelochemical(s) had longer, thinner hypocotyls and shorter, thicker roots--effects previously attributed to lepidimoide. The active principle was more abundant in cress seed exudate than in seedling (root) exudates. It was present in non-imbibed seeds and releasable from heat-killed seeds. Release from live seeds was biphasic, starting rapidly but then continuing gradually for 24 h. The active principle was generated by aseptic cress tissue and was not a microbial digestion product or seed-treatment chemical. Crude seed exudate affected hypocotyl and root growth at ~25 and ~450 μg ml(-1) respectively. The exudate slightly (28%) increased epidermal cell number along the length of the Amaranthus hypocotyl but increased total hypocotyl elongation by 129%; it resulted in a 26% smaller hypocotyl circumference but a 55% greater epidermal cell number counted round the circumference. Therefore, the effect of the allelochemical(s) on organ morphology was imposed primarily by regulation of cell expansion, not cell division. It is concluded that cress seeds exude endogenous substances, probably including lepidimoide, that principally regulate cell expansion in receiver plants.

  11. Epidermal Growth Factor-dependent Activation of the Extracellular Signal-regulated Kinase Pathway by DJ-1 Protein through Its Direct Binding to c-Raf Protein*

    PubMed Central

    Takahashi-Niki, Kazuko; Kato-Ose, Izumi; Murata, Hiroaki; Maita, Hiroshi; Iguchi-Ariga, Sanae M. M.; Ariga, Hiroyoshi

    2015-01-01

    DJ-1 is an oncogene and also a causative gene for familial Parkinson disease. DJ-1 has various functions, and the oxidative status of cysteine at position 106 (Cys-106) is crucial for determination of the activation level of DJ-1. Although DJ-1 requires activated Ras for its oncogenic activity and although it activates the extracellular signal-regulated kinase (ERK) pathway, a cell growth pathway downstream of Ras, the precise mechanism underlying activation of the ERK pathway by DJ-1 is still not known. In this study, we found that DJ-1 directly bound to the kinase domain of c-Raf but not to Ras and that Cys-106 mutant DJ-1 bound to c-Raf more weakly than did wild-type DJ-1. Co-localization of DJ-1 with c-Raf in the cytoplasm was enhanced in epidermal growth factor (EGF)-treated cells. Knockdown of DJ-1 expression attenuated the phosphorylation level of c-Raf in EGF-treated cells, resulting in reduced activation of MEK and ERK1/2. Although EGF-treated DJ-1 knock-out cells also showed attenuated c-Raf activation, reintroduction of wild-type DJ-1, but not C106S DJ-1, into DJ-1 knock-out cells restored c-Raf activation in a DJ-1 binding activity in a c-Raf-dependent manner. DJ-1 was not responsible for activation of c-Raf in phorbol myristate acetate-treated cells. Furthermore, DJ-1 stimulated self-phosphorylation activity of c-Raf in vitro, but DJ-1 was not a target for Raf kinase. Oxidation of Cys-106 in DJ-1 was not affected by EGF treatment. These findings showed that DJ-1 is a positive regulator of the EGF/Ras/ERK pathway through targeting c-Raf. PMID:26048984

  12. Epidermal Growth Factor-dependent Activation of the Extracellular Signal-regulated Kinase Pathway by DJ-1 Protein through Its Direct Binding to c-Raf Protein.

    PubMed

    Takahashi-Niki, Kazuko; Kato-Ose, Izumi; Murata, Hiroaki; Maita, Hiroshi; Iguchi-Ariga, Sanae M M; Ariga, Hiroyoshi

    2015-07-17

    DJ-1 is an oncogene and also a causative gene for familial Parkinson disease. DJ-1 has various functions, and the oxidative status of cysteine at position 106 (Cys-106) is crucial for determination of the activation level of DJ-1. Although DJ-1 requires activated Ras for its oncogenic activity and although it activates the extracellular signal-regulated kinase (ERK) pathway, a cell growth pathway downstream of Ras, the precise mechanism underlying activation of the ERK pathway by DJ-1 is still not known. In this study, we found that DJ-1 directly bound to the kinase domain of c-Raf but not to Ras and that Cys-106 mutant DJ-1 bound to c-Raf more weakly than did wild-type DJ-1. Co-localization of DJ-1 with c-Raf in the cytoplasm was enhanced in epidermal growth factor (EGF)-treated cells. Knockdown of DJ-1 expression attenuated the phosphorylation level of c-Raf in EGF-treated cells, resulting in reduced activation of MEK and ERK1/2. Although EGF-treated DJ-1 knock-out cells also showed attenuated c-Raf activation, reintroduction of wild-type DJ-1, but not C106S DJ-1, into DJ-1 knock-out cells restored c-Raf activation in a DJ-1 binding activity in a c-Raf-dependent manner. DJ-1 was not responsible for activation of c-Raf in phorbol myristate acetate-treated cells. Furthermore, DJ-1 stimulated self-phosphorylation activity of c-Raf in vitro, but DJ-1 was not a target for Raf kinase. Oxidation of Cys-106 in DJ-1 was not affected by EGF treatment. These findings showed that DJ-1 is a positive regulator of the EGF/Ras/ERK pathway through targeting c-Raf.

  13. Integrin α5 Suppresses the Phosphorylation of Epidermal Growth Factor Receptor and Its Cellular Signaling of Cell Proliferation via N-Glycosylation.

    PubMed

    Hang, Qinglei; Isaji, Tomoya; Hou, Sicong; Im, Sanghun; Fukuda, Tomohiko; Gu, Jianguo

    2015-12-04

    Integrin α5β1-mediated cell adhesion regulates a multitude of cellular responses, including cell proliferation, survival, and cross-talk between different cellular signaling pathways. Integrin α5β1 is known to convey permissive signals enabling anchorage-dependent receptor tyrosine kinase signaling. However, the effects of integrin α5β1 on cell proliferation are controversial, and the molecular mechanisms involved in the regulation between integrin α5β1 and receptor tyrosine kinase remain largely unclear. Here we show that integrin α5 functions as a negative regulator of epidermal growth factor receptor (EGFR) signaling through its N-glycosylation. Expression of WT integrin α5 suppresses the EGFR phosphorylation and internalization upon EGF stimulation. However, expression of the N-glycosylation mutant integrin α5, S3-5, which contains fewer N-glycans, reversed the suppression of the EGFR-mediated signaling and cell proliferation. In a mechanistic manner, WT but not S3-5 integrin α5 forms a complex with EGFR and glycolipids in the low density lipid rafts, and the complex formation is disrupted upon EGF stimulation, suggesting that the N-glycosylation of integrin α5 suppresses the EGFR activation through promotion of the integrin α5-glycolipids-EGFR complex formation. Furthermore, consistent restoration of those N-glycans on the Calf-1,2 domain of integrin α5 reinstated the inhibitory effects as well as the complex formation with EGFR. Taken together, these data are the first to demonstrate that EGFR activation can be regulated by the N-glycosylation of integrin α5, which is a novel molecular paradigm for the cross-talk between integrins and growth factor receptors.

  14. Integrin α5 Suppresses the Phosphorylation of Epidermal Growth Factor Receptor and Its Cellular Signaling of Cell Proliferation via N-Glycosylation*

    PubMed Central

    Hang, Qinglei; Isaji, Tomoya; Hou, Sicong; Im, Sanghun; Fukuda, Tomohiko; Gu, Jianguo

    2015-01-01

    Integrin α5β1-mediated cell adhesion regulates a multitude of cellular responses, including cell proliferation, survival, and cross-talk between different cellular signaling pathways. Integrin α5β1 is known to convey permissive signals enabling anchorage-dependent receptor tyrosine kinase signaling. However, the effects of integrin α5β1 on cell proliferation are controversial, and the molecular mechanisms involved in the regulation between integrin α5β1 and receptor tyrosine kinase remain largely unclear. Here we show that integrin α5 functions as a negative regulator of epidermal growth factor receptor (EGFR) signaling through its N-glycosylation. Expression of WT integrin α5 suppresses the EGFR phosphorylation and internalization upon EGF stimulation. However, expression of the N-glycosylation mutant integrin α5, S3–5, which contains fewer N-glycans, reversed the suppression of the EGFR-mediated signaling and cell proliferation. In a mechanistic manner, WT but not S3–5 integrin α5 forms a complex with EGFR and glycolipids in the low density lipid rafts, and the complex formation is disrupted upon EGF stimulation, suggesting that the N-glycosylation of integrin α5 suppresses the EGFR activation through promotion of the integrin α5-glycolipids-EGFR complex formation. Furthermore, consistent restoration of those N-glycans on the Calf-1,2 domain of integrin α5 reinstated the inhibitory effects as well as the complex formation with EGFR. Taken together, these data are the first to demonstrate that EGFR activation can be regulated by the N-glycosylation of integrin α5, which is a novel molecular paradigm for the cross-talk between integrins and growth factor receptors. PMID:26483551

  15. Epidermal growth factor-expressing Lactococcus lactis enhances growth performance of early-weaned pigs fed diets devoid of blood plasma.

    PubMed

    Bedford, A; Li, Z; Li, M; Ji, S; Liu, W; Huai, Y; de Lange, C F M; Li, J

    2012-12-01

    The effect of supplementing Lactococcus lactis (L. lactis) that was engineered to express epidermal growth factor (EGF-LL) to early-weaned pigs fed diets with typical levels of blood plasma (5%) or diets without blood plasma [blood plasma was substituted with soybean (Glycine max) meal and fish meal, based on amino acid supply] was examined. A total of 108 weaned piglets (19-26 d of age; mean initial BW 6.58 kg; 9 pigs per pen) were fed ad libitum according to a 2-phase feeding program without growth promoters. Three pens were assigned to each of 4 treatments: i) blood plasma-containing diet with blank bacterial growth medium (BP-Con), ii) blood plasma-containing diet with fermented EGF-LL (BP-EGF), iii) blood plasma-free diet with blank bacterial growth medium (BPF-Con), and iv) blood plasma-free diet with fermented EGF-LL (BPF-EGF). The amount of epidermal growth factor (EGF) was determined in the fermentation product and pigs were allotted 60 μg EGF/kg BW/d for 3 wk postweaning. There were no differences in overall growth performance between BP-Con and BP-EGF pigs and no differences in overall growth performance between LoCon and BPF-EGF pigs. Pigs fed BPF-EGF showed increased daily BW gain (410 vs. 260 g/d; P < 0.01) and gain:feed (0.67 vs. 0.58; P < 0.05) compared to BPF-Con pigs in wk 3 postweaning; this was comparable to values for the BP-Con group (400 g/d and 0.64). These results indicate that supplementation with EGF-LL can be effective in enhancing the performance of early-weaned piglets fed a low complexity diet and reduces the need for feeding high-quality animal proteins and antibiotics.

  16. A mutant of Saccharomyces cerevisiae lacking catabolic NAD-specific glutamate dehydrogenase. Growth characteristics of the mutant and regulation of enzyme synthesis in the wild-type strain.

    PubMed

    Middelhoven, W J; van Eijk, J; van Renesse, R; Blijham, J M

    1978-01-01

    NAD-specific glutamate dehydrogenase (GDH-B) was induced in a wild-type strain derived of alpha-sigma 1278b by alpha-amino acids, the nitrogen of which according to known degradative pathways is transferred to 2-oxoglutarate. A recessive mutant (gdhB) devoid of GDH-B activity grew more slowly than the wild type if one of these amino acids was the sole source of nitrogen. Addition of ammonium chloride, glutamine, asparagine or serine to growth media with inducing alpha-amino acids as the main nitrogen source increased the growth rate of the gdhB mutant to the wild-type level and repressed GDH-B synthesis in the wild type. Arginine, urea and allantoin similarly increased the growth rate of the gdhB mutant and repressed GDH-B synthesis in the presence of glutamate, but not in the presence of aspartate, alanine or proline as the main nitrogen source. These observations are consistent with the view that GDH-B in vivo deaminates glutamate. Ammonium ions are required for the biosynthesis of glutamine, asparagine, arginine, histidine and purine and pyrimidine bases. Aspartate and alanine apparently are more potent inducers of GDH-B than glutamate. Anabolic NADP-specific glutamate dehydrogenase (GDH-A) can not fulfil the function of GDH-B in the gdhB mutant. This is concluded from the equal growth rates in glutamate, aspartate and proline media as observed with a gdhB mutant and with a gdhA, gdhB double mutant in which both glutamate dehydrogenases area lacking. The double mutant showed an anomalous growth behaviour, growth rates on several nitrogen sources being unexpectedly low.

  17. Nitric Oxide Overproduction in Tomato shr Mutant Shifts Metabolic Profiles and Suppresses Fruit Growth and Ripening

    PubMed Central

    Bodanapu, Reddaiah; Gupta, Suresh K.; Basha, Pinjari O.; Sakthivel, Kannabiran; Sadhana; Sreelakshmi, Yellamaraju; Sharma, Rameshwar

    2016-01-01

    Nitric oxide (NO) plays a pivotal role in growth and disease resistance in plants. It also acts as a secondary messenger in signaling pathways for several plant hormones. Despite its clear role in regulating plant development, its role in fruit development is not known. In an earlier study, we described a short root (shr) mutant of tomato, whose phenotype results from hyperaccumulation of NO. The molecular mapping localized shr locus in 2.5 Mb region of chromosome 9. The shr mutant showed sluggish growth, with smaller leaves, flowers and was less fertile than wild type. The shr mutant also showed reduced fruit size and slower ripening of the fruits post-mature green stage to the red ripe stage. Comparison of the metabolite profiles of shr fruits with wild-type fruits during ripening revealed a significant shift in the patterns. In shr fruits intermediates of the tricarboxylic acid (TCA) cycle were differentially regulated than WT indicating NO affected the regulation of TCA cycle. The accumulation of several amino acids, particularly tyrosine, was higher, whereas most fatty acids were downregulated in shr fruits. Among the plant hormones at one or more stages of ripening, ethylene, Indole-3-acetic acid and Indole-3-butyric acid increased in shr, whereas abscisic acid declined. Our analyses indicate that the retardation of fruit growth and ripening in shr mutant likely results from the influence of NO on central carbon metabolism and endogenous phytohormones levels. PMID:27965677

  18. Lack of the vitamin D receptor is associated with reduced epidermal differentiation and hair follicle growth.

    PubMed

    Xie, Zhongjion; Komuves, László; Yu, Qian-Chun; Elalieh, Hashem; Ng, Dean C; Leary, Colin; Chang, Sandra; Crumrine, Debra; Yoshizawa, Tatsuya; Kato, Shigeaki; Bikle, Daniel D

    2002-01-01

    The active vitamin D metabolite, 1,25-dihydroxyvitamin D, acting through the vitamin D receptor, regulates the expression of genes in a variety of vitamin D-responsive tissues, including the epidermis. To investigate the role of the vitamin D receptor in mediating epidermal differentiation, we examined the histomorphology and expression of differentiation markers in the epidermis of vitamin D receptor knockout mice generated by gene targeting. The homozygous knockout mouse displayed a phenotype that closely resembles vitamin D-dependent rickets type II in humans, including the development of rickets and alopecia. Hair loss developed by 3 mo after birth and gradually led to nearly total hair loss by 8 mo. Histologic analysis of the skin of homozygous knockout mice revealed dilation of the hair follicles with the formation of dermal cysts starting at the age of 3 wk. These cysts increased in size and number with age. Epidermal differentiation markers, including involucrin, profilaggrin, and loricrin, detected by immunostaining and in situ hybridization, showed decreased expression levels in homozygous knockout mice from birth until 3 wk, preceding the morphologic changes observed in the hair follicles. Keratin 10 levels, however, were not reduced. At the ultrastructural level, homozygous knockout mice showed increased numbers of small dense granules in the granular layer with few or no surrounding keratin bundles and a loss of keratohyalin granules. Thus, both the interfollicular epidermis and the hair follicle appear to require the vitamin D receptor for normal differentiation. The temporal abnormalities between the two processes reflect the apparent lack of requirement for the vitamin D receptor during the anagen phase of the first (developmental) hair cycle, but with earlier effects on the terminal differentiation of the interfollicular epidermis.

  19. Current status of anti-human epidermal growth factor receptor 2 therapies: predicting and overcoming herceptin resistance.

    PubMed

    Chung, Alice; Cui, Xiaojiang; Audeh, William; Giuliano, Armando

    2013-08-01

    Human epidermal growth factor receptor 2-overexpressing (HER2+) breast cancer occurs in 20% to 25% of cases and is associated with poor prognosis. Trastuzumab (Herceptin; Genentech, South San Francisco, CA) is a monoclonal antibody targeting the HER2 extracellular domain that has been shown to significantly reduce relapse rates. However, some patients with HER2+ tumors do not respond to Herceptin, and 60% to 85% of patients with HER2+ metastatic breast cancer acquire resistance within a short time period. In this review, we discuss proposed mechanisms of action of trastuzumab and trastuzumab resistance and various drugs that have been developed to overcome drug resistance. We introduce the basal molecular subtype as a predictor of increased risk in HER2+ breast cancer and a possible alternative cause of drug resistance.

  20. Structural conversion from non-native to native form of recombinant human epidermal growth factor by Brevibacillus choshinensis.

    PubMed

    Miyauchi, A; Ozawa, M; Mizukami, M; Yashiro, K; Ebisu, S; Tojo, T; Fujii, T; Takagi, H

    1999-11-01

    Brevibacillus choshinensis (Bacillus brevis) HPD31 is a very efficient producer of recombinant human epidermal growth factor (EGF). The produced EGF is secreted into the medium with high efficiency. However part of the EGF that accumulates in the medium, exists as multimeric forms which are biologically inactive. We found the bacterium has the activity to structurally convert multimeric forms to the monomeric, native ones. Optimal temperature and pH for the conversion were 40 degrees C and pH 9, respectively. The reaction was promoted in the presence of reduced glutathione or cysteine. But the cells which had been sonicated or exposed to moderate heat treatment completely lost the activity. Thus, it was presumed that the activity might be due to the enzyme(s) that catalyze the protein disulfide exchanging reaction, and that they resides on the surface of viable cells.

  1. Mechanisms of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Resistance and Strategies to Overcome Resistance in Lung Adenocarcinoma

    PubMed Central

    Chang, Yoon Soo; Choi, Chang-Min

    2016-01-01

    Somatic mutations that lead to hyperactivation of epidermal growth factor receptor (EGFR) signaling are detected in approximately 50% of lung adenocarcinoma in people from the Far East population and tyrosine kinase inhibitors are now the standard first line treatment for advanced disease. They have led to a doubling of progression-free survival and an increase in overall survival by more than 2 years. However, emergence of resistant clones has become the primary cause for treatment failure, and has created a new challenge in the daily management of patients with EGFR mutations. Identification of mechanisms leading to inhibitor resistance has led to new therapeutic modalities, some of which have now been adapted for patients with unsuccessful tyrosine kinase inhibitor treatment. In this review, we describe mechanisms of tyrosine kinase inhibitor resistance and the available strategies to overcoming resistance. PMID:27790276

  2. Targeted expression of RALT in mouse skin inhibits epidermal growth factor receptor signalling and generates a Waved-like phenotype.

    PubMed

    Ballarò, Costanza; Ceccarelli, Sara; Tiveron, Cecilia; Tatangelo, Laura; Salvatore, Anna Maria; Segatto, Oreste; Alemà, Stefano

    2005-08-01

    Although it has been clearly established that negative feedback loops have a fundamental role in the regulation of epidermal growth factor receptor (EGFR) signalling in flies, their role in the regulation of mammalian EGFR has been inferred only recently from in vitro studies. Here, we report on the forced expression of RALT/MIG-6, a negative feedback regulator of ErbB receptors, in mouse skin. A RALT transgene driven by the K14 promoter generated a dose-dependent phenotype resembling that caused by hypomorphic and antimorphic Egfr alleles-that is, wavy coat, curly whiskers and open eyes at birth. Ex vivo keratinocytes from K14-RALT mice showed reduced biochemical and biological responses when stimulated by ErbB ligands. Conversely, knockdown of RALT by RNA interference enhanced ErbB mitogenic signalling. Thus, RALT behaves as a suppressor of EGFR signalling in mouse skin.

  3. Targeted expression of RALT in mouse skin inhibits epidermal growth factor receptor signalling and generates a Waved-like phenotype

    PubMed Central

    Ballarò, Costanza; Ceccarelli, Sara; Tiveron, Cecilia; Tatangelo, Laura; Salvatore, Anna Maria; Segatto, Oreste; Alemà, Stefano

    2005-01-01

    Although it has been clearly established that negative feedback loops have a fundamental role in the regulation of epidermal growth factor receptor (EGFR) signalling in flies, their role in the regulation of mammalian EGFR has been inferred only recently from in vitro studies. Here, we report on the forced expression of RALT/MIG-6, a negative feedback regulator of ErbB receptors, in mouse skin. A RALT transgene driven by the K14 promoter generated a dose-dependent phenotype resembling that caused by hypomorphic and antimorphic Egfr alleles—that is, wavy coat, curly whiskers and open eyes at birth. Ex vivo keratinocytes from K14-RALT mice showed reduced biochemical and biological responses when stimulated by ErbB ligands. Conversely, knockdown of RALT by RNA interference enhanced ErbB mitogenic signalling. Thus, RALT behaves as a suppressor of EGFR signalling in mouse skin. PMID:16007071

  4. Prediction of Inhibitory Activity of Epidermal Growth Factor Receptor Inhibitors Using Grid Search-Projection Pursuit Regression Method

    PubMed Central

    Du, Hongying; Hu, Zhide; Bazzoli, Andrea; Zhang, Yang

    2011-01-01

    The epidermal growth factor receptor (EGFR) protein tyrosine kinase (PTK) is an important protein target for anti-tumor drug discovery. To identify potential EGFR inhibitors, we conducted a quantitative structure–activity relationship (QSAR) study on the inhibitory activity of a series of quinazoline derivatives against EGFR tyrosine kinase. Two 2D-QSAR models were developed based on the best multi-linear regression (BMLR) and grid-search assisted projection pursuit regression (GS-PPR) methods. The results demonstrate that the inhibitory activity of quinazoline derivatives is strongly correlated with their polarizability, activation energy, mass distribution, connectivity, and branching information. Although the present investigation focused on EGFR, the approach provides a general avenue in the structure-based drug development of different protein receptor inhibitors. PMID:21811593

  5. [Epidermic growth factor receptor (EGFR) in glioblastomas: the mechanism of tumorigenesis and its role as a therapeutic target].

    PubMed

    Zahonero, Cristina; Sepúlveda, Juan M; Sánchez-Gómez, Pilar

    2015-07-16

    A glioblastoma is a primary brain tumour that is very aggressive and resistant to conventional treatment with chemo- or radiotherapy. Given that epidermic growth factor receptor (EGFR) is altered in 50% of glioblastomas, it is currently one of the most promising therapeutic targets in this kind of tumour. Yet, inhibitors of the kinase activity of EGFR have yielded poor results in clinical trials with patients with glioblastomas. In this review we analyse the function of EGFR in glioblastomas and outline the therapeutic approaches aimed against this receptor in this kind of tumour. This sort of analysis could be a starting point for improving the design of future therapies for glioblastomas, based on inhibiting the EGFR function.

  6. Transactivation of Epidermal Growth Factor Receptor by G Protein-Coupled Receptors: Recent Progress, Challenges and Future Research

    PubMed Central

    Wang, Zhixiang

    2016-01-01

    Both G protein-coupled receptors (GPCRs) and receptor-tyrosine kinases (RTKs) regulate large signaling networks, control multiple cell functions and are implicated in many diseases including various cancers. Both of them are also the top therapeutic targets for disease treatment. The discovery of the cross-talk between GPCRs and RTKs connects these two vast signaling networks and complicates the already complicated signaling networks that regulate cell signaling and function. In this review, we focus on the transactivation of epidermal growth factor receptor (EGFR), a subfamily of RTKs, by GPCRs. Since the first report of EGFR transactivation by GPCR, significant progress has been made including the elucidation of the mechanisms underlying the transactivation. Here, we first provide a basic picture for GPCR, EGFR and EGFR transactivation by GPCR. We then discuss the progress made in the last five years and finally provided our view of the future challenge and future researches needed to overcome these challenges. PMID:26771606

  7. Receptor-purified, Bolton-Hunter radioiodinated, recombinant, human epidermal growth factor: An improved radioligand for receptor studies

    SciTech Connect

    Kermode, J.C.; Tritton, T.R. )

    1990-01-01

    We report an assessment of the applicability of the Bolton-Hunter method to the radioiodination of epidermal growth factor (EGF). Recombinant human EGF (hEGF) could be radioiodinated successfully by this method, whereas murine EGF could not. Bolton-Hunter {sup 125}I-labeled hEGF was compared with commercial 125I-labeled hEGF prepared by the chloramine-T radioiodination method. Neither radioligand was sufficiently pure for a detailed characterization of the purportedly heterogeneous pattern of binding of EGF to its receptors. A procedure based on receptor adsorption was thus developed for repurification of the Bolton-Hunter 125I-labeled hEGF. This provided a much purer radioligand suitable for detailed studies of receptor-binding heterogeneity.

  8. Transactivation of Epidermal Growth Factor Receptor by G Protein-Coupled Receptors: Recent Progress, Challenges and Future Research.

    PubMed

    Wang, Zhixiang

    2016-01-12

    Both G protein-coupled receptors (GPCRs) and receptor-tyrosine kinases (RTKs) regulate large signaling networks, control multiple cell functions and are implicated in many diseases including various cancers. Both of them are also the top therapeutic targets for disease treatment. The discovery of the cross-talk between GPCRs and RTKs connects these two vast signaling networks and complicates the already complicated signaling networks that regulate cell signaling and function. In this review, we focus on the transactivation of epidermal growth factor receptor (EGFR), a subfamily of RTKs, by GPCRs. Since the first report of EGFR transactivation by GPCR, significant progress has been made including the elucidation of the mechanisms underlying the transactivation. Here, we first provide a basic picture for GPCR, EGFR and EGFR transactivation by GPCR. We then discuss the progress made in the last five years and finally provided our view of the future challenge and future researches needed to overcome these challenges.

  9. Real-time studies of the interactions between epidermal growth factor and its receptor during endocytic trafficking.

    PubMed

    Martin-Fernandez, M L; Clarke, D T; Tobin, M J; Jones, G R

    2000-09-01

    The interactions of growth factors with cell surface receptors regulate fundamental cell processes, such as growth, differentiation and transformation. Understanding the nature of these interactions at the molecular level is of fundamental importance in cell biology. This is not only from the point of view of basic science, but also because of the repercussions such knowledge might have in understanding the mode of action of drugs in cells. Receptor mediated endocytosis has been implicated in the downregulation of the mitogenic signal. However, no data are thus far available on how growth factor/receptor interactions might control endocytic trafficking. Here we show that information on modes of binding and receptor conformational changes can be obtained using time-resolved fluorescence methods. We have found that fluorescent probes bound to epidermal growth factor (EGF) show dynamic fluorescence quenching when EGF is bound to internalising EGF receptors (EGFR). We propose that this dynamic quenching takes place because EGF-bound probes interact with tryptophan residues in the extracellular domain of the EGF-EGFR complex. Real-time accumulation of fluorescent decays has also allowed us to follow the time course of a conformational change in EGFR occurring during endocytosis, and correlate this information with endosomal trafficking and EGFR recycling.

  10. Epidermal growth factor receptor-dependent stimulation of amphiregulin expression in androgen-stimulated human prostate cancer cells.

    PubMed Central

    Sehgal, I; Bailey, J; Hitzemann, K; Pittelkow, M R; Maihle, N J

    1994-01-01

    Amphiregulin is a heparin-binding epidermal growth factor (EGF)-related peptide that binds to the EGF receptor (EGF-R) with high affinity. In this study, we report a role for amphiregulin in androgen-stimulated regulation of prostate cancer cell growth. Androgen is known to enhance EGF-R expression in the androgen-sensitive LNCaP human prostate carcinoma cell line, and it has been suggested that androgenic stimuli may regulate proliferation, in part, through autocrine mechanisms involving the EGF-R. In this study, we demonstrate that LNCaP cells express amphiregulin mRNA and peptide and that this expression is elevated by androgenic stimulation. We also show that ligand-dependent EGF-R stimulation induces amphiregulin expression and that androgenic effects on amphiregulin synthesis are mediated through this EGF-R pathway. Parallel studies using the estrogen-responsive breast carcinoma cell line, MCF-7, suggest that regulation of amphiregulin by estrogen may also be mediated via an EGF-R pathway. In addition, heparin treatment of LNCaP cells inhibits androgen-stimulated cell growth further suggesting that amphiregulin can mediate androgen-stimulated LNCaP proliferation. Together, these results implicate an androgen-regulated autocrine loop composed of amphiregulin and its receptor in prostate cancer cell growth and suggest that the mechanism of steroid hormone regulation of amphiregulin synthesis may occur through androgen upregulation of the EGF-R and subsequent receptor-dependent pathways. Images PMID:8049525

  11. RhoC Mediates Epidermal Growth Factor-Stimulated Migration and Invasion in Head and Neck Squamous Cell Carcinoma

    PubMed Central

    Tumur, Zohra; Katebzadeh, Shahbaz; Guerra, Carlos; Bhushan, Lokesh; Alkam, Tursun; Henson, Bradley S.

    2015-01-01

    Epidermal growth factor receptor (EGFR) is overexpressed in head and neck squamous cell carcinoma (HNSCC) where it has been shown to promote tumor cell invasion upon phosphorylation. One mechanism by which EGFR promotes tumor progression is by activating signal cascades that lead to loss of E-cadherin, a transmembrane glycoprotein of the cell-cell adherence junctions; however mediators of these signaling cascades are not fully understood. One such mediator, RhoC, is activated upon a number of external stimuli, such as epidermal growth factor (EGF), but its role as a mediator of EGF-stimulated migration and invasion has not been elucidated in HNSCC. In the present study, we investigate the role of RhoC as a mediator of EGF-stimulated migration and invasion in HNSCC. We show that upon EGF stimulation, EGFR and RhoC were strongly activated in HNSCC. This resulted in activation of the phosphatidylinositol 3-Kinase Akt pathway (PI3K-Akt), phosphorylation of GSK-3β at the Ser9 residue, and subsequent down regulation of E-cadherin cell surface expression resulting in increased tumor cell invasion. Knockdown of RhoC restored E-cadherin expression and inhibited EGF-stimulated migration and invasion. This is the first report in HNSCC demonstrating the role RhoC plays in mediating EGF-stimulated migration and invasion by down-regulating the PI3K-Akt pathway and E-cadherin expression. RhoC may serve as a treatment target for HNSCC. PMID:25622907

  12. Expression, purification, and characterization of recombinant human and murine milk fat globule-epidermal growth factor-factor 8.

    PubMed

    Castellanos, Erick R; Ciferri, Claudio; Phung, Wilson; Sandoval, Wendy; Matsumoto, Marissa L

    2016-08-01

    Milk fat globule-epidermal growth factor-factor 8 (MFG-E8), as its name suggests, is a major glycoprotein component of milk fat globules secreted by the mammary epithelium. Although its role in milk fat production is unclear, MFG-E8 has been shown to act as a bridge linking apoptotic cells to phagocytes for removal of these dying cells. MFG-E8 is capable of bridging these two very different cell types via interactions through both its epidermal growth factor (EGF)-like domain(s) and its lectin-type C domains. The EGF-like domain interacts with αVβ3 and αVβ5 integrins on the surface of phagocytes, whereas the C domains bind phosphatidylserine found on the surface of apoptotic cells. In an attempt to purify full-length, recombinant MFG-E8 expressed in either insect cells or CHO cells, we find that it is highly aggregated. Systematic truncation of the domain architecture of MFG-E8 indicates that the C domains are mainly responsible for the aggregation propensity. Addition of Triton X-100 to the conditioned cell culture media allowed partial recovery of non-aggregated, full-length MFG-E8. A more comprehensive detergent screen identified CHAPS as a stabilizer of MFG-E8 and allowed purification of a significant portion of non-aggregated, full-length protein. The CHAPS-stabilized recombinant MFG-E8 retained its natural ability to bind both αVβ3 and αVβ5 integrins and phosphatidylserine suggesting that it is properly folded and active. Herein we describe an efficient purification method for production of non-aggregated, full-length MFG-E8.

  13. Phage Genetic Sites Involved in λ Growth Inhibition by the Escherichia Coli Rap Mutant

    PubMed Central

    Guzman, P.; Guarneros, G.

    1989-01-01

    The rap mutation of Escherichia coli prevents the growth of bacteriophage λ. We have isolated phage mutants that compensate for the host deficiency. The mutations, named bar, were genetically located to three different loci of the λ genome: barI in the attP site, barII in the cIII ea10 region, and barIII within or very near the imm434 region. The level of λ leftward transcription correlates with rap exclusion. Phage λ mutants partially defective in the pL promoter or in pL-transcript antitermination showed a Bar(-) phenotype. Conversely, mutants constitutive for transcription from the pI or pL promoters were excluded more stringently by rap bacteria. We conclude that rap exclusion depends on the magnitude of transcription through the wild type bar loci in the phage genome. PMID:2523838

  14. SRC-DEPENDENT PHOSPHORYLATION OF THE EPIDERMAL GROWTH FACTOR RECEPTOR ON TYROSINE 845 IS REQUIRED FOR ZINC-INDUCED RAS ACTIVATION

    EPA Science Inventory

    Src-dependent Phosphorylation of the Epidermal Growth Factor Receptor on Tyrosine 845 Is Required for Zinc-induced Ras Activation
    Weidong Wu 1 , Lee M. Graves 2 , Gordon N. Gill 3 , Sarah J. Parsons 4 , and James M. Samet 5
    1 Center for Environmental Medicine and Lung Biolo...

  15. MATRIX METALLOPROTEINS (MMP)-MEDIATED PHOSPHORYLATION OF THE EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR) IN HUMAN AIRWAY EPITHELIAL CELLS (HAEC) EXPOSED TO ZINC (ZN)

    EPA Science Inventory

    Matrix Metalloproteinase (MMP)-Mediated Phosphorylation of The Epidermal Growth Factor Receptor (EGFR) in Human Airway Epithelial Cells (HAEC) Exposed to Zinc (Zn)
    Weidong Wu, James M. Samet, Robert Silbajoris, Lisa A. Dailey, Lee M. Graves, and Philip A. Bromberg
    Center fo...

  16. Ascorbate-Deficient vtc2 Mutants in Arabidopsis Do Not Exhibit Decreased Growth.

    PubMed

    Lim, Benson; Smirnoff, Nicholas; Cobbett, Christopher S; Golz, John F

    2016-01-01

    In higher plants the L-galactose pathway represents the major route for ascorbate biosynthesis. The first committed step of this pathway is catalyzed by the enzyme GDP-L-galactose phosphorylase and is encoded by two paralogs in Arabidopsis - VITAMIN C2 (VTC2) and VTC5. The first mutant of this enzyme, vtc2-1, isolated via an EMS mutagenesis screen, has approximately 20-30% of wildtype ascorbate levels and has been reported to have decreased growth under standard laboratory conditions. Here, we show that a T-DNA insertion into the VTC2 causes a similar reduction in ascorbate levels, but does not greatly affect plant growth. Subsequent segregation analysis revealed the growth defects of vtc2-1 mutants segregate independently of the vtc2-1 mutation. These observations suggest that it is the presence of an independent cryptic mutation that affects growth of vtc2-1 mutants, and not the 70-80% decrease in ascorbate levels that has been assumed in past studies.

  17. The impact of smoking status on radiologic tumor progression patterns and response to epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors in lung adenocarcinoma with activating EGFR mutations

    PubMed Central

    Cha, Yoon Ki; Ahn, Myung-Ju; Park, Keunchil; Ahn, Jin Seok; Sun, Jong-Mu; Choi, Yoon-La; Lee, Kyung Soo

    2016-01-01

    Background The aim of this study was to evaluate the impact of smoking on the treatment outcome of epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) in patients with EGFR-mutant lung adenocarcinoma, with consideration of other factors including radiologic tumor progression pattern according to patient smoking status. Methods A total of 224 patients with EGFR mutant lung adenocarcinomas that were treated with EGFR-TKIs were retrospectively reviewed. Radiologic tumor progression pattern and treatment outcomes were evaluated according to smoking history. Results There were no significant differences in radiologic tumor progression pattern based on smoking status. There were no significant differences in survival between never-smokers and smokers or among never-, former-, and current-smokers, but there was a trend of shorter progression free survival (PFS) and poorer overall survival (OS) in smokers compared with never-smokers. In multivariate analysis, long-term smokers had shorter PFS and poorer OS than those who had never smoked. Conclusions A history of smoking had no significant effect on radiologic tumor progression pattern; however, smoking history is a negative predictive factor of survival in patients with EGFR-mutant lung adenocarcinoma undergoing EGFR-TKI therapy. PMID:28066597

  18. Cytoplasmic Domain Interactions of Syndecan-1 and Syndecan-4 with α6β4 Integrin Mediate Human Epidermal Growth Factor Receptor (HER1 and HER2)-dependent Motility and Survival*♦

    PubMed Central

    Wang, Haiyao; Jin, Haining; Beauvais, DeannaLee M.; Rapraeger, Alan C.

    2014-01-01

    Epithelial cells are highly dependent during wound healing and tumorigenesis on the α6β4 integrin and its association with receptor tyrosine kinases. Previous work showed that phosphorylation of the β4 subunit upon matrix engagement depends on the matrix receptor syndecan (Sdc)-1 engaging the cytoplasmic domain of the β4 integrin and coupling of the integrin to human epidermal growth factor receptor-2 (HER2). In this study, HER2-dependent migration activated by matrix engagement is compared with migration stimulated by EGF. We find that whereas HER2-dependent migration depends on Sdc1, EGF-dependent migration depends on a complex consisting of human epidermal growth factor receptor-1 (HER1, commonly known as EGFR), α6β4, and Sdc4. The two syndecans recognize distinct sites at the extreme C terminus of the β4 integrin cytoplasmic domain. The binding motif in Sdc1 is QEEXYX, composed in part by its syndecan-specific variable (V) region and in part by the second conserved (C2) region that it shares with other syndecans. A cell-penetrating peptide containing this sequence competes for HER2-dependent epithelial migration and carcinoma survival, although it is without effect on the EGFR-stimulated mechanism. β4 mutants bearing mutations specific for Sdc1 and Sdc4 recognition act as dominant negative mutants to block cell spreading or cell migration that depends on HER2 or EGFR, respectively. The interaction of the α6β4 integrin with the syndecans appears critical for it to be utilized as a signaling platform; migration depends on α3β1 integrin binding to laminin 332 (LN332; also known as laminin 5), whereas antibodies that block α6β4 binding are without effect. These findings indicate that specific syndecan family members are likely to have key roles in α6β4 integrin activation by receptor tyrosine kinases. PMID:25202019

  19. Construction of multifunctional proteins for tissue engineering: epidermal growth factor with collagen binding and cell adhesive activities.

    PubMed

    Hannachi Imen, Elloumi; Nakamura, Makiko; Mie, Masayasu; Kobatake, Eiry

    2009-01-01

    The development of different techniques based on natural and polymeric scaffolds are useful for the design of different biomimetic materials. These approaches, however, require supplementary steps for the chemical or physical modification of the biomaterial. To avoid such steps, in the present study, we constructed a new multifunctional protein that can be easily immobilized onto hydrophobic surfaces, and at the same time helps enhance specific cell adhesion and proliferation onto collagen substrates. A collagen binding domain was fused to a previously constructed protein, which had an epidermal growth factor fused to a hydrophobic peptide that allows for cell adhesion. The new fusion protein, designated fnCBD-ERE-EGF is produced in Escherichia coli, and its abilities to bind to collagen and promote cell proliferation were investigated. fnCBD-ERE-EGF was shown to keep both collagen binding and cell growth-promoting activities comparable to those of the corresponding unfused proteins. The results obtained in this study also suggest the use of a fnCBD-ERE-EGF as an alternative for the design of multifunctional ECM-bound growth factor based materials.

  20. Location of the epidermal growth factor binding site on the EGF receptor. A resonance energy transfer study.

    PubMed

    Carraway, K L; Koland, J G; Cerione, R A

    1990-09-18

    As a first step toward developing a structural map of key sites on the epidermal growth factor (EGF) receptor, we have used resonance energy transfer to measure the distance of closest approach between the receptor-bound growth factor molecule and lipid molecules at the surface of the plasma membrane. EGF, specifically labeled at its amino terminus with fluorescein 5-isothiocyanate, was used as an energy donor in these experiments, while either octadecylrhodamine B or octadecylrhodamine 101, inserted into plasma membranes isolated from human epidermoid carcinoma (A431) cells, served as the energy acceptors. The energy transfer measurements indicate that the amino terminus of the bound growth factor is about 67 A away from the plasma membrane. On the basis of the dimensions of the EGF molecule, this suggests that EGF binds to a site on its receptor that is a considerable distance (52-82 A) from the surface of these cells. Identical results were obtained under conditions where the receptor functions as an active tyrosine kinase, suggesting that the relative juxtaposition of the EGF binding domain to the membrane surface does not change with receptor autophosphorylation or with the activation of the receptor tyrosine kinase activity.

  1. Involvement of aquaporin-3 in epidermal growth factor receptor signaling via hydrogen peroxide transport in cancer cells.

    PubMed

    Hara-Chikuma, Mariko; Watanabe, Sachiko; Satooka, Hiroki

    2016-03-18

    Aquaporin 3 (AQP3), a water/glycerol channel protein, is capable of transporting hydrogen peroxide (H2O2). Here, we show that AQP3-mediated intracellular H2O2 is involved in epidermal growth factor (EGF)-induced cell signaling and its dependent cell function in the EGF receptor (EGFR)-positive cancer cell lines A431 and H1666. AQP3 knockdown suppressed the transport into the cells of extracellular H2O2 produced in response to EGF in A431 and H1666 cells. EGF-induced Erk and Akt activation, which occurred through SHP2 and/or PTEN modulation, was impaired by AQP3 knockdown. Cell growth and migration induced by EGF stimulation were attenuated in AQP3 knockdown cells compared with those in control cells. Coincidentally, tumor growth of A431 cell xenografts in immunodeficient mice was decreased by AQP3 knockdown. Accordingly, a xenograft with AQP3 knockdown A431 cells significantly enhanced the survival of recipient mice compared with the transplantation with control cells. In addition, AQP3 associated with EGFR and NADPH oxidase 2, which we propose is linked to AQP3 producing a localized increase in intracellular H2O2 to function as a second messenger during EGFR cell signaling. Therefore, our findings suggest that AQP3 is required for EGF-EGFR cell signaling in cancer cells and is a therapeutic target for cancer progression.

  2. Development of anti-adhesive spongy sheet composed of hyaluronic acid and collagen containing epidermal growth factor.

    PubMed

    Kuroyanagi, Misato; Yamamoto, Akiko; Shimizu, Nahoko; Toi, Ayako; Inomata, Tomonori; Takeda, Akira; Kuroyanagi, Yoshimitsu

    2014-01-01

    Anti-adhesive products need to be designed while considering the concept of wound healing. Two main events must proceed simultaneously: facilitating wound healing in surgically excised tissue, as well as preventing injured tissue from adhering to the surrounding tissue. The present study aimed to develop an anti-adhesive spongy sheet composed of hyaluronic acid and collagen (Col) containing epidermal growth factor, and to investigate the potential of this spongy sheet using an in vitro wound surface model (placing a spongy sheet on a fibroblast-incorporating Col gel sheet) and an in vitro inter-tissue model (placing a spongy sheet between two fibroblast-incorporating Col gel sheets). These in vitro experiments demonstrated that this spongy sheet effectively stimulates fibroblasts to release an increased amount of vascular endothelial growth factor and hepatocyte growth factor, which are essential for wound healing to proceed succesfully. In addition, anti-adhesive performance of this spongy sheet was evaluated in animal experiments using Sprague Dawley rats. Under anesthesia, a 1 cm × 2 cm segment of peritoneum was superficially excised from walls, and the cecum was then abraded by scraping with a scalpel blade over a 1 cm × 2 cm area. A piece of spongy sheet was placed on the peritoneal defect. Both defects were placed in contact, and the incision was closed by suturing. Peritoneal condition was evaluated after one week. This spongy sheet was capable of facilitating the wound healing of surgically excised tissue and preventing surgically excised tissue from adhering to surrounding tissues.

  3. Development of novel epidermal growth receptor-basedradiopharmaceuticals: Imaging agents for breast cancer

    SciTech Connect

    Van Brocklin, Henry F.

    2001-09-25

    The goal of this research was to develop epidermal growthfactor receptor (EGFR) nuclear medicine breast cancer imaging agents. Ourapproach was to synthesize small molecule inhibitors of the EGFR tyrosinekinase (tk) suitable for labeling with single photon or positron-emittingradioisotopes and evaluate the imaging potential of these new molecules.We have synthesized and fully characterized 22 quinazoline compounds. Allcompounds inhibit EGFR tk phosphorylation activity in the nanomolarrange. All compounds tested exhibited specificity for the EGFR tk versusthe ErbB2 and ErbB4 tyrosine kinases. A radiometric binding assay usingan iodine-125 labeled quinazoline was developed to determine the affinityof the quinazolines for the EGFR tk ATP binding site. The affinitiesranged from 0.4-51 nM. The octanol/water partition coefficients (Log P;lipophilicity) of the new compounds ranged from 2.2-5.5. Six compoundshave been labeled with fluorine-18. Biodistribution in EGFRoverexpressing tumor bearing mice demonstrated tumor uptake buthighlighted delivery and metabolism issues. The 2-fluoro quinazoline wasnot metabolized in an in vitro hepatocyte study. From this work a breadthof agent characteristics was created establishing the foundation forfuture research toward the optimal EGFR imaging agent.

  4. Epidermal growth factor receptor T790M mutation-positive metastatic non-small-cell lung cancer: focus on osimertinib (AZD9291)

    PubMed Central

    Saad, Nibal; Poudel, Aarati; Basnet, Alina; Gajra, Ajeet

    2017-01-01

    Adenocarcinoma is the most common type of non-small-cell lung cancer (NSCLC). Adenocarcinoma with epidermal growth factor receptor (EGFR) mutations accounts for 8%–30% of all cases of NSCLC depending on the geography and ethnicity. EGFR-mutated NSCLC usually responds to first-line therapy with EGFR tyrosine kinase inhibitors (TKIs). However, there is eventual loss of efficacy to TKIs due to development of resistance. The most frequent cause for resistance is a second EGFR mutation in exon 20 (T790M), which is encountered in up to 62% of patients. Osimertinib is one of the third-generation EGFR TKIs with a high selective potency against T790M mutants. In Phase I trial of osimertinib in advanced lung cancer after progression on EGFR TKIs, the response rate and disease control rate were 61% and 95%, respectively. A subsequent Phase II (AURA2) trial demonstrated a disease control rate of 92%, a response rate of 71%, a median duration of response of 7.8 months, and a median progression-free survival of 8.6 months. Osimertinib was approved by the US Food & Drug Administration in November 2015 for patients whose tumors exhibited T790M mutation and for those with progressive disease on other EGFR TKIs. In this review, we address the role of EGFR TKIs in the management of EGFR mutation lung cancer and the mechanisms of resistance to TKIs with a focus on the role of osimertinib. Data from completed trials of osimertinib, ongoing trials, as well as novel diagnostic methods to detect EGFR T790M mutation are reviewed. PMID:28367058

  5. Polo-like kinase 1 inhibition diminishes acquired resistance to epidermal growth factor receptor inhibition in non-small cell lung cancer with T790M mutations

    PubMed Central

    Wang, Liguang; Nilsson, Monique; Goonatilake, Ruchitha; Tong, Pan; Li, Lerong; Giri, Uma; Villalobos, Pamela; Mino, Barbara; Rodriguez-Canales, Jaime; Wistuba, Ignacio; Wang, Jing; Heymach, John V.; Johnson, Faye M.

    2016-01-01

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are effective against non-small cell lung cancer (NSCLC) with activating EGFR mutations, but resistance is inevitable. Mechanisms of acquired resistance include T790M mutations and epithelial–mesenchymal transition (EMT). One potential strategy for overcoming this resistance is the inhibition of polo-like kinase 1 (PLK1) based on our previous studies showing that mesenchymal NSCLC cell lines are more sensitive to PLK1 inhibition than epithelial cell lines. To determine the extent to which PLK1 inhibition overcomes EGFR TKI resistance we measured the effects of the PLK1 inhibitor volasertib alone and in combination with the EGFR inhibitor erlotinib in vitro and in vivo in EGFR mutant NSCLC cell lines with acquired resistance to erlotinib. Two erlotinib-resistant cell lines that underwent EMT had higher sensitivity to volasertib, which caused G2/M arrest and apoptosis, than their parental cells. In all NSCLC cell lines with T790M mutations, volasertib markedly reduced erlotinib resistance. All erlotinib-resistant NSCLC cell lines with T790M mutations had higher sensitivity to erlotinib plus volasertib than to erlotinib alone, and the combination treatment caused G2/M arrest and apoptosis. Compared with either agent alone, the combination treatment also caused significantly more DNA damage and greater reductions in tumor size. Our results suggest that PLK1 inhibition is clinically effective against NSCLC that becomes resistant to EGFR inhibition through EMT or the acquisition of a T790M mutation. These results uncover new functions of PLK1 inhibition in the treatment of NSCLC with acquired resistance to EGFR TKIs. PMID:27384992

  6. ZEB1 Mediates Acquired Resistance to the Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors in Non-Small Cell Lung Cancer

    PubMed Central

    Yoshida, Takeshi; Song, Lanxi; Bai, Yun; Kinose, Fumi; Li, Jiannong; Ohaegbulam, Kim C.; Muñoz-Antonia, Teresita; Qu, Xiaotao; Eschrich, Steven; Uramoto, Hidetaka; Tanaka, Fumihiro; Nasarre, Patrick; Gemmill, Robert M.; Roche, Joëlle; Drabkin, Harry A.; Haura, Eric B.

    2016-01-01

    Epithelial-mesenchymal transition (EMT) is one mechanism of acquired resistance to inhibitors of the epidermal growth factor receptor-tyrosine kinases (EGFR-TKIs) in non-small cell lung cancer (NSCLC). The precise mechanisms of EMT-related acquired resistance to EGFR-TKIs in NSCLC remain unclear. We generated erlotinib-resistant HCC4006 cells (HCC4006ER) by chronic exposure of EGFR-mutant HCC4006 cells to increasing concentrations of erlotinib. HCC4006ER cells acquired an EMT phenotype and activation of the TGF-β/SMAD pathway, while lacking both T790M secondary EGFR mutation and MET gene amplification. We employed gene expression microarrays in HCC4006 and HCC4006ER cells to better understand the mechanism of acquired EGFR-TKI resistance with EMT. At the mRNA level, ZEB1 (TCF8), a known regulator of EMT, was >20-fold higher in HCC4006ER cells than in HCC4006 cells, and increased ZEB1 protein level was also detected. Furthermore, numerous ZEB1 responsive genes, such as CDH1 (E-cadherin), ST14, and vimentin, were coordinately regulated along with increased ZEB1 in HCC4006ER cells. We also identified ZEB1 overexpression and an EMT phenotype in several NSCLC cells and human NSCLC samples with acquired EGFR-TKI resistance. Short-interfering RNA against ZEB1 reversed the EMT phenotype and, importantly, restored erlotinib sensitivity in HCC4006ER cells. The level of micro-RNA-200c, which can negatively regulate ZEB1, was significantly reduced in HCC4006ER cells. Our results suggest that increased ZEB1 can drive EMT-related acquired resistance to EGFR-TKIs in NSCLC. Attempts should be made to explore targeting ZEB1 to resensitize TKI-resistant tumors. PMID:26789630

  7. Reactivation of mutant p53 by a dietary-related compound phenethyl isothiocyanate inhibits tumor growth

    PubMed Central

    Aggarwal, M; Saxena, R; Sinclair, E; Fu, Y; Jacobs, A; Dyba, M; Wang, X; Cruz, I; Berry, D; Kallakury, B; Mueller, S C; Agostino, S D; Blandino, G; Avantaggiati, M L; Chung, F-L

    2016-01-01

    Mutations in the p53 tumor-suppressor gene are prevalent in human cancers. The majority of p53 mutations are missense, which can be classified into contact mutations (that directly disrupts the DNA-binding activity of p53) and structural mutations (that disrupts the conformation of p53). Both of the mutations can disable the normal wild-type (WT) p53 activities. Nevertheless, it has been amply documented that small molecules can rescue activity from mutant p53 by restoring WT tumor-suppressive functions. These compounds hold promise for cancer therapy and have now entered clinical trials. In this study, we show that cruciferous-vegetable-derived phenethyl isothiocyanate (PEITC) can reactivate p53 mutant under in vitro and in vivo conditions, revealing a new mechanism of action for a dietary-related compound. PEITC exhibits growth-inhibitory activity in cells expressing p53 mutants with preferential activity toward p53R175, one of the most frequent ‘hotspot' mutations within the p53 sequence. Mechanistic studies revealed that PEITC induces apoptosis in a p53R175 mutant-dependent manner by restoring p53 WT conformation and transactivation functions. Accordingly, in PEITC-treated cells the reactivated p53R175 mutant induces apoptosis by activating canonical WT p53 targets, inducing a delay in S and G2/M phase, and by phosphorylating ATM/CHK2. Interestingly, the growth-inhibitory effects of PEITC depend on the redox state of the cell. Further, PEITC treatments render the p53R175 mutant sensitive to degradation by the proteasome and autophagy in a concentration-dependent manner. PEITC-induced reactivation of p53R175 and its subsequent sensitivity to the degradation pathways likely contribute to its anticancer activities. We further show that dietary supplementation of PEITC is able to reactivate WT activity in vivo as well, inhibiting tumor growth in xenograft mouse model. These findings provide the first example of mutant p53 reactivation by a dietary compound and

  8. A Role for Endogenous Transforming Growth Factor β1 in Langerhans Cell Biology:  The Skin of   Transforming Growth Factor β1 Null Mice Is Devoid of  Epidermal Langerhans Cells

    PubMed Central

    Borkowski, Teresa A.; Letterio, John J.; Farr, Andrew G.; Udey, Mark C.

    1996-01-01

    Transforming growth factor β1 (TGF-β1) regulates leukocytes and epithelial cells. To determine whether the pleiotropic effects of TGF-β1, a cytokine that is produced by both keratinocytes and Langerhans cells (LC), extend to epidermal leukocytes, we characterized LC (the epidermal contingent of the dendritic cell [DC] lineage) and dendritic epidermal T cells (DETC) in TGF-β1 null (TGF-β1 −/−) mice. I-A+ LC were not detected in epidermal cell suspensions or epidermal sheets prepared from TGF-β1 −/− mice, and epidermal cell suspensions were devoid of allostimulatory activity. In contrast, TCR-γδ+ DETC were normal in number and appearance in TGF-β1 −/− mice and, importantly, DETC represented the only leukocytes in the epidermis. Immunolocalization studies revealed CD11c+ DC in lymph nodes from TGF-β1 −/− mice, although gp40+ DC were absent. Treatment of TGF-β1 −/− mice with rapamycin abrogated the characteristic inflammatory wasting syndrome and prolonged survival indefinitely, but did not result in population of the epidermis with LC. Thus, the LC abnormality in TGF-β1 −/− mice is not a consequence of inflammation in skin or other organs, and LC development is not simply delayed in these animals. We conclude that endogenous TGF-β1 is essential for normal murine LC development or epidermal localization. PMID:8976197

  9. Characterization of the growth and auxin physiology of roots of the tomato mutant, diageotropica

    NASA Technical Reports Server (NTRS)

    Muday, G. K.; Lomax, T. L.; Rayle, D. L.

    1995-01-01

    Roots of the tomato (Lycopersicon esculentum, Mill.) mutant (diageotropica (dgt) exhibit an altered phenotype. These roots are agravitropic and lack lateral roots. Relative to wild-type (VFN8) roots, dgt roots are less sensitive to growth inhibition by exogenously applied IAA and auxin transport inhibitors (phytotropins), and the roots exhibit a reduction in maximal growth inhibition in response to ethylene. However, IAA transport through roots, binding of the phytotropin, tritiated naphthylphthalamic acid ([3H]NPA), to root microsomal membranes, NPA-sensitive IAA uptake by root segments, and uptake of [3H]NPA into root segments are all similar in mutant and wild-type roots. We speculate that the reduced sensitivity of dgt root growth to auxin-transport inhibitors and ethylene is an indirect result of the reduction in sensitivity to auxin in this single gene, recessive mutant. We conclude that dgt roots, like dgt shoots, exhibit abnormalities indicating they have a defect associated with or affecting a primary site of auxin perception or action.

  10. Altered growth, differentiation, and responsiveness to epidermal growth factor of human embryonic mesenchymal cells of palate by persistent rubella virus infection

    SciTech Connect

    Yoneda, T.; Urade, M.; Sakuda, M.; Miyazaki, T.

    1986-05-01

    We previously demonstrated that human embryonic mesenchymal cells derived from the palate (HEMP cells) retain alkaline phosphatase (ALP) content and capacity for collagen synthesis after long-term culture, and their growth is markedly stimulated by epidermal growth factor (EGF). There was a dramatic decrease in ALP content and capacity to synthesize collagen in HEMP cells (HEMP-RV cells) persistently infected with rubella virus (RV). EGF increased ALP activity and decreased collagen synthesis in HEMP cells, whereas EGF showed no effect on these activities in HEMP-RV cells. Growth of HEMP-RV cells was slightly reduced compared with that of HEMP cells. EGF stimulated growth of HEMP cells and to a lesser extent of HEMP-RV cells. Binding of /sup 125/I-EGF to cell-surface receptors in HEMP-RV cells was, to our surprise, twice as much as that in HEMP cells. However, internalization of bound /sup 125/I-EGF in HEMP-RV cells was profoundly diminished. Thus, persistent RV infection causes not only changes in HEMP cell growth and differentiation but a decrease in or loss of HEMP cell responsiveness to EGF. The effects of persistent RV infection on palatal cell differentiation as well as growth may be responsible for the pathogenesis of congenital rubella. Furthermore, since HEMP cells appear to be closely related to osteoblasts, these results suggest a mechanism for RV-induced osseous abnormalities manifested in congenital rubella patients.

  11. Growth, seed development and genetic analysis in wild type and Def mutant of Pisum sativum L

    PubMed Central

    2011-01-01

    Background The def mutant pea (Pisum sativum L) showed non-abscission of seeds from the funicule. Here we present data on seed development and growth pattern and their relationship in predicting this particular trait in wild type and mutant lines as well as the inheritance pattern of the def allele in F2 and F3 populations. Findings Pod length and seed fresh weight increase with fruit maturity and this may affect the abscission event in pea seeds. However, the seed position in either the distal and proximal ends of the pod did not show any difference. The growth factors of seed fresh weight (FW), width of funicles (WFN), seed width (SW) and seed height (SH) were highly correlated and their relationships were determined in both wild type and def mutant peas. The coefficient of determination R2 values for the relationship between WFN and FW, SW and SH and their various interactions were higher for the def dwarf type. Stepwise multiple regression analysis showed that variation of WFN was associated with SH and SW. Pearson's chi square analysis revealed that the inheritance and segregation of the Def locus in 3:1 ratio was significant in two F2 populations. Structural analysis of the F3 population was used to confirm the inheritance status of the Def locus in F2 heterozygote plants. Conclusions This study investigated the inheritance of the presence or absence of the Def allele, controlling the presence of an abscission zone (AZ) or an abscission-less zone (ALZ) forming in wild type and mutant lines respectively. The single major gene (Def) controlling this phenotype was monogenic and def mutants were characterized and controlled by the homozygous recessive def allele that showed no palisade layers in the hilum region of the seed coat. PMID:22078070

  12. Vanadate-resistant mutants of Saccharomyces cerevisiae show alterations in protein phosphorylation and growth control.

    PubMed Central

    Kanik-Ennulat, C; Neff, N

    1990-01-01

    This work describes two spontaneous vanadate-resistant mutants of Saccharomyces cerevisiae with constitutive alterations in protein phosphorylation, growth control, and sporulation. Vanadate has been shown by a number of studies to be an efficient competitor of phosphate in biochemical reactions, especially those that involve phosphoproteins as intermediates or substrates. Resistance to toxic concentrations of vanadate can arise in S. cerevisiae by both recessive and dominant spontaneous mutations in a large number of loci. Mutations in two of the recessive loci, van1-18 and van2-93, resulted in alterations in the phosphorylation of a number of proteins. The mutant van1-18 gene also showed an increase in plasma membrane ATPase activity in vitro and a lowered basal phosphatase activity under alkaline conditions. Cells containing the van2-93 mutant allele had normal levels of plasma membrane ATPase activity, but this activity was not inhibited by vanadate. Both of these mutants failed to enter stationary phase, were heat shock sensitive, showed lowered long-term viability, and sporulated on rich medium in the presence of 2% glucose. The wild-type VAN1 gene was isolated and sequenced. The open reading frame predicts a protein of 522 amino acids, with no significant homology to any genes that have been identified. Diploid cells that contained two mutant alleles of this gene demonstrated defects in spore viability. These data suggest that the VAN1 gene product is involved in regulation of the phosphorylation of a number of proteins, some of which appear to be important in cell growth control. Images PMID:2137555

  13. Effects of gravity on growth phenotype in MAPs mutants of Arabidopsis

    NASA Astrophysics Data System (ADS)

    Higuchi, Sayoko; Kumasaki, Saori; Matsumoto, Shouhei; Soga, Kouichi; Wakabayashi, Kazuyuki; Hashimoto, Takashi; Hoson, Takayuki

    Hypergravity suppresses elongation growth and promotes lateral expansion of stem organs in various plants. It has been shown that cortical microtubules are involved in gravity-induced modifications of growth and development. Because microtubule-associated proteins (MAPs) are important in dynamics of microtubules, they may also play a role in the gravity response. In the present study, the roles of MAPs (MOR1, SPR1, SPR2, MAP65, and KTN1) in hypergravityinduced changes in growth and development were examined in Arabidopsis hypocotyls. The expression of MOR1, SPR1, SPR2 , and MAP65 genes was down-regulated, whereas that of KTN1 gene was increased transiently by hypergravity. We analyzed the growth behavior of MAPs mutants (mor1/rid5, spr1-2 , spr2-2, and katanin mutants) under hypergravity conditions. Hypergravity inhibited elongation growth of hypocotyls in spr1-2 as in wild-type. On the other hand, elongation growth of hypocotyls in mor1/rid5, spr2-2, and katanin mutants was suppressed as compared with wild-type under 1 g conditions, and was not affected further by hypergravity stimuli. Hypocotyls of mor1/rid5, spr1-2 , and spr2-2 also showed helical growth even under 1 g conditions, and in mor1/rid5 such a phenotype was intensified under hypergravity conditions. The alignment of cell line was abnormal in hypocotyls of katanin mutants under both 1 g and hypergravity conditions. The orientation of cortical microtubules in wildtype hypocotyls was changed from transverse direction to longitudinal or random directions by hypergravity stimuli. In mor1/rid5 hypocotyls, the orientation of microtubules was random even under 1 g condition, which was not affected by hypergravity. Furthermore, partial disruption of cortical microtubules was observed in mor1/rid5 hypocotyls. These results suggest that MAPs, especially MOR1, play an important role in maintenance of normal growth phenotype against gravity in plants probably via stabilization of microtubule structure.

  14. Enhanced production of thrombinase by Streptomyces venezuelae: kinetic studies on growth and enzyme production of mutant strain.

    PubMed

    Naveena, Balakrishnan; Gopinath, Kannapan Panchamoorthy; Sakthiselvan, Punniavan; Partha, Nagarajan

    2012-05-01

    This investigation provides the enhanced production of thrombinase, a fibrinolytic enzyme using mutant Streptomyces venezuelae. Initially the mutagenesis of the marine isolate was done by UV and Ethyl methane sulfonate (EMS) and their mutational efficiencies were compared. The mutants were selected based on their high thrombinase activity and used for further studies. The mutant was found to be more halo and thermo tolerant comparing to wild. The effect of Dissolved oxygen level was also determined and the mutant offered the maximum specific growth rate as 0.2404 (h(-1)). The mutant showed high resistance to higher initial lactose concentration and the inhibition concentration was found to be 155.1mg/mL. The effect of S(0)/X(0) ratio on specific substrate consumption and production rate were also investigated. Both mutant and wild showed increase in specific substrate consumption and production rate at higher S(0)/X(0) ratio but the mutant showed better values than the wild strain.

  15. ROLES OF EPIDERMAL GROWTH FACTOR (EGF) AND TRANSFORMING GROWTH FACTOR-ALPHA (TGF-A) IN MEDIATION OF DIOXIN (TCDD)-INDUCED DELAYS IN DEVELOPMENT OF THE MOUSE MAMMARY GLAND

    EPA Science Inventory

    Roles of Epidermal Growth Factor (EGF) and Transforming Growth Factor-alpha (TGF-a) in Mediation of Dioxin (TCDD)-Induced Delays in Development of the Mouse Mammary Gland.
    Suzanne E. Fenton, Barbara Abbott, Lamont Bryant, and Angela Buckalew. U.S. EPA, NHEERL, Reproductive Tox...

  16. Phytosphingosine-1-phosphate and epidermal growth factor synergistically restore extracellular matrix in human dermal fibroblasts in vitro and in vivo.

    PubMed

    Kwon, Seung Bin; An, Sungkwan; Kim, Min Jung; Kim, Ka Ram; Choi, Young Min; Ahn, Kyu Joong; An, In-Sook; Cha, Hwa Jun

    2017-03-01

    Phytosphingosine-1-phosphate (PhS1P), which is found in plants and fungi, is generated by the phosphorylation of phytosphingosine and is structurally similar to molecules that promote cellular growth and proliferation. The aim of this study was to ascertain whether PhS1P displays synergistic effects together with epidermal growth factor (EGF), which is also critical for activating proliferation, migration and survival pathways. We utilized cultured human dermal fibroblasts (HDFs) and a number of assays, including western blotting, cell migration assays, quantitative (real-time) PCR, and viability assays. We found that PhS1P promoted the activity of EGF in vitro. We then conducted a clinical trial in females over 35 years of age, with visible signs of skin aging. By evaluating skin hydration, dermal density and thickness, length of fine wrinkles, and skin elasticity, we verified the clinical efficacy of a combined treatment of PhS1P and EGF in vivo. On the whole, our data suggest that PhS1P displays a synergistic anti-aging effect together with EGF, both in vitro and in vivo.

  17. Phytosphingosine-1-phosphate and epidermal growth factor synergistically restore extracellular matrix in human dermal fibroblasts in vitro and in vivo.

    PubMed

    Kwon, Seung Bin; An, Sungkwan; Kim, Min Jung; Kim, Ka Ram; Choi, Young Min; Ahn, Kyu Joong; An, In-Sook; Cha, Hwa Jun

    2017-01-23

    Phytosphingosine-1-phosphate (PhS1P), which is found in plants and fungi, is generated by the phosphorylation of phytosphingosine and is structurally similar to molecules that promote cellular growth and proliferation. The aim of this study was to ascertain whether PhS1P displays synergistic effects together with epidermal growth factor (EGF), which is also critical for activating proliferation, migration and survival pathways. We utilized cultured human dermal fibroblasts (HDFs) and a number of assays, including western blotting, cell migration assays, quantitative (real-time) PCR, and viability assays. We found that PhS1P promoted the activity of EGF in vitro. We then conducted a clinical trial in females over 35 years of age, with visible signs of skin aging. By evaluating skin hydration, dermal density and thickness, length of fine wrinkles, and skin elasticity, we verified the clinical efficacy of a combined treatment of PhS1P and EGF in vivo. On the whole, our data suggest that PhS1P displays a synergistic anti-aging effect together with EGF, both in vitro and in vivo.

  18. Epidermal growth factor-stimulated intestinal epithelial cell migration requires Src family kinase-dependent p38 MAPK signaling.

    PubMed

    Frey, Mark R; Golovin, Anastasia; Polk, D Brent

    2004-10-22

    Members of the epidermal growth factor (EGF) family of ligands and their receptors regulate migration and growth of intestinal epithelial cells. However, our understanding of the signal transduction pathways determining these responses is incomplete. In this study we tested the hypothesis that p38 is required for EGF-stimulated intestinal epithelial monolayer restitution. EGF-stimulated migration in a wound closure model required continuous presence of ligand for several hours for maximal response, suggesting a requirement for sustained signal transduction pathway activation. In this regard, prolonged exposure of cells to EGF activated p38 for up to 5 h. Furthermore genetic or pharmacological blockade of p38 signaling inhibited the ability of EGF to accelerate wound closure. Interestingly p38 inhibition was associated with increased EGF-stimulated ERK1/ERK2 phosphorylation and cell proliferation, suggesting that p38 regulates the balance of proliferation/migration signaling in response to EGF receptor activity. Activation of p38 in intestinal epithelial cells through EGF receptor was abolished by blockade of Src family tyrosine kinase signaling but not inhibition of phosphatidylinositol 3-kinase or protein kinase C. Taken together, these data suggest that Src family kinase-dependent p38 activation is a key component of a signaling switch routing EGF-stimulated responses to epithelial cell migration/restitution rather than proliferation during wound closure.

  19. Amlexanox Blocks the Interaction between S100A4 and Epidermal Growth Factor and Inhibits Cell Proliferation

    PubMed Central

    Cho, Ching Chang; Chou, Ruey-Hwang; Yu, Chin

    2016-01-01

    The human S100A4 protein binds calcium, resulting in a change in its conformation to promote the interaction with its target protein. Human epidermal growth factor (EGF) is the target protein of S100A4 and a critical ligand of the receptor EGFR. The EGF/EGFR system promotes cell survival, differentiation, and growth by activating several signaling pathways. Amlexanox is an anti-inflammatory and anti-allergic drug that is used to treat recurrent aphthous ulcers. In the present study, we determined that amlexanox interacts with S100A4 using heteronuclear single quantum correlation titration. We elucidated the interactions of S100A4 with EGF and amlexanox using fluorescence and nuclear magnetic resonance spectroscopy. We generated two binary models (for the S100A4-EGF and S100A4-amlexanox complexes) and observed that amlexanox and EGF share a similar binding region in mS100A4. We also used a WST-1 assay to investigate the bioactivity of S100A4, EGF, and amlexanox, and found that amlexanox blocks the binding between S100A4 and EGF, and is therefore useful for the development of new anti-proliferation drugs. PMID:27559743

  20. Biomarkers for predicting the efficacy of anti-epidermal growth factor receptor antibody in the treatment of colorectal cancer.

    PubMed

    Okada, Yasuyuki; Miyamoto, Hiroshi; Goji, Takahiro; Takayama, Tetsuji

    2014-01-01

    Anti-epidermal growth factor receptor (EGFR) antibodies have been widely utilized as a standard treatment for metastatic colorectal cancer (CRC). Anti-EGFR antibodies bind competitively to EGFRs to inhibit receptor activation and subsequent signal transduction of the RAS/RAF/MEK pathway and PI3K/AKT pathway. By inhibiting EGFR-mediated signal transduction, anti-EGFR antibodies inhibit cell growth, invasion, metastasis and angiogenesis, and they induce apoptosis. The IgG1-type antibody cetuximab is also capable of inducing antibody-dependent cellular cytotoxicity. Several studies have shown that KRAS mutation is a useful biomarker for predicting the efficacy of anti-EGFR agents, and the major guidelines for the treatment of CRC recommend the use of anti-EGFR antibody only for the cancers with wild-type KRAS. Alterations of other genes, including BRAF, NRAS, PTEN and AKT, and EGFR expression/gene copy number have also been reported to be candidate biomarkers for predicting the efficacy of anti-EGFR agents. The predictive values of these biomarkers are still controversial and further investigations are required.

  1. Plumbagin Ameliorates CCl4-Induced Hepatic Fibrosis in Rats via the Epidermal Growth Factor Receptor Signaling Pathway

    PubMed Central

    Chen, Si; Chen, Yi; Chen, Bi; Cai, Yi-jing; Zou, Zhuo-lin; Wang, Jin-guo; Lin, Zhuo; Wang, Xiao-dong; Fu, Li-yun; Hu, Yao-ren; Chen, Yong-ping; Chen, Da-zhi

    2015-01-01

    Epidermal growth factor (EGF) and its signaling molecules, EGFreceptor (EGFR) and signal transducer and activator of transcription factor 3 (STAT3), have been considered to play a role in liver fibrosis and cirrhosis. Plumbagin (PL) is an extracted component from the plant and has been used to treat different kinds of cancer. However, its role in regulation of EGFR and STAT3 during liver fibrosis has not been investigated. In this study, the effects of PL on the regulation of EGFR and STAT3 were investigated in carbon tetrachloride (CCl4) induced liver fibrosis and hepatic stellate cells (HSC-T6). PL significantly attenuated liver injury and fibrosis in CCl4 treated rats. At concentrations of 2 to 6 μM, PL did not induce significant cytotoxicity of HSC-T6 cells. Moreover, PL reduced phosphorylation of EGFR and STAT3 in both fibrotic liver and heparin-binding EGF-like growth factor (HB-EGF) treated HSC-T6 cells. Furthermore, PL reduced the expression of α-SMA, EGFR, and STAT3 in both fibrotic liver and HB-EGF treated HSC-T6 cells. In conclusion, plumbagin could ameliorate the development of hepatic fibrosis through its downregulation of EGFR and STAT3 in the liver, especially in hepatic stellate cells. PMID:26550019

  2. Three-Dimensional Analysis of the Effect of Epidermal Growth Factor on Cell-Cell Adhesion in Epithelial Cell Clusters

    PubMed Central

    Notbohm, J.; Kim, J.-H.; Asthagiri, A.R.; Ravichandran, G.

    2012-01-01

    The effect that growth factors such as epidermal growth factor (EGF) have on cell-cell adhesion is of interest in the study of cellular processes such as epithelial-mesenchymal transition. Because cell-cell adhesions cannot be measured directly, we use three-dimensional traction force microscopy to measure the tractions applied by clusters of MCF-10A cells to a compliant substrate beneath them before and after stimulating the cells with EGF. To better interpret the results, a finite element model, which simulates a cluster of individual cells adhered to one another and to the substrate with linear springs, is developed to better understand the mechanical interaction between the cells in the experiments. The experiments and simulations show that the cluster of cells acts collectively as a single unit, indicating that cell-cell adhesion remains strong before and after stimulation with EGF. In addition, the experiments and model emphasize the importance of three-dimensional measurements and analysis in these experiments. PMID:22455915

  3. Efficient synthesis of chloro-derivatives of sialosyllactosylceramide, and their enhanced inhibitory effect on epidermal growth factor receptor activation

    PubMed Central

    KAWASHIMA, NAGAKO; QU, HUANHUAN; LOBATON, MARLIN; ZHU, ZHENYUAN; SOLLOGOUB, MATTHIEU; CAVENEE, WEBSTER K.; HANDA, KAZUKO; HAKOMORI, SEN-ITIROH; ZHANG, YONGMIN

    2014-01-01

    Glycosphingolipids are components of essentially all mammalian cell membranes and are involved in a variety of significant cellular functions, including proliferation, adhesion, motility and differentiation. Sialosyllactosylceramide (GM3) is known to inhibit the activation of epidermal growth factor receptor (EGFR). In the present study, an efficient method for the total chemical synthesis of monochloro- and dichloro-derivatives of the sialosyl residue of GM3 was developed. The structures of the synthesized compounds were fully characterized by high-resolution mass spectrometry and nuclear magnetic resonance. In analyses of EGFR autophosphorylation and cell proliferation ([3H]-thymidine incorporation) in human epidermoid carcinoma A431 cells, two chloro-derivatives exhibited stronger inhibitory effects than GM3 on EGFR activity. Monochloro-GM3, but not GM3 or dichloro-GM3, showed a significant inhibitory effect on ΔEGFR, a splicing variant of EGFR that lacks exons 2–7 and is often found in human glioblastomas. The chemical synthesis of other GM3 derivatives using approaches similar to those described in the present study, has the potential to create more potent EGFR inhibitors to block cell growth or motility of a variety of types of cancer that express either wild-type EGFR or ΔEGFR. PMID:24944646

  4. Efficient synthesis of chloro-derivatives of sialosyllactosylceramide, and their enhanced inhibitory effect on epidermal growth factor receptor activation.

    PubMed

    Kawashima, Nagako; Qu, Huanhuan; Lobaton, Marlin; Zhu, Zhenyuan; Sollogoub, Matthieu; Cavenee, Webster K; Handa, Kazuko; Hakomori, Sen-Itiroh; Zhang, Yongmin

    2014-04-01

    Glycosphingolipids are components of essentially all mammalian cell membranes and are involved in a variety of significant cellular functions, including proliferation, adhesion, motility and differentiation. Sialosyllactosylceramide (GM3) is known to inhibit the activation of epidermal growth factor receptor (EGFR). In the present study, an efficient method for the total chemical synthesis of monochloro- and dichloro-derivatives of the sialosyl residue of GM3 was developed. The structures of the synthesized compounds were fully characterized by high-resolution mass spectrometry and nuclear magnetic resonance. In analyses of EGFR autophosphorylation and cell proliferation ([(3)H]-thymidine incorporation) in human epidermoid carcinoma A431 cells, two chloro-derivatives exhibited stronger inhibitory effects than GM3 on EGFR activity. Monochloro-GM3, but not GM3 or dichloro-GM3, showed a significant inhibitory effect on ΔEGFR, a splicing variant of EGFR that lacks exons 2-7 and is often found in human glioblastomas. The chemical synthesis of other GM3 derivatives using approaches similar to those described in the present study, has the potential to create more potent EGFR inhibitors to block cell growth or motility of a variety of types of cancer that express either wild-type EGFR or ΔEGFR.

  5. A tubular gelatin scaffold capable of the time-dependent controlled release of epidermal growth factor and mitomycin C.

    PubMed

    Zhu, Jixiang; Yang, Fanwen; He, Fupo; Tian, Xiumei; Tang, Shuo; Chen, Xiaoming

    2015-11-01

    A tubular gelatin scaffold for the time-dependent controlled release of epidermal growth factor (EGF) and mitomycin C (MMC) was fabricated. EGF was incorporated using silk fibroin carriers, and MMC was planted using polylactide (PLA) microspheres. The relationship between scaffold properties and crosslinking degrees was evaluated. As the crosslinking degree was increased from 23.7% to 65.3%, the mechanical properties of the scaffold obviously improved, and the compressive modulus increased to approximately 65kPa. The mass degradation of the scaffold was also controlled from 9 days to approximately 1 month. In vitro release tests indicated that the scaffold mainly released EGF in the early period and MMC in the later period. Urethral epithelial cells (UECs) and urethral scar derived fibroblast cells (UFCs) were coseeded in the scaffold at a ratio of 1:1. After 9 days of coculture, immunostaining results displayed that the proportion of UECs continuously increased to approximately 71%. These changes in cell proportion were confirmed by the results of Western blot analysis. Therefore, the scaffold promoted the growth but inhibited the regeneration of UFCs. This scaffold for time-dependent controlled release of multiple biofactors may be potentially useful in urethral reconstruction and other tissue engineering studies.

  6. High-throughput quantitative analysis with cell growth kinetic curves for low copy number mutant cells.

    PubMed

    Xing, James Z; Gabos, Stephan; Huang, Biao; Pan, Tianhong; Huang, Min; Chen, Jie

    2012-10-01

    The mutation rate in cells induced by environmental genotoxic hazards is very low and difficult to detect using traditional cell counting assays. The established genetic toxicity tests currently recognized by regulatory authorities, such as conventional Ames and hypoxanthine guanine phosphoribosyl-transferase (HPRT) assays, are not well suited for higher-throughput screening as they require large amounts of test compounds and are very time consuming. In this study, we developed a novel cell-based assay for quantitative analysis of low numbers of cell copies with HPRT mutation induced by an environmental mutagen. The HPRT gene mutant cells induced by the mutagen were selected by 6-thioguanine (6-TG) and the cell's kinetic growth curve monitored by a real-time cell electronic sensor (RT-CES) system. When a threshold is set at a certain cell index (CI) level, samples with different initial mutant cell copies take different amounts of time in order for their growth (or CI accumulation) to cross this threshold. The more cells that are initially seeded in the test well, the faster the cell accumulation and therefore the shorter the time required to cross this threshold. Therefore, the culture time period required to cross the threshold of each sample corresponds to the original number of cells in the sample. A mutant cell growth time threshold (MT) value of each sample can be calculated to predict the number of original mutant cells. For mutagenesis determination, the RT-CES assay displayed an equal sensitivity (p > 0.05) and coefficients of variation values with good correlation to conventional HPRT mutagenic assays. Most importantly, the RT-CES mutation assay has a higher throughput than conventional cellular assays.

  7. Cricket body size is altered by systemic RNAi against insulin signaling components and epidermal growth factor receptor.

    PubMed

    Dabour, Noha; Bando, Tetsuya; Nakamura, Taro; Miyawaki, Katsuyuki; Mito, Taro; Ohuchi, Hideyo; Noji, Sumihare

    2011-09-01

    A long-standing problem of developmental biology is how body size is determined. In Drosophila melanogaster, the insulin/insulin-like growth factor (I/IGF) and target of rapamycin (TOR) signaling pathways play important roles in this process. However, the detailed mechanisms by which insect body growth is regulated are not known. Therefore, we have attempted to utilize systemic nymphal RNA interference (nyRNAi) to knockdown expression of insulin signaling components including Insulin receptor (InR), Insulin receptor substrate (chico), Phosphatase and tensin homologue (Pten), Target of rapamycin (Tor), RPS6-p70-protein kinase (S6k), Forkhead box O (FoxO) and Epidermal growth factor receptor (Egfr) and observed the effects on body size in the Gryllus bimaculatus cricket. We found that crickets treated with double-stranded RNA (dsRNA) against Gryllus InR, chico, Tor, S6k and Egfr displayed smaller body sizes, while Gryllus FoxO nyRNAi-ed crickets exhibited larger than normal body sizes. Furthermore, RNAi against Gryllus chico and Tor displayed slow growth and RNAi against Gryllus chico displayed longer lifespan than control crickets. Since no significant difference in ability of food uptake was observed between the Gryllus chico(nyRNAi) nymphs and controls, we conclude that the adult cricket body size can be altered by knockdown of expressions of Gryllus InR, chico, Tor, S6k, FoxO and Egfr by systemic RNAi. Our results suggest that the cricket is a promising model to study mechanisms underlying controls of body size and life span with RNAi methods.

  8. Inhibition of solid tumor growth by gene transfer of VEGF receptor-1 mutants.

    PubMed

    Heidenreich, Regina; Machein, Marcia; Nicolaus, Anke; Hilbig, Andreas; Wild, Carola; Clauss, Matthias; Plate, Karl H; Breier, Georg

    2004-09-01

    Vascular endothelial growth factor (VEGF) and the high-affinity VEGF receptor Flk-1/KDR (VEGFR-2) are key regulators of tumor angiogenesis. Strategies to block VEGF/VEGFR-2 signaling were successfully used to inhibit experimental tumor growth and indicated that VEGFR-2 is the main signaling VEGF receptor in proliferating tumor endothelium. Here, we investigated the role of the VEGF receptor-1 (VEGFR-1/Flt-1) in the vascularization of 2 different experimental tumors in vivo. VEGFR-1 mutants were generated that lack the intracellular tyrosine kinase domain. Retrovirus-mediated gene transfer of the VEGFR-1 mutants led to a strong reduction of tumor growth and angiogenesis in xenografted C6 glioma and in syngeneic BFS-1 fibrosarcoma. Histological analysis of the inhibited fibrosarcoma revealed reduced vascular density, decreased tumor cell proliferation as well as increased tumor cell apoptosis and the formation of necrosis. The retroviral gene transfer of the full length VEGFR-1 also caused a significant reduction of tumor growth in both models. The inhibitory effects of the VEGFR-1 mutants and the full length VEGFR-1 in BFS-1 fibrosarcoma were mediated through host tumor endothelial cells because the BFS-1 fibrosarcoma cells were not infected by the retrovirus. The formation of heterodimers between VEGFR-2 and full length or truncated VEGFR-1 was observed in vitro and might contribute to the growth inhibitory effect by modulating distinct signal transduction pathways. The results of our study underline the central role of the VEGF/VEGFR-1 signaling system in tumor angiogenesis and demonstrate that VEGFR-1 can serve as a target for anti-angiogenic gene therapy.

  9. Secreted proteins induced by epidermal growth factor and transforming growth factor beta in EL2 rat fibroblasts. Role in the mitogenic response.

    PubMed

    Di Francesco, P; Favalli, C; Liboi, E

    1988-05-01

    Most growth active hormones and peptides are mitogenic only in the presence of other growth factors [e.g., Platelet Derived Growth Factor (PDGF) and Epidermal Growth Factor (EGF) in "competence-progression" fibroblast model]. We have previously described that EGF alone is able to induce the signals which appear necessary for the mitogenic stimulation of EL2 rat embryo fibroblast line. Recently, we have demonstrated that Transforming Growth Factor beta (TGF beta) slightly stimulates the mitogenic response in EL2 cells. Here, we show that in EGF-treated EL2 cells the induction of at least four inducible-secreted proteins (ISPs, range from 29,000 to 68,000 Mr) is accompanied by a marked increase in DNA synthesis. In contrast, TGF beta or different concentrations of EGF induce a slow increase of the ISPs proportional to slow induction in DNA synthesis. Our results suggest that the mitogenic response in EL2 cell line may be connected with the qualitative and quantitative induction of these secreted proteins.

  10. Suppression of gain-of-function mutant p53 with metabolic inhibitors reduces tumor growth in vivo

    PubMed Central

    Jung, Chae Lim; Mun, Hyemin; Jo, Se-Young; Oh, Ju-Hee; Lee, ChuHee; Choi, Eun-Kyung; Jang, Se Jin; Suh, Young-Ah

    2016-01-01

    Mutation of p53 occasionally results in a gain of function, which promotes tumor growth. We asked whether destabilizing the gain-of-function protein would kill tumor cells. Downregulation of the gene reduced cell proliferation in p53-mutant cells, but not in p53-null cells, indicating that the former depended on the mutant protein for survival. Moreover, phenformin and 2-deoxyglucose suppressed cell growth and simultaneously destabilized mutant p53. The AMPK pathway, MAPK pathway, chaperone proteins and ubiquitination all contributed to this process. Interestingly, phenformin and 2-deoxyglucose also reduced tumor growth in syngeneic mice harboring the p53 mutation. Thus, destabilizing mutant p53 protein in order to kill cells exhibiting “oncogene addiction” could be a promising strategy for combatting p53 mutant tumors. PMID:27765910

  11. Cellular and Tumor Radiosensitivity is Correlated to Epidermal Growth Factor Receptor Protein Expression Level in Tumors Without EGFR Amplification;Epidermal growth factor receptor; Radiotherapy; Squamous cell carcinoma; Biomarker; Local tumor control

    SciTech Connect

    Kasten-Pisula, Ulla; Saker, Jarob; Eicheler, Wolfgang; Krause, Mechthild; Yaromina, Ala; Meyer-Staeckling, Soenke; Scherkl, Benjamin; Kriegs, Malte; Brandt, Burkhard; Grenman, Reidar; Petersen, Cordula; Baumann, Michael; Dikomey, Ekkehard

    2011-07-15

    Purpose: There is conflicting evidence for whether the expression of epidermal growth factor receptor in human tumors can be used as a marker of radioresponse. Therefore, this association was studied in a systematic manner using squamous cell carcinoma (SCC) cell lines grown as cell cultures and xenografts. Methods and Materials: The study was performed with 24 tumor cell lines of different tumor types, including 10 SCC lines, which were also investigated as xenografts on nude mice. Egfr gene dose and the length of CA-repeats in intron 1 were determined by polymerase chain reaction, protein expression in vitro by Western blot and in vivo by enzyme-linked immunosorbent assay, and radiosensitivity in vitro by colony formation. Data were correlated with previously published tumor control dose 50% data after fractionated irradiation of xenografts of the 10 SCC. Results: EGFR protein expression varies considerably, with most tumor cell lines showing moderate and only few showing pronounced upregulation. EGFR upregulation could only be attributed to massive gene amplification in the latter. In the case of little or no amplification, in vitro EGFR expression correlated with both cellular and tumor radioresponse. In vivo EGFR expression did not show this correlation. Conclusions: Local tumor control after the fractionated irradiation of tumors with little or no gene amplification seems to be dependent on in vitro EGFR via its effect on cellular radiosensitivity.

  12. Activation of the Na+/H+ antiport is not required for epidermal growth factor-dependent gene expression, growth inhibition or proliferation in human breast cancer cells.

    PubMed Central

    Church, J G; Mills, G B; Buick, R N

    1989-01-01

    Mitogen interaction with specific receptors in many cell types leads to activation of the Na+/H+ antiport and a resultant cytoplasmic alkalinization. Since amiloride inhibits both Na+/H+ exchange and cell proliferation, it has been hypothesized that activation of the antiport is an obligatory requirement for mitogenesis. However, concentrations of amiloride which inhibit the antiport also inhibit other cellular processes, including protein synthesis and phosphorylation. We have used an epidermal growth factor (EGF) receptor gene-amplified human breast cancer cell line, the growth of which is inhibited by high levels of EGF in culture (MDA-468) and a variant, the growth of which is stimulated by EGF (MDA-468-S4), along with two potent amiloride analogues to examine whether activation of the Na+/H+ antiport and cytoplasmic alkalinization is necessary for both EGF-dependent effects to occur. At concentrations of the amiloride analogues which block Na+/H+ exchange in both cell types by 76-98%, the EGF-dependent alterations in [3H]thymidine incorporation or induction in c-myc or c-fos gene transcription were unaltered. These results were confirmed by a lack of effect of the amiloride analogues on both the growth-stimulatory and growth-inhibitory effects on EGF in an anchorage-independent growth assay. Similarly, in pH-altered media that prevented normal cytoplasmic alkalinization, the response of both MDA-468 and MDA-468-S4 to EGF activation was unaltered. In addition, activation of the Na+/H+ antiport alone was not sufficient to induce c-myc and c-fos transcription in either cell type. Taken together, these data suggest that neither the Na+/H+ antiport nor cytoplasmic alkalinization are necessary or sufficient for either EGF-dependent growth stimulation or growth inhibition in MDA-468 human breast cancer cells. Images Fig. 3. PMID:2537620

  13. A Hydrophobic Mutant of Rhizobium etli Altered in Nodulation Competitiveness and Growth in the Rhizosphere

    PubMed Central

    Araujo, Ricardo S.; Robleto, Eduardo A.; Handelsman, Jo

    1994-01-01

    We isolated and characterized CE3003, a Tn5-induced mutant with altered colony morphology derived from Rhizobium etli CE3. CE3003 produced domed colonies and was highly hydrophobic as indicated by its ability to partition into hexadecane, whereas its parent produced flat colonies and was hydrophilic. On bean plants, CE3003 induced nodules and reduced acetylene. CE3003 and CE3 grew at similar rates when they were grown separately or together in culture medium or inoculated singly onto bean seeds. However, when they were mixed at a 1:1 ratio and applied to seeds, CE3003 achieved significantly lower populations than CE3 in the rhizosphere. Five days after coinoculation of CE3 and CE3003, the population of the mutant was less than 10% of the population of CE3 in the bean rhizosphere. To determine the nodulation competitiveness of the mutant, it was coinoculated with CE3 at various ratios at planting, and the ratio of the nodules occupied by each strain was determined 21 days later. A 17,000-fold excess of CE3003 in mixed inocula was required to obtain equal nodule occupancy by the two strains. A genomic library of strain CE3 was mobilized into CE3003, and we identified a cosmid, pRA3003, that restored the parental colony morphology and hydrophilicity to the mutant. Restoration of the parental colony morphology was accompanied by recovery of the ability to grow competitively in the rhizosphere and to compete for nodulation of beans. The data show an association between cell surface hydrophobicity, nodulation competitiveness, and competitive growth in the rhizosphere in mutant CE3003. Images PMID:16349248

  14. Drosophila Nipped-B Mutants Model Cornelia de Lange Syndrome in Growth and Behavior.

    PubMed

    Wu, Yaning; Gause, Maria; Xu, Dongbin; Misulovin, Ziva; Schaaf, Cheri A; Mosarla, Ramya C; Mannino, Elizabeth; Shannon, Megan; Jones, Emily; Shi, Mi; Chen, Wen-Feng; Katz, Olivia L; Sehgal, Amita; Jongens, Thomas A; Krantz, Ian D; Dorsett, Dale

    2015-11-01

    Individuals with Cornelia de Lange Syndrome (CdLS) display diverse developmental deficits, including slow growth, multiple limb and organ abnormalities, and intellectual disabilities. Severely-affected individuals most often have dominant loss-of-function mutations in the Nipped-B-Like (NIPBL) gene, and milder cases often have missense or in-frame deletion mutations in genes encoding subunits of the cohesin complex. Cohesin mediates sister chromatid cohesion to facilitate accurate chromosome segregation, and NIPBL is required for cohesin to bind to chromosomes. Individuals with CdLS, however, do not display overt cohesion or segregation defects. Rather, studies in human cells and model organisms indicate that modest decreases in NIPBL and cohesin activity alter the transcription of many genes that regulate growth and development. Sister chromatid cohesion factors, including the Nipped-B ortholog of NIPBL, are also critical for gene expression and development in Drosophila melanogaster. Here we describe how a modest reduction in Nipped-B activity alters growth and neurological function in Drosophila. These studies reveal that Nipped-B heterozygous mutant Drosophila show reduced growth, learning, and memory, and altered circadian rhythms. Importantly, the growth deficits are not caused by changes in systemic growth controls, but reductions in cell number and size attributable in part to reduced expression of myc (diminutive) and other growth control genes. The learning, memory and circadian deficits are accompanied by morphological abnormalities in brain structure. These studies confirm that Drosophila Nipped-B mutants provide a useful model for understanding CdLS, and provide new insights into the origins of birth defects.

  15. Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition

    PubMed Central

    Hata, Aaron N; Niederst, Matthew J; Archibald, Hannah L; Gomez-Caraballo, Maria; Siddiqui, Faria M; Mulvey, Hillary E; Maruvka, Yosef E; Ji, Fei; Bhang, Hyo-eun C; Radhakrishna, Viveksagar Krishnamurthy; Siravegna, Giulia; Hu, Haichuan; Raoof, Sana; Lockerman, Elizabeth; Kalsy, Anuj; Lee, Dana; Keating, Celina L; Ruddy, David A; Damon, Leah J; Crystal, Adam S; Costa, Carlotta; Piotrowska, Zofia; Bardelli, Alberto; Iafrate, Anthony J; Sadreyev, Ruslan I; Stegmeier, Frank; Getz, Gad; Sequist, Lecia V; Faber, Anthony C; Engelman, Jeffrey A

    2016-01-01

    Although mechanisms of acquired resistance of EGFR mutant non-small cell lung cancers to EGFR inhibitors have been identified, little is known about how resistant clones evolve during drug therapy. Here, we observe that acquired resistance caused by the T790M gatekeeper mutation can occur either by selection of pre-existing T790M clones or via genetic evolution of initially T790M-negative drug tolerant cells. The path to resistance impacts the biology of the resistant clone, as those that evolved from drug tolerant cells had a diminished apoptotic response to third generation EGFR inhibitors that target T790M EGFR; treatment with navitoclax, an inhibitor of BCL-XL and BCL-2 restored sensitivity. We corroborated these findings using cultures derived directly from EGFR inhibitor-resistant patient tumors. These findings provide evidence that clinically relevant drug resistant cancer cells can both pre-exist and evolve from drug tolerant cells, and point to therapeutic opportunities to prevent or overcome resistance in the clinic. PMID:26828195

  16. Design, expression and evaluation of a novel humanized single chain antibody against epidermal growth factor receptor (EGFR).

    PubMed

    Akbari, Bahman; Farajnia, Safar; Zarghami, Nosratollah; Mahdieh, Nejat; Rahmati, Mohammad; Khosroshahi, Shiva Ahdi; Rahbarnia, Leila

    2016-11-01

    Various strategies have been attempted for targeting of epidermal growth factor receptor (EGFR), as an essential biomarker in a variety of cancers. Several anti-EGFR antibodies including cetuximab are used in clinics for treatment of EGFR-overexpressing colorectal and head and neck cancers but the efficiency of these antibodies is threatened by their large size and chimeric nature. Humanized single chains antibodies (huscFv) are smaller generation of antibodies with lower immunogenicity may overcome these limitations. This article reports production and evaluation of a novel humanized anti-EGFR scFv. The CDRs of cetuximab heavy and light chains were grafted onto human antibody frameworks as framework donors. To maintain the antigen binding affinity of murine antibody, the murine vernier zone residues were retained in framework regions of huscFv. Additionally, two point mutations in CDR-L1 and CDR-L3 and three point mutations in CDR-H2 and CDR-H3 loops of the humanized scFv (huscFv) were introduced to increase affinity of the huscFv to EGFR. Analysis of results demonstrated that the humanness degree of resultant huscFv was increased as 19%. HuscFv was expressed in BL21 (DE3) and affinity purified via Ni-NTA column. The reactivity of huscFv with EGFR was evaluated by ELISA and dot blot techniques. Analysis by ELISA and dot blot showed that the huscFv was able to recognize and react with EGFR. Toxicity analysis by MTT assay indicated an inhibitory effect on growth of EGFR-overexpressing A431 cells. In conclusion, the huscFv produced in this study revealed decreased immunogenicity while retained growth inhibitory effect on EGFR-overexpressing tumor cells.

  17. Epidermal growth factor inhibits radioiodine uptake but stimulates deoxyribonucleic acid synthesis in newborn rat thyroids grown in nude mice

    SciTech Connect

    Ozawa, S.; Spaulding, S.W. )

    1990-08-01

    We have studied the effect of altering the level of circulating epidermal growth factor (EGF) on the function and growth of newborn rat thyroids transplanted into nude mice. Preliminary studies confirmed that sialoadenectomy reduced circulating EGF levels in nude mice (from 0.17 +/- 0.02 to 0.09 +/- 0.02 ng/ml), and that ip injection of 5 micrograms EGF raised EGF levels (the peak level of 91.7 +/- 3.3 ng/ml was achieved at 30 min, with a subsequent half-life of about 1 h). The radioiodine uptake by newborn rat thyroid transplants in the sialoadenectomized and sham-operated animals correlated inversely with the circulating EGF levels determined when the mice were killed (r = -0.99). Low-dose TSH treatment (0.1 microU/day) generally stimulated the radioiodine uptake, but high-dose TSH groups (100 microU/day) were not significantly different from the control group. The 5-day nuclear (3H)thymidine labeling index was 6.8 +/- 0.5% IN newborn rat thyroid transplants grown in sialoadenectomized animals, 13.1 +/- 0.3% in sham-operated animals, and 16.8 +/- 0.5% in nude mice receiving 5 micrograms EGF ip daily. In general, both low-dose and high-dose TSH promoted DNA synthesis under low EGF conditions but were ineffective in the presence of higher levels of EGF. Adult rat thyroid transplants showed no significant responses. Although sialoadenectomy may alter other factors besides EGF, it appears that changes in the levels of circulating EGF within the physiological range affect the function and growth of newborn rat thyroid transplants. Circulating EGF may play a role in thyroid maturation and may also be involved in the regulation of thyroid function throughout life.

  18. HB-EGF release mediates glucose-induced activation of the epidermal growth factor receptor in mesangial cells.

    PubMed

    Uttarwar, L; Peng, F; Wu, D; Kumar, S; Gao, B; Ingram, A J; Krepinsky, J C

    2011-04-01

    Glomerular matrix accumulation is a hallmark of diabetic nephropathy. We showed that transactivation of the epidermal growth factor receptor (EGFR) is an important mediator of matrix upregulation in mesangial cells (MC) in response to high glucose (HG). Here, we study the mechanism of EGFR transactivation. In primary MC, EGFR transactivation by 1 h of HG (30 mM) was unaffected by inhibitors of protein kinase C, reactive oxygen species, or the angiotensin II AT1 receptor. However, general metalloprotease inhibition, as well as specific inhibitors of heparin-binding EGF-like growth factor (HB-EGF), prevented both EGFR and downstream Akt activation. HB-EGF was released into the medium by 30 min of HG, and this depended on metalloprotease activity. One of the metalloproteases shown to cleave proHB-EGF is ADAM17 (TACE). HG, but not an osmotic control, activated ADAM17, and its inhibition prevented EGFR and Akt activation and HB-EGF release into the medium. siRNA to either ADAM17 or HB-EGF prevented HG-induced EGFR transactivation. We previously showed that EGFR/Akt signaling increases transforming growth factor (TGF)-β1 transcription through the transcription factor activator protein (AP)-1. HG-induced AP-1 activation, as assessed by EMSA, was abrogated by inhibitors of metalloproteases, HB-EGF and ADAM17. HB-EGF and ADAM17 siRNA also prevented AP-1 activation. Finally, these inhibitors and siRNA prevented TGF-β1 upregulation by HG. Thus, HG-induced EGFR transactivation in MC is mediated by the release of HB-EGF, which requires activity of the metalloprotease ADAM17. The mechanism of ADAM17 activation awaits identification. Targeting upstream mediators of EGFR transactivation including HB-EGF or ADAM17 provides novel therapeutic targets for the treatment of diabetic nephropathy.

  19. mPGES-1 in prostate cancer controls stemness and amplifies epidermal growth factor receptor-driven oncogenicity.

    PubMed

    Finetti, Federica; Terzuoli, Erika; Giachetti, Antonio; Santi, Raffaella; Villari, Donata; Hanaka, Hiromi; Radmark, Olof; Ziche, Marina; Donnini, Sandra

    2015-08-01

    There is evidence that an inflammatory microenvironment is associated with the development and progression of prostate cancer (PCa), although the determinants of intrinsic inflammation in PCa cells are not completely understood. Here we investigated whether expression of intrinsic microsomal PGE synthase-1 (mPGES-1) enhanced aggressiveness of PCa cells and might be critical for epidermal growth factor receptor (EGFR)-mediated tumour progression. In PCa, overexpression of EGFR promotes metastatic invasion and correlates with a high Gleason score, while prostaglandin E2 (PGE2) has been reported to modulate oncogenic EGFR-driven oncogenicity. Immunohistochemical studies revealed that mPGES-1 in human prostate tissues is correlated with EGFR expression in advanced tumours. In DU145 and PC-3 cell lines expressing mPGES-1 (mPGES-1(SC) cells), we demonstrate that silencing or 'knock down' of mPGES-1 (mPGES-1(KD)) or pharmacological inhibition by MF63 strongly attenuates overall oncogenic drive. Indeed, mPGES-1(SC) cells express stem-cell-like features (high CD44, β1-integrin, Nanog and Oct4 and low CD24 and α6-integrin) as well as mesenchymal transition markers (high vimentin, high fibronectin, low E-cadherin). They also show increased capacity to survive irrespective of anchorage condition, and overexpress EGFR compared to mPGES-1(KD) cells. mPGES-1 expression correlates with increased in vivo tumour growth and metastasis. Although EGFR inhibition reduces mPGES-1(SC) and mPGES-1(KD) cell xenograft tumour growth, we show that mPGES-1/PGE2 signalling sensitizes tumour cells to EGFR inhibitors. We propose mPGES-1 as a possible new marker of tumour aggressiveness in PCa.

  20. mPGES-1 in prostate cancer controls stemness and amplifies epidermal growth factor receptor-driven oncogenicity

    PubMed Central

    Finetti, Federica; Terzuoli, Erika; Giachetti, Antonio; Santi, Raffaella; Villari, Donata; Hanaka, Hiromi; Radmark, Olof; Ziche, Marina; Donnini, Sandra

    2015-01-01

    There is evidence that an inflammatory microenvironment is associated with the development and progression of prostate cancer (PCa), although the determinants of intrinsic inflammation in PCa cells are not completely understood. Here we investigated whether expression of intrinsic microsomal PGE synthase-1 (mPGES-1) enhanced aggressiveness of PCa cells and might be critical for epidermal growth factor receptor (EGFR)-mediated tumour progression. In PCa, overexpression of EGFR promotes metastatic invasion and correlates with a high Gleason score, while prostaglandin E2 (PGE2) has been reported to modulate oncogenic EGFR-driven oncogenicity. Immunohistochemical studies revealed that mPGES-1 in human prostate tissues is correlated with EGFR expression in advanced tumours. In DU145 and PC-3 cell lines expressing mPGES-1 (mPGES-1SC cells), we demonstrate that silencing or ‘knock down’ of mPGES-1 (mPGES-1KD) or pharmacological inhibition by MF63 strongly attenuates overall oncogenic drive. Indeed, mPGES-1SC cells express stem-cell-like features (high CD44, β1-integrin, Nanog and Oct4 and low CD24 and α6-integrin) as well as mesenchymal transition markers (high vimentin, high fibronectin, low E-cadherin). They also show increased capacity to survive irrespective of anchorage condition, and overexpress EGFR compared to mPGES-1KD cells. mPGES-1 expression correlates with increased in vivo tumour growth and metastasis. Although EGFR inhibition reduces mPGES-1SC and mPGES-1KD cell xenograft tumour growth, we show that mPGES-1/PGE2 signalling sensitizes tumour cells to EGFR inhibitors. We propose mPGES-1 as a possible new marker of tumour aggressiveness in PCa. PMID:26113609

  1. Regulation of Epidermal Growth Factor Receptor Expression by PML in Human Breast Cancer.

    DTIC Science & Technology

    1996-08-01

    acute promyelocytic leukemia (APL). We demonstrated that PML suppresses the clonogenicity and tumorigenicity of the APL-derived NB4 cells in soft...tumorigenic growth of NB4 cells as well as the transformation of the REF and NIH3T3 cells. These results suggest that the translocation of APL inactivated

  2. Epidermal growth factor receptor protects proliferating cell nuclear antigen from cullin 4A protein-mediated proteolysis.

    PubMed

    Lo, Yuan-Hung; Ho, Po-Chun; Wang, Shao-Chun

    2012-08-03

    Proliferating cell nuclear antigen (PCNA) is an essential component for DNA synthesis upon growth stimulation. It has been shown that phosphorylation of PCNA at Tyr-211 by the EGF receptor (EGFR) protects PCNA from polyubiquitylation and degradation, whereas blocking phosphorylation induces ubiquitylation-mediated degradation of the chromatin-bound, but not the -unbound, PCNA, and suppresses cell proliferation. However, the ubiquitin E3 ligase linking growth signaling to the proteolysis of PCNA and the underlying regulatory mechanism remain to be identified. Here we show that, in the absence of Tyr-211 phosphorylation, PCNA is subject to polyubiquitylation at Lys-164 by the CUL4A E3 ligase, resulting in the degradation of PCNA. Mutation of Lys-164 to arginine prevents PCNA ubiquitylation and rescues the degradation of the K164R/Y211F PCNA double mutant. Activation of EGFR inhibits the interaction of PCNA with CUL4A, whereas inhibition of EGFR leads to increased CUL4A-PCNA interaction and CUL4A-dependent ubiquitin-mediated degradation of PCNA. Substitution of endogenous PCNA with the Y211F mutant PCNA conveys enhanced sensitization to EGFR inhibition. Our findings identify CUL4A as the ubiquitin ligase linking the down-regulation of cell surface receptor tyrosine kinase to the nuclear DNA replication machinery in cancer cells.

  3. Stiff Mutant Genes of Phycomyces Affect Turgor Pressure and Wall Mechanical Properties to Regulate Elongation Growth Rate

    PubMed Central

    Ortega, Joseph K. E.; Munoz, Cindy M.; Blakley, Scott E.; Truong, Jason T.; Ortega, Elena L.

    2012-01-01

    Regulation of cell growth is paramount to all living organisms. In plants, algae and fungi, regulation of expansive growth of cells is required for development and morphogenesis. Also, many sensory responses of stage IVb sporangiophores of Phycomyces blakesleeanus are produced by regulating elongation growth rate (growth responses) and differential elongation growth rate (tropic responses). “Stiff” mutant sporangiophores exhibit diminished tropic responses and are found to be defective in at least five genes; madD, E, F, G, and J. Prior experimental research suggests that the defective genes affect growth regulation, but this was not verified. All the growth of the single-celled stalk of the stage IVb sporangiophore occurs in a short region termed the “growth zone.” Prior experimental and theoretical research indicates that elongation growth rate of the stage IVb sporangiophore can be regulated by controlling the cell wall mechanical properties within the growth zone and the magnitude of the turgor pressure. A quantitative biophysical model for elongation growth rate is required to elucidate the relationship between wall mechanical properties and turgor pressure during growth regulation. In this study, it is hypothesized that the mechanical properties of the wall within the growth zone of stiff mutant sporangiophores are different compared to wild type (WT). A biophysical equation for elongation growth rate is derived for fungal and plant cells with a growth zone. Two strains of stiff mutants are studied, C149 madD120 (−) and C216 geo- (−). Experimental results demonstrate that turgor pressure is larger but irreversible wall deformation rates within the growth zone and growth zone length are smaller for stiff mutant sporangiophores compared to WT. These findings can explain the diminished tropic responses of the stiff mutant sporangiophores. It is speculated that the defective genes affect the amount of wall-building material delivered to the inner cell

  4. Stiff mutant genes of phycomyces affect turgor pressure and wall mechanical properties to regulate elongation growth rate.

    PubMed

    Ortega, Joseph K E; Munoz, Cindy M; Blakley, Scott E; Truong, Jason T; Ortega, Elena L

    2012-01-01

    Regulation of cell growth is paramount to all living organisms. In plants, algae and fungi, regulation of expansive growth of cells is required for development and morphogenesis. Also, many sensory responses of stage IVb sporangiophores of Phycomyces blakesleeanus are produced by regulating elongation growth rate (growth responses) and differential elongation growth rate (tropic responses). "Stiff" mutant sporangiophores exhibit diminished tropic responses and are found to be defective in at least five genes; madD, E, F, G, and J. Prior experimental research suggests that the defective genes affect growth regulation, but this was not verified. All the growth of the single-celled stalk of the stage IVb sporangiophore occurs in a short region termed the "growth zone." Prior experimental and theoretical research indicates that elongation growth rate of the stage IVb sporangiophore can be regulated by controlling the cell wall mechanical properties within the growth zone and the magnitude of the turgor pressure. A quantitative biophysical model for elongation growth rate is required to elucidate the relationship between wall mechanical properties and turgor pressure during growth regulation. In this study, it is hypothesized that the mechanical properties of the wall within the growth zone of stiff mutant sporangiophores are different compared to wild type (WT). A biophysical equation for elongation growth rate is derived for fungal and plant cells with a growth zone. Two strains of stiff mutants are studied, C149 madD120 (-) and C216 geo- (-). Experimental results demonstrate that turgor pressure is larger but irreversible wall deformation rates within the growth zone and growth zone length are smaller for stiff mutant sporangiophores compared to WT. These findings can explain the diminished tropic responses of the stiff mutant sporangiophores. It is speculated that the defective genes affect the amount of wall-building material delivered to the inner cell wall.

  5. Temozolomide induces the production of epidermal growth factor to regulate MDR1 expression in glioblastoma cells.

    PubMed

    Munoz, Jessian L; Rodriguez-Cruz, Vivian; Greco, Steven J; Nagula, Vipul; Scotto, Kathleen W; Rameshwar, Pranela

    2014-10-01

    Glioblastoma multiforme (GBM) commonly resists the frontline chemotherapy treatment temozolomide. The multidrug resistance gene (MDR1) and its protein, P-glycoprotein (P-gp), are associated with chemoresistance. This study investigated the mechanisms underlying MDR1-mediated resistance by GBM to temozolomide. P-gp trafficking was studied by flow cytometry and Western blot analysis. MDR1 expression was analyzed b