Xu, Guogang; Vogel, Kristine S; McMahan, C Alex; Herbert, Damon C; Walter, Christi A
2010-12-01
During the first wave of spermatogenesis, and in response to ionizing radiation, elevated mutant frequencies are reduced to a low level by unidentified mechanisms. Apoptosis is occurring in the same time frame that the mutant frequency declines. We examined the role of apoptosis in regulating mutant frequency during spermatogenesis. Apoptosis and mutant frequencies were determined in spermatogenic cells obtained from Bax-null or Trp53-null mice. The results showed that spermatogenic lineage apoptosis was markedly decreased in Bax-null mice and was accompanied by a significantly increased spontaneous mutant frequency in seminiferous tubule cells compared to that of wild-type mice. Apoptosis profiles in the seminiferous tubules for Trp53-null were similar to control mice. Spontaneous mutant frequencies in pachytene spermatocytes and in round spermatids from Trp53-null mice were not significantly different from those of wild-type mice. However, epididymal spermatozoa from Trp53-null mice displayed a greater spontaneous mutant frequency compared to that from wild-type mice. A greater proportion of spontaneous transversions and a greater proportion of insertions/deletions 15 days after ionizing radiation were observed in Trp53-null mice compared to wild-type mice. Base excision repair activity in mixed germ cell nuclear extracts prepared from Trp53-null mice was significantly lower than that for wild-type controls. These data indicate that BAX-mediated apoptosis plays a significant role in regulating spontaneous mutagenesis in seminiferous tubule cells obtained from neonatal mice, whereas tumor suppressor TRP53 plays a significant role in regulating spontaneous mutagenesis between postmeiotic round spermatid and epididymal spermatozoon stages of spermiogenesis.
Resistance to collagen-induced arthritis in SHPS-1 mutant mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okuzawa, Chie; Kaneko, Yoriaki; Murata, Yoji
SHPS-1 is a transmembrane protein that binds the protein tyrosine phosphatases SHP-1 and SHP-2 through its cytoplasmic region and is abundantly expressed on dendritic cells and macrophages. Here we show that mice expressing a mutant form of SHPS-1 fail to develop type-II collagen (CII)-induced arthritis (CIA), a model for rheumatoid arthritis in humans. Histological examinations of the arthritic paws from immunized wild-type mice revealed that cartilage was destroyed in association with marked mononuclear cell infiltration, while only mild cell infiltration was observed in immunized SHPS-1 mutant mice. Consistently, the serum levels of both IgG and IgG2a specific to CII andmore » of IL-1{beta} in immunized SHPS-1 mutant mice were markedly reduced compared with those apparent for wild-type mice. The CII-induced proliferation of, and production of cytokines by, T cells from immunized SHPS-1 mutant mice were reduced compared to wild-type cells. These results suggest that SHPS-1 is essential for development of CIA.« less
Altered respiratory responses to hypoxia in mutant mice deficient in neuronal nitric oxide synthase
Kline, David D; Yang, Tianen; Huang, Paul L; Prabhakar, Nanduri R
1998-01-01
The role of endogenous nitric oxide (NO) generated by neuronal nitric oxide synthase (NOS-1) in the control of respiration during hypoxia and hypercapnia was assessed using mutant mice deficient in NOS-1. Experiments were performed on awake and anaesthetized mutant and wild-type control mice. Respiratory responses to varying levels of inspired oxygen (100, 21 and 12 % O2) and carbon dioxide (3 and 5 % CO2 balanced oxygen) were analysed. In awake animals, respiration was monitored by body plethysmograph along with oxygen consumption (V̇O2), CO2 production (V̇CO2) and body temperature. In anaesthetized, spontaneously breathing mice, integrated efferent phrenic nerve activity was monitored as an index of neural respiration along with arterial blood pressure and blood gases. Cyclic 3′,5′-guanosine monophosphate (cGMP) levels in the brainstem were analysed by radioimmunoassay as an index of nitric oxide generation. Unanaesthetized mutant mice exhibited greater respiratory responses during 21 and 12 % O2 than the wild-type controls. Respiratory responses were associated with significant decreases in oxygen consumption in both groups of mice, and the magnitude of change was greater in mutant than wild-type mice. Changes in CO2 production and body temperature, however, were comparable between both groups of mice. Similar augmentation of respiratory responses during hypoxia was also observed in anaesthetized mutant mice. In addition, five of the fourteen mutant mice displayed periodic oscillations in respiration (brief episodes of increases in respiratory rate and tidal phrenic nerve activity) while breathing 21 and 12 % O2, but not during 100 % O2. The time interval between the episodes decreased by reducing inspired oxygen from 21 to 12 % O2. Changes in arterial blood pressure and arterial blood gases were comparable at any given level of inspired oxygen between both groups of mice, indicating that changes in these variables do not account for the differences in the response to hypoxia. Respiratory responses to brief hyperoxia (Dejours test) and to cyanide, a potent chemoreceptor stimulant, were more pronounced in mutant mice, suggesting augmented peripheral chemoreceptor sensitivity. cGMP levels were elevated in the brainstem during 21 and 12 % O2 in wild-type but not in mutant mice, indicating decreased formation of nitric oxide in mutant mice. The magnitude of respiratory responses to hypercapnia (3 and 5 % CO2 balanced oxygen) was comparable in both groups of mice in the awake and anaesthetized conditions. These observations suggest that the hypoxic responses were selectively augmented in mutant mice deficient in NOS-1. Peripheral as well as central mechanisms contributed to the altered responses to hypoxia. These results support the idea that nitric oxide generated by NOS-1 is an important physiological modulator of respiration during hypoxia. PMID:9679181
Dental and Cranial Pathologies in Mice Lacking the Cl−/H+-Exchanger ClC-7
WEN, Xin; LACRUZ, Rodrigo S.; PAINE, Michael L.
2015-01-01
ClC-7 is a 2Cl−/1H+-exchanger expressed at late endosomes and lysosomes, as well as the ruffled border of osteoclasts. ClC-7 deficiencies in mice and humans lead to impaired osteoclast function and therefore osteopetrosis. Failure of tooth eruption is also apparent in ClC-7 mutant animals, and this has been attributed to the osteoclast dysfunction and the subsequent defect in alveolar bone resorptive activity surrounding tooth roots. Ameloblasts also express ClC-7, and this study aims to determine the significance of ClC-7 in enamel formation by examining the dentitions of ClC-7 mutant mice. Micro-CT analysis revealed that the molar teeth of 3-week old ClC-7 mutant mice had no roots, and the incisors were smaller than their age-matched controls. Despite these notable developmental differences, the enamel and dentin densities of the mutant mice were comparable to those of the wild type littermates. Scanning electron microscopy (SEM) showed normal enamel crystallite and prismatic organization in the ClC-7 mutant mice, although the enamel was thinner (hypoplastic) than in controls. These results suggested that ClC-7 was not critical to enamel and dentin formation, and the observed tooth defects may be related more to a resulting alveolar bone phenotype. Micro-CT analysis also revealed abnormal features in the calvarial bones of the mutant mice. The cranial sutures in ClC-7 mutant mice remained open compared to the closed sutures seen in the control mice at 3 weeks. These data demonstrate that ClC-7 deficiency impacts the development of the dentition and calvaria, but does not significantly disrupt amelogenesis. PMID:25663454
GH and IGF1: roles in energy metabolism of long-living GH mutant mice.
Brown-Borg, Holly M; Bartke, Andrzej
2012-06-01
Of the multiple theories to explain exceptional longevity, the most robust of these has centered on the reduction of three anabolic protein hormones, growth hormone (GH), insulin-like growth factor, and insulin. GH mutant mice live 50% longer and exhibit significant differences in several aspects of energy metabolism as compared with wild-type mice. Mitochondrial metabolism is upregulated in the absence of GH, whereas in GH transgenic mice and dwarf mice treated with GH, multiple aspects of these pathways are suppressed. Core body temperature is markedly lower in dwarf mice, yet whole-body metabolism, as measured by indirect calorimetry, is surprisingly higher in Ames dwarf and Ghr-/- mice compared with normal controls. Elevated adiponectin, a key antiinflammatory cytokine, is also very likely to contribute to longevity in these mice. Thus, several important components related to energy metabolism are altered in GH mutant mice, and these differences are likely critical in aging processes and life-span extension.
Impaired ventilatory acclimatization to hypoxia in mice lacking the immediate early gene fos B.
Malik, Mohammad T; Peng, Ying-Jie; Kline, David D; Adhikary, Gautam; Prabhakar, Nanduri R
2005-01-15
Earlier studies on cell culture models suggested that immediate early genes (IEGs) play an important role in cellular adaptations to hypoxia. Whether IEGs are also necessary for hypoxic adaptations in intact animals is not known. In the present study we examined the potential importance of fos B, an IEG in ventilatory acclimatization to hypoxia. Experiments were performed on wild type and mutant mice lacking the fos B gene. Ventilation was monitored by whole body plethysmography in awake animals. Baseline ventilation under normoxia, and ventilatory response to acute hypoxia and hypercapnia were comparable between wild type and mutant mice. Hypobaric hypoxia (0.4 atm; 3 days) resulted in a significant elevation of baseline ventilation in wild type but not in mutant mice. Wild type mice exposed to hypobaric hypoxia manifested an enhanced hypoxic ventilatory response compared to pre-hypobaric hypoxia. In contrast, hypobaric hypoxia had no effect on the hypoxic ventilatory response in mutant mice. Hypercapnic ventilatory responses, however, were unaffected by hypobaric hypoxia in both groups of mice. These results suggest that the fos B, an immediate early gene, plays an important role in ventilatory acclimatization to hypoxia in mice.
The pathogenicity of thymidine kinase-deficient mutants of herpes simplex virus in mice.
Field, H. J.; Wildy, P.
1978-01-01
The pathogenicity for mice of two mutants of herpes simplex virus (type 1 and type 2), which fail to induce thymidine kinase, were compared with their respective parent strains. The mutants were much less virulent than the parents following either intracerebral or peripheral inoculation. The replication of the virus at the site of inoculation and its progression into the nervous system were studied. Following a very large inoculum in the ear, the type 1 mutant was found to establish a latent infection in the cervical dorsal root ganglia. Mice inoculated intracerebrally with small doses of the mutant viruses were solidly immune to challenge with lethal doses of the parent strain. PMID:212476
The pathogenicity of thymidine kinase-deficient mutants of herpes simplex virus in mice.
Field, H J; Wildy, P
1978-10-01
The pathogenicity for mice of two mutants of herpes simplex virus (type 1 and type 2), which fail to induce thymidine kinase, were compared with their respective parent strains. The mutants were much less virulent than the parents following either intracerebral or peripheral inoculation. The replication of the virus at the site of inoculation and its progression into the nervous system were studied. Following a very large inoculum in the ear, the type 1 mutant was found to establish a latent infection in the cervical dorsal root ganglia. Mice inoculated intracerebrally with small doses of the mutant viruses were solidly immune to challenge with lethal doses of the parent strain.
Functional verification of a porcine myostatin propeptide mutant.
Ma, Dezun; Jiang, Shengwang; Gao, Pengfei; Qian, Lili; Wang, Qingqing; Cai, Chunbo; Xiao, Gaojun; Yang, Jinzeng; Cui, Wentao
2015-10-01
Myostatin is a member of TGF-β superfamily that acts as a key negative regulator in development and growth of embryonic and postnatal muscles. In this study, the inhibitory activities of recombinant porcine myostatin propeptide and its mutated form (at the cleavage site of metalloproteinases of BMP-1/TLD family) against murine myostatin was evaluated in vivo by intraperitoneal injection into mice. Results showed that both wild type and mutated form of porcine propeptide significantly inhibited myostatin activity in vivo. The average body weight of mice receiving wild type propeptide or its mutated form increased by 12.5 % and 24.14%, respectively, compared to mice injected with PBS, implying that the in vivo efficacy of porcine propeptide mutant is greater than its wild type propeptide. Transgenic mice expressing porcine myostatin propeptide mutant were generated to further verify the results obtained from mice injected with recombinant porcine propeptide mutant. Compared with wild type (non-transgenic) mice, relative weight of gastrocnemius, rectusfemoris, and tibialis anterior increased by 22.14 %, 34.13 %, 25.37%, respectively, in transgenic male mice, and by 19.90 %, 42.47 %, 45.61%, respectively, in transgenic female mice. Our data also demonstrated that the mechanism by which muscle growth enhancement is achieved by these propeptides is due to an increase in fiber sizes, not by an increase in number of fiber cells.
Yan, Keqin; Price-O’Dea, Tina
2017-01-01
Reduced muscle mass due to pathological development can occur through several mechanisms, including the loss or reduced proliferation of muscle stem cells. Muscle-specific ablation of the α-thalassemia mental retardation syndrome mutant protein, Atrx, in transgenic mice results in animals with a severely reduced muscle mass at three weeks of age; yet this muscle mass reduction resolves by adult age. Here, we explore the cellular mechanism underlying this effect. Analysis of Atrx mutant mice included testing for grip strength and rotorod performance. Muscle fiber length, fiber volume and numbers of myofiber-associated nuclei were determined from individual EDL or soleus myofibers isolated at three, five, or eight weeks. Myofibers from three week old Atrx mutant mice are smaller with fewer myofiber-associated nuclei and reduced volume compared to control animals, despite similar fiber numbers. Nonetheless, the grip strength of Atrx mutant mice was comparable to control mice when adjusted for body weight. Myofiber volume remained smaller at five weeks, becoming comparable to controls by 8 weeks of age. Concomitantly, increased numbers of myofiber-associated nuclei and Ki67+ myoblasts indicated that the recovery of muscle mass likely arises from the prolonged accretion of new myonuclei. This suggests that under disease conditions the muscle satellite stem cell niche can remain in a prolonged active state, allowing for the addition of a minimum number of myonuclei required to achieve a normal muscle size. PMID:29095838
Reduced alcohol consumption in mice lacking preprodynorphin.
Blednov, Yuri A.; Walker, Danielle; Martinez, Marni; Harris., R. Adron
2007-01-01
Many studies suggest a role for endogenous opioid peptides and their receptors in regulation of ethanol intake. It is commonly accepted that the κ-opioid receptors and their endogenous ligands, dynorphins, produce a dysphoric state and therefore may be responsible for avoidance of alcohol. We used mutant mice lacking preprodynorphin in a variety of behavioral tests of alcohol actions. Null mutant female, but not male, mice showed significantly lower preference for alcohol and consumed lower amounts of alcohol in a two-bottle choice test as compared with wild-type littermates. In the same test, knockout mice of both sexes showed a strong reduction of preference for saccharin compared to control mice. In contrast, under conditions of limited (4 hours) access (light phase of the light/dark cycle), null mutant mice did not show any differences in consumption of saccharin but they showed significantly reduced intake of sucrose. To determine the possible cause for reduction of ethanol preference and intake, we studied other ethanol-related behaviors in mice lacking the preprodynorphin gene. There were no differences between null mutant and wild type mice in ethanol-induced loss of righting reflex, acute ethanol withdrawal, ethanol-induced conditioned place preference or conditioned taste aversion to ethanol. These results indicate that deletion of preprodynorphin leads to substantial reduction of alcohol intake in female mice, and suggest thath this is caused by decreased orosensory reward of alcohol (sweet taste and/or palatability). PMID:17307643
Reduced alcohol consumption in mice lacking preprodynorphin.
Blednov, Yuri A; Walker, Danielle; Martinez, Marni; Harris, R Adron
2006-10-01
Many studies suggest a role for endogenous opioid peptides and their receptors in regulation of ethanol intake. It is commonly accepted that the kappa-opioid receptors and their endogenous ligands, dynorphins, produce a dysphoric state and therefore may be responsible for avoidance of alcohol. We used mutant mice lacking preprodynorphin in a variety of behavioral tests of alcohol actions. Null mutant female, but not male, mice showed significantly lower preference for alcohol and consumed lower amounts of alcohol in a two-bottle choice test as compared with wild-type littermates. In the same test, knockout mice of both sexes showed a strong reduction of preference for saccharin compared to control mice. In contrast, under conditions of limited (4 h) access (light phase of the light/dark cycle), null mutant mice did not show any differences in consumption of saccharin, but they showed significantly reduced intake of sucrose. To determine the possible cause for reduction of ethanol preference and intake, we studied other ethanol-related behaviors in mice lacking the preprodynorphin gene. There were no differences between null mutant and wild-type mice in ethanol-induced loss of righting reflex, acute ethanol withdrawal, ethanol-induced conditioned place preference, or conditioned taste aversion to ethanol. These results indicate that deletion of preprodynorphin leads to substantial reduction of alcohol intake in female mice, and suggest that this is caused by decreased orosensory reward of alcohol (sweet taste and/or palatability).
Working-for-Food Behaviors: A Preclinical Study in Prader-Willi Mutant Mice.
Lassi, Glenda; Maggi, Silvia; Balzani, Edoardo; Cosentini, Ilaria; Garcia-Garcia, Celina; Tucci, Valter
2016-11-01
Abnormal feeding behavior is one of the main symptoms of Prader-Willi syndrome (PWS). By studying a PWS mouse mutant line, which carries a paternally inherited deletion of the small nucleolar RNA 116 (Snord116), we observed significant changes in working-for-food behavioral responses at various timescales. In particular, we report that PWS mutant mice show a significant delay compared to wild-type littermate controls in responding to both hour-scale and seconds-to-minutes-scale time intervals. This timing shift in mutant mice is associated with better performance in the working-for-food task, and results in better decision making in these mutant mice. The results of our study reveal a novel aspect of the organization of feeding behavior, and advance the understanding of the interplay between the metabolic functions and cognitive mechanisms of PWS. Copyright © 2016 by the Genetics Society of America.
Immunogenicity and protective efficacy of the Mycobacterium tuberculosis fadD26 mutant
Infante, E; Aguilar, L D; Gicquel, B; Pando, R Hernandez
2005-01-01
The Mycobacterium tuberculosis fadD26 mutant has impaired synthesis of phthiocerol dimycocerosates (DIM) and is attenuated in BALB/c mice. Survival analysis following direct intratracheal infection confirmed the attenuation: 60% survival at 4 months post-infection versus 100% mortality at 9 weeks post-infection with the wild-type strain. The fadD26 mutant induced less pneumonia and larger DTH reactions. It induced lower but progressive production of interferon (IFN)-γ, interleukin (IL)-4 and tumour necrosis factor (TNF)-α. Used as a subcutaneous vaccine 60 days before intratracheal challenge with a hypervirulent strain of M. tuberculosis (Beijing code 9501000), the mutant induced a higher level of protection than did Bacille Calmette–Guérin (BCG). Seventy per cent of the mice vaccinated with the fadD26 mutant survived at 16 weeks after challenge compared to 30% of those vaccinated with BCG. Similarly, there was less tissue damage (pneumonia) and lower colony-forming units (CFU) in the mice vaccinated with the fadD26 mutant compared to the findings in mice vaccinated with BCG. These data suggest that DIM synthesis is important for the pathogenicity of M. tuberculosis, and that inactivation of DIM synthesis can increase the immunogenicity of live vaccines, and increase their ability to protect against tuberculosis. PMID:15958066
Huang, Ching-Hsun; Pei, Ju-Chun; Luo, Da-Zhong; Chen, Ching; Chen, Yi-Wen; Lai, Wen-Sung
2015-01-01
Accumulating evidence from human genetic studies has suggested several functional candidate genes that might contribute to susceptibility to schizophrenia, including AKT1 and neuregulin 1 (NRG1). Recent findings also revealed that NRG1 stimulates the PI3-kinase/AKT signaling pathway, which might be involved in the functional outcomes of some schizophrenic patients. The aim of this study was to evaluate the effect of Akt1-deficiency and Nrg1-deficiency alone or in combination in the regulation of behavioral phenotypes, cognition, and social functions using genetically modified mice as a model. Male Akt1+/−, Nrg1+/−, and double mutant mice were bred and compared with their wild-type (WT) littermate controls. In Experiment 1, general physical examination revealed that all mutant mice displayed a normal profile of body weight during development and a normal brain activity with microPET scan. In Experiment 2, no significant genotypic differences were found in our basic behavioral phenotyping, including locomotion, anxiety-like behavior, and sensorimotor gating function. However, both Nrg1+/− and double mutant mice exhibited impaired episodic-like memory. Double mutant mice also had impaired sociability. In Experiment 3, a synergistic epistasis between Akt1 and Nrg1 was further confirmed in double mutant mice in that they had impaired social interaction compared to the other 3 groups, especially encountering with a novel male or an ovariectomized female. Double mutant and Nrg1+/− mice also emitted fewer female urine-induced ultrasonic vocalization calls. Collectively, our results indicate that double deficiency of Akt1 and Nrg1 can result in the impairment of social cognitive functions, which might be pertinent to the pathogenesis of schizophrenia-related social cognition. PMID:25688191
Huang, Ching-Hsun; Pei, Ju-Chun; Luo, Da-Zhong; Chen, Ching; Chen, Yi-Wen; Lai, Wen-Sung
2014-01-01
Accumulating evidence from human genetic studies has suggested several functional candidate genes that might contribute to susceptibility to schizophrenia, including AKT1 and neuregulin 1 (NRG1). Recent findings also revealed that NRG1 stimulates the PI3-kinase/AKT signaling pathway, which might be involved in the functional outcomes of some schizophrenic patients. The aim of this study was to evaluate the effect of Akt1-deficiency and Nrg1-deficiency alone or in combination in the regulation of behavioral phenotypes, cognition, and social functions using genetically modified mice as a model. Male Akt1 (+/-), Nrg1 (+/-), and double mutant mice were bred and compared with their wild-type (WT) littermate controls. In Experiment 1, general physical examination revealed that all mutant mice displayed a normal profile of body weight during development and a normal brain activity with microPET scan. In Experiment 2, no significant genotypic differences were found in our basic behavioral phenotyping, including locomotion, anxiety-like behavior, and sensorimotor gating function. However, both Nrg1 (+/-) and double mutant mice exhibited impaired episodic-like memory. Double mutant mice also had impaired sociability. In Experiment 3, a synergistic epistasis between Akt1 and Nrg1 was further confirmed in double mutant mice in that they had impaired social interaction compared to the other 3 groups, especially encountering with a novel male or an ovariectomized female. Double mutant and Nrg1 (+/-) mice also emitted fewer female urine-induced ultrasonic vocalization calls. Collectively, our results indicate that double deficiency of Akt1 and Nrg1 can result in the impairment of social cognitive functions, which might be pertinent to the pathogenesis of schizophrenia-related social cognition.
Sleep apneas are increased in mice lacking monoamine oxidase A.
Real, Caroline; Popa, Daniela; Seif, Isabelle; Callebert, Jacques; Launay, Jean-Marie; Adrien, Joëlle; Escourrou, Pierre
2007-10-01
Alterations in the serotonin (5-HT) system have been suggested as a mechanism of sleep apnea in humans and rodents. The objective is to evaluate the contribution of 5-HT to this disorder. We studied sleep and breathing (whole-body plethysmography) in mutant mice that lack monoamine oxidase A (MAOA) and have increased concentrations of monoamines, including 5-HT. Compared to wild-type mice, the mutants showed similar amounts of slow wave sleep (SWS) and rapid eye movement sleep (REMS), but exhibited a 3-fold increase in SWS and REMS apnea indices. Acute administration of the MAOA inhibitor clorgyline decreased REMS amounts and increased the apnea index in wild-type but not mutant mice. Parachlorophenylalanine, a 5-HT synthesis inhibitor, reduced whole brain concentrations of 5-HT in both strains, and induced a decrease in apnea index in mutant but not wild-type mice. Our results show that MAOA deficiency is associated with increased sleep apnea in mice and suggest that an acute or chronic excess of 5-HT contributes to this phenotype.
Ichikawa, Shoji; Austin, Anthony M.; Gray, Amie K.; Econs, Michael J.
2011-01-01
Mutations in the PHEX gene cause X-linked hypophosphatemia (XLH). Hypophosphatemia in XLH results from increased circulating levels of a phosphaturic hormone, fibroblast growth factor 23 (FGF23), which inhibits renal phosphate reabsorption and 1,25-dihydroxyvitamin D (calcitriol) synthesis. The current standard therapy for XLH – high dose phosphate and calcitriol – further increases FGF23 concentrations, suggesting that patients with XLH may have an altered response to extracellular phosphate. To test for the presence of abnormal phosphate responsiveness, we compared serum biochemistries and femoral Fgf23 mRNA expression between wild-type mice, murine models of XLH (PhexK496X) and hyperphosphatemic tumoral calcinosis (Galnt3 -/-), and Galnt3/Phex double mutant mice. Phex mutant mice had not only increased Fgf23 expression, but also reduced proteolytic cleavage of intact Fgf23 protein, resulting in markedly elevated intact Fgf23 levels and consequent hypophosphatemia. In contrast, despite markedly increased Fgf23 expression, Galnt3 knockout mice had significantly high proteolytic cleavage of Fgf23 protein, leading to low intact Fgf23 concentrations and hyperphosphatemia. Galnt3/Phex double mutant mice had an intermediate biochemical phenotype between wild-type and Phex mutant mice, including slightly elevated intact Fgf23 concentrations with milder hypophosphatemia. Despite the hypophosphatemia, double mutant mice attempted to reduce serum phosphate back to the level of Phex mutant mice by up-regulating Fgf23 expression as much as 24 fold higher than Phex mutant mice. These data suggest that Phex mutations alter the responsiveness of bone cells to extracellular phosphate concentrations and may create a lower set point for “normal” phosphate levels. PMID:22006791
Ichikawa, Shoji; Austin, Anthony M; Gray, Amie K; Econs, Michael J
2012-02-01
Mutations in the PHEX gene cause X-linked hypophosphatemia (XLH). Hypophosphatemia in XLH results from increased circulating levels of a phosphaturic hormone, fibroblast growth factor 23 (FGF23), which inhibits renal phosphate reabsorption and 1,25-dihydroxyvitamin D (calcitriol) synthesis. The current standard therapy for XLH--high-dose phosphate and calcitriol--further increases FGF23 concentrations, suggesting that patients with XLH may have an altered response to extracellular phosphate. To test for the presence of abnormal phosphate responsiveness, we compared serum biochemistries and femoral Fgf23 mRNA expression between wild-type mice, murine models of XLH (Phex(K496X)) and hyperphosphatemic tumoral calcinosis (Galnt3(-/-)), and Galnt3/Phex double-mutant mice. Phex mutant mice had not only increased Fgf23 expression but also reduced proteolytic cleavage of intact Fgf23 protein, resulting in markedly elevated intact Fgf23 levels and consequent hypophosphatemia. In contrast, despite markedly increased Fgf23 expression, Galnt3 knockout mice had significantly high proteolytic cleavage of Fgf23 protein, leading to low intact Fgf23 concentrations and hyperphosphatemia. Galnt3/Phex double-mutant mice had an intermediate biochemical phenotype between wild-type and Phex mutant mice, including slightly elevated intact Fgf23 concentrations with milder hypophosphatemia. Despite the hypophosphatemia, double-mutant mice attempted to reduce serum phosphate back to the level of Phex mutant mice by upregulating Fgf23 expression as much as 24-fold higher than Phex mutant mice. These data suggest that Phex mutations alter the responsiveness of bone cells to extracellular phosphate concentrations and may create a lower set point for "normal" phosphate levels.
EPHRIN-A5 REGULATES INTER-MALE AGGRESSION IN MICE
Sheleg, Michal; Yochum, Carrie L.; Richardson, Jason R.; Wagner, George C.; Zhou, Renping
2015-01-01
The Eph family of receptor tyrosine kinases play key roles in both the patterning of the developing nervous system and neural plasticity in the mature brain. To determine functions of ephrin-A5, a GPI-linked ligand to the Eph receptors, in animal behavior regulations, we examined effects of its inactivation on male mouse aggression. When tested in the resident-intruder paradigm for offensive aggression, ephrin-A5-mutant animals (ephrin-A5−/−) exhibited severe reduction in conspecific aggression compared to wild-type controls. On the contrary, defensive aggression in the form of target biting was higher in ephrin-A5−/− mice, indicating that the mutant mice are capable of attacking behavior. In addition, given the critical role of olfaction in aggressive behavior, we examined the ability of the ephrin-A5−/− mice to smell and found no differences between the mutant and control animals. Testosterone levels in the mutant mice were also found to be within the normal range. Taken together, our data reveal a new role of ephrin-A5 in the regulation of aggressive behavior in mice. PMID:25746458
Horsch, Marion; Aguilar-Pimentel, Juan Antonio; Bönisch, Clemens; Côme, Christophe; Kolster-Fog, Cathrine; Jensen, Klaus T; Lund, Anders H; Lee, Icksoo; Grossman, Lawrence I; Sinkler, Christopher; Hüttemann, Maik; Bohn, Erwin; Fuchs, Helmut; Ollert, Markus; Gailus-Durner, Valérie; de Angelis, Martin Hrabĕ; Beckers, Johannes
2015-01-01
We established a selection strategy to identify new models for an altered airway inflammatory response from a large compendium of mutant mouse lines that were systemically phenotyped in the German Mouse Clinic (GMC). As selection criteria we included published gene functional data, as well as immunological and transcriptome data from GMC phenotyping screens under standard conditions. Applying these criteria we identified a few from several hundred mutant mouse lines and further characterized the Cox4i2tm1Hutt, Ifit2tm1.1Ebsb, and Prdm11tm1.1ahl lines following ovalbumin (OVA) sensitization and repeated OVA airway challenge. Challenged Prdm11tm1.1ahl mice exhibited changes in B cell counts, CD4+ T cell counts, and in the number of neutrophils in bronchoalveolar lavages, whereas challenged Ifit2tm1.1Ebsb mice displayed alterations in plasma IgE, IgG1, IgG3, and IgM levels compared to the challenged wild type littermates. In contrast, challenged Cox4i2tm1Hutt mutant mice did not show alterations in the humoral or cellular immune response compared to challenged wild type mice. Transcriptome analyses from lungs of the challenged mutant mouse lines showed extensive changes in gene expression in Prdm11tm1.1ahl mice. Functional annotations of regulated genes of all three mutant mouse lines were primarily related to inflammation and airway smooth muscle (ASM) remodeling. We were thus able to define an effective selection strategy to identify new candidate genes for the predisposition to an altered airway inflammatory response under OVA challenge conditions. Similar selection strategies may be used for the analysis of additional genotype-envirotype interactions for other diseases.
Bönisch, Clemens; Côme, Christophe; Kolster-Fog, Cathrine; Jensen, Klaus T.; Lund, Anders H.; Lee, Icksoo; Grossman, Lawrence I.; Sinkler, Christopher; Hüttemann, Maik; Bohn, Erwin; Fuchs, Helmut; Ollert, Markus; Gailus-Durner, Valérie; Hrabĕ de Angelis, Martin; Beckers, Johannes
2015-01-01
We established a selection strategy to identify new models for an altered airway inflammatory response from a large compendium of mutant mouse lines that were systemically phenotyped in the German Mouse Clinic (GMC). As selection criteria we included published gene functional data, as well as immunological and transcriptome data from GMC phenotyping screens under standard conditions. Applying these criteria we identified a few from several hundred mutant mouse lines and further characterized the Cox4i2tm1Hutt, Ifit2tm1.1Ebsb, and Prdm11tm1.1ahl lines following ovalbumin (OVA) sensitization and repeated OVA airway challenge. Challenged Prdm11tm1.1ahl mice exhibited changes in B cell counts, CD4+ T cell counts, and in the number of neutrophils in bronchoalveolar lavages, whereas challenged Ifit2tm1.1Ebsb mice displayed alterations in plasma IgE, IgG1, IgG3, and IgM levels compared to the challenged wild type littermates. In contrast, challenged Cox4i2tm1Hutt mutant mice did not show alterations in the humoral or cellular immune response compared to challenged wild type mice. Transcriptome analyses from lungs of the challenged mutant mouse lines showed extensive changes in gene expression in Prdm11tm1.1ahl mice. Functional annotations of regulated genes of all three mutant mouse lines were primarily related to inflammation and airway smooth muscle (ASM) remodeling. We were thus able to define an effective selection strategy to identify new candidate genes for the predisposition to an altered airway inflammatory response under OVA challenge conditions. Similar selection strategies may be used for the analysis of additional genotype – envirotype interactions for other diseases. PMID:26263558
NASA Technical Reports Server (NTRS)
Harkness, John E.; Hymer, W. C.; Rosenberger, James L.; Grindeland, Richard E.
1984-01-01
It is shown that the implantation of encapsulated pituitary cells into heterozygous lit/+ mice inhibited the average percentage change in weight gain as compared to controls. However, homozygous lit/lit mice receiving cell-filled capsules consistently had higher percentage weight gains than their control counterparts. It was also found that thyroid-supplemented mutant mice with pituitary cell implants had significantly higher organ and carcass weights than other mutant groups.
Enhanced extinction of contextual fear conditioning in ClockΔ19 mutant mice.
Bernardi, Rick E; Spanagel, Rainer
2014-08-01
Clock genes have been implicated in several disorders, such as schizophrenia, bipolar disorder, autism spectrum disorders, and drug dependence. However, few studies to date have examined the role of clock genes in fear-related behaviors. The authors used mice with the ClockΔ19 mutation to assess the involvement of this gene in contextual fear conditioning. Male wild-type (WT) and ClockΔ19 mutant mice underwent a single session of contextual fear conditioning (12 min, 4 unsignaled shocks), followed by daily 12-min retention trials. There were no differences between mutant and WT mice in the acquisition of contextual fear, and WT and mutant mice demonstrated similar freezing during the first retention session. However, extinction of contextual fear was accelerated in mutant mice across the remaining retention sessions, as compared to WT mice, suggesting a role for Clock in extinction following aversive learning. Because the ClockΔ19 mutation has previously been demonstrated to result in an increase in dopamine signaling, the authors confirmed the role of dopamine in extinction learning using preretention session administration of a low dose of the dopamine transport reuptake inhibitor modafinil (0.75 mg/kg), which resulted in decreased freezing across retention sessions. These findings are consistent with an emerging portrayal of the importance of Clock genes in noncircadian functions, as well as the important role of dopamine in extinction learning.
Noda, Yoshihiro; Ota, Kuniaki; Shirasawa, Takuji; Shimizu, Takahiko
2012-01-01
Copper/zinc superoxide dismutase (CuZn-SOD, SOD1) is one of the major antioxidant enzymes, and is localized in the cytoplasm to scavenge superoxide. To investigate the physiological role of SOD1 in the ovaries, we analyzed the fertility of Sod1-deficient female mice. To evaluate their hormonal metabolism, we measured pituitary and ovarian hormone levels in the plasma of the mutant mice. Plasma follicle-stimulating hormone, luteinizing hormone, and estradiol were not altered in the mutant compared to the wild-type females, while the plasma progesterone level was significantly reduced in the mutant females. Furthermore, the mutant mice showed decreased progesterone secretion under the condition of superovulation. In a histochemical analysis, we observed a remarkable reduction in the corpus luteum area in the mutant ovaries without atrophic changes. The mutant mice also displayed enhanced superoxide generation in the region surrounding the corpora lutea, which was associated with increased apoptotic cells and suppressed vasculature. These results suggested that SOD1 deficiency dysregulated luteal formation because of increased superoxide generation in the ovary. In vitro fertilization experiments showed no abnormal fertilization of Sod1-deficient oocytes. In addition, when Sod1-deficient embryos were transferred into the oviducts of wild-type females, mutant embryos developed at a normal rate, indicating that SOD1 deficiency in embryos did not cause miscarriage in the uterus of wild-type females. These results indicated that increased intracellular ROS impaired luteal formation and progesterone production in the mutant females, thus suggesting that SOD1 plays a crucial role in both the luteal function and the maintenance of fertility in female mice.
Garringer, Holly J.; Murrell, Jill; Sammeta, Neeraja; Gnezda, Anita; Ghetti, Bernardino; Vidal, Ruben
2013-01-01
Familial Danish dementia (FDD) is an autosomal dominant neurodegenerative disease caused by a 10-nucleotide duplication-insertion in the BRI2 gene. FDD is clinically characterized by loss of vision, hearing impairment, cerebellar ataxia and dementia. The main neuropathologic findings in FDD are the deposition of Danish amyloid (ADan) and the presence of neurofibrillary tangles (NFTs). Here we investigated tau accumulation and truncation in double transgenic (Tg-FDD-Tau) mice generated by crossing transgenic mice expressing human Danish mutant BRI2 (Tg-FDD) with mice expressing human 4-repeat mutant Tau-P301S (Tg-Tau). Compared to Tg-Tau mice, we observed a significant enhancement of tau deposition in Tg-FDD-Tau mice. In addition, a significant increase in tau cleaved at aspartic acid (Asp) 421 was observed in Tg-FDD-Tau mice. Tg-FDD-Tau mice also showed a significant decrease in synaptophysin levels, occurring before widespread deposition of fibrillar ADan and tau can be observed. Thus, the presence of soluble ADan/mutant BRI2 can lead to significant changes in tau metabolism and synaptic dysfunction. Our data provide new in vivo insights into the pathogenesis of FDD and the pathogenic pathway(s) by which amyloidogenic peptides, regardless of their primary amino acid sequence, can cause neurodegeneration. PMID:23418567
Garringer, Holly J; Murrell, Jill; Sammeta, Neeraja; Gnezda, Anita; Ghetti, Bernardino; Vidal, Ruben
2013-01-01
Familial Danish dementia (FDD) is an autosomal dominant neurodegenerative disease caused by a 10-nucleotide duplication-insertion in the BRI(2) gene. FDD is clinically characterized by loss of vision, hearing impairment, cerebellar ataxia and dementia. The main neuropathologic findings in FDD are the deposition of Danish amyloid (ADan) and the presence of neurofibrillary tangles (NFTs). Here we investigated tau accumulation and truncation in double transgenic (Tg-FDD-Tau) mice generated by crossing transgenic mice expressing human Danish mutant BRI(2) (Tg-FDD) with mice expressing human 4-repeat mutant Tau-P301S (Tg-Tau). Compared to Tg-Tau mice, we observed a significant enhancement of tau deposition in Tg-FDD-Tau mice. In addition, a significant increase in tau cleaved at aspartic acid (Asp) 421 was observed in Tg-FDD-Tau mice. Tg-FDD-Tau mice also showed a significant decrease in synaptophysin levels, occurring before widespread deposition of fibrillar ADan and tau can be observed. Thus, the presence of soluble ADan/mutant BRI(2) can lead to significant changes in tau metabolism and synaptic dysfunction. Our data provide new in vivo insights into the pathogenesis of FDD and the pathogenic pathway(s) by which amyloidogenic peptides, regardless of their primary amino acid sequence, can cause neurodegeneration.
Shiver me titin! Elucidating titin's role in shivering thermogenesis.
Taylor-Burt, Kari R; Monroy, Jenna; Pace, Cinnamon; Lindstedt, Stan; Nishikawa, Kiisa C
2015-03-01
Shivering frequency scales predictably with body mass and is 10 times higher in a mouse than a moose. The link between shivering frequency and body mass may lie in the tuning of muscle elastic properties. Titin functions as a muscle 'spring', so shivering frequency may be linked to titin's structure. The muscular dystrophy with myositis (mdm) mouse is characterized by a deletion in titin's N2A region. Mice that are homozygous for the mdm mutation have a lower body mass, stiffer gait and reduced lifespan compared with their wild-type and heterozygous siblings. We characterized thermoregulation in these mice by measuring metabolic rate and tremor frequency during shivering. Mutants were heterothermic at ambient temperatures of 20-37°C while wild-type and heterozygous mice were homeothermic. Metabolic rate increased at smaller temperature differentials (i.e. the difference between body and ambient temperatures) in mutants than in non-mutants. The difference between observed tremor frequencies and shivering frequencies predicted by body mass was significantly larger for mutant mice than for wild-type or heterozygous mice, even after accounting for differences in body temperature. Together, the heterothermy in mutants, the increase in metabolic rate at low temperature differentials and the decreased tremor frequency demonstrate the thermoregulatory challenges faced by mice with the mdm mutation. Oscillatory frequency is proportional to the square root of stiffness, and we observed that mutants had lower active muscle stiffness in vitro. The lower tremor frequencies in mutants are consistent with reduced active muscle stiffness and suggest that titin affects the tuning of shivering frequency. © 2015. Published by The Company of Biologists Ltd.
Nagaraj, R Y; Nosek, C M; Brotto, M A; Nishi, M; Takeshima, H; Nosek, T M; Ma, J
2000-11-09
Mitsugumin 29 (MG29), a major protein component of the triad junction in skeletal muscle, has been identified to play roles in the formation of precise junctional membrane structures important for efficient signal conversion in excitation-contraction (E-C) coupling. We carried out several experiments to not only study the role of MG29 in normal muscle contraction but also to determine its role in muscle fatigue. We compared the in vitro contractile properties of three muscles types, extensor digitorum longus (EDL) (fast-twitch muscle), soleus (SOL) (slow-twitch muscle), and diaphragm (DPH) (mixed-fiber muscle), isolated from mice lacking the MG29 gene and wild-type mice prior to and after fatigue. Our results indicate that the mutant EDL and SOL muscles, but not DPH, are more susceptible to fatigue than the wild-type muscles. The mutant muscles not only fatigued to a greater extent but also recovered significantly less than the wild-type muscles. Following fatigue, the mutant EDL and SOL muscles produced lower twitch forces than the wild-type muscles; in addition, fatiguing produced a downward shift in the force-frequency relationship in the mutant mice compared with the wild-type controls. Our results indicate that fatiguing affects the E-C components of the mutant EDL and SOL muscles, and the effect of fatigue in these mutant muscles could be primarily due to an alteration in the intracellular Ca homeostasis.
Shardonofsky, Felix R; Moore, Joan; Schwartz, Robert J; Boriek, Aladin M
2012-03-01
We hypothesized that ablation of smooth muscle α-actin (SM α-A), a contractile-cytoskeletal protein expressed in airway smooth muscle (ASM) cells, abolishes ASM shortening capacity and decreases lung stiffness. In both SM α-A knockout and wild-type (WT) mice, airway resistance (Raw) determined by the forced oscillation technique rose in response to intravenous methacholine (Mch). However, the slope of Raw (cmH(2)O·ml(-1)·s) vs. log(2) Mch dose (μg·kg(-1)·min(-1)) was lower (P = 0.007) in mutant (0.54 ± 0.14) than in WT mice (1.23 ± 0.19). RT-PCR analysis performed on lung tissues confirmed that mutant mice lacked SM α-A mRNA and showed that these mice had robust expressions of both SM γ-A mRNA and skeletal muscle (SKM) α-A mRNA, which were not expressed in WT mice, and an enhanced SM22 mRNA expression relative to that in WT mice. Compared with corresponding spontaneously breathing mice, mechanical ventilation-induced lung mechanical strain increased the expression of SM α-A mRNA in WT lungs; in mutant mice, it augmented the expressions of SM γ-A mRNA and SM22 mRNA and did not alter that of SKM α-A mRNA. In mutant mice, the expression of SM γ-A mRNA in the lung during spontaneous breathing and its enhanced expression following mechanical ventilation are consistent with the likely possibility that in the absence of SM α-A, SM γ-A underwent polymerization and interacted with smooth muscle myosin to produce ASM shortening during cholinergic stimulation. Thus our data are consistent with ASM in mutant mice experiencing compensatory mechanisms that modulated its contractile muscle capacity.
Tamada, Hiromi; Kiyama, Hiroshi
2015-01-01
Interstitial cells of Cajal (ICC) are mesenchymal cells that are distributed along the gastrointestinal tract and function as pacemaker cells or intermediary cells between nerves and smooth muscle cells. ICC express a receptor tyrosine kinase c-Kit, which is an established marker for ICC. The c-kit gene is allelic with the murine white-spotting locus (W), and some ICC subsets were reported to be missing in heterozygous mutant W/Wv mice carrying W and Wv mutated alleles. In this study, the characterization of interstitial cells in the subserosal layer of W/Wv mice was analyzed by immunohistochemistry and electron microscopy. In the proximal and distal colon of W/Wv mutant mice, no c-Kit-positive cells were detected in the subserosal layer by immunohistochemistry. By electron microscopy, the interstitial cells, which were characterized by the existence of caveolae, abundant mitochondria and gap junctions, were observed in the W/Wv mutant colon. The morphological characteristics were comparable to those of the multipolar c-Kit positive ICC seen in the subserosa of proximal and distal colon of wild-type mice. Fibroblasts were also located in the same layers, but the morphology of the fibroblasts was distinguishable from that of ICC in wild type mice or of ICC-like cells in W/Wv mutant mice. Collectively, it is concluded that c-Kit-negative interstitial cells showing a typical ICC ultrastructure exist in the proximal and distal colon of W/Wv mutant mice. PMID:26727725
Tamada, Hiromi; Kiyama, Hiroshi
2015-01-01
Interstitial cells of Cajal (ICC) are mesenchymal cells that are distributed along the gastrointestinal tract and function as pacemaker cells or intermediary cells between nerves and smooth muscle cells. ICC express a receptor tyrosine kinase c-Kit, which is an established marker for ICC. The c-kit gene is allelic with the murine white-spotting locus (W), and some ICC subsets were reported to be missing in heterozygous mutant W/W(v) mice carrying W and W(v) mutated alleles. In this study, the characterization of interstitial cells in the subserosal layer of W/W(v) mice was analyzed by immunohistochemistry and electron microscopy. In the proximal and distal colon of W/W(v) mutant mice, no c-Kit-positive cells were detected in the subserosal layer by immunohistochemistry. By electron microscopy, the interstitial cells, which were characterized by the existence of caveolae, abundant mitochondria and gap junctions, were observed in the W/W(v) mutant colon. The morphological characteristics were comparable to those of the multipolar c-Kit positive ICC seen in the subserosa of proximal and distal colon of wild-type mice. Fibroblasts were also located in the same layers, but the morphology of the fibroblasts was distinguishable from that of ICC in wild type mice or of ICC-like cells in W/W(v) mutant mice. Collectively, it is concluded that c-Kit-negative interstitial cells showing a typical ICC ultrastructure exist in the proximal and distal colon of W/W(v) mutant mice.
Tamada, Hiromi; Kiyama, Hiroshi
2015-01-01
Interstitial cells of Cajal (ICC) are mesenchymal cells that are distributed along the gastrointestinal tract and function as pacemaker cells or intermediary cells between nerves and smooth muscle cells. ICC express a receptor tyrosine kinase c-Kit, which is an established marker for ICC. The c-kit gene is allelic with the murine white-spotting locus (W), and some ICC subsets were reported to be missing in heterozygous mutant W/Wv mice carrying W and Wv mutated alleles. In this study, the characterization of interstitial cells in the subserosal layer of W/Wv mice was analyzed by immunohistochemistry and electron microscopy. In the proximal and distal colon of W/Wv mutant mice, no c-Kit-positive cells were detected in the subserosal layer by immunohistochemistry. By electron microscopy, the interstitial cells, which were characterized by the existence of caveolae, abundant mitochondria and gap junctions, were observed in the W/Wv mutant colon.The morphological characteristics were comparable to those of the multipolar c-Kit positive ICC seen in the subserosa of proximal and distal colon of wild-type mice. Fibroblasts were also located in the same layers,but the morphology of the fibroblasts was distinguishable from that of ICC in wild type mice or of ICC-like cells in W/Wv mutant mice. Collectively, it is concluded that c-Kit-negative interstitial cells showing a typical ICC ultrastructure exist in the proximal and distal colon of W/Wv mutant mice.
Candidate genes for panhypopituitarism identified by gene expression profiling
Mortensen, Amanda H.; MacDonald, James W.; Ghosh, Debashis
2011-01-01
Mutations in the transcription factors PROP1 and PIT1 (POU1F1) lead to pituitary hormone deficiency and hypopituitarism in mice and humans. The dysmorphology of developing Prop1 mutant pituitaries readily distinguishes them from those of Pit1 mutants and normal mice. This and other features suggest that Prop1 controls the expression of genes besides Pit1 that are important for pituitary cell migration, survival, and differentiation. To identify genes involved in these processes we used microarray analysis of gene expression to compare pituitary RNA from newborn Prop1 and Pit1 mutants and wild-type littermates. Significant differences in gene expression were noted between each mutant and their normal littermates, as well as between Prop1 and Pit1 mutants. Otx2, a gene critical for normal eye and pituitary development in humans and mice, exhibited elevated expression specifically in Prop1 mutant pituitaries. We report the spatial and temporal regulation of Otx2 in normal mice and Prop1 mutants, and the results suggest Otx2 could influence pituitary development by affecting signaling from the ventral diencephalon and regulation of gene expression in Rathke's pouch. The discovery that Otx2 expression is affected by Prop1 deficiency provides support for our hypothesis that identifying molecular differences in mutants will contribute to understanding the molecular mechanisms that control pituitary organogenesis and lead to human pituitary disease. PMID:21828248
Overactivation of hedgehog signaling alters development of the ovarian vasculature in mice.
Ren, Yi; Cowan, Robert G; Migone, Fernando F; Quirk, Susan M
2012-06-01
The hedgehog (HH) signaling pathway is critical for ovarian function in Drosophila, but its role in the mammalian ovary has not been defined. Previously, expression of a dominant active allele of the HH signal transducer protein smoothened (SMO) in Amhr2(cre/+)SmoM2 mice caused anovulation in association with a lack of smooth muscle in the theca of developing follicles. The current study examined events during the first 2 wk of life in Amhr2(cre/+)SmoM2 mice to gain insight into the cause of anovulation. Expression of transcriptional targets of HH signaling, Gli1, Ptch1, and Hhip, which are used as measures of pathway activity, were elevated during the first several days of life in Amhr2(cre/+)SmoM2 mice compared to controls but were similar to controls in older mice. Microarray analysis showed that genes with increased expression in 2-day-old mutants compared to controls were enriched for the processes of vascular and tube development and steroidogenesis. The density of platelet endothelial cell adhesion molecule (PECAM)-labeled endothelial tubes was increased in the cortex of newborn ovaries of mutant mice. Costaining of preovulatory follicles for PECAM and smooth muscle actin showed that muscle-type vascular support cells are deficient in theca of mutant mice. Expression of genes for steroidogenic enzymes that are normally expressed in the fetal adrenal gland were elevated in newborn ovaries of mutant mice. In summary, overactivation of HH signaling during early life alters gene expression and vascular development and this is associated with the lifelong development of anovulatory follicles in which the thecal vasculature fails to mature appropriately.
Overactivation of Hedgehog Signaling Alters Development of the Ovarian Vasculature in Mice1
Ren, Yi; Cowan, Robert G.; Migone, Fernando F.; Quirk, Susan M.
2012-01-01
ABSTRACT The hedgehog (HH) signaling pathway is critical for ovarian function in Drosophila, but its role in the mammalian ovary has not been defined. Previously, expression of a dominant active allele of the HH signal transducer protein smoothened (SMO) in Amhr2cre/+SmoM2 mice caused anovulation in association with a lack of smooth muscle in the theca of developing follicles. The current study examined events during the first 2 wk of life in Amhr2cre/+SmoM2 mice to gain insight into the cause of anovulation. Expression of transcriptional targets of HH signaling, Gli1, Ptch1, and Hhip, which are used as measures of pathway activity, were elevated during the first several days of life in Amhr2cre/+SmoM2 mice compared to controls but were similar to controls in older mice. Microarray analysis showed that genes with increased expression in 2-day-old mutants compared to controls were enriched for the processes of vascular and tube development and steroidogenesis. The density of platelet endothelial cell adhesion molecule (PECAM)-labeled endothelial tubes was increased in the cortex of newborn ovaries of mutant mice. Costaining of preovulatory follicles for PECAM and smooth muscle actin showed that muscle-type vascular support cells are deficient in theca of mutant mice. Expression of genes for steroidogenic enzymes that are normally expressed in the fetal adrenal gland were elevated in newborn ovaries of mutant mice. In summary, overactivation of HH signaling during early life alters gene expression and vascular development and this is associated with the lifelong development of anovulatory follicles in which the thecal vasculature fails to mature appropriately. PMID:22402963
Deletion of vanilloid receptor (TRPV1) in mice alters behavioral effects of ethanol
Blednov, Y.A.; Harris, R.A.
2009-01-01
The vanilloid receptor TRPV1 is activated by ethanol and this may be important for some of the central and peripheral actions of ethanol. To determine if this receptor has a role in ethanol-mediated behaviors, we studied null mutant mice in which the Trpv1 gene was deleted. Mice lacking this gene showed significantly higher preference for ethanol and consumed more ethanol in a two-bottle choice test as compared with wild type littermates. Null mutant mice showed shorter duration of loss of righting reflex induced by low doses of ethanol (3.2 and 3.4 g/kg) and faster recovery from motor incoordination induced by ethanol (2 g/kg). However, there were no differences between null mutant and wild type mice in severity of ethanol-induced acute withdrawal (4 g/kg) or conditioned taste aversion to ethanol (2.5 g/kg). Two behavioral phenotypes (decreased sensitivity to ethanol-induced sedation and faster recovery from ethanol-induced motor incoordination) seen in null mutant mice were reproduced in wild type mice by injection of a TRPV1 antagonist, capsazepine (10 mg/kg). These two ethanol behaviors were changed in the opposite direction after injection of capsaicin, a selective TRPV1 agonist, in wild type mice. The studies provide the first evidence that TRPV1 is important for specific behavioral actions of ethanol. PMID:19705551
Loss of protein phosphatase 6 in mouse keratinocytes enhances K-rasG12D -driven tumor promotion.
Kurosawa, Koreyuki; Inoue, Yui; Kakugawa, Yoichiro; Yamashita, Yoji; Kanazawa, Kosuke; Kishimoto, Kazuhiro; Nomura, Miyuki; Momoi, Yuki; Sato, Ikuro; Chiba, Natsuko; Suzuki, Mai; Ogoh, Honami; Yamada, Hidekazu; Miura, Koh; Watanabe, Toshio; Tanuma, Nobuhiro; Tachi, Masahiro; Shima, Hiroshi
2018-05-14
Here, we address the function of protein phosphatase 6 (PP6) loss on K-ras-initiated tumorigenesis in keratinocytes. To do so, we developed tamoxifen-inducible double mutant (K-ras G12D -expressing and Ppp6c-deficient) mice in which K-ras G12D expression is driven by the cytokeratin 14 (K14) promoter. Doubly-mutant mice showed early onset tumor formation in lip, nipples, external genitalia, anus and palms, and had to be sacrificed by three weeks after induction by tamoxifen, while comparably-treated K-ras G12D -expressing mice did not. HE-staining of lip tumors before euthanasia revealed that all were papillomas, some containing focal squamous cell carcinoma. Immunohistochemical analysis of lip of doubly-mutant versus K-ras G12D mice revealed that cell proliferation and cell size increased approximately two-fold relative to K-ras G12D -expressing mutants, and epidermal thickness of lip tissue greatly increased relative to that seen in K-ras G12D only mice. Moreover, AKT phosphorylation increased in K-ras G12D -expressing/Ppp6c-deficient cells, as did phosphorylation of the downstream effectors 4EBP1, S6, and GSK3, suggesting that protein synthesis and survival signals are enhanced in lip tissues of doubly-mutant mice. Finally, increased numbers of K14-positive cells were present in the suprabasal layer of doubly-mutant mice, indicating abnormal keratinocyte differentiation, and γH2AX-positive cells accumulated, indicating perturbed DNA repair. Taken together, Ppp6c deficiency enhances K-ras G12D -dependent tumor promotion. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Perng, Guey-Chuen; Esmaili, Daniel; Slanina, Susan M.; Yukht, Ada; Ghiasi, Homayon; Osorio, Nelson; Mott, Kevin R.; Maguen, Barak; Jin, Ling; Nesburn, Anthony B.; Wechsler, Steven L.
2001-01-01
Herpes simplex virus type 1 latency-associated transcript (LAT)-null mutants have decreased reactivation but normal virulence in rabbits and mice. We report here on dLAT1.5, a mutant with LAT nucleotides 76 to 1667 deleted. Following ocular infection of rabbits, dLAT1.5 reactivated at a lower rate than its wild-type parent McKrae (6.1 versus 11.8%; P = 0.0025 [chi-square test]). Reactivation was restored in the marker-rescued virus dLAT1.5R (12.6%; P = 0.53 versus wild type), confirming the importance of the deleted region in spontaneous reactivation. Compared with wild-type or marker-rescued virus, dLAT1.5 had similar or slightly reduced virulence in rabbits (based on survival following ocular infection). In contrast, in mice, dLAT1.5 had increased virulence (P < 0.0001). Thus, deletion of LAT nucleotides 76 to 1667 increased viral virulence in mice but not in rabbits. In contrast, we also report here that LAT2.9A, a LAT mutant that we previously reported to have increased virulence in rabbits (G. C. Perng, S. M. Slanina, A. Yuhkt, B. S. Drolet, W. J. Keleher, H. Ghiasi, A. B. Nesburn, and S. L. Wechsler, J. Virol. 73:920–929, 1999), had decreased virulence in mice (P = 0.03). In addition, we also found that dLAT371, a LAT mutant that we previously reported to have wild-type virulence in rabbits (G. C. Perng, S. M. Slanina, H. Ghiasi, A. B. Nesburn, and S. L. Wechsler, J. Virol. 70:2014–2018, 1996), had decreased virulence in mice (P < 0.05). Thus, these three mutants, each of which encodes a different LAT RNA, have different virulence phenotypes. dLAT1.5 had wild-type virulence in rabbits but increased virulence in mice. In contrast, LAT2.9A had increased virulence in rabbits but decreased virulence in mice, and dLAT371 had wild-type virulence in rabbits but decreased virulence in mice. Taken together, these results suggest that (i) the 5′ end of LAT and/or a gene that overlaps part of this region is involved in viral virulence, (ii) this virulence appears to have species-specific effects, and (iii) regulation of this virulence may be complex. PMID:11533165
Larroquette, Frédérique; Seto, Lesley; Gaub, Perrine L; Kamal, Brishna; Wallis, Deeann; Larivière, Roxanne; Vallée, Joanne; Robitaille, Richard; Tsuda, Hiroshi
2015-11-15
Missense mutations (P56S) in Vapb are associated with autosomal dominant motor neuron diseases: amyotrophic lateral sclerosis and lower motor neuron disease. Although transgenic mice overexpressing the mutant vesicle-associated membrane protein-associated protein B (VAPB) protein with neuron-specific promoters have provided some insight into the toxic properties of the mutant proteins, their role in pathogenesis remains unclear. To identify pathological defects in animals expressing the P56S mutant VAPB protein at physiological levels in the appropriate tissues, we have generated Vapb knock-in mice replacing wild-type Vapb gene with P56S mutant Vapb gene and analyzed the resulting pathological phenotypes. Heterozygous P56S Vapb knock-in mice show mild age-dependent defects in motor behaviors as characteristic features of the disease. The homozygous P56S Vapb knock-in mice show more severe defects compared with heterozygous mice reflecting the dominant and dose-dependent effects of P56S mutation. Significantly, the knock-in mice demonstrate accumulation of P56S VAPB protein and ubiquitinated proteins in cytoplasmic inclusions, selectively in motor neurons. The mutant mice demonstrate induction of ER stress and autophagic response in motor neurons before obvious onset of behavioral defects, suggesting that these cellular biological defects might contribute to the initiation of the disease. The P56S Vapb knock-in mice could be a valuable tool to gain a better understanding of the mechanisms by which the disease arises. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
van Lier, Christina J; Sha, Jian; Kirtley, Michelle L; Cao, Anthony; Tiner, Bethany L; Erova, Tatiana E; Cong, Yingzi; Kozlova, Elena V; Popov, Vsevolod L; Baze, Wallace B; Chopra, Ashok K
2014-06-01
Currently, there is no FDA-approved vaccine against Yersinia pestis, the causative agent of bubonic and pneumonic plague. Since both humoral immunity and cell-mediated immunity are essential in providing the host with protection against plague, we developed a live-attenuated vaccine strain by deleting the Braun lipoprotein (lpp) and plasminogen-activating protease (pla) genes from Y. pestis CO92. The Δlpp Δpla double isogenic mutant was highly attenuated in evoking both bubonic and pneumonic plague in a mouse model. Further, animals immunized with the mutant by either the intranasal or the subcutaneous route were significantly protected from developing subsequent pneumonic plague. In mice, the mutant poorly disseminated to peripheral organs and the production of proinflammatory cytokines concurrently decreased. Histopathologically, reduced damage to the lungs and livers of mice infected with the Δlpp Δpla double mutant compared to the level of damage in wild-type (WT) CO92-challenged animals was observed. The Δlpp Δpla mutant-immunized mice elicited a humoral immune response to the WT bacterium, as well as to CO92-specific antigens. Moreover, T cells from mutant-immunized animals exhibited significantly higher proliferative responses, when stimulated ex vivo with heat-killed WT CO92 antigens, than mice immunized with the same sublethal dose of WT CO92. Likewise, T cells from the mutant-immunized mice produced more gamma interferon (IFN-γ) and interleukin-4. These animals had an increasing number of tumor necrosis factor alpha (TNF-α)-producing CD4(+) and CD8(+) T cells than WT CO92-infected mice. These data emphasize the role of TNF-α and IFN-γ in protecting mice against pneumonic plague. Overall, our studies provide evidence that deletion of the lpp and pla genes acts synergistically in protecting animals against pneumonic plague, and we have demonstrated an immunological basis for this protection.
van Lier, Christina J.; Sha, Jian; Kirtley, Michelle L.; Cao, Anthony; Tiner, Bethany L.; Erova, Tatiana E.; Cong, Yingzi; Kozlova, Elena V.; Popov, Vsevolod L.; Baze, Wallace B.
2014-01-01
Currently, there is no FDA-approved vaccine against Yersinia pestis, the causative agent of bubonic and pneumonic plague. Since both humoral immunity and cell-mediated immunity are essential in providing the host with protection against plague, we developed a live-attenuated vaccine strain by deleting the Braun lipoprotein (lpp) and plasminogen-activating protease (pla) genes from Y. pestis CO92. The Δlpp Δpla double isogenic mutant was highly attenuated in evoking both bubonic and pneumonic plague in a mouse model. Further, animals immunized with the mutant by either the intranasal or the subcutaneous route were significantly protected from developing subsequent pneumonic plague. In mice, the mutant poorly disseminated to peripheral organs and the production of proinflammatory cytokines concurrently decreased. Histopathologically, reduced damage to the lungs and livers of mice infected with the Δlpp Δpla double mutant compared to the level of damage in wild-type (WT) CO92-challenged animals was observed. The Δlpp Δpla mutant-immunized mice elicited a humoral immune response to the WT bacterium, as well as to CO92-specific antigens. Moreover, T cells from mutant-immunized animals exhibited significantly higher proliferative responses, when stimulated ex vivo with heat-killed WT CO92 antigens, than mice immunized with the same sublethal dose of WT CO92. Likewise, T cells from the mutant-immunized mice produced more gamma interferon (IFN-γ) and interleukin-4. These animals had an increasing number of tumor necrosis factor alpha (TNF-α)-producing CD4+ and CD8+ T cells than WT CO92-infected mice. These data emphasize the role of TNF-α and IFN-γ in protecting mice against pneumonic plague. Overall, our studies provide evidence that deletion of the lpp and pla genes acts synergistically in protecting animals against pneumonic plague, and we have demonstrated an immunological basis for this protection. PMID:24686064
Lalonde, R; Hayzoun, K; Selimi, F; Mariani, J; Strazielle, C
2003-11-01
Grid2(ho/ho) is a loss of function gene mutation resulting in abnormal dendritic arborizations of Purkinje cells. These mutants were compared in a series of motor coordination tests requiring balance and equilibrium to nonataxic controls (Grid2(ho/+)) and to a double mutant (Grid2(ho/Lc)) with an inserted Lc mutation. The performance of Grid2(ho/ho) mutant mice was poorer than that of controls on stationary beam, coat hanger, unsteady platform, and rotorod tests. Grid2(ho/Lc) did not differ from Grid2(Lc/+) mice. However, the insertion of the Lc mutation in Grid2(ho/Lc) potentiated the deficits found in Grid2(ho/ho) in stationary beam, unsteady platform, and rotorod tests. These results indicate a deleterious effect of the Lc mutation on Grid2-deficient mice.
Nonogaki, Katsunori; Ohba, Yukie; Sumii, Makiko; Oka, Yoshitomo
2008-07-18
NEFA/nucleobindin2 (NUCB2), a novel satiety molecule, is associated with leptin-independent melanocortin signaling in the central nervous system. Here, we show that systemic administration of m-chlorophenylpiperazine (mCPP), a serotonin 5-HT1B/2C receptor agonist, significantly increased the expression of hypothalamic NUCB2 in wild-type mice. The increases in hypothalamic NUCB2 expression induced by mCPP were attenuated in 5-HT2C receptor mutant mice. Systemic administration of mCPP suppressed food intake in db/db mice with leptin receptor mutation as well as lean control mice. On the other hand, the expression of hypothalamic NUCB2 and proopiomelanocortin (POMC) was significantly decreased in hyperphagic and non-obese 5-HT2C receptor mutants compared with age-matched wild-type mice. Interestingly, despite increased expression of hypothalamic POMC, hypothalamic NUCB2 expression was decreased in 5-HT2C receptor mutant mice with heterozygous mutation of beta-endorphin gene. These findings suggest that 5-HT systems upregulate the expression of hypothalamic NUCB2 via 5-HT2C receptors, and induce anorexia via a leptin-independent pathway in mice.
The Gne M712T mouse as a model for human glomerulopathy.
Kakani, Sravan; Yardeni, Tal; Poling, Justin; Ciccone, Carla; Niethamer, Terren; Klootwijk, Enriko D; Manoli, Irini; Darvish, Daniel; Hoogstraten-Miller, Shelley; Zerfas, Patricia; Tian, E; Ten Hagen, Kelly G; Kopp, Jeffrey B; Gahl, William A; Huizing, Marjan
2012-04-01
Pathological glomerular hyposialylation has been implicated in certain unexplained glomerulopathies, including minimal change nephrosis, membranous glomerulonephritis, and IgA nephropathy. We studied our previously established mouse model carrying a homozygous mutation in the key enzyme of sialic acid biosynthesis, N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase. Mutant mice died before postnatal day 3 (P3) from severe glomerulopathy with podocyte effacement and segmental glomerular basement membrane splitting due to hyposialylation. Administration of the sialic acid precursor N-acetylmannosamine (ManNAc) led to improved sialylation and survival of mutant pups beyond P3. We determined the onset of the glomerulopathy in the embryonic stage. A lectin panel, distinguishing normally sialylated from hyposialylated glycans, used WGA, SNA, PNA, Jacalin, HPA, and VVA, indicating glomerular hyposialylation of predominantly O-linked glycoproteins in mutant mice. The glomerular glycoproteins nephrin and podocalyxin were hyposialylated in this unique murine model. ManNAc treatment appeared to ameliorate the hyposialylation status of mutant mice, indicated by a lectin histochemistry pattern similar to that of wild-type mice, with improved sialylation of both nephrin and podocalyxin, as well as reduced albuminuria compared with untreated mutant mice. These findings suggest application of our lectin panel for categorizing human kidney specimens based on glomerular sialylation status. Moreover, the partial restoration of glomerular architecture in ManNAc-treated mice highlights ManNAc as a potential treatment for humans affected with disorders of glomerular hyposialylation. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Bossi, Simone; Musante, Ilaria; Bonfiglio, Tommaso; Bonifacino, Tiziana; Emionite, Laura; Cerminara, Maria; Cervetto, Chiara; Marcoli, Manuela; Bonanno, Giambattista; Ravazzolo, Roberto; Pittaluga, Anna; Puliti, Aldamaria
2018-01-01
Deleterious mutations in the glutamate receptor metabotropic 1 gene (GRM1) cause a recessive form of cerebellar ataxia, SCAR13. GRM1 and GRM5 code for the metabotropic glutamate type 1 (mGlu1) and type 5 (mGlu5) receptors, respectively. Their different expression profiles suggest they could have distinct functional roles. In a previous study, homozygous mice lacking mGlu1 receptors (Grm1 crv4/crv4 ) and exhibiting ataxia presented cerebellar overexpression of mGlu5 receptors, that was proposed to contribute to the mouse phenotype. To test this hypothesis, we here crossed Grm1 crv4 and Grm5 ko mice to generate double mutants (Grm1 crv4/crv4 Grm5 ko/ko ) lacking both mGlu1 and mGlu5 receptors. Double mutants and control mice were analyzed for spontaneous behavior and for motor activity by rotarod and footprint analyses. In the same mice, the release of glutamate from cerebellar nerve endings (synaptosomes) elicited by 12mM KCl or by α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) was also evaluated. Motor coordination resulted improved in double mutants when compared to Grm1 crv4/crv4 mice. Furthermore, in in vitro studies, glutamate release elicited by both KCl depolarization and activation of AMPA autoreceptors resulted reduced in Grm1 crv4/crv4 mice compared to wild type mice, while it presented normal levels in double mutants. Moreover, we found that Grm1 crv4/crv4 mice showed reduced expression of GluA2/3 AMPA receptor subunits in cerebellar synaptosomes, while it resulted restored to wild type level in double mutants. To conclude, blocking of mGlu5 receptor reduced the dysregulation of glutamate transmission and improved motor coordination in the Grm1 crv4 mouse model of SCAR13, thus suggesting the possible usefulness of pharmacological therapies based on modulation of mGlu5 receptor activity for the treatment of this type of ataxia. Copyright © 2017 Elsevier Inc. All rights reserved.
Laser Interferometer Measurements of the Viscoelastic Properties of Tectorial Membrane Mutants
NASA Astrophysics Data System (ADS)
Jones, Gareth; Russell, Ian; Lukashkin, Andrei
2011-11-01
The visco-elastic properties of the tectorial membrane (TM) can be determined by measuring the propagation velocity of travelling waves over a range of frequencies. This study presents a new method using laser interferometry and compares the TM's material properties (sheer storage modulus, G' and viscosity, η) at basal and apical locations in wild-type mice and basal locations of three mutant groups (TectaY1870C/+, Tectb-/- and Otoa-/-). The G' and η values calculated for the wild-type mice are similar to estimates derived using other methods whereas the mutant groups all exhibit slower wave propagation velocities and reduced longitudinal coupling.
Diet-induced obesity increases the frequency of Pig-a mutant erythrocytes in male C57BL/6J mice.
Wickliffe, Jeffrey K; Dertinger, Stephen D; Torous, Dorothea K; Avlasevich, Svetlana L; Simon-Friedt, Bridget R; Wilson, Mark J
2016-12-01
Obesity increases the risk of a number of chronic diseases in humans including several cancers. Biological mechanisms responsible for such increased risks are not well understood at present. Increases in systemic inflammation and oxidative stress, endogenous production of mutagenic metabolites, altered signaling in proliferative pathways, and increased sensitivity to exogenous mutagens and carcinogens are some of the potential contributing factors. We hypothesize that obesity creates an endogenously mutagenic environment in addition to increasing the sensitivity to environmental mutagens. To test this hypothesis, we examined two in vivo genotoxicity endpoints. Pig-a mutant frequencies and micronucleus frequencies were determined in blood cells in two independent experiments in 30-week old male mice reared on either a high-fat diet (60% calories from fat) that exhibit an obese phenotype or a normal-fat diet (10% calories from fat) that do not exhibit an obese phenotype. Mice were assayed again at 52 weeks of age in one of the experiments. N-ethyl-N-nitrosourea (ENU) was used as a positive mutation control in one experiment. ENU induced a robust Pig-a mutant and micronucleus response in both phenotypes. Obese, otherwise untreated mice, did not differ from non-obese mice with respect to Pig-a mutant frequencies in reticulocytes or micronucleus frequencies. However, such mice, had significantly higher and sustained Pig-a mutant frequencies (increased 2.5-3.7-fold, p < 0.02) in erythrocytes as compared to non-obese mice (based on measurements collected at 30 weeks or 30 and 52 weeks of age). This suggests that obesity, in the absence of exposure to an exogenous mutagen, is itself mutagenic. Environ. Mol. Mutagen. 57:668-677, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
ISHIKAWA, Akira; SUGIYAMA, Makoto; HONDO, Eiichi; KINOSHITA, Keiji; YAMAGISHI, Yuki
2015-01-01
Oca2p-cas (oculocutaneous albinism II; pink-eyed dilution castaneus) is a coat color mutant gene on mouse chromosome 7 that arose spontaneously in wild Mus musculus castaneus mice. Mice homozygous for Oca2p-cas usually exhibit pink eyes and gray coat hair on the non-agouti genetic background, and this ordinary phenotype remains unchanged throughout life. During breeding of a mixed strain carrying this gene on the C57BL/6J background, we discovered a novel spontaneous mutation that causes darkening of the eyes and coat hair with aging. In this study, we developed a novel mouse model showing this unique phenotype. Gross observations revealed that the pink eyes and gray coat hair of the novel mutant young mice became progressively darker in color by approximately 3 months after birth. Light and transmission-electron microscopic observations revealed a marked increase in melanin pigmentation of coat hair shafts and choroid of the eye in the novel mice compared to that in the ordinary mice. Sequence analysis of Oca2p-cas revealed a 4.1-kb deletion involving exons 15 and 16 of its wild-type gene. However, there was no sequence difference between the two types of mutant mice. Mating experiments suggested that the novel mutant phenotype was not inherited in a simple fashion, due to incomplete penetrance. The novel spontaneous mutant mouse is the first example of progressive hair darkening animals and is an essential animal model for understanding of the regulation mechanisms of melanin biosynthesis with aging. PMID:25739360
Ishikawa, Akira; Sugiyama, Makoto; Hondo, Eiichi; Kinoshita, Keiji; Yamagishi, Yuki
2015-01-01
Oca2(p-cas) (oculocutaneous albinism II; pink-eyed dilution castaneus) is a coat color mutant gene on mouse chromosome 7 that arose spontaneously in wild Mus musculus castaneus mice. Mice homozygous for Oca2(p-cas) usually exhibit pink eyes and gray coat hair on the non-agouti genetic background, and this ordinary phenotype remains unchanged throughout life. During breeding of a mixed strain carrying this gene on the C57BL/6J background, we discovered a novel spontaneous mutation that causes darkening of the eyes and coat hair with aging. In this study, we developed a novel mouse model showing this unique phenotype. Gross observations revealed that the pink eyes and gray coat hair of the novel mutant young mice became progressively darker in color by approximately 3 months after birth. Light and transmission-electron microscopic observations revealed a marked increase in melanin pigmentation of coat hair shafts and choroid of the eye in the novel mice compared to that in the ordinary mice. Sequence analysis of Oca2(p-cas) revealed a 4.1-kb deletion involving exons 15 and 16 of its wild-type gene. However, there was no sequence difference between the two types of mutant mice. Mating experiments suggested that the novel mutant phenotype was not inherited in a simple fashion, due to incomplete penetrance. The novel spontaneous mutant mouse is the first example of progressive hair darkening animals and is an essential animal model for understanding of the regulation mechanisms of melanin biosynthesis with aging.
Eicosapentaenoic acid prevents arterial calcification in klotho mutant mice.
Nakamura, Kazufumi; Miura, Daiji; Saito, Yukihiro; Yunoki, Kei; Koyama, Yasushi; Satoh, Minoru; Kondo, Megumi; Osawa, Kazuhiro; Hatipoglu, Omer F; Miyoshi, Toru; Yoshida, Masashi; Morita, Hiroshi; Ito, Hiroshi
2017-01-01
The klotho gene was identified as an "aging-suppressor" gene that accelerates arterial calcification when disrupted. Serum and vascular klotho levels are reduced in patients with chronic kidney disease, and the reduced levels are associated with arterial calcification. Intake of eicosapentaenoic acid (EPA), an n-3 fatty acid, reduces the risk of fatal coronary artery disease. However, the effects of EPA on arterial calcification have not been fully elucidated. The aim of this study was to determine the effect of EPA on arterial calcification in klotho mutant mice. Four-week-old klotho mutant mice and wild-type (WT) mice were given a diet containing 5% EPA (EPA food, klotho and WT: n = 12, each) or not containing EPA (control food, klotho and WT: n = 12, each) for 4 weeks. Calcium volume scores of thoracic and abdominal aortas assessed by computed tomography were significantly elevated in klotho mice after 4 weeks of control food, but they were not elevated in klotho mice after EPA food or in WT mice. Serum levels of EPA and resolvin E1, an active metabolite of EPA, in EPA food-fed mice were significantly increased compared to those in control food-fed mice. An oxidative stress PCR array followed by quantitative PCR revealed that NADPH oxidase-4 (NOX4), an enzyme that generates superoxide, gene expression was up-regulated in arterial smooth muscle cells (SMCs) of klotho mice. Activity of NOX was also significantly higher in SMCs of klotho mice than in those of WT mice. EPA decreased expression levels of the NOX4 gene and NOX activity. GPR120, a receptor of n-3 fatty acids, gene knockdown by siRNA canceled effects of EPA on NOX4 gene expression and NOX activity in arterial SMCs of klotho mice. EPA prevents arterial calcification together with reduction of NOX gene expression and activity via GPR120 in klotho mutant mice.
Memon, Mushtaq A.; Anway, Matthew D.; Covert, Trevor R.; Uzumcu, Mehmet; Skinner, Michael K.
2008-01-01
The role transforming growth factor beta (TGFb) isoforms TGFb1, TGFb2 and TGFb3 have in the regulation of embryonic gonadal development was investigated with the use of null-mutant (i.e. knockout) mice for each of the TGFb isoforms. Late embryonic gonadal development was investigated because homozygote TGFb null-mutant mice generally die around birth, with some embryonic loss as well. In the testis, the TGFb1 null-mutant mice had a decrease in the number of germ cells at birth, postnatal day 0 (P0). In the testis, the TGFb2 null-mutant mice had a decrease in the number of seminiferous cords at embryonic day 15 (E15). In the ovary, the TGFb2 null-mutant mice had an increase in the number of germ cells at P0. TGFb isoforms appear to have a role in gonadal development, but interactions between the isoforms is speculated to compensate in the different TGFb isoform null-mutant mice. PMID:18790002
Wegrzynowicz, Michal; Holt, Hunter K; Friedman, David B; Bowman, Aaron B
2012-02-03
Huntington's disease (HD) is a neurodegenerative disorder caused by expansion of a CAG repeat within the Huntingtin (HTT) gene, though the clinical presentation of disease and age-of-onset are strongly influenced by ill-defined environmental factors. We recently reported a gene-environment interaction wherein expression of mutant HTT is associated with neuroprotection against manganese (Mn) toxicity. Here, we are testing the hypothesis that this interaction may be manifested by altered protein expression patterns in striatum, a primary target of both neurodegeneration in HD and neurotoxicity of Mn. To this end, we compared striatal proteomes of wild-type and HD (YAC128Q) mice exposed to vehicle or Mn. Principal component analysis of proteomic data revealed that Mn exposure disrupted a segregation of WT versus mutant proteomes by the major principal component observed in vehicle-exposed mice. Identification of altered proteins revealed novel markers of Mn toxicity, particularly proteins involved in glycolysis, excitotoxicity, and cytoskeletal dynamics. In addition, YAC128Q-dependent changes suggest that axonal pathology may be an early feature in HD pathogenesis. Finally, for several proteins, genotype-specific responses to Mn were observed. These differences include increased sensitivity to exposure in YAC128Q mice (UBQLN1) and amelioration of some mutant HTT-induced alterations (SAE1, ENO1). We conclude that the interaction of Mn and mutant HTT may suppress proteomic phenotypes of YAC128Q mice, which could reveal potential targets in novel treatment strategies for HD.
Shannon, Harlan E; Yang, Lijuan
2004-01-01
Neuropeptide Y (NPY) administered exogenously is anticonvulsant, and, NPY null mutant mice are more susceptible to kainate-induced seizures. In order to better understand the potential role of NPY in epileptogenesis, the present studies investigated the development of amygdala kindling, post-kindling seizure thresholds, and anticonvulsant effects of carbamazepine and levetiracetam in 129S6/SvEv NPY(+/+) and NPY(-/-) mice. In addition, susceptibility to pilocarpine- and kainate-induced seizures was compared in NPY(+/+) and (-/-) mice. The rate of amygdala kindling development did not differ in the NPY(-/-) and NPY(+/+) mice either when kindling stimuli were presented once daily for at least 20 days, or, 12 times daily for 2 days. However, during kindling development, the NPY(-/-) mice had higher seizure severity scores and longer afterdischarge durations than the NPY(+/+) mice. Post-kindling, the NPY(-/-) mice had markedly lower afterdischarge thresholds and longer afterdischarge durations than NPY (+/+) mice. Carbamazepine and levetiracetam increased the seizure thresholds of both NPY (-/-) and (+/+) mice. In addition, NPY (-/-) mice had lower thresholds for both kainate- and pilocarpine-induced seizures. The present results in amygdala kindling and chemical seizure models suggest that NPY may play a more prominent role in determining seizure thresholds and severity of seizures than in events leading to epileptogenesis. In addition, a lack of NPY does not appear to confer drug-resistance in that carbamazepine and levetiracetam were anticonvulsant in both wild type (WT) and NPY null mutant mice.
Smad3 mutant mice develop colon cancer with overexpression of COX-2
Zhu, Yu-Ping; Liu, Zhuo; Fu, Zhi-Xuan; Li, De-Chuan
2017-01-01
Colon cancer is the second most common cause of cancer-associated mortality in human populations. The aim of the present study was to identify the role of cyclooxygenase-2 (COX-2) in Smad3 mutant mice, which are known to develop colon cancer. Homozygous Smad3 (−/−) mutant mice were generated from inbred and hybrid Smad3 mouse strains by intercrossing the appropriate heterozygotes. Immunohistochemistry with COX-2 antibody was performed throughout this experiment and the data was validated and cross-checked with reverse transcription-polymerase chain reaction (RT-PCR). Homozygous mutant Smad3 mice were generated and the overexpression pattern of COX-2 was identified by immunohistochemistry and validated with RT-PCR. The results of the present study demonstrated a link between the Smad3 mutant mice, colon cancer and COX-2. In addition, the overexpression pattern of COX-2 in Smad3 mutant mice that develop colon cancer was identified. PMID:28454287
Kamijho, Yuki; Shiozaki, Yayoi; Sakurai, Eiki; Hanaoka, Kazunori; Watanabe, Daisuke
2014-01-01
In this study we generated RNA interference (RNAi)-mediated gene knockdown transgenic mice (transgenic RNAi mice) against the functional Inv gene. Inv mutant mice show consistently reversed internal organs (situs inversus), multiple renal cysts and neonatal lethality. The Inv::GFP-rescue mice, which introduced the Inv::GFP fusion gene, can rescue inv mutant mice phenotypes. This indicates that the Inv::GFP gene is functional in vivo. To analyze the physiological functions of the Inv gene, and to demonstrate the availability of transgenic RNAi mice, we introduced a short hairpin RNA expression vector against GFP mRNA into Inv::GFP-rescue mice and analyzed the gene silencing effects and Inv functions by examining phenotypes. Transgenic RNAi mice with the Inv::GFP-rescue gene (Inv-KD mice) down-regulated Inv::GFP fusion protein and showed hypomorphic phenotypes of inv mutant mice, such as renal cyst development, but not situs abnormalities or postnatal lethality. This indicates that shRNAi-mediated gene silencing systems that target the tag sequence of the fusion gene work properly in vivo, and suggests that a relatively high level of Inv protein is required for kidney development in contrast to left/right axis determination. Inv::GFP protein was significantly down-regulated in the germ cells of Inv-KD mice testis compared with somatic cells, suggesting the existence of a testicular germ cell-specific enhanced RNAi system that regulates germ cell development. The Inv-KD mouse is useful for studying Inv gene functions in adult tissue that are unable to be analyzed in inv mutant mice showing postnatal lethality. In addition, the shRNA-based gene silencing system against the tag sequence of the fusion gene can be utilized as a new technique to regulate gene expression in either in vitro or in vivo experiments. PMID:24586938
Watson, Elizabeth; Hahm, Seung; Mizuno, Tooru M; Windsor, Joan; Montgomery, Carla; Scherer, Philipp E; Mobbs, Charles V; Salton, Stephen R J
2005-12-01
Targeted deletion of the gene encoding the neuronal and endocrine secreted peptide precursor called VGF (nonacronymic) produces a lean, hypermetabolic, hyperactive mouse. Because VGF mutant mice are resistant to specific forms of diet-, lesion-, and genetically induced obesity, we investigated the role that this polypeptide plays in glucose homeostasis. We report that VGF mutant mice have increased insulin sensitivity by hyperinsulinemic euglycemic clamp analysis, and by insulin and glucose tolerance testing. Blunted counterregulatory responses in VGF-deficient mice were likely influenced by their significantly lower liver glycogen levels. VGF deficiency lowered circulating glucose and insulin levels in several murine models of obesity that are also susceptible to adult onset diabetes mellitus, including A(y)/a agouti, ob/ob, and MC4R(-)/MC4R(-) mice. Interestingly, ablation of Vgf in ob/ob mice decreased circulating glucose and insulin levels but did not affect adiposity, whereas MC4R(-)/MC4R(-) mice that are additionally deficient in VGF have improved insulin responsiveness at 7-8 wk of age, when lean MC4R(-)/MC4R(-) mice already have impaired insulin tolerance but are not yet obese. VGF mutant mice also resisted developing obesity and hyperglycemia in response to a high-fat/high-carbohydrate diet, and after gold thioglucose treatment, which is toxic to hypothalamic glucose-sensitive neurons. Lastly, circulating adiponectin, an adipose-synthesized protein the levels of which are correlated with improved insulin sensitivity, increased in VGF mutant compared with wild-type mice. Modulation of VGF levels and/or VGF signaling may consequently represent an alternative means to regulate circulating glucose levels and insulin sensitivity.
Muscarinic cholinergic receptor (M2) plays a crucial role in the development of myopia in mice
Barathi, Veluchamy A.; Kwan, Jia Lin; Tan, Queenie S. W.; Weon, Sung Rhan; Seet, Li Fong; Goh, Liang Kee; Vithana, Eranga N.; Beuerman, Roger W.
2013-01-01
SUMMARY Myopia is a huge public health problem worldwide, reaching the highest incidence in Asia. Identification of susceptible genes is crucial for understanding the biological basis of myopia. In this paper, we have identified and characterized a functional myopia-associated gene using a specific mouse-knockout model. Mice lacking the muscarinic cholinergic receptor gene (M2; also known as Chrm2) were less susceptible to lens-induced myopia compared with wild-type mice, which showed significantly increased axial length and vitreous chamber depth when undergoing experimental induction of myopia. The key findings of this present study are that the sclera of M2 mutant mice has higher expression of collagen type I and lower expression of collagen type V than do wild-type mice and mice that are mutant for other muscarinic subtypes, and, therefore, M2 mutant mice were resistant to the development of experimental myopia. Pharmacological blockade of M2 muscarinic receptor proteins retarded myopia progression in the mouse. These results suggest for the first time a role of M2 in growth-related changes in extracellular matrix genes during myopia development in a mammalian model. M2 receptor antagonists might thus provide a targeted therapeutic approach to the management of this refractive error. PMID:23649821
Lebel, Michel
2002-01-01
Werner syndrome (WS) is a rare autosomal recessive disorder characterized by genomic instability and the premature onset of a number of age-related diseases, including cancers. Accumulating evidence indicates that the WS gene product is involved in resolving aberrant DNA structures that may arise during the process of DNA replication and/or transcription. To estimate the frequency of DNA deletions directly in the skin of mouse embryos, mice with a deletion of part of the murine WRN helicase domain were created. These mutant mice were then crossed to the pink-eyed unstable animals, which have a 70 kb internal duplication at the pink-eyed dilution (p) gene. This report indicates that the frequency of deletion of the duplicated sequence at the p locus is elevated in mice with a mutation in the WRN allele when compared with wild-type mice. In addition, the inhibitor of topoisomerase I camptothecin also increases the frequency of deletion at the p locus. This frequency is even more elevated in WRN mutant mice treated with camptothecin. In contrast, while the inhibition of poly(ADP-ribose) polymerase (PARP) activity by 3-aminobenzamide increases the frequency of DNA deletion, mutant WRN mice are not significantly more sensitive to the inhibition of PARP activity than wild-type animals.
McDonald, Michael P.; Wong, Rosemary; Goldstein, Gregory; Weintraub, Bruce; Cheng, Sheue-yann; Crawley, Jacqueline N.
1998-01-01
Resistance to thyroid hormone (RTH) is a human syndrome mapped to the thyroid receptor β (TRβ) gene on chromosome 3, representing a mutation of the ligandbinding domain of the TRβ gene. The syndrome is characterized by reduced tissue responsiveness to thyroid hormone and elevated serum levels of thyroid hormones. A common behavioral phenotype associated with RTH is attention deficit hyperactivity disorder (ADHD). To test the hypothesis that RTH produces attention deficits and/or hyperactivity, transgenic mice expressing a mutant TRβ gene were generated. The present experiment tested RTH transgenic mice from the PV kindred on behavioral tasks relevant to the primary features of ADHD: hyperactivity, sustained attention (vigilance), learning, and impulsivity. Male transgenic mice showed elevated locomotor activity in an open field compared to male wild-type littermate controls. Both male and female transgenic mice exhibited impaired learning of an autoshaping task, compared to wild-type controls. On a vigilance task in an operant chamber, there were no differences between transgenics and controls on the proportion of hits, response latency, or duration of stimulus tolerated. On an operant go/no-go task measuring sustained attention and impulsivity, there were no differences between controls and transgenics. These results indicate that transgenic mice bearing a mutant human TRβ gene demonstrate several behavioral characteristics of ADHD and may serve a valuable heuristic role in elucidating possible candidate genes in converging pathways for other causes of ADHD. PMID:10454355
McDonald, M P; Wong, R; Goldstein, G; Weintraub, B; Cheng, S Y; Crawley, J N
1998-01-01
Resistance to thyroid hormone (RTH) is a human syndrome mapped to the thyroid receptor beta (TRbeta) gene on chromosome 3, representing a mutation of the ligand-binding domain of the TRbeta gene. The syndrome is characterized by reduced tissue responsiveness to thyroid hormone and elevated serum levels of thyroid hormones. A common behavioral phenotype associated with RTH is attention deficit hyperactivity disorder (ADHD). To test the hypothesis that RTH produces attention deficits and/or hyperactivity, transgenic mice expressing a mutant TRbeta gene were generated. The present experiment tested RTH transgenic mice from the PV kindred on behavioral tasks relevant to the primary features of ADHD: hyperactivity, sustained attention (vigilance), learning, and impulsivity. Male transgenic mice showed elevated locomotor activity in an open field compared to male wild-type littermate controls. Both male and female transgenic mice exhibited impaired learning of an autoshaping task, compared to wild-type controls. On a vigilance task in an operant chamber, there were no differences between transgenics and controls on the proportion of hits, response latency, or duration of stimulus tolerated. On an operant go/no-go task measuring sustained attention and impulsivity, there were no differences between controls and transgenics. These results indicate that transgenic mice bearing a mutant human TRbeta gene demonstrate several behavioral characteristics of ADHD and may serve a valuable heuristic role in elucidating possible candidate genes in converging pathways for other causes of ADHD.
Intact interval timing in circadian CLOCK mutants.
Cordes, Sara; Gallistel, C R
2008-08-28
While progress has been made in determining the molecular basis for the circadian clock, the mechanism by which mammalian brains time intervals measured in seconds to minutes remains a mystery. An obvious question is whether the interval-timing mechanism shares molecular machinery with the circadian timing mechanism. In the current study, we trained circadian CLOCK +/- and -/- mutant male mice in a peak-interval procedure with 10 and 20-s criteria. The mutant mice were more active than their wild-type littermates, but there were no reliable deficits in the accuracy or precision of their timing as compared with wild-type littermates. This suggests that expression of the CLOCK protein is not necessary for normal interval timing.
Gerlai, R; Adams, B; Fitch, T; Chaney, S; Baez, M
2002-08-01
mGluR8 is a G-protein coupled metabotropic glutamate receptor expressed in the mammalian brain. Members of the mGluR family have been shown to be modulators of neural plasticity and learning and memory. Here we analyze the consequences of a null mutation at the mGluR8 gene locus generated using homologous recombination in embryonic stem cells by comparing the learning performance of the mutants with that of wild type controls in the Morris water maze (MWM) and the context and cue dependent fear conditioning (CFC). Our results revealed robust performance deficits associated with the genetic background, the ICR outbred strain, in both mGluR8 null mutant and the wild type control mice. Mice of this strain origin suffered from impaired vision as compared to CD1 or C57BL/6 mice, a significant impediment in MWM, a visuo-spatial learning task. The CFC task, being less dependent on visual cues, allowed us to reveal subtle performance deficits in the mGluR8 mutants: novelty induced hyperactivity and temporally delayed and blunted responding to shocks and temporally delayed responding to contextual stimuli were detected. The role of mGluR8 as a presynaptic autoreceptor and its contribution to cognitive processes are hypothesized and the utility of gene targeting as compared to pharmacological methods is discussed.
Masking responses to light in period mutant mice.
Pendergast, Julie S; Yamazaki, Shin
2011-10-01
Masking is an acute effect of an external signal on an overt rhythm and is distinct from the process of entrainment. In the current study, we investigated the phase dependence and molecular mechanisms regulating masking effects of light pulses on spontaneous locomotor activity in mice. The circadian genes, Period1 (Per1) and Per2, are necessary components of the timekeeping machinery and entrainment by light appears to involve the induction of the expression of Per1 and Per2 mRNAs in the suprachiasmatic nuclei (SCN). We assessed the roles of the Per genes in regulating masking by assessing the effects of light pulses on nocturnal locomotor activity in C57BL/6J Per mutant mice. We found that Per1(-/-) and Per2(-/-) mice had robust negative masking responses to light. In addition, the locomotor activity of Per1(-/-)/Per2(-/-) mice appeared to be rhythmic in the light-dark (LD) cycle, and the phase of activity onset was advanced (but varied among individual mice) relative to lights off. This rhythm persisted for 1 to 2 days in constant darkness in some Per1(-/-)/Per2(-/-) mice. Furthermore, Per1(-/-)/Per2(-/-) mice exhibited robust negative masking responses to light. Negative masking was phase dependent in wild-type mice such that maximal suppression was induced by light pulses at zeitgeber time 14 (ZT14) and gradually weaker suppression occurred during light pulses at ZT16 and ZT18. By measuring the phase shifts induced by the masking protocol (light pulses were administered to mice maintained in the LD cycle), we found that the phase responsiveness of Per mutant mice was altered compared to wild-types. Together, our data suggest that negative masking responses to light are robust in Per mutant mice and that the Per1(-/-)/Per2(-/-) SCN may be a light-driven, weak/damping oscillator.
Cp/Heph mutant mice have iron-induced neurodegeneration diminished by deferiprone
Zhao, Liangliang; Hadziahmetovic, Majda; Wang, Chenguang; Xu, Xueying; Song, Ying; Jinnah, H.A.; Wodzinska, Jolanta; Iacovelli, Jared; Wolkow, Natalie; Krajacic, Predrag; Weissberger, Alyssa Cwanger; Connelly, John; Spino, Michael; Lee, Michael K.; Connor, James; Giasson, Benoit; Harris, Z. Leah; Dunaief, Joshua L.
2016-01-01
Brain iron accumulates in several neurodegenerative diseases and can cause oxidative damage, but mechanisms of brain iron homeostasis are incompletely understood. Patients with mutations in the cellular iron-exporting ferroxidase ceruloplasmin (Cp) have brain iron accumulation causing neurodegeneration. Here, we assessed the brains of mice with combined mutation of Cp and its homolog hephaestin. Compared to single mutants, brain iron accumulation was accelerated in double mutants in the cerebellum, substantia nigra, and hippocampus. Iron accumulated within glia, while neurons were iron deficient. There was loss of both neurons and glia. Mice developed ataxia and tremor, and most died by 9 months. Treatment with the oral iron chelator deferiprone diminished brain iron levels, protected against neuron loss, and extended lifespan. Ferroxidases play important, partially overlapping roles in brain iron homeostasis by facilitating iron export from glia, making iron available to neurons. PMID:26303407
Lauer, Peter; Metzner, Hubert J; Zettlmeissl, Gerd; Li, Meng; Smith, Austin G; Lathe, Richard; Dickneite, Gerhard
2002-12-01
Blood coagulation factor XIII (FXIII) promotes cross-linking of fibrin during blood coagulation; impaired clot stabilization in human genetic deficiency is associated with marked pathologies of major clinical impact, including bleeding symptoms and deficient wound healing. To investigate the role of FXIII we employed homologous recombination to generate a targeted deletion of the inferred exon 7 of the FXIII-A gene. FXIII transglutaminase activity in plasma was reduced to about 50% in mice heterozygous for the mutant allele, and was abolished in homozygous null mice. Plasma fibrin gamma-dimerization was also indetectable in the homozygous deficient animals, confirming the absence of activatable FXIII. Homozygous mutant mice were fertile, although reproduction was impaired. Bleeding episodes, hematothorax, hematoperitoneum and subcutaneous hemorrhage in mutant mice were associated with reduced survival. Arrest of tail-tip bleeding in FXIII-A deficient mice was markedly and significantly delayed; replacement of mutant mice with human plasma FXIII (Fibrogammin P) restored bleeding time to within the normal range. Thrombelastography (TEG) experiments demonstrated impaired clot stabilization in FXIII-A mutant mice, replacement with human FXIII led to dose-dependent TEG normalization. The mutant mice thus reiterate some key features of the human genetic disorder: they will be valuable in assessing the role of FXIII in other associated pathologies and the development of new therapies.
Bozue, Joel; Cote, Christopher K; Chance, Taylor; Kugelman, Jeffrey; Kern, Steven J; Kijek, Todd K; Jenkins, Amy; Mou, Sherry; Moody, Krishna; Fritz, David; Robinson, Camenzind G; Bell, Todd; Worsham, Patricia
2014-01-01
Bacterial proteins destined for the Tat pathway are folded before crossing the inner membrane and are typically identified by an N-terminal signal peptide containing a twin arginine motif. Translocation by the Tat pathway is dependent on the products of genes which encode proteins possessing the binding site of the signal peptide and mediating the actual translocation event. In the fully virulent CO92 strain of Yersinia pestis, the tatA gene was deleted. The mutant was assayed for loss of virulence through various in vitro and in vivo assays. Deletion of the tatA gene resulted in several consequences for the mutant as compared to wild-type. Cell morphology of the mutant bacteria was altered and demonstrated a more elongated form. In addition, while cultures of the mutant strain were able to produce a biofilm, we observed a loss of adhesion of the mutant biofilm structure compared to the biofilm produced by the wild-type strain. Immuno-electron microscopy revealed a partial disruption of the F1 antigen on the surface of the mutant. The virulence of the ΔtatA mutant was assessed in various murine models of plague. The mutant was severely attenuated in the bubonic model with full virulence restored by complementation with the native gene. After small-particle aerosol challenge in a pneumonic model of infection, the mutant was also shown to be attenuated. In contrast, when mice were challenged intranasally with the mutant, very little difference in the LD50 was observed between wild-type and mutant strains. However, an increased time-to-death and delay in bacterial dissemination was observed in mice infected with the ΔtatA mutant as compared to the parent strain. Collectively, these findings demonstrate an essential role for the Tat pathway in the virulence of Y. pestis in bubonic and small-aerosol pneumonic infection but less important role for intranasal challenge.
Bozue, Joel; Cote, Christopher K.; Chance, Taylor; Kugelman, Jeffrey; Kern, Steven J.; Kijek, Todd K.; Jenkins, Amy; Mou, Sherry; Moody, Krishna; Fritz, David; Robinson, Camenzind G.; Bell, Todd; Worsham, Patricia
2014-01-01
Bacterial proteins destined for the Tat pathway are folded before crossing the inner membrane and are typically identified by an N-terminal signal peptide containing a twin arginine motif. Translocation by the Tat pathway is dependent on the products of genes which encode proteins possessing the binding site of the signal peptide and mediating the actual translocation event. In the fully virulent CO92 strain of Yersinia pestis, the tatA gene was deleted. The mutant was assayed for loss of virulence through various in vitro and in vivo assays. Deletion of the tatA gene resulted in several consequences for the mutant as compared to wild-type. Cell morphology of the mutant bacteria was altered and demonstrated a more elongated form. In addition, while cultures of the mutant strain were able to produce a biofilm, we observed a loss of adhesion of the mutant biofilm structure compared to the biofilm produced by the wild-type strain. Immuno-electron microscopy revealed a partial disruption of the F1 antigen on the surface of the mutant. The virulence of the ΔtatA mutant was assessed in various murine models of plague. The mutant was severely attenuated in the bubonic model with full virulence restored by complementation with the native gene. After small-particle aerosol challenge in a pneumonic model of infection, the mutant was also shown to be attenuated. In contrast, when mice were challenged intranasally with the mutant, very little difference in the LD50 was observed between wild-type and mutant strains. However, an increased time-to-death and delay in bacterial dissemination was observed in mice infected with the ΔtatA mutant as compared to the parent strain. Collectively, these findings demonstrate an essential role for the Tat pathway in the virulence of Y. pestis in bubonic and small-aerosol pneumonic infection but less important role for intranasal challenge. PMID:25101850
Byerly, Mardi S; Fox, Edward A
2006-06-12
Neurotrophin-4 (NT-4) deficient mice exhibit substantial loss of intestinal vagal afferent innervation and short-term deficits in feeding behavior, suggesting reduced satiation. However, they do not show long-term changes in feeding or body weight because of compensatory behaviors. The present study examined whether high-fat hyperphagia induction would overcome compensation and reveal long-term effects associated with the reduced vagal sensory innervation of NT-4 mutants. First, modifications of a feeding schedule previously developed in rats were examined in wild-type mice to identify the regimen most effective at producing hyperphagia. The most successful schedule, which was run for 26 days, included access to a 43%-fat diet and pelleted chow every other day and access to only powdered chow on the alternate days. On high-fat access days mice consumed 25% more calories than mice with continuous daily access to the same high-fat diet and pelleted chow. This feeding regimen also induced hyperphagia in NT-4 deficient mice and their wild-type controls: on high-fat exposure days mutants consumed 35% more calories relative to continuous-access mutants, and wild types ate 25% more than continuous-access wild types. Moreover, on high-fat access days the alternating NT-4 mutants significantly increased caloric intake by 9% compared to alternating wild types. Thus, high-fat hyperphagia appeared to override compensation, permitting short-term changes in meal consumption by mutants that accrued into long-term changes in total daily food intake. This raises the possibility that intestinal vagal sensory innervation contributes to long-term, as well as to short-term regulation of food intake.
Sucrose intake and fasting glucose levels in 5-HT(1A) and 5-HT(1B) receptor mutant mice.
Bechtholt, Anita J; Smith, Karen; Gaughan, Stephanie; Lucki, Irwin
2008-03-18
Serotonin (5-HT)(1A) and 5-HT(1B) receptors have been implicated in the incidence and treatment of depression in part through the examination of animals lacking these receptors. Although these receptors have been repeatedly implicated in ingestive behavior there is little information about how 5-HT(1A) and 5-HT(1B) receptor mutant mice react to solutions of varying palatability. In the present experiment male and female 5-HT(1A) and 5-HT(1B) mutant and wild-type mice were presented with increasing concentrations of sucrose using a two-bottle choice procedure. In addition fasting blood glucose levels were assessed. Both male and female 5-HT(1B) mutant mice drank more sucrose than WT mice but also consumed more water. Female, but not male, 5-HT(1A) mutant mice similarly showed increased sucrose consumption, but did not demonstrate increased consumption of water. In addition, the pattern of increased sucrose consumption over genotype and sex was related to fasting blood glucose concentrations such that levels in male 5-HT(1B) mutant mice were reduced relative to wild-type and 5-HT(1A) mutant males, but similar to those of females. The findings in 5-HT(1B) mutant mice emphasize the role of the 5-HT(1B) receptor in regulating ingestive behavior, whereas female sex hormones and 5-HT(1A) receptors may interact to alter sucrose consumption in 5-HT(1A) mutant mice. In addition, these findings may have implications for the role of these receptors in the incidence and treatment of depression since the intake of sucrose has been used as an index of anhedonia in animal models of depression and antidepressant efficacy.
Isolated cytochrome c oxidase deficiency in G93A SOD1 mice overexpressing CCS protein.
Son, Marjatta; Leary, Scot C; Romain, Nadine; Pierrel, Fabien; Winge, Dennis R; Haller, Ronald G; Elliott, Jeffrey L
2008-05-02
G93A SOD1 transgenic mice overexpressing CCS protein develop an accelerated disease course that is associated with enhanced mitochondrial pathology and increased mitochondrial localization of mutant SOD1. Because these results suggest an effect of mutant SOD1 on mitochondrial function, we assessed the enzymatic activities of mitochondrial respiratory chain complexes in the spinal cords of CCS/G93A SOD1 and control mice. CCS/G93A SOD1 mouse spinal cord demonstrates a 55% loss of complex IV (cytochrome c oxidase) activity compared with spinal cord from age-matched non-transgenic or G93A SOD1 mice. In contrast, CCS/G93A SOD1 spinal cord shows no reduction in the activities of complex I, II, or III. Blue native gel analysis further demonstrates a marked reduction in the levels of complex IV but not of complex I, II, III, or V in spinal cords of CCS/G93A SOD1 mice compared with non-transgenic, G93A SOD1, or CCS/WT SOD1 controls. With SDS-PAGE analysis, spinal cords from CCS/G93A SOD1 mice showed significant decreases in the levels of two structural subunits of cytochrome c oxidase, COX1 and COX5b, relative to controls. In contrast, CCS/G93A SOD1 mouse spinal cord showed no reduction in levels of selected subunits from complexes I, II, III, or V. Heme A analyses of spinal cord further support the existence of cytochrome c oxidase deficiency in CCS/G93A SOD1 mice. Collectively, these results establish that CCS/G93A SOD1 mice manifest an isolated complex IV deficiency which may underlie a substantial part of mutant SOD1-induced mitochondrial cytopathy.
Li, Yongtao; Bradley, Konrad C.; Cao, Jiyue; Chen, Huanchun; Jin, Meilin; Zhou, Hongbo
2013-01-01
The two glycosylation sites (Asn142 and Asn177) were observed in the HA of most human seasonal influenza A/H1N1 viruses, while none in pandemic H1N1/2009 influenza A (pH1N1) viruses. We investigated the effect of the two glycosylation sites on viral virulence and pathogenicity in mice using recombinant pH1N1. The H1N1/144 and H1N1/177 mutants which gained potential glycosylation sites Asn142 and Asn177 on HA respectively were generated from A/Mexico/4486/2009(H1N1) by site-directed mutagenesis and reverse genetics, the same as the H1N1/144+177 gained both glycosylation sites Asn142 and Asn177. The biological characteristics and antigenicity of the mutants were compared with wild-type pH1N1. The virulence and pathogenicity of recombinants were also detected in mice. Our results showed that HA antigenicity and viral affinity for receptor may change with introduction of the glycosylation sites. Compared with wild-type pH1N1, the mutant H1N1/177 displayed an equivalent virus titer in chicken embryos and mice, and increased virulence and pathogenicity in mice. The H1N1/144 displayed the highest virus titer in mice lung. However, the H1N1/144+177 displayed the most serious alveolar inflammation and pathogenicity in infected mice. The introduction of the glycosylation sites Asn144 and Asn177 resulted in the enhancement on virulence and pathogenicity of pH1N1 in mice, and was also associated with the change of HA antigenicity and the viral affinity for receptor. PMID:23637827
The temperature-sensitive mutants of Toxoplasma gondii and ocular toxoplasmosis.
Lu, Fangli; Huang, Shiguang; Kasper, Lloyd H
2009-01-22
The risk of blindness caused by ocular toxoplasmosis supports efforts to improve our understanding for control of this disease. In this study, the involvement of CD8(+), CD4(+), B cell, and IL-10 gene in the immune response of primary ocular infection with the temperature-sensitive mutant (ts-4) of the RH Toxoplasma gondii strain, and in the protective immunity of ocular ts-4 vaccination and challenge with RH strain was investigated in murine models utilizing inbred C57BL/6 mice-deficient in CD4(+), CD8(+), B cells (microMT), or IL-10 gene. Compared to naive mice, all WT and mutant mice had different degree of ocular pathological changes after ts-4 ocular infection, in which both CD8 KO and IL-10 KO mice showed the most severe ocular lesions. Immunized by ts-4 intracameral (i.c.) inoculation, all mutant mice had partially decreased vaccine-induced resistance associated with increased ocular parasite burdens after RH strain challenge. A significant increase of the percentages of B cells and CD8(+) T cells in the draining lymph nodes were observed in WT and IL-10 KO mice after either infection or challenge. The levels of specific anti-toxoplasma IgG in both eye fluid and serum from all the mice were significantly increased after ts-4 i.c. immunization, except microMT mice. These results suggest that the avirulent ts-4 of T. gondii inoculated intracamerally can induce both ocular pathology and ocular protective immunity; CD4(+), CD8(+), B cell, and IL-10 gene are all necessary to the vaccine-induced resistance to ocular challenge by virulent RH strain, in which CD8(+) T cells are the most important component.
Zhang, Z; Guth, L; Steward, O
1998-01-01
Partial lesions of the mammalian spinal cord result in an immediate motor impairment that recovers gradually over time; however, the cellular mechanisms responsible for the transient nature of this paralysis have not been defined. A unique opportunity to identify those injury-induced cellular responses that mediate the recovery of function has arisen from the discovery of a unique mutant strain of mice in which the onset of Wallerian degeneration is dramatically delayed. In this strain of mice (designated WldS for Wallerian degeneration, slow), many of the cellular responses to spinal cord injury are also delayed. We have used this experimental animal model to evaluate possible causal relationships between these delayed cellular responses and the onset of functional recovery. For this purpose, we have compared the time course of locomotor recovery in C57BL/6 (control) mice and in WldS (mutant) mice by hemisecting the spinal cord at T8 and evaluating locomotor function at daily postoperative intervals. The time course of locomotor recovery (as determined by the Tarlov open-field walking procedure) was substantially delayed in mice carrying the WldS mutation: C57BL/6 control mice began to stand and walk within 6 days (mean Tarlov score of 4), whereas mutant mice did not exhibit comparable locomotor function until 16 days postoperatively. (a) The rapid return of locomotor function in the C57BL/6 mice suggests that the recovery resulted from processes of functional plasticity rather than from regeneration or collateral sprouting of nerve fibers. (b) The marked delay in the return of locomotor function in WldS mice indicates that the processes of neuroplasticity are induced by degenerative changes in the damaged neurons. (c) These strains of mice can be effectively used in future studies to elucidate the specific biochemical and physiological alterations responsible for inducing functional plasticity and restoring locomotor function after spinal cord injury.
de Alwis, M C; Carter, G R; Chengappa, M M
1980-01-01
A large number of streptomycin dependent mutants were produced from bovine haemorrhagic septicaemia strains of Pasteurella multocida. The mutants required a minimum concentration of 25-50 microgram/mL streptomycin for growth and tolerated a concentration of 200 mg/mL. These mutants were avirulent to mice, when inoculated alone, but some mutants killed mice when inoculated with streptomycin. Biochemically all mutants were uniform and similar to the wild type. Most mutants were stable, but a few produced streptomycin independent revertants. The rate of reversion varied with each mutant. Most revertants were highly virulent for mice, some totally avirulant and a few relatively avirulent. PMID:6778598
DeMaro, Joseph A.; Knoten, Amanda; Hoshi, Masato; Pehek, Elizabeth; Johnson, Eugene M.; Gereau, Robert W.
2013-01-01
The loss of dopaminergic neurons in the substantia nigra pars compacta (SNc) and consequent depletion of striatal dopamine are known to underlie the motor deficits observed in Parkinson's disease (PD). Adaptive changes in dopaminergic terminals and in postsynaptic striatal neurons can compensate for significant losses of striatal dopamine, resulting in preservation of motor behavior. In addition, compensatory changes independent of striatal dopamine have been proposed based on PD therapies that modulate nondopaminergic circuits within the basal ganglia. We used a genetic strategy to selectively destroy dopaminergic neurons in mice during development to determine the necessity of these neurons for the maintenance of normal motor behavior in adult and aged mice. We find that loss of 90% of SNc dopaminergic neurons and consequent depletion of >95% of striatal dopamine does not result in changes in motor behavior in young-adult or aged mice as evaluated by an extensive array of motor behavior tests. Treatment of aged mutant mice with the dopamine receptor antagonist haloperidol precipitated motor behavior deficits in aged mutant mice, indicating that <5% of striatal dopamine is sufficient to maintain motor function in these mice. We also found that mutant mice exhibit an exaggerated response to l-DOPA compared with control mice, suggesting that preservation of motor function involves sensitization of striatal dopamine receptors. Our results indicate that congenital loss of dopaminergic neurons induces remarkable adaptions in the nigrostriatal system where limited amounts of dopamine in the dorsal striatum can maintain normal motor function. PMID:24155314
Hyun, Teresa S.; Li, Lina; Oravecz-Wilson, Katherine I.; Bradley, Sarah V.; Provot, Melissa M.; Munaco, Anthony J.; Mizukami, Ikuko F.; Sun, Hanshi; Ross, Theodora S.
2004-01-01
In mice and humans, there are two known members of the Huntingtin interacting protein 1 (HIP1) family, HIP1 and HIP1-related (HIP1r). Based on structural and functional data, these proteins participate in the clathrin trafficking network. The inactivation of Hip1 in mice leads to spinal, hematopoietic, and testicular defects. To investigate the biological function of HIP1r, we generated a Hip1r mutant allele in mice. Hip1r homozygous mutant mice are viable and fertile without obvious morphological abnormalities. In addition, embryonic fibroblasts derived from these mice do not have gross abnormalities in survival, proliferation, or clathrin trafficking pathways. Altogether, this demonstrates that HIP1r is not necessary for normal development of the embryo or for normal adulthood and suggests that HIP1 or other functionally related members of the clathrin trafficking network can compensate for HIP1r absence. To test the latter, we generated mice deficient in both HIP1 and HIP1r. These mice have accelerated development of abnormalities seen in Hip1 -deficient mice, including kypholordosis and growth defects. The severity of the Hip1r/Hip1 double-knockout phenotype compared to the Hip1 knockout indicates that HIP1r partially compensates for HIP1 function in the absence of HIP1 expression, providing strong evidence that HIP1 and HIP1r have overlapping roles in vivo. PMID:15121852
Hyun, Teresa S; Li, Lina; Oravecz-Wilson, Katherine I; Bradley, Sarah V; Provot, Melissa M; Munaco, Anthony J; Mizukami, Ikuko F; Sun, Hanshi; Ross, Theodora S
2004-05-01
In mice and humans, there are two known members of the Huntingtin interacting protein 1 (HIP1) family, HIP1 and HIP1-related (HIP1r). Based on structural and functional data, these proteins participate in the clathrin trafficking network. The inactivation of Hip1 in mice leads to spinal, hematopoietic, and testicular defects. To investigate the biological function of HIP1r, we generated a Hip1r mutant allele in mice. Hip1r homozygous mutant mice are viable and fertile without obvious morphological abnormalities. In addition, embryonic fibroblasts derived from these mice do not have gross abnormalities in survival, proliferation, or clathrin trafficking pathways. Altogether, this demonstrates that HIP1r is not necessary for normal development of the embryo or for normal adulthood and suggests that HIP1 or other functionally related members of the clathrin trafficking network can compensate for HIP1r absence. To test the latter, we generated mice deficient in both HIP1 and HIP1r. These mice have accelerated development of abnormalities seen in Hip1 -deficient mice, including kypholordosis and growth defects. The severity of the Hip1r/Hip1 double-knockout phenotype compared to the Hip1 knockout indicates that HIP1r partially compensates for HIP1 function in the absence of HIP1 expression, providing strong evidence that HIP1 and HIP1r have overlapping roles in vivo.
Intact Interval Timing in Circadian CLOCK Mutants
Cordes, Sara; Gallistel, C. R.
2008-01-01
While progress has been made in determining the molecular basis for the circadian clock, the mechanism by which mammalian brains time intervals measured in seconds to minutes remains a mystery. An obvious question is whether the interval timing mechanism shares molecular machinery with the circadian timing mechanism. In the current study, we trained circadian CLOCK +/− and −/− mutant male mice in a peak-interval procedure with 10 and 20-s criteria. The mutant mice were more active than their wild-type littermates, but there were no reliable deficits in the accuracy or precision of their timing as compared with wild-type littermates. This suggests that expression of the CLOCK protein is not necessary for normal interval timing. PMID:18602902
Proteoglycan 4: A Dynamic Regulator of Skeletogenesis and Parathyroid Hormone Skeletal Anabolism
Novince, Chad M; Michalski, Megan N; Koh, Amy J; Sinder, Benjamin P; Entezami, Payam; Eber, Matthew R; Pettway, Glenda J; Rosol, Thomas J; Wronski, Thomas J; Kozloff, Ken M; McCauley, Laurie K
2014-01-01
Proteoglycan 4 (Prg4), known for its lubricating and protective actions in joints, is a strong candidate regulator of skeletal homeostasis and parathyroid hormone (PTH) anabolism. Prg4 is a PTH-responsive gene in bone and liver. Prg4 null mutant mice were used to investigate the impact of proteoglycan 4 on skeletal development, remodeling, and PTH anabolic actions. Young Prg4 mutant and wild-type mice were administered intermittent PTH(1–34) or vehicle daily from 4 to 21 days. Young Prg4 mutant mice had decreased growth plate hypertrophic zones, trabecular bone, and serum bone formation markers versus wild-type mice, but responded with a similar anabolic response to PTH. Adult Prg4 mutant and wild-type mice were administered intermittent PTH(1–34) or vehicle daily from 16 to 22 weeks. Adult Prg4 mutant mice had decreased trabecular and cortical bone, and blunted PTH-mediated increases in bone mass. Joint range of motion and animal mobility were lower in adult Prg4 mutant versus wild-type mice. Adult Prg4 mutant mice had decreased marrow and liver fibroblast growth factor 2 (FGF-2) mRNA and reduced serum FGF-2, which were normalized by PTH. A single dose of PTH decreased the PTH/PTHrP receptor (PPR), and increased Prg4 and FGF-2 to a similar extent in liver and bone. Proteoglycan 4 supports endochondral bone formation and the attainment of peak trabecular bone mass, and appears to support skeletal homeostasis indirectly by protecting joint function. Bone- and liver-derived FGF-2 likely regulate proteoglycan 4 actions supporting trabeculae formation. Blunted PTH anabolic responses in adult Prg4 mutant mice are associated with altered biomechanical impact secondary to joint failure. PMID:21932346
Cholesterol oxidase (ChoE) is not important in the virulence of Rhodococcus equi.
Pei, Yanlong; Dupont, Chris; Sydor, Tobias; Haas, Albert; Prescott, John F
2006-12-20
To analyze further the role in virulence of the prominent cholesterol oxidase (ChoE) of Rhodococcus equi, an allelic exchange choE mutant from strain 103+ was constructed and assessed for virulence in macrophages, in mice, and in foals. There was no difference between the mutant and parent strain in cytotoxic activity for macrophages or in intra-macrophage multiplication. No evidence of attenuation was obtained in macrophages and in mice, but there was slight attenuation apparent in four intra-bronchially infected foals compared to infection of four foals with the virulent parent strain, based on a delayed rise in temperature of the choE-mutant infected foals. However, bacterial colony counts in the lung 2 weeks after infection were not significantly different, although there was a slight but non-significant (P=0.12) difference in lung:body weight ratio of the choE mutant versus virulent parent infected foals (mean 2.67+/-0.25% compared to 4.58+/-0.96%). We conclude that the cholesterol oxidase is not important for the virulence of R. equi.
Tseng, Hsiu-Ting; Park, Young Joo; Lee, Yoon Kwang; Moore, David D
2015-05-08
Small heterodimer partner (SHP, NR0B2) is involved in diverse metabolic pathways, including hepatic bile acid, lipid and glucose homeostasis, and has been implicated in effects on the peroxisome proliferator-activated receptor γ (PPARγ), a master regulator of adipogenesis and the receptor for antidiabetic drugs thiazolidinediones (TZDs). In this study, we aim to investigate the role of SHP in TZD response by comparing TZD-treated leptin-deficient (ob/ob) and leptin-, SHP-deficient (ob/ob;Shp(-/-)) double mutant mice. Both ob/ob and double mutant ob/ob;Shp(-/-) mice developed hyperglycemia, insulin resistance, and hyperlipidemia, but hepatic fat accumulation was decreased in the double mutant ob/ob;Shp(-/-) mice. PPARγ2 mRNA levels were markedly lower in ob/ob;Shp(-/-) liver and decreased to a lesser extent in adipose tissue. The TZD troglitazone did not reduce glucose or circulating triglyceride levels in ob/ob;Shp(-/-) mice. Expression of the adipocytokines, such as adiponectin and resistin, was not stimulated by troglitazone treatment. Expression of hepatic lipogenic genes was also reduced in ob/ob;Shp(-/-) mice. Moreover, overexpression of SHP by adenovirus infection increased PPARγ2 mRNA levels in mouse primary hepatocytes. Our results suggest that SHP is required for both antidiabetic and hypolipidemic effects of TZDs in ob/ob mice through regulation of PPARγ expression.
Fear-related behaviors in Lurcher mutant mice exposed to a predator.
Lorivel, T; Roy, V; Hilber, P
2014-11-01
The Lurcher mutant mice are characterized by massive cerebellar cortex degeneration. Besides their motor and cognitive disturbances, they exhibit both exaggerated blood corticosterone (CORT) level surge and behavioral disinhibition when confronted to anxiogenic conditions (i.e. to a potential threat). In this study, we assessed if such physiological and behavioral hyperactivity was also detectable in a fear-eliciting situation (actual threat). For this purpose, the behaviors and CORT level elevations in Lurcher mice were compared with those of littermate controls in the predator exposure test: mice were exposed either to a rat (exposure) or to a brief wave of the experimenter's hand (sham exposure). While the basal CORT concentrations (24 h before testing) were not significantly different between mice of both genotypes, the post-exposure ones were higher in Lurcher than in control mice whatever the condition of the experimental design (exposure or sham exposure). Predator exposure did not provoke significant increase of CORT levels whatever the genotype. On the contrary, our data clearly showed that fear-related behaviors of cerebellar mutants facing a real threat were exacerbated in comparison to those of control mice. These results suggest that the cerebellar cortex not only participates to fear conditioning and anxiety but also actively contributes to the modulation of the innate fear-related behaviors. © 2014 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
The role of nicotinic receptor alpha 7 subunits in nicotine discrimination.
Stolerman, I P; Chamberlain, S; Bizarro, L; Fernandes, C; Schalkwyk, L
2004-03-01
The subtypes of nicotinic receptors at which the behavioural effects of nicotine originate are not fully understood. The experiments described here use mice lacking the alpha7 subunit of nicotinic receptors to investigate the role of alpha7-containing receptors in nicotine discrimination. Wild-type and alpha7-knockout mice were trained in a two-lever nicotine discrimination procedure using a tandem schedule of food reinforcement. Mutant mice exhibited baseline rates of lever-pressing as low as 52.2% of rates in wild-type controls (n=21-24). Mutant and wild-type mice acquired discrimination of nicotine (0.4 or 0.8 mg/kg) at a similar rate (n=10-12) and reached similar final levels of accuracy (71.9 +/- 4.4% and 90.8 +/- 3.1% after 60 training sessions for 0.4 and 0.8 mg/kg training doses, respectively, in mutant mice, as compared with 75.0 +/- 6.5% and 87.6 +/- 4.8% for wild types). The genotypes exhibited similar steep dose-response curves for nicotine discrimination. In both genotypes, dose-response curves for mice trained with 0.8 mg/kg of nicotine were displaced three- to four-fold to the right as compared with those for the mice trained with the smaller dose. The predominant effect of nicotine on the overall rate of responding was a reduction at the largest doses tested and there was no difference between the genotypes. The results suggest that nicotinic receptors containing the alpha7 subunit do not contribute to the discriminative stimulus or response-rate-depressant effects of nicotine, although they may regulate baseline rates of operant responding.
Weibel, Raphaël; Reiss, David; Karchewski, Laurie; Gardon, Olivier; Matifas, Audrey; Filliol, Dominique; Becker, Jérôme A J; Wood, John N; Kieffer, Brigitte L; Gaveriaux-Ruff, Claire
2013-01-01
Opiates are powerful drugs to treat severe pain, and act via mu opioid receptors distributed throughout the nervous system. Their clinical use is hampered by centrally-mediated adverse effects, including nausea or respiratory depression. Here we used a genetic approach to investigate the potential of peripheral mu opioid receptors as targets for pain treatment. We generated conditional knockout (cKO) mice in which mu opioid receptors are deleted specifically in primary afferent Nav1.8-positive neurons. Mutant animals were compared to controls for acute nociception, inflammatory pain, opiate-induced analgesia and constipation. There was a 76% decrease of mu receptor-positive neurons and a 60% reduction of mu-receptor mRNA in dorsal root ganglia of cKO mice. Mutant mice showed normal responses to heat, mechanical, visceral and chemical stimuli, as well as unchanged morphine antinociception and tolerance to antinociception in models of acute pain. Inflammatory pain developed similarly in cKO and controls mice after Complete Freund's Adjuvant. In the inflammation model, however, opiate-induced (morphine, fentanyl and loperamide) analgesia was reduced in mutant mice as compared to controls, and abolished at low doses. Morphine-induced constipation remained intact in cKO mice. We therefore genetically demonstrate for the first time that mu opioid receptors partly mediate opiate analgesia at the level of Nav1.8-positive sensory neurons. In our study, this mechanism operates under conditions of inflammatory pain, but not nociception. Previous pharmacology suggests that peripheral opiates may be clinically useful, and our data further demonstrate that Nav1.8 neuron-associated mu opioid receptors are feasible targets to alleviate some forms of persistent pain.
Karchewski, Laurie; Gardon, Olivier; Matifas, Audrey; Filliol, Dominique; Becker, Jérôme A. J.; Wood, John N.; Kieffer, Brigitte L.; Gaveriaux-Ruff, Claire
2013-01-01
Opiates are powerful drugs to treat severe pain, and act via mu opioid receptors distributed throughout the nervous system. Their clinical use is hampered by centrally-mediated adverse effects, including nausea or respiratory depression. Here we used a genetic approach to investigate the potential of peripheral mu opioid receptors as targets for pain treatment. We generated conditional knockout (cKO) mice in which mu opioid receptors are deleted specifically in primary afferent Nav1.8-positive neurons. Mutant animals were compared to controls for acute nociception, inflammatory pain, opiate-induced analgesia and constipation. There was a 76% decrease of mu receptor-positive neurons and a 60% reduction of mu-receptor mRNA in dorsal root ganglia of cKO mice. Mutant mice showed normal responses to heat, mechanical, visceral and chemical stimuli, as well as unchanged morphine antinociception and tolerance to antinociception in models of acute pain. Inflammatory pain developed similarly in cKO and controls mice after Complete Freund’s Adjuvant. In the inflammation model, however, opiate-induced (morphine, fentanyl and loperamide) analgesia was reduced in mutant mice as compared to controls, and abolished at low doses. Morphine-induced constipation remained intact in cKO mice. We therefore genetically demonstrate for the first time that mu opioid receptors partly mediate opiate analgesia at the level of Nav1.8-positive sensory neurons. In our study, this mechanism operates under conditions of inflammatory pain, but not nociception. Previous pharmacology suggests that peripheral opiates may be clinically useful, and our data further demonstrate that Nav1.8 neuron-associated mu opioid receptors are feasible targets to alleviate some forms of persistent pain. PMID:24069332
Walters, C L; Blendy, J A
2001-12-01
Addiction is a complex process that relies on the ability of an organism to integrate positive and negative properties of drugs of abuse. Therefore, studying the reinforcing as well as aversive components of drugs of abuse in a single model system will enable us to understand the role of final common mediators, such as cAMP response element-binding protein (CREB), in the addiction process. To this end, we analyzed mice with a mutation in the alpha and Delta isoforms of the CREB gene. Previously we have shown that CREB(alphaDelta) mutant mice in a mixed genetic background show attenuated signs of physical dependence, as measured by the classic signs of withdrawal. We have generated a uniform genetically stable F1 hybrid (129SvEv/C57BL/6) mouse line harboring the CREB mutation. We have found the functional activity of CREB in these F1 hybrid mice to be dramatically reduced compared with their wild-type littermates. These mice maintain a reduced withdrawal phenotype after chronic morphine. We are now poised to examine a number of complex behavioral phenotypes related to addiction in a well defined CREB-deficient mouse model. We demonstrate that the aversive properties of morphine are still present in CREB mutant mice despite a reduction of physical withdrawal. On the other hand, these mice do not respond to the reinforcing properties of morphine in a conditioned place preference paradigm. In contrast, CREB mutant mice demonstrate an enhanced response to the reinforcing properties of cocaine compared with their wild-type controls in both conditioned place preference and sensitization behaviors. These data may provide the first paradigm for differential vulnerability to various drugs of abuse.
A Novel Intergenic ETnII-β Insertion Mutation Causes Multiple Malformations in Polypodia Mice
Lehoczky, Jessica A.; Thomas, Peedikayil E.; Patrie, Kevin M.; Owens, Kailey M.; Villarreal, Lisa M.; Galbraith, Kenneth; Washburn, Joe; Johnson, Craig N.; Gavino, Bryant; Borowsky, Alexander D.; Millen, Kathleen J.; Wakenight, Paul; Law, William; Van Keuren, Margaret L.; Gavrilina, Galina; Hughes, Elizabeth D.; Saunders, Thomas L.; Brihn, Lesil; Nadeau, Joseph H.; Innis, Jeffrey W.
2013-01-01
Mouse early transposon insertions are responsible for ∼10% of spontaneous mutant phenotypes. We previously reported the phenotypes and genetic mapping of Polypodia, (Ppd), a spontaneous, X-linked dominant mutation with profound effects on body plan morphogenesis. Our new data shows that mutant mice are not born in expected Mendelian ratios secondary to loss after E9.5. In addition, we refined the Ppd genetic interval and discovered a novel ETnII-β early transposon insertion between the genes for Dusp9 and Pnck. The ETn inserted 1.6 kb downstream and antisense to Dusp9 and does not disrupt polyadenylation or splicing of either gene. Knock-in mice engineered to carry the ETn display Ppd characteristic ectopic caudal limb phenotypes, showing that the ETn insertion is the Ppd molecular lesion. Early transposons are actively expressed in the early blastocyst. To explore the consequences of the ETn on the genomic landscape at an early stage of development, we compared interval gene expression between wild-type and mutant ES cells. Mutant ES cell expression analysis revealed marked upregulation of Dusp9 mRNA and protein expression. Evaluation of the 5′ LTR CpG methylation state in adult mice revealed no correlation with the occurrence or severity of Ppd phenotypes at birth. Thus, the broad range of phenotypes observed in this mutant is secondary to a novel intergenic ETn insertion whose effects include dysregulation of nearby interval gene expression at early stages of development. PMID:24339789
Ding, Yuetong; Qu, Yibo; Feng, Jia; Wang, Meizhi; Han, Qi; So, Kwok-Fai; Wu, Wutian; Zhou, Libing
2014-01-01
Brachial plexus injury (BPI) and experimental spinal root avulsion result in loss of motor function in the affected segments. After root avulsion, significant motoneuron function is restored by re-implantation of the avulsed root. How much this functional recovery depends on corticospinal inputs is not known. Here, we studied that question using Celsr3|Emx1 mice, in which the corticospinal tract (CST) is genetically absent. In adult mice, we tore off right C5–C7 motor and sensory roots and re-implanted the right C6 roots. Behavioral studies showed impaired recovery of elbow flexion in Celsr3|Emx1 mice compared to controls. Five months after surgery, a reduced number of small axons, and higher G-ratio of inner to outer diameter of myelin sheaths were observed in mutant versus control mice. At early stages post-surgery, mutant mice displayed lower expression of GAP-43 in spinal cord and of myelin basic protein (MBP) in peripheral nerves than control animals. After five months, mutant animals had atrophy of the right biceps brachii, with less newly formed neuromuscular junctions (NMJs) and reduced peak-to-peak amplitudes in electromyogram (EMG), than controls. However, quite unexpectedly, a higher motoneuron survival rate was found in mutant than in control mice. Thus, following root avulsion/re-implantation, the absence of the CST is probably an important reason to hamper axonal regeneration and remyelination, as well as target re-innervation and formation of new NMJ, resulting in lower functional recovery, while fostering motoneuron survival. These results indicate that manipulation of corticospinal transmission may help improve functional recovery following BPI. PMID:25003601
Sánchez-Sampedro, Lucas; Gómez, Carmen Elena; Mejías-Pérez, Ernesto; Pérez-Jiménez, Eva; Oliveros, Juan Carlos
2013-01-01
Replication-competent poxvirus vectors with an attenuation phenotype and with a high immunogenic capacity of the foreign expressed antigen are being pursued as novel vaccine vectors against different pathogens. In this investigation, we have examined the replication and immunogenic characteristics of two vaccinia virus (VACV) mutants, M65 and M101. These mutants were generated after 65 and 101 serial passages of persistently infected Friend erythroleukemia (FEL) cells. In cultured cells of different origins, the mutants are replication competent and have growth kinetics similar to or slightly reduced in comparison with those of the parental Western Reserve (WR) virus strain. In normal and immune-suppressed infected mice, the mutants showed different levels of attenuation and pathogenicity in comparison with WR and modified vaccinia Ankara (MVA) strains. Wide genome analysis after deep sequencing revealed selected genomic deletions and mutations in a number of viral open reading frames (ORFs). Mice immunized in a DNA prime/mutant boost regimen with viral vectors expressing the LACK (Leishmania homologue for receptors of activated C kinase) antigen of Leishmania infantum showed protection or a delay in the onset of cutaneous leishmaniasis. Protection was similar to that triggered by MVA-LACK. In immunized mice, both polyfunctional CD4+ and CD8+ T cells with an effector memory phenotype were activated by the two mutants, but the DNA-LACK/M65-LACK protocol preferentially induced CD4+ whereas DNA-LACK/M101-LACK preferentially induced CD8+ T cell responses. Altogether, our findings showed the adaptive changes of the WR genome during long-term virus-host cell interaction and how the replication competency of M65 and M101 mutants confers distinct biological properties and immunogenicity in mice compared to those of the MVA strain. These mutants could have applicability for understanding VACV biology and as potential vaccine vectors against pathogens and tumors. PMID:23596295
CD18 deficiency improves liver injury in the MCD model of steatohepatitis
Pierce, Andrew A.; Siao, Kevin; Mattis, Aras N.; Goodsell, Amanda; Baron, Jody L.; Maher, Jacquelyn J.
2017-01-01
Neutrophils and macrophages are important constituents of the hepatic inflammatory infiltrate in non-alcoholic steatohepatitis. These innate immune cells express CD18, an adhesion molecule that facilitates leukocyte activation. In the context of fatty liver, activation of infiltrated leukocytes is believed to enhance hepatocellular injury. The objective of this study was to determine the degree to which activated innate immune cells promote steatohepatitis by comparing hepatic outcomes in wild-type and CD18-mutant mice fed a methionine-choline-deficient (MCD) diet. After 3 weeks of MCD feeding, hepatocyte injury, based on serum ALT elevation, was 40% lower in CD18-mutant than wild-type mice. Leukocyte infiltration into the liver was not impaired in CD18-mutant mice, but leukocyte activation was markedly reduced, as shown by the lack of evidence of oxidant production. Despite having reduced hepatocellular injury, CD18-mutant mice developed significantly more hepatic steatosis than wild-type mice after MCD feeding. This coincided with greater hepatic induction of pro-inflammatory and lipogenic genes as well as a modest reduction in hepatic expression of adipose triglyceride lipase. Overall, the data indicate that CD18 deficiency curbs MCD-mediated liver injury by limiting the activation of innate immune cells in the liver without compromising intrahepatic cytokine activation. Reduced liver injury occurs at the expense of increased hepatic steatosis, which suggests that in addition to damaging hepatocytes, infiltrating leukocytes may influence lipid homeostasis in the liver. PMID:28873429
CD18 deficiency improves liver injury in the MCD model of steatohepatitis.
Pierce, Andrew A; Duwaerts, Caroline C; Siao, Kevin; Mattis, Aras N; Goodsell, Amanda; Baron, Jody L; Maher, Jacquelyn J
2017-01-01
Neutrophils and macrophages are important constituents of the hepatic inflammatory infiltrate in non-alcoholic steatohepatitis. These innate immune cells express CD18, an adhesion molecule that facilitates leukocyte activation. In the context of fatty liver, activation of infiltrated leukocytes is believed to enhance hepatocellular injury. The objective of this study was to determine the degree to which activated innate immune cells promote steatohepatitis by comparing hepatic outcomes in wild-type and CD18-mutant mice fed a methionine-choline-deficient (MCD) diet. After 3 weeks of MCD feeding, hepatocyte injury, based on serum ALT elevation, was 40% lower in CD18-mutant than wild-type mice. Leukocyte infiltration into the liver was not impaired in CD18-mutant mice, but leukocyte activation was markedly reduced, as shown by the lack of evidence of oxidant production. Despite having reduced hepatocellular injury, CD18-mutant mice developed significantly more hepatic steatosis than wild-type mice after MCD feeding. This coincided with greater hepatic induction of pro-inflammatory and lipogenic genes as well as a modest reduction in hepatic expression of adipose triglyceride lipase. Overall, the data indicate that CD18 deficiency curbs MCD-mediated liver injury by limiting the activation of innate immune cells in the liver without compromising intrahepatic cytokine activation. Reduced liver injury occurs at the expense of increased hepatic steatosis, which suggests that in addition to damaging hepatocytes, infiltrating leukocytes may influence lipid homeostasis in the liver.
The clock gene Period1 regulates innate routine behaviour in mice
Bechstein, Philipp; Rehbach, Nils-Jörn; Yuhasingham, Gowzekan; Schürmann, Christoph; Göpfert, Melanie; Kössl, Manfred; Maronde, Erik
2014-01-01
Laboratory mice are well capable of performing innate routine behaviour programmes necessary for courtship, nest-building and exploratory activities although housed for decades in animal facilities. We found that in mice inactivation of the clock gene Period1 profoundly changes innate routine behaviour programmes like those necessary for courtship, nest building, exploration and learning. These results in wild-type and Period1 mutant mice, together with earlier findings on courtship behaviour in wild-type and period-mutant Drosophila melanogaster, suggest a conserved role of Period-genes on innate routine behaviour. Additionally, both per-mutant flies and Period1-mutant mice display spatial learning and memory deficits. The profound influence of Period1 on routine behaviour programmes in mice, including female partner choice, may be independent of its function as a circadian clock gene, since Period1-deficient mice display normal circadian behaviour. PMID:24598427
The clock gene Period1 regulates innate routine behaviour in mice.
Bechstein, Philipp; Rehbach, Nils-Jörn; Yuhasingham, Gowzekan; Schürmann, Christoph; Göpfert, Melanie; Kössl, Manfred; Maronde, Erik
2014-04-22
Laboratory mice are well capable of performing innate routine behaviour programmes necessary for courtship, nest-building and exploratory activities although housed for decades in animal facilities. We found that in mice inactivation of the clock gene Period1 profoundly changes innate routine behaviour programmes like those necessary for courtship, nest building, exploration and learning. These results in wild-type and Period1 mutant mice, together with earlier findings on courtship behaviour in wild-type and period-mutant Drosophila melanogaster, suggest a conserved role of Period-genes on innate routine behaviour. Additionally, both per-mutant flies and Period1-mutant mice display spatial learning and memory deficits. The profound influence of Period1 on routine behaviour programmes in mice, including female partner choice, may be independent of its function as a circadian clock gene, since Period1-deficient mice display normal circadian behaviour.
Pathogenesis of coxsackievirus A9 in mice: role of the viral arginine-glycine-aspartic acid motif.
Harvala, Heli; Kalimo, Hannu; Stanway, Glyn; Hyypiä, Timo
2003-09-01
Coxsackievirus A9 (CAV9) contains an arginine-glycine-aspartic acid (RGD) motif which participates in cell entry. Mutants with alterations in the RGD-containing region were utilized to explore the importance of the tripeptide in the pathogenesis of CAV9 in mice. Using in situ hybridization, the parental CAV9 strain was observed to infect skeletal muscle (intercostal, platysma, lingual and thigh muscles) of newborn mice, whereas the RGD-less mutants were detectable only in platysma and lingual muscles. In addition, newborn mice infected with the mutants survived longer than CAV9-infected mice. In adult mice, the parental strain of CAV9, but not the mutants, achieved moderately high titres in the pancreas. These results suggest that the RGD motif has a significant role in the pathogenesis of CAV9 in mice but also that RGD-independent entry routes can be utilized in the infection of murine tissue.
Late-onset of spinal neurodegeneration in knock-in mice expressing a mutant BiP.
Jin, Hisayo; Mimura, Naoya; Kashio, Makiko; Koseki, Haruhiko; Aoe, Tomohiko
2014-01-01
Most human neurodegenerative diseases are sporadic, and appear later in life. While the underlying mechanisms of the progression of those diseases are still unclear, investigations into the familial forms of comparable diseases suggest that endoplasmic reticulum (ER) stress is involved in the pathogenesis. Binding immunoglobulin protein (BiP) is an ER chaperone that is central to ER function. We produced knock-in mice expressing a mutant BiP that lacked the retrieval sequence in order to evaluate the effect of a functional defect in an ER chaperone in multi-cellular organisms. Here we report that heterozygous mutant BiP mice revealed motor disabilities in aging. We found a degeneration of some motoneurons in the spinal cord accompanied by accumulations of ubiquitinated proteins. The defect in retrieval of BiP by the KDEL receptor leads to impaired activities in quality control and autophagy, suggesting that functional defects in the ER chaperones may contribute to the late onset of neurodegenerative diseases.
Field, H J; Anderson, J R; Wildy, P
1982-03-01
Mice inoculated intracerebrally (i.c.) with a mutant strain of HSV were found to develop cataracts 1 to 2 months after inoculation. Cataract formation was subsequently shown to follow an acute retinitis which commenced within 1 week of inoculation. The mutant had been selected for high resistance to the nucleoside analogue acyclovir and has been shown previously to be defective in the induction of thymidine kinase and also to express an altered DNA polymerase. The LD50 for mice inoculated i.c. was greater than 10(5) p.f.u. compared with approx 7 p.f.u. for the parental strain. Studies of virus replication following i.c. inoculation with a sublethal dose of the mutant revealed that only small amounts of infectious virus were produced in the brain, but during a period from 6 to 12 days after inoculation vigorous replication occurred in retinal tissue, producing very high titres of virus.
Hall, Mary P; Woodroofe, Carolyn C; Wood, Monika G; Que, Ivo; Van't Root, Moniek; Ridwan, Yanto; Shi, Ce; Kirkland, Thomas A; Encell, Lance P; Wood, Keith V; Löwik, Clemens; Mezzanotte, Laura
2018-01-09
The sensitivity of bioluminescence imaging in animals is primarily dependent on the amount of photons emitted by the luciferase enzyme at wavelengths greater than 620 nm where tissue penetration is high. This area of work has been dominated by firefly luciferase and its substrate, D-luciferin, due to the system's peak emission (~ 600 nm), high signal to noise ratio, and generally favorable biodistribution of D-luciferin in mice. Here we report on the development of a codon optimized mutant of click beetle red luciferase that produces substantially more light output than firefly luciferase when the two enzymes are compared in transplanted cells within the skin of black fur mice or in deep brain. The mutant enzyme utilizes two new naphthyl-luciferin substrates to produce near infrared emission (730 nm and 743 nm). The stable luminescence signal and near infrared emission enable unprecedented sensitivity and accuracy for performing deep tissue multispectral tomography in mice.
Yang, Qing-Li; Shen, Ji-Qing; Jiang, Zhi-Hua; Shi, Yun-Liang; Wan, Xiao-Ling; Yang, Yi-Chao
2017-08-07
Although the responses of inducible nitric oxide synthase (iNOS) and associated cytokine after Clonorchis sinensis infection have been studied recently, their mechanisms remain incompletely understood. In this study, we investigated the effects of toll-like receptor 2 (TLR2) signals on iNOS/nitric oxide (NO) responses after C. sinensis infection. We also evaluated the correlations between iNOS responses and worm development, which are possibly regulated by TLR2 signal. TLR2 wild-type and mutant C57BL/6 J mice were infected with 60 C. sinensis metacercariae, and the samples were collected at 30, 60, 90 and 120 days post-infection (dpi). The total serum NO levels were detected using Griess reagent after nitrate was reduced to nitrite. Hepatic tissue samples from the infected mice were sliced and stained with hematoxylin and eosin (HE) to observe worm development in the intrahepatic bile ducts. The iNOS mRNA transcripts in the splenocytes were examined by real time reverse transcriptase polymerase chain reaction (qRT-PCR), and iNOS expression was detected by immunohistochemistry. Developing C. sinensis juvenile worms were more abundant in the intrahepatic bile ducts of TLR2 mutant mice than those of TLR2 wild-type mice. However, no eggs were found in the faeces of both mice samples. The serum levels of total NO significantly increased in TLR2 mutant mice infected with C. sinensis at 30 (t (5) = 2.595, P = 0.049), 60 (t (5) = 7.838, P = 0.001) and 90 dpi (t (5) = 3.032, P = 0.029). Meanwhile, no changes occurred in TLR2 wild-type mice compared with uninfected controls during the experiment. The iNOS expression in splenocytes showed unexpected higher background levels in TLR2 mutant mice than those in TLR2 wild-type mice. Furthermore, the iNOS mRNA transcripts in splenocytes were significantly increased in the TLR2 wild-type mice infected with C. sinensis at 30 (t (5) = 5.139, P = 0.004), 60 (t (5) = 6.138, P = 0.002) and 90 dpi (t (5) = 6.332, P = 0.001). However, the rising of iNOS transcripts dropped under the uninfected control level in the TLR2 mutant mice at 120 dpi (t (5) = -9.082, P < 0.0001). Both total NO and iNOS transcripts were significantly higher in the TLR2 mutant mice than those in the TLR2 wild-type mice at 30 (t (5) = 3.091/2.933, P = 0.027/0.033) and 60 dpi (t (5) = 2.667/6.331, P = 0.044/0.001), respectively. In addition, the remarkable increase of iNOS expressions was immunohistochemically detected in the splenic serial sections of TLR2 wild-type mice at 30 and 60 dpi. However, the expressions of iNOS were remarkably decreased in the splenocytes of both TLR2 wild-type and mutant mice at 120 dpi. These results demonstrate that TLR2 signal plays an important role in the regulation of iNOS expression after C. sinensis infection. TLR2 signal is also beneficial to limiting worm growth and development and contributing to the susceptibility to C. sinensis in which the iNOS/NO reactions possibly participate.
Park, Seok-Joo; Shin, Eun-Joo; Min, Sun Seek; An, Jihua; Li, Zhengyi; Hee Chung, Yoon; Hoon Jeong, Ji; Bach, Jae-Hyung; Nah, Seung-Yeol; Kim, Won-Ki; Jang, Choon-Gon; Kim, Yong-Sun; Nabeshima, Yo-ichi; Nabeshima, Toshitaka; Kim, Hyoung-Chun
2013-01-01
We previously reported cognitive dysfunction in klotho mutant mice. In the present study, we further examined novel mechanisms involved in cognitive impairment in these mice. Significantly decreased janus kinase 2 (JAK2) and signal transducer and activator of transcription3 (STAT3) phosphorylation were observed in the hippocampus of klotho mutant mice. A selective decrease in protein expression and binding density of the M1 muscarinic cholinergic receptor (M1 mAChR) was observed in these mice. Cholinergic parameters (ie, acetylcholine (ACh), choline acetyltransferase (ChAT), and acetylcholinesterase (AChE)) and NMDAR-dependent long-term potentiation (LTP) were significantly impaired in klotho mutant mice. McN-A-343 (McN), an M1 mAChR agonist, significantly attenuated these impairments. AG490 (AG), a JAK2 inhibitor, counteracted the attenuating effects of McN, although AG did not significantly alter the McN-induced effect on AChE. Furthermore, AG significantly inhibited the attenuating effects of McN on decreased NMDAR-dependent LTP, protein kinase C βII, p-ERK, p-CREB, BDNF, and p-JAK2/p-STAT3-expression in klotho mutant mice. In addition, k252a, a BDNF receptor tyrosine kinase B (TrkB) inhibitor, significantly counteracted McN effects on decreased ChAT, ACh, and M1 mAChR and p-JAK2/p-STAT3 expression. McN-induced effects on cognitive impairment in klotho mutant mice were consistently counteracted by either AG or k252a. Our results suggest that inactivation of the JAK2/STAT3 signaling axis and M1 mAChR downregulation play a critical role in cognitive impairment observed in klotho mutant mice. PMID:23389690
Synergy between Prkdc and Trp53 regulates stem cell proliferation and GI-ARS after irradiation.
Gurley, Kay E; Ashley, Amanda K; Moser, Russell D; Kemp, Christopher J
2017-11-01
Ionizing radiation (IR) is one of the most widely used treatments for cancer. However, acute damage to the gastrointestinal tract or gastrointestinal acute radiation syndrome (GI-ARS) is a major dose-limiting side effect, and the mechanisms that underlie this remain unclear. Here we use mouse models to explore the relative roles of DNA repair, apoptosis, and cell cycle arrest in radiation response. IR induces DNA double strand breaks and DNA-PK mutant Prkdc scid/scid mice are sensitive to GI-ARS due to an inability to repair these breaks. IR also activates the tumor suppressor p53 to trigger apoptotic cell death within intestinal crypt cells and p53 deficient mice are resistant to apoptosis. To determine if DNA-PK and p53 interact to govern radiosensitivity, we compared the response of single and compound mutant mice to 8 Gy IR. Compound mutant Prkdc scid/scid /Trp53 -/- mice died earliest due to severe GI-ARS. While both Prkdc scid/scid and Prkdc scid/scid /Trp53 -/- mutant mice had higher levels of IR-induced DNA damage, particularly within the stem cell compartment of the intestinal crypt, in Prkdc scid/scid /Trp53 -/- mice these damaged cells abnormally progressed through the cell cycle resulting in mitotic cell death. This led to a loss of Paneth cells and a failure to regenerate the differentiated epithelial cells required for intestinal function. IR-induced apoptosis did not correlate with radiosensitivity. Overall, these data reveal that DNA repair, mediated by DNA-PK, and cell cycle arrest, mediated by p53, cooperate to protect the stem cell niche after DNA damage, suggesting combination approaches to modulate both pathways may be beneficial to reduce GI-ARS. As many cancers harbor p53 mutations, this also suggests targeting DNA-PK may be effective to enhance sensitivity of p53 mutant tumors to radiation.
TDP-43 causes differential pathology in neuronal versus glial cells in the mouse brain
Yan, Sen; Wang, Chuan-En; Wei, Wenjie; Gaertig, Marta A.; Lai, Liangxue; Li, Shihua; Li, Xiao-Jiang
2014-01-01
Mutations in TAR DNA-binding protein 43 (TDP-43) are associated with familial forms of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Although recent studies have revealed that mutant TDP-43 in neuronal and glial cells is toxic, how mutant TDP-43 causes primarily neuronal degeneration in an age-dependent manner remains unclear. Using adeno-associated virus (AAV) that expresses mutant TDP-43 (M337V) ubiquitously, we found that mutant TDP-43 accumulates preferentially in neuronal cells in the postnatal mouse brain. We then ubiquitously or selectively expressed mutant TDP-43 in neuronal and glial cells in the striatum of adult mouse brains via stereotaxic injection of AAV vectors and found that it also preferentially accumulates in neuronal cells. Expression of mutant TDP-43 in neurons in the striatum causes more severe degeneration, earlier death and more robust symptoms in mice than expression of mutant TDP-43 in glial cells; however, aging increases the expression of mutant TDP-43 in glial cells, and expression of mutant TDP-43 in older mice caused earlier onset of phenotypes and more severe neuropathology than that in younger mice. Although expression of mutant TDP-43 in glial cells via stereotaxic injection does not lead to robust neurological phenotypes, systemic inhibition of the proteasome activity via MG132 in postnatal mice could exacerbate glial TDP-43-mediated toxicity and cause mice to die earlier. Consistently, this inhibition increases the expression of mutant TDP-43 in glial cells in mouse brains. Thus, the differential accumulation of mutant TDP-43 in neuronal versus glial cells contributes to the preferential toxicity of mutant TDP-43 in neuronal cells and age-dependent pathology. PMID:24381309
TDP-43 causes differential pathology in neuronal versus glial cells in the mouse brain.
Yan, Sen; Wang, Chuan-En; Wei, Wenjie; Gaertig, Marta A; Lai, Liangxue; Li, Shihua; Li, Xiao-Jiang
2014-05-15
Mutations in TAR DNA-binding protein 43 (TDP-43) are associated with familial forms of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Although recent studies have revealed that mutant TDP-43 in neuronal and glial cells is toxic, how mutant TDP-43 causes primarily neuronal degeneration in an age-dependent manner remains unclear. Using adeno-associated virus (AAV) that expresses mutant TDP-43 (M337V) ubiquitously, we found that mutant TDP-43 accumulates preferentially in neuronal cells in the postnatal mouse brain. We then ubiquitously or selectively expressed mutant TDP-43 in neuronal and glial cells in the striatum of adult mouse brains via stereotaxic injection of AAV vectors and found that it also preferentially accumulates in neuronal cells. Expression of mutant TDP-43 in neurons in the striatum causes more severe degeneration, earlier death and more robust symptoms in mice than expression of mutant TDP-43 in glial cells; however, aging increases the expression of mutant TDP-43 in glial cells, and expression of mutant TDP-43 in older mice caused earlier onset of phenotypes and more severe neuropathology than that in younger mice. Although expression of mutant TDP-43 in glial cells via stereotaxic injection does not lead to robust neurological phenotypes, systemic inhibition of the proteasome activity via MG132 in postnatal mice could exacerbate glial TDP-43-mediated toxicity and cause mice to die earlier. Consistently, this inhibition increases the expression of mutant TDP-43 in glial cells in mouse brains. Thus, the differential accumulation of mutant TDP-43 in neuronal versus glial cells contributes to the preferential toxicity of mutant TDP-43 in neuronal cells and age-dependent pathology.
Partial Müllerian Duct Retention in Smad4 Conditional Mutant Male Mice.
Petit, Fabrice G; Deng, Chuxia; Jamin, Soazik P
2016-01-01
Müllerian duct regression is a complex process which involves the AMH signalling pathway. We have previously demonstrated that besides AMH and its specific type II receptor (AMHRII), BMPR-IA and Smad5 are two essential factors implicated in this mechanism. Mothers against decapentaplegic homolog 4 (Smad4) is a transcription factor and the common Smad (co-Smad) involved in transforming growth factor beta (TGF-β) signalling pathway superfamily. Since Smad4 null mutants die early during gastrulation, we have inactivated Smad4 in the Müllerian duct mesenchyme. Specific inactivation of Smad4 in the urogenital ridge leads to the partial persistence of the Müllerian duct in adult male mice. Careful examination of the urogenital tract reveals that the Müllerian duct retention is randomly distributed either on one side or both sides. Histological analysis shows a uterus-like structure, which is confirmed by the expression of estrogen receptor α. As previously described in a β-catenin conditional mutant mouse model, β-catenin contributes to Müllerian duct regression. In our mutant male embryos, it appears that β-catenin expression is locally reduced along the urogenital ridge as compared to control mice. Moreover, the expression pattern is similar to those observed in control female mice. This study shows that reduced Smad4 expression disrupts the Wnt/β-catenin signalling leading to the partial persistence of Müllerian duct.
Fontés, Ghislaine; Ghislain, Julien; Benterki, Isma; Zarrouki, Bader; Trudel, Dominique; Berthiaume, Yves; Poitout, Vincent
2015-12-01
Cystic fibrosis (CF) is the result of mutations in the cystic fibrosis transmembrane conductance regulator (CFTR). CF-related diabetes affects 50% of adult CF patients. How CFTR deficiency predisposes to diabetes is unknown. Herein, we examined the impact of the most frequent cftr mutation in humans, deletion of phenylalanine at position 508 (ΔF508), on glucose homeostasis in mice. We compared ΔF508 mutant mice with wild-type (WT) littermates. Twelve-week-old male ΔF508 mutants had lower body weight, improved oral glucose tolerance, and a trend toward higher insulin tolerance. Glucose-induced insulin secretion was slightly diminished in ΔF508 mutant islets, due to reduced insulin content, but ΔF508 mutant islets were not more sensitive to proinflammatory cytokines than WT islets. Hyperglycemic clamps confirmed an increase in insulin sensitivity with normal β-cell function in 12- and 18-week-old ΔF508 mutants. In contrast, 24-week-old ΔF508 mutants exhibited insulin resistance and reduced β-cell function. β-Cell mass was unaffected at 11 weeks of age but was significantly lower in ΔF508 mutants versus controls at 24 weeks. This was not associated with gross pancreatic pathology. We conclude that the ΔF508 CFTR mutation does not lead to an intrinsic β-cell secretory defect but is associated with insulin resistance and a β-cell mass deficit in aging mutants. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
Tierney, Rob; Beignon, Anne-Sophie; Rappuoli, Rino; Muller, Sylviane; Sesardic, Dorothea; Partidos, Charalambos D
2003-09-01
In this study, the adjuvanticity of 2 nontoxic derivatives (LTK63 and LTR72) of heat-labile enterotoxin of Escherichia coli (LT) was evaluated and was compared with that of a cytosine phosphodiester-guanine (CpG) motif, after transcutaneous immunization with tetanus toxoid (TT). TT plus LTR72 elicited the strongest antibody responses, compared with those elicited by the other vaccines (TT, TT plus LTK63, TT plus CpG, and TT plus LTK63 plus CpG); it neutralized the toxin and conferred full protection after passive transfer in mice. Preexisting immunity to LT mutants did not adversely affect their adjuvant potency. Both LTK63 and LTR72 promoted the induction of IgG1 antibodies. In contrast, mice receiving either CpG motif alone or CpG motif plus LTK63 produced strong IgG2a anti-TT antibody responses. Overall, these findings demonstrate that mutants of enterotoxins with reduced toxicity are effective adjuvants for transcutaneous immunization.
Jackson, Ellen E; Rendina-Ruedy, Elisabeth; Smith, Brenda J; Lacombe, Veronique A
2015-01-01
Diabetes is a chronic inflammatory disease that carries a high risk of cardiovascular disease. However, the pathophysiological link between these disorders is not well known. We hypothesize that TLR4 signaling mediates high fat diet (HFD)-induced peripheral and cardiac glucose metabolic derangements. Mice with a loss-of-function mutation in TLR4 (C3H/HeJ) and age-matched control (C57BL/6) mice were fed either a high-fat diet or normal diet for 16 weeks. Glucose tolerance and plasma insulin were measured. Protein expression of glucose transporters (GLUT), AKT (phosphorylated and total), and proinflammatory cytokines (IL-6, TNF-α and SOCS-3) were quantified in the heart using Western Blotting. Both groups fed a long-term HFD had increased body weight, blood glucose and insulin levels, as well as impaired glucose tolerance compared to mice fed a normal diet. TLR4-mutant mice were partially protected against long-term HFD-induced insulin resistance. In control mice, feeding a HFD decreased cardiac crude membrane GLUT4 protein content, which was partially rescued in TLR4-mutant mice. TLR4-mutant mice fed a HFD also had increased expression of GLUT8, a novel isoform, compared to mice fed a normal diet. GLUT8 content was positively correlated with SOCS-3 and IL-6 expression in the heart. No significant differences in cytokine expression were observed between groups, suggesting a lack of inflammation in the heart following a HFD. Loss of TLR4 function partially restored a healthy metabolic phenotype, suggesting that TLR4 signaling is a key mechanism in HFD-induced peripheral and cardiac insulin resistance. Our data further suggest that TLR4 exerts its detrimental metabolic effects in the myocardium through a cytokine-independent pathway.
Blednov, Yuri A.; Benavidez, Jill M.; Homanics, Gregg E.
2012-01-01
We used behavioral pharmacology to characterize heterozygous knockin mice with mutations (Q266I or M287L) in the α1 subunit of the glycine receptor (GlyR) (J Pharmacol Exp Ther 340:304–316, 2012). These mutations were designed to reduce (M287L) or eliminate (Q266I) ethanol potentiation of GlyR function. We asked which behavioral effects of ethanol would be reduced more in the Q266I mutant than the M287L and found rotarod ataxia to be the behavior that fulfilled this criterion. Compared with controls, the mutant mice also differed in ethanol consumption, ethanol-stimulated startle response, signs of acute physical dependence, and duration of loss of righting response produced by ethanol, butanol, ketamine, pentobarbital, and flurazepam. Some of these behavioral changes were mimicked in wild-type mice by acute injections of low, subconvulsive doses of strychnine. Both mutants showed increased acoustic startle response and increased sensitivity to strychnine seizures. Thus, in addition to reducing ethanol action on the GlyRs, these mutations reduced glycinergic inhibition, which may also alter sensitivity to GABAergic drugs. PMID:22037202
Mapping Mammary Epithelial Cell Transformation in BRCA1 Mutant Mice
2006-07-01
Transformation in BRCA1 Mutant Mice PRINCIPAL INVESTIGATOR: Gerburg M. Wulf CONTRACTING ORGANIZATION: Beth Israel Deaconess Medical...REPORT NUMBER Beth Israel Deaconess Medical Center Boston, MA 02215 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES...and whether it allowed us to analyze the early steps of tumor formation. For this purpose transgenic and conditional knock-out mice (mutant p53 or
Cannata, David J; Finkelstein, David I; Gantois, Ilse; Teper, Yaroslav; Drago, John; West, Jan M
2009-01-01
We generated a mouse line with a missense mutation (S248F) in the gene (CHRNA4) encoding the alpha4 subunit of neuronal nicotinic acetylcholine receptor (nAChR). Mutant mice demonstrate brief nicotine induced dystonia that resembles the clinical events seen in patients with the same mutation. Drug-induced dystonia is more pronounced in female mice, thus our aim was to determine if the S248F mutation changed the properties of fast- and slow-twitch muscle fibres from female mutant mice. Reverse transcriptase-PCR confirmed CHRNA4 gene expression in the brain but not skeletal muscles in normal and mutant mice. Ca(2+) and Sr(2+) force activation curves were obtained using skinned muscle fibres prepared from slow-twitch (soleus) and fast-twitch (EDL) muscles. Two significant results were found: (1) the (pCa(50) - pSr(50)) value from EDL fibres was smaller in mutant mice than in wild type (1.01 vs. 1.30), (2) the percentage force produced at pSr 5.5 was larger in mutants than in wild type (5.76 vs. 0.24%). Both results indicate a shift to slow-twitch characteristics in the mutant. This conclusion is supported by the identification of the myosin heavy chain (MHC) isoforms. Mutant EDL fibres expressed MHC I (usually only found in slow-twitch fibres) as well as MHC IIa. Despite the lack of spontaneous dystonic events, our findings suggest that mutant mice may be having subclinical events or the mutation results in a chronic alteration to muscle neural input.
BEHAVIORAL AND NEUROCHEMICAL CHARACTERIZATION OF THE mlh MUTANT MICE LACKING OTOCONIA.
Manes, Marianna; Garcia-Gomes, Mariana de Souza Aranha; Sandini, Thaísa Meira; Zaccarelli-Magalhães, J; Florio, J C; Alexandre-Ribeiro, Sandra Regina; Wadt, Danilo; Bernardi, Maria Martha; Massironi, Silvia Maria Gomes; Mori, Claudia Madalena Cabrera
2018-06-15
Otoconia are crucial for the correct processing of positional information and orientation. Mice lacking otoconia cannot sense the direction of the gravity vector and cannot swim properly. This study aims to characterize the behavior of mergulhador (mlh), otoconia-deficient mutant mice. Additionally, the central catecholamine levels were evaluated to investigate possible correlations between behaviors and central neurotransmitters. A sequence of behavioral tests was used to evaluate the parameters related to the general activity, sensory nervous system, psychomotor system, and autonomous nervous system, in addition to measuring the acquisition of spatial and declarative memory, anxiety-like behavior, motor coordination, and swimming behavior of the mlh mutant mice. As well, the neurotransmitter levels in the cerebellum, striatum, frontal cortex, and hippocampus were measured. Relative to BALB/c mice, the mutant mlh mice showed 1) reduced locomotor and rearing behavior, increased auricular and touch reflexes, decreased motor coordination and increased micturition; 2) decreased responses in the T-maze and aversive wooden beam tests; 3) increased time of immobility in the tail suspension test; 4) no effects in the elevated plus maze or object recognition test; 5) an inability to swim; and 6) reduced turnover of dopaminergic system in the cerebellum, striatum, and frontal cortex. Thus, in our mlh mutant mice, otoconia deficiency reduced the motor, sensory and spatial learning behaviors likely by impairing balance. We did not rule out the role of the dopaminergic system in all behavioral deficits of the mlh mutant mice. Copyright © 2018. Published by Elsevier B.V.
Kumagai, Katsuyoshi; Takanashi, Masakatsu; Ohno, Shin-Ichiro; Kuroda, Masahiko; Sudo, Katsuko
2017-05-03
Targeted mutant mice generated on a C57BL/6 background are powerful tools for analysis of the biological functions of genes, and gene targeting technologies using mouse embryonic stem (ES) cells have been used to generate such mice. Recently, a bacterial artificial chromosome (BAC) recombineering system was established for the construction of targeting vectors. However, gene retrieval from BACs for the generation of gene targeting vectors using this system remains difficult. Even when construction of a gene targeting vector is successful, the efficiency of production of targeted mutant mice from ES cells derived from C57BL/6 mice are poor. Therefore, in this study, we first improved the strategy for the retrieval of genes from BACs and their transfer into a DT-A plasmid, for the generation of gene targeting vectors using the BAC recombineering system. Then, we attempted to generate targeted mutant mice from ES cell lines derived from C57BL/6 mice, by culturing in serum-free medium. In conclusion, we established an improved strategy for the efficient generation of targeted mutant mice on a C57BL/6 background, which are useful for the in vivo analysis of gene functions and regulation.
Azar, Ali; Piccinelli, Chiara; Brown, Helen; Headon, Denis; Cheeseman, Michael
2016-01-01
Hypohidrotic ectodermal dysplasia (HED) results from mutation of the EDA, EDAR or EDARADD genes and is characterized by reduced or absent eccrine sweat glands, hair follicles and teeth, and defective formation of salivary, mammary and craniofacial glands. Mouse models with HED also carry Eda, Edar or Edaradd mutations and have defects that map to the same structures. Patients with HED have ear, nose and throat disease, but this has not been investigated in mice bearing comparable genetic mutations. We report that otitis media, rhinitis and nasopharyngitis occur at high frequency in Eda and Edar mutant mice and explore the pathogenic mechanisms related to glandular function, microbial and immune parameters in these lines. Nasopharynx auditory tube glands fail to develop in HED mutant mice and the functional implications include loss of lysozyme secretion, reduced mucociliary clearance and overgrowth of nasal commensal bacteria accompanied by neutrophil exudation. Heavy nasopharynx foreign body load and loss of gland protection alters the auditory tube gating function and the auditory tubes can become pathologically dilated. Accumulation of large foreign body particles in the bulla stimulates granuloma formation. Analysis of immune cell populations and myeloid cell function shows no evidence of overt immune deficiency in HED mutant mice. Our findings using HED mutant mice as a model for the human condition support the idea that ear and nose pathology in HED patients arises as a result of nasal and nasopharyngeal gland deficits, reduced mucociliary clearance and impaired auditory tube gating function underlies the pathological sequelae in the bulla. PMID:27378689
Hu, Dong-Liang; Omoe, Katsuhiko; Sasaki, Sanae; Sashinami, Hiroshi; Sakuraba, Hirotake; Yokomizo, Yuichi; Shinagawa, Kunihiro; Nakane, Akio
2003-09-01
To investigate whether vaccination with nontoxic mutant toxic shock syndrome toxin 1 (mTSST-1) can protect against Staphylococcus aureus infection, mice were vaccinated with mTSST-1 and challenged with viable S. aureus. Survival in the mTSST-1-vaccinated group was higher, and bacterial counts in organs were significantly lower than those of control mice. Passive transfer of mTSST-1-specific antibodies also provided protection against S. aureus-induced septic death. Interferon (IFN)-gamma production in the serum samples and spleens from vaccinated mice was significantly decreased compared with that in controls, whereas interleukin-10 titers were significantly higher in vaccinated mice. IFN-gamma and tumor necrosis factor-alpha production in vitro were significantly inhibited by serum samples from mTSST-1-immunized mice but not from control mice. These results suggest that vaccination with mTSST-1 devoid of superantigenic properties provides protection against S. aureus infection and that the protection might be mediated by TSST-1-neutralizing antibodies as well as by the down-regulation of IFN-gamma production.
Axonal abnormalities in vanishing white matter.
Klok, Melanie D; Bugiani, Marianna; de Vries, Sharon I; Gerritsen, Wouter; Breur, Marjolein; van der Sluis, Sophie; Heine, Vivi M; Kole, Maarten H P; Baron, Wia; van der Knaap, Marjo S
2018-04-01
We aimed to study the occurrence and development of axonal pathology and the influence of astrocytes in vanishing white matter. Axons and myelin were analyzed using electron microscopy and immunohistochemistry on Eif2b4 and Eif2b5 single- and double-mutant mice and patient brain tissue. In addition, astrocyte-forebrain co-culture studies were performed. In the corpus callosum of Eif2b5- mutant mice, myelin sheath thickness, axonal diameter, and G-ratio developed normally up to 4 months. At 7 months, however, axons had become thinner, while in control mice axonal diameters had increased further. Myelin sheath thickness remained close to normal, resulting in an abnormally low G-ratio in Eif2b5- mutant mice. In more severely affected Eif2b4-Eif2b5 double-mutants, similar abnormalities were already present at 4 months, while in milder affected Eif2b4 mutants, few abnormalities were observed at 7 months. Additionally, from 2 months onward an increased percentage of thin, unmyelinated axons and increased axonal density were present in Eif2b5 -mutant mice. Co-cultures showed that Eif2b5 mutant astrocytes induced increased axonal density, also in control forebrain tissue, and that control astrocytes induced normal axonal density, also in mutant forebrain tissue. In vanishing white matter patient brains, axons and myelin sheaths were thinner than normal in moderately and severely affected white matter. In mutant mice and patients, signs of axonal transport defects and cytoskeletal abnormalities were minimal. In vanishing white matter, axons are initially normal and atrophy later. Astrocytes are central in this process. If therapy becomes available, axonal pathology may be prevented with early intervention.
Mutation in the Fas Pathway Impairs CD8+ T Cell Memory1
Dudani, Renu; Russell, Marsha; van Faassen, Henk; Krishnan, Lakshmi; Sad, Subash
2014-01-01
Fas death pathway is important for lymphocyte homeostasis, but the role of Fas pathway in T cell memory development is not clear. We show that whereas the expansion and contraction of CD8+ T cell response against Listeria monocytogenes were similar for wild-type (WT) and Fas ligand (FasL) mutant mice, the majority of memory CD8+ T cells in FasL mutant mice displayed an effector memory phenotype in the long-term in comparison with the mainly central memory phenotype displayed by memory CD8+ T cells in WT mice. Memory CD8+ T cells in FasL mutant mice expressed reduced levels of IFN-γ and displayed poor homeostatic and Ag-induced proliferation. Impairment in CD8+ T cell memory in FasL mutant hosts was not due to defective programming or the expression of mutant FasL on CD8+ T cells, but was caused by perturbed cytokine environment in FasL mutant mice. Although adoptively transferred WT memory CD8+ T cells mediated protection against L. monocytogenes in either the WT or FasL mutant hosts, FasL mutant memory CD8+ T cells failed to mediate protection even in WT hosts. Thus, in individuals with mutation in Fas pathway, impairment in the function of the memory CD8+ T cells may increase their susceptibility to recurrent/latent infections. PMID:18292515
Tian, Cong; Harris, Belinda S; Johnson, Kenneth R
2016-01-01
Otitis media (OM), inflammation of the middle ear, is a common cause of hearing loss in children and in patients with many different syndromic diseases. Studies of the human population and mouse models have revealed that OM is a multifactorial disease with many environmental and genetic contributing factors. Here, we report on otitis media-related hearing loss in asj (ages with stiffened joints) mutant mice, which bear a point mutation in the Enpp1 gene. Auditory-evoked brainstem response (ABR) measurements revealed that around 90% of the mutant mice (Enpp1asj/asj) tested had moderate to severe hearing impairment in at least one ear. The ABR thresholds were variable and generally elevated with age. We found otitis media with effusion (OME) in all of the hearing-impaired Enpp1asj/asj mice by anatomic and histological examinations. The volume and inflammatory cell content of the effusion varied among the asj mutant mice, but all mutants exhibited a thickened middle ear epithelium with fibrous polyps and more mucin-secreting goblet cells than controls. Other abnormalities observed in the Enpp1 mutant mice include over-ossification at the round window ridge, thickened and over-calcified stapedial artery, fusion of malleus and incus, and white patches on the inside of tympanic membrane, some of which are typical symptoms of tympanosclerosis. An excessive yellow discharge was detected in the outer ear canal of older asj mutant mice, with 100% penetrance by 5 months of age, and contributes to the progressive nature of the hearing loss. This is the first report of hearing loss and ear pathology associated with an Enpp1 mutation in mice. The Enpp1asj mutant mouse provides a new animal model for studying tympanosclerotic otitis and otitis media with effusion, and also provides a specific model for the hearing loss recently reported to be associated with human ENPP1 mutations causing generalized arterial calcification of infancy and hypophosphatemic rickets.
Tian, Cong; Harris, Belinda S.; Johnson, Kenneth R.
2016-01-01
Otitis media (OM), inflammation of the middle ear, is a common cause of hearing loss in children and in patients with many different syndromic diseases. Studies of the human population and mouse models have revealed that OM is a multifactorial disease with many environmental and genetic contributing factors. Here, we report on otitis media-related hearing loss in asj (ages with stiffened joints) mutant mice, which bear a point mutation in the Enpp1 gene. Auditory-evoked brainstem response (ABR) measurements revealed that around 90% of the mutant mice (Enpp1asj/asj) tested had moderate to severe hearing impairment in at least one ear. The ABR thresholds were variable and generally elevated with age. We found otitis media with effusion (OME) in all of the hearing-impaired Enpp1asj/asj mice by anatomic and histological examinations. The volume and inflammatory cell content of the effusion varied among the asj mutant mice, but all mutants exhibited a thickened middle ear epithelium with fibrous polyps and more mucin-secreting goblet cells than controls. Other abnormalities observed in the Enpp1 mutant mice include over-ossification at the round window ridge, thickened and over-calcified stapedial artery, fusion of malleus and incus, and white patches on the inside of tympanic membrane, some of which are typical symptoms of tympanosclerosis. An excessive yellow discharge was detected in the outer ear canal of older asj mutant mice, with 100% penetrance by 5 months of age, and contributes to the progressive nature of the hearing loss. This is the first report of hearing loss and ear pathology associated with an Enpp1 mutation in mice. The Enpp1asj mutant mouse provides a new animal model for studying tympanosclerotic otitis and otitis media with effusion, and also provides a specific model for the hearing loss recently reported to be associated with human ENPP1 mutations causing generalized arterial calcification of infancy and hypophosphatemic rickets. PMID:27959908
Central role for GSK3β in the pathogenesis of arrhythmogenic cardiomyopathy
Chelko, Stephen P.; Asimaki, Angeliki; Andersen, Peter; Bedja, Djahida; Amat-Alarcon, Nuria; DeMazumder, Deeptankar; Jasti, Ravirasmi; Leber, Remo; Kleber, Andre G.; Saffitz, Jeffrey E.
2016-01-01
Arrhythmogenic cardiomyopathy (ACM) is characterized by redistribution of junctional proteins, arrhythmias, and progressive myocardial injury. We previously reported that SB216763 (SB2), annotated as a GSK3β inhibitor, reverses disease phenotypes in a zebrafish model of ACM. Here, we show that SB2 prevents myocyte injury and cardiac dysfunction in vivo in two murine models of ACM at baseline and in response to exercise. SB2-treated mice with desmosome mutations showed improvements in ventricular ectopy and myocardial fibrosis/inflammation as compared with vehicle-treated (Veh-treated) mice. GSK3β inhibition improved left ventricle function and survival in sedentary and exercised Dsg2mut/mut mice compared with Veh-treated Dsg2mut/mut mice and normalized intercalated disc (ID) protein distribution in both mutant mice. GSK3β showed diffuse cytoplasmic localization in control myocytes but ID redistribution in ACM mice. Identical GSK3β redistribution is present in ACM patient myocardium but not in normal hearts or other cardiomyopathies. SB2 reduced total GSK3β protein levels but not phosphorylated Ser 9–GSK3β in ACM mice. Constitutively active GSK3β worsens ACM in mutant mice, while GSK3β shRNA silencing in ACM cardiomyocytes prevents abnormal ID protein distribution. These results highlight a central role for GSKβ in the complex phenotype of ACM and provide further evidence that pharmacologic GSKβ inhibition improves cardiomyopathies due to desmosome mutations. PMID:27170944
Central role for GSK3β in the pathogenesis of arrhythmogenic cardiomyopathy.
Chelko, Stephen P; Asimaki, Angeliki; Andersen, Peter; Bedja, Djahida; Amat-Alarcon, Nuria; DeMazumder, Deeptankar; Jasti, Ravirasmi; MacRae, Calum A; Leber, Remo; Kleber, Andre G; Saffitz, Jeffrey E; Judge, Daniel P
2016-04-21
Arrhythmogenic cardiomyopathy (ACM) is characterized by redistribution of junctional proteins, arrhythmias, and progressive myocardial injury. We previously reported that SB216763 (SB2), annotated as a GSK3β inhibitor, reverses disease phenotypes in a zebrafish model of ACM. Here, we show that SB2 prevents myocyte injury and cardiac dysfunction in vivo in two murine models of ACM at baseline and in response to exercise. SB2-treated mice with desmosome mutations showed improvements in ventricular ectopy and myocardial fibrosis/inflammation as compared with vehicle-treated (Veh-treated) mice. GSK3β inhibition improved left ventricle function and survival in sedentary and exercised Dsg2 mut/mut mice compared with Veh-treated Dsg2 mut/mut mice and normalized intercalated disc (ID) protein distribution in both mutant mice. GSK3β showed diffuse cytoplasmic localization in control myocytes but ID redistribution in ACM mice. Identical GSK3β redistribution is present in ACM patient myocardium but not in normal hearts or other cardiomyopathies. SB2 reduced total GSK3β protein levels but not phosphorylated Ser 9-GSK3β in ACM mice. Constitutively active GSK3β worsens ACM in mutant mice, while GSK3β shRNA silencing in ACM cardiomyocytes prevents abnormal ID protein distribution. These results highlight a central role for GSKβ in the complex phenotype of ACM and provide further evidence that pharmacologic GSKβ inhibition improves cardiomyopathies due to desmosome mutations.
Otx1 null mutant mice show partial segregation of sensory epithelia comparable to lamprey ears
NASA Technical Reports Server (NTRS)
Fritzsch, B.; Signore, M.; Simeone, A.
2001-01-01
We investigated the development of inner ear innervation in Otx1 null mutants, which lack a horizontal canal, between embryonic day 12 (E12) and postnatal day 7 (P7) with DiI and immunostaining for acetylated tubulin. Comparable to control animals, horizontal crista-like fibers were found to cross over the utricle in Otx1 null mice. In mutants these fibers extend toward an area near the endolymphatic duct, not to a horizontal crista. Most Otx1 null mutants had a small patch of sensory hair cells at this position. Measurement of the area of the utricular macula suggested it to be enlarged in Otx1 null mutants. We suggest that parts of the horizontal canal crista remain incorporated in the utricular sensory epithelium in Otx1 null mutants. Other parts of the horizontal crista appear to be variably segregated to form the isolated patch of hair cells identifiable by the unique fiber trajectory as representing the horizontal canal crista. Comparison with lamprey ear innervation reveals similarities in the pattern of innervation with the dorsal macula, a sensory patch of unknown function. SEM data confirm that all foramina are less constricted in Otx1 null mutants. We propose that Otx1 is not directly involved in sensory hair cell formation of the horizontal canal but affects the segregation of the horizontal canal crista from the utricle. It also affects constriction of the two main foramina in the ear, but not their initial formation. Otx1 is thus causally related to horizontal canal morphogenesis as well as morphogenesis of these foramina.
Gonek, Maciej; Zee, Michael L.; Farnsworth, Jill C.; Amin, Randa A.; Andrews, Mary-Jeanette; Davis, Brian J.; Mackie, Ken; Morgan, Daniel J.
2017-01-01
We recently characterized S426A/S430A mutant mice expressing a desensitization-resistant form of the CB1 receptor. These mice display an enhanced response to endocannabinoids and ∆9-THC. In this study, S426A/S430A mutants were used as a novel model to test whether ethanol consumption, morphine dependence, and reward for these drugs are potentiated in mice with a “hyper-sensitive” form of CB1. Using an unlimited-access, two-bottle choice, voluntary drinking paradigm, S426A/S430A mutants exhibit modestly increased intake and preference for low (6%) but not higher concentrations of ethanol. S426A/S430A mutants and wild-type mice show similar taste preference for sucrose and quinine, exhibit normal sensitivity to the hypothermic and ataxic effects of ethanol, and have normal blood ethanol concentrations following administration of ethanol. S426A/S430A mutants develop robust conditioned place preference for ethanol (2 g/kg), morphine (10 mg/kg), and cocaine (10 mg/kg), demonstrating that drug reward is not changed in S426A/S430A mutants. Precipitated morphine withdrawal is also unchanged in opioid-dependent S426A/S430A mutant mice. Although ethanol consumption is modestly changed by enhanced CB1 signaling, reward, tolerance, and acute sensitivity to ethanol and morphine are normal in this model. PMID:28426670
mPeriod2 Brdm1 and other single Period mutant mice have normal food anticipatory activity.
Pendergast, Julie S; Wendroth, Robert H; Stenner, Rio C; Keil, Charles D; Yamazaki, Shin
2017-11-14
Animals anticipate the timing of food availability via the food-entrainable oscillator (FEO). The anatomical location and timekeeping mechanism of the FEO are unknown. Several studies showed the circadian gene, Period 2, is critical for FEO timekeeping. However, other studies concluded that canonical circadian genes are not essential for FEO timekeeping. In this study, we re-examined the effects of the Per2 Brdm1 mutation on food entrainment using methods that have revealed robust food anticipatory activity in other mutant lines. We examined food anticipatory activity, which is the output of the FEO, in single Period mutant mice. Single Per1, Per2, and Per3 mutant mice had robust food anticipatory activity during restricted feeding. In addition, we found that two different lines of Per2 mutant mice (ldc and Brdm1) anticipated restricted food availability. To determine if FEO timekeeping persisted in the absence of the food cue, we assessed activity during fasting. Food anticipatory (wheel-running) activity in all Period mutant mice was also robust during food deprivation. Together, our studies demonstrate that the Period genes are not necessary for the expression of food anticipatory activity.
Kon, Ayana; Yamazaki, Satoshi; Nannya, Yasuhito; Kataoka, Keisuke; Ota, Yasunori; Nakagawa, Masahiro Marshall; Yoshida, Kenichi; Shiozawa, Yusuke; Morita, Maiko; Yoshizato, Tetsuichi; Sanada, Masashi; Nakayama, Manabu; Koseki, Haruhiko; Nakauchi, Hiromitsu; Ogawa, Seishi
2018-02-08
Splicing factor mutations are characteristic of myelodysplastic syndromes (MDS) and related myeloid neoplasms and implicated in their pathogenesis, but their roles in the development of MDS have not been fully elucidated. In the present study, we investigated the consequence of mutant Srsf2 expression using newly generated Vav1-Cre -mediated conditional knockin mice. Mice carrying a heterozygous Srsf2 P95H mutation showed significantly reduced numbers of hematopoietic stem and progenitor cells (HSPCs) and differentiation defects both in the steady-state condition and transplantation settings. Srsf2 -mutated hematopoietic stem cells (HSCs) showed impaired long-term reconstitution compared with control mice in competitive repopulation assays. Although the Srsf2 mutant mice did not develop MDS under the steady-state condition, when their stem cells were transplanted into lethally irradiated mice, the recipients developed anemia, leukopenia, and erythroid dysplasia, which suggests the role of replicative stress in the development of an MDS-like phenotype in Srsf2 -mutated mice. RNA sequencing of the Srsf2 -mutated HSPCs revealed a number of abnormal splicing events and differentially expressed genes, including several potential targets implicated in the pathogenesis of hematopoietic malignancies, such as Csf3r , Fyn , Gnas , Nsd1 , Hnrnpa2b1 , and Trp53bp1 Among the mutant Srsf2 -associated splicing events, most commonly observed were the enhanced inclusion and/or exclusion of cassette exons, which were caused by the altered consensus motifs for the recognition of exonic splicing enhancers. Our findings suggest that the mutant Srsf2 leads to a compromised HSC function by causing abnormal RNA splicing and expression, contributing to the deregulated hematopoiesis that recapitulates the MDS phenotypes, possibly as a result of additional genetic and/or environmental insults. © 2018 by The American Society of Hematology.
Huang, Xuan; Zhou, Chengwen; Tian, Mengnan; Kang, Jing-Qiong; Shen, Wangzhen; Verdier, Kelienne; Pimenta, Aurea; MacDonald, Robert L
2017-08-01
The mutant γ-aminobutyric acid type A (GABA A ) receptor γ2(Q390X) subunit (Q351X in the mature peptide) has been associated with the epileptic encephalopathy, Dravet syndrome, and the epilepsy syndrome genetic epilepsy with febrile seizures plus (GEFS+). The mutation generates a premature stop codon that results in translation of a stable truncated and misfolded γ2 subunit that accumulates in neurons, forms intracellular aggregates, disrupts incorporation of γ2 subunits into GABA A receptors, and affects trafficking of partnering α and β subunits. Heterozygous Gabrg2 +/Q390X knock-in (KI) mice had reduced cortical inhibition, spike wave discharges on electroencephalography (EEG), a lower seizure threshold to the convulsant drug pentylenetetrazol (PTZ), and spontaneous generalized tonic-clonic seizures. In this proof-of-principal study, we attempted to rescue these deficits in KI mice using a γ2 subunit gene (GABRG2) replacement therapy. We introduced the GABRG2 allele by crossing Gabrg2 +/Q390X KI mice with bacterial artificial chromosome (BAC) transgenic mice overexpressing HA (hemagglutinin)-tagged human γ2 HA subunits, and compared GABA A receptor subunit expression by Western blot and immunohistochemical staining, seizure threshold by monitoring mouse behavior after PTZ-injection, and thalamocortical inhibition and network oscillation by slice recording. Compared to KI mice, adult mice carrying both mutant allele and transgene had increased wild-type γ2 and partnering α1 and β2/3 subunits, increased miniature inhibitory postsynaptic current (mIPSC) amplitudes recorded from layer VI cortical neurons, reduced thalamocortical network oscillations, and higher PTZ seizure threshold. Based on these results we suggest that seizures in a genetic epilepsy syndrome caused by epilepsy mutant γ2(Q390X) subunits with dominant negative effects could be rescued potentially by overexpression of wild-type γ2 subunits. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.
Yang, Min; Haase, Claus; Viljanen, Johan; Xu, Bingze; Ge, Changrong; Kihlberg, Jan; Holmdahl, Rikard
2017-12-15
APCs are known to produce NADPH oxidase (NOX) 2 - derived reactive oxygen species; however, whether and how NOX2-mediated oxidation affects redox-sensitive immunogenic peptides remains elusive. In this study, we investigated a major immunogenic peptide in glucose-6-phosphate isomerase (G6PI), a potential autoantigen in rheumatoid arthritis, which can form internal disulfide bonds. Ag presentation assays showed that presentation of this G6PI peptide was more efficient in NOX2-deficient ( Ncf1 m1J/m1J mutant) mice, compared with wild-type controls. IFN-γ - inducible lysosomal thiol reductase (GILT), which facilitates disulfide bond-containing Ag processing, was found to be upregulated in macrophages from Ncf1 mutant mice. Ncf1 mutant mice exhibited more severe G6PI peptide-induced arthritis, which was accompanied by the increased GILT expression in macrophages and enhanced Ag-specific T cell responses. Our results show that NOX2-dependent processing of the redox-sensitive autoantigens by APCs modify T cell activity and development of autoimmune arthritis. Copyright © 2017 by The American Association of Immunologists, Inc.
Heart rate dynamics in monoamine oxidase-A- and -B-deficient mice
HOLSCHNEIDER, D. P.; SCREMIN, O. U.; CHIALVO, D. R.; CHEN, K.; SHIH, J. C.
2014-01-01
Heart rate (HR) dynamics were investigated in mice deficient in monoamine oxidase A and B, whose phenotype includes elevated tissue levels of norepinephrine, serotonin, dopamine, and phenylethylamine. In their home cages, spectral analysis of R-R intervals revealed more pronounced fluctuations at all frequencies in the mutants compared with wild-type controls, with a particular enhancement at 1–4 Hz. No significant genotypic differences in HR variability (HRV) or entropies calculated from Poincaré plots of the R-R intervals were noted. During exposure to the stress of a novel environment, HR increased and HRV decreased in both genotypes. However, mutants, unlike controls, demonstrated a rapid return to baseline HR during the 10-min exposure. Such modulation may result from an enhanced vagal tone, as suggested by the observation that mutants responded to cholinergic blockade with a decrease in HRV and a prolonged tachycardia greater than controls. Monoamine oxidase-deficient mice may represent a useful experimental model for studying compensatory mechanisms responsible for changes in HR dynamics in chronic states of high sympathetic tone. PMID:11959640
Wu, Xue; Yin, Jiani; Simpson, Jeremy; Kim, Kyoung-Han; Gu, Shengqing; Hong, Jenny H.; Bayliss, Peter; Backx, Peter H.
2012-01-01
Noonan syndrome (NS) is a relatively common autosomal dominant disorder characterized by congenital heart defects, short stature, and facial dysmorphia. NS is caused by germ line mutations in several components of the RAS–RAF–MEK–extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) pathway, including both kinase-activating and kinase-impaired alleles of RAF1 (∼3 to 5%), which encodes a serine-threonine kinase for MEK1/2. To investigate how kinase-impaired RAF1 mutants cause NS, we generated knock-in mice expressing Raf1D486N. Raf1D486N/+ (here D486N/+) female mice exhibited a mild growth defect. Male and female D486N/D486N mice developed concentric cardiac hypertrophy and incompletely penetrant, but severe, growth defects. Remarkably, Mek/Erk activation was enhanced in Raf1D486N-expressing cells compared with controls. RAF1D486N, as well as other kinase-impaired RAF1 mutants, showed increased heterodimerization with BRAF, which was necessary and sufficient to promote increased MEK/ERK activation. Furthermore, kinase-activating RAF1 mutants also required heterodimerization to enhance MEK/ERK activation. Our results suggest that an increased heterodimerization ability is the common pathogenic mechanism for NS-associated RAF1 mutations. PMID:22826437
Vitamin C restores healthy aging in a mouse model for Werner syndrome
Massip, Laurent; Garand, Chantal; Paquet, Eric R.; Cogger, Victoria C.; O’Reilly, Jennifer N.; Tworek, Leslee; Hatherell, Avril; Taylor, Carla G.; Thorin, Eric; Zahradka, Peter; Le Couteur, David G.; Lebel, Michel
2013-01-01
Werner syndrome (WS) is a premature aging disorder caused by mutations in a RecQ-like DNA helicase. Mice lacking the helicase domain of the WRN homologue exhibit many phenotypic features of WS, including a prooxidant status and a shorter mean life span compared to wild-type animals. Here, we show that Wrn mutant mice also develop premature liver sinusoidal endothelial defenestration along with inflammation and metabolic syndrome. Vitamin C supplementation rescued the shorter mean life span of Wrn mutant mice and reversed several age-related abnormalities in adipose tissues and liver endothelial defenestration, genomic integrity, and inflammatory status. At the molecular level, phosphorylation of age-related stress markers like Akt kinase-specific substrates and the transcription factor NF-κB, as well as protein kinase Cδ and Hif-1α transcription factor levels, which are increased in the liver of Wrn mutants, were normalized by vitamin C. Vitamin C also increased the transcriptional regulator of lipid metabolism PPARα. Finally, microarray and gene set enrichment analyses on liver tissues revealed that vitamin C decreased genes normally up-regulated in human WS fibroblasts and cancers, and it increased genes involved in tissue injury response and adipocyte dedifferentiation in obese mice. Vitamin C did not have such effect on wild-type mice. These results indicate that vitamin C supplementation could be beneficial for patients with WS. PMID:19741171
Kim, Ha Kun; Chung, Youn Wook; Chock, P. Boon; Yim, Moon B.
2011-01-01
Missense mutations of SOD1 are linked to familial amyotrophic lateral sclerosis (FALS) through a yet-to-be identified toxic-gain-of-function. One of the proposed mechanisms involves enhanced aggregate formation. However, a recent study showed that dual transgenic mice overexpressing both G93A and CCS copper chaperone (G93A/CCS) exhibit no SOD1-positive aggregates yet show accelerated FALS symptoms with enhanced mitochondrial pathology compared to G93A mice. Using a dicistronic mRNA to simultaneously generate hSOD1 mutants, G93A, A4V and G85R, and hCCS in AAV293 cells, we revealed: (i) CCS is degraded primarily via a macroautophagy pathway. It forms a stable heterodimer with inactive G85R, and via its novel copper chaperone-independent molecular chaperone activity facilitates G85R degradation via a macroautophagy-mediated pathway. For active G93A and A4V, CCS catalyzes their maturation to form active and soluble homodimers. (ii) CCS reduces, under non-oxidative conditions, yet facilitates in the presence of H2O2, mitochondrial translocation of inactive SOD1 mutants. These results, together with previous reports showing FALS SOD1 mutants enhanced free radical-generating activity, provide a mechanistic explanation for the observations with G93A/CCS dual transgenic mice and suggest that free radical generation by FALS SOD1, enhanced by CCS, may, in part, be responsible for the FALS SOD1 mutant-linked aggregation, mitochondrial translocation, and degradation. PMID:21354101
The Tennessee Mouse Genome Consortium: Identification of ocular mutants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jablonski, Monica M.; Wang, Xiaofei; Lu, Lu
2005-06-01
The Tennessee Mouse Genome Consortium (TMGC) is in its fifth year of a ethylnitrosourea (ENU)-based mutagenesis screen to detect recessive mutations that affect the eye and brain. Each pedigree is tested by various phenotyping domains including the eye, neurohistology, behavior, aging, ethanol, drug, social behavior, auditory, and epilepsy domains. The utilization of a highly efficient breeding protocol and coordination of various universities across Tennessee makes it possible for mice with ENU-induced mutations to be evaluated by nine distinct phenotyping domains within this large-scale project known as the TMGC. Our goal is to create mutant lines that model human diseases andmore » disease syndromes and to make the mutant mice available to the scientific research community. Within the eye domain, mice are screened for anterior and posterior segment abnormalities using slit-lamp biomicroscopy, indirect ophthalmoscopy, fundus photography, eye weight, histology, and immunohistochemistry. As of January 2005, we have screened 958 pedigrees and 4800 mice, excluding those used in mapping studies. We have thus far identified seven pedigrees with primary ocular abnormalities. Six of the mutant pedigrees have retinal or subretinal aberrations, while the remaining pedigree presents with an abnormal eye size. Continued characterization of these mutant mice should in most cases lead to the identification of the mutated gene, as well as provide insight into the function of each gene. Mice from each of these pedigrees of mutant mice are available for distribution to researchers for independent study.« less
Rescue of volume-regulated anion current by bestrophin mutants with altered charge selectivity.
Chien, Li-Ting; Hartzell, H Criss
2008-11-01
Mutations in human bestrophin-1 are linked to various kinds of retinal degeneration. Although it has been proposed that bestrophins are Ca(2+)-activated Cl(-) channels, definitive proof is lacking partly because mice with the bestrophin-1 gene deleted have normal Ca(2+)-activated Cl(-) currents. Here, we provide compelling evidence to support the idea that bestrophin-1 is the pore-forming subunit of a cell volume-regulated anion channel (VRAC) in Drosophila S2 cells. VRAC was abolished by treatment with RNAi to Drosophila bestrophin-1. VRAC was rescued by overexpressing bestrophin-1 mutants with altered biophysical properties and responsiveness to sulfhydryl reagents. In particular, the ionic selectivity of the F81C mutant changed from anionic to cationic when the channel was treated with the sulfhydryl reagent, sodium (2-sulfonatoethyl) methanethiosulfonate (MTSES(-)) (P(Cs)/P(Cl) = 0.25 for native and 2.38 for F81C). The F81E mutant was 1.3 times more permeable to Cs(+) than Cl(-). The finding that VRAC was rescued by F81C and F81E mutants with different biophysical properties shows that bestrophin-1 is a VRAC in S2 cells and not simply a regulator or an auxiliary subunit. F81C overexpressed in HEK293 cells also exhibits a shift of ionic selectivity after MTSES(-) treatment, although the effect is quantitatively smaller than in S2 cells. To test whether bestrophins are VRACs in mammalian cells, we compared VRACs in peritoneal macrophages from wild-type mice and mice with both bestrophin-1 and bestrophin-2 disrupted (best1(-/-)/best2(-/-)). VRACs were identical in wild-type and best1(-/-)/best2(-/-) mice, showing that bestrophins are unlikely to be the classical VRAC in mammalian cells.
Zaraket, Hassan; Bridges, Olga A; Russell, Charles J
2013-05-01
After receptor binding and internalization during influenza virus entry, the hemagglutinin (HA) protein is triggered by low pH to undergo irreversible conformational changes that mediate membrane fusion. To investigate how mutations that alter the activation pH of the HA protein influence the fitness of an avian H5N1 influenza virus in a mammalian model, we infected C57BL/6J or DBA/2J mice and compared the replication and virulence of recombinant A/chicken/Vietnam/C58/04 (H5N1) HA-Y231H mutant, wild-type, and HA-H241Q and HA-K582I mutant viruses that have HA activation pH values of 6.3, 5.9, 5.6, and 5.4, respectively. The HA-Y231H mutant virus was highly susceptible to acid inactivation in vitro and was attenuated for growth and virulence in mice, suggesting that an H5N1 HA protein triggered at pH 6.3 is too unstable for the virus to remain fit. Wild-type and HA-H241Q viruses were similar in pathogenicity and grew to similar levels in mice, ducks, and cell cultures derived from both avian and mammalian tissues, suggesting that H5N1 HA proteins triggered at pH values in the range of 5.9 to 5.6 broadly support replication. The HA-K582I mutant virus had greater growth and virulence in DBA/2J mice than the wild type did, although the mutant virus was highly attenuated in ducks. The data suggest that adaptation of avian H5N1 influenza virus for infection in mammals is supported by a decrease in the HA activation pH to 5.4. Identification of the HA activation pH as a host-specific infectivity factor is expected to aid in the surveillance and risk assessment of currently circulating H5N1 influenza viruses.
Repeated psychosocial stress at night affects the circadian activity rhythm of male mice.
Bartlang, Manuela S; Oster, Henrik; Helfrich-Förster, Charlotte
2015-06-01
We have recently shown that molecular rhythms in the murine suprachiasmatic nucleus (SCN) are affected by repeated social defeat (SD) during the dark/active phase (social defeat dark [SDD]), while repeated SD during the light/inactive phase (social defeat light [SDL]) had no influence on PERIOD2::LUCIFERASE explant rhythms in the SCN. Here we assessed the effects of the same stress paradigm by in vivo biotelemetry on 2 output rhythms of the circadian clock (i.e., activity and core body temperature) in wild-type (WT) and clock-deficient Period (Per)1/2 double-mutant mice during and following repeated SDL and SDD. In general, stress had more pronounced effects on activity compared to body temperature rhythms. Throughout the SD procedure, activity and body temperature were markedly increased during the 2 h of stressor exposure at zeitgeber time (ZT) 1 to ZT3 (SDL mice) and ZT13 to ZT15 (SDD mice), which was compensated by decreased activity during the remaining dark phase (SDL and SDD mice) and light phase (SDL mice) in both genotypes. Considerable differences in the activity between SDL and SDD mice were seen in the poststress period. SDD mice exhibited a reduced first activity bout at ZT13, delayed activity onset, and, consequently, a more narrow activity bandwidth compared with single-housed control (SHC) and SDL mice. Given that this effect was absent in Per1/2 mutant SDD mice and persisted under constant darkness conditions in SDD WT mice, it suggests an involvement of the endogenous clock. Taken together, the present findings demonstrate that SDD has long-lasting consequences for the functional output of the biological clock that, at least in part, appear to depend on the clock genes Per1 and Per2. © 2015 The Author(s).
Shoaib, M; Gommans, J; Morley, A; Stolerman, I P; Grailhe, R; Changeux, J-P
2002-03-01
The subtypes of nicotinic receptors at which the behavioural effects of nicotine originate are not fully understood. These experiments use mice lacking the beta2 subunit of nicotinic receptors to investigate its role in nicotine discrimination and conditioned taste aversion (CTA). Wild-type and mutant mice were trained either in a two-lever nicotine discrimination procedure using a tandem schedule of food reinforcement, or in a counterbalanced two-flavour CTA procedure. Rates of lever-pressing of wild-type and mutant mice did not differ. Wild-type mice acquired discrimination of nicotine (0.4 or 0.8 mg/kg) rapidly and exhibited steep dose-response curves. Mutant mice failed to acquire these nicotine discriminations and exhibited flat dose-response curves. Both wild-type and mutant mice acquired discrimination of nicotine (1.6 mg/kg) although discrimination performance was weak in the mutants. Nicotine initially reduced response rates in wild-type and mutant mice, and tolerance developed to this effect in each genotype. Both genotypes acquired discrimination of morphine (3 mg/kg) with similar degrees of accuracy, and dose-response curves for morphine discrimination in the two genotypes were indistinguishable. Nicotine produced dose-related CTA in both genotypes, but the magnitude of the effect was less in the mutants than in the wild-type controls. It is concluded that nicotinic receptors containing the beta2 subunit play a major role in the discriminative stimulus and taste aversion effects of nicotine that may reflect psychological aspects of tobacco dependence. Such receptors appear to have a less crucial role in the response-rate, reducing effects of nicotine and in nicotine tolerance.
Comparative analysis of charged particle-induced autosomal mutations in murine cells and tissues
NASA Astrophysics Data System (ADS)
Kronenberg, Amy; Gauny, Stacey; Turker, Mitchell; Dan, Cristian; Kwoh, Ely
Carcinogenesis requires the accumulation of mutations and most of these mutations of occur on autosomes. This study seeks to determine the effect of the tissue microenvironment on the frequency and types of autosomal mutations in epithelial cells exposed to the types of charged particles in space radiation environments. Epithelial cells are the principal cells at risk for the development of solid cancers in humans. Aprt heterozygous mice from a cross between C57BL/6 and DBA/2 mice (B6D2F1) are used for these studies. The tissue of interest here is the kidney. We evaluated the effects of Fe ion on cytotoxicity, mutant frequency, and mutant spectra in kidney epithelium exposed in vivo. In vitro studies use primary kidney clones from B6D2F1 mice. Animals or cells were exposed to graded doses (0-2 Gy) of 1 GeV/amu Fe ions at the NASA Space Radiation Laboratories at Brookhaven National Laboratory. Animals were given whole body exposure in plexiglas holders. Cells were irradiated in T-75 flasks as monolayers. Cytotoxicity for cells exposed as monolayers were performed immediately post-irradiation. In vitro mutation assays were performed after a 5-6 day expression period post-irradiation, at which time cells were seeded in standard medium supplemented with 2,6 diaminopurine to screen for Aprt mutants. Colony formation was assessed in parallel in standard medium. In contrast, mice were euthanized after 2-4 months post-irradiation (early) or 8-10 months post-irradiation (late) to determine the cytotoxic and mutagenic response to Fe ion irradiation. Once the kidneys were digested, the cytotoxicity and mutation assays were performed using the same methodology employed for cells in vitro. Individual Apr t mutant colonies were collected from separate flasks exposed in vitro to 2 Gy of Fe ions. A similar group of Aprt mutants were collected from separate, un-irradiated flasks Aprt mutant colonies were also collected from individual kidneys for un-irradiated mice and for mice exposed to 2 Gy of Fe ions. Mutant spectra were analyzed via PCR using a series of heterozygous markers along mouse chromosome 8. Cytotoxicity assays were performed immediately after Fe ion exposure of cells from two primary clones. Cells irradiated in vitro demonstrated a dose-dependent decrement in cloning efficiency with no evidence of a shoulder. The results demonstrate the two clones behave similarly (unpaired t-test, p>0.3) with a D0 of 84.3 cGy for the combined data set. Mutation data were obtained using cells from one of the primary clones. In three experiments, we observed a linear dose-response for Aprt mutation with an induced mutant frzction of 1.06 x 10-3 /Gy. Kidney epithelial cells irradiated in vivo and incubated for 2-4 months in situ prior to harvest also showed an exponential reduction of cloning efficiency. Cells harvested 8-10 months postirradiation showed evidence of recovery for doses up to 1.5 Gy, but there was no improvement in cloning efficiency for kidney cells exposed to 2 Gy Fe ions in vivo evaluated at the late time point. Results for Aprt mutation induction in vivo indicated considerable inter-animal variation within each dose group (0, 1.0, 1.5 and 2 Gy). Fe ion exposures were mutagenic to the kidney, even at the lowest dose (p<0.01). A comparison of the mutant frequency results at the two harvest times indicates that the dose response did not vary with incubation time in vivo. Analysis of the pooled data from the 2-4 months harvests and the 8-10 month harvests indicated an increase in mutant frequency of 1.49 fold per Gy (p=0.01, CI 1.11-2.01). Molecular analysis of Aprtdeficient cells collected after a 2 Gy exposure to Fe ions in vitro showed an increased proportion of mutants arising via interstitial deletion or mitotic recombination, with an indication of an increase in chromosome loss. Similar results have been obtained for Aprt mutants isolated from mice exposed to 2 Gy of Fe ions, as compared with mutants collected from sham-irradiated mice. Taken together, the results to date demonstrate that Fe ions are mutagenic to mouse kidney epithelium exposed in vitro assayed at short times post-irradiation and they are also mutagenic to kidney epithelium exposed in vivo. While cytotoxicity is somewhat ameliorated in vivo, toxicity was evident at the highest dose up to 8-10 months post-exposure. A comparison of the Aprt mutant frequency analyses (in vitro vs. in vivo) and mutation spectra analyses (in vitro vs. in vivo) reflect similar trends. Supported by NASA grant T-403X to A. Kronenberg.
ERIC Educational Resources Information Center
Soto, Florentina; Giese, K. Peter; Edwards, Frances A.; Parsley, Stephanie L.; Pilgram, Sara M.
2007-01-01
[alpha]CaMKII[superscript T286A] mutant mice lack long-term potentiation (LTP) in the hippocampal CA1 region and are impaired in spatial learning. In situ hybridization confirms that the mutant mice show the same developmental expression of [alpha]CaMKII as their wild-type littermates. A simple hypothesis would suggest that if LTP is a substrate…
Rogers, Tiffany D.; Dickson, Price E.; McKimm, Eric; Heck, Detlef H.; Goldowitz, Dan; Blaha, Charles D.; Mittleman, Guy
2013-01-01
Imaging, clinical and pre-clinical studies have provided ample evidence for a cerebellar involvement in cognitive brain function including cognitive brain disorders, such as autism and schizophrenia. We previously reported that cerebellar activity modulates dopamine release in the mouse medial prefrontal cortex (mPFC) via two distinct pathways: (1) cerebellum to mPFC via dopaminergic projections from the ventral tegmental area [VTA] and (2) cerebellum to mPFC via glutamatergic projections from the mediodorsal and ventrolateral thalamus (ThN md and vl). The present study compared functional adaptations of cerebello-cortical circuitry following developmental cerebellar pathology in a mouse model of developmental loss of Purkinje cells (Lurcher) and a mouse model of fragile X syndrome (Fmr1 KO mice). Fixed potential amperometry was used to measure mPFC dopamine release in response to cerebellar electrical stimulation. Mutant mice of both strains showed an attenuation in cerebellar-evoked mPFC dopamine release compared to respective wildtype mice. This was accompanied by a functional reorganization of the VTA and thalamic pathways mediating cerebellar modulation of mPFC dopamine release. Inactivation of the VTA pathway by intra-VTA lidocaine or kynurenate infusions decreased dopamine release by 50% in wildtype and 20-30% in mutant mice of both strains. Intra-ThN vl infusions of either drug decreased dopamine release by 15% in wildtype and 40% in mutant mice of both strains, while dopamine release remained relatively unchanged following intra-ThN md drug infusions. These results indicate a shift in strength towards the thalamic vl projection, away from the VTA. Thus, cerebellar neuropathologies associated with autism spectrum disorders may cause a reduction in cerebellar modulation of mPFC dopamine release that is related to a reorganization of the mediating neuronal pathways. PMID:23436049
Rogers, Tiffany D; Dickson, Price E; McKimm, Eric; Heck, Detlef H; Goldowitz, Dan; Blaha, Charles D; Mittleman, Guy
2013-08-01
Imaging, clinical, and pre-clinical studies have provided ample evidence for a cerebellar involvement in cognitive brain function including cognitive brain disorders, such as autism and schizophrenia. We previously reported that cerebellar activity modulates dopamine release in the mouse medial prefrontal cortex (mPFC) via two distinct pathways: (1) cerebellum to mPFC via dopaminergic projections from the ventral tegmental area (VTA) and (2) cerebellum to mPFC via glutamatergic projections from the mediodorsal and ventrolateral thalamus (ThN md and vl). The present study compared functional adaptations of cerebello-cortical circuitry following developmental cerebellar pathology in a mouse model of developmental loss of Purkinje cells (Lurcher) and a mouse model of fragile X syndrome (Fmr1 KO mice). Fixed potential amperometry was used to measure mPFC dopamine release in response to cerebellar electrical stimulation. Mutant mice of both strains showed an attenuation in cerebellar-evoked mPFC dopamine release compared to respective wildtype mice. This was accompanied by a functional reorganization of the VTA and thalamic pathways mediating cerebellar modulation of mPFC dopamine release. Inactivation of the VTA pathway by intra-VTA lidocaine or kynurenate infusions decreased dopamine release by 50 % in wildtype and 20-30 % in mutant mice of both strains. Intra-ThN vl infusions of either drug decreased dopamine release by 15 % in wildtype and 40 % in mutant mice of both strains, while dopamine release remained relatively unchanged following intra-ThN md drug infusions. These results indicate a shift in strength towards the thalamic vl projection, away from the VTA. Thus, cerebellar neuropathologies associated with autism spectrum disorders may cause a reduction in cerebellar modulation of mPFC dopamine release that is related to a reorganization of the mediating neuronal pathways.
Lackner, Michaela; Rambach, Günter; Jukic, Emina; Sartori, Bettina; Fritz, Josef; Seger, Christoph; Hagleitner, Magdalena; Speth, Cornelia; Lass-Flörl, Cornelia
2017-12-08
No data are available on the in vivo impact of infections with in vitro azole-resistant Aspergillus fumigatus in immunocompetent hosts. Here, the aim was to investigate fungal fitness and treatment response in immunocompetent mice infected with A. fumigatus (parental strain [ps]) and isogenic mutants carrying either the mutation M220K or G54W (cyp51A). The efficacy of itraconazole (ITC) and posaconazole (PSC) was investigated in mice, intravenously challenged either with a single or a combination of ps and mutants (6 × 105 conidia/mouse). Organ fungal burden and clinical parameters were measured. In coinfection models, no fitness advantage was observed for the ps strain when compared to the mutants (M220K and G54W) independent of the presence or absence of azole-treatment. For G54W, M220K, and the ps, no statistically significant difference in ITC and PSC treatment was observed in respect to fungal kidney burden. However, clinical parameters suggest that in particular the azole-resistant strain carrying the mutation G54W caused a more severe disease than the ps strain. Mice infected with G54W showed a significant decline in body weight and lymphocyte counts, while spleen/body weight ratio and granulocyte counts were increased. In immunocompetent mice, in vitroazole-resistance did not translate into therapeutic failure by either ITC or PSC; the immune system appears to play the key role in clearing the infection. © The Author 2017. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Lin, Zhijie; Tang, Peipei; Jiao, Yang; Kang, Xilong; Li, Qiuchun; Xu, Xiulong; Sun, Jun; Pan, Zhiming; Jiao, Xinan
2017-06-24
Salmonella enterica serovar Enteritidis (S. Enteritidis) is a highly adaptive pathogen in both humans and animals. As a Salmonella Type III secretion system (T3SS) effector, Salmonella protein tyrosine phosphatase (SptP) is critical for virulence in this genus. To investigate the feasibility of using C50336ΔsptP as a live attenuated oral vaccine in mice, we generated the sptP gene deletion mutant C50336ΔsptP in S. Enteritidis strain C50336 by λ-Red mediated recombination and evaluated the protective ability of the S. Enteritidis sptP mutant strain C50336ΔsptP against mice salmonellosis. We found that C50336ΔsptP was a highly immunogenic, effective, and safe vaccine in mice. Compared to wild-type C50336, C50336ΔsptP showed reduced virulence as confirmed by the 50% lethal dose (LD 50 ) in orally infected mice. C50336ΔsptP also showed decreased bacterial colonization both in vivo and in vitro. Immunization with C50336ΔsptP had no significant effect on body weight and did not result in obvious clinical symptoms relative to control animals treated with phosphate-buffered saline (PBS), but induced humoral and cellular immune responses at 12 and 26 days post inoculation. Immunization with 1 × 10 8 colony-forming units (CFU) C50336ΔsptP per mouse provided 100% protection against subsequent challenge with the wild-type C50336 strain, and immunized mice showed mild and temporary clinical symptoms as compared to those of control group. These results demonstrate that C50336ΔsptP can be a live attenuated oral vaccine for salmonellosis.
Homozygous carnitine palmitoyltransferase 1a (liver isoform) deficiency is lethal in the mouse.
Nyman, Lara R; Cox, Keith B; Hoppel, Charles L; Kerner, Janos; Barnoski, Barry L; Hamm, Doug A; Tian, Liqun; Schoeb, Trenton R; Wood, Philip A
2005-01-01
To better understand carnitine palmitoyltransferase 1a (liver isoform, gene=Cpt-1a, protein=CPT-1a) deficiency in human disease, we developed a gene knockout mouse model. We used a replacement gene targeting strategy in ES cells that resulted in the deletion of exons 11-18, thus producing a null allele. Homozygous deficient mice (CPT-1a -/-) were not viable. There were no CPT-1a -/- pups, embryos or fetuses detected from day 10 of gestation to term. FISH analysis demonstrated targeting vector recombination at the expected single locus on chromosome 19. The inheritance pattern from heterozygous matings was skewed in both C57BL/6NTac, 129S6/SvEvTac (B6;129 mixed) and 129S6/SvEvTac (129 coisogenic) genetic backgrounds biased toward CPT-1a +/- mice (>80%). There was no sex preference with regard to germ-line transmission of the mutant allele. CPT-1a +/- mice had decreased Cpt-1a mRNA expression in liver, heart, brain, testis, kidney, and white fat. This resulted in 54.7% CPT-1 activity in liver from CPT-1a +/- males but no significant difference in females as compared to CPT-1a +/+ controls. CPT-1a +/- mice showed no fatty change in liver and were cold tolerant. Fasting free fatty acid concentrations were significantly elevated, while blood glucose concentrations were significantly lower in 6-week-old CPT-1a +/- mice compared to controls. Although the homozygous mutants were not viable, we did find some aspects of haploinsufficiency in the CPT-1a +/- mutants, which will make them an important mouse model for studying the role of CPT-1a in human disease.
Medkova, A Iu; Siniashina, L N; Rumiantseva, Iu P; Voronina, O L; Kunda, M S; Karataev, G I
2013-01-01
The duration of the persistence and dynamics of accumulation of insertion bvg- Bordetella pertussis mutants were studied in lungs of laboratory mice after intranasal and intravenous challenge by virulent bacteria of the causative agent of whooping cough. The capability of the virulent B. pertussis bacteria to long-term persistence in the body of mice was tested. Using the real-time PCR approximately hundred genome equivalents of the B. pertussis DNA were detected in lungs of mice in two months after infection regardless of the way of challenge. Using the bacterial test bacteria were identified during only four weeks after challenge. Bvg- B. pertussis avirulent mutants were accumulated for the infection time. The percentage of the avirulent bacteria in the B. pertussis population reached 50% in 7-9 weeks after challenge. The obtained results show that the laboratory mice can be used for study of the B. pertussis insertion mutant formation dynamics in vivo and confirm the hypothesis about insertional bvg- B. pertussis virulent mutants accumulation during development of pertussis infection in human.
Csf3r mutations in mice confer a strong clonal HSC advantage via activation of Stat5
Liu, Fulu; Kunter, Ghada; Krem, Maxwell M.; Eades, William C.; Cain, Jennifer A.; Tomasson, Michael H.; Hennighausen, Lothar; Link, Daniel C.
2008-01-01
A fundamental property of leukemic stem cells is clonal dominance of the bone marrow microenvironment. Truncation mutations of CSF3R, which encodes the G-CSF receptor (G-CSFR), are implicated in leukemic progression in patients with severe congenital neutropenia. Here we show that expression of a truncated mutant Csf3r in mice confers a strong clonal advantage at the HSC level that is dependent upon exogenous G-CSF. G-CSF–induced proliferation, phosphorylation of Stat5, and transcription of Stat5 target genes were increased in HSCs isolated from mice expressing the mutant Csf3r. Conversely, the proliferative advantage conferred by the mutant Csf3r was abrogated in myeloid progenitors lacking both Stat5A and Stat5B, and HSC function was reduced in mice expressing a truncated mutant Csf3r engineered to have impaired Stat5 activation. These data indicate that in mice, inappropriate Stat5 activation plays a key role in establishing clonal dominance by stem cells expressing mutant Csf3r. PMID:18292815
Zuckermann, F A; Zsak, L; Mettenleiter, T C; Ben-Porat, T
1990-01-01
Pseudorabies virus (PrV) is the etiological agent of Aujeszky's disease, a disease that causes heavy economic losses in the swine industry. A rational approach to the generation of an effective vaccine against this virus requires an understanding of the immune response induced by it and of the role of the various viral antigens in inducing such a response. We have constructed mutants of PrV [strain PrV (Ka)] that differ from each other only in expression of the viral nonessential glycoproteins gI, gp63, gX, and gIII (i.e., are otherwise isogenic). These mutants were used to ascertain the importance of each of the nonessential glycoproteins in eliciting a PrV-specific cytotoxic T-lymphocyte (CTL) response in mice and pigs. Immunization of DBA/2 mice and pigs with a thymidine kinase-deficient (TK-) mutant of PrV elicits the formation of cytotoxic cells that specifically lyse syngeneic infected target cells. These PrV-specific cytolytic cells have the phenotype of major histocompatibility complex class I antigen-restricted CTLs. The relative number of CTLs specific for glycoproteins gI, gp63, gX, and gIII induced in mice vaccinated with a TK- mutant of PrV was ascertained by comparing their levels of cytotoxicity against syngeneic cells infected with either wild-type virus or gI-/gp63-, gX-, or gIII- virus deletion mutants. The PrV-specific CLTs were significantly less effective in lysing gIII(-)-infected targets than in lysing gI-/gp63-, gX-, or wild-type-infected targets. The in vitro secondary CTL response of lymphocytes obtained from either mice or pigs 6 or more weeks after immunization with a TK- mutant of PrV was also tested. Lymphocytes obtained from these animals were cultured with different glycoprotein-deficient mutants of PrV, and their cytolytic activities against wild-type-infected targets were ascertained. The importance of each of the nonessential viral glycoproteins in eliciting CTLs was assessed from the effectiveness of each of the virus mutants to stimulate the secondary anti-PrV CTL response. Cultures of both murine or swine lymphocytes that had been stimulated with gIII- virus contained only approximately half as many lytic units as did those stimulated with either wild-type virus, a gX- virus mutant, or a gI-/gp63- virus mutant. Thus, a large proportion of the PrV-specific CTLs that are induced by immunization with PrV of both mice and pigs are directed against gIII. Furthermore, glycoproteins gI, gp63, and gX play at most a minor role in the CTL response of these animals to PrV. PMID:2153244
Dependence of paranodal junctional gap width on transverse bands.
Rosenbluth, Jack; Petzold, Chris; Peles, Elior
2012-08-15
Mouse mutants with paranodal junctional (PNJ) defects display variable degrees of neurological impairment. In this study we compare control paranodes with those from three mouse mutants that differ with respect to a conspicuous PNJ component, the transverse bands (TBs). We hypothesize that TBs link the apposed junctional membranes together at a fixed distance and thereby determine the width of the junctional gap, which may in turn determine the extent to which nodal action currents can be short-circuited underneath the myelin sheath. Electron micrographs of aldehyde-fixed control PNJs, in which TBs are abundant, show a consistent junctional gap of ∼3.5 nm. In Caspr-null PNJs, which lack TBs entirely, the gap is wider (∼6-7 nm) and more variable. In CST-null PNJs, which have only occasional TBs, the mean PNJ gap width is comparable to that in Caspr-null mice. In the shaking mutant, in contrast, which has approximately 60% of the normal complement of TBs, mean PNJ gap width is not significantly different from that in controls. Correspondingly, shaking mice are much less impaired neurologically than either Caspr-null or CST-null mice. We conclude that in the absence or gross diminution of TBs, mean PNJ gap width increases significantly and suggest that this difference could underlie some of the neurological impairment seen in those mutants. Surprisingly, even in the absence of TBs, paranodes are to some extent maintained in their usual form, implying that in addition to TBs, other factors govern the formation and maintenance of overall paranodal structure. Copyright © 2012 Wiley Periodicals, Inc.
Ryazanova, Lillia V.; Hu, Zhixian; Suzuki, Sayuri; Chubanov, Vladimir; Fleig, Andrea; Ryazanov, Alexey G.
2014-01-01
TRPM7 is an unusual bi-functional protein containing an ion channel covalently linked to a protein kinase domain. TRPM7 is implicated in regulating cellular and systemic magnesium homeostasis. While the biophysical properties of TRPM7 ion channel and its function are relatively well characterized, the function of the TRPM7 enzymatically active kinase domain is not understood yet. To investigate the physiological role of TRPM7 kinase activity, we constructed mice carrying an inactive TRPM7 kinase. We found that these mice were resistant to dietary magnesium deprivation, surviving three times longer than wild type mice; also they displayed decreased chemically induced allergic reaction. Interestingly, mutant mice have lower magnesium bone content compared to wild type mice when fed regular diet; unlike wild type mice, mutant mice placed on magnesium-depleted diet did not alter their bone magnesium content. Furthermore, mouse embryonic fibroblasts isolated from TRPM7 kinase-dead animals exhibited increased resistance to magnesium deprivation and oxidative stress. Finally, electrophysiological data revealed that the activity of the kinase-dead TRPM7 channel was not significantly altered. Together, our results suggest that TRPM7 kinase is a sensor of magnesium status and provides coordination of cellular and systemic responses to magnesium deprivation. PMID:25534891
Leroy, Karelle; Ando, Kunie; Laporte, Vincent; Dedecker, Robert; Suain, Valérie; Authelet, Michèle; Héraud, Céline; Pierrot, Nathalie; Yilmaz, Zehra; Octave, Jean-Noël; Brion, Jean-Pierre
2012-12-01
Lack of tau expression has been reported to protect against excitotoxicity and to prevent memory deficits in mice expressing mutant amyloid precursor protein (APP) identified in familial Alzheimer disease. In APP mice, mutant presenilin 1 (PS1) enhances generation of Aβ42 and inhibits cell survival pathways. It is unknown whether the deficient phenotype induced by concomitant expression of mutant PS1 is rescued by absence of tau. In this study, we have analyzed the effect of tau deletion in mice expressing mutant APP and PS1. Although APP/PS1/tau(+/+) mice had a reduced survival, developed spatial memory deficits at 6 months and motor impairments at 12 months, these deficits were rescued in APP/PS1/tau(-/-) mice. Neuronal loss and synaptic loss in APP/PS1/tau(+/+) mice were rescued in the APP/PS1/tau(-/-) mice. The amyloid plaque burden was decreased by roughly 50% in the cortex and the spinal cord of the APP/PS1/tau(-/-) mice. The levels of soluble and insoluble Aβ40 and Aβ42, and the Aβ42/Aβ40 ratio were reduced in APP/PS1/tau(-/-) mice. Levels of phosphorylated APP, of β-C-terminal fragments (CTFs), and of β-secretase 1 (BACE1) were also reduced, suggesting that β-secretase cleavage of APP was reduced in APP/PS1/tau(-/-) mice. Our results indicate that tau deletion had a protective effect against amyloid induced toxicity even in the presence of mutant PS1 and reduced the production of Aβ. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
A new spontaneous allele at the pink-eyed dilution (p) locus discovered in Mus musculus castaneus.
Tsuji, A; Wakayama, T; Ishikawa, A
1995-10-01
Mutant mice characterized by a cream coat and pink eyes were spontaneously discovered among the descendants of Indonesian wild mice (Mus musculus castaneus). This mutant phenotype was controlled by a single autosomal recessive gene that was allelic to the pink-eyed dilution (p) gene. The mutant mouse phenotypically resembled the original p mouse which was the first mutant identified at this locus. Nevertheless, these two alleles differed in origin, a previous report suggesting that the original p allele was derived from Japanese wild mice (M. m. molossinus). Thus the symbol pcas (pink-eyed castaneus) was proposed for the present mutation allele.
Kupz, Andreas; Fischer, André; Nies, Dietrich H; Grass, Gregor; Göbel, Ulf B; Bereswill, Stefan; Heimesaat, Markus M
2013-09-01
Metal ions are integral parts of pro- as well as eukaryotic cell homeostasis. Escherichia coli proved a valuable in vitro model organism to elucidate essential mechanisms involved in uptake, storage, and export of metal ions. Given that E. coli Nissle 1917 is able to overcome murine colonization resistance, we generated several E. coli Nissle 1917 mutants with defects in zinc, iron, copper, nickel, manganese homeostasis and performed a comprehensive survey of the impact of metal ion transport and homeostasis for E. coli colonization capacities within the murine intestinal tract. Seven days following peroral infection of conventional mice with E. coli Nissle 1917 strains exhibiting defined defects in zinc or iron uptake, the respective mutant and parental strains could be cultured at comparable, but low levels from the colonic lumen. We next reassociated gnotobiotic mice in which the microbiota responsible for colonization resistance was abrogated by broad-spectrum antibiotics with six different E. coli K12 (W3110) mutants. Seven days following peroral challenge, each mutant and parental strain stably colonized duodenum, ileum, and colon at comparable levels. Taken together, defects in zinc, iron, copper, nickel, and manganese homeostasis do not compromise colonization capacities of E. coli in the murine intestinal tract.
Cloning and Sequencing of a Candida albicans Catalase Gene and Effects of Disruption of This Gene†
Wysong, Deborah R.; Christin, Laurent; Sugar, Alan M.; Robbins, Phillips W.; Diamond, Richard D.
1998-01-01
Catalase plays a key role as an antioxidant, protecting aerobic organisms from the toxic effects of hydrogen peroxide, and in some cases has been postulated to be a virulence factor. To help elucidate the function of catalase in Candida albicans, a single C. albicans-derived catalase gene, designated CAT1, was isolated and cloned. Degenerate PCR primers based on highly conserved areas of other fungal catalase genes were used to amplify a 411-bp product from genomic DNA of C. albicans ATCC 10261. By using this product as a probe, catalase clones were isolated from genomic libraries of C. albicans. Nucleotide sequence analysis revealed an open reading frame encoding a protein of 487 amino acid residues. Construction of a CAT1-deficient mutant was achieved by using the Ura-blaster technique for sequential disruption of multiple alleles by integrative transformation using URA3 as a selectable marker. Resulting mutants exhibited normal morphology and comparable growth rates of both yeast and mycelial forms. Enzymatic analysis revealed an abundance of catalase in the wild-type strain but decreasing catalase activity in heterozygous mutants and no detectable catalase in a homozygous null mutant. In vitro assays showed the mutant strains to be more sensitive to damage by both neutrophils and concentrations of exogenous peroxide that were sublethal for the parental strain. Compared to the parental strain, the homozygous null mutant strain was far less virulent for mice in an intravenous infection model of disseminated candidiasis. Definitive linkage of CAT1 with virulence would require restoration of activity by reintroduction of the gene into mutants. However, initial results in mice, taken together with the enhanced susceptibility of catalase-deficient hyphae to damage by human neutrophils, suggest that catalase may enhance the pathogenicity of C. albicans. PMID:9573075
Warner, Timothy A.; Shen, Wangzhen; Huang, Xuan; Liu, Zhong; Macdonald, Robert L.; Kang, Jing-Qiong
2016-01-01
Genetic epilepsy is a common disorder with phenotypic variation, but the basis for the variation is unknown. Comparing the molecular pathophysiology of mutations in the same epilepsy gene may provide mechanistic insights into the phenotypic heterogeneity. GABRG2 is an established epilepsy gene, and mutations in it produce epilepsy syndromes with varying severities. The disease phenotype in some cases may be caused by simple loss of subunit function (functional haploinsufficiency), while others may be caused by loss-of-function plus dominant negative suppression and other cellular toxicity. Detailed molecular defects and the corresponding seizures and related comorbidities resulting from haploinsufficiency and dominant negative mutations, however, have not been compared. Here we compared two mouse models of GABRG2 loss-of-function mutations associated with epilepsy with different severities, Gabrg2+/Q390X knockin (KI) and Gabrg2+/- knockout (KO) mice. Heterozygous Gabrg2+/Q390XKI mice are associated with a severe epileptic encephalopathy due to a dominant negative effect of the mutation, while heterozygous Gabrg2+/- KO mice are associated with mild absence epilepsy due to simple haploinsufficiency. Unchanged at the transcriptional level, KI mice with severe epilepsy had neuronal accumulation of mutant γ2 subunits, reduced remaining functional wild-type subunits in dendrites and synapses, while KO mice with mild epilepsy had no intracellular accumulation of the mutant subunits and unaffected biogenesis of the remaining wild-type subunits. Consequently, KI mice with dominant negative mutations had much less wild-type receptor expression, more severe seizures and behavioural comorbidities than KO mice. This work provides insights into the pathophysiology of epilepsy syndrome heterogeneity and designing mechanism-based therapies. PMID:27340224
Hashimoto, Hirokazu; Jiang, Wen; Yoshimura, Takeshi; Moon, Kyeong-Hye; Bok, Jinwoong; Ikenaka, Kazuhiro
2017-11-06
In the mouse neural tube, sonic hedgehog (Shh) secreted from the floor plate (FP) and the notochord (NC) regulates ventral patterning of the neural tube, and later is essential for the generation of oligodendrocyte precursor cells (OPCs). During early development, the NC is adjacent to the neural tube and induces ventral domains in it, including the FP. In the later stage of development, during gliogenesis in the spinal cord, the pMN domain receives strong Shh signaling input. While this is considered to be essential for the generation of OPCs, the actual role of this strong input in OPC generation remains unclear. Here we studied OPC generation in bromi mutant mice which show abnormal ciliary structure. Shh signaling occurs within cilia and has been reported to be weak in bromi mutants. At E11.5, accumulation of Patched1 mRNA, a Shh signaling reporter, is observed in the pMN domain of wild type but not bromi mutants, whereas expression of Gli1 mRNA, another Shh reporter, disappeared. Thus, Shh signaling input to the pMN domain at E12.5 was reduced in bromi mutant mice. In these mutants, induction of the FP structure was delayed and its size was reduced compared to wild type mice. Furthermore, while the p3 and pMN domains were induced, the length of the Nkx2.2-positive region and the number of Olig2-positive cells decreased. The number of OPCs was also significantly decreased in the E12.5 and E14.5 bromi mutant spinal cord. In contrast, motor neuron (MN) production, detected by HB9 expression, significantly increased. It is likely that the transition from MN production to OPC generation in the pMN domain is impaired in bromi mutant mice. These results suggest that strong Shh input to the pMN domain is not required for OPC generation but is essential for producing a sufficient number of OPCs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hirobe, Tomohisa; Ishikawa, Akira
2015-12-01
The mouse pink-eyed dilution (oculocutaneous albinism II; p/Oca2(p)) locus is known to control tyrosinase activity, melanin content, and melanosome development in melanocytes. Pink-eyed dilution castaneus (p(cas)/Oca2(p-cas)) is a novel mutant allele on mouse chromosome 7 that arose spontaneously in Indonesian wild mice, Mus musculus castaneus. Mice homozygous for Oca2(p-cas) usually exhibit pink eyes and beige-colored coat on nonagouti C57BL/6 (B6) background. Recently, a novel spontaneous mutation occurred in the progeny between this mutant and B6 mice. The eyes of this novel mutant progressively become black from pink and the coat becomes dark gray from beige with aging. The aim of this study is to clarify whatever differences exist in melanocyte proliferation and differentiation between the ordinary (pink-eyed) and novel (black-eyed) mutant using serum-free primary culture system. The characteristics of melanocyte proliferation and differentiation were investigated by serum-free primary culture system using melanocyte-proliferation medium (MDMD). The proliferation of melanoblasts in MDMD did not differ between the two mice. However, when the epidermal cell suspensions were cultured with MDMD supplemented with l-tyrosine (Tyr), the differentiation of black-eyed melanocytes was greatly induced in a concentration-dependent manner compared with pink-eyed melanocytes. Immunocytochemistry demonstrated that the expression of tyrosinase and tyrosinase-related protein-1 (Tyrp1) was greatly induced or stimulated both in pink-eyed and black-eyed melanocytes, whereas the expression of microphthalmia-associated transcription factor (Mitf) was stimulated only in black-eyed melanocytes. These results suggest that the age-related coat darkening in black-eyed mutant may be caused by the increased ability of melanocyte differentiation dependent on l-Tyr through the upregulation of tyrosinase, Tyrp1, and Mitf. This mutant mouse may be useful for animal model to clarify the mechanisms of age-related pigmentation in human skin, such as melasma and solar lentigines. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Yuki, Kyoko E.; Eva, Megan M.; Richer, Etienne; Chung, Dudley; Paquet, Marilène; Cellier, Mathieu; Canonne-Hergaux, François; Vaulont, Sophie; Vidal, Silvia M.; Malo, Danielle
2013-01-01
Salmonella, a ubiquitous Gram-negative intracellular bacterium, is a food borne pathogen that infects a broad range of hosts. Infection with Salmonella Typhimurium in mice is a broadly recognized experimental model resembling typhoid fever in humans. Using a N-ethyl-N-nitrosurea (ENU) mutagenesis recessive screen, we report the identification of Ity16 (Immunity to Typhimurium locus 16), a locus responsible for increased susceptibility to infection. The position of Ity16 was refined on chromosome 8 and a nonsense mutation was identified in the ankyrin 1 (Ank1) gene. ANK1 plays an important role in the formation and stabilization of the red cell cytoskeleton. The Ank1Ity16/Ity16 mutation causes severe hemolytic anemia in uninfected mice resulting in splenomegaly, hyperbilirubinemia, jaundice, extramedullary erythropoiesis and iron overload in liver and kidneys. Ank1Ity16/Ity16 mutant mice demonstrated low levels of hepcidin (Hamp) expression and significant increases in the expression of the growth differentiation factor 15 (Gdf15), erythropoietin (Epo) and heme oxygenase 1 (Hmox1) exacerbating extramedullary erythropoiesis, tissue iron deposition and splenomegaly. As the infection progresses in Ank1Ity16/Ity16, the anemia worsens and bacterial load were high in liver and kidneys compared to wild type mice. Heterozygous Ank1+/Ity16 mice were also more susceptible to Salmonella infection although to a lesser extent than Ank1Ity16/Ity16 and they did not inherently present anemia and splenomegaly. During infection, iron accumulated in the kidneys of Ank1+/Ity16 mice where bacterial loads were high compared to littermate controls. The critical role of HAMP in the host response to Salmonella infection was validated by showing increased susceptibility to infection in Hamp-deficient mice and significant survival benefits in Ank1 +/Ity16 heterozygous mice treated with HAMP peptide. This study illustrates that the regulation of Hamp and iron balance are crucial in the host response to Salmonella infection in Ank1 mutants. PMID:23390527
Wang, Zhaofei; Guo, Changming; Xu, Yannan; Liu, Guangjin; Lu, Chengping
2014-01-01
Streptococcus agalactiae is the causative agent of septicemia and meningitis in fish. Previous studies have shown that hyaluronidase (Hyl) is an important virulence factor in many Gram-positive bacteria. To investigate the role of S. agalactiae Hyl during interaction with macrophages, we inactivated the gene encoding extracellular hyaluronidase, hylB, in a clinical Hyl+ isolate. The isogenic hylb mutant (Δhylb) displayed reduced survival in macrophages compared to the wild type and stimulated a significantly higher release of proinflammatory cytokines, such as interleukin-1β (IL-1β), IL-6, and tumor necrosis factor alpha (TNF-α), than the wild type in macrophages as well as in mice. Furthermore, only Hyl+ strains could grow utilizing hyaluronic acid (HA) as the sole carbon source, suggesting that Hyl permits the organism to utilize host HA as an energy source. Fifty percent lethal dose (LD50) determinations in zebrafish demonstrated that the hylb mutant was highly attenuated relative to the wild-type strain. Experimental infection of BALB/c mice revealed that bacterial loads in the blood, spleen, and brain at 16 h postinfection were significantly reduced in the ΔhylB mutant compared to those in wild-type-infected mice. In conclusion, hyaluronidase has a strong influence on the intracellular survival of S. agalactiae and proinflammatory cytokine expression, suggesting that it plays a key role in S. agalactiae pathogenicity. PMID:24711564
Wang, Zhaofei; Guo, Changming; Xu, Yannan; Liu, Guangjin; Lu, Chengping; Liu, Yongjie
2014-06-01
Streptococcus agalactiae is the causative agent of septicemia and meningitis in fish. Previous studies have shown that hyaluronidase (Hyl) is an important virulence factor in many Gram-positive bacteria. To investigate the role of S. agalactiae Hyl during interaction with macrophages, we inactivated the gene encoding extracellular hyaluronidase, hylB, in a clinical Hyl(+) isolate. The isogenic hylb mutant (Δhylb) displayed reduced survival in macrophages compared to the wild type and stimulated a significantly higher release of proinflammatory cytokines, such as interleukin-1β (IL-1β), IL-6, and tumor necrosis factor alpha (TNF-α), than the wild type in macrophages as well as in mice. Furthermore, only Hyl(+) strains could grow utilizing hyaluronic acid (HA) as the sole carbon source, suggesting that Hyl permits the organism to utilize host HA as an energy source. Fifty percent lethal dose (LD50) determinations in zebrafish demonstrated that the hylb mutant was highly attenuated relative to the wild-type strain. Experimental infection of BALB/c mice revealed that bacterial loads in the blood, spleen, and brain at 16 h postinfection were significantly reduced in the ΔhylB mutant compared to those in wild-type-infected mice. In conclusion, hyaluronidase has a strong influence on the intracellular survival of S. agalactiae and proinflammatory cytokine expression, suggesting that it plays a key role in S. agalactiae pathogenicity.
The Role of Epithelial Stat3 in Amelogenesis during Mouse Incisor Renewal.
Zhang, Bin; Meng, Bo; Viloria, Edward; Naveau, Adrien; Ganss, Bernhard; Jheon, Andrew H
2018-03-16
The aim of this study was to evaluate the role of epithelial signal transducer and activator of transcription 3 (STAT3) in mouse incisor amelogenesis. Since Stat3 is expressed in the epithelial component of developing and adult mouse teeth, we generated and analyzed Krt14Cre/+;Stat3fl/fl mutant mice in which Stat3 was inactivated in epithelia including ameloblast progenitors and ameloblasts, the cells responsible for enamel formation. Histological analysis showed little enamel matrix in mutant incisors compared to controls. Delayed incisor enamel mineralization was demonstrated using micro-computed X-ray tomography analysis and was supported by an increase in the pre-expression distance of enamel-enriched proteins such as amelogenin, ameloblastin, and kallikrein-4. Lastly, scanning electron microscopy analysis showed little enamel mineralization in mutant incisors underneath the mesial root of the 1st molar; however, the micro-architecture of enamel mineralization was similar in the erupted portion of control and mutant incisors. Taken together, our findings demonstrate for the first time that the absence of epithelial Stat3 in mice leads to delayed incisor amelogenesis. © 2018 S. Karger AG, Basel.
Paterson, Gavin K; Cone, Danielle B; Northen, Helen; Peters, Sarah E; Maskell, Duncan J
2009-05-01
The glycolytic enzyme triosephosphate isomerase (tpi) (EC 5.3.1.1) plays a key role in central carbon metabolism yet few studies have characterized isogenic bacterial mutants lacking this enzyme and none have examined its role in the in vivo fitness of a bacterial pathogen. Here we have deleted tpiA in Salmonella enterica serovar Typhimurium and found that the mutant had an altered morphology, displaying an elongated shape compared with the wild type. In a mouse model of typhoid fever the tpiA mutant was attenuated for growth as assessed by bacterial counts in the livers and spleens of infected mice. However, this attenuation was not deemed sufficient for consideration of a tpiA mutant as a live attenuated vaccine strain. These phenotypes were complemented by provision of tpiA on pBR322. We therefore provide the first demonstration that tpiA is required for full in vivo fitness of a bacterial pathogen, and that it has a discernable impact on cell morphology.
Impaired locomotor activity and exploratory behavior in mice lacking histamine H1 receptors
Inoue, Isao; Yanai, Kazuhiko; Kitamura, Daisuke; Taniuchi, Ichiro; Kobayashi, Takashi; Niimura, Kaku; Watanabe, Takehiko; Watanabe, Takeshi
1996-01-01
From pharmacological studies using histamine antagonists and agonists, it has been demonstrated that histamine modulates many physiological functions of the hypothalamus, such as arousal state, locomotor activity, feeding, and drinking. Three kinds of receptors (H1, H2, and H3) mediate these actions. To define the contribution of the histamine H1 receptors (H1R) to behavior, mutant mice lacking the H1R were generated by homologous recombination. In brains of homozygous mutant mice, no specific binding of [3H]pyrilamine was seen. [3H]Doxepin has two saturable binding sites with higher and lower affinities in brains of wild-type mice, but H1R-deficient mice showed only the weak labeling of [3H]doxepin that corresponds to lower-affinity binding sites. Mutant mice develop normally, but absence of H1R significantly increased the ratio of ambulation during the light period to the total ambulation for 24 hr in an accustomed environment. In addition, mutant mice significantly reduced exploratory behavior of ambulation and rearings in a new environment. These results indicate that through H1R, histamine is involved in circadian rhythm of locomotor activity and exploratory behavior as a neurotransmitter. PMID:8917588
Guo, Wen; Wong, Siu; Bhasin, Shalender
2013-01-01
Genetic disruption of myostatin or its related signaling is known to cause strong protection against diet-induced metabolic disorders. The translational value of these prior findings, however, is dependent on whether such metabolically favorable phenotype can be reproduced when myostatin blockade begins at an adult age. Here, we reported that AAV-mediated delivery of a myostatin pro-peptide D76A mutant in adult mice attenuates the development of hepatic steatosis and arteriosclerosis, two common diet-induced metabolic diseases. A single dose of AAV-D76A in adult Ldlr null mice resulted in sustained expression of myostatin pro-peptide in the liver. Compared to vehicle-treated mice, D76A-treated mice gained similar amount of lean and fat mass when fed a high fat diet. However, D76A-treated mice displayed significantly reduced aortic lesions and liver fat, in association with a reduction in hepatic expression of lipogenic genes and improvement in liver insulin sensitivity. This suggests that muscle and fat may not be the primary targets of treatment under our experimental condition. In support to this argument, we show that myostatin directly up-regulated lipogenic genes and increased fat accumulation in cultured liver cells. We also show that both myostatin and its receptor were abundantly expressed in mouse aorta. Cultured aortic endothelial cells responded to myostatin with a reduction in eNOS phosphorylation and an increase in ICAM-1 and VCAM-1 expression. Conclusions: AAV-mediated expression of myostatin pro-peptide D76A mutant in adult Ldlr null mice sustained metabolic protection without remarkable impacts on body lean and fat mass. Further investigations are needed to determine whether direct impact of myostatin on liver and aortic endothelium may contribute to the related metabolic phenotypes. PMID:23936482
Kim, Ha Kun; Chung, Youn Wook; Chock, P Boon; Yim, Moon B
2011-05-15
Missense mutations of SOD1 are linked to familial amyotrophic lateral sclerosis (FALS) through a yet-to-be identified toxic-gain-of-function. One of the proposed mechanisms involves enhanced aggregate formation. However, a recent study showed that dual transgenic mice overexpressing both G93A and CCS copper chaperone (G93A/CCS) exhibit no SOD1-positive aggregates yet show accelerated FALS symptoms with enhanced mitochondrial pathology compared to G93A mice. Using a dicistronic mRNA to simultaneously generate hSOD1 mutants, G93A, A4V and G85R, and hCCS in AAV293 cells, we revealed: (i) CCS is degraded primarily via a macroautophagy pathway. It forms a stable heterodimer with inactive G85R, and via its novel copper chaperone-independent molecular chaperone activity facilitates G85R degradation via a macroautophagy-mediated pathway. For active G93A and A4V, CCS catalyzes their maturation to form active and soluble homodimers. (ii) CCS reduces, under non-oxidative conditions, yet facilitates in the presence of H(2)O(2), mitochondrial translocation of inactive SOD1 mutants. These results, together with previous reports showing FALS SOD1 mutants enhanced free radical-generating activity, provide a mechanistic explanation for the observations with G93A/CCS dual transgenic mice and suggest that free radical generation by FALS SOD1, enhanced by CCS, may, in part, be responsible for the FALS SOD1 mutant-linked aggregation, mitochondrial translocation, and degradation. Published by Elsevier Inc.
Reduced heart size and increased myocardial fuel substrate oxidation in ACC2 mutant mice
Essop, M. Faadiel; Camp, Heidi S.; Choi, Cheol Soo; Sharma, Saumya; Fryer, Ryan M.; Reinhart, Glenn A.; Guthrie, Patrick H.; Bentebibel, Assia; Gu, Zeiwei; Shulman, Gerald I.; Taegtmeyer, Heinrich; Wakil, Salih J.; Abu-Elheiga, Lutfi
2008-01-01
The cardiac-enriched isoform of acetyl-CoA carboxylase (ACC2) is a key regulator of mitochondrial fatty acid (FA) uptake via carnitine palmitoyltransferase 1 (CPT1). To test the hypothesis that oxidative metabolism is upregulated in hearts from animals lacking ACC2 (employing a transgenic Acc2-mutant mouse), we assessed cardiac function in vivo and determined rates of myocardial substrate oxidation ex vivo. When examined by echocardiography, there was no difference in systolic function, but left ventricular mass of the Acc2-mutant (MUT) mouse was significantly reduced (∼25%) compared with wild-types (WT). Reduced activation of the mammalian target of rapamycin (mTOR) and its downstream target p70S6K was found in MUT hearts. Exogenous oxidation rates of oleate were increased ∼22%, and, unexpectedly, exogenous glucose oxidation rates were also increased in MUT hearts. Using a hyperinsulinemic-euglycemic clamp, we found that glucose uptake in MUT hearts was increased by ∼83%. Myocardial triglyceride levels were significantly reduced in MUT vs. WT while glycogen content was the same. In parallel, transcript levels of PPARα and its target genes, pyruvate dehydrogenase kinase-4 (PDK-4), malonyl-CoA decarboxylase (MCD), and mCPT1, were downregulated in MUT mice. In summary, we report that 1) Acc2-mutant hearts exhibit a marked preference for the oxidation of both glucose and FAs coupled with greater utilization of endogenous fuel substrates (triglycerides), 2) attenuated mTOR signaling may result in reduced heart sizes observed in Acc2-mutant mice, and 3) Acc2-mutant hearts displayed normal functional parameters despite a significant decrease in size. PMID:18487439
ERCC1-XPF Endonuclease Facilitates DNA Double-Strand Break Repair▿ †
Ahmad, Anwaar; Robinson, Andria Rasile; Duensing, Anette; van Drunen, Ellen; Beverloo, H. Berna; Weisberg, David B.; Hasty, Paul; Hoeijmakers, Jan H. J.; Niedernhofer, Laura J.
2008-01-01
ERCC1-XPF endonuclease is required for nucleotide excision repair (NER) of helix-distorting DNA lesions. However, mutations in ERCC1 or XPF in humans or mice cause a more severe phenotype than absence of NER, prompting a search for novel repair activities of the nuclease. In Saccharomyces cerevisiae, orthologs of ERCC1-XPF (Rad10-Rad1) participate in the repair of double-strand breaks (DSBs). Rad10-Rad1 contributes to two error-prone DSB repair pathways: microhomology-mediated end joining (a Ku86-independent mechanism) and single-strand annealing. To determine if ERCC1-XPF participates in DSB repair in mammals, mutant cells and mice were screened for sensitivity to gamma irradiation. ERCC1-XPF-deficient fibroblasts were hypersensitive to gamma irradiation, and γH2AX foci, a marker of DSBs, persisted in irradiated mutant cells, consistent with a defect in DSB repair. Mutant mice were also hypersensitive to irradiation, establishing an essential role for ERCC1-XPF in protecting against DSBs in vivo. Mice defective in both ERCC1-XPF and Ku86 were not viable. However, Ercc1−/− Ku86−/− fibroblasts were hypersensitive to gamma irradiation compared to single mutants and accumulated significantly greater chromosomal aberrations. Finally, in vitro repair of DSBs with 3′ overhangs led to large deletions in the absence of ERCC1-XPF. These data support the conclusion that, as in yeast, ERCC1-XPF facilitates DSB repair via an end-joining mechanism that is Ku86 independent. PMID:18541667
Stahl, John S; Oommen, Brian S
2008-01-01
Humans with cerebellar degeneration commonly exhibit downbeat nystagmus (DBN). DBN has gravity-independent and -dependent components, and the latter has been proposed to reflect hyperactive tilt maculo-ocular reflexes (tilt-MOR). Mice with genetically determined cerebellar ataxia do not exhibit DBN, but they do exhibit tonic hyperdeviation of the eyes, which we have proposed to be the DBN equivalent. As such, the tilt-MOR might be predicted to be hyperactive in these mutant mice. We measured the tilt-MOR in 10 normal C57BL/6 mice and in 6 tottering, a mutant exhibiting ataxia and ocular motor abnormalities due to mutation of the P/Q calcium channel. Awake mice were placed in body orientations spanning 360 degrees about the pitch axis. The absolute, equilibrium vertical angular deviations of one eye were measured using infrared videooculography. In both strains, eye elevation varied quasi-sinusoidally with tilt angle in the range of 90 degrees nose-up to 90 degrees nose-down. Beyond this range the eye returned to a neutral position. Deviation over +/-30 degrees of tilt was an approximately linear function of the projection of the gravity vector into the animal's horizontal plane, and can thus be summarized by its slope (sensitivity). Sensitivity measured 14.9 degrees/g for C57BL/6 and 20.3 degrees/g for tottering, a statistically significant difference. Thus the pitch otolithic reflex of the ataxic mutants is hyperactive relative to controls and could explain tonic hyperdeviation of the eyes, consistent with the idea that the tonic hyperdeviation is analogous to DBN.
Tiner, Bethany L.; Kirtley, Michelle L.; Erova, Tatiana E.; Popov, Vsevolod L.; Baze, Wallace B.; van Lier, Christina J.; Ponnusamy, Duraisamy; Andersson, Jourdan A.; Motin, Vladimir L.; Chauhan, Sadhana
2015-01-01
Previously, we showed that deletion of genes encoding Braun lipoprotein (Lpp) and MsbB attenuated Yersinia pestis CO92 in mouse and rat models of bubonic and pneumonic plague. While Lpp activates Toll-like receptor 2, the MsbB acyltransferase modifies lipopolysaccharide. Here, we deleted the ail gene (encoding the attachment-invasion locus) from wild-type (WT) strain CO92 or its lpp single and Δlpp ΔmsbB double mutants. While the Δail single mutant was minimally attenuated compared to the WT bacterium in a mouse model of pneumonic plague, the Δlpp Δail double mutant and the Δlpp ΔmsbB Δail triple mutant were increasingly attenuated, with the latter being unable to kill mice at a 50% lethal dose (LD50) equivalent to 6,800 LD50s of WT CO92. The mutant-infected animals developed balanced TH1- and TH2-based immune responses based on antibody isotyping. The triple mutant was cleared from mouse organs rapidly, with concurrent decreases in the production of various cytokines and histopathological lesions. When surviving animals infected with increasing doses of the triple mutant were subsequently challenged on day 24 with the bioluminescent WT CO92 strain (20 to 28 LD50s), 40 to 70% of the mice survived, with efficient clearing of the invading pathogen, as visualized in real time by in vivo imaging. The rapid clearance of the triple mutant, compared to that of WT CO92, from animals was related to the decreased adherence and invasion of human-derived HeLa and A549 alveolar epithelial cells and to its inability to survive intracellularly in these cells as well as in MH-S murine alveolar and primary human macrophages. An early burst of cytokine production in macrophages elicited by the triple mutant compared to WT CO92 and the mutant's sensitivity to the bactericidal effect of human serum would further augment bacterial clearance. Together, deletion of the ail gene from the Δlpp ΔmsbB double mutant severely attenuated Y. pestis CO92 to evoke pneumonic plague in a mouse model while retaining the required immunogenicity needed for subsequent protection against infection. PMID:25605764
Tiner, Bethany L; Sha, Jian; Kirtley, Michelle L; Erova, Tatiana E; Popov, Vsevolod L; Baze, Wallace B; van Lier, Christina J; Ponnusamy, Duraisamy; Andersson, Jourdan A; Motin, Vladimir L; Chauhan, Sadhana; Chopra, Ashok K
2015-04-01
Previously, we showed that deletion of genes encoding Braun lipoprotein (Lpp) and MsbB attenuated Yersinia pestis CO92 in mouse and rat models of bubonic and pneumonic plague. While Lpp activates Toll-like receptor 2, the MsbB acyltransferase modifies lipopolysaccharide. Here, we deleted the ail gene (encoding the attachment-invasion locus) from wild-type (WT) strain CO92 or its lpp single and Δlpp ΔmsbB double mutants. While the Δail single mutant was minimally attenuated compared to the WT bacterium in a mouse model of pneumonic plague, the Δlpp Δail double mutant and the Δlpp ΔmsbB Δail triple mutant were increasingly attenuated, with the latter being unable to kill mice at a 50% lethal dose (LD50) equivalent to 6,800 LD50s of WT CO92. The mutant-infected animals developed balanced TH1- and TH2-based immune responses based on antibody isotyping. The triple mutant was cleared from mouse organs rapidly, with concurrent decreases in the production of various cytokines and histopathological lesions. When surviving animals infected with increasing doses of the triple mutant were subsequently challenged on day 24 with the bioluminescent WT CO92 strain (20 to 28 LD50s), 40 to 70% of the mice survived, with efficient clearing of the invading pathogen, as visualized in real time by in vivo imaging. The rapid clearance of the triple mutant, compared to that of WT CO92, from animals was related to the decreased adherence and invasion of human-derived HeLa and A549 alveolar epithelial cells and to its inability to survive intracellularly in these cells as well as in MH-S murine alveolar and primary human macrophages. An early burst of cytokine production in macrophages elicited by the triple mutant compared to WT CO92 and the mutant's sensitivity to the bactericidal effect of human serum would further augment bacterial clearance. Together, deletion of the ail gene from the Δlpp ΔmsbB double mutant severely attenuated Y. pestis CO92 to evoke pneumonic plague in a mouse model while retaining the required immunogenicity needed for subsequent protection against infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Superoxide overproduction and kidney fibrosis: a new animal model
Guimarães-Souza, Nadia Karina; Yamaleyeva, Liliya Marsovna; Lu, Baisong; Ramos, Ana Claudia Mallet de Souza; Bishop, Colin Edward; Andersson, Karl Erik
2015-01-01
Objective To establish whether the mutation in the Immp2L gene induces renal fibrosis and whether aging exacerbates renal morphology in mice. Methods Female mutant mice with mutation in the inner mitochondrial membrane peptidase 2-like protein at 3 and 18 months of age were used. Renal fibrosis was analyzed using classic fibrosis score, Masson’s trichrome staining, and analysis of profibrotic markers using real time polymerase chain reaction (superoxide dismutase 1, metalloproteinase-9, erythropoietin, transforming growth factor beta), and immunostaining (fibroblasts and Type IV collagen). Oxidative stress markers were determined by immunohistochemistry. The number of renal apoptotic cells was determined. Renal function was estimated by serum creatinine. Results Young mutant mice had significantly more glomerulosclerosis than age-matched mice (p=0.034). Mutant mice had more tubular casts (p=0.025), collagen deposition (p=0.019), and collagen type IV expression (p<0.001). Superoxide dismutase 1 expression was significantly higher in young mutants (p=0.038). Old mutants exhibited significantly higher expression of the fibroblast marker and macrophage marker (p=0.007 and p=0.012, respectively). The real time polymerase chain reaction of metalloproteinase-9 and erythropoietin were enhanced 2.5- and 6-fold, respectively, in old mutants. Serum creatinine was significantly higher in old mutants (p<0.001). Conclusion This mutation altered renal architecture by increasing the deposition of extracellular matrix, oxidative stress, and inflammation, suggesting a protective role of Immp2L against renal fibrosis. PMID:25993073
The Klebsiella pneumoniae O Antigen Contributes to Bacteremia and Lethality during Murine Pneumonia
Shankar-Sinha, Sunita; Valencia, Gabriel A.; Janes, Brian K.; Rosenberg, Jessica K.; Whitfield, Chris; Bender, Robert A.; Standiford, Ted J.; Younger, John G.
2004-01-01
Bacterial surface carbohydrates are important pathogenic factors in gram-negative pneumonia infections. Among these factors, O antigen has been reported to protect pathogens against complement-mediated killing. To examine further the role of O antigen, we insertionally inactivated the gene encoding a galactosyltransferase necessary for serotype O1 O-antigen synthesis (wbbO) from Klebsiella pneumoniae 43816. Analysis of the mutant lipopolysaccharide by sodium dodecyl sulfate-polyacrylamide gel electrophoresis confirmed the absence of O antigen. In vitro, there were no detectable differences between wild-type K. pneumoniae and the O-antigen-deficient mutant in regard to avid binding by murine complement C3 or resistance to serum- or whole-blood-mediated killing. Nevertheless, the 72-h 50% lethal dose of the wild-type strain was 30-fold greater than that of the mutant (2 × 103 versus 6 × 104 CFU) after intratracheal injection in ICR strain mice. Despite being less lethal, the mutant organism exhibited comparable intrapulmonary proliferation at 24 h compared to the level of the wild type. Whole-lung chemokine expression (CCL3 and CXCL2) and bronchoalveolar inflammatory cell content were also similar between the two infections. However, whereas the wild-type organism produced bacteremia within 24 h of infection in every instance, bacteremia was not seen in mutant-infected mice. These results suggest that during murine pneumonia caused by K. pneumoniae, O antigen contributes to lethality by increasing the propensity for bacteremia and not by significantly changing the early course of intrapulmonary infection. PMID:14977947
Myostatin gene mutated mice induced with tale nucleases.
Zhou, Fangfang; Sun, Ruilin; Chen, Hongyan; Fei, Jian; Lu, Daru
2015-01-01
Myostain gene (MSTN) is expressed primarily in skeletal muscle, and negatively regulates skeletal muscle mass; it has been suggested that mice with MSTN inhibition have reduced adiposity and improved insulin sensitivity. Therefore, it is important to establish a fast and effective gene editing method. In this report, we established the myostatin mutated-mouse model by microinjection of Transcription Activator-Like Effector Nucleases (TALENs) mRNA within the mouse fertilized oocytes and achieved high rates of mutagenesis of the mouse MSTN in C57BL/6J. Six of 45 born mice carried target mutations and we appointed one as the parental mating with wild mouse to produce the F1 and backcross to produce the F2 generation. All the mutations of the mice were examined quickly and efficiently by high-resolution melting curve analysis (HRMA) and then verified by direct sequencing. We obtained the homozygous of the F2 generation which transmitted the mutant alleles to the progeny with 100% efficiency. Mutant mice exhibited increases in muscle mass comparable to those observed in wild-type mice. Therefore, combining TALEN-mediated gene targeting with HRMA technology is a superior method of constructing genetically modified mice through microinjection in the mouse fertilized oocytes with high efficiency and short time of selection.
Pennucci, Roberta; Talpo, Francesca; Astro, Veronica; Montinaro, Valentina; Morè, Lorenzo; Cursi, Marco; Castoldi, Valerio; Chiaretti, Sara; Bianchi, Veronica; Marenna, Silvia; Cambiaghi, Marco; Tonoli, Diletta; Leocani, Letizia; Biella, Gerardo; D'Adamo, Patrizia; de Curtis, Ivan
2016-01-01
Rac GTPases regulate the development of cortical/hippocampal GABAergic interneurons by affecting the early development and migration of GABAergic precursors. We have addressed the function of Rac1 and Rac3 proteins during the late maturation of hippocampal interneurons. We observed specific phenotypic differences between conditional Rac1 and full Rac3 knockout mice. Rac1 deletion caused greater generalized hyperactivity and cognitive impairment compared with Rac3 deletion. This phenotype matched with a more evident functional impairment of the inhibitory circuits in Rac1 mutants, showing higher excitability and reduced spontaneous inhibitory currents in the CA hippocampal pyramidal neurons. Morphological analysis confirmed a differential modification of the inhibitory circuits: deletion of either Rac caused a similar reduction of parvalbumin-positive inhibitory terminals in the pyramidal layer. Intriguingly, cannabinoid receptor-1-positive terminals were strongly increased only in the CA1 of Rac1-depleted mice. This increase may underlie the stronger electrophysiological defects in this mutant. Accordingly, incubation with an antagonist for cannabinoid receptors partially rescued the reduction of spontaneous inhibitory currents in the pyramidal cells of Rac1 mutants. Our results show that Rac1 and Rac3 have independent roles in the formation of GABAergic circuits, as highlighted by the differential effects of their deletion on the late maturation of specific populations of interneurons. PMID:26582364
Wild-type cells rescue genotypically Math1-null hair cells in the inner ears of chimeric mice.
Du, Xiaoping; Jensen, Patricia; Goldowitz, Daniel; Hamre, Kristin M
2007-05-15
The transcription factor Math1 has been shown to be critical in the formation of hair cells (HCs) in the inner ear. However, the influence of environmental factors in HC specification suggests that cell extrinsic factors are also crucial to their development. To test whether extrinsic factors impact development of Math1-null (Math1(beta-Gal/beta-Gal)) HCs, we examined neonatal (postnatal ages P0-P4.5) Math1-null chimeric mice in which genotypically mutant and wild-type cells intermingle to form the inner ear. We provide the first direct evidence that Math1-null HCs are able to be generated and survive in the conducive chimeric environment. beta-Galactosidase expression was used to identify genetically mutant cells while cells were phenotypically defined as HCs by morphological characteristics notably the expression of HC-specific markers. Genotypically mutant HCs were found in all sensory epithelia of the inner ear at all ages examined. Comparable results were obtained irrespective of the wild-type component of the chimeric mice. Thus, genotypically mutant cells retain the competence to differentiate into HCs. The implication is that the lack of the Math1 gene in HC precursors can be overcome by environmental influences, such as cell-cell interactions with wild-type cells, to ultimately result in the formation of HCs.
Christoph, Thomas; Kögel, Babette; Schiene, Klaus; Peters, Thomas; Schröder, Wolfgang
2018-06-02
N-ethyl-N-nitrosourea (ENU) random mutagenesis was used to generate a mouse model for the analysis of the transient receptor potential vanilloid 1 (TRPV1) cation channel. A transversion from T→A in exon 4 led to a Leu206Stop mutation generating a loss-of-function mutant. The TRPV1 agonist capsaicin was used to analyze functional and nociceptive parameters in vitro and in vivo in TRPV1 Leu206Stop mice and congenic C3HeB/FeJ controls. Capsaicin-induced [Ca 2+ ] i changes in small diameter DRG neurons were significantly diminished in TRPV1 Leu206Stop mice and administration of capsaicin induced neither hypothermia nor nocifensive behaviour in vivo. TRPV1 Leu206Stop mice were tested in the spinal nerve ligation of mononeuropathic pain and developed mechanical hypersensitivity two weeks after nerve injury. In the open field test, a significant increase in spontaneous locomotion was detected in TRPV1 Leu206Stop mice as compared to wildtype controls. TRPV1 knockout mice have been reported to carry a similar phenotype regarding capsaicin-evoked responses in vitro and in vivo. However, in contrast to TRPV1 Leu206Stop mice, TRPV1 knockout mice did not differ in spontaneous locomotion as compared to congenic C57BL/6 mice, suggesting subtle ENU-dependent or independent strain differences between TRPV1 Leu206Stop mice and their wildtype controls. In summary, these data revealed a target-related (i.e. capsaicin-evoked) phenotype of TRPV1 Leu206Stop mice closely resembling that of published TRPV1 knockout mice. However, since ENU-mutant mice are congenic with the mouse strain initially used in random mutagenesis, direct phenotypic comparison with the respective wildtype controls is possible, and the time-consuming backcrossing in lines with targeted mutations is avoided. Copyright © 2018 Elsevier Inc. All rights reserved.
Zhang, Yong; Liu, Hong; Li, Wei; Zhang, Zhengang; Shang, Xuejun; Zhang, David; Li, Yuhong; Zhang, Shiyang; Liu, Junpin; Hess, Rex A; Pazour, Gregory J; Zhang, Zhibing
2017-12-01
Intraflagellar transport (IFT) is an evolutionarily conserved mechanism essential for the assembly and maintenance of most eukaryotic cilia and flagella. In mice, mutations in IFT proteins have been shown to cause several ciliopathies including retinal degeneration, polycystic kidney disease, and hearing loss. However, little is known about its role in the formation of the sperm tail, which has the longest flagella of mammalian cells. IFT27 is a component of IFT-B complex and binds to IFT25 directly. In mice, IFT27 is highly expressed in the testis. To investigate the role of IFT27 in male germ cells, the floxed Ift27 mice were bred with Stra8-iCre mice so that the Ift27 gene was disrupted in spermatocytes/spermatids. The Ift27: Stra8-iCre mutant mice did not show any gross abnormalities, and all of the mutant mice survived to adulthood. There was no difference between testis weight/body weight between controls and mutant mice. All adult homozygous mutant males examined were completely infertile. Histological examination of the testes revealed abnormally developed germ cells during the spermiogenesis phase. The epididymides contained round bodies of cytoplasm. Sperm number was significantly reduced compared to the controls and only about 2% of them remained significantly reduced motility. Examination of epididymal sperm by light microscopy and SEM revealed multiple morphological abnormalities including round heads, short and bent tails, abnormal thickness of sperm tails in some areas, and swollen tail tips in some sperm. TEM examination of epididymal sperm showed that most sperm lost the "9+2″ axoneme structure, and the mitochondria sheath, fibrous sheath, and outer dense fibers were also disorganized. Some sperm flagella also lost cell membrane. Levels of IFT25 and IFT81 were significantly reduced in the testis of the conditional Ift27 knockout mice, and levels of IFT20, IFT74, and IFT140 were not changed. Sperm lipid rafts, which were disrupted in the conditional Ift25 knockout mice, appeared to be normal in the conditional Ift27 knockout mice. Our findings suggest that like IFT25, IFT27, even though not required for ciliogenesis in somatic cells, is essential for sperm flagella formation, sperm function, and male fertility in mice. IFT25 and IFT27 control sperm formation/function through many common mechanisms, but IFT25 has additional roles beyond IFT27. Published by Elsevier Inc.
Zhang, Yong; Liu, Hong; Li, Wei; Zhang, Zhengang; Shang, Xuejun; Zhang, David; Li, Yuhong; Zhang, Shiyang; Liu, Junpin; Hess, Rex A; Pazour, Gregory J; Zhang, Zhibing
2017-01-01
Intraflagellar transport (IFT) is an evolutionarily conserved mechanism essential for the assembly and maintenance of most eukaryotic cilia and flagella. In mice, mutations in IFT proteins have been shown to cause several ciliopathies including retinal degeneration, polycystic kidney disease, and hearing loss. However, little is known about its role in the formation of the sperm tail, which has the longest flagella of mammalian cells. IFT27 is a component of IFT-B complex and binds to IFT25 directly. In mice, IFT27 is highly expressed in the testis. To investigate the role of IFT27 in male germ cells, the floxed Ift27 mice were bred with Stra8-iCre mice so that the Ift27 gene was disrupted in spermatocytes/spermatids. The Ift27:Stra8-iCre mutant mice did not show any gross abnormalities, and all of the mutant mice survive to adulthood. There was no difference between testis weight/body weight between controls and mutant mice. All adult homozygous mutant males examined were completely infertile. Histological examination of the testes revealed abnormally developed germ cells during the spermiogenesis phase. The epididymis contained round bodies of cytoplasm. Sperm number was significantly reduced compared to the controls and only about 2% of them remained significantly reduced motility. Examination of epididymal sperm by light microscopy and SEM revealed multiple morphological abnormalities including round heads, short and bent tails, abnormal thickness of sperm tails in some areas, and swollen tail tips in some sperm. TEM examination of epididymal sperm showed that most sperm lost the “9+2” axoneme structure, and the mitochondria sheath, fibrous sheath, and outer dense fibers were also disorganized. Some sperm flagella also lost cell membrane. Levels of IFT25 and IFT81 were significantly reduced in the testis of the conditional Ift27 knockout mice, and levels of IFT20, IFT74, and IFT140 were not changed. Sperm lipid rafts, which were disrupted in the conditional Ift25 knockout mice, appeared to be normal in the conditional Ift27 knockout mice. Our findings suggest that like IFT25, IFT27, even though not required to ciliogenesis in somatic cells, is essential for sperm flagella formation, sperm function, and male fertility in mice. IFT25 and IFT27 control sperm formation/function through many common mechanisms, but IFT25 has additional roles beyond IFT27. PMID:28964737
Quarta, Davide; Naylor, Christopher G; Barik, Jacques; Fernandes, Cathy; Wonnacott, Susan; Stolerman, Ian P
2009-04-01
The nicotine discriminative stimulus has been linked to beta2-containing (beta2*) nicotinic receptors, with little evidence of a role for alpha7 nicotinic receptors, because nicotine discrimination was very weak in beta2 null mutant mice but normal in alpha7 mutants. As both alpha7 and beta2* nicotinic receptors have been implicated in nicotine-stimulated dopamine overflow, this study focused on the dopamine-mediated element in the nicotine stimulus by examining cross-generalisation between amphetamine and nicotine. Male alpha7 nicotinic receptor null mutant mice and wild-type controls were bred in-house and trained to discriminate nicotine (0.8 mg/kg) or (+)-amphetamine (0.6 mg/kg) from saline in a two-lever procedure with a tandem VI-30 FR-10 schedule of food reinforcement. Dopamine release from striatal slices was determined in parallel experiments. An alpha7 nicotinic receptor-mediated component of dopamine release was demonstrated in tissue from wild-type mice using choline as a selective agonist. This response was absent in tissue from null mutant animals. The mutation did not influence acquisition of drug discriminations but subtly affected the results of cross-generalisation tests. In mice trained to discriminate nicotine or amphetamine, there was partial cross-generalisation in wild-type mice and, at certain doses, these effects were attenuated in mutants. Further support for an alpha7 nicotinic receptor-mediated component was provided by the ability of the alpha7 nicotinic receptor antagonist methyllycaconitine to attenuate responses to nicotine and amphetamine in wild-type mice. These findings support the concept of an alpha7 nicotinic receptor-mediated dopaminergic element in nicotine discrimination, warranting further tests with selective dopamine agonists.
Voronoi-based spatial analysis reveals selective interneuron changes in the cortex of FALS mice.
Minciacchi, Diego; Kassa, Roman M; Del Tongo, Claudia; Mariotti, Raffaella; Bentivoglio, Marina
2009-01-01
The neurodegenerative disease amyotrophic lateral sclerosis affects lower motoneurons and corticospinal cells. Mice expressing human mutant superoxide dismutase (SOD)1 provide widely investigated models of the familial form of disease, but information on cortical changes in these mice is still limited. We here analyzed the spatial organization of interneurons characterized by parvalbumin immunoreactivity in the motor, somatosensory, and visual cortical areas of SOD1(G93A) mice. Cell number and sociological spatial behavior were assessed by digital charts of cell location in cortical samples, cell counts, and generation of two-dimensional Voronoi diagrams. In end-stage SOD1-mutant mice, an increase of parvalbumin-containing cortical interneurons was found in the motor and somatosensory areas (about 35% and 20%, respectively) with respect to wild-type littermates. Changes in cell spatial distribution, as documented by Voronoi-derived coefficients of variation, indicated increased tendency of parvalbumin cells to aggregate into clusters in the same areas of the SOD1-mutant cortex. Counts and coefficients of variation of parvalbumin cells in the visual cortex gave instead similar results in SOD1-mutant and wild-type mice. Analyses of motor and somatosensory areas in presymptomatic SOD1-mutant mice provided findings very similar to those obtained at end-stage, indicating early changes of interneurons in these cortical areas during the pathology. Altogether the data reveal in the SOD1-mutant mouse cortex an altered architectonic pattern of interneurons, which selectively affects areas involved in motor control. The findings, which can be interpreted as pathogenic factors or early disease-related adaptations, point to changes in the cortical regulation and modulation of the motor circuit during motoneuron disease.
Pathogenicty and immune prophylaxis of cag pathogenicity island gene knockout homogenic mutants
Lin, Huan-Jian; Xue, Jing; Bai, Yang; Wang, Ji-De; Zhang, Ya-Li; Zhou, Dian-Yuan
2004-01-01
AIM: To clarify the role of cag pathogenicity island (cagPAI) of Helicobacter pylori (H pylori) in the pathogenicity and immune prophylaxis of H pylori infection. METHODS: Three pairs of H pylori including 3 strains of cagPAI positive wildtype bacteria and their cagPAI knockout homogenic mutants were utilized. H pylori binding to the gastric epithelial cells was analyzed by flow cytometry assays. Apoptosis of gastric epithelial cells induced by H pylori was determined by ELISA assay. Prophylaxis effect of the wildtype and mutant strains was compared by immunization with the sonicate of the bacteria into mice model. RESULTS: No difference was found in the apoptasis between cagPAI positive and knockout H pylori strains in respective of the ability in the binding to gastric epithelial cells as well as the induction of apoptosis. Both types of the bacteria were able to protect the mice from the infection of H pylori after immunization, with no difference between them regarding to the protection rate as well as the stimulation of the proliferation of splenocytes of the mice. CONCLUSION: The role of cagPAI in the pathogenicity and prophylaxis of H pylori infection remains to be cleared. PMID:15484302
Briones, Gabriel; Iñón de Iannino, Nora; Roset, Mara; Vigliocco, Ana; Paulo, Patricia Silva; Ugalde, Rodolfo A.
2001-01-01
Null cyclic β-1,2-glucan synthetase mutants (cgs mutants) were obtained from Brucella abortus virulent strain 2308 and from B. abortus attenuated vaccinal strain S19. Both mutants show greater sensitivity to surfactants like deoxycholic acid, sodium dodecyl sulfate, and Zwittergent than the parental strains, suggesting cell surface alterations. Although not to the same extent, both mutants display reduced virulence in mice and defective intracellular multiplication in HeLa cells. The B. abortus S19 cgs mutant was completely cleared from the spleens of mice after 4 weeks, while the 2308 mutant showed a 1.5-log reduction of the number of brucellae isolated from the spleens after 12 weeks. These results suggest that cyclic β-1,2-glucan plays an important role in the residual virulence of the attenuated B. abortus S19 strain. Although the cgs mutant was cleared from the spleens earlier than the wild-type parental strain (B. abortus S19) and produced less inflammatory response, its ability to confer protection against the virulent strain B. abortus 2308 was fully retained. Equivalent levels of induction of spleen gamma interferon mRNA and anti-lipopolysaccharide (LPS) of immunoglobulin G2a (IgG2a) subtype antibodies were observed in mice injected with B. abortus S19 or the cgs mutant. However, the titer of anti-LPS antibodies of the IgG1 subtype induced by the cgs mutant was lower than that observed with the parental S19 strain, thus suggesting that the cgs mutant induces a relatively exclusive Th1 response. PMID:11401996
eIF4E/Fmr1 double mutant mice display cognitive impairment in addition to ASD-like behaviors.
Huynh, Thu N; Shah, Manan; Koo, So Yeon; Faraud, Kirsten S; Santini, Emanuela; Klann, Eric
2015-11-01
Autism spectrum disorder (ASD) is a group of heritable disorders with complex and unclear etiology. Classic ASD symptoms include social interaction and communication deficits as well as restricted, repetitive behaviors. In addition, ASD is often comorbid with intellectual disability. Fragile X syndrome (FXS) is the leading genetic cause of ASD, and is the most commonly inherited form of intellectual disability. Several mouse models of ASD and FXS exist, however the intellectual disability observed in ASD patients is not well modeled in mice. Using the Fmr1 knockout mouse and the eIF4E transgenic mouse, two previously characterized mouse models of fragile X syndrome and ASD, respectively, we generated the eIF4E/Fmr1 double mutant mouse. Our study shows that the eIF4E/Fmr1 double mutant mice display classic ASD behaviors, as well as cognitive dysfunction. Importantly, the learning impairments displayed by the double mutant mice spanned multiple cognitive tasks. Moreover, the eIF4E/Fmr1 double mutant mice display increased levels of basal protein synthesis. The results of our study suggest that the eIF4E/Fmr1 double mutant mouse may be a reliable model to study cognitive dysfunction in the context of ASD. Copyright © 2015 Elsevier Inc. All rights reserved.
2013-01-01
Background The Grin1 (glutamate receptor, ionotropic, NMDA1) gene expresses a subunit of N-methyl-D-aspartate (NMDA) receptors that is considered to play an important role in excitatory neurotransmission, synaptic plasticity, and brain development. Grin1 is a candidate susceptibility gene for neuropsychiatric disorders, including schizophrenia, bipolar disorder, and attention deficit/hyperactivity disorder (ADHD). In our previous study, we examined an N-ethyl-N-nitrosourea (ENU)-generated mutant mouse strain (Grin1Rgsc174/Grin1+) that has a non-synonymous mutation in Grin1. These mutant mice showed hyperactivity, increased novelty-seeking to objects, and abnormal social interactions. Therefore, Grin1Rgsc174/Grin1+ mice may serve as a potential animal model of neuropsychiatric disorders. However, other behavioral characteristics related to these disorders, such as working memory function and sensorimotor gating, have not been fully explored in these mutant mice. In this study, to further investigate the behavioral phenotypes of Grin1Rgsc174/Grin1+ mice, we subjected them to a comprehensive battery of behavioral tests. Results There was no significant difference in nociception between Grin1Rgsc174/Grin1+ and wild-type mice. The mutants did not display any abnormalities in the Porsolt forced swim and tail suspension tests. We confirmed the previous observations that the locomotor activity of these mutant mice increased in the open field and home cage activity tests. They displayed abnormal anxiety-like behaviors in the light/dark transition and the elevated plus maze tests. Both contextual and cued fear memory were severely deficient in the fear conditioning test. The mutant mice exhibited slightly impaired working memory in the eight-arm radial maze test. The startle amplitude was markedly decreased in Grin1Rgsc174/Grin1+ mice, whereas no significant differences between genotypes were detected in the prepulse inhibition (PPI) test. The mutant mice showed no obvious deficits in social behaviors in three different social interaction tests. Conclusions This study demonstrated that the Grin1Rgsc174/Grin1+ mutation causes abnormal anxiety-like behaviors, a deficiency in fear memory, and a decreased startle amplitude in mice. Although Grin1Rgsc174/Grin1+ mice only partially recapitulate symptoms of patients with ADHD, schizophrenia, and bipolar disorder, they may serve as a unique animal model of a certain subpopulation of patients with these disorders. PMID:23688147
Generation and characterization of Dyt1 DeltaGAG knock-in mouse as a model for early-onset dystonia.
Dang, Mai T; Yokoi, Fumiaki; McNaught, Kevin St P; Jengelley, Toni-Ann; Jackson, Tehone; Li, Jianyong; Li, Yuqing
2005-12-01
A trinucleotide deletion of GAG in the DYT1 gene that encodes torsinA protein is implicated in the neurological movement disorder of Oppenheim's early-onset dystonia. The mutation removes a glutamic acid in the carboxy region of torsinA, a member of the Clp protease/heat shock protein family. The function of torsinA and the role of the mutation in causing dystonia are largely unknown. To gain insight into these unknowns, we made a gene-targeted mouse model of Dyt1 DeltaGAG to mimic the mutation found in DYT1 dystonic patients. The mutated heterozygous mice had deficient performance on the beam-walking test, a measure of fine motor coordination and balance. In addition, they exhibited hyperactivity in the open-field test. Mutant mice also showed a gait abnormality of increased overlap. Mice at 3 months of age did not display deficits in beam-walking and gait, while 6-month mutant mice did, indicating an age factor in phenotypic expression as well. While striatal dopamine and 4-dihydroxyphenylacetic acid (DOPAC) levels in Dyt1 DeltaGAG mice were similar to that of wild-type mice, a 27% decrease in 4-hydroxy, 3-methoxyphenacetic acid (homovanillic acid) was detected in mutant mice. Dyt1 DeltaGAG tissues also have ubiquitin- and torsinA-containing aggregates in neurons of the pontine nuclei. A sex difference was noticed in the mutant mice with female mutant mice exhibiting fewer alterations in behavioral, neurochemical, and cellular changes. Our results show that knocking in a Dyt1 DeltaGAG allele in mouse alters their motor behavior and recapitulates the production of protein aggregates that are seen in dystonic patients. Our data further support alterations in the dopaminergic system as a part of dystonia's neuropathology.
Juvenile spermatogonial depletion (jsd): a genetic defect of germ cell proliferation of male mice.
Beamer, W G; Cunliffe-Beamer, T L; Shultz, K L; Langley, S H; Roderick, T H
1988-05-01
Adult C57BL/6J male mice homozygous for the mutant gene, juvenile spermatogonial depletion (jsd/jsd), show azoosper4ia and testes reduced to one-third normal size, but are otherwise phenotypically normal. In contrast, adult jsd/jsd females are fully fertile. This feature facilitated mapping the jsd gene to the centromeric end of chromosome 1; the gene order is jsd-Isocitrate dehydrogenase-1 (Idh-1)-Peptidase-3 (Pep-3). Analysis of testicular histology from jsd/jsd mice aged 3-10 wk revealed that these mutant mice experience one wave of spermatogenesis, but fail to continue mitotic proliferation of type A spermatogonial cells at the basement membrane. As a consequence, histological sections of testes from mutant mice aged 8-52 wk showed tubules populated by modest numbers of Sertoli cells, with only an occasional spermatogonial cell. Some sperm with normal morphology and motility were observed in epididymides of 6.5- but not in 8-wk or older mutants. Treatment with retinol failed to alter the loss of spermatogenesis in jsd/jsd mice. Analyses of serum hormones of jsd/jsd males showed that testosterone levels were normal at all ages--a finding corroborated by normal seminal vesicle and vas deferens weights, whereas serum follicle-stimulating hormone levels were significantly elevated in mutant mice from 4 to 20 wk of age. We hypothesize the jsd/jsd male may be deficient in proliferative signals from Sertoli cells that are needed for spermatogenesis.
Dosage effect of a Phex mutation in a murine model of X-linked hypophosphatemia
Ichikawa, Shoji; Gray, Amie K.; Bikorimana, Emmanuel; Econs, Michael J.
2013-01-01
X-linked hypophosphatemia (XLH) is caused by mutations in the PHEX gene, which increase circulating levels of the phosphaturic hormone, fibroblast growth factor 23 (FGF23). Since XLH is a dominant disease, one mutant allele is sufficient for manifestation of the disease. However, dosage effect of a PHEX mutation in XLH is not completely understood. To examine the effect of Phex genotypes, we compared serum biochemistries and skeletal measures between all five possible genotypes of a new murine model of XLH (PhexK496X or PhexJrt). Compared to sex-matched littermate controls, all Phex mutant mice had hypophosphatemia, mild hypocalcemia, and increased parathyroid hormone and alkaline phosphatase levels. Furthermore, mutant mice had markedly elevated serum Fgf23 levels due to increased Fgf23 expression and reduced cleavage of Fgf23. Although females with a homozygous Phex mutation were slightly more hypocalcemic and hypophosphatemic than heterozygous females, the two groups had comparable intact Fgf23 levels. Similarly, there was no difference in intact Fgf23 or phosphorus concentrations between hemizygous males and heterozygous females. Compared to heterozygous females, homozygous counterparts were significantly smaller and had shorter femurs with reduced bone mineral density, suggesting the existence of dosage effect in the skeletal phenotype of XLH. However, overall phenotypic trends in regards to mineral ion homeostasis were mostly unaffected by the presence of one or two mutant Phex allele(s). The lack of gene dosage effect on circulating Fgf23 (and thus, phosphorus) levels suggests that a Phex mutation may create the lower set point for extracellular phosphate concentrations. PMID:23700148
Dosage effect of a Phex mutation in a murine model of X-linked hypophosphatemia.
Ichikawa, Shoji; Gray, Amie K; Bikorimana, Emmanuel; Econs, Michael J
2013-08-01
X-linked hypophosphatemia (XLH) is caused by mutations in the PHEX gene, which increase circulating levels of the phosphaturic hormone, fibroblast growth factor 23 (FGF23). Because XLH is a dominant disease, one mutant allele is sufficient for manifestation of the disease. However, the dosage effect of a PHEX mutation in XLH is not completely understood. To examine the effect of Phex genotypes, we compared serum biochemistries and skeletal measures between all five possible genotypes of a new murine model of XLH (Phex (K496X) or Phex (Jrt) ). Compared to sex-matched littermate controls, all Phex mutant mice had hypophosphatemia, mild hypocalcemia, and increased parathyroid hormone and alkaline phosphatase levels. Furthermore, mutant mice had markedly elevated serum Fgf23 levels due to increased Fgf23 expression and reduced cleavage of Fgf23. Although females with a homozygous Phex mutation were slightly more hypocalcemic and hypophosphatemic than heterozygous females, the two groups had comparable intact Fgf23 levels. Similarly, there was no difference in intact Fgf23 or phosphorus concentrations between hemizygous males and heterozygous females. Compared to heterozygous females, homozygous counterparts were significantly smaller and had shorter femurs with reduced bone mineral density, suggesting the existence of dosage effect in the skeletal phenotype of XLH. However, overall phenotypic trends in regards to mineral ion homeostasis were mostly unaffected by the presence of one or two mutant Phex allele(s). The lack of a gene dosage effect on circulating Fgf23 (and thus phosphorus) levels suggests that a Phex mutation may create the lower set point for extracellular phosphate concentrations.
Genes and signaling pathways involved in memory enhancement in mutant mice
2014-01-01
Mutant mice have been used successfully as a tool for investigating the mechanisms of memory at multiple levels, from genes to behavior. In most cases, manipulating a gene expressed in the brain impairs cognitive functions such as memory and their underlying cellular mechanisms, including synaptic plasticity. However, a remarkable number of mutations have been shown to enhance memory in mice. Understanding how to improve a system provides valuable insights into how the system works under normal conditions, because this involves understanding what the crucial components are. Therefore, more can be learned about the basic mechanisms of memory by studying mutant mice with enhanced memory. This review will summarize the genes and signaling pathways that are altered in the mutants with enhanced memory, as well as their roles in synaptic plasticity. Finally, I will discuss how knowledge of memory-enhancing mechanisms could be used to develop treatments for cognitive disorders associated with impaired plasticity. PMID:24894914
Olteanu, Dragos; Liu, Xiaofen; Liu, Wen; Roper, Venus C.; Sharma, Neeraj; Yoder, Bradley K.; Satlin, Lisa M.; Schwiebert, Erik M.
2012-01-01
Pathophysiological anomalies in autosomal dominant and recessive forms of polycystic kidney disease (PKD) may derive from impaired function/formation of the apical central monocilium of ductal epithelia such as that seen in the Oak Ridge polycystic kidney or orpk (Ift88Tg737Rpw) mouse and its immortalized cell models for the renal collecting duct. According to a previous study, Na/H exchanger (NHE) activity may contribute to hyperabsorptive Na+ movement in cilium-deficient (“mutant”) cortical collecting duct principal cell monolayers derived from the orpk mice compared with cilium-competent (“rescued”) monolayers. To examine NHE activity, we measured intracellular pH (pHi) by fluorescence imaging with the pH-sensitive dye BCECF, and used a custom-designed perfusion chamber to control the apical and basolateral solutions independently. Both mutant and rescued monolayers exhibited basolateral Na+-dependent acid-base transporter activity in the nominal absence of CO2/HCO3−. However, only the mutant cells displayed appreciable apical Na+-induced pHi recoveries from NH4+ prepulse-induced acid loads. Similar results were obtained with isolated, perfused collecting ducts from orpk vs. wild-type mice. The pHi dependence of basolateral cariporide/HOE-694-sensitive NHE activity under our experimental conditions was similar in both mutant and rescued cells, and 3.5- to 4.5-fold greater than apical HOE-sensitive NHE activity in the mutant cells (pHi 6.23–6.68). Increased apical NHE activity correlated with increased apical NHE1 expression in the mutant cells, and increased apical localization in collecting ducts of kidney sections from orpk vs. control mice. A kidney-specific conditional cilium-knockout mouse produced a more acidic urine compared with wild-type littermates and became alkalotic by 28 days of age. This study provides the first description of altered NHE activity, and an associated acid-base anomaly in any form of PKD. PMID:22301060
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Hsu-Pin; Hsu, Shu-Yuan; Wu, Wen-Ai
Highlights: •Pnn CCD domain functions as a dominant negative mutant regulating Pnn expression and function. •Pnn CCD mutant Tg mice have a muscle wasting phenotype during development and show dystrophic histological features. •Pnn mutant muscles are susceptible to slow fiber type gene transition and NEB reduction. •The Tg mouse generated by overexpression of the Pnn CCD domain displays many characteristics resembling NEB{sup +/−} mice. -- Abstract: Pinin (Pnn) is a nuclear speckle-associated SR-like protein. The N-terminal region of the Pnn protein sequence is highly conserved from mammals to insects, but the C-terminal RS domain-containing region is absent in lower species.more » The N-terminal coiled-coil domain (CCD) is, therefore, of interest not only from a functional point of view, but also from an evolutionarily standpoint. To explore the biological role of the Pnn CCD in a physiological context, we generated transgenic mice overexpressing Pnn mutant in skeletal muscle. We found that overexpression of the CCD reduces endogenous Pnn expression in cultured cell lines as well as in transgenic skeletal muscle fibers. Pnn mutant mice exhibited reduced body mass and impaired muscle function during development. Mutant skeletal muscles show dystrophic histological features with muscle fibers heavily loaded with centrally located myonuclei. Expression profiling and pathway analysis identified over-representation of genes in gene categories associated with muscle contraction, specifically those related to slow type fiber. In addition nebulin (NEB) expression level is repressed in Pnn mutant skeletal muscle. We conclude that Pnn downregulation in skeletal muscle causes a muscular dystrophic phenotype associated with NEB deficiency and the CCD domain is incapable of replacing full length Pnn in terms of functional capacity.« less
Nakatani, Teruyo; Ohnishi, Mutsuko; Razzaque, M Shawkat
2009-11-01
Hyp mice possess a mutation that inactivates the phosphate-regulating gene, which is homologous to the endopeptidases of the X-chromosome (PHEX). The mutation is associated with severe hypophosphatemia due to excessive urinary phosphate wasting. Such urinary phosphate wasting in Hyp mice is associated with an increased serum accumulation of fibroblast growth factor (FGF) 23. We wanted to determine the biological significance of increased serum FGF23 levels and concomitant hypophosphatemia in Hyp mice and to evaluate whether FGF23 activity could be modified by manipulating klotho (a cofactor of FGF23 signaling). We generated Hyp and klotho double-mutant mice (Hyp/klotho(-/-)). Severe hypophosphatemia of Hyp mice was reversed to hyperphosphatemia in Hyp/klotho(-/-) double mutants, despite the fact that the double mutants showed significantly increased serum levels of FGF23. Hyperphosphatemia in Hyp/klotho(-/-) mice was associated with increased renal expression of sodium/phosphate cotransporter 2a (NaPi2a) protein. Exogenous injection of bioactive parathyroid hormone 1-34 down-regulated renal expression of NaPi2a and consequently reduced serum levels of phosphate in Hyp/klotho(-/-) mice. Moreover, in contrast to the Hyp mice, the Hyp/klotho(-/-) mice showed significantly higher serum levels of 1,25-dihydroxyvitamin D and developed extensive calcification in soft tissues and vascular walls. Furthermore, compared with the Hyp mice, Hyp/klotho(-/-) mice were smaller in size, showed features of generalized tissue atrophy, and generally died by 15-20 wk of age. Our in vivo studies provide genetic evidence for a pathological role of increased FGF23 activities in regulating abnormal phosphate homeostasis in Hyp mice. Moreover, these results suggest that even when serum levels of FGF23 are significantly high, in the absence of klotho, FGF23 is unable to regulate systemic phosphate homeostasis. Our in vivo observations have significant clinical implications in diseases associated with increased FGF23 activity and suggest that the functions of FGF23 can be therapeutically modulated by manipulating the effects of klotho.
Bosbach, Benedikt; Rossi, Ferdinand; Yozgat, Yasemin; Loo, Jennifer; Zhang, Jennifer Q; Berrozpe, Georgina; Warpinski, Katherine; Ehlers, Imke; Veach, Darren; Kwok, Andrew; Manova, Katia; Antonescu, Cristina R; DeMatteo, Ronald P; Besmer, Peter
2017-10-03
Gastrointestinal stromal tumors (GISTs) predominantly harbor activating mutations in the receptor tyrosine kinase KIT. To genetically dissect in vivo the requirement of different signal transduction pathways emanating from KIT for tumorigenesis, the oncogenic Kit V558Δ mutation was combined with point mutations abrogating specific phosphorylation sites on KIT. Compared with single-mutant Kit V558Δ/+ mice, double-mutant Kit V558Δ;Y567F/Y567F knock-in mice lacking the SRC family kinase-binding site on KIT (pY567) exhibited attenuated MAPK signaling and tumor growth. Surprisingly, abrogation of the PI3K-binding site (pY719) in Kit V558Δ;Y719F/Y719F mice prevented GIST development, although the interstitial cells of Cajal (ICC), the cells of origin of GIST, were normal. Pharmacologic inhibition of the PI3K pathway in tumor-bearing Kit V558Δ/+ mice with the dual PI3K/mTOR inhibitor voxtalisib, the pan-PI3K inhibitor pilaralisib, and the PI3K-alpha-restricted inhibitor alpelisib each diminished tumor proliferation. The addition of the MEK inhibitor PD-325901 or binimetinib further decreased downstream KIT signaling. Moreover, combining PI3K and MEK inhibition was effective against imatinib-resistant Kit V558Δ;T669I/+ tumors.
Bosbach, Benedikt; Rossi, Ferdinand; Yozgat, Yasemin; Loo, Jennifer; Zhang, Jennifer Q.; Berrozpe, Georgina; Warpinski, Katherine; Ehlers, Imke; Kwok, Andrew; Manova, Katia; Antonescu, Cristina R.; DeMatteo, Ronald P.; Besmer, Peter
2017-01-01
Gastrointestinal stromal tumors (GISTs) predominantly harbor activating mutations in the receptor tyrosine kinase KIT. To genetically dissect in vivo the requirement of different signal transduction pathways emanating from KIT for tumorigenesis, the oncogenic KitV558Δ mutation was combined with point mutations abrogating specific phosphorylation sites on KIT. Compared with single-mutant KitV558Δ/+ mice, double-mutant KitV558Δ;Y567F/Y567F knock-in mice lacking the SRC family kinase-binding site on KIT (pY567) exhibited attenuated MAPK signaling and tumor growth. Surprisingly, abrogation of the PI3K-binding site (pY719) in KitV558Δ;Y719F/Y719F mice prevented GIST development, although the interstitial cells of Cajal (ICC), the cells of origin of GIST, were normal. Pharmacologic inhibition of the PI3K pathway in tumor-bearing KitV558Δ/+ mice with the dual PI3K/mTOR inhibitor voxtalisib, the pan-PI3K inhibitor pilaralisib, and the PI3K-alpha–restricted inhibitor alpelisib each diminished tumor proliferation. The addition of the MEK inhibitor PD-325901 or binimetinib further decreased downstream KIT signaling. Moreover, combining PI3K and MEK inhibition was effective against imatinib-resistant KitV558Δ;T669I/+ tumors. PMID:28923937
Deletion of Ku80 causes early aging independent of chronic inflammation and Rag-1-induced DSBs.
Holcomb, Valerie B; Vogel, Hannes; Hasty, Paul
2007-01-01
Animal models of premature aging are often defective for DNA repair. Ku80-mutant mice are disabled for nonhomologous end joining; a pathway that repairs both spontaneous DNA double-strand breaks (DSBs) and induced DNA DSBs generated by the action of a complex composed of Rag-1 and Rag-2 (Rag). Rag is essential for inducing DSBs important for assembling V(D)J segments of antigen receptor genes that are required for lymphocyte development. Thus, deletion of either Rag-1 or Ku80 causes severe combined immunodeficiency (scid) leading to chronic inflammation. In addition, Rag-1 induces breaks at non-B DNA structures. Previously we reported Ku80-mutant mice undergo premature aging, yet we do not know the root cause of this phenotype. Early aging may be caused by either defective repair of spontaneous DNA damage, defective repair of Rag-1-induced breaks or chronic inflammation caused by scid. To address this issue, we analyzed aging in control and Ku80-mutant mice deleted for Rag-1 such that both cohorts are scid and suffer from chronic inflammation. We make two observations: (1) chronic inflammation does not cause premature aging in these mice and (2) Ku80-mutant mice exhibit early aging independent of Rag-1. Therefore, this study supports defective repair of spontaneous DNA damage as the root cause of early aging in Ku80-mutant mice.
Tanaka, Kazuhiro; Kunishige-Yamamoto, Akiko; Hashimoto, Hitoshi; Shintani, Norihito; Hayata, Atsuko; Baba, Akemichi
2010-01-01
Pituitary adenylate cyclase-activating polypeptide (PACAP)-deficient mice display remarkable behavioral changes including increased novelty-seeking behavior and reduced hypothermia induced by either serotonin (5-HT)(1A) receptor agonists or ethanol. Because 5-HT(1A) receptors have been implicated in the development of alcohol dependence, we have examined ethanol preference in PACAP-deficient mice using a two-bottle choice and a conditioned place preference test, as well as additive effects of ethanol and 5-HT(1A) receptor agents on hypothermia. PACAP-deficient mice showed an increased preference towards ethanol compared with wild-type mice. However, they showed no preference for the ethanol compartment after conditioning and neither preference nor aversion to sucrose or quinine. The 5-HT(1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) restored the attenuated hypothermic response to ethanol in the mutants to similar levels in wild-type mice, with no effect in wild-types. In contrast, the 5-HT(1A) receptor antagonist WAY-100635 attenuated the ethanol-induced hypothermia in wild-type mice, with no effect in the mutants. These results demonstrate increased ethanol preference in PACAP-deficient mice that may be mediated by 5-HT(1A) receptor-dependent attenuation of ethanol-induced central inhibition. Copyright 2009 Elsevier Inc. All rights reserved.
Purkinje cells from RyR2 mutant mice are highly arrhythmogenic but responsive to targeted therapy.
Kang, Guoxin; Giovannone, Steven F; Liu, Nian; Liu, Fang-Yu; Zhang, Jie; Priori, Silvia G; Fishman, Glenn I
2010-08-20
The Purkinje fiber network has been proposed as the source of arrhythmogenic Ca(2+) release events in catecholaminergic polymorphic ventricular tachycardia (CPVT), yet evidence supporting this mechanism at the cellular level is lacking. We sought to determine the frequency and severity of spontaneous Ca(2+) release events and the response to the antiarrhythmic agent flecainide in Purkinje cells and ventricular myocytes from RyR2(R4496C/+) CPVT mutant mice and littermate controls. We crossed RyR2(R4496C/+) knock-in mice with the newly described Cntn2-EGFP BAC transgenic mice, which express a fluorescent reporter gene in cells of the cardiac conduction system, including the distal Purkinje fiber network. Isolated ventricular myocytes (EGFP(-)) and Purkinje cells (EGFP(+)) from wild-type hearts and mutant hearts were distinguished by epifluorescence and intracellular Ca(2+) dynamics recorded by microfluorimetry. Both wild-type and RyR2(R4496C/+) mutant Purkinje cells displayed significantly slower kinetics of activation and relaxation compared to ventricular myocytes of the same genotype, and tau(decay) in the mutant Purkinje cells was significantly slower than that observed in wild-type Purkinje cells. Of the 4 groups studied, RyR2(R4496C/+) mutant Purkinje cells were also most likely to develop spontaneous Ca(2+) release events, and the number of events per cell was also significantly greater. Furthermore, with isoproterenol treatment, although all 4 groups showed increases in the frequency of arrhythmogenic Ca(2+(i)) events, the RyR2(R4496C/+) Purkinje cells responded with the most profound abnormalities in intracellular Ca(2+) handling, including a significant increase in the frequency of unstimulated Ca(2+(i)) events and the development of alternans, as well as isolated and sustained runs of triggered beats. Both Purkinje cells and ventricular myocytes from wild-type mice showed suppression of spontaneous Ca(2+) release events with flecainide, whereas in RyR2(R4496C/+) mice, the Purkinje cells were preferentially responsive to drug. In contrast, the RyR2 blocker tetracaine was equally efficacious in mutant Purkinje cells and ventricular myocytes. Purkinje cells display a greater propensity to develop abnormalities in intracellular Ca(2+) handling than ventricular myocytes. This proarrhythmic behavior is enhanced by disease-causing mutations in the RyR2 Ca(2+) release channel and greatly exacerbated by catecholaminergic stimulation, with the development of arrhythmogenic triggered beats. These data support the concept that Purkinje cells are critical contributors to arrhythmic triggers in animal models and humans with CPVT and suggest a broader role for the Purkinje fiber network in the genesis of ventricular arrhythmias.
Yang, Shaobin; Pascual-Guiral, Sònia; Ponce, Rebeca; Giménez-Llort, Lydia; Baltrons, María A; Arancio, Ottavio; Palacio, Jose R; Clos, Victoria M; Yuste, Victor J; Bayascas, Jose R
2017-01-01
The Akt kinase has been widely assumed for years as a key downstream effector of the PI3K signaling pathway in promoting neuronal survival. This notion was however challenged by the finding that neuronal survival responses were still preserved in mice with reduced Akt activity. Moreover, here we show that the Akt signaling is elevated in the aged brain of two different mice models of Alzheimer Disease. We manipulate the rate of Akt stimulation by employing knock-in mice expressing a mutant form of PDK1 (phosphoinositide-dependent protein kinase 1) with reduced, but not abolished, ability to activate Akt. We found increased membrane localization and activity of the TACE/ADAM17 α-secretase in the brain of the PDK1 mutant mice with concomitant TNFR1 processing, which provided neurons with resistance against TNFα-induced neurotoxicity. Opposite to the Alzheimer Disease transgenic mice, the PDK1 knock-in mice exhibited an age-dependent attenuation of the unfolding protein response, which protected the mutant neurons against endoplasmic reticulum stressors. Moreover, these two mechanisms cooperatively provide the mutant neurons with resistance against amyloid-beta oligomers, and might singularly also contribute to protect these mice against amyloid-beta pathology.
Hwang, Kyung-Sun; Cho, Won-Kyung; Yoo, Jinsang; Seong, Young Rim; Kim, Bum-Kyeng; Kim, Samyong; Im, Dong-Soo
2004-06-01
We report here that gene transfer using recombinant adenoviruses encoding interleukin (IL)-18 mutants induces potent antitumor activity in vivo. The precursor form of IL-18 (ProIL-18) is processed by caspase-1 to produce bioactive IL-18, but its cleavage by caspase-3 (CPP32) produces an inactive form. To prepare IL-18 molecules with an effective antitumor activity, a murine IL-18 mutant with the signal sequence of murine granulocyte-macrophage (GM)- colony stimulating factor (CSF) at the 5'-end of mature IL-18 cDNA (GMmIL-18) and human IL-18 mutant with the prepro leader sequence of trypsin (PPT), which is not cleaved by caspase-3 (PPThIL-18CPP32-), respectively, were constructed. Adenovirus vectors carrying GMmIL-18 or PPThIL-18CPP32- produced bioactive IL-18. Ad.GMmIL-18 had a more potent antitumor effect than Ad.mProIL-18 encoding immature IL-18 in renal cell adenocarcinoma (Renca) tumor-bearing mice. Tumor-specific cytotoxic T lymphocytes, the induction of Th1 cytokines, and an augmented natural killer (NK) cell activity were detected in Renca tumor-bearing mice treated with Ad.GMmIL-18. An immunohistological analysis revealed that CD4+ and CD8+ T cells abundantly infiltrated into tumors of mice treated with Ad.GMmIL-18. Huh-7 human hepatoma tumor growth in nude mice with a defect of T cell function was significantly inhibited by Ad.PPThIL-18CPP32- compared with Ad.hProIL-18 encoding immature IL-18. Nude mice treated with Ad.PPThIL-18CPP32- contained NK cells with increased cytotoxicity. The results suggest that the release of mature IL-18 in tumors is required for achieving an antitumor effect including tumor-specific cellular immunity and augmented NK cell-mediated cytotoxicity. These optimally designed IL-18 mutants could be useful for improving the antitumor effectiveness of wild-type IL-18. Copyright 2004 Nature Publishing Group
Forebrain-Specific Loss of BMPRII in Mice Reduces Anxiety and Increases Object Exploration.
McBrayer, Zofeyah L; Dimova, Jiva; Pisansky, Marc T; Sun, Mu; Beppu, Hideyuki; Gewirtz, Jonathan C; O'Connor, Michael B
2015-01-01
To investigate the role of Bone Morphogenic Protein Receptor Type II (BMPRII) in learning, memory, and exploratory behavior in mice, a tissue-specific knockout of BMPRII in the post-natal hippocampus and forebrain was generated. We found that BMPRII mutant mice had normal spatial learning and memory in the Morris water maze, but showed significantly reduced swimming speeds with increased floating behavior. Further analysis using the Porsolt Swim Test to investigate behavioral despair did not reveal any differences in immobility between mutants and controls. In the Elevated Plus Maze, BMPRII mutants and Smad4 mutants showed reduced anxiety, while in exploratory tests, BMPRII mutants showed more interest in object exploration. These results suggest that loss of BMPRII in the mouse hippocampus and forebrain does not disrupt spatial learning and memory encoding, but instead impacts exploratory and anxiety-related behaviors.
Forebrain-Specific Loss of BMPRII in Mice Reduces Anxiety and Increases Object Exploration
McBrayer, Zofeyah L.; Dimova, Jiva; Pisansky, Marc T.; Sun, Mu; Beppu, Hideyuki; Gewirtz, Jonathan C.; O’Connor, Michael B.
2015-01-01
To investigate the role of Bone Morphogenic Protein Receptor Type II (BMPRII) in learning, memory, and exploratory behavior in mice, a tissue-specific knockout of BMPRII in the post-natal hippocampus and forebrain was generated. We found that BMPRII mutant mice had normal spatial learning and memory in the Morris water maze, but showed significantly reduced swimming speeds with increased floating behavior. Further analysis using the Porsolt Swim Test to investigate behavioral despair did not reveal any differences in immobility between mutants and controls. In the Elevated Plus Maze, BMPRII mutants and Smad4 mutants showed reduced anxiety, while in exploratory tests, BMPRII mutants showed more interest in object exploration. These results suggest that loss of BMPRII in the mouse hippocampus and forebrain does not disrupt spatial learning and memory encoding, but instead impacts exploratory and anxiety-related behaviors. PMID:26444546
Altered sexual and social behaviors in trp2 mutant mice
Leypold, Bradley G.; Yu, C. Ron; Leinders-Zufall, Trese; Kim, Michelle M.; Zufall, Frank; Axel, Richard
2002-01-01
We have used gene targeting to generate mice with a homozygous deficiency in trp2, a cation channel expressed in the vomeronasal organ (VNO). Trp2 mutant animals reveal a striking reduction in the electrophysiological response to pheromones in the VNO, suggesting that trp2 plays a central role in mediating the pheromone response. These mutants therefore afford the opportunity to examine the role of the VNO in the generation of innate sexual and social behaviors in mice. Trp2 mutant males and nursing females are docile and fail to initiate aggressive attacks on intruder males. Male–female sexual behavior appears normal, but trp2 mutant males also vigorously mount other males. These results suggest that the cation channel trp2 is required in the VNO to detect male-specific pheromones that elicit aggressive behaviors and dictate the choice of sexual partners. PMID:11972034
Marty, Caroline; Pecquet, Christian; Nivarthi, Harini; El-Khoury, Mira; Chachoua, Ilyas; Tulliez, Micheline; Villeval, Jean-Luc; Raslova, Hana; Kralovics, Robert; Constantinescu, Stefan N; Plo, Isabelle; Vainchenker, William
2016-03-10
Frameshift mutations in the calreticulin (CALR) gene are seen in about 30% of essential thrombocythemia and myelofibrosis patients. To address the contribution of the CALR mutants to the pathogenesis of myeloproliferative neoplasms, we engrafted lethally irradiated recipient mice with bone marrow cells transduced with retroviruses expressing these mutants. In contrast to wild-type CALR, CALRdel52 (type I) and, to a lesser extent, CALRins5 (type II) induced thrombocytosis due to a megakaryocyte (MK) hyperplasia. Disease was transplantable into secondary recipients. After 6 months, CALRdel52-, in contrast to rare CALRins5-, transduced mice developed a myelofibrosis associated with a splenomegaly and a marked osteosclerosis. Monitoring of virus-transduced populations indicated that CALRdel52 leads to expansion at earlier stages of hematopoiesis than CALRins5. However, both mutants still specifically amplified the MK lineage and platelet production. Moreover, a mutant deleted of the entire exon 9 (CALRdelex9) did not induce a disease, suggesting that the oncogenic property of CALR mutants was related to the new C-terminus peptide. To understand how the CALR mutants target the MK lineage, we used a cell-line model and demonstrated that the CALR mutants, but not CALRdelex9, specifically activate the thrombopoietin (TPO) receptor (MPL) to induce constitutive activation of Janus kinase 2 and signal transducer and activator of transcription 5/3/1. We confirmed in c-mpl- and tpo-deficient mice that expression of Mpl, but not of Tpo, was essential for the CALR mutants to induce thrombocytosis in vivo, although Tpo contributes to disease penetrance. Thus, CALR mutants are sufficient to induce thrombocytosis through MPL activation. © 2016 by The American Society of Hematology.
Fan, Heng-Yu; Liu, Zhilin; Cahill, Nicola; Richards, JoAnne S
2008-09-01
FSH activates the phosphatidylinositol-3 kinase (PI3K)/acute transforming retrovirus thymoma protein kinase pathway and thereby enhances granulosa cell differentiation in culture. To identify the physiological role of the PI3K pathway in vivo we disrupted the PI3K suppressor, Pten, in developing ovarian follicles. To selectively disrupt Pten expression in granulosa cells, Ptenfl/fl mice were mated with transgenic mice expressing cAMP response element recombinase driven by Cyp19 promoter (Cyp19-Cre). The resultant Pten mutant mice were fertile, ovulated more oocytes, and produced moderately more pups than control mice. These physiological differences in the Pten mutant mice were associated with hyperactivation of the PI3K/acute transforming retrovirus thymoma protein kinase pathway, decreased susceptibility to apoptosis, and increased proliferation of mutant granulosa cells. Strikingly, corpora lutea of the Pten mutant mice persisted longer than those of control mice. Although the follicular and luteal cell steroidogenesis in Ptenfl/fl;Cyp19-Cre mice was similar to controls, viable nonsteroidogenic luteal cells escaped structural luteolysis. These findings provide the novel evidence that Pten impacts the survival/life span of granulosa/luteal cells and that its loss not only results in the facilitated ovulation but also in the persistence of nonsteroidogenic luteal structures in the adult mouse ovary.
Biddinger, Jessica E.; Baquet, Zachary C.; Jones, Kevin R.; McAdams, Jennifer
2013-01-01
A large proportion of vagal afferents are dependent on neurotrophin-3 (NT-3) for survival. NT-3 is expressed in developing gastrointestinal (GI) smooth muscle, a tissue densely innervated by vagal mechanoreceptors, and thus could regulate their survival. We genetically ablated NT-3 from developing GI smooth muscle and examined the pattern of loss of NT-3 expression in the GI tract and whether this loss altered vagal afferent signaling or feeding behavior. Meal-induced c-Fos activation was reduced in the solitary tract nucleus and area postrema in mice with a smooth muscle-specific NT-3 knockout (SM-NT-3KO) compared with controls, suggesting a decrease in vagal afferent signaling. Daily food intake and body weight of SM-NT-3KO mice and controls were similar. Meal pattern analysis revealed that mutants, however, had increases in average and total daily meal duration compared with controls. Mutants maintained normal meal size by decreasing eating rate compared with controls. Although microstructural analysis did not reveal a decrease in the rate of decay of eating in SM-NT-3KO mice, they ate continuously during the 30-min meal, whereas controls terminated feeding after 22 min. This led to a 74% increase in first daily meal size of SM-NT-3KO mice compared with controls. The increases in meal duration and first meal size of SM-NT-3KO mice are consistent with reduced satiation signaling by vagal afferents. This is the first demonstration of a role for GI NT-3 in short-term controls of feeding, most likely involving effects on development of vagal GI afferents that regulate satiation. PMID:24068045
CAG repeat lengths ≥335 attenuate the phenotype in the R6/2 Huntington’s disease transgenic mouse
Dragatsis, I.; Goldowitz, D.; Del Mar, N.; Deng, Y.P.; Meade, C.A.; Liu, Li; Sun, Z.; Dietrich, P.; Yue, J.; Reiner, A.
2015-01-01
With spontaneous elongation of the CAG repeat in the R6/2 transgene to ≥335, resulting in a transgene protein too large for passive entry into nuclei via the nuclear pore, we observed an abrupt increase in lifespan to >20 weeks, compared to the 12 weeks common in R6/2 mice with 150 repeats. In the ≥335 CAG mice, large ubiquitinated aggregates of mutant protein were common in neuronal dendrites and perikaryal cytoplasm, but intranuclear aggregates were small and infrequent. Message and protein for the ≥335 CAG transgene were reduced to one-third that in 150 CAG R6/2 mice. Neurological and neurochemical abnormalities were delayed in onset and less severe than in 150 CAG R6/2 mice. These findings suggest that polyQ length and pathogenicity in Huntington’s disease may not be linearly related, and pathogenicity may be less severe with extreme repeats. Both diminished mutant protein and reduced nuclear entry may contribute to phenotype attenuation. PMID:19027857
Feyerabend, Thorsten B; Weiser, Anne; Tietz, Annette; Stassen, Michael; Harris, Nicola; Kopf, Manfred; Radermacher, Peter; Möller, Peter; Benoist, Christophe; Mathis, Diane; Fehling, Hans Jörg; Rodewald, Hans-Reimer
2011-11-23
Immunological functions of mast cells remain poorly understood. Studies in Kit mutant mice suggest key roles for mast cells in certain antibody- and T cell-mediated autoimmune diseases. However, Kit mutations affect multiple cell types of both immune and nonimmune origin. Here, we show that targeted insertion of Cre-recombinase into the mast cell carboxypeptidase A3 locus deleted mast cells in connective and mucosal tissues by a genotoxic Trp53-dependent mechanism. Cre-mediated mast cell eradication (Cre-Master) mice had, with the exception of a lack of mast cells and reduced basophils, a normal immune system. Cre-Master mice were refractory to IgE-mediated anaphylaxis, and this defect was rescued by mast cell reconstitution. This mast cell-deficient strain was fully susceptible to antibody-induced autoimmune arthritis and to experimental autoimmune encephalomyelitis. Differences comparing Kit mutant mast cell deficiency models to selectively mast cell-deficient mice call for a systematic re-evaluation of immunological functions of mast cells beyond allergy. Copyright © 2011 Elsevier Inc. All rights reserved.
Filant, Justyna; DeMayo, Franco J; Pru, James K; Lydon, John P; Spencer, Thomas E
2014-01-01
Fibroblast growth factors (FGFs) and their receptors (FGFRs) regulate luminal epithelial (LE) cell proliferation in the adult mouse uterus. This study tested the hypothesis that FGFR2 has a biological role in postnatal development and function of the uterus by conditionally deleting Fgfr2 after birth using progesterone receptor (Pgr)-Cre mice. Adult Fgfr2 mutant female mice were initially subfertile and became infertile with increasing parity. No defects in uterine gland development were observed in conditional Fgfr2 mutant mice. In the adult, Fgfr2 mutant mice possessed a histologically normal reproductive tract with the exception of the uterus. The LE of the Fgfr2 mutant uterus was stratified, but no obvious histological differences were observed in the glandular epithelium, stroma, or myometrium. Within the stratified LE, cuboidal basal cells were present and positive for basal cell markers (KRT14 and TRP63). Nulliparous bred Fgfr2 mutants contained normal numbers of blastocysts on Day 3.5 postmating, but the number of embryo implantation sites was substantially reduced on Day 5.5 postmating. These results support the idea that loss of FGFR2 in the uterus after birth alters its development, resulting in LE stratification and peri-implantation pregnancy loss.
Retinoschisislike alterations in the mouse eye caused by gene targeting of the Norrie disease gene.
Ruether, K; van de Pol, D; Jaissle, G; Berger, W; Tornow, R P; Zrenner, E
1997-03-01
To investigate the retinal function and morphology of mice carrying a replacement mutation in exon 2 of the Norrie disease gene. Recently, Norrie disease mutant mice have been generated using gene targeting technology. The mutation removes the 56 N-terminal amino acids of the Norrie gene product. Ganzfeld electroretinograms (ERGs) were obtained in five animals hemizygous or homozygous for the mutant gene and in three female animals heterozygous for the mutant gene. As controls, three males carrying the wild-type gene were examined. Electroretinogram testing included rod a- and b-wave V-log I functions, oscillatory potentials, and cone responses. The fundus morphology has been visualized by scanning laser ophthalmoscopy. Rod and cone ERG responses and fundus morphology were not significantly different among female heterozygotes and wild-type mice. In contrast, the hemizygous mice displayed a severe loss of ERG b-wave, leading to a negatively shaped scotopic ERG and a marked reduction of oscillatory potentials. The a-wave was normal at low intensities, and only with brighter flashes was there a moderate amplitude loss. Cone amplitudes were barely recordable in the gene-targeted males. Ophthalmoscopy revealed snowflakelike vitreal changes, retinoschisis, and pigment epithelium irregularities in hemizygotes and homozygotes, but no changes in female heterozygotes. The negatively shaped scotopic ERG in male mice with a Norrie disease gene mutation probably was caused by retinoschisis. Pigment epithelial changes and degenerations of the outer retina are relatively mild. These findings may be a clue to the embryonal retinoschisislike pathogenesis of Norrie disease in humans or it may indicate a different expression of the Norrie disease gene defect in mice compared to that in humans.
Independent roles of the priming and the triggering of the NLRP3 inflammasome in the heart
Toldo, Stefano; Mezzaroma, Eleonora; McGeough, Matthew D.; Peña, Carla A.; Marchetti, Carlo; Sonnino, Chiara; Van Tassell, Benjamin W.; Salloum, Fadi N.; Voelkel, Norbert F.; Hoffman, Hal M.; Abbate, Antonio
2015-01-01
Aims The NLRP3 inflammasome is activated in the ischaemic heart promoting caspase-1 activation, inflammation, and cell death. Ischaemic injury establishes both a priming signal (transcription of inflammasome components) and a trigger (NLRP3 activation). Whether NLRP3 activation, without priming, induces cardiac dysfunction and/or failure is unknown. The aim of this study was to assess the independent and complementary roles of the priming and the triggering signals in the heart, in the absence of ischaemia or myocardial injury. Methods and results We used mice with mutant NLRP3 (constitutively active), NLRP3-A350V, under the control of tamoxifen-driven expression of the Cre recombinase (Nlrp3-A350V/CreT mice). The mice were treated for 10 days with tamoxifen before measuring the activity of caspase-1, the effector enzyme in the inflammasome. Tamoxifen treatment induced the inflammasome in the spleen but not in the heart, despite expression of the mutant NLRP3-A350V. The components of the inflammasome were significantly less expressed in the heart compared with the spleen. Subclinical low-dose lipopolysaccharide (LPS; 2 mg/kg) in Nlrp3-A350V/CreT mice induced the expression of the components of the inflammasome (priming), measured using real-time PCR and western blot, leading to the formation of an active inflammasome (caspase-1 activation) in the heart and LV systolic dysfunction while low-dose LPS was insufficient to induce LV systolic dysfunction in wild-type mice (all P < 0.01 for mutant vs. wild-type mice). Conclusion The signalling pathway governing the inflammasome formation in the heart requires a priming signal in order for an active NLRP3 to induce caspase-1 activation and LV dysfunction. PMID:25524927
A novel Phex mutation in a new mouse model of hypophosphatemic rickets.
Owen, Celeste; Chen, Frieda; Flenniken, Ann M; Osborne, Lucy R; Ichikawa, Shoji; Adamson, S Lee; Rossant, Janet; Aubin, Jane E
2012-07-01
X-linked hypophosphatemic rickets (XLH) is a dominantly inherited disease characterized by renal phosphate wasting, aberrant vitamin D metabolism, and defective bone mineralization. It is known that XLH in humans and in certain mouse models is caused by inactivating mutations in PHEX/Phex (phosphate-regulating gene with homologies to endopeptidases on the X chromosome). By a genome-wide N-ethyl-N-nitrosourea (ENU)-induced mutagenesis screen in mice, we identified a dominant mouse mutation that exhibits the classic clinical manifestations of XLH, including growth retardation, skeletal abnormalities (rickets/osteomalacia), hypophosphatemia, and increased serum alkaline phosphatase (ALP) levels. Mapping and sequencing revealed that these mice carry a point mutation in exon 14 of the Phex gene that introduces a stop codon at amino acid 496 of the coding sequence (Phex(Jrt) also published as Phex(K496X) [Ichikawa et al., 2012]). Fgf23 mRNA expression as well as that of osteocalcin, bone sialoprotein, and matrix extracellular phosphoglycoprotein was upregulated in male mutant long bone, but that of sclerostin was unaffected. Although Phex mRNA is expressed in bone from mutant hemizygous male mice (Phex(Jrt)/Y mice), no Phex protein was detected in immunoblots of femoral bone protein. Stromal cultures from mutant bone marrow were indistinguishable from those of wild-type mice with respect to differentiation and mineralization. The ability of Phex(Jrt)/Y osteoblasts to mineralize and the altered expression levels of matrix proteins compared with the well-studied Hyp mice makes it a unique model with which to further explore the clinical manifestations of XLH and its link to FGF23 as well as to evaluate potential new therapeutic strategies. Copyright © 2012 Wiley Periodicals, Inc.
Pang, Zhen; Wu, Nancy N; Zhao, Weiguang; Chain, David C; Schaffer, Erica; Zhang, Xin; Yamdagni, Preeti; Palejwala, Vaseem A; Fan, Chunpeng; Favara, Sarah G; Dressler, Holly M; Economides, Kyriakos D; Weinstock, Daniel; Cavallo, Jean S; Naimi, Souad; Galzin, Anne-Marie; Guillot, Etienne; Pruniaux, Marie-Pierre; Tocci, Michael J; Polites, H Greg
2011-10-01
Cannabinoid receptor CB1 is expressed abundantly in the brain and presumably in the peripheral tissues responsible for energy metabolism. It is unclear if the antiobesity effects of rimonabant, a CB1 antagonist, are mediated through the central or the peripheral CB1 receptors. To address this question, we generated transgenic mice with central nervous system (CNS)-specific knockdown (KD) of CB1, by expressing an artificial microRNA (AMIR) under the control of the neuronal Thy1.2 promoter. In the mutant mice, CB1 expression was reduced in the brain and spinal cord, whereas no change was observed in the superior cervical ganglia (SCG), sympathetic trunk, enteric nervous system, and pancreatic ganglia. In contrast to the neuronal tissues, CB1 was undetectable in the brown adipose tissue (BAT) or the liver. Consistent with the selective loss of central CB1, agonist-induced hypothermia was attenuated in the mutant mice, but the agonist-induced delay of gastrointestinal transit (GIT), a primarily peripheral nervous system-mediated effect, was not. Compared to wild-type (WT) littermates, the mutant mice displayed reduced body weight (BW), adiposity, and feeding efficiency, and when fed a high-fat diet (HFD), showed decreased plasma insulin, leptin, cholesterol, and triglyceride levels, and elevated adiponectin levels. Furthermore, the therapeutic effects of rimonabant on food intake (FI), BW, and serum parameters were markedly reduced and correlated with the degree of CB1 KD. Thus, KD of CB1 in the CNS recapitulates the metabolic phenotype of CB1 knockout (KO) mice and diminishes rimonabant's efficacy, indicating that blockade of central CB1 is required for rimonabant's antiobesity actions.
Thrombin promotes diet-induced obesity through fibrin-driven inflammation.
Kopec, Anna K; Abrahams, Sara R; Thornton, Sherry; Palumbo, Joseph S; Mullins, Eric S; Divanovic, Senad; Weiler, Hartmut; Owens, A Phillip; Mackman, Nigel; Goss, Ashley; van Ryn, Joanne; Luyendyk, James P; Flick, Matthew J
2017-08-01
Obesity promotes a chronic inflammatory and hypercoagulable state that drives cardiovascular disease, type 2 diabetes, fatty liver disease, and several cancers. Elevated thrombin activity underlies obesity-linked thromboembolic events, but the mechanistic links between the thrombin/fibrin(ogen) axis and obesity-associated pathologies are incompletely understood. In this work, immunohistochemical studies identified extravascular fibrin deposits within white adipose tissue and liver as distinct features of mice fed a high-fat diet (HFD) as well as obese patients. Fibγ390-396A mice carrying a mutant form of fibrinogen incapable of binding leukocyte αMβ2-integrin were protected from HFD-induced weight gain and elevated adiposity. Fibγ390-396A mice had markedly diminished systemic, adipose, and hepatic inflammation with reduced macrophage counts within white adipose tissue, as well as near-complete protection from development of fatty liver disease and glucose dysmetabolism. Homozygous thrombomodulin-mutant ThbdPro mice, which have elevated thrombin procoagulant function, gained more weight and developed exacerbated fatty liver disease when fed a HFD compared with WT mice. In contrast, treatment with dabigatran, a direct thrombin inhibitor, limited HFD-induced obesity development and suppressed progression of sequelae in mice with established obesity. Collectively, these data provide proof of concept that targeting thrombin or fibrin(ogen) may limit pathologies in obese patients.
Low, Malcolm J.; Otero-Corchon, Veronica; Parlow, Albert F.; Ramirez, Jose L.; Kumar, Ujendra; Patel, Yogesh C.; Rubinstein, Marcelo
2001-01-01
Pulsatile growth hormone (GH) secretion differs between males and females and regulates the sex-specific expression of cytochrome P450s in liver. Sex steroids influence the secretory dynamics of GH, but the neuroendocrine mechanisms have not been conclusively established. Because periventricular hypothalamic somatostatin (SST) expression is greater in males than in females, we generated knockout (Smst–/–) mice to investigate whether SST peptides are necessary for sexually differentiated GH secretion and action. Despite marked increases in nadir and median plasma GH levels in both sexes of Smst–/– compared with Smst+/+ mice, the mutant mice had growth curves identical to their sibling controls and retained a normal sexual dimorphism in weight and length. In contrast, the liver of male Smst–/– mice was feminized, resulting in an identical profile of GH-regulated hepatic mRNAs between male and female mutants. Male Smst-/- mice show higher expression of two SST receptors in the hypothalamus and pituitary than do females. These data indicate that SST is required to masculinize the ultradian GH rhythm by suppressing interpulse GH levels. In the absence of SST, male and female mice exhibit similarly altered plasma GH profiles that eliminate sexually dimorphic liver function but do not affect dimorphic growth. PMID:11413165
Thrombin promotes diet-induced obesity through fibrin-driven inflammation
Kopec, Anna K.; Abrahams, Sara R.; Thornton, Sherry; Palumbo, Joseph S.; Mullins, Eric S.; Weiler, Hartmut; Mackman, Nigel; Goss, Ashley; van Ryn, Joanne; Luyendyk, James P.; Flick, Matthew J.
2017-01-01
Obesity promotes a chronic inflammatory and hypercoagulable state that drives cardiovascular disease, type 2 diabetes, fatty liver disease, and several cancers. Elevated thrombin activity underlies obesity-linked thromboembolic events, but the mechanistic links between the thrombin/fibrin(ogen) axis and obesity-associated pathologies are incompletely understood. In this work, immunohistochemical studies identified extravascular fibrin deposits within white adipose tissue and liver as distinct features of mice fed a high-fat diet (HFD) as well as obese patients. Fibγ390–396A mice carrying a mutant form of fibrinogen incapable of binding leukocyte αMβ2-integrin were protected from HFD-induced weight gain and elevated adiposity. Fibγ390–396A mice had markedly diminished systemic, adipose, and hepatic inflammation with reduced macrophage counts within white adipose tissue, as well as near-complete protection from development of fatty liver disease and glucose dysmetabolism. Homozygous thrombomodulin-mutant ThbdPro mice, which have elevated thrombin procoagulant function, gained more weight and developed exacerbated fatty liver disease when fed a HFD compared with WT mice. In contrast, treatment with dabigatran, a direct thrombin inhibitor, limited HFD-induced obesity development and suppressed progression of sequelae in mice with established obesity. Collectively, these data provide proof of concept that targeting thrombin or fibrin(ogen) may limit pathologies in obese patients. PMID:28737512
Mason, Jeffrey L; Xuan, Shouhong; Dragatsis, Ioannis; Efstratiadis, Argiris; Goldman, James E
2003-08-20
We examined the role of IGF signaling in the remyelination process by disrupting the gene encoding the type 1 IGF receptor (IGF1R) specifically in the mouse brain by Cre-mediated recombination and then exposing these mutants and normal siblings to cuprizone. This neurotoxicant induces a demyelinating lesion in the corpus callosum that is reversible on termination of the insult. Acute demyelination and oligodendrocyte depletion were the same in mutants and controls, but the mutants did not remyelinate adequately. We observed that oligodendrocyte progenitors did not accumulate, proliferate, or survive within the mutant mice, compared with wild type, indicating that signaling through the IGF1R plays a critical role in remyelination via effects on oligodendrocyte progenitors.
Bidirectional modulation of fear extinction by mediodorsal thalamic firing in mice.
Lee, Sukchan; Ahmed, Touqeer; Lee, Soojung; Kim, Huisu; Choi, Sukwoo; Kim, Duk-Soo; Kim, Sang Jeong; Cho, Jeiwon; Shin, Hee-Sup
2011-12-25
The mediodorsal thalamic nucleus has been implicated in the control of memory processes. However, the underlying neural mechanism remains unclear. Here we provide evidence for bidirectional modulation of fear extinction by the mediodorsal thalamic nucleus. Mice with a knockout or mediodorsal thalamic nucleus-specific knockdown of phospholipase C β4 exhibited impaired fear extinction. Mutant mediodorsal thalamic nucleus neurons in slices showed enhanced burst firing accompanied by increased T-type Ca(2+) currents; blocking of T channels in vivo rescued the fear extinction. Tetrode recordings in freely moving mice revealed that, during extinction, the single-spike (tonic) frequency of mediodorsal thalamic nucleus neurons increased in wild-type mice, but was static in mutant mice. Furthermore, tonic-evoking microstimulations of the mediodorsal thalamic nucleus, contemporaneous with the extinction tones, rescued fear extinction in mutant mice and facilitated it in wild-type mice. In contrast, burst-evoking microstimulation suppressed extinction in wild-type mice, mimicking the mutation. These results suggest that the firing mode of the mediodorsal thalamic nucleus is critical for the modulation of fear extinction.
Jenks, Peter J.; Ferrero, Richard L.; Tankovic, Jacques; Thiberge, Jean-Michel; Labigne, Agnès
2000-01-01
The main objectives of this study were to determine whether the nitroreductase enzyme encoded by the rdxA gene of Helicobacter pylori was responsible for reductive activation of nitrofurantoin and whether a triple-therapy regimen with nitrofurantoin was able to eradicate metronidazole-sensitive and -resistant H. pylori infections from mice. The susceptibilities to nitrofurantoin of parent and isogenic rdxA mutant strains (three pairs), as well as a series of matched metronidazole-sensitive and -resistant strains isolated from mice (30) and patients (20), were assessed by agar dilution determination of the MIC. Groups of mice colonized with the metronidazole-sensitive H. pylori SS1 strain or a metronidazole-resistant rdxA SS1 mutant were treated with either metronidazole or nitrofurantoin as part of a triple-therapy regimen. One month after the completion of treatment the mice were sacrificed and their stomachs were cultured for H. pylori. The nitrofurantoin MICs for all strains tested were between 0.5 and 4.0 μg/ml. There was no significant difference between the susceptibility to nitrofurantoin of the parental strains and those of respective rdxA mutants or between those of matched metronidazole-sensitive and -resistant H. pylori isolates. The regimen with metronidazole eradicated infection from all eight SS1-infected mice and from one of eight mice inoculated with the rdxA mutant (P ≤ 0.001). The regimen with nitrofurantoin failed to eradicate infection from any of the six SS1-infected mice (P ≤ 0.001) and cleared infection from one of seven mice inoculated with the rdxA mutant. These results demonstrate that, despite the good in vitro activity of nitrofurantoin against H. pylori and the lack of cross-resistance between metronidazole and nitrofurantoin, eradication regimens involving nitrofurantoin are unable to eradicate either metronidazole-sensitive or -resistant H. pylori infections from mice. PMID:10991835
Reanalysis of parabiosis of obesity mutants in the age of leptin.
Zeng, Wenwen; Lu, Yi-Hsueh; Lee, Jonah; Friedman, Jeffrey M
2015-07-21
In this study we set out to explain the differing effects of parabiosis with genetically diabetic (db) mice versus administration of recombinant leptin. Parabiosis of db mutant, which overexpress leptin, to wildtype (WT) or genetically obese (ob) mice has been reported to cause death by starvation, whereas leptin infusions do not produce lethality at any dose or mode of delivery tested. Leptin is not posttranslationally modified other than a single disulphide bond, raising the possibility that it might require additional factor(s) to exert the maximal appetite-suppressing effect. We reconfirmed the lethal effect of parabiosis of db mutant on WT mice and further showed that this lethality could not be rescued by administration of ghrelin or growth hormone. We then initiated a biochemical fractionation of a high-molecular-weight leptin complex from human plasma and identified clusterin as a major component of this leptin-containing complex. However, in contrast to previous reports, we failed to observe a leptin-potentiating effect of either exogenous or endogenous clusterin, and parabiosis of db clusterin(-/-) double-mutant to WT mice still caused lethality. Intriguingly, in parabiotic pairs of two WT mice, leptin infusion into one of the mice led to an enhanced starvation response during calorie restriction as evidenced by increased plasma ghrelin and growth-hormone levels. Moreover, leptin treatment resulted in death of the parabiotic pairs. These data suggest that the appetite suppression in WT mice after parabiosis to db mutants is the result of induced hyperleptinemia combined with the stress or other aspect(s) of the parabiosis procedure.
Reanalysis of parabiosis of obesity mutants in the age of leptin
Zeng, Wenwen; Lu, Yi-Hsueh; Lee, Jonah; Friedman, Jeffrey M.
2015-01-01
In this study we set out to explain the differing effects of parabiosis with genetically diabetic (db) mice versus administration of recombinant leptin. Parabiosis of db mutant, which overexpress leptin, to wildtype (WT) or genetically obese (ob) mice has been reported to cause death by starvation, whereas leptin infusions do not produce lethality at any dose or mode of delivery tested. Leptin is not posttranslationally modified other than a single disulphide bond, raising the possibility that it might require additional factor(s) to exert the maximal appetite-suppressing effect. We reconfirmed the lethal effect of parabiosis of db mutant on WT mice and further showed that this lethality could not be rescued by administration of ghrelin or growth hormone. We then initiated a biochemical fractionation of a high-molecular-weight leptin complex from human plasma and identified clusterin as a major component of this leptin-containing complex. However, in contrast to previous reports, we failed to observe a leptin-potentiating effect of either exogenous or endogenous clusterin, and parabiosis of db clusterin−/− double-mutant to WT mice still caused lethality. Intriguingly, in parabiotic pairs of two WT mice, leptin infusion into one of the mice led to an enhanced starvation response during calorie restriction as evidenced by increased plasma ghrelin and growth-hormone levels. Moreover, leptin treatment resulted in death of the parabiotic pairs. These data suggest that the appetite suppression in WT mice after parabiosis to db mutants is the result of induced hyperleptinemia combined with the stress or other aspect(s) of the parabiosis procedure. PMID:26150485
Subramanian, Balajikarthick; Sun, Hua; Yan, Paul; Charoonratana, Victoria T; Higgs, Henry N; Wang, Fang; Lai, Ka-Man V; Valenzuela, David M; Brown, Elizabeth J; Schlöndorff, Johannes S; Pollak, Martin R
2016-08-01
Mutations in the INF2 (inverted formin 2) gene, encoding a diaphanous formin family protein that regulates actin cytoskeleton dynamics, cause human focal segmental glomerulosclerosis (FSGS). INF2 interacts directly with certain other mammalian diaphanous formin proteins (mDia) that function as RhoA effector molecules. FSGS-causing INF2 mutations impair these interactions and disrupt the ability of INF2 to regulate Rho/Dia-mediated actin dynamics in vitro. However, the precise mechanisms by which INF2 regulates and INF2 mutations impair glomerular structure and function remain unknown. Here, we characterize an Inf2 R218Q point-mutant (knockin) mouse to help answer these questions. Knockin mice have no significant renal pathology or proteinuria at baseline despite diminished INF2 protein levels. INF2 mutant podocytes do show impaired reversal of protamine sulfate-induced foot process effacement by heparin sulfate perfusion. This is associated with persistent podocyte cytoplasmic aggregation, nephrin phosphorylation, and nephrin and podocin mislocalization, as well as impaired recovery of mDia membrane localization. These changes were partially mimicked in podocyte outgrowth cultures, in which podocytes from knockin mice show altered cellular protrusions compared to those from wild-type mice. Thus, in mice, normal INF2 function is not required for glomerular development but normal INF2 is required for regulation of the actin-based behaviors necessary for response to and/or recovery from injury. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
DISRUPTION OF THE PACAP GENE PROMOTES MEDULLOBLASTOMA IN PTC1 MUTANT MICE
Lelievre, Vincent; Seksenyan, Akop; Nobuta, Hiroko; Yong, William H.; Chhith, Seririthanar; Niewiadomski, Pawel; Cohen, Joseph R.; Dong, Hongmei; Flores, Avegail; Liau, Linda M.; Kornblum, Harley I.; Scott, Matthew P.; Waschek, James A.
2008-01-01
Hedgehog (Hh) proteins and cAMP-dependent protein kinase A (PKA) generally play opposing roles in developmental patterning events. Humans and mice heterozygous for mutations in the Sonic hedgehog (Shh) receptor gene patched-1 (ptc1) have an increased incidence of certain types of cancer, including medulloblastoma (MB), a highly aggressive tumor of the cerebellum. Despite the importance of PKA in Hh signaling, little is known about how PKA activity is regulated in the context of Hh signaling, or the consequences of improper regulation. One molecule that can influence PKA activity is pituitary adenylyl cyclase activating peptide (PACAP), which has been shown to regulate cerebellar granule precursor proliferation in vitro, a cell population thought to give rise to MB. To test for a PACAP/Hh interaction in the initiation or propagation of these tumors, we introduced a PACAP mutation into ptc1 mutant mice. Deletion of a single copy of PACAP increased MB incidence approximate 2.5-fold, to 66%, thereby demonstrating that PACAP exerts a powerful inhibitory action on the induction, growth or survival of these tumors. Tumors from PACAP/ptc1 mutant mice retained PACAP receptor gene expression, and exhibited superinduction of Hh target genes compared to those from ptc1+/− mice. Moreover, PACAP inhibited proliferation of cell lines derived from tumors in a PKA-dependent manner, and inhibited expression of the Hh target gene gli1. The results provide genetic evidence that PACAP acts as a physiological factor that regulates the pathogenesis of Hh pathway-associated MB tumors. PMID:18036580
Rhes suppression enhances disease phenotypes in Huntington's disease mice.
Lee, John H; Sowada, Matthew J; Boudreau, Ryan L; Aerts, Andrea M; Thedens, Daniel R; Nopoulos, Peg; Davidson, Beverly L
2014-01-01
In Huntington's disease (HD) mutant HTT is ubiquitously expressed yet the striatum undergoes profound early degeneration. Cell culture studies suggest that a striatal-enriched protein, Rhes, may account for this vulnerability. We investigated the therapeutic potential of silencing Rhes in vivo using inhibitory RNAs (miRhes). While Rhes suppression was tolerated in wildtype mice, it failed to improve rotarod function in two distinct HD mouse models. Additionally, miRhes treated HD mice had increased anxiety-like behaviors and enhanced striatal atrophy as measured by longitudinal MRI when compared to control treated mice. These findings raise caution regarding the long-term implementation of inhibiting Rhes as a therapy for HD.
Huang, Chih-Yu; Yao, Hui-Wen; Wang, Li-Chiu; Shen, Fang-Hsiu; Hsu, Sheng-Min; Chen, Shun-Hua
2017-02-15
Herpes simplex virus 1 (HSV-1) establishes latency in neural tissues of immunocompetent mice but persists in both peripheral and neural tissues of lymphocyte-deficient mice. Thymidine kinase (TK) is believed to be essential for HSV-1 to persist in neural tissues of immunocompromised mice, because infectious virus of a mutant with defects in both TK and UL24 is detected only in peripheral tissues, but not in neural tissues, of severe combined immunodeficiency mice (T. Valyi-Nagy, R. M. Gesser, B. Raengsakulrach, S. L. Deshmane, B. P. Randazzo, A. J. Dillner, and N. W. Fraser, Virology 199:484-490, 1994, https://doi.org/10.1006/viro.1994.1150). Here we find infiltration of CD4 and CD8 T cells in peripheral and neural tissues of mice infected with a TK-negative mutant. We therefore investigated the significance of viral TK and host T cells for HSV-1 to persist in neural tissues using three genetically engineered mutants with defects in only TK or in both TK and UL24 and two strains of nude mice. Surprisingly, all three mutants establish persistent infection in up to 100% of brain stems and 93% of trigeminal ganglia of adult nude mice at 28 days postinfection, as measured by the recovery of infectious virus. Thus, in mouse neural tissues, host T cells block persistent HSV-1 infection, and viral TK is dispensable for the virus to establish persistent infection. Furthermore, we found 30- to 200-fold more virus in neural tissues than in the eye and detected glycoprotein C, a true late viral antigen, in brainstem neurons of nude mice persistently infected with the TK-negative mutant, suggesting that adult mouse neurons can support the replication of TK-negative HSV-1. Acyclovir is used to treat herpes simplex virus 1 (HSV-1)-infected immunocompromised patients, but treatment is hindered by the emergence of drug-resistant viruses, mostly those with mutations in viral thymidine kinase (TK), which activates acyclovir. TK mutants are detected in brains of immunocompromised patients with persistent infection. However, answers to the questions as to whether TK-negative (TK - ) HSV-1 can establish persistent infection in brains of immunocompromised hosts and whether neurons in vivo are permissive for TK - HSV-1 remain elusive. Using three genetically engineered HSV-1 TK - mutants and two strains of nude mice deficient in T cells, we found that all three HSV-1 TK - mutants can efficiently establish persistent infection in the brain stem and trigeminal ganglion and detected glycoprotein C, a true late viral antigen, in brainstem neurons. Our study provides evidence that TK - HSV-1 can persist in neural tissues and replicate in brain neurons of immunocompromised hosts. Copyright © 2017 American Society for Microbiology.
Huang, Chih-Yu; Yao, Hui-Wen; Wang, Li-Chiu; Shen, Fang-Hsiu
2016-01-01
ABSTRACT Herpes simplex virus 1 (HSV-1) establishes latency in neural tissues of immunocompetent mice but persists in both peripheral and neural tissues of lymphocyte-deficient mice. Thymidine kinase (TK) is believed to be essential for HSV-1 to persist in neural tissues of immunocompromised mice, because infectious virus of a mutant with defects in both TK and UL24 is detected only in peripheral tissues, but not in neural tissues, of severe combined immunodeficiency mice (T. Valyi-Nagy, R. M. Gesser, B. Raengsakulrach, S. L. Deshmane, B. P. Randazzo, A. J. Dillner, and N. W. Fraser, Virology 199:484–490, 1994, https://doi.org/10.1006/viro.1994.1150). Here we find infiltration of CD4 and CD8 T cells in peripheral and neural tissues of mice infected with a TK-negative mutant. We therefore investigated the significance of viral TK and host T cells for HSV-1 to persist in neural tissues using three genetically engineered mutants with defects in only TK or in both TK and UL24 and two strains of nude mice. Surprisingly, all three mutants establish persistent infection in up to 100% of brain stems and 93% of trigeminal ganglia of adult nude mice at 28 days postinfection, as measured by the recovery of infectious virus. Thus, in mouse neural tissues, host T cells block persistent HSV-1 infection, and viral TK is dispensable for the virus to establish persistent infection. Furthermore, we found 30- to 200-fold more virus in neural tissues than in the eye and detected glycoprotein C, a true late viral antigen, in brainstem neurons of nude mice persistently infected with the TK-negative mutant, suggesting that adult mouse neurons can support the replication of TK-negative HSV-1. IMPORTANCE Acyclovir is used to treat herpes simplex virus 1 (HSV-1)-infected immunocompromised patients, but treatment is hindered by the emergence of drug-resistant viruses, mostly those with mutations in viral thymidine kinase (TK), which activates acyclovir. TK mutants are detected in brains of immunocompromised patients with persistent infection. However, answers to the questions as to whether TK-negative (TK−) HSV-1 can establish persistent infection in brains of immunocompromised hosts and whether neurons in vivo are permissive for TK− HSV-1 remain elusive. Using three genetically engineered HSV-1 TK− mutants and two strains of nude mice deficient in T cells, we found that all three HSV-1 TK− mutants can efficiently establish persistent infection in the brain stem and trigeminal ganglion and detected glycoprotein C, a true late viral antigen, in brainstem neurons. Our study provides evidence that TK− HSV-1 can persist in neural tissues and replicate in brain neurons of immunocompromised hosts. PMID:27974554
Stromal deletion of the APC tumor suppressor in mice triggers development of endometrial cancer
Tanwar, Pradeep S.; Zhang, LiHua; Roberts, Drucilla J.; Teixeira, Jose M.
2011-01-01
The contribution of the stromal microenvironment to the progression of endometrial cancer (EC) has not been well explored. We have conditionally expressed a mutant allele of adenomatous polyposis coli (APCcKO) in murine uterine stroma cells to study its effect on uterine development and function. In addition to metrorrhagia, the mice develop complex atypical endometrial gland hyperplasia that progresses to endometrial carcinoma in situ and endometrial adenocarcinoma as evidenced by myometrial invasion. Stromal cells subjacent to the carcinoma cells express αSMA with fewer cells expressing PDGFR-α compared to normal stromal cells suggesting that the mutant stromal cells have acquired a more myofibroblastic phenotype, which have been described as cancer-associated fibroblasts and have been shown to induce carcinogenesis in other organ systems. Analyses of human EC specimens showed substantial αSMA expression in the stroma compared with normal endometrial stroma cells. We also show that APCcKO mutant uteri and human EC have decreased stromal levels of TGFβ and BMP activities and that the mutant uteri failed to respond to exogenous estradiol stimulation. The mutant stroma cells also had higher levels of VEGF and SDF signaling components and diminished expression of ERα and PR which is common in advanced stages of human EC and is an indicator of poor prognosis. Our results indicate that de novo mutation or loss of heterozygosity in stromal APC is sufficient to induce endometrial hyperplasia and endometrial carcinogenesis by mechanisms that are consistent with unopposed estrogen signaling in the endometrial epithelium. PMID:21363919
Mutations in Prickle Orthologs Cause Seizures in Flies, Mice, and Humans
Tao, Hirotaka; Manak, J. Robert; Sowers, Levi; Mei, Xue; Kiyonari, Hiroshi; Abe, Takaya; Dahdaleh, Nader S.; Yang, Tian; Wu, Shu; Chen, Shan; Fox, Mark H.; Gurnett, Christina; Montine, Thomas; Bird, Thomas; Shaffer, Lisa G.; Rosenfeld, Jill A.; McConnell, Juliann; Madan-Khetarpal, Suneeta; Berry-Kravis, Elizabeth; Griesbach, Hilary; Saneto, Russell P.; Scott, Matthew P.; Antic, Dragana; Reed, Jordan; Boland, Riley; Ehaideb, Salleh N.; El-Shanti, Hatem; Mahajan, Vinit B.; Ferguson, Polly J.; Axelrod, Jeffrey D.; Lehesjoki, Anna-Elina; Fritzsch, Bernd; Slusarski, Diane C.; Wemmie, John; Ueno, Naoto; Bassuk, Alexander G.
2011-01-01
Epilepsy is heritable, yet few causative gene mutations have been identified, and thus far no human epilepsy gene mutations have been found to produce seizures in invertebrates. Here we show that mutations in prickle genes are associated with seizures in humans, mice, and flies. We identified human epilepsy patients with heterozygous mutations in either PRICKLE1 or PRICKLE2. In overexpression assays in zebrafish, prickle mutations resulted in aberrant prickle function. A seizure phenotype was present in the Prickle1-null mutant mouse, two Prickle1 point mutant (missense and nonsense) mice, and a Prickle2-null mutant mouse. Drosophila with prickle mutations displayed seizures that were responsive to anti-epileptic medication, and homozygous mutant embryos showed neuronal defects. These results suggest that prickle mutations have caused seizures throughout evolution. PMID:21276947
Giovannini, Marco; Robanus-Maandag, Els; Niwa-Kawakita, Michiko; van der Valk, Martin; Woodruff, James M.; Goutebroze, Laurence; Mérel, Philippe; Berns, Anton; Thomas, Gilles
1999-01-01
Specific mutations in some tumor suppressor genes such as p53 can act in a dominant fashion. We tested whether this mechanism may also apply for the neurofibromatosis type-2 gene (NF2) which, when mutated, leads to schwannoma development. Transgenic mice were generated that express, in Schwann cells, mutant NF2 proteins prototypic of natural mutants observed in humans. Mice expressing a NF2 protein with an interstitial deletion in the amino-terminal domain showed high prevalence of Schwann cell-derived tumors and Schwann cell hyperplasia, whereas those expressing a carboxy-terminally truncated protein were normal. Our results indicate that a subset of mutant NF2 alleles observed in patients may encode products with dominant properties when overexpressed in specific cell lineages. PMID:10215625
Nielsen, Ole Bækgaard; Clausen, Johannes D.; Pedersen, Thomas Holm; Hayward, Lawrence J.
2011-01-01
In patients with hyperkalemic periodic paralysis (HyperKPP), attacks of muscle weakness or paralysis are triggered by K+ ingestion or rest after exercise. Force can be restored by muscle work or treatment with β2-adrenoceptor agonists. A missense substitution corresponding to a mutation in the skeletal muscle voltage-gated Na+ channel (Nav1.4, Met1592Val) causing human HyperKPP was targeted into the mouse SCN4A gene (mutants). In soleus muscles prepared from these mutant mice, twitch, tetanic force, and endurance were markedly reduced compared with soleus from wild type (WT), reflecting impaired excitability. In mutant soleus, contractility was considerably more sensitive than WT soleus to inhibition by elevated [K+]o. In resting mutant soleus, tetrodotoxin (TTX)-suppressible 22Na uptake and [Na+]i were increased by 470 and 58%, respectively, and membrane potential was depolarized (by 16 mV, P < 0.0001) and repolarized by TTX. Na+,K+ pump–mediated 86Rb uptake was 83% larger than in WT. Salbutamol stimulated 86Rb uptake and reduced [Na+]i both in mutant and WT soleus. Stimulating Na+,K+ pumps with salbutamol restored force in mutant soleus and extensor digitorum longus (EDL). Increasing [Na+]i with monensin also restored force in soleus. In soleus, EDL, and tibialis anterior muscles of mutant mice, the content of Na+,K+ pumps was 28, 62, and 33% higher than in WT, respectively, possibly reflecting the stimulating effect of elevated [Na+]i on the synthesis of Na+,K+ pumps. The results confirm that the functional disorders of skeletal muscles in HyperKPP are secondary to increased Na+ influx and show that contractility can be restored by acute stimulation of the Na+,K+ pumps. Calcitonin gene-related peptide (CGRP) restored force in mutant soleus but caused no detectable increase in 86Rb uptake. Repeated excitation and capsaicin also restored contractility, possibly because of the release of endogenous CGRP from nerve endings in the isolated muscles. These observations may explain how mild exercise helps locally to prevent severe weakness during an attack of HyperKPP. PMID:21708955
Impaired antibody response against T-dependent antigens in rhino mice.
Takaoki, M; Kawaji, H
1980-05-01
The antibody response in rhino mice, which carry a mutant gene hrrh, to thymus-dependent (TD) or thymus-independent (TI) antigens was compared with that of phenotypically normal littermates. The magnitude of antibody response to TD antigens in rhino mice decreased as they grew up, whereas the antibody response to TI antigens in rhino mice was indistinguishable from that of littermates. A transfer of thymus cells from littermates to rhino mice resulted in the partial restoration of the responsiveness to TD antigens. The experiments employing adoptive transfer of spleen cells from rhino mice to the irradiated normal mice suggested that the hyporesponsiveness of TD antigens of adult rhino mice was mainly due to the defect in the T helper cell activities rather than either the increase of the suppressor cells or defects in other cell types.
Feodorova, V A; Pan'kina, L N; Savostina, E P; Sayapina, L V; Motin, V L; Dentovskaya, S V; Shaikhutdinova, R Z; Ivanov, S A; Lindner, B; Kondakova, A N; Bystrova, O V; Kocharova, N A; Senchenkova, S N; Holst, O; Pier, G B; Knirel, Y A; Anisimov, A P
2007-11-01
The lpxM mutant of the live vaccine Yersinia pestis EV NIIEG strain synthesising a less toxic penta-acylated lipopolysaccharide was found to be avirulent in mice and guinea pigs, notably showing no measurable virulence in Balb/c mice which do retain some susceptibility to the parental strain itself. Twenty-one days after a single injection of the lpxM-mutant, 85-100% protection was achieved in outbred mice and guinea pigs, whereas a 43% protection rate was achieved in Balb/c mice given single low doses (10(3) to 2.5 x 10(4) CFU) of this vaccine. A subcutaneous challenge with 2000 median lethal doses (equal to 20,000 CFU) of fully virulent Y. pestis 231 strain, is a 6-10-fold higher dose than that which the EV NIIEG itself can protect against.
Gordon, J A; Cioffi, D; Silva, A J; Stryker, M P
1996-09-01
The recent characterization of plasticity in the mouse visual cortex permits the use of mutant mice to investigate the cellular mechanisms underlying activity-dependent development. As calcium-dependent signaling pathways have been implicated in neuronal plasticity, we examined visual cortical plasticity in mice lacking the alpha-isoform of calcium/calmodulin-dependent protein kinase II (alpha CaMKII). In wild-type mice, brief occlusion of vision in one eye during a critical period reduces responses in the visual cortex. In half of the alpha CaMKII-deficient mice, visual cortical responses developed normally, but visual cortical plasticity was greatly diminished. After intensive training, spatial learning in the Morris water maze was severely impaired in a similar fraction of mutant animals. These data indicate that loss of alpha CaMKII results in a severe but variable defect in neuronal plasticity.
Yoshizaki, Kaichi; Furuse, Tamio; Kimura, Ryuichi; Tucci, Valter; Kaneda, Hideki; Wakana, Shigeharu; Osumi, Noriko
2016-01-01
Neurodevelopmental disorders such as autism spectrum disorder (ASD) and attention deficit and hyperactivity disorder (ADHD) have increased over the last few decades. These neurodevelopmental disorders are characterized by a complex etiology, which involves multiple genes and gene-environmental interactions. Various genes that control specific properties of neural development exert pivotal roles in the occurrence and severity of phenotypes associated with neurodevelopmental disorders. Moreover, paternal aging has been reported as one of the factors that contribute to the risk of ASD and ADHD. Here we report, for the first time, that paternal aging has profound effects on the onset of behavioral abnormalities in mice carrying a mutation of Pax6, a gene with neurodevelopmental regulatory functions. We adopted an in vitro fertilization approach to restrict the influence of additional factors. Comprehensive behavioral analyses were performed in Sey/+ mice (i.e., Pax6 mutant heterozygotes) born from in vitro fertilization of sperm taken from young or aged Sey/+ fathers. No body weight changes were found in the four groups, i.e., Sey/+ and wild type (WT) mice born to young or aged father. However, we found important differences in maternal separation-induced ultrasonic vocalizations of Sey/+ mice born from young father and in the level of hyperactivity of Sey/+ mice born from aged fathers in the open-field test, respectively, compared to WT littermates. Phenotypes of anxiety were observed in both genotypes born from aged fathers compared with those born from young fathers. No significant difference was found in social behavior and sensorimotor gating among the four groups. These results indicate that mice with a single genetic risk factor can develop different phenotypes depending on the paternal age. Our study advocates for serious considerations on the role of paternal aging in breeding strategies for animal studies.
Ito, A; Kataoka, T R; Kim, D K; Koma , Y; Lee, Y M; Kitamura, Y
2001-04-01
The mouse mi locus encodes a basic-helix-loop-helix-leucine zipper-type transcription factor, microphthalmia transcription factor (MITF). Mice of mi/mi genotype express a mutant form of MITF (mi-MITF), whereas mice of tg/tg genotype have a transgene in the 5' flanking region of the mi gene and do not express MITF. Although the mi/mi mouse is deficient in natural killer (NK) activity, it was found that the tg/tg mouse was normal in this respect. To know the cause, spleen cells of both genotypes were compared. Although the proportion of spleen cells expressing an NK cell marker, NK1.1, was comparable in both mice, the proportion of large granular lymphocytes decreased only in mi/mi mice. The difference between mi/mi and tg/tg mice was reproducible in the culture supplemented with interleukin-2. Moreover, the perforin gene expression was reduced in mi/mi-cultured spleen cells. Wild-type (+) MITF transactivated, but mi-MITF suppressed, the perforin gene promoter through the NF-P motif, a strong cis-acting element. However, neither +-MITF nor mi-MITF bound the NF-P motif. Instead, 2 nuclear factors that bound the NF-P motif were retained in the cytoplasm of mi/mi-cultured spleen cells. In addition, overexpression of mi-MITF resulted in cytoplasmic retention of the 2 NF-P motif-binding factors in cytotoxic T lymphocytes. The presence of mi-MITF rather than the absence of +-MITF appeared to lead to poor transactivation of the NF-P motif by intercepting NF-P motif-binding factors. This inhibitory effect of mi-MITF may cause the deficient cytotoxicity of NK cells in mi/mi mice. (Blood. 2001;97:2075-2083)
Yang, Kan; Fan, Kun-Hua; Lamprecht, Sergio A; Edelmann, Winfried; Kopelovich, Levy; Kucherlapati, Raju; Lipkin, Martin
2005-09-10
The role of the nuclear peroxisome proliferator-activated receptor-gamma (PPAR-gamma) in colon tumorigenesis remains controversial. Notwithstanding evidence that PPAR-gamma ligands impede murine colorectal carcinogenesis, PPAR-gamma agonists have been shown to enhance in vivo tumor formation in mouse models of human colon cancer. Our study was designed to determine whether troglitazone (TGZ) induces colonic tumor formation in normal C57BL/6J mice and enhances colorectal carcinogenesis in double mutant Apc1638N/+ Mlh1+/- mice fed a standard AIN-76A diet. We report herein that not only does TGZ enhance carcinogenesis in the large intestine of mutant mice predisposed to intestinal carcinogenesis but TGZ also induces colonic tumors in normal mice without gene targeting or carcinogen administration. This observation indicates that preexisting mutational events are not necessary for induction of colonic tumors by activated PPAR-gamma in vivo. (c) 2005 Wiley-Liss, Inc.
Estrogen Receptor Alpha Binding to ERE is Required for Full Tlr7- and Tlr9-Induced Inflammation
Cunningham, Melissa A; Wirth, Jena R; Naga, Osama; Eudaly, Jackie; Gilkeson, Gary S
2014-01-01
We previously found that a maximum innate inflammatory response induced by stimulation of Toll-like receptors (TLRs) 3, 7 and 9 requires ERα, but does not require estrogen in multiple cell types from both control and lupus-prone mice. Given the estrogen-independence, we hypothesized that ERα mediates TLR signaling by tethering to, and enhancing, the activity of downstream transcription factors such as NFκB, rather than acting classically by binding EREs on target genes. To investigate the mechanism of ERα impact on TLR signaling, we utilized mice with a knock-in ERα mutant that is unable to bind ERE. After stimulation with TLR ligands, both ex vivo spleen cells and bone marrow-derived dendritic cells (BM-DCs) isolated from mutant ERα (“KIKO”) mice produced significantly less IL-6 compared with cells from wild-type (WT) littermates. These results suggest that ERα modulation of TLR signaling does indeed require ERE binding for its effect on the innate immune response. PMID:25061615
Yu, Zhi-hong; Wang, Ding-ding; Zhou, Zhi-you; He, Shui-lian; Chen, An-an; Wang, Ju
2012-01-01
We have developed a strong inhibitor (S252W mutant soluble ectodomain of fibroblast growth factor recptor-2 IIIc, msFGFR2) that binds FGFs strongly and blocks the activation of FGFRs. In vitro, msFGFR2 could inhibit the promoting effect of transforming growth factor (TGF)-β1 on the proliferation of primary lung fibroblasts. In vivo, msFGFR2 alleviated lung fibrosis through inhibiting the expression of α-smooth muscle actin (SMA) and collagen deposit. In Western blotting of the right lung tissues and immunohistochemical assay, we found the level of p-FGFRs, p-mitogen activated protein kinase (MAPK) and p-Smad3 in the mice of bleomycin (BLM) group treated with msFGFR2 was down dramatically compared with the mice of BLM group, which suggested the activations of FGF and TGF-β signals were blocked meanwhile. In summary, msFGFR2 attenuated BLM-induced fibrosis and is an attractive therapeutic candidate for human pulmonary fibrosis.
Liu, T; Chopra, A K
2010-02-01
An antitumor activity associated with several bacterial pathogens, including Salmonella enterica serovar Typhimurium, has been reported; however, the underlying immunological mechanism(s) that lead to an antitumor effect are currently unclear. Furthermore, such pathogens cannot be used to suppress tumor growth because of their potential for causing sepsis. Recently, we reported the characterization of S. Typhimurium isogenic mutants from which Braun lipoprotein genes (lppA and B) and the multicopy repressor of high temperature requirement (msbB) gene were deleted. In a mouse infection model, two mutants, namely, lppB/msbB and lppAB/msbB, minimally induced proinflammatory cytokine production at high doses and were nonlethal to animals. We showed that immunization of mice with these mutants, followed by challenge with the wild-type S. Typhimurium, could significantly suppress tumor growth, as evidenced by an 88% regression in tumor size in lppB/msbB mutant-immunized animals over a 24-day period. However, the lppAB/msbB mutant alone was not effective in modulating tumor growth in mice, although the lppB/msbB mutant alone caused marginal regression in tumor size. Importantly, we showed that CD44(+) cells grew much faster than CD44(-) cells from human liver tumors in mice, leading us to examine the possibility that S. Typhimurium might downregulate CD44 in tumors and splenocytes of mice. Consequently, we found in S. Typhimurium-infected mice that tumor size regression could indeed be related to the downregulation of CD44(high) and CD4(+)CD25(+) T(reg) cells. Importantly, the role of lipopolysaccharide and Braun lipoprotein was critical in S. Typhimurium-induced antitumor immune responses. Taken together, we have defined new immune mechanisms leading to tumor suppression in mice by S. Typhimurium.
A defect in inducible beta-galactosidase of B lymphocytes in the osteopetrotic (mi/mi) mouse.
Yamamoto, N; Naraparaju, V R
1996-01-01
Macrophages were activated by administration of an inflammatory lipid metabolite, lysophosphatidylcholine (lyso-Pc), to wild type mice but not murine (microphthalmic) osteopetrotic (mi/mi) mutant mice. In vitro treatment of wild type mouse peritoneal cells with lyso-Pc efficiently activated macrophages whereas lyso-Pc-treatment of mi mutant mouse peritoneal cells resulted in no activation of macrophages. Generation of macrophage activating factor requires a precursor protein, serum vitamin D binding protein (DBP), and participation of lyso-Pc-inducible beta-galactosidase of B lymphocytes. Lyso-Pc-inducible beta-galactosidase of B lymphocytes was found to be defective in mi mutant mice. PMID:8881764
Mitochondrial dysfunction precedes neurodegeneration in mahogunin (Mgrn1) mutant mice
Sun, Kaihua; Johnson, Brian S.; Gunn, Teresa M.
2007-01-01
Oxidative stress, ubiquitination defects and mitochondrial dysfunction are commonly associated with neurodegeneration. Mice lacking mahogunin ring finger-1 (MGRN1) or attractin (ATRN) develop age-dependent spongiform neurodegeneration through an unknown mechanism. It has been suggested that they act in a common pathway. As MGRN1 is an E3 ubiquitin ligase, proteomic analysis of Mgrn1 mutant and control brains was performed to explore the hypothesis that loss of MGRN1 causes neurodegeneration via accumulation of its substrates. Many mitochondrial proteins were reduced in Mgrn1 mutants. Subsequent assays confirmed significantly reduced mitochondrial complex IV expression and activity as well as increased oxidative stress in mutant brains. Mitochondrial dysfunction was obvious many months before onset of vacuolation, implicating this as a causative factor. Compatible with the hypothesis that ATRN and MGRN1 act in the same pathway, mitochondrial dysfunction and increased oxidative stress were also observed in the brains of Atrn mutants. Our results suggest that the study of Mgrn1 and Atrn mutant mice will provide insight into a causative molecular mechanism common to many neurodegenerative disorders. PMID:17720281
Lgl1 Is Required for Olfaction and Development of Olfactory Bulb in Mice.
Li, Zhenzu; Zhang, Tingting; Lin, Zhuchun; Hou, Congzhe; Zhang, Jian; Men, Yuqin; Li, Huashun; Gao, Jiangang
2016-01-01
Lethal giant larvae 1 (Lgl1) was initially identified as a tumor suppressor in Drosophila and functioned as a key regulator of epithelial polarity and asymmetric cell division. In this study, we generated Lgl1 conditional knockout mice mediated by Pax2-Cre, which is expressed in olfactory bulb (OB). Next, we examined the effects of Lgl1 loss in the OB. First, we determined the expression patterns of Lgl1 in the neurogenic regions of the embryonic dorsal region of the LGE (dLGE) and postnatal OB. Furthermore, the Lgl1 conditional mutants exhibited abnormal morphological characteristics of the OB. Our behavioral analysis exhibited greatly impaired olfaction in Lgl1 mutant mice. To elucidate the possible mechanisms of impaired olfaction in Lgl1 mutant mice, we investigated the development of the OB. Interestingly, reduced thickness of the MCL and decreased density of mitral cells (MCs) were observed in Lgl1 mutant mice. Additionally, we observed a dramatic loss in SP8+ interneurons (e.g. calretinin and GABAergic/non-dopaminergic interneurons) in the GL of the OB. Our results demonstrate that Lgl1 is required for the development of the OB and the deletion of Lgl1 results in impaired olfaction in mice.
Lgl1 Is Required for Olfaction and Development of Olfactory Bulb in Mice
Li, Zhenzu; Zhang, Tingting; Lin, Zhuchun; Hou, Congzhe; Zhang, Jian; Men, Yuqin; Li, Huashun
2016-01-01
Lethal giant larvae 1 (Lgl1) was initially identified as a tumor suppressor in Drosophila and functioned as a key regulator of epithelial polarity and asymmetric cell division. In this study, we generated Lgl1 conditional knockout mice mediated by Pax2-Cre, which is expressed in olfactory bulb (OB). Next, we examined the effects of Lgl1 loss in the OB. First, we determined the expression patterns of Lgl1 in the neurogenic regions of the embryonic dorsal region of the LGE (dLGE) and postnatal OB. Furthermore, the Lgl1 conditional mutants exhibited abnormal morphological characteristics of the OB. Our behavioral analysis exhibited greatly impaired olfaction in Lgl1 mutant mice. To elucidate the possible mechanisms of impaired olfaction in Lgl1 mutant mice, we investigated the development of the OB. Interestingly, reduced thickness of the MCL and decreased density of mitral cells (MCs) were observed in Lgl1 mutant mice. Additionally, we observed a dramatic loss in SP8+ interneurons (e.g. calretinin and GABAergic/non-dopaminergic interneurons) in the GL of the OB. Our results demonstrate that Lgl1 is required for the development of the OB and the deletion of Lgl1 results in impaired olfaction in mice. PMID:27603780
Role of immune cells in animal models for inherited neuropathies: facts and visions.
Mäurer, Mathias; Kobsar, Igor; Berghoff, Martin; Schmid, Christoph D; Carenini, Stefano; Martini, Rudolf
2002-04-01
Mice heterozygously deficient in the peripheral myelin adhesion molecule P0 (P0+/- mice) are models for some forms of Charcot-Marie-Tooth (CMT) neuropathies. In addition to the characteristic hallmarks of demyelination, elevated numbers of CD8-positive T-lymphocytes and F4/80-positive macrophages are striking features in the nerves of these mice. These immune cells increase in number with age and progress of demyelination, suggesting that they might be functionally related to myelin damage. In order to investigate the pathogenetic role of lymphocytes, the myelin mutants were cross-bred with recombination activating gene 1 (RAG-1)-deficient mice, which lack mature T- and B-lymphocytes. The immunodeficient myelin mutants showed a less severe myelin degeneration. The beneficial effect of lymphocyte-deficiency was reversible, since demyelination worsened in immunodeficient myelin-mutants when reconstituted with bone marrow from wild-type mice. Ultrastructural analysis revealed macrophages in close apposition to myelin and demyelinated axons. We therefore cross-bred the P0+/- mice with spontaneous osteopetrotic (op) mutants deficient in the macrophage colony-stimulating factor (M-CSF), hence displaying impaired macrophage activation. In the corresponding double mutants the numbers of macrophages were not elevated in the peripheral nerves, and the demyelinating phenotype was less severe than in the genuine P0+/- mice, demonstrating that macrophages are also functionally involved in the pathogenesis of genetically mediated demyelination. We also examined other models for inherited neuropathies for a possible involvement of immune cells. We chose mice deficient in the gap junction component connexin 32, a model for the X-linked form of CMT. Similar to P0-deficient mice, T-lymphocytes and macrophages were elevated and macrophages showed a close apposition to degenerating myelin. We conclude that the involvement of T-lymphocytes and macrophages is a common pathogenetic feature in various forms of slowly progressive inherited neuropathies.
Defective transport of the obesity mutant PC1/3 N222D contributes to loss of function.
Prabhu, Yogikala; Blanco, Elias H; Liu, Ming; Peinado, Juan R; Wheeler, Matthew C; Gekakis, Nicholas; Arvan, Peter; Lindberg, Iris
2014-07-01
Mutations in the PCSK1 gene encoding prohormone convertase 1/3 (PC1/3) are strongly associated with obesity in humans. The PC1/3(N222D) mutant mouse thus far represents the only mouse model that mimics the PC1/3 obesity phenotype in humans. The present investigation addresses the cell biology of the N222D mutation. Metabolic labeling experiments reveal a clear defect in the kinetics of insulin biosynthesis in islets from PC1/3(N222D) mutant mice, resulting in an increase in both proinsulin and its processing intermediates, predominantly lacking cleavage at the Arg-Arg site. Although the mutant PC1/3 zymogen is correctly processed to the 87-kDa form, pulse-chase immunoprecipitation experiments, labeling, and immunohistochemical experiments using uncleavable variants all demonstrate that the PC1/3-N222D protein is largely mislocalized compared with similar wild-type (WT) constructs, being predominantly retained in the endoplasmic reticulum. The PC1/3-N222D mutant also undergoes more efficient degradation via the ubiquitin-proteasome system than the WT enzyme. Lastly, the mutant PC1/3-N222D protein coimmunoprecipitates with WT PC1/3 and exerts a modest effect on intracellular retention of the WT enzyme. These profound alterations in the cell biology of PC1/3-N222D are likely to contribute to the defective insulin biosynthetic events observed in the mutant mice and may be relevant to the dramatic contributions of polymorphisms in this gene to human obesity.
Defective Transport of the Obesity Mutant PC1/3 N222D Contributes to Loss of Function
Prabhu, Yogikala; Blanco, Elias H.; Liu, Ming; Peinado, Juan R.; Wheeler, Matthew C.; Gekakis, Nicholas; Arvan, Peter
2014-01-01
Mutations in the PCSK1 gene encoding prohormone convertase 1/3 (PC1/3) are strongly associated with obesity in humans. The PC1/3N222D mutant mouse thus far represents the only mouse model that mimics the PC1/3 obesity phenotype in humans. The present investigation addresses the cell biology of the N222D mutation. Metabolic labeling experiments reveal a clear defect in the kinetics of insulin biosynthesis in islets from PC1/3N222D mutant mice, resulting in an increase in both proinsulin and its processing intermediates, predominantly lacking cleavage at the Arg-Arg site. Although the mutant PC1/3 zymogen is correctly processed to the 87-kDa form, pulse-chase immunoprecipitation experiments, labeling, and immunohistochemical experiments using uncleavable variants all demonstrate that the PC1/3-N222D protein is largely mislocalized compared with similar wild-type (WT) constructs, being predominantly retained in the endoplasmic reticulum. The PC1/3-N222D mutant also undergoes more efficient degradation via the ubiquitin-proteasome system than the WT enzyme. Lastly, the mutant PC1/3-N222D protein coimmunoprecipitates with WT PC1/3 and exerts a modest effect on intracellular retention of the WT enzyme. These profound alterations in the cell biology of PC1/3-N222D are likely to contribute to the defective insulin biosynthetic events observed in the mutant mice and may be relevant to the dramatic contributions of polymorphisms in this gene to human obesity. PMID:24828610
Young, Nicholas A; Sharma, Rahul; Friedman, Alexandra K; Kaffenberger, Benjamin H; Bolon, Brad; Jarjour, Wael N
2013-01-01
Objective Myositis is associated with muscle-targeted inflammation and is observed in some Treg cell–deficient mouse models. Because an autoimmune pathogenesis has been strongly implicated, the aim of this study was to investigate the hypothesis that abnormal exposure to muscle antigens, as observed in muscle injury, can induce autoimmune-mediated myositis in susceptible hosts. Methods FoxP3 mutant (scurfy) mice were mated to synaptotagmin VII (Syt VII) mutant mice, which resulted in a new mouse strain that combines impaired membrane resealing with Treg cell deficiency. Lymphocyte preparations from double-mutant mice were adoptively transferred intraperitoneally, with or without purified Treg cells, into recombination-activating gene 1 (RAG-1)–null recipients. Lymph node cells from mice with the FoxP3 mutation were transferred into RAG-1–null mice either 1) intraperitoneally in conjunction with muscle homogenate or purified myosin protein or 2) intramuscularly with or without cotransfer of purified Treg cells. Results FoxP3-deficient mouse lymph node cells transferred in conjunction with myosin protein or muscle homogenate induced robust skeletal muscle inflammation. The infiltrates consisted predominantly of CD4+ and CD8+ T cells, a limited number of macrophages, and no B cells. Significant inflammation was also seen in similar experiments using lymph node cells from FoxP3/Syt VII double-mutant mice but was absent in experiments using adoptive transfer of FoxP3 mutant mouse cells alone. The cotransfer of Treg cells completely suppressed myositis. Conclusion These data, derived from a new, reproducible model, demonstrate the critical roles of Treg cell deficiency and aberrant muscle antigen exposure in the priming of autoreactive cells to induce myositis. This mouse system has multifaceted potential for examining the interplay in vivo between tissue injury and autoimmunity. PMID:24022275
Mbikay, Majambu; Croissandeau, Gilles; Sirois, Francine; Anini, Younes; Mayne, Janice; Seidah, Nabil G; Chrétien, Michel
2007-06-15
Proprotein convertase 1 (PC1) is a neuroendocrine proteinase involved in the proteolytic activation of precursors to hormones and neuropeptides. To determine the physiological importance of PC1, we produced a mutant mouse from embryonic stem cells in which its locus (Pcsk1) had been inactivated by homologous recombination. The inactivating mutation consisted of a 32.7-kb internal deletion and a 1.8 kb insertion of the bacterial neomycin resistance gene (neo) under the mouse phosphoglycerate kinase 1 protein (PGKneo). Intercross of Pcsk1(+/-) mice produced no Pcsk1(-/-) offspring or blastocysts; in addition, more than 80% of the offspring were Pcsk1(+/-). These observations suggested that the mutation caused preimplantation lethality of homozygous embryos and preferential transmission of the mutant allele. Interestingly, RT-PCR analysis on RNA from endocrine tissues from Pcsk1(+/-) mice revealed the presence of aberrant transcripts specifying the N-terminal half of the PC1 propeptide fused to neo gene product. Mass spectrometric profiles of proopiomelanocortin-derived peptides in the anterior pituitary were similar between Pcsk1(+/-) and Pcsk1(+/+) mice, but significantly different between male and female mice of the same genotype. Relative to their wild-type counterparts, female mutant mice exhibited stunted growth under a low fat diet, and catch-up growth under a high-fat diet. The complex phenotype exhibited by this Pcsk1 mutant mouse model may be due to PC1 deficiency aggravated by expression of aberrant gene products from the mutant allele.
Horiuchi, Keiko; Perez-Cerezales, Serafín; Papasaikas, Panagiotis; Ramos-Ibeas, Priscila; López-Cardona, Angela Patricia; Laguna-Barraza, Ricardo; Fonseca Balvís, Noelia; Pericuesta, Eva; Fernández-González, Raul; Planells, Benjamín; Viera, Alberto; Suja, Jose Angel; Ross, Pablo Juan; Alén, Francisco; Orio, Laura; Rodriguez de Fonseca, Fernando; Pintado, Belén; Valcárcel, Juan; Gutiérrez-Adán, Alfonso
2018-04-03
The U2AF35-like ZRSR1 has been implicated in the recognition of 3' splice site during spliceosome assembly, but ZRSR1 knockout mice do not show abnormal phenotypes. To analyze ZRSR1 function and its precise role in RNA splicing, we generated ZRSR1 mutant mice containing truncating mutations within its RNA-recognition motif. Homozygous mutant mice exhibited severe defects in erythrocytes, muscle stretch, and spermatogenesis, along with germ cell sloughing and apoptosis, ultimately leading to azoospermia and male sterility. Testis RNA sequencing (RNA-seq) analyses revealed increased intron retention of both U2- and U12-type introns, including U12-type intron events in genes with key functions in spermatogenesis and spermatid development. Affected U2 introns were commonly found flanking U12 introns, suggesting functional cross-talk between the two spliceosomes. The splicing and tissue defects observed in mutant mice attributed to ZRSR1 loss of function suggest a physiological role for this factor in U12 intron splicing. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Sengar, Ameet S; Ellegood, Jacob; Yiu, Adelaide P; Wang, Hua; Wang, Wei; Juneja, Subhash C; Lerch, Jason P; Josselyn, Sheena A; Henkelman, R Mark; Salter, Michael W; Egan, Sean E
2013-02-27
Invertebrate studies have highlighted a role for EH and SH3 domain Intersectin (Itsn) proteins in synaptic vesicle recycling and morphology. Mammals have two Itsn genes (Itsn1 and Itsn2), both of which can undergo alternative splicing to include DBL/PH and C2 domains not present in invertebrate Itsn proteins. To probe for specific and redundant functions of vertebrate Itsn genes, we generated Itsn1, Itsn2, and double mutant mice. While invertebrate mutants showed severe synaptic abnormalities, basal synaptic transmission and plasticity were unaffected at Schaffer CA1 synapses in mutant mice. Surprisingly, intercortical tracts-corpus callosum, ventral hippocampal, and anterior commissures-failed to cross the midline in mice lacking Itsn1, but not Itsn2. In contrast, tracts extending within hemispheres and those that decussate to more caudal brain segments appeared normal. Itsn1 mutant mice showed severe deficits in Morris water maze and contextual fear memory tasks, whereas mice lacking Itsn2 showed normal learning and memory. Thus, coincident with the acquisition of additional signaling domains, vertebrate Itsn1 has been functionally repurposed to also facilitate interhemispheric connectivity essential for high order cognitive functions.
Mishina, Yuji; Starbuck, Michael W; Gentile, Michael A; Fukuda, Tomokazu; Kasparcova, Viera; Seedor, J Gregory; Hanks, Mark C; Amling, Michael; Pinero, Gerald J; Harada, Shun-ichi; Behringer, Richard R
2004-06-25
Bone morphogenetic proteins (BMPs) function during various aspects of embryonic development including skeletogenesis. However, their biological functions after birth are less understood. To investigate the role of BMPs during bone remodeling, we generated a postnatal osteoblast-specific disruption of Bmpr1a that encodes the type IA receptor for BMPs in mice. Mutant mice were smaller than controls up to 6 months after birth. Irregular calcification and low bone mass were observed, but there were normal numbers of osteoblasts. The ability of the mutant osteoblasts to form mineralized nodules in culture was severely reduced. Interestingly, bone mass was increased in aged mutant mice due to reduced bone resorption evidenced by reduced bone turnover. The mutant mice lost more bone after ovariectomy likely resulting from decreased osteoblast function which could not overcome ovariectomy-induced bone resorption. In organ culture of bones from aged mice, ablation of the Bmpr1a gene by adenoviral Cre recombinase abolished the stimulatory effects of BMP4 on the expression of lysosomal enzymes essential for osteoclastic bone resorption. These results demonstrate essential and age-dependent roles for BMP signaling mediated by BMPRIA (a type IA receptor for BMP) in osteoblasts for bone remodeling.
Deletion of the Snord116/SNORD116 Alters Sleep in Mice and Patients with Prader-Willi Syndrome.
Lassi, Glenda; Priano, Lorenzo; Maggi, Silvia; Garcia-Garcia, Celina; Balzani, Edoardo; El-Assawy, Nadia; Pagani, Marco; Tinarelli, Federico; Giardino, Daniela; Mauro, Alessandro; Peters, Jo; Gozzi, Alessandro; Grugni, Graziano; Tucci, Valter
2016-03-01
Sleep-wake disturbances are often reported in Prader-Willi syndrome (PWS), a rare neurodevelopmental syndrome that is associated with paternally-expressed genomic imprinting defects within the human chromosome region 15q11-13. One of the candidate genes, prevalently expressed in the brain, is the small nucleolar ribonucleic acid-116 (SNORD116). Here we conducted a translational study into the sleep abnormalities of PWS, testing the hypothesis that SNORD116 is responsible for sleep defects that characterize the syndrome. We studied sleep in mutant mice that carry a deletion of Snord116 at the orthologous locus (mouse chromosome 7) of the human PWS critical region (PWScr). In particular, we assessed EEG and temperature profiles, across 24-h, in PWScr (m+/p-) heterozygous mutants compared to wild-type littermates. High-resolution magnetic resonance imaging (MRI) was performed to explore morphoanatomical differences according to the genotype. Moreover, we complemented the mouse work by presenting two patients with a diagnosis of PWS and characterized by atypical small deletions of SNORD116. We compared the individual EEG parameters of patients with healthy subjects and with a cohort of obese subjects. By studying the mouse mutant line PWScr(m+/p-), we observed specific rapid eye movement (REM) sleep alterations including abnormal electroencephalograph (EEG) theta waves. Remarkably, we observed identical sleep/EEG defects in the two PWS cases. We report brain morphological abnormalities that are associated with the EEG alterations. In particular, mouse mutants have a bilateral reduction of the gray matter volume in the ventral hippocampus and in the septum areas, which are pivotal structures for maintaining theta rhythms throughout the brain. In PWScr(m+/p-) mice we also observed increased body temperature that is coherent with REM sleep alterations in mice and human patients. Our study indicates that paternally expressed Snord116 is involved in the 24-h regulation of sleep physiological measures, suggesting that it is a candidate gene for the sleep disturbances that most individuals with PWS experience. © 2016 Associated Professional Sleep Societies, LLC.
THE REELIN RECEPTORS VLDLR AND ApoER2 REGULATE SENSORIMOTOR GATING IN MICE
Barr, Alasdair M.; Fish, Kenneth N.; Markou, Athina
2007-01-01
Summary Postmortem brain loss of reelin is noted in schizophrenia patients. Accordingly, heterozygous reeler mutant mice have been proposed as a putative model of this disorder. Little is known, however, about the involvement of the two receptors for reelin, Very-Low-Density Lipoprotein Receptor (VLDLR) and Apolipoprotein E Receptor 2 (ApoER2), on pre-cognitive processes of relevance to deficits seen in schizophrenia. Thus, we evaluated sensorimotor gating in mutant mice heterozygous or homozygous for the two reelin receptors. Mutant mice lacking one of these reelin receptors were tested for prepulse inhibition (PPI) of the acoustic startle reflex prior to and following puberty, and on a crossmodal PPI task, involving the presentation of acoustic and tactile stimuli. Furthermore, because schizophrenia patients show increased sensitivity to N-methyl-D-aspartate (NMDA) receptor blockade, we assessed the sensitivity of these mice to the PPI-disruptive effects of the NMDA receptor antagonist phencyclidine. The results demonstrated that acoustic PPI did not differ between mutant and wildtype mice. However, VLDLR homozygous mice displayed significant deficits in crossmodal PPI, while ApoER2 heterozygous and homozygous mice displayed significantly increased crossmodal PPI. Both ApoER2 and VLDLR heterozygous and homozygous mice exhibited greater sensitivity to the PPI-disruptive effects of phencyclidine than wildtype mice. These results indicate that partial or complete loss of either one of the reelin receptors results in a complex pattern of alterations in PPI function that include alterations in crossmodal, but not acoustic, PPI and increased sensitivity to NMDA receptor blockade. Thus, reelin receptor function appears to be critically involved in crossmodal PPI and the modulation of the PPI response by NMDA receptors. These findings have relevance to a range of neuropsychiatric disorders that involve sensorimotor gating deficits, including schizophrenia.. PMID:17261317
Congenital Heart Disease–Causing Gata4 Mutation Displays Functional Deficits In Vivo
Misra, Chaitali; Sachan, Nita; McNally, Caryn Rothrock; Koenig, Sara N.; Nichols, Haley A.; Guggilam, Anuradha; Lucchesi, Pamela A.; Pu, William T.; Srivastava, Deepak; Garg, Vidu
2012-01-01
Defects of atrial and ventricular septation are the most frequent form of congenital heart disease, accounting for almost 50% of all cases. We previously reported that a heterozygous G296S missense mutation of GATA4 caused atrial and ventricular septal defects and pulmonary valve stenosis in humans. GATA4 encodes a cardiac transcription factor, and when deleted in mice it results in cardiac bifida and lethality by embryonic day (E)9.5. In vitro, the mutant GATA4 protein has a reduced DNA binding affinity and transcriptional activity and abolishes a physical interaction with TBX5, a transcription factor critical for normal heart formation. To characterize the mutation in vivo, we generated mice harboring the same mutation, Gata4 G295S. Mice homozygous for the Gata4 G295S mutant allele have normal ventral body patterning and heart looping, but have a thin ventricular myocardium, single ventricular chamber, and lethality by E11.5. While heterozygous Gata4 G295S mutant mice are viable, a subset of these mice have semilunar valve stenosis and small defects of the atrial septum. Gene expression studies of homozygous mutant mice suggest the G295S protein can sufficiently activate downstream targets of Gata4 in the endoderm but not in the developing heart. Cardiomyocyte proliferation deficits and decreased cardiac expression of CCND2, a member of the cyclin family and a direct target of Gata4, were found in embryos both homozygous and heterozygous for the Gata4 G295S allele. To further define functions of the Gata4 G295S mutation in vivo, compound mutant mice were generated in which specific cell lineages harbored both the Gata4 G295S mutant and Gata4 null alleles. Examination of these mice demonstrated that the Gata4 G295S protein has functional deficits in early myocardial development. In summary, the Gata4 G295S mutation functions as a hypomorph in vivo and leads to defects in cardiomyocyte proliferation during embryogenesis, which may contribute to the development of congenital heart defects in humans. PMID:22589735
Tiner, Bethany L; Sha, Jian; Ponnusamy, Duraisamy; Baze, Wallace B; Fitts, Eric C; Popov, Vsevolod L; van Lier, Christina J; Erova, Tatiana E; Chopra, Ashok K
2015-12-01
Earlier, we showed that the Δlpp ΔmsbB Δail triple mutant of Yersinia pestis CO92 with deleted genes encoding Braun lipoprotein (Lpp), an acyltransferase (MsbB), and the attachment invasion locus (Ail), respectively, was avirulent in a mouse model of pneumonic plague. In this study, we further evaluated the immunogenic potential of the Δlpp ΔmsbB Δail triple mutant and its derivative by different routes of vaccination. Mice were immunized via the subcutaneous (s.c.) or the intramuscular (i.m.) route with two doses (2 × 10(6) CFU/dose) of the above-mentioned triple mutant with 100% survivability of the animals. Upon subsequent pneumonic challenge with 70 to 92 50% lethal doses (LD(50)) of wild-type (WT) strain CO92, all of the mice survived when immunization occurred by the i.m. route. Since Ail has virulence and immunogenic potential, a mutated version of Ail devoid of its virulence properties was created, and the genetically modified ail replaced the native ail gene on the chromosome of the Δlpp ΔmsbB double mutant, creating a Δlpp ΔmsbB::ailL2 vaccine strain. This newly generated mutant was attenuated similarly to the Δlpp ΔmsbB Δail triple mutant when administered by the i.m. route and provided 100% protection to animals against subsequent pneumonic challenge. Not only were the two above-mentioned mutants cleared rapidly from the initial i.m. site of injection in animals with no histopathological lesions, the immunized mice did not exhibit any disease symptoms during immunization or after subsequent exposure to WT CO92. These two mutants triggered balanced Th1- and Th2-based antibody responses and cell-mediated immunity. A substantial increase in interleukin-17 (IL-17) from the T cells of vaccinated mice, a cytokine of the Th17 cells, further augmented their vaccine potential. Thus, the Δlpp ΔmsbB Δail and Δlpp ΔmsbB::ailL2 mutants represent excellent vaccine candidates for plague, with the latter mutant still retaining Ail immunogenicity but with a much diminished virulence potential. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Corticostriatal circuit defects in Hoxb8 mutant mice
Nagarajan, Naveen; Jones, Bryan W.; West, Peter J.; Marc, Robert; Capecchi, Mario R.
2018-01-01
Hoxb8 mutant mice exhibit compulsive grooming and hair removal dysfunction similar to humans with the OCD-spectrum disorder, trichotillomania. Since, in the mouse brain, the only detectable cells that label with Hoxb8 cell lineage appear to be microglia, we suggested that defective microglia cause the neuropsychiatric disorder. Does the Hoxb8 mutation in microglia lead to neural circuit dysfunctions? We demonstrate that Hoxb8 mutants contain corticostriatal circuit defects. Golgi staining, ultra-structural, and electrophysiological studies of mutants reveal excess dendritic spines, pre- and post-synaptic structural defects, long-term potentiation and miniature postsynaptic current defects. Hoxb8 mutants also exhibit hyperanxiety and social behavioral deficits similar to mice with neuronal mutations in Sapap3, Slitrk5 and Shank3, reported models of OCD and autism spectrum disorders (ASD’s). Long-term treatment of Hoxb8 mutants with fluoxetine, a serotonin reuptake inhibitor (SSRI), reduces excessive grooming, hyperanxiety and social behavioral impairments. These studies provide linkage between the neuronal defects induced by defective Hoxb8-microglia, and neuronal dysfunctions directly generated by mutations in synaptic components that result in mice that display similar pathological grooming, hyperanxiety and social impairment deficits. Our results shed light on Hoxb8 microglia driven circuit-specific defects and therapeutic approaches that will become essential to developing novel therapies for neuropsychiatric diseases such as OCD and ASD’s with Hoxb8-microglia being the central target. PMID:28948967
Tiozzo, Caterina; Danopoulos, Soula; Lavarreda-Pearce, Maria; Baptista, Sheryl; Varimezova, Radka; Al Alam, Denise; Warburton, David; Virender, Rehan; De Langhe, Stijn; Di Cristofano, Antonio
2014-01-01
Even though the role of the tyrosine phosphatase Pten as a tumor suppressor gene has been well established in thyroid cancer, its role during thyroid development is still elusive. We therefore targeted Pten deletion in the thyroid epithelium by crossing Ptenflox/flox with a newly developed Nkx2.1-cre driver line in the BALB/c and C57BL/6 genetic backgrounds. C57BL/6 homozygous Pten mutant mice died around 2 weeks of age due to tracheal and esophageal compression by a hyperplasic thyroid. By contrast, BALB/c homozygous Pten mutant mice survived up to 2 years, but with a slightly increased thyroid volume. Characterization of the thyroid glands from C57BL/6 homozygous Pten mutant mice at postnatal day 14 (PN14) showed abnormally enlarged tissue with areas of cellular hyperplasia, disruption of the normal architecture, and follicular degeneration. In addition, differing degrees of hypothyroidism, thyroxine (T4) decrease, and thyroid-stimulating hormone elevation between the strains in the mutants and the heterozygous mutant were detected at PN14. Finally, C57BL/6 heterozygous Pten mutant mice developed thyroid tumors after 2 years of age. Our results indicate that Pten has a pivotal role in thyroid development and its deletion results in thyroid tumor formation, with the timing and severity of the tumor depending on the particular genetic background. PMID:22167068
Nakatani, Teruyo; Ohnishi, Mutsuko; Razzaque, M. Shawkat
2009-01-01
Hyp mice possess a mutation that inactivates the phosphate-regulating gene, which is homologous to the endopeptidases of the X-chromosome (PHEX). The mutation is associated with severe hypophosphatemia due to excessive urinary phosphate wasting. Such urinary phosphate wasting in Hyp mice is associated with an increased serum accumulation of fibroblast growth factor (FGF) 23. We wanted to determine the biological significance of increased serum FGF23 levels and concomitant hypophosphatemia in Hyp mice and to evaluate whether FGF23 activity could be modified by manipulating klotho (a cofactor of FGF23 signaling). We generated Hyp and klotho double-mutant mice (Hyp/klotho−/−). Severe hypophosphatemia of Hyp mice was reversed to hyperphosphatemia in Hyp/klotho−/− double mutants, despite the fact that the double mutants showed significantly increased serum levels of FGF23. Hyperphosphatemia in Hyp/klotho−/− mice was associated with increased renal expression of sodium/phosphate cotransporter 2a (NaPi2a) protein. Exogenous injection of bioactive parathyroid hormone 1-34 down-regulated renal expression of NaPi2a and consequently reduced serum levels of phosphate in Hyp/klotho−/− mice. Moreover, in contrast to the Hyp mice, the Hyp/klotho−/− mice showed significantly higher serum levels of 1,25-dihydroxyvitamin D and developed extensive calcification in soft tissues and vascular walls. Furthermore, compared with the Hyp mice, Hyp/klotho−/− mice were smaller in size, showed features of generalized tissue atrophy, and generally died by 15–20 wk of age. Our in vivo studies provide genetic evidence for a pathological role of increased FGF23 activities in regulating abnormal phosphate homeostasis in Hyp mice. Moreover, these results suggest that even when serum levels of FGF23 are significantly high, in the absence of klotho, FGF23 is unable to regulate systemic phosphate homeostasis. Our in vivo observations have significant clinical implications in diseases associated with increased FGF23 activity and suggest that the functions of FGF23 can be therapeutically modulated by manipulating the effects of klotho.—Nakatani, Y., Ohnishi, M., Razzaque, M. S. Inactivation of klotho function induces hyperphosphatemia even in presence of high serum fibroblast growth factor 23 levels in a genetically engineered hypophosphatemic (Hyp) mouse model. PMID:19584304
Perception of sweet taste is important for voluntary alcohol consumption in mice.
Blednov, Y A; Walker, D; Martinez, M; Levine, M; Damak, S; Margolskee, R F
2008-02-01
To directly evaluate the association between taste perception and alcohol intake, we used three different mutant mice, each lacking a gene expressed in taste buds and critical to taste transduction: alpha-gustducin (Gnat3), Tas1r3 or Trpm5. Null mutant mice lacking any of these three genes showed lower preference score for alcohol and consumed less alcohol in a two-bottle choice test, as compared with wild-type littermates. These null mice also showed lower preference score for saccharin solutions than did wild-type littermates. In contrast, avoidance of quinine solutions was less in Gnat3 or Trpm5 knockout mice than in wild-type mice, whereas Tas1r3 null mice were not different from wild type in their response to quinine solutions. There were no differences in null vs. wild-type mice in their consumption of sodium chloride solutions. To determine the cause for reduction of ethanol intake, we studied other ethanol-induced behaviors known to be related to alcohol consumption. There were no differences between null and wild-type mice in ethanol-induced loss of righting reflex, severity of acute ethanol withdrawal or conditioned place preference for ethanol. Weaker conditioned taste aversion (CTA) to alcohol in null mice may have been caused by weaker rewarding value of the conditioned stimulus (saccharin). When saccharin was replaced by sodium chloride, no differences in CTA to alcohol between knockout and wild-type mice were seen. Thus, deletion of any one of three different genes involved in detection of sweet taste leads to a substantial reduction of alcohol intake without any changes in pharmacological actions of ethanol.
PERCEPTION OF SWEET TASTE IS IMPORTANT FOR VOLUNTARY ALCOHOL CONSUMPTION IN MICE
Blednov, Y.A.; Walker, D.; Martinez, M.; Levine, M.; Damak, S.; Margolskee, R.F.
2012-01-01
To directly evaluate the association between taste perception and alcohol intake, we used three different mutant mice, each lacking a gene expressed in taste buds and critical to taste transduction: α-gustducin (Gnat3), Tas1r3 or Trpm5. Null mutant mice lacking any of these three genes showed lower preference score for alcohol and consumed less alcohol in a two-bottle choice test, as compared with wild-type littermates. These null mice also showed lower preference score for saccharin solutions than did wild-type littermates. In contrast, avoidance of quinine solutions was less in Gnat3 or Trpm5 knockout mice than in wild type mice, whereas Tas1r3 null mice were not different from wild-type in their response to quinine solutions. There were no differences in null vs. wild-type mice in their consumption of sodium chloride solutions. To determine the cause for reduction of ethanol intake, we studied other ethanol-induced behaviors known to be related to alcohol consumption. There were no differences between null and wild-type mice in ethanol-induced loss of righting reflex, severity of acute ethanol withdrawal or conditioned place preference for ethanol. Weaker conditioned taste aversion to alcohol in null mice may have been caused by weaker rewarding value of the conditioned stimulus (saccharin). When saccharin was replaced by sodium chloride, no differences in conditioned taste aversion to alcohol between knockout and wild-type mice were seen. Thus, deletion of any one of three different genes involved in detection of sweet taste leads to a substantial reduction of alcohol intake without any changes in pharmacological actions of ethanol. PMID:17376151
Barbeito, Ana G.; Garringer, Holly J.; Baraibar, Martin A.; Gao, Xiaoying; Arredondo, Miguel; Núñez, Marco T.; Smith, Mark A.; Ghetti, Bernardino; Vidal, Ruben
2009-01-01
Insertional mutations in exon 4 of the ferritin light chain (FTL) gene are associated with hereditary ferritinopathy (HF) or neuroferritinopathy, an autosomal dominant neurodegenerative disease characterized by progressive impairment of motor and cognitive functions. To determine the pathogenic mechanisms by which mutations in FTL lead to neurodegeneration, we investigated iron metabolism and markers of oxidative stress in the brain of transgenic (Tg) mice that express the mutant human FTL498-499InsTC cDNA. Compared with wild-type mice, brain extracts from Tg (FTL-Tg) mice showed an increase in the cytoplasmic levels of both FTL and ferritin heavy chain polypeptides, a decrease in the protein and mRNA levels of transferrin receptor-1, and a significant increase in iron levels. Transgenic mice also showed the presence of markers for lipid peroxidation, protein carbonyls, and nitrone–protein adducts in the brain. However, gene expression analysis of iron management proteins in the liver of Tg mice indicates that the FTL-Tg mouse liver is iron deficient. Our data suggest that disruption of iron metabolism in the brain has a primary role in the process of neurodegeneration in HF and that the pathogenesis of HF is likely to result from a combination of reduction in iron storage function and enhanced toxicity associated with iron-induced ferritin aggregates in the brain. PMID:19519778
The Ovary Is an Alternative Site of Origin for High-Grade Serous Ovarian Cancer in Mice
Coffey, Donna M.; Ma, Lang; Matzuk, Martin M.
2015-01-01
Although named “ovarian cancer,” it has been unclear whether the cancer actually arises from the ovary, especially for high-grade serous carcinoma (HGSC), also known as high-grade serous ovarian cancer, the most common and deadliest ovarian cancer. In addition, the tumor suppressor p53 is the most frequently mutated gene in HGSC. However, whether mutated p53 can cause HGSC remains unknown. In this study, we bred a p53 mutation, p53R172H, into conditional Dicer-Pten double-knockout (DKO) mice, a mouse model duplicating human HGSC, to generate triple-mutant (TKO) mice. Like DKO mice, these TKO mice develop metastatic HGSCs originating from the fallopian tube. Unlike DKO mice, however, even after fallopian tubes are removed in TKO mice, ovaries alone can develop metastatic HGSCs, indicating that a p53 mutation can drive HGSC arising from the ovary. To confirm this, we generated p53R172H-Pten double-mutant mice, one of the genetic control lines for TKO mice. As anticipated, these double-mutant mice also develop metastatic HGSCs from the ovary, verifying the HGSC-forming ability of ovaries with a p53 mutation. Our study therefore shows that ovaries harboring a p53 mutation, as well as fallopian tubes, can be a distinct tissue source of high-grade serous ovarian cancer in mice. PMID:25815421
The ovary is an alternative site of origin for high-grade serous ovarian cancer in mice.
Kim, Jaeyeon; Coffey, Donna M; Ma, Lang; Matzuk, Martin M
2015-06-01
Although named "ovarian cancer," it has been unclear whether the cancer actually arises from the ovary, especially for high-grade serous carcinoma (HGSC), also known as high-grade serous ovarian cancer, the most common and deadliest ovarian cancer. In addition, the tumor suppressor p53 is the most frequently mutated gene in HGSC. However, whether mutated p53 can cause HGSC remains unknown. In this study, we bred a p53 mutation, p53(R172H), into conditional Dicer-Pten double-knockout (DKO) mice, a mouse model duplicating human HGSC, to generate triple-mutant (TKO) mice. Like DKO mice, these TKO mice develop metastatic HGSCs originating from the fallopian tube. Unlike DKO mice, however, even after fallopian tubes are removed in TKO mice, ovaries alone can develop metastatic HGSCs, indicating that a p53 mutation can drive HGSC arising from the ovary. To confirm this, we generated p53(R172H)-Pten double-mutant mice, one of the genetic control lines for TKO mice. As anticipated, these double-mutant mice also develop metastatic HGSCs from the ovary, verifying the HGSC-forming ability of ovaries with a p53 mutation. Our study therefore shows that ovaries harboring a p53 mutation, as well as fallopian tubes, can be a distinct tissue source of high-grade serous ovarian cancer in mice.
Evaluation of nigrostriatal dopaminergic function in adult +/+ and +/- BDNF mutant mice.
Dluzen, D E; Gao, X; Story, G M; Anderson, L I; Kucera, J; Walro, J M
2001-07-01
Deletion of a single copy of the BDNF gene has been shown to affect the nigrostriatal dopaminergic system of young adult BDNF mice. In the present report we evaluated various indices of nigrostriatal dopaminergic function between 9-month-old wild-type (+/+) and heterozygous (+/-) BDNF mutant mice. Performance in a sensorimotor beam walking task was significantly decreased in +/- mice as indicated by increased times required to traverse both a wide (21 mm) and narrow (6 mm) beam. No differences in spontaneous locomotor behavior were observed between the +/+ and +/- mice. Amphetamine-stimulated (5 mg/kg) locomotor behavior was increased to a greater degree in the +/- mice, with the number of movements performed by these mice being significantly greater than their +/+ controls. Corpus striatal dopamine concentrations were significantly greater in the +/- BDNF mice. The absence of any significant differences for dopamine concentrations within the hypothalamus and olfactory bulb of these mice, as well as an absence of any difference in striatal norepinephrine concentrations, suggested a relative specificity of these effects to the corpus striatum. Both the +/- and +/+ mice showed similar reductions in striatal dopamine concentrations in response to a neurotoxic regimen of methamphetamine (20 mg/kg). Collectively these data show increased levels of striatal dopamine concentrations associated with altered behavioral responses involving the nigrostriatal dopaminergic system within the heterozygous BDNF mutant mice. Copyright 2001 Academic Press.
Hypervitaminosis D and premature aging: lessons learned from Fgf23 and Klotho mutant mice.
Razzaque, Mohammed S; Lanske, Beate
2006-07-01
The essential role of low levels of vitamin D during aging is well documented. However, possible effects of high levels of vitamin D on the aging process are not yet clear. Recent in vivo genetic-manipulation studies have shown increased serum level of vitamin D and altered mineral-ion homeostasis in mice that lack either fibroblast growth factor 23 (Fgf23) or klotho (Kl) genes. These mice develop identical phenotypes consistent with premature aging. Elimination or reduction of vitamin-D activity from Fgf23 and Kl mutant mice, either by dietary restriction or genetic manipulation could rescue premature aging-like features and ectopic calcifications, resulting in prolonged survival of both mutants. Such in vivo experimental studies indicated that excessive vitamin-D activity and altered mineral-ion homeostasis could accelerate the aging process.
2014-01-01
Background Insertion duplication mutagenesis (IDM) and in-frame deletion (IFD) are common techniques for studying gene function, and have been applied to pneumolysin (ply), a virulence gene in Streptococcus pneumoniae (D39). Discrepancies in virulence between the two techniques were observed in both the previous and present studies. This phenomenon was also observed during mutation analysis of autolysin (lytA). Results Our data showed that target gene restoration (TGR) occurred in IDM mutants, even in the presence of antibiotics, while the IFD mutants were stable. In PCR result, TGR occurred later in IDM-ply and -lytA mutants cultured in non-supplemented medium (4–5 h) compared with those grown in medium supplemented with erythromycin (erm)/chloramphenicol (cat) (3–4 h), but plateaued faster. Real-time PCR for detecting TGR had been performed. When compared with 8-h culture, TGR detection increased from Day 1 and Day 2 of IDM mutant’s culture. erm-sensitive clones from IDM mutant were found. Southern blot hybridization and Western blotting also confirmed the phenomenon of TGR. The median survival of mice following intraperitoneal (IP) injection with a 3-h culture of IDM-mutants was significantly longer than that with an 8-h culture, irrespective of antibiotic usage. The median survival time of mice following IP injection of a 3-h culture versus an 8-h culture of IDM-ply in the absence of antibiotics was 10 days versus 2 days (p = 0.031), respectively, while in the presence of erm, the median survival was 5 days versus 2.5 days (p = 0.037), respectively. For an IDM-lytA mutant, the corresponding values were 8.5 days versus 2 days (p = 0.019), respectively, for non-supplemented medium, and 2.5 versus 2 days (p = 0.021), respectively, in the presence of cat. A comparable survival rate was observed between WT D39 and an 8-h IDM culture. Conclusion TGR in IDM mutants should be monitored to avoid inconsistent results, and misinterpretation of data due to TGR could lead to important biological meaning being overlooked. Therefore, based on these results, IFD is preferable to IDM for disruption of target genes. PMID:24558977
Prtenjaca, Anita; Tarnowski, Heather E; Marr, Alison M; Heney, Melanie A; Creamer, Laura; Sathiamoorthy, Sarmitha; Hill, Kathleen A
2014-01-01
With few exceptions, spontaneous mutation frequency and pattern are similar across tissue types and relatively constant in young to middle adulthood in wild type mice. Underrepresented in surveys of spontaneous mutations across murine tissues is the diversity of epithelial tissues. For the first time, spontaneous mutations were detected in pancreas and submaxillary gland and compared with kidney, lung, and male germ cells from five adult male Big Blue® mice. Mutation load was assessed quantitatively through measurement of mutant and mutation frequency and qualitatively through identification of mutations and characterization of recurrent mutations, multiple mutations, mutation pattern, and mutation spectrum. A total of 9.6 million plaque forming units were screened, 226 mutants were collected, and 196 independent mutations were identified. Four novel mutations were discovered. Spontaneous mutation frequency was low in pancreas and high in the submaxillary gland. The submaxillary gland had multiple recurrent mutations in each of the mice and one mutant had two independent mutations. Mutation patterns for epithelial tissues differed from that observed in male germ cells with a striking bias for G:C to A:T transitions at CpG sites. A comprehensive review of lacI spontaneous mutation patterns in young adult mice and rats identified additional examples of this mutational bias. An overarching observation about spontaneous mutation frequency in adult tissues of the mouse remains one of stability. A repeated observation in certain epithelial tissues is a higher rate of G:C to A:T transitions at CpG sites and the underlying mechanisms for this bias are not known. Copyright © 2013 Wiley Periodicals, Inc.
In vivo mutagenicity of conazole fungicides correlates with tumorigenicity.
Ross, Jeffrey A; Moore, Tanya; Leavitt, Sharon A
2009-03-01
Triadimefon, propiconazole and myclobutanil are conazoles, an important class of agricultural and therapeutic fungicides. Triadimefon and propiconazole are mouse liver tumorigens, while myclobutanil is not. All three conazoles are generally inactive in short-term genotoxicity tests. We studied the in vivo mutagenicity of these three conazoles using the Big Blue mouse assay system. Groups of mice were fed either control diet or diet containing 1800 p.p.m. triadimefon, 2500 p.p.m. propiconazole or 2000 p.p.m. myclobutanil. After 4 days of feeding, mice were immediately euthanized, livers were removed, DNA isolated and lacI genes recovered into infectious bacteriophage lambda particles by in vitro packaging. Bacteriophage with mutations in the lacI gene was detected by infecting into Escherichia coli, and mutant frequencies were determined using a colorimetric plaque assay. Propiconazole induced a 1.97-fold increase in mutant frequency compared to concurrent controls (P = 0.018) and triadimefon induced a 1.94-fold increase compared to concurrent controls (P = 0.009). Myclobutanil did not induce any change in mutant frequency (P = 0.548). These results provide the first evidence that the hepatotumorigenic conazoles are capable of inducing mutations in liver in vivo while the non-tumorigen myclobutanil is not, suggesting that mutagenicity may represent a key event in conazoles tumorigenic mode of action.
Bilbao, Ainhoa; Rieker, Claus; Cannella, Nazzareno; Parlato, Rosanna; Golda, Slawomir; Piechota, Marcin; Korostynski, Michal; Engblom, David; Przewlocki, Ryszard; Schütz, Günther; Spanagel, Rainer; Parkitna, Jan R.
2014-01-01
It is suggested that striatal cAMP responsive element binding protein (CREB) regulates sensitivity to psychostimulants. To test the cell-specificity of this hypothesis we examined the effects of a dominant-negative CREB protein variant expressed in dopamine receptor D1 (D1R) neurons on cocaine-induced behaviors. A transgenic mouse strain was generated by pronuclear injection of a BAC-derived transgene harboring the A-CREB sequence under the control of the D1R gene promoter. Compared to wild-type, drug-naïve mutants showed moderate alterations in gene expression, especially a reduction in basal levels of activity-regulated transcripts such as Arc and Egr2. The behavioral responses to cocaine were elevated in mutant mice. Locomotor activity after acute treatment, psychomotor sensitization after intermittent drug injections and the conditioned locomotion after saline treatment were increased compared to wild-type littermates. Transgenic mice had significantly higher cocaine conditioned place preference, displayed normal extinction of the conditioned preference, but showed an augmented cocaine-seeking response following priming-induced reinstatement. This enhanced cocaine-seeking response was associated with increased levels of activity-regulated transcripts and prodynorphin. The primary reinforcing effects of cocaine were not altered in the mutant mice as they did not differ from wild-type in cocaine self-administration under a fixed ratio schedule at the training dose. Collectively, our data indicate that expression of a dominant-negative CREB variant exclusively in neurons expressing D1R is sufficient to recapitulate the previously reported behavioral phenotypes associated with virally expressed dominant-negative CREB. PMID:24966820
A 1-bp deletion in the gammaC-crystallin leads to dominant cataracts in mice.
Zhao, Liya; Li, Kai; Bao, Shimin; Zhou, Yuxun; Liang, Yinming; Zhao, Guoji; Chen, Ye; Xiao, Junhua
2010-08-01
To date around 140 genetic alleles have been identified as being responsible for mouse cataract pathology, including Crya, Cryb, Cryg, Maf, Pax6, Pitx3, Sox, Connexins, MIP, and Lim-2. We obtained a dominant cataract mouse model from a spontaneous mutation in the F1 hybrids of outbred strain ICR mice crossed to the inbred strain BALB/cJ mice. Heterozygous and homozygous mutants expressed a nuclear cataract in both eyes. In 8-day-old mice, histological analysis showed that polygon epithelial cells were in the equatorial region and cortex underneath, and vacuole and sponge-like degeneration were in the cortical area underneath the posterior lens capsule. The nucleus of the lens was a deeply stained pink, with the shorter fibers losing their normal arrangement. For the entire eye, there was a blank zone in the equatorial region in 8-day-old mice; however, there was a certain degree of atrophy in cornea tension and retina in the lens in 3-month-old mice. The lens had been serious damaged in the homozygous mutants. For mutation mapping, heterozygous carriers were mated to wild-type C3H/HeJ mice, and offspring (F1 generation) with cataracts were backcrossed to the wild-type C3H/HeJ mice again. N2 mice with cataracts were used for genotyping. Using genome-wide linkage analysis, the mutation was mapped to chromosome 1 and the Cryg gene cluster between two markers was confirmed as the candidate gene. After direct sequencing the cDNA of the Cryg gene cluster, a 1-bp deletion was found in exon 3 of the Crygc gene, leading to a stop codon at the 76th amino acid of exon 3 which results in production of a truncated protein in mutant mice (Leu160Stop). Bioinformatic analysis of the mutant gammaC-crystallin reveals that the COOH-terminal of the mutant protein deletes a beta-sheet, which affects the function of the lens proteins and leads to the development of cataracts.
Sha, Jian; Kirtley, Michelle L.; van Lier, Christina J.; Wang, Shaofei; Erova, Tatiana E.; Kozlova, Elena V.; Cao, Anthony; Cong, Yingzi; Fitts, Eric C.; Rosenzweig, Jason A.
2013-01-01
Braun (murein) lipoprotein (Lpp) and lipopolysaccharide (LPS) are major components of the outer membranes of Enterobacteriaceae family members that are capable of triggering inflammatory immune responses by activating Toll-like receptors 2 and 4, respectively. Expanding on earlier studies that demonstrated a role played by Lpp in Yersinia pestis virulence in mouse models of bubonic and pneumonic plague, we characterized an msbB in-frame deletion mutant incapable of producing an acyltransferase that is responsible for the addition of lauric acid to the lipid A moiety of LPS, as well as a Δlpp ΔmsbB double mutant of the highly virulent Y. pestis CO92 strain. Although the ΔmsbB single mutant was minimally attenuated, the Δlpp single mutant and the Δlpp ΔmsbB double mutant were significantly more attenuated than the isogenic wild-type (WT) bacterium in bubonic and pneumonic animal models (mouse and rat) of plague. These data correlated with greatly reduced survivability of the aforementioned mutants in murine macrophages. Furthermore, the Δlpp ΔmsbB double mutant was grossly compromised in its ability to disseminate to distal organs in mice and in evoking cytokines/chemokines in infected animal tissues. Importantly, mice that survived challenge with the Δlpp ΔmsbB double mutant, but not the Δlpp or ΔmsbB single mutant, in a pneumonic plague model were significantly protected against a subsequent lethal WT CO92 rechallenge. These data were substantiated by the fact that the Δlpp ΔmsbB double mutant maintained an immunogenicity comparable to that of the WT strain and induced long-lasting T-cell responses against heat-killed WT CO92 antigens. Taken together, the data indicate that deletion of the msbB gene augmented the attenuation of the Δlpp mutant by crippling the spread of the double mutant to the peripheral organs of animals and by inducing cytokine/chemokine responses. Thus, the Δlpp ΔmsbB double mutant could provide a new live-attenuated background vaccine candidate strain, and this should be explored in the future. PMID:23275092
Impairment of VGLUT2 but not VGLUT1 signaling reduces neuropathy-induced hypersensitivity.
Leo, Sandra; Moechars, Dieder; Callaerts-Vegh, Zsuzsanna; D'Hooge, Rudi; Meert, Theo
2009-11-01
Glutamate is the major excitatory neurotransmitter in the central nervous system with an important role in nociceptive processing. Storage of glutamate into vesicles is controlled by vesicular glutamate transporters (VGLUT). Null mutants for VGLUT1 and VGLUT2 were poorly viable, thus, pain-related behavior was presently compared between heterozygote VGLUT1 and VGLUT2 mice and their respective wild-type littermates using a test battery that included a variety of assays for thermal and mechanical acute nociception, and inflammatory and neuropathic pain syndromes. Behavioral analysis of VGLUT1 mutant mice did not show important behavioral changes in the pain conditions tested. Reduction of VGLUT2 also resulted in unaltered acute nociceptive and inflammatory-induced pain behavior. Interestingly, VGLUT2 heterozygote mice showed an attenuation or absence of some typical neuropathic pain features (e.g., absence of mechanical and cold allodynia after spared nerve injury). Chronic constriction injury in VGLUT2 heterozygote mice showed also reduced levels of cold allodynia, but had no impact on mechanical thresholds. Together, these data suggest that VGLUT2, but not VGLUT1, plays a role in neuropathy-induced allodynia and hypersensitivity, and might be a therapeutic target to prevent and/or treat neuropathic pain.
Monteiro, Gaby E R; Jansen van Vuren, Petrus; Wichgers Schreur, Paul J; Odendaal, Lieza; Clift, Sarah J; Kortekaas, Jeroen; Paweska, Janusz T
2018-04-02
The NSs protein encoded by the S segment of Rift Valley fever virus (RVFV) is the major virulence factor, counteracting the host innate antiviral defence. It contains five highly conserved cysteine residues at positions 39, 40, 149, 178 and 194, which are thought to stabilize the tertiary and quaternary structure of the protein. Here, we report significant differences between clinical, virological, histopathological and host gene responses in BALB/c mice infected with wild-type RVFV (wtRVFV) or a genetic mutant having a double cysteine-to-serine substitution at residues 39 and 40 of the NSs protein (RVFV-C39S/C40S). Mice infected with the wtRVFV developed a fatal acute disease; characterized by high levels of viral replication, severe hepatocellular necrosis, and massive up-regulation of transcription of genes encoding type I and -II interferons (IFN) as well as pro-apoptotic and pro-inflammatory cytokines. The RVFV-C39S/C40S mutant did not cause clinical disease and its attenuated virulence was consistent with virological, histopathological and host gene expression findings in BALB/c mice. Clinical signs in mice infected with viruses containing cysteine-to-serine substitutions at positions 178 or 194 were similar to those occurring in mice infected with the wtRVFV, while a mutant containing a substitution at position 149 caused mild, non-fatal disease in mice. As mutant RVFV-C39S/C40S showed an attenuated phenotype in mice, the molecular mechanisms behind this attenuation were further investigated. The results show that two mechanisms are responsible for the attenuation; (1) loss of the IFN antagonistic propriety characteristic of the wtRVFV NSs and (2) the inability of the attenuated mutant to degrade Proteine Kinase R (PKR). Copyright © 2018. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Chang, P. Y.; Kanazawa, N.; Lutze-Mann, L.; Winegar, R. A.
2001-01-01
Exposure to heavy particle radiation in the galacto-cosmic environment poses a significant risk in space exploration and the evaluation of radiation-induced genetic damage in tissues, especially in the central nervous system, is an important consideration in long-term manned space missions. We used a plasmid-based transgenic mouse model system, with the pUR288 lacZ transgene integrated in the genome of every cell of C57Bl/6(lacZ) mice, to evaluate the genetic damage induced by iron particle radiation. In order to examine the importance of genetic background on the radiation sensitivity of individuals, we cross-bred p53 wild-type lacZ transgenic mice with p53 nullizygous mice, producing lacZ transgenic mice that were either hemizygous or nullizygous for the p53 tumor suppressor gene. Animals were exposed to an acute dose of 1 Gy of iron particles and the lacZ mutation frequency (MF) in the brain was measured at time intervals from 1 to 16 weeks post-irradiation. Our results suggest that iron particles induced an increase in lacZ MF (2.4-fold increase in p53+/+ mice, 1.3-fold increase in p53+/- mice and 2.1-fold increase in p53-/- mice) and that this induction is both temporally regulated and p53 genotype dependent. Characterization of mutants based on their restriction patterns showed that the majority of the mutants arising spontaneously are derived from point mutations or small deletions in all three genotypes. Radiation induced alterations in the spectrum of deletion mutants and reorganization of the genome, as evidenced by the selection of mutants containing mouse genomic DNA. These observations are unique in that mutations in brain tissue after particle radiation exposure have never before been reported owing to technical limitations in most other mutation assays.
Dovey, Oliver M.; Cooper, Jonathan L.; Mupo, Annalisa; Grove, Carolyn S.; Lynn, Claire; Conte, Nathalie; Andrews, Robert M.; Pacharne, Suruchi; Tzelepis, Konstantinos; Vijayabaskar, M. S.; Green, Paul; Rad, Roland; Arends, Mark; Wright, Penny; Yusa, Kosuke; Bradley, Allan; Varela, Ignacio
2017-01-01
NPM1 mutations define the commonest subgroup of acute myeloid leukemia (AML) and frequently co-occur with FLT3 internal tandem duplications (ITD) or, less commonly, NRAS or KRAS mutations. Co-occurrence of mutant NPM1 with FLT3-ITD carries a significantly worse prognosis than NPM1-RAS combinations. To understand the molecular basis of these observations, we compare the effects of the 2 combinations on hematopoiesis and leukemogenesis in knock-in mice. Early effects of these mutations on hematopoiesis show that compound Npm1cA/+;NrasG12D/+ or Npm1cA;Flt3ITD share a number of features: Hox gene overexpression, enhanced self-renewal, expansion of hematopoietic progenitors, and myeloid differentiation bias. However, Npm1cA;Flt3ITD mutants displayed significantly higher peripheral leukocyte counts, early depletion of common lymphoid progenitors, and a monocytic bias in comparison with the granulocytic bias in Npm1cA/+;NrasG12D/+ mutants. Underlying this was a striking molecular synergy manifested as a dramatically altered gene expression profile in Npm1cA;Flt3ITD, but not Npm1cA/+;NrasG12D/+, progenitors compared with wild-type. Both double-mutant models developed high-penetrance AML, although latency was significantly longer with Npm1cA/+;NrasG12D/+. During AML evolution, both models acquired additional copies of the mutant Flt3 or Nras alleles, but only Npm1cA/+;NrasG12D/+ mice showed acquisition of other human AML mutations, including IDH1 R132Q. We also find, using primary Cas9-expressing AMLs, that Hoxa genes and selected interactors or downstream targets are required for survival of both types of double-mutant AML. Our results show that molecular complementarity underlies the higher frequency and significantly worse prognosis associated with NPM1c/FLT3-ITD vs NPM1/NRAS-G12D-mutant AML and functionally confirm the role of HOXA genes in NPM1c-driven AML. PMID:28835438
Domino, Steven E.; Karnak, David M.; Hurd, Elizabeth A.
2006-01-01
Background/Aims: Neoplasia-related alterations in cell surface α(1,2)fucosylated glycans have been reported in multiple tumors including colon, pancreas, endometrium, cervix, bladder, lung, and choriocarcinoma. Spontaneous colorectal tumors from mice with a germline null mutation of transforming growth factor-β signaling gene Smad3 (Madh3) were tested for α(1,2)fucosylated glycan expression. Methods: Ulex Europaeus Agglutinin-I lectin staining, fucosyltransferase gene northern blot analysis, and a cross of mutant mice with Fut2 and Smad3 germline mutations were performed. Results: Spontaneous colorectal tumors from Smad3 (-/-) homozygous null mice were found to express α(1,2)fucosylated glycans in an abnormal pattern compared to adjacent nonneoplastic colon. Northern blot analysis of α(1,2)fucosyltransferase genes Fut1 and Fut2 revealed that Fut2, but not Fut1, steady-state mRNA levels were significantly increased in tumors relative to adjacent normal colonic mucosa. Mutant mice with a Fut2-inactivating germline mutation were crossed with Smad3 targeted mice. In Smad3 (-/-)/Fut2 (-/-) double knock-out mice, UEA-I lectin staining was eliminated from colon and colon tumors, however, the number and size of tumors present by 24 weeks of age did not vary regardless of the Fut2 genotype. Conclusions: In this model of colorectal cancer, cell surface α(1,2)fucosylation does not affect development of colon tumors. PMID:17264540
Zhou, Sharon; Davidson, Cristin; McGlynn, Robert; Stephney, Gloria; Dobrenis, Kostantin; Vanier, Marie T.; Walkley, Steven U.
2011-01-01
Niemann-Pick disease type C (NPC) is a severe neurovisceral lysosomal storage disorder caused by defects in NPC1 or NPC2 proteins. Although numerous studies support the primacy of cholesterol storage, neurons of double-mutant mice lacking both NPC1 and an enzyme required for synthesis of all complex gangliosides (β1,4GalNAc transferase) have been reported to exhibit dramatically reduced cholesterol sequestration. Here we show that NPC2-deficient mice lacking this enzyme also exhibit reduced cholesterol, but that genetically restricting synthesis to only a-series gangliosides fully restores neuronal cholesterol storage to typical disease levels. Examining the subcellular locations of sequestered compounds in neurons lacking NPC1 or NPC2 by confocal microscopy revealed that cholesterol and the two principal storage gangliosides (GM2 and GM3) were not consistently co-localized within the same intracellular vesicles. To determine whether the lack of GM2 and GM3 co-localization was due to differences in synthetic versus degradative pathway expression, we generated mice lacking both NPC1 and lysosomal β-galactosidase, and therefore unable to generate GM2 and GM3 in lysosomes. Double mutants lacked both gangliosides, indicating that each is the product of endosomal/lysosomal processing. Unexpectedly, GM1 accumulation in double mutants increased compared to single mutants consistent with a direct role for NPC1 in ganglioside salvage. These studies provide further evidence that NPC1 and NPC2 proteins participate in endosomal/lysosomal processing of both sphingolipids and cholesterol. PMID:21708114
1993-01-01
To assess the role of immunoglobulin D (IgD) in vivo we generated IgD- deficient mice by gene targeting and studied B cell development and function in the absence of IgD expression. In the mutant animals, conventional and CD5-positive (B1) B cells are present in normal numbers, and the expression of the surface markers CD22 and CD23 in the compartment of conventional B cells indicates acquisition of a mature phenotype. As in wild-type animals, most of the peripheral B cells are resting cells. The IgD-deficient mice respond well to T cell- independent and -dependent antigens. However, in heterozygous mutant animals, B cells expressing the wild type IgH locus are overrepresented in the peripheral B cell pool, and T cell-dependent IgG1 responses are further dominated by B cells expressing the wild-type allele. Similarly, in homozygous mutant (IgD-deficient) animals, affinity maturation is delayed in the early primary response compared to control animals, although the mutants are capable of generating high affinity B cell memory. Thus, rather than being involved in major regulatory processes as had been suggested, IgD seems to function as an antigen receptor optimized for efficient recruitment of B cells into antigen- driven responses. The IgD-mediated acceleration of affinity maturation in the early phase of the T cell-dependent primary response may confer to the animal a critical advantage in the defense against pathogens. PMID:8418208
Vallières, Nicolas; Barrette, Benoit; Wang, Linda Xiang; Bélanger, Erik; Thiry, Louise; Schneider, Marlon R; Filali, Mohammed; Côté, Daniel; Bretzner, Frédéric; Lacroix, Steve
2017-04-01
When a nerve fiber is cut or crushed, the axon segment that is separated from the soma degenerates distal from the injury in a process termed Wallerian degeneration (WD). C57BL/6OlaHsd-Wld S (Wld S ) mutant mice exhibit significant delays in WD. This results in considerably delayed Schwann cell and macrophage responses and thus in impaired nerve regenerations. In our previous work, thousands of genes were screened by DNA microarrays and over 700 transcripts were found to be differentially expressed in the injured sciatic nerve of Wld S compared with wild-type (WT) mice. One of these transcripts, betacellulin (Btc), was selected for further analysis since it has yet to be characterized in the nervous system, despite being known as a ligand of the ErbB receptor family. We show that Btc mRNA is strongly upregulated in immature and dedifferentiated Sox2 + Schwann cells located in the sciatic nerve distal stump of WT mice, but not Wld S mutants. Transgenic mice ubiquitously overexpressing Btc (Tg-Btc) have increased numbers of Schmidt-Lantermann incisures compared with WT mice, as revealed by Coherent anti-Stokes Raman scattering (CARS). Tg-Btc mice also have faster nerve conduction velocity. Finally, we found that deficiency in Btc reduces the proliferation of myelinating Schwann cells after sciatic nerve injury, while Btc overexpression induces Schwann cell proliferation and improves recovery of locomotor function. Taken together, these results suggest a novel regulatory role of Btc in axon-Schwann cell interactions involved in myelin formation and nerve repair. GLIA 2017 GLIA 2017;65:657-669. © 2017 Wiley Periodicals, Inc.
Altered Actions of Memantine and NMDA-Induced Currents in a New Grid2-Deleted Mouse Line
Kumagai, Ayako; Fujita, Akira; Yokoyama, Tomoki; Nonobe, Yuki; Hasaba, Yasuhiro; Sasaki, Tsutomu; Itoh, Yumi; Koura, Minako; Suzuki, Osamu; Adachi, Shigeki; Ryo, Haruko; Kohara, Arihiro; Tripathi, Lokesh P.; Sanosaka, Masato; Fukushima, Toshiki; Takahashi, Hiroyuki; Kitagawa, Kazuo; Nagaoka, Yasuo; Kawahara, Hidehisa; Mizuguchi, Kenji; Nomura, Taisei; Matsuda, Junichiro; Tabata, Toshihide; Takemori, Hiroshi
2014-01-01
Memantine is a non-competitive antagonist of the N-methyl-d-aspartate (NMDA) receptor, and is an approved drug for the treatment of moderate-to-severe Alzheimer’s disease. We identified a mouse strain with a naturally occurring mutation and an ataxic phenotype that presents with severe leg cramps. To investigate the phenotypes of these mutant mice, we screened several phenotype-modulating drugs and found that memantine (10 mg/kg) disrupted the sense of balance in the mutants. Moreover, the mutant mice showed an attenuated optokinetic response (OKR) and impaired OKR learning, which was also observed in wild-type mice treated with memantine. Microsatellite analyses indicated that the Grid2 gene-deletion is responsible for these phenotypes. Patch-clamp analysis showed a relatively small change in NMDA-dependent current in cultured granule cells from Grid2 gene-deleted mice, suggesting that GRID2 is important for correct NMDA receptor function. In general, NMDA receptors are activated after the activation of non-NMDA receptors, such as AMPA receptors, and AMPA receptor dysregulation also occurs in Grid2 mutant mice. Indeed, the AMPA treatment enhanced memantine susceptibility in wild-type mice, which was indicated by balance sense and OKR impairments. The present study explores a new role for GRID2 and highlights the adverse effects of memantine in different genetic backgrounds. PMID:25513882
Roles of HAUSP-mediated p53 regulation in central nervous system development.
Kon, N; Zhong, J; Kobayashi, Y; Li, M; Szabolcs, M; Ludwig, T; Canoll, P D; Gu, W
2011-08-01
The deubiquitinase HAUSP (herpesvirus-associated ubiquitin-specific protease; also called USP7) has a critical role in regulating the p53-Mdm2 (murine double minute 2) pathway. By using the conventional knockout approach, we previously showed that hausp inactivation leads to early embryonic lethality. To fully understand the physiological functions of hausp, we have generated mice lacking hausp specifically in the brain and examined the impacts of this manipulation on brain development. We found that deletion of hausp in neural cells resulted in neonatal lethality. The brains from these mice displayed hypoplasia and deficiencies in development, which were mainly caused by p53-mediated apoptosis. Detailed analysis also showed an increase of both p53 levels and p53-dependent transcriptional activation in hausp knockout brains. Notably, neural cell survival and brain development of hausp-mutant mice can largely be restored in the p53-null background. Nevertheless, in contrast to the case of mdm2- and mdm4 (murine double minute 4)-mutant mice, inactivation of p53 failed to completely rescue the neonatal lethality of these hausp-mutant mice. These results indicate that HAUSP-mediated p53 regulation is crucial for brain development, and also suggest that both the p53-dependent and the p53-independent functions of HAUSP contribute to the neonatal lethality of hausp-mutant mice.
Mecp2 truncation in male mice promotes affiliative social behavior
Pearson, B.L.; Defensor, E.B.; Pobbe, R.L.H.; Yamamoto, L.H.L.; Bolivar, V.J.; Blanchard, D.C.; Blanchard, R.J.
2018-01-01
Mouse models of Rett syndrome, with targeted mutations in the Mecp2 gene, show a high degree of phenotypic consistency with the clinical syndrome. In addition to severe and age-specific regression in motor and cognitive abilities, a variety of studies have demonstrated that Mecp2 mutant mice display impaired social behavior. Conversely, other studies indicate complex enhancements of social behavior in Mecp2 mutant mice. Since social behavior is a complicated accumulation of constructs, we performed a series of classic and refined social behavior tasks and revealed a relatively consistent pattern of enhanced pro-social behavior in hypomorphic Mecp2308/Y mutant mice. Analyses of repetitive motor acts, and cognitive stereotypy did not reveal any profound differences due to genotype. Taken together, these results suggest that the mutations associated with Rett syndrome are not necessarily associated with autism-relevant social impairment in mice. However, this gene may be a valuable candidate for revealing basic mechanisms of affiliative behavior. PMID:21909962
Kawabe, T; Naka, T; Yoshida, K; Tanaka, T; Fujiwara, H; Suematsu, S; Yoshida, N; Kishimoto, T; Kikutani, H
1994-06-01
An engagement of CD40 with CD40 ligand (CD40L) expressed on activated T cells is known to provide an essential costimulatory signal to B cells in vitro. To investigate the role of CD40 in in vivo immune responses, CD40-deficient mice were generated by gene targeting. The significant reduction of CD23 expression on mature B cells and relatively decreased number of IgM bright and IgD dull B cells were observed in the mutant mice. The mutant mice mounted IgM responses but no IgG, IgA, and IgE responses to thymus-dependent (TD) antigens. However, IgG as well as IgM responses to thymus-independent (TI) antigens were normal. Furthermore, the germinal center formation was defective in the mutant mice. These results suggest that CD40 is essential for T cell-dependent immunoglobulin class switching and germinal center formation, but not for in vivo T cell-dependent IgM responses and T cell-independent antibody responses.
Schneeberger, Valentina E.; Ren, Yuan; Luetteke, Noreen; Huang, Qingling; Chen, Liwei; Lawrence, Harshani R.; Lawrence, Nicholas J.; Haura, Eric B.; Koomen, John M.; Coppola, Domenico; Wu, Jie
2015-01-01
Epidermal growth factor receptor (EGFR) mutants drive lung tumorigenesis and are targeted for therapy. However, resistance to EGFR inhibitors has been observed, in which the mutant EGFR remains active. Thus, it is important to uncover mediators of EGFR mutant-driven lung tumors to develop new treatment strategies. The protein tyrosine phosphatase (PTP) Shp2 mediates EGF signaling. Nevertheless, it is unclear if Shp2 is activated by oncogenic EGFR mutants in lung carcinoma or if inhibiting the Shp2 PTP activity can suppress EGFR mutant-induced lung adenocarcinoma. Here, we generated transgenic mice containing a doxycycline (Dox)-inducible PTP-defective Shp2 mutant (tetO-Shp2CSDA). Using the rat Clara cell secretory protein (CCSP)-rtTA-directed transgene expression in the type II lung pneumocytes of transgenic mice, we found that the Gab1-Shp2 pathway was activated by EGFRL858R in the lungs of transgenic mice. Consistently, the Gab1-Shp2 pathway was activated in human lung adenocarcinoma cells containing mutant EGFR. Importantly, Shp2CSDA inhibited EGFRL858R-induced lung adenocarcinoma in transgenic animals. Analysis of lung tissues showed that Shp2CSDA suppressed Gab1 tyrosine phosphorylation and Gab1-Shp2 association, suggesting that Shp2 modulates a positive feedback loop to regulate its own activity. These results show that inhibition of the Shp2 PTP activity impairs mutant EGFR signaling and suppresses EGFRL858R-driven lung adenocarcinoma. PMID:25730908
Young, Douglas; Mayer, Franziska; Vidotto, Nella; Schweizer, Tatjana; Berth, Ramon; Abramowski, Dorothee; Shimshek, Derya R.; van der Putten, P. Herman; Schmid, Peter
2013-01-01
Huntington's disease (HD) is an autosomal dominant, progressive and fatal neurological disorder caused by an expansion of CAG repeats in exon-1 of the huntingtin gene. The encoded poly-glutamine stretch renders mutant huntingtin prone to aggregation. HdhQ150 mice genocopy a pathogenic repeat (∼150 CAGs) in the endogenous mouse huntingtin gene and model predominantly pre-manifest HD. Treating early is likely important to prevent or delay HD, and HdhQ150 mice may be useful to assess therapeutic strategies targeting pre-manifest HD. This requires appropriate markers and here we demonstrate, that pre-symptomatic HdhQ150 mice show several dramatic mutant huntingtin gene-dose dependent pathological changes including: (i) an increase of neuronal intra-nuclear inclusions (NIIs) in brain, (ii) an increase of extra-nuclear aggregates in dentate gyrus, (iii) a decrease of DARPP32 protein and (iv) an increase in glial markers of neuroinflammation, which curiously did not correlate with local neuronal mutant huntingtin inclusion-burden. HdhQ150 mice developed NIIs also in all retinal neuron cell-types, demonstrating that retinal NIIs are not specific to human exon-1 R6 HD mouse models. Taken together, the striking and robust mutant huntingtin gene-dose related changes in aggregate-load, DARPP32 levels and glial activation markers should greatly facilitate future testing of therapeutic strategies in the HdhQ150 HD mouse model. PMID:24086450
Tissue-specific and time-dependent clonal expansion of ENU-induced mutant cells in gpt delta mice.
Nakayama, Takafumi; Sawai, Tomoko; Masuda, Ikuko; Kaneko, Shinya; Yamauchi, Kazumi; Blyth, Benjamin J; Shimada, Yoshiya; Tachibana, Akira; Kakinuma, Shizuko
2017-10-01
DNA mutations play a crucial role in the origins of cancer, and the clonal expansion of mutant cells is one of the fundamental steps in multistage carcinogenesis. In this study, we correlated tumor incidence in B6C3F1 mice during the period after exposure to N-ethyl-N-nitrosourea (ENU) with the persistence of ENU-induced mutant clones in transgenic gpt delta B6C3F1 mice. The induced gpt mutations afforded no selective advantage in the mouse cells and could be distinguished by a mutational spectrum that is characteristic of ENU treatment. The gpt mutations were passengers of the mutant cell of origin and its daughter cells and thus could be used as neutral markers of clones that arose and persisted in the tissues. Female B6C3F1 mice exposed for 1 month to 200 ppm ENU in the drinking water developed early thymic lymphomas and late liver and lung tumors. To assay gpt mutations, we sampled the thymus, liver, lung, and small intestine of female gpt delta mice at 3 days, 4 weeks, and 8 weeks after the end of ENU exposure. Our results reveal that, in all four tissues, the ENU-induced gpt mutations persisted for weeks after the end of mutagen exposure. Clonal expansion of mutant cells was observed in the thymus and small intestine, with the thymus showing larger clone sizes. These results indicate that the clearance of mutant cells and the potential for clonal expansion during normal tissue growth depends on tissue type and that these factors may affect the sensitivity of different tissues to carcinogenesis. Environ. Mol. Mutagen. 58:592-606, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Thyroid hormone is essential for pituitary somatotropes and lactotropes.
Stahl, J H; Kendall, S K; Brinkmeier, M L; Greco, T L; Watkins-Chow, D E; Campos-Barros, A; Lloyd, R V; Camper, S A
1999-04-01
Mice homozygous for a disruption in the alpha-subunit essential for TSH, LH, and FSH activity (alphaGsu-/-) exhibit hypothyroidism and hypogonadism similar to that observed in TSH receptor-deficient hypothyroid mice (hyt) and GnRH-deficient hypogonadal mutants (hpg). Although the five major hormone-producing cells of the anterior pituitary are present in alphaGsu-/- mice, the relative proportions of each cell type are altered dramatically. Thyrotropes exhibit hypertrophy and hyperplasia, and somatotropes and lactotropes are underrepresented. The size and number of gonadotropes in alphaGsu mutants are not remarkable in contrast to the hypertrophy characteristic of gonadectomized animals. The reduction in lactotropes is more severe in alphaGsu mutants (13-fold relative to wild-type) than in hyt or hpg mutants (4.5- and 1.5-fold, respectively). In addition, T4 replacement therapy of alphaGsu mutants restores lactotropes to near-normal levels, illustrating the importance of T4, but not alpha-subunit, for lactotrope proliferation and function. T4 replacement is permissive for gonadotrope hypertrophy in alphaGsu mutants, consistent with the role for T4 in the function of gonadotropes. This study reveals the importance of thyroid hormone in developing the appropriate proportions of anterior pituitary cell types.
Yang, Chunxing; Danielson, Eric W.; Qiao, Tao; Metterville, Jake; Brown, Robert H.; Landers, John E.; Xu, Zuoshang
2016-01-01
Mutations in the profilin 1 (PFN1) gene cause amyotrophic lateral sclerosis (ALS), a neurodegenerative disease caused by the loss of motor neurons leading to paralysis and eventually death. PFN1 is a small actin-binding protein that promotes formin-based actin polymerization and regulates numerous cellular functions, but how the mutations in PFN1 cause ALS is unclear. To investigate this problem, we have generated transgenic mice expressing either the ALS-associated mutant (C71G) or wild-type protein. Here, we report that mice expressing the mutant, but not the wild-type, protein had relentless progression of motor neuron loss with concomitant progressive muscle weakness ending in paralysis and death. Furthermore, mutant, but not wild-type, PFN1 forms insoluble aggregates, disrupts cytoskeletal structure, and elevates ubiquitin and p62/SQSTM levels in motor neurons. Unexpectedly, the acceleration of motor neuron degeneration precedes the accumulation of mutant PFN1 aggregates. These results suggest that although mutant PFN1 aggregation may contribute to neurodegeneration, it does not trigger its onset. Importantly, these experiments establish a progressive disease model that can contribute toward identifying the mechanisms of ALS pathogenesis and the development of therapeutic treatments. PMID:27681617
Wu, L C; Liu, C; Jiang, M R; Jiang, Y M; Wang, Q H; Lu, Z Y; Wang, S J; Yang, W L; Shao, Y X
2016-08-26
Development of the eyelid requires coordination of the cellular processes involved in proliferation, cell size alteration, migration, and cell death. C57BL/6J-corneal opacity (B6-Co) mice are mutant mice generated by the administration of N-ethyl-N-nitrosourea (100 mg/kg). They exhibit the eyelids open at birth phenotype, abnormal round cell shape from tightened F-actin bundles in leading edge keratinocytes at E16.5, and gradual corneal opacity with neovessels. The tip of the leading edge in B6-Co mice did not move forward, and demonstrated a sharp peak shape without obvious directionality. Analysis of the biological characteristics of B6-Co mice demonstrated that abnormal migration of keratinocytes could affect eyelid development, but proliferation and apoptosis in B6-Co mice had no effect. Mutant gene mapping and sequence analysis demonstrated that in B6-Co mice, adenosine was inserted into the untranslated regions, between 3030 and 3031, in the mRNA 3'-terminal of Fgf10. In addition, guanine 7112 was substituted by adenine in the Mtap1B mRNA, and an A2333T mutation was identified in Mtap1B. Quantitative real-time polymerase chain reaction analysis showed that expression of the Hbegf gene was significantly down-regulated in the eyelids of B6- Co mice at E16.5, compared to B6 mice. However, the expression of Rock1, Map3k1, and Jnk1 genes did not show any significant changes. Abnormal keratinocyte migration and down-regulated expression of the Hbegf gene might be associated with impaired eyelid development in B6-Co mice.
Roberts, Blaine R; Lim, Nastasia K H; McAllum, Erin J; Donnelly, Paul S; Hare, Dominic J; Doble, Philip A; Turner, Bradley J; Price, Katherine A; Lim, Sin Chun; Paterson, Brett M; Hickey, James L; Rhoads, Timothy W; Williams, Jared R; Kanninen, Katja M; Hung, Lin W; Liddell, Jeffrey R; Grubman, Alexandra; Monty, Jean-Francois; Llanos, Roxana M; Kramer, David R; Mercer, Julian F B; Bush, Ashley I; Masters, Colin L; Duce, James A; Li, Qiao-Xin; Beckman, Joseph S; Barnham, Kevin J; White, Anthony R; Crouch, Peter J
2014-06-04
Mutations in the metallo-protein Cu/Zn-superoxide dismutase (SOD1) cause amyotrophic lateral sclerosis (ALS) in humans and an expression level-dependent phenotype in transgenic rodents. We show that oral treatment with the therapeutic agent diacetyl-bis(4-methylthiosemicarbazonato)copper(II) [Cu(II)(atsm)] increased the concentration of mutant SOD1 (SOD1G37R) in ALS model mice, but paradoxically improved locomotor function and survival of the mice. To determine why the mice with increased levels of mutant SOD1 had an improved phenotype, we analyzed tissues by mass spectrometry. These analyses revealed most SOD1 in the spinal cord tissue of the SOD1G37R mice was Cu deficient. Treating with Cu(II)(atsm) decreased the pool of Cu-deficient SOD1 and increased the pool of fully metallated (holo) SOD1. Tracking isotopically enriched (65)Cu(II)(atsm) confirmed the increase in holo-SOD1 involved transfer of Cu from Cu(II)(atsm) to SOD1, suggesting the improved locomotor function and survival of the Cu(II)(atsm)-treated SOD1G37R mice involved, at least in part, the ability of the compound to improve the Cu content of the mutant SOD1. This was supported by improved survival of SOD1G37R mice that expressed the human gene for the Cu uptake protein CTR1. Improving the metal content of mutant SOD1 in vivo with Cu(II)(atsm) did not decrease levels of misfolded SOD1. These outcomes indicate the metal content of SOD1 may be a greater determinant of the toxicity of the protein in mutant SOD1-associated forms of ALS than the mutations themselves. Improving the metal content of SOD1 therefore represents a valid therapeutic strategy for treating ALS caused by SOD1. Copyright © 2014 the authors 0270-6474/14/348021-11$15.00/0.
Mott, Tiffany M.; Vijayakumar, Sudhamathi; Sbrana, Elena; Endsley, Janice J.; Torres, Alfredo G.
2015-01-01
Background In this study, a Burkholderia mallei tonB mutant (TMM001) deficient in iron acquisition was constructed, characterized, and evaluated for its protective properties in acute inhalational infection models of murine glanders and melioidosis. Methodology/Principal Findings Compared to the wild-type, TMM001 exhibits slower growth kinetics, siderophore hyper-secretion and the inability to utilize heme-containing proteins as iron sources. A series of animal challenge studies showed an inverse correlation between the percentage of survival in BALB/c mice and iron-dependent TMM001 growth. Upon evaluation of TMM001 as a potential protective strain against infection, we found 100% survival following B. mallei CSM001 challenge of mice previously receiving 1.5 x 104 CFU of TMM001. At 21 days post-immunization, TMM001-treated animals showed significantly higher levels of B. mallei-specific IgG1, IgG2a and IgM when compared to PBS-treated controls. At 48 h post-challenge, PBS-treated controls exhibited higher levels of serum inflammatory cytokines and more severe pathological damage to target organs compared to animals receiving TMM001. In a cross-protection study of acute inhalational melioidosis with B. pseudomallei, TMM001-treated mice were significantly protected. While wild type was cleared in all B. mallei challenge studies, mice failed to clear TMM001. Conclusions/Significance Although further work is needed to prevent chronic infection by TMM001 while maintaining immunogenicity, our attenuated strain demonstrates great potential as a backbone strain for future vaccine development against both glanders and melioidosis. PMID:26114445
Mott, Tiffany M; Vijayakumar, Sudhamathi; Sbrana, Elena; Endsley, Janice J; Torres, Alfredo G
2015-01-01
In this study, a Burkholderia mallei tonB mutant (TMM001) deficient in iron acquisition was constructed, characterized, and evaluated for its protective properties in acute inhalational infection models of murine glanders and melioidosis. Compared to the wild-type, TMM001 exhibits slower growth kinetics, siderophore hyper-secretion and the inability to utilize heme-containing proteins as iron sources. A series of animal challenge studies showed an inverse correlation between the percentage of survival in BALB/c mice and iron-dependent TMM001 growth. Upon evaluation of TMM001 as a potential protective strain against infection, we found 100% survival following B. mallei CSM001 challenge of mice previously receiving 1.5 x 10(4) CFU of TMM001. At 21 days post-immunization, TMM001-treated animals showed significantly higher levels of B. mallei-specific IgG1, IgG2a and IgM when compared to PBS-treated controls. At 48 h post-challenge, PBS-treated controls exhibited higher levels of serum inflammatory cytokines and more severe pathological damage to target organs compared to animals receiving TMM001. In a cross-protection study of acute inhalational melioidosis with B. pseudomallei, TMM001-treated mice were significantly protected. While wild type was cleared in all B. mallei challenge studies, mice failed to clear TMM001. Although further work is needed to prevent chronic infection by TMM001 while maintaining immunogenicity, our attenuated strain demonstrates great potential as a backbone strain for future vaccine development against both glanders and melioidosis.
Assessment of NgR1 Function In Vivo After Spinal Cord Injury
Tong, Jing; Ren, Yi; Wang, Xiaowei; Dimopoulos, Vassilios G.; Kesler, Henry N.; Liu, Weimin; He, Xiaosheng; Nedergaard, Maiken; Huang, Jason H.
2014-01-01
Background: Neuronal Nogo-66 receptor 1 (NgR1) has attracted attention as a converging point for mediating the effects of myelin-associate inhibitory ligands in the CNS, establishing the growth restrictive environment, and limiting axon regeneration following traumatic injury. Objective: The importance of NgR1 has been undermined by several studies that have shown the lack of substantial axon regeneration following spinal cord injury (SCI) in NgR1 knockout or knockdown animal models. This study aims to investigate the factors that may be contributing to the discrepancy. Methods: We used mice carrying either a homozygous or heterozygous null mutation in the NgR1 gene and subjected them to either a moderate or severe SCI. Results: Locomotor function assessments revealed that the level of functional recovery is affected by the degree of injury suffered. NgR1 ablation enhanced local collateral sprouting in the mutant mice. Reactive astrocytes and chondroitin sulfate proteoglycans (CSPGs) are upregulated surrounding the injury site. MMP-9, which has been shown to degrade CSPGs, was significantly upregulated in the homozygous mutant mice compared to the heterozygous or wild-type mice. However, CSPG levels remained higher in the homozygous compared to the heterozygous mice, suggesting that CSPG-degrading activity of MMP-9 may require the presence of NgR1. Conclusion: Genetic ablation of NgR1 may lead to significant recovery in locomotor function following SCI. The difference in locomotor recovery we observed between the groups that suffered varying degrees of injury suggests that injury severity may be a confounding factor in functional recovery following SCI. PMID:24594926
Giorgini, Flaviano; Huang, Shao-Yi; Sathyasaikumar, Korrapati V; Notarangelo, Francesca M; Thomas, Marian A R; Tararina, Margarita; Wu, Hui-Qiu; Schwarcz, Robert; Muchowski, Paul J
2013-12-20
Kynurenine 3-monooxygenase (KMO), a pivotal enzyme in the kynurenine pathway (KP) of tryptophan degradation, has been suggested to play a major role in physiological and pathological events involving bioactive KP metabolites. To explore this role in greater detail, we generated mice with a targeted genetic disruption of Kmo and present here the first biochemical and neurochemical characterization of these mutant animals. Kmo(-/-) mice lacked KMO activity but showed no obvious abnormalities in the activity of four additional KP enzymes tested. As expected, Kmo(-/-) mice showed substantial reductions in the levels of its enzymatic product, 3-hydroxykynurenine, in liver, brain, and plasma. Compared with wild-type animals, the levels of the downstream metabolite quinolinic acid were also greatly decreased in liver and plasma of the mutant mice but surprisingly were only slightly reduced (by ∼20%) in the brain. The levels of three other KP metabolites: kynurenine, kynurenic acid, and anthranilic acid, were substantially, but differentially, elevated in the liver, brain, and plasma of Kmo(-/-) mice, whereas the liver and brain content of the major end product of the enzymatic cascade, NAD(+), did not differ between Kmo(-/-) and wild-type animals. When assessed by in vivo microdialysis, extracellular kynurenic acid levels were found to be significantly elevated in the brains of Kmo(-/-) mice. Taken together, these results provide further evidence that KMO plays a key regulatory role in the KP and indicate that Kmo(-/-) mice will be useful for studying tissue-specific functions of individual KP metabolites in health and disease.
Targeted Deletion of Kynurenine 3-Monooxygenase in Mice
Giorgini, Flaviano; Huang, Shao-Yi; Sathyasaikumar, Korrapati V.; Notarangelo, Francesca M.; Thomas, Marian A. R.; Tararina, Margarita; Wu, Hui-Qiu; Schwarcz, Robert; Muchowski, Paul J.
2013-01-01
Kynurenine 3-monooxygenase (KMO), a pivotal enzyme in the kynurenine pathway (KP) of tryptophan degradation, has been suggested to play a major role in physiological and pathological events involving bioactive KP metabolites. To explore this role in greater detail, we generated mice with a targeted genetic disruption of Kmo and present here the first biochemical and neurochemical characterization of these mutant animals. Kmo−/− mice lacked KMO activity but showed no obvious abnormalities in the activity of four additional KP enzymes tested. As expected, Kmo−/− mice showed substantial reductions in the levels of its enzymatic product, 3-hydroxykynurenine, in liver, brain, and plasma. Compared with wild-type animals, the levels of the downstream metabolite quinolinic acid were also greatly decreased in liver and plasma of the mutant mice but surprisingly were only slightly reduced (by ∼20%) in the brain. The levels of three other KP metabolites: kynurenine, kynurenic acid, and anthranilic acid, were substantially, but differentially, elevated in the liver, brain, and plasma of Kmo−/− mice, whereas the liver and brain content of the major end product of the enzymatic cascade, NAD+, did not differ between Kmo−/− and wild-type animals. When assessed by in vivo microdialysis, extracellular kynurenic acid levels were found to be significantly elevated in the brains of Kmo−/− mice. Taken together, these results provide further evidence that KMO plays a key regulatory role in the KP and indicate that Kmo−/− mice will be useful for studying tissue-specific functions of individual KP metabolites in health and disease. PMID:24189070
Nardo, Giovanni; Iennaco, Raffaele; Fusi, Nicolò; Heath, Paul R; Marino, Marianna; Trolese, Maria C; Ferraiuolo, Laura; Lawrence, Neil; Shaw, Pamela J; Bendotti, Caterina
2013-11-01
Amyotrophic lateral sclerosis is heterogeneous with high variability in the speed of progression even in cases with a defined genetic cause such as superoxide dismutase 1 (SOD1) mutations. We reported that SOD1(G93A) mice on distinct genetic backgrounds (C57 and 129Sv) show consistent phenotypic differences in speed of disease progression and life-span that are not explained by differences in human SOD1 transgene copy number or the burden of mutant SOD1 protein within the nervous system. We aimed to compare the gene expression profiles of motor neurons from these two SOD1(G93A) mouse strains to discover the molecular mechanisms contributing to the distinct phenotypes and to identify factors underlying fast and slow disease progression. Lumbar spinal motor neurons from the two SOD1(G93A) mouse strains were isolated by laser capture microdissection and transcriptome analysis was conducted at four stages of disease. We identified marked differences in the motor neuron transcriptome between the two mice strains at disease onset, with a dramatic reduction of gene expression in the rapidly progressive (129Sv-SOD1(G93A)) compared with the slowly progressing mutant SOD1 mice (C57-SOD1(G93A)) (1276 versus 346; Q-value ≤ 0.01). Gene ontology pathway analysis of the transcriptional profile from 129Sv-SOD1(G93A) mice showed marked downregulation of specific pathways involved in mitochondrial function, as well as predicted deficiencies in protein degradation and axonal transport mechanisms. In contrast, the transcriptional profile from C57-SOD1(G93A) mice with the more benign disease course, revealed strong gene enrichment relating to immune system processes compared with 129Sv-SOD1(G93A) mice. Motor neurons from the more benign mutant strain demonstrated striking complement activation, over-expressing genes normally involved in immune cell function. We validated through immunohistochemistry increased expression of the C3 complement subunit and major histocompatibility complex I within motor neurons. In addition, we demonstrated that motor neurons from the slowly progressing mice activate a series of genes with neuroprotective properties such as angiogenin and the nuclear factor (erythroid-derived 2)-like 2 transcriptional regulator. In contrast, the faster progressing mice show dramatically reduced expression at disease onset of cell pathways involved in neuroprotection. This study highlights a set of key gene and molecular pathway indices of fast or slow disease progression which may prove useful in identifying potential disease modifiers responsible for the heterogeneity of human amyotrophic lateral sclerosis and which may represent valid therapeutic targets for ameliorating the disease course in humans.
Enriquez-Barreto, Lilian; Palazzetti, Cecilia; Brennaman, Leann H.; Maness, Patricia F.; Fairén, Alfonso
2012-01-01
To study the potential role of neural cell adhesion molecule (NCAM) in the development of thalamocortical (TC) axon topography, wild type, and NCAM null mutant mice were analyzed for NCAM expression, projection, and targeting of TC afferents within the somatosensory area of the neocortex. Here we report that NCAM and its α-2,8-linked polysialic acid (PSA) are expressed in developing TC axons during projection to the neocortex. Pathfinding of TC axons in wild type and null mutant mice was mapped using anterograde DiI labeling. At embryonic day E16.5, null mutant mice displayed misguided TC axons in the dorsal telencephalon, but not in the ventral telencephalon, an intermediate target that initially sorts TC axons toward correct neocortical areas. During the early postnatal period, rostrolateral TC axons within the internal capsule along the ventral telencephalon adopted distorted trajectories in the ventral telencephalon and failed to reach the neocortex in NCAM null mutant animals. NCAM null mutants showed abnormal segregation of layer IV barrels in a restricted portion of the somatosensory cortex. As shown by Nissl and cytochrome oxidase staining, barrels of the anterolateral barrel subfield (ALBSF) and the most distal barrels of the posteromedial barrel subfield (PMBSF) did not segregate properly in null mutant mice. These results indicate a novel role for NCAM in axonal pathfinding and topographic sorting of TC axons, which may be important for the function of specific territories of sensory representation in the somatosensory cortex. PMID:22723769
Genetic Rescue of Glycosylation-deficient Fgf23 in the Galnt3 Knockout Mouse
Gray, Amie K.; Padgett, Leah R.; Allen, Matthew R.; Clinkenbeard, Erica L.; Sarpa, Nicole M.; White, Kenneth E.; Econs, Michael J.
2014-01-01
Fibroblast growth factor 23 (FGF23) is a hormone that inhibits renal phosphate reabsorption and 1,25-dihydroxyvitamin D biosynthesis. The FGF23 subtilisin-like proprotein convertase recognition sequence (176RHTR179↓) is protected by O-glycosylation through ppGalNAc-T3 (GALNT3) activity. Thus, inactivating GALNT3 mutations render FGF23 susceptible to proteolysis, thereby reducing circulating intact hormone levels and leading to hyperphosphatemic familial tumoral calcinosis. To further delineate the role of glycosylation in the Fgf23 function, we generated an inducible FGF23 transgenic mouse expressing human mutant FGF23 (R176Q and R179Q) found in patients with autosomal dominant hypophosphatemic rickets (ADHR) and bred this animal to Galnt3 knockout mice, a model of familial tumoral calcinosis. Due to the low intact Fgf23 level, Galnt3 knockout mice with wild-type Fgf23 alleles were hyperphosphatemic. In contrast, carriers of the mutant FGF23 transgene, regardless of Galnt3 mutation status, had significantly higher serum intact FGF23, resulting in severe hypophosphatemia. Importantly, serum phosphorus and FGF23 were comparable between transgenic mice with or without normal Galnt3 alleles. To determine whether the presence of the ADHR mutation could improve biochemical and skeletal abnormalities in Galnt3-null mice, these mice were also mated to Fgf23 knock-in mice, carrying heterozygous or homozygous R176Q ADHR Fgf23 mutations. The knock-in mice with functional Galnt3 had normal Fgf23 but were slightly hypophosphatemic. The stabilized Fgf23 ADHR allele reversed the Galnt3-null phenotype and normalized total Fgf23, serum phosphorus, and bone Fgf23 mRNA. However, the skeletal phenotype was unaffected. In summary, these data demonstrate that O-glycosylation by ppGaINAc-T3 is only necessary for proper secretion of intact Fgf23 and, once secreted, does not affect Fgf23 function. Furthermore, the more stable Fgf23 ADHR mutant protein could normalize serum phosphorus in Galnt3 knockout mice. PMID:25051439
Genetic rescue of glycosylation-deficient Fgf23 in the Galnt3 knockout mouse.
Ichikawa, Shoji; Gray, Amie K; Padgett, Leah R; Allen, Matthew R; Clinkenbeard, Erica L; Sarpa, Nicole M; White, Kenneth E; Econs, Michael J
2014-10-01
Fibroblast growth factor 23 (FGF23) is a hormone that inhibits renal phosphate reabsorption and 1,25-dihydroxyvitamin D biosynthesis. The FGF23 subtilisin-like proprotein convertase recognition sequence ((176)RHTR(179)↓) is protected by O-glycosylation through ppGalNAc-T3 (GALNT3) activity. Thus, inactivating GALNT3 mutations render FGF23 susceptible to proteolysis, thereby reducing circulating intact hormone levels and leading to hyperphosphatemic familial tumoral calcinosis. To further delineate the role of glycosylation in the Fgf23 function, we generated an inducible FGF23 transgenic mouse expressing human mutant FGF23 (R176Q and R179Q) found in patients with autosomal dominant hypophosphatemic rickets (ADHR) and bred this animal to Galnt3 knockout mice, a model of familial tumoral calcinosis. Due to the low intact Fgf23 level, Galnt3 knockout mice with wild-type Fgf23 alleles were hyperphosphatemic. In contrast, carriers of the mutant FGF23 transgene, regardless of Galnt3 mutation status, had significantly higher serum intact FGF23, resulting in severe hypophosphatemia. Importantly, serum phosphorus and FGF23 were comparable between transgenic mice with or without normal Galnt3 alleles. To determine whether the presence of the ADHR mutation could improve biochemical and skeletal abnormalities in Galnt3-null mice, these mice were also mated to Fgf23 knock-in mice, carrying heterozygous or homozygous R176Q ADHR Fgf23 mutations. The knock-in mice with functional Galnt3 had normal Fgf23 but were slightly hypophosphatemic. The stabilized Fgf23 ADHR allele reversed the Galnt3-null phenotype and normalized total Fgf23, serum phosphorus, and bone Fgf23 mRNA. However, the skeletal phenotype was unaffected. In summary, these data demonstrate that O-glycosylation by ppGaINAc-T3 is only necessary for proper secretion of intact Fgf23 and, once secreted, does not affect Fgf23 function. Furthermore, the more stable Fgf23 ADHR mutant protein could normalize serum phosphorus in Galnt3 knockout mice.
The Hajdu Cheney Mutation Is a Determinant of B-Cell Allocation of the Splenic Marginal Zone.
Yu, Jungeun; Zanotti, Stefano; Walia, Bhavita; Jellison, Evan; Sanjay, Archana; Canalis, Ernesto
2018-01-01
The neurogenic locus notch homolog protein (Notch)-2 receptor is a determinant of B-cell allocation, and gain-of-NOTCH2-function mutations are associated with Hajdu-Cheney syndrome (HCS), a disease presenting with osteoporosis and acro-osteolysis. We generated a mouse model reproducing the HCS mutation (Notch2HCS), and heterozygous global mutant mice displayed gain-of-Notch2 function. In the mutant spleen, the characteristic perifollicular rim marking the marginal zone (MZ), which is the interface between the nonlymphoid red pulp and the lymphoid white pulp, merged with components of the white pulp. As a consequence, the MZ of Notch2HCS mice occupied most of the splenic structure. To explore the mechanisms involved, lymphocyte populations from the bone marrow and spleen were harvested from heterozygous Notch2HCS mice and sex-matched control littermates and analyzed by flow cytometry. Notch2HCS mice had an increase in CD21/35 high CD23 - splenic MZ B cells of approximately fivefold and a proportional decrease in splenic follicular B cells (CD21/35 int CD23 + ) at 1, 2, and 12 months of age. Western blot analysis revealed that Notch2HCS mutant splenocytes had increased phospho-Akt and phospho-Jun N-terminal kinase, and gene expression analysis of splenic CD19 + B cells demonstrated induction of Hes1 and Hes5 in Notch2HCS mutants. Anti-Notch2 antibodies decreased MZ B cells in control and Notch2HCS mice. In conclusion, Notch2HCS mutant mice have increased mature B cells in the MZ of the spleen. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Kacena, Melissa A.; Gundberg, Caren M.; Kacena, William J.; Landis, William J.; Boskey, Adele L.; Bouxsein, Mary L.; Horowitz, Mark C.
2014-01-01
Mice deficient in GATA-1 or NF-E2, transcription factors required for normal megakaryocyte (MK) development, have increased numbers of MKs, reduced numbers of platelets, and a striking high bone mass phenotype. Here, we show the bone geometry, microarchitecture, biomechanical, biochemical, and mineral properties from these mutant mice. We found that the outer geometry of the mutant bones was similar to controls, but that both mutants had a striking increase in total bone area (up to a 35% increase) and trabecular bone area (up to a 19% increase). Interestingly, only the NF-E2 deficient mice had a significant increase in cortical bone area (21%) and cortical thickness (27%), which is consistent with the increase in bone mineral density (BMD) seen only in the NF-E2 deficient femurs. Both mutant femurs exhibited significant increases in several biomechanical properties including peak load (up to a 32% increase) and stiffness (up to a 13% increase). Importantly, the data also demonstrate differences between the two mutant mice. GATA-1 deficient femurs break in a ductile manner, whereas NF-E2 deficient femurs are brittle in nature. To better understand these differences, we examined the mineral properties of these bones. Although none of the parameters measured were different between the NF-E2 deficient and control mice, an increase in calcium (21%) and an increase in the mineral/matrix ratio (32%) was observed in GATA-1 deficient mice. These findings appear to contradict biomechanical findings, suggesting the need for further research into the mechanisms by which GATA-1 and NF-E2 deficiency alter the material properties of bone. PMID:23359245
Guo, Xiaochuan; Hamilton, Peter J; Reish, Nicholas J; Sweatt, J David; Miller, Courtney A; Rumbaugh, Gavin
2009-06-01
Abnormal function of NMDA receptors is believed to be a contributing factor to the pathophysiology of schizophrenia. NMDAR subunits and postsynaptic-interacting proteins of these channels are abnormally expressed in some patients with this illness. In mice, reduced NMDAR expression leads to behaviors analogous to symptoms of schizophrenia, but reports of animals with mutations in core postsynaptic density proteins having similar a phenotype have yet to be reported. Here we show that reduced expression of the neuronal RasGAP and NMDAR-associated protein, SynGAP, results in abnormal behaviors strikingly similar to that reported in mice with reduced NMDAR function. SynGAP mutant mice exhibited nonhabituating and persistent hyperactivity that was ameliorated by the antipsychotic clozapine. An NMDAR antagonist, MK-801, induced hyperactivity in normal mice but SynGAP mutants were less responsive, suggesting that NMDAR hypofunction contributes to this behavioral abnormality. SynGAP mutants exhibited enhanced startle reactivity and impaired sensory-motor gating. These mice also displayed a complete lack of social memory and a propensity toward social isolation. Finally, SynGAP mutants had deficits in cued fear conditioning and working memory, indicating abnormal function of circuits that control emotion and choice. Our results demonstrate that SynGAP mutant mice have gross neurological deficits similar to other mouse models of schizophrenia. Because SynGAP interacts with NMDARs, and the signaling activity of this protein is regulated by these channels, our data in dicate that SynGAP lies downstream of NMDARs and is a required intermediate for normal neural circuit function and behavior. Taken together, these data support the idea that schizophrenia may arise from abnormal signaling pathways that are mediated by NMDA receptors.
Minamisawa, S; Gu, Y; Ross, J; Chien, K R; Chen, J
1999-04-09
Our previous study of homozygous mutants of the ventricular specific isoform of myosin light chain 2 (mlc-2v) demonstrated that mlc-2v plays an essential role in murine heart development (Chen, J., Kubalak, S. W., Minamisawa, S., Price, R. L., Becker, K. D., Hickey, R., Ross, J., Jr., and Chien, K. R. (1998) J. Biol. Chem. 273, 1252-1256). As gene dosage of some myofibrillar proteins can affect muscle function, we have analyzed heterozygous mutants in depth. Ventricles of heterozygous mutants displayed a 50% reduction in mlc-2v mRNA, yet expressed normal levels of protein both under basal conditions and following induction of cardiac hypertrophy by aortic constriction. Heterozygous mutants exhibited cardiac function comparable to that of wild-type littermate controls both prior to and following aortic constriction. There were no significant differences in contractility and responses to calcium between wild-type and heterozygous unloaded cardiomyocytes. We conclude that heterozygous mutants show neither a molecular nor a physiological cardiac phenotype either at base line or following hypertrophic stimuli. These results suggest that post-transcriptional compensatory mechanisms play a major role in maintaining the level of MLC-2v protein in murine hearts. In addition, as our mlc-2v knockout mutants were created by a knock-in of Cre recombinase into the endogenous mlc-2v locus, this study demonstrates that heterozygous mlc-2v cre knock-in mice are appropriate for ventricular specific gene targeting.
Johnson, James R; Clabots, Connie; Rosen, Henry
2006-01-01
To survive within the host urinary tract, Escherichia coli strains that cause urinary tract infection (UTI) presumably must overcome powerful oxidant stresses, including the oxygen-dependent killing mechanisms of neutrophils. Accordingly, we assessed the global oxygen stress regulator OxyR of Escherichia coli as a possible virulence factor in UTI by determining the impact of oxyR inactivation on experimental urovirulence in CBA/J and C57BL (both wild-type and p47(phox-/-)) mice. The oxyR and oxyS genes of wild-type E. coli strain Ec1a (O1:K1:H7) were replaced with a kanamycin resistance cassette to produce an oxyRS mutant. During in vitro growth in broth or human urine, the oxyRS mutant exhibited the same log-phase growth rate (broth) and plateau density (broth and urine) as Ec1a, despite its prolonged lag phase (broth) or initial decrease in concentration (urine). The mutant, and oxyRS mutants of other wild-type ExPEC strains, exhibited significantly increased in vitro susceptibility to inhibition by H(2)O(2), which, like the altered growth kinetics observed with oxyRS inactivation, were reversed by restoration of oxyR on a multiple-copy-number plasmid. In CBA/J mice, Ec1a significantly outcompeted its oxyRS mutant (by >1 log(10)) in urine, bladder, and kidney cultures harvested 48 h after perurethral inoculation of mice, whereas an oxyR-complemented mutant exhibited equal or greater colonizing ability than that of the parent. Although C57BL mice were less susceptible to experimental UTI than CBA/J mice, wild-type and p47(phox-/-) C57BL mice were similarly susceptible, and the oxyR mutant of Ec1a was similarly attenuated in C57BL mice, regardless of the p47(phox) genotype, as in CBA/J mice. Within the E. coli Reference collection, 94% of strains were positive for oxyR. These findings fulfill the second and third of Koch's molecular postulates for oxyR as a candidate virulence-facilitating factor in E. coli and indicate that oxyR is a broadly prevalent potential target for future preventive interventions against UTI due to E. coli. They also suggest that neutrophil phagocyte oxidase is not critical for defense against E. coli UTI and that the major oxidative stresses against which OxyR protects E. coli within the host milieu are not phagocyte derived.
The effect of mutation on Rhodococcus equi virulence plasmid gene expression and mouse virulence.
Ren, Jun; Prescott, John F
2004-11-15
An 81 kb virulence plasmid containing a pathogenicity island (PI) plays a crucial role in the pathogenesis of Rhodococcus equi pneumonia in foals but its specific function in virulence and regulation of plasmid-encoded virulence genes is unclear. Using a LacZ selection marker developed for R. equi in this study, in combination with an apramycin resistance gene, an efficient two-stage homologous recombination targeted gene mutation procedure was used to mutate three virulence plasmid genes, a LysR regulatory gene homologue (ORF4), a ResD-like two-component response regulator homologue (ORF8), and a gene (ORF10) of unknown function that is highly expressed by R. equi inside macrophages, as well as the chromosomal gene operon, phoPR. Virulence testing by liver clearance after intravenous injection in mice showed that the ORF4 and ORF8 mutants were fully attenuated, that the phoPR mutant was hypervirulent, and that virulence of the ORF10 mutant remained unchanged. A virulence plasmid DNA microarray was used to compare the plasmid gene expression profile of each of the four gene-targeted mutants against the parental R. equi strain. Changes were limited to PI genes and gene induction was observed for all mutants, suggesting that expression of virulence plasmid genes is dominated by a negative regulatory network. The finding of attenuation of ORF4 and ORF8 mutants despite enhanced transcription of vapA suggests that factors other than VapA are important for full expression of virulence. ORF1, a putative Lsr antigen gene, was strongly and similarly induced in all mutants, implying a common regulatory pathway affecting this gene for all four mutated genes. ORF8 is apparently the centre of this common pathway. Two distinct highly correlated gene induction patterns were observed, that of the ORF4 and ORF8 mutants, and that of the ORF10 and phoPR mutants. The gene induction pattern distinguishing these two groups paralleled their virulence in mice.
HoxB2 binds mutant SOD1 and is altered in transgenic model of ALS.
Zhai, Jinbin; Lin, Hong; Canete-Soler, Rafaela; Schlaepfer, William W
2005-09-15
Mutations in Cu/Zn superoxide dismutase (SOD1) cause approximately 20% of familial amyotrophic lateral sclerosis by a toxic gain of function; however, the precise mechanisms remain unclear. Here, we report the identification of HoxB2, a homeodomain-containing transcription factor, as a G93A mutant SOD1 interactive protein in a yeast two-hybrid screen. We show that HoxB2 co-precipitates and co-localizes with mutant SOD1 in neuronal cell lines, as well as in brain and spinal cord of G93A mutant SOD1 transgenic mice. Mutagenesis further shows that this interaction is mediated by the central homeodomain of HoxB2. In motor neuron-like NSC-34 cells, overexpression of HoxB2 or its homeodomain decreases the insolubility of mutant SOD1 and inhibits G93A or G86R mutant SOD1-induced neuronal cell death. In human and mouse tissues, we show that expression of HoxB2 persists in adult spinal cord and is primarily localized in nuclei of motor neurons. In G93A transgenic mice, HoxB2 co-localizes with mutant SOD1 and is redistributed to perikarya and proximal neurites of motor neurons. In addition, there is progressive accumulation of HoxB2 and mutant SOD1 as punctate inclusions in the neuropil surrounding motor neurons. Taken together, our findings demonstrate that interaction of HoxB2 with mutant SOD1 occurs in motor neurons of G93A mutant SOD1 transgenic mice and suggest that this interaction may modulate the neurotoxicity of mutant SOD1.
JIP1-Mediated JNK Activation Negatively Regulates Synaptic Plasticity and Spatial Memory.
Morel, Caroline; Sherrin, Tessi; Kennedy, Norman J; Forest, Kelly H; Avcioglu Barutcu, Seda; Robles, Michael; Carpenter-Hyland, Ezekiel; Alfulaij, Naghum; Standen, Claire L; Nichols, Robert A; Benveniste, Morris; Davis, Roger J; Todorovic, Cedomir
2018-04-11
The c-Jun N-terminal kinase (JNK) signal transduction pathway is implicated in learning and memory. Here, we examined the role of JNK activation mediated by the JNK-interacting protein 1 (JIP1) scaffold protein. We compared male wild-type mice with a mouse model harboring a point mutation in the Jip1 gene that selectively blocks JIP1-mediated JNK activation. These male mutant mice exhibited increased NMDAR currents, increased NMDAR-mediated gene expression, and a lower threshold for induction of hippocampal long-term potentiation. The JIP1 mutant mice also displayed improved hippocampus-dependent spatial memory and enhanced associative fear conditioning. These results were confirmed using a second JIP1 mutant mouse model that suppresses JNK activity. Together, these observations establish that JIP1-mediated JNK activation contributes to the regulation of hippocampus-dependent, NMDAR-mediated synaptic plasticity and learning. SIGNIFICANCE STATEMENT The results of this study demonstrate that c-Jun N-terminal kinase (JNK) activation induced by the JNK-interacting protein 1 (JIP1) scaffold protein negatively regulates the threshold for induction of long-term synaptic plasticity through the NMDA-type glutamate receptor. This change in plasticity threshold influences learning. Indeed, mice with defects in JIP1-mediated JNK activation display enhanced memory in hippocampus-dependent tasks, such as contextual fear conditioning and Morris water maze, indicating that JIP1-JNK constrains spatial memory. This study identifies JIP1-mediated JNK activation as a novel molecular pathway that negatively regulates NMDAR-dependent synaptic plasticity and memory. Copyright © 2018 the authors 0270-6474/18/383708-21$15.00/0.
Dubroqua, Sylvain; Boison, Detlev; Feldon, Joram; Möhler, Hanns; Yee, Benjamin K.
2011-01-01
Behavioural characterisation of transgenic mice has been instrumental in search of therapeutic targets for the modulation of cognitive function. However, little effort has been devoted to phenotypic characterisation across environmental conditions and genomic differences such as sex and strain, which is essential to translational research. The present study is an effort in this direction. It scrutinised the stability and robustness of the phenotype of enhanced Pavlovian conditioning reported in mice with forebrain neuronal deletion of glycine transporter 1 by evaluating the possible presence of sex and circadian dependency, and its consistency across aversive and appetitive conditioning paradigms. The Pavlovian phenotype was essentially unaffected by the time of testing between the two circadian phases, but it was modified by sex in both conditioning paradigms. We observed that the effect size of the phenotype was strongest in female mice tested during the dark phase in the aversive paradigm. Critically, the presence of the phenotype in female mutants was accompanied by an increase in resistance to extinction. Similarly, enhanced conditioned responding once again emerged solely in female mutants in the appetitive conditioning experiment, which was again associated with an increased resistance to extinction across days, but male mutants exhibited an opposite trend towards facilitation of extinction. The present study has thus added hitherto unknown qualifications and specifications of a previously reported memory enhancing phenotype in this mouse line by identifying the determinants of the magnitude and direction of the expressed phenotype. This in-depth comparative approach is of value to the interpretation of behavioural findings in general. PMID:21596148
Independent roles of the priming and the triggering of the NLRP3 inflammasome in the heart.
Toldo, Stefano; Mezzaroma, Eleonora; McGeough, Matthew D; Peña, Carla A; Marchetti, Carlo; Sonnino, Chiara; Van Tassell, Benjamin W; Salloum, Fadi N; Voelkel, Norbert F; Hoffman, Hal M; Abbate, Antonio
2015-02-01
The NLRP3 inflammasome is activated in the ischaemic heart promoting caspase-1 activation, inflammation, and cell death. Ischaemic injury establishes both a priming signal (transcription of inflammasome components) and a trigger (NLRP3 activation). Whether NLRP3 activation, without priming, induces cardiac dysfunction and/or failure is unknown. The aim of this study was to assess the independent and complementary roles of the priming and the triggering signals in the heart, in the absence of ischaemia or myocardial injury. We used mice with mutant NLRP3 (constitutively active), NLRP3-A350V, under the control of tamoxifen-driven expression of the Cre recombinase (Nlrp3-A350V/CreT mice). The mice were treated for 10 days with tamoxifen before measuring the activity of caspase-1, the effector enzyme in the inflammasome. Tamoxifen treatment induced the inflammasome in the spleen but not in the heart, despite expression of the mutant NLRP3-A350V. The components of the inflammasome were significantly less expressed in the heart compared with the spleen. Subclinical low-dose lipopolysaccharide (LPS; 2 mg/kg) in Nlrp3-A350V/CreT mice induced the expression of the components of the inflammasome (priming), measured using real-time PCR and western blot, leading to the formation of an active inflammasome (caspase-1 activation) in the heart and LV systolic dysfunction while low-dose LPS was insufficient to induce LV systolic dysfunction in wild-type mice (all P < 0.01 for mutant vs. wild-type mice). The signalling pathway governing the inflammasome formation in the heart requires a priming signal in order for an active NLRP3 to induce caspase-1 activation and LV dysfunction. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.
Park, Steven I.; Shenoi, Jaideep; Frayo, Shani M.; Hamlin, Donald K.; Lin, Yukang; Wilbur, D. Scott; Stayton, Patrick S.; Orgun, Nural; Hylarides, Mark; Buchegger, Franz; Kenoyer, Aimee L.; Axtman, Amanda; Gopal, Ajay K.; Green, Damian J.; Pagel, John M.; Press, Oliver W.
2011-01-01
Purpose Pretargeted radioimmunotherapy (PRIT) using streptavidin (SAv)-biotin technology can deliver higher therapeutic doses of radioactivity to tumors than conventional RIT. However, “endogenous” biotin can interfere with the effectiveness of this approach by blocking binding of radiolabeled biotin to SAv. We engineered a series of SAv FPs that down-modulate the affinity of SAv for biotin, while retaining high avidity for divalent DOTA-bis-biotin to circumvent this problem. Experimental Design The single-chain variable region gene of the murine 1F5 anti-CD20 antibody was fused to the wild-type (WT) SAv gene and to mutant SAv genes, Y43A-SAv and S45A-SAv. FPs were expressed, purified and compared in studies using athymic mice bearing Ramos lymphoma xenografts. Results Biodistribution studies demonstrated delivery of more radioactivity to tumors of mice pretargeted with mutant SAv FPs followed by 111In-DOTA-bis-biotin (6.2 ± 1.7 % of the injected dose per gram [%ID/gm] of tumor 24 hours after Y43A-SAv FP and 5.6 ± 2.2 %ID/g with S45A-SAv FP) than in mice on normal diets pretargeted with WT-SAv FP (2.5 ± 1.6 %ID/g; p = 0.01). These superior biodistributions translated into superior anti-tumor efficacy in mice treated with mutant FPs and 90Y-DOTA-bis-biotin (tumor volumes after 11 days: 237 ± 66 mm3 with Y43A-SAv, 543 ± 320 mm3 with S45A-SAv, 1129 ± 322 mm3 with WT-SAv and 1435 ± 212 mm3 with control FP [p < 0.0001]). Conclusions Genetically engineered mutant-SAv FPs and bis-biotin reagents provide an attractive alternative to current SAv-biotin PRIT methods in settings where endogenous biotin levels are high. PMID:21976541
Park, Steven I; Shenoi, Jaideep; Frayo, Shani M; Hamlin, Donald K; Lin, Yukang; Wilbur, D Scott; Stayton, Patrick S; Orgun, Nural; Hylarides, Mark; Buchegger, Franz; Kenoyer, Aimee L; Axtman, Amanda; Gopal, Ajay K; Green, Damian J; Pagel, John M; Press, Oliver W
2011-12-01
Pretargeted radioimmunotherapy (PRIT) using streptavidin (SAv)-biotin technology can deliver higher therapeutic doses of radioactivity to tumors than conventional RIT. However, "endogenous" biotin can interfere with the effectiveness of this approach by blocking binding of radiolabeled biotin to SAv. We engineered a series of SAv FPs that downmodulate the affinity of SAv for biotin, while retaining high avidity for divalent DOTA-bis-biotin to circumvent this problem. The single-chain variable region gene of the murine 1F5 anti-CD20 antibody was fused to the wild-type (WT) SAv gene and to mutant SAv genes, Y43A-SAv and S45A-SAv. FPs were expressed, purified, and compared in studies using athymic mice bearing Ramos lymphoma xenografts. Biodistribution studies showed delivery of more radioactivity to tumors of mice pretargeted with mutant SAv FPs followed by (111)In-DOTA-bis-biotin [6.2 ± 1.7% of the injected dose per gram (%ID/gm) of tumor 24 hours after Y43A-SAv FP and 5.6 ± 2.2%ID/g with S45A-SAv FP] than in mice on normal diets pretargeted with WT-SAv FP (2.5 ± 1.6%ID/g; P = 0.01). These superior biodistributions translated into superior antitumor efficacy in mice treated with mutant FPs and (90)Y-DOTA-bis-biotin [tumor volumes after 11 days: 237 ± 66 mm(3) with Y43A-SAv, 543 ± 320 mm(3) with S45A-SAv, 1129 ± 322 mm(3) with WT-SAv, and 1435 ± 212 mm(3) with control FP (P < 0.0001)]. Genetically engineered mutant-SAv FPs and bis-biotin reagents provide an attractive alternative to current SAv-biotin PRIT methods in settings where endogenous biotin levels are high. ©2011 AACR.
Ohta, Yoichi; Okabe, Takahiro; Larmour, Colleen; Di Rocco, Agnese; Maijenburg, Marijke W; Phillips, Amanda; Speck, Nancy A; Wakitani, Shigeyuki; Nakamura, Takashi; Yamada, Yoshihiko; Enomoto-Iwamoto, Motomi; Pacifici, Maurizio; Iwamoto, Masahiro
2015-10-01
To determine whether and how the transcription factor Erg participates in the genesis, establishment, and maintenance of articular cartilage. Floxed Erg mice were mated with Gdf5-Cre mice to generate conditional mutants lacking Erg in their joints. Joints of mutant and control mice were subjected to morphologic and molecular characterization and also to experimental surgically induced osteoarthritis (OA). Gene expression, promoter reporter assays, and gain- and loss-of-function in vitro tests were used to characterize molecular mechanisms of Erg action. Conditional Erg ablation did not elicit obvious changes in limb joint development and overall phenotype in juvenile mice. However, as mice aged, joints of mutant mice degenerated spontaneously and exhibited clear OA-like phenotypic defects. Joints in juvenile mutant mice were more sensitive to surgically induced OA and became defective sooner than operated joints in control mice. Global gene expression data and other studies identified parathyroid hormone-related protein (PTHrP) and lubricin as possible downstream effectors and mediators of Erg action in articular chondrocytes. Reporter assays using control and mutated promoter-enhancer constructs indicated that Erg acted on Ets DNA binding sites to stimulate PTHrP expression. Erg was up-regulated in severely affected areas in human OA articular cartilage but remained barely appreciable in areas of less affected cartilage. The study shows for the first time that Erg is a critical molecular regulator of the endurance of articular cartilage during postnatal life and that Erg can mitigate spontaneous and experimental OA. Erg appears to do this through regulating expression of PTHrP and lubricin, factors known for their protective roles in joints. © 2015, American College of Rheumatology.
Period 2 gene deletion abolishes β-endorphin neuronal response to ethanol
Agapito, Maria; Mian, Nadia; Boyadjieva, Nadka I.; Sarkar, Dipak K.
2010-01-01
Background Ethanol exposure during early life has been shown to permanently alter the circadian expression of clock regulatory genes and the β-endorphin precursor proopiomelanocortin (POMC) gene in the hypothalamus. Ethanol also alters the stress- and immune-regulatory functions of β-endorphin neurons in laboratory rodents. Our aim was to determine whether the circadian clock regulatory Per2 gene modulates the action of ethanol on β-endorphin neurons in mice. Methods Per2 mutant (mPer2Brdml) and wild type (C57BL/6J) mice were used to determine the effect of Per2 mutation on ethanol-regulated β-endorphin neuronal activity during neonatal period using an in vitro mediobasal hypothalamic (MBH) cell culture model and an in vivo milk formula feeding animal model. The β-endorphin neuronal activity following acute and chronic ethanol treatments, was evaluated by measuring the peptide released from cultured cells or peptide levels in the MBH tissues, using enzyme-linked immunosorbent assay (ELISA). Results Per2 mutant mice showed a higher basal level of β-endorphin release from cultured MBH cells and a moderate increase in the peptide content in the MBH in comparison to control mice. However, unlike wild type mice, Per2 mutant mice showed no stimulatory or inhibitory β-endorphin secretory responses to acute and chronic ethanol challenges in vitro. Furthermore, Per2 mutant mice, but not wild type mice, failed to show the stimulatory and inhibitory responses of MBH β-endorphin levels to acute and chronic ethanol challenges in vivo. Conclusions These results suggest for the first time that the Per2 gene may be critically involved in regulating β-endorphin neuronal function. Furthermore, the data revealed an involvement of the Per2 gene in regulating β-endorphin neuronal responses to ethanol. PMID:20586752
Activation of dopamine D3 receptors inhibits reward-related learning induced by cocaine.
Kong, H; Kuang, W; Li, S; Xu, M
2011-03-10
Memories of learned associations between the rewarding properties of drugs and environmental cues contribute to craving and relapse in humans. The mesocorticolimbic dopamine (DA) system is involved in reward-related learning induced by drugs of abuse. DA D3 receptors are preferentially expressed in mesocorticolimbic DA projection areas. Genetic and pharmacological studies have shown that DA D3 receptors suppress locomotor-stimulant effects of cocaine and reinstatement of cocaine-seeking behaviors. Activation of the extracellular signal-regulated kinase (ERK) induced by acute cocaine administration is also inhibited by D3 receptors. How D3 receptors modulate cocaine-induced reward-related learning and associated changes in cell signaling in reward circuits in the brain, however, have not been fully investigated. In the present study, we show that D3 receptor mutant mice exhibit potentiated acquisition of conditioned place preference (CPP) at low doses of cocaine compared to wild-type mice. Activation of ERK and CaMKIIα, but not the c-Jun N-terminal kinase and p38, in the nucleus accumbens, amygdala and prefrontal cortex is also potentiated in D3 receptor mutant mice compared to that in wild-type mice following CPP expression. These results support a model in which D3 receptors modulate reward-related learning induced by low doses of cocaine by inhibiting activation of ERK and CaMKIIα in reward circuits in the brain. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Jiao, Yang; Ye, Diana Z.; Li, Zhaoyu; Teta-Bissett, Monica; Peng, Yong; Taub, Rebecca; Greenbaum, Linda E.
2014-01-01
Protein tyrosine phosphatase of liver regeneration-1 (Prl-1) is an immediate-early gene that is significantly induced during liver regeneration. Several in vitro studies have suggested that Prl-1 is important for the regulation of cell cycle progression. To evaluate its function in liver regeneration, we ablated the Prl-1 gene specifically in mouse hepatocytes using the Cre-loxP system. Prl-1 mutant mice (Prl-1loxP/loxP;AlfpCre) appeared normal and fertile. Liver size and metabolic function in Prl-1 mutants were comparable to controls, indicating that Prl-1 is dispensable for liver development, postnatal growth, and hepatocyte differentiation. Mutant mice demonstrated a delay in DNA synthesis after 70% partial hepatectomy, although ultimate liver mass restoration was not affected. At 40 h posthepatectomy, reduced protein levels of the cell cycle regulators cyclin E, cyclin A2, cyclin B1, and cyclin-dependent kinase 1 were observed in Prl-1 mutant liver. Investigation of the major signaling pathways involved in liver regeneration demonstrated that phosphorylation of protein kinase B (AKT) and signal transducer and activator of transcription (STAT) 3 were significantly reduced at 40 h posthepatectomy in Prl-1 mutants. Taken together, this study provides evidence that Prl-1 is required for proper timing of liver regeneration after partial hepatectomy. Prl-1 promotes G1/S progression via modulating expression of several cell cycle regulators through activation of the AKT and STAT3 signaling pathway. PMID:25377314
Baldo, Barbara; Soylu, Rana; Petersén, Asa
2013-01-01
Huntington's disease (HD) is a fatal neurodegenerative disorder caused by an expanded polyglutamine repeat in the huntingtin protein. Neuropathology in the basal ganglia and in the cerebral cortex has been linked to the motor and cognitive symptoms whereas recent work has suggested that the hypothalamus might be involved in the metabolic dysfunction. Several mouse models of HD that display metabolic dysfunction have hypothalamic pathology, and expression of mutant huntingtin in the hypothalamus has been causally linked to the development of metabolic dysfunction in mice. Although the pathogenic mechanisms by which mutant huntingtin exerts its toxic functions in the HD brain are not fully known, several studies have implicated a role for the lysososomal degradation pathway of autophagy. Interestingly, changes in autophagy in the hypothalamus have been associated with the development of metabolic dysfunction in wild-type mice. We hypothesized that expression of mutant huntingtin might lead to changes in the autophagy pathway in the hypothalamus in mice with metabolic dysfunction. We therefore investigated whether there were changes in basal levels of autophagy in a mouse model expressing a fragment of 853 amino acids of mutant huntingtin selectively in the hypothalamus using a recombinant adeno-associate viral vector approach as well as in the transgenic BACHD mice. We performed qRT-PCR and Western blot to investigate the mRNA and protein expression levels of selected autophagy markers. Our results show that basal levels of autophagy are maintained in the hypothalamus despite the presence of metabolic dysfunction in both mouse models. Furthermore, although there were no major changes in autophagy in the striatum and cortex of BACHD mice, we detected modest, but significant differences in levels of some markers in mice at 12 months of age. Taken together, our results indicate that overexpression of mutant huntingtin in mice do not significantly perturb basal levels of autophagy.
Interferon β induces clearance of mutant ataxin 7 and improves locomotion in SCA7 knock-in mice.
Chort, Alice; Alves, Sandro; Marinello, Martina; Dufresnois, Béatrice; Dornbierer, Jean-Gabriel; Tesson, Christelle; Latouche, Morwena; Baker, Darren P; Barkats, Martine; El Hachimi, Khalid H; Ruberg, Merle; Janer, Alexandre; Stevanin, Giovanni; Brice, Alexis; Sittler, Annie
2013-06-01
We showed previously, in a cell model of spinocerebellar ataxia 7, that interferon beta induces the expression of PML protein and the formation of PML protein nuclear bodies that degrade mutant ataxin 7, suggesting that the cytokine, used to treat multiple sclerosis, might have therapeutic value in spinocerebellar ataxia 7. We now show that interferon beta also induces PML-dependent clearance of ataxin 7 in a preclinical model, SCA7(266Q/5Q) knock-in mice, and improves motor function. Interestingly, the presence of mutant ataxin 7 in the mice induces itself the expression of endogenous interferon beta and its receptor. Immunohistological studies in brains from two patients with spinocerebellar ataxia 7 confirmed that these modifications are also caused by the disease in humans. Interferon beta, administered intraperitoneally three times a week in the knock-in mice, was internalized with its receptor in Purkinje and other cells and translocated to the nucleus. The treatment induced PML protein expression and the formation of PML protein nuclear bodies and decreased mutant ataxin 7 in neuronal intranuclear inclusions, the hallmark of the disease. No reactive gliosis or other signs of toxicity were observed in the brain or internal organs. The performance of the SCA7(266Q/5Q) knock-in mice was significantly improved on two behavioural tests sensitive to cerebellar function: the Locotronic® Test of locomotor function and the Beam Walking Test of balance, motor coordination and fine movements, which are affected in patients with spinocerebellar ataxia 7. In addition to motor dysfunction, SCA7(266Q/5Q) mice present abnormalities in the retina as in patients: ataxin 7-positive neuronal intranuclear inclusions that were reduced by interferon beta treatment. Finally, since neuronal death does not occur in the cerebellum of SCA7(266Q/5Q) mice, we showed in primary cell cultures expressing mutant ataxin 7 that interferon beta treatment improves Purkinje cell survival.
Young, Nicholas A; Sharma, Rahul; Friedman, Alexandra K; Kaffenberger, Benjamin H; Bolon, Brad; Jarjour, Wael N
2013-12-01
Myositis is associated with muscle-targeted inflammation and is observed in some Treg cell-deficient mouse models. Because an autoimmune pathogenesis has been strongly implicated, the aim of this study was to investigate the hypothesis that abnormal exposure to muscle antigens, as observed in muscle injury, can induce autoimmune-mediated myositis in susceptible hosts. FoxP3 mutant (scurfy) mice were mated to synaptotagmin VII (Syt VII) mutant mice, which resulted in a new mouse strain that combines impaired membrane resealing with Treg cell deficiency. Lymphocyte preparations from double-mutant mice were adoptively transferred intraperitoneally, with or without purified Treg cells, into recombination-activating gene 1 (RAG-1)-null recipients. Lymph node cells from mice with the FoxP3 mutation were transferred into RAG-1-null mice either 1) intraperitoneally in conjunction with muscle homogenate or purified myosin protein or 2) intramuscularly with or without cotransfer of purified Treg cells. FoxP3-deficient mouse lymph node cells transferred in conjunction with myosin protein or muscle homogenate induced robust skeletal muscle inflammation. The infiltrates consisted predominantly of CD4+ and CD8+ T cells, a limited number of macrophages, and no B cells. Significant inflammation was also seen in similar experiments using lymph node cells from FoxP3/Syt VII double-mutant mice but was absent in experiments using adoptive transfer of FoxP3 mutant mouse cells alone. The cotransfer of Treg cells completely suppressed myositis. These data, derived from a new, reproducible model, demonstrate the critical roles of Treg cell deficiency and aberrant muscle antigen exposure in the priming of autoreactive cells to induce myositis. This mouse system has multifaceted potential for examining the interplay in vivo between tissue injury and autoimmunity. © 2013 The Authors. Arthritis & Rheumatism is published by Wiley Periodicals, Inc. on behalf of the American College of Rheumatology.
Berggren, Kiersten; Agrawal, Sonal; Fox, Julia A; Hildenbrand, Justin; Nelson, Ryan; Bush, Ashley I; Fox, Jonathan H
2017-01-01
Huntington's disease (HD) is an autosomal dominant disorder caused by a CAG expansion in the huntingtin gene that results in expression of mutant huntingtin protein. Iron accumulates in HD brain neurons. Amyloid precursor protein (APP) promotes neuronal iron export. However, the role of APP in brain iron accumulation in HD is unclear. To determine the effects of APP insufficiency on HD in YAC128 mice. We crossed APP hemizygous mice (APP+/-) with YAC128 mice that are transgenic (Tg) for human mutant huntingtin (hmHTT) to generate APP+/+ hmHTT-/-, APP+/- hmHTT-/-, APP+/+ hmHTT+/- and APP+/- hmHTT+/- progeny. Mice were evaluated for behavioral, biochemical and neuropathology HD outcomes at 2-12 months of age. APP heterozygosity decreased cortical APP 25% and 60% in non-Tg and Tg mice, respectively. Cerebral and striatal iron levels were increased by APP knockdown in Tg mice only. Nest-building behavior was decreased in Tg mice; APP knockdown decreased nest building in non-Tg but not Tg mice. Rota-rod endurance was decreased in Tg mice. APP+/- hHTT+/- mice demonstrated additional decreases in rota-rod endurance from 4-10 months of age. Tg mice had smaller striatal volumes and fewer striatal neurons but were not affected by APP knockdown. APP heterozygosity results in greater decreases of cortical APP in Tg versus non-Tg mice. Mutant huntingtin transgenic mice develop brain iron accumulation as a result of greater suppression of APP levels. Elevated brain iron in Tg mice was associated with a decline in motor endurance consistent with a disease promoting effect of iron in the YAC128 model of human HD.
Flower-deficient mice have reduced susceptibility to skin papilloma formation
Petrova, Evgeniya; López-Gay, Jesús M.; Rhiner, Christa; Moreno, Eduardo
2012-01-01
SUMMARY Skin papillomas arise as a result of clonal expansion of mutant cells. It has been proposed that the expansion of pretumoral cell clones is propelled not only by the increased proliferation capacity of mutant cells, but also by active cell selection. Previous studies in Drosophila describe a clonal selection process mediated by the Flower (Fwe) protein, whereby cells that express certain Fwe isoforms are recognized and forced to undergo apoptosis. It was further shown that knock down of fwe expression in Drosophila can prevent the clonal expansion of dMyc-overexpressing pretumoral cells. Here, we study the function of the single predicted mouse homolog of Drosophila Fwe, referred to as mFwe, by clonal overexpression of mFwe isoforms in Drosophila and by analyzing mFwe knock-out mice. We show that clonal overexpression of certain mFwe isoforms in Drosophila also triggers non-autonomous cell death, suggesting that Fwe function is evolutionarily conserved. Although mFwe-deficient mice display a normal phenotype, they develop a significantly lower number of skin papillomas upon exposure to DMBA/TPA two-stage skin carcinogenesis than do treated wild-type and mFwe heterozygous mice. Furthermore, mFwe expression is higher in papillomas and the papilloma-surrounding skin of treated wild-type mice compared with the skin of untreated wild-type mice. Thus, we propose that skin papilloma cells take advantage of mFwe activity to facilitate their clonal expansion. PMID:22362363
Masuda, Keiji; Ouchida, Rika; Takeuchi, Arata; Saito, Takashi; Koseki, Haruhiko; Kawamura, Kiyoko; Tagawa, Masatoshi; Tokuhisa, Takeshi; Azuma, Takachika; O-Wang, Jiyang
2005-01-01
Somatic hypermutation of Ig variable region genes is initiated by activation-induced cytidine deaminase; however, the activity of multiple DNA polymerases is required to ultimately introduce mutations. DNA polymerase η (Polη) has been implicated in mutations at A/T, but polymerases involved in C/G mutations have not been identified. We have generated mutant mice expressing DNA polymerase (Polθ) specifically devoid of polymerase activity. Compared with WT mice, Polq-inactive (Polq, the gene encoding Polθ) mice exhibited a reduced level of serum IgM and IgG1. The mutant mice mounted relatively normal primary and secondary immune responses to a T-dependent antigen, but the production of high-affinity specific antibodies was partially impaired. Analysis of the JH4 intronic sequences revealed a slight reduction in the overall mutation frequency in Polq-inactive mice. Remarkably, although mutations at A/T were unaffected, mutations at C/G were significantly decreased, indicating an important, albeit not exclusive, role for Polθ activity. The reduction of C/G mutations was particularly focused on the intrinsic somatic hypermutation hotspots and both transitions and transversions were similarly reduced. These findings, together with the recent observation that Polθ efficiently catalyzes the bypass of abasic sites, lead us to propose that Polθ introduces mutations at C/G by replicating over abasic sites generated via uracil-DNA glycosylase. PMID:16172387
Tissue-specific oxidative stress and loss of mitochondria in CoQ-deficient Pdss2 mutant mice.
Quinzii, Catarina M; Garone, Caterina; Emmanuele, Valentina; Tadesse, Saba; Krishna, Sindu; Dorado, Beatriz; Hirano, Michio
2013-02-01
Primary human CoQ(10) deficiencies are clinically heterogeneous diseases caused by mutations in PDSS2 and other genes required for CoQ(10) biosynthesis. Our in vitro studies of PDSS2 mutant fibroblasts, with <20% CoQ(10) of control cells, revealed reduced activity of CoQ(10)-dependent complex II+III and ATP synthesis, without amplification of reactive oxygen species (ROS), markers of oxidative damage, or antioxidant defenses. In contrast, COQ2 and ADCK3 mutant fibroblasts, with 30-50% CoQ(10) of controls, showed milder bioenergetic defects but significantly increased ROS and oxidation of lipids and proteins. We hypothesized that absence of oxidative stress markers and cell death in PDSS2 mutant fibroblasts were due to the extreme severity of CoQ(10) deficiency. Here, we have investigated in vivo effects of Pdss2 deficiency in affected and unaffected organs of CBA/Pdss2(kd/kd) mice at presymptomatic, phenotypic-onset, and end-stages of the disease. Although Pdss2 mutant mice manifest widespread CoQ(9) deficiency and mitochondrial respiratory chain abnormalities, only affected organs show increased ROS production, oxidative stress, mitochondrial DNA depletion, and reduced citrate synthase activity, an index of mitochondrial mass. Our data indicate that kidney-specific loss of mitochondria triggered by oxidative stress may be the cause of renal failure in Pdss2(kd/kd) mice.
The Ubiquitin Ligase Component Siah1a Is Required for Completion of Meiosis I in Male Mice
Dickins, Ross A.; Frew, Ian J.; House, Colin M.; O'Bryan, Moira K.; Holloway, Andrew J.; Haviv, Izhak; Traficante, Nadia; de Kretser, David M.; Bowtell, David D. L.
2002-01-01
The mammalian Siah genes encode highly conserved proteins containing a RING domain. As components of E3 ubiquitin ligase complexes, Siah proteins facilitate the ubiquitination and degradation of diverse protein partners including β-catenin, N-CoR, and DCC. We used gene targeting in mice to analyze the function of Siah1a during mammalian development and reveal novel roles in growth, viability, and fertility. Mutant animals have normal weights at term but are postnatally growth retarded, despite normal levels of pituitary growth hormone. Embryonic fibroblasts isolated from mutant animals grow normally. Most animals die before weaning, and few survive beyond 3 months. Serum gonadotropin levels are normal in Siah1a mutant mice; however, females are subfertile and males are sterile due to a block in spermatogenesis. Although spermatocytes in mutant mice display normal meiotic prophase and meiosis I spindle formation, they accumulate at metaphase to telophase of meiosis I and subsequently undergo apoptosis. The requirement of Siah1a for normal progression beyond metaphase I suggests that Siah1a may be part of a novel E3 complex acting late in the first meiotic division. PMID:11884614
Nakaya, Makoto; Shojo, Aiko; Hirai, Hiroaki; Matsumoto, Kenji; Kitamura, Shinichi
2013-01-01
waxy/amylose-extender (wx/ae) double-mutant japonica rice (Oryza sativa L.) produces resistant starch (RS) and a large amount of γ-oryzanol. Our previous study has shown the hypolipidemic effect of wx/ae brown rice on mice. To identify the functional constituents of the hypolipidemic activity in wx/ae rice, we prepared pure wx/ae starch and γ-oryzanol from wx/ae rice and investigated their effect on the lipid metabolism in BALB/c.KOR/Stm Slc-Apoe(shl) mice. The mice were fed for 3 weeks a diet containing non-mutant rice starch, non-mutant rice starch plus γ-oryzanol, wx/ae starch, or wx/ae starch plus γ-oryzanol. γ-Oryzanol by itself had no effect on the lipid metabolism, and wx/ae starch prevented an accumulation of triacylglycerol (TAG) in the liver. Interestingly, the combination of wx/ae starch plus γ-oryzanol not only prevented a TAG accumulation in the liver, but also partially suppressed the rise in plasma TAG concentration, indicating that wx/ae starch and γ-oryzanol could have a synergistic effect on the lipid metabolism.
Role for the epidermal growth factor receptor in chemotherapy-induced alopecia.
Bichsel, Kyle J; Gogia, Navdeep; Malouff, Timothy; Pena, Zachary; Forney, Eric; Hammiller, Brianna; Watson, Patrice; Hansen, Laura A
2013-01-01
Treatment of cancer patients with chemotherapeutics like cyclophosphamide often causes alopecia as a result of premature and aberrant catagen. Because the epidermal growth factor receptor (EGFR) signals anagen hair follicles to enter catagen, we hypothesized that EGFR signaling may be involved in cyclophosphamide-induced alopecia. To test this hypothesis, skin-targeted Egfr mutant mice were generated by crossing floxed Egfr and Keratin 14 promoter-driven Cre recombinase mice. Cyclophosphamide treatment of control mice resulted in alopecia while Egfr mutant skin was resistant to cyclophosphamide-induced alopecia. Egfr mutant skin entered catagen normally, as indicated by dermal papilla condensation and decreased follicular proliferation, but did not progress to telogen as did Egfr wild type follicles. Egfr mutant follicles responded with less proliferation, apoptosis, and fewer p53-positive cells after cyclophosphamide. Treatment of control mice with the EGFR inhibitors erlotinib or gefitinib similarly suppressed alopecia and catagen progression by cyclophosphamide. Secondary analysis of clinical trials utilizing EGFR-targeted therapies and alopecia-inducing chemotherapy also revealed evidence for involvement of EGFR in chemotherapy-induced alopecia. Taken together, our results demonstrated the involvement of EGFR signaling in chemotherapy-induced alopecia, which will help in the design of novel therapeutic regimens to minimize chemotherapy-induced alopecia.
Pirazzoli, Valentina; Ayeni, Deborah; Meador, Catherine B.; Sanganahalli, Basavaraju G.; Hyder, Fahmeed; de Stanchina, Elisa; Goldberg, Sarah; Pao, William; Politi, Katerina
2015-01-01
Purpose The EGFR tyrosine kinase inhibitors (TKIs), erlotinib and afatinib, have transformed the treatment of advanced EGFR mutant lung adenocarcinoma. However, almost all patients who respond develop acquired resistance on average ~1 year after starting therapy. Resistance is commonly due to a secondary mutation in EGFR (EGFRT790M). We previously found that the combination of the EGFR TKI afatinib and the EGFR antibody cetuximab could overcome EGFRT790M-mediated resistance in preclinical models. This combination has shown a 29% response rate in a clinical trial in patients with acquired resistance to first-generation TKIs. An outstanding question is whether this regimen is beneficial when used as front-line therapy. Experimental Design Using mouse models of EGFR mutant lung cancer, we tested whether the combination of afatinib plus cetuximab delivered upfront to mice with TKI-naïve EGFRL858R-induced lung adenocarcinomas delayed tumor relapse and drug-resistance compared to single agent TKI. Results Afatinib plus cetuximab markedly delayed the time to relapse and incidence of drug-resistant tumors, which occurred in only 63% of the mice, in contrast to erlotinib or afatinib treatment where 100% of mice developed resistance. Mechanisms of tumor escape observed in afatinib plus cetuximab resistant tumors include the EGFRT790M mutation and Kras mutations. Experiments in cell lines and xenografts confirmed that the afatinib plus cetuximab combination does not suppress the emergence of EGFRT790M. Conclusions These results highlight the potential of afatinib plus cetuximab as an effective treatment strategy for patients with TKI-naïve EGFR mutant lung cancer and indicate that clinical trial development in this area is warranted. PMID:26341921
The effects of a skeletal muscle titin mutation on walking in mice.
Pace, Cinnamon M; Mortimer, Sarah; Monroy, Jenna A; Nishikawa, Kiisa C
2017-01-01
Titin contributes to sarcomere assembly, muscle signaling, and mechanical properties of muscle. The mdm mouse exhibits a small deletion in the titin gene resulting in dystrophic mutants and phenotypically normal heterozygotes. We examined the effects of this mutation on locomotion to assess how, and if, changes to muscle phenotype explain observed locomotor differences. Mutant mice are much smaller in size than their siblings and gait abnormalities may be driven by differences in limb proportions and/or by changes to muscle phenotype caused by the titin mutation. We quantified differences in walking gait among mdm genotypes and also determined whether genotypes vary in limb morphometrics. Mice were filmed walking, and kinematic and morphological variables were measured. Mutant mice had a smaller range of motion at the ankle, shorter stride lengths, and shorter stance duration, but walked at the same relative speeds as the other genotypes. Although phenotypically similar to wildtype mice, heterozygous mice frequently exhibited intermediate gait mechanics. Morphological differences among genotypes in hindlimb proportions were small and do not explain the locomotor differences. We suggest that differences in locomotion among mdm genotypes are due to changes in muscle phenotype caused by the titin mutation.
Retarded axonal transport of R406W mutant tau in transgenic mice with a neurodegenerative tauopathy.
Zhang, Bin; Higuchi, Makoto; Yoshiyama, Yasumasa; Ishihara, Takeshi; Forman, Mark S; Martinez, Dan; Joyce, Sonali; Trojanowski, John Q; Lee, Virginia M-Y
2004-05-12
Intracellular accumulations of filamentous tau inclusions are neuropathological hallmarks of neurodegenerative diseases known as tauopathies. The discovery of multiple pathogenic tau gene mutations in many kindreds with familial frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) unequivocally confirmed the central role of tau abnormalities in the etiology of neurodegenerative disorders. To examine the effects of tau gene mutations and the role of tau abnormalities in neurodegenerative tauopathies, transgenic (Tg) mice were engineered to express the longest human tau isoform (T40) with or without the R406W mutation (RW and hWT Tg mice, respectively) that is pathogenic for FTDP-17 in several kindreds. RW but not hWT tau Tg mice developed an age-dependent accumulation of insoluble filamentous tau aggregates in neuronal perikarya of the cerebral cortex, hippocampus, cerebellum, and spinal cord. Significantly, CNS axons in RW mice contained reduced levels of tau when compared with hWT mice, and this was linked to retarded axonal transport and increased accumulation of an insoluble pool of RW but not hWT tau. Furthermore, RW but not hWT mice demonstrated neurodegeneration and a reduced lifespan. These data indicate that the R406W mutation causes reduced binding of this mutant tau to microtubules, resulting in slower axonal transport. This altered tau function caused by the RW mutation leads to increased accumulation and reduced solubility of RW tau in an age-dependent manner, culminating in the formation of filamentous intraneuronal tau aggregates similar to that observed in tauopathy patients.
Rho GTPase protein Cdc42 is critical for postnatal cartilage development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagahama, Ryo; Department of Orthodontics, School of Dentistry, Showa University, Tokyo; Yamada, Atsushi, E-mail: yamadaa@dent.showa-u.ac.jp
2016-02-19
Cdc42, a small Rho GTPase family member, has been shown to regulate multiple cellular functions in vitro, including actin cytoskeletal reorganization, cell migration, proliferation, and gene expression. However, its tissue-specific roles in vivo remain largely unknown, especially in postnatal cartilage development, as cartilage-specific Cdc42 inactivated mice die within a few days after birth. In this study, we investigated the physiological functions of Cdc42 during cartilage development after birth using tamoxifen-induced cartilage-specific inactivated Cdc42 conditional knockout (Cdc42 {sup fl/fl}; Col2-CreERT) mice, which were generated by crossing Cdc42 flox mice (Cdc42 {sup fl/fl}) with tamoxifen-induced type II collagen (Col2) Cre transgenic mice using a Cre/loxP system.more » The gross morphology of the Cdc42 cKO mice was shorter limbs and body, as well as reduced body weight as compared with the controls. In addition, severe defects were found in growth plate chondrocytes of the long bones, characterized by a shorter proliferating zone (PZ), wider hypertrophic zone (HZ), and loss of columnar organization of proliferating chondrocytes, resulting in delayed endochondral bone formation associated with abnormal bone growth. Our findings demonstrate the importance of Cdc42 for cartilage development during both embryonic and postnatal stages. - Highlights: • Tamoxifen-induced cartilage specific inactivated Cdc42 mutant mice were generated. • Cdc42 mutant mice were shorter limbs and body. • Severe defects were found in growth plate chondrocytes.« less
Chalazonitis, Alcmène; Tang, Amy A; Shang, Yulei; Pham, Tuan D; Hsieh, Ivy; Setlik, Wanda; Gershon, Michael D; Huang, Eric J
2011-09-28
Trophic factor signaling is important for the migration, differentiation, and survival of enteric neurons during development. The mechanisms that regulate the maturation of enteric neurons in postnatal life, however, are poorly understood. Here, we show that transcriptional cofactor HIPK2 (homeodomain interacting protein kinase 2) is required for the maturation of enteric neurons and for regulating gliogenesis during postnatal development. Mice lacking HIPK2 display a spectrum of gastrointestinal (GI) phenotypes, including distention of colon and slowed GI transit time. Although loss of HIPK2 does not affect the enteric neurons in prenatal development, a progressive loss of enteric neurons occurs during postnatal life in Hipk2(-/-) mutant mice that preferentially affects the dopaminergic population of neurons in the caudal region of the intestine. The mechanism by which HIPK2 regulates postnatal enteric neuron development appears to involve the response of enteric neurons to bone morphogenetic proteins (BMPs). Specifically, compared to wild type mice, a larger proportion of enteric neurons in Hipk2(-/-) mutants have an abnormally high level of phosphorylated Smad1/5/8. Consistent with the ability of BMP signaling to promote gliogenesis, Hipk2(-/-) mutants show a significant increase in glia in the enteric nervous system. In addition, numbers of autophagosomes are increased in enteric neurons in Hipk2(-/-) mutants, and synaptic maturation is arrested. These results reveal a new role for HIPK2 as an important transcriptional cofactor that regulates the BMP signaling pathway in the maintenance of enteric neurons and glia, and further suggest that HIPK2 and its associated signaling mechanisms may be therapeutically altered to promote postnatal neuronal maturation.
Murine models of VACTERL syndrome: Role of sonic hedgehog signaling pathway.
Kim, P C; Mo, R; Hui Cc, C
2001-02-01
VACTERL syndrome is a common surgical condition affecting the development of many midaxial organs. The etiology, embryology, and pathogenesis of the VACTERL syndrome are not known. The authors report here new mouse models of VACTERL syndrome involving the Sonic hedgehog (Shh) signaling pathway. Mutant mice involving Shh signaling, the Shh transcription factors Gli2-/- and Gli3-/-, Gli2-/-;Gli3+/- double heterozygotes, and Shh-/- were analyzed. In addition to reported vertebral, anal, tracheoesophageal, and limb anomalies, mutant mice display cardiac, renal, and associated anomalies, namely congenital diaphragmatic hernia and omphalocele, known to be associated in VACTERL syndrome. The Shh transcription factors Gli2 and Gli3 have specific and overlapping roles in the induction of VACTERL phenotypes in a gene-dose dependent manner in these mutants. To the authors' knowledge, these mutant mice represent the first animal model that mimics the human VACTERL syndrome, and suggests that aberrations in Shh signaling might be involved in the VACTERL syndrome.
Male Fertility Defect Associated with Disrupted BRCA1-PALB2 Interaction in Mice*
Simhadri, Srilatha; Peterson, Shaun; Patel, Dharm S.; Huo, Yanying; Cai, Hong; Bowman-Colin, Christian; Miller, Shoreh; Ludwig, Thomas; Ganesan, Shridar; Bhaumik, Mantu; Bunting, Samuel F.; Jasin, Maria; Xia, Bing
2014-01-01
PALB2 links BRCA1 and BRCA2 in homologous recombinational repair of DNA double strand breaks (DSBs). Mono-allelic mutations in PALB2 increase the risk of breast, pancreatic, and other cancers, and biallelic mutations cause Fanconi anemia (FA). Like Brca1 and Brca2, systemic knock-out of Palb2 in mice results in embryonic lethality. In this study, we generated a hypomorphic Palb2 allele expressing a mutant PALB2 protein unable to bind BRCA1. Consistent with an FA-like phenotype, cells from the mutant mice showed hypersensitivity and chromosomal breakage when treated with mitomycin C, a DNA interstrand crosslinker. Moreover, mutant males showed reduced fertility due to impaired meiosis and increased apoptosis in germ cells. Interestingly, mutant meiocytes showed a significant defect in sex chromosome synapsis, which likely contributed to the germ cell loss and fertility defect. Our results underscore the in vivo importance of the PALB2-BRCA1 complex formation in DSB repair and male meiosis. PMID:25016020
Nakajima, Mitsunari; Watanabe, Sono; Okuyama, Satoshi; Shen, Jie; Furukawa, Yoshiko
2012-01-01
Presenilin-1 (PS1) is a transmembrane protein that is in many cases responsible for the development of early-onset familial Alzheimer’s disease. PS1 is essential for neurogenesis, somitogenesis, angiogenesis, and cardiac morphogenesis. We report here that PS1 is also required for maturation and/or maintenance of the pituitary gland. We generated PS1-conditional knockout (PS1-cKO) mice by crossing floxed PS1 and Wnt1-cre mice, in which PS1 was lacking in the neural crest-derived cell lineage. Although the PS1-cKO mice exhibited no obvious phenotypic abnormalities for several days after birth, reduced body weight in the mutant was evident by the age of 3 to 5 weeks. Pituitary weight and serum insulin-like growth factor (IGF)-1 level were also reduced in the mutant. Histologic analysis revealed severe atrophy of the cytosol in the anterior and intermediate pituitary lobes of the mutant. Immunohistochemistry did not reveal clear differences in the expression levels of thyroid-stimulating hormone, adrenocorticotropic hormone, or prolactin in the mutant pituitary. In contrast, growth hormone expression levels were reduced in the anterior lobe of the mutant. PS1 was defective in the posterior lobe, but not the anterior or intermediate lobes, in the mutant pituitary. These findings suggest that PS1 indirectly mediates the development and/or maintenance of the anterior and intermediate lobes in the pituitary gland via actions in other regions, such as the posterior lobe. PMID:19665542
Szentpáli-Gavallér, Katalin; Lim, Stephanie M; Dencső, László; Bányai, Krisztián; Koraka, Penelope; Osterhaus, Albert D M E; Martina, Byron E E; Bakonyi, Tamás; Bálint, Ádám
2016-02-19
West Nile virus (WNV) strains may differ significantly in neuroinvasiveness in vertebrate hosts. In contrast to genetic lineage 1 WNVs, molecular determinants of pathogenic lineage 2 strains have not been experimentally confirmed so far. A full-length infectious clone of a neurovirulent WNV lineage 2 strain (578/10; Central Europe) was generated and amino acid substitutions that have been shown to attenuate lineage 1 WNVs were introduced into the nonstructural proteins (NS1 (P250L), NS2A (A30P), NS3 (P249H) NS4B (P38G, C102S, E249G)). The mouse neuroinvasive phenotype of each mutant virus was examined following intraperitoneal inoculation of C57BL/6 mice. Only the NS1-P250L mutation was associated with a significant attenuation of virulence in mice compared to the wild-type. Multiplication kinetics in cell culture revealed significantly lower infectious virus titres for the NS1 mutant compared to the wild-type, as well as significantly lower amounts of positive and negative stranded RNA.
Rubinstein, M; Mogil, J S; Japón, M; Chan, E C; Allen, R G; Low, M J
1996-04-30
A physiological role for beta-endorphin in endogenous pain inhibition was investigated by targeted mutagenesis of the proopiomelanocortin gene in mouse embryonic stem cells. The tyrosine codon at position 179 of the proopiomelanocortin gene was converted to a premature translational stop codon. The resulting transgenic mice display no overt developmental or behavioral alterations and have a normally functioning hypothalamic-pituitary-adrenal axis. Homozygous transgenic mice with a selective deficiency of beta-endorphin exhibit normal analgesia in response to morphine, indicating the presence of functional mu-opiate receptors. However, these mice lack the opioid (naloxone reversible) analgesia induced by mild swim stress. Mutant mice also display significantly greater nonopioid analgesia in response to cold water swim stress compared with controls and display paradoxical naloxone-induced analgesia. These changes may reflect compensatory upregulation of alternative pain inhibitory mechanisms.
Li, Li; Qiu, Guozhen; Ding, Shengyuan; Zhou, Fu-Ming
2013-01-23
The striatum receives serotonin (5-hydroxytryptamine, 5-HT) innervation and expresses 5-HT2A receptors (5-HT2ARs) and other 5-HT receptors, raising the possibility that the striatal 5-HT system may undergo adaptive changes after chronic severe dopamine (DA) loss and contribute to the function and dysfunction of the striatum. Here we show that in transcription factor Pitx3 gene mutant mice with a selective, severe DA loss in the dorsal striatum mimicking the DA denervation in late Parkinson's disease (PD), both the 5-HT innervation and the 5-HT2AR mRNA expression were increased in the dorsal striatum. Functionally, while having no detectable motor effect in wild type mice, the 5-HT2R agonist 2,5-dimethoxy-4-iodoamphetamine increased both the baseline and l-dopa-induced normal ambulatory and dyskinetic movements in Pitx3 mutant mice, whereas the selective 5-HT2AR blocker volinanserin had the opposite effects. These results demonstrate that Pitx3 mutant mice are a convenient and valid mouse model to study the compensatory 5-HT upregulation following the loss of the nigrostriatal DA projection and that the upregulated 5-HT2AR function in the DA deficient dorsal striatum may enhance both normal and dyskinetic movements. Copyright © 2012 Elsevier B.V. All rights reserved.
Chir99021 and Valproic acid reduce the proliferative advantage of Apc mutant cells.
Langlands, Alistair J; Carroll, Thomas D; Chen, Yu; Näthke, Inke
2018-02-15
More than 90% of colorectal cancers carry mutations in Apc that drive tumourigenesis. A 'just-right' signalling model proposes that Apc mutations stimulate optimal, but not excessive Wnt signalling, resulting in a growth advantage of Apc mutant over wild-type cells. Reversal of this growth advantage constitutes a potential therapeutic approach. We utilised intestinal organoids to compare the growth of Apc mutant and wild-type cells. Organoids derived from Apc Min/+ mice recapitulate stages of intestinal polyposis in culture. They eventually form spherical cysts that reflect the competitive growth advantage of cells that have undergone loss of heterozygosity (LOH). We discovered that this emergence of cysts was inhibited by Chiron99021 and Valproic acid, which potentiates Wnt signalling. Chiron99021 and Valproic acid restrict the growth advantage of Apc mutant cells while stimulating that of wild-type cells, suggesting that excessive Wnt signalling reduces the relative fitness of Apc mutant cells. As a proof of concept, we demonstrated that Chiron99021-treated Apc mutant organoids were rendered susceptible to TSA-induced apoptosis, while wild-type cells were protected.
Yin, Zhuoran; Valkenburg, Femke; Hornix, Betty E; Mantingh-Otter, Ietje; Zhou, Xingdong; Mari, Muriel; Reggiori, Fulvio; Van Dam, Debby; Eggen, Bart J L; De Deyn, Peter P; Boddeke, Erik
2017-01-01
Tauopathies include a variety of neurodegenerative diseases associated with the pathological aggregation of hyperphosphorylated tau, resulting in progressive cognitive decline and motor impairment. The underlying mechanism for motor deficits related to tauopathy is not yet fully understood. Here, we use a novel transgenic tau mouse line, Tau 58/4, with enhanced neuron-specific expression of P301S mutant tau to investigate the motor abnormalities in association with the peripheral nervous system. Using stationary beam, gait, and rotarod tests, motor deficits were found in Tau 58/4 mice already 3 months after birth, which deteriorated during aging. Hyperphosphorylated tau was detected in the cell bodies and axons of motor neurons. At the age of 9 and 12 months, significant denervation of the neuromuscular junction in the extensor digitorum longus muscle was observed in Tau 58/4 mice, compared to wild-type mice. Muscle hypotrophy was observed in Tau 58/4 mice at 9 and 12 months. Using electron microscopy, we observed ultrastructural changes in the sciatic nerve of 12-month-old Tau 58/4 mice indicative of the loss of large axonal fibers and hypomyelination (assessed by g-ratio). We conclude that the accumulated hyperphosphorylated tau in the axon terminals may induce dying-back axonal degeneration, myelin abnormalities, neuromuscular junction denervation, and muscular atrophy, which may be the mechanisms responsible for the deterioration of the motor function in Tau 58/4 mice. Tau 58/4 mice represent an interesting neuromuscular degeneration model, and the pathological mechanisms might be responsible for motor signs observed in some human tauopathies.
Hahm, Seung; Fekete, Csaba; Mizuno, Tooru M; Windsor, Joan; Yan, Hai; Boozer, Carol N; Lee, Charlotte; Elmquist, Joel K; Lechan, Ronald M; Mobbs, Charles V; Salton, Stephen R J
2002-08-15
Targeted deletion of the gene encoding the neuronal and neuroendocrine secreted polypeptide VGF (nonacronymic) produces a lean, hypermetabolic mouse. Consistent with this phenotype, VGF mRNA levels are regulated in the hypothalamic arcuate nucleus in response to fasting. To gain insight into the site(s) and mechanism(s) of action of VGF, we further characterized VGF expression in the hypothalamus. Double-label studies indicated that VGF and pro-opiomelanocortin were coexpressed in lateral arcuate neurons in the fed state, and that VGF expression was induced after fasting in medial arcuate neurons that synthesize neuropeptide Y (NPY). Like NPY, VGF mRNA induction in this region of the hypothalamus in fasted mice was inhibited by exogenous leptin. In leptin-deficient ob/ob and receptor-mutant db/db mice, VGF mRNA levels in the medial arcuate were elevated. To identify neural pathways that are functionally compromised by Vgf ablation, VGF mutant mice were crossed with obese A(y)/a (agouti) and ob/ob mice. VGF deficiency completely blocked the development of obesity in A(y)/a mice, whereas deletion of Vgf in ob/ob mice attenuated weight gain but had no impact on adiposity. Hypothalamic levels of NPY and agouti-related polypeptide mRNAs in both double-mutant lines were dramatically elevated 10- to 15-fold above those of wild-type mice. VGF-deficient mice were also found to resist diet- and gold thioglucose-induced obesity. These data and the susceptibility of VGF mutant mice to monosodium glutamate-induced obesity are consistent with a role for VGF in outflow pathways, downstream of hypothalamic and/or brainstem melanocortin 4 receptors, that project via the autonomic nervous system to peripheral metabolic tissues and regulate energy homeostasis.
Eichwald, Virginie; Daeffler, Laurent; Klein, Michèle; Rommelaere, Jean; Salomé, Nathalie
2002-10-01
The small nonstructural NS2 proteins of parvovirus minute virus of mice (MVMp) were previously shown to interact with the nuclear export receptor Crm1. We report here the analysis of two MVM mutant genomic clones generating NS2 proteins that are unable to interact with Crm1 as a result of amino acid substitutions within their nuclear export signal (NES) sequences. Upon transfection of human and mouse cells, the MVM-NES21 and MVM-NES22 mutant genomic clones were proficient in synthesis of the four virus-encoded proteins. While the MVM-NES22 clone was further able to produce infectious mutant virions, no virus could be recovered from cells transfected with the MVM-NES21 clone. Whereas the defect of MVM-NES21 appeared to be complex, the phenotype of MVM-NES22 could be traced back to a novel distinct NS2 function. Infection of mouse cells with the MVM-NES22 mutant led to stronger nuclear retention not only of the NS2 proteins but also of infectious progeny MVM particles. This nuclear sequestration correlated with a severe delay in the release of mutant virions in the medium and with prolonged survival of the infected cell populations compared with wild-type virus-treated cultures. This defect could explain, at least in part, the small size of the plaques generated by the MVM-NES22 mutant when assayed on mouse indicator cells. Altogether, our data indicate that the interaction of MVMp NS2 proteins with the nuclear export receptor Crm1 plays a critical role at a late stage of the parvovirus life cycle involved in release of progeny viruses.
Eichwald, Virginie; Daeffler, Laurent; Klein, Michèle; Rommelaere, Jean; Salomé, Nathalie
2002-01-01
The small nonstructural NS2 proteins of parvovirus minute virus of mice (MVMp) were previously shown to interact with the nuclear export receptor Crm1. We report here the analysis of two MVM mutant genomic clones generating NS2 proteins that are unable to interact with Crm1 as a result of amino acid substitutions within their nuclear export signal (NES) sequences. Upon transfection of human and mouse cells, the MVM-NES21 and MVM-NES22 mutant genomic clones were proficient in synthesis of the four virus-encoded proteins. While the MVM-NES22 clone was further able to produce infectious mutant virions, no virus could be recovered from cells transfected with the MVM-NES21 clone. Whereas the defect of MVM-NES21 appeared to be complex, the phenotype of MVM-NES22 could be traced back to a novel distinct NS2 function. Infection of mouse cells with the MVM-NES22 mutant led to stronger nuclear retention not only of the NS2 proteins but also of infectious progeny MVM particles. This nuclear sequestration correlated with a severe delay in the release of mutant virions in the medium and with prolonged survival of the infected cell populations compared with wild-type virus-treated cultures. This defect could explain, at least in part, the small size of the plaques generated by the MVM-NES22 mutant when assayed on mouse indicator cells. Altogether, our data indicate that the interaction of MVMp NS2 proteins with the nuclear export receptor Crm1 plays a critical role at a late stage of the parvovirus life cycle involved in release of progeny viruses. PMID:12239307
Aziz, Ramy K.; Kansal, Rita; Aronow, Bruce J.; Taylor, William L.; Rowe, Sarah L.; Kubal, Michael; Chhatwal, Gursharan S.; Walker, Mark J.; Kotb, Malak
2010-01-01
The onset of infection and the switch from primary to secondary niches are dramatic environmental changes that not only alter bacterial transcriptional programs, but also perturb their sociomicrobiology, often driving minor subpopulations with mutant phenotypes to prevail in specific niches. Having previously reported that M1T1 Streptococcus pyogenes become hypervirulent in mice due to selection of mutants in the covRS regulatory genes, we set out to dissect the impact of these mutations in vitro and in vivo from the impact of other adaptive events. Using a murine subcutaneous chamber model to sample the bacteria prior to selection or expansion of mutants, we compared gene expression dynamics of wild type (WT) and previously isolated animal-passaged (AP) covS mutant bacteria both in vitro and in vivo, and we found extensive transcriptional alterations of pathoadaptive and metabolic gene sets associated with invasion, immune evasion, tissue-dissemination, and metabolic reprogramming. In contrast to the virulence-associated differences between WT and AP bacteria, Phenotype Microarray analysis showed minor in vitro phenotypic differences between the two isogenic variants. Additionally, our results reflect that WT bacteria's rapid host-adaptive transcriptional reprogramming was not sufficient for their survival, and they were outnumbered by hypervirulent covS mutants with SpeB−/Sdahigh phenotype, which survived up to 14 days in mice chambers. Our findings demonstrate the engagement of unique regulatory modules in niche adaptation, implicate a critical role for bacterial genetic heterogeneity that surpasses transcriptional in vivo adaptation, and portray the dynamics underlying the selection of hypervirulent covS mutants over their parental WT cells. PMID:20418946
Spindler, Matthew J.; Burmeister, Brian T.; Huang, Yu; Hsiao, Edward C.; Salomonis, Nathan; Scott, Mark J.; Srivastava, Deepak; Carnegie, Graeme K.; Conklin, Bruce R.
2013-01-01
Background A-kinase anchoring proteins (AKAPs) are scaffolding molecules that coordinate and integrate G-protein signaling events to regulate development, physiology, and disease. One family member, AKAP13, encodes for multiple protein isoforms that contain binding sites for protein kinase A (PKA) and D (PKD) and an active Rho-guanine nucleotide exchange factor (Rho-GEF) domain. In mice, AKAP13 is required for development as null embryos die by embryonic day 10.5 with cardiovascular phenotypes. Additionally, the AKAP13 Rho-GEF and PKD-binding domains mediate cardiomyocyte hypertrophy in cell culture. However, the requirements for the Rho-GEF and PKD-binding domains during development and cardiac hypertrophy are unknown. Methodology/Principal Findings To determine if these AKAP13 protein domains are required for development, we used gene-trap events to create mutant mice that lacked the Rho-GEF and/or the protein kinase D-binding domains. Surprisingly, heterozygous matings produced mutant mice at Mendelian ratios that had normal viability and fertility. The adult mutant mice also had normal cardiac structure and electrocardiograms. To determine the role of these domains during β-adrenergic-induced cardiac hypertrophy, we stressed the mice with isoproterenol. We found that heart size was increased similarly in mice lacking the Rho-GEF and PKD-binding domains and wild-type controls. However, the mutant hearts had abnormal cardiac contractility as measured by fractional shortening and ejection fraction. Conclusions These results indicate that the Rho-GEF and PKD-binding domains of AKAP13 are not required for mouse development, normal cardiac architecture, or β-adrenergic-induced cardiac hypertrophic remodeling. However, these domains regulate aspects of β-adrenergic-induced cardiac hypertrophy. PMID:23658642
Interleukin-6 is an essential determinant of on-time parturition in the mouse.
Robertson, Sarah A; Christiaens, Inge; Dorian, Camilla L; Zaragoza, Dean B; Care, Alison S; Banks, Anke M; Olson, David M
2010-08-01
IL-6 abundance in amniotic fluid and uterine tissues increases in late gestation or with infection-associated preterm labor. A role in regulation of labor onset is suggested by observations that IL-6 increases expression of genes controlling prostaglandin synthesis and signaling in isolated uterine cells, but whether IL-6 is essential for normal parturition is unknown. To evaluate the physiological role of IL-6 in parturition in mice, we investigated the effect of Il6 null mutation on the timing of parturition and expression of genes associated with uterine activation. Il6 null mutant mice delivered 24 h later than wild-type mice, although circulating progesterone fell similarly in both genotypes during the prepartal period. Il6 null mutant mice were also refractory to low doses of lipopolysaccharide sufficient to induce preterm delivery in wild-type mice. The characteristic late-gestation elevation in uterine expression of Oxtr mRNA encoding oxytocin receptor, and peripartal increases in Ptgfr and Ptgs2 mRNAs regulating prostaglandin synthesis and signaling were delayed by 24 h in Il6 null mutant mice. Conversely, Ptger4 mRNA encoding the prostaglandin E receptor-4 was abnormally elevated in late-gestation in Il6 null mutant mice. Administration of recombinant IL-6 from d 11.5 postcoitum until term restored the normal timing of delivery and normalized Ptger4 mRNA expression in late gestation. We conclude that IL-6 has a key role in controlling the progression of events culminating in parturition and that it acts downstream of luteolysis in the uterus to regulate genes involved in the prostaglandin-mediated uterine activation cascade.
Blankenburg, Robert; Hackert, Katarzyna; Wurster, Sebastian; Deenen, René; Seidman, J G; Seidman, Christine E; Lohse, Martin J; Schmitt, Joachim P
2014-07-07
Approximately 40% of hypertrophic cardiomyopathy (HCM) is caused by heterozygous missense mutations in β-cardiac myosin heavy chain (β-MHC). Associating disease phenotype with mutation is confounded by extensive background genetic and lifestyle/environmental differences between subjects even from the same family. To characterize disease caused by β-cardiac myosin heavy chain Val606Met substitution (VM) that has been identified in several HCM families with wide variation of clinical outcomes, in mice. Unlike 2 mouse lines bearing the malignant myosin mutations Arg453Cys (RC/+) or Arg719Trp (RW/+), VM/+ mice with an identical inbred genetic background lacked hallmarks of HCM such as left ventricular hypertrophy, disarray of myofibers, and interstitial fibrosis. Even homozygous VM/VM mice were indistinguishable from wild-type animals, whereas RC/RC- and RW/RW-mutant mice died within 9 days after birth. However, hypertrophic effects of the VM mutation were observed both in mice treated with cyclosporine, a known stimulator of the HCM response, and compound VM/RC heterozygous mice, which developed a severe HCM phenotype. In contrast to all heterozygous mutants, both systolic and diastolic function of VM/RC hearts was severely impaired already before the onset of cardiac remodeling. The VM mutation per se causes mild HCM-related phenotypes; however, in combination with other HCM activators it exacerbates the HCM phenotype. Double-mutant mice are suitable for assessing the severity of benign mutations. © 2014 American Heart Association, Inc.
Zhang, Jun; Xiao, Yechen; Guo, Yinshi; Breslin, Peter; Zhang, Shubin; Wei, Wei; Zhang, Zhou; Zhang, Jiwang
2011-01-01
Myeloproliferative disorders (MPDs), lymphoproliferative disorders (LPDs), acute T-lymphocytic or myeloid leukemia and T-lymphocytic lymphoma were developed in inducible Pten-knockout (Pten−/−) mice. The appearance of these multiple diseases in one animal model provides an opportunity to study the pathogenesis of multiple diseases simultaneously. To study whether Myc function is required for the development of these hematopoietic disorders in Pten−/− mice, we generated inducible Pten/Myc double-knockout mice (Pten−/−/Myc−/−). By comparing the hematopoietic phenotypes of these double-knockout mice with those of Pten−/− mice, we found that both sets of animals developed MPDs and LPDs. However, none of the compound-mutant mice developed acute leukemia or lymphoma. Interestingly, in contrast to the MPDs which developed in Pten−/− mice which are dominated by granulocytes, megakaryocytes predominate in the MPDs of Pten−/−/Myc−/− mice. Our study suggests that the deregulation of PI3K/Akt signaling in Pten−/− hematopoietic cells protects these cells from apoptotic cell death, resulting in chronic proliferative disorders. But due to the differential requirement for Myc in granulocyte as compared to megakaryocyte proliferation, Myc deletion converts Pten−/− MPDs from granulocyte-dominated to megakaryocyte-dominated conditions. Myc is absolutely required for the development of acute hematopoietic malignancies. PMID:21926961
Cortico-striatal synaptic defects and OCD-like behaviors in SAPAP3 mutant mice
Welch, Jeffrey M.; Lu, Jing; Rodriguiz, Ramona M.; Trotta, Nicholas C.; Peca, Joao; Ding, Jin-Dong; Feliciano, Catia; Chen, Meng; Adams, J. Paige; Luo, Jianhong; Dudek, Serena M.; Weinberg, Richard J.; Calakos, Nicole; Wetsel, William C.; Feng, Guoping
2008-01-01
Obsessive-compulsive disorder (OCD) is an anxiety-spectrum disorder characterized by persistent intrusive thoughts (obsessions) and repetitive actions (compulsions). Dysfunction of cortico-striato-thalamo-cortical circuitry is implicated in OCD, though the underlying pathogenic mechanisms are unknown. SAP90/PSD95-associated protein 3 (SAPAP3) is a postsynaptic scaffolding protein at excitatory synapses that is highly expressed in the striatum. Here we show that mice with genetic deletion of SAPAP3 exhibit increased anxiety and compulsive grooming behavior leading to facial hair loss and skin lesions; both behaviors are alleviated by a selective serotonin reuptake inhibitor. Electrophysiological, structural, and biochemical studies of SAPAP3 mutant mice reveal defects in cortico-striatal synapses. Furthermore, lentiviral-mediated selective expression of SAPAP3 in the striatum rescues the synaptic and behavioral defects of SAPAP3 mutant mice. These findings demonstrate a critical role for SAPAP3 at cortico-striatal synapses and emphasize the importance of cortico-striatal circuitry in OCD-like behaviors. PMID:17713528
Salido, Eduardo C.; Li, Xiao M.; Lu, Yang; Wang, Xia; Santana, Alfredo; Roy-Chowdhury, Namita; Torres, Armando; Shapiro, Larry J.; Roy-Chowdhury, Jayanta
2006-01-01
Mutations in the alanine–glyoxylate amino transferase gene (AGXT) are responsible for primary hyperoxaluria type I, a rare disease characterized by excessive hepatic oxalate production that leads to renal failure. We generated a null mutant mouse by targeted mutagenesis of the homologous gene, Agxt, in embryonic stem cells. Mutant mice developed normally, and they exhibited hyperoxaluria and crystalluria. Approximately half of the male mice in mixed genetic background developed calcium oxalate urinary stones. Severe nephrocalcinosis and renal failure developed after enhancement of oxalate production by ethylene glycol administration. Hepatic expression of human AGT1, the protein encoded by AGXT, by adenoviral vector-mediated gene transfer in Agxt−/− mice normalized urinary oxalate excretion and prevented oxalate crystalluria. Subcellular fractionation and immunofluorescence studies revealed that, as in the human liver, the expressed wild-type human AGT1 was predominantly localized in mouse hepatocellular peroxisomes, whereas the most common mutant form of AGT1 (G170R) was localized predominantly in the mitochondria. PMID:17110443
Anti-H-Y responses of H-2b mutant mice.
Simpson, E; Gordon, R D; Chandler, P R; Bailey, D
1978-10-01
Two strains of H-2b mutant mice, H-2ba and H-2bf, in which the mutational event took place at H-2K, make anti-H-Y cytotoxic T cell responses which are H-2-restricted, Db-associated and indistinguishable in target cell specificity from those of H-2b mice. Thus, alteration of the H-2K molecule affects neither the Ir gene controlling the response, nor the associative antigen. On the other hand, one H-2Db mutant strain, H-2bo, although it makes a good anti-H-Y cytotoxic response, shows target cell specificity restricted to its own Dbo antigen(s), and neither H-2b, H-2ba or H-2bf anti-H-Y cytotoxic cells kill H-2bo male target cells. Thus, the alteration of the H-2Db molecule does not affect the Ir gene of H-2b mice, but it does alter the H-2Db-associative antigen.
Longitudinal brain MRI study in a mouse model of Rett Syndrome and the effects of choline.
Ward, B C; Agarwal, S; Wang, K; Berger-Sweeney, J; Kolodny, N H
2008-07-01
Rett Syndrome (RTT), the second most common cause of mental retardation in girls, is associated with mutations of an X-linked gene encoding the transcriptional repressor protein MeCP2. Mecp2(1lox) mutant mice express no functional MeCP2 protein and exhibit behavioral abnormalities similar to those seen in RTT patients. Here we monitor the development of both whole brain and regional volumes between 21 and 42 days of age in this model of RTT using MRI. We see decreases in whole brain volumes in both male and female mutant mice. Cerebellar and ventricular volumes are also decreased in RTT males. Previous work has suggested that perinatal choline supplementation alleviates some of the behavioral deficits in both male and female Mecp2(1lox) mutant mice. Here we show that perinatal choline supplementation also positively affects whole brain volume in heterozygous females, and cerebellar volume in male RTT mice.
Sitkiewicz, Izabela; Nagiec, Michal J; Sumby, Paul; Butler, Stephanie D; Cywes-Bentley, Colette; Musser, James M
2006-10-24
The molecular basis of pathogen clone emergence is relatively poorly understood. Acquisition of a bacteriophage encoding a previously unknown secreted phospholipase A(2) (designated SlaA) has been implicated in the rapid emergence in the mid-1980s of a new hypervirulent clone of serotype M3 group A Streptococcus. Although several lines of circumstantial evidence suggest that SlaA is a virulence factor, this issue has not been addressed experimentally. We found that an isogenic DeltaslaA mutant strain was significantly impaired in ability to adhere to and kill human epithelial cells compared with the wild-type parental strain. The mutant strain was less virulent for mice than the wild-type strain, and immunization with purified SlaA significantly protected mice from invasive disease. Importantly, the mutant strain was significantly attenuated for colonization in a monkey model of pharyngitis. We conclude that transductional acquisition of the ability of a GAS strain to produce SlaA enhanced the spread and virulence of the serotype M3 precursor strain. Hence, these studies identified a crucial molecular event underlying the evolution, rapid emergence, and widespread dissemination of unusually severe human infections caused by a distinct bacterial clone.
Partitioning-Defective 1a/b Depletion Impairs Glomerular and Proximal Tubule Development.
Akchurin, Oleh; Du, Zhongfang; Ramkellawan, Nadira; Dalal, Vidhi; Han, Seung Hyeok; Pullman, James; Müsch, Anne; Susztak, Katalin; Reidy, Kimberly J
2016-12-01
The kidney is a highly polarized epithelial organ that develops from undifferentiated mesenchyme, although the mechanisms that regulate the development of renal epithelial polarity are incompletely understood. Partitioning-defective 1 (Par1) proteins have been implicated in cell polarity and epithelial morphogenesis; however, the role of these proteins in the developing kidney has not been established. Therefore, we studied the contribution of Par1a/b to renal epithelial development. We examined the renal phenotype of newborn compound mutant mice carrying only one allele of Par1a or Par1b. Loss of three out of four Par1a/b alleles resulted in severe renal hypoplasia, associated with impaired ureteric bud branching. Compared with kidneys of newborn control littermates, kidneys of newborn mutant mice exhibited dilated proximal tubules and immature glomeruli, and the renal proximal tubular epithelia lacked proper localization of adhesion complexes. Furthermore, Par1a/b mutants expressed low levels of renal Notch ligand Jag1, activated Notch2, and Notch effecter Hes1. Together, these data demonstrate that Par1a/b has a key role in glomerular and proximal tubule development, likely via modulation of Notch signaling. Copyright © 2016 by the American Society of Nephrology.
Mohanty, Sujit K; Donnelly, Bryan; Dupree, Phylicia; Lobeck, Inna; Mowery, Sarah; Meller, Jaroslaw; McNeal, Monica; Tiao, Greg
2017-08-01
Rotavirus infection is one of the most common causes of diarrheal illness in humans. In neonatal mice, rhesus rotavirus (RRV) can induce biliary atresia (BA), a disease resulting in inflammatory obstruction of the extrahepatic biliary tract and intrahepatic bile ducts. We previously showed that the amino acid arginine (R) within the sequence SRL (amino acids 445 to 447) in the RRV VP4 protein is required for viral binding and entry into biliary epithelial cells. To determine if this single amino acid (R) influences the pathogenicity of the virus, we generated a recombinant virus with a single amino acid mutation at this site through a reverse genetics system. We demonstrated that the RRV mutant (RRV VP4-R446G ) produced less symptomatology and replicated to lower titers both in vivo and in vitro than those seen with wild-type RRV, with reduced binding in cholangiocytes. Our results demonstrate that a single amino acid change in the RRV VP4 gene influences cholangiocyte tropism and reduces pathogenicity in mice. IMPORTANCE Rotavirus is the leading cause of diarrhea in humans. Rhesus rotavirus (RRV) can also lead to biliary atresia (a neonatal human disease) in mice. We developed a reverse genetics system to create a mutant of RRV (RRV VP4-R446G ) with a single amino acid change in the VP4 protein compared to that of wild-type RRV. In vitro , the mutant virus had reduced binding and infectivity in cholangiocytes. In vivo , it produced fewer symptoms and lower mortality in neonatal mice, resulting in an attenuated form of biliary atresia. Copyright © 2017 American Society for Microbiology.
Impaired sperm fertilizing ability in mice lacking Cysteine-RIch Secretory Protein 1 (CRISP1)
Da Ros, Vanina G.; Maldera, Julieta A.; Willis, William D.; Cohen, Débora J.; Goulding, Eugenia H.; Gelman, Diego M.; Rubinstein, Marcelo; Eddy, Edward M.; Cuasnicu, Patricia S.
2008-01-01
Mammalian fertilization is a complex multi-step process mediated by different molecules present on both gametes. Epididymal protein CRISP1, a member of the Cysteine-RIch Secretory Protein (CRISP) family, was identified by our laboratory and postulated to participate in both sperm-zona pellucida (ZP) interaction and gamete fusion by binding to egg-complementary sites. To elucidate the functional role of CRISP1 in vivo, we disrupted the Crisp1 gene and evaluated the effect on animal fertility and several sperm parameters. Male and female Crisp1−/− animals exhibited no differences in fertility compared to controls. Sperm motility and the ability to undergo a spontaneous or progesterone-induced acrosome reaction were neither affected in Crisp1−/− mice. However, the level of protein tyrosine phosphorylation during capacitation was clearly lower in mutant sperm than in controls. In vitro fertilization assays showed that Crisp1−/− sperm also exhibited a significantly reduced ability to penetrate both ZP-intact and ZP-free eggs. Moreover, when ZP-free eggs were simultaneously inseminated with Crisp1+/+ and Crisp1−/− sperm in a competition assay, the mutant sperm exhibited a greater disadvantage in their fusion ability. Finally, the finding that the fusion ability of Crisp1−/− sperm was further inhibited by the presence of CRISP1 or CRISP2 during gamete co-incubation, supports that another CRISP cooperates with CRISP1 during fertilization and might compensate for its lack in the mutant mice. Together, these results indicate that CRISP proteins are players in the mammalian fertilization process. To our knowledge this is the first knockout mice generated for a CRISP protein. The information obtained might have important functional implications for other members of the widely distributed and evolutionarily conserved CRISP family. PMID:18571638
Chan, Kamfai; Alter, Laura; Barthold, Stephen W.; Parveen, Nikhat
2015-01-01
Lyme disease is the most prevalent tick-borne disease in North America and Europe. The causative agent, Borrelia burgdorferi persists in the white-footed mouse. Infection with B. burgdorferi can cause acute to persistent multisystemic Lyme disease in humans. Some disease manifestations are also exhibited in the mouse model of Lyme disease. Genetic manipulation of B. burgdorferi remains difficult. First, B. burgdorferi contains a large number of endogenous plasmids with unique sequences encoding unknown functions. The presence of these plasmids needs to be confirmed after each genetic manipulation. Second, the restriction modification defense systems, including that encoded by bbe02 gene lead to low transformation efficiency in B. burgdorferi. Therefore, studying the molecular basis of Lyme pathogenesis is a challenge. Furthermore, investigation of the role of a specific B. burgdorferi protein throughout infection requires a large number of mice, making it labor intensive and expensive. To overcome the problems associated with low transformation efficiency and to reduce the number of mice needed for experiments, we disrupted the bbe02 gene of a highly infectious and pathogenic B. burgdorferi strain, N40 D10/E9 through insertion of a firefly luciferase gene. The bbe02 mutant shows higher transformation efficiency and maintains luciferase activity throughout infection as detected by live imaging of mice. Infectivity and pathogenesis of this mutant were comparable to the wild-type N40 strain. This mutant will serve as an ideal parental strain to examine the roles of various B. burgdorferi proteins in Lyme pathogenesis in the mouse model in the future. PMID:26069970
Are moxifloxacin and levofloxacin equally effective to treat XDR tuberculosis?
Maitre, Thomas; Petitjean, Grégoire; Chauffour, Aurélie; Bernard, Christine; El Helali, Najoua; Jarlier, Vincent; Reibel, Florence; Chavanet, Pascal; Aubry, Alexandra; Veziris, Nicolas
2017-08-01
Moxifloxacin retains partial activity against some fluoroquinolone-resistant mutants of Mycobacterium tuberculosis . Levofloxacin is presumed to be as active as moxifloxacin against drug-susceptible tuberculosis and to have a better safety profile. To compare the in vivo activity of levofloxacin and moxifloxacin against M. tuberculosis strains with various levels of fluoroquinolone resistance. BALB/c mice were intravenously infected with 10 6 M. tuberculosis H37Rv and three isogenic mutants: GyrA A90V, GyrB E540A and GyrB A543V. Treatment with 50 or 100 mg/kg levofloxacin and 60 or 66 mg/kg moxifloxacin was given orally every 6 h, for 4 weeks. Levofloxacin 50 and 100 mg/kg q6h and moxifloxacin 60 and 66 mg/kg q6h generated AUCs in mice equivalent to those of levofloxacin 750 and 1000 mg/day and moxifloxacin 400 and 800 mg/day, respectively, in humans. Moxifloxacin 60 and 66 mg/kg q6h had bactericidal activity against strain H37Rv (MIC ≤ 0.25 mg/L) and mutants GyrB E540A and GyrB A543V (MIC = 0.5 mg/L). Against mutant GyrA A90V (MIC = 2 mg/L), moxifloxacin 60 mg/kg q6h did not prevent bacillary growth, whereas 66 mg/kg q6h had bacteriostatic activity. Levofloxacin 50 mg/kg q6h had bactericidal activity against H37Rv (MIC ≤ 0.25 mg/L) but not against the mutant strains. Levofloxacin 100 mg/kg q6h had bactericidal activity against H37Rv and mutants GyrB E540A (MIC = 0.5 mg/L) and GyrB A543V (MIC= 1 mg/L) but not against mutant GyrA A90V (MIC = 4 mg/L). All mutations reduced fluoroquinolone activity, even those classified as susceptible according to phenotypic tests. High-dose levofloxacin is less effective than high-dose moxifloxacin against both fluoroquinolone-resistant and -susceptible M. tuberculosis strains in mice. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Searching for biomarkers of CDKL5 disorder: early-onset visual impairment in CDKL5 mutant mice
Mazziotti, Raffaele; Lupori, Leonardo; Sagona, Giulia; Gennaro, Mariangela; Della Sala, Grazia; Putignano, Elena
2017-01-01
Abstract CDKL5 disorder is a neurodevelopmental disorder still without a cure. Murine models of CDKL5 disorder have been recently generated raising the possibility of preclinical testing of treatments. However, unbiased, quantitative biomarkers of high translational value to monitor brain function are still missing. Moreover, the analysis of treatment is hindered by the challenge of repeatedly and non-invasively testing neuronal function. We analyzed the development of visual responses in a mouse model of CDKL5 disorder to introduce visually evoked responses as a quantitative method to assess cortical circuit function. Cortical visual responses were assessed in CDKL5 null male mice, heterozygous females, and their respective control wild-type littermates by repeated transcranial optical imaging from P27 until P32. No difference between wild-type and mutant mice was present at P25-P26 whereas defective responses appeared from P27-P28 both in heterozygous and homozygous CDKL5 mutant mice. These results were confirmed by visually evoked potentials (VEPs) recorded from the visual cortex of a different cohort. The previously imaged mice were also analyzed at P60–80 using VEPs, revealing a persistent reduction of response amplitude, reduced visual acuity and defective contrast function. The level of adult impairment was significantly correlated with the reduction in visual responses observed during development. Support vector machine showed that multi-dimensional visual assessment can be used to automatically classify mutant and wt mice with high reliability. Thus, monitoring visual responses represents a promising biomarker for preclinical and clinical studies on CDKL5 disorder. PMID:28369421
Garcia, J P; Adams, V; Beingesser, J; Hughes, M L; Poon, R; Lyras, D; Hill, A; McClane, B A; Rood, J I; Uzal, F A
2013-07-01
Clostridium perfringens type D causes disease in sheep, goats, and other ruminants. Type D isolates produce, at minimum, alpha and epsilon (ETX) toxins, but some express up to five different toxins, raising questions about which toxins are necessary for the virulence of these bacteria. We evaluated the contribution of ETX to C. perfringens type D pathogenicity in an intraduodenal challenge model in sheep, goats, and mice using a virulent C. perfringens type D wild-type strain (WT), an isogenic ETX null mutant (etx mutant), and a strain where the etx mutation has been reversed (etx complemented). All sheep and goats, and most mice, challenged with the WT isolate developed acute clinical disease followed by death in most cases. Sheep developed various gross and/or histological changes that included edema of brain, lungs, and heart as well as hydropericardium. Goats developed various effects, including necrotizing colitis, pulmonary edema, and hydropericardium. No significant gross or histological abnormalities were observed in any mice infected with the WT strain. All sheep, goats, and mice challenged with the isogenic etx mutant remained clinically healthy for ≥24 h, and no gross or histological abnormalities were observed in those animals. Complementation of etx knockout restored virulence; most goats, sheep, and mice receiving this complemented mutant developed clinical and pathological changes similar to those observed in WT-infected animals. These results indicate that ETX is necessary for type D isolates to induce disease, supporting a key role for this toxin in type D disease pathogenesis.
Yamamoto, Ayako; Uchiyama, Koji; Nara, Tomoka; Nishimura, Naomichi; Hayasaka, Michiko; Hanaoka, Kazunori; Yamamoto, Tatsuro
2014-01-01
Spock3/Testican-3 is a nervous system-expressed heparan sulfate proteoglycan belonging to a subgroup of the BM-40/SPARC/osteonectin family, the role of which in brain development is unclear. Because Spock1, a member of the Spock family, inhibits their attachment to substrates and the neurite outgrowth of cultured neuronal cells, Spock3 is also thought to be similarly involved in the neuronal development. In the present study, we established a Spock3-mutant mouse harboring a deletion extending from the presumptive upstream regulatory region to exon 4 of the Spock3 locus and performed histological and behavioral studies on these mutant mice. In wild-type (WT) mice, all Spock members were clearly expressed during brain development. In adults, intense Spock1 and Spock2 expressions were observed throughout the entire brain; whereas, Spock3 expression was no longer visible except in the thalamic nuclei. Thus, Spock3 expression is mostly confined to the developmental stage of the brain. In adult mutant mice, the cells of all cortical layers were swollen. The corpus callosum was narrowed around the central region along the rostral-caudal axis and many small spaces were observed without myelin sheaths throughout the entire corpus callosum. In addition, the cortical input and output fibers did not form into thick bundled fibers as well as the WT counterparts did. Moreover, a subpopulation of corticospinal axonal fibers penetrated into the dorsal striatum with moderately altered orientations. Consistent with these modifications of brain structures, the mutant mice exhibited decreased anxiety-like behavior and lowered sociability. Together, these results demonstrate that Spock3 plays an important role in the formation or maintenance of major neuronal structures in the brain. © 2014 S. Karger AG, Basel.
Freidl, Raphaela; Gstoettner, Antonia; Baranyi, Ulrike; Swoboda, Ines; Stolz, Frank; Focke-Tejkl, Margarete; Wekerle, Thomas; van Ree, Ronald; Valenta, Rudolf; Linhart, Birgit
2017-01-01
Background Fish is a frequent elicitor of severe IgE-mediated allergic reactions. Beside avoidance, there is currently no allergen-specific therapy available. Hypoallergenic variants of the major fish allergen, parvalbumin, for specific immunotherapy based on mutation of the 2 calcium-binding sites have been developed. Objectives This study sought to establish a mouse model of fish allergy resembling human disease and to investigate whether mouse and rabbit IgG antibodies induced by immunization with a hypoallergenic mutant of the major carp allergen protect against allergic symptoms in sensitized mice. Methods C3H/HeJ mice were sensitized with recombinant wildtype Cyp c 1 or carp extract by intragastric gavage. Antibody, cellular immune responses, and epitope specificity in sensitized mice were investigated by ELISA, rat basophil leukemia assay, T-cell proliferation experiments using recombinant wildtype Cyp c 1, and overlapping peptides spanning the Cyp c 1 sequence. Anti-hypoallergenic Cyp c 1 mutant mouse and rabbit sera were tested for their ability to inhibit IgE recognition of Cyp c 1, Cyp c 1–specific basophil degranulation, and Cyp c 1–induced allergic symptoms in the mouse model. Results A mouse model of fish allergy mimicking human disease regarding IgE epitope recognition and symptoms as close as possible was established. Administration of antisera generated in mice and rabbits by immunization with a hypoallergenic Cyp c 1 mutant inhibited IgE binding to Cyp c 1, Cyp c 1–induced basophil degranulation, and allergic symptoms caused by allergen challenge in sensitized mice. Conclusions Antibodies induced by immunization with a hypoallergenic Cyp c 1 mutant protect against allergic reactions in a murine model of fish allergy. PMID:27876628
Freidl, Raphaela; Gstoettner, Antonia; Baranyi, Ulrike; Swoboda, Ines; Stolz, Frank; Focke-Tejkl, Margarete; Wekerle, Thomas; van Ree, Ronald; Valenta, Rudolf; Linhart, Birgit
2017-06-01
Fish is a frequent elicitor of severe IgE-mediated allergic reactions. Beside avoidance, there is currently no allergen-specific therapy available. Hypoallergenic variants of the major fish allergen, parvalbumin, for specific immunotherapy based on mutation of the 2 calcium-binding sites have been developed. This study sought to establish a mouse model of fish allergy resembling human disease and to investigate whether mouse and rabbit IgG antibodies induced by immunization with a hypoallergenic mutant of the major carp allergen protect against allergic symptoms in sensitized mice. C3H/HeJ mice were sensitized with recombinant wildtype Cyp c 1 or carp extract by intragastric gavage. Antibody, cellular immune responses, and epitope specificity in sensitized mice were investigated by ELISA, rat basophil leukemia assay, T-cell proliferation experiments using recombinant wildtype Cyp c 1, and overlapping peptides spanning the Cyp c 1 sequence. Anti-hypoallergenic Cyp c 1 mutant mouse and rabbit sera were tested for their ability to inhibit IgE recognition of Cyp c 1, Cyp c 1-specific basophil degranulation, and Cyp c 1-induced allergic symptoms in the mouse model. A mouse model of fish allergy mimicking human disease regarding IgE epitope recognition and symptoms as close as possible was established. Administration of antisera generated in mice and rabbits by immunization with a hypoallergenic Cyp c 1 mutant inhibited IgE binding to Cyp c 1, Cyp c 1-induced basophil degranulation, and allergic symptoms caused by allergen challenge in sensitized mice. Antibodies induced by immunization with a hypoallergenic Cyp c 1 mutant protect against allergic reactions in a murine model of fish allergy. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Schlegel, Victoria; Thieme, Markus; Holzmann, Carsten; Witt, Martin; Grittner, Ulrike; Rolfs, Arndt; Wree, Andreas
2016-11-09
Niemann-Pick Type C1 (NPC1) is an autosomal recessive inherited disorder characterized by accumulation of cholesterol and glycosphingolipids. Previously, we demonstrated that BALB/c-npc1 nih Npc1 -/- mice treated with miglustat, cyclodextrin and allopregnanolone generally performed better than untreated Npc1 -/- animals. Unexpectedly, they also seemed to accomplish motor tests better than their sham-treated wild-type littermates. However, combination-treated mutant mice displayed worse cognition performance compared to sham-treated ones. To evaluate effects of these drugs in healthy BALB/c mice, we here analyzed pharmacologic effects on motor and cognitive behavior of wild-type mice. For combination treatment mice were injected with allopregnanolone/cyclodextrin weekly, starting at P7. Miglustat injections were performed daily from P10 till P23. Starting at P23, miglustat was embedded in the chow. Other mice were treated with miglustat only, or sham-treated. The battery of behavioral tests consisted of accelerod, Morris water maze, elevated plus maze, open field and hot-plate tests. Motor capabilities and spontaneous motor behavior were unaltered in both drug-treated groups. Miglustat-treated wild-type mice displayed impaired spatial learning compared to sham- and combination-treated mice. Both combination- and miglustat-treated mice showed enhanced anxiety in the elevated plus maze compared to sham-treated mice. Additionally, combination treatment as well as miglustat alone significantly reduced brain weight, whereas only combination treatment reduced body weight significantly. Our results suggest that allopregnanolone/cyclodextrin ameliorate most side effects of miglustat in wild-type mice.
Treadmill performance of mice with cerebellar lesions: 1. Purkinje cell degeneration mutant mice.
Le Marec, N; Lalonde, R
1998-02-01
The purpose of this study was to evaluate the sensorimotor skills of a spontaneous mouse mutant, Purkinje cell degeneration (PCD), marked by selective cerebellar cortical atrophy on a treadmill activated at 1 of 2 speeds and at 1 of 3 slopes, requiring forward movements to avoid footshocks. There was no difference in latencies before falling from the belt between PCD mutants and controls during acquisition. However, PCD mutants were impaired on the fast treadmill during retention, implicating the cerebellum in the memory of a motor skill. During acquisition of the slow treadmill task at the 2 lowest slopes of inclination, PCD mutants spent more time walking than controls, an indication of a decreased ability of coordinating whole body movements. The same pattern of higher walking time on the slow treadmill in PCD mutants was evident during retention. These results indicate that the cerebellar cortex is involved in the acquisition and the retention of a task requiring equilibrium.
Yamanaka, Koji; Boillee, Severine; Roberts, Elizabeth A.; Garcia, Michael L.; McAlonis-Downes, Melissa; Mikse, Oliver R.; Cleveland, Don W.; Goldstein, Lawrence S. B.
2008-01-01
Dominant mutations in ubiquitously expressed superoxide dismutase (SOD1) cause familial ALS by provoking premature death of adult motor neurons. To test whether mutant damage to cell types beyond motor neurons is required for the onset of motor neuron disease, we generated chimeric mice in which all motor neurons and oligodendrocytes expressed mutant SOD1 at a level sufficient to cause fatal, early-onset motor neuron disease when expressed ubiquitously, but did so in a cellular environment containing variable numbers of non-mutant, non-motor neurons. Despite high-level mutant expression within 100% of motor neurons and oligodendrocytes, in most of these chimeras, the presence of WT non-motor neurons substantially delayed onset of motor neuron degeneration, increasing disease-free life by 50%. Disease onset is therefore non-cell autonomous, and mutant SOD1 damage within cell types other than motor neurons and oligodendrocytes is a central contributor to initiation of motor neuron degeneration. PMID:18492803
NASA Astrophysics Data System (ADS)
Wang, Jun-Wei; Zhou, Tian-Shou
2009-12-01
In this paper, we develop a new mathematical model for the mammalian circadian clock, which incorporates both transcriptional/translational feedback loops (TTFLs) and a cAMP-mediated feedback loop. The model shows that TTFLs and cAMP signalling cooperatively drive the circadian rhythms. It reproduces typical experimental observations with qualitative similarities, e.g. circadian oscillations in constant darkness and entrainment to light-dark cycles. In addition, it can explain the phenotypes of cAMP-mutant and Rev-erbα-/--mutant mice, and help us make an experimentally-testable prediction: oscillations may be rescued when arrhythmic mice with constitutively low concentrations of cAMP are crossed with Rev-erbα-/- mutant mice. The model enhances our understanding of the mammalian circadian clockwork from the viewpoint of the entire cell.
Ditsworth, Dara; Maldonado, Marcus; McAlonis-Downes, Melissa; Sun, Shuying; Seelman, Amanda; Drenner, Kevin; Arnold, Eveline; Ling, Shuo-Chien; Pizzo, Donald; Ravits, John; Cleveland, Don W; Da Cruz, Sandrine
2017-06-01
Mutations in TDP-43 cause amyotrophic lateral sclerosis (ALS), a fatal paralytic disease characterized by degeneration and premature death of motor neurons. The contribution of mutant TDP-43-mediated damage within motor neurons was evaluated using mice expressing a conditional allele of an ALS-causing TDP-43 mutant (Q331K) whose broad expression throughout the central nervous system mimics endogenous TDP-43. TDP-43 Q331K mice develop age- and mutant-dependent motor deficits from degeneration and death of motor neurons. Cre-recombinase-mediated excision of the TDP-43 Q331K gene from motor neurons is shown to delay onset of motor symptoms and appearance of TDP-43-mediated aberrant nuclear morphology, and abrogate subsequent death of motor neurons. However, reduction of mutant TDP-43 selectively in motor neurons did not prevent age-dependent degeneration of axons and neuromuscular junction loss, nor did it attenuate astrogliosis or microgliosis. Thus, disease mechanism is non-cell autonomous with mutant TDP-43 expressed in motor neurons determining disease onset but progression defined by mutant acting within other cell types.
Nakamura, Motonobu; Schneider, Marlon R; Schmidt-Ullrich, Ruth; Paus, Ralf
2013-01-01
Human hair disorders comprise a number of different types of alopecia, atrichia, hypotrichosis, distinct hair shaft disorders as well as hirsutism and hypertrichosis. Their causes vary from genodermatoses (e.g. hypotrichoses) via immunological disorders (e.g. alopecia areata, autoimmune cicatrical alopecias) to hormone-dependent abnormalities (e.g. androgenetic alopecia). A large number of spontaneous mouse mutants and genetically engineered mice develop abnormalities in hair follicle morphogenesis, cycling, and/or hair shaft formation, whose analysis has proven invaluable to define the molecular regulation of hair growth, ranging from hair follicle development, and cycling to hair shaft formation and stem cell biology. Also, the accumulating reports on hair phenotypes of mouse strains provide important pointers to better understand the molecular mechanisms underlying human hair growth disorders. Since numerous new mouse mutants with a hair phenotype have been reported since the publication of our earlier review on this matter a decade ago, we present here an updated, tabulated mini-review. The updated annotated tables list a wide selection of mouse mutants with hair growth abnormalities, classified into four categories: Mutations that affect hair follicle (1) morphogenesis, (2) cycling, (3) structure, and (4) mutations that induce extrafollicular events (for example immune system defects) resulting in secondary hair growth abnormalities. This synthesis is intended to provide a useful source of reference when studying the molecular controls of hair follicle growth and differentiation, and whenever the hair phenotypes of a newly generated mouse mutant need to be compared with existing ones. Copyright © 2012 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
Inga, Alberto; Nahari, Dorit; Velasco-Miguel, Susana; Friedberg, Errol C; Resnick, Michael A
2002-08-22
A mutation in codon 122 of the mouse p53 gene resulting in a T to L amino acid substitution (T122-->L) is frequently associated with skin cancer in UV-irradiated mice that are both homozygous mutant for the nucleotide excision repair (NER) gene Xpc (Xpc(-/-)) and hemizygous mutant for the p53 gene. We investigated the functional consequences of the mouse T122-->L mutation when expressed either in mammalian cells or in the yeast Saccharomyces cerevisiae. Similar to a non-functional allele, high expression of the T122-->L allele in p53(-/-) mouse embryo fibroblasts and human Saos-2 cells failed to suppress growth. However, the T122-->L mutant p53 showed wild-type transactivation levels with Bax and MDM2 promoters when expressed in either cell type and retained transactivation of the p21 and the c-Fos promoters in one cell line. Using a recently developed rheostatable p53 induction system in yeast we assessed the T122-->L transactivation capacity at low levels of protein expression using 12 different p53 response elements (REs). Compared to wild-type p53 the T122-->L protein manifested an unusual transactivation pattern comprising reduced and enhanced activity with specific REs. The high incidence of the T122-->L mutant allele in the Xpc(-/-) background suggests that both genetic and epigenetic conditions may facilitate the emergence of particular functional p53 mutations. Furthermore, the approach that we have taken also provides for the dissection of functions that may be retained in many p53 tumor alleles.
Chandra, Dev; Korpi, Esa R; Miralles, Celia P; De Blas, Angel L; Homanics, Gregg E
2005-01-01
Background Gamma-aminobutyric acid type A receptors (GABAA-Rs) are the major inhibitory receptors in the mammalian brain and are modulated by a number of sedative/hypnotic drugs including benzodiazepines and anesthetics. The significance of specific GABAA-Rs subunits with respect to behavior and in vivo drug responses is incompletely understood. The γ2 subunit is highly expressed throughout the brain. Global γ2 knockout mice are insensitive to the hypnotic effects of diazepam and die perinatally. Heterozygous γ2 global knockout mice are viable and have increased anxiety-like behaviors. To further investigate the role of the γ2 subunit in behavior and whole animal drug action, we used gene targeting to create a novel mouse line with attenuated γ2 expression, i.e., γ2 knockdown mice. Results Knockdown mice were created by inserting a neomycin resistance cassette into intron 8 of the γ2 gene. Knockdown mice, on average, showed a 65% reduction of γ2 subunit mRNA compared to controls; however γ2 gene expression was highly variable in these mice, ranging from 10–95% of normal. Immunohistochemical studies demonstrated that γ2 protein levels were also variably reduced. Pharmacological studies using autoradiography on frozen brain sections demonstrated that binding of the benzodiazepine site ligand Ro15-4513 was decreased in mutant mice compared to controls. Behaviorally, knockdown mice displayed enhanced anxiety-like behaviors on the elevated plus maze and forced novelty exploration tests. Surprisingly, mutant mice had an unaltered response to hypnotic doses of the benzodiazepine site ligands diazepam, midazolam and zolpidem as well as ethanol and pentobarbital. Lastly, we demonstrated that the γ2 knockdown mouse line can be used to create γ2 global knockout mice by crossing to a general deleter cre-expressing mouse line. Conclusion We conclude that: 1) insertion of a neomycin resistance gene into intron 8 of the γ2 gene variably reduced the amount of γ2, and that 2) attenuated expression of γ2 increased anxiety-like behaviors but did not lead to differences in the hypnotic response to benzodiazepine site ligands. This suggests that reduced synaptic inhibition can lead to a phenotype of increased anxiety-like behavior. In contrast, normal drug effects can be maintained despite a dramatic reduction in GABAA-R targets. PMID:15850489
Suppression of calbindin-D28k expression exacerbates SCA1 phenotype in a disease mouse model.
Vig, Parminder J S; Wei, Jinrong; Shao, Qingmei; Lopez, Maripar E; Halperin, Rebecca; Gerber, Jill
2012-09-01
Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurological disorder caused by the expansion of a polyglutamine tract in the mutant protein ataxin-1. The cerebellar Purkinje cells (PCs) are the major targets of mutant ataxin-1. The mechanism of PC death in SCA1 is not known; however, previous work indicates that downregulation of specific proteins involved in calcium homeostasis and signaling by mutant ataxin-1 is the probable cause of PC degeneration in SCA1. In this study, we explored if targeted deprivation of PC specific calcium-binding protein calbindin-D28k (CaB) exacerbates ataxin-1 mediated toxicity in SCA1 transgenic (Tg) mice. Using behavioral tests, we found that though both SCA1/+ and SCA1/+: CaB null (-/+) double mutants exhibited progressive impaired performance on the rotating rod, a simultaneous enhancement of exploratory activity, and absence of deficits in coordination, the double mutants were more severely impaired than SCA1/+ mice. With increasing age, SCA1/+ mice showed a progressive loss in the expression and localization of CaB and other PC specific calcium-binding and signaling proteins. In double mutants, these changes were more pronounced and had an earlier onset. Gene expression profiling of young mice exhibiting no behavior or biochemical deficits revealed a differential expression of many genes common to SCA1/+ and CaB-/+ lines, and unique to SCA1/+: CaB-/+ phenotype. Our study provides further evidence for a critical role of CaB in SCA1 pathogenesis, which may help identify new therapeutic targets to treat SCA1 or other cerebellar ataxias.
Raefsky, Sophia M; Furman, Ran; Milne, Ginger; Pollock, Erik; Axelsen, Paul; Mattson, Mark P; Shchepinov, Mikhail S
2018-06-01
Alzheimer's disease (AD) involves progressive deposition of amyloid β-peptide (Aβ), synapse loss, and neuronal death, which occur in brain regions critical for learning and memory. Considerable evidence suggests that lipid peroxidation contributes to synaptic dysfunction and neuronal degeneration, both upstream and downstream of Aβ pathology. Recent findings suggest that lipid peroxidation can be inhibited by replacement of polyunsaturated fatty acids (PUFA) with isotope-reinforced (deuterated) PUFA (D-PUFA), and that D-PUFA can protect neurons in experimental models of Parkinson's disease. Here, we determined whether dietary D-PUFA would ameliorate Aβ pathology and/or cognitive deficits in a mouse model of AD (amyloid precursor protein/presenilin 1 double mutant transgenic mice). The D-PUFA diet did not ameliorate spatial learning and memory deficits in the AD mice. Compared to mice fed an hydrogenated-PUFA control diet, those fed D-PUFA for 5 months exhibited high levels of incorporation of deuterium into arachidonic acid and docosahexaenoic acid, and reduced concentrations of lipid peroxidation products (F2 isoprostanes and neuroprostanes), in the brain tissues. Concentrations of Aβ40 and Aβ38 in the hippocampus were significantly lower, with a trend to reduced concentrations of Aβ42, in mice fed D-PUFA compared to those fed hydrogenated-PUFA. We conclude that a D-PUFA diet reduces the brain tissue concentrations of both arachidonic acid and docosahexaenoic acid oxidation products, as well as the concentration of Aβs. Published by Elsevier Inc.
Li, Juan; Prins, Daniel; Park, Hyun Jung; Grinfeld, Jacob; Gonzalez-Arias, Carlos; Loughran, Stephen; Dovey, Oliver M; Klampfl, Thorsten; Bennett, Cavan; Hamilton, Tina L; Pask, Dean C; Sneade, Rachel; Williams, Matthew; Aungier, Juliet; Ghevaert, Cedric; Vassiliou, George S; Kent, David G; Green, Anthony R
2018-02-08
Somatic mutations in the endoplasmic reticulum chaperone calreticulin (CALR) are detected in approximately 40% of patients with essential thrombocythemia (ET) and primary myelofibrosis (PMF). Multiple different mutations have been reported, but all result in a +1-bp frameshift and generate a novel protein C terminus. In this study, we generated a conditional mouse knockin model of the most common CALR mutation, a 52-bp deletion. The mutant novel human C-terminal sequence is integrated into the otherwise intact mouse CALR gene and results in mutant CALR expression under the control of the endogenous mouse locus. CALR del/+ mice develop a transplantable ET-like disease with marked thrombocytosis, which is associated with increased and morphologically abnormal megakaryocytes and increased numbers of phenotypically defined hematopoietic stem cells (HSCs). Homozygous CALR del/del mice developed extreme thrombocytosis accompanied by features of MF, including leukocytosis, reduced hematocrit, splenomegaly, and increased bone marrow reticulin. CALR del/+ HSCs were more proliferative in vitro, but neither CALR del/+ nor CALR del/del displayed a competitive transplantation advantage in primary or secondary recipient mice. These results demonstrate the consequences of heterozygous and homozygous CALR mutations and provide a powerful model for dissecting the pathogenesis of CALR-mutant ET and PMF. © 2018 by The American Society of Hematology.
Rubinstein, M; Mogil, J S; Japón, M; Chan, E C; Allen, R G; Low, M J
1996-01-01
A physiological role for beta-endorphin in endogenous pain inhibition was investigated by targeted mutagenesis of the proopiomelanocortin gene in mouse embryonic stem cells. The tyrosine codon at position 179 of the proopiomelanocortin gene was converted to a premature translational stop codon. The resulting transgenic mice display no overt developmental or behavioral alterations and have a normally functioning hypothalamic-pituitary-adrenal axis. Homozygous transgenic mice with a selective deficiency of beta-endorphin exhibit normal analgesia in response to morphine, indicating the presence of functional mu-opiate receptors. However, these mice lack the opioid (naloxone reversible) analgesia induced by mild swim stress. Mutant mice also display significantly greater nonopioid analgesia in response to cold water swim stress compared with controls and display paradoxical naloxone-induced analgesia. These changes may reflect compensatory upregulation of alternative pain inhibitory mechanisms. Images Fig. 1 Fig. 2 PMID:8633004
Distinct Neurobehavioural Effects of Cannabidiol in Transmembrane Domain Neuregulin 1 Mutant Mice
Long, Leonora E.; Chesworth, Rose; Huang, Xu-Feng; Wong, Alexander; Spiro, Adena; McGregor, Iain S.; Arnold, Jonathon C.; Karl, Tim
2012-01-01
The cannabis constituent cannabidiol (CBD) possesses anxiolytic and antipsychotic properties. We have previously shown that transmembrane domain neuregulin 1 mutant (Nrg1 TM HET) mice display altered neurobehavioural responses to the main psychoactive constituent of cannabis, Δ9-tetrahydrocannabinol. Here we investigated whether Nrg1 TM HET mice respond differently to CBD and whether CBD reverses schizophrenia-related phenotypes expressed by these mice. Adult male Nrg1 TM HET and wild type-like littermates (WT) received vehicle or CBD (1, 50 or 100 mg/kg i.p.) for 21 days. During treatment and 48 h after withdrawal we measured behaviour, whole blood CBD concentrations and autoradiographic receptor binding. Nrg1 HET mice displayed locomotor hyperactivity, PPI deficits and reduced 5-HT2A receptor binding density in the substantia nigra, but these phenotypes were not reversed by CBD. However, long-term CBD (50 and 100 mg/kg) selectively enhanced social interaction in Nrg1 TM HET mice. Furthermore, acute CBD (100 mg/kg) selectively increased PPI in Nrg1 TM HET mice, although tolerance to this effect was manifest upon repeated CBD administration. Long-term CBD (50 mg/kg) also selectively increased GABAA receptor binding in the granular retrosplenial cortex in Nrg1 TM HET mice and reduced 5-HT2A binding in the substantia nigra in WT mice. Nrg1 appears necessary for CBD-induced anxiolysis since only WT mice developed decreased anxiety-related behaviour with repeated CBD treatment. Altered pharmacokinetics in mutant mice could not explain our findings since no genotype differences existed in CBD blood concentrations. Here we demonstrate that Nrg1 modulates acute and long-term neurobehavioural effects of CBD, which does not reverse the schizophrenia-relevant phenotypes. PMID:22509273
Distinct neurobehavioural effects of cannabidiol in transmembrane domain neuregulin 1 mutant mice.
Long, Leonora E; Chesworth, Rose; Huang, Xu-Feng; Wong, Alexander; Spiro, Adena; McGregor, Iain S; Arnold, Jonathon C; Karl, Tim
2012-01-01
The cannabis constituent cannabidiol (CBD) possesses anxiolytic and antipsychotic properties. We have previously shown that transmembrane domain neuregulin 1 mutant (Nrg1 TM HET) mice display altered neurobehavioural responses to the main psychoactive constituent of cannabis, Δ(9)-tetrahydrocannabinol. Here we investigated whether Nrg1 TM HET mice respond differently to CBD and whether CBD reverses schizophrenia-related phenotypes expressed by these mice. Adult male Nrg1 TM HET and wild type-like littermates (WT) received vehicle or CBD (1, 50 or 100 mg/kg i.p.) for 21 days. During treatment and 48 h after withdrawal we measured behaviour, whole blood CBD concentrations and autoradiographic receptor binding. Nrg1 HET mice displayed locomotor hyperactivity, PPI deficits and reduced 5-HT(2A) receptor binding density in the substantia nigra, but these phenotypes were not reversed by CBD. However, long-term CBD (50 and 100 mg/kg) selectively enhanced social interaction in Nrg1 TM HET mice. Furthermore, acute CBD (100 mg/kg) selectively increased PPI in Nrg1 TM HET mice, although tolerance to this effect was manifest upon repeated CBD administration. Long-term CBD (50 mg/kg) also selectively increased GABA(A) receptor binding in the granular retrosplenial cortex in Nrg1 TM HET mice and reduced 5-HT(2A) binding in the substantia nigra in WT mice. Nrg1 appears necessary for CBD-induced anxiolysis since only WT mice developed decreased anxiety-related behaviour with repeated CBD treatment. Altered pharmacokinetics in mutant mice could not explain our findings since no genotype differences existed in CBD blood concentrations. Here we demonstrate that Nrg1 modulates acute and long-term neurobehavioural effects of CBD, which does not reverse the schizophrenia-relevant phenotypes.
Sun, Tao; Yi, Haiqing; Yang, Chunyu; Kishnani, Priya S.; Sun, Baodong
2016-01-01
A small portion of cellular glycogen is transported to and degraded in lysosomes by acid α-glucosidase (GAA) in mammals, but it is unclear why and how glycogen is transported to the lysosomes. Stbd1 has recently been proposed to participate in glycogen trafficking to lysosomes. However, our previous study demonstrated that knockdown of Stbd1 in GAA knock-out mice did not alter lysosomal glycogen storage in skeletal muscles. To further determine whether Stbd1 participates in glycogen transport to lysosomes, we generated GAA/Stbd1 double knock-out mice. In fasted double knock-out mice, glycogen accumulation in skeletal and cardiac muscles was not affected, but glycogen content in liver was reduced by nearly 73% at 3 months of age and by 60% at 13 months as compared with GAA knock-out mice, indicating that the transport of glycogen to lysosomes was suppressed in liver by the loss of Stbd1. Exogenous expression of human Stbd1 in double knock-out mice restored the liver lysosomal glycogen content to the level of GAA knock-out mice, as did a mutant lacking the Atg8 family interacting motif (AIM) and another mutant that contains only the N-terminal 24 hydrophobic segment and the C-terminal starch binding domain (CBM20) interlinked by an HA tag. Our results demonstrate that Stbd1 plays a dominant role in glycogen transport to lysosomes in liver and that the N-terminal transmembrane region and the C-terminal CBM20 domain are critical for this function. PMID:27358407
Dubreucq, Sarah; Matias, Isabelle; Cardinal, Pierre; Häring, Martin; Lutz, Beat; Marsicano, Giovanni; Chaouloff, Francis
2012-07-01
The endocannabinoid system (ECS) tightly controls emotional responses to acute aversive stimuli. Repeated stress alters ECS activity but the role played by the ECS in the emotional consequences of repeated stress has not been investigated in detail. This study used social defeat stress, together with pharmacology and genetics to examine the role of cannabinoid type-1 (CB(1)) receptors on repeated stress-induced emotional alterations. Seven daily social defeat sessions increased water (but not food) intake, sucrose preference, anxiety, cued fear expression, and adrenal weight in C57BL/6N mice. The first and the last social stress sessions triggered immediate brain region-dependent changes in the concentrations of the principal endocannabinoids anandamide and 2-arachidonoylglycerol. Pretreatment before each of the seven stress sessions with the CB(1) receptor antagonist rimonabant prolonged freezing responses of stressed mice during cued fear recall tests. Repeated social stress abolished the increased fear expression displayed by constitutive CB(1) receptor-deficient mice. The use of mutant mice lacking CB(1) receptors from cortical glutamatergic neurons or from GABAergic neurons indicated that it is the absence of the former CB(1) receptor population that is responsible for the fear responses in socially stressed CB(1) mutant mice. In addition, stress-induced hypolocomotor reactivity was amplified by the absence of CB(1) receptors from GABAergic neurons. Mutant mice lacking CB(1) receptors from serotonergic neurons displayed a higher anxiety but decreased cued fear expression than their wild-type controls. These mutant mice failed to show social stress-elicited increased sucrose preference. This study shows that (i) release of endocannabinoids during stress exposure impedes stress-elicited amplification of cued fear behavior, (ii) social stress opposes the increased fear expression and delayed between-session extinction because of the absence of CB(1) receptors from cortical glutamatergic neurons, and (iii) CB(1) receptors on central serotonergic neurons are involved in the sweet consumption response to repeated stress.
Dubreucq, Sarah; Matias, Isabelle; Cardinal, Pierre; Häring, Martin; Lutz, Beat; Marsicano, Giovanni; Chaouloff, Francis
2012-01-01
The endocannabinoid system (ECS) tightly controls emotional responses to acute aversive stimuli. Repeated stress alters ECS activity but the role played by the ECS in the emotional consequences of repeated stress has not been investigated in detail. This study used social defeat stress, together with pharmacology and genetics to examine the role of cannabinoid type-1 (CB1) receptors on repeated stress-induced emotional alterations. Seven daily social defeat sessions increased water (but not food) intake, sucrose preference, anxiety, cued fear expression, and adrenal weight in C57BL/6N mice. The first and the last social stress sessions triggered immediate brain region-dependent changes in the concentrations of the principal endocannabinoids anandamide and 2-arachidonoylglycerol. Pretreatment before each of the seven stress sessions with the CB1 receptor antagonist rimonabant prolonged freezing responses of stressed mice during cued fear recall tests. Repeated social stress abolished the increased fear expression displayed by constitutive CB1 receptor-deficient mice. The use of mutant mice lacking CB1 receptors from cortical glutamatergic neurons or from GABAergic neurons indicated that it is the absence of the former CB1 receptor population that is responsible for the fear responses in socially stressed CB1 mutant mice. In addition, stress-induced hypolocomotor reactivity was amplified by the absence of CB1 receptors from GABAergic neurons. Mutant mice lacking CB1 receptors from serotonergic neurons displayed a higher anxiety but decreased cued fear expression than their wild-type controls. These mutant mice failed to show social stress-elicited increased sucrose preference. This study shows that (i) release of endocannabinoids during stress exposure impedes stress-elicited amplification of cued fear behavior, (ii) social stress opposes the increased fear expression and delayed between-session extinction because of the absence of CB1 receptors from cortical glutamatergic neurons, and (iii) CB1 receptors on central serotonergic neurons are involved in the sweet consumption response to repeated stress. PMID:22434220
DOE Office of Scientific and Technical Information (OSTI.GOV)
Layton, A.D.; Cross, F.T.; Steigler, G.L.
1994-12-31
We have exposed Big Blue{trademark} transgenic mice by inhalation to 320, 640 and 960 Working Level Months (WLM) of radon progeny. Mice were sacrificed after 3, 6 and 9 days; the time periods required to obtain the exposures. Control mice were also sacrificed at each time interval. In each case all tissues were excised, flash frozen in liquid nitrogen, and stored at -80{degrees}C for further analysis. Twelve lacI mutations have been isolated from the lung tissue of a mouse from the 960-WLM exposure group; the lacI genes from these mutants have been sequenced. Sequence data indicate that three of themore » mutants have a C;G deletion at BP 978 and are possibly clonal in origin. Two mutants have multiple events within the gene: one has a an A:T to C:G transversion and a C:G insertion separated by 291 BPs; the second has a G:C to A:T transition as well as an A:T deletion followed by 6 base pairs downstream by a T:A insertion. Other mutations include a single G:C to A:T transition, a two base pair deletion, and a C:G to T:A transition. Mutant plaques are being evaluated from individual mice at other dose levels. Time course experiments are also planned. These studies will help define the molecular fine structure of mutations induced by high-LET radiation exposure.« less
Further studies on cortical tangential migration in wild type and Pax-6 mutant mice.
Jiménez, D; López-Mascaraque, L; de Carlos, J A; Valverde, F
2002-01-01
In this study we present new data concerning the tangential migration from the medial and lateral ganglionic eminences (MGE and LGE) to the cerebral cortex during development. We have used Calbindin as a useful marker to follow the itinerary of tangential migratory cells during early developmental stages in wild-type and Pax-6 homozygous mutant mice. In the wild-type mice, at early developmental stages, migrating cells advance through the intermediate zone (IZ) and preplate (PP). At more advanced stages, migrating cells were present in the subplate (SP) and cortical plate (CP) to reach the entire developing cerebral cortex. We found that, in the homozygous mutant mice (Pax-6(Sey-Neu)/Pax-6(Sey-Neu)), this tangential migration is severely affected at early developmental stages: migrating cells were absent in the IZ, which were only found some days later, suggesting that in the mutant mice, there is a temporal delay in tangential migration. We have also defined some possible mechanisms to explain certain migratory routes from the basal telencephalon to the cerebral cortex. We describe the existence of two factors, which we consider to be essential for the normal migration; the first one is the cell adhesion molecule PSA-NCAM, whose role in other migratory systems is well known. The second factor is Robo-2, whose expression delimits a channel for the passage of migratory cells from the basal telencephalon to the cerebral cortex.
Schizophrenia-Like Dopamine Release Abnormalities in a Mouse Model of NMDA Receptor Hypofunction.
Nakao, Kazuhito; Jeevakumar, Vivek; Jiang, Sunny Zhihong; Fujita, Yuko; Diaz, Noelia B; Pretell Annan, Carlos A; Eskow Jaunarajs, Karen L; Hashimoto, Kenji; Belforte, Juan E; Nakazawa, Kazu
2018-01-31
Amphetamine-induced augmentation of striatal dopamine and its blunted release in prefrontal cortex (PFC) is a hallmark of schizophrenia pathophysiology. Although N-methyl-D-aspartate receptor (NMDAR) hypofunction is also implicated in schizophrenia, it remains unclear whether NMDAR hypofunction leads to dopamine release abnormalities. We previously demonstrated schizophrenia-like phenotypes in GABAergic neuron-specific NMDAR hypofunctional mutant mice, in which Ppp1r2-Cre dependent deletion of indispensable NMDAR channel subunit Grin1 is induced in corticolimbic GABAergic neurons including parvalbumin (PV)-positive neurons, in postnatal development, but not in adulthood. Here, we report enhanced dopaminomimetic-induced locomotor activity in these mutants, along with bidirectional, site-specific changes in in vivo amphetamine-induced dopamine release: nucleus accumbens (NAc) dopamine release was enhanced by amphetamine in postnatal Ppp1r2-Cre/Grin1 knockout (KO) mice, whereas dopamine release was dramatically reduced in the medial PFC (mPFC) compared to controls. Basal tissue dopamine levels in both the NAc and mPFC were unaffected. Interestingly, the magnitude and distribution of amphetamine-induced c-Fos expression in dopamine neurons was comparable between genotypes across dopaminergic input subregions in the ventral tegmental area (VTA). These effects appear to be both developmentally and cell-type specifically modulated, since PV-specific Grin1 KO mice could induce the same effects as seen in postnatal-onset Ppp1r2-Cre/Grin1 KO mice, but no such abnormalities were observed in somatostatin-Cre/Grin1 KO mice or adult-onset Ppp1r2-Cre/Grin1 KO mice. These results suggest that PV GABAergic neuron-NMDAR hypofunction in postnatal development confers bidirectional NAc hyper- and mPFC hypo-sensitivity to amphetamine-induced dopamine release, similar to that classically observed in schizophrenia pathophysiology. © The Author(s) 2018. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center.
Daikoku, Takiko; Song, Haengseok; Guo, Yong; Riesewijk, Anne; Mosselman, Sietse; Das, Sanjoy K; Dey, Sudhansu K
2004-05-01
Successful implantation absolutely depends on the reciprocal interaction between the implantation-competent blastocyst and the receptive uterus. Expression and gene targeting studies have shown that leukemia inhibitory factor (LIF), a cytokine of the IL-6 family, and Hoxa-10, an abdominalB-like homeobox gene, are crucial to implantation and decidualization in mice. Using these mutant mice, we sought to determine the importance of Msx-1 (another homeobox gene formerly known as Hox-7.1) and of Wnt4 (a ligand of the Wnt family) signaling in implantation because of their reported functions during development. We observed that Msx-1, Wnt4, and a Wnt antagonist sFRP4 are differentially expressed in the mouse uterus during the periimplantation period, suggesting their role in implantation. In addition, we observed an aberrant uterine expression of Msx-1 and sFRP4 in Lif mutant mice, and of Wnt4 and sFRP4 in Hoxa-10 mutant mice, further reinforcing the importance of these signaling pathways in implantation. Collectively, the present results provide evidence for a novel cytokine-homeotic-Wnt signaling network in implantation.
Berezniuk, Iryna; Rodriguiz, Ramona M; Zee, Michael L; Marcus, David J; Pintar, John; Morgan, Daniel J; Wetsel, William C; Fricker, Lloyd D
2017-11-01
To identify neuropeptides that are regulated by cocaine, we used a quantitative peptidomic technique to examine the relative levels of neuropeptides in several regions of mouse brain following daily intraperitoneal administration of 10 mg/kg cocaine or saline for 7 days. A total of 102 distinct peptides were identified in one or more of the following brain regions: nucleus accumbens, caudate putamen, frontal cortex, and ventral tegmental area. None of the peptides detected in the caudate putamen or frontal cortex were altered by cocaine administration. Three peptides in the nucleus accumbens and seven peptides in the ventral tegmental area were significantly decreased in cocaine-treated mice. Five of these ten peptides are derived from proSAAS, a secretory pathway protein and neuropeptide precursor. To investigate whether proSAAS peptides contribute to the physiological effects of psychostimulants, we examined acute responses to cocaine and amphetamine in the open field with wild-type (WT) and proSAAS knockout (KO) mice. Locomotion was stimulated more robustly in the WT compared to mutant mice for both psychostimulants. Behavioral sensitization to amphetamine was not maintained in proSAAS KO mice and these mutants failed to sensitize to cocaine. To determine whether the rewarding effects of cocaine were altered, mice were tested in conditioned place preference (CPP). Both WT and proSAAS KO mice showed dose-dependent CPP to cocaine that was not distinguished by genotype. Taken together, these results suggest that proSAAS-derived peptides contribute differentially to the behavioral sensitization to psychostimulants, while the rewarding effects of cocaine appear intact in mice lacking proSAAS. © 2017 International Society for Neurochemistry.
Inflammatory and age-related pathologies in mice with ectopic expression of human PARP-1.
Mangerich, Aswin; Herbach, Nadja; Hanf, Benjamin; Fischbach, Arthur; Popp, Oliver; Moreno-Villanueva, María; Bruns, Oliver T; Bürkle, Alexander
2010-06-01
Poly(ADP-ribose) polymerase-1 (PARP-1) is a sensor for DNA strand breaks and some unusual DNA structures and catalyzes poly(ADP-ribosyl)ation of nuclear proteins with NAD(+) serving as substrate. PARP-1 is involved in the regulation of genomic integrity, transcription, inflammation, and cell death. Due to its versatile role, PARP-1 is discussed both as a longevity factor and as an aging-promoting factor. Recently, we generated a mouse model with ectopic integration of full-length hPARP-1 [Mangerich, A., Scherthan, H., Diefenbach, J., Kloz, U., van der Hoeven, F., Beneke, S. and Bürkle, A., 2009. A caveat in mouse genetic engineering: ectopic gene targeting in ES cells by bidirectional extension of the homology arms of a gene replacement vector carrying human PARP-1. Transgenic Res. 18, 261-279]. Here, we show that hPARP-1 mice exhibit impaired survival rates accompanied by reduced hair growth and premature development of several inflammation and age-associated pathologies, such as adiposity, kyphosis, nephropathy, dermatitis, pneumonitis, cardiomyopathy, hepatitis, and anemia. Moreover, mutant male mice showed impaired glucose tolerance, yet without developing manifest diabetes. Overall tumor burden was comparable in wild-type and hPARP-1 mice, but tumor spectrum was shifted in mutant mice, showing lower incidence of sarcomas, but increased incidence of carcinomas. Furthermore, DNA repair was delayed in splenocytes of hPARP-1 mice, and gene expression of pro-inflammatory cytokines was dysregulated. Our results suggest that in hPARP-1 mice impaired DNA repair, accompanied by a continuous low-level increase in pro-inflammatory stimuli, causes development of chronic diseases leading to impaired survival. (c) 2010 Elsevier Ireland Ltd. All rights reserved.
Zhao, S; Edwards, J; Carroll, J; Wiedholz, L; Millstein, R A; Jaing, C; Murphy, D L; Lanthorn, T H; Holmes, A
2006-06-19
The 5-hydroxytryptamine transporter (5-HTT) regulates 5-hydroxytryptamine (5-HT) neurotransmission by removing 5-HT from the synaptic cleft. Emerging evidence from clinical and genetic studies implicates the 5-HTT in various neuropsychiatric conditions, including anxiety and depression. Here we report that a 5-HTT null mutant mouse line was generated by gene trapping that disrupted the sequence encoding the C-terminus of 5-HTT. This mutation resulted in significant reduction of 5-HTT mRNA and loss of 5-HTT protein. Brain levels of 5-HT and its major metabolite, 5-hydroxyindoleacetic acid, were markedly decreased in C-terminus 5-HTT -/- mice, while 5-HT uptake or 5-HT content in platelets was absent. Behavioral phenotyping showed that C-terminus 5-HTT -/- mice were normal on a screen for gross behavioral, neurological, and sensory functions. In the tail suspension test for depression-related behavior, C-terminus 5-HTT -/- mice showed increased immobility relative to their +/+ controls. By comparison, a previously generated line of 5-HTT -/- mice lacking exon 2, encoding the N-terminus of the 5-HTT, showed abnormally high immobility in response to repeated, but not acute, exposure to the tail suspension test. In a novel, brightly-lit open field, both C-terminus 5-HTT -/- mice and N-terminus 5-HTT -/- mice displayed decreased center time and reduced locomotor activity compared with their +/+ controls. Both mutant lines buried significantly fewer marbles than their +/+ controls in the marble burying test. These findings further demonstrate the neurobiological functions of the 5-HTT and add to a growing literature linking genetic variation in 5-HTT function with emotional abnormalities.
Sha, Jian; Agar, Stacy L; Baze, Wallace B; Olano, Juan P; Fadl, Amin A; Erova, Tatiana E; Wang, Shaofei; Foltz, Sheri M; Suarez, Giovanni; Motin, Vladimir L; Chauhan, Sadhana; Klimpel, Gary R; Peterson, Johnny W; Chopra, Ashok K
2008-04-01
Yersinia pestis evolved from Y. pseudotuberculosis to become the causative agent of bubonic and pneumonic plague. We identified a homolog of the Salmonella enterica serovar Typhimurium lipoprotein (lpp) gene in Yersinia species and prepared lpp gene deletion mutants of Y. pseudotuberculosis YPIII, Y. pestis KIM/D27 (pigmentation locus minus), and Y. pestis CO92 with reduced virulence. Mice injected via the intraperitoneal route with 5 x 10(7) CFU of the Deltalpp KIM/D27 mutant survived a month, even though this would have constituted a lethal dose for the parental KIM/D27 strain. Subsequently, these Deltalpp KIM/D27-injected mice were solidly protected against an intranasally administered, highly virulent Y. pestis CO92 strain when it was given as five 50% lethal doses (LD(50)). In a parallel study with the pneumonic plague mouse model, after 72 h postinfection, the lungs of animals infected with wild-type (WT) Y. pestis CO92 and given a subinhibitory dose of levofloxacin had acute inflammation, edema, and masses of bacteria, while the lung tissue appeared essentially normal in mice inoculated with the Deltalpp mutant of CO92 and given the same dose of levofloxacin. Importantly, while WT Y. pestis CO92 could be detected in the bloodstreams and spleens of infected mice at 72 h postinfection, the Deltalpp mutant of CO92 could not be detected in those organs. Furthermore, the levels of cytokines/chemokines detected in the sera were significantly lower in animals infected with the Deltalpp mutant than in those infected with WT CO92. Additionally, the Deltalpp mutant was more rapidly killed by macrophages than was the WT CO92 strain. These data provided evidence that the Deltalpp mutants of yersiniae were significantly attenuated and could be useful tools in the development of new vaccines.
Voigt, Robin M; Ellman, Michael B; Summa, Keith C; Vitaterna, Martha Hotz; Keshavarizian, Ali; Turek, Fred W; Meng, Qing-Jun; Stein, Gary S.; van Wijnen, Andre J.; Chen, Di; Forsyth, Christopher B; Im, Hee-Jeong
2015-01-01
Circadian rhythm dysfunction is linked to many diseases, yet pathophysiological roles in articular cartilage homeostasis and degenerative joint disease including osteoarthritis (OA) remains to be investigated in vivo. Here, we tested whether environmental or genetic disruption of circadian homeostasis predisposes to OA-like pathological changes. Male mice were examined for circadian locomotor activity upon changes in the light:dark (LD) cycle or genetic disruption of circadian rhythms. Wild-type (WT) mice were maintained on a constant 12 hour:12 hour LD cycle (12:12 LD) or exposed to weekly 12 hour phase shifts. Alternatively, male circadian mutant mice (ClockΔ19 or Csnk1etau mutants) were compared with age-matched WT littermates that were maintained on a constant 12:12 LD cycle. Disruption of circadian rhythms promoted osteoarthritic changes by suppressing proteoglycan accumulation, upregulating matrix-degrading enzymes and downregulating anabolic mediators in the mouse knee joint. Mechanistically, these effects involved activation of the PKCδ-ERK-RUNX2/NFκB and β-catenin signaling pathways, stimulation of MMP-13 and ADAMTS-5, as well as suppression of the anabolic mediators SOX9 and TIMP-3 in articular chondrocytes of phase-shifted mice. Genetic disruption of circadian homeostasis does not predispose to OA-like pathological changes in joints. Our results, for the first time, provide compelling in vivo evidence that environmental disruption of circadian rhythms is a risk factor for the development of OA-like pathological changes in the mouse knee joint. PMID:25655021
Auditory processing and morphological anomalies in medial geniculate nucleus of Cntnap2 mutant mice.
Truong, Dongnhu T; Rendall, Amanda R; Castelluccio, Brian C; Eigsti, Inge-Marie; Fitch, R Holly
2015-12-01
Genetic epidemiological studies support a role for CNTNAP2 in developmental language disorders such as autism spectrum disorder, specific language impairment, and dyslexia. Atypical language development and function represent a core symptom of autism spectrum disorder (ASD), with evidence suggesting that aberrant auditory processing-including impaired spectrotemporal processing and enhanced pitch perception-may both contribute to an anomalous language phenotype. Investigation of gene-brain-behavior relationships in social and repetitive ASD symptomatology have benefited from experimentation on the Cntnap2 knockout (KO) mouse. However, auditory-processing behavior and effects on neural structures within the central auditory pathway have not been assessed in this model. Thus, this study examined whether auditory-processing abnormalities were associated with mutation of the Cntnap2 gene in mice. Cntnap2 KO mice were assessed on auditory-processing tasks including silent gap detection, embedded tone detection, and pitch discrimination. Cntnap2 knockout mice showed deficits in silent gap detection but a surprising superiority in pitch-related discrimination as compared with controls. Stereological analysis revealed a reduction in the number and density of neurons, as well as a shift in neuronal size distribution toward smaller neurons, in the medial geniculate nucleus of mutant mice. These findings are consistent with a central role for CNTNAP2 in the ontogeny and function of neural systems subserving auditory processing and suggest that developmental disruption of these neural systems could contribute to the atypical language phenotype seen in autism spectrum disorder. (c) 2015 APA, all rights reserved).
Hirozane, Toru; Tohmonda, Takahide; Yoda, Masaki; Shimoda, Masayuki; Kanai, Yae; Matsumoto, Morio; Morioka, Hideo; Nakamura, Masaya; Horiuchi, Keisuke
2016-09-28
Ataxia-telangiectasia mutated (ATM) kinase is a central component involved in the signal transduction of the DNA damage response (DDR) and thus plays a critical role in the maintenance of genomic integrity. Although the primary functions of ATM are associated with the DDR, emerging data suggest that ATM has many additional roles that are not directly related to the DDR, including the regulation of oxidative stress signaling, insulin sensitivity, mitochondrial homeostasis, and lymphocyte development. Patients and mice lacking ATM exhibit growth retardation and lower bone mass; however, the mechanisms underlying the skeletal defects are not fully understood. In the present study, we generated mutant mice in which ATM is specifically inactivated in osteoclasts. The mutant mice did not exhibit apparent developmental defects but showed reduced bone mass due to increased osteoclastic bone resorption. Osteoclasts lacking ATM were more resistant to apoptosis and showed a prolonged lifespan compared to the controls. Notably, the inactivation of ATM in osteoclasts resulted in enhanced NF-κB signaling and an increase in the expression of NF-κB-targeted genes. The present study reveals a novel function for ATM in regulating bone metabolism by suppressing the lifespan of osteoclasts and osteoclast-mediated bone resorption.
van Enkhuizen, Jordy; Minassian, Arpi; Young, Jared W.
2013-01-01
Bipolar disorder (BD) is a pervasive neuropsychiatric disorder characterized by episodes of mania and depression. The switch between mania and depression may reflect seasonal changes and certainly can be affected by alterations in sleep and circadian control. The circadian locomotor output cycles kaput (CLOCK) protein is a key component of the cellular circadian clock. Mutation of the Clock gene encoding this protein in Clock△19 mutant mice leads to behavioral abnormalities reminiscent of BD mania. To date, however, these mice have not been assessed in behavioral paradigms that have cross-species translational validity. In the present studies of Clock△19 and wildtype (WT) littermate mice, we quantified exploratory behavior and sensorimotor gating, which are abnormal in BD manic patients. We also examined the saccharin preference of these mice and their circadian control in different photoperiods. Clock△19 mice exhibited behavioral alterations that are consistent with BD manic patients tested in comparable tasks, including hyperactivity, increased specific exploration, and reduced sensorimotor gating. Moreover, compared to WT mice, Clock△19 mice exhibited a greater preference for sweetened solutions and greater sensitivity to altered photoperiod. In contrast with BD manic patients however, Clock△19 mice exhibited more circumscribed movements during exploration. Future studies will extend the characterization of these mice in measures with cross-species translational relevance to human testing. PMID:23623885
Modeled changes of cerebellar activity in mutant mice are predictive of their learning impairments
NASA Astrophysics Data System (ADS)
Badura, Aleksandra; Clopath, Claudia; Schonewille, Martijn; de Zeeuw, Chris I.
2016-11-01
Translating neuronal activity to measurable behavioral changes has been a long-standing goal of systems neuroscience. Recently, we have developed a model of phase-reversal learning of the vestibulo-ocular reflex, a well-established, cerebellar-dependent task. The model, comprising both the cerebellar cortex and vestibular nuclei, reproduces behavioral data and accounts for the changes in neural activity during learning in wild type mice. Here, we used our model to predict Purkinje cell spiking as well as behavior before and after learning of five different lines of mutant mice with distinct cell-specific alterations of the cerebellar cortical circuitry. We tested these predictions by obtaining electrophysiological data depicting changes in neuronal spiking. We show that our data is largely consistent with the model predictions for simple spike modulation of Purkinje cells and concomitant behavioral learning in four of the mutants. In addition, our model accurately predicts a shift in simple spike activity in a mutant mouse with a brainstem specific mutation. This combination of electrophysiological and computational techniques opens a possibility of predicting behavioral impairments from neural activity.
Genes and Alcohol Consumption: Studies with Mutant Mice
Mayfield, Jody; Arends, Michael A.; Harris, R. Adron; Blednov, Yuri A.
2017-01-01
In this chapter, we review the effects of global null mutant and overexpressing transgenic mouse lines on voluntary self-administration of alcohol. We examine approximately 200 publications pertaining to the effects of 155 mouse genes on alcohol consumption in different drinking models. The targeted genes vary in function and include neurotransmitter, ion channel, neuroimmune, and neuropeptide signaling systems. The alcohol self-administration models include operant conditioning, two- and four-bottle choice continuous and intermittent access, drinking in the dark limited access, chronic intermittent ethanol, and scheduled high alcohol consumption tests. Comparisons of different drinking models using the same mutant mice are potentially the most informative, and we will highlight those examples. More mutants have been tested for continuous two-bottle choice consumption than any other test; of the 137 mouse genes examined using this model, 97 (72%) altered drinking in at least one sex. Overall, the effects of genetic manipulations on alcohol drinking often depend on the sex of the mice, alcohol concentration and time of access, genetic background, as well as the drinking test. PMID:27055617
Modeled changes of cerebellar activity in mutant mice are predictive of their learning impairments
Badura, Aleksandra; Clopath, Claudia; Schonewille, Martijn; De Zeeuw, Chris I.
2016-01-01
Translating neuronal activity to measurable behavioral changes has been a long-standing goal of systems neuroscience. Recently, we have developed a model of phase-reversal learning of the vestibulo-ocular reflex, a well-established, cerebellar-dependent task. The model, comprising both the cerebellar cortex and vestibular nuclei, reproduces behavioral data and accounts for the changes in neural activity during learning in wild type mice. Here, we used our model to predict Purkinje cell spiking as well as behavior before and after learning of five different lines of mutant mice with distinct cell-specific alterations of the cerebellar cortical circuitry. We tested these predictions by obtaining electrophysiological data depicting changes in neuronal spiking. We show that our data is largely consistent with the model predictions for simple spike modulation of Purkinje cells and concomitant behavioral learning in four of the mutants. In addition, our model accurately predicts a shift in simple spike activity in a mutant mouse with a brainstem specific mutation. This combination of electrophysiological and computational techniques opens a possibility of predicting behavioral impairments from neural activity. PMID:27805050
Umans, Lieve; Cox, Luk; Tjwa, Marc; Bito, Virginie; Vermeire, Liesbeth; Laperre, Kjell; Sipido, Karin; Moons, Lieve; Huylebroeck, Danny; Zwijsen, An
2007-01-01
Smads are intracellular signaling proteins that transduce signals elicited by members of the transforming growth factor (TGF)-β superfamily. Smad5 and Smad1 are highly homologous, and they mediate primarily bone morphogenetic protein (Bmp) signals. We used the Cre-loxP system and Sm22-Cre and Tie-1-Cre mice to study the function of Smad5 in the developing blood vessel wall. Analysis of embryos demonstrated that deletion of Smad5 in endothelial or smooth muscle cells resulted in a normal organization of embryonic and extra-embryonic vasculature. Angiogenic assays performed in adult mice revealed that mutant mice display a comparable angiogenic and vascular remodeling response to control mice. In Sm22-Cre;Smad5fl/− mice, Smad5 is also deleted in cardiomyocytes. Echocardiographic analysis on those 9-month-old female mice demonstrated larger left ventricle internal diameters and decreased fractional shortening compared with control littermates without signs of cardiac hypertrophy. The decreased cardiac contractility was associated with a decreased performance in a treadmill experiment. In isolated cardiomyocytes, fractional shortening was significantly reduced compared with control cells. These data demonstrate that restricted deletion of Smad5 in the blood vessel wall results in viable mice. However, loss of Smad5 in cardiomyocytes leads to a mild heart defect. PMID:17456754
Umans, Lieve; Cox, Luk; Tjwa, Marc; Bito, Virginie; Vermeire, Liesbeth; Laperre, Kjell; Sipido, Karin; Moons, Lieve; Huylebroeck, Danny; Zwijsen, An
2007-05-01
Smads are intracellular signaling proteins that transduce signals elicited by members of the transforming growth factor (TGF)-beta superfamily. Smad5 and Smad1 are highly homologous, and they mediate primarily bone morphogenetic protein (Bmp) signals. We used the Cre-loxP system and Sm22-Cre and Tie-1-Cre mice to study the function of Smad5 in the developing blood vessel wall. Analysis of embryos demonstrated that deletion of Smad5 in endothelial or smooth muscle cells resulted in a normal organization of embryonic and extra-embryonic vasculature. Angiogenic assays performed in adult mice revealed that mutant mice display a comparable angiogenic and vascular remodeling response to control mice. In Sm22-Cre; Smad5(fl/-) mice, Smad5 is also deleted in cardiomyocytes. Echocardiographic analysis on those 9-month-old female mice demonstrated larger left ventricle internal diameters and decreased fractional shortening compared with control littermates without signs of cardiac hypertrophy. The decreased cardiac contractility was associated with a decreased performance in a treadmill experiment. In isolated cardiomyocytes, fractional shortening was significantly reduced compared with control cells. These data demonstrate that restricted deletion of Smad5 in the blood vessel wall results in viable mice. However, loss of Smad5 in cardiomyocytes leads to a mild heart defect.
Willmann, Jürgen K; Chen, Kai; Wang, Hui; Paulmurugan, Ramasamy; Rollins, Mark; Cai, Weibo; Wang, David S; Chen, Ian Y; Gheysens, Olivier; Rodriguez-Porcel, Martin; Chen, Xiaoyuan; Gambhir, Sanjiv S
2008-02-19
Vascular endothelial growth factor-121 (VEGF121), an angiogenic protein secreted in response to hypoxic stress, binds to VEGF receptors (VEGFRs) overexpressed on vessels of ischemic tissue. The purpose of this study was to evaluate 64Cu-VEGF121 positron emission tomography for noninvasive spatial, temporal, and quantitative monitoring of VEGFR2 expression in a murine model of hindlimb ischemia with and without treadmill exercise training. 64Cu-labeled VEGF121 and a VEGF mutant were tested for VEGFR2 binding specificity in cell culture. Mice (n=58) underwent unilateral ligation of the femoral artery, and postoperative tissue ischemia was assessed with laser Doppler imaging. Longitudinal VEGFR2 expression in exercised and nonexercised mice was quantified with 64Cu-VEGF121 positron emission tomography at postoperative day 8, 15, 22, and 29 and correlated with postmortem gamma-counting. Hindlimbs were excised for immunohistochemistry, Western blotting, and microvessel density measurements. Compared with the VEGF mutant, VEGF121 showed specific binding to VEGFR2. Perfusion in ischemic hindlimbs fell to 9% of contralateral hindlimb on postoperative day 1 and recovered to 82% on day 29. 64Cu-VEGF121 uptake in ischemic hindlimbs increased significantly (P < 0.001) from a control level of 0.61+/-0.17% ID/g (percentage of injected dose per gram) to 1.62+/-0.35% ID/g at postoperative day 8, gradually decreased over the following 3 weeks (0.59+/-0.14% ID/g at day 29), and correlated with gamma-counting (R2 = 0.99). Compared with nonexercised mice, 64Cu-VEGF121 uptake was increased significantly (P < or = 0.0001) in exercised mice (at day 15, 22, and 29) and correlated with VEGFR2 levels as obtained by Western blotting (R2 = 0.76). Ischemic hindlimb tissue stained positively for VEGFR2. In exercised mice, microvessel density was increased significantly (P<0.001) compared with nonexercised mice. 64Cu-VEGF121 positron emission tomography allows longitudinal spatial and quantitative monitoring of VEGFR2 expression in murine hindlimb ischemia and indirectly visualizes enhanced angiogenesis stimulated by treadmill exercise training.
Tilstam, Pathricia V; Gijbels, Marion J; Habbeddine, Mohamed; Cudejko, Céline; Asare, Yaw; Theelen, Wendy; Zhou, Baixue; Döring, Yvonne; Drechsler, Maik; Pawig, Lukas; Simsekyilmaz, Sakine; Koenen, Rory R; de Winther, Menno P J; Lawrence, Toby; Bernhagen, Jürgen; Zernecke, Alma; Weber, Christian; Noels, Heidi
2014-01-01
The Ikkα kinase, a subunit of the NF-κB-activating IKK complex, has emerged as an important regulator of inflammatory gene expression. However, the role of Ikkα-mediated phosphorylation in haematopoiesis and atherogenesis remains unexplored. In this study, we investigated the effect of a bone marrow (BM)-specific activation-resistant Ikkα mutant knock-in on haematopoiesis and atherosclerosis in mice. Apolipoprotein E (Apoe)-deficient mice were transplanted with BM carrying an activation-resistant Ikkα gene (Ikkα(AA/AA)Apoe(-/-) ) or with Ikkα(+/+)Apoe(-/-) BM as control and were fed a high-cholesterol diet for 8 or 13 weeks. Interestingly, haematopoietic profiling by flow cytometry revealed a significant decrease in B-cells, regulatory T-cells and effector memory T-cells in Ikkα(AA/AA)Apoe(-/-) BM-chimeras, whereas the naive T-cell population was increased. Surprisingly, no differences were observed in the size, stage or cellular composition of atherosclerotic lesions in the aorta and aortic root of Ikkα(AA/AA)Apoe(-/-) vs Ikkα(+/+)Apoe(-/-) BM-transplanted mice, as shown by histological and immunofluorescent stainings. Necrotic core sizes, apoptosis, and intracellular lipid deposits in aortic root lesions were unaltered. In vitro, BM-derived macrophages from Ikkα(AA/AA)Apoe(-/-) vs Ikkα(+/+)Apoe(-/-) mice did not show significant differences in the uptake of oxidized low-density lipoproteins (oxLDL), and, with the exception of Il-12, the secretion of inflammatory proteins in conditions of Tnf-α or oxLDL stimulation was not significantly altered. Furthermore, serum levels of inflammatory proteins as measured with a cytokine bead array were comparable. Our data reveal an important and previously unrecognized role of haematopoietic Ikkα kinase activation in the homeostasis of B-cells and regulatory T-cells. However, transplantation of Ikkα(AA) mutant BM did not affect atherosclerosis in Apoe(-/-) mice. This suggests that the diverse functions of Ikkα in haematopoietic cells may counterbalance each other or may not be strong enough to influence atherogenesis, and reveals that targeting haematopoietic Ikkα kinase activity alone does not represent a therapeutic approach.
Goldberg, Joanna B.; Ganesan, Shyamala; Comstock, Adam T.; Zhao, Ying; Sajjan, Uma S.
2011-01-01
Background Infection by Burkholderia cenocepacia in cystic fibrosis (CF) patients is associated with poor clinical prognosis. Previously, we demonstrated that one of the highly transmissible strains, BC7, expresses cable pili and the associated 22 kDa adhesin, both of which contribute to BC7 binding to airway epithelial cells. However, the contribution of these factors to induce inflammation and bacterial persistence in vivo is not known. Methodology/Principal Findings Wild-type BC7 stimulated higher IL-8 responses than the BC7 cbl and BC7 adhA mutants in both CF and normal bronchial epithelial cells. To determine the role of cable pili and the associated adhesin, we characterized a mouse model of B. cenocepacia, where BC7 are suspended in Pseudomonas aeruginosa alginate. C57BL/6 mice were infected intratracheally with wild-type BC7 suspended in either alginate or PBS and were monitored for lung bacterial load and inflammation. Mice infected with BC7 suspended in PBS completely cleared the bacteria by 3 days and resolved the inflammation. In contrast, mice infected with BC7 suspended in alginate showed persistence of bacteria and moderate lung inflammation up to 5 days post-infection. Using this model, mice infected with the BC7 cbl and BC7 adhA mutants showed lower bacterial loads and mild inflammation compared to mice infected with wild-type BC7. Complementation of the BC7 cblS mutation in trans restored the capacity of this strain to persist in vivo. Immunolocalization of bacteria revealed wild-type BC7 in both airway lumen and alveoli, while the BC7 cbl and BC7 adhA mutants were found mainly in airway lumen and peribronchiolar region. Conclusions and Significance B. cenocepacia suspended in alginate can be used to determine the capacity of bacteria to persist and cause lung inflammation in normal mice. Both cable pili and adhesin contribute to BC7-stimulated IL-8 response in vitro, and BC7 persistence and resultant inflammation in vivo. PMID:21811611
Plasmodium yoelii: induction of attenuated mutants by irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waki, S.; Yonome, I.; Suzuki, M.
When erythrocytic forms of Plasmodium yoelii nigeriensis, which is invariably fatal in mice, were exposed to X rays, the dose to reduce surviving parasites to one millionth was 100 gray (10 Krad). A suspension of 5 X 10(6) per ml of parasitized erythrocyte was irradiated at 100 gray, and 0.2 ml aliquots were inoculated into 22 mice. Eleven mice showed patent parasitemia, and in these the growth curves were less steep than that found in nonirradiated parasites. The infections of 8 mice of the 11 were self-resolving, and the attenuated feature of the parasites maintained following a limited number ofmore » blood passages. The parasites were slowly growing even in nude mice and cause self-resolving infections in intact mice. BALB/c mice immunized with the attenuated parasites were protected against subsequent challenge infections with the original virulent erythrocytic and sporogonic forms. These findings indicate that attenuated mutants of malaria parasites can be readily induced by this method.« less
Searching for biomarkers of CDKL5 disorder: early-onset visual impairment in CDKL5 mutant mice.
Mazziotti, Raffaele; Lupori, Leonardo; Sagona, Giulia; Gennaro, Mariangela; Della Sala, Grazia; Putignano, Elena; Pizzorusso, Tommaso
2017-06-15
CDKL5 disorder is a neurodevelopmental disorder still without a cure. Murine models of CDKL5 disorder have been recently generated raising the possibility of preclinical testing of treatments. However, unbiased, quantitative biomarkers of high translational value to monitor brain function are still missing. Moreover, the analysis of treatment is hindered by the challenge of repeatedly and non-invasively testing neuronal function. We analyzed the development of visual responses in a mouse model of CDKL5 disorder to introduce visually evoked responses as a quantitative method to assess cortical circuit function. Cortical visual responses were assessed in CDKL5 null male mice, heterozygous females, and their respective control wild-type littermates by repeated transcranial optical imaging from P27 until P32. No difference between wild-type and mutant mice was present at P25-P26 whereas defective responses appeared from P27-P28 both in heterozygous and homozygous CDKL5 mutant mice. These results were confirmed by visually evoked potentials (VEPs) recorded from the visual cortex of a different cohort. The previously imaged mice were also analyzed at P60-80 using VEPs, revealing a persistent reduction of response amplitude, reduced visual acuity and defective contrast function. The level of adult impairment was significantly correlated with the reduction in visual responses observed during development. Support vector machine showed that multi-dimensional visual assessment can be used to automatically classify mutant and wt mice with high reliability. Thus, monitoring visual responses represents a promising biomarker for preclinical and clinical studies on CDKL5 disorder. © The Author 2017. Published by Oxford University Press.
Ma, Dezun; Gao, Pengfei; Qian, Lili; Wang, Qingqing; Cai, Chunbo; Jiang, Shengwang; Xiao, Gaojun; Cui, Wentao
2015-08-24
Myostatin, a transforming growth factor-β family member, is a negative regulator of skeletal muscle development and growth. Piedmontese cattle breeds have a missense mutation, which results in a cysteine to tyrosine substitution in the mature myostatin protein (C313Y). This loss-of-function mutation in myostatin results in a double-muscled phenotype in cattle. Myostatin propeptide is an inhibitor of myostatin activity and is considered a potential agent to stimulate muscle growth in livestock. In this study, we generated transgenic mice overexpressing porcine myostatin missense mutant (pmMS), C313Y, and wild-type porcine myostatin propeptide (ppMS), respectively, to examine their effects on muscle growth in mice. Enhanced muscle growth was observed in both pmMS and ppMS transgenic female mice and also in ppMS transgenic male mice. However, there was no enhanced muscle growth observed in pmMS transgenic male mice. To explore why there is such a big difference in muscle growth between pmMS and ppMS transgenic male mice, the expression level of androgen receptor (AR) mutant AR45 was measured by Western blot. Results indicated that AR45 expression significantly increased in pmMS transgenic male mice while it decreased dramatically in ppMS transgenic male mice. Our data demonstrate that both pmMS and ppMS act as myostatin inhibitors in the regulation of muscle growth, but the effect of pmMS in male mice is reversed by an increased AR45 expression. These results provide useful insight and basic theory to future studies on improving pork quality by genetically manipulating myostatin expression or by regulating myostatin activity.
Evidence for an Intrinsic Renal Tubular Defect in Mice with Genetic Hypophosphatemic Rickets
Cowgill, Larry D.; Goldfarb, Stanley; Lau, Kai; Slatopolsky, Eduardo; Agus, Zalman S.
1979-01-01
To investigate the role of parathyroid hormone (PTH) and(or) an intrinsic renal tubular reabsorptive defect for phosphate in mice with hereditary hypophosphatemic rickets, we performed clearance and micropuncture studies in hypophosphatemic mutants and nonaffected littermate controls. Increased fractional excretion of phosphate in mutants (47.2±4 vs. 30.8±2% in controls) was associated with reduced fractional and absolute reabsorption in the proximal convoluted tubule and more distal sites. Acute thyropara-thyroidectomy (TPTX) increased phosphate reabsorption in both mutants and controls with a fall in fractional phosphate excretion to ≅7.5% in both groups indicating that PTH modified the degree of phosphaturia in the intact mutants. Absolute reabsorption in the proximal tubule and beyond remained reduced in the mutants, however, possibly because of the reduced filtered load. Serum PTH levels were the same in intact mutants and normals as was renal cortical adenylate cyclase activity both before and after PTH stimulation. To evaluate the possibility that the phosphate wasting was caused by an intrinsic tubular defect that was masked by TPTX, glomerular fluid phosphate concentration was raised by phosphate infusion in TPTX mutants to levels approaching those of control mice. Phosphate excretion rose markedly and fractional reabsorption fell, but there was no change in absolute phosphate reabsorption in either the proximal tubule or beyond, indicating a persistent reabsorptive defect in the absence of PTH. We conclude that hereditary hypophosphatemia in the mouse is associated with a renal tubular defect in phosphate reabsorption, which is independent of PTH and therefore represents a specific intrinsic abnormality of phosphate transport. PMID:221535
Assessing mouse behaviour throughout the light/dark cycle using automated in-cage analysis tools.
Bains, Rasneer S; Wells, Sara; Sillito, Rowland R; Armstrong, J Douglas; Cater, Heather L; Banks, Gareth; Nolan, Patrick M
2018-04-15
An important factor in reducing variability in mouse test outcomes has been to develop assays that can be used for continuous automated home cage assessment. Our experience has shown that this has been most evidenced in long-term assessment of wheel-running activity in mice. Historically, wheel-running in mice and other rodents have been used as a robust assay to determine, with precision, the inherent period of circadian rhythms in mice. Furthermore, this assay has been instrumental in dissecting the molecular genetic basis of mammalian circadian rhythms. In teasing out the elements of this test that have determined its robustness - automated assessment of an unforced behaviour in the home cage over long time intervals - we and others have been investigating whether similar test apparatus could be used to accurately discriminate differences in distinct behavioural parameters in mice. Firstly, using these systems, we explored behaviours in a number of mouse inbred strains to determine whether we could extract biologically meaningful differences. Secondly, we tested a number of relevant mutant lines to determine how discriminative these parameters were. Our findings show that, when compared to conventional out-of-cage phenotyping, a far deeper understanding of mouse mutant phenotype can be established by monitoring behaviour in the home cage over one or more light:dark cycles. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Loss of cIAP1 attenuates soleus muscle pathology and improves diaphragm function in mdx mice
Enwere, Emeka K.; Boudreault, Louise; Holbrook, Janelle; Timusk, Kristen; Earl, Nathalie; LaCasse, Eric; Renaud, Jean-Marc; Korneluk, Robert G.
2013-01-01
The cellular inhibitor of apoptosis 1 (cIAP1) protein is an essential regulator of canonical and noncanonical nuclear factor κB (NF-κB) signaling pathways. NF-κB signaling is known to play important roles in myogenesis and degenerative muscle disorders such as Duchenne muscular dystrophy (DMD), but the involvement of cIAP1 in muscle disease has not been studied directly. Here, we asked whether the loss of cIAP1 would influence the pathology of skeletal muscle in the mdx mouse model of DMD. Double-mutant cIAP1−/−;mdx mice exhibited reduced muscle damage and decreased fiber centronucleation in the soleus, compared with single-mutant cIAP1+/+;mdx mice. This improvement in pathology was associated with a reduction in muscle infiltration by macrophages and diminished expression of inflammatory cytokines such as IL-6 and tumor necrosis factor-α. Furthermore, the cIAP1−/−;mdx mice exhibited reduced serum creatine kinase, and improved exercise endurance associated with improved exercise resilience by the diaphragm. Mechanistically, the loss of cIAP1 was sufficient to drive constitutive activation of the noncanonical NF-κB pathway, which led to increased myoblast fusion in vitro and in vivo. Collectively, these results show that the loss of cIAP1 protects skeletal muscle from the degenerative pathology resulting from systemic loss of dystrophin. PMID:23184147
NASA Technical Reports Server (NTRS)
Beers, D. R.; Ho, B. K.; Siklos, L.; Alexianu, M. E.; Mosier, D. R.; Mohamed, A. H.; Otsuka, Y.; Kozovska, M. E.; McAlhany, R. E.; Smith, R. G.;
2001-01-01
Intracellular calcium is increased in vulnerable spinal motoneurons in immune-mediated as well as transgenic models of amyotrophic lateral sclerosis (ALS). To determine whether intracellular calcium levels are influenced by the calcium-binding protein parvalbumin, we developed transgenic mice overexpressing parvalbumin in spinal motoneurons. ALS immunoglobulins increased intracellular calcium and spontaneous transmitter release at motoneuron terminals in control animals, but not in parvalbumin overexpressing transgenic mice. Parvalbumin transgenic mice interbred with mutant SOD1 (mSOD1) transgenic mice, an animal model of familial ALS, had significantly reduced motoneuron loss, and had delayed disease onset (17%) and prolonged survival (11%) when compared with mice with only the mSOD1 transgene. These results affirm the importance of the calcium binding protein parvalbumin in altering calcium homeostasis in motoneurons. The increased motoneuron parvalbumin can significantly attenuate the immune-mediated increases in calcium and to a lesser extent compensate for the mSOD1-mediated 'toxic-gain-of-function' in transgenic mice.
Chung, Soo Im; Kim, Tae Hyeong; Rico, Catherine W.; Kang, Mi Young
2014-01-01
The comparative effects of instant cooked rice made from giant embryo mutant or ordinary normal rice on body weight and lipid profile in high fat-fed mice were investigated. The animals were given experimental diets for seven weeks: normal control (NC), high fat (HF), and HF supplemented with instant normal white (HF-NW), normal brown (HF-NB), giant embryonic white (HF-GW), or giant embryonic brown (HF-GB) rice. The HF group showed markedly higher body weight, body fat, plasma and hepatic triglyceride and cholesterol concentrations, and atherogenic index relative to NC group. However, instant rice supplementation counteracted this high fat-induced hyperlipidemia through regulation of lipogenesis and adipokine production. The GB rice exhibited greater hypolipidemic and body fat-lowering effects than the GW or NB rice. These findings illustrate that the giant embryo mutant may be useful as functional biomaterial for the development of instant rice with strong preventive action against high fat diet-induced hyperlipidemia and obesity. PMID:24932656
Gomez-Pastor, Rocio; Burchfiel, Eileen T.; Neef, Daniel W.; Jaeger, Alex M.; Cabiscol, Elisa; McKinstry, Spencer U.; Doss, Argenia; Aballay, Alejandro; Lo, Donald C.; Akimov, Sergey S.; Ross, Christopher A.; Eroglu, Cagla; Thiele, Dennis J.
2017-01-01
Huntington's Disease (HD) is a neurodegenerative disease caused by poly-glutamine expansion in the Htt protein, resulting in Htt misfolding and cell death. Expression of the cellular protein folding and pro-survival machinery by heat shock transcription factor 1 (HSF1) ameliorates biochemical and neurobiological defects caused by protein misfolding. We report that HSF1 is degraded in cells and mice expressing mutant Htt, in medium spiny neurons derived from human HD iPSCs and in brain samples from patients with HD. Mutant Htt increases CK2α′ kinase and Fbxw7 E3 ligase levels, phosphorylating HSF1 and promoting its proteasomal degradation. An HD mouse model heterozygous for CK2α′ shows increased HSF1 and chaperone levels, maintenance of striatal excitatory synapses, clearance of Htt aggregates and preserves body mass compared with HD mice homozygous for CK2α′. These results reveal a pathway that could be modulated to prevent neuronal dysfunction and muscle wasting caused by protein misfolding in HD. PMID:28194040
Kaminitz, Ayelet; Barzilay, Ran; Segal, Hadar; Taler, Michal; Offen, Daniel; Gil-Ad, Irit; Mechoulam, Raphael; Weizman, Abraham
2014-01-01
OBJECTIVES. Disrupted in schizophrenia 1 (DISC1) is considered the most prominent candidate gene for schizophrenia. In this study, we aimed to characterize behavioural and brain biochemical traits in a mouse expressing a dominant negative DISC1mutant (DN-DISC1). DN-DISC1 mice underwent behavioural tests to evaluate object recognition, social preference and social novelty seeking. ELISA was conducted on brain tissue to evaluate BDNF levels. Western blot was employed to measure BDNF receptor (TrkB) and cannabinoid receptor CB1. The mutant DISC1 mice displayed deficits in preference to social novelty while both social preference and object recognition were intact. Biochemical analysis of prefrontal cortex and hippocampus revealed a modest reduction in cortical TrkB protein levels of male mice while no differences in BDNF levels were observed. We found sex dependent differences in the expression of cannabinoid-1 receptors. We describe novel behavioural and biochemical abnormalities in the DN-DISC1 mouse model of schizophrenia. The data shows for the first time a possible link between DISC1 mutation and the cannabinoid system.
Orlow, S J; Brilliant, M H
1999-02-01
The pink-eyed dilution (p) locus is known to control the quantity of melanin pigment made within melanocytes and retinal pigment epithelium (RPE) in the eye. We have examined the effects of several mutant allele combinations at the murine p locus on the number and morphology of melanosomes in choroidal melanocytes and RPE cells as well as on the levels of four proteins known to be present within melanosomes: tyrosinase, tyrosinase-related proteins 1 and 2 (TRP-1 and TRP-2) and lysosome-associated membrane protein-1 (LAMP-1). By electron microscopy, we observed a modest diminution in the size and number of choroidal melanosomes in pbs/pJ mice but a more dramatic decrease in the RPE in comparison with wild-type P/P mice. By contrast, a drastic reduction in melanosome size and number was present in the choroid and RPE of pun/pun and p6H/pcp mice, and in the RPE of p6H/pcp mice, melanosomes were essentially undetectable. In wild-type mice, levels of tyrosinase, TRP-1 and TRP-2 were high at birth and showed a second peak of expression at 10-14 days of age, declining to undetectable levels by 42 days. All three mutant allele combinations reduced the levels of these melanosomal proteins with the relative severity of effects being p6H/pcp>pun/pun>pbs/pJ. In the null p6H/pcp mice, levels of these proteins were extremely low at birth, no postnatal peak was observed, and levels declined to undetectable by 14 days. Levels of LAMP-1 in wild-type mice rose initially and then declined whereas in the mutant mice, levels decreased gradually from birth. Higher levels of LAMP-1 were observed in each of the mutants than in the wild-type mice at 21 days of age. Our results demonstrate that mutations at the p locus affect the size, number, shape and contents of melanosomes, implicating the p gene product in the normal biogenesis of this organelle. Copyright 1999 Academic Press.
Pathogen Proliferation Governs the Magnitude but Compromises the Function of CD8 T Cells1
Sad, Subash; Dudani, Renu; Gurnani, Komal; Russell, Marsha; van Faassen, Henk; Finlay, Brett; Krishnan, Lakshmi
2014-01-01
CD8+ T cell memory is critical for protection against many intracellular pathogens. However, it is not clear how pathogen virulence influences the development and function of CD8+ T cells. Salmonella typhimurium (ST) is an intracellular bacterium that causes rapid fatality in susceptible mice and chronic infection in resistant strains. We have constructed recombinant mutants of ST, expressing the same immunodominant Ag OVA, but defective in various key virulence genes. We show that the magnitude of CD8+ T cell response correlates directly to the intracellular proliferation of ST. Wild-type ST displayed efficient intracellular proliferation and induced increased numbers of OVA-specific CD8+ T cells upon infection in mice. In contrast, mutants with defective Salmonella pathogenicity island II genes displayed poor intracellular proliferation and induced reduced numbers of OVA-specific CD8+ T cells. However, when functionality of the CD8+ T cell response was measured, mutants of ST induced a more functional response compared with the wild-type ST. Infection with wild-type ST, in contrast to mutants defective in pathogenicity island II genes, induced the generation of mainly effector-memory CD8+ T cells that expressed little IL-2, failed to mediate efficient cytotoxicity, and proliferated poorly in response to Ag challenge in vivo. Taken together, these results indicate that pathogens that proliferate rapidly and chronically in vivo may evoke functionally inferior memory CD8+ T cells which may promote the survival of the pathogen. PMID:18424704
2006-01-01
compared to 5.1 in mutant mice (P = 0.03, t test). There was no significant difference in the average length of metestrus (corresponding to luteal phase in...Oncogene 17, 3117–3124. 21. Gowen, L.C., Johnson, B.L., Latour, A.M., Sulik, K.K., and Koller, B.H. (1996). BRCA1 deficiency results in early embry
Szentpáli-Gavallér, Katalin; Lim, Stephanie M.; Dencső, László; Bányai, Krisztián; Koraka, Penelope; Osterhaus, Albert D.M.E.; Martina, Byron E.E.; Bakonyi, Tamás; Bálint, Ádám
2016-01-01
West Nile virus (WNV) strains may differ significantly in neuroinvasiveness in vertebrate hosts. In contrast to genetic lineage 1 WNVs, molecular determinants of pathogenic lineage 2 strains have not been experimentally confirmed so far. A full-length infectious clone of a neurovirulent WNV lineage 2 strain (578/10; Central Europe) was generated and amino acid substitutions that have been shown to attenuate lineage 1 WNVs were introduced into the nonstructural proteins (NS1 (P250L), NS2A (A30P), NS3 (P249H) NS4B (P38G, C102S, E249G)). The mouse neuroinvasive phenotype of each mutant virus was examined following intraperitoneal inoculation of C57BL/6 mice. Only the NS1-P250L mutation was associated with a significant attenuation of virulence in mice compared to the wild-type. Multiplication kinetics in cell culture revealed significantly lower infectious virus titres for the NS1 mutant compared to the wild-type, as well as significantly lower amounts of positive and negative stranded RNA. PMID:26907325
Sun, Wei; Roland, Kenneth L; Kuang, Xiaoying; Branger, Christine G; Curtiss, Roy
2010-03-01
Two mutant strains of Yersinia pestis KIM5+, a Deltacrp mutant and a mutant with arabinose-dependent regulated delayed-shutoff crp expression (araC P(BAD) crp), were constructed, characterized in vitro, and evaluated for virulence, immunogenicity, and protective efficacy in mice. Both strains were highly attenuated by the subcutaneous (s.c.) route. The 50% lethal doses (LD(50)s) of the Deltacrp and araC P(BAD) crp mutants were approximately 1,000,000-fold and 10,000-fold higher than those of Y. pestis KIM5+, respectively, indicating that both strains were highly attenuated. Mice vaccinated s.c. with 3.8 x 10(7) CFU of the Deltacrp mutant developed high anti-Y. pestis and anti-LcrV serum IgG titers, both with a strong Th2 bias, and induced protective immunity against subcutaneous challenge with virulent Y. pestis (80% survival) but no protection against pulmonary challenge. Mice vaccinated with 3.0 x 10(4) CFU of the araC P(BAD) crp mutant also developed high anti-Y. pestis and anti-LcrV serum IgG titers but with a more balanced Th1/Th2 response. This strain induced complete protection against s.c. challenge and partial protection (70% survival) against pulmonary challenge. Our results demonstrate that arabinose-dependent regulated crp expression is an effective strategy to attenuate Y. pestis while retaining strong immunogenicity, leading to protection against the pneumonic and bubonic forms of plague.
Carrión, Javier; Folgueira, Cristina; Soto, Manuel; Fresno, Manuel; Requena, Jose M
2011-07-27
Visceral leishmaniasis is the most severe form of leishmaniasis and no effective vaccine exists. The use of live attenuated vaccines is emerging as a promising vaccination strategy. In this study, we tested the ability of a Leishmania infantum deletion mutant, lacking both HSP70-II alleles (ΔHSP70-II), to provide protection against Leishmania infection in the L. major-BALB/c infection model. Administration of the mutant line by either intraperitoneal, intravenous or subcutaneous route invariably leads to the production of high levels of NO and the development in mice of type 1 immune responses, as determined by analysis of anti-Leishmania IgG subclasses. In addition, we have shown that ΔHSP70-II would be a safe live vaccine as immunodeficient SCID mice, and hamsters (Mesocricetus auratus), infected with mutant parasites did not develop any sign of pathology. The results suggest that the ΔHSP70-II mutant is a promising and safe vaccine, but further studies in more appropriate animal models (hamsters and dogs) are needed to appraise whether this attenuate mutant would be useful as vaccine against visceral leishmaniasis.
Hepatitis B virus core antigen determines viral persistence in a C57BL/6 mouse model.
Lin, Yi-Jiun; Huang, Li-Rung; Yang, Hung-Chih; Tzeng, Horng-Tay; Hsu, Ping-Ning; Wu, Hui-Lin; Chen, Pei-Jer; Chen, Ding-Shinn
2010-05-18
We recently developed a mouse model of hepatitis B virus (HBV) persistence, in which a single i.v. hydrodynamic injection of HBV DNA to C57BL/6 mice allows HBV replication and induces a partial immune response, so that about 20-30% of the mice carry HBV for more than 6 months. The model was used to identify the viral antigen crucial for HBV persistence. We knocked out individual HBV genes by introducing a premature termination codon to the HBV core, HBeAg, HBx, and polymerase ORFs. The specific-gene-deficient HBV mutants were hydrodynamically injected into mice and the HBV profiles of the mice were monitored. About 90% of the mice that received the HBcAg-mutated HBV plasmid exhibited high levels of hepatitis B surface antigenemia and maintained HBsAg expression for more than 6 months after injection. To map the region of HBcAg essential for viral clearance, we constructed a set of serial HBcAg deletion mutants for hydrodynamic injection. We localized the essential region of HBcAg to the carboxyl terminus, specifically to the 10 terminal amino acids (HBcAg176-185). The majority of mice receiving this HBV mutant DNA did not elicit a proper HBcAg-specific IFN-gamma response and expressed HBV virions for 6 months. These results indicate that the immune response triggered in mice by HBcAg during exposure to HBV is important in determining HBV persistence.
Developmental alterations in anxiety and cognitive behavior in serotonin transporter mutant mice.
Sakakibara, Yasufumi; Kasahara, Yoshiyuki; Hall, F Scott; Lesch, Klaus-Peter; Murphy, Dennis L; Uhl, George R; Sora, Ichiro
2014-10-01
A promoter variant of the serotonin transporter (SERT) gene is known to affect emotional and cognitive regulation. In particular, the "short" allelic variant is implicated in the etiology of multiple neuropsychiatric disorders. Heterozygous (SERT(+/-)) and homozygous (SERT(-/-)) SERT mutant mice are valuable tools for understanding the mechanisms of altered SERT levels. Although these genetic effects are well investigated in adulthood, the developmental trajectory of altered SERT levels for behavior has not been investigated. We assessed anxiety-like and cognitive behaviors in SERT mutant mice in early adolescence and adulthood to examine the developmental consequences of reduced SERT levels. Spine density of pyramidal neurons was also measured in corticolimbic brain regions. Adult SERT(-/-) mice exhibited increased anxiety-like behavior, but these differences were not observed in early adolescent SERT(-/-) mice. Conversely, SERT(+/-) and SERT(-/-) mice did display higher spontaneous alternation during early adolescence and adulthood. SERT(+/-) and SERT(-/-) also exhibited greater neuronal spine densities in the orbitofrontal but not the medial prefrontal cortices. Adult SERT(-/-) mice also showed an increased spine density in the basolateral amygdala. Developmental alterations of the serotonergic system caused by genetic inactivation of SERT can have different influences on anxiety-like and cognitive behaviors through early adolescence into adulthood, which may be associated with changes of spine density in the prefrontal cortex and amygdala. The altered maturation of serotonergic systems may lead to specific age-related vulnerabilities to psychopathologies that develop during adolescence.
K-RasV14I recapitulates Noonan syndrome in mice
Hernández-Porras, Isabel; Fabbiano, Salvatore; Schuhmacher, Alberto J.; Aicher, Alexandra; Cañamero, Marta; Cámara, Juan Antonio; Cussó, Lorena; Desco, Manuel; Heeschen, Christopher; Mulero, Francisca; Bustelo, Xosé R.; Guerra, Carmen; Barbacid, Mariano
2014-01-01
Noonan syndrome (NS) is an autosomal dominant genetic disorder characterized by short stature, craniofacial dysmorphism, and congenital heart defects. NS also is associated with a risk for developing myeloproliferative disorders (MPD), including juvenile myelomonocytic leukemia (JMML). Mutations responsible for NS occur in at least 11 different loci including KRAS. Here we describe a mouse model for NS induced by K-RasV14I, a recurrent KRAS mutation in NS patients. K-RasV14I–mutant mice displayed multiple NS-associated developmental defects such as growth delay, craniofacial dysmorphia, cardiac defects, and hematologic abnormalities including a severe form of MPD that resembles human JMML. Homozygous animals had perinatal lethality whose penetrance varied with genetic background. Exposure of pregnant mothers to a MEK inhibitor rescued perinatal lethality and prevented craniofacial dysmorphia and cardiac defects. However, Mek inhibition was not sufficient to correct these defects when mice were treated after weaning. Interestingly, Mek inhibition did not correct the neoplastic MPD characteristic of these mutant mice, regardless of the timing at which the mice were treated, thus suggesting that MPD is driven by additional signaling pathways. These genetically engineered K-RasV14I–mutant mice offer an experimental tool for studying the molecular mechanisms underlying the clinical manifestations of NS. Perhaps more importantly, they should be useful as a preclinical model to test new therapies aimed at preventing or ameliorating those deficits associated with this syndrome. PMID:25359213
Mojica, Celina; Bai, Yu; Lotfipour, Shahrdad
2018-06-01
The objective of the current study is to test the hypothesis that the deletion of alpha(α)2* nicotinic acetylcholine receptors (nAChRs) (encoded by the Chrna2 gene) ablate maternal nicotine-induced learning and memory deficits in adolescent mice. We use a pre-exposure-dependent contextual fear conditioning behavioral paradigm that is highly hippocampus-dependent. Adolescent wild type and α2-null mutant offspring are exposed to vehicle or maternal nicotine exposure (200 μg/ml, expressed as base) in the drinking water throughout pregnancy until weaning. Adolescent male offspring mice are tested for alterations in growth and development characteristics as well as modifications in locomotion, anxiety, shock-reactivity and learning and memory. As expected, maternal nicotine exposure has no effects on pup number, weight gain and only modestly reduces fluid intake by 19%. Behaviorally, maternal nicotine exposure impedes extinction learning in adolescent wild type mice, a consequence that is abolished in α2-null mutant mice. The effects on learning and memory are not confounded by alternations in stereotypy, locomotion, anxiety or sensory shock reactivity. Overall, the findings highlight that the deletion of α2* nAChRs eliminate the effects of maternal nicotine exposure on learning and memory in adolescent mice. Copyright © 2018 Elsevier Ltd. All rights reserved.
FUS/TLS acts as an aggregation-dependent modifier of polyglutamine disease model mice.
Kino, Yoshihiro; Washizu, Chika; Kurosawa, Masaru; Yamada, Mizuki; Doi, Hiroshi; Takumi, Toru; Adachi, Hiroaki; Katsuno, Masahisa; Sobue, Gen; Hicks, Geoffrey G; Hattori, Nobutaka; Shimogori, Tomomi; Nukina, Nobuyuki
2016-10-14
FUS/TLS is an RNA/DNA-binding protein associated with neurodegenerative diseases including amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Previously, we found that a prion-like domain in the N-terminus of FUS/TLS mediates co-aggregation between FUS/TLS and mutant huntingtin, the gene product of Huntington's disease (HD). Here, we show that heterozygous knockout of FUS/TLS worsened the phenotypes of model mice of (HD, but not spinal and bulbar muscular atrophy (SBMA). This difference was correlated with the degree of pathological association between disease proteins and FUS/TLS. Co-aggregation between FUS/TLS and mutant huntingtin resulted in the depletion of free FUS/TLS protein in HD mice that was detected as a monomer in SDS-PAGE analysis. Recently, we found that FUS/TLS paralogs, TAF15 and EWS, were up-regulated in homozygous FUS/TLS knockout mice. These two proteins were up-regulated in both HD and FUS/TLS heterozygote mice, and were further elevated in HD-TLS +/- double mutant mice, consistent with the functional impairment of FUS/TLS. These results suggest that FUS/TLS sequestration by co-aggregation is a rate-limiting factor of disease phenotypes of HD and that inclusions may have an adverse aspect, rather than being simply benign or protective. In addition, our results highlight inclusions as repositories of potential modifiers of neurodegeneration.
Ohlmann, Andreas; Scholz, Michael; Goldwich, Andreas; Chauhan, Bharesh K; Hudl, Kristiane; Ohlmann, Anne V; Zrenner, Eberhart; Berger, Wolfgang; Cvekl, Ales; Seeliger, Mathias W; Tamm, Ernst R
2005-02-16
Norrie disease is an X-linked retinal dysplasia that presents with congenital blindness, sensorineural deafness, and mental retardation. Norrin, the protein product of the Norrie disease gene (NDP), is a secreted protein of unknown biochemical function. Norrie disease (Ndp(y/-)) mutant mice that are deficient in norrin develop blindness, show a distinct failure in retinal angiogenesis, and completely lack the deep capillary layers of the retina. We show here that the transgenic expression of ectopic norrin under control of a lens-specific promoter restores the formation of a normal retinal vascular network in Ndp(y/-) mutant mice. The improvement in structure correlates with restoration of neuronal function in the retina. In addition, lenses of transgenic mice with ectopic expression of norrin show significantly more capillaries in the hyaloid vasculature that surrounds the lens during development. In vitro, lenses of transgenic mice in coculture with microvascular endothelial cells induce proliferation of the cells. Transgenic mice with ectopic expression of norrin show more bromodeoxyuridine-labeled retinal progenitor cells at embryonic day 14.5 and thicker retinas at postnatal life than wild-type littermates, indicating a putative direct neurotrophic effect of norrin. These data provide direct evidence that norrin induces growth of ocular capillaries and that pharmacologic modulation of norrin might be used for treatment of the vascular abnormalities associated with Norrie disease or other vascular disorders of the retina.
Alder, Janet; Fujioka, Wendy; Giarratana, Anna; Wissocki, Jenna; Thakkar, Keya; Vuong, Phung; Patel, Bijal; Chakraborty, Trisha; Elsabeh, Rami; Parikh, Ankit; Girn, Hartaj S; Crockett, David; Thakker-Varia, Smita
2016-01-01
Neurotrophin levels are elevated after TBI, yet there is minimal regeneration. It was hypothesized that the pro-neurotrophin/p75NTR pathway is induced more than the mature neurotrophin/Trk pathway and that interfering with p75 signalling improves recovery following TBI. Lateral Fluid Percussion (LFP) injury was performed on wildtype and p75 mutant mice. In addition, TrkB agonist 7,8 Dihydroxyflavone or p75 antagonist TAT-Pep5 were tested. Western blot and immunohistochemistry revealed biochemical and cellular changes. Morris Water Maze and Rotarod tests demonstrated cognitive and vestibulomotor function. p75 was up-regulated and TrkB was down-regulated 1 day post-LFP. p75 mutant mice as well as mice treated with the p75 antagonist or the TrkB agonist exhibited reduced neuronal death and degeneration and less astrocytosis. The cells undergoing apoptosis appear to be neurons rather than glia. There was improved motor function and spatial learning in p75 mutant mice and mice treated with the p75 antagonist. Many of the pathological and behavioural consequences of TBI might be due to activation of the pro-neurotrophin/p75 toxic pathway overriding the protective mechanisms of the mature neurotrophin/Trk pathway. Targeting p75 can be a novel strategy to counteract the damaging effects of TBI.
IGFBP4 Is Required for Adipogenesis and Influences the Distribution of Adipose Depots.
Maridas, David E; DeMambro, Victoria E; Le, Phuong T; Mohan, Subburaman; Rosen, Clifford J
2017-10-01
Insulinlike growth factor (IGF) I induces adipogenesis in vitro. IGF-binding protein 4 (IGFBP4) is highly expressed in adipocytes and osteoblasts and is inhibitory of IGFs in vitro. We previously reported that Igfbp4 null mice (Igfbp4-/-) had decreased fat proportions at 8 and 16 weeks of age. However, the mechanism leading to the reduced adiposity remains unknown. The purpose of this study was to elucidate how IGFBP4 mediates adipose tissue development in vivo. Our results showed that inguinal and gonadal white adipose tissue (gWAT) from Igfbp4-/- mice had decreased weights and Pparγ expression. Cultures of primary bone marrow stromal cells (BMSCs) and ear mesenchymal stem cells (eMSCs) from mutant mice showed reduced adipogenesis. Both BMSCs and eMSC had a strong induction of Igfbp4 expression during adipogenesis. Furthermore, the increase in phosphorylated Akt (p-Akt), a downstream target of IGF-I signaling, in wild-type cells, was blunted in mutant eMSCs. On a high-fat diet (HFD) there were sexual differences in adipocyte expansion of Igfbp4-/- mice. Mutant males gained weight by expanding their white fat depots. However, Igfbp4-/- female mice were protected against diet-induced obesity. Ovariectomized Igfbp4-/- female mice gained weight in a manner similar to that seen in ovariectomized controls. Thus, Igfbp4 is required for inguinal fat expansion in female mice but not in male mice. However, gWAT expansion, which is prevented by estrogen during HFD, does not require Igfbp4. Copyright © 2017 Endocrine Society.
Fused pulmonary lobes is a rat model of human Fraser syndrome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiyozumi, Daiji; Nakano, Itsuko; Takahashi, Ken L.
Highlights: {yields} Fused pulmonary lobes (fpl) mutant rats exhibit similar phenotypes to Fraser syndrome. {yields} The fpl gene harbors a nonsense mutation in Fraser syndrome-associated gene Frem2. {yields} Fpl mutant is defined as a first model of human Fraser syndrome in rats. -- Abstract: Fused pulmonary lobes (fpl) is a mutant gene that is inherited in an autosomal recessive manner and causes various developmental defects, including fusion of pulmonary lobes, and eyelid and digit anomalies in rats. Since these developmental defects closely resemble those observed in patients with Fraser syndrome, a recessive multiorgan disorder, and its model animals, we investigatedmore » whether the abnormal phenotypes observed in fpl/fpl mutant rats are attributable to a genetic disorder similar to Fraser syndrome. At the epidermal basement membrane in fpl/fpl mutant neonates, the expression of QBRICK, a basement membrane protein whose expression is attenuated in Fraser syndrome model mice, was greatly diminished compared with control littermates. Quantitative RT-PCR analyses of Fraser syndrome-related genes revealed that Frem2 transcripts were markedly diminished in QBRICK-negative embryos. Genomic DNA sequencing of the fpl/fpl mutant identified a nonsense mutation that introduced a stop codon at serine 2005 in Frem2. These findings indicate that the fpl mutant is a rat model of human Fraser syndrome.« less
Zhang, Honghao; Kamiya, Nobuhiro; Tsuji, Takehito; Takeda, Haruko; Scott, Greg; Rajderkar, Sudha; Ray, Manas K; Mochida, Yoshiyuki; Allen, Benjamin; Lefebvre, Veronique; Hung, Irene H; Ornitz, David M; Kunieda, Tetsuo; Mishina, Yuji
2016-12-01
Ellis-van Creveld (EvC) syndrome is a skeletal dysplasia, characterized by short limbs, postaxial polydactyly, and dental abnormalities. EvC syndrome is also categorized as a ciliopathy because of ciliary localization of proteins encoded by the two causative genes, EVC and EVC2 (aka LIMBIN). While recent studies demonstrated important roles for EVC/EVC2 in Hedgehog signaling, there is still little known about the pathophysiological mechanisms underlying the skeletal dysplasia features of EvC patients, and in particular why limb development is affected, but not other aspects of organogenesis that also require Hedgehog signaling. In this report, we comprehensively analyze limb skeletogenesis in Evc2 mutant mice and in cell and tissue cultures derived from these mice. Both in vivo and in vitro data demonstrate elevated Fibroblast Growth Factor (FGF) signaling in Evc2 mutant growth plates, in addition to compromised but not abrogated Hedgehog-PTHrP feedback loop. Elevation of FGF signaling, mainly due to increased Fgf18 expression upon inactivation of Evc2 in the perichondrium, critically contributes to the pathogenesis of limb dwarfism. The limb dwarfism phenotype is partially rescued by inactivation of one allele of Fgf18 in the Evc2 mutant mice. Taken together, our data uncover a novel pathogenic mechanism to understand limb dwarfism in patients with Ellis-van Creveld syndrome.
Shih, Yao-Ming; Sun, Cheng-Pu; Chou, Hui-Hsien; Wu, Tzu-Hui; Chen, Chun-Chi; Wu, Ping-Yi; Enya Chen, Yu-Chen; Bissig, Karl-Dimiter; Tao, Mi-Hua
2015-01-01
Selection of escape mutants with mutations within the target sequence could abolish the antiviral RNA interference activity. Here, we investigated the impact of a pre-existing shRNA-resistant HBV variant on the efficacy of shRNA therapy. We previously identified a highly potent shRNA, S1, which, when delivered by an adeno-associated viral vector, effectively inhibits HBV replication in HBV transgenic mice. We applied the “PICKY” software to systemically screen the HBV genome, then used hydrodynamic transfection and HBV transgenic mice to identify additional six highly potent shRNAs. Human liver chimeric mice were infected with a mixture of wild-type and T472C HBV, a S1-resistant HBV variant, and then treated with a single or combined shRNAs. The presence of T472C mutant compromised the therapeutic efficacy of S1 and resulted in replacement of serum wild-type HBV by T472C HBV. In contrast, combinatorial therapy using S1 and P28, one of six potent shRNAs, markedly reduced titers for both wild-type and T472C HBV. Interestingly, treatment with P28 alone led to the emergence of escape mutants with mutations in the P28 target region. Our results demonstrate that combinatorial RNAi therapy can minimize the escape of resistant viral mutants in chronic HBV patients. PMID:26482836
Milk composition and lactation of beta-casein-deficient mice.
Kumar, S; Clarke, A R; Hooper, M L; Horne, D S; Law, A J; Leaver, J; Springbett, A; Stevenson, E; Simons, J P
1994-01-01
beta-Casein is a major protein component of milk and, in conjunction with the other caseins, it is assembled into micelles. The casein micelles determine many of the physical characteristics of milk, which are important for stability during storage and for milk-processing properties. There is evidence that suggests that beta-casein may also possess other, nonnutritional functions. To address the function of beta-casein, the mouse beta-casein gene was disrupted by gene targeting in embryonic stem cells. Homozygous beta-casein mutant mice are viable and fertile; females can lactate and successfully rear young. beta-Casein was expressed at a reduced level in heterozygotes and was completely absent from the milk of homozygous mutant mice. Despite the deficiency of beta-casein, casein micelles were assembled in heterozygous and homozygous mutants, albeit with reduced diameters. The absence of beta-casein expression was reflected in a reduced total protein concentration in milk, although this was partially compensated for by an increased concentration of other proteins. The growth of pups feeding on the milk of homozygous mutants was reduced relative to those feeding on the milk of wild-type mice. Various genetic manipulations of caseins have been proposed for the qualitative improvement of cow's milk composition. The results presented here demonstrate that beta-casein has no essential function and that the casein micelle is remarkably tolerant of changes in composition. Images PMID:8016126
Zhang, Honghao; Kamiya, Nobuhiro; Tsuji, Takehito; Takeda, Haruko; Scott, Greg; Ray, Manas K.; Mochida, Yoshiyuki; Lefebvre, Veronique; Hung, Irene H.; Kunieda, Tetsuo; Mishina, Yuji
2016-01-01
Ellis-van Creveld (EvC) syndrome is a skeletal dysplasia, characterized by short limbs, postaxial polydactyly, and dental abnormalities. EvC syndrome is also categorized as a ciliopathy because of ciliary localization of proteins encoded by the two causative genes, EVC and EVC2 (aka LIMBIN). While recent studies demonstrated important roles for EVC/EVC2 in Hedgehog signaling, there is still little known about the pathophysiological mechanisms underlying the skeletal dysplasia features of EvC patients, and in particular why limb development is affected, but not other aspects of organogenesis that also require Hedgehog signaling. In this report, we comprehensively analyze limb skeletogenesis in Evc2 mutant mice and in cell and tissue cultures derived from these mice. Both in vivo and in vitro data demonstrate elevated Fibroblast Growth Factor (FGF) signaling in Evc2 mutant growth plates, in addition to compromised but not abrogated Hedgehog-PTHrP feedback loop. Elevation of FGF signaling, mainly due to increased Fgf18 expression upon inactivation of Evc2 in the perichondrium, critically contributes to the pathogenesis of limb dwarfism. The limb dwarfism phenotype is partially rescued by inactivation of one allele of Fgf18 in the Evc2 mutant mice. Taken together, our data uncover a novel pathogenic mechanism to understand limb dwarfism in patients with Ellis-van Creveld syndrome. PMID:28027321
Zhang, Jingping; Saur, Taixiang; Duke, Angela N; Grant, Seth G N; Platt, Donna M; Rowlett, James K; Isacson, Ole; Yao, Wei-Dong
2014-01-01
Excessive activation of the N-methyl-d-aspartate (NMDA) receptor and the neurotransmitter dopamine (DA) mediate neurotoxicity and neurodegeneration under many neurological conditions, including Huntington's disease (HD), an autosomal dominant neurodegenerative disease characterized by the preferential loss of medium spiny projection neurons (MSNs) in the striatum. PSD-95 is a major scaffolding protein in the postsynaptic density (PSD) of dendritic spines, where a classical role for PSD-95 is to stabilize glutamate receptors at sites of synaptic transmission. Our recent studies indicate that PSD-95 also interacts with the D1 DA receptor localized in spines and negatively regulates spine D1 signaling. Moreover, PSD-95 forms ternary protein complexes with D1 and NMDA receptors, and plays a role in limiting the reciprocal potentiation between both receptors from being escalated. These studies suggest a neuroprotective role for PSD-95. Here we show that mice lacking PSD-95, resulting from genetic deletion of the GK domain of PSD-95 (PSD-95-ΔGK mice), sporadically develop progressive neurological impairments characterized by hypolocomotion, limb clasping, and loss of DARPP-32-positive MSNs. Electrophysiological experiments indicated that NMDA receptors in mutant MSNs were overactive, suggested by larger, NMDA receptor-mediated miniature excitatory postsynaptic currents (EPSCs) and higher ratios of NMDA- to AMPA-mediated corticostriatal synaptic transmission. In addition, NMDA receptor currents in mutant cortical neurons were more sensitive to potentiation by the D1 receptor agonist SKF81297. Finally, repeated administration of the psychostimulant cocaine at a dose regimen not producing overt toxicity-related phenotypes in normal mice reliably converted asymptomatic mutant mice to clasping symptomatic mice. These results support the hypothesis that deletion of PSD-95 in mutant mice produces concomitant overactivation of both D1 and NMDA receptors that makes neurons more susceptible to NMDA excitotoxicity, causing neuronal damage and neurological impairments. Understanding PSD-95-dependent neuroprotective mechanisms may help elucidate processes underlying neurodegeneration in HD and other neurological disorders.
Mitra, Shiladitya; Sameer Kumar, Ghantasala S.; Jyothi Lakshmi, B.; Thakur, Suman; Kumar, Satish
2018-01-01
We earlier reported that the male mice lacking the Wdr13 gene (Wdr13-/0) showed mild anxiety, better memory retention, and up-regulation of synaptic proteins in the hippocampus. With increasing evidences from parallel studies in our laboratory about the possible role of Wdr13 in stress response, we investigated its role in brain. We observed that Wdr13 transcript gets up-regulated in the hippocampus of the wild-type mice exposed to stress. To further dissect its function, we analyzed the behavioral and molecular phenotypes of Wdr13-/0 mice when subjected to mild chronic psychological stress, namely; mild (attenuated) social isolation. We employed iTRAQ based quantitative proteomics, real time PCR and western blotting to investigate molecular changes. Three weeks of social isolation predisposed Wdr13-/0 mice to anhedonia, heightened anxiety-measured by Open field test (OFT), increased behavior despair- measured by Forced swim test (FST) and reduced dendritic branching along with decreased spine density of hippocampal CA1 neurons as compared to wild-type counterparts. This depression-like-phenotype was however ameliorated when treated with anti-depressant imipramine. Molecular analysis revealed that out of 1002 quantified proteins [1% False discovery rate (FDR), at-least two unique peptides], strikingly, a significant proportion of synaptic proteins including, SYN1, CAMK2A, and RAB3A were down-regulated in the socially isolated Wdr13-/0 mice as compared to its wild-type counterparts. This was in contrast to the elevated levels of these proteins in non-stressed mutants as compared to the controls. We hypothesized that a de-regulated transcription factor upstream of the synaptic genes might be responsible for the observed phenotype. Indeed, in the socially isolated Wdr13-/0 mice, there was an up-regulation of GATA1 – a transcription factor that negatively regulates synaptic genes and has been associated with Major Depression (MD) in humans. The present study demonstrates significant genotype × enviornment interaction for Wdr13 gene as shown by the reversal in the expression levels of several synaptic proteins in the mutant vis-à-vis wild-type mouse when exposed to social isolation stress. PMID:29743870
Zhang, Xiaolong; Jiang, Quanlong; Xu, Xingli; Wang, Yongrong; Liu, Lei; Lian, Yaru; Li, Hao; Wang, Lichun; Zhang, Ying; Jiang, Guorun; Zeng, Jieyuan; Zhang, Han; Han, Jing-Dong Jackie; Li, Qihan
2018-04-25
Herpes simplex virus is a prevalent pathogen of humans of various age groups. The fact that no prophylactic or therapeutic vaccine is currently available suggests a significant need to further investigate the immune mechanisms induced by the virus and various vaccine candidates. We previously generated an HSV-1 mutant strain, M3, with partial deletions in ul7, ul41 and LAT that produced an attenuated phenotype in mice. In the present study, we performed a comparative analysis to characterize the immune responses induced by M3 versus wild-type HSV-1 in a mouse model. Infection with wild-type HSV-1 triggered an inflammatory-dominated response and adaptive immunity suppression and was accompanied by severe pathological damage. In contrast, infection with M3 induced a systematic immune response involving full activation of both innate and adaptive immunity and was accompanied by no obvious pathological changes. Furthermore, the immune response induced by M3 protected mice from lethal challenge with wild-type strains of HSV-1 and restrained virus proliferation and impaired latency. These data are useful for further HSV-1 vaccine development using a mutant strain construction strategy. Copyright © 2018 Elsevier Ltd. All rights reserved.
Bortolussi, G; Codarin, E; Antoniali, G; Vascotto, C; Vodret, S; Arena, S; Cesaratto, L; Scaloni, A; Tell, G; Muro, A F
2015-01-01
Severe hyperbilirubinemia is toxic during central nervous system development. Prolonged and uncontrolled high levels of unconjugated bilirubin lead to bilirubin-induced encephalopathy and eventually death by kernicterus. Despite extensive studies, the molecular and cellular mechanisms of bilirubin toxicity are still poorly defined. To fill this gap, we investigated the molecular processes underlying neuronal injury in a mouse model of severe neonatal jaundice, which develops hyperbilirubinemia as a consequence of a null mutation in the Ugt1 gene. These mutant mice show cerebellar abnormalities and hypoplasia, neuronal cell death and die shortly after birth because of bilirubin neurotoxicity. To identify protein changes associated with bilirubin-induced cell death, we performed proteomic analysis of cerebella from Ugt1 mutant and wild-type mice. Proteomic data pointed-out to oxidoreductase activities or antioxidant processes as important intracellular mechanisms altered during bilirubin-induced neurotoxicity. In particular, they revealed that down-representation of DJ-1, superoxide dismutase, peroxiredoxins 2 and 6 was associated with hyperbilirubinemia in the cerebellum of mutant mice. Interestingly, the reduction in protein levels seems to result from post-translational mechanisms because we did not detect significant quantitative differences in the corresponding mRNAs. We also observed an increase in neuro-specific enolase 2 both in the cerebellum and in the serum of mutant mice, supporting its potential use as a biomarker of bilirubin-induced neurological damage. In conclusion, our data show that different protective mechanisms fail to contrast oxidative burst in bilirubin-affected brain regions, ultimately leading to neurodegeneration. PMID:25950469
Bortolussi, G; Codarin, E; Antoniali, G; Vascotto, C; Vodret, S; Arena, S; Cesaratto, L; Scaloni, A; Tell, G; Muro, A F
2015-05-07
Severe hyperbilirubinemia is toxic during central nervous system development. Prolonged and uncontrolled high levels of unconjugated bilirubin lead to bilirubin-induced encephalopathy and eventually death by kernicterus. Despite extensive studies, the molecular and cellular mechanisms of bilirubin toxicity are still poorly defined. To fill this gap, we investigated the molecular processes underlying neuronal injury in a mouse model of severe neonatal jaundice, which develops hyperbilirubinemia as a consequence of a null mutation in the Ugt1 gene. These mutant mice show cerebellar abnormalities and hypoplasia, neuronal cell death and die shortly after birth because of bilirubin neurotoxicity. To identify protein changes associated with bilirubin-induced cell death, we performed proteomic analysis of cerebella from Ugt1 mutant and wild-type mice. Proteomic data pointed-out to oxidoreductase activities or antioxidant processes as important intracellular mechanisms altered during bilirubin-induced neurotoxicity. In particular, they revealed that down-representation of DJ-1, superoxide dismutase, peroxiredoxins 2 and 6 was associated with hyperbilirubinemia in the cerebellum of mutant mice. Interestingly, the reduction in protein levels seems to result from post-translational mechanisms because we did not detect significant quantitative differences in the corresponding mRNAs. We also observed an increase in neuro-specific enolase 2 both in the cerebellum and in the serum of mutant mice, supporting its potential use as a biomarker of bilirubin-induced neurological damage. In conclusion, our data show that different protective mechanisms fail to contrast oxidative burst in bilirubin-affected brain regions, ultimately leading to neurodegeneration.
Pla2g12b and Hpn Are Genes Identified by Mouse ENU Mutagenesis That Affect HDL Cholesterol
Aljakna, Aleksandra; Choi, Seungbum; Savage, Holly; Hageman Blair, Rachael; Gu, Tongjun; Svenson, Karen L.; Churchill, Gary A.; Hibbs, Matt; Korstanje, Ron
2012-01-01
Despite considerable progress understanding genes that affect the HDL particle, its function, and cholesterol content, genes identified to date explain only a small percentage of the genetic variation. We used N-ethyl-N-nitrosourea mutagenesis in mice to discover novel genes that affect HDL cholesterol levels. Two mutant lines (Hlb218 and Hlb320) with low HDL cholesterol levels were established. Causal mutations in these lines were mapped using linkage analysis: for line Hlb218 within a 12 Mbp region on Chr 10; and for line Hlb320 within a 21 Mbp region on Chr 7. High-throughput sequencing of Hlb218 liver RNA identified a mutation in Pla2g12b. The transition of G to A leads to a cysteine to tyrosine change and most likely causes a loss of a disulfide bridge. Microarray analysis of Hlb320 liver RNA showed a 7-fold downregulation of Hpn; sequencing identified a mutation in the 3′ splice site of exon 8. Northern blot confirmed lower mRNA expression level in Hlb320 and did not show a difference in splicing, suggesting that the mutation only affects the splicing rate. In addition to affecting HDL cholesterol, the mutated genes also lead to reduction in serum non-HDL cholesterol and triglyceride levels. Despite low HDL cholesterol levels, the mice from both mutant lines show similar atherosclerotic lesion sizes compared to control mice. These new mutant mouse models are valuable tools to further study the role of these genes, their affect on HDL cholesterol levels, and metabolism. PMID:22912808
Genetic abolishment of hepatocyte proliferation activates hepatic stem cells.
Endo, Yoko; Zhang, Mingjun; Yamaji, Sachie; Cang, Yong
2012-01-01
Quiescent hepatic stem cells (HSCs) can be activated when hepatocyte proliferation is compromised. Chemical injury rodent models have been widely used to study the localization, biomarkers, and signaling pathways in HSCs, but these models usually exhibit severe promiscuous toxicity and fail to distinguish damaged and non-damaged cells. Our goal is to establish new animal models to overcome these limitations, thereby providing new insights into HSC biology and application. We generated mutant mice with constitutive or inducible deletion of Damaged DNA Binding protein 1 (DDB1), an E3 ubiquitin ligase, in hepatocytes. We characterized the molecular mechanism underlying the compensatory activation and the properties of oval cells (OCs) by methods of mouse genetics, immuno-staining, cell transplantation and gene expression profiling. We show that deletion of DDB1 abolishes self-renewal capacity of mouse hepatocytes in vivo, leading to compensatory activation and proliferation of DDB1-expressing OCs. Partially restoring proliferation of DDB1-deficient hepatocytes by ablation of p21, a substrate of DDB1 E3 ligase, alleviates OC proliferation. Purified OCs express both hepatocyte and cholangiocyte markers, form colonies in vitro, and differentiate to hepatocytes after transplantation. Importantly, the DDB1 mutant mice exhibit very minor liver damage, compared to a chemical injury model. Microarray analysis reveals several previously unrecognized markers, including Reelin, enriched in oval cells. Here we report a genetic model in which irreversible inhibition of hepatocyte duplication results in HSC-driven liver regeneration. The DDB1 mutant mice can be broadly applied to studies of HSC differentiation, HSC niche and HSCs as origin of liver cancer.
Serra, Montserrat; Matabosch, Xavier; Ying, Lee; Watson, Gordon; Shackleton, Cedric
2010-11-01
Our recent studies have focused on cholesterol synthesis in mouse models for 7-dehydrosterolreductase (DHCR7) deficiency, also known as Smith-Lemli-Opitz syndrome. Investigations of such mutants have relied on tissue and blood levels of the cholesterol precursor 7-dehydrocholesterol (7DHC) and its 8-dehydro isomer. In this investigation by gas chromatography/mass spectrometry (GC/MS) we have identified and quantified cholesterol and its precursors (7DHC, desmosterol, lathosterol, lanosterol and cholest-7,24-dien-3β-ol) in mouse hair. The components were characterized and their concentrations were compared to those found in mouse skin and serum. Hair appeared unique in that desmosterol was a major sterol component, almost matching in concentration cholesterol itself. In DHCR7 deficient mice, dehydrodesmosterol (DHD) was the dominant hair Δ(7) sterol. Mutant mouse hair had much higher concentrations of 7-dehydrosterols relative to cholesterol than did serum or tissue at all ages studied. The 7DHC/C ratio in hair was typically about sevenfold the value in serum or skin and the DHD/D ratio was 100× that of the serum 7DHC/C ratio. Mutant mice compensate for their DHCR7 deficiency with maturity, and the tissue and blood 7DHC/C become close to normal. That hair retains high relative concentrations of the dehydro precursors suggests that the apparent up-regulation of Dhcr7 seen in liver is slower to develop at the site of hair cholesterol synthesis. Copyright © 2010 Elsevier Ltd. All rights reserved.
Deng, Maoxian; Boopathi, Ettickan; Hypolite, Joseph A.; Raabe, Tobias; Chang, Shaohua; Zderic, Stephen; Wein, Alan J.
2013-01-01
Caldesmon (CaD), a component of smooth muscle thin filaments, binds actin, tropomyosin, calmodulin, and myosin and inhibits actin-activated ATP hydrolysis by smooth muscle myosin. Internal deletions of the chicken CaD functional domain that spans from amino acids (aa) 718 to 731, which corresponds to aa 512–530 including the adjacent aa sequence in mouse CaD, lead to diminished CaD-induced inhibition of actin-activated ATP hydrolysis by myosin. Transgenic mice with mutations of five aa residues (Lys523 to Gln, Val524 to Leu, Ser526 to Thr, Pro527 to Cys, and Lys529 to Ser), which encompass the ATPase inhibitory determinants located in exon 12, were generated by homologous recombination. Homozygous (−/−) animals did not develop, but heterozygous (+/−) mice carrying the expected mutations in the CaD ATPase inhibitory domain (CaD mutant) matured and reproduced normally. The peak force produced in response to KCl and electrical field stimulation by the detrusor smooth muscle from the CaD mutant was high compared with that of the wild type. CaD mutant mice revealed nonvoiding contractions during bladder filling on awake cystometry, suggesting that the CaD ATPase inhibitory domain suppresses force generation during the filling phase and this suppression is partially released by mutations in 50% of CaD in heterozygous. Our data show for the first time a functional phenotype, at the intact smooth muscle tissue and in vivo organ levels, following mutation of a functional domain at the COOH-terminal region of CaD. PMID:23986516
Genetic Abolishment of Hepatocyte Proliferation Activates Hepatic Stem Cells
Endo, Yoko; Zhang, Mingjun; Yamaji, Sachie; Cang, Yong
2012-01-01
Quiescent hepatic stem cells (HSCs) can be activated when hepatocyte proliferation is compromised. Chemical injury rodent models have been widely used to study the localization, biomarkers, and signaling pathways in HSCs, but these models usually exhibit severe promiscuous toxicity and fail to distinguish damaged and non-damaged cells. Our goal is to establish new animal models to overcome these limitations, thereby providing new insights into HSC biology and application. We generated mutant mice with constitutive or inducible deletion of Damaged DNA Binding protein 1 (DDB1), an E3 ubiquitin ligase, in hepatocytes. We characterized the molecular mechanism underlying the compensatory activation and the properties of oval cells (OCs) by methods of mouse genetics, immuno-staining, cell transplantation and gene expression profiling. We show that deletion of DDB1 abolishes self-renewal capacity of mouse hepatocytes in vivo, leading to compensatory activation and proliferation of DDB1-expressing OCs. Partially restoring proliferation of DDB1-deficient hepatocytes by ablation of p21, a substrate of DDB1 E3 ligase, alleviates OC proliferation. Purified OCs express both hepatocyte and cholangiocyte markers, form colonies in vitro, and differentiate to hepatocytes after transplantation. Importantly, the DDB1 mutant mice exhibit very minor liver damage, compared to a chemical injury model. Microarray analysis reveals several previously unrecognized markers, including Reelin, enriched in oval cells. Here we report a genetic model in which irreversible inhibition of hepatocyte duplication results in HSC-driven liver regeneration. The DDB1 mutant mice can be broadly applied to studies of HSC differentiation, HSC niche and HSCs as origin of liver cancer. PMID:22384083
Immunization with mutant HPV16 E7 protein inhibits the growth of TC-1 cells in tumor-bearing mice.
Li, Yan-Li; Ma, Zhong-Liang; Zhao, Yue; Zhang, Jing
2015-04-01
Two human papillomavirus (HPV) 16 oncogenic proteins, E6 and E7, are co-expressed in the majority of HPV16-induced cervical cancer cells. Thus, the E6 and E7 proteins are good targets for developing therapeutic vaccines for cervical cancer. In the present study, immunization with the mutant non-transforming HPV16 E7 (mE7) protein was demonstrated to inhibit the growth of TC-1 cells in the TC-1 mouse model. The HPV16 mE7 gene was amplified by splicing overlap extension polymerase chain reaction using pET-28a(+)-E7 as a template, and the gene was cloned into pET-28a(+) to form pET-28a(+)-mE7. Compared with the E7 protein, mE7 lacks amino acid residues 94-98, and at residue 24, there is a Cys to Gly substitution. pET-28a(+)-mE7 was then introduced into Escherichia coli Rosetta. The expression of mE7 was induced by isopropyl β-D-1-thiogalactopyranoside. The mE7 protein was purified using Ni-NTA agarose and detected by SDS-PAGE and western blot analysis. In the tumor prevention model, no tumor was detected in the mice vaccinated with the mE7 protein. After 40 days, the tumor-free mice and control mice were challenged with 2×10 5 TC-1 cells. All control mice developed tumors six days later, but mE7 immunized mice were tumor free until 90 days. In the tumor therapy model, the TC-1 cells were initially injected subcutaneously, and the mice were subsequently vaccinated. Vaccination against the mE7 protein may significantly inhibit TC-1 cell growth compared to the control. These results demonstrated that immunization with the HPV16 mE7 protein elicited a long-term protective immunity against TC-1 tumor growth and generated a significant inhibition of TC-1 growth in a TC-1 mouse model.
Tourlakis, Marina E; Zhong, Jian; Gandhi, Rikesh; Zhang, Siyi; Chen, Lingling; Durie, Peter R; Rommens, Johanna M
2012-08-01
Shwachman-Diamond syndrome (SDS) is the second leading cause of hereditary exocrine pancreatic dysfunction. More than 90% of patients with SDS have biallelic loss-of-function mutations in the Shwachman-Bodian Diamond syndrome (SBDS) gene, which encodes a factor involved in ribosome function. We investigated whether mutations in Sbds lead to similar pancreatic defects in mice. Pancreas-specific knock-out mice were generated using a floxed Sbds allele and bred with mice carrying a null or disease-associated missense Sbds allele. Cre recombinase, regulated by the pancreatic transcription factor 1a promoter, was used to disrupt Sbds specifically in the pancreas. Models were assessed for pancreatic dysfunction and growth impairment. Disruption of Sbds in the mouse pancreas was sufficient to recapitulate SDS phenotypes. Pancreata of mice with Sbds mutations had decreased mass, fat infiltration, but general preservation of ductal and endocrine compartments. Pancreatic extracts from mutant mice had defects in formation of the 80S ribosomal complex. The exocrine compartment of mutant mice was hypoplastic and individual acini produced few zymogen granules. The null Sbds allele resulted in an earlier onset of phenotypes as well as endocrine impairment. Mutant mice had reduced serum levels of digestive enzymes and overall growth impairment. We developed a mouse model of SDS with pancreatic phenotypes similar to those of the human disease. This model could be used to investigate organ-specific consequences of Sbds-associated ribosomopathy. Sbds genotypes correlated with phenotypes. Defects developed specifically in the pancreata of mice, reducing growth of mice and production of digestive enzymes. SBDS therefore appears to be required for normal pancreatic development and function. Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.
Li, Ying; You, Qiang-Long; Zhang, Sheng-Rong; Huang, Wei-Yuan; Zou, Wen-Jun; Jie, Wei; Li, Shu-Ji; Liu, Ji-Hong; Lv, Chuang-Ye; Cong, Jin; Hu, Yu-Ying; Gao, Tian-Ming; Li, Jian-Ming
2017-04-18
Special AT-rich sequence-binding protein 2 (Satb2) is a protein binding to the matrix attachment regions of DNA and important for gene regulation. Patients with SATB2 mutation usually suffer moderate to severe mental retardation. However, the mechanisms for the defects of intellectual activities in patients with SATB2 mutation are largely unclear. Here we established the heterozygous Satb2 mutant mice and Satb2 conditional knockout mice to mimic the patients with SATB2 mutation and figured out the role of Satb2 in mental activities. We found that the spatial memory and working memory were significantly damaged in the heterozygous Satb2 mutant mice, early postnatal Satb2-deficient mice (CaMKIIα-Cre + Satb2 fl/fl mice), and adult Satb2 ablation mice (Satb2 fl/fl mice injected with CaMKIIα-Cre virus). Functionally, late phase long-term potentiation (L-LTP) in these Satb2 mutant mice was greatly impaired. Morphologically, in CA1 neurons of CaMKIIα-Cre + Satb2 fl/fl mice, we found decreased spine density of the basal dendrites and less branches of apical dendrites that extended into lacunar molecular layer. Mechanistically, expression levels of immediate early genes (IEGs) including Fos, FosB, and Egr1 were significantly decreased after Satb2 deletion. And, Satb2 could regulate expression of FosB by binding to the promoter of FosB directly. In general, our study uncovers that Satb2 plays an important role in spatial memory and working memory by regulating IEGs-mediated hippocampal synaptic plasticity.
Bale, T L; Contarino, A; Smith, G W; Chan, R; Gold, L H; Sawchenko, P E; Koob, G F; Vale, W W; Lee, K F
2000-04-01
Corticotropin-releasing hormone (Crh) is a critical coordinator of the hypothalamic-pituitary-adrenal (HPA) axis. In response to stress, Crh released from the paraventricular nucleus (PVN) of the hypothalamus activates Crh receptors on anterior pituitary corticotropes, resulting in release of adrenocorticotropic hormone (Acth) into the bloodstream. Acth in turn activates Acth receptors in the adrenal cortex to increase synthesis and release of glucocorticoids. The receptors for Crh, Crhr1 and Crhr2, are found throughout the central nervous system and periphery. Crh has a higher affinity for Crhr1 than for Crhr2, and urocortin (Ucn), a Crh-related peptide, is thought to be the endogenous ligand for Crhr2 because it binds with almost 40-fold higher affinity than does Crh. Crhr1 and Crhr2 share approximately 71% amino acid sequence similarity and are distinct in their localization within the brain and peripheral tissues. We generated mice deficient for Crhr2 to determine the physiological role of this receptor. Crhr2-mutant mice are hypersensitive to stress and display increased anxiety-like behaviour. Mutant mice have normal basal feeding and weight gain, but decreased food intake following food deprivation. Intravenous Ucn produces no effect on mean arterial pressure in the mutant mice.
Ratneswaran, A; LeBlanc, E A; Walser, E; Welch, I; Mort, J S; Borradaile, N; Beier, F
2015-02-01
Osteoarthritis (OA) is a serious disease of the entire joint, characterized by articular cartilage degeneration, subchondral bone changes, osteophyte formation, and synovial hyperplasia. Currently, there are no pharmaceutical treatments that can slow the disease progression, resulting in greatly reduced quality of life for patients and the need for joint replacement surgeries in many cases. The lack of available treatments for OA is partly due to our incomplete understanding of the molecular mechanisms that promote disease initiation and progression. The purpose of the present study was to examine the role of the nuclear receptor peroxisome proliferator-activated receptor δ (PPARδ) as a promoter of cartilage degeneration in a mouse model of posttraumatic OA. Mouse chondrocytes and knee explants were treated with a pharmacologic agonist of PPARδ (GW501516) to evaluate changes in gene expression, histologic features, and matrix glycosaminoglycan breakdown. In vivo, PPARδ was specifically deleted from the cartilage of mice. Histopathologic scoring according to the Osteoarthritis Research Society International (OARSI) system and immunohistochemical analysis were used to compare mutant and control mice subjected to surgical destabilization of the medial meniscus (DMM). In vitro, PPARδ activation by GW501516 resulted in increased expression of several proteases in chondrocytes, as well as aggrecan degradation and glycosaminoglycan release in knee joint explants. In vivo, cartilage-specific PPARδ-knockout mice did not display any abnormalities of skeletal development but showed marked protection in the DMM model of posttraumatic OA (as compared to control littermates). OARSI scoring and immunohistochemical analyses confirmed strong protection of mutant mice from DMM-induced cartilage degeneration. These data demonstrate a catabolic role of endogenous PPARδ in posttraumatic OA and suggest that pharmacologic inhibition of PPARδ is a promising therapeutic strategy. Copyright © 2015 by the American College of Rheumatology.
Davies, Benjamin; Brown, Laurence A; Cais, Ondrej; Clayton, Amber J; Chang, Veronica T; Biggs, Daniel; Preece, Christopher; Hernandez-Pliego, Polinka; Krohn, Jon; Bhomra, Amarjit; Twigg, Stephen R F; Rimmer, Andrew; Kanapin, Alexander; Sen, Arjune; Zaiwalla, Zenobia; McVean, Gil; Foster, Russell; Donnelly, Peter; Taylor, Jenny C; Blair, Edward; Nutt, David; Aricescu, A Radu; Greger, Ingo H; Peirson, Stuart N; Flint, Jonathan
2017-01-01
Abstract The discovery of genetic variants influencing sleep patterns can shed light on the physiological processes underlying sleep. As part of a large clinical sequencing project, WGS500, we sequenced a family in which the two male children had severe developmental delay and a dramatically disturbed sleep-wake cycle, with very long wake and sleep durations, reaching up to 106-h awake and 48-h asleep. The most likely causal variant identified was a novel missense variant in the X-linked GRIA3 gene, which has been implicated in intellectual disability. GRIA3 encodes GluA3, a subunit of AMPA-type ionotropic glutamate receptors (AMPARs). The mutation (A653T) falls within the highly conserved transmembrane domain of the ion channel gate, immediately adjacent to the analogous residue in the Grid2 (glutamate receptor) gene, which is mutated in the mouse neurobehavioral mutant, Lurcher. In vitro, the GRIA3(A653T) mutation stabilizes the channel in a closed conformation, in contrast to Lurcher. We introduced the orthologous mutation into a mouse strain by CRISPR-Cas9 mutagenesis and found that hemizygous mutants displayed significant differences in the structure of their activity and sleep compared to wild-type littermates. Typically, mice are polyphasic, exhibiting multiple sleep bouts of sleep several minutes long within a 24-h period. The Gria3A653T mouse showed significantly fewer brief bouts of activity and sleep than the wild-types. Furthermore, Gria3A653T mice showed enhanced period lengthening under constant light compared to wild-type mice, suggesting an increased sensitivity to light. Our results suggest a role for GluA3 channel activity in the regulation of sleep behavior in both mice and humans. PMID:29016847
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trani, Daniela; Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia; Maastricht Radiation Oncology
Purpose: The purpose of the present study was to assess the effect of 1 and 5 Gy radiation doses and to investigate the interplay of gender and radiation with regard to intestinal tumorigenesis in an adenomatous polyposis coli (APC) mutant mouse model. Methods and Materials: Apc1638N/+ female and male mice were exposed whole body to either 1 Gy or 5 Gy of {gamma} rays and euthanized when most of the treated mice became moribund. Small and large intestines were processed to determine tumor burden, distribution, and grade. Expression of proliferation marker Ki-67 and estrogen receptor (ER)-{alpha} were also assessed bymore » immunohistochemistry. Results: We observed that, with both 1 Gy and 5 Gy of {gamma} rays, females displayed reduced susceptibility to radiation-induced intestinal tumorigenesis compared with males. As for radiation effect on small intestinal tumor progression, although no substantial differences were found in the relative frequency and degree of dysplasia of adenomas in irradiated animals compared with controls, invasive carcinomas were found in 1-Gy- and 5-Gy-irradiated animals. Radiation exposure was also shown to induce an increase in protein levels of proliferation marker Ki-67 and sex-hormone receptor ER-{alpha} in both non tumor mucosa and intestinal tumors from irradiated male mice. Conclusions: We observed important sex-dependent differences in susceptibility to radiation-induced intestinal tumorigenesis in Apc1638N/+ mutants. Furthermore, our data provide evidence that exposure to radiation doses as low as 1 Gy can induce a significant increase in intestinal tumor multiplicity as well as enhance tumor progression in vivo.« less
Blednov, Yuri A; Borghese, Cecilia M; Ruiz, Carlos I; Cullins, Madeline A; Da Costa, Adriana; Osterndorff-Kahanek, Elizabeth A; Homanics, Gregg E; Harris, R Adron
2017-09-01
Genes encoding the ρ1/2 subunits of GABA A receptors have been associated with alcohol (ethanol) dependence in humans, and ρ1 was also shown to regulate some of the behavioral effects of ethanol in animal models. Ethanol inhibits GABA-mediated responses in wild-type (WT) ρ1, but not ρ1(T6'Y) mutant receptors expressed in Xenopus laevis oocytes, indicating the presence of an inhibitory site for ethanol in the second transmembrane helix. In this study, we found that ρ1(T6'Y) receptors expressed in oocytes display overall normal responses to GABA, the endogenous GABA modulator (zinc), and partial agonists (β-alanine and taurine). We generated ρ1 (T6'Y) knockin (KI) mice using CRISPR/Cas9 to test the behavioral importance of the inhibitory actions of ethanol on this receptor. Both ρ1 KI and knockout (KO) mice showed faster recovery from acute ethanol-induced motor incoordination compared to WT mice. Both KI and KO mutant strains also showed increased tolerance to motor impairment produced by ethanol. The KI mice did not differ from WT mice in other behavioral actions, including ethanol intake and preference, conditioned taste aversion to ethanol, and duration of ethanol-induced loss of righting reflex. WT and KI mice did not differ in levels of ρ1 or ρ2 mRNA in cerebellum or in ethanol clearance. Our findings indicate that the inhibitory site for ethanol in GABA A ρ1 receptors regulates acute functional tolerance to moderate ethanol intoxication. We note that low sensitivity to alcohol intoxication has been linked to risk for development of alcohol dependence in humans. Copyright © 2017 Elsevier Ltd. All rights reserved.
Inactivation of Tgfbr2 in Osterix-Cre expressing Dental Mesenchyme Disrupts Molar Root Formation
Coricor, George; MacDougall, Mary; Serra, Rosa
2013-01-01
It has been difficult to examine the role of TGF-ß in post-natal tooth development due to perinatal lethality in many of the signaling deficient mouse models. To address the role of Tgfbr2 in postnatal tooth development, we generated a mouse in which Tgfbr2 was deleted in odontoblast-and bone-producing mesenchyme. Osx-Cre;Tgfbr2fl/fl mice were generated (Tgfbr2cko) and postnatal tooth development was compared in Tgfbr2cko and control littermates. X-ray and μCT analysis showed that in Tgfbr2cko mice radicular dentin matrix density was reduced in the molars. Molar shape was abnormal and molar eruption was delayed in the mutant mice. Most significantly, defects in root formation, including failure of the root to elongate, were observed by postnatal day 10. Immunostaining for Keratin-14 (K14) was used to delineate Hertwig's epithelial root sheath (HERS). The results showed a delay in elongation and disorganization of the HERS in Tgfbr2cko mice. In addition, the HERS was maintained and the break up into epithelial rests was attenuated suggesting that Tgfbr2 acts on dental mesenchyme to indirectly regulate the formation and maintenance of the HERS. Altered odontoblast organization and reduced Dspp expression indicated that odontoblast differentiation was disrupted in the mutant mice likely contributing to the defect in root formation. Nevertheless, expression of Nfic, a key mesenchymal regulator of root development, was similar in Tgfbr2cko mice and controls. The number of osteoclasts in the bone surrounding the tooth was reduced and osteoblast differentiation was disrupted likely contributing to both root and eruption defects. We conclude that Tgfbr2 in dental mesenchyme and bone is required for tooth development particularly root formation. PMID:23933490
Sun, Tao; Yi, Haiqing; Yang, Chunyu; Kishnani, Priya S; Sun, Baodong
2016-08-05
A small portion of cellular glycogen is transported to and degraded in lysosomes by acid α-glucosidase (GAA) in mammals, but it is unclear why and how glycogen is transported to the lysosomes. Stbd1 has recently been proposed to participate in glycogen trafficking to lysosomes. However, our previous study demonstrated that knockdown of Stbd1 in GAA knock-out mice did not alter lysosomal glycogen storage in skeletal muscles. To further determine whether Stbd1 participates in glycogen transport to lysosomes, we generated GAA/Stbd1 double knock-out mice. In fasted double knock-out mice, glycogen accumulation in skeletal and cardiac muscles was not affected, but glycogen content in liver was reduced by nearly 73% at 3 months of age and by 60% at 13 months as compared with GAA knock-out mice, indicating that the transport of glycogen to lysosomes was suppressed in liver by the loss of Stbd1. Exogenous expression of human Stbd1 in double knock-out mice restored the liver lysosomal glycogen content to the level of GAA knock-out mice, as did a mutant lacking the Atg8 family interacting motif (AIM) and another mutant that contains only the N-terminal 24 hydrophobic segment and the C-terminal starch binding domain (CBM20) interlinked by an HA tag. Our results demonstrate that Stbd1 plays a dominant role in glycogen transport to lysosomes in liver and that the N-terminal transmembrane region and the C-terminal CBM20 domain are critical for this function. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Shu, Cindy; Smith, Susan M; Melrose, James
2016-06-01
This was an observational study where we examined the role of perlecan HS on the deposition of TGF-β1 in C57BL/6 and Hspg2(∆3-/∆3-) perlecan exon 3 null mouse skin. Despite its obvious importance in skin repair and tissue homeostasis no definitive studies have immunolocalised TGF-β1 in skin in WT or Hspg2(∆3-/∆3-) perlecan exon 3 null mice. Vertical parasagittal murine dorsal skin from 3, 6 and 12 week old C57BL/6 and Hspg2(∆3-/∆3-) mice were fixed in neutral buffered formalin, paraffin embedded and 4 μm sections stained with Mayers haematoxylin and eosin (H & E). TGF-β1 was immunolocalised using a rabbit polyclonal antibody, heat retrieval and the Envision NovaRED detection system. Immunolocalisation of TGF-β1 differed markedly in C57BL/6 and Hspg2(∆3-/∆3-) mouse skin, ablation of exon 3 of Hspg2 resulted in a very severe reduction in the deposition of TGF-β1 in skin 3-12 weeks postnatally. The reduced deposition of TGF-β1 observed in the present study would be expected to impact detrimentally on the remodelling and healing capacity of skin in mutant mice compounding on the poor wound-healing properties already reported for perlecan exon 3 null mice due to an inability to signal with FGF-2 and promote angiogenic repair processes. TGF-β1 also has cell mediated effects in tissue homeostasis and matrix stabilisation a reduction in TGF-β1 deposition would therefore be expected to detrimentally impact on skin homeostasis in the perlecan mutant mice.
Ross, Jeffrey A; Leavitt, Sharon A; Schmid, Judith E; Nelson, Garret B
2012-09-01
The mouse liver tumorigenic conazole fungicides triadimefon and propiconazole have previously been shown to be in vivo mouse liver mutagens in the Big Blue™ transgenic mutation assay when administered in feed at tumorigenic doses, whereas the nontumorigenic conazole myclobutanil was not mutagenic. DNA sequencing of the mutants recovered from each treatment group as well as from animals receiving control diet revealed that propiconazole- and triadimefon-induced mutations do not represent general clonal expansion of background mutations, and support the hypothesis that they arise from the accumulation of endogenous reactive metabolic intermediates within the liver in vivo. We therefore measured the spectra of endogenous DNA adducts in the livers of mice from these studies to determine if there were quantitative or qualitative differences between mice receiving tumorigenic or nontumorigenic conazoles compared to concurrent control animals. We resolved and quantitated 16 individual adduct spots by (32)P postlabelling and thin layer chromatography using three solvent systems. Qualitatively, we observed the same DNA adducts in control mice as in mice receiving conazoles. However, the 13 adducts with the highest chromatographic mobility were, as a group, present at significantly higher amounts in the livers of mice treated with propiconazole and triadimefon than in their concurrent controls, whereas this same group of DNA adducts in the myclobutanil-treated mice was not different from controls. This same group of endogenous adducts were significantly correlated with mutant frequency across all treatment groups (P = 0.002), as were total endogenous DNA adduct levels (P = 0.005). We hypothesise that this treatment-related increase in endogenous DNA adducts, together with concomitant increases in cell proliferation previously reported to be induced by conazoles, explain the observed increased in vivo mutation frequencies previously reported to be induced by treatment with propiconazole and triadimefon.
Hirai, Takao; Kobayashi, Tatsuya; Nishimori, Shigeki; Karaplis, Andrew C.; Goltzman, David
2015-01-01
The blood calcium concentration during fetal life is tightly regulated within a narrow range by highly interactive homeostatic mechanisms that include transport of calcium across the placenta and fluxes in and out of bone; the mechanisms of this regulation are poorly understood. Our findings that endochondral bone-specific PTH/PTHrP receptor (PPR) knockout (KO) mice showed significant reduction of fetal blood calcium concentration compared with that of control littermates at embryonic day 18.5 led us to focus on bone as a possibly major determinant of fetal calcium homeostasis. We found that the fetal calcium concentration of Runx2 KO mice was significantly higher than that of control littermates, suggesting that calcium flux into bone had a considerable influence on the circulating calcium concentration. Moreover, Runx2:PTH double mutant fetuses showed calcium levels similar to those of Runx2 KO mice, suggesting that part of the fetal hypocalcemia in PTH KO mice was caused by the increment of the mineralized bone mass allowed by the formation of osteoblasts. Finally, Rank:PTH double mutant mice had a blood calcium concentration even lower than that of the either Rank KO or PTH KO mice alone at embryonic day 18.5. These observations in our genetic models suggest that PTH/PTHrP receptor signaling in bones has a significant role of the regulation of fetal blood calcium concentration and that both placental transport and osteoclast activation contribute to PTH's hypercalcemic action. They also show that PTH-independent deposition of calcium in bone is the major controller of fetal blood calcium level. PMID:26052897
Spieker, Janine; Mudersbach, Thomas; Vogel-Höpker, Astrid; Layer, Paul G.
2017-01-01
Most components of the cholinergic system are detected in skeletogenic cell types in vitro, yet the function of this system in skeletogenesis remains unclear. Here, we analyzed endochondral ossification in mutant murine fetuses, in which genes of the rate-limiting cholinergic enzymes acetyl- (AChE), or butyrylcholinesterase (BChE), or both were deleted (called here A-B+, A+B-, A-B-, respectively). In all mutant embryos bone growth and cartilage remodeling into mineralizing bone were accelerated, as revealed by Alcian blue (A-blu) and Alizarin red (A-red) staining. In A+B- and A-B- onset of mineralization was observed before E13.5, about 2 days earlier than in wild type and A-B+ mice. In all mutants between E18.5 to birth A-blu staining disappeared from epiphyses prematurely. Instead, A-blu+ cells were dislocated into diaphyses, most pronounced so in A-B- mutants, indicating additive effects of both missing ChEs in A-B- mutant mice. The remodeling effects were supported by in situ hybridization (ISH) experiments performed on cryosections from A-B- mice, in which Ihh, Runx2, MMP-13, ALP, Col-II and Col-X were considerably decreased, or had disappeared between E18.5 and P0. With a second approach, we applied an improved in vitro micromass model from chicken limb buds that allowed histological distinction between areas of cartilage, apoptosis and mineralization. When treated with the AChE inhibitor BW284c51, or with nicotine, there was decrease in cartilage and accelerated mineralization, suggesting that these effects were mediated through nicotinic receptors (α7-nAChR). We conclude that due to absence of either one or both cholinesterases in KO mice, or inhibition of AChE in chicken micromass cultures, there is increase in cholinergic signalling, which leads to increased chondroblast production and premature mineralization, at the expense of incomplete chondrogenic differentiation. This emphasizes the importance of cholinergic signalling in cartilage and bone formation. PMID:28118357
Altered striatal function in a mutant mouse lacking D1A dopamine receptors.
Drago, J; Gerfen, C R; Lachowicz, J E; Steiner, H; Hollon, T R; Love, P E; Ooi, G T; Grinberg, A; Lee, E J; Huang, S P
1994-01-01
Of the five known dopamine receptors, D1A and D2 represent the major subtypes expressed in the striatum of the adult brain. Within the striatum, these two subtypes are differentially distributed in the two main neuronal populations that provide direct and indirect pathways between the striatum and the output nuclei of the basal ganglia. Movement disorders, including Parkinson disease and various dystonias, are thought to result from imbalanced activity in these pathways. Dopamine regulates movement through its differential effects on D1A receptors expressed by direct output neurons and D2 receptors expressed by indirect output neurons. To further examine the interaction of D1A and D2 neuronal pathways in the striatum, we used homologous recombination to generate mutant mice lacking functional D1A receptors (D1A-/-). D1A-/- mutants are growth retarded and die shortly after weaning age unless their diet is supplemented with hydrated food. With such treatment the mice gain weight and survive to adulthood. Neurologically, D1A-/- mice exhibit normal coordination and locomotion, although they display a significant decrease in rearing behavior. Examination of the striatum revealed changes associated with the altered phenotype of these mutants. D1A receptor binding was absent in striatal sections from D1A-/- mice. Striatal neurons normally expressing functional D1A receptors are formed and persist in adult homozygous mutants. Moreover, substance P mRNA, which is colocalized specifically in striatal neurons with D1A receptors, is expressed at a reduced level. In contrast, levels of enkephalin mRNA, which is expressed in striatal neurons with D2 receptors, are unaffected. These findings show that D1A-/- mice exhibit selective functional alterations in the striatal neurons giving rise to the direct striatal output pathway. Images Fig. 2 Fig. 4 PMID:7809078
Increased phospho-adducin immunoreactivity in a murine model of amyotrophic lateral sclerosis.
Shan, X; Hu, J H; Cayabyab, F S; Krieger, C
2005-01-01
Adducins alpha, beta and gamma are proteins that link spectrin and actin in the regulation of cytoskeletal architecture and are substrates for protein kinase C and other signaling molecules. Previous studies have shown that expressions of phosphorylated adducin (phospho-adducin) and protein kinase C are increased in spinal cord tissue from patients who died with amyotrophic lateral sclerosis, a neurodegenerative disorder of motoneurons and other cells. However, the distribution of phospho-adducin immunoreactivity has not been described in the mammalian spinal cord. We have evaluated the distribution of immunoreactivity to serine/threonine-dependent phospho-adducin at a region corresponding to the myristoylated alanine-rich C kinase substrate-related domain of adducin in spinal cords of mice over-expressing mutant human superoxide dismutase, an animal model of amyotrophic lateral sclerosis, and in control littermates. We find phospho-adducin immunoreactivity in control spinal cord in ependymal cells surrounding the central canal, neurons and astrocytes. Phospho-adducin immunoreactivity is localized to the cell bodies, dendrites and axons of some motoneurons, as well as to astrocytes in the gray and white matter. Spinal cords of mutant human superoxide dismutase mice having motoneuron loss exhibit significantly increased phospho-adducin immunoreactivity in ventral and dorsal horn spinal cord regions, but not in ependyma surrounding the central canal, compared with control animals. Increased phospho-adducin immunoreactivity localizes predominantly to astrocytes and likely increases as a consequence of the astrogliosis that occurs in the mutant human superoxide dismutase mouse with disease progression. These findings demonstrate increased immunoreactivity against phosphorylated adducin at the myristoylated alanine-rich C kinase substrate domain in a murine model of amyotrophic lateral sclerosis. As adducin is a substrate for protein kinase C at the myristoylated alanine-rich C kinase substrate domain, the increased phospho-adducin immunoreactivity is likely a consequence of protein kinase C activation in neurons and astrocytes of the spinal cord and evidence for aberrant phosphorylation events in mutant human superoxide dismutase mice that may affect neuron survival.
Blank, Marissa C.; Grinberg, Inessa; Aryee, Emmanuel; Laliberte, Christine; Chizhikov, Victor V.; Henkelman, R. Mark; Millen, Kathleen J.
2011-01-01
Heterozygous deletions encompassing the ZIC1;ZIC4 locus have been identified in a subset of individuals with the common cerebellar birth defect Dandy-Walker malformation (DWM). Deletion of Zic1 and Zic4 in mice produces both cerebellar size and foliation defects similar to human DWM, confirming a requirement for these genes in cerebellar development and providing a model to delineate the developmental basis of this clinically important congenital malformation. Here, we show that reduced cerebellar size in Zic1 and Zic4 mutants results from decreased postnatal granule cell progenitor proliferation. Through genetic and molecular analyses, we show that Zic1 and Zic4 have Shh-dependent function promoting proliferation of granule cell progenitors. Expression of the Shh-downstream genes Ptch1, Gli1 and Mycn was downregulated in Zic1/4 mutants, although Shh production and Purkinje cell gene expression were normal. Reduction of Shh dose on the Zic1+/−;Zic4+/− background also resulted in cerebellar size reductions and gene expression changes comparable with those observed in Zic1−/−;Zic4−/− mice. Zic1 and Zic4 are additionally required to pattern anterior vermis foliation. Zic mutant folial patterning abnormalities correlated with disrupted cerebellar anlage gene expression and Purkinje cell topography during late embryonic stages; however, this phenotype was Shh independent. In Zic1+/−;Zic4+/−;Shh+/−, we observed normal cerebellar anlage patterning and foliation. Furthermore, cerebellar patterning was normal in both Gli2-cko and Smo-cko mutant mice, where all Shh function was removed from the developing cerebellum. Thus, our data demonstrate that Zic1 and Zic4 have both Shh-dependent and -independent roles during cerebellar development and that multiple developmental disruptions underlie Zic1/4-related DWM. PMID:21307096
Whiddon, Benjamin B.; Palmiter, Richard D.
2013-01-01
Melanin-concentrating hormone (MCH)-expressing neurons have been ascribed many roles based on tudies of MCH-deficient mice. However, MCH neurons express other neurotransmitters, including GABA, nesfatin, and cocaine–amphetamine-regulated transcript. The importance of these other signaling molecules made by MCH neurons remains incompletely characterized. To determine the roles of MCH neurons in vivo, we targeted expression of the human diphtheria toxin receptor (DTR) to the gene for MCH (Pmch). Within 2 weeks of diphtheria toxin injection, heterozygous PmchDTR/+ mice lost 98% of their MCH neurons. These mice became lean but ate normally and were hyperactive, especially during a fast. They also responded abnormally to psychostimulants. For these phenotypes, ablation of MCH neurons recapitulated knock-out of MCH, so MCH appears to be the critical neuromodulator released by these neurons. In contrast, MCH-neuron-ablated mice showed improved glucose tolerance when compared with MCH-deficient mutant mice and wild-type mice. We conclude that MCH neurons regulate glucose tolerance through signaling molecules other than MCH. PMID:23365238
Whiddon, Benjamin B; Palmiter, Richard D
2013-01-30
Melanin-concentrating hormone (MCH)-expressing neurons have been ascribed many roles based on studies of MCH-deficient mice. However, MCH neurons express other neurotransmitters, including GABA, nesfatin, and cocaine-amphetamine-regulated transcript. The importance of these other signaling molecules made by MCH neurons remains incompletely characterized. To determine the roles of MCH neurons in vivo, we targeted expression of the human diphtheria toxin receptor (DTR) to the gene for MCH (Pmch). Within 2 weeks of diphtheria toxin injection, heterozygous Pmch(DTR/+) mice lost 98% of their MCH neurons. These mice became lean but ate normally and were hyperactive, especially during a fast. They also responded abnormally to psychostimulants. For these phenotypes, ablation of MCH neurons recapitulated knock-out of MCH, so MCH appears to be the critical neuromodulator released by these neurons. In contrast, MCH-neuron-ablated mice showed improved glucose tolerance when compared with MCH-deficient mutant mice and wild-type mice. We conclude that MCH neurons regulate glucose tolerance through signaling molecules other than MCH.
Azoulay-Dupuis, E.; Bédos, J. P.; Mohler, J.; Moine, P.; Cherbuliez, C.; Peytavin, G.; Fantin, B.; Köhler, T.
2005-01-01
Gemifloxacin is a novel fluoronaphthyridone quinolone with enhanced in vitro activity against Streptococcus pneumoniae. We investigated the activities of gemifloxacin and trovafloxacin, their abilities to select for resistance in vitro and in vivo, and their efficacies in a mouse model of acute pneumonia. Immunocompetent Swiss mice were infected with 105 CFU of a virulent, encapsulated S. pneumoniae strain, P-4241, or its isogenic parC, gyrA, parC gyrA, and efflux mutant derivatives (serotype 3); and leukopenic mice were infected with 107 CFU of two poorly virulent clinical strains (serotype 11A) carrying either a parE mutation or a parC, gyrA, and parE triple mutation. The drugs were administered six times every 12 h, starting at either 3 or 18 h postinfection. In vitro, gemifloxacin was the most potent agent against strains with and without acquired resistance to fluoroquinolones. While control mice died within 6 days, gemifloxacin at doses of 25 and 50 mg/kg of body weight was highly effective (survival rates, 90 to 100%) against the wild-type strain and against mutants harboring a single mutation, corresponding to area under the time-versus-serum concentration curve at 24 h (AUC24)/MIC ratios of 56.5 to 113, and provided a 40% survival rate against a mutant with a double mutation (parC and gyrA). A total AUC24/MIC ratio of 28.5 was associated with poor efficacy and the emergence of resistant mutants. Trovafloxacin was as effective as gemifloxacin against mutants with single mutations but did not provide any protection against the mutant with double mutations, despite treatment with a high dose of 200 mg/kg. Gemifloxacin preferentially selected for parC mutants both in vitro and in vivo. PMID:15728901
Amyloid precursor protein-induced axonopathies are independent of amyloid-beta peptides.
Stokin, Gorazd B; Almenar-Queralt, Angels; Gunawardena, Shermali; Rodrigues, Elizabeth M; Falzone, Tomás; Kim, Jungsu; Lillo, Concepción; Mount, Stephanie L; Roberts, Elizabeth A; McGowan, Eileen; Williams, David S; Goldstein, Lawrence S B
2008-11-15
Overexpression of amyloid precursor protein (APP), as well as mutations in the APP and presenilin genes, causes rare forms of Alzheimer's disease (AD). These genetic changes have been proposed to cause AD by elevating levels of amyloid-beta peptides (Abeta), which are thought to be neurotoxic. Since overexpression of APP also causes defects in axonal transport, we tested whether defects in axonal transport were the result of Abeta poisoning of the axonal transport machinery. Because directly varying APP levels also alters APP domains in addition to Abeta, we perturbed Abeta generation selectively by combining APP transgenes in Drosophila and mice with presenilin-1 (PS1) transgenes harboring mutations that cause familial AD (FAD). We found that combining FAD mutant PS1 with FAD mutant APP increased Abeta42/Abeta40 ratios and enhanced amyloid deposition as previously reported. Surprisingly, however, this combination suppressed rather than increased APP-induced axonal transport defects in both Drosophila and mice. In addition, neuronal apoptosis induced by expression of FAD mutant human APP in Drosophila was suppressed by co-expressing FAD mutant PS1. We also observed that directly elevating Abeta with fusions to the Familial British and Danish Dementia-related BRI protein did not enhance axonal transport phenotypes in APP transgenic mice. Finally, we observed that perturbing Abeta ratios in the mouse by combining FAD mutant PS1 with FAD mutant APP did not enhance APP-induced behavioral defects. A potential mechanism to explain these findings was suggested by direct analysis of axonal transport in the mouse, which revealed that axonal transport or entry of APP into axons is reduced by FAD mutant PS1. Thus, we suggest that APP-induced axonal defects are not caused by Abeta.
Sujino, Mitsugu; Asakawa, Takeshi; Nagano, Mamoru; Koinuma, Satoshi; Masumoto, Koh-Hei; Shigeyoshi, Yasufumi
2018-01-16
In mammals, the principal circadian oscillator exists in the hypothalamic suprachiasmatic nucleus (SCN). In the SCN, CLOCK works as an essential component of molecular circadian oscillation, and ClockΔ19 mutant mice show unique characteristics of circadian rhythms such as extended free running periods, amplitude attenuation, and high-magnitude phase-resetting responses. Here we investigated what modifications occur in the spatiotemporal organization of clock gene expression in the SCN of ClockΔ19 mutants. The cultured SCN, sampled from neonatal homozygous ClockΔ19 mice on an ICR strain comprising PERIOD2::LUCIFERASE, demonstrated that the Clock gene mutation not only extends the circadian period, but also affects the spatial phase and period distribution of circadian oscillations in the SCN. In addition, disruption of the synchronization among neurons markedly attenuated the amplitude of the circadian rhythm of individual oscillating neurons in the mutant SCN. Further, with numerical simulations based on the present studies, the findings suggested that, in the SCN of the ClockΔ19 mutant mice, stable oscillation was preserved by the interaction among oscillating neurons, and that the orderly phase and period distribution that makes a phase wave are dependent on the functionality of CLOCK.
Pionnier, Nicolas; Brotin, Emilie; Karadjian, Gregory; Hemon, Patrice; Gaudin-Nomé, Françoise; Vallarino-Lhermitte, Nathaly; Nieguitsila, Adélaïde; Fercoq, Frédéric; Aknin, Marie-Laure; Marin-Esteban, Viviana; Chollet-Martin, Sylvie; Schlecht-Louf, Géraldine
2016-01-01
Our knowledge and control of the pathogenesis induced by the filariae remain limited due to experimental obstacles presented by parasitic nematode biology and the lack of selective prophylactic or curative drugs. Here we thought to investigate the role of neutrophils in the host innate immune response to the infection caused by the Litomosoides sigmodontis murine model of human filariasis using mice harboring a gain-of-function mutation of the chemokine receptor CXCR4 and characterized by a profound blood neutropenia (Cxcr4+/1013). We provided manifold evidence emphasizing the major role of neutrophils in the control of the early stages of infection occurring in the skin. Firstly, we uncovered that the filarial parasitic success was dramatically decreased in Cxcr4+/1013 mice upon subcutaneous delivery of the infective stages of filariae (infective larvae, L3). This protection was linked to a larger number of neutrophils constitutively present in the skin of the mutant mice herein characterized as compared to wild type (wt) mice. Indeed, the parasitic success in Cxcr4+/1013 mice was normalized either upon depleting neutrophils, including the pool in the skin, or bypassing the skin via the intravenous infection of L3. Second, extending these observations to wt mice we found that subcutaneous delivery of L3 elicited an increase of neutrophils in the skin. Finally, living L3 larvae were able to promote in both wt and mutant mice, an oxidative burst response and the release of neutrophil extracellular traps (NET). This response of neutrophils, which is adapted to the large size of the L3 infective stages, likely directly contributes to the anti-parasitic strategies implemented by the host. Collectively, our results are demonstrating the contribution of neutrophils in early anti-filarial host responses through their capacity to undertake different anti-filarial strategies such as oxidative burst, degranulation and NETosis. PMID:27111140
Unbound (bioavailable) IGF1 enhances somatic growth
Elis, Sebastien; Wu, Yingjie; Courtland, Hayden-William; Cannata, Dara; Sun, Hui; Beth-On, Mordechay; Liu, Chengyu; Jasper, Hector; Domené, Horacio; Karabatas, Liliana; Guida, Clara; Basta-Pljakic, Jelena; Cardoso, Luis; Rosen, Clifford J.; Frystyk, Jan; Yakar, Shoshana
2011-01-01
SUMMARY Understanding insulin-like growth factor-1 (IGF1) biology is of particular importance because, apart from its role in mediating growth, it plays key roles in cellular transformation, organ regeneration, immune function, development of the musculoskeletal system and aging. IGF1 bioactivity is modulated by its binding to IGF-binding proteins (IGFBPs) and the acid labile subunit (ALS), which are present in serum and tissues. To determine whether IGF1 binding to IGFBPs is necessary to facilitate normal growth and development, we used a gene-targeting approach and generated two novel knock-in mouse models of mutated IGF1, in which the native Igf1 gene was replaced by Des-Igf1 (KID mice) or R3-Igf1 (KIR mice). The KID and KIR mutant proteins have reduced affinity for the IGFBPs, and therefore present as unbound IGF1, or ‘free IGF1’. We found that both KID and KIR mice have reduced serum IGF1 levels and a concomitant increase in serum growth hormone levels. Ternary complex formation of IGF1 with the IGFBPs and the ALS was markedly reduced in sera from KID and KIR mice compared with wild type. Both mutant mice showed increased body weight, body and bone lengths, and relative lean mass. We found selective organomegaly of the spleen, kidneys and uterus, enhanced mammary gland complexity, and increased skeletal acquisition. The KID and KIR models show unequivocally that IGF1-complex formation with the IGFBPs is fundamental for establishing normal body and organ size, and that uncontrolled IGF bioactivity could lead to pathological conditions. PMID:21628395
Kc, Ranjan; Li, Xin; Voigt, Robin M; Ellman, Michael B; Summa, Keith C; Vitaterna, Martha Hotz; Keshavarizian, Ali; Turek, Fred W; Meng, Qing-Jun; Stein, Gary S; van Wijnen, Andre J; Chen, Di; Forsyth, Christopher B; Im, Hee-Jeong
2015-09-01
Circadian rhythm dysfunction is linked to many diseases, yet pathophysiological roles in articular cartilage homeostasis and degenerative joint disease including osteoarthritis (OA) remains to be investigated in vivo. Here, we tested whether environmental or genetic disruption of circadian homeostasis predisposes to OA-like pathological changes. Male mice were examined for circadian locomotor activity upon changes in the light:dark (LD) cycle or genetic disruption of circadian rhythms. Wild-type (WT) mice were maintained on a constant 12 h:12 h LD cycle (12:12 LD) or exposed to weekly 12 h phase shifts. Alternatively, male circadian mutant mice (Clock(Δ19) or Csnk1e(tau) mutants) were compared with age-matched WT littermates that were maintained on a constant 12:12 LD cycle. Disruption of circadian rhythms promoted osteoarthritic changes by suppressing proteoglycan accumulation, upregulating matrix-degrading enzymes and downregulating anabolic mediators in the mouse knee joint. Mechanistically, these effects involved activation of the PKCδ-ERK-RUNX2/NFκB and β-catenin signaling pathways, stimulation of MMP-13 and ADAMTS-5, as well as suppression of the anabolic mediators SOX9 and TIMP-3 in articular chondrocytes of phase-shifted mice. Genetic disruption of circadian homeostasis does not predispose to OA-like pathological changes in joints. Our results, for the first time, provide compelling in vivo evidence that environmental disruption of circadian rhythms is a risk factor for the development of OA-like pathological changes in the mouse knee joint. © 2015 Wiley Periodicals, Inc.
Zhu, Qiang; Zou, Li; Jagavelu, Kumaravelu; Simonetto, Douglas A.; Huebert, Robert C.; Jiang, Zhi-Dong; DuPont, Herbert L.; Shah, Vijay H.
2012-01-01
Background/Aims Liver fibrosis is associated with angiogenesis and leads to portal hypertension. Certain antibiotics reduce complications of liver failure in humans, however, effect of antibiotics on the pathologic alterations of the disease are not fully understood. The aim of this study was to test whether the non-absorbable antibiotic rifaximin could attenuate fibrosis progression and portal hypertension in vivo, and explore potential mechanisms in vitro. Methods Effect of rifaximin on portal pressure, fibrosis, and angiogenesis was examined in wild type and toll like receptor 4 (TLR4) mutant mice after bile duct ligation (BDL). In vitro studies were carried out to evaluate the effect of the bacterial product and TLR agonist, lipopolysaccharide (LPS) on paracrine interactions between hepatic stellate cells (HSC) and liver endothelial cells (LEC) that lead to fibrosis and portal hypertension. Results Portal pressure, fibrosis, and angiogenesis were significantly lower in BDL mice receiving rifaximin compared to BDL mice receiving vehicle. Studies in TLR4 mutant mice confirmed that the effect of rifaximin was dependent on LPS/TLR4 pathway. Fibronectin (FN) was increased in BDL liver and was reduced by rifaximin administration and thus was explored further in vitro as a potential mediator of paracrine interactions of HSC and LEC. In vitro, LPS promoted FN production from HSC. Furthermore, HSC-derived FN promoted LEC migration and angiogenesis. Conclusion These studies expand our understanding of the relationship of intestinal microbiota with fibrosis development by identifying FN as a TLR4 dependent mediator of the matrix and vascular changes that characterize cirrhosis. PMID:22173161
GRP78 plays an essential role in adipogenesis and postnatal growth in mice
Zhu, Genyuan; Ye, Risheng; Jung, Dae Young; Barron, Ernesto; Friedline, Randall H.; Benoit, Vivian M.; Hinton, David R.; Kim, Jason K.; Lee, Amy S.
2013-01-01
To investigate the role of GRP78 in adipogenesis and metabolic homeostasis, we knocked down GRP78 in mouse embryonic fibroblasts and 3T3-L1 preadipocytes induced to undergo differentiation into adipocytes. We also created an adipose Grp78-knockout mouse utilizing the aP2 (fatty acid binding protein 4) promoter-driven Cre-recombinase. Adipogenesis was monitored by molecular markers and histology. Tissues were analyzed by micro-CT and electron microscopy. Glucose homeostasis and cytokine analysis were performed. Our results indicate that GRP78 is essential for adipocyte differentiation in vitro. aP2-cre-mediated GRP78 deletion leads to lipoatrophy with ∼90% reduction in gonadal and subcutaneous white adipose tissue and brown adipose tissue, severe growth retardation, and bone defects. Despite severe abnormality in adipose mass and function, adipose Grp78-knockout mice showed normal plasma triglyceride levels, and plasma glucose and insulin levels were reduced by 40-60% compared to wild-type mice, suggesting enhanced insulin sensitivity. The endoplasmic reticulum is grossly expanded in the residual mutant white adipose tissue. Thus, these studies establish that GRP78 is required for adipocyte differentiation, glucose homeostasis, and balanced secretion of adipokines. Unexpectedly, the phenotypes and metabolic parameters of the mutant mice, which showed early postnatal mortality, are uniquely distinct from previously characterized lipodystrophic mouse models.—Zhu, G., Ye, R., Jung, D. Y., Barron, E., Friedline, R. H., Benoit, V. M., Hinton, D. R., Kim, J. K., Lee, A. S. GRP78 plays an essential role in adipogenesis and postnatal growth in mice. PMID:23180827
Hayashi, Masayuki; Arima, Hiroshi; Ozaki, Noriyuki; Morishita, Yoshiaki; Hiroi, Maiko; Ozaki, Nobuaki; Nagasaki, Hiroshi; Kinoshita, Noriaki; Ueda, Masatsugu; Shiota, Akira; Oiso, Yutaka
2009-05-01
Familial neurohypophysial diabetes insipidus (FNDI), an autosomal dominant disorder, is mostly caused by mutations in the gene of neurophysin II (NPII), the carrier protein of arginine vasopressin (AVP). Previous studies suggest that loss of AVP neurons might be the cause of polyuria in FNDI. Here we analyzed knockin mice expressing mutant NPII that causes FNDI in humans. The heterozygous mice manifested progressive polyuria as do patients with FNDI. Immunohistochemical analyses revealed that inclusion bodies that were not immunostained with antibodies for mutant NPII, normal NPII, or AVP were present in the AVP cells in the supraoptic nucleus (SON), and that the size of inclusion bodies gradually increased in parallel with the increases in urine volume. Electron microscopic analyses showed that aggregates existed in the endoplasmic reticulum (ER) as well as in the nucleus of AVP neurons in 1-mo-old heterozygous mice. At 12 mo, dilated ER filled with aggregates occupied the cytoplasm of AVP cells, while few aggregates were found in the nucleus. Analyses with in situ hybridization revealed that expression of AVP mRNA was significantly decreased in the SON in the heterozygous mice compared with that in wild-type mice. Counting cells expressing AVP mRNA in the SON indicated that polyuria had progressed substantially in the absence of neuronal loss. These data suggest that cell death is not the primary cause of polyuria in FNDI, and that the aggregates accumulated in the ER might be involved in the dysfunction of AVP neurons that lead to the progressive polyuria.
Animal models of physiologic markers of male reproduction: genetically defined infertile mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chubb, C.
The present report focuses on novel animal models of male infertility: genetically defined mice bearing single-gene mutations that induce infertility. The primary goal of the investigations was to identify the reproductive defects in these mutant mice. The phenotypic effects of the gene mutations were deciphered by comparing the mutant mice to their normal siblings. Initially testicular steroidogenesis and spermatogenesis were investigated. The physiologic markers for testicular steroidogenesis were steroid secretion by testes perifused in vitro, seminal vesicle weight, and Leydig cell histology. Spermatogenesis was evaluated by the enumeration of homogenization-resistant sperm/spermatids in testes and by morphometric analyses of germ cellsmore » in the seminiferous epithelium. If testicular function appeared normal, the authors investigated the sexual behavior of the mice. The parameters of male sexual behavior that were quantified included mount patency, mount frequency, intromission latency, thrusts per intromission, ejaculation latency, and ejaculation duration. Females of pairs breeding under normal circumstances were monitored for the presence of vaginal plugs and pregnancies. The patency of the ejaculatory process was determined by quantifying sperm in the female reproductive tract after sexual behavior tests. Sperm function was studied by quantitatively determining sperm motility during videomicroscopic observation. Also, the ability of epididymal sperm to function within the uterine environment was analyzed by determining sperm capacity to initiate pregnancy after artificial insemination. Together, the experimental results permitted the grouping of the gene mutations into three general categories. They propose that the same biological markers used in the reported studies can be implemented in the assessment of the impact that environmental toxins may have on male reproduction.« less
Unbound (bioavailable) IGF1 enhances somatic growth.
Elis, Sebastien; Wu, Yingjie; Courtland, Hayden-William; Cannata, Dara; Sun, Hui; Beth-On, Mordechay; Liu, Chengyu; Jasper, Hector; Domené, Horacio; Karabatas, Liliana; Guida, Clara; Basta-Pljakic, Jelena; Cardoso, Luis; Rosen, Clifford J; Frystyk, Jan; Yakar, Shoshana
2011-09-01
Understanding insulin-like growth factor-1 (IGF1) biology is of particular importance because, apart from its role in mediating growth, it plays key roles in cellular transformation, organ regeneration, immune function, development of the musculoskeletal system and aging. IGF1 bioactivity is modulated by its binding to IGF-binding proteins (IGFBPs) and the acid labile subunit (ALS), which are present in serum and tissues. To determine whether IGF1 binding to IGFBPs is necessary to facilitate normal growth and development, we used a gene-targeting approach and generated two novel knock-in mouse models of mutated IGF1, in which the native Igf1 gene was replaced by Des-Igf1 (KID mice) or R3-Igf1 (KIR mice). The KID and KIR mutant proteins have reduced affinity for the IGFBPs, and therefore present as unbound IGF1, or 'free IGF1'. We found that both KID and KIR mice have reduced serum IGF1 levels and a concomitant increase in serum growth hormone levels. Ternary complex formation of IGF1 with the IGFBPs and the ALS was markedly reduced in sera from KID and KIR mice compared with wild type. Both mutant mice showed increased body weight, body and bone lengths, and relative lean mass. We found selective organomegaly of the spleen, kidneys and uterus, enhanced mammary gland complexity, and increased skeletal acquisition. The KID and KIR models show unequivocally that IGF1-complex formation with the IGFBPs is fundamental for establishing normal body and organ size, and that uncontrolled IGF bioactivity could lead to pathological conditions.
2011-01-01
effects of stressors on excessive and uncontrolled drinking and relapse-like drinking. We proposed to use foot-shock as the stressor to elicit increase...did significantly increase deprivation-induced relapse-like drinking, and that this effect was more robust in mutant mice lacking the NPY Y1R. Thus...ethanol consumption using a models of excessive uncontrolled drinking, and mutant mice lacking NPY or the Y1R were more sensitive to the effects of
Bozue, Joel; Cote, Christopher K; Webster, Wendy; Bassett, Anthony; Tobery, Steven; Little, Stephen; Swietnicki, Wieslaw
2012-07-01
Yersinia pestis is the causative agent responsible for bubonic and pneumonic plague. The bacterium uses the pLcr plasmid-encoded type III secretion system to deliver virulence factors into host cells. Delivery requires ATP hydrolysis by the YscN ATPase encoded by the yscN gene also on pLcr. A yscN mutant was constructed in the fully virulent CO92 strain containing a nonpolar, in-frame internal deletion within the gene. We demonstrate that CO92 with a yscN mutation was not able to secrete the LcrV protein (V-Antigen) and attenuated in a subcutaneous model of plague demonstrating that the YscN ATPase was essential for virulence. However, if the yscN mutant was complemented with a functional yscN gene in trans, virulence was restored. To evaluate the mutant as a live vaccine, Swiss-Webster mice were vaccinated twice with the ΔyscN mutant at varying doses and were protected against bubonic plague in a dose-dependent manner. Antibodies to F1 capsule but not to LcrV were detected in sera from the vaccinated mice. These preliminary results suggest a proof-of-concept for an attenuated, genetically engineered, live vaccine effective against bubonic plague. Published 2012. This article is a US Government work and is in the public domain in the USA.
Enhancement of DEN-induced liver tumorigenesis in heme oxygenase-1 G143H mutant transgenic mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Jianfeng; Wang, Dayong; Xiao, Haifeng
Heme oxygenase (HO) is the rate-limiting enzyme in heme metabolism. HO-1 exhibits anti-oxidative and anti-inflammatory function via the actions of its metabolite, respectively. A growing body of evidence demonstrates that HO-1 is implicated in the pathogenesis and progression of several types of cancer. However, whether HO-1 takes part in healthy-premalignant-malignant transformation is still undefined. In this study, we took advantage of transgenic mice which over-expressed HO-1 dominant negative mutant (HO-1 G143H) and observed its susceptibility to DEN-induced hepatocarcinogenesis. Our results indicate that HO-1 G143H mutant accelerates the progression of tumorigenesis and tumor growth. The mechanism is closely related to enhancementmore » of ROS production which induce more hepatocytes death and secretion of inflammatory cytokines, proliferation of surviving hepatocytes. Our result provides the direct evidence that HO-1 plays an important protective role in liver carcinogenesis. Alternatively, we suggest the possible explanation on effect of HO-1 promoter polymorphism which involved in tumorigenesis. - Highlights: • Enhancement of DEN-induced hepatocarcinogenesis in HO-1 G143H Tg mice. • HO-1G143H mutant enhanced DEN-induced ROS production and liver injury. • HO-1G143H mutant aggravated DEN-induced changes of inflammatory factors and cell proliferation.« less
A Mutant Receptor Tyrosine Phosphatase, CD148, Causes Defects in Vascular Development
Takahashi, Takamune; Takahashi, Keiko; St. John, Patricia L.; Fleming, Paul A.; Tomemori, Takuya; Watanabe, Toshio; Abrahamson, Dale R.; Drake, Christopher J.; Shirasawa, Takuji; Daniel, Thomas O.
2003-01-01
Vascularization defects in genetic recombinant mice have defined critical roles for a number of specific receptor tyrosine kinases. Here we evaluated whether an endothelium-expressed receptor tyrosine phosphatase, CD148 (DEP-1/PTPη), participates in developmental vascularization. A mutant allele, CD148ΔCyGFP, was constructed to eliminate CD148 phosphatase activity by in-frame replacement of cytoplasmic sequences with enhanced green fluorescent protein sequences. Homozygous mutant mice died at midgestation, before embryonic day 11.5 (E11.5), with vascularization failure marked by growth retardation and disorganized vascular structures. Structural abnormalities were observed as early as E8.25 in the yolk sac, prior to the appearance of intraembryonic defects. Homozygous mutant mice displayed enlarged vessels comprised of endothelial cells expressing markers of early differentiation, including VEGFR2 (Flk1), Tal1/SCL, CD31, ephrin-B2, and Tie2, with notable lack of endoglin expression. Increased endothelial cell numbers and mitotic activity indices were demonstrated. At E9.5, homozygous mutant embryos showed homogeneously enlarged primitive vessels defective in vascular remodeling and branching, with impaired pericyte investment adjacent to endothelial structures, in similarity to endoglin-deficient embryos. Developing cardiac tissues showed expanded endocardial projections accompanied by defective endocardial cushion formation. These findings implicate a member of the receptor tyrosine phosphatase family, CD148, in developmental vascular organization and provide evidence that it regulates endothelial proliferation and endothelium-pericyte interactions. PMID:12588999
Barkow, Jessica Cummiskey; Freed, Curt R.
2017-01-01
Exercise has been recommended to improve motor function in Parkinson patients, but its value in altering progression of disease is unknown. In this study, we examined the neuroprotective effects of running wheel exercise in mice. In adult wild-type mice, one week of running wheel activity led to significantly increased DJ-1 protein concentrations in muscle and plasma. In DJ-1 knockout mice, running wheel performance was much slower and Rotarod performance was reduced, suggesting that DJ-1 protein is required for normal motor activity. To see if exercise can prevent abnormal protein deposition and behavioral decline in transgenic animals expressing a mutant human form of α-synuclein in all neurons, we set up running wheels in the cages of pre-symptomatic animals at 12 months old. Activity was monitored for a 3-month period. After 3 months, motor and cognitive performance on the Rotarod and Morris Water Maze were significantly better in running animals compared to control transgenic animals with locked running wheels. Biochemical analysis revealed that running mice had significantly higher DJ-1, Hsp70 and BDNF concentrations and had significantly less α-synuclein aggregation in brain compared to control mice. By contrast, plasma concentrations of α-synuclein were significantly higher in exercising mice compared to control mice. Our results suggest that exercise may slow the progression of Parkinson’s disease by preventing abnormal protein aggregation in brain. PMID:29272304
Novel monoamine oxidase A knock out mice with human-like spontaneous mutation.
Scott, Anna L; Bortolato, Marco; Chen, Kevin; Shih, Jean C
2008-05-07
A novel line of mutant mice [monoamine oxidase A knockout (MAOA KO)] harboring a spontaneous point nonsense mutation in exon 8 of the MAO A gene was serendipitously identified in a 129/SvEvTac colony. This mutation is analogous to the cause of a rare human disorder, Brunner syndrome, characterized by complete MAO A deficiency and impulsive aggressiveness. Concurrent with previous studies of MAO A KO mice generated by insertional mutagenesis ('Tg8'), MAOA(A863T) KO lack MAO A enzyme activity and display enhanced aggression toward intruder mice. MAOA(A863T) KO, however, exhibited lower locomotor activity in a novel, inescapable open field and similar immobility during tail suspension compared with wild type, observations which differ from reports of Tg8. These findings consolidate evidence linking MAO A to aggression and highlight subtle yet distinctive phenotypical characteristics.
Novel monoamine oxidase A knock out mice with human-like spontaneous mutation
Scott, Anna L.; Bortolato, Marco; Chen, Kevin; Shih, Jean C.
2012-01-01
A novel line of mutant mice [monoamine oxidase A knockout (MAOAA863T KO)] harboring a spontaneous point nonsense mutation in exon 8 of the MAO A gene was serendipitously identified in a 129/SvEvTac colony. This mutation is analogous to the cause of a rare human disorder, Brunner syndrome, characterized by complete MAO A deficiency and impulsive aggressiveness. Concurrent with previous studies of MAO A KO mice generated by insertional mutagenesis (‘Tg8’), MAOAA863T KO lack MAO A enzyme activity and display enhanced aggression toward intruder mice. MAOAA863T KO, however, exhibited lower locomotor activity in a novel, inescapable open field and similar immobility during tail suspension compared with wild type, observations which differ from reports of Tg8. These findings consolidate evidence linking MAO A to aggression and highlight subtle yet distinctive phenotypical characteristics. PMID:18418249
Son, Marjatta; Puttaparthi, Krishna; Kawamata, Hibiki; Rajendran, Bhagya; Boyer, Philip J; Manfredi, Giovanni; Elliott, Jeffrey L
2007-04-03
Cu, Zn superoxide dismutase (SOD1) has been detected within spinal cord mitochondria of mutant SOD1 transgenic mice, a model of familial ALS. The copper chaperone for SOD1 (CCS) provides SOD1 with copper, facilitates the conversion of immature apo-SOD1 to a mature holoform, and influences in yeast the cytosolic/mitochondrial partitioning of SOD1. To determine how CCS affects G93A-SOD1-induced disease, we generated transgenic mice overexpressing CCS and crossed them to G93A-SOD1 or wild-type SOD1 transgenic mice. Both CCS transgenic mice and CCS/wild-type-SOD1 dual transgenic mice are neurologically normal. In contrast, CCS/G93A-SOD1 dual transgenic mice develop accelerated neurological deficits, with a mean survival of 36 days, compared with 242 days for G93A-SOD1 mice. Immuno-EM and subcellular fractionation studies on the spinal cord show that G93A-SOD1 is enriched within mitochondria in the presence of CCS overexpression. Our results indicate that CCS overexpression in G93A-SOD1 mice produces severe mitochondrial pathology and accelerates disease course.
Arczewska, Katarzyna D; Tomazella, Gisele G; Lindvall, Jessica M; Kassahun, Henok; Maglioni, Silvia; Torgovnick, Alessandro; Henriksson, Johan; Matilainen, Olli; Marquis, Bryce J; Nelson, Bryant C; Jaruga, Pawel; Babaie, Eshrat; Holmberg, Carina I; Bürglin, Thomas R; Ventura, Natascia; Thiede, Bernd; Nilsen, Hilde
2013-05-01
Transcription-blocking oxidative DNA damage is believed to contribute to aging and to underlie activation of oxidative stress responses and down-regulation of insulin-like signaling (ILS) in Nucleotide Excision Repair (NER) deficient mice. Here, we present the first quantitative proteomic description of the Caenorhabditis elegans NER-defective xpa-1 mutant and compare the proteome and transcriptome signatures. Both methods indicated activation of oxidative stress responses, which was substantiated biochemically by a bioenergetic shift involving increased steady-state reactive oxygen species (ROS) and Adenosine triphosphate (ATP) levels. We identify the lesion-detection enzymes of Base Excision Repair (NTH-1) and global genome NER (XPC-1 and DDB-1) as upstream requirements for transcriptomic reprogramming as RNA-interference mediated depletion of these enzymes prevented up-regulation of genes over-expressed in the xpa-1 mutant. The transcription factors SKN-1 and SLR-2, but not DAF-16, were identified as effectors of reprogramming. As shown in human XPA cells, the levels of transcription-blocking 8,5'-cyclo-2'-deoxyadenosine lesions were reduced in the xpa-1 mutant compared to the wild type. Hence, accumulation of cyclopurines is unlikely to be sufficient for reprogramming. Instead, our data support a model where the lesion-detection enzymes NTH-1, XPC-1 and DDB-1 play active roles to generate a genomic stress signal sufficiently strong to result in transcriptomic reprogramming in the xpa-1 mutant.
Tajan, Mylène; Pernin-Grandjean, Julie; Beton, Nicolas; Gennero, Isabelle; Capilla, Florence; Neel, Benjamin G; Araki, Toshiyuki; Valet, Philippe; Tauber, Maithé; Salles, Jean-Pierre; Yart, Armelle; Edouard, Thomas
2018-04-12
Growth retardation is a constant feature of Noonan syndrome (NS) but its physiopathology remains poorly understood. We previously reported that hyperactive NS-causing SHP2 mutants impair the systemic production of insulin-like growth factor 1 (IGF1) through hyperactivation of the RAS/extracellular signal-regulated kinases (ERK) signalling pathway. Besides endocrine defects, a direct effect of these mutants on growth plate has not been explored, although recent studies have revealed an important physiological role for SHP2 in endochondral bone growth. We demonstrated that growth plate length was reduced in NS mice, mostly due to a shortening of the hypertrophic zone and to a lesser extent of the proliferating zone. These histological features were correlated with decreased expression of early chondrocyte differentiation markers, and with reduced alkaline phosphatase staining and activity, in NS murine primary chondrocytes. Although IGF1 treatment improved growth of NS mice, it did not fully reverse growth plate abnormalities, notably the decreased hypertrophic zone. In contrast, we documented a role of RAS/ERK hyperactivation at the growth plate level since 1) NS-causing SHP2 mutants enhance RAS/ERK activation in chondrocytes in vivo (NS mice) and in vitro (ATDC5 cells) and 2) inhibition of RAS/ERK hyperactivation by U0126 treatment alleviated growth plate abnormalities and enhanced chondrocyte differentiation. Similar effects were obtained by chronic treatment of NS mice with statins.In conclusion, we demonstrated that hyperactive NS-causing SHP2 mutants impair chondrocyte differentiation during endochondral bone growth through a local hyperactivation of the RAS/ERK signalling pathway, and that statin treatment may be a possible therapeutic approach in NS.
Perera, Nirma D.; Sheean, Rebecca K.; Lau, Chew L.; Shin, Yea Seul; Beart, Philip M.; Horne, Malcolm K.; Turner, Bradley J.
2018-01-01
ABSTRACT Macroautophagy/autophagy is the main intracellular catabolic pathway in neurons that eliminates misfolded proteins, aggregates and damaged organelles associated with ageing and neurodegeneration. Autophagy is regulated by both MTOR-dependent and -independent pathways. There is increasing evidence that autophagy is compromised in neurodegenerative disorders, which may contribute to cytoplasmic sequestration of aggregation-prone and toxic proteins in neurons. Genetic or pharmacological modulation of autophagy to promote clearance of misfolded proteins may be a promising therapeutic avenue for these disorders. Here, we demonstrate robust autophagy induction in motor neuronal cells expressing SOD1 or TARDBP/TDP-43 mutants linked to amyotrophic lateral sclerosis (ALS). Treatment of these cells with rilmenidine, an anti-hypertensive agent and imidazoline-1 receptor agonist that induces autophagy, promoted autophagic clearance of mutant SOD1 and efficient mitophagy. Rilmenidine administration to mutant SOD1G93A mice upregulated autophagy and mitophagy in spinal cord, leading to reduced soluble mutant SOD1 levels. Importantly, rilmenidine increased autophagosome abundance in motor neurons of SOD1G93A mice, suggesting a direct action on target cells. Despite robust induction of autophagy in vivo, rilmenidine worsened motor neuron degeneration and symptom progression in SOD1G93A mice. These effects were associated with increased accumulation and aggregation of insoluble and misfolded SOD1 species outside the autophagy pathway, and severe mitochondrial depletion in motor neurons of rilmenidine-treated mice. These findings suggest that rilmenidine treatment may drive disease progression and neurodegeneration in this mouse model due to excessive mitophagy, implying that alternative strategies to beneficially stimulate autophagy are warranted in ALS. PMID:28980850
Test systems for measuring ocular parameters and visual function in mice.
Schaeffel, Frank
2008-05-01
New techniques are described to measure refractive state, pupil responses, corneal curvature, ocular dimensions and spatial vision in mice. These variables are important for studies on myopia development in mice, but they are also valuable for phenotyping mouse mutants and for pharmacological studies.
Li, Yan; Yu, Shirley; Duncan, Todd; Li, Yichao; Liu, Pinghu; Gene, Erelda; Cortes-Pena, Yoel; Qian, Haohua; Dong, Lijin; Redmond, T Michael
2015-08-01
Human RPE65 mutations cause a spectrum of blinding retinal dystrophies from severe early-onset disease to milder manifestations. The RPE65 P25L missense mutation, though having <10% of wild-type (WT) activity, causes relatively mild retinal degeneration. To better understand these mild forms of RPE65-related retinal degeneration, and their effect on cone photoreceptor survival, we generated an Rpe65/P25L knock-in (KI/KI) mouse model. We found that, when subject to the low-light regime (∼100 lux) of regular mouse housing, homozygous Rpe65/P25L KI/KI mice are morphologically and functionally very similar to WT siblings. While mutant protein expression is decreased by over 80%, KI/KI mice retinae retain comparable 11-cis-retinal levels with WT. Consistently, the scotopic and photopic electroretinographic (ERG) responses to single-flash stimuli also show no difference between KI/KI and WT mice. However, the recovery of a-wave response following moderate visual pigment bleach is delayed in KI/KI mice. Importantly, KI/KI mice show significantly increased resistance to high-intensity (20 000 lux for 30 min) light-induced retinal damage (LIRD) as compared with WT, indicating impaired rhodopsin regeneration in KI/KI. Taken together, the Rpe65/P25L mutant produces sufficient chromophore under normal conditions to keep opsins replete and thus manifests a minimal phenotype. Only when exposed to intensive light is this hypomorphic mutation manifested physiologically, as its reduced expression and catalytic activity protects against the successive cycles of opsin regeneration underlying LIRD. These data also help define minimal requirements of chromophore for photoreceptor survival in vivo and may be useful in assessing a beneficial therapeutic dose for RPE65 gene therapy in humans. Published by Oxford University Press 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Bandara, Aloka B; DeShazer, David; Inzana, Thomas J; Sriranganathan, Nammalwar; Schurig, Gerhardt G; Boyle, Stephen M
2008-09-01
Burkholderia mallei is the etiologic agent of glanders in solipeds (horses, mules and donkeys), and incidentally in carnivores and humans. Little is known about the molecular mechanisms of B. mallei pathogenesis. The putative carboxy-terminal processing protease (CtpA) of B. mallei is a member of a novel family of endoproteases involved in the maturation of proteins destined for the cell envelope. All species and isolates of Burkholderia carry a highly conserved copy of ctpA. We studied the involvement of CtpA on growth, cell morphology, persistence, and pathogenicity of B. mallei. A sucrose-resistant strain of B. mallei was constructed by deleting a major portion of the sacB gene of the wild type strain ATCC 23344 by gene replacement, and designated as strain 23344DeltasacB. A portion of the ctpA gene (encoding CtpA) of strain 23344DeltasacB was deleted by gene replacement to generate strain 23344DeltasacBDeltactpA. In contrast to the wild type ATCC 23344 or the sacB mutant 23344DeltasacB, the ctpA mutant 23344DeltasacBDeltactpA displayed altered cell morphologies with partially or fully disintegrated cell envelopes. Furthermore, relative to the wild type, the ctpA mutant displayed slower growth in vitro and less ability to survive in J774.2 murine macrophages. The expression of mRNA of adtA, the gene downstream of ctpA was similar among the three strains suggesting that disruption of ctpA did not induce any polar effects. As with the wild type or the sacB mutant, the ctpA mutant exhibited a dose-dependent lethality when inoculated intraperitoneally into CD1 mice. The CD1 mice inoculated with a non-lethal dose of the ctpA mutant produced specific serum immunoglobulins IgG1 and IgG2a and were partially protected against challenge with wild type B. mallei ATCC 23344. These findings suggest that CtpA regulates in vitro growth, cell morphology and intracellular survival of B. mallei, and a ctpA mutant protects CD1 mice against glanders.
A Novel mouse model of enhanced proteostasis: Full-length human heat shock factor 1 transgenic mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, Anson, E-mail: piercea2@uthscsa.edu; Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229; The Department of Veteran's Affairs, South Texas Veterans Health Care System, San Antonio, Texas, 78284
2010-11-05
Research highlights: {yields} Development of mouse overexpressing native human HSF1 in all tissues including CNS. {yields} HSF1 overexpression enhances heat shock response at whole-animal and cellular level. {yields} HSF1 overexpression protects from polyglutamine toxicity and favors aggresomes. {yields} HSF1 overexpression enhances proteostasis at the whole-animal and cellular level. -- Abstract: The heat shock response (HSR) is controlled by the master transcriptional regulator heat shock factor 1 (HSF1). HSF1 maintains proteostasis and resistance to stress through production of heat shock proteins (HSPs). No transgenic model exists that overexpresses HSF1 in tissues of the central nervous system (CNS). We generated a transgenicmore » mouse overexpressing full-length non-mutant HSF1 and observed a 2-4-fold increase in HSF1 mRNA and protein expression in all tissues studied of HSF1 transgenic (HSF1{sup +/0}) mice compared to wild type (WT) littermates, including several regions of the CNS. Basal expression of HSP70 and 90 showed only mild tissue-specific changes; however, in response to forced exercise, the skeletal muscle HSR was more elevated in HSF1{sup +/0} mice compared to WT littermates and in fibroblasts following heat shock, as indicated by levels of inducible HSP70 mRNA and protein. HSF1{sup +/0} cells elicited a significantly more robust HSR in response to expression of the 82 repeat polyglutamine-YFP fusion construct (Q82YFP) and maintained proteasome-dependent processing of Q82YFP compared to WT fibroblasts. Overexpression of HSF1 was associated with fewer, but larger Q82YFP aggregates resembling aggresomes in HSF1{sup +/0} cells, and increased viability. Therefore, our data demonstrate that tissues and cells from mice overexpressing full-length non-mutant HSF1 exhibit enhanced proteostasis.« less
Reagents that block neuronal death from Huntington's disease also curb oxidative stress.
Valencia, Antonio; Sapp, Ellen; Reeves, Patrick B; Alexander, Jonathan; Masso, Nicholas; Li, Xueyi; Kegel, Kimberly B; DiFiglia, Marian
2012-01-04
Patients with Huntington's disease suffer severe neuronal loss and signs of oxidative damage in the brain. Previously we found that primary neurons from embryonic cortex of mice bearing the Huntington's disease mutation (140 glutamines inserted into exon 1 of huntingtin) showed higher levels of reactive oxygen species before cell death. Here, we treated mutant neurons with known neuroprotective agents and determined the effects on neuronal survival and levels of reactive oxygen species. Primary neurons were exposed to the neurotrophin, brain derived neurotrophic factor, the antioxidant N-acetyl-cysteine or a specific inhibitor of glycogen synthase kinase 3-β, SB216763. Each reagent increased the survival of the mutant neurons compared with untreated mutant neurons and also reduced the levels of reactive oxygen species to levels of wild-type neurons. These results suggest that reducing the levels of reactive oxygen species may be necessary to protect neurons with the Huntington's disease mutation from cell death.
Automated deep-phenotyping of the vertebrate brain
Allalou, Amin; Wu, Yuelong; Ghannad-Rezaie, Mostafa; Eimon, Peter M; Yanik, Mehmet Fatih
2017-01-01
Here, we describe an automated platform suitable for large-scale deep-phenotyping of zebrafish mutant lines, which uses optical projection tomography to rapidly image brain-specific gene expression patterns in 3D at cellular resolution. Registration algorithms and correlation analysis are then used to compare 3D expression patterns, to automatically detect all statistically significant alterations in mutants, and to map them onto a brain atlas. Automated deep-phenotyping of a mutation in the master transcriptional regulator fezf2 not only detects all known phenotypes but also uncovers important novel neural deficits that were overlooked in previous studies. In the telencephalon, we show for the first time that fezf2 mutant zebrafish have significant patterning deficits, particularly in glutamatergic populations. Our findings reveal unexpected parallels between fezf2 function in zebrafish and mice, where mutations cause deficits in glutamatergic neurons of the telencephalon-derived neocortex. DOI: http://dx.doi.org/10.7554/eLife.23379.001 PMID:28406399
Xu, Feng; Davis, Judianne; Hoos, Michael; Van Nostrand, William E
2017-07-01
Kunitz proteinase inhibitor (KPI) domain-containing forms of the amyloid β-protein precursor (AβPP) inhibit cerebral thrombosis. KPI domain-lacking forms of AβPP are abundant in brain. Regions of AβPP other than the KPI domain may also be involved with regulating cerebral thrombosis. To determine the contribution of the KPI domain to the overall function of AβPP in regulating cerebral thrombosis we generated a reactive center mutant that was devoid of anti-thrombotic activity and studied its anti-thrombotic function in vitro and in vivo. To determine the extent of KPI function of AβPP in regulating cerebral thrombosis we generated a recombinant reactive center KPI R13I mutant devoid of anti-thrombotic activity. The anti-proteolytic and anti-coagulant properties of wild-type and R13I mutant KPI were investigated in vitro. Cerebral thrombosis of wild-type, AβPP knock out and AβPP/KPI R13I mutant mice was evaluated in experimental models of carotid artery thrombosis and intracerebral hemorrhage. Recombinant mutant KPI R13I domain was ineffective in the inhibition of pro-thrombotic proteinases and did not inhibit the clotting of plasma in vitro. AβPP/KPI R13I mutant mice were similarly deficient as AβPP knock out mice in regulating cerebral thrombosis in experimental models of carotid artery thrombosis and intracerebral hemorrhage. We demonstrate that the anti-thrombotic function of AβPP primarily resides in the KPI activity of the protein. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bale, Laurie K; Conover, Cheryl A
2005-08-01
Pregnancy-associated plasma protein-A (PAPP-A), an insulin-like growth factor-binding protein (IGFBP) protease, increases insulin-like growth factor (IGF) activity through cleavage of inhibitory IGFBP-4 and the consequent release of IGF peptide for receptor activation. Mice homozygous for targeted disruption of the PAPP-A gene are born as proportional dwarfs and exhibit retarded bone ossification during fetal development. Phenotype and in vitro data support a model in which decreased IGF-II bioavailability during embryogenesis results in growth retardation and reduction in overall body size. To test the hypothesis that an increase in IGF-II during embryogenesis would overcome the growth deficiencies, PAPP-A-null mice were crossed with DeltaH19 mutant mice, which have increased IGF-II expression and fetal overgrowth due to disruption of IgfII imprinting. DeltaH19 mutant mice were 126% and PAPP-A-null mice were 74% the size of controls at birth. These size differences were evident at embryonic day 16.5. Importantly, double mutants were indistinguishable from controls both in terms of size and skeletal development. Body size programmed during embryo development persisted post-natally. Thus, disruption of IgfII imprinting and consequent elevation in IGF-II during fetal development was associated with rescue of the dwarf phenotype and ossification defects of PAPP-A-null mice. These data provide strong genetic evidence that PAPP-A plays an essential role in determining IGF-II bioavailability for optimal fetal growth and development.
Hurd, Elizabeth A; Adams, Meredith E; Layman, Wanda S; Swiderski, Donald L; Beyer, Lisa A; Halsey, Karin E; Benson, Jennifer M; Gong, Tzy-Wen; Dolan, David F; Raphael, Yehoash; Martin, Donna M
2011-12-01
Heterozygous mutations in the gene encoding chromodomain-DNA-binding-protein 7 (CHD7) cause CHARGE syndrome, a multiple anomaly condition which includes vestibular dysfunction and hearing loss. Mice with heterozygous Chd7 mutations exhibit semicircular canal dysgenesis and abnormal inner ear neurogenesis, and are an excellent model of CHARGE syndrome. Here we characterized Chd7 expression in mature middle and inner ears, analyzed morphological features of mutant ears and tested whether Chd7 mutant mice have altered responses to noise exposure and correlated those responses to inner and middle ear structure. We found that Chd7 is highly expressed in mature inner and outer hair cells, spiral ganglion neurons, vestibular sensory epithelia and middle ear ossicles. There were no obvious defects in individual hair cell morphology by prestin immunostaining or scanning electron microscopy, and cochlear innervation appeared normal in Chd7(Gt)(/+) mice. Hearing thresholds by auditory brainstem response (ABR) testing were elevated at 4 and 16 kHz in Chd7(Gt)(/+) mice, and there were reduced distortion product otoacoustic emissions (DPOAE). Exposure of Chd7(Gt)(/+) mice to broadband noise resulted in variable degrees of hair cell loss which inversely correlated with severity of stapedial defects. The degrees of hair cell loss and threshold shifts after noise exposure were more severe in wild type mice than in mutants. Together, these data indicate that Chd7(Gt)(/+) mice have combined conductive and sensorineural hearing loss, correlating with changes in both middle and inner ears. Copyright © 2011 Elsevier B.V. All rights reserved.
Hurd, Elizabeth A.; Adams, Meredith E.; Layman, Wanda S.; Swiderski, Donald L.; Beyer, Lisa A.; Halsey, Karin E.; Benson, Jennifer M.; Gong, Tzy-Wen; Dolan, David F.; Raphael, Yehoash; Martin, Donna M.
2011-01-01
Heterozygous mutations in the gene encoding chromodomain-DNA-binding-protein 7 (CHD7) cause CHARGE syndrome, a multiple anomaly condition which includes vestibular dysfunction and hearing loss. Mice with heterozygous Chd7 mutations exhibit semicircular canal dysgenesis and abnormal inner ear neurogenesis, and are an excellent model of CHARGE syndrome. Here we characterized Chd7 expression in mature middle and inner ears, analyzed morphological features of mutant ears and tested whether Chd7 mutant mice have altered responses to noise exposure and correlated those responses to inner and middle ear structure. We found that Chd7 is highly expressed in mature inner and outer hair cells, spiral ganglion neurons, vestibular sensory epithelia and middle ear ossicles. There were no obvious defects in individual hair cell morphology by Prestin immunostaining or scanning electron microscopy, and cochlear innervation appeared normal in Chd7Gt/+ mice. Hearing thresholds by auditory brainstem response (ABR) testing were elevated at 4 and 16 kHz in Chd7Gt/+ mice, and there were reduced distortion product otoacoustic emissions (DPOAE). Exposure of Chd7Gt/+ mice to broadband noise resulted in variable degrees of hair cell loss which inversely correlated with severity of stapedial defects. The degrees of hair cell loss and threshold shifts after noise exposure were more severe in wild type mice than in mutants. Together, these data indicate that Chd7Gt/+ mice have combined conductive and sensorineural hearing loss, correlating with changes in both middle and inner ears. PMID:21875659
Novel gene function revealed by mouse mutagenesis screens for models of age-related disease.
Potter, Paul K; Bowl, Michael R; Jeyarajan, Prashanthini; Wisby, Laura; Blease, Andrew; Goldsworthy, Michelle E; Simon, Michelle M; Greenaway, Simon; Michel, Vincent; Barnard, Alun; Aguilar, Carlos; Agnew, Thomas; Banks, Gareth; Blake, Andrew; Chessum, Lauren; Dorning, Joanne; Falcone, Sara; Goosey, Laurence; Harris, Shelley; Haynes, Andy; Heise, Ines; Hillier, Rosie; Hough, Tertius; Hoslin, Angela; Hutchison, Marie; King, Ruairidh; Kumar, Saumya; Lad, Heena V; Law, Gemma; MacLaren, Robert E; Morse, Susan; Nicol, Thomas; Parker, Andrew; Pickford, Karen; Sethi, Siddharth; Starbuck, Becky; Stelma, Femke; Cheeseman, Michael; Cross, Sally H; Foster, Russell G; Jackson, Ian J; Peirson, Stuart N; Thakker, Rajesh V; Vincent, Tonia; Scudamore, Cheryl; Wells, Sara; El-Amraoui, Aziz; Petit, Christine; Acevedo-Arozena, Abraham; Nolan, Patrick M; Cox, Roger; Mallon, Anne-Marie; Brown, Steve D M
2016-08-18
Determining the genetic bases of age-related disease remains a major challenge requiring a spectrum of approaches from human and clinical genetics to the utilization of model organism studies. Here we report a large-scale genetic screen in mice employing a phenotype-driven discovery platform to identify mutations resulting in age-related disease, both late-onset and progressive. We have utilized N-ethyl-N-nitrosourea mutagenesis to generate pedigrees of mutagenized mice that were subject to recurrent screens for mutant phenotypes as the mice aged. In total, we identify 105 distinct mutant lines from 157 pedigrees analysed, out of which 27 are late-onset phenotypes across a range of physiological systems. Using whole-genome sequencing we uncover the underlying genes for 44 of these mutant phenotypes, including 12 late-onset phenotypes. These genes reveal a number of novel pathways involved with age-related disease. We illustrate our findings by the recovery and characterization of a novel mouse model of age-related hearing loss.
Novel gene function revealed by mouse mutagenesis screens for models of age-related disease
Potter, Paul K.; Bowl, Michael R.; Jeyarajan, Prashanthini; Wisby, Laura; Blease, Andrew; Goldsworthy, Michelle E.; Simon, Michelle M.; Greenaway, Simon; Michel, Vincent; Barnard, Alun; Aguilar, Carlos; Agnew, Thomas; Banks, Gareth; Blake, Andrew; Chessum, Lauren; Dorning, Joanne; Falcone, Sara; Goosey, Laurence; Harris, Shelley; Haynes, Andy; Heise, Ines; Hillier, Rosie; Hough, Tertius; Hoslin, Angela; Hutchison, Marie; King, Ruairidh; Kumar, Saumya; Lad, Heena V.; Law, Gemma; MacLaren, Robert E.; Morse, Susan; Nicol, Thomas; Parker, Andrew; Pickford, Karen; Sethi, Siddharth; Starbuck, Becky; Stelma, Femke; Cheeseman, Michael; Cross, Sally H.; Foster, Russell G.; Jackson, Ian J.; Peirson, Stuart N.; Thakker, Rajesh V.; Vincent, Tonia; Scudamore, Cheryl; Wells, Sara; El-Amraoui, Aziz; Petit, Christine; Acevedo-Arozena, Abraham; Nolan, Patrick M.; Cox, Roger; Mallon, Anne-Marie; Brown, Steve D. M.
2016-01-01
Determining the genetic bases of age-related disease remains a major challenge requiring a spectrum of approaches from human and clinical genetics to the utilization of model organism studies. Here we report a large-scale genetic screen in mice employing a phenotype-driven discovery platform to identify mutations resulting in age-related disease, both late-onset and progressive. We have utilized N-ethyl-N-nitrosourea mutagenesis to generate pedigrees of mutagenized mice that were subject to recurrent screens for mutant phenotypes as the mice aged. In total, we identify 105 distinct mutant lines from 157 pedigrees analysed, out of which 27 are late-onset phenotypes across a range of physiological systems. Using whole-genome sequencing we uncover the underlying genes for 44 of these mutant phenotypes, including 12 late-onset phenotypes. These genes reveal a number of novel pathways involved with age-related disease. We illustrate our findings by the recovery and characterization of a novel mouse model of age-related hearing loss. PMID:27534441
Robinson, Christopher M.; Jesudhasan, Palmy R.; Pfeiffer, Julie K.
2014-01-01
Summary Enteric viruses, including poliovirus and reovirus, encounter a vast microbial community in the mammalian gastrointestinal tract, which has been shown to promote virus replication and pathogenesis. Investigating the underlying mechanisms, we find that poliovirus binds bacterial surface polysaccharides, which enhances virion stability and cell attachment by increasing binding to the viral receptor. Additionally, we identified a poliovirus mutant, VP1-T99K, with reduced lipopolysaccharide (LPS) binding. Although T99K and WT poliovirus cell attachment, replication and pathogenesis in mice are equivalent, following peroral inoculation of mice, VP1-T99K poliovirus was unstable in feces. Consequently, the ratio of mutant virus in feces is reduced following additional cycles of infection in mice. Thus, the mutant virus incurs a fitness cost when environmental stability is a factor. These data suggest that poliovirus binds bacterial surface polysaccharides, enhancing cell attachment and environmental stability, potentially promoting transmission to a new host. PMID:24439896
Ulrich, Ricky L; Amemiya, Kei; Waag, David M; Roy, Chad J; DeShazer, David
2005-03-14
Burkholderia mallei is an obligate mammalian pathogen that causes the zoonotic disease glanders. Two live attenuated B. mallei strains, a capsule mutant and a branched-chain amino acid auxotroph, were evaluated for use as vaccines against aerosol-initiated glanders in mice. Animals were aerogenically vaccinated and serum samples were obtained before aerosol challenge with a high-dose (>300 times the LD50) of B. mallei ATCC 23344. Mice vaccinated with the capsule mutant developed a Th2-like Ig subclass antibody response and none survived beyond 5 days. In comparison, the auxotrophic mutant elicited a Th1-like Ig subclass antibody response and 25% of the animals survived for 1 month postchallenge. After a low-dose (5 times the LD50) aerosol challenge, the survival rates of auxotroph-vaccinated and unvaccinated animals were 50 and 0%, respectively. Thus, live attenuated strains that promote a Th1-like Ig response may serve as promising vaccine candidates against aerosol infection with B. mallei.
Meziane, Hamid; Schaller, Fabienne; Bauer, Sylvian; Villard, Claude; Matarazzo, Valery; Riet, Fabrice; Guillon, Gilles; Lafitte, Daniel; Desarmenien, Michel G; Tauber, Maithé; Muscatelli, Françoise
2015-07-15
Mutations of MAGEL2 have been reported in patients presenting with autism, and loss of MAGEL2 is also associated with Prader-Willi syndrome, a neurodevelopmental genetic disorder. This study aimed to determine the behavioral phenotype of Magel2-deficient adult mice, to characterize the central oxytocin (OT) system of these mutant mice, and to test the curative effect of a peripheral OT treatment just after birth. We assessed the social and cognitive behavior of Magel2-deficient mice, analyzed the OT system of mutant mice treated or not by a postnatal administration of OT, and determined the effect of this treatment on the brain. Magel2 inactivation induces a deficit in social recognition and social interaction and a reduced learning ability in adult male mice. In these mice, we reveal anatomical and functional modifications of the OT system and show that these defects change from birth to adulthood. Daily administration of OT in the first postnatal week was sufficient to prevent deficits in social behavior and learning abilities in adult mutant male mice. We show that this OT treatment partly restores a normal OT system. Thus, we report that an alteration of the OT system around birth has long-term consequences on behavior and on cognition. Importantly, an acute OT treatment of Magel2-deficient pups has a curative effect. Our study reveals that OT plays a crucial role in setting social behaviors during a period just after birth. An early OT treatment in this critical period could be a novel therapeutic approach for the treatment of neurodevelopmental disorders such as Prader-Willi syndrome and autism. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Manczak, Maria; Kandimalla, Ramesh; Yin, Xiangling; Reddy, P Hemachandra
2018-04-15
The purpose of our study was to determine the toxic effects of hippocampal mutant APP and amyloid beta (Aβ) in 12-month-old APP transgenic mice. Using rotarod and Morris water maze tests, immunoblotting and immunofluorescence, Golgi-cox staining and transmission electron microscopy, we assessed cognitive behavior, protein levels of synaptic, autophagy, mitophagy, mitochondrial dynamics, biogenesis, dendritic protein MAP2 and quantified dendritic spines and mitochondrial number and length in 12-month-old APP mice that express Swedish mutation. Mitochondrial function was assessed by measuring the levels of hydrogen peroxide, lipid peroxidation, cytochrome c oxidase activity and mitochondrial ATP. Morris water maze and rotarod tests revealed that hippocampal learning and memory and motor learning and coordination were impaired in APP mice relative to wild-type (WT) mice. Increased levels of mitochondrial fission proteins, Drp1 and Fis1 and decreased levels of fusion (Mfn1, Mfn2 and Opa1) biogenesis (PGC1α, NRF1, NRF2 and TFAM), autophagy (ATG5 and LC3BI, LC3BII), mitophagy (PINK1 and TERT), synaptic (synaptophysin and PSD95) and dendritic (MAP2) proteins were found in 12-month-old APP mice relative to age-matched non-transgenic WT mice. Golgi-cox staining analysis revealed that dendritic spines are significantly reduced. Transmission electron microscopy revealed significantly increased mitochondrial numbers and reduced mitochondrial length in APP mice. These findings suggest that hippocampal accumulation of mutant APP and Aβ is responsible for abnormal mitochondrial dynamics and defective biogenesis, reduced MAP2, autophagy, mitophagy and synaptic proteins and reduced dendritic spines and hippocampal-based learning and memory impairments, and mitochondrial structural and functional changes in 12-month-old APP mice.
Chen, Peng-Chieh; Wakimoto, Hiroko; Conner, David; Araki, Toshiyuki; Yuan, Tao; Roberts, Amy; Seidman, Christine E.; Bronson, Roderick; Neel, Benjamin G.; Seidman, Jonathan G.; Kucherlapati, Raju
2010-01-01
Noonan syndrome (NS) is an autosomal dominant genetic disorder characterized by short stature, unique facial features, and congenital heart disease. About 10%–15% of individuals with NS have mutations in son of sevenless 1 (SOS1), which encodes a RAS and RAC guanine nucleotide exchange factor (GEF). To understand the role of SOS1 in the pathogenesis of NS, we generated mice with the NS-associated Sos1E846K gain-of-function mutation. Both heterozygous and homozygous mutant mice showed many NS-associated phenotypes, including growth delay, distinctive facial dysmorphia, hematologic abnormalities, and cardiac defects. We found that the Ras/MAPK pathway as well as Rac and Stat3 were activated in the mutant hearts. These data provide in vivo molecular and cellular evidence that Sos1 is a GEF for Rac under physiological conditions and suggest that Rac and Stat3 activation might contribute to NS phenotypes. Furthermore, prenatal administration of a MEK inhibitor ameliorated the embryonic lethality, cardiac defects, and NS features of the homozygous mutant mice, demonstrating that this signaling pathway might represent a promising therapeutic target for NS. PMID:21041952
Phenotype detection in morphological mutant mice using deformation features.
Roy, Sharmili; Liang, Xi; Kitamoto, Asanobu; Tamura, Masaru; Shiroishi, Toshihiko; Brown, Michael S
2013-01-01
Large-scale global efforts are underway to knockout each of the approximately 25,000 mouse genes and interpret their roles in shaping the mammalian embryo. Given the tremendous amount of data generated by imaging mutated prenatal mice, high-throughput image analysis systems are inevitable to characterize mammalian development and diseases. Current state-of-the-art computational systems offer only differential volumetric analysis of pre-defined anatomical structures between various gene-knockout mice strains. For subtle anatomical phenotypes, embryo phenotyping still relies on the laborious histological techniques that are clearly unsuitable in such big data environment. This paper presents a system that automatically detects known phenotypes and assists in discovering novel phenotypes in muCT images of mutant mice. Deformation features obtained from non-linear registration of mutant embryo to a normal consensus average image are extracted and analyzed to compute phenotypic and candidate phenotypic areas. The presented system is evaluated using C57BL/10 embryo images. All cases of ventricular septum defect and polydactyly, well-known to be present in this strain, are successfully detected. The system predicts potential phenotypic areas in the liver that are under active histological evaluation for possible phenotype of this mouse line.
Improvement in motor performance of Weaver mutant mice following lesions of the cerebellum.
Grüsser, C; Grüsser-Cornehls, U
1998-12-01
In Weaver mutants (B6CBA wv/wv) cerebellar granule cells degenerate almost completely postnatally. A partial loss of Purkinje cells (PC) and a degeneration of dopaminergic cells in the substantia nigra have also been found. Weaver mice suffer from striking motor symptoms, including difficulty in walking without toppling over. In an attempt to influence the poor motor performance, the cerebellum in young animals was removed, thus eliminating the faulty output of surviving PCs, demonstrated electrophysiologically. Unoperated Weaver, lesioned wildtypes and one sham mouse were used as controls. Before and after operation, a battery of behavioural tests was performed. In Weaver mice, tumbling to the side (t) and the relation of t to the motor activity (k) while traversing an open-field matrix, (t/k), improved considerably, as did manoeuvring on a slanted wire mesh, but keeping balance on a wooden bench did not to the same degree. Locomotor activity alone improved in some animals. In wildtypes no significant changes occurred after operation, with the exception of a strong reduction in locomotor activity. The experiments demonstrate that the motor performance in Weaver mutant mice benefits from removal of their cerebellum.
Bouchard-Cannon, Pascale; Cheng, Hai-Ying M.
2013-01-01
Restricted feeding (RF) schedules are potent zeitgebers capable of entraining metabolic and hormonal rhythms in peripheral oscillators in anticipation of food. Behaviorally, this manifests in the form of food anticipatory activity (FAA) in the hours preceding food availability. Circadian rhythms of FAA are thought to be controlled by a food-entrainable oscillator (FEO) outside of the suprachiasmatic nucleus (SCN), the central circadian pacemaker in mammals. Although evidence suggests that the FEO and the SCN are capable of interacting functionally under RF conditions, the genetic basis of these interactions remains to be defined. In this study, using dexras1-deficient (dexras1−/−) mice, the authors examined whether Dexras1, a modulator of multiple inputs to the SCN, plays a role in regulating the effects of RF on activity rhythms and gene expression in the SCN. Daytime RF under 12L:12D or constant darkness (DD) resulted in potentiated (but less stable) FAA expression in dexras1−/− mice compared with wild-type (WT) controls. Under these conditions, the magnitude and phase of the SCN-driven activity component were greatly perturbed in the mutants. Restoration to ad libitum (AL) feeding revealed a stable phase displacement of the SCN-driven activity component of dexras1−/− mice by ~2 h in advance of the expected time. RF in the late night/early morning induced a long-lasting increase in the period of the SCN-driven activity component in the mutants but not the WT. At the molecular level, daytime RF advanced the rhythm of PER1, PER2, and pERK expression in the mutant SCN without having any effect in the WT. Collectively, these results indicate that the absence of Dexras1 sensitizes the SCN to perturbations resulting from restricted feeding. PMID:22928915
Li, Yazhou; Chigurupati, Srinivasulu; Holloway, Harold W.; Mughal, Mohamed; Tweedie, David; Bruestle, Daniel A.; Mattson, Mark P.; Wang, Yun; Harvey, Brandon K.; Ray, Balmiki; Lahiri, Debomoy K.; Greig, Nigel H.
2012-01-01
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by a progressive loss of lower motor neurons in the spinal cord. The incretin hormone, glucagon-like peptide-1 (GLP-1), facilitates insulin signaling, and the long acting GLP-1 receptor agonist exendin-4 (Ex-4) is currently used as an anti-diabetic drug. GLP-1 receptors are widely expressed in the brain and spinal cord, and our prior studies have shown that Ex-4 is neuroprotective in several neurodegenerative disease rodent models, including stroke, Parkinson's disease and Alzheimer's disease. Here we hypothesized that Ex-4 may provide neuroprotective activity in ALS, and hence characterized Ex-4 actions in both cell culture (NSC-19 neuroblastoma cells) and in vivo (SOD1 G93A mutant mice) models of ALS. Ex-4 proved to be neurotrophic in NSC-19 cells, elevating choline acetyltransferase (ChAT) activity, as well as neuroprotective, protecting cells from hydrogen peroxide-induced oxidative stress and staurosporine-induced apoptosis. Additionally, in both wild-type SOD1 and mutant SOD1 (G37R) stably transfected NSC-19 cell lines, Ex-4 protected against trophic factor withdrawal-induced toxicity. To assess in vivo translation, SOD1 mutant mice were administered vehicle or Ex-4 at 6-weeks of age onwards to end-stage disease via subcutaneous osmotic pump to provide steady-state infusion. ALS mice treated with Ex-4 showed improved glucose tolerance and normalization of behavior, as assessed by running wheel, compared to control ALS mice. Furthermore, Ex-4 treatment attenuated neuronal cell death in the lumbar spinal cord; immunohistochemical analysis demonstrated the rescue of neuronal markers, such as ChAT, associated with motor neurons. Together, our results suggest that GLP-1 receptor agonists warrant further evaluation to assess whether their neuroprotective potential is of therapeutic relevance in ALS. PMID:22384126
Kimura, Wataru; Machii, Masashi; Xue, XiaoDong; Sultana, Nishat; Hikosaka, Keisuke; Sharkar, Mohammad T K; Uezato, Tadayoshi; Matsuda, Masashi; Koseki, Haruhiko; Miura, Naoyuki
2011-01-01
Irxl1 (Iroquois-related homeobox like-1) is a newly identified three amino-acid loop extension (TALE) homeobox gene, which is expressed in various mesoderm-derived tissues, particularly in the progenitors of the musculoskeletal system. To analyze the roles of Irxl1 during embryonic development, we generated mice carrying a null allele of Irxl1. Mice homozygous for the targeted allele were viable, fertile, and showed reduced tendon differentiation. Skeletal morphology and skeletal muscle weight in Irxl1-knockout mice appeared normal. Expression patterns of several marker genes for cartilage, tendon, and muscle progenitors in homozygous mutant embryos were unchanged. These results suggest that Irxl1 is required for the tendon differentiation but dispensable for the patterning of the musculoskeletal system in development. Copyright © 2010 Wiley-Liss, Inc.
Overexpression of mutant HSP27 causes axonal neuropathy in mice.
Lee, Jinho; Jung, Sung-Chul; Joo, Jaesoon; Choi, Yu-Ri; Moon, Hyo Won; Kwak, Geon; Yeo, Ha Kyung; Lee, Ji-Su; Ahn, Hye-Jee; Jung, Namhee; Hwang, Sunhee; Rheey, Jingeun; Woo, So-Youn; Kim, Ji Yon; Hong, Young Bin; Choi, Byung-Ok
2015-06-19
Mutations in heat shock 27 kDa protein 1 (HSP27 or HSPB1) cause distal hereditary motor neuropathy (dHMN) or Charcot-Marie-Tooth disease type 2 F (CMT2F) according to unknown factors. Mutant HSP27 proteins affect axonal transport by reducing acetylated tubulin. We generated a transgenic mouse model overexpressing HSP27-S135F mutant protein driven by Cytomegalovirus (CMV) immediate early promoter. The mouse phenotype was similar to dHMN patients in that they exhibit motor neuropathy. To determine the phenotypic aberration of transgenic mice, behavior test, magnetic resonance imaging (MRI), electrophysiological study, and pathology were performed. Rotarod test showed that founder mice exhibited lowered motor performance. MRI also revealed marked fatty infiltration in the anterior and posterior compartments at calf level. Electrophysiologically, compound muscle action potential (CMAP) but not motor nerve conduction velocity (MNCV) was reduced in the transgenic mice. Toluidine staining with semi-thin section of sciatic nerve showed the ratio of large myelinated axon fiber was reduced, which might cause reduced locomotion in the transgenic mice. Electron microscopy also revealed abundant aberrant myelination. Immunohistochemically, neuronal dysfunctions included elevated level of phosphorylated neurofilament and reduced level of acetylated tubulin in the sural nerve of transgenic mice. There was no additional phenotype besides motor neuronal defects. Overexpression of HSP27-S135F protein causes peripheral neuropathy. The mouse model can be applied to future development of therapeutic strategies for dHMN or CMT2F.
Motor hypertonia and lack of locomotor coordination in mutant mice lacking DSCAM.
Lemieux, Maxime; Laflamme, Olivier D; Thiry, Louise; Boulanger-Piette, Antoine; Frenette, Jérôme; Bretzner, Frédéric
2016-03-01
Down syndrome cell adherence molecule (DSCAM) contributes to the normal establishment and maintenance of neural circuits. Whereas there is abundant literature regarding the role of DSCAM in the neural patterning of the mammalian retina, less is known about motor circuits. Recently, DSCAM mutation has been shown to impair bilateral motor coordination during respiration, thus causing death at birth. DSCAM mutants that survive through adulthood display a lack of locomotor endurance and coordination in the rotarod test, thus suggesting that the DSCAM mutation impairs motor control. We investigated the motor and locomotor functions of DSCAM(2J) mutant mice through a combination of anatomical, kinematic, force, and electromyographic recordings. With respect to wild-type mice, DSCAM(2J) mice displayed a longer swing phase with a limb hyperflexion at the expense of a shorter stance phase during locomotion. Furthermore, electromyographic activity in the flexor and extensor muscles was increased and coactivated over 20% of the step cycle over a wide range of walking speeds. In contrast to wild-type mice, which used lateral walk and trot at walking speed, DSCAM(2J) mice used preferentially less coordinated gaits, such as out-of-phase walk and pace. The neuromuscular junction and the contractile properties of muscles, as well as their muscle spindles, were normal, and no signs of motor rigidity or spasticity were observed during passive limb movements. Our study demonstrates that the DSCAM mutation induces dystonic hypertonia and a disruption of locomotor gaits. Copyright © 2016 the American Physiological Society.
Jyot, Jeevan; Balloy, Viviane; Jouvion, Gregory; Verma, Amrisha; Touqui, Lhousseine; Huerre, Michel; Chignard, Michel; Ramphal, Reuben
2011-05-15
The role of toxins secreted by the type II secretion system (T2SS) of Pseudomonas aeruginosa during lung infection has been uncertain despite decades of research. Using a model of pneumonia in Toll-like receptor (TLR) 2,4(-/-) mice, we reexamined the role of the T2SS system. Flagellin-deficient mutants of P. aeruginosa, with mutations in the T2SS and/or T3SS, were used to infect mice. Mice were followed up for survival, with some killed at different intervals to study bacterial clearance, inflammatory responses, and lung pathology. Strains carrying either secretion system were lethal for mice. Double mutants were avirulent. The T3SS(+) strains killed mice within a day, and the T2SS(+) strains killed them later. Mice infected with a strain that had only the T2SS were unable to eradicate the organism from the lungs, whereas those infected with a T2SS-T3SS double deletion were able to clear this mutant. Death caused by the T2SS(+) strain was accompanied by a >50-fold increase in bacterial counts and higher numbers of viable intracellular bacteria. The T2SS of P. aeruginosa may play a role in death from pneumonia, but its action is delayed. These data suggest that antitoxin strategies against this organism will require measures against the toxins secreted by both T2SS and T3SS.
Abnormalities in brain structure and behavior in GSK-3alpha mutant mice
2009-01-01
Background Glycogen synthase kinase-3 (GSK-3) is a widely expressed and highly conserved serine/threonine protein kinase encoded by two genes that generate two related proteins: GSK-3α and GSK-3β. Mice lacking a functional GSK-3α gene were engineered in our laboratory; they are viable and display insulin sensitivity. In this study, we have characterized brain functions of GSK-3α KO mice by using a well-established battery of behavioral tests together with neurochemical and neuroanatomical analysis. Results Similar to the previously described behaviours of GSK-3β+/-mice, GSK-3α mutants display decreased exploratory activity, decreased immobility time and reduced aggressive behavior. However, genetic inactivation of the GSK-3α gene was associated with: decreased locomotion and impaired motor coordination, increased grooming activity, loss of social motivation and novelty; enhanced sensorimotor gating and impaired associated memory and coordination. GSK-3α KO mice exhibited a deficit in fear conditioning, however memory formation as assessed by a passive avoidance test was normal, suggesting that the animals are sensitized for active avoidance of a highly aversive stimulus in the fear-conditioning paradigm. Changes in cerebellar structure and function were observed in mutant mice along with a significant decrease of the number and size of Purkinje cells. Conclusion Taken together, these data support a role for the GSK-3α gene in CNS functioning and possible involvement in the development of psychiatric disorders. PMID:19925672