Science.gov

Sample records for mutant mouse strain

  1. Genetics of Peripheral Vestibular Dysfunction: Lessons from Mutant Mouse Strains

    PubMed Central

    Jones, Sherri M.; Jones, Timothy A.

    2015-01-01

    Background A considerable amount of research has been published about genetic hearing impairment. Fifty to sixty percent of hearing loss is thought to have a genetic cause. Genes may also play a significant role in acquired hearing loss due to aging, noise exposure, or ototoxic medications. Between 1995 and 2012, over 100 causative genes have been identified for syndromic and nonsyndromic forms of hereditary hearing loss (see Hereditary Hearing Loss Homepage http://hereditaryhearingloss.org). Mouse models have been extremely valuable in facilitating the discovery of hearing loss genes, and in understanding inner ear pathology due to genetic mutations or elucidating fundamental mechanisms of inner ear development. Purpose Whereas much is being learned about hereditary hearing loss and the genetics of cochlear disorders, relatively little is known about the role genes may play in peripheral vestibular impairment. Here we review the literature with regard to genetics of vestibular dysfunction and discuss what we have learned from studies using mutant mouse models and direct measures of peripheral vestibular neural function. Results Several genes are considered that when mutated lead to varying degrees of inner ear vestibular dysfunction due to deficits in otoconia, stereocilia, hair cells, or neurons. Behavior often does not reveal the inner ear deficit. Many of the examples presented are also known to cause human disorders. Conclusions Knowledge regarding the roles of particular genes in the operation of the vestibular sensory apparatus is growing and it is clear that gene products co-expressed in the cochlea and vestibule may play different roles in the respective end organs. The discovery of new genes mediating critical inner ear vestibular function carries the promise of new strategies in diagnosing, treating and managing patients as well as predicting the course and level of morbidity in human vestibular disease. PMID:25032973

  2. A phenotype survey of 36 mutant mouse strains with gene-targeted defects in glycosyltransferases or glycan-binding proteins

    PubMed Central

    Orr, Sally L; Le, Dzung; Long, Jeffrey M; Sobieszczuk, Peter; Ma, Bo; Tian, Hua; Fang, Xiaoqun; Paulson, James C; Marth, Jamey D; Varki, Nissi

    2013-01-01

    The consortium for functional glycomics (CFG) was a large research initiative providing networking and resources for investigators studying the role of glycans and glycan-binding proteins in health and disease. Starting in 2001, six scientific cores were established to generate data, materials and new technologies. By the end of funding in 2011, the mouse phenotype core (MPC) submitted data to a website from the phenotype screen of 36 mutant mouse strains deficient in a gene for either a glycan-binding protein (GBP) or glycosyltransferase (GT). Each mutant strain was allotted three months for analysis and screened by standard phenotype assays used in the fields of immunology, histology, hematology, coagulation, serum chemistry, metabolism and behavior. Twenty of the deficient mouse strains had been studied in other laboratories, and additional tests were performed on these strains to confirm previous observations and discover new data. The CFG constructed 16 new homozygous mutant mouse strains and completed the initial phenotype screen of the majority of these new mutant strains. In total, >300 phenotype changes were observed, but considering the over 100 assays performed on each strain, most of the phenotypes were unchanged. Phenotype differences include abnormal testis morphology in GlcNAcT9- and Siglec-H-deficient mice and lethality in Pomgnt1-deficient mice. The numerous altered phenotypes discovered, along with the consideration of the significant findings of normality, will provide a platform for future characterization to understand the important roles of glycans and GBPs in the mechanisms of health and disease. PMID:23118208

  3. FACS selection of valuable mutant mouse round spermatids and strain rescue via round spermatid injection.

    PubMed

    Zhu, Lian; Zhou, Wei; Kong, Peng-Cheng; Wang, Mei-Shan; Zhu, Yan; Feng, Li-Xin; Chen, Xue-Jin; Jiang, Man-Xi

    2015-06-01

    Round spermatid injection (ROSI) into mammalian oocytes can result in the development of viable embryos and offspring. One current limitation to this technique is the identification of suitable round spermatids. In the current paper, round spermatids were selected from testicular cells with phase contrast microscopy (PCM) and fluorescence-activated cell sorting (FACS), and ROSI was performed in two strains of mice. The rates of fertilization, embryonic development and offspring achieved were the same in all strains. Significantly, round spermatids selected by PCM and FACS were effectively used to rescue the infertile Pten-null mouse. The current results indicate that FACS selection of round spermatids can not only provide high-purity and viable round spermatids for use in ROSI, but also has no harmful effects on the developmental capacity of subsequently fertilized embryos. It was concluded that round spermatids selected by FACS are useful for mouse strain rederivation and rescue of infertile males; ROSI should be considered as a powerful addition to the armamentarium of assisted reproduction techniques applicable in the mouse.

  4. A Quantitative Survey of Gravity Receptor Function in Mutant Mouse Strains

    PubMed Central

    Johnson, Kenneth R.; Yu, Heping; Erway, Lawrence C.; Alagramam, Kumar N.; Pollak, Natasha; Jones, Timothy A.

    2005-01-01

    The purpose of this research was to identify vestibular deficits in mice using linear vestibular evoked potentials (VsEPs). VsEP thresholds, peak latencies, and peak amplitudes from 24 strains with known genetic mutations and 6 inbred background strains have been analyzed and descriptive statistics generated for each strain. Response parameters from mutant homozygotes were compared with heterozygote and/or background controls, and all strain averages were contrasted to normative ranges. Previous work established average values for normal screening VsEP parameters at +6 dB re: 1.0 g/ms: P1 = 1.3 ms, P2 = 2.2 ms, P3 = 2.8 ms; P1/N1 = 2 μV; P2/N2 = 1.6 μV. Normal thresholds averaged −8 dB re: 1.0 g/ms. Homozygotes of the following recessive mutations had absent VsEPs at the ages tested: Espnje, Atp2b2dfw-2J, Spnb4qv-lnd2J, Spnb4qv-3J, Myo7ash1, Tmiesr, Myo6sv, jc, Pcdh15av-J, Pcdh15av-2J, Pcdh15av-3J, Cdh23v-2J, Sansjs, hr, Kcne1pkr, and Pou3f4del. These results suggest profound gravity receptor deficits for these homozygotes, which is consistent with the structural deficits that have been documented for many of these strains. Homozygotes of Catna2cdf, Grid2ho4J, Wnt1sw, qk, and Mbpshi strains and heterozygotes of Grid2lc had measurable VsEPs, but one or more response parameters differed from the respective control group (heterozygote or background strain) or were outside normal ranges. For example, qk and Mbpshi homozygotes showed significantly prolonged latencies consistent with the abnormal myelin that has been described for these strains. Prolonged latencies may suggest deficits in neural conduction; elevated thresholds suggest reduced sensitivity, and reduced amplitudes may be suggestive for reduced neural synchrony. One mutation, Otx1jv, had all VsEP response parameters within normal limits, an expected finding because the abnormality in Otx1jv is presumably restricted to the lateral semicircular canal. Interestingly, some heterozygote groups also

  5. A new osteopetrosis mutant mouse strain (ntl) with odontoma-like proliferations and lack of tooth roots.

    PubMed

    Lu, Xincheng; Rios, Hector F; Jiang, Baichun; Xing, Lianping; Kadlcek, Renata; Greenfield, Edward M; Luo, Guangbin; Feng, Jian Q

    2009-12-01

    A new spontaneous mouse mutant (ntl) with autosomal-recessive osteopetrosis was characterized. These mice formed tartrate-resistant acid phosphate (TRAP)-positive osteoclasts but their osteoclasts had no ruffled border and did not resorb bone. These mice displayed no tooth eruption or tooth root formation. Adult mutant mice developed odontoma-like proliferations near the proximal ends of the incisors. Intraperitoneal injection of progenitor cells from the liver of 16.5 days postcoitum wild-type embryos into newborn mutants rescued the osteopetrosis phenotype, indicating that the defects were intrinsic to the osteoclasts. Our findings not only provide further support for a critical role of osteoclasts in tooth eruption and tooth root development, but also suggest that the perturbation of the homeostasis of the odontogenic precursors of the incisors is primarily responsible for the development of the odontoma-like proliferations in this osteopetrosis mutant. Genetic mapping has narrowed down the location of the mutant allele to a genetic interval of 3.2 cM on mouse chromosome 17.

  6. The Use of NF1 and NF2 Mutant Mouse Strains in the Investigation of Gene Function and Disease Development

    DTIC Science & Technology

    1999-10-01

    combined germline Nfl/p53 mutant model that develops MPNSTs . Genetic modifier screens using the Nfl/p53 model have proceeded to the point of identifying...34 model of malignant peripheral nerve sheath tumors ( MPNSTs ) was recently published (10) and will not be described further here. The use of the Nfi...phosphorylation sites) will allow us to test this hypothesis in the context of our existing and future mouse models of neurofibroma and MPNST formation

  7. The Use of NF1 and NF2 Mutant Mouse Strains in the Investigation of Gene Function and Disease Development

    DTIC Science & Technology

    1998-10-01

    percentage of which show features of malignant peripheral nerve sheath tumors ( MPNSTs ). Importantly, human NFl patients also develop MPNSTs at high...significant subset (at least 50%) are malignant peripheral nerve sheath tumors ( MPNSTs ). This evaluation is based on the presence of S 100 staining...percentage of MPNSTs that develop in NF1 patients have mutations in p53. Thus, the Nfl/p53 mutant strain represents an animal model of the more malignant

  8. A novel mutant mouse, joggle, with inherited ataxia.

    PubMed

    Chen, Ziyan; Hayasaka, Shizu; Takagishi, Yoshiko; Murata, Yoshiharu; Oda, Sen-ichi

    2006-07-01

    While establishing a new mouse strain, we discovered a novel mutant mouse that exhibited ataxia. Mating experiments showed that the mutant phenotype was due to a single autosomal recessive gene, which we have termed joggle (gene symbol: jog). The ataxia becomes apparent around postnatal day 12, when the mice first attempt to walk, and worsens thereafter. The life span of the mutant mouse is comparable to that of the wild-type mouse. After 21 days of age, the cerebellum weights of the jog/jog mice are significantly lower than those of the wild-type mice. These observations indicate that jog/jog mutant mice could be useful models for biomedical research.

  9. INFRAFRONTIER—providing mutant mouse resources as research tools for the international scientific community

    PubMed Central

    2015-01-01

    The laboratory mouse is a key model organism to investigate mechanism and therapeutics of human disease. The number of targeted genetic mouse models of disease is growing rapidly due to high-throughput production strategies employed by the International Mouse Phenotyping Consortium (IMPC) and the development of new, more efficient genome engineering techniques such as CRISPR based systems. We have previously described the European Mouse Mutant Archive (EMMA) resource and how this international infrastructure provides archiving and distribution worldwide for mutant mouse strains. EMMA has since evolved into INFRAFRONTIER (http://www.infrafrontier.eu), the pan-European research infrastructure for the systemic phenotyping, archiving and distribution of mouse disease models. Here we describe new features including improved search for mouse strains, support for new embryonic stem cell resources, access to training materials via a comprehensive knowledgebase and the promotion of innovative analytical and diagnostic techniques. PMID:25414328

  10. Mouse mutants from chemically mutagenized embryonic stem cells.

    PubMed

    Munroe, R J; Bergstrom, R A; Zheng, Q Y; Libby, B; Smith, R; John, S W; Schimenti, K J; Browning, V L; Schimenti, J C

    2000-03-01

    The drive to characterize functions of human genes on a global scale has stimulated interest in large-scale generation of mouse mutants. Conventional germ-cell mutagenesis with N-ethyl-N-nitrosourea (ENU) is compromised by an inability to monitor mutation efficiency, strain and interlocus variation in mutation induction, and extensive husbandry requirements. To overcome these obstacles and develop new methods for generating mouse mutants, we devised protocols to generate germline chimaeric mice from embryonic stem (ES) cells heavily mutagenized with ethylmethanesulphonate (EMS). Germline chimaeras were derived from cultures that underwent a mutation rate of up to 1 in 1,200 at the Hprt locus (encoding hypoxanthine guanine phosphoribosyl transferase). The spectrum of mutations induced by EMS and the frameshift mutagen ICR191 was consistent with that observed in other mammalian cells. Chimaeras derived from ES cells treated with EMS transmitted mutations affecting several processes, including limb development, hair growth, hearing and gametogenesis. This technology affords several advantages over traditional mutagenesis, including the ability to conduct shortened breeding schemes and to screen for mutant phenotypes directly in ES cells or their differentiated derivatives.

  11. Generation of targeted mouse mutants by embryo microinjection of TALENs.

    PubMed

    Wefers, Benedikt; Ortiz, Oskar; Wurst, Wolfgang; Kühn, Ralf

    2014-08-15

    Gene engineering for generating targeted mouse mutants is a key technology for biomedical research. Using TALENs as nucleases to induce targeted double-strand breaks, the mouse genome can be directly modified in zygotes in a single step, without the need for embryonic stem cells. Thereby, knockout and knockin alleles can be generated fast and efficiently by embryo microinjection of TALEN mRNAs and targeting vectors. In this article we present an introduction into the TALEN technology and provide protocols for the application of TALENs in mouse zygotes.

  12. Developmental mechanisms underlying polydactyly in the mouse mutant Doublefoot

    PubMed Central

    Crick, Alexandra P; Babbs, Christian; Brown, Jennifer M; Morriss-Kay, Gillian M

    2003-01-01

    The pre-axial polydactylous mouse mutant Doublefoot has 6–9 digits per limb but lacks anteroposterior polarity (there is no biphalangeal digit 1). It differs from other polydactylous mutants in showing normal Shh expression, but polarizing activity (shown by mouse-chick grafting experiments) and hedgehog signalling activity (shown by expression of Ptc1) are present throughout the distal mesenchyme. The Dbf mutation has not yet been identified. Here we review current understanding of this mutant, and briefly report new results indicating (1) that limb bud expansion is concomitant with ectopic Ihh expression and with extension of the posterior high cell proliferation rate into the anterior region, and (2) that the Dbf mutation is epistatic to Shh in the limb. PMID:12587916

  13. Two-Pore Channels: Lessons from Mutant Mouse Models

    PubMed Central

    Ruas, Margarida; Galione, Antony; Parrington, John

    2016-01-01

    Recent interest in two-pore channels (TPCs) has resulted in a variety of studies dealing with the functional role and mechanism of action of these endo-lysosomal proteins in diverse physiological processes. With the availability of mouse lines harbouring mutant alleles for Tpcnl and/or Tpcn2 genes, several studies have made use of them to validate, consolidate and discover new roles for these channels not only at the cellular level but, importantly, also at the level of the whole organism. The different mutant mouse lines that have been used were derived from distinct genetic manipulation strategies, with the aim of knocking out expression of TPC proteins. However, the expression of different residual TPC sequences predicted to occur in these mutant mouse lines, together with the varied degree to which the effects on Tpcn expression have been studied, makes it important to assess the true knockout status of some of the lines. In this review we summarize these Tpcn mutant mouse lines with regard to their predicted effect on Tpcn expression and the extent to which they have been characterized. Additionally, we discuss how results derived from studies using these Tpcn mutant mouse lines have consolidated previously proposed roles for TPCs, such as mediators of NAADP signalling, endo-lysosomal functions, and pancreatic β cell physiology. We will also review how they have been instrumental in the assignment of new physiological roles for these cation channels in processes such as membrane electrical excitability, neoangiogenesis, viral infection and brown adipose tissue and heart function, revealing, in some cases, a specific contribution of a particular TPC isoform. PMID:27330869

  14. Mutant strain of C. acetobutylicum and process for making butanol

    DOEpatents

    Jain, Mahendra K.; Beacom, Daniel; Datta, Rathin

    1993-01-01

    A biologically pure asporogenic mutant of Clostridium acetobutylicum is produced by growing sporogenic C. acetobutylicum ATCC 4259 and treating the parent strain with ethane methane sulfonate. The mutant which as been designated C. acetobutylicum ATCC 55025 is useful in an improved ABE fermentation process, and produces high concentrations of butanol and total solvents.

  15. The Tennessee Mouse Genome Consortium: Identification of ocular mutants

    SciTech Connect

    Jablonski, Monica M.; Wang, Xiaofei; Lu, Lu; Miller, Darla R; Rinchik, Eugene M; Williams, Robert; Goldowitz, Daniel

    2005-06-01

    The Tennessee Mouse Genome Consortium (TMGC) is in its fifth year of a ethylnitrosourea (ENU)-based mutagenesis screen to detect recessive mutations that affect the eye and brain. Each pedigree is tested by various phenotyping domains including the eye, neurohistology, behavior, aging, ethanol, drug, social behavior, auditory, and epilepsy domains. The utilization of a highly efficient breeding protocol and coordination of various universities across Tennessee makes it possible for mice with ENU-induced mutations to be evaluated by nine distinct phenotyping domains within this large-scale project known as the TMGC. Our goal is to create mutant lines that model human diseases and disease syndromes and to make the mutant mice available to the scientific research community. Within the eye domain, mice are screened for anterior and posterior segment abnormalities using slit-lamp biomicroscopy, indirect ophthalmoscopy, fundus photography, eye weight, histology, and immunohistochemistry. As of January 2005, we have screened 958 pedigrees and 4800 mice, excluding those used in mapping studies. We have thus far identified seven pedigrees with primary ocular abnormalities. Six of the mutant pedigrees have retinal or subretinal aberrations, while the remaining pedigree presents with an abnormal eye size. Continued characterization of these mutant mice should in most cases lead to the identification of the mutated gene, as well as provide insight into the function of each gene. Mice from each of these pedigrees of mutant mice are available for distribution to researchers for independent study.

  16. Insights into prevention of human neural tube defects by folic acid arising from consideration of mouse mutants.

    PubMed

    Harris, Muriel J

    2009-04-01

    Almost 30 years after the initial study by Richard W. Smithells and coworkers, it is still unknown how maternal periconceptional folic acid supplementation prevents human neural tube defects (NTDs). In this article, questions about human NTD prevention are considered in relation to three groups of mouse models: NTD mutants that respond to folate, NTD mutants and strains that do not respond to folate, and mutants involving folate-pathway genes. Of the 200 mouse NTD mutants, only a few have been tested with folate; half respond and half do not. Among responsive mutants, folic acid supplementation reduces exencephaly and/or spina bifida aperta frequency in the Sp(2H), Sp, Cd, Cited2, Cart1, and Gcn5 mutants. Prevention ranges from 35 to 85%. The responsive Sp(2H) (Pax3) mutant has abnormal folate metabolism, but the responsive Cited2 mutant does not. Neither folic nor folinic acid reduces NTD frequency in Axd, Grhl3, Fkbp8, Map3k4, or Nog mutants or in the curly tail or SELH/Bc strains. Spina bifida frequency is reduced in Axd by methionine and in curly tail by inositol. Exencephaly frequency is reduced in SELH/Bc by an alternative commercial ration. Mutations in folate-pathway genes do not cause NTDs, except for 30% exencephaly in folate-treated Folr1. Among folate-pathway mutants, neural tube closure is normal in Cbs, Folr2, Mthfd1, Mthfd2, Mthfr, and Shmt1 mutants. Embryos die by midgestation in Folr1, Mtr, Mtrr, and RFC1 mutants. The mouse models point to genetic heterogeneity in the ability to respond to folic acid and also to heterogeneity in genetic cause of NTDs that can be prevented by folic acid.

  17. Applications of mutant yeast strains with low glycogen storage capability

    NASA Technical Reports Server (NTRS)

    Petersen, G. R.; Schubert, W. W.; Stokes, B. O.

    1981-01-01

    Several strains of Hansenula polymorpha were selected for possible low glycogen storage characteristics based on a selective I2 staining procedure. The levels of storage carbohydrates in the mutant strains were found to be 44-70% of the levels in the parent strain for cultures harvested in stationary phase. Similar differences generally were not found for cells harvested in exponential phase. Yeast strains deficient in glycogen storage capability are valuable in increasing the relative protein value of microbial biomass and also may provide significant cost savings in substrate utilization in fermentative processes.

  18. Survey of Common Eye Diseases in Laboratory Mouse Strains

    PubMed Central

    Chang, Bo; Hurd, Ron; Wang, Jieping; Nishina, Patsy

    2013-01-01

    Purpose. As in human populations, in which founder mutations have been identified in groups of families, a number of founder mutations have been observed across strains in mice. In this report, we provide a phenotype and genotype survey of three common eye diseases in the collection of JAX mice strains at The Jackson Laboratory (JAX). These eye diseases are retinal degeneration 1 (Pde6brd1), retinal degeneration 8 (Crb1rd8), and cone photoreceptor function loss 3 (Gnat2cpfl3). Methods. Ocular lesions for rd1 and rd8 were evaluated by fundus examination and fundus photography, and the abnormal retinal function observed in mice homozygous for cpfl3 was assessed by ERG. Genotyping protocols for rd1, rd8, and cpfl3 mutations were performed by PCR with appropriate primers. Results. We have actively screened retired breeders for surface dysmorphologies, and for intraocular defects by indirect ophthalmoscopy, slit-lamp biomicroscopy, and ERG to discover new spontaneous mutations in strains from the Genetic Resource Science (GRS) production colony. Through this process, we have found that of the strains screened, 99 strains carried the rd1 mutation, 85 strains carried the rd8 mutation, and 20 strains carried the cpfl3 mutation. Conclusions. Of the 1000 of strains screened during this study, 204 carried one of three founder mutations in Pde6b, Crb1, or Gnat2. Since these three retinal mutations occur commonly in various mouse strains, genotyping for these mutations, and/or avoiding mouse strains or stocks carrying these mutant alleles when studying new retinal disorders is recommended. The robust PCR genotyping protocols to test for these common alleles are described herein. PMID:23800770

  19. Purkinje cell compartmentation in the cerebellum of the lysosomal Acid phosphatase 2 mutant mouse (nax - naked-ataxia mutant mouse).

    PubMed

    Bailey, Karen; Rahimi Balaei, Maryam; Mannan, Ashraf; Del Bigio, Marc R; Marzban, Hassan

    2014-01-01

    The Acp2 gene encodes the beta subunit of lysosomal acid phosphatase, which is an isoenzyme that hydrolyzes orthophosphoric monoesters. In mice, a spontaneous mutation in Acp2 results in severe cerebellar defects. These include a reduced size, abnormal lobulation, and an apparent anterior cerebellar disorder with an absent or hypoplastic vermis. Based on differential gene expression in the cerebellum, the mouse cerebellar cortex can normally be compartmentalized anteroposteriorly into four transverse zones and mediolaterally into parasagittal stripes. In this study, immunohistochemistry was performed using various Purkinje cell compartmentation markers to examine their expression patterns in the Acp2 mutant. Despite the abnormal lobulation and anterior cerebellar defects, zebrin II and PLCβ4 showed similar expression patterns in the nax mutant and wild type cerebellum. However, fewer stripes were found in the anterior zone of the nax mutant, which could be due to a lack of Purkinje cells or altered expression of the stripe markers. HSP25 expression was uniform in the central zone of the nax mutant cerebellum at around postnatal day (P) 18-19, suggesting that HSP25 immunonegative Purkinje cells are absent or delayed in stripe pattern expression compared to the wild type. HSP25 expression became heterogeneous around P22-23, with twice the number of parasagittal stripes in the nax mutant compared to the wild type. Aside from reduced size and cortical disorganization, both the posterior zone and nodular zone in the nax mutant appeared less abnormal than the rest of the cerebellum. From these results, it is evident that the anterior zone of the nax mutant cerebellum is the most severely affected, and this extends beyond the primary fissure into the rostral central zone/vermis. This suggests that ACP2 has critical roles in the development of the anterior cerebellum and it may regulate anterior and central zone compartmentation.

  20. Development of amnesia in different mouse strains.

    PubMed

    Sinovyev, D R; Dubrovina, N I; Kulikov, A V

    2009-05-01

    We studied passive avoidance retrieval after amnestic stimulation (arrest in unsafe section of the experimental setup) in C57Bl/6J, BALB/c, CBA/Lac, AKR/J, DBA/2J, C3H/HeJ, and ASC/Icg mice. We demonstrated resistance to amnestic stimulation in mice with high predisposition to freezing reaction (ASC/Icg) and memory deficit in other mouse strains.

  1. The genetics of Fraser syndrome and the blebs mouse mutants.

    PubMed

    Smyth, Ian; Scambler, Peter

    2005-10-15

    Fraser syndrome is a recessive multisystem disorder characterized by embryonic epidermal blistering, cryptophthalmos, syndactyly, renal defects and a range of other developmental abnormalities. More than 17 years ago, the family of four mapped mouse blebs mutants was proposed as models of this disorder, given their striking phenotypic overlaps. In the last few years, these loci have been cloned, uncovering a family of three large extracellular matrix proteins and an intracellular adapter protein which are required for normal epidermal adhesion early in development. The proteins have also been shown to play a crucial role in the development and homeostasis of the kidney. We review the cloning and characterization of these genes and explore the consequences of their loss.

  2. A novel mouse Fgfr2 mutant, hobbyhorse (hob), exhibits complete XY gonadal sex reversal.

    PubMed

    Siggers, Pam; Carré, Gwenn-Aël; Bogani, Debora; Warr, Nick; Wells, Sara; Hilton, Helen; Esapa, Chris; Hajihosseini, Mohammad K; Greenfield, Andy

    2014-01-01

    The secreted molecule fibroblast growth factor 9 (FGF9) plays a critical role in testis determination in the mouse. In embryonic gonadal somatic cells it is required for maintenance of SOX9 expression, a key determinant of Sertoli cell fate. Conditional gene targeting studies have identified FGFR2 as the main gonadal receptor for FGF9 during sex determination. However, such studies can be complicated by inefficient and variable deletion of floxed alleles, depending on the choice of Cre deleter strain. Here, we report a novel, constitutive allele of Fgfr2, hobbyhorse (hob), which was identified in an ENU-based forward genetic screen for novel testis-determining loci. Fgr2hob is caused by a C to T mutation in the invariant exon 7, resulting in a polypeptide with a mis-sense mutation at position 263 (Pro263Ser) in the third extracellular immunoglobulin-like domain of FGFR2. Mutant homozygous embryos show severe limb and lung defects and, when on the sensitised C57BL/6J (B6) genetic background, undergo complete XY gonadal sex reversal associated with failure to maintain expression of Sox9. Genetic crosses employing a null mutant of Fgfr2 suggest that Fgr2hob is a hypomorphic allele, affecting both the FGFR2b and FGFR2c splice isoforms of the receptor. We exploited the consistent phenotype of this constitutive mutant by analysing MAPK signalling at the sex-determining stage of gonad development, but no significant abnormalities in mutant embryos were detected.

  3. Photoreceptor degeneration and rd1 mutation in the grizzled/mocha mouse strain.

    PubMed

    Qiao, Xiaoxi; Pennesi, Mark; Seong, Eunju; Gao, Hua; Burmeister, Margit; Wu, Samuel M

    2003-04-01

    The mocha mouse is a spontaneous mutant carrying a defective adaptor-like protein complex AP-3delta subunit. We examined retinal function and histology of the mocha mutant. We found that not only mocha homozygotes but also other littermates in the inbred strain are blind due to severe defects in both rod and cone photoreceptors on electroretinogram recordings. The functional deficit was caused by rapid, early postnatal photoreceptor degeneration. Genotyping confirmed the presence of a viral insertion of rd1 gene in the mocha strain. We conclude that rd1 allele contamination is primarily responsible for photoreceptor degeneration, and caution against behavioral tests with visual cues in the present stocks.

  4. Detected microsatellite polymorphisms in genetically altered inbred mouse strains.

    PubMed

    Du, Xiaoyan; Cui, Jing; Wang, Chao; Huo, Xueyun; Lu, Jing; Li, Yichen; Chen, Zhenwen

    2013-08-01

    loci were shared by Tg and KO mice, two (D15mit5 and D14mit102) (5%) by Tg and ENU-treated mice, and one (D14mit102) (2.5%) by all three genetic modifications. Collectively, our study implies that genetic modifications by KO, Tg or chemical mutant can trigger microsatellite CMPs in inbred mouse strains. These shared microsatellite loci could be regarded as "hot spots" of microsatellite mutation for genetic monitoring in genetic modified mice.

  5. A mouse B16 melanoma mutant deficient in glycolipids.

    PubMed Central

    Ichikawa, S; Nakajo, N; Sakiyama, H; Hirabayashi, Y

    1994-01-01

    Mouse B16 melanoma cell line, GM-95 (formerly designated as MEC-4), deficient in sialyllactosylceramide was examined for its primary defect. Glycolipids from the mutant cells were analyzed by high-performance TLC. No glycolipid was detected in GM-95 cells, even when total lipid from 10(7) cells was analyzed. In contrast, the content of ceramide, a precursor lipid molecule of glycolipids, was normal. Thus, the deficiency of glycolipids was attributed to the first glucosylation step of ceramide. The ceramide glucosyltransferase (EC 2.4.1.80) activity was not detected in GM-95 cells. There was no significant difference of sialyllactosylceramide synthase activity, however, between GM-95 and the parental cells. The deficiency of glycolipids in GM-95 cells was associated with changes of the cellular morphology and growth rate. The parental cells showed irregular shapes and tended to overlap each other. On the other hand, GM-95 cells exhibited an elongated fibroblastic morphology and parallel arrangement. The population-doubling times of GM-95 and the parental cells in serum-free medium were 28 hr and 19 hr, respectively. Images PMID:8146177

  6. An update to the list of mouse mutants with neural tube closure defects and advances toward a complete genetic perspective of neural tube closure.

    PubMed

    Harris, Muriel J; Juriloff, Diana M

    2010-08-01

    The number of mouse mutants and strains with neural tube defects (NTDs) now exceeds 240, including 205 representing specific genes, 30 for unidentified genes, and 9 multifactorial strains. These mutants identify genes needed for embryonic neural tube closure. Reports of 50 new NTD mutants since our 2007 review (Harris and Juriloff, 2007) were considered in relation to the previously reviewed mutants to obtain new insights into mechanisms of NTD etiology. In addition to null mutations, some are hypomorphs or conditional mutants. Some mutations do not cause NTDs on their own, but do so in digenic, trigenic, and oligogenic combinations, an etiology that likely parallels the nature of genetic etiology of human NTDs. Mutants that have only exencephaly are fourfold more frequent than those that have spina bifida aperta with or without exencephaly. Many diverse cellular functions and biochemical pathways are involved; the NTD mutants draw new attention to chromatin modification (epigenetics), the protease-activated receptor cascade, and the ciliopathies. Few mutants directly involve folate metabolism. Prevention of NTDs by maternal folate supplementation has been tested in 13 mutants and reduces NTD frequency in six diverse mutants. Inositol reduces spina bifida aperta frequency in the curly tail mutant, and three new mutants involve inositol metabolism. The many NTD mutants are the foundation for a future complete genetic understanding of the processes of neural fold elevation and fusion along mechanistically distinct cranial-caudal segments of the neural tube, and they point to several candidate processes for study in human NTD etiology.

  7. Mutagenesis and behavioral screening for altered circadian activity identifies the mouse mutant, Wheels.

    PubMed

    Pickard, G E; Sollars, P J; Rinchik, E M; Nolan, P M; Bucan, M

    1995-12-24

    The molecular processes underlying the generation of circadian behavior in mammals are virtually unknown. To identify genes that regulate or alter circadian activity rhythms, a mouse mutagenesis program was initiated in conjunction with behavioral screening for alterations in circadian period (tau), a fundamental property of the biological clock. Male mice of the inbred BALB/c strain, treated with the potent mutagen N-ethyl-N-nitrosourea were mated with wild-type hybrids. Wheel-running activity of approximately 300 male progeny was monitored for 6-10 weeks under constant dark (DD) conditions. The tau DD of a single mouse (#187) was longer than the population mean by more than three standard deviations (24.20 vs. 23.32 +/- 0.02 h; mean +/- S.E.M.; n = 277). In addition, mouse #187 exhibited other abnormal phenotypes, including hyperactive bi-directional circling/spinning activity and an abnormal response to light. Heterozygous progeny of the founder mouse, generated from outcrossings with wild-type C57BL/6J mice, displayed lengthened tau DD although approximately 20% of the animals showed no wheel-running activity despite being quite active. Under light:dark conditions, all animals displaying circling behavior that ran in the activity wheels exhibited robust wheel-running activity at lights-ON and these animals also showed enhanced wheel-running activity in constant light conditions. The genetic dissection of the complex behavior associated with this mutation was facilitated by the previously described genetic mapping of the mutant locus causing circling behavior, designated Wheels (Whl), to the subcentromeric portion of mouse chromosome 4. In this report, the same locus is shown to be responsible for the abnormal responses to light and presumably for the altered circadian behavior. Characterization of the gene altered in the novel Whl mutation will contribute to understanding the molecular elements involved in mammalian circadian regulation.

  8. Revealing Differences in Metabolic Flux Distributions between a Mutant Strain and Its Parent Strain Gluconacetobacter xylinus CGMCC 2955

    PubMed Central

    Liu, Miao; Yang, Xiao-Ning; Zhu, Hui-Xia; Jia, Yuan-Yuan; Jia, Shi-Ru; Piergiovanni, Luciano

    2014-01-01

    A better understanding of metabolic fluxes is important for manipulating microbial metabolism toward desired end products, or away from undesirable by-products. A mutant strain, Gluconacetobacter xylinus AX2-16, was obtained by combined chemical mutation of the parent strain (G. xylinus CGMCC 2955) using DEC (diethyl sulfate) and LiCl. The highest bacterial cellulose production for this mutant was obtained at about 11.75 g/L, which was an increase of 62% compared with that by the parent strain. In contrast, gluconic acid (the main byproduct) concentration was only 5.71 g/L for mutant strain, which was 55.7% lower than that of parent strain. Metabolic flux analysis indicated that 40.1% of the carbon source was transformed to bacterial cellulose in mutant strain, compared with 24.2% for parent strain. Only 32.7% and 4.0% of the carbon source were converted into gluconic acid and acetic acid in mutant strain, compared with 58.5% and 9.5% of that in parent strain. In addition, a higher flux of tricarboxylic acid (TCA) cycle was obtained in mutant strain (57.0%) compared with parent strain (17.0%). It was also indicated from the flux analysis that more ATP was produced in mutant strain from pentose phosphate pathway (PPP) and TCA cycle. The enzymatic activity of succinate dehydrogenase (SDH), which is one of the key enzymes in TCA cycle, was 1.65-fold higher in mutant strain than that in parent strain at the end of culture. It was further validated by the measurement of ATPase that 3.53–6.41 fold higher enzymatic activity was obtained from mutant strain compared with parent strain. PMID:24901455

  9. Lactococcus lactis SpOx Spontaneous Mutants: a Family of Oxidative-Stress-Resistant Dairy Strains§

    PubMed Central

    Rochat, Tatiana; Gratadoux, Jean-Jacques; Corthier, Gérard; Coqueran, Bérard; Nader-Macias, Maria-Elena; Gruss, Alexandra; Langella, Philippe

    2005-01-01

    Numerous industrial bacteria generate hydrogen peroxide (H2O2), which may inhibit the growth of other bacteria in mixed ecosystems. We isolated spontaneous oxidative-stress-resistant (SpOx) Lactococcus lactis mutants by using a natural selection method with milk-adapted strains on dairy culture medium containing H2O2. Three SpOx mutants displayed greater H2O2 resistance. One of them, SpOx3, demonstrated better behavior in different oxidative-stress situations: (i) higher long-term survival upon aeration in LM17 and milk and (ii) the ability to grow with H2O2-producing Lactobacillus delbrueckii subsp. delbrueckii strains. Furthermore, the transit kinetics of the SpOx3 mutant in the digestive tract of a human flora-associated mouse model was not affected. PMID:15870374

  10. Identification of 17 hearing impaired mouse strains in the TMGC ENU-mutagenesis screen

    SciTech Connect

    Kermany, Mohammad; Parker, Lisan; Guo, Yun-Kai; Miller, Darla R; Swanson, Douglas J; Yoo, Tai-June; Goldowitz, Daniel; Zuo, Jian

    2006-01-01

    The Tennessee Mouse Genome Consortium (TMGC) employed an N-ethyl-N-nitrosourea (ENU)-mutagenesis scheme to identify mouse recessive mutants with hearing phenotypes. We employed auditory brainstem responses (ABR) to click and 8, 16, and 32 kHz stimuli and screened 285 pedigrees (1819 mice of 8-11 weeks old in various mixed genetic backgrounds) each bred to carry a homozygous ENU-induced mutation. To define mutant pedigrees, we measured P12 mice per pedigree in P2 generations and used a criterion where the mean ABR threshold per pedigree was two standard deviations above the mean of all offspring from the same parental strain. We thus identified 17 mutant pedigrees (6%), all exhibiting hearing loss at high frequencies (P16 kHz) with an average threshold elevation of 30-35 dB SPL. Interestingly, four mutants showed sex-biased hearing loss and six mutants displayed wide range frequency hearing loss. Temporal bone histology revealed that six of the first nine mutants displayed cochlear morphological defects: degeneration of spiral ganglia, spiral ligament fibrocytes or inner hair cells (but not outer hair cells) mostly in basal turns. In contrast to other ENU-mutagenesis auditory screens, our screen identified high-frequency, mild and sex-biased hearing defects. Further characterization of these 17 mouse models will advance our understanding of presbycusis and noise-induced hearing loss in humans.

  11. Biofilm formation by exopolysaccharide mutants of Leuconostoc mesenteroides strain NRRL B-1355

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leuconostoc mesenteroides strain NRRL B-1355 produces the soluble exopolysaccharides alternan and dextran in planktonic cultures. A set of mutants of this strain are available that are deficient in the production of alternan, dextran, or both. Another mutant of NRRL B-1355, strain R1510, produces ...

  12. Isolation and characterization of mutant strains of Bordetella bronchiseptica lacking dermonecrotic toxin-producing ability.

    PubMed Central

    Nagano, H; Nakai, T; Horiguchi, Y; Kume, K

    1988-01-01

    Mutant strains of Bordetella bronchiseptica, named B-42, B-76, B-84, and B-119, were obtained after serial passages of a parent strain, L3, on Bordet-Gengou agar plates containing 20% horse blood and 200 micrograms of nalidixic acid per ml (BGN-20 agar plates) at 42 degrees C. Mutant strains completely lacked dermonecrotic toxin-producing ability, and lethal activity of the strains for mice was apparently reduced compared with that of strain L3. Mutant strains were able to grow at 42 degrees C, and the strains were nalidixic acid resistant. The mutant strains showed domed (Dom+) colony morphology with smooth texture (Scs+) and no production of zone of hemolysis (Hly-), but the agglutinability of these strains to antiserum prepared with Dom+ Scs+ Hly+ organisms of strain L3 was the same as that of strain L3. When strain B-42 was inoculated intramuscularly or intranasally into guinea pigs, all the animals survived without manifesting clinical signs and produced a high-level of serum agglutination antibodies against strain L3. These inoculated animals were protected against intranasal challenge with strain L3. These properties of mutant strains are hereditarily stable after 50 subcultures on BGN-20 agar plates or 20 passages in mice. These data suggest that the mutant strains lacking dermonecrotic toxin-producing ability can be used as a live attenuated vaccine against swine atrophic rhinitis. PMID:3182989

  13. A Novel Mouse Fgfr2 Mutant, Hobbyhorse (hob), Exhibits Complete XY Gonadal Sex Reversal

    PubMed Central

    Siggers, Pam; Carré, Gwenn-Aël; Bogani, Debora; Warr, Nick; Wells, Sara; Hilton, Helen; Esapa, Chris; Hajihosseini, Mohammad K.; Greenfield, Andy

    2014-01-01

    The secreted molecule fibroblast growth factor 9 (FGF9) plays a critical role in testis determination in the mouse. In embryonic gonadal somatic cells it is required for maintenance of SOX9 expression, a key determinant of Sertoli cell fate. Conditional gene targeting studies have identified FGFR2 as the main gonadal receptor for FGF9 during sex determination. However, such studies can be complicated by inefficient and variable deletion of floxed alleles, depending on the choice of Cre deleter strain. Here, we report a novel, constitutive allele of Fgfr2, hobbyhorse (hob), which was identified in an ENU-based forward genetic screen for novel testis-determining loci. Fgr2hob is caused by a C to T mutation in the invariant exon 7, resulting in a polypeptide with a mis-sense mutation at position 263 (Pro263Ser) in the third extracellular immunoglobulin-like domain of FGFR2. Mutant homozygous embryos show severe limb and lung defects and, when on the sensitised C57BL/6J (B6) genetic background, undergo complete XY gonadal sex reversal associated with failure to maintain expression of Sox9. Genetic crosses employing a null mutant of Fgfr2 suggest that Fgr2hob is a hypomorphic allele, affecting both the FGFR2b and FGFR2c splice isoforms of the receptor. We exploited the consistent phenotype of this constitutive mutant by analysing MAPK signalling at the sex-determining stage of gonad development, but no significant abnormalities in mutant embryos were detected. PMID:24956260

  14. Fusion-defective mutants of mouse hepatitis virus A59 contain a mutation in the spike protein cleavage signal.

    PubMed Central

    Gombold, J L; Hingley, S T; Weiss, S R

    1993-01-01

    Infection of primary mouse glial cell cultures with mouse hepatitis virus strain A59 results in a productive, persistent infection, but without any obvious cytopathic effect. Mutant viruses isolated from infected glial cultures 16 to 18 weeks postinfection replicate with kinetics similar to those of wild-type virus but produce small plaques on fibroblasts and cause only minimal levels of cell-to-cell fusion under conditions in which wild type causes nearly complete cell fusion. However, since extensive fusion is present in mutant-infected cells at late times postinfection, the defect is actually a delay in kinetics rather than an absolute block in activity. Addition of trypsin to mutant-infected fibroblast cultures enhanced cell fusion a small (two- to fivefold) but significant degree, indicating that the defect could be due to a lack of cleavage of the viral spike (fusion) protein. Sequencing of portions of the spike genes of six fusion-defective mutants revealed that all contained the same single nucleotide mutation resulting in a substitution of aspartic acid for histidine in the spike cleavage signal. Mutant virions contained only the 180-kDa form of spike protein, suggesting that this mutation prevented the normal proteolytic cleavage of the 180-kDa protein into the 90-kDa subunits. Examination of revertants of the mutants supports this hypothesis. Acquisition of fusion competence correlates with the replacement of the negatively charged aspartic acid with either the wild-type histidine or a nonpolar amino acid and the restoration of spike protein cleavage. These data confirm and extend previous reports concluding cleavage of S is required for efficient cell-cell fusion by mouse hepatitis virus but not for virus-cell fusion (infectivity). Images PMID:8392595

  15. Rhizobium japonicum mutant strains unable to grow chemoautotrophically with H2.

    PubMed Central

    Maier, R J

    1981-01-01

    Rhizobium japonicum strain SR grows chemoautotrophically on a mineral salts medium when incubated in an H2- and CO2-containing atmosphere. Mutant strains unable to grow or that grow very poorly chemoautotrophically with H2 have been isolated from strain SR. The mutant isolation procedure involved mutagenesis with ethyl methane sulfonate, penicillin selection under chemoautotrophic growth conditions, and plating of the survivors onto medium containing carbon. The resulting colonies were replica plated onto medium that did not contain carbon, and the plates were incubated in an H2- and CO2-containing atmosphere. Mutant strains unable to grow under these conditions were chosen. Over 100 mutant strains with defects in chemoautotrophic metabolism were obtained. The phenotypes of the mutants fall into various classes. These include strains unable to oxidize H2 and strains deficient in CO2 uptake. Some of the mutant strains were capable of oxidizing H2 only when artificial electron acceptors were provided. Two mutant strains specifically lack activity of the key CO2-fixing enzyme ribulose 1,5-bisphosphate carboxylase. Other mutant strains lack both H2-oxidizing ability and ribulose 1,5-bisphosphate carboxylase activity. PMID:6780521

  16. Mouse infection and pathogenesis by Trypanosoma brucei motility mutants.

    PubMed

    Kisalu, Neville K; Langousis, Gerasimos; Bentolila, Laurent A; Ralston, Katherine S; Hill, Kent L

    2014-06-01

    The flagellum of Trypanosoma brucei is an essential and multifunctional organelle that drives parasite motility and is receiving increased attention as a potential drug target. In the mammalian host, parasite motility is suspected to contribute to infection and disease pathogenesis. However, it has not been possible to test this hypothesis owing to lack of motility mutants that are viable in the bloodstream life cycle stage that infects the mammalian host. We recently identified a bloodstream-form motility mutant in 427-derived T. brucei in which point mutations in the LC1 dynein subunit disrupt propulsive motility but do not affect viability. These mutants have an actively beating flagellum, but cannot translocate. Here we demonstrate that the LC1 point mutant fails to show enhanced cell motility upon increasing viscosity of the surrounding medium, which is a hallmark of wild type T. brucei, thus indicating that motility of the mutant is fundamentally altered compared with wild type cells. We next used the LC1 point mutant to assess the influence of trypanosome motility on infection in mice. Wesurprisingly found that disrupting parasite motility has no discernible effect on T. brucei bloodstream infection. Infection time-course, maximum parasitaemia, number of waves of parasitaemia, clinical features and disease outcome are indistinguishable between motility mutant and control parasites. Our studies provide an important step toward understanding the contribution of parasite motility to infection and a foundation for future investigations of T. brucei interaction with the mammalian host.

  17. Live four-dimensional optical coherence tomography reveals embryonic cardiac phenotype in mouse mutant

    NASA Astrophysics Data System (ADS)

    Lopez, Andrew L., III; Wang, Shang; Larin, Kirill V.; Overbeek, Paul A.; Larina, Irina V.

    2015-09-01

    Efficient phenotyping of developmental defects in model organisms is critical for understanding the genetic specification of normal development and congenital abnormalities in humans. We previously reported that optical coherence tomography (OCT) combined with live embryo culture is a valuable tool for mouse embryo imaging and four-dimensional (4-D) cardiodynamic analysis; however, its capability for analysis of mouse mutants with cardiac phenotypes has not been previously explored. Here, we report 4-D (three-dimensional+time) OCT imaging and analysis of the embryonic heart in a Wdr19 mouse mutant, revealing a heart looping defect. Quantitative analysis of cardiac looping revealed a statistically significant difference between mutant and control embryos. Our results indicate that live 4-D OCT imaging provides a powerful phenotyping approach to characterize embryonic cardiac function in mouse models.

  18. Mutant Strains of Escherichia coli K-12 Unable to Form Ubiquinone

    PubMed Central

    Cox, G. B.; Gibson, F.; Pittard, James

    1968-01-01

    A strain of Escherichia coli was isolated which was unable to form ubiquinone. This mutant was obtained by selecting strains unable to grow on malate as sole source of carbon. Such strains were further screened by examination of the quinone content of cells grown on a glucose medium. A mutant unable to form vitamin K was also isolated by this procedure. A genetic analysis of the ubiquinoneless strain showed that it possessed two mutations affecting ubiquinone biosynthesis. Images PMID:4870277

  19. Differences in susceptibility of mouse strains to tetrodotoxin.

    PubMed

    Suzuki, Hodaka

    2016-09-01

    The mouse bioassay for tetrodotoxin has been used for many years in Japan. To the best of our knowledge, however, there have only been a few reports that have specifically investigated differences in susceptibility to tetrodotoxin among mouse strains. In this study, we investigated the response of various mouse strains to tetrodotoxin. Tetrodotoxin solution was injected intraperitoneally into male mice of 5 inbred strains (A/J, BALB/c, C3H/He, C57BL/6, and DBA/2) and male and female mice of 2 non-inbred strains (ddY and ICR). Significant differences in susceptibility to tetrodotoxin were found among the mouse strains tested. In comparison to the ddY male mice, which are designated to be used in the Japanese reference method, the 5 inbred strains of mice tested were significantly more resistant to tetrodotoxin. However, no significant differences in tetrodotoxin susceptibility were observed between ddY male and female mice or between ddY male mice and ICR male and female mice. These results indicate that the users of the mouse bioassay should pay attention to differences in mouse strain in susceptibility to tetrodotoxin.

  20. Biological Basis of Differential Susceptibility to Hepatocarcinogenesis among Mouse Strains*

    PubMed Central

    Maronpot, Robert R.

    2009-01-01

    There is a vast amount of literature related to mouse liver tumorigenesis generated over the past 60 years, not all of which has been captured here. The studies reported in this literature have generally been state of the art at the time they were carried out. A PubMed search on the topic “mouse liver tumors” covering the past 10 years yields over 7000 scientific papers. This review address several important topics related to the unresolved controversy regarding the relevance of mouse liver tumor responses observed in cancer bioassays. The inherent mouse strain differential sensitivities to hepatocarcinogenesis largely parallel the strain susceptibility to chemically induced liver neoplasia. The effects of phenobarbital and halogenated hydrocarbons in mouse hepatocarcinogenesis have been summarized because of recurring interest and numerous publications on these topics. No single simple paradigm fully explains differential mouse strain responses, which can vary more than 50-fold among inbred strains. In addition to inherent genetics, modifying factors including cell cycle balance, enzyme induction, DNA methylation, oncogenes and suppressor genes, diet, and intercellular communication influence susceptibility to spontaneous and induced mouse hepatocarcinogenesis. Comments are offered on the evaluation, interpretation, and relevance of mouse liver tumor responses in the context of cancer bioassays. PMID:22271974

  1. Gastrointestinal Colonization by Candida albicans Mutant Strains in Antibiotic-Treated Mice

    PubMed Central

    Wiesner, Stephen M.; Jechorek, Robert P.; Garni, Robb M.; Bendel, Catherine M.; Wells, Carol L.

    2001-01-01

    Antibiotic-treated mice orally inoculated with one of three Candida albicans strains (including two mutant strains) or indigenous Candida pelliculosa showed levels of candidal gastrointestinal colonization that were strain specific. However, regardless of strain, the numbers of viable candida were intermediate to high in the stomach, were consistently lowest in the upper small intestine, and increased progressively down the intestinal tract. PMID:11139219

  2. Kiss of the Mutant Mouse: How Genetically Altered Mice Advanced Our Understanding of Kisspeptin's Role in Reproductive Physiology

    PubMed Central

    Elias, Carol F.

    2012-01-01

    The kisspeptin system has emerged as one of the most important circuits within the central network governing reproduction. Although kisspeptin physiology has been examined in many species, much of our understanding of this system has come from mice. Recently, the study of several innovative strains of genetically engineered mouse models has revealed intriguing and unexpected insights into the functions of kisspeptin signaling in the hypothalamus. Here, we review the advancements in our knowledge of the central kisspeptin system through the use of mutant mice. PMID:23011921

  3. Comparative metabolic flux analysis of an Ashbya gossypii wild type strain and a high riboflavin-producing mutant strain.

    PubMed

    Jeong, Bo-Young; Wittmann, Christoph; Kato, Tatsuya; Park, Enoch Y

    2015-01-01

    In the present study, we analyzed the central metabolic pathway of an Ashbya gossypii wild type strain and a riboflavin over-producing mutant strain developed in a previous study in order to characterize the riboflavin over-production pathway. (13)C-Metabolic flux analysis ((13)C-MFA) was carried out in both strains, and the resulting data were fit to a steady-state flux isotopomer model using OpenFLUX. Flux to pentose-5-phosphate (P5P) via the pentose phosphate pathway (PPP) was 9% higher in the mutant strain compared to the wild type strain. The flux from purine synthesis to riboflavin in the mutant strain was 1.6%, while that of the wild type strain was only 0.1%, a 16-fold difference. In addition, the flux from the cytoplasmic pyruvate pool to the extracellular metabolites, pyruvate, lactate, and alanine, was 2-fold higher in the mutant strain compared to the wild type strain. This result demonstrates that increased guanosine triphosphate (GTP) flux through the PPP and purine synthesis pathway (PSP) increased riboflavin production in the mutant strain. The present study provides the first insight into metabolic flux through the central carbon pathway in A. gossypii and sets the foundation for development of a quantitative and functional model of the A. gossypii metabolic network.

  4. Molecular Genetic Analysis of Revertants from a Poliovirus Mutant That Is Specifically Adapted to the Mouse Spinal Cord

    PubMed Central

    Jia, Qingmei; Hogle, James M.; Hashikawa, Tsutomu; Nomoto, Akio

    2001-01-01

    SA virus, a mutant of the Mahoney strain of type 1 poliovirus (PV1/Mahoney), replicates specifically in the spinal cords of mice and causes paralysis, although the PV1/Mahoney strain does not show any mouse neurovirulence (Q. Jia, S. Ohka, K. Iwasaki, K. Tohyama, and A. Nomoto, J. Virol. 73:6041–6047, 1999). The key mutation site for the mouse neurovirulence of SA was mapped to nucleotide (nt) 928 of the genome (A to G), resulting in the amino acid substitution of Met for Ile at residue 62 within the capsid protein VP4 (VP4062). A small-plaque phenotype of SA appears to be indicative of its mouse-neurovirulent phenotype. To identify additional amino acid residues involved in the host range determination of PV, a total of 14 large-plaque (LP) variants were isolated from a single point mutant, Mah/I4062M, that showed the SA phenotype. All the LP variants no longer showed any mouse neurovirulence when delivered via an intraspinal inoculation route. Of these, 11 isolates had a back mutation at nt 928 (G to A) that restored the nucleotide of the PV1/Mahoney type. The reversions of the remaining three isolates (LP8, LP9, and LP14) were mediated by a second site mutation. Molecular genetic analysis involving recombinants between Mah/I4062M and the LP variants revealed that the mere substitution of an amino acid residue at position 107 in VP1 (Val to Leu) (LP9), position 33 in VP2 (Val to Ile) (LP14), or position 231 in VP3 (Ile to Thr) (LP8) was sufficient to restore the PV1/Mahoney phenotype. These amino acid residues are located either on the surface or inside of the virus particle. Our results indicate that the mouse neurovirulence of PV is determined by the virion surface structure, which is formed by all four capsid proteins. PMID:11689657

  5. Increased riboflavin production from activated bleaching earth by a mutant strain of Ashbya gossypii.

    PubMed

    Tajima, Satoshi; Itoh, Yoko; Sugimoto, Takashi; Kato, Tatsuya; Park, Enoch Y

    2009-10-01

    The production of riboflavin from vegetable oil was increased using a mutant strain of Ashbya gossypii. This mutant was generated by treating the wild-type strain with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Riboflavin production was 10-fold higher in the mutant compared to the wild-type strain. The specific intracellular catalase activity after 3 d of culture was 6-fold higher in the mutant than in the wild-type strain. For the mutant, riboflavin production in the presence of 40 mM hydrogen peroxide was 16% less than that in the absence of hydrogen peroxide, whereas it was 56% less for the wild-type strain. The isocitrate lyase (ICL) activity of the mutant was 0.26 mU/mg of protein during the active riboflavin production phase, which was 2.6-fold higher than the wild-type strain. These data indicate that the mutant utilizes the carbon flux from the TCA cycle to the glyoxylate cycle more efficiently than the wild-type strain, resulting in enhanced riboflavin production. This novel mutant has the potential to be of use for industrial-scale riboflavin production from waste-activated bleaching earth (ABE), thereby transforming a useless material into a valuable bioproduct.

  6. Phenotypes of Myopathy-Related Beta-Tropomyosin Mutants in Human and Mouse Tissue Cultures

    PubMed Central

    Abdul-Hussein, Saba; Rahl, Karin; Moslemi, Ali-Reza; Tajsharghi, Homa

    2013-01-01

    Mutations in TPM2 result in a variety of myopathies characterised by variable clinical and morphological features. We used human and mouse cultured cells to study the effects of β-TM mutants. The mutants induced a range of phenotypes in human myoblasts, which generally changed upon differentiation to myotubes. Human myotubes transfected with the E41K-β-TMEGFP mutant showed perinuclear aggregates. The G53ins-β-TMEGFP mutant tended to accumulate in myoblasts but was incorporated into filamentous structures of myotubes. The K49del-β-TMEGFP and E122K-β-TMEGFP mutants induced the formation of rod-like structures in human cells. The N202K-β-TMEGFP mutant failed to integrate into thin filaments and formed accumulations in myotubes. The accumulation of mutant β-TMEGFP in the perinuclear and peripheral areas of the cells was the striking feature in C2C12. We demonstrated that human tissue culture is a suitable system for studying the early stages of altered myofibrilogenesis and morphological changes linked to myopathy-related β-TM mutants. In addition, the histopathological phenotype associated with expression of the various mutant proteins depends on the cell type and varies with the maturation of the muscle cell. Further, the phenotype is a combinatorial effect of the specific amino acid change and the temporal expression of the mutant protein. PMID:24039757

  7. A polymorphic form of steroidogenic factor-1 is associated with adrenocorticotropin resistance in y1 mouse adrenocortical tumor cell mutants.

    PubMed

    Frigeri, Claudia; Tsao, Jennivine; Cordova, Martha; Schimmer, Bernard P

    2002-10-01

    ACTH resistance in mutant derivatives of the Y1 mouse adrenocortical tumor cell line results from a defect that affects the activity of steroidogenic factor-1 (SF1), thereby preventing the expression of the melanocortin-2 receptor. In this report, we show that the SF1 genes in ACTH-resistant mutants differ from the gene in ACTH-responsive Y1 cells by two base changes-one that changes an Ala to Ser at codon 172, and one in the third position of codon 3 that does not affect the protein sequence. Furthermore, several of the mutants contain multiple copies of this alternate SF1 gene (SF1(S172)) on acentric chromosome fragments. The SF1(S172) allele represents a polymorphism rather than a spontaneous mutation because the two SF1 alleles can be traced to the hybrid mouse strain (C57L/J x A/HeJ) from which the original adrenal tumor was derived. The SF1(A172) allele also is found in C57Bl/6J and C57Bl/10J mice, whereas the SF1(S172) allele also is found in C3H/HeJ and DBA/2J mice. The two forms of SF1 had only modest differences in activity suggesting that the SF1 polymorphism per se is not directly responsible for ACTH resistance. Our results indicate that the SF1(S172) allele is a marker of ACTH resistance in this family of adrenocortical tumor cells.

  8. Establishment of permanent chimerism in a lactate dehydrogenase-deficient mouse mutant with hemolytic anemia

    SciTech Connect

    Datta, T.; Doermer, P.

    1987-12-01

    Pluripotent hemopoietic stem cell function was investigated in the homozygous muscle type lactate dehydrogenase (LDH-A) mutant mouse using bone marrow transplantation experiments. Hemopoietic tissues of LDH-A mutants showed a marked decreased in enzyme activity that was associated with severe hemolytic anemia. This condition proved to be transplantable into wild type mice (+/+) through total body irradiation (TBI) at a lethal dose of 8.0 Gy followed by engraftment of mutant bone marrow cells. Since the mutants are extremely radiosensitive (lethal dose50/30 4.4 Gy vs 7.3 Gy in +/+ mice), 8.0-Gy TBI followed by injection of even high numbers of normal bone marrow cells did not prevent death within 5-6 days. After a nonlethal dose of 4.0 Gy and grafting of normal bone marrow cells, a transient chimerism showing peripheral blood characteristics of the wild type was produced that returned to the mutant condition within 12 weeks. The transfusion of wild type red blood cells prior to and following 8.0-Gy TBI and reconstitution with wild type bone marrow cells prevented the early death of the mutants and permanent chimerism was achieved. The chimeras showed all hematological parameters of wild type mice, and radiosensitivity returned to normal. It is concluded that the mutant pluripotent stem cells are functionally comparable to normal stem cells, emphasizing the significance of this mouse model for studies of stem cell regulation.

  9. Morris Water Maze Test: Optimization for Mouse Strain and Testing Environment

    PubMed Central

    Weitzner, Daniel S.; Engler-Chiurazzi, Elizabeth B.; Kotilinek, Linda A.; Ashe, Karen Hsiao; Reed, Miranda Nicole

    2015-01-01

    The Morris water maze (MWM) is a commonly used task to assess hippocampal-dependent spatial learning and memory in transgenic mouse models of disease, including neurocognitive disorders such as Alzheimer’s disease. However, the background strain of the mouse model used can have a substantial effect on the observed behavioral phenotype, with some strains exhibiting superior learning ability relative to others. To ensure differences between transgene negative and transgene positive mice can be detected, identification of a training procedure sensitive to the background strain is essential. Failure to tailor the MWM protocol to the background strain of the mouse model may lead to under- or over- training, thereby masking group differences in probe trials. Here, a MWM protocol tailored for use with the F1 FVB/N x 129S6 background is described. This is a frequently used background strain to study the age-dependent effects of mutant P301L tau (rTg(TauP301L)4510 mice) on the memory deficits associated with Alzheimer’s disease. Also described is a strategy to re-optimize, as dictated by the particular testing environment utilized. PMID:26132096

  10. Free mycolic acid accumulation in the cell wall of the mce1 operon mutant strain of Mycobacterium tuberculosis.

    PubMed

    Cantrell, Sally A; Leavell, Michael D; Marjanovic, Olivera; Iavarone, Anthony T; Leary, Julie A; Riley, Lee W

    2013-10-01

    The lipid-rich cell wall of Mycobacterium tuberculosis, the agent of tuberculosis, serves as an effective barrier against many chemotherapeutic agents and toxic host cell effector molecules, and it may contribute to the mechanism of persistence. Mycobacterium tuberculosis strains mutated in a 13-gene operon called mce1, which encodes a putative ABC lipid transporter, induce aberrant granulomatous response in mouse lungs. Because of the postulated role of the mce1 operon in lipid importation, we compared the cell wall lipid composition of wild type and mce1 operon mutant M. tuberculosis H37Rv strains. High resolution mass spectrometric analyses of the mce1 mutant lipid extracts showed unbound mycolic acids to accumulate in the cell wall. Quantitative analysis revealed a 10.7 fold greater amount of free mycolates in the mutant compared to that of the wild type strain. The free mycolates were comprised of alpha, methoxy and keto mycolates in the ratio 1:0.9:0.6, respectively. Since the mce1 operon is regulated in vivo, the free mycolates that accumulate during infection may serve as a barrier for M. tuberculosis against toxic products and contribute to the pathogen's persistence.

  11. Accelerated Human Mutant Tau Aggregation by Knocking Out Murine Tau in a Transgenic Mouse Model

    PubMed Central

    Ando, Kunie; Leroy, Karelle; Héraud, Céline; Yilmaz, Zehra; Authelet, Michèle; Suain, Valèrie; De Decker, Robert; Brion, Jean-Pierre

    2011-01-01

    Many models of human tauopathies have been generated in mice by expression of a human mutant tau with maintained expression of mouse endogenous tau. Because murine tau might interfere with the toxic effects of human mutant tau, we generated a model in which a pathogenic human tau protein is expressed in the absence of wild-type tau protein, with the aim of facilitating the study of the pathogenic role of the mutant tau and to reproduce more faithfully a human tauopathy. The Tg30 line is a tau transgenic mouse model overexpressing human 1N4R double-mutant tau (P301S and G272V) that develops Alzheimer's disease-like neurofibrillary tangles in an age-dependent manner. By crossing Tg30 mice with mice invalidated for their endogenous tau gene, we obtained Tg30xtau−/− mice that express only exogenous human double-mutant 1N4R tau. Although Tg30xtau−/− mice express less tau protein compared with Tg30, they exhibit signs of decreased survival, increased proportion of sarkosyl-insoluble tau in the brain and in the spinal cord, increased number of Gallyas-positive neurofibrillary tangles in the hippocampus, increased number of inclusions in the spinal cord, and a more severe motor phenotype. Deletion of murine tau accelerated tau aggregation during aging of this mutant tau transgenic model, suggesting that murine tau could interfere with the development of tau pathology in transgenic models of human tauopathies. PMID:21281813

  12. Mutant IDH1 Disrupts the Mouse Subventricular Zone and Alters Brain Tumor Progression.

    PubMed

    Pirozzi, Christopher J; Carpenter, Austin B; Waitkus, Matthew S; Wang, Catherine Y; Zhu, Huishan; Hansen, Landon J; Chen, Lee H; Greer, Paula K; Feng, Jie; Wang, Yu; Bock, Cheryl B; Fan, Ping; Spasojevic, Ivan; McLendon, Roger E; Bigner, Darell D; He, Yiping; Yan, Hai

    2017-02-01

    IDH1 mutations occur in the majority of low-grade gliomas and lead to the production of the oncometabolite, D-2-hydroxyglutarate (D-2HG). To understand the effects of tumor-associated mutant IDH1 (IDH1-R132H) on both the neural stem cell (NSC) population and brain tumorigenesis, genetically faithful cell lines and mouse model systems were generated. Here, it is reported that mouse NSCs expressing Idh1-R132H displayed reduced proliferation due to p53-mediated cell cycle arrest as well as a decreased ability to undergo neuronal differentiation. In vivo, Idh1-R132H expression reduced proliferation of cells within the germinal zone of the subventricular zone (SVZ). The NSCs within this area were dispersed and disorganized in mutant animals, suggesting that Idh1-R132H perturbed the NSCs and the microenvironment from which gliomas arise. Additionally, tumor-bearing animals expressing mutant Idh1 displayed a prolonged survival and also overexpressed Olig2, features consistent with IDH1-mutated human gliomas. These data indicate that mutant Idh1 disrupts the NSC microenvironment and the candidate cell of origin for glioma; thus, altering the progression of tumorigenesis. Additionally, this study provides a mutant Idh1 brain tumor model that genetically recapitulates human disease, laying the foundation for future investigations on mutant IDH1-mediated brain tumorigenesis and targeted therapy.

  13. Mutant E. coli strain with increased succinic acid production

    DOEpatents

    Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    2001-09-25

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which has been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria.

  14. Mutant E. coli strain with increased succinic acid production

    DOEpatents

    Donnelly, M.; Millard, C.S.; Stols, L.

    1998-06-23

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which as been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria. 2 figs.

  15. Mutant E. coli strain with increased succinic acid production

    DOEpatents

    Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    2002-01-01

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which has been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria.

  16. Mutant E. coli strain with increased succinic acid production

    DOEpatents

    Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    1998-01-01

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which as been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria.

  17. Effects of tazobactam on the frequency of the emergence of resistant strains from Enterobacter cloacae, Citrobacter freundii, and Proteus vulgaris (beta-lactamase derepressed mutants).

    PubMed

    Higashitani, F; Nishida, K; Hyodo, A; Inoue, M

    1995-09-01

    When Enterobacter cloacae, Citrobacter freundii, and Proteus vulgaris were treated with piperacillin (PIPC) in combination with tazobactam (TAZ), the in vitro frequency of emergence of resistant strains (beta-lactamase producing mutants) was lower than with PIPC or ceftazidime (CAZ) treated bacteria. In a mouse intraperitoneal infection model caused by E. cloacae, beta-lactamase derepressed mutants were detected following therapy with PIPC or CAZ, although no derepressed mutants were detected after treatment with PIPC in combination with TAZ. This suppression of the selection of derepressed mutants, which produce large amounts of beta-lactamases, by the combination of TAZ and PIPC suggests that the combination delays the increase of resistant mutants compared with PIPC alone.

  18. Convergent Replication of Mouse Synthetic Prion Strains

    PubMed Central

    Ghaemmaghami, Sina; Colby, David W.; Nguyen, Hoang-Oanh B.; Hayashi, Shigenari; Oehler, Abby; DeArmond, Stephen J.; Prusiner, Stanley B.

    2014-01-01

    Prion diseases are neurodegenerative disorders characterized by the aberrant folding of endogenous proteins into self-propagating pathogenic conformers. Prion disease can be initiated in animal models by inoculation with amyloid fibrils formed from bacterially derived recombinant prion protein. The synthetic prions that accumulated in infected organisms are structurally distinct from the amyloid preparations used to initiate their formation and change conformationally on repeated passage. To investigate the nature of synthetic prion transformation, we infected mice with a conformationally diverse set of amyloids and serially passaged the resulting prion strains. At each passage, we monitored changes in the biochemical and biological properties of the adapting strain. The physicochemical properties of each synthetic prion strain gradually changed on serial propagation until attaining a common adapted state with shared physicochemical characteristics. These results indicate that synthetic prions can assume multiple intermediate conformations before converging into one conformation optimized for in vivo propagation. PMID:23438476

  19. Cerebellar Expression of the Neurotrophin Receptor p75 in Naked-Ataxia Mutant Mouse.

    PubMed

    Rahimi Balaei, Maryam; Jiao, Xiaodan; Ashtari, Niloufar; Afsharinezhad, Pegah; Ghavami, Saeid; Marzban, Hassan

    2016-01-15

    Spontaneous mutation in the lysosomal acid phosphatase 2 (Acp2) mouse (nax--naked-ataxia mutant mouse) correlates with severe cerebellar defects including ataxia, reduced size and abnormal lobulation as well as Purkinje cell (Pc) degeneration. Loss of Pcs in the nax cerebellum is compartmentalized and harmonized to the classic pattern of gene expression of the cerebellum in the wild type mouse. Usually, degeneration starts in the anterior and posterior zones and continues to the central and nodular zones of cerebellum. Studies have suggested that the p75 neurotrophin receptor (NTR) plays a role in Pc degeneration; thus, in this study, we investigated the p75NTR pattern and protein expression in the cerebellum of the nax mutant mouse. Despite massive Pc degeneration that was observed in the nax mouse cerebellum, p75NTR pattern expression was similar to the HSP25 pattern in nax mice and comparable with wild type sibling cerebellum. In addition, immunoblot analysis of p75NTR protein expression did not show any significant difference between nax and wild type sibling (p > 0.5). In comparison with wild type counterparts, p75NTR pattern expression is aligned with the fundamental cytoarchitecture organization of the cerebellum and is unchanged in the nax mouse cerebellum despite the severe neurodevelopmental disorder accompanied with Pc degeneration.

  20. Examining the virulence of Candida albicans transcription factor mutants using Galleria mellonella and mouse infection models.

    PubMed

    Amorim-Vaz, Sara; Delarze, Eric; Ischer, Françoise; Sanglard, Dominique; Coste, Alix T

    2015-01-01

    The aim of the present study was to identify Candida albicans transcription factors (TFs) involved in virulence. Although mice are considered the gold-standard model to study fungal virulence, mini-host infection models have been increasingly used. Here, barcoded TF mutants were first screened in mice by pools of strains and fungal burdens (FBs) quantified in kidneys. Mutants of unannotated genes which generated a kidney FB significantly different from that of wild-type were selected and individually examined in Galleria mellonella. In addition, mutants that could not be detected in mice were also tested in G. mellonella. Only 25% of these mutants displayed matching phenotypes in both hosts, highlighting a significant discrepancy between the two models. To address the basis of this difference (pool or host effects), a set of 19 mutants tested in G. mellonella were also injected individually into mice. Matching FB phenotypes were observed in 50% of the cases, highlighting the bias due to host effects. In contrast, 33.4% concordance was observed between pool and single strain infections in mice, thereby highlighting the bias introduced by the "pool effect." After filtering the results obtained from the two infection models, mutants for MBF1 and ZCF6 were selected. Independent marker-free mutants were subsequently tested in both hosts to validate previous results. The MBF1 mutant showed impaired infection in both models, while the ZCF6 mutant was only significant in mice infections. The two mutants showed no obvious in vitro phenotypes compared with the wild-type, indicating that these genes might be specifically involved in in vivo adapt.

  1. Examining the virulence of Candida albicans transcription factor mutants using Galleria mellonella and mouse infection models

    PubMed Central

    Amorim-Vaz, Sara; Delarze, Eric; Ischer, Françoise; Sanglard, Dominique; Coste, Alix T

    2015-01-01

    The aim of the present study was to identify Candida albicans transcription factors (TFs) involved in virulence. Although mice are considered the gold-standard model to study fungal virulence, mini-host infection models have been increasingly used. Here, barcoded TF mutants were first screened in mice by pools of strains and fungal burdens (FBs) quantified in kidneys. Mutants of unannotated genes which generated a kidney FB significantly different from that of wild-type were selected and individually examined in Galleria mellonella. In addition, mutants that could not be detected in mice were also tested in G. mellonella. Only 25% of these mutants displayed matching phenotypes in both hosts, highlighting a significant discrepancy between the two models. To address the basis of this difference (pool or host effects), a set of 19 mutants tested in G. mellonella were also injected individually into mice. Matching FB phenotypes were observed in 50% of the cases, highlighting the bias due to host effects. In contrast, 33.4% concordance was observed between pool and single strain infections in mice, thereby highlighting the bias introduced by the “pool effect.” After filtering the results obtained from the two infection models, mutants for MBF1 and ZCF6 were selected. Independent marker-free mutants were subsequently tested in both hosts to validate previous results. The MBF1 mutant showed impaired infection in both models, while the ZCF6 mutant was only significant in mice infections. The two mutants showed no obvious in vitro phenotypes compared with the wild-type, indicating that these genes might be specifically involved in in vivo adapt PMID:25999923

  2. Mouse model of Sanfilippo syndrome type B: relation of phenotypic features to background strain.

    PubMed

    Gografe, Sylvia I; Garbuzova-Davis, Svitlana; Willing, Alison E; Haas, Ken; Chamizo, Wilfredo; Sanberg, Paul R

    2003-12-01

    Sanfilippo syndrome type B or mucopolysaccharidosis type III B (MPS IIIB) is a lysosomal storage disorder that is inherited in autosomal recessive manner. It is characterized by systemic heparan sulfate accumulation in lysosomes due to deficiency of the enzyme alpha-N-acetylglucosaminidase (Naglu). Devastating clinical abnormalities with severe central nervous system involvement and somatic disease lead to premature death. A mouse model of Sanfilippo syndrome type B was created by targeted disruption of the gene encoding Naglu, providing a powerful tool for understanding pathogenesis and developing novel therapeutic strategies. However, the JAX GEMM Strain B6.129S6-Naglutm1Efn mouse, although showing biochemical similarities to humans with Sanfilippo syndrome, exhibits aging and behavioral differences. We observed idiosyncrasies, such as skeletal dysmorphism, hydrocephalus, ocular abnormalities, organomegaly, growth retardation, and anomalies of the integument, in our breeding colony of Naglu mutant mice and determined that several of them were at least partially related to the background strain C57BL/6. These background strain abnormalities, therefore, potentially mimic or overlap signs of the induced syndrome in our mice. Our observations may prove useful in studies of Naglu mutant mice. The necessity for distinguishing background anomalies from signs of the modeled disease is apparent.

  3. The circling mutant Pcdh15roda is a new mouse model for hearing loss.

    PubMed

    Torres, Adriana Amorim; Rzadzinska, Agnieszka K; Ribeiro, Andrea Frozino; Silva, Daniel Almeida da Silva E; Guénet, Jean-Louis; Massironi, Sílvia Maria Gomes; Godard, Ana Lúcia Brunialti

    2013-01-01

    Mouse mutagenesis is a key tool for studying gene function and several mutant alleles have been described and constitute mouse models for human hereditary diseases. Genetic hearing loss represents over 50% of all hearing loss cases in children and, due to the heterogeneity of the disorder, there is still a demand for the isolation and characterization of new genes and alleles. Here we report phenotypic and molecular characterization of a new mouse model for hereditary hearing loss. The mutant rodador, isolated by Massironi and colleagues in 2006, presents an autosomal recessive disorder characterized by deafness and balance dysfunction associated with abnormal stereocilia in the inner ear. The mutation was mapped to mouse chromosome 10, and characterization of the gene Pcdh15 revealed an AT-to-GC transition in intron 23 of mutant animals. The alteration led to the switch of a dinucleotide ApA for ApG, creating a novel intronic acceptor splice site, which leads to incorporation of eight intronic bases into the processed mRNA and alteration of the downstream reading frame. In silico analysis indicated that the mutated protein is truncated and lacks two cadherin domains, and the transmembrane and cytoplasmic domains. Real Time PCR analyses revealed a significantly reduced Pcdh15 mRNA level in the brain of mutant mice, which might be due to the mechanism of non-sense mediated decay. In man, mutations in the orthologue PCDH15 cause non-syndromic deafness and Usher Syndrome Type 1F, a genetic disorder characterized by hearing loss and retinitis pigmentosa. Rodador mouse constitutes a new model for studying deafness in these conditions and may help in the comprehension of the pathogeneses of the disease, as well as of the mechanisms involved in the morphogenesis and function of inner ear stereocilia. This is a new ENU-induced allele and the first isolated in a BALB/c background.

  4. Reporter Gene Silencing in Targeted Mouse Mutants Is Associated with Promoter CpG Island Methylation

    PubMed Central

    Kirov, Julia V.; Adkisson, Michael; Nava, A. J.; Cipollone, Andreana; Willis, Brandon; Engelhard, Eric K.; Lloyd, K. C. Kent; de Jong, Pieter; West, David B.

    2015-01-01

    Targeted mutations in mouse disrupt local chromatin structure and may lead to unanticipated local effects. We evaluated targeted gene promoter silencing in a group of six mutants carrying the tm1a Knockout Mouse Project allele containing both a LacZ reporter gene driven by the native promoter and a neo selection cassette. Messenger RNA levels of the reporter gene and targeted gene were assessed by qRT-PCR, and methylation of the promoter CpG islands and LacZ coding sequence were evaluated by sequencing of bisulfite-treated DNA. Mutants were stratified by LacZ staining into presumed Silenced and Expressed reporter genes. Silenced mutants had reduced relative quantities LacZ mRNA and greater CpG Island methylation compared with the Expressed mutant group. Within the silenced group, LacZ coding sequence methylation was significantly and positively correlated with CpG Island methylation, while promoter CpG methylation was only weakly correlated with LacZ gene mRNA. The results support the conclusion that there is promoter silencing in a subset of mutants carrying the tm1a allele. The features of targeted genes which promote local silencing when targeted remain unknown. PMID:26275310

  5. Electrical Phenotypes of Calcium Transport Mutant Strains of a Filamentous Fungus, Neurospora crassa

    PubMed Central

    Hamam, Ahmed

    2012-01-01

    We characterized the electrical phenotypes of mutants with mutations in genes encoding calcium transporters—a mechanosensitive channel homolog (MscS), a Ca2+/H+ exchange protein (cax), and Ca2+-ATPases (nca-1, nca-2, nca-3)—as well as those of double mutants (the nca-2 cax, nca-2 nca-3, and nca-3 cax mutants). The electrical characterization used dual impalements to obtain cable-corrected current-voltage measurements. Only two types of mutants (the MscS mutant; the nca-2 mutant and nca-2-containing double mutants) exhibited lower resting potentials. For the nca-2 mutant, on the basis of unchanged conductance and cyanide-induced depolarization of the potential, the cause is attenuated H+-ATPase activity. The growth of the nca-2 mutant-containing strains was inhibited by elevated extracellular Ca2+ levels, indicative of lesions in Ca2+ homeostasis. However, the net Ca2+ effluxes of the nca-2 mutant, measured noninvasively with a self-referencing Ca2+-selective microelectrode, were similar to those of the wild type. All of the mutants exhibited osmosensitivity similar to that of the wild type (the turgor of the nca-2 mutant was also similar to that of the wild type), suggesting that Ca2+ signaling does not play a role in osmoregulation. The hyphal tip morphology and tip-localized mitochondria of the nca-2 mutant were similar to those of the wild type, even when the external [Ca2+] was elevated. Thus, although Ca2+ homeostasis is perturbed in the nca-2 mutant (B. J. Bowman et al., Eukaryot. Cell 10:654–661, 2011), the phenotype does not extend to tip growth or to osmoregulation but is revealed by lower H+-ATPase activity. PMID:22408225

  6. The First Scube3 Mutant Mouse Line with Pleiotropic Phenotypic Alterations

    PubMed Central

    Fuchs, Helmut; Sabrautzki, Sibylle; Przemeck, Gerhard K. H.; Leuchtenberger, Stefanie; Lorenz-Depiereux, Bettina; Becker, Lore; Rathkolb, Birgit; Horsch, Marion; Garrett, Lillian; Östereicher, Manuela A.; Hans, Wolfgang; Abe, Koichiro; Sagawa, Nobuho; Rozman, Jan; Vargas-Panesso, Ingrid L.; Sandholzer, Michael; Lisse, Thomas S.; Adler, Thure; Aguilar-Pimentel, Juan Antonio; Calzada-Wack, Julia; Ehrhard, Nicole; Elvert, Ralf; Gau, Christine; Hölter, Sabine M.; Micklich, Katja; Moreth, Kristin; Prehn, Cornelia; Puk, Oliver; Racz, Ildiko; Stoeger, Claudia; Vernaleken, Alexandra; Michel, Dian; Diener, Susanne; Wieland, Thomas; Adamski, Jerzy; Bekeredjian, Raffi; Busch, Dirk H.; Favor, John; Graw, Jochen; Klingenspor, Martin; Lengger, Christoph; Maier, Holger; Neff, Frauke; Ollert, Markus; Stoeger, Tobias; Yildirim, Ali Önder; Strom, Tim M.; Zimmer, Andreas; Wolf, Eckhard; Wurst, Wolfgang; Klopstock, Thomas; Beckers, Johannes; Gailus-Durner, Valerie; Hrabé de Angelis, Martin

    2016-01-01

    The vertebrate Scube (Signal peptide, CUB, and EGF-like domain-containing protein) family consists of three independent members, Scube1–3, which encode secreted cell surface-associated membrane glycoproteins. Limited information about the general function of this gene family is available, and their roles during adulthood. Here, we present the first Scube3 mutant mouse line (Scube3N294K/N294K), which clearly shows phenotypic alterations by carrying a missense mutation in exon 8, and thus contributes to our understanding of SCUBE3 functions. We performed a detailed phenotypic characterization in the German Mouse Clinic (GMC). Scube3N294K/N294K mutants showed morphological abnormalities of the skeleton, alterations of parameters relevant for bone metabolism, changes in renal function, and hearing impairments. These findings correlate with characteristics of the rare metabolic bone disorder Paget disease of bone (PDB), associated with the chromosomal region of human SCUBE3. In addition, alterations in energy metabolism, behavior, and neurological functions were detected in Scube3N294K/N294K mice. The Scube3N294K/N294K mutant mouse line may serve as a new model for further studying the effect of impaired SCUBE3 gene function. PMID:27815347

  7. Assessment of a systematic expression profiling approach in ENU-induced mouse mutant lines.

    PubMed

    Seltmann, Matthias; Horsch, Marion; Drobyshev, Alexei; Chen, Yali; de Angelis, Martin Hrabé; Beckers, Johannes

    2005-01-01

    Comparative genomewide expression profiling is a powerful tool in the effort to annotate the mouse genome with biological function. The systematic analysis of RNA expression data of mouse lines from the Munich ENU mutagenesis screen might support the understanding of the molecular biology of such mutants and provide new insights into mammalian gene function. In a direct comparison of DNA microarray experiments of individual versus pooled RNA samples of organs from ENU-induced mouse mutants, we provide evidence that individual RNA samples may outperform pools in some aspects. Genes with high biological variability in their expression levels (noisy genes) are identified as false positives in pooled samples. Evidence suggests that highly stringent housing conditions and standardized procedures for the isolation of organs significantly reduce biological variability in gene expression profiling experiments. Data on wild-type individuals demonstrate the positive effect of controlling variables such as social status, food intake before organ sampling, and stress with regard to reproducibility of gene expression patterns. Analyses of several organs from various ENU-induced mutant lines in general show low numbers of differentially expressed genes. We demonstrate the feasibility to detect transcriptionally affected organs employing RNA expression profiling as a tool for molecular phenotyping.

  8. A novel stereocilia defect in sensory hair cells of the deaf mouse mutant Tasmanian devil.

    PubMed

    Erven, Alexandra; Skynner, Michael J; Okumura, Katsuzumi; Takebayashi, Shin-ichiro; Brown, Steve D M; Steel, Karen P; Allen, Nicholas D

    2002-10-01

    Stereocilia are specialized actin-filled, finger-like processes arrayed in rows of graded heights to form a crescent or W-shape on the apical surface of sensory hair cells. The stereocilia are deflected by the vibration of sound, which opens transduction channels and allows an influx of ions to depolarize the hair cell, in turn triggering synaptic activity. The specialized morphology and organization of the stereocilia bundle is crucial in the process of sensory transduction in the inner ear. However, we know little about the development of stereocilia in the mouse and few molecules that are involved in stereocilia maturation are known. We describe here a new mouse mutant with abnormal stereocilia development. The Tasmanian devil (tde) mouse mutation arose by insertional mutagenesis and has been mapped to the middle of chromosome 5. Homozygotes show head-tossing and circling and have raised thresholds for cochlear nerve responses to sound. The gross morphology of the inner ear was normal, but the stereocilia of cochlear and vestibular hair cells are abnormally thin, and they become progressively disorganized with increasing age. Ultimately, the hair cells die. This is the first report of a mutant showing thin stereocilia. The association of thin stereocilia with cochlear dysfunction emphasizes the critical role of stereocilia in auditory transduction, and the discovery of the Tasmanian devil mutant provides a resource for the identification of an essential molecule in hair cell function.

  9. The Mouse MC13 Mutant Is a Novel ENU Mutation in Collagen Type II, Alpha 1

    PubMed Central

    Cionni, Megan; Menke, Chelsea; Stottmann, Rolf W.

    2014-01-01

    Phenotype-driven mutagenesis experiments are a powerful approach to identifying novel alleles in a variety of contexts. The traditional disadvantage of this approach has been the subsequent task of identifying the affected locus in the mutants of interest. Recent advances in bioinformatics and sequencing have reduced the burden of cloning these ENU mutants. Here we report our experience with an ENU mutagenesis experiment and the rapid identification of a mutation in a previously known gene. A combination of mapping the mutation with a high-density SNP panel and a candidate gene approach has identified a mutation in collagen type II, alpha I (Col2a1). Col2a1 has previously been studied in the mouse and our mutant phenotype closely resembles mutations made in the Col2a1 locus. PMID:25541700

  10. Dopaminergic function in relation to genes associated with risk for schizophrenia: translational mutant mouse models.

    PubMed

    Moran, Paula M; O'Tuathaigh, Colm M P; Papaleo, Francesco; Waddington, John L

    2014-01-01

    Mutant mice play an increasingly important role in understanding disease processes at multiple levels. In particular, they illuminate the impact of risk genes for disease on such processes. This article reviews recent advances in the application of mutant mice to study the intricacies of dopaminergic (DAergic) function in relation to the putative pathophysiology of psychotic illness, particularly schizophrenia, and antipsychotic drug action. It considers models for understanding the role(s) of risk genes, with a particular focus on DTNBP1 and NRG1, their interactions with environmental factors, and with each other (epistasis). In overview, it considers new schemas for understanding psychotic illness that integrate DAergic pathophysiology with developmental, social, and cognitive processes, and how mutant mouse models can reflect and inform on such schemas.

  11. Phosphoregulation of an Inner Dynein Arm Complex in Chlamydomonas reinhardtii Is Altered in Phototactic Mutant Strains

    PubMed Central

    King, Stephen J.; Dutcher, Susan K.

    1997-01-01

    To gain a further understanding of axonemal dynein regulation, mutant strains of Chlamydomonas reinhardtii that had defects in both phototactic behavior and flagellar motility were identified and characterized. ptm1, ptm2, and ptm3 mutant strains exhibited motility phenotypes that resembled those of known inner dynein arm region mutant strains, but did not have biochemical or genetic phenotypes characteristic of other inner dynein arm mutations. Three other mutant strains had defects in the f class of inner dynein arms. Dynein extracts from the pf9-4 strain were missing the entire f complex. Strains with mutations in pf9/ida1, ida2, or ida3 failed to assemble the f dynein complex and did not exhibit phototactic behavior. Fractionated dynein from mia1-1 and mia2-1 axonemes exhibited a novel f class inner dynein arm biochemical phenotype; the 138-kD f intermediate chain was present in altered phosphorylation forms. In vitro axonemal dynein activity was reduced by the mia1-1 and mia2-1 mutations. The addition of kinase inhibitor restored axonemal dynein activity concomitant with the dephosphorylation of the 138-kD f intermediate chain. Dynein extracts from uni1-1 axonemes, which specifically assemble only one of the two flagella, contained relatively high levels of the altered phosphorylation forms of the 138-kD intermediate chain. We suggest that the f dynein complex may be phosphoregulated asymmetrically between the two flagella to achieve phototactic turning. PMID:9008712

  12. A γA-Crystallin Mouse Mutant Secc with Small Eye, Cataract and Closed Eyelid

    PubMed Central

    Cheng, Man Hei; Tam, Chung Nga; Choy, Kwong Wai; Tsang, Wai Hung; Tsang, Sze Lan; Pang, Chi Pui; Song, You Qiang; Sham, Mai Har

    2016-01-01

    Cataract is the most common cause of visual loss in humans. A spontaneously occurred, autosomal dominant mouse mutant Secc, which displayed combined features of small eye, cataract and closed eyelid was discovered in our laboratory. In this study, we identified the mutation and characterized the cataract phenotype of this novel Secc mutant. The Secc mutant mice have eyelids that remain half-closed throughout their life. The mutant lens has a significant reduction in size and with opaque spots clustered in the centre. Histological analysis showed that in the core region of the mutant lens, the fiber cells were disorganized and clefts and vacuoles were observed. The cataract phenotype was evident from new born stage. We identified the Secc mutation by linkage analysis using whole genome microsatellite markers and SNP markers. The Secc locus was mapped at chromosome 1 flanked by SNPs rs3158129 and rs13475900. Based on the chromosomal position, the candidate cataract locus γ-crystallin gene cluster (Cryg) was investigated by sequencing. A single base deletion (299delG) in exon 3 of Cryga which led to a frame-shift of amino acid sequence from position 91 was identified. As a result of this mutation, the sequences of the 3rd and 4th Greek-key motifs of the γA-crystallin are replaced with an unrelated C-terminal peptide of 75 residues long. Coincidentally, the point mutation generated a HindIII restriction site, allowing the identification of the CrygaSecc mutant allele by RFLP. Western blot analysis of 3-week old lenses showed that the expression of γ-crystallins was reduced in the CrygaSecc mutant. Furthermore, in cell transfection assays using CrygaSecc mutant cDNA expression constructs in 293T, COS-7 and human lens epithelial B3 cell lines, the mutant γA-crystallins were enriched in the insoluble fractions and appeared as insoluble aggregates in the transfected cells. In conclusion, we have demonstrated that the Secc mutation leads to the generation of Cryga

  13. A γA-Crystallin Mouse Mutant Secc with Small Eye, Cataract and Closed Eyelid.

    PubMed

    Cheng, Man Hei; Tam, Chung Nga; Choy, Kwong Wai; Tsang, Wai Hung; Tsang, Sze Lan; Pang, Chi Pui; Song, You Qiang; Sham, Mai Har

    2016-01-01

    Cataract is the most common cause of visual loss in humans. A spontaneously occurred, autosomal dominant mouse mutant Secc, which displayed combined features of small eye, cataract and closed eyelid was discovered in our laboratory. In this study, we identified the mutation and characterized the cataract phenotype of this novel Secc mutant. The Secc mutant mice have eyelids that remain half-closed throughout their life. The mutant lens has a significant reduction in size and with opaque spots clustered in the centre. Histological analysis showed that in the core region of the mutant lens, the fiber cells were disorganized and clefts and vacuoles were observed. The cataract phenotype was evident from new born stage. We identified the Secc mutation by linkage analysis using whole genome microsatellite markers and SNP markers. The Secc locus was mapped at chromosome 1 flanked by SNPs rs3158129 and rs13475900. Based on the chromosomal position, the candidate cataract locus γ-crystallin gene cluster (Cryg) was investigated by sequencing. A single base deletion (299delG) in exon 3 of Cryga which led to a frame-shift of amino acid sequence from position 91 was identified. As a result of this mutation, the sequences of the 3rd and 4th Greek-key motifs of the γA-crystallin are replaced with an unrelated C-terminal peptide of 75 residues long. Coincidentally, the point mutation generated a HindIII restriction site, allowing the identification of the CrygaSecc mutant allele by RFLP. Western blot analysis of 3-week old lenses showed that the expression of γ-crystallins was reduced in the CrygaSecc mutant. Furthermore, in cell transfection assays using CrygaSecc mutant cDNA expression constructs in 293T, COS-7 and human lens epithelial B3 cell lines, the mutant γA-crystallins were enriched in the insoluble fractions and appeared as insoluble aggregates in the transfected cells. In conclusion, we have demonstrated that the Secc mutation leads to the generation of Cryga

  14. Gene-environment interactions in a mutant mouse kindred with native airway constrictor hyperresponsiveness.

    PubMed

    Pinto, Lawrence H; Eaton, Emily; Chen, Bohao; Fleisher, Jonah; Shuster, Dmitry; McCauley, Joel; Kedainis, Dalius; Siepka, Sandra M; Shimomura, Kazuhiro; Song, Eun-Joo; Husain, Aliya; Lakser, Oren J; Mitchell, Richard W; Dowell, Maria L; Brown, Melanie; Camoretti-Mercado, Blanca; Naclerio, Robert; Sperling, Anne I; Levin, Stephen I; Turek, Fred W; Solway, Julian

    2008-01-01

    We mutagenized male BTBR mice with N-ethyl-N-nitrosourea and screened 1315 of their G3 offspring for airway hyperresponsiveness. A phenovariant G3 mouse with exaggerated methacholine bronchoconstrictor response was identified and his progeny bred in a nonspecific-pathogen-free (SPF) facility where sentinels tested positive for minute virus of mice and mouse parvovirus and where softwood bedding was used. The mutant phenotype was inherited through G11 as a single autosomal semidominant mutation with marked gender restriction, with males exhibiting almost full penetrance and very few females phenotypically abnormal. Between G11 and G12, facility infection eradication was undertaken and bedding was changed to hardwood. We could no longer detect airway hyperresponsiveness in more than 37 G12 offspring of 26 hyperresponsive G11 males. Also, we could not identify the mutant phenotype among offspring of hyperresponsive G8-G10 sires rederived into an SPF facility despite 21 attempts. These two observations suggest that both genetic and environmental factors were needed for phenotype expression. We suspect that rederivation into an SPF facility or altered exposure to pathogens or other unidentified substances modified environmental interactions with the mutant allele, and so resulted in disappearance of the hyperresponsive phenotype. Our experience suggests that future searches for genes that confer susceptibility for airway hyperresponsiveness might not be able to identify some genes that confer susceptibility if the searches are performed in SPF facilities. Experimenters are advised to arrange for multigeneration constancy of mouse care in order to clone mutant genes. Indeed, we were not able to map the mutation before losing the phenotype.

  15. Iron uptake from plasma transferrin by a transferrin receptor 2 mutant mouse model of haemochromatosis

    PubMed Central

    Chua, Anita C.G.; Delima, Roheeth D.; Morgan, Evan H.; Herbison, Carly E.; Tirnitz-Parker, Janina E.E.; Graham, Ross M.; Fleming, Robert E.; Britton, Robert S.; Bacon, Bruce R.; Olynyk, John K.; Trinder, Debbie

    2010-01-01

    Background & Aims Hereditary haemochromatosis type 3 is caused by mutations in transferrin receptor (TFR) 2. TFR2 has been shown to mediate iron transport in vitro and regulate iron homeostasis. The aim of this study was to determine the role of Tfr2 in iron transport in vivo using a Tfr2 mutant mouse. Methods Tfr2 mutant and wild-type mice were injected intravenously with 59Fe-transferrin and tissue 59Fe uptake was measured. Tfr1, Tfr2 and ferroportin expression was measured by real-time PCR and Western blot. Cellular localisation of ferroportin was determined by immunohistochemistry. Results Transferrin-bound iron uptake by the liver and spleen in Tfr2 mutant mice was reduced by 20% and 65%, respectively, whilst duodenal and renal uptake was unchanged compared with iron-loaded wild-type mice. In Tfr2 mutant mice, liver Tfr2 protein was absent, whilst ferroportin protein was increased in non-parenchymal cells and there was a low level of expression in hepatocytes. Tfr1 expression was unchanged compared with iron-loaded wild-type mice. Splenic Tfr2 protein expression was absent whilst Tfr1 and ferroportin protein expression was increased in Tfr2 mutant mice compared with iron-loaded wild-type mice. Conclusions A small reduction in hepatic transferrin-bound iron uptake in Tfr2 mutant mice suggests that Tfr2 plays a minor role in liver iron transport and its primary role is to regulate iron metabolism. Increased ferroportin expression due to decreased hepcidin mRNA levels is likely to be responsible for impaired splenic iron uptake in Tfr2 mutant mice. PMID:20133002

  16. An Escherichia coli asr mutant has decreased fitness during colonization in a mouse model.

    PubMed

    Armalyte, Julija; Seputiene, Vaida; Melefors, Ojar; Suziedeliene, Edita

    2008-01-01

    The Escherichia coli asr gene, like its homologues in other enterobacteria, is strongly induced by low external pH. The E. coli asr mutant shows weakened ability to adapt to acidic pH. This suggests that the asr gene product is important for enterobacterial species, both commensal and pathogenic, in overcoming acid stress in the stomach and subsequently colonizing the intestine. We examined the relative fitness of an E. coli asr mutant compared to a wild type, by feeding both strains simultaneously to mice and letting them colonize the intestine. Analysis of the bacteria after passage through the intestine showed up to five orders of magnitude less asr mutant than wild type. Transcomplementation of the asr gene on a plasmid partially restored the number of mutants. Similar competition in liquid media demonstrated that the asr mutant has reduced viability during long-term incubation in rich media, but is as fit as the wild type when bacteria are challenged in minimal medium. Competition carried out under different pH conditions proved that pH of the media was not the main determinant leading to the decreased fitness of the asr mutant. This suggests that the asr gene product is important for adaptation to stress conditions other than acidity, including long periods of starvation.

  17. Antifolate Agents Against Wild and Mutant Strains of Plasmodium falciparum

    PubMed Central

    Shaikh, M. S.; Rana, J.; Gaikwad, D.; Leartsakulpanich, U.; Ambre, Premlata K.; Pissurlenkar, R. R. S.; Coutinho, E. C.

    2014-01-01

    Plasmodium falciparum dihydrofolate reductase is an important target for antimalarial chemotherapy. The emergence of resistance has significantly reduced the efficacy of the classic antifolate drugs cycloguanil and pyrimethamine. In this paper we report new dihydrofolate reductase inhibitors identified using molecular modelling principles with the goal of designing new antifolate agents active against both wild and tetramutant dihydrofolate reductase strains three series of trimethoprim analogues were designed, synthesised and tested for biological activity. Pyrimethamine and cycloguanil have been reported to loose efficacy because of steric repulsion in the active site pocket produced due to mutation in Plasmodium falciparum dihydrofolate reductase. The synthesised molecules have sufficient flexibility to withstand this steric repulsion to counteract the resistance. The molecules have been synthesised by conventional techniques and fully characterised by spectroscopic methods. The potency of these molecules was evaluated by in vitro enzyme specific assays. Some of the molecules were active in micromolar concentrations and can easily be optimised to improve binding and activity. PMID:24843184

  18. A new conditional Apc-mutant mouse model for colorectal cancer.

    PubMed

    Robanus-Maandag, Els C; Koelink, Pim J; Breukel, Cor; Salvatori, Daniela C F; Jagmohan-Changur, Shantie C; Bosch, Cathy A J; Verspaget, Hein W; Devilee, Peter; Fodde, Riccardo; Smits, Ron

    2010-05-01

    Mutations of the adenomatous polyposis coli (APC) gene predispose individuals to familial adenomatous polyposis (FAP), characterized by multiple tumours in the large intestine. Most mouse models heterozygous for truncating mutant Apc alleles mimic FAP, however, the intestinal tumours occur mainly in the small intestine. To model large intestinal tumours, we generated a new conditional Apc-mutant allele, Apc(15lox), with exon 15 flanked by loxP sites. Similar survival of Apc(1638N/15lox) and Apc(1638N/+) mice indicated that the normal function of Apc was not impaired by the loxP sites. Deletion of exon 15, encoding nearly all functional Apc domains and containing the polyadenylation signal, resulted in a mutant allele expressing low levels of a 74 kDa truncated Apc protein. Germ line Cre-mediated deletion of exon 15 resulted in Apc(Delta15/+) mice, showing a severe Apc(Min/+)-like phenotype characterized by multiple tumours in the small intestine and early lethality. In contrast, conditional Cre-mediated deletion of exon 15 specifically directed to the epithelia of distal small and large intestine of FabplCre;Apc(15lox/+) mice led to longer survival and to tumours that developed predominantly in the large intestine, mimicking human FAP-associated colorectal cancer and sporadic colorectal cancer. We conclude that the FabplCre;Apc(15lox/+) mouse should be an attractive model for studies on prevention and treatment of colorectal cancer.

  19. Increased apoptosis and hypomyelination in cerebral white matter of macular mutant mouse brain.

    PubMed

    Takikita, Shoichi; Takano, Tomoyuki; Narita, Tsutomu; Maruo, Yoshihiro

    2015-09-01

    Hypomyelination in developing brain is often accompanied by congenital metabolic disorders. Menkes kinky hair disease is an X-linked neurodegenerative disease of impaired copper transport, resulting from a mutation of the Menkes disease gene, a transmembrane copper-transporting p-type ATPase gene (ATP7A). In a macular mutant mouse model, the murine ortholog of Menkes gene (mottled gene) is mutated, and widespread neurodegeneration and subsequent death are observed. Although some biochemical analysis of myelin protein in macular mouse has been reported, detailed histological study of myelination in this mouse model is currently lacking. Since myelin abnormality is one of the neuropathologic findings of human Menkes disease, in this study early myelination in macular mouse brain was evaluated by immunohistochemistry. Two-week-old macular mice and normal littermates were perfused with 4% paraformaldehyde. Immunohistochemical staining of paraffin embedded and vibratome sections was performed using antibodies against either CNPase, cleaved caspase-3 or O4 (marker of immature oligodendrocytes). This staining showed that cerebral myelination in macular mouse was generally hypoplastic and that hypomyelination was remarkable in internal capsule, corpus callosum, and cingulate cortex. In addition, an increased number of cleaved caspase-3 positive cells were observed in corpus callosum and internal capsule. Copper deficiency induced by low copper diet has been reported to induce oligodendrocyte dysfunction and leads to hypomyelination in this mouse model. Taken together, hypomyelination observed in this study in a mouse model of Menkes disease is assumed to be induced by increased apoptosis of immature oligodendrocytes in developing cerebrum, through deficient intracellular copper metabolism.

  20. Increased apoptosis and hypomyelination in cerebral white matter of macular mutant mouse brain

    PubMed Central

    Takikita, Shoichi; Takano, Tomoyuki; Narita, Tsutomu; Maruo, Yoshihiro

    2015-01-01

    Hypomyelination in developing brain is often accompanied by congenital metabolic disorders. Menkes kinky hair disease is an X-linked neurodegenerative disease of impaired copper transport, resulting from a mutation of the Menkes disease gene, a transmembrane copper-transporting p-type ATPase gene (ATP7A). In a macular mutant mouse model, the murine ortholog of Menkes gene (mottled gene) is mutated, and widespread neurodegeneration and subsequent death are observed. Although some biochemical analysis of myelin protein in macular mouse has been reported, detailed histological study of myelination in this mouse model is currently lacking. Since myelin abnormality is one of the neuropathologic findings of human Menkes disease, in this study early myelination in macular mouse brain was evaluated by immunohistochemistry. Two-week-old macular mice and normal littermates were perfused with 4% paraformaldehyde. Immunohistochemical staining of paraffin embedded and vibratome sections was performed using antibodies against either CNPase, cleaved caspase-3 or O4 (marker of immature oligodendrocytes). This staining showed that cerebral myelination in macular mouse was generally hypoplastic and that hypomyelination was remarkable in internal capsule, corpus callosum, and cingulate cortex. In addition, an increased number of cleaved caspase-3 positive cells were observed in corpus callosum and internal capsule. Copper deficiency induced by low copper diet has been reported to induce oligodendrocyte dysfunction and leads to hypomyelination in this mouse model. Taken together, hypomyelination observed in this study in a mouse model of Menkes disease is assumed to be induced by increased apoptosis of immature oligodendrocytes in developing cerebrum, through deficient intracellular copper metabolism. PMID:26937406

  1. Altered retinal cell differentiation in the AP-3 delta mutant (Mocha) mouse.

    PubMed

    Baguma-Nibasheka, Mark; Kablar, Boris

    2009-11-01

    Adaptor-related protein complex 3 delta 1 (Ap3d1) encodes the delta 1 subunit of an adaptor protein regulating intracellular vesicle-mediated transport, and the Ap3d-deletion mutant (Mocha) mouse undergoes rapid photoreceptor degeneration leading to blindness soon after birth. Previous microarray analysis revealed Ap3d down-regulation in the retina of mouse embryos specifically lacking cholinergic amacrine cells as a result of the absence of skeletal musculature. To investigate the role of Ap3d in the determination of retinal cell fate, the present study examined retinal morphology in newborn Ap3d-/- mice. The Ap3d-/- retina showed a complete absence of cholinergic amacrine cells and a decrease in parvalbumin-expressing amacrine cells and syntaxin- and VC1.1-expressing amacrine precursor cells, but had a normal number of cell layers and number of cells in each layer with no detectable difference in cell proliferation or apoptosis. These findings indicate that, despite having no apparent effect on the basic spatial organization of the retina at this stage of development, Ap3d could be involved in the regulation of progenitor cell competence and the eventual ratio of resulting differentiated cells. Finding the mouse mutant which phenocopies the eye defect seen in fetuses with no striated muscle was accomplished by the Systematic Subtractive Microarray Analysis Approach (SSMAA), explained in the discussion section.

  2. Mouse and hamster mutants as models for Waardenburg syndromes in humans.

    PubMed Central

    Asher, J H; Friedman, T B

    1990-01-01

    Four different Waardenburg syndromes have been defined based upon observed phenotypes. These syndromes are responsible for approximately 2% of subjects with profound congenital hearing loss. At present, Waardenburg syndromes have not been mapped to particular human chromosomes. One or more of the mouse mutant alleles, Ph (patch), s (piebald), Sp (splotch), and Mior (microphthalmia-Oak Ridge) and the hamster mutation Wh (anophthalmic white) may be homologous to mutations causing Waardenburg syndromes. In heterozygotes, phenotypic effects of these four mouse mutations and the hamster mutation are similar to the phenotypes produced by different Waardenburg syndrome mutations. The chromosomal locations and syntenic relationships associated with three of the four mouse mutant genes have been used to predict human chromosomal locations for Waardenburg syndromes: (1) on chromosome 2q near FN1 (fibronectin 1), (2) on chromosome 3p near the proto-oncogene RAF1 or 3q near RHO (rhodopsin), and (3) on chromosome 4p near the proto-oncogene KIT. Waardenburg syndromes show extensive intrafamilial phenotypic variability. Results of our studies with the hamster mutation Wh suggest that this variability may be explained in part by modifier genes segregating within families. Images PMID:2246770

  3. The scurfy mouse mutant has previously unrecognized hematological abnormalities and resembles Wiskott-Aldrich syndrome.

    PubMed Central

    Lyon, M F; Peters, J; Glenister, P H; Ball, S; Wright, E

    1990-01-01

    The X chromosome-linked scurfy (sf) mutant of the mouse is recognized by the scaliness of the skin from which the name is derived and results in death of affected males at about 3-4 weeks of age. Consideration of known man-mouse homologies of the X chromosome prompted hematological studies, which have shown that the blood is highly abnormal. The platelet and erythrocyte counts are both reduced and become progressively lower relative to normal as the disease progresses. There is gastrointestinal bleeding, and most animals appear to die of severe anemia. By contrast, the leukocyte count is consistently raised. Some animals showed signs of infection but it is not yet clear whether there is immunodeficiency. Other features include the scaly skin and apparently reduced lateral growth of the skin, conjunctivitis, and diarrhea in some animals. The mutant resembles Wiskott-Aldrich syndrome in man, which is characterized by thrombocytopenia, eczema, diarrhea, and immunodeficiency. The loci of the human and mouse genes lie in homologous segments of the X chromosome, although apparently in somewhat different positions relative to other gene loci. Scurfy differs from Wiskott-Aldrich syndrome in that scurfy males are consistently hypogonadal. Images PMID:2320565

  4. Mechanical properties of elytra from Tribolium castaneum wild-type and body color mutant strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cuticle tanning in insects involves simultaneous cuticular hardening and pigmentation. The dynamic mechanical properties of the highly modified and cuticle-rich forewings (elytra) from Tribolium castaneum (red flour beetle) body color mutant strains were investigated to determine the relationship b...

  5. The frissonnant mutant mouse, a model of dopamino-sensitive, inherited motor syndrome.

    PubMed

    Callizot, N; Guénet, J L; Baillet, C; Warter, J M; Poindron, P

    2001-06-01

    The frissonnant (fri) mutation is an autosomic recessive mutation which spontaneously appeared in the stock of C3H mice. fri mutant mice have locomotor instability and rapid tremor. Since tremor ceases when mutant mice have sleep or are anaesthetized, and because of their obvious stereotyped motor behavior, these mice could represent an inherited Parkinsonian syndrome. We show here that the fri/fri mouse fulfills two out of the three criteria required to validate an experimental model of human disease, that is isomorphism, homology and predictivity. Indeed, fri/fri mice present an important motor deficit accompanying visible tremor and stereotypies. They display some memory deficits as in human Parkinson's desease. l-Dopa and apomorphine (dopaminergic agonists), ropinirole (selective D2 agonist), and selegiline (an monoamino-oxidase B [MAO-B] inhibitor) improve their clinical status. However, neither anatomopathological evidence of nigrostriatal lesion, nor decrease in tyrosine hydroxylase production could be seen.

  6. A mutant ('lab strain') of the hyperthermophilic archaeon Pyrococcus furiosus, lacking flagella, has unusual growth physiology.

    PubMed

    Lewis, Derrick L; Notey, Jaspreet S; Chandrayan, Sanjeev K; Loder, Andrew J; Lipscomb, Gina L; Adams, Michael W W; Kelly, Robert M

    2015-03-01

    A mutant ('lab strain') of the hyperthermophilic archaeon Pyrococcus furiosus DSM3638 exhibited an extended exponential phase and atypical cell aggregation behavior. Genomic DNA from the mutant culture was sequenced and compared to wild-type (WT) DSM3638, revealing 145 genes with one or more insertions, deletions, or substitutions (12 silent, 33 amino acid substitutions, and 100 frame shifts). Approximately, half of the mutated genes were transposases or hypothetical proteins. The WT transcriptome revealed numerous changes in amino acid and pyrimidine biosynthesis pathways coincidental with growth phase transitions, unlike the mutant whose transcriptome reflected the observed prolonged exponential phase. Targeted gene deletions, based on frame-shifted ORFs in the mutant genome, in a genetically tractable strain of P. furiosus (COM1) could not generate the extended exponential phase behavior observed for the mutant. For example, a putative radical SAM family protein (PF2064) was the most highly up-regulated ORF (>25-fold) in the WT between exponential and stationary phase, although this ORF was unresponsive in the mutant; deletion of this gene in P. furiosus COM1 resulted in no apparent phenotype. On the other hand, frame-shifting mutations in the mutant genome negatively impacted transcription of a flagellar biosynthesis operon (PF0329-PF0338).Consequently, cells in the mutant culture lacked flagella and, unlike the WT, showed minimal evidence of exopolysaccharide-based cell aggregation in post-exponential phase. Electron microscopy of PF0331-PF0337 deletions in P. furiosus COM1 showed that absence of flagella impacted normal cell aggregation behavior and, furthermore, indicated that flagella play a key role, beyond motility, in the growth physiology of P. furiosus.

  7. Activity of gemifloxacin against quinolone-resistant Streptococcus pneumoniae strains in vitro and in a mouse pneumonia model.

    PubMed

    Azoulay-Dupuis, E; Bédos, J P; Mohler, J; Moine, P; Cherbuliez, C; Peytavin, G; Fantin, B; Köhler, T

    2005-03-01

    Gemifloxacin is a novel fluoronaphthyridone quinolone with enhanced in vitro activity against Streptococcus pneumoniae. We investigated the activities of gemifloxacin and trovafloxacin, their abilities to select for resistance in vitro and in vivo, and their efficacies in a mouse model of acute pneumonia. Immunocompetent Swiss mice were infected with 10(5) CFU of a virulent, encapsulated S. pneumoniae strain, P-4241, or its isogenic parC, gyrA, parC gyrA, and efflux mutant derivatives (serotype 3); and leukopenic mice were infected with 10(7) CFU of two poorly virulent clinical strains (serotype 11A) carrying either a parE mutation or a parC, gyrA, and parE triple mutation. The drugs were administered six times every 12 h, starting at either 3 or 18 h postinfection. In vitro, gemifloxacin was the most potent agent against strains with and without acquired resistance to fluoroquinolones. While control mice died within 6 days, gemifloxacin at doses of 25 and 50 mg/kg of body weight was highly effective (survival rates, 90 to 100%) against the wild-type strain and against mutants harboring a single mutation, corresponding to area under the time-versus-serum concentration curve at 24 h (AUC(24))/MIC ratios of 56.5 to 113, and provided a 40% survival rate against a mutant with a double mutation (parC and gyrA). A total AUC(24)/MIC ratio of 28.5 was associated with poor efficacy and the emergence of resistant mutants. Trovafloxacin was as effective as gemifloxacin against mutants with single mutations but did not provide any protection against the mutant with double mutations, despite treatment with a high dose of 200 mg/kg. Gemifloxacin preferentially selected for parC mutants both in vitro and in vivo.

  8. Autosomal dominant frontonasal dysplasia (atypical Greig syndrome): Lessons from the Xt mutant mouse

    SciTech Connect

    Cunningham, M.L.; Nunes, M.E.

    1994-09-01

    Greig syndrome is the autosomal dominant association of mild hypertelorism, variable polysyndactyly, and normal intelligence. Several families have been found to have translocations or deletions of 7p13 interrupting the normal expression of GLI3 (a zinc finger, DNA binding, transcription repressor). Recently, a mutation in the mouse homologue of GLI3 was found in the extra-toes mutant mouse (Xt). The phenotypic features of this mouse model include mild hypertelorism, postaxial polydactyly of the forelimbs, preaxial polydactyly of the hindlimbs, and variable tibial hemimelia. The homozygous mutant Xt/Xt have severe frontonasal dysplasia (FND), polysyndactyly of fore-and hindlimbs and invariable tibial hemimelia. We have recently evaluated a child with severe (type D) frontonasal dysplasia, fifth finger camptodactyly, preaxial polydactyly of one foot, and ispilateral tibial hemimelia. His father was born with a bifid nose, broad columnella, broad feet, and a two centimeter leg length discrepancy. The paternal grandmother of the proband is phenotypically normal; however, her fraternal twin died at birth with severe facial anomalies. The paternal great-grandmother of the proband is phenotypically normal however her niece was born with moderate ocular hypertelorism. This pedigree is suggestive of an autosomal dominant form of frontonasal dysplasia with variable expressivity. The phenotypic features of our case more closely resemble the Xt mouse than the previously defined features of Greig syndrome in humans. This suggests that a mutation in GLI3 may be responsible for FND in this family. We are currently using polymorphic dinucleotide repeat markers flanking GLI3 in a attempt to demonstrate linkage in this pedigree. Demonstration of a GLI3 mutation in this family would broaden our view of the spectrum of phenotypes possible in Greig syndrome and could provide insight into genotype/phenotype correlation in FND.

  9. Neuregulin 1 Expression and Electrophysiological Abnormalities in the Neuregulin 1 Transmembrane Domain Heterozygous Mutant Mouse

    PubMed Central

    Frank, Elisabeth; Shaw, Alex; Liu, Shijie; Huang, Xu-Feng; Pinault, Didier; Karl, Tim; O’Brien, Terence J.; Shannon Weickert, Cynthia; Jones, Nigel C.

    2015-01-01

    Background The Neuregulin 1 transmembrane domain heterozygous mutant (Nrg1 TM HET) mouse is used to investigate the role of Nrg1 in brain function and schizophrenia-like behavioural phenotypes. However, the molecular alterations in brain Nrg1 expression that underpin the behavioural observations have been assumed, but not directly determined. Here we comprehensively characterise mRNA Nrg1 transcripts throughout development of the Nrg1 TM HET mouse. In addition, we investigate the regulation of high-frequency (gamma) electrophysiological oscillations in this mutant mouse to associate molecular changes in Nrg1 with a schizophrenia-relevant neurophysiological profile. Methods Using exonic probes spanning the cysteine-rich, epidermal growth factor (EGF)-like, transmembrane and intracellular domain encoding regions of Nrg1, mRNA levels were measured using qPCR in hippocampus and frontal cortex from male and female Nrg1 TM HET and wild type-like (WT) mice throughout development. We also performed electrophysiological recordings in adult mice and analysed gamma oscillatory at baseline, in responses to auditory stimuli and to ketamine. Results In both hippocampus and cortex, Nrg1 TM HET mice show significantly reduced expression of the exon encoding the transmembrane domain of Nrg1 compared with WT, but unaltered mRNA expression encoding the extracellular bioactive EGF-like and the cysteine-rich (type III) domains, and development-specific and region-specific reductions in the mRNA encoding the intracellular domain. Hippocampal Nrg1 protein expression was not altered, but NMDA receptor NR2B subunit phosphorylation was lower in Nrg1 TM HET mice. We identified elevated ongoing and reduced sensory-evoked gamma power in Nrg1 TM HET mice. Interpretation We found no evidence to support the claim that the Nrg1 TM HET mouse represents a simple haploinsufficient model. Further research is required to explore the possibility that mutation results in a gain of Nrg1 function. PMID

  10. The super super-healing MRL mouse strain.

    PubMed

    Heydemann, Ahlke

    2012-12-01

    The Murphy Roths Large (MRL/MpJ) mice provide unique insights into wound repair and regeneration. These mice and the closely related MRL/MpJ-Fas(lpr) /J and Large strains heal wounds made in multiple tissues without production of a fibrotic scar. The precise mechanism of this remarkable ability still eludes researchers, but some data has been generated and insights are being revealed. For example, MRL cells reepithelialize over dermal wound sites faster than cells of other mouse strains. This allows a blastema to develop beneath the protective layer. The MRL mice also have an altered basal immune system and an altered immune response to injury. In addition, MRL mice have differences in their tissue resident progenitor cells and certain cell cycle regulatory proteins. The difficulty often lies in separating the causative differences from the corollary differences. Remarkably, not every tissue in these mice heals scarlessly, and the specific type of wound and priming affect regeneration ability as well. The MRL/MpJ, MRL/MpJ-Fas(lpr) /J, and Large mouse strains are also being investigated for their autoimmune characteristic. Whether the two phenotypes of regeneration and autoimmunity are related remains an enigma.

  11. The super super-healing MRL mouse strain

    PubMed Central

    HEYDEMANN, Ahlke

    2013-01-01

    The Murphy Roths Large (MRL/MpJ) mice provide unique insights into wound repair and regeneration. These mice and the closely related MRL/MpJ-Faslpr/J and Large strains heal wounds made in multiple tissues without production of a fibrotic scar. The precise mechanism of this remarkable ability still eludes researchers, but some data has been generated and insights are being revealed. For example, MRL cells reepithelialize over dermal wound sites faster than cells of other mouse strains. This allows a blastema to develop beneath the protective layer. The MRL mice also have an altered basal immune system and an altered immune response to injury. In addition, MRL mice have differences in their tissue resident progenitor cells and certain cell cycle regulatory proteins. The difficulty often lies in separating the causative differences from the corollary differences. Remarkably, not every tissue in these mice heals scarlessly, and the specific type of wound and priming affect regeneration ability as well. The MRL/MpJ, MRL/MpJ-Faslpr/J, and Large mouse strains are also being investigated for their autoimmune characteristic. Whether the two phenotypes of regeneration and autoimmunity are related remains an enigma. PMID:24163690

  12. Selenite-stress selected mutant strains of probiotic bacteria for Se source production.

    PubMed

    Pusztahelyi, Tünde; Kovács, Szilvia; Pócsi, István; Prokisch, József

    2015-04-01

    Selenium deficiency is a major health problem worldwide for about 1 billion people. Bacterial cells usually possess low tolerance to selenite stress and also low ability to reduce high concentrations of toxic selenite. Here, high tolerance to selenite and selenium bioaccumulation capability were developed in mutated clones of probiotic and starter bacteria including Enterococcus faecium, Bifidobacterium animalis ssp. lactis, Lactobacillus casei and Lactococcus lactis ssp. lactis by food-level strain development process and clone selection. All mutant clones possessed increased glutathione concentration and glutathione reductase activity. The selenite treatment increased further these values in L. casei mutant strain pointing at a different selenite reduction pathway and/or stress response in this organism. Considerable conversion of selenite to cell bound selenium forms with a concomitant high biomass production was detected in E. faecium and B. animalis ssp. lactis cultures. Possible application of these strains as food and feed supplements is under investigation.

  13. Spontaneous Gac Mutants of Pseudomonas Biological Control Strains: Cheaters or Mutualists? ▿

    PubMed Central

    Driscoll, William W.; Pepper, John W.; Pierson, Leland S.; Pierson, Elizabeth A.

    2011-01-01

    Bacteria rely on a range of extracellular metabolites to suppress competitors, gain access to resources, and exploit plant or animal hosts. The GacS/GacA two-component regulatory system positively controls the expression of many of these beneficial external products in pseudomonad bacteria. Natural populations often contain variants with defective Gac systems that do not produce most external products. These mutants benefit from a decreased metabolic load but do not appear to displace the wild type in nature. How could natural selection maintain the wild type in the presence of a mutant with enhanced growth? One hypothesis is that Gac mutants are “cheaters” that do not contribute to the public good, favored within groups but selected against between groups, as groups containing more mutants lose access to ecologically important external products. An alternative hypothesis is that Gac mutants have a mutualistic interaction with the wild type, so that each variant benefits by the presence of the other. In the biocontrol bacterium Pseudomonas chlororaphis strain 30-84, Gac mutants do not produce phenazines, which suppress competitor growth and are critical for biofilm formation. Here, we test the predictions of these alternative hypotheses by quantifying interactions between the wild type and the phenazine- and biofilm-deficient Gac mutant within growing biofilms. We find evidence that the wild type and Gac mutants interact mutualistically in the biofilm context, whereas a phenazine-defective structural mutant does not. Our results suggest that the persistence of alternative Gac phenotypes may be due to the stabilizing role of local mutualistic interactions. PMID:21873476

  14. Isolation of cDNA clones for the catalytic gamma subunit of mouse muscle phosphorylase kinase: expression of mRNA in normal and mutant Phk mice.

    PubMed Central

    Chamberlain, J S; VanTuinen, P; Reeves, A A; Philip, B A; Caskey, C T

    1987-01-01

    We have isolated and characterized cDNA clones for the gamma subunit of mouse muscle phosphorylase kinase (gamma-Phk). These clones were isolated from a lambda gt11 mouse muscle cDNA library via screening with a synthetic oligonucleotide probe corresponding to a portion of the rabbit gamma-Phk amino acid sequence. The gamma-Phk cDNA clones code for a 387-amino acid protein that shares 93% amino acid sequence identity with the corresponding rabbit amino acid sequence. RNA gel blot analysis reveals that the muscle gamma-Phk probe hybridizes to two mRNA species (2.4 and 1.6 kilobases) in skeletal muscle, cardiac muscle, and brain, but does not hybridize to liver RNA. Phk-deficient I-strain (Phk) mouse muscle contains reduced levels of gamma-Phk mRNA as compared with control mice. Although the Phk defect is an X-linked recessive trait, hybridization to a human-rodent somatic cell hybrid mapping panel shows that the gamma-Phk gene is not located on the X chromosome. Rather, the gamma-Phk cross-hybridizing human restriction fragments map to human chromosomes 7 (multiple) and 11 (single). Reduced gamma-Phk mRNA in I-strain mice, therefore, appears to be a consequence of the Phk-mutant trait and does not stem from a mutant gamma-subunit gene. Images PMID:3472241

  15. Characterization of the TO strains of Theiler's mouse encephalomyelitis viruses.

    PubMed Central

    Lipton, H L

    1978-01-01

    Theiler's mouse encephalomyelitis virus isolates from the central nervous systems of spontaneously paralyzed mice and stools of asymptomatic mice resemble Theiler's original virus isolates. In this study four such strains were adapted by blind subpassage to replicate and to produce cytopathic effect in cell culture. These viruses were then found to be closely related to each other and to GDVII virus by cross-neutralization and to form small plaques. Bovine serum was found to contain cross-reacting antibodies to these viruses. PMID:208981

  16. Mouse Genetic Nomenclature: Standardization of Strain, Gene, and Protein Symbols

    PubMed Central

    Sundberg, John P.; Schofield, Paul N

    2011-01-01

    The use of standard nomenclatures for describing the strains, genes, and proteins of species is vital for the interpretation, archiving, analysis, and recovery of experimental data on the laboratory mouse. At a time when sharing of data and meta- analysis of experimental results is becoming a dominant mode of scientific investigation, failure to respect formal nomenclatures can cause confusion, errors, and in some cases contribute to poor science. Here we present the basic nomenclature rules for laboratory mice and explain how these rules should be applied to complex genetic manipulations and crosses. PMID:20685919

  17. Reselection of a genomic upstream open reading frame in mouse hepatitis coronavirus 5'-untranslated-region mutants.

    PubMed

    Wu, Hung-Yi; Guan, Bo-Jhih; Su, Yu-Pin; Fan, Yi-Hsin; Brian, David A

    2014-01-01

    An AUG-initiated upstream open reading frame (uORF) encoding a potential polypeptide of 3 to 13 amino acids (aa) is found within the 5' untranslated region (UTR) of >75% of coronavirus genomes based on 38 reference strains. Potential CUG-initiated uORFs are also found in many strains. The AUG-initiated uORF is presumably translated following genomic 5'-end cap-dependent ribosomal scanning, but its function is unknown. Here, in a reverse-genetics study with mouse hepatitis coronavirus, the following were observed. (i) When the uORF AUG-initiating codon was replaced with a UAG stop codon along with a U112A mutation to maintain a uORF-harboring stem-loop 4 structure, an unimpaired virus with wild-type (WT) growth kinetics was recovered. However, reversion was found at all mutated sites within five virus passages. (ii) When the uORF was fused with genomic (main) ORF1 by converting three in-frame stop codons to nonstop codons, a uORF-ORF1 fusion protein was made, and virus replicated at WT levels. However, a frameshifting G insertion at virus passage 7 established a slightly 5'-extended original uORF. (iii) When uAUG-eliminating deletions of 20, 30, or 51 nucleotides (nt) were made within stem-loop 4, viable but debilitated virus was recovered. However, a C80U mutation in the first mutant and an A77G mutation in the second appeared by passage 10, which generated alternate uORFs that correlated with restored WT growth kinetics. In vitro, the uORF-disrupting nondeletion mutants showed enhanced translation of the downstream ORF1 compared with the WT. These results together suggest that the uORF represses ORF1 translation yet plays a beneficial but nonessential role in coronavirus replication in cell culture.

  18. Keratinase production and keratin degradation by a mutant strain of Bacillus subtilis *

    PubMed Central

    Cai, Cheng-gang; Lou, Bing-gan; Zheng, Xiao-dong

    2008-01-01

    A new feather-degrading bacterium was isolated from a local feather waste site and identified as Bacillus subtilis based on morphological, physiochemical, and phylogenetic characteristics. Screening for mutants with elevated keratinolytic activity using N-methyl-N′-nitro-N-nitrosoguanidine mutagenesis resulted in a mutant strain KD-N2 producing keratinolytic activity about 2.5 times that of the wild-type strain. The mutant strain produced inducible keratinase in different substrates of feathers, hair, wool and silk under submerged cultivation. Scanning electron microscopy studies showed the degradation of feathers, hair and silk by the keratinase. The optimal conditions for keratinase production include initial pH of 7.5, inoculum size of 2% (v/v), age of inoculum of 16 h, and cultivation at 23 °C. The maximum keratinolytic activity of KD-N2 was achieved after 30 h. Essential amino acids like threonine, valine, methionine as well as ammonia were produced when feathers were used as substrates. Strain KD-N2, therefore, shows great promise of finding potential applications in keratin hydrolysis and keratinase production. PMID:18196614

  19. Withdrawal severity after chronic intermittent ethanol in inbred mouse strains

    PubMed Central

    Metten, Pamela; Sorensen, Michelle L.; Cameron, Andy Jade; Yu, Chia-Hua; Crabbe, John C.

    2010-01-01

    Background To study withdrawal, ethanol is usually administered chronically without interruption. However, interest has recurred in models of episodic exposure. Increasing evidence suggests that chronic intermittent exposure to ethanol leads to a sensitization effect in both withdrawal severity and in ethanol consumption. The goal of the present study was to examine mouse inbred strain differences in withdrawal severity following chronic intermittent exposure using the handling induced convulsion as the behavioral endpoint. We also sought to compare the withdrawal responses of inbred strains across acute, chronic continuous, and chronic intermittent exposure regimens. Methods Male mice from 15 standard inbred strains were exposed to ethanol vapor for 16 hours each day for 3 days and removed to an air chamber during the intervening 8 hours. Mice in the control groups were handled the same, except that they were exposed only to air. Daily blood ethanol concentrations were averaged for each mouse to estimate total dose of ethanol experienced. Results Across strains, mice had an average daily blood ethanol concentration (BEC) of 1.45 ± 0.02 mg/ml and we restricted the range of this value to 1.00 to 2.00 mg/ml. To evaluate strain differences, we divided data into two dose groups based on BEC, Low Dose (1.29 ± 0.1 mg/ml) and High Dose (1.71 ± 0.02 mg/ml). After the third inhalation exposure, ethanol- and air-exposed groups were tested hourly for handling-induced convulsions for 10 hr and at hr 24 and 25. Strains differed markedly in the severity of withdrawal (after subtraction of air control values) in both dose groups. Conclusion The chronic intermittent exposure paradigm is sufficient to elicit differential withdrawal responses across nearly all strains. Data from the High Dose groups correlated well with withdrawal data derived from prior acute (single high dose) and chronic continuous (for 72 hrs) ethanol withdrawal studies, supporting the influence of common

  20. Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum

    SciTech Connect

    Lynd, Lee R; Shao, Xiongjun; Raman, Babu; Mielenz, Jonathan R; Brown, Steven D; Guss, Adam M; Zhu, Mingjun

    2011-01-01

    Clostridium thermocellum is a model microorganism for converting cellulosic biomass into fuels and chemicals via consolidated bioprocessing. One of the challenges for industrial application of this organism is its low ethanol tolerance, typically 1 2% (w/v) in wild-type strains. In this study, we report the development and characterization of mutant C. thermocellum strains that can grow in the presence of high ethanol concentrations. Starting from a single colony, wild-type C. thermocellum ATCC 27405 was sub-cultured and adapted for growth in up to 50 g/L ethanol using either cellobiose or crystalline cellulose as the growth substrate. Both the adapted strains retained their ability to grow on either substrate and displayed a higher growth rate and biomass yield than the wild-type strain in the absence of ethanol. With added ethanol in the media, the mutant strains displayed an inverse correlation between ethanol concentration and growth rate or biomass yield. Genome sequencing revealed six common mutations in the two ethanol-tolerant strains including an alcohol dehydrogenase gene and genes involved in arginine/pyrimidine biosynthetic pathway. The potential role of these mutations in ethanol tolerance phenotype is discussed.

  1. Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum

    SciTech Connect

    Shao, Xiongjun; Raman, Babu; Zhu, Mingjun; Mielenz, Jonathan R; Brown, Steven D; Guss, Adam M; Lynd, Lee R

    2011-01-01

    Clostridium thermocellum is a model microorganism for converting cellulosic biomass into fuels and chemicals via consolidated bioprocessing. One of the challenges for industrial application of this organism is its low ethanol tolerance, typically 1-2% (w/v) in wild-type strains. In this study, we report the development and characterization of mutant C. thermocellum strains that can grow in the presence of high ethanol concentrations. Starting from a single colony, wild-type C. thermocellum ATCC 27405 was sub-cultured and adapted for growth in up to 50 g/L ethanol using either cellobiose or crystalline cellulose as the growth substrate. Both the adapted strains retained their ability to grow on either substrate and displayed a higher growth rate and biomass yield than the wild-type strain in the absence of ethanol. With added ethanol in the media, the mutant strains displayed an inverse correlation between ethanol concentration and growth rate or biomass yield. Genome sequencing revealed six common mutations in the two ethanol-tolerant strains including an alcohol dehydrogenase gene and genes involved in arginine/pyrimidine biosynthetic pathway. The potential role of these mutations in ethanol tolerance phenotype is discussed.

  2. Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum.

    PubMed

    Shao, Xiongjun; Raman, Babu; Zhu, Mingjun; Mielenz, Jonathan R; Brown, Steven D; Guss, Adam M; Lynd, Lee R

    2011-11-01

    Clostridium thermocellum is a model microorganism for converting cellulosic biomass into fuels and chemicals via consolidated bioprocessing. One of the challenges for industrial application of this organism is its low ethanol tolerance, typically 1-2% (w/v) in wild-type strains. In this study, we report the development and characterization of mutant C. thermocellum strains that can grow in the presence of high ethanol concentrations. Starting from a single colony, wild-type C. thermocellum ATCC 27405 was sub-cultured and adapted for growth in up to 50 g/L ethanol using either cellobiose or crystalline cellulose as the growth substrate. Both the adapted strains retained their ability to grow on either substrate and displayed a higher growth rate and biomass yield than the wild-type strain in the absence of ethanol. With added ethanol in the media, the mutant strains displayed an inverse correlation between ethanol concentration and growth rate or biomass yield. Genome sequencing revealed six common mutations in the two ethanol-tolerant strains including an alcohol dehydrogenase gene and genes involved in arginine/pyrimidine biosynthetic pathway. The potential role of these mutations in ethanol tolerance phenotype is discussed.

  3. Isolation and characterization of the E. coli membrane protein production strain Mutant56(DE3)

    PubMed Central

    Baumgarten, Thomas; Schlegel, Susan; Wagner, Samuel; Löw, Mirjam; Eriksson, Jonas; Bonde, Ida; Herrgård, Markus J.; Heipieper, Hermann J.; Nørholm, Morten H. H.; Slotboom, Dirk Jan; de Gier, Jan-Willem

    2017-01-01

    Membrane protein production is usually toxic to E. coli. However, using genetic screens strains can be isolated in which the toxicity of membrane protein production is reduced, thereby improving production yields. Best known examples are the C41(DE3) and C43(DE3) strains, which are both derived from the T7 RNA polymerase (P)-based BL21(DE3) protein production strain. In C41(DE3) and C43(DE3) mutations lowering t7rnap expression levels result in strongly reduced T7 RNAP accumulation levels. As a consequence membrane protein production stress is alleviated in the C41(DE3) and C43(DE3) strains, thereby increasing membrane protein yields. Here, we isolated Mutant56(DE3) from BL21(DE3) using a genetic screen designed to isolate BL21(DE3)-derived strains with mutations alleviating membrane protein production stress other than the ones in C41(DE3) and C43(DE3). The defining mutation of Mutant56(DE3) changes one amino acid in its T7 RNAP, which weakens the binding of the T7 RNAP to the T7 promoter governing target gene expression rather than lowering T7 RNAP levels. For most membrane proteins tested yields in Mutant56(DE3) were considerably higher than in C41(DE3) and C43(DE3). Thus, the isolation of Mutant56(DE3) shows that the evolution of BL21(DE3) can be promoted towards further enhanced membrane protein production. PMID:28338018

  4. Platelet storage pool deficiency associated with inherited abnormalities of the inner ear in the mouse pigment mutants muted and mocha.

    PubMed

    Swank, R T; Reddington, M; Howlett, O; Novak, E K

    1991-10-15

    Several inherited human syndromes have combined platelet, auditory, and/or pigment abnormalities. In the mouse the pallid pigment mutant has abnormalities of the otoliths of the inner ear together with a bleeding abnormality caused by platelet storage pool deficiency (SPD). To determine if this association is common, two other mouse pigment mutants, muted and mocha, which are known to have inner ear abnormalities, were examined for hematologic abnormalities. Both mutants had prolonged bleeding times accompanied by abnormalities of dense granules as determined by whole mount electron microscopy of platelets and by labeling platelets with mepacrine. When mutant platelets were treated with collagen, there was minimal secretion of adenosine triphosphate and aggregation was reduced. Lysosomal enzyme secretion in response to thrombin treatment was partially reduced in muted platelets and markedly reduced in mocha platelets. Similar reductions in constitutive lysosomal enzyme secretion from kidney proximal tubule cells were noted in the two mutants. These studies show that several mutations that cause pigment dilution and platelet SPD are associated with abnormalities of the inner ear. Also, these mutants, like previously described mouse pigment mutants, are models for human Hermansky-Pudlak syndrome and provide additional examples of single genes that simultaneously affect melanosomes, lysosomes, and platelet dense granules.

  5. Identification of sonic hedgehog as a candidate gene responsible for the polydactylous mouse mutant Sasquatch.

    PubMed

    Sharpe, J; Lettice, L; Hecksher-Sorensen, J; Fox, M; Hill, R; Krumlauf, R

    1999-01-28

    The mouse mutants of the hemimelia-luxate group (lx, lu, lst, Dh, Xt, and the more recently identified Hx, Xpl and Rim4; [1] [2] [3] [4] [5]) have in common preaxial polydactyly and longbone abnormalities. Associated with the duplication of digits are changes in the regulation of development of the anterior limb bud resulting in ectopic expression of signalling components such as Sonic hedgehog (Shh) and fibroblast growth factor-4 (Fgf4), but little is known about the molecular causes of this misregulation. We generated, by a transgene insertion event, a new member of this group of mutants, Sasquatch (Ssq), which disrupted aspects of both anteroposterior (AP) and dorsoventral (DV) patterning. The mutant displayed preaxial polydactyly in the hindlimbs of heterozygous embryos, and in both hindlimbs and forelimbs of homozygotes. The Shh, Fgf4, Fgf8, Hoxd12 and Hoxd13 genes were all ectopically expressed in the anterior region of affected limb buds. The insertion site was found to lie close to the Shh locus. Furthermore, expression from the transgene reporter has come under the control of a regulatory element that directs a pattern mirroring the endogenous expression pattern of Shh in limbs. In abnormal limbs, both Shh and the reporter were ectopically induced in the anterior region, whereas in normal limbs the reporter and Shh were restricted to the zone of polarising activity (ZPA). These data strongly suggest that Ssq is caused by direct interference with the cis regulation of the Shh gene.

  6. Production of a thermal stress resistant mutant Euglena gracilis strain using Fe-ion beam irradiation.

    PubMed

    Yamada, Koji; Kazama, Yusuke; Mitra, Sharbanee; Marukawa, Yuka; Arashida, Ryo; Abe, Tomoko; Ishikawa, Takahiro; Suzuki, Kengo

    2016-08-01

    Euglena gracilis is a common phytoplankton species, which also has motile flagellate characteristics. Recent research and development has enabled the industrial use of E. gracilis and selective breeding of this species is expected to further expand its application. However, the production of E. gracilis nuclear mutants is difficult because of the robustness of its genome. To establish an efficient mutation induction procedure for E. gracilis, we employed Fe-ion beam irradiation in the RIKEN RI beam factory. A decrease in the survival rate was observed with the increase in irradiation dose, and the upper limit used for E. gracilis selective breeding was around 50 Gy. For a practical trial of Fe-ion irradiation, we conducted a screening to isolate high-temperature-tolerant mutants. The screening yielded mutants that proliferated faster than the wild-type strain at 32 °C. Our results demonstrate the effectiveness of heavy-ion irradiation on E. gracilis selective breeding.

  7. Role of cilia in structural birth defects: insights from ciliopathy mutant mouse models.

    PubMed

    Rao Damerla, Rama; Gabriel, George C; Li, You; Klena, Nikolai T; Liu, Xiaoqin; Chen, Yu; Cui, Cheng; Pazour, Gregory J; Lo, Cecilia W

    2014-06-01

    Structural birth defect (SBD) is a major cause of morbidity and mortality in the newborn period. Although the etiology of SBD is diverse, a wide spectrum of SBD associated with ciliopathies points to the cilium as having a central role in the pathogenesis of SBDs. Ciliopathies are human diseases arising from disruption of cilia structure and/or function. They are associated with developmental anomalies in one or more organ systems and can involve defects in motile cilia, such as those in the airway epithelia or from defects in nonmotile (primary cilia) that have sensory and cell signaling function. Availability of low cost next generation sequencing has allowed for explosion of new knowledge in genetic etiology of ciliopathies. This has led to the appreciation that many genes are shared in common between otherwise clinically distinct ciliopathies. Further insights into the relevance of the cilium in SBD has come from recovery of pathogenic mutations in cilia-related genes from many large-scale mouse forward genetic screens with differing developmental phenotyping focus. Our mouse mutagenesis screen for congenital heart disease (CHD) using noninvasive fetal echocardiography has yielded a marked enrichment for pathogenic mutations in genes required for motile or primary cilia function. These novel mutant mouse models will be invaluable for modeling human ciliopathies and further interrogating the role of the cilium in the pathogenesis of SBD and CHD. Overall, these findings suggest a central role for the cilium in the pathogenesis of a wide spectrum of developmental anomalies associated with CHD and SBDs.

  8. Inactivation of Streptococcus pyogenes extracellular cysteine protease significantly decreases mouse lethality of serotype M3 and M49 strains.

    PubMed Central

    Lukomski, S; Sreevatsan, S; Amberg, C; Reichardt, W; Woischnik, M; Podbielski, A; Musser, J M

    1997-01-01

    Cysteine proteases have been implicated as important virulence factors in a wide range of prokaryotic and eukaryotic pathogens, but little direct evidence has been presented to support this notion. Virtually all strains of the human bacterial pathogen Streptococcus pyogenes express a highly conserved extracellular cysteine protease known as streptococcal pyrogenic exotoxin B (SpeB). Two sets of isogenic strains deficient in SpeB cysteine protease activity were constructed by integrational mutagenesis using nonreplicating recombinant plasmids containing a truncated segment of the speB gene. Immunoblot analyses and enzyme assays confirmed that the mutant derivatives were deficient in expression of enzymatically active SpeB cysteine protease. To test the hypothesis that the cysteine protease participates in host mortality, we assessed the ability of serotype M3 and M49 wild-type strains and isogenic protease-negative mutants to cause death in outbred mice after intraperitoneal inoculation. Compared to wild-type parental organisms, the serotype M3 speB mutant lost virtually all ability to cause mouse death (P < 0.00001), and similarly, the virulence of the M49 mutant was detrimentally altered (P < 0.005). The data unambiguously demonstrate that the streptococcal enzyme is a virulence factor, and thereby provide additional evidence that microbial cysteine proteases are critical in host-pathogen interactions. PMID:9169486

  9. Immunological roles of Pasteurella multocida toxin (PMT) using a PMT mutant strain.

    PubMed

    Kim, Tae Jung; Toan, Nguyen Tat; Jang, Eun Jin; Jung, Bock Gie; Lee, Jae Il; Lee, Bong Joo

    2007-08-01

    The immunological role of the Pasteurella multocida toxin (PMT) in mice was examined using a PMT mutant strain. After a nasal inoculation, the mutant strain failed to induce interstitial pneumonia. Moreover, PMT had no significant effect on the populations of CD4+, CD8+, CD3+, and CD19+ immunocytes in blood or on the populations of CD4+ and CD8+ splenocytes (P<0.01). However, there was a significant increase in the total number of cells in the BAL samples obtained from the wild-type P. multocida-inoculated mice. On the other hand, the level of IL-1 expression decreased when the macrophages from the bronchio-alveolar lavage were stimulated with PMT. Overall, PMT appears to play some role (stimulating and/or inhibiting) in the immunological responses but further studies will be required to confirm this.

  10. Regulation of nitrogen metabolism is altered in a glnB mutant strain of Rhizobium leguminosarum.

    PubMed

    Amar, M; Patriarca, E J; Manco, G; Bernard, P; Riccio, A; Lamberti, A; Defez, R; Iaccarino, M

    1994-02-01

    We isolated a Rhizobium leguminosarum mutant strain altered in the glnB gene. This event, which has never been described in the Rhizobiaceae, is rare in comparison to mutants isolated in the contiguous gene, glnA. The glnB mutation removes the glnBA promoter but in vivo does not prevent glnA expression from its own promoter, which is not nitrogen regulated. The glnB mutant strain does not grow on nitrate as a sole nitrogen source and it is Nod+, Fix+. Two -24/-12 promoters, for the glnII and glnBA genes, are constitutively expressed in the glnB mutant, while two -35/-10-like promoters for glnA and ntrBC are unaffected. We propose that the glnB gene product, the PII protein, plays a negative role in the ability of NtrC to activate transcription from its target promoters and a positive role in the mechanism of nitrate utilization.

  11. Cytological characterization of an Aspergillus Nidulans mutant from a strain with chromosomic duplication

    PubMed Central

    Giancoli, Ágata Cristiane Huppert; de Azevedo, João Lúcio; Pizzirani-Kleiner, Aline Aparecida

    2010-01-01

    A development mutant, named V103, was obtained spontaneously from the A strain of A. nidulans. The A strain contains a duplicated segment of chromosome I that has undergone translocation to chromosome II (I II). It is mitotically unstable and generates phenotypically deteriorated types, some with enhanced stability. The deteriorated variants of A. nidulans show abnormal development, exhibiting slower colony growth, variations in colony pigmentation and changes in conidiophore structure. The alterations observed in the conidiophore include fewer metulae and phialides, further elongation and ramification of these structures, delayed nuclear migration and the presence of secondary conidiophores. PMID:24031489

  12. A cysG mutant strain of Rhizobium etli pleiotropically defective in sulfate and nitrate assimilation.

    PubMed Central

    Tate, R; Riccio, A; Iaccarino, M; Patriarca, E J

    1997-01-01

    By its inability to grow on sulfate as the sole sulfur source, a mutant strain (CTNUX8) of Rhizobium etli carrying Tn5 was isolated and characterized. Sequence analysis showed that Tn5 is inserted into a cysG (siroheme synthetase)-homologous gene. By RNase protection assays, it was established that the cysG-like gene had a basal level of expression in thiosulfate- or cysteine-grown cells, which was induced when sulfate or methionine was used. Unlike its wild-type parent (strain CE3), the mutant strain, CTNUX8, was also unable to grow on nitrate as the sole nitrogen source and was unable to induce a high level of nitrite reductase. Despite its pleiotropic phenotype, strain CTNUX8 was able to induce pink, effective (N2-fixing) nodules on the roots of Phaseolus vulgaris plants. However, mixed inoculation experiments showed that strain CTNUX8 is significantly different from the wild type in its ability to nodulate. Our data support the notion that sulfate (or sulfite) is the sulfur source of R. etli in the rhizosphere, while cysteine, methionine, or glutathione is supplied by the root cells to bacteria growing inside the plant. PMID:9393698

  13. Activities of garenoxacin against quinolone-resistant Streptococcus pneumoniae strains in vitro and in a mouse pneumonia model.

    PubMed

    Azoulay-Dupuis, E; Bédos, J P; Mohler, J; Peytavin, G; Isturiz, R; Moine, P; Rieux, V; Cherbuliez, C; Péchère, J C; Fantin, B; Köhler, T

    2004-03-01

    Garenoxacin is a novel des-F(6) quinolone with enhanced in vitro activities against both gram-positive and gram-negative bacteria. We compared the activity of garenoxacin with that of trovafloxacin (TVA) against Streptococcus pneumoniae, together with their efficacies and their capacities to select for resistant mutants, in a mouse model of acute pneumonia. In vitro, garenoxacin was more potent than TVA against wild-type S. pneumoniae and against a mutant with a single mutation (parC), a mutant with double mutations (gyrA and parC), and a mutant with triple mutations (gyrA, parC, and parE). Swiss mice were infected with 10(5) CFU of virulent, encapsulated S. pneumoniae strain P-4241 or its derived isogenic parC, gyrA, gyrA parC, and efflux mutants and 10(7) CFU of poorly virulent clinical strains carrying a parE mutation or gyrA, parC, and parE mutations. The drugs were administered six times, every 12 h, beginning at either 3 or 18 h postinfection. The pulmonary pharmacokinetic parameters in mice infected with strain P-4241 and treated with garenoxacin or TVA (25 mg/kg of body weight) were as follows: maximum concentration of drug in serum (C(max); 17.3 and 21.2 micro g/ml, respectively), C(max)/MIC ratio (288 and 170, respectively), area under the concentration-time curve (AUC; 48.5 and 250 microg. h/ml, respectively), and AUC/MIC ratio (808 and 2000, respectively). Garenoxacin at 25 and 50 mg/kg was highly effective (survival rates, 85 to 100%) against the wild-type strain and mutants harboring a single mutation. TVA was as effective as garenoxacin against these strains. TVA at 200 mg/kg and garenoxacin at 50 mg/kg were ineffective against the mutant with the parC and gyrA double mutations and the mutant with the gyrA, parC, and parE triple mutations. The efficacy of garenoxacin was reduced only when strains bore several mutations for quinolone resistance.

  14. Coenzyme Q10 production in a 150-l reactor by a mutant strain of Rhodobacter sphaeroides.

    PubMed

    Kien, Nguyen Ba; Kong, In-Soo; Lee, Min-Gyu; Kim, Joong Kyun

    2010-05-01

    For the commercial production of CoQ(10), batch-type fermentations were attempted in a 150-l fermenter using a mutant strain of R. sphaeroides. Optimum temperature and initial aeration rate were found to be 30 degrees C and 2 vvm, respectively. Under optimum fermentation conditions, the maximum value of specific CoQ(10) content was achieved reproducibly as 6.34 mg/g DCW after 24 h, with 3.02 g/l of DCW. During the fermentation, aeration shift (from the adequate aeration at the early growth phase to the limited aeration in active cellular metabolism) was a key factor in CoQ(10) production for scale-up. A higher value of the specific CoQ(10) content (8.12 mg/g DCW) was achieved in fed-batch fermentation and comparable to those produced by the pilot-scale fed-batch fermentations of A. tumefaciens, which indicated that the mutant strain of R. sphaeroides used in this study was a potential high CoQ(10) producer. This is the first detailed study to demonstrate a pilot-scale production of CoQ(10) using a mutant strain of R. sphaeroides.

  15. In vivo regulation of phenylalanine hydroxylase in the genetic mutant hph-1 mouse model.

    PubMed

    Gunasekera, Richard S; Hyland, Keith

    2009-11-01

    The hph-1 mouse has low liver activity of GTP cyclohydrolase 1, the rate limiting enzyme in the biosynthesis of tetrahydrobiopterin (BH(4)). BH(4) is the cofactor for phenylalanine hydroxylase (PAH) and in the early stages of life the hph-1 mouse is hyperphenylalaninemic. At approximately 15 days after birth the blood phenylalanine levels normalize. During this period the animals provide an in vivo model which can be used to study the regulatory effects of phenylalanine on PAH, and for related pediatric metabolic disease in humans; from birth to youth. We therefore, examined; liver PAH activity using BH(4) and 6-methyltetrahydropterin (6MPH(4)) as cofactor; PAH total enzyme concentration by Western blotting using the PH8 antibody, and PAH state of phosphorylation using the PH7 antibody from 4 to 18 days after birth. The findings were compared to the wild type animals that are not hyperphenylalaninemic during this period. PAH (6MPH(4)) activity and total protein (PH8 antibody) rose steadily in the hph-1 mice. In control mice, both activity and total protein fluctuated. The degree of phosphorylation of PAH in the mutants and the state of activation (as measured by the 6MPH(4)/BH(4) activity ratio) increased as phenylalanine levels rose, and decreased when they fell. Similar patterns were not seen in the control animals. These studies provide in vivo evidence that phenylalanine concentration regulates the activity of PAH in the hph-1 mouse and that this acts via a mechanism that includes phosphorylation of the PAH molecule. The kinetic values (K(m) and V(max)) for mouse PAH are also reported.

  16. Novel DNA motif binding activity observed in vivo with an estrogen receptor α mutant mouse.

    PubMed

    Hewitt, Sylvia C; Li, Leping; Grimm, Sara A; Winuthayanon, Wipawee; Hamilton, Katherine J; Pockette, Brianna; Rubel, Cory A; Pedersen, Lars C; Fargo, David; Lanz, Rainer B; DeMayo, Francesco J; Schütz, Günther; Korach, Kenneth S

    2014-06-01

    Estrogen receptor α (ERα) interacts with DNA directly or indirectly via other transcription factors, referred to as "tethering." Evidence for tethering is based on in vitro studies and a widely used "KIKO" mouse model containing mutations that prevent direct estrogen response element DNA- binding. KIKO mice are infertile, due in part to the inability of estradiol (E2) to induce uterine epithelial proliferation. To elucidate the molecular events that prevent KIKO uterine growth, regulation of the pro-proliferative E2 target gene Klf4 and of Klf15, a progesterone (P4) target gene that opposes the pro-proliferative activity of KLF4, was evaluated. Klf4 induction was impaired in KIKO uteri; however, Klf15 was induced by E2 rather than by P4. Whole uterine chromatin immunoprecipitation-sequencing revealed enrichment of KIKO ERα binding to hormone response elements (HREs) motifs. KIKO binding to HRE motifs was verified using reporter gene and DNA-binding assays. Because the KIKO ERα has HRE DNA-binding activity, we evaluated the "EAAE" ERα, which has more severe DNA-binding domain mutations, and demonstrated a lack of estrogen response element or HRE reporter gene induction or DNA-binding. The EAAE mouse has an ERα null-like phenotype, with impaired uterine growth and transcriptional activity. Our findings demonstrate that the KIKO mouse model, which has been used by numerous investigators, cannot be used to establish biological functions for ERα tethering, because KIKO ERα effectively stimulates transcription using HRE motifs. The EAAE-ERα DNA-binding domain mutant mouse demonstrates that ERα DNA-binding is crucial for biological and transcriptional processes in reproductive tissues and that ERα tethering may not contribute to estrogen responsiveness in vivo.

  17. Novel DNA Motif Binding Activity Observed In Vivo With an Estrogen Receptor α Mutant Mouse

    PubMed Central

    Li, Leping; Grimm, Sara A.; Winuthayanon, Wipawee; Hamilton, Katherine J.; Pockette, Brianna; Rubel, Cory A.; Pedersen, Lars C.; Fargo, David; Lanz, Rainer B.; DeMayo, Francesco J.; Schütz, Günther; Korach, Kenneth S.

    2014-01-01

    Estrogen receptor α (ERα) interacts with DNA directly or indirectly via other transcription factors, referred to as “tethering.” Evidence for tethering is based on in vitro studies and a widely used “KIKO” mouse model containing mutations that prevent direct estrogen response element DNA- binding. KIKO mice are infertile, due in part to the inability of estradiol (E2) to induce uterine epithelial proliferation. To elucidate the molecular events that prevent KIKO uterine growth, regulation of the pro-proliferative E2 target gene Klf4 and of Klf15, a progesterone (P4) target gene that opposes the pro-proliferative activity of KLF4, was evaluated. Klf4 induction was impaired in KIKO uteri; however, Klf15 was induced by E2 rather than by P4. Whole uterine chromatin immunoprecipitation-sequencing revealed enrichment of KIKO ERα binding to hormone response elements (HREs) motifs. KIKO binding to HRE motifs was verified using reporter gene and DNA-binding assays. Because the KIKO ERα has HRE DNA-binding activity, we evaluated the “EAAE” ERα, which has more severe DNA-binding domain mutations, and demonstrated a lack of estrogen response element or HRE reporter gene induction or DNA-binding. The EAAE mouse has an ERα null–like phenotype, with impaired uterine growth and transcriptional activity. Our findings demonstrate that the KIKO mouse model, which has been used by numerous investigators, cannot be used to establish biological functions for ERα tethering, because KIKO ERα effectively stimulates transcription using HRE motifs. The EAAE-ERα DNA-binding domain mutant mouse demonstrates that ERα DNA-binding is crucial for biological and transcriptional processes in reproductive tissues and that ERα tethering may not contribute to estrogen responsiveness in vivo. PMID:24713037

  18. A novel spontaneous mutation of BCAR3 results in extrusion cataracts in CF#1 mouse strain.

    PubMed

    Kondo, Tomohiro; Nakamori, Taketo; Nagai, Hiroaki; Takeshita, Ai; Kusakabe, Ken-Takeshi; Okada, Toshiya

    2016-10-01

    A substrain of mice originating from the CF#1 strain (an outbred colony) reared at Osaka Prefecture University (CF#1/lr mice) develops cataracts beginning at 4 weeks of age. Affected mice were fully viable and fertile and developed cataracts by 14 weeks of age. Histologically, CF#1/lr mice showed vacuolation of the lens cortex, swollen lens fibers, lens rupture and nuclear extrusion. To elucidate the mode of inheritance, we analyzed heterozygous mutant hybrids generated from CF#1/lr mice and wild-type BALB/c mice. None of the heterozygous mutants were affected, and the ratio of affected to unaffected mice was 1:3 among the offspring of the heterozygous mutants. For the initial genome-wide screening and further mapping, we used affected progeny of CF#1/lr × (CF#1/lr × BALB/c) mice. We concluded that the cataracts in CF#1/lr mice are inherited through an autosomal recessive mutation and that the mutant gene is located on mouse chromosome 3 between D3Mit79 and D3Mit216. In this region, we identified 8 genes associated with ocular disease. All 8 genes were sequenced and a novel point mutation (1 bp insertion of cytosine) in exon 7 of the Bcar3 gene was identified. This mutation produced a premature stop codon and a truncated protein. In conclusion, we have identified the first spontaneous mutation in the Bcar3 gene associated with lens extrusion cataracts. This novel cataract model may provide further knowledge of the molecular biology of cataractogenesis and the function of the BCAR3 protein.

  19. Draft Genome Sequences for Clostridium thermocellum Wild-Type Strain YS and Derived Cellulose Adhesion-Defective Mutant Strain AD2

    SciTech Connect

    Brown, Steven D; Lamed, Raphael; Morag, Ely; Borovok, Ilya; Shoham, Yuval; Klingeman, Dawn Marie; Johnson, Courtney M; Yang, Zamin; Land, Miriam L; Utturkar, Sagar M; Keller, Martin; Bayer, Edward A

    2012-01-01

    Clostridium thermocellum wild-type strain YS is an anaerobic, thermophilic, cellulolytic bacterium capable of directly converting cellulosic substrates into ethanol. Strain YS and a derived cellulose adhesion-defective mutant strain AD2 played pivotal roles in describing the original cellulosome concept. We present their draft genome sequences.

  20. Deciphering the mechanisms of developmental disorders: phenotype analysis of embryos from mutant mouse lines

    PubMed Central

    Wilson, Robert; McGuire, Christina; Mohun, Timothy

    2016-01-01

    The Deciphering the Mechanisms of Developmental Disorders (DMDD) consortium is a research programme set up to identify genes in the mouse, which if mutated (or knocked-out) result in embryonic lethality when homozygous, and initiate the study of why disruption of their function has such profound effects on embryo development and survival. The project uses a combination of comprehensive high resolution 3D imaging and tissue histology to identify abnormalities in embryo and placental structures of embryonic lethal lines. The image data we have collected and the phenotypes scored are freely available through the project website (http://dmdd.org.uk). In this article we describe the web interface to the images that allows the embryo data to be viewed at full resolution in different planes, discuss how to search the database for a phenotype, and our approach to organising the data for an embryo and a mutant line so it is easy to comprehend and intuitive to navigate. PMID:26519470

  1. Deciphering the mechanisms of developmental disorders: phenotype analysis of embryos from mutant mouse lines.

    PubMed

    Wilson, Robert; McGuire, Christina; Mohun, Timothy

    2016-01-04

    The Deciphering the Mechanisms of Developmental Disorders (DMDD) consortium is a research programme set up to identify genes in the mouse, which if mutated (or knocked-out) result in embryonic lethality when homozygous, and initiate the study of why disruption of their function has such profound effects on embryo development and survival. The project uses a combination of comprehensive high resolution 3D imaging and tissue histology to identify abnormalities in embryo and placental structures of embryonic lethal lines. The image data we have collected and the phenotypes scored are freely available through the project website (http://dmdd.org.uk). In this article we describe the web interface to the images that allows the embryo data to be viewed at full resolution in different planes, discuss how to search the database for a phenotype, and our approach to organising the data for an embryo and a mutant line so it is easy to comprehend and intuitive to navigate.

  2. What cardiovascular defect does my prenatal mouse mutant have, and why?

    PubMed

    Conway, Simon J; Kruzynska-Frejtag, Agnieszka; Kneer, Paige L; Machnicki, Michal; Koushik, Srinagesh V

    2003-01-01

    Since the advent of mouse targeted mutations, gene traps, an escalating use of a variety of complex transgenic manipulations, and large-scale chemical mutagenesis projects yielding many mutants with cardiovascular defects, it has become increasingly evident that defects within the heart and vascular system are largely responsible for the observed in utero lethality of the embryo and early fetus. If a transgenically altered embryo survives implantation but fails to be born, it usually indicates that there is some form of lethal cardiovascular defect present. A number of embryonic organ and body systems, including the central nervous system, gut, lungs, urogenital system, and musculoskeletal system appear to have little or no survival value in utero (Copp, 1995). Cardiovascular abnormalities include the failure to establish an adequate yolk-sac vascular circulation, which results in early lethality (E8.5-10.5); poor cardiac function (E9.0-birth); failure to undergo correct looping and chamber formation of the primitive heart tube (E9.0-11.0); improper septation, including division of the common ventricle and atria and the establishment of a divided outflow tract (E11.0-13.0); inadequate establishment of the cardiac conduction system (E12.0-birth); and the failure of the in utero cardiovascular system to adapt to adult life (birth) and close the interatrial and aorta-pulmonary trunk shunts that are required for normal fetal life. Importantly, the developmental timing of lethality is usually a good indicator of both the type of the cardiovascular defect present and may also suggest the possible underlying cause/s. The purpose of this review is both to review the literature and to provide a beginner's guide for analysing cardiovascular defects in mouse mutants.

  3. Interaction of mutant lpr gene with background strain influences renal disease.

    PubMed

    Kelley, V E; Roths, J B

    1985-11-01

    The mutant gene lpr on the MRL/Mp strain of mice is responsible for converting a late onset glomerulonephritis into an early, aggressive, and fatal renal disease. This gene induces the proliferation of a unique subset of lymphocytes, the production of a variety of autoantibodies and shortened survival in MRL/Mp as well as in the genetically distinct strains C3H/HeJ, C57BL/6J, and AKR/J. The present study examined in detail the role of the lpr gene in the formation of lupus nephritis. The results show that C3H-lpr and B6-lpr mice do not develop nephritis while the AKR-lpr strain has a mild form of renal disease. None of these newly constructed congenic mutant strains have the severity of proteinuria or the degree of renal pathology characteristic of MRL-lpr mice. Thus, the lpr gene alone is insufficient in producing severe renal injury. The interaction of the lpr gene with other factors is required for the induction of life-threatening lupus nephritis.

  4. Modeling diseases in multiple mouse strains for precision medicine studies.

    PubMed

    Klein, Andrés D

    2017-03-01

    The genetic basis of the phenotypic variability observed in patients can be studied in mice by generating disease models through genetic or chemical interventions in many genetic backgrounds where the clinical phenotypes can be assessed and used for genome-wide association studies (GWAS). This is particularly relevant for rare disorders, where patients sharing identical mutations can present with a wide variety of symptoms, but there are not enough number of patients to ensure statistical power of GWAS. Inbred strains are homozygous for each loci, and their single nucleotide polymorphisms catalogs are known and freely available, facilitating the bioinformatics and reducing the costs of the study, since it is not required to genotype every mouse. This kind of approach can be applied to pharmacogenomics studies as well.

  5. Behavioural and other phenotypes in a cytoplasmic dynein light intermediate chain 1 mutant mouse

    PubMed Central

    Banks, Gareth T.; Haas, Matilda A.; Line, Samantha; Shepherd, Hazel L.; AlQatari, Mona; Stewart, Sammy; Rishal, Ida; Philpott, Amelia; Kalmar, Bernadett; Kuta, Anna; Groves, Michael; Parkinson, Nicholas; Acevedo-Arozena, Abraham; Brandner, Sebastian; Bannerman, David; Greensmith, Linda; Hafezparast, Majid; Koltzenburg, Martin; Deacon, Robert; Fainzilber, Mike; Fisher, Elizabeth M.C.

    2011-01-01

    The cytoplasmic dynein complex is fundamentally important to all eukaryotic cells for transporting a variety of essential cargoes along microtubules within the cell. This complex also plays more specialised roles in neurons. The complex consists of 11 types of protein that interact with each other and with external adaptors, regulators and cargoes. Despite the importance of the cytoplasmic dynein complex, we know comparatively little of the roles of each component protein, and in mammals few mutants exist that allow us to explore the effects of defects in dynein controlled processes in the context of the whole organism. Here we have taken a genotype-driven approach in mouse (Mus musculus) to analyse the role of one subunit, the dynein light intermediate chain 1 (Dync1li1). We find that, surprisingly, an N235Y point mutation in this protein results in altered neuronal development, as shown from in vivo studies in the developing cortex, and analyses of electrophysiological function. Moreover, mutant mice display increased anxiety, thus linking dynein functions to a behavioural phenotype in mammals for the first time. These results demonstrate the important role that dynein controlled processes play in the correct development and function of the mammalian nervous system. PMID:21471385

  6. Flagellar mutants of Chlamydomonas: Studies of radial spoke-defective strains by dikaryon and revertant analysis

    PubMed Central

    Luck, David; Piperno, Gianni; Ramanis, Zenta; Huang, B.

    1977-01-01

    The motility mutant of Chlamydomonas reinhardtii pf14 lacks radial spoke structures in its flagellar axonemes, and 12 proteins present in wild type are missing from a two-dimensional map (isoelectrofocusing/sodium dodecyl sulfate electrophoresis) of its 35S-labeled flagellar proteins. Six of these same proteins are missing in pf1, which lacks spoke-heads. To determine whether any of the missing proteins represent the mutant gene product two experimental approaches have been applied. The first makes use of the fact that gametes of either mutant strain when fused with wild-type gametes to form quadriflagellate dikaryons undergo recovery of flagellar function. Recovery at the molecular level was monitored by prelabeling the mutant proteins with 35S and allowing recovery to occur in the absence of protein synthesis. It is to be expected that the mutant gene product would not be restored as a radioactive protein and that recovery would depend on the assembly of the wild-type counterpart that is not labeled. The second technique makes use of revertants induced by UV irradiation. Dikaryon rescue in the case of pf14 leads to restoration of 11 radioactive components; only protein 3 fails to appear as a radioactive spot. For pf1 only two radioactive proteins are restored; proteins 4, 6, 9, and 10 were not radioactive. Analysis of revertants of pf1 gave evidence (altered map positions) that protein 4 is the mutant gene product. In the case of pf14, analysis of 22 revertants has not provided similar positive evidence that protein 3 is the gene product. Images PMID:269405

  7. Lithium prevents parkinsonian behavioral and striatal phenotypes in an aged parkin mutant transgenic mouse model.

    PubMed

    Lieu, Christopher A; Dewey, Colleen M; Chinta, Shankar J; Rane, Anand; Rajagopalan, Subramanian; Batir, Sean; Kim, Yong-Hwan; Andersen, Julie K

    2014-12-03

    Lithium has long been used as a treatment for the psychiatric disease bipolar disorder. However, previous studies suggest that lithium provides neuroprotective effects in neurodegenerative diseases such as Parkinson's disease (PD) and Alzheimer's disease. The exact mechanism by which lithium exerts these effects still remains unclear. In the present study, we evaluated the effects of low-dose lithium treatment in an aged mouse model expressing a parkin mutation within dopaminergic neurons. We found that low-dose lithium treatment prevented motor impairment as demonstrated by the open field test, pole test, and rearing behavior. Furthermore, lithium prevented dopaminergic striatal degeneration in parkin animals. We also found that parkin-induced striatal astrogliosis and microglial activation were prevented by lithium treatment. Our results further corroborate the use of this parkin mutant transgenic mouse line as a model for PD for testing novel therapeutics. The findings of the present study also provide further validation that lithium could be re-purposed as a therapy for PD and suggest that anti-inflammatory effects may contribute to its neuroprotective mechanisms.

  8. Evaluation of Planar-Cell-Polarity Phenotypes in Ciliopathy Mouse Mutant Cochlea.

    PubMed

    May-Simera, Helen

    2016-02-21

    In recent years, primary cilia have emerged as key regulators in development and disease by influencing numerous signaling pathways. One of the earliest signaling pathways shown to be associated with ciliary function was the non-canonical Wnt signaling pathway, also referred to as planar cell polarity (PCP) signaling. One of the best places in which to study the effects of planar cell polarity (PCP) signaling during vertebrate development is the mammalian cochlea. PCP signaling disruption in the mouse cochlea disrupts cochlear outgrowth, cellular patterning and hair cell orientation, all of which are affected by cilia dysfunction. The goal of this protocol is to describe the analysis of PCP signaling in the developing mammalian cochlea via phenotypic analysis, immunohistochemistry and scanning electron microscopy. Defects in convergence and extension are manifested as a shortening of the cochlear duct and/or changes in cellular patterning, which can be quantified following dissection from developing mouse mutants. Changes in stereociliary bundle orientation and kinocilia length or positioning can be observed and quantitated using either immunofluorescence or scanning electron microscopy (SEM). A deeper insight into the role of ciliary proteins in cellular signaling pathways and other biological phenomena is crucial for our understanding of cellular and developmental biology, as well as for the development of targeted treatment strategies.

  9. Comparative metabolic profiling of mce1 operon mutant vs wild-type Mycobacterium tuberculosis strains.

    PubMed

    Queiroz, Adriano; Medina-Cleghorn, Daniel; Marjanovic, Olivera; Nomura, Daniel K; Riley, Lee W

    2015-11-01

    Mycobacterium tuberculosis disrupted in a 13-gene operon (mce1) accumulates free mycolic acids (FM) in its cell wall and causes accelerated death in mice. Here, to more comprehensively analyze differences in their cell wall lipid composition, we used an untargeted metabolomics approach to compare the lipid profiles of wild-type and mce1 operon mutant strains. By liquid chromatography-mass spectrometry, we identified >400 distinct lipids significantly altered in the mce1 mutant compared to wild type. These lipids included decreased levels of saccharolipids and glycerophospholipids, and increased levels of alpha-, methoxy- and keto mycolic acids (MA), and hydroxyphthioceranic acid. The mutant showed reduced expression of mmpL8, mmpL10, stf0, pks2 and papA2 genes involved in transport and metabolism of lipids recognized to induce proinflammatory response; these lipids were found to be decreased in the mutant. In contrast, the transcripts of mmpL3, fasI, kasA, kasB, acpM and RV3451 involved in MA transport and metabolism increased; MA inhibits inflammatory response in macrophages. Since the mce1 operon is known to be regulated in intracellular M. tuberculosis, we speculate that the differences we observed in cell wall lipid metabolism and composition may affect host response to M. tuberculosis infection and determine the clinical outcome of such an infection.

  10. Colonization of gnotobiotic piglets by a luxS mutant strain of Escherichia coli O157:H7.

    PubMed

    Jordan, Dianna M; Sperandio, Vanessa; Kaper, James B; Dean-Nystrom, Evelyn A; Moon, Harley W

    2005-02-01

    Gnotobiotic piglets inoculated with Escherichia coli O157:H7, its luxS mutant derivative, or nonpathogenic E. coli were evaluated for attaching and effacing lesions. Although no differences in clinical symptoms were seen between pigs inoculated with the parent and those inoculated with the luxS mutant, the luxS mutant-inoculated pigs had a lower frequency of attaching and effacing lesions in the spiral colon than parent strain-inoculated pigs.

  11. A Mutant Strain of a Surfactant-Producing Bacterium with Increased Emulsification Activity

    NASA Astrophysics Data System (ADS)

    Liu, Qingmei; Yao, Jianming; Pan, Renrui; Yu, Zengliang

    2005-06-01

    As reported in this paper, a strain of oil-degrading bacterium Sp-5-3 was determined to belong to Enterobacteriaceae, which would be useful for microbial enhanced oil recovery (MEOR). The aim of our study was to generate a mutant using low energy N+ beam implantation. With 10 keV of energy and 5.2 × 1014 N+/cm2 of dose - the optimum condition, a mutant, S-34, was obtained, which had nearly a 5-fold higher surface and a 13-fold higher of emulsification activity than the wild type. The surface activity was measured by two methods, namely, a surface tension measuring instrument and a recording of the repulsive circle of the oil film; the emulsification activity was scaled through measuring the separating time of the oil-fermentation mixture. The metabolic acid was determined as methane by means of gas chromatography.

  12. Screening of mutant strain Streptomyces mediolani sp. AC37 for (-)-8-O-methyltetrangomycin production enhancement.

    PubMed

    Jiménez, Jakeline Trejos; Sturdíková, Maria; Brezová, Vlasta; Svajdlenka, Emil; Novotová, Marta

    2012-12-01

    Streptomyces mediolani sp. AC37 was isolated from the root system of higher plant Taxus baccata and produced metabolite identified as (-)-8-O-methyltetrangomycin according to LC/MS/MS analysis. In our screening program for improvements of bioactive secondary metabolites from plant associate streptomycetes, mutation was used as a tool for the induction of genetic variations for selection of higher (-)-8-O-methyltetrangomycin producers of isolates. S. mediolani sp. AC37 was treated with UV irradiation and chemical mutagenic treatment (N-nitroso-N-methyl-urea). The radical scavenging and antioxidant capacity of (-)-8-O-methyltetrangomycin and extracts isolated from mutants were tested using EPR spin trapping technique and ABTS(·+) assay. Comparison of electron microscopic images of Streptomyces sp. AC37 and mutant strains of Streptomyces sp. AC37 revealed substantial differences in morphology and ultrastructure.

  13. Enhanced production of thrombinase by Streptomyces venezuelae: kinetic studies on growth and enzyme production of mutant strain.

    PubMed

    Naveena, Balakrishnan; Gopinath, Kannapan Panchamoorthy; Sakthiselvan, Punniavan; Partha, Nagarajan

    2012-05-01

    This investigation provides the enhanced production of thrombinase, a fibrinolytic enzyme using mutant Streptomyces venezuelae. Initially the mutagenesis of the marine isolate was done by UV and Ethyl methane sulfonate (EMS) and their mutational efficiencies were compared. The mutants were selected based on their high thrombinase activity and used for further studies. The mutant was found to be more halo and thermo tolerant comparing to wild. The effect of Dissolved oxygen level was also determined and the mutant offered the maximum specific growth rate as 0.2404 (h(-1)). The mutant showed high resistance to higher initial lactose concentration and the inhibition concentration was found to be 155.1mg/mL. The effect of S(0)/X(0) ratio on specific substrate consumption and production rate were also investigated. Both mutant and wild showed increase in specific substrate consumption and production rate at higher S(0)/X(0) ratio but the mutant showed better values than the wild strain.

  14. Strains and stressors: an analysis of touchscreen learning in genetically diverse mouse strains.

    PubMed

    Graybeal, Carolyn; Bachu, Munisa; Mozhui, Khyobeni; Saksida, Lisa M; Bussey, Timothy J; Sagalyn, Erica; Williams, Robert W; Holmes, Andrew

    2014-01-01

    Touchscreen-based systems are growing in popularity as a tractable, translational approach for studying learning and cognition in rodents. However, while mouse strains are well known to differ in learning across various settings, performance variation between strains in touchscreen learning has not been well described. The selection of appropriate genetic strains and backgrounds is critical to the design of touchscreen-based studies and provides a basis for elucidating genetic factors moderating behavior. Here we provide a quantitative foundation for visual discrimination and reversal learning using touchscreen assays across a total of 35 genotypes. We found significant differences in operant performance and learning, including faster reversal learning in DBA/2J compared to C57BL/6J mice. We then assessed DBA/2J and C57BL/6J for differential sensitivity to an environmental insult by testing for alterations in reversal learning following exposure to repeated swim stress. Stress facilitated reversal learning (selectively during the late stage of reversal) in C57BL/6J, but did not affect learning in DBA/2J. To dissect genetic factors underlying these differences, we phenotyped a family of 27 BXD strains generated by crossing C57BL/6J and DBA/2J. There was marked variation in discrimination, reversal and extinction learning across the BXD strains, suggesting this task may be useful for identifying underlying genetic differences. Moreover, different measures of touchscreen learning were only modestly correlated in the BXD strains, indicating that these processes are comparatively independent at both genetic and phenotypic levels. Finally, we examined the behavioral structure of learning via principal component analysis of the current data, plus an archival dataset, totaling 765 mice. This revealed 5 independent factors suggestive of "reversal learning," "motivation-related late reversal learning," "discrimination learning," "speed to respond," and "motivation during

  15. Production and downstream processing of (1→3)-β-D-glucan from mutant strain of Agrobacterium sp. ATCC 31750

    PubMed Central

    2012-01-01

    We isolated a mutant that produced higher levels of curdlan than the wild strain Agrobacterium sp. ATCC 31750 by chemical mutagenesis using N-methyl-N-nitro-nitrosoguanidine. The mutant strain produced 66 g/L of curdlan in 120 h with a yield of (0.88) while, the wild strain produced 41 g/L in 120 h with a yield of (0.62) in a stirred bioreactor. The mutant could not produce curdlan when the pH was shifted from 7.0 to 5.5 after nitrogen depletion as followed for wild strain. In contrast, pH optimum for cell growth and curdlan production for mutant was found to be 7.0. We optimized the downstream processing of curdlan by varying different volumes of NaOH and HCl for extraction and precipitation of curdlan. The molecular weight of the purified curdlan from the wild and mutant strain was 6.6 × 105 Da and 5.8 × 105 Da respectively. The monosaccharide analyses confirm that curdlan from both wild and mutant strain contains only glucose units. From the NMR and FTIR data, it has been confirmed that curdlan was exclusively composed of β (1 → 3)-D-glucan residues. PMID:22681895

  16. Characterisation of a cold adapted esterase and mutants from a psychotolerant Pseudomonas sp. strain.

    PubMed

    Dong, Juan; Gasmalla, Mohammed A A; Zhao, Wei; Sun, Jingtao; Liu, Wenyu; Wang, Mingming; Han, Liang; Yang, Ruijin

    2016-07-13

    A cold-adapted esterase-producing strain named T1-39 was isolated from Glacier No.1, Tianshan, China, and identified as Pseudomonas sp. from 16S rRNA sequence analysis. The esterase (EstT1-39) secreted by this strain preferentially hydrolyzed esters of glycerol with short- and medium-chain fatty acids. Mutants of T1-39 were generated by the atmospheric and room-temperature plasma (ARTP) method and screened for enhanced esterase activity. Among all the mutants, strain TB11 had 4.45-fold higher esterase productivity than T1-39, with high genetic stability over 10 generations of continuous cultivation. Maximum activity of EstT1-39 and EstTB11 was observed at 30°C, pH 9.0 and 25°C, pH 8.5, respectively. EstTB11 was thermally more stable (50°C for 1 hour) and active over a broader pH range than EstT1-39. EstTB11 also retained 38% of its maximal activity at 0°C and was found to be able to hydrolyze milk fats into short- and medium-chain fatty acids at 4°C. The characteristics of EstT1-39 made it a cold-adapted enzyme and the EstTB11 from the mutant, with its higher activity at lower temperatures, may be suitable for the production of aromas and flavors in the dairy industry. This article is protected by copyright. All rights reserved.

  17. A mutant RNA pseudoknot that promotes ribosomal frameshifting in mouse mammary tumor virus.

    PubMed

    Kang, H; Tinoco, I

    1997-05-15

    A single A-->G mutation that changes a potential A.U base pair to a G.U pair at the junction of the stems and loops of a non-frameshifting pseudoknot dramatically increases its frameshifting efficiency in mouse mammary tumor virus. The structure of the non-frameshifting pseudoknot APK has been found to be very different from that of pseudoknots that cause efficient frameshifting [Kang,H., Hines,J.V. and Tinoco,I. (1995) J. Mol. Biol. , 259, 135-147]. The 3-dimensional structure of the mutant pseudoknot was determined by restrained molecular dynamics based on NMR-derived interproton distance and torsion angle constraints. One striking feature of the mutant pseudoknot compared with the parent pseudoknot is that a G.U base pair forms at the top of stem 2, thus leaving only 1 nt at the junction of the two stems. The conformation is very different from that of the previously determined non-frameshifting parent pseudoknot, which lacks the A.U base pair at the top of the stem and has 2 nt between the stems. However, the conformation is quite similar to that of efficient frameshifting pseudoknots whose structures were previously determined by NMR. A single adenylate residue intervenes between the two stems and interrupts their coaxial stacking. This unpaired nucleotide produces a bent structure. The structural similarity among the efficient frameshifting pseudoknots indicates that a specific conformation is required for ribosomal frameshifting, further implying a specific interaction of the pseudoknot with the ribosome.

  18. IRetinal Organization in the retinal degeneration 10 (rd10) Mutant Mouse: a Morphological and ERG Study

    PubMed Central

    Gargini, Cludia; Terzibasi, Eva; Mazzoni, Francesca; Strettoi, Enrica

    2008-01-01

    Retinal degeneration 10 (rd10) mice are a model of autosomal recessive Retinitis Pigmentosa (RP), identified by Chang et al. in 2002. These mice carry a spontaneous mutation of the rod-phosphodiesterase (PDE) gene, leading to a rod degeneration that starts around P18. Later, cones are also lost. Because of photoreceptor degeneration does not overlap with retinal development, and light responses can be recorded for about a month after birth, rd10 mice mimic typical human RP more closely than the well-known rd1 mutants. Aim of this study is to provide a comprehensive analysis of the morphology and function of the rd10 mouse retina during the period of maximum photoreceptor degeneration, thus contributing useful data for exploiting this novel model to study RP. We analyze the morphology and survival of retinal cells in rd10 mice of various ages with quantitative immunocytochemistry and confocal microscopy; we also study retinal function with the electroretinogram (ERG), recorded between P18 and P30. We find that photoreceptor death (peaking around P25) is accompanied and followed by dendritic retraction in bipolar and horizontal cells, which eventually undergo secondary degeneration. ERG reveals alterations in the physiology of the inner retina as early as P18 (before any obvious morphological change of inner neurons) and yet consistently with a reduced band amplification by bipolar cells. Thus, changes in the rd10 retina are very similar to what previously found in rd1 mutants. However, an overall slower decay of retinal structure and function predict that rd10 mice might become excellent models for rescue approaches. PMID:17111372

  19. Developmental analysis of GFAP immunoreactivity in the cerebellum of the meander tail mutant mouse.

    PubMed

    Grishkat, H L; Schwartz, E; Jain, G; Eisenman, L M

    1996-08-01

    It is thought that Bergmann glial fibers assist in the inward migration of granule cells. Model systems in which there is a perturbation of either the migrating cells or the glial cell population have been useful in understanding the migratory process. In the meander tail mutant mouse, the anterior cerebellar region is agranular, whereas the posterior cerebellum is relatively unaffected by the mutation. This study presents a qualitative analysis of the development of cerebellar radial glia in mea/mea and +/mea mice aged from postnatal day 0 to adult, using an antibody against the glia specific antigen, glial fibrillary acidic protein. The results indicate a slight delay in the onset of immunoreactivity in the mea/mea cerebellum and abnormal glial formation in the anterior and posterior regions by postnatal day 5. At postnatal day 11, the full complement of labeled fibers appears to be present and although they appear abnormal in formation, they eventually reach the surface and terminate in oddly shaped and irregularly spaced endfeet. In adult mea/mea and +/mea mice, as compared to the early postnatal stages, there is a significant reduction in GFAP immunoreactive fibers. Cresyl violet stained adult mea/mea sections revealed the presence of ectopic granule cells in radial columns and small clumps at the surface of and within the molecular layer of the caudal cerebellum. Quantitative analyses revealed a 4- to 5-fold increase in the number of ectopic granule cells in lobule VIII of the mea/mea when compared with the +/mea cerebellum. These results suggest that the radial glia in the mea/mea cerebellum exhibit some uncharacteristic morphologies, but that these abnormalities are most likely the consequence of environmental alterations produced by the mutant gene.

  20. Induction of various autoantibodies by mutant gene lpr in several strains of mice.

    PubMed

    Izui, S; Kelley, V E; Masuda, K; Yoshida, H; Roths, J B; Murphy, E D

    1984-07-01

    The effect of the autosomal mutant gene lpr (lymphoproliferation) on the development of various autoantibodies and immune complex (IC) glomerulonephritis was investigated in four genetically distinct strains of mice: MRL/ MpJ , C3H/HeJ, C57BL/6J, and AKR/J. The presence of the lpr gene not only enhanced the production of autoantibodies in the autoimmune MRL/ MpJ strain, but also induced the formation of various kinds of autoantibodies in the three other strains of mice without any apparent predisposition to autoimmune disease. Autoantibodies induced by the lpr gene included anti-double-stranded DNA, anti-single-stranded DNA, anti-IgG, anti-thymocyte, and anti-serum glycoprotein gp70. This indicates that the action of the lpr gene on the development of autoantibody response does not require the particular abnormalities of the MRL genome. The differences in amounts and types of autoantibodies among the lpr strains reflect the difference in the background genome of each strain, suggesting the participation of other genes or factors determining the quantity and/or specificity of autoantibodies. In addition to the development of autoantibodies, the three nonautoimmune strains of mice produced high levels of unidentified IC in the presence of the lpr gene, detectable by the C1q and the conglutinin binding tests. Their glomerular lesions, however, were relatively limited when compared with MRL/ MpJ -lpr/lpr mice, which developed severe glomerulonephritis early in their life. These results suggest that the lpr gene is able to induce the formation of various autoantibodies and IC at significant concentrations in nonautoimmune mice, but for the full manifestation of systemic lupus erythematosus there may be a requirement for supplemental genetic abnormalities or factors.

  1. Novel roles for erythroid Ankyrin-1 revealed through an ENU-induced null mouse mutant

    PubMed Central

    Rank, Gerhard; Sutton, Rosemary; Marshall, Vikki; Lundie, Rachel J.; Caddy, Jacinta; Romeo, Tony; Fernandez, Kate; McCormack, Matthew P.; Cooke, Brian M.; Foote, Simon J.; Crabb, Brendan S.; Curtis, David J.; Hilton, Douglas J.; Kile, Benjamin T.

    2009-01-01

    Insights into the role of ankyrin-1 (ANK-1) in the formation and stabilization of the red cell cytoskeleton have come from studies on the nb/nb mice, which carry hypomorphic alleles of Ank-1. Here, we revise several paradigms established in the nb/nb mice through analysis of an N-ethyl-N-nitrosourea (ENU)–induced Ank-1–null mouse. Mice homozygous for the Ank-1 mutation are profoundly anemic in utero and most die perinatally, indicating that Ank-1 plays a nonredundant role in erythroid development. The surviving pups exhibit features of severe hereditary spherocytosis (HS), with marked hemolysis, jaundice, compensatory extramedullary erythropoiesis, and tissue iron overload. Red cell membrane analysis reveals a complete loss of ANK-1 protein and a marked reduction in β-spectrin. As a consequence, the red cells exhibit total disruption of cytoskeletal architecture and severely altered hemorheologic properties. Heterozygous mutant mice, which have wild-type levels of ANK-1 and spectrin in their RBC membranes and normal red cell survival and ultrastructure, exhibit profound resistance to malaria, which is not due to impaired parasite entry into RBC. These findings provide novel insights into the role of Ank-1, and define an ideal model for the study of HS and malarial resistance. PMID:19179303

  2. Juvenile manifestation of ultrasound communication deficits in the neuroligin-4 null mutant mouse model of autism.

    PubMed

    Ju, Anes; Hammerschmidt, Kurt; Tantra, Martesa; Krueger, Dilja; Brose, Nils; Ehrenreich, Hannelore

    2014-08-15

    Neuroligin-4 (Nlgn4) is a member of the neuroligin family of postsynaptic cell adhesion molecules. Loss-of-function mutations of NLGN4 are among the most frequent, known genetic causes of heritable autism. Adult Nlgn4 null mutant (Nlgn4(-/-)) mice are a construct valid model of human autism, with both genders displaying a remarkable autistic phenotype, including deficits in social interaction and communication as well as restricted and repetitive behaviors. In contrast to adults, autism-related abnormalities in neonatal and juvenile Nlgn4(-/-) mice have not been reported yet. The present study has been designed to systematically investigate in male and female Nlgn4(-/-) pups versus wildtype littermates (WT, Nlgn4(+/+)) developmental milestones and stimulus-induced ultrasound vocalization (USV). Neonatal development, followed daily from postnatal days (PND) 4 to 21, including physical development, neurological reflexes and neuromotor coordination, did not yield any differences between Nlgn4(-/-) and their WT littermates. USV in pups (PND8-9) in response to brief separation from their mothers revealed remarkable gender effects, and a genotype influence in females regarding latency to first call. In juveniles (PND22-23), USV monitoring upon exposure to an anesthetized female intruder mouse uncovered a clear genotype effect with reduced USV in Nlgn4(-/-) mice, and again a more prominent phenotype in females. Together, these data support an early manifestation of communication deficits in Nlgn4(-/-) mice that appear more pronounced in immature females with their overall stronger USV as compared to males.

  3. Heterotaxy and complex structural heart defects in a mutant mouse model of primary ciliary dyskinesia

    PubMed Central

    Tan, Serena Y.; Rosenthal, Julie; Zhao, Xiao-Qing; Francis, Richard J.; Chatterjee, Bishwanath; Sabol, Steven L.; Linask, Kaari L.; Bracero, Luciann; Connelly, Patricia S.; Daniels, Mathew P.; Yu, Qing; Omran, Heymut; Leatherbury, Linda; Lo, Cecilia W.

    2007-01-01

    Primary ciliary dyskinesia (PCD) is a genetically heterogeneous disorder associated with ciliary defects and situs inversus totalis, the complete mirror image reversal of internal organ situs (positioning). A variable incidence of heterotaxy, or irregular organ situs, also has been reported in PCD patients, but it is not known whether this is elicited by the PCD-causing genetic lesion. We studied a mouse model of PCD with a recessive mutation in Dnahc5, a dynein gene commonly mutated in PCD. Analysis of homozygous mutant embryos from 18 litters yielded 25% with normal organ situs, 35% with situs inversus totalis, and 40% with heterotaxy. Embryos with heterotaxy had complex structural heart defects that included discordant atrioventricular and ventricular outflow situs and atrial/pulmonary isomerisms. Variable combinations of a distinct set of cardiovascular anomalies were observed, including superior-inferior ventricles, great artery alignment defects, and interrupted inferior vena cava with azygos continuation. The surprisingly high incidence of heterotaxy led us to evaluate the diagnosis of PCD. PCD was confirmed by EM, which revealed missing outer dynein arms in the respiratory cilia. Ciliary dyskinesia was observed by videomicroscopy. These findings show that Dnahc5 is required for the specification of left-right asymmetry and suggest that the PCD-causing Dnahc5 mutation may also be associated with heterotaxy. PMID:18037990

  4. Anticonvulsant activity of pregabalin in the maximal electroshock-induced seizure assay in α2δ1 (R217A) and α2δ2 (R279A) mouse mutants.

    PubMed

    Lotarski, Susan; Hain, Heather; Peterson, Jason; Galvin, Stacey; Strenkowski, Bryan; Donevan, Sean; Offord, James

    2014-07-01

    Pregabalin has been shown to have anticonvulsant, analgesic, and anxiolytic activity in animal models. Pregabalin binds with high affinity to the α2δ1 and α2δ2 subunits of voltage-gated calcium channels. In order to better understand the relative contribution that binding to either the α2δ1 or α2δ2 subunits confers on the anticonvulsant activity of pregabalin, we characterized the anticonvulsant activity of pregabalin in different wild-type (WT) and mutant mouse strains. Two targeted mouse mutants have been made in which either the α2δ1 subunit was mutated (arginine-to-alanine mutation at amino acid 217; R217A) or the α2δ2 subunit was mutated (arginine-to-alanine mutation at amino acid 279; R279A). These mutations in α2δ1 or α2δ2 render the subunits relatively insensitive to pregabalin binding. The anticonvulsant activity of pregabalin was assessed in these different mouse lines using the maximal electroshock-induced seizure (MES) model. Pregabalin reduced the percentage of seizures and increased the latency to seizure in the MES model in two parental mouse strains used to construct the mutants. Pregabalin also reduced the percentage of seizures and increased latency to seizure similarly in the α2δ2 (R279A) and WT littermate control mice. In contrast, pregabalin's anticonvulsant efficacy was significantly reduced in α2δ1 (R217A) mutants compared with WT littermate control mice. Phenytoin showed anticonvulsant activity across all WT and mutant mice. These data show that the anticonvulsant activity of pregabalin in the MES model requires binding to the α2δ1 subunit.

  5. Strains and Stressors: An Analysis of Touchscreen Learning in Genetically Diverse Mouse Strains

    PubMed Central

    Graybeal, Carolyn; Bachu, Munisa; Mozhui, Khyobeni; Saksida, Lisa M.; Bussey, Timothy J.; Sagalyn, Erica; Williams, Robert W.; Holmes, Andrew

    2014-01-01

    Touchscreen-based systems are growing in popularity as a tractable, translational approach for studying learning and cognition in rodents. However, while mouse strains are well known to differ in learning across various settings, performance variation between strains in touchscreen learning has not been well described. The selection of appropriate genetic strains and backgrounds is critical to the design of touchscreen-based studies and provides a basis for elucidating genetic factors moderating behavior. Here we provide a quantitative foundation for visual discrimination and reversal learning using touchscreen assays across a total of 35 genotypes. We found significant differences in operant performance and learning, including faster reversal learning in DBA/2J compared to C57BL/6J mice. We then assessed DBA/2J and C57BL/6J for differential sensitivity to an environmental insult by testing for alterations in reversal learning following exposure to repeated swim stress. Stress facilitated reversal learning (selectively during the late stage of reversal) in C57BL/6J, but did not affect learning in DBA/2J. To dissect genetic factors underlying these differences, we phenotyped a family of 27 BXD strains generated by crossing C57BL/6J and DBA/2J. There was marked variation in discrimination, reversal and extinction learning across the BXD strains, suggesting this task may be useful for identifying underlying genetic differences. Moreover, different measures of touchscreen learning were only modestly correlated in the BXD strains, indicating that these processes are comparatively independent at both genetic and phenotypic levels. Finally, we examined the behavioral structure of learning via principal component analysis of the current data, plus an archival dataset, totaling 765 mice. This revealed 5 independent factors suggestive of “reversal learning,” “motivation-related late reversal learning,” “discrimination learning,” “speed to respond,” and

  6. Gas exchange in the filamentous cyanobacterium Nostoc punctiforme strain ATCC 29133 and Its hydrogenase-deficient mutant strain NHM5.

    PubMed

    Lindberg, Pia; Lindblad, Peter; Cournac, Laurent

    2004-04-01

    Nostoc punctiforme ATCC 29133 is a nitrogen-fixing, heterocystous cyanobacterium of symbiotic origin. During nitrogen fixation, it produces molecular hydrogen (H(2)), which is recaptured by an uptake hydrogenase. Gas exchange in cultures of N. punctiforme ATCC 29133 and its hydrogenase-free mutant strain NHM5 was studied. Exchange of O(2), CO(2), N(2), and H(2) was followed simultaneously with a mass spectrometer in cultures grown under nitrogen-fixing conditions. Isotopic tracing was used to separate evolution and uptake of CO(2) and O(2). The amount of H(2) produced per molecule of N(2) fixed was found to vary with light conditions, high light giving a greater increase in H(2) production than N(2) fixation. The ratio under low light and high light was approximately 1.4 and 6.1 molecules of H(2) produced per molecule of N(2) fixed, respectively. Incubation under high light for a longer time, until the culture was depleted of CO(2), caused a decrease in the nitrogen fixation rate. At the same time, hydrogen production in the hydrogenase-deficient strain was increased from an initial rate of approximately 6 micro mol (mg of chlorophyll a)(-1) h(-1) to 9 micro mol (mg of chlorophyll a)(-1) h(-1) after about 50 min. A light-stimulated hydrogen-deuterium exchange activity stemming from the nitrogenase was observed in the two strains. The present findings are important for understanding this nitrogenase-based system, aiming at photobiological hydrogen production, as we have identified the conditions under which the energy flow through the nitrogenase can be directed towards hydrogen production rather than nitrogen fixation.

  7. Recovery of Nonpathogenic Mutant Bacteria from Tumors Caused by Several Agrobacterium tumefaciens Strains: a Frequent Event?▿

    PubMed Central

    Llop, Pablo; Murillo, Jesús; Lastra, Beatriz; López, María M.

    2009-01-01

    We have evaluated the interaction that bacterial genotypes and plant hosts have with the loss of pathogenicity in tumors, using seven Agrobacterium tumefaciens strains inoculated on 12 herbaceous and woody hosts. We performed a screening of the agrobacteria present inside the tumors, looking for nonpathogenic strains, and found a high variability of those strains in this niche. To verify the origin of the putative nonpathogenic mutant bacteria, we applied an efficient, reproducible, and specific randomly amplified polymorphic DNA analysis method. In contrast with previous studies, we recovered a very small percentage (0.01%) of nonpathogenic strains that can be considered true mutants. Of 5,419 agrobacterial isolates examined, 662 were nonpathogenic in tomato, although only 7 (from pepper and tomato tumors induced by two A. tumefaciens strains) could be considered to derive from the inoculated strain. Six mutants were affected in the transferred DNA (T-DNA) region; one of them contained IS426 inserted into the iaaM gene, whereas the whole T-DNA region was apparently deleted in three other mutants, and the virulence of the remaining two mutants was fully restored with the T-DNA genes as well. The plasmid profile was altered in six of the mutants, with changes in the size of the Ti plasmid or other plasmids and/or the acquisition of new plasmids. Our results also suggest that the frequent occurrence of nonpathogenic clones in the tumors is probably due to the preferential growth of nonpathogenic agrobacteria, of either endophytic or environmental origin, but different from the bacterial strain inducing the tumor. PMID:19700547

  8. Localization of 17beta-hydroxysteroid dehydrogenase in Mycobacterium sp. VKM Ac-1815D mutant strain.

    PubMed

    Egorova, O V; Nikolayeva, V M; Suzina, N E; Donova, M V

    2005-04-01

    The localization of mycobacterial 17beta-hydroxysteroid dehydrogenase (17beta-OH SDH) was studied using cell fractionation and cytochemical investigation. Mycobacterium sp. Et1 mutant strain derived from Mycobacterium sp. VKM Ac-1815D and characterized by increased 17beta-OH SDH activity was used as a model organism. Subcellular distribution study showed both soluble and membrane-bound forms of mycobacterial 17beta-hydroxysteroid dehydrogenase. The cytochemical method based on a copper ferrocyanide procedure followed by electron microscopic visualization was applied in order to investigate the intracellular localization of bacterial 17beta-OH SDH in more detail. The enzyme was found to be located in the peripheral cytoplasmic zone adjoining the cytoplasmic membrane (CM). 17beta-OH SDH was loosely membrane bound and easily released into the environment under the cell integrity failure.

  9. Purification and characterisation of α-amylase produced by mutant strain of Aspergillus oryzae EMS-18.

    PubMed

    Abdullah, Roheena; Ikram-ul-Haq

    2015-01-01

    α-Amylase produced by a mutant strain of Aspergillus oryzae EMS-18 has been purified to homogeneity as judged by sodium dodecyle sulphate polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme was purified by using 70% ammonium sulphate precipitation followed by anion exchange chromatography on DEAE-Sephadex column and gel filtration on Sephadex G-100. An enzyme purification factor of 9.5-fold was achieved with a final specific activity of 1987.7 U/mg protein and overall yield of 23.8%. The molecular weight of purified α-amylase was estimated to be 48 kDa by SDS-PAGE. The purified enzyme revealed an optimum assay temperature and pH 40°C and 5.0, respectively. Except Ca(++) all other metal ions such as Mg, Mn, Na, Zn, Ni, Fe, Cu, Co and Ba were found to be inhibitory to enzyme activity.

  10. Characterization of xanthan gum produced from glycerol by a mutant strain Xanthomonas campestris CCTCC M2015714.

    PubMed

    Wang, Zichao; Wu, Jianrong; Zhu, Li; Zhan, Xiaobei

    2017-02-10

    Xanthan gum was produced by a mutant strain X. campestris CCTCC M2015714 with glycerol as the sole carbon source. The monosaccharide composition and molar ratio of xanthan gum produced from glycerol are glucose: mannose: glucuronic acid=2.0:1.65:1.0. Meanwhile, chemical structure of xanthan gum produced from glycerol is similar to that of the commercial xanthan through FT-IR and NMR. Remarkably, the molecular weight of xanthan gum produced using our method (3.0±0.14×10(6)Da) is about half that of the commercial one (5.8±0.25×10(6)Da), and the consistency index (K) of which is less than 1/10 that of the commercial xanthan. This work paves the way for xanthan production from glycerol and is useful for studying the structure/application of xanthan gum.

  11. Isolating tryptophan regulatory mutants in Escherichia coli by using a trp-lac fusion strain.

    PubMed

    Reznikoff, W S; Thornton, K P

    1972-02-01

    A trp-lac fusion strain of Escherichia coli in which the lac structural genes are part of the tryptophan operon has been used to isolate trp regulatory mutants. This was accomplished by isolating lac(+) colonies on either lactose-minimal agar or lactose-MacConkey indicator agar. Seventy-seven of 78 lac(+) isolates contained mutations which mapped near the ara locus and most of these isolates were found to be 5-methyltryptophan-resistant after introduction of an F-trp episome. The lac(+) phenotypes of these 77 isolates were therefore probably the result of trpR(-) mutations. The one remaining isolate carried a mutation which was not part of the trp regulatory system.

  12. Sensitivity of dark mutants of various strains of luminescent bacteria to reactive oxygen species.

    PubMed

    Lyzeń, Robert; Wegrzyn, Grzegorz

    2005-03-01

    Recent studies indicated that bioluminescence of the marine bacterium Vibrio harveyi may both stimulate DNA repair and contribute to detoxification of deleterious oxygen derivatives. Therefore, it was also proposed that these reactions can be considered biological roles of bacterial luminescence and might act as evolutionary drives in development of luminous systems. However, experimental evidence for the physiological role of luciferase in protection of cells against oxidative stress has been demonstrated only in one bacterial species, raising the question whether this is a specific or a more general phenomenon. Here we demonstrate that in the presence of various oxidants (hydrogen peroxide, cumene hydroperoxide, t-butyl hydroperoxide and ferrous ions) growth of dark mutants of different strains of Vibrio fischeri and Photobacterium leiognathi is impaired relative to wild-type bacteria, though to various extents. Deleterious effects of oxidants on the mutants could be reduced (with different efficiency) by addition of antioxidants, A-TEMPO or 4OH-TEMPO. These results support the hypotheses that (1) activities of bacterial luciferases may detoxify deleterious oxygen derivatives, and (2) significantly different efficiencies of this reaction are characteristic for various luciferases.

  13. A mutant of Saccharomyces cerevisiae lacking catabolic NAD-specific glutamate dehydrogenase. Growth characteristics of the mutant and regulation of enzyme synthesis in the wild-type strain.

    PubMed

    Middelhoven, W J; van Eijk, J; van Renesse, R; Blijham, J M

    1978-01-01

    NAD-specific glutamate dehydrogenase (GDH-B) was induced in a wild-type strain derived of alpha-sigma 1278b by alpha-amino acids, the nitrogen of which according to known degradative pathways is transferred to 2-oxoglutarate. A recessive mutant (gdhB) devoid of GDH-B activity grew more slowly than the wild type if one of these amino acids was the sole source of nitrogen. Addition of ammonium chloride, glutamine, asparagine or serine to growth media with inducing alpha-amino acids as the main nitrogen source increased the growth rate of the gdhB mutant to the wild-type level and repressed GDH-B synthesis in the wild type. Arginine, urea and allantoin similarly increased the growth rate of the gdhB mutant and repressed GDH-B synthesis in the presence of glutamate, but not in the presence of aspartate, alanine or proline as the main nitrogen source. These observations are consistent with the view that GDH-B in vivo deaminates glutamate. Ammonium ions are required for the biosynthesis of glutamine, asparagine, arginine, histidine and purine and pyrimidine bases. Aspartate and alanine apparently are more potent inducers of GDH-B than glutamate. Anabolic NADP-specific glutamate dehydrogenase (GDH-A) can not fulfil the function of GDH-B in the gdhB mutant. This is concluded from the equal growth rates in glutamate, aspartate and proline media as observed with a gdhB mutant and with a gdhA, gdhB double mutant in which both glutamate dehydrogenases area lacking. The double mutant showed an anomalous growth behaviour, growth rates on several nitrogen sources being unexpectedly low.

  14. High frequency of mosaic mutants produced by N-ethyl-N-nitrosourea exposure of mouse zygotes.

    PubMed

    Russell, L B; Bangham, J W; Stelzner, K F; Hunsicker, P R

    1988-12-01

    Mouse zygotes containing one multiple-recessive parental genome (a, b; p cch; d se; s) and the corresponding wild-type alleles in the other were exposed to N-ethyl-N-nitrosourea (ENU) at various stages in vivo. At weaning age, the resulting mice were examined for mutations at the marked loci as well as at others producing externally visible phenotypes. Because of viability problems in one of two reciprocal crosses, the bulk of the mutagenesis data are derived from the cross that detects recessive mutations in the maternal genome. The mutation rate was approximately 8 times higher in groups treated 2.5-3 hr postmating (sperm entry, completion of second meiotic division) than in those injected 5-6 hr postmating (pronuclear formation). In the former more sensitive zygote population, the mutation rate is about an order of magnitude greater than that induced by the same ENU exposure (50 mg/kg) to spermatogonial stem cells. Of 11 mutants recovered, 8 were mosaics. Progeny tests have demonstrated germ-line involvement for most of the mosaics, and the average fraction of the germ line carrying the mutation is close to 50%. The nature of the mutations indicates (i) that the mosaicism results not from misassortment at the first cleavage but from mutation affecting one DNA strand of the maternal chromosome, and (ii) that the mutations are intragenic lesions rather than multilocus deletions, thus resembling ENU-induced mutations in spermatogonia. The finding that mosaicism for presumed point mutations is readily inducible by ENU treatment of zygotes may provide a means of generating genetic materials that can be of use for developmental studies.

  15. Disulphide linkage in mouse ST6Gal-I: determination of linkage positions and mutant analysis.

    PubMed

    Hirano, Yuichi; Suzuki, Takehiro; Matsumoto, Takumi; Ishihara, Yoshimi; Takaki, Yoshie; Kono, Mari; Dohmae, Naoshi; Tsuji, Shuichi

    2012-02-01

    All cloned sialyltransferases from vertebrates are classified into four subfamilies and are characterized as having type II transmembrane topology. The catalytic domain has highly conserved motifs known as sialylmotifs. Besides sialylmotifs, each family has several unique conserved cysteine (Cys) residues mainly in the catalytic domain. The number and loci of conserved amino acids, however, differ with each subfamily, suggesting that the conserved Cys-residues and/or disulphide linkages they make may contribute to linkage specificity. Using Matrix Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-TOF)-mass spectrometry, the present study performed disulphide linkage analysis on soluble mouse ST6Gal-I, which has six Cys-residues. Results confirmed that there were no free Cys-residues, and all six residues contributed to disulphide linkage formation, C(139)-C(403), C(181)-C(332) and C(350)-C(361). Study of single amino acid-substituted mutants revealed that the disulphide linkage C(181)-C(332) was necessary for molecular expression of the enzyme, and that the disulphide linkage C(350)-C(361) was necessary for enzyme activity. The remaining disulphide linkage C(139)-C(403) was not necessary for enzyme expression or for activity, including substrate specificity. Crystallographic study of pig ST3Gal I has recently been reported. Interestingly, the loci of disulphide linkages in ST6Gal-I differ from those in ST3Gal I, suggesting that the linkage specificity of sialyltransferase may results from significant structural differences, including the loci of disulphide linkages.

  16. Alterations in dopamine and serotonin uptake systems in the striatum of the weaver mutant mouse.

    PubMed

    Stotz, E H; Palacios, J M; Landwehrmeyer, B; Norton, J; Ghetti, B; Simon, J R; Triarhou, L C

    1994-01-01

    In the striatum of the homozygous weaver mutant mouse (wv/wv), dopamine content, uptake and tyrosine hydroxylase activity are decreased compared to wild-type (+/+) mice. In mice heterozygous for the weaver gene (wv/+), these dopaminergic parameters exhibit only minor reductions compared to +/+ mice. The wv/wv striatum has recently been shown to have an increase in serotonin content. In the present study, the serotonin uptake system of the weaver striatum was investigated. Synaptosomal uptake of [3H] serotonin was determined in the dorsal portion of wv/wv and +/+ striatum, and serotonin uptake sites were examined by the binding of [3H] citalopram in the striatum of wv/wv, wv/+ and +/+ mice. The dopamine uptake system was also investigated in all three genotypes via the binding of [3H] mazindol. Synaptosomal uptake of [3H] serotonin was increased by 79% in the dorsal portion of the wv/wv striatum compared to that seen in the +/+ striatum. The binding of [3H] citalopram was increased by 62% in the dorsolateral and by 111% in the dorsomedial portions of the wv/wv striatum compared to +/+. [3H] Citalopram binding in the wv/+ striatum was also higher than +/+, but this increase did not reach statistical significance. Within the wv/wv striatum, [3H] mazindol binding was almost completely absent (88-89% reduction) in the dorsal portion and severely reduced in the other striatal areas. These data support the notion that the dorsal portion of the wv/wv striatum, which has the severest reduction in dopamine uptake, is hyperinnervated by serotonin fibers.

  17. Identification of sdiA-regulated genes in a mouse commensal strain of Enterobacter cloacae

    PubMed Central

    Sabag-Daigle, Anice; Dyszel, Jessica L.; Gonzalez, Juan F.; Ali, Mohamed M.; Ahmer, Brian M. M.

    2015-01-01

    Many bacteria determine their population density using quorum sensing. The most intensively studied mechanism of quorum sensing utilizes proteins of the LuxI family to synthesize a signaling molecule of the acylhomoserine lactone (AHL) type, and a protein of the LuxR family to bind AHL and regulate transcription. Genes regulated by quorum sensing often encode functions that are most effective when a group of bacteria are working cooperatively (e.g., luminescence, biofilm formation, host interactions). Bacteria in the Escherichia, Salmonella, Klebsiella, and Enterobacter genera do not encode an AHL synthase but they do encode an AHL receptor of the LuxR family, SdiA. Instead of detecting their own AHL synthesis, these organisms use SdiA to detect the AHLs synthesized by other bacterial species. In this study, we used a genetic screen to identify AHL-responsive genes in a commensal Enterobacter cloacae strain that was isolated from a laboratory mouse. The genes include a putative type VI secretion system, copA (a copper transporter), and fepE (extends O-antigen chain length). A new transposon mutagenesis strategy and suicide vectors were used to construct an sdiA mutant of E. cloacae. The AHL-responsiveness of all fusions was entirely sdiA-dependent, although some genes were regulated by sdiA in the absence of AHL. PMID:26075189

  18. Identification of sdiA-regulated genes in a mouse commensal strain of Enterobacter cloacae.

    PubMed

    Sabag-Daigle, Anice; Dyszel, Jessica L; Gonzalez, Juan F; Ali, Mohamed M; Ahmer, Brian M M

    2015-01-01

    Many bacteria determine their population density using quorum sensing. The most intensively studied mechanism of quorum sensing utilizes proteins of the LuxI family to synthesize a signaling molecule of the acylhomoserine lactone (AHL) type, and a protein of the LuxR family to bind AHL and regulate transcription. Genes regulated by quorum sensing often encode functions that are most effective when a group of bacteria are working cooperatively (e.g., luminescence, biofilm formation, host interactions). Bacteria in the Escherichia, Salmonella, Klebsiella, and Enterobacter genera do not encode an AHL synthase but they do encode an AHL receptor of the LuxR family, SdiA. Instead of detecting their own AHL synthesis, these organisms use SdiA to detect the AHLs synthesized by other bacterial species. In this study, we used a genetic screen to identify AHL-responsive genes in a commensal Enterobacter cloacae strain that was isolated from a laboratory mouse. The genes include a putative type VI secretion system, copA (a copper transporter), and fepE (extends O-antigen chain length). A new transposon mutagenesis strategy and suicide vectors were used to construct an sdiA mutant of E. cloacae. The AHL-responsiveness of all fusions was entirely sdiA-dependent, although some genes were regulated by sdiA in the absence of AHL.

  19. Proteomic Analysis of Anti-Cancerous Scopularide Production by a Marine Microascus brevicaulis Strain and Its UV Mutant

    PubMed Central

    Kramer, Annemarie; Beck, Hans Christian; Kumar, Abhishek; Kristensen, Lars Peter; Imhoff, Johannes F.; Labes, Antje

    2015-01-01

    The marine fungus Microascus brevicaulis strain LF580 is a non-model secondary metabolite producer with high yields of the two secondary metabolites scopularides A and B, which exhibit distinct activities against tumour cell lines. A mutant strain was obtained using UV mutagenesis, showing faster growth and differences in pellet formation besides higher production levels. Here, we show the first proteome study of a marine fungus. Comparative proteomics were applied to gain deeper understanding of the regulation of production and of the physiology of the wild type strain and its mutant. For this purpose, an optimised protein extraction protocol was established. In total, 4759 proteins were identified. The central metabolic pathway of strain LF580 was mapped using the KEGG pathway analysis and GO annotation. Employing iTRAQ labelling, 318 proteins were shown to be significantly regulated in the mutant strain: 189 were down- and 129 upregulated. Proteomics are a powerful tool for the understanding of regulatory aspects: The differences on proteome level could be attributed to limited nutrient availability in the wild type strain due to a strong pellet formation. This information can be applied for optimisation on strain and process level. The linkage between nutrient limitation and pellet formation in the non-model fungus M. brevicaulis is in consensus with the knowledge on model organisms like Aspergillus niger and Penicillium chrysogenum. PMID:26460745

  20. Induced drought tolerance through wild and mutant bacterial strain Pseudomonas simiae in mung bean (Vigna radiata L.).

    PubMed

    Kumari, Sarita; Vaishnav, Anukool; Jain, Shekhar; Varma, Ajit; Choudhary, Devendra Kumar

    2016-01-01

    The present study focused on the overproducing mutant of a plant growth promoting rhizobacterium (PGPR) Pseudomonas simiae strain AU (MTCC-12057) for significant drought tolerance in mung bean plants. Five mutants namely AU-M1, AU-M2, AU-M3, AU-M4 and AU-M5 were made after treatment of wild type strain with N-methyl-N-nitro-N-nitrosoguanidine. Mutant strain AU-M4 was recorded for enhanced ACC deaminase (ACC-D) activity, indole acetic acid (IAA) production and inorganic phosphate (Pi) solubilization compared to wild strain and other four mutant strains under drought condition. AU-M4 showed higher phosphate solubilization index (8.17) together with higher ACC-D activity (98 nmol/mg/h) and IAA concentration (69.35 µg/ml) compared with the wild type P. simiae strain AU ACC-D activity (79 nmol/mg/h) and IAA concentration (38.98 µg/ml) respectively. In this report, we investigated the effect of both wild and mutant type bacterial strain on mung bean plants under drought stress. Results showed that mutant AU-M4 and wild type strain AU inoculated plants exhibited superior tolerance against drought stress, as shown by their enhanced plant biomass (fresh weight), higher water content, higher proline accumulation and lower osmotic stress injury. Mutant AU-M4 and wild strain AU inoculated plants reduced the ethylene level by 59 and 45% respectively, compared to the control under stress condition. Furthermore, bacterial inoculated plants showed enhanced induced systemic drought tolerance by reducing stomata size and net photosynthesis resulting higher water content in mung bean plants that may help in survival of plants during drought condition. To mitigate the effects of drought stress, use of PGPR will be needed to ensure sufficient production of food from crop plants. Taking current leads available, concerted future research is needed in this area, particularly on field evaluation with application of potential microorganisms.

  1. Efficient method for generation of bacteriophage insensitive mutants of Streptococcus thermophilus yoghurt and mozzarella strains.

    PubMed

    Mills, S; Coffey, A; McAuliffe, O E; Meijer, W C; Hafkamp, B; Ross, R P

    2007-07-01

    Bacteriophage infection of Streptococcus thermophilus is becoming increasingly problematic in many industry fermentations such as yoghurt and mozzarella manufacture. This study describes the development of an efficient and rapid 3-step approach for the generation of bacteriophage insensitive mutants (BIMs) of these starter strains. The method initially involves infection of a culture in solid media at a multiplicity of infection (M.O.I.) of 10 which is then incubated in milk overnight. BIMs are then isolated following successive rounds (20-25) of growth in 10% reconstituted skimmed milk (RSM) in the presence of high phage titres. The method selects for BIMs which can grow efficiently in milk. Using this approach BIMs of two industrial strains were generated, whose starter performance was comparable to the parent starters in terms of performance in milk. Genomic fingerprinting used to validate the identity of each BIM, revealed a number of restriction fragment length polymorphisms (RFLPs) in two of the resultant BIMs. This method provides a simple and reliable method for generation of BIMs of industrial starters which does not require any specialised equipment and should be widely applicable.

  2. Alteration of medial-edge epithelium cell adhesion in two Tgf-beta3 null mouse strains.

    PubMed

    Martínez-Sanz, Elena; Del Río, Aurora; Barrio, Carmen; Murillo, Jorge; Maldonado, Estela; Garcillán, Beatriz; Amorós, María; Fuerte, Tamara; Fernández, Alvaro; Trinidad, Eva; Rabadán, María Angeles; López, Yamila; Martínez, María Luisa; Martínez-Alvarez, Concepción

    2008-04-01

    Although palatal shelf adhesion is a crucial event during palate development, little work has been carried out to determine which molecules are responsible for this process. Furthermore, whether altered palatal shelf adhesion causes the cleft palate presented by Tgf-beta3 null mutant mice has not yet been clarified. Here, we study the presence/distribution of some extracellular matrix and cell adhesion molecules at the time of the contact of palatal shelves in both wild-type and Tgf-beta3 null mutant palates of two strains of mice (C57/BL/6J (C57), and MF1) that develop cleft palates of different severity. We have performed immunohistochemistry with antibodies against collagens IV and IX, laminin, fibronectin, the alpha5- and beta1-integrins, and ICAM-1; in situ hybridization with a Nectin-1 riboprobe; and palatal shelf cultures treated or untreated with TGF-beta3 or neutralizing antibodies against fibronectin or the alpha5-integrin. Our results show the location of these molecules in the wild-type mouse medial edge epithelium (MEE) of both strains at the time of the contact of palatal shelves; the heavier (C57) and milder (MF1) alteration of their presence in the Tgf-beta3 null mutants; the importance of TGF-beta3 to restore their normal pattern of expression; and the crucial role of fibronectin and the alpha5-integrin in palatal shelf adhesion. We thus provide insight into the molecular bases of this important process and the cleft palate presented by Tgf-beta3 null mutant mice.

  3. Alteration of medial-edge epithelium cell adhesion in two Tgf-β3 null mouse strains

    PubMed Central

    Martínez-Sanz, Elena; Del Río, Aurora; Barrio, Carmen; Murillo, Jorge; Maldonado, Estela; Garcillán, Beatriz; Amorós, María; Fuerte, Tamara; Fernández, Álvaro; Trinidad, Eva; Rabadán, M Ángeles; López, Yamila; Martínez, M Luisa; Martínez-Álvarez, Concepción

    2008-01-01

    Although palatal shelf adhesion is a crucial event during palate development, little work has been carried out to determine which molecules are responsible for this process. Furthermore, whether altered palatal shelf adhesion causes the cleft palate presented by Tgf-β3 null mutant mice has not yet been clarified. Here, we study the presence/distribution of some extracellular matrix and cell adhesion molecules at the time of the contact of palatal shelves in both wild-type and Tgf-β3 null mutant palates of two strains of mice (C57/BL/6J (C57), and MF1) that develop cleft palates of different severity. We have performed immunohistochemistry with antibodies against collagens IV and IX, laminin, fibronectin, the α5- and β1-integrins, and ICAM-1; in situ hybridization with a Nectin-1 riboprobe; and palatal shelf cultures treated or untreated with TGF-β3 or neutralizing antibodies against fibronectin or the α5-integrin. Our results show the location of these molecules in the wild-type mouse medial edge epithelium (MEE) of both strains at the time of the contact of palatal shelves; the heavier (C57) and milder (MF1) alteration of their presence in the Tgf-β3 null mutants; the importance of TGF-β3 to restore their normal pattern of expression; and the crucial role of fibronectin and the α5-integrin in palatal shelf adhesion. We thus provide insight into the molecular bases of this important process and the cleft palate presented by Tgf-β3 null mutant mice. PMID:18431835

  4. Enhancing cellulase production by overexpression of xylanase regulator protein gene, xlnR, in Talaromyces cellulolyticus cellulase hyperproducing mutant strain.

    PubMed

    Okuda, Naoyuki; Fujii, Tatsuya; Inoue, Hiroyuki; Ishikawa, Kazuhiko; Hoshino, Tamotsu

    2016-10-01

    We obtained strains with the xylanase regulator gene, xlnR, overexpressed (HXlnR) and disrupted (DXlnR) derived from Talaromyces cellulolyticus strain C-1, which is a cellulase hyperproducing mutant. Filter paper degrading enzyme activity and cellobiohydrolase I gene expression was the highest in HXlnR, followed by C-1 and DXlnR. These results indicate that the enhancement of cellulase productivity was succeeded by xlnR overexpression.

  5. Determination of reference genes for circadian studies in different tissues and mouse strains

    PubMed Central

    2010-01-01

    Background Circadian rhythms have a profound effect on human health. Their disruption can lead to serious pathologies, such as cancer and obesity. Gene expression studies in these pathologies are often studied in different mouse strains by quantitative real time polymerase chain reaction (qPCR). Selection of reference genes is a crucial step of qPCR experiments. Recent studies show that reference gene stability can vary between species and tissues, but none has taken circadian experiments into consideration. Results In the present study the expression of ten candidate reference genes (Actb, Eif2a, Gapdh, Hmbs, Hprt1, Ppib, Rn18s, Rplp0, Tbcc and Utp6c) was measured in 131 liver and 97 adrenal gland samples taken from three mouse strains (C57BL/6JOlaHsd, 129Pas plus C57BL/6J and Crem KO on 129Pas plus C57BL/6J background) every 4 h in a 24 h period. Expression stability was evaluated by geNorm and NormFinder programs. Differences in ranking of the most stable reference genes were observed both between individual mouse strains as well as between tissues within each mouse strain. We show that selection of reference gene (Actb) that is often used for analyses in individual mouse strains leads to errors if used for normalization when different mouse strains are compared. We identified alternative reference genes that are stable in these comparisons. Conclusions Genetic background and circadian time influence the expression stability of reference genes. Differences between mouse strains and tissues should be taken into consideration to avoid false interpretations. We show that the use of a single reference gene can lead to false biological conclusions. This manuscript provides a useful reference point for researchers that search for stable reference genes in the field of circadian biology. PMID:20712867

  6. Functional analysis of an feoB mutant in Clostridium perfringens strain 13.

    PubMed

    Awad, Milena M; Cheung, Jackie K; Tan, Joanne E; McEwan, Alastair G; Lyras, Dena; Rood, Julian I

    2016-10-01

    Bacterial pathogens have adopted numerous mechanisms for acquiring iron from host proteins during an infection, including the direct acquisition of ferric iron from heme-associated proteins or from iron-scavenging siderophores. Ferric iron then is transported into the cytosol, where it can be utilized by the bacterial pathogen. Under anaerobic conditions bacteria can also transport ferrous iron using the transmembrane complex FeoAB, but little is known about iron transport systems in anaerobic bacteria such as the pathogenic clostridia. In this study we sought to characterize the iron acquisition process in Clostridium perfringens. Bioinformatic analysis of the Clostridium perfringens strain 13 genome sequence revealed that it has seven potential iron acquisition systems: three siderophore-mediated systems, one ferric citrate uptake system, two heme-associated acquisition systems and one ferrous iron uptake system (FeoAB). The relative level of expression of these systems was determined using quantitative real-time RT-PCR assays that were specific for one gene from each system. Each of these genes was expressed, with the feoAB genes generating the most abundant iron-uptake related transcripts. To further examine the role of this system in the growth of C. perfringens, insertional inactivation was used to isolate a chromosomal feoB mutant. Growth of this mutant in the presence and absence of iron revealed that it had altered growth properties and a markedly reduced total iron and manganese content compared to the wild type; effects that were reversed upon complementation with the wild-type feoB gene. These studies suggest that under anaerobic conditions FeoB is the major protein required for the uptake of iron into the cell and that it may play an important role in the pathogenesis of C. perfringens infections.

  7. Simplifying multidimensional fermentation dataset analysis and visualization: One step closer to capturing high-quality mutant strains

    PubMed Central

    Zhou, Xiang; Xu, Dan; Jiang, Ting-Ting

    2017-01-01

    In this study, we analyzed mutants of Clostridium acetobutylicum, an organism used in a broad range of industrial processes related to biofuel production, to facilitate future studies of bioreactor and bioprocess design and scale-up, which are very important research projects for industrial microbiology applications. To accomplish this, we generated 329 mutant strains and applied principal component analysis (PCA) to fermentation data gathered from these strains to identify a core set of independent features for comparison. By doing so, we were able to explain the differences in the mutant strains’ fermentation expression states and simplify the analysis and visualization of the multidimensional datasets related to the strains. Our study has produced a high-efficiency PCA application based on a data analytics tool that is designed to visualize screening results and to support several hundred sets of data on fermentation interactions to assist researchers in more precisely screening and capturing high-quality mutant strains. More importantly, although this study focused on the use of PCA in microbial fermentation engineering, its results are broadly applicable. PMID:28045110

  8. Control of Salmonella Enteritidis and Salmonella Gallinarum in birds by using live vaccine candidate containing attenuated Salmonella Gallinarum mutant strain.

    PubMed

    Penha Filho, Rafael Antonio Casarin; de Paiva, Jacqueline Boldrin; da Silva, Mariana Dias; de Almeida, Adriana Maria; Berchieri, Angelo

    2010-04-01

    The ideal live vaccine to control Salmonella in commercial chicken flocks should engender protection against various strains. The purpose of the present study was to confirm the attenuation of a Salmonella Gallinarum (SG) mutant strain with deletion on genes cobS and cbiA, that are involved in the biosynthesis of cobalamin. Furthermore, evaluate its use as a live vaccine against Salmonella. For the evaluation of the vaccine efficacy, two experiments were conducted separately. Birds from a commercial brown line of chickens were used to perform challenge with SG wild type strain and birds from a commercial white line of chickens were used to perform challenge with Salmonella Enteritidis (SE) wild type strain. In both experiments, the birds were separated in three groups (A, B and C). Birds were orally vaccinated with the SG mutant as the following programme: group A, one dose at 5 days of age; group B, one dose at 5 days of age and a second dose at 25 days of age; and group C, birds were kept unvaccinated as controls. At 45 days of age, birds from all groups, including the control, were challenged orally by SG wild type (brown line) or SE wild type (white line). Lastly, another experiment was performed to evaluate the use of the SG mutant strain to prevent caecal colonization by SE wild type on 1-day-old broiler chicks. Mortality and systemic infection by SG wild type strain were assessed in brown chickens; faecal shedding and systemic infection by SE wild type were assessed in white chickens and caecal colonization was assessed in broiler chicks. Either vaccination with one or two doses of SG mutant, were capable to protect brown chickens against SG wild type. In the experiment with white chickens, only vaccination with two doses of SG mutant protected the birds against challenge with SE wild type. Although, SG mutant could not prevent caecal colonization in 1-day-old broiler chicks by the challenge strain SE wild type. Overall, the results indicated that SG mutant

  9. A non-cell autonomous mouse model of CNS haemangioblastoma mediated by mutant KRAS

    PubMed Central

    Bao, Leyuan; Al-Assar, Osama; Drynan, Lesley F.; Arends, Mark J.; Tyers, Pam; Barker, Roger A.; Rabbitts, Terence H.

    2017-01-01

    Haemangioblastoma is a rare malignancy of the CNS where vascular proliferation causes lesions due to endothelial propagation. We found that conditionally expressing mutant Kras, using Rag1-Cre, gave rise to CNS haemangioblastoma in the cortex and cerebellum in mice that present with highly vascular tumours with stromal cells similar to human haemangioblastomas. The aberrant haemangioblastoma endothelial cells do not express mutant Kras but rather the mutant oncogene is expressed in CNS interstitial cells, including neuronal cells and progeny. This demonstrates a non-cell autonomous origin of this disease that is unexpectedly induced via Rag1-Cre expression in CNS interstitial cells. This is the first time that mutant RAS has been shown to stimulate non-cell autonomous proliferation in malignancy and suggests that mutant RAS can control endothelial cell proliferation in neo-vascularisation when expressed in certain cells. PMID:28322325

  10. Maltodextrin Acceptance and Preference in Eight Mouse Strains

    PubMed Central

    Aleman, Tiffany R.; Ellis, Hillary T.; Tordoff, Michael G.

    2016-01-01

    Rodents are strongly attracted to the taste(s) of maltodextrins. A first step toward discovery of the underlying genes involves identifying phenotypic differences among inbred strains of mice. To do this, we used 5-s brief-access tests and 48-h 2-bottle choice tests to survey the avidity for the maltodextrin, Maltrin M040, of mice from 8 inbred strains (129S1/SvImJ, A/J, CAST/EiJ, C57BL/6J, NOD/ShiLTJ, NZO/HlLtJ, PWK/PhJ, and WSB/EiJ). In brief-access tests, the CAST and PWK strains licked significantly less maltodextrin than equivalent concentrations of sucrose, whereas the other strains generally licked the 2 carbohydrates equally. Similarly, in 2-bottle choice tests, the CAST and PWK strains drank less 4% maltodextrin than 4% sucrose, whereas the other strains had similar intakes of these 2 solutions; the CAST and PWK strains did not differ from the C57, NOD, or NZO strains in 4% sucrose intake. In sum, we have identified strain variation in maltodextrin perception that is distinct from variation in sucrose perception. The phenotypic variation characterized here will aid in identifying genes responsible for maltodextrin acceptance. Our results identify C57 × PWK mice or NZO × CAST mice as informative crosses to produce segregating hybrids that will expose quantitative trait loci underlying maltodextrin acceptance and preference. PMID:26464499

  11. Maltodextrin Acceptance and Preference in Eight Mouse Strains.

    PubMed

    Poole, Rachel L; Aleman, Tiffany R; Ellis, Hillary T; Tordoff, Michael G

    2016-01-01

    Rodents are strongly attracted to the taste(s) of maltodextrins. A first step toward discovery of the underlying genes involves identifying phenotypic differences among inbred strains of mice. To do this, we used 5-s brief-access tests and 48-h 2-bottle choice tests to survey the avidity for the maltodextrin, Maltrin M040, of mice from 8 inbred strains (129S1/SvImJ, A/J, CAST/EiJ, C57BL/6J, NOD/ShiLTJ, NZO/HlLtJ, PWK/PhJ, and WSB/EiJ). In brief-access tests, the CAST and PWK strains licked significantly less maltodextrin than equivalent concentrations of sucrose, whereas the other strains generally licked the 2 carbohydrates equally. Similarly, in 2-bottle choice tests, the CAST and PWK strains drank less 4% maltodextrin than 4% sucrose, whereas the other strains had similar intakes of these 2 solutions; the CAST and PWK strains did not differ from the C57, NOD, or NZO strains in 4% sucrose intake. In sum, we have identified strain variation in maltodextrin perception that is distinct from variation in sucrose perception. The phenotypic variation characterized here will aid in identifying genes responsible for maltodextrin acceptance. Our results identify C57 × PWK mice or NZO × CAST mice as informative crosses to produce segregating hybrids that will expose quantitative trait loci underlying maltodextrin acceptance and preference.

  12. The spontaneous ataxic mouse mutant tippy is characterized by a novel Purkinje cell morphogenesis and degeneration phenotype

    PubMed Central

    Shih, Evelyn K.; Sekerková, Gabriella; Ohtsuki, Gen; Aldinger, Kimberly A.; Chizhikov, Victor V.; Hansel, Christian; Mugnaini, Enrico; Millen, Kathleen J.

    2015-01-01

    This study represents the first detailed analysis of the spontaneous neurological mouse mutant, tippy, uncovering its unique cerebellar phenotype. Homozygous tippy mutant mice are small, ataxic and die around weaning. Although the cerebellum shows grossly normal foliation, tippy mutants display a complex cerebellar Purkinje cell phenotype consisting of abnormal dendritic branching with immature spine features and patchy, non-apoptotic cell death that is associated with widespread dystrophy and degeneration of the Purkinje cell axons throughout the white matter, the cerebellar nuclei and the vestibular nuclei. Moderate anatomical abnormalities of climbing fiber innervation of tippy mutant Purkinje cells were not associated with changes in climbing fiber-EPSC amplitudes. However, decreased ESPC amplitudes were observed in response to parallel fiber stimulation and correlated well with anatomical evidence for patchy dark cell degeneration of Purkinje cell dendrites in the molecular layer. The data suggest that the Purkinje neurons are a primary target of the tippy mutation. Furthermore, we hypothesize that the Purkinje cell axonal pathology together with disruptions in the balance of climbing fiber and parallel fiber Purkinje cell input in the cerebellar cortex underlie the ataxic phenotype in these mice. The constellation of Purkinje cell dendritic malformation and degeneration phenotypes in tippy mutants is unique and has not been reported in any other neurologic mutant. Fine mapping of the tippy mutation to a 2.1MB region of distal chromosome 9, which does not encompass any gene previously implicated in cerebellar development or neuronal degeneration, confirms that the tippy mutation identifies novel biology and gene function. PMID:25626522

  13. The effect of gamma irradiation on astaxanthin synthetase encoding gene in two mutant strains of Phaffia rhodozyma

    PubMed Central

    Najafi, Naeimeh; Hosseini, Ramin; Ahmadi, Ali-Reza

    2013-01-01

    Background and Objectives Astaxanthin, an orange-red carotenoid pigment, acts as a protective agent against oxidative damage to cells in vivo. The astaxanthin synthetase gene (crtS) size consists of 3995 bp. This gene has been suggested to catalyse β-carotene to astaxanthin in Phaffia rhodozyma. The aim of this research was to find any possible changes in this gene in two mutant strains, Gam1 and Gam2 (with high astaxanthin pigment production), previously created by gamma irradiation. Materials and Methods The astaxanthin synthetase gene sequence of Phaffia rhodozyma in the NCBI Gene bank was used to design primer. In Gam1, this gene was amplified using primers Asta F1, Asta R2, Asta F3, Asta R4. In Gam2, primers asta F1, asta R4 were used to amplify the gene. The amplified fragments were 8 sequenced using primers Asta F1, Asta R1, Asta F2, Asta R2, Asta F3, Asta R3 and Asta F4, Asta R4. Astaxanthin synthetase gene from two mutant strains, Gam1 and Gam2 were amplified using PCR. The amplified products were sequenced and aligned using the ClustalW software. Conclusion The comparison of this gene showed 98% and 99% similarities between the reference sequence and Gam1 and Gam2 mutant strains, respectively, whereas the comparison of this gene in Gam1 and Gam2 mutant strains showed 97% similarity. However, the deduced proteins showed 78% and 83% between the reference protein obtained from the wild type and Gam1 and Gam2, respectively. This similarity was 75% between the mutant strains. PMID:24475339

  14. Sensorimotor enhancement in mouse mutants lacking the Purkinje cell-specific Gi/o modulator, Pcp2(L7).

    PubMed

    Iscru, Emilia; Serinagaoglu, Yelda; Schilling, Karl; Tian, Jinbin; Bowers-Kidder, Stephanie L; Zhang, Rui; Morgan, James I; DeVries, A Courtney; Nelson, Randy J; Zhu, Michael X; Oberdick, John

    2009-01-01

    Pcp2(L7) is a GoLoco domain protein specifically and abundantly expressed in cerebellar Purkinje cells. It has been hypothesized to "tune" G(i/o)-coupled receptor modulation of physiological effectors, including the P-type Ca(2+) channel. We have analyzed a mouse mutant in which the Pcp2(L7) gene was inactivated and find significant anatomical, behavioral and electrophysiological changes. Anatomically, we observed mild cerebellar hypoplasia. Behaviorally, the mutants were altered in modalities atypical for a traditional cerebellar mutant, and oddly, all of these changes could be considered functional enhancements. This includes increased asymptotic performance in gross motor learning, increased rate of acquisition in tone-conditioned fear, and enhanced pre-pulse inhibition of the acoustic startle response. Electrophysiological analysis of Purkinje cells in the mutants reveals depression of the complex spike waveform that may underlie the behavioral changes. Based on these observations we suggest that the Pcp2(L7) protein acts as a sensorimotor damper that modulates time- and sense-dependent changes in motor responses.

  15. DNA vaccine elicits an efficient antitumor response by targeting the mutant Kras in a transgenic mouse lung cancer model.

    PubMed

    Weng, T-Y; Yen, M-C; Huang, C-T; Hung, J-J; Chen, Y-L; Chen, W-C; Wang, C-Y; Chang, J-Y; Lai, M-D

    2014-10-01

    Mutant Kras (V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog) is observed in more than 20% of non-small-cell lung cancers; however, no effective Kras target therapy is available at present. The Kras DNA vaccine may represent as a novel immunotherapeutic agent in lung cancer. In this study, we investigated the antitumor efficacy of the Kras DNA vaccine in a genetically engineered inducible mouse lung tumor model driven by Kras(G12D). Lung tumors were induced by doxycycline, and the therapeutic effects of Kras DNA vaccine were evaluated with delivery of Kras(G12D) plasmids. Mutant Kras(G12D) DNA vaccine significantly decreased the tumor nodules. A dominant-negative mutant Kras(G12D)N17, devoid of oncogenic activity, achieved similar therapeutic effects. The T-helper 1 immune response was enhanced in mice treated with Kras DNA vaccine. Splenocytes from mice receiving Kras DNA vaccine presented an antigen-specific response by treatment with peptides of Kras but not Hras or OVA. The number of tumor-infiltrating CD8(+) T cells increased after Kras vaccination. In contrast, Kras DNA vaccine was not effective in the lung tumor in transgenic mice, which was induced by mutant L858R epidermal growth factor receptor. Overall, these results indicate that Kras DNA vaccine produces an effective antitumor response in transgenic mice, and may be useful in treating lung cancer-carrying Ras mutation.

  16. Assessing benzene-induced toxicity on wild type Euglena gracilis Z and its mutant strain SMZ.

    PubMed

    Peng, Cheng; Arthur, Dionne M; Sichani, Homa Teimouri; Xia, Qing; Ng, Jack C

    2013-11-01

    Benzene is a representative member of volatile organic compounds and has been widely used as an industrial solvent. Groundwater contamination of benzene may pose risks to human health and ecosystems. Detection of benzene in the groundwater using chemical analysis is expensive and time consuming. In addition, biological responses to environmental exposures are uninformative using such analysis. Therefore, the aim of this study was to employ a microorganism, Euglena gracilis (E. gracilis) as a putative model to monitor the contamination of benzene in groundwater. To this end, we examined the wild type of E. gracilis Z and its mutant form, SMZ in their growth rate, morphology, chlorophyll content, formation of reactive oxygen species (ROS) and DNA damage in response to benzene exposure. The results showed that benzene inhibited cell growth in a dose response manner up to 48 h of exposure. SMZ showed a greater sensitivity compared to Z in response to benzene exposure. The difference was more evident at lower concentrations of benzene (0.005-5 μM) where growth inhibition occurred in SMZ but not in Z cells. We found that benzene induced morphological changes, formation of lipofuscin, and decreased chlorophyll content in Z strain in a dose response manner. No significant differences were found between the two strains in ROS formation and DNA damage by benzene at concentrations affecting cell growth. Based on these results, we conclude that E. gracilis cells were sensitive to benzene-induced toxicities for certain endpoints such as cell growth rate, morphological change, depletion of chlorophyll. Therefore, it is a potentially suitable model for monitoring the contamination of benzene and its effects in the groundwater.

  17. Mouse mutants for the nicotinic acetylcholine receptor ß2 subunit display changes in cell adhesion and neurodegeneration response genes.

    PubMed

    Rubin, Carol M; van der List, Deborah A; Ballesteros, Jose M; Goloshchapov, Andrey V; Chalupa, Leo M; Chapman, Barbara

    2011-04-25

    Mice lacking expression of the ß2 subunit of the neuronal nicotinic acetylcholine receptor (CHRNB2) display abnormal retinal waves and a dispersed projection of retinal ganglion cell (RGC) axons to their dorsal lateral geniculate nuclei (dLGNs). Transcriptomes of LGN tissue from two independently generated Chrnb2-/- mutants and from wildtype mice were obtained at postnatal day 4 (P4), during the normal period of segregation of eye-specific afferents to the LGN. Microarray analysis reveals reduced expression of genes located on the cell membrane or in extracellular space, and of genes active in cell adhesion and calcium signaling. In particular, mRNA for cadherin 1 (Cdh1), a known axon growth regulator, is reduced to nearly undetectable levels in the LGN of P4 mutant mice and Lypd2 mRNA is similarly suppressed. Similar analysis of retinal tissue shows increased expression of crumbs 1 (Crb1) and chemokine (C-C motif) ligand 21 (Ccl21) mRNAs in Chrnb2-/- mutant animals. Mutations in these genes are associated with retinal neuronal degeneration. The retinas of Chrnb2-/- mutants are normal in appearance, but the increased expression of these genes may also be involved in the abnormal projection patterns of RGC to the LGN. These data may provide the tools to distinguish the interplay between neural activity and molecular expression. Finally, comparison of the transcriptomes of the two different Chrnb2-/- mutant strains reveals the effects of genetic background upon gene expression.

  18. Cellulase production and saccharification of rice straw by the mutant strain Hypocrea koningii RSC1.

    PubMed

    Palaniyandi, Sasikumar Arunachalam; Yang, Seung Hwan; Suh, Joo-Won

    2014-01-01

    The production of cellulase using solid-state fermentation of rice straw by the mutant strain Hypocrea koningii RSC1 was studied. Optimization of culture conditions, such as the nitrogen source, pH, and temperature, resulted in a maximum filter paper cellulase activity of 44.15 U g(-1) substrate, a carboxymethylcellulase activity of 324.6 U g(-1) substrate, and a β-glucosidase activity of 7.45 U g(-1) substrate. Saccharification of untreated, 1% H(2)SO(4)-treated, and 2.5% NaOH-treated rice straw using the RSC1 cellulase resulted in 19, 17, and 34 g L(-1) of reducing sugar, respectively. Further studies on the morphological and compositional changes of rice straw upon treatment with the cellulase by scanning electron microscopy analysis and Fourier transform infrared spectroscopy revealed the disruption of the arrangement of fibers and changes in the functional groups that occur in cellulose. X-ray diffraction analysis revealed a reduction in crystallinity of the rice straw upon treatment with the cellulase. Our study shows that H. koningii RSC1 could be a good choice for the production of cellulase and reducing sugars from rice straw.

  19. Enlargement of the Axial Length and Altered Ultrastructural Features of the Sclera in a Mutant Lumican Transgenic Mouse Model

    PubMed Central

    Song, Yanzheng; Zhang, Fengju; Zhao, Yanyan; Sun, Mingshen; Tao, Jun; Liang, Yanchuang; Ma, Ling; Yu, Yanqiu; Wang, Jianhua; Hao, Junfeng

    2016-01-01

    Lumican (LUM) is a candidate gene for myopia in the MYP3 locus. In this study, a mutant lumican (L199P) transgenic mouse model was established to investigate the axial length changes and ultrastructural features of the sclera. The mouse model was established by pronuclear microinjection. Transgenic mice and wild-type B6 mice were killed at eight weeks of age. Gene expression levels of LUM and collagen type I (COL1) in the sclera were analyzed by quantitative real-time polymerase chain reaction (qPCR), and the protein levels were assessed by Western blot analysis. Ocular axial lengths were measured on the enucleated whole eye under a dissecting microscope. Ultrastructural features of collagen fibrils in the sclera were examined with transmission electron microscopy (TEM). Lumican and collagen type I were both elevated at the transcriptional and protein levels. The mean axial length of eyes in the transgenic mice was significantly longer than that in the wild-type mice (3,231.0 ± 11.2 μm (transgenic group) vs 3,199.7 ± 11.1 μm (controls), p<0.05 =). Some ultrastructural changes were observed in the sclera of the transgenic mice under TEM, such as evident lamellar disorganizations and abnormal inter-fibril spacing. The average collagen fibril diameter was smaller than that in their wild-type counterparts. These results indicate that the ectopic mutant lumican (L199P) may induce enlargement of axial lengths and abnormal structures and distributions of collagen fibrils in mouse sclera. This transgenic mouse model can be used for the mechanistic study of myopia. PMID:27711221

  20. Residual virulence and immunogenicity of CGV26 and CGV2631 B. melitensis Rev. 1 deletion mutant strains in sheep after subcutaneous or conjunctival vaccination.

    PubMed

    Guilloteau, Laurence A; Laroucau, Karine; Olivier, Michel; Grillo, Maria Jesus; Marin, Clara M; Verger, Jean-Michel; Blasco, Jose-Maria

    2006-04-24

    The CGV26 and CGV2631 strains are novel engineered Brucella melitensis Rev.1 mutant strains deleted for the bp26 gene or for both bp26 and omp31 genes, respectively, coding for proteins of diagnostic significance. The residual virulence and immunogenicity of both mutants were compared to the parental Rev.1 strain in sheep after subcutaneous or conjunctival vaccination. The deletion of the bp26 gene or both bp26 and omp31 genes had no significant effect on the intracellular survival of the Rev.1 strain in ovine macrophage cultures. The kinetics of infection induced by both mutants in sheep was similar to the Rev.1 strain, and inoculation by the subcutaneous route produced wider and more generalized infections than the conjunctival route. All strains were cleared from lymph nodes and organs within 3 months after inoculation. The CGV26 and CGV2631 mutants induced both specific systemic antibody response and lymphoproliferation in sheep. The kinetics of the responses induced by the mutants was quite similar to that of the parental Rev.1 strain, except for the intensity of the lymphoproliferative response, which was attenuated for the CGV2631 mutant. In conclusion, the residual virulence of both CGV26 and CGV2631 mutants in sheep was similar to that of the parental Rev.1 vaccine strain. These mutants induced also significant specific antibody and cell-mediated immunity in sheep and are suitable to be evaluated as potential vaccine candidates against B. melitensis and B. ovis infections in sheep.

  1. Immunological variation between inbred laboratory mouse strains: points to consider in phenotyping genetically immunomodified mice.

    PubMed

    Sellers, R S; Clifford, C B; Treuting, P M; Brayton, C

    2012-01-01

    Inbred laboratory mouse strains are highly divergent in their immune response patterns as a result of genetic mutations and polymorphisms. The generation of genetically engineered mice (GEM) has, in the past, used embryonic stem (ES) cells for gene targeting from various 129 substrains followed by backcrossing into more fecund mouse strains. Although common inbred mice are considered "immune competent," many have variations in their immune system-some of which have been described-that may affect the phenotype. Recognition of these immune variations among commonly used inbred mouse strains is essential for the accurate interpretation of expected phenotypes or those that may arise unexpectedly. In GEM developed to study specific components of the immune system, accurate evaluation of immune responses must take into consideration not only the gene of interest but also how the background strain and microbial milieu contribute to the manifestation of findings in these mice. This article discusses points to consider regarding immunological differences between the common inbred laboratory mouse strains, particularly in their use as background strains in GEM.

  2. Functional complementation of Leishmania (Leishmania) amazonensis AP endonuclease gene (lamap) in Escherichia coli mutant strains challenged with DNA damage agents

    PubMed Central

    Verissimo-Villela, Erika; Kitahara-Oliveira, Milene Yoko; dos Reis, Ana Beatriz de Bragança; Albano, Rodolpho Mattos; Da-Cruz, Alda Maria; Bello, Alexandre Ribeiro

    2016-01-01

    During its life cycle Leishmania spp. face several stress conditions that can cause DNA damages. Base Excision Repair plays an important role in DNA maintenance and it is one of the most conserved mechanisms in all living organisms. DNA repair in trypanosomatids has been reported only for Old World Leishmania species. Here the AP endonuclease from Leishmania (L.) amazonensis was cloned, expressed in Escherichia coli mutants defective on the DNA repair machinery, that were submitted to different stress conditions, showing ability to survive in comparison to the triple null mutant parental strain BW535. Phylogenetic and multiple sequence analyses also confirmed that LAMAP belongs to the AP endonuclease class of proteins. PMID:27223868

  3. Mouse strain-dependent effect of amantadine on motility and brain biogenic amines.

    PubMed

    Messiha, F S

    1989-01-01

    The effect of amantadine hydrochloride, injected i.p. in 6 increments of 100 mg/kg each over 30 hr, on mouse motility and whole brain content of selected biogenic amines and major metabolites was studied in 4 strains of mice. These were the albino Sprague-Dawley ICR and BALB/C, the black C57BL/6 and the brown CDF-I mouse strains. Amantadine treatment produced a biphasic effect on mouse motility. The initial dose of amantadine depressed locomotor activity in all mouse strains studied with the BALB/C mice being the most sensitive. Subsequent amantadine treatments produced enhancement of motility from corresponding control in all mouse strains with the BALB/C mice being the least sensitive. The locomotor activity was decreased from corresponding controls in all strains studied, except for the ICR mice, during an overnight drug-free period following the fourth amantadine treatment. Readministration of amantadine, after a drug-free overnight period, increased motility from respective saline control in all strains with exception of the BALB/C mice where suppression of motility occurred. Treatment with amantadine did not alter whole brain dopamine levels but decreased the amounts of 3,4-dihydroxyphenylacetic acid in the BALB/C mice compared to saline control. Conversely, brain normetanephrine concentration was increased from saline control by amantadine in the BALB/C mice. The results suggest a strain-dependent effect of amantadine on motility and indicate a differential response to the acute and multiple dose regimens used. The BALB/C mouse was the most sensitive strain and could serve as the strain of choice for evaluating the side effects of amantadine. The biochemical results of brain biogenic amines of BALB/C mouse strain suggest a probable decrease of catecholamine turnover rate and/or metabolism by monoamine oxidase and a resulting increase in O-methylation of norepinephrine which may account for a behavioral depression caused by amantadine in the BALB/C mice.

  4. Dynamics of Photosynthesis in a Glycogen-Deficient glgC Mutant of Synechococcus sp. Strain PCC 7002

    PubMed Central

    Jackson, Simon A.; Eaton-Rye, Julian J.; Bryant, Donald A.; Posewitz, Matthew C.

    2015-01-01

    Cyanobacterial glycogen-deficient mutants display impaired degradation of light-harvesting phycobilisomes under nitrogen-limiting growth conditions and secrete a suite of organic acids as a putative reductant-spilling mechanism. This genetic background, therefore, represents an important platform to better understand the complex relationships between light harvesting, photosynthetic electron transport, carbon fixation, and carbon/nitrogen metabolisms. In this study, we conducted a comprehensive analysis of the dynamics of photosynthesis as a function of reductant sink manipulation in a glycogen-deficient glgC mutant of Synechococcus sp. strain PCC 7002. The glgC mutant showed increased susceptibility to photoinhibition during the initial phase of nitrogen deprivation. However, after extended periods of nitrogen deprivation, glgC mutant cells maintained higher levels of photosynthetic activity than the wild type, supporting continuous organic acid secretion in the absence of biomass accumulation. In contrast to the wild type, the glgC mutant maintained efficient energy transfer from phycobilisomes to photosystem II (PSII) reaction centers, had an elevated PSII/PSI ratio as a result of reduced PSII degradation, and retained a nitrogen-replete-type ultrastructure, including an extensive thylakoid membrane network, after prolonged nitrogen deprivation. Together, these results suggest that multiple global signals for nitrogen deprivation are not activated in the glgC mutant, allowing the maintenance of active photosynthetic complexes under conditions where photosynthesis would normally be abolished. PMID:26150450

  5. Mutant strains of Spirulina (Arthrospira) platensis to increase the efficiency of micro-ecological life support systems

    NASA Astrophysics Data System (ADS)

    Brown, Igor

    The European Micro-Ecological Life Support System Alternative (MELiSSA) is an advanced idea for organizing a bioregenerative system for long term space flights and extraterrestrial settlements (Hendrickx, De Wever et al., 2005). Despite the hostility of both lunar and Martian environments to unprotected life, it seems possible to cultivate photosynthetic bacteria using closed bioreactors illuminated and heated by solar energy. Such reactors might be employed in critical processes, e.g. air revitalization, foodcaloric and protein source, as well as an immunomodulators production. The MELiSSA team suggested cyanobacterium Spirulina as most appropriate agent to revitalize air and produce a simple "fast" food. This is right suggestion because Spirulina was recently shown to be an oxygenic organism with the highest level of O2 production per unit mass (Ananyev et al., 2005). Chemical composition of Spirulina includes proteins (55Aiming to make Spirulina cultivation in life support systems like MELiSSA more efficient, we selected Spirulina mutant strains with increased fraction of methionine in the biomass of this cyanobacterium and compared the effect of parental wild strain of Spirulina and its mutants on the tendency of such experimental illnesses as radiationinduced lesions and hemolythic anemia. Results: It was found that mutant strains 198B and 27G contain higher quantities of total protein, essential amino acids, c-phycocyanin, allophycocyanin and chlorophyll a than parental wild strain of S. platensis. The strain 198B is also characterized with increased content of carotenoids. Revealed biochemical peculiarities of mutant strains suggest that these strains can serve as an additional source of essential amino acids as well as phycobiliproteins and carotenoids for the astronauts. Feeding animals suffering from radiation-induced lesions, c-phycocyanin, extracted from strain 27G, led to a correction in deficient dehydrogenase activity and energy-rich phosphate levels

  6. A mouse model for testing the pathogenicity of equine herpes virus-1 strains.

    PubMed

    van Woensel, P A; Goovaerts, D; Markx, D; Visser, N

    1995-07-01

    A mouse model was developed for testing the pathogenicity of equine herpes virus-1 (EHV-1) strains. The model was validated with EHV-1 strains that are known to be of a low or high pathogenicity in horses. From all parameters tested, the safety index, which was calculated from the body weights of the mice after infection, proved to be the best predictive parameter. When this parameter was used, good and reliable correlations were found with the pathogenicity of the EHV-1 strains in horses. This method enabled the differentiation between the two experimental EHV-1 strains whose genetic backgrounds were supposedly equal.

  7. Transcriptome Profiling of Wild-Type and pga-Knockout Mutant Strains Reveal the Role of Exopolysaccharide in Aggregatibacter actinomycetemcomitans.

    PubMed

    Shanmugam, Mayilvahanan; El Abbar, Faiha; Ramasubbu, Narayanan

    2015-01-01

    Exopolysaccharides have a diverse set of functions in most bacteria including a mechanistic role in protecting bacteria against environmental stresses. Among the many functions attributed to the exopolysaccharides, biofilm formation, antibiotic resistance, immune evasion and colonization have been studied most extensively. The exopolysaccharide produced by many Gram positive as well as Gram negative bacteria including the oral pathogen Aggregatibacter actinomycetemcomitans is the homopolymer of β(1,6)-linked N-acetylglucosamine. Recently, we reported that the PGA-deficient mutant of A. actinomycetemcomitans failed to colonize or induce bone resorption in a rat model of periodontal disease, and the colonization genes, apiA and aae, were significantly down regulated in the mutant strain. To understand the role of exopolysaccharide and the pga locus in the global expression of A. actinomycetemcomitans, we have used comparative transcriptome profiling to identify differentially expressed genes in the wild-type strain in relation to the PGA-deficient strain. Transcriptome analysis revealed that about 50% of the genes are differently expressed (P < 0.05 and fold change >1.5). Our study demonstrated that the absence of the pga locus affects the genes involved in peptidoglycan recycling, glycogen storage, and virulence. Further, using confocal microscopy and plating assays, we show that the viability of pga mutant strain is significantly reduced during biofilm growth. Thus, this study highlights the importance of pga genes and the exopolysaccharide in the virulence of A. actinomycetemcomitans.

  8. Developing Novel Automated Apparatus for Studying Battery of Social Behaviors in Mutant Mouse Models for Autism

    DTIC Science & Technology

    2013-06-01

    the females). Task 2b: Automated behavioral phenotyping of a mouse model for autism using the video - and RFID-based tracking technology Over the...behavioral traits and the relationship between environmental-gene interactions in mouse models for autism . Finally, since our experimental platform poses no...animal research models . 5 Body Task 1: Develop a combined video - and RFID-based experimental system to allow high- throughput standardized

  9. Mouse Slc9a8 Mutants Exhibit Retinal Defects Due to Retinal Pigmented Epithelium Dysfunction

    PubMed Central

    Jadeja, Shalini; Barnard, Alun R.; McKie, Lisa; Cross, Sally H.; White, Jacqueline K.; Robertson, Morag; Budd, Peter S.; MacLaren, Robert E.; Jackson, Ian J.

    2015-01-01

    Purpose. As part of a large scale systematic screen to determine the effects of gene knockout mutations in mice, a retinal phenotype was found in mice lacking the Slc9a8 gene, encoding the sodium/hydrogen ion exchange protein NHE8. We aimed to characterize the mutant phenotype and the role of sodium/hydrogen ion exchange in retinal function. Methods. Detailed histology characterized the pathological consequences of Slc9a8 mutation, and retinal function was assessed by electroretinography (ERG). A conditional allele was used to identify the cells in which NHE8 function is critical for retinal function, and mutant cells analyzed for the effect of the mutation on endosomes. Results. Histology of mutant retinas reveals a separation of photoreceptors from the RPE and infiltration by macrophages. There is a small reduction in photoreceptor length and a mislocalization of visual pigments. The ERG testing reveals a deficit in rod and cone pathway function. The RPE shows abnormal morphology, and mutation of Slc9a8 in only RPE cells recapitulates the mutant phenotype. The NHE8 protein localizes to endosomes, and mutant cells have much smaller recycling endosomes. Conclusions. The NHE8 protein is required in the RPE to maintain correct regulation of endosomal volume and/or pH which is essential for the cellular integrity and subsequent function of RPE. PMID:25736793

  10. Ex vivo determination of bone tissue strains for an in vivo mouse tibial loading model.

    PubMed

    Carriero, Alessandra; Abela, Lisa; Pitsillides, Andrew A; Shefelbine, Sandra J

    2014-07-18

    Previous studies introduced the digital image correlation (DIC) as a viable technique for measuring bone strain during loading. In this study, we investigated the sensitivity of a DIC system in determining surface strains in a mouse tibia while loaded in compression through the knee joint. Specifically, we examined the effect of speckle distribution, facet size and overlap, initial vertical alignment of the bone into the loading cups, rotation with respect to cameras, and ex vivo loading configurations on the strain contour maps measured with a DIC system. We loaded tibiae of C57BL/6 mice (12 and 18 weeks old male) up to 12 N at 8 N/min. Images of speckles on the bone surface were recorded at 1N intervals and DIC was used to compute strains. Results showed that speckles must have the correct size and density with respect to the facet size of choice for the strain distribution to be computed and reproducible. Initial alignment of the bone within the loading cups does not influence the strain distribution measured during peak loading, but bones must be placed in front of the camera with the same orientation in order for strains to be comparable. Finally, the ex vivo loading configurations with the tibia attached to the entire mouse, or to the femur and foot, or only to the foot, showed different strain contour maps. This work provides a better understanding of parameters affecting full field strain measurements from DIC in ex vivo murine tibial loading tests.

  11. Binding of purified and radioiodinated capsular polysaccharides from Cryptococcus neoformans serotype A strains to capsule-free mutants

    SciTech Connect

    Small, J.M.; Mitchell, T.G.

    1986-12-01

    Strains 6, 15, 98, 110, and 145 of Cryptococcus neoformans serotype A vary in capsule size, animal virulence, and susceptibility to in vitro phagocytosis. The isolated capsular polysaccharides (CPSs) differ in monosaccharide composition ratios and molecular size, as determined by gel filtration. The purpose of this investigation was to characterize the binding of CPSs to capsule-free mutants of C. neoformans and to examine CPSs from these strains for differences in their ability to bind, to determine whether such differences might explain the variation in the pathobiology of these strains. CPSs were partially periodate oxidized, tyraminated, iodinated with /sup 125/I, and used in binding studies with two capsule-free mutants of C. neoformans, strain 602 and Cap59. Binding was specific for yeast species and for polysaccharide and was saturable, which is consistent with a receptor-mediated mechanism of attachment. Binding occurred rapidly and was only slowly reversible. Binding was also independent of pH from pH 5.5 to 8, of cation concentrations, and of competition by sugars up to 1.0 M concentrations. Only a portion of CPS was capable of binding, and strains varied in the extent to which their CPS bound. CPS-15-IV (peak IV was the major polysaccharide peak on DEAE-cellulose chromatography of CPS from strain 15) had the highest proportion of binding (40%), followed by CPS from strains 98, 6, 145, 110, and 15-III (peak III was an earlier eluting fraction of CPS from strain 15). The CPSs differed similarly in their ability to competitively inhibit binding. Treatment of CPS, but not yeast cells, with proteinase XIV abolished binding without altering the CPS gross structure. Treatment of yeast cells with proteases, heat, or formaldehyde did not alter binding, and both strain 602 and Cap59 bound CPS similarly. Binding to encapsulated yeast cells was minimal.

  12. Behavior of two Tannerella forsythia strains and cell surface mutants in multispecies oral biofilms.

    PubMed

    Bloch, Susanne; Thurnheer, Thomas; Murakami, Yukitaka; Belibasakis, Georgios N; Schäffer, Christina

    2017-04-05

    As a member of subgingival multispecies biofilms, Tannerella forsythia is commonly associated with periodontitis. The bacterium has a characteristic cell surface (S-) layer modified with a unique O-glycan. Both the S-layer and the O-glycan were analyzed in this study for their role in biofilm formation by employing an in vitro multispecies biofilm model mimicking the situation in the oral cavity. Different T. forsythia strains and mutants with characterized defects in cell surface composition were incorporated into the model, together with nine species of select oral bacteria. The influence of the T. forsythia S-layer and attached glycan on the bacterial composition of the biofilms was analyzed quantitatively using colony forming unit counts and quantitative real-time PCR, as well as qualitatively by fluorescence in situ hybridization and confocal laser scanning microscopy. This revealed that changes of the T. forsythia cell surface did not affect the quantitative composition of the multispecies consortium, with the exception of Campylobacter rectus cell numbers. The localization of T. forsythia within the bacterial agglomeration varied depending on changes in the S-layer glycan, and this also affected its aggregation with Porphyromonas gingivalis. This suggests a selective role for the glycosylated T. forsythia S-layer in the positioning of this species within the biofilm, its co-localization with P. gingivalis, and the prevalence of C. rectus. These findings might translate into a potential role of T. forsythia cell surface structures in the virulence of this species when interacting with host tissues and immune system, from within or beyond the biofilm. This article is protected by copyright. All rights reserved.

  13. A mouse renin distal enhancer is essential for blood pressure homeostasis in BAC-rescued renin-null mutant mice.

    PubMed

    Tanimoto, Keiji; Kanafusa, Sumiyo; Ushiki, Aki; Matsuzaki, Hitomi; Ishida, Junji; Sugiyama, Fumihiro; Fukamizu, Akiyoshi

    2014-10-01

    Renin is predominantly expressed in juxtaglomerular cells in the kidney and regulates blood pressure homeostasis. To examine possible in vivo functions of a mouse distal enhancer (mdE), we generated transgenic mice (TgM) carrying either wild-type or mdE-deficient renin BACs (bacterial artificial chromosome), integrated at the identical chromosomal site. In the kidneys of the TgM, the mdE contributed 80% to basal renin promoter activity. To test for possible physiological roles for the mdE, renin BAC transgenes were used to rescue the hypotensive renin-null mice. Interestingly, renal renin expression in the Tg(BAC):renin-null compound mice was indistinguishable between the wild-type and mutant BAC carriers. Surprisingly, however, the plasma renin activity and angiotensin I concentration in the mdE compound mutant mice were significantly lower than the same parameters in the control mice, and the mutants were consistently hypotensive, demonstrating that blood pressure homeostasis is regulated through transcriptional cis elements controlling renin activity.

  14. A Novel Bmal1 Mutant Mouse Reveals Essential Roles of the C-Terminal Domain on Circadian Rhythms.

    PubMed

    Park, Noheon; Kim, Hee-Dae; Cheon, Solmi; Row, Hansang; Lee, Jiyeon; Han, Dong-Hee; Cho, Sehyung; Kim, Kyungjin

    2015-01-01

    The mammalian circadian clock is an endogenous biological timer comprised of transcriptional/translational feedback loops of clock genes. Bmal1 encodes an indispensable transcription factor for the generation of circadian rhythms. Here, we report a new circadian mutant mouse from gene-trapped embryonic stem cells harboring a C-terminus truncated Bmal1 (Bmal1GTΔC) allele. The homozygous mutant (Bmal1GTΔC/GTΔC) mice immediately lost circadian behavioral rhythms under constant darkness. The heterozygous (Bmal1+/GTΔC) mice displayed a gradual loss of rhythms, in contrast to Bmal1+/- mice where rhythms were sustained. Bmal1GTΔC/GTΔC mice also showed arrhythmic mRNA and protein expression in the SCN and liver. Lack of circadian reporter oscillation was also observed in cultured fibroblast cells, indicating that the arrhythmicity of Bmal1GTΔC/GTΔC mice resulted from impaired molecular clock machinery. Expression of clock genes exhibited distinct responses to the mutant allele in Bmal1+/GTΔC and Bmal1GTΔC/GTΔC mice. Despite normal cellular localization and heterodimerization with CLOCK, overexpressed BMAL1GTΔC was unable to activate transcription of Per1 promoter and BMAL1-dependent CLOCK degradation. These results indicate that the C-terminal region of Bmal1 has pivotal roles in the regulation of circadian rhythms and the Bmal1GTΔC mice constitute a novel model system to evaluate circadian functional mechanism of BMAL1.

  15. Pathological Features in the LmnaDhe/+ Mutant Mouse Provide a Novel Model of Human Otitis Media and Laminopathies

    PubMed Central

    Zhang, Yan; Yu, Heping; Xu, Min; Han, Fengchan; Tian, Cong; Kim, Suejin; Fredman, Elisha; Zhang, Jin; Benedict-Alderfer, Cindy; Zheng, Qing Yin

    2013-01-01

    Genetic predisposition is recognized as an important pathogenetic factor in otitis media (OM) and associated diseases. Mutant Lmna mice heterozygous for the disheveled hair and ears allele (LmnaDhe/+) exhibit early-onset, profound hearing deficits and other pathological features mimicking human laminopathy associated with the LMNA mutation. We assessed the effects of the LmnaDhe/+ mutation on development of OM and pathological abnormalities characteristic of laminopathy. Malformation and abnormal positioning of the eustachian tube, accompanied by OM, were observed in all of the LmnaDhe/+ mice (100% penetrance) as early as postnatal day P12. Scanning electronic microscopy revealed ultrastructural damage to the cilia in middle ears that exhibited OM. Hearing assessment revealed significant hearing loss, paralleling that in human OM. Expression of NF-κB, TNF-α, and TGF-β, which correlated with inflammation and/or bony development, was up-regulated in the ears or in the peritoneal macrophages of LmnaDhe/+ mice. Rugous, disintegrative, and enlarged nuclear morphology of peritoneal macrophages and hyperphosphatemia were found in LmnaDhe/+ mutant mice. Taken together, these features resemble the pathology of human laminopathies, possibly revealing some profound pathology, beyond OM, associated with the mutation. The LmnaDhe/+ mutant mouse provides a novel model of human OM and laminopathy. PMID:22819531

  16. Absence of light-induced proton extrusion in a cotA-less mutant of Synechocystis sp. strain PCC6803.

    PubMed

    Katoh, A; Sonoda, M; Katoh, H; Ogawa, T

    1996-09-01

    cotA of Synechocystis sp. strain PCC6803 was isolated as a gene that complemented a mutant defective in CO2 transport and is homologous to cemA that encodes a chloroplast envelope membrane protein (A. Katoh, K.S. Lee, H. Fukuzawa, K. Ohyama, and T. Ogawa, Proc. Natl. Acad. Sci. USA 93:4006-4010, 1996). A mutant (M29) constructed by replacing cotA in the wild-type (WT) Synechocystis strain with the omega fragment was unable to grow in BG11 medium (approximately 17 mM Na+) at pH 6.4 or at any pH in a low-sodium medium (100 microM Na+) under aeration with 3% (vol/vol) CO2 in air. The WT cells grew well in the pH range between 6.4 and 8.5 in BG11 medium but only at alkaline pH in the low-sodium medium. Illumination of the WT cells resulted in an extrusion followed by an uptake of protons. In contrast, only proton uptake was observed for the M29 mutant in the light without proton extrusion. There was no difference in sodium uptake activity between the WT and mutant. The mutant still possessed 51% of the WT CO2 transport activity in the presence of 15 mM NaCl. On the basis of these results we concluded that cotA has a role in light-induced proton extrusion and that the inhibition of CO2 transport in the M29 mutant is a secondary effect of the inhibition of proton extrusion.

  17. Anthraquinone dyes decolorization capacity of anamorphic Bjerkandera adusta CCBAS 930 strain and its HRP-like negative mutants.

    PubMed

    Korniłłowicz-Kowalska, Teresa; Rybczyńska, Kamila

    2014-06-01

    Cultures of the anamorphic fungus Bjerkandera adusta CCBAS 930 decolorizing, in stationary cultures, 0.01 % solutions of carminic acid and Poly R-478, were characterised by a strong increase in the activity of the horseradish peroxidase (HRP-like) and manganese-dependent peroxidase (MnP) at a low activity of lignin peroxidase. Genotypically modified mutants of B. adusta CCBAS 930: 930-5 and 930-14, with total or partial loss of decolorization capabilities relative to anthraquinonic dyes, showed inhibition of the activity of HRP-like peroxidase and MnP. Whereas, compared to the parental strain, in the mutant cultures there was an increase in the activity of lignin peroxidase and laccase. The paper presents a discussion of the role of the studied enzymatic activities in the process of decolorization of anthraquinonic dyes by the strain B. adusta CCBAS 930.

  18. Multi-omics approach to study global changes in a triclosan-resistant mutant strain of Acinetobacter baumannii ATCC 17978.

    PubMed

    Fernando, Dinesh M; Chong, Patrick; Singh, Manu; Spicer, Victor; Unger, Mark; Loewen, Peter C; Westmacott, Garrett; Kumar, Ayush

    2017-01-01

    Acinetobacter baumannii AB042, a triclosan-resistant mutant strain, was examined for modulated gene expression using whole-genome sequencing, transcriptomics and proteomics in order to understand the mechanism of triclosan resistance as well as its impact on A. baumannii. Data revealed modulated expression of the fatty acid metabolism pathway, co-factors known to play a role in the synthesis of fatty acids, as well as several transcriptional regulators. The membrane composition of the mutant revealed a decrease in C18 with a corresponding increase in C16 fatty acids compared with the parent strain A. baumannii ATCC 17978. These data indicate that A. baumannii responds to triclosan by altering the expression of genes involved in fatty acid metabolism, antibiotic resistance and amino acid metabolism.

  19. Individual strains of Lactobacillus paracasei differentially inhibit human basophil and mouse mast cell activation

    PubMed Central

    Cassard, Lydie; Lalanne, Ana Inés; Garault, Peggy; Cotillard, Aurélie; Chervaux, Christian; Wels, Michiel; Smokvina, Tamara

    2016-01-01

    Abstract Introduction The microbiota controls a variety of biological functions, including immunity, and alterations of the microbiota in early life are associated with a higher risk of developing allergies later in life. Several probiotic bacteria, and particularly lactic acid bacteria, were described to reduce both the induction of allergic responses and allergic manifestations. Although specific probiotic strains were used in these studies, their protective effects on allergic responses also might be common for all lactobacilli. Methods To determine whether allergic effector cells inhibition is a common feature of lactobacilli or whether it varies among lactobacilli strains, we compared the ability of 40 strains of the same Lactobacillus paracasei species to inhibit IgE‐dependent mouse mast cell and human basophil activation. Results We uncovered a marked heterogeneity in the inhibitory properties of the 40 Lactobacillus strains tested. These segregated into three to four clusters depending on the intensity of inhibition. Some strains inhibited both mouse mast cell and human basophil activation, others strains inhibited only one cell type and another group induced no inhibition of activation for either cell type. Conclusions Individual Lactobacillus strains of the same species differentially inhibit IgE‐dependent activation of mouse mast cells and human basophils, two cell types that are critical in the onset of allergic manifestations. Although we failed to identify specific bacterial genes associated with inhibition by gene‐trait matching analysis, our findings demonstrate the complexity of the interactions between the microbiota and the host. These results suggest that some L. paracasei strains might be more beneficial in allergies than others strains and provide the bases for a rational screening of lactic acid bacteria strains as next‐generation probiotics in the field of allergy. PMID:27621812

  20. What makes a good mother? Implication of inter-, and intrastrain strain "cross fostering" for emotional changes in mouse offspring.

    PubMed

    Lerch, Sandra; Brandwein, Christiane; Dormann, Christof; Gass, Peter; Chourbaji, Sabine

    2014-11-01

    Currently, the mouse represents the preferred model organism among mammals used for animal studies. Due to a great availability of mutant strains it represents a standard method to analyze in vivo the effects of targeted gene manipulations. While this - at least in theory - represents a valuable tool to elucidate the pathophysiology of certain human diseases, there are several caveats which need to be considered working with animals. In our study we aimed at elucidating, how a widely established breeding strategy, i.e. the use of "foster mothers" to save the survival of compromised mouse pups for ongoing experiments, per se, affects the emotional phenotype of the fostered offspring. Since it is a popular method to use outbred strains like NMRI to do this job, we sought to evaluate the potential effects of such an artificial postnatal condition and compare either offspring nurtured by their biological mothers or two different strains of foster mothers. Hence we analysed changes in maternal care and later on the emotional behaviour of male and female C57BL/6 mice reared by (i) their biological C57BL/6 mothers, (ii) C57BL/6 foster mothers and (iii) NMRI foster mothers in a behavioural test battery. In addition we assessed corticosterone levels as indicator for stress-physiological changes. Besides clear differences in maternal behaviour, our study indicates an altered emotional state (i.e. differences in anxiety and depressive-like features) in mice reared by different "categories" of mothers, which emphasizes the importance to embed such perinatal conditions in the evaluation of animal-deriving data.

  1. Reversible modulation of SIRT1 activity in a mouse strain

    PubMed Central

    Clark-Knowles, Katherine V.; He, Xiaohong; Jardine, Karen; Coulombe, Josée; Dewar-Darch, Danielle; Caron, Annabelle Z.

    2017-01-01

    The SIRT1 protein deacetylase is reported to have a remarkably wide spectrum of biological functions affecting such varied processes as aging, cancer, metabolism, neurodegeneration and immunity. However, the SIRT1 literature is also full of contradictions. To help establish the role(s) of SIRT1 in these and other biological processes, we set out to create a mouse in which the SIRT1 activity could be toggled between on and off states by fusing the estrogen receptor ligand-binding domain (ER) to the C terminus of the SIRT1 protein. We found that the catalytic activity of the SIRT1-ER fusion protein increased 4–5 fold in cells treated with its ligand, 4-hydroxy-tamoxifen (4OHT). The 4OHT-induced activation of SIRT1-ER was due in large part to a 2 to 4-fold increase in abundance of the SIRT1-ER protein in cells in culture and in tissues in vivo. This increase is reversible and is a consequence of 4OHT-induced stabilization of the SIRT1-ER protein. Since changes in SIRT1 level or activity of 2–4 fold are frequently reported to be sufficient to affect its biological functions, this mouse should be helpful in establishing the causal relationships between SIRT1 and the diseases and processes it affects. PMID:28273169

  2. Reversible modulation of SIRT1 activity in a mouse strain.

    PubMed

    Clark-Knowles, Katherine V; He, Xiaohong; Jardine, Karen; Coulombe, Josée; Dewar-Darch, Danielle; Caron, Annabelle Z; Gray, Douglas A; McBurney, Michael W

    2017-01-01

    The SIRT1 protein deacetylase is reported to have a remarkably wide spectrum of biological functions affecting such varied processes as aging, cancer, metabolism, neurodegeneration and immunity. However, the SIRT1 literature is also full of contradictions. To help establish the role(s) of SIRT1 in these and other biological processes, we set out to create a mouse in which the SIRT1 activity could be toggled between on and off states by fusing the estrogen receptor ligand-binding domain (ER) to the C terminus of the SIRT1 protein. We found that the catalytic activity of the SIRT1-ER fusion protein increased 4-5 fold in cells treated with its ligand, 4-hydroxy-tamoxifen (4OHT). The 4OHT-induced activation of SIRT1-ER was due in large part to a 2 to 4-fold increase in abundance of the SIRT1-ER protein in cells in culture and in tissues in vivo. This increase is reversible and is a consequence of 4OHT-induced stabilization of the SIRT1-ER protein. Since changes in SIRT1 level or activity of 2-4 fold are frequently reported to be sufficient to affect its biological functions, this mouse should be helpful in establishing the causal relationships between SIRT1 and the diseases and processes it affects.

  3. Characterization of oxidative phosphorylation enzymes in Euglena gracilis and its white mutant strain W(gm)ZOflL.

    PubMed

    Krnáčová, Katarína; Rýdlová, Ivana; Vinarčíková, Michaela; Krajčovič, Juraj; Vesteg, Matej; Horváth, Anton

    2015-03-12

    The enzymes involved in Euglena oxidative phosphorylation (OXPHOS) were characterized in this study. We have demonstrated that Euglena gracilis strain Z and its stable bleached non-photosynthetic mutant strain WgmZOflL both possess fully functional OXPHOS apparatus as well as pathways requiring terminal alternative oxidase(s) and alternative mitochondrial NADH-dehydrogenase(s). Light (or dark) and plastid (non)functionality seem to have little effect on oxygen consumption, the activities of the enzymes involved in OXPHOS and the action of respiration inhibitors in Euglena. This study also demonstrates biochemical properties of complex III (cytochrome c reductase) in Euglena.

  4. Expression of the cloned Escherichia coli O9 rfb gene in various mutant strains of Salmonella typhimurium.

    PubMed Central

    Sugiyama, T; Kido, N; Komatsu, T; Ohta, M; Kato, N

    1991-01-01

    To investigate the effect of chromosomal mutation on the synthesis of rfe-dependent Escherichia coli O9 lipopolysaccharide (LPS), the cloned E. coli O9 rfb gene was introduced into Salmonella typhimurium strains defective in various genes involved in the synthesis of LPS. When E. coli O9 rfb was introduced into S. typhimurium strains possessing defects in rfb or rfc, they synthesized E. coli O9 LPS on their cell surfaces. The rfe-defective mutant of S. typhimurium synthesized only very small amounts of E. coli O9 LPS after the introduction of E. coli O9 rfb. These results confirmed the widely accepted idea that the biosynthesis of E. coli O9-specific polysaccharide does not require rfc but requires rfe. By using an rfbT mutant of the E. coli O9 rfb gene, the mechanism of transfer of the synthesized E. coli O9-specific polysaccharide from antigen carrier lipid to the R-core of S. typhimurium was investigated. The rfbT mutant of the E. coli O9 rfb gene failed to direct the synthesis of E. coli O9 LPS in the rfc mutant strain of S. typhimurium, in which rfaL and rfbT functions are intact, but directed the synthesis of the precursor. Because the intact E. coli O9 rfb gene directed the synthesis of E. coli O9 LPS in the same strain, it was suggested that the rfaL product of S. typhimurium and rfbT product of E. coli O9 cooperate to synthesize E. coli O9 LPS in S. typhimurium. Images PMID:1987133

  5. Newborn mouse lens proteome and its alteration by lysine 6 mutant ubiquitin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ubiquitin is a tag that often initiates degradation of proteins by the proteasome in the ubiquitin proteasome system. Targeted expression of K6W mutant ubiquitin (K6W-Ub) in the lens results in defects in lens development and cataract formation, suggesting critical functions for ubiquitin in lens. T...

  6. Effects of Pyrogallol on Growth and Cytotoxicity of Wild-Type and katG Mutant Strains of Vibrio vulnificus

    PubMed Central

    Lim, Ju Young; Kim, Choon-Mee; Rhee, Joon Haeng; Kim, Young Ran

    2016-01-01

    Vibrio vulnificus is a causative agent of fatal septicemia and necrotic wound infection and the pathogen infection became an important public health problem in many counties. Vibrio vulnificus causes RtxA1 toxin-induced acute cell death. We tried to identify natural products that inhibit the acute cytotoxicity of V. vulnificus using a lactate hydrogenase assay. A polyphenol pyrogallol protected HeLa cells from V. vulnificus-induced cytotoxicity. Pyrogallol also decreased the growth of V. vulnificus; this inhibitory effect was more significant during log phase than stationary phase. To further elucidate the inhibitory mechanism, pyrogallol-induced toxicity was compared between a V. vulnificus catalase-peroxidase mutant (katG−) and the isogenic wild-type MO6-24/O strains. No growth was observed for the katG− mutant in the presence of pyrogallol (50 μg/mL) even after 24 h, whereas the wild-type strain demonstrated growth recovery following a prolonged lag phase. Pyrogallol-mediated growth inhibition of the katG− mutant strain was partially rescued by exogenous catalase treatment. These results indicate that the mechanism by which pyrogallol inhibits the growth and cytotoxicity of V. vulnificus likely involves polyphenol-induced prooxidant damage. Taken together, these results suggest that pyrogallol has potential for development as a new paradigm drug to treat infectious diseases. PMID:27936080

  7. Comparison of motor performance, brain biochemistry and histology of two A30P α-synuclein transgenic mouse strains.

    PubMed

    Piltonen, M; Savolainen, M; Patrikainen, S; Baekelandt, V; Myöhänen, T T; Männistö, P T

    2013-02-12

    Three point mutations in the SNCA gene encoding α-synuclein (aSyn) have been associated with autosomal dominant forms of Parkinson's disease. To better understand the role of the A30P mutant aSyn, we compared two transgenic mouse strains: a knock-in mouse with an introduced A30P point mutation in the wild-type (WT) gene (Snca(tm(A30P))) and a transgenic (Tg) mouse overexpressing the human A30P aSyn gene under the prion promoter [tg(Prnp-SNCA A30P)]. The brain aSyn load, motor performance, brain dopamine (DA) and sensitivity to 6-hydroxydopamine (6-OHDA) were studied in these mice. aSyn was evidently accumulating with age in all mice, particularly in tg(Prnp-SNCA A30P) Tg mice. There were no robust changes in basal locomotor activities of the mice of either line at 6 months, but after 1 year, tg(Prnp-SNCA A30P) Tg mice developed severe problems with vertical movements. However, the younger Tg mice had a reduced locomotor response to 1mg/kg of d-amphetamine. Snca(tm(A30P)) mice with the targeted mutation (Tm) were slightly hyperactive at all ages. Less 6-OHDA was required in tg(Prnp-SNCA A30P) Tg (1 μg) than in WT (3μg) mice for an ipsilateral rotational bias by d-amphetamine. That was not seen with the Snca(tm(A30P)) strain. A small dose of 6-OHDA (0.33 μg) led to contralateral rotations and elevated striatal DA in Tg/Tm mice of both lines but otherwise 6-OHDA-induced striatal DA depletion was similar in all mice, indicating no A30P-aSyn-related toxin sensitivity. 3,4-Dihydroxyphenylacetic acid/DA-ratio was elevated in tg(Prnp-SNCA A30P) mice, suggesting an enhanced DA turnover. This ratio and homovanillic acid/DA-ratio were declined in Snca(tm(A30P)) mice. Our results demonstrate that the two differently constructed A30P-aSyn mouse strains have distinct behavioral and biochemical characteristics, some of which are opposite. Since the two lines with the same background were not identically produced, the deviations found may be partially caused by factors other

  8. Complete Genome Sequence of Acinetobacter sp. Strain NCu2D-2 Isolated from a Mouse

    PubMed Central

    Blaschke, Ulrike

    2017-01-01

    ABSTRACT Whole-genome sequencing of Acinetobacter sp. strain NCu2D-2, isolated from the trachea of a mouse, revealed the presence of a plasmid of 309,964 bp with little overall similarity to known plasmids and enriched in insertion sequences (ISs) closely related to IS elements known from the nosocomial pathogen Acinetobacter baumannii. PMID:28126932

  9. Mouse Mutants for the Nicotinic Acetylcholine Receptor ß2 Subunit Display Changes in Cell Adhesion and Neurodegeneration Response Genes

    PubMed Central

    Rubin, Carol M.; van der List, Deborah A.; Ballesteros, Jose M.; Goloshchapov, Andrey V.; Chalupa, Leo M.; Chapman, Barbara

    2011-01-01

    Mice lacking expression of the ß2 subunit of the neuronal nicotinic acetylcholine receptor (CHRNB2) display abnormal retinal waves and a dispersed projection of retinal ganglion cell (RGC) axons to their dorsal lateral geniculate nuclei (dLGNs). Transcriptomes of LGN tissue from two independently generated Chrnb2−/− mutants and from wildtype mice were obtained at postnatal day 4 (P4), during the normal period of segregation of eye-specific afferents to the LGN. Microarray analysis reveals reduced expression of genes located on the cell membrane or in extracellular space, and of genes active in cell adhesion and calcium signaling. In particular, mRNA for cadherin 1 (Cdh1), a known axon growth regulator, is reduced to nearly undetectable levels in the LGN of P4 mutant mice and Lypd2 mRNA is similarly suppressed. Similar analysis of retinal tissue shows increased expression of crumbs 1 (Crb1) and chemokine (C-C motif) ligand 21 (Ccl21) mRNAs in Chrnb2−/− mutant animals. Mutations in these genes are associated with retinal neuronal degeneration. The retinas of Chrnb2−/− mutants are normal in appearance, but the increased expression of these genes may also be involved in the abnormal projection patterns of RGC to the LGN. These data may provide the tools to distinguish the interplay between neural activity and molecular expression. Finally, comparison of the transcriptomes of the two different Chrnb2−/− mutant strains reveals the effects of genetic background upon gene expression. PMID:21547082

  10. Mucosal-associated invariant T cell–rich congenic mouse strain allows functional evaluation

    PubMed Central

    Cui, Yue; Franciszkiewicz, Katarzyna; Mburu, Yvonne K.; Mondot, Stanislas; Le Bourhis, Lionel; Premel, Virginie; Martin, Emmanuel; Kachaner, Alexandra; Duban, Livine; Ingersoll, Molly A.; Rabot, Sylvie; Jaubert, Jean; De Villartay, Jean-Pierre; Soudais, Claire; Lantz, Olivier

    2015-01-01

    Mucosal-associated invariant T cells (MAITs) have potent antimicrobial activity and are abundant in humans (5%–10% in blood). Despite strong evolutionary conservation of the invariant TCR-α chain and restricting molecule MR1, this population is rare in laboratory mouse strains (≈0.1% in lymphoid organs), and lack of an appropriate mouse model has hampered the study of MAIT biology. Herein, we show that MAITs are 20 times more frequent in clean wild-derived inbred CAST/EiJ mice than in C57BL/6J mice. Increased MAIT frequency was linked to one CAST genetic trait that mapped to the TCR-α locus and led to higher usage of the distal Vα segments, including Vα19. We generated a MAIThi congenic strain that was then crossed to a transgenic Rorcgt-GFP reporter strain. Using this tool, we characterized polyclonal mouse MAITs as memory (CD44+) CD4–CD8lo/neg T cells with tissue-homing properties (CCR6+CCR7–). Similar to human MAITs, mouse MAITs expressed the cytokine receptors IL-7R, IL-18Rα, and IL-12Rβ and the transcription factors promyelocytic leukemia zinc finger (PLZF) and RAR-related orphan receptor γ (RORγt). Mouse MAITs produced Th1/2/17 cytokines upon TCR stimulation and recognized a bacterial compound in an MR1-dependent manner. During experimental urinary tract infection, MAITs migrated to the bladder and decreased bacterial load. Our study demonstrates that the MAIThi congenic strain allows phenotypic and functional characterization of naturally occurring mouse MAITs in health and disease. PMID:26524590

  11. A new model for non-typeable Haemophilus influenzae middle ear infection in the Junbo mutant mouse

    PubMed Central

    Hood, Derek; Moxon, Richard; Purnell, Tom; Richter, Caroline; Williams, Debbie; Azar, Ali; Crompton, Michael; Wells, Sara; Fray, Martin; Brown, Steve D. M.; Cheeseman, Michael T.

    2016-01-01

    ABSTRACT Acute otitis media, inflammation of the middle ear, is the most common bacterial infection in children and, as a consequence, is the most common reason for antimicrobial prescription to this age group. There is currently no effective vaccine for the principal pathogen involved, non-typeable Haemophilus influenzae (NTHi). The most frequently used and widely accepted experimental animal model of middle ear infection is in chinchillas, but mice and gerbils have also been used. We have established a robust model of middle ear infection by NTHi in the Junbo mouse, a mutant mouse line that spontaneously develops chronic middle ear inflammation in specific pathogen-free conditions. The heterozygote Junbo mouse (Jbo/+) bears a mutation in a gene (Evi1, also known as Mecom) that plays a role in host innate immune regulation; pre-existing middle ear inflammation promotes NTHi middle ear infection. A single intranasal inoculation with NTHi produces high rates (up to 90%) of middle ear infection and bacterial titres (104-105 colony-forming units/µl) in bulla fluids. Bacteria are cleared from the majority of middle ears between day 21 and 35 post-inoculation but remain in approximately 20% of middle ears at least up to day 56 post-infection. The expression of Toll-like receptor-dependent response cytokine genes is elevated in the middle ear of the Jbo/+ mouse following NTHi infection. The translational potential of the Junbo model for studying antimicrobial intervention regimens was shown using a 3 day course of azithromycin to clear NTHi infection, and its potential use in vaccine development studies was shown by demonstrating protection in mice immunized with killed homologous, but not heterologous, NTHi bacteria. PMID:26611891

  12. A new model for non-typeable Haemophilus influenzae middle ear infection in the Junbo mutant mouse.

    PubMed

    Hood, Derek; Moxon, Richard; Purnell, Tom; Richter, Caroline; Williams, Debbie; Azar, Ali; Crompton, Michael; Wells, Sara; Fray, Martin; Brown, Steve D M; Cheeseman, Michael T

    2016-01-01

    Acute otitis media, inflammation of the middle ear, is the most common bacterial infection in children and, as a consequence, is the most common reason for antimicrobial prescription to this age group. There is currently no effective vaccine for the principal pathogen involved, non-typeable Haemophilus influenzae (NTHi). The most frequently used and widely accepted experimental animal model of middle ear infection is in chinchillas, but mice and gerbils have also been used. We have established a robust model of middle ear infection by NTHi in the Junbo mouse, a mutant mouse line that spontaneously develops chronic middle ear inflammation in specific pathogen-free conditions. The heterozygote Junbo mouse (Jbo/+) bears a mutation in a gene (Evi1, also known as Mecom) that plays a role in host innate immune regulation; pre-existing middle ear inflammation promotes NTHi middle ear infection. A single intranasal inoculation with NTHi produces high rates (up to 90%) of middle ear infection and bacterial titres (10(4)-10(5) colony-forming units/µl) in bulla fluids. Bacteria are cleared from the majority of middle ears between day 21 and 35 post-inoculation but remain in approximately 20% of middle ears at least up to day 56 post-infection. The expression of Toll-like receptor-dependent response cytokine genes is elevated in the middle ear of the Jbo/+ mouse following NTHi infection. The translational potential of the Junbo model for studying antimicrobial intervention regimens was shown using a 3 day course of azithromycin to clear NTHi infection, and its potential use in vaccine development studies was shown by demonstrating protection in mice immunized with killed homologous, but not heterologous, NTHi bacteria.

  13. Constitutive expression of the tzs gene from Agrobacterium tumefaciens virG mutant strains is responsible for improved transgenic plant regeneration in cotton meristem transformation.

    PubMed

    Ye, Xudong; Chen, Yurong; Wan, Yuechun; Hong, Yun-Jeong; Ruebelt, Martin C; Gilbertson, Larry A

    2016-03-01

    KEY MESSAGE : virG mutant strains of a nopaline type of Agrobacterium tumefaciens increase the transformation frequency in cotton meristem transformation. Constitutive cytokinin expression from the tzs gene in the virG mutant strains is responsible for the improvement. Strains of Agrobacterium tumefaciens were tested for their ability to improve cotton meristem transformation frequency. Two disarmed A. tumefaciens nopaline strains with either a virGN54D constitutively active mutation or virGI77V hypersensitive induction mutation significantly increased the transformation frequency in a cotton meristem transformation system. The virG mutant strains resulted in greener explants after three days of co-culture in the presence of light, which could be attributed to a cytokinin effect of the mutants. A tzs knockout strain of virGI77V mutant showed more elongated, less green explants and decreased cotton transformation frequency, as compared to a wild type parental strain, suggesting that expression of the tzs gene is required for transformation frequency improvement in cotton meristem transformation. In vitro cytokinin levels in culture media were tenfold higher in the virGN54D strain, and approximately 30-fold higher in the virGI77V strain, in the absence of acetosyringone induction, compared to the wild type strain. The cytokinin level in the virGN54D strain is further increased upon acetosyringone induction, while the cytokinin level in the virGI77V mutant is decreased by induction, suggesting that different tzs gene expression regulation mechanisms are present in the two virG mutant strains. Based on these data, we suggest that the increased cytokinin levels play a major role in increasing Agrobacterium attachment and stimulating localized division of the attached plant cells.

  14. Cox4i2, Ifit2, and Prdm11 Mutant Mice: Effective Selection of Genes Predisposing to an Altered Airway Inflammatory Response from a Large Compendium of Mutant Mouse Lines.

    PubMed

    Horsch, Marion; Aguilar-Pimentel, Juan Antonio; Bönisch, Clemens; Côme, Christophe; Kolster-Fog, Cathrine; Jensen, Klaus T; Lund, Anders H; Lee, Icksoo; Grossman, Lawrence I; Sinkler, Christopher; Hüttemann, Maik; Bohn, Erwin; Fuchs, Helmut; Ollert, Markus; Gailus-Durner, Valérie; de Angelis, Martin Hrabĕ; Beckers, Johannes

    2015-01-01

    We established a selection strategy to identify new models for an altered airway inflammatory response from a large compendium of mutant mouse lines that were systemically phenotyped in the German Mouse Clinic (GMC). As selection criteria we included published gene functional data, as well as immunological and transcriptome data from GMC phenotyping screens under standard conditions. Applying these criteria we identified a few from several hundred mutant mouse lines and further characterized the Cox4i2tm1Hutt, Ifit2tm1.1Ebsb, and Prdm11tm1.1ahl lines following ovalbumin (OVA) sensitization and repeated OVA airway challenge. Challenged Prdm11tm1.1ahl mice exhibited changes in B cell counts, CD4+ T cell counts, and in the number of neutrophils in bronchoalveolar lavages, whereas challenged Ifit2tm1.1Ebsb mice displayed alterations in plasma IgE, IgG1, IgG3, and IgM levels compared to the challenged wild type littermates. In contrast, challenged Cox4i2tm1Hutt mutant mice did not show alterations in the humoral or cellular immune response compared to challenged wild type mice. Transcriptome analyses from lungs of the challenged mutant mouse lines showed extensive changes in gene expression in Prdm11tm1.1ahl mice. Functional annotations of regulated genes of all three mutant mouse lines were primarily related to inflammation and airway smooth muscle (ASM) remodeling. We were thus able to define an effective selection strategy to identify new candidate genes for the predisposition to an altered airway inflammatory response under OVA challenge conditions. Similar selection strategies may be used for the analysis of additional genotype-envirotype interactions for other diseases.

  15. A mouse muscle-adapted enterovirus 71 strain with increased virulence in mice.

    PubMed

    Wang, Wei; Duo, Jianying; Liu, Jiangning; Ma, Chunmei; Zhang, Lianfeng; Wei, Qiang; Qin, Chuan

    2011-09-01

    Enterovirus 71 (EV71) infections can usually cause epidemic hand, foot, and mouth disease (HFMD), and occasionally lead to aseptic meningitis, encephalitis, and polio-like illness. Skeletal muscles have been thought to be crucial for the pathogenesis of EV71-related diseases. However, little is known about the virulence of mouse muscle-adapted EV71. The EV71 0805 were subjected to four passages in the mouse muscle to generate a mouse-adapted EV71 strain of 0805a. In comparison with the parental EV71 0805, the mouse muscle-adapted EV71 0805a displayed stronger cytotoxicity against Rhabdomyosarcoma (RD) cells and more efficient replication in RD cells. Furthermore, infection with the EV71 0805a significantly inhibited the gain of body weight, accompanied by increased muscle virus load and multiple tissue distribution in the infected mouse. Histological examinations indicated that infection with the EV71 0805 did not cause obvious pathogenic lesions in mice, while infection with the muscle-adapted 0805a resulted in severe necrotizing myositis in the skeletal and cardio muscles, and intestinitis in mice on day 5 post infection. Further analysis revealed many mutations in different regions of the genome of mouse muscle-adapted virus. Collectively, these data demonstrated the mouse muscle-adapted EV71 0805a with increased virulence in mice.

  16. Altered striatal function in a mutant mouse lacking D1A dopamine receptors.

    PubMed Central

    Drago, J; Gerfen, C R; Lachowicz, J E; Steiner, H; Hollon, T R; Love, P E; Ooi, G T; Grinberg, A; Lee, E J; Huang, S P

    1994-01-01

    Of the five known dopamine receptors, D1A and D2 represent the major subtypes expressed in the striatum of the adult brain. Within the striatum, these two subtypes are differentially distributed in the two main neuronal populations that provide direct and indirect pathways between the striatum and the output nuclei of the basal ganglia. Movement disorders, including Parkinson disease and various dystonias, are thought to result from imbalanced activity in these pathways. Dopamine regulates movement through its differential effects on D1A receptors expressed by direct output neurons and D2 receptors expressed by indirect output neurons. To further examine the interaction of D1A and D2 neuronal pathways in the striatum, we used homologous recombination to generate mutant mice lacking functional D1A receptors (D1A-/-). D1A-/- mutants are growth retarded and die shortly after weaning age unless their diet is supplemented with hydrated food. With such treatment the mice gain weight and survive to adulthood. Neurologically, D1A-/- mice exhibit normal coordination and locomotion, although they display a significant decrease in rearing behavior. Examination of the striatum revealed changes associated with the altered phenotype of these mutants. D1A receptor binding was absent in striatal sections from D1A-/- mice. Striatal neurons normally expressing functional D1A receptors are formed and persist in adult homozygous mutants. Moreover, substance P mRNA, which is colocalized specifically in striatal neurons with D1A receptors, is expressed at a reduced level. In contrast, levels of enkephalin mRNA, which is expressed in striatal neurons with D2 receptors, are unaffected. These findings show that D1A-/- mice exhibit selective functional alterations in the striatal neurons giving rise to the direct striatal output pathway. Images Fig. 2 Fig. 4 PMID:7809078

  17. Functional genomics screening utilizing mutant mouse embryonic stem cells identifies novel radiation-response genes.

    PubMed

    Loesch, Kimberly; Galaviz, Stacy; Hamoui, Zaher; Clanton, Ryan; Akabani, Gamal; Deveau, Michael; DeJesus, Michael; Ioerger, Thomas; Sacchettini, James C; Wallis, Deeann

    2015-01-01

    Elucidating the genetic determinants of radiation response is crucial to optimizing and individualizing radiotherapy for cancer patients. In order to identify genes that are involved in enhanced sensitivity or resistance to radiation, a library of stable mutant murine embryonic stem cells (ESCs), each with a defined mutation, was screened for cell viability and gene expression in response to radiation exposure. We focused on a cancer-relevant subset of over 500 mutant ESC lines. We identified 13 genes; 7 genes that have been previously implicated in radiation response and 6 other genes that have never been implicated in radiation response. After screening, proteomic analysis showed enrichment for genes involved in cellular component disassembly (e.g. Dstn and Pex14) and regulation of growth (e.g. Adnp2, Epc1, and Ing4). Overall, the best targets with the highest potential for sensitizing cancer cells to radiation were Dstn and Map2k6, and the best targets for enhancing resistance to radiation were Iqgap and Vcan. Hence, we provide compelling evidence that screening mutant ESCs is a powerful approach to identify genes that alter radiation response. Ultimately, this knowledge can be used to define genetic variants or therapeutic targets that will enhance clinical therapy.

  18. Bilateral subcortical heterotopia with partial callosal agenesis in a mouse mutant.

    PubMed

    Rosen, G D; Azoulay, N G; Griffin, E G; Newbury, A; Koganti, L; Fujisaki, N; Takahashi, E; Grant, P E; Truong, D T; Fitch, R H; Lu, L; Williams, R W

    2013-04-01

    Cognition and behavior depend on the precise placement and interconnection of complex ensembles of neurons in cerebral cortex. Mutations that disrupt migration of immature neurons from the ventricular zone to the cortical plate have provided major insight into mechanisms of brain development and disease. We have discovered a new and highly penetrant spontaneous mutation that leads to large nodular bilateral subcortical heterotopias with partial callosal agenesis. The mutant phenotype was first detected in a colony of fully inbred BXD29 mice already known to harbor a mutation in Tlr4. Neurons confined to the heterotopias are mainly born in midgestation to late gestation and would normally have migrated into layers 2-4 of overlying neocortex. Callosal cross-sectional area and fiber number are reduced up to 50% compared with coisogenic wildtype BXD29 substrain controls. Mutants have a pronounced and highly selective defect in rapid auditory processing. The segregation pattern of the mutant phenotype is most consistent with a two-locus autosomal recessive model, and selective genotyping definitively rules out the Tlr4 mutation as a cause. The discovery of a novel mutation with strong pleiotropic anatomical and behavioral effects provides an important new resource for dissecting molecular mechanisms and functional consequences of errors of neuronal migration.

  19. Basso Mouse Scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains.

    PubMed

    Basso, D Michele; Fisher, Lesley C; Anderson, Aileen J; Jakeman, Lyn B; McTigue, Dana M; Popovich, Phillip G

    2006-05-01

    Genetically engineered mice are used extensively to examine molecular responses to spinal cord injury (SCI). Inherent strain differences may confound behavioral outcomes; therefore, behavioral characterization of several strains after SCI is warranted. The Basso, Beattie, Bresnahan Locomotor Rating Scale (BBB) for rats has been widely used for SCI mice, but may not accurately reflect their unique recovery pattern. This study's purpose was to develop a valid locomotor rating scale for mice and to identify strain differences in locomotor recovery after SCI. We examined C57BL/6, C57BL/10, B10.PL, BALB/c, and C57BL/6x129S6 F1 strains for 42 days after mild, moderate, and severe contusive SCI or transection of the mid thoracic spinal cord. Contusions were created using the Ohio State University electromagnetic SCI device which is a displacement-driven model, and the Infinite Horizon device, which is a force-driven model. Attributes and rankings for the Basso Mouse Scale for Locomotion (BMS) were determined from frequency analyses of seven locomotor categories. Mouse recovery differed from rats for coordination, paw position and trunk instability. Disagreement occurred across six expert raters using BBB (p < 0.05) but not BMS to assess the same mice. BMS detected significant differences in locomotor outcomes between severe contusion and transection (p < 0.05) and SCI severity gradations resulting from displacement variations of only 0.1 mm (p < 0.05). BMS demonstrated significant face, predictive and concurrent validity. Novice BMS raters with training scored within 0.5 points of experts and demonstrated high reliability (0.92-0.99). The BMS is a sensitive, valid and reliable locomotor measure in SCI mice. BMS revealed significantly higher recovery in C57BL/10, B10.PL and F1 than the C57BL/6 and BALB/c strains after moderate SCI (p < 0.05). The differing behavioral response to SCI suggests inherent genetic factors significantly impact locomotor recovery and must be

  20. Susceptibility to quantum dot induced lung inflammation differs widely among the Collaborative Cross founder mouse strains

    PubMed Central

    Scoville, David K.; White, Collin C.; Botta, Dianne; McConnachie, Lisa A.; Zadworny, Megan E.; Schmuck, Stefanie C.; Hu, Xiaoge; Gao, Xiaohu; Yu, Jianbo; Dills, Russell L.; Sheppard, Lianne; Delaney, Martha A.; Griffith, William C.; Beyer, Richard P.; Zangar, Richard C.; Pounds, Joel G.; Faustman, Elaine M.; Kavanagh, Terrance J.

    2015-01-01

    Quantum dots (QDs) are engineered semiconductor nanoparticles with unique physicochemical properties that make them potentially useful in clinical, research and industrial settings. However, a growing body of evidence indicates that like other engineered nanomaterials, QDs have the potential to be respiratory hazards, especially in the context of the manufacture of QDs and products containing them, as well as exposures to consumers using these products. The overall goal of this study was to investigate the role of mouse strain in determining susceptibility to QD-induced pulmonary inflammation and toxicity. Male mice from 8 genetically diverse inbred strains (the Collaborative Cross founder strains) were exposed to CdSe–ZnS core–shell QDs stabilized with an amphiphilic polymer. QD treatment resulted in significant increases in the percentage of neutrophils and levels of cytokines present in bronchoalveolar lavage fluid (BALF) obtained from NOD/ShiLtJ and NZO/HlLtJ mice relative to their saline (Sal) treated controls. Cadmium measurements in lung tissue indicated strain-dependent differences in disposition of QDs in the lung. Total glutathione levels in lung tissue were significantly correlated with percent neutrophils in BALF as well as with lung tissue Cd levels. Our findings indicate that QD-induced acute lung inflammation is mouse strain dependent, that it is heritable, and that the choice of mouse strain is an important consideration in planning QD toxicity studies. These data also suggest that formal genetic analyses using additional strains or recombinant inbred strains from these mice could be useful for discovering potential QD-induced inflammation susceptibility loci. PMID:26476918

  1. Deficits in adult neurogenesis, contextual fear conditioning, and spatial learning in a Gfap mutant mouse model of Alexander disease.

    PubMed

    Hagemann, Tracy L; Paylor, Richard; Messing, Albee

    2013-11-20

    Glial fibrillary acidic protein (GFAP) is the major intermediate filament of mature astrocytes in the mammalian CNS. Dominant gain of function mutations in GFAP lead to the fatal neurodegenerative disorder, Alexander disease (AxD), which is characterized by cytoplasmic protein aggregates known as Rosenthal fibers along with variable degrees of leukodystrophy and intellectual disability. The mechanisms by which mutant GFAP leads to these pleiotropic effects are unknown. In addition to astrocytes, GFAP is also expressed in other cell types, particularly neural stem cells that form the reservoir supporting adult neurogenesis in the hippocampal dentate gyrus and subventricular zone of the lateral ventricles. Here, we show that mouse models of AxD exhibit significant pathology in GFAP-positive radial glia-like cells in the dentate gyrus, and suffer from deficits in adult neurogenesis. In addition, they display impairments in contextual learning and spatial memory. This is the first demonstration of cognitive phenotypes in a model of primary astrocyte disease.

  2. Neurotoxicity of chlorpromazine and modulation by amantadine as a function of mouse strain.

    PubMed

    Messiha, F S

    1991-01-01

    The separate and combined effects of successive administration of amantadine, 100 mg/kg, i.p., and chlorpromazine, 0.2 mg/kg, i.p., on motor activity and whole brain levels of certain biogenic amines and major metabolites were studied in four strains of mice. These were the albino ICR, the inbred BALB/C, C57BL/6 and the hybrid CDF-I mice. Amantadine produced a strain-dependent behavioral stimulation subsequent the fourth dose. This was apparent in ICR and C57BL/6 mouse strains and was followed by a behavioral depression phase occurring during the night in C57BL/6 mice which was antagonized by chlorpromazine. Administration of chlorpromazine alone affected only CDF-1 mouse mobility. Chlorpromazine reduced only ICR mouse brain dopamine without concomitant changes in major acid metabolites. Repeated administration of amantadine prior to chlorpromazine negated this effect. Chlorpromazine enhancement of BALB/C brain serotonin and 5-hydroxyindoleacetic acid was antagonised by pretreatment with amantadine. This antagonism was also evident in BALB/C mouse brain dihydroxyphenylacetic acid. The results suggest genotypic-dependent behavioral and cerebral effects by the drugs studied. The antagonism between amantadine and chlorpromazine on brain amines may explain the therapeutic efficacy of amantadine in modulating chlorpromazine-induced extrapyramidal disorders.

  3. The effect of Clostridium perfringens type C strain CN3685 and its isogenic beta toxin null mutant in goats

    PubMed Central

    Garcia, J. P.; Beingesser, J.; Fisher, D. J.; Sayeed, S.; McClane, B. A.; Posthaus, H.; Uzal, F. A.

    2012-01-01

    Clostridium perfringens type C is an important cause of enteritis and/or enterocolitis in several animal species, including pigs, sheep, goats, horses and humans. The disease is a classic enterotoxemia and the enteric lesions and associated systemic effects are thought to be caused primarily by beta toxin (CPB), one of two typing toxins produced by C. perfringens type C. This has been demonstrated recently by fulfilling molecular Koch’s postulates in rabbits and mice. We present here an experimental study to fulfill these postulates in goats, a natural host of C. perfringens type C disease. Nine healthy male or female Anglo Nubian goat kids were inoculated with the virulent C. perfringens type C wild-type strain CN3685, an isogenic CPB null mutant or a strain where the cpb null mutation had been reversed. Three goats inoculated with the wild-type strain presented abdominal pain, hemorrhagic diarrhea, necrotizing enterocolitis, pulmonary edema, hydropericardium and death within 24 h of inoculation. Two goats inoculated with the CPB null mutant and two goats inoculated with sterile culture media (negative controls) remained clinically healthy during 24 h after inoculation and no gross or histological abnormalities were observed in the tissues of any of them. Reversal of the null mutation to partially restore CPB production also increased virulence; 2 goats inoculated with this reversed mutant presented clinical and pathological changes similar to those observed in goats inoculated with the wild-type strain, except that spontaneous death was not observed. These results indicate that CPB is required for C. perfringens type C to induce disease in goats, supporting a key role for this toxin in natural C. perfringens type C disease pathogenesis. PMID:22296994

  4. The effect of Clostridium perfringens type C strain CN3685 and its isogenic beta toxin null mutant in goats.

    PubMed

    Garcia, J P; Beingesser, J; Fisher, D J; Sayeed, S; McClane, B A; Posthaus, H; Uzal, F A

    2012-06-15

    Clostridium perfringens type C is an important cause of enteritis and/or enterocolitis in several animal species, including pigs, sheep, goats, horses and humans. The disease is a classic enterotoxemia and the enteric lesions and associated systemic effects are thought to be caused primarily by beta toxin (CPB), one of two typing toxins produced by C. perfringens type C. This has been demonstrated recently by fulfilling molecular Koch's postulates in rabbits and mice. We present here an experimental study to fulfill these postulates in goats, a natural host of C. perfringens type C disease. Nine healthy male or female Anglo Nubian goat kids were inoculated with the virulent C. perfringens type C wild-type strain CN3685, an isogenic CPB null mutant or a strain where the cpb null mutation had been reversed. Three goats inoculated with the wild-type strain presented abdominal pain, hemorrhagic diarrhea, necrotizing enterocolitis, pulmonary edema, hydropericardium and death within 24h of inoculation. Two goats inoculated with the CPB null mutant and two goats inoculated with sterile culture media (negative controls) remained clinically healthy during 24h after inoculation and no gross or histological abnormalities were observed in the tissues of any of them. Reversal of the null mutation to partially restore CPB production also increased virulence; 2 goats inoculated with this reversed mutant presented clinical and pathological changes similar to those observed in goats inoculated with the wild-type strain, except that spontaneous death was not observed. These results indicate that CPB is required for C. perfringens type C to induce disease in goats, supporting a key role for this toxin in natural C. perfringens type C disease pathogenesis.

  5. Flocculation characteristics of an isolated mutant flocculent Saccharomyces cerevisiae strain and its application for fuel ethanol production from kitchen refuse.

    PubMed

    Ma, Kedong; Wakisaka, Minato; Sakai, Kenji; Shirai, Yoshihito

    2009-04-01

    A stable mutant flocculent yeast strain of Saccharomyces cerevisiae KRM-1 was isolated during repeated-batch ethanol fermentation using kitchen refuse as the medium. The mechanism of flocculation and interaction with the medium was investigated. According to sugar inhibition assay, it was found that the mutant flocculent strain was a NewFlo phenotype. Flocculation was completely inhibited by protease, proteinase K and partially reduced by treatments with carbohydrate-hydrolyzing enzymes. Flocculation ability showed no difference for pH 3.0-6.0. Furthermore, the mutant flocculent yeast provided repeated-batch cultivations employing cell recycles by flocculation over 10 rounds of cultivation for the production of ethanol from kitchen refuse medium, resulting in relatively high productivity averaging 8.25 g/L/h over 10 batches and with a maximal of 10.08 g/L/h in the final batch. Cell recycle by flocculation was fast and convenient, and could therefore be applicable for industrial-scale ethanol production.

  6. Scleral Permeability Varies by Mouse Strain and Is Decreased by Chronic Experimental Glaucoma

    PubMed Central

    Pease, Mary E.; Oglesby, Ericka N.; Cone-Kimball, Elizabeth; Jefferys, Joan L.; Steinhart, Matthew R.; Kim, Anthony J.; Hanes, Justin; Quigley, Harry A.

    2014-01-01

    Purpose. To determine differences in scleral permeability, as measured by diffusion of macromolecules, by using fluorescence recovery after photobleaching (FRAP), with reference to differences by mouse strain, scleral region, and the effect of experimental glaucoma. Methods. In three mouse strains (B6, CD1, and B6 mice with mutation in collagen 8α2 [Aca23]), we used FRAP to measure the diffusion of fluorescein isothiocyanate–dextran, molecular weight 40 kDa, into a photobleached zone of sclera. Scleral regions near the optic nerve head (peripapillary) and two successively more anterior regions were compared. Sclera from mouse eyes subjected to chronically elevated intraocular pressure after bead injection into the anterior chamber were compared to fellow eye controls. FRAP data were compared against estimated retinal ganglion cell axon loss in glaucomatous eyes. Results. Diffusion rates of dextran molecules in the sclera were significantly greater in Aca23 and B6 mice than in CD1 mice in a multivariate model adjusted for region and axial length (P < 0.0001). Dextran diffusion significantly decreased in glaucomatous eyes, and the decline increased with greater axon loss (P = 0.0003, multivariable model). Peripapillary scleral permeability was higher in CD1 than B6 and Aca23 mice (P < 0.05, multivariable model, adjusted by Bonferroni). Conclusions. Measurement of the diffusion rates of dextran molecules in the sclera showed that glaucoma leads to decreased scleral permeability in all three mouse strains tested. Among mouse strains tested, those that were more susceptible to glaucomatous loss of retinal ganglion cells had a lower scleral permeability at baseline. PMID:24557355

  7. Tissue persistence and vaccine efficacy of tricarboxylic acid cycle and one-carbon metabolism mutant strains of Edwardsiella ictaluri.

    PubMed

    Dahal, Neeti; Abdelhamed, Hossam; Karsi, Attila; Lawrence, Mark L

    2014-06-30

    Edwardsiella ictaluri causes enteric septicemia in fish. Recently, we reported construction of E. ictaluri mutants with single and double gene deletions in tricarboxylic acid cycle (TCA) and one-carbon (C-1) metabolism. Here, we report the tissue persistence, virulence, and vaccine efficacy of TCA cycle (EiΔsdhC, EiΔfrdA, and EiΔmdh), C-1 metabolism (EiΔgcvP and EiΔglyA), and combination mutants (EiΔfrdAΔsdhC, EiΔgcvPΔsdhC, EiΔmdhΔsdhC, and EiΔgcvPΔglyA) in channel catfish. The tissue persistence study showed that EiΔsdhC, EiΔfrdA, EiΔfrdAΔsdhC, and EiΔgcvPΔsdhC were able to invade catfish and persist until 11 days post-infection. Vaccination of catfish fingerlings with all nine mutants provided significant (P<0.05) protection against subsequent challenge with the virulent parental strain. Vaccinated catfish fingerlings had 100% survival when subsequently challenged by immersion with wild-type E. ictaluri except for EiΔgcvPΔglyA and EiΔgcvP. Mutant EiΔgcvPΔsdhC was found to be very good at protecting catfish fry, as evidenced by 10-fold higher survival compared to non-vaccinated fish.

  8. Behavioural effects of high fat diet in a mutant mouse model for the schizophrenia risk gene neuregulin 1.

    PubMed

    Holm-Hansen, S; Low, J K; Zieba, J; Gjedde, A; Bergersen, L H; Karl, T

    2016-03-01

    Schizophrenia patients are often obese or overweight and poor dietary choices appear to be a factor in this phenomenon. Poor diet has been found to have complex consequences for the mental state of patients. Thus, this study investigated whether an unhealthy diet [i.e. high fat diet (HFD)] impacts on the behaviour of a genetic mouse model for the schizophrenia risk gene neuregulin 1 (i.e. transmembrane domain Nrg1 mutant mice: Nrg1 HET). Female Nrg1 HET and wild-type-like littermates (WT) were fed with either HFD or a control chow diet. The mice were tested for baseline (e.g. anxiety) and schizophrenia-relevant behaviours after 7 weeks of diet exposure. HFD increased body weight and impaired glucose tolerance in all mice. Only Nrg1 females on HFD displayed a hyper-locomotive phenotype as locomotion-suppressive effects of HFD were only evident in WT mice. HFD also induced an anxiety-like response and increased freezing in the context and the cued version of the fear conditioning task. Importantly, CHOW-fed Nrg1 females displayed impaired social recognition memory, which was absent in HFD-fed mutants. Sensorimotor gating deficits of Nrg1 females were not affected by diet. In summary, HFD had complex effects on the behavioural phenotype of test mice and attenuated particular cognitive deficits of Nrg1 mutant females. This topic requires further investigations thereby also considering other dietary factors of relevance for schizophrenia as well as interactive effects of diet with medication and sex.

  9. A mouse-adapted enterovirus 71 strain causes neurological disease in mice after oral infection.

    PubMed

    Wang, Ya-Fang; Chou, Chun-Ting; Lei, Huan-Yao; Liu, Ching-Chuan; Wang, Shih-Min; Yan, Jing-Jou; Su, Ih-Jen; Wang, Jen-Reng; Yeh, Trai-Ming; Chen, Shun-Hua; Yu, Chun-Keung

    2004-08-01

    A mouse-adapted enterovirus 71 (EV71) strain with increased virulence in mice, MP4, was generated after four serial passages of the parental EV71 strain 4643 in mice. Strain MP4 exhibited a larger plaque size, grew more rapidly, and was more cytotoxic in vitro than strain 4643. Although strains 4643 and MP4 both induced apoptosis of SK-N-SH human neuroblastoma cells, MP4 was more virulent than 4643 in 1-day-old mice (50% lethal doses, 10(2) and 10(4) PFU/mouse, respectively). Strain MP4 (5 x 10(6) PFU/mouse), but not 4643, could orally infect 7-day-old mice, resulting in rear-limb paralysis followed by death 5 to 9 days after inoculation with the virus. Histopathologically, neuronal loss and apoptosis were evident in the spinal cords as well as the brain stems of the infected mice. The limb muscles displayed massive necrosis. There was early and transient virus replication in the intestines, whereas the spinal cord, brain, and muscle became the sites of viral replication during the late phase of the infection. Virus transmission occurred among infected and noninfected cagemates, as demonstrated by the occurrence of seroconversion and the presence of viable viruses in the stool samples of the latter. Protection against EV71 challenge was demonstrated following administration of hyperimmune serum 1 day after inoculation with the virus. Nucleotide sequence analysis of the genome of EV71 strain MP4 revealed four nucleotide changes on the 5' untranslated region, three on the VP2 region, and eight on the 2C region, resulting in one and four amino acid substitutions in the VP2 and 2C proteins, respectively.

  10. Firefly Luciferase Mutants Allow Substrate-Selective Bioluminescence Imaging in the Mouse Brain.

    PubMed

    Adams, Spencer T; Mofford, David M; Reddy, G S Kiran Kumar; Miller, Stephen C

    2016-04-11

    Bioluminescence imaging is a powerful approach for visualizing specific events occurring inside live mice. Animals can be made to glow in response to the expression of a gene, the activity of an enzyme, or the growth of a tumor. But bioluminescence requires the interaction of a luciferase enzyme with a small-molecule luciferin, and its scope has been limited by the mere handful of natural combinations. Herein, we show that mutants of firefly luciferase can discriminate between natural and synthetic substrates in the brains of live mice. When using adeno-associated viral (AAV) vectors to express luciferases in the brain, we found that mutant luciferases that are inactive or weakly active with d-luciferin can light up brightly when treated with the aminoluciferins CycLuc1 and CycLuc2 or their respective FAAH-sensitive luciferin amides. Further development of selective luciferases promises to expand the power of bioluminescence and allow multiple events to be imaged in the same live animal.

  11. Knockin mouse with mutant Gα11 mimics human inherited hypocalcemia and is rescued by pharmacologic inhibitors

    PubMed Central

    Roszko, Kelly L.; Bi, Ruiye; Gorvin, Caroline M.; Xiong, Xiao-Feng; Inoue, Asuka; Thakker, Rajesh V.; Strømgaard, Kristian; Gardella, Thomas

    2017-01-01

    Heterotrimeric G proteins play critical roles in transducing extracellular signals generated by 7-transmembrane domain receptors. Somatic gain-of-function mutations in G protein α subunits are associated with a variety of diseases. Recently, we identified gain-of-function mutations in Gα11 in patients with autosomal-dominant hypocalcemia type 2 (ADH2), an inherited disorder of hypocalcemia, low parathyroid hormone (PTH), and hyperphosphatemia. We have generated knockin mice harboring the point mutation GNA11 c.C178T (p.Arg60Cys) identified in ADH2 patients. The mutant mice faithfully replicated human ADH2. They also exhibited low bone mineral density and increased skin pigmentation. Treatment with NPS 2143, a negative allosteric modulator of the calcium-sensing receptor (CASR), increased PTH and calcium concentrations in WT and mutant mice, suggesting that the gain-of-function effect of GNA11R6OC is partly dependent on coupling to the CASR. Treatment with the Gα11/q-specific inhibitor YM-254890 increased blood calcium in heterozygous but not in homozygous GNA11R60C mice, consistent with published crystal structure data showing that Arg60 forms a critical contact with YM-254890. This animal model of ADH2 provides insights into molecular mechanism of this G protein–related disease and potential paths toward new lines of therapy. PMID:28194446

  12. Coloboma mouse mutant as an animal model of hyperkinesis and attention deficit hyperactivity disorder.

    PubMed

    Wilson, M C

    2000-01-01

    Hyperkinesis and developmental behavioral deficiencies are cardinal signs of attention-deficit hyperactivity disorder. In mice, the mutation coloboma (Cm) corresponds to a contiguous gene defect that results in phenotypic abnormalities including spontaneous hyperactivity, head-bobbing, and ocular dysmorphology. In addition, coloboma mutant mice exhibit delays in achieving complex neonatal motor abilities and deficits in hippocampal physiology, which may contribute to learning deficiencies. The hyperkinesis is ameliorated by low doses of the psychostimulant D-amphetamine and can be rescued genetically by a transgene encoding SNAP-25, located within the Cm deletion. Together with syntaxin and synaptobrevin/VAMP, SNAP-25 constitutes a core protein complex integral to synaptic vesicle fusion and neurotransmitter release. Despite the ubiquitous role of SNAP-25 in synaptic transmission, and uniformly decreased expression in the mutants, coloboma mice show marked deficits in Ca2+-dependent dopamine release selectively in dorsal but not ventral striatum. This suggests that haploinsufficiency of SNAP-25 reveals a specific vulnerability of the nigrostriatal pathway which regulates motor activity and may provide a model for impaired striatal input into executive functions encoded by the prefrontal cortex associated with ADHD.

  13. Maternal Supply of Cas9 to Zygotes Facilitates the Efficient Generation of Site-Specific Mutant Mouse Models

    PubMed Central

    Cebrian-Serrano, Alberto; Zha, Shijun; Hanssen, Lars; Biggs, Daniel; Preece, Christopher

    2017-01-01

    Genome manipulation in the mouse via microinjection of CRISPR/Cas9 site-specific nucleases has allowed the production time for genetically modified mouse models to be significantly reduced. Successful genome manipulation in the mouse has already been reported using Cas9 supplied by microinjection of a DNA construct, in vitro transcribed mRNA and recombinant protein. Recently the use of transgenic strains of mice overexpressing Cas9 has been shown to facilitate site-specific mutagenesis via maternal supply to zygotes and this route may provide an alternative to exogenous supply. We have investigated the feasibility of supplying Cas9 genetically in more detail and for this purpose we report the generation of a transgenic mice which overexpress Cas9 ubiquitously, via a CAG-Cas9 transgene targeted to the Gt(ROSA26)Sor locus. We show that zygotes prepared from female mice harbouring this transgene are sufficiently loaded with maternally contributed Cas9 for efficient production of embryos and mice harbouring indel, genomic deletion and knock-in alleles by microinjection of guide RNAs and templates alone. We compare the mutagenesis rates and efficacy of mutagenesis using this genetic supply with exogenous Cas9 supply by either mRNA or protein microinjection. In general, we report increased generation rates of knock-in alleles and show that the levels of mutagenesis at certain genome target sites are significantly higher and more consistent when Cas9 is supplied genetically relative to exogenous supply. PMID:28081254

  14. Persistent hypersynchronization of neocortical neurons in the mocha mutant of mouse.

    PubMed

    Noebels, J L; Sidman, R L

    1989-09-01

    A recessive mutation in the mouse at the mocha locus (mh, chromosome 10) modulates the synchronous synaptic activation of neocortical neurons, resulting in a constant 6-7 Hz (theta) wave pattern in the electrocorticogram. The gene-linked brain rhythm is unaffected by motor behavior and cannot be desynchronized by sensory stimuli. This exemplary neurological mutation affecting cortical excitability is the first to reveal clearly that the predominance of a specific pattern of spontaneous brain wave activity can be inherited as a recessive trait.

  15. Persistent hypersynchronization of neocortical neurons in the mocha mutant of mouse.

    PubMed

    Noebels, J L; Sidman, R L

    2007-01-01

    A recessive mutation in the mouse at the mocha locus (mh, chromosome 10) modulates the synchronous synaptic activation of neocortical neurons, resulting in a constant 6-7 Hz (theta) wave pattern in the electrocorticogram. The gene-linked brain rhythm is unaffected by motor behavior and cannot be desynchronized by sensory stimuli. This exemplary neurological mutation affecting cortical excitability is the first to reveal clearly that the predominance of a specific pattern of spontaneous brain wave activity can be inherited as a recessive trait.

  16. Embryonic Mutant Huntingtin Aggregate Formation in Mouse Models of Huntington’s Disease

    PubMed Central

    Osmand, Alexander P.; Bichell, Terry Jo.; Bowman, Aaron B.; Bates, Gillian P.

    2016-01-01

    The role of aggregate formation in the pathophysiology of Huntington’s disease (HD) remains uncertain. However, the temporal appearance of aggregates tends to correlate with the onset of symptoms and the numbers of neuropil aggregates correlate with the progression of clinical disease. Using highly sensitive immunohistochemical methods we have detected the appearance of diffuse aggregates during embryonic development in the R6/2 and YAC128 mouse models of HD. These are initially seen in developing axonal tracts and appear to spread throughout the cerebrum in the early neonate. PMID:27886014

  17. A mutagenesis-derived Lrp5 mouse mutant with abnormal retinal vasculature and low bone mineral density

    PubMed Central

    Charette, Jeremy R.; Earp, Sarah E.; Bell, Brent A.; Ackert-Bicknell, Cheryl L.; Godfrey, Dana A.; Rao, Sujata; Anand-Apte, Bela; Nishina, Patsy M.

    2017-01-01

    Purpose Familial exudative vitreoretinopathy (FEVR) is caused by mutations in the genes encoding low-density lipoprotein receptor-related protein (LRP5) or its interacting partners, namely frizzled class receptor 4 (FZD4) and norrin cystine knot growth factor (NDP). Mouse models for Lrp5, Fzd4, and Ndp have proven to be important for understanding the retinal pathophysiology underlying FEVR and systemic abnormalities related to defective Wnt signaling. Here, we report a new mouse mutant, tvrm111B, which was identified by electroretinogram (ERG) screening of mice generated in the Jackson Laboratory Translational Vision Research Models (TVRM) mutagenesis program. Methods ERGs were used to examine outer retinal physiology. The retinal vasculature was examined by in vivo retinal imaging, as well as by histology and immunohistochemistry. The tvrm111B locus was identified by genetic mapping of mice generated in a cross to DBA/2J, and subsequent sequencing analysis. Gene expression was examined by real-time PCR of retinal RNA. Bone mineral density (BMD) was examined by peripheral dual-energy X-ray absorptiometry. Results The tvrm111B allele is inherited as an autosomal recessive trait. Genetic mapping of the decreased ERG b-wave phenotype of tvrm111B mice localized the mutation to a region on chromosome 19 that included Lrp5. Sequencing of Lrp5 identified the insertion of a cytosine (c.4724_4725insC), which is predicted to cause a frameshift that disrupts the last three of five conserved PPPSPxS motifs in the cytoplasmic domain of LRP5, culminating in a premature termination. In addition to a reduced ERG b-wave, Lrp5tvrm111B homozygotes have low BMD and abnormal features of the retinal vasculature that have been reported previously in Lrp5 mutant mice, including persistent hyaloid vessels, leakage on fluorescein angiography, and an absence of the deep retinal capillary bed. Conclusions The phenotype of the Lrp5tvrm111B mutant includes abnormalities of the retinal

  18. A genome-scale Escherichia coli kinetic metabolic model k-ecoli457 satisfying flux data for multiple mutant strains

    PubMed Central

    Khodayari, Ali; Maranas, Costas D.

    2016-01-01

    Kinetic models of metabolism at a genome scale that faithfully recapitulate the effect of multiple genetic interventions would be transformative in our ability to reliably design novel overproducing microbial strains. Here, we introduce k-ecoli457, a genome-scale kinetic model of Escherichia coli metabolism that satisfies fluxomic data for wild-type and 25 mutant strains under different substrates and growth conditions. The k-ecoli457 model contains 457 model reactions, 337 metabolites and 295 substrate-level regulatory interactions. Parameterization is carried out using a genetic algorithm by simultaneously imposing all available fluxomic data (about 30 measured fluxes per mutant). The Pearson correlation coefficient between experimental data and predicted product yields for 320 engineered strains spanning 24 product metabolites is 0.84. This is substantially higher than that using flux balance analysis, minimization of metabolic adjustment or maximization of product yield exhibiting systematic errors with correlation coefficients of, respectively, 0.18, 0.37 and 0.47 (k-ecoli457 is available for download at http://www.maranasgroup.com). PMID:27996047

  19. Competitive growth experiments with a high-lipid Chlamydomonas reinhardtii mutant strain and its wild-type to predict industrial and ecological risks.

    PubMed

    Russo, David A; Beckerman, Andrew P; Pandhal, Jagroop

    2017-12-01

    Key microalgal species are currently being exploited as biomanufacturing platforms using mass cultivation systems. The opportunities to enhance productivity levels or produce non-native compounds are increasing as genetic manipulation and metabolic engineering tools are rapidly advancing. Regardless of the end product, there are both environmental and industrial risks associated to open pond cultivation of mutant microalgal strains. A mutant escape could be detrimental to local biodiversity and increase the risk of algal blooms. Similarly, if the cultivation pond is invaded by a wild-type (WT) microalgae or the mutant reverts to WT phenotypes, productivity could be impacted. To investigate these potential risks, a response surface methodology was applied to determine the competitive outcome of two Chlamydomonas reinhardtii strains, a WT (CC-124) and a high-lipid accumulating mutant (CC-4333), grown in mixotrophic conditions, with differing levels of nitrogen and initial WT to mutant ratios. Results of the growth experiments show that mutant cells have double the exponential growth rate of the WT in monoculture. However, due to a slower transition from lag phase to exponential phase, mutant cells are outcompeted by the WT in every co-culture treatment. This suggests that, under the conditions tested, outdoor cultivation of the C. reinhardtii cell wall-deficient mutant strains does not carry a significant environmental risk to its WT in an escape scenario. Furthermore, lipid results show the mutant strain accumulates over 200% more TAGs per cell, at 50 mg L(-1) NH4Cl, compared to the WT, therefore, the fragility of the mutant strain could impact on overall industrial productivity.

  20. In Vitro and In Vivo Characterization of a Bordetella bronchiseptica Mutant Strain with a Deep Rough Lipopolysaccharide Structure

    PubMed Central

    Sisti, Federico; Fernández, Julieta; Rodríguez, María Eugenia; Lagares, Antonio; Guiso, Nicole; Hozbor, Daniela Flavia

    2002-01-01

    Bordetella bronchiseptica is closely related to Bordetella pertussis, which produces respiratory disease primarily in mammals other than humans. However, its importance as a human pathogen is being increasingly recognized. Although a large amount of research on Bordetella has been generated regarding protein virulence factors, the participation of the surface lipopolysaccharide (LPS) during B. bronchiseptica infection is less understood. To get a better insight into this matter, we constructed and characterized the behavior of an LPS mutant with the deepest possible rough phenotype. We generated the defective mutant B. bronchiseptica LP39 on the waaC gene, which codes for a heptosyl transferase involved in the biosynthesis of the core region of the LPS molecule. Although in B. bronchiseptica LP39 the production of the principal virulence determinants adenylate cyclase-hemolysin, filamentous hemagglutinin, and pertactin persisted, the quantity of the two latter factors was diminished, with the levels of pertactin being the most greatly affected. Furthermore, the LPS of B. bronchiseptica LP39 did not react with sera obtained from mice that had been infected with the parental strain, indicating that this defective LPS is immunologically different from the wild-type LPS. In vivo experiments demonstrated that the ability to colonize the respiratory tract is reduced in the mutant, being effectively cleared from lungs within 5 days, whereas the parental strain survived at least for 30 days. In vitro experiments have demonstrated that, although B. bronchiseptica LP39 was impaired for adhesion to human epithelial cells, it is still able to survive within the host cells as efficiently as the parental strain. These results seem to indicate that the deep rough form of B. bronchiseptica LPS cannot represent a dominant phenotype at the first stage of colonization. Since isolates with deep rough LPS phenotype have already been obtained from human B. bronchiseptica chronic

  1. Inducible Cre transgenic mouse strain for skeletal muscle-specific gene targeting

    PubMed Central

    2012-01-01

    Background The use of the Cre/loxP system for gene targeting has been proven to be a powerful tool for understanding gene function. The purpose of this study was to create and characterize an inducible, skeletal muscle-specific Cre transgenic mouse strain. Methods To achieve skeletal muscle-specific expression, the human α-skeletal actin promoter was used to drive expression of a chimeric Cre recombinase containing two mutated estrogen receptor ligand-binding domains. Results Western blot analysis, PCR and β-galactosidase staining confirmed that Cre-mediated recombination was restricted to limb and craniofacial skeletal muscles only after tamoxifen administration. Conclusions A transgenic mouse was created that allows inducible, gene targeting of floxed genes in adult skeletal muscle of different developmental origins. This new mouse will be of great utility to the skeletal muscle community. PMID:22564549

  2. Heat shock protein 70 chaperone overexpression ameliorates phenotypes of the spinal and bulbar muscular atrophy transgenic mouse model by reducing nuclear-localized mutant androgen receptor protein.

    PubMed

    Adachi, Hiroaki; Katsuno, Masahisa; Minamiyama, Makoto; Sang, Chen; Pagoulatos, Gerassimos; Angelidis, Charalampos; Kusakabe, Moriaki; Yoshiki, Atsushi; Kobayashi, Yasushi; Doyu, Manabu; Sobue, Gen

    2003-03-15

    Spinal and bulbar muscular atrophy (SBMA) is an inherited motor neuron disease caused by the expansion of the polyglutamine (polyQ) tract within the androgen receptor (AR). The nuclear inclusions consisting of the mutant AR protein are characteristic and combine with many components of ubiquitin-proteasome and molecular chaperone pathways, raising the possibility that misfolding and altered degradation of mutant AR may be involved in the pathogenesis. We have reported that the overexpression of heat shock protein (HSP) chaperones reduces mutant AR aggregation and cell death in a neuronal cell model (Kobayashi et al., 2000). To determine whether increasing the expression level of chaperone improves the phenotype in a mouse model, we cross-bred SBMA transgenic mice with mice overexpressing the inducible form of human HSP70. We demonstrated that high expression of HSP70 markedly ameliorated the motor function of the SBMA model mice. In double-transgenic mice, the nuclear-localized mutant AR protein, particularly that of the large complex form, was significantly reduced. Monomeric mutant AR was also reduced in amount by HSP70 overexpression, suggesting the enhanced degradation of mutant AR. These findings suggest that HSP70 overexpression ameliorates SBMA phenotypes in mice by reducing nuclear-localized mutant AR, probably caused by enhanced mutant AR degradation. Our study may provide the basis for the development of an HSP70-related therapy for SBMA and other polyQ diseases.

  3. Load/Strain Distribution between Ulna and Radius in the Mouse Forearm Compression Loading Model

    PubMed Central

    Lu, Yunkai; Thiagarajan, Ganesh; Nicolella, Daniel P.; Johnson, Mark L.

    2011-01-01

    Finite element analysis (FEA) of the mouse forearm compression loading model is used to relate strain distributions with downstream changes in bone formation and responses of bone cells. The objective of this study was to develop two FEA models – the first one with the traditional ulna only and the second one in which both the ulna and radius are included, in order to examine the effect of the inclusion of the radius on the strain distributions in the ulna. The entire mouse forearm was scanned using microCT and images were converted into FEA tetrahedral meshes using a suite of software programs. The performance of both linear and quadratic tetrahedral elements and coarse and fine meshes were studied. A load of 2 N was applied to the ulna/radius model and a 1.3 N load (based on previous investigations of load sharing between the ulna and radius in rats) was applied to the ulna only model for subsequent simulations. The results showed differences in the cross sectional strain distributions and magnitude within the ulna for the combined ulna/radius model versus the ulna only model. The maximal strain in the combined model occurred about 4 mm towards the distal end from the ulna mid-shaft in both models. Results from the FEA model simulations were also compared to experimentally determined strain values. We conclude that inclusion of the radius in FE models to predict strains during in vivo forearm loading increases the magnitude of the estimated ulna strains compared to those predicted from a model of the ulna alone but the distribution was similar. This has important ramifications for future studies to understand strain thresholds needed to activate bone cell responses to mechanical loading. PMID:21903442

  4. Skin fragility in the wild-derived, inbred mouse strain Mus pahari/EiJ.

    PubMed

    Herbert Pratt, C; Potter, Christopher S; Kuiper, Raoul V; Karst, Son Yong; Dadras, Soheil S; Roopenian, Derry C; Sundberg, John P

    2017-02-01

    Mus pahari is a wild-derived, inbred mouse strain. M. pahari colony managers observed fragility of this strain's skin resulting in separation of tail skin from the mouse if handled incorrectly. Tail skin tension testing of M. pahari resulted in significantly lowered force threshold for caudal skin rupture and loss in comparison to closely related inbred mouse species and subspecies and even more than a model for junctional epidermolysis bullosa. Histologically, the tail skin separated at the subdermal level with the dermis firmly attached to the epidermis, excluding the epidermolysis bullosa complex of diseases. The dermal collagen bundles were abnormally thickened and branched. Elastin fiber deposition was focally altered in the dermis adjacent to the hair follicle. Collagens present in the skin could not be differentiated between the species in protein gels following digestion with pepsin. Together these data suggest that M. pahari have altered extracellular matrix development resulting in separation of the skin below the level of the dermis with moderate force similar to the African spiny mouse (Acomys spp.).

  5. Emergence of potential superbug mycobacterium tuberculosis, lessons from new delhi mutant-1 bacterial strains.

    PubMed

    Nazir, Taha; Abraham, Suraj; Islam, Azharul

    2012-01-01

    Recent reports have shown that certain bacterial strains attain the New Delhi Metallo-beta-lactamase-1 (NDM-1) enzyme and become resistant to a broad range of antibiotics. Similarly, more dangerous "superbugs" of multi-drug resistant (MDR) and extensive drug resistant (XDR) Mycobacterium tuberculosis strains are gradually emerging through rapid genetic mutation caused by prescription non-compliance or unsupervised indiscriminate use of anti-tubercular drugs or other antibiotics. Mycobacterium tuberculosis cases have been reported in highly susceptible population groups including the aboriginal communities of US and Canada. In Canada alone, the total number of reported tuberculosis cases has decreased over the past decade. However, there is a steady increase in HIV cases in certain communities including the aboriginal communities. Reintroduction of MDR/XDR strains of tuberculosis is possible in these susceptible communities, which in turn may pose serious public health situation. MDR/XDR strains of tuberculosis are virtually untreatable using current anti-tubercular medication protocols. Thus, MDR/XDR tuberculosis presents a grave global public health threat. The unpredictable genetic mechanism involved in generating MDR/XDR resistant strains of Mycobacterium tuberculosis may pose greater challenges in developing appropriate treatment strategies. In this article, we briefly review potential genetic mechanism of emerging NDM-1 bacterial strains and draw a rationale parallel to the underlying genetic mechanism of MDR/XDR Mycobacterium tuberculosis strain development.

  6. Recapitulation of the ovum mutant (Om) phenotype and loss of Om locus polarity in cloned mouse embryos.

    PubMed

    Gao, Shaorong; Wu, Guangming; Han, Zhiming; de la Casa-Esperón, Elena; Sapienza, Carmen; Latham, Keith E

    2005-02-01

    The ovum mutant (Om) locus in mice affects early interactions between sperm and egg that in turn affect viability of embryos beyond the morula stage. Crosses of DDK females to males of many other inbred strains are 95% lethal around the morula stage, whereas reciprocal crosses are fully viable. Available data indicate that the early lethality is the result of an interaction between a factor in the ooplasm and the paternal genome. In this study, we examined whether this lethal interaction would likewise occur in cloned embryos produced by somatic cell nuclear transfer. We find that the Om effect is recapitulated but that the parental origin effect at the Om locus is no longer evident in cloned embryos.

  7. Regulators of pseudohyphal differentiation in Saccharomyces cerevisiae identified through multicopy suppressor analysis in ammonium permease mutant strains.

    PubMed Central

    Lorenz, M C; Heitman, J

    1998-01-01

    Nitrogen-starved diploid cells of the yeast Saccharomyces cerevisiae differentiate into a filamentous, pseudohyphal growth form. Recognition of nitrogen starvation is mediated, at least in part, by the ammonium permease Mep2p and the Galpha subunit Gpa2p. Genetic activation of the pheromone-responsive MAP kinase cascade, which is also required for filamentous growth, only weakly suppresses the filamentation defect of Deltamep2/Deltamep2 and Deltagpa2/Deltagpa2 strain. Surprisingly, deletion of Mep1p, an ammonium permease not previously thought to regulate differentiation, significantly enhances the potency of MAP kinase activation, such that the STE11-4 allele induces filamentation to near wild-type levels in Deltamep1/Deltamep1 Deltamep2/Deltamep2 and Deltamep1/Deltamep1 Deltagpa2/Deltagpa2 strains. To identify additional regulatory components, we isolated high-copy suppressors of the filamentation defect of the Deltamep1/Deltamep1 Deltamep2/Deltamep2 mutant. Multicopy expression of TEC1, PHD1, PHD2 (MSS10/MSN1/FUP4), MSN5, CDC6, MSS11, MGA1, SKN7, DOT6, HMS1, HMS2, or MEP2 each restored filamentation in a Deltamep1/Deltamep1 Deltamep2/Deltamep2 strain. Overexpression of SRK1 (SSD1), URE2, DAL80, MEP1, or MEP3 suppressed only the growth defect of the Deltamep1/Deltamep1 Deltamep2/Deltamep2 mutant strain. Characterization of these genes through deletion analysis and epistasis underscores the complexity of this developmental pathway and suggests that stress conditions other than nitrogen deprivation may also promote filamentous growth. PMID:9832522

  8. Passenger mutations and aberrant gene expression in congenic tissue plasminogen activator-deficient mouse strains

    PubMed Central

    Szabo, R.; Samson, A. L.; Lawrence, D. A.; Medcalf, R. L.; Bugge, T. H.

    2017-01-01

    Summary Background The ability to generate defined null mutations in mice revolutionized the analysis of gene function in mammals. However, gene-deficient mice generated by using 129-derived embryonic stem cells may carry large segments of 129 DNA, even when extensively backcrossed to reference strains, such as C57BL/6J, and this may confound interpretation of experiments performed in these mice. Tissue plasminogen activator (tPA), encoded by the PLAT gene, is a fibrinolytic serine protease that is widely expressed in the brain. A number of neurological abnormalities have been reported in tPA-deficient mice. Objectives To study genetic contamination of tPA-deficient mice. Materials and methods Whole genome expression array analysis, RNAseq expression profiling, low- and high-density SNP analysis, bioinformatics, and genome editing was used to analyze gene expression in tPA-deficient mouse brains. Results and conclusions Genes differentially expressed in the brain of Plat−/− mice from two independent colonies highly backcrossed onto the C57BL/6J strain clustered near Plat on chromosome 8. SNP analysis attributed this anomaly to about 20 Mbp of DNA flanking Plat being of 129 origin in both strains. Bioinformatic analysis of these 129-derived chromosomal segments identified a significant number of mutations in genes co-segregating with the targeted Plat allele, including several potential null mutations. Using zinc finger nuclease technology, we generated novel “passenger mutation”-free isogenic C57BL/6J-Plat−/− and FVB/NJ-Plat−/− mouse strains by introducing an 11 bp deletion in the exon encoding the signal peptide. These novel mouse strains will be a useful community resource for further exploration of tPA function in physiological and pathological processes. PMID:27079292

  9. Oxygen association-dissociation and stability analysis on mouse hemoglobins with mutant alpha- and beta-globins.

    PubMed

    D'Surney, S J; Popp, R A

    1992-10-01

    Oxygen association-dissociation and hemoglobin stability analysis were performed on mouse hemoglobins with amino acid substitutions in an alpha-globin (alpha 89, His to Leu) and a beta-globin (beta 59, Lys to Ile). The variant alpha-globin, designated chain 5m in the Hbag2 haplotype, had an high oxygen affinity and was stable. The variant beta-globin, (beta s2) of the Hbbs2 haplotype, also had an elevated oxygen affinity and in addition was moderately unstable in 19% isopropanol. Hemoglobins from the expected nine (Hbag2/Hbag2;Hbbs/Hbbs x Hbaa/Hbaa;Hbbs2/Hbbs2) F2 genotypes can be grouped into five classes of P50 values characterized by strict additivity and dependency on mutant globin gene dosage; physiologically, both globin variants gave indistinguishable effects on oxygen affinity. The hemoglobin of normal mice (Hbaa/Hbaa;Hbbs/Hbbs) had a P50 = 40 mm Hg and the hemoglobin of Hbag2/Hbag2;Hbbs2/Hbbs2 F2 mice had a P50 = 25 mm Hg (human P50 = 26 mm Hg). Peripheral blood from Hbag2/Hbag2;Hbbs/Hbbs, Hbaa/Hbaa;Hbbs2/Hbbs2 and Hbag2/Hbag2;Hbbs2/Hbbs2 mice exhibited normal hematological values except for a slightly higher hematocrit for Hbag2/Hbag2;Hbbs/Hbbs and Hbag2/Hbag2;Hbbs2/Hbbs2 mice, slightly elevated red cell counts for mice of the three mutant genotypes, and significantly lower values for the mean corpuscular volume and mean corpuscular hemoglobin for Hbag2/Hbag2;Hbbs2/Hbbs2 mice.

  10. The connexin26 S17F mouse mutant represents a model for the human hereditary keratitis-ichthyosis-deafness syndrome.

    PubMed

    Schütz, Melanie; Auth, Tanja; Gehrt, Anna; Bosen, Felicitas; Körber, Inken; Strenzke, Nicola; Moser, Tobias; Willecke, Klaus

    2011-01-01

    Mutations in the GJB2 gene coding for connexin26 (Cx26) can cause a variety of deafness and hereditary hyperproliferative skin disorders in humans. In this study, we investigated the Cx26S17F mutation in mice, which had been identified to cause the keratitis-ichthyosis-deafness (KID) syndrome in humans. The KID syndrome is characterized by keratitis and chronic progressive corneal neovascularization, skin hyperplasia, sensorineural hearing loss and increased carcinogenic potential. We have generated a conditional mouse mutant, in which the floxed wild-type Cx26-coding DNA can be deleted and the Cx26S17F mutation is expressed under control of the endogenous Cx26 promoter. Homozygous mutants are not viable, whereas the surviving heterozygous mice show hyperplasia of tail and foot epidermis, wounded tails and annular tail restrictions, and are smaller than their wild-type littermates. Analyses of auditory brainstem responses (ABRs) indicate an ∼35 dB increased hearing threshold in these mice, which is likely due to the reduction of the endocochlear potential by 20-40%. Our results indicate that the Cx26S17F protein, which does not form functional gap junction channels or hemichannels, alters epidermal proliferation and differentiation in the heterozygous state. In the inner ear, reduced intercellular coupling by heteromeric channels composed of Cx26S17F and Cx30 could contribute to hearing impairment in heterozygous mice, while remaining wild-type Cx26 may be sufficient to stabilize Cx30 and partially maintain cochlear homeostasis. The phenotype of heterozygous mice resembles many of the symptoms of the human KID syndrome. Thus, these mice represent an appropriate model to further investigate the disease mechanism.

  11. Regulation of TGF-β signalling by Fbxo11, the gene mutated in the Jeff otitis media mouse mutant

    PubMed Central

    Tateossian, Hilda; Hardisty-Hughes, Rachel E; Morse, Susan; Romero, Maria R; Hilton, Helen; Dean, Charlotte; Brown, Steve DM

    2009-01-01

    Background Jeff is a dominant mouse mutant displaying chronic otitis media. The gene underlying Jeff is Fbxo11, a member of the large F-box family, which are specificity factors for the SCF E3 ubiquitin ligase complex. Jeff homozygotes die shortly after birth displaying a number of developmental abnormalities including cleft palate and eyes open at birth. TGF-β signalling is involved in a number of epithelial developmental processes and we have investigated the impact of the Jeff mutation on the expression of this pathway. Results Phospho-Smad2 (pSmad2) is significantly upregulated in epithelia of Jeff homozygotes. Moreover, there was a significant increase in nuclear localization of pSmad2 in contrast to wild type. Mice heterozygous for both Jeff and Smad2 mutations recapitulate many of the features of the Jeff homozygous phenotype. However, tissue immunoprecipitations failed to detect any interaction between Fbxo11 and Smad2. Fbxo11 is known to neddylate p53, a co-factor of pSmad2, but we did not find any evidence of genetic interactions between Jeff and p53 mutants. Nevertheless, p53 levels are substantially reduced in Jeff mice suggesting that Fbxo11 plays a role in stabilizing p53. Conclusion Overall, our findings support a model whereby Fbxo11, possibly via stabilization of p53, is required to limit the accumulation of pSmad2 in the nucleus of epithelial cells of palatal shelves, eyelids and airways of the lungs. The finding that Fbxo11 impacts upon TGF-β signalling has important implications for our understanding of the underlying disease mechanisms of middle ear inflammatory disease. PMID:19580641

  12. Novel Jbts17 mutant mouse model of Joubert syndrome with cilia transition zone defects and cerebellar and other ciliopathy related anomalies.

    PubMed

    Damerla, Rama Rao; Cui, Cheng; Gabriel, George C; Liu, Xiaoqin; Craige, Branch; Gibbs, Brian C; Francis, Richard; Li, You; Chatterjee, Bishwanath; San Agustin, Jovenal T; Eguether, Thibaut; Subramanian, Ramiah; Witman, George B; Michaud, Jacques L; Pazour, Gregory J; Lo, Cecilia W

    2015-07-15

    Recent studies identified a previously uncharacterized gene C5ORF42 (JBTS17) as a major cause of Joubert syndrome (JBTS), a ciliopathy associated with cerebellar abnormalities and other birth defects. Here we report the first Jbts17 mutant mouse model, Heart Under Glass (Hug), recovered from a forward genetic screen. Exome sequencing identified Hug as a S235P missense mutation in the mouse homolog of JBTS17 (2410089e03rik). Hug mutants exhibit multiple birth defects typical of ciliopathies, including skeletal dysplasia, polydactyly, craniofacial anomalies, kidney cysts and eye defects. Some Hug mutants exhibit congenital heart defects ranging from mild pulmonary stenosis to severe pulmonary atresia. Immunostaining showed JBTS17 is localized in the cilia transition zone. Fibroblasts from Hug mutant mice and a JBTS patient with a JBTS17 mutation showed ciliogenesis defects. Significantly, Hug mutant fibroblasts showed loss of not only JBTS17, but also NPHP1 and CEP290 from the cilia transition zone. Hug mutants exhibited reduced ciliation in the cerebellum. This was associated with reduction in cerebellar foliation. Using a fibroblast wound-healing assay, we showed Hug mutant cells cannot establish cell polarity required for directional cell migration. However, stereocilia patterning was grossly normal in the cochlea, indicating planar cell polarity is not markedly affected. Overall, we showed the JBTS pathophysiology is replicated in the Hug mutant mice harboring a Jbts17 mutation. Our findings demonstrate JBTS17 is a cilia transition zone component that acts upstream of other Joubert syndrome associated transition zone proteins NPHP1 and CEP290, indicating its importance in the pathogenesis of Joubert syndrome.

  13. p53 suppression partially rescues the mutant phenotype in mouse models of DiGeorge syndrome

    PubMed Central

    Caprio, Cinzia; Baldini, Antonio

    2014-01-01

    T-box 1 (Tbx1), a gene encoding a T-box transcription factor, is required for embryonic development in humans and mice. Half dosage of this gene in humans causes most of the features of the DiGeorge or Velocardiofacial syndrome phenotypes, including aortic arch and cardiac outflow tract abnormalities. Here we found a strong genetic interaction between Tbx1 and transformation related protein 53 (Trp53). Indeed, genetic ablation of Trp53, or pharmacological inhibition of its protein product p53, rescues significantly the cardiovascular defects of Tbx1 heterozygous and hypomorphic mutants. We found that the Tbx1 and p53 proteins do not interact directly but both occupy a genetic element of Gbx2, which is required for aortic arch and cardiac outflow tract development, and is a known genetic interactor of Tbx1. We found that Gbx2 expression is down-regulated in Tbx1+/− embryos and is restored to normal levels in Tbx1+/−;Trp53+/− embryos. In addition, we found that the genetic element that binds both Tbx1 and p53 is highly enriched in H3K27 trimethylation, and upon p53 suppression H3K27me3 levels are reduced, along with Ezh2 enrichment. This finding suggests that the rescue of Gbx2 expression in Tbx1+/−;Trp53+/− embryos is due to reduction of repressive chromatin marks. Overall our data identify unexpected genetic interactions between Tbx1 and Trp53 and provide a proof of principle that developmental defects associated with reduced dosage of Tbx1 can be rescued pharmacologically. PMID:25197075

  14. p53 Suppression partially rescues the mutant phenotype in mouse models of DiGeorge syndrome.

    PubMed

    Caprio, Cinzia; Baldini, Antonio

    2014-09-16

    T-box 1 (Tbx1), a gene encoding a T-box transcription factor, is required for embryonic development in humans and mice. Half dosage of this gene in humans causes most of the features of the DiGeorge or Velocardiofacial syndrome phenotypes, including aortic arch and cardiac outflow tract abnormalities. Here we found a strong genetic interaction between Tbx1 and transformation related protein 53 (Trp53). Indeed, genetic ablation of Trp53, or pharmacological inhibition of its protein product p53, rescues significantly the cardiovascular defects of Tbx1 heterozygous and hypomorphic mutants. We found that the Tbx1 and p53 proteins do not interact directly but both occupy a genetic element of Gbx2, which is required for aortic arch and cardiac outflow tract development, and is a known genetic interactor of Tbx1. We found that Gbx2 expression is down-regulated in Tbx1(+/-) embryos and is restored to normal levels in Tbx1(+/-);Trp53(+/-) embryos. In addition, we found that the genetic element that binds both Tbx1 and p53 is highly enriched in H3K27 trimethylation, and upon p53 suppression H3K27me3 levels are reduced, along with Ezh2 enrichment. This finding suggests that the rescue of Gbx2 expression in Tbx1(+/-);Trp53(+/-) embryos is due to reduction of repressive chromatin marks. Overall our data identify unexpected genetic interactions between Tbx1 and Trp53 and provide a proof of principle that developmental defects associated with reduced dosage of Tbx1 can be rescued pharmacologically.

  15. Genetic variability to diet-induced hippocampal dysfunction in BXD recombinant inbred (RI) mouse strains

    PubMed Central

    Xue, Yueqiang; Li, JingJing; Yan, Lei; Lu, Lu; Liao, Francesca-Fang

    2016-01-01

    Evidence has emerged suggesting that diet-induced obesity can have a negative effect on cognitive function. Here, we exploited a mouse genetic reference population to look for the linkage between these two processes on a genome-wide scale. The focus of this report is to determine whether the various BXD RI strains exhibited different behavioral performance and hippocampal function under high fat dietary (HFD) condition. We quantified genetic variation in body weight gain and consequent influences on behavioral tests in a cohort of 14 BXD strains of mice (8–12 mice/strain, n=153), for which we have matched data on gene expression and neuroanatomical changes in the hippocampus. It showed that BXD66 was the most susceptible, whereas BXD77 was the least susceptible strain to dietary influences. The performance of spatial reference memory tasks was strongly correlated with body weight gain (P<0.05). The obesity-prone strains displayed more pronounced spatial memory defects compared to the obesity-resistant strains. These abnormalities were associated with neuro inflammation, synaptic dysfunction, and neuronal loss in the hippocampus. The biological relevance of DSCAM gene polymorphism was assessed using the trait correlation analysis tool in Genenet work. Further more, a significant strain-dependent gene expression difference of DSCAM was detected in the hippocampus of obese BXD strains by real-time quantitative PCR. In conclusion, a variety of across-strain hippocampal alterations and genetic predispositions to diet-induced obesity were found in a set of BXD strains. The obesity-prone and obesity-resistant lines we have identified should be highly useful to study the molecular genetics of diet-induced cognitive decline. PMID:26092713

  16. Identification of the Gene for Scleroderma in the Tsk/2 Mouse Strain: Implicationsfor Human Scleroderma Pathogenesis and Subset Distinctions

    DTIC Science & Technology

    2013-07-01

    11-1-0524 TITLE: Identification of the Gene for Scleroderma in the Tsk/2 Mouse Strain: Implications for Human Scleroderma Pathogenesis and...Z39.18 Identification of the Gene for Scleroderma in the Tsk/2 Mouse Strain: Implications for Human Scleroderma Pathogenesis and Subset...clinical model. In this report, we show a clear time dependence on the gene expression in the skin of the Tsk2/+ mice. We have proven that Col3a1 is

  17. Significant gene content variation characterizes the genomes of inbred mouse strains

    PubMed Central

    Cutler, Gene; Marshall, Lisa A.; Chin, Ni; Baribault, Helene; Kassner, Paul D.

    2007-01-01

    The contribution to genetic diversity of genomic segmental copy number variations (CNVs) is less well understood than that of single-nucleotide polymorphisms (SNPs). While less frequent than SNPs, CNVs have greater potential to affect phenotype. In this study, we have performed the most comprehensive survey to date of CNVs in mice, analyzing the genomes of 42 Mouse Phenome Consortium priority strains. This microarray comparative genomic hybridization (CGH)-based analysis has identified 2094 putative CNVs, with an average of 10 Mb of DNA in 51 CNVs when individual mouse strains were compared to the reference strain C57BL/6J. This amount of variation results in gene content that can differ by hundreds of genes between strains. These genes include members of large families such as the major histocompatibility and pheromone receptor genes, but there are also many singleton genes including genes with expected phenotypic consequences from their deletion or amplification. Using a whole-genome association analysis, we demonstrate that complex multigenic phenotypes, such as food intake, can be associated with specific copy number changes. PMID:17989247

  18. Absence of linkage of apparently single gene mediated ADHD with the human syntenic region of the mouse mutant coloboma

    SciTech Connect

    Hess, E.J.; Rogan, P.K.; Domoto, M.

    1995-12-18

    Attention deficit disorder (ADHD) is a complex biobehavioral phenotype which affects up to 8% of the general population and often impairs social, academic, and job performance. Its origins are heterogeneous, but a significant genetic component is suggested by family and twin studies. The murine strain, coloboma, displays a spontaneously hyperactive phenotype that is responsive to dextroamphetamine and has been proposed as a genetic model for ADHD. Coloboma is a semi-dominant mutation that is caused by a hemizygous deletion of the SNAP-25 and other genes on mouse chromosome 2q. To test the possibility that the human homolog of the mouse coloboma gene(s) could be responsible for ADHD, we have carried out linkage studies with polymorphic markers in the region syntenic to coloboma (20p11-p12). Five families in which the pattern of inheritance of ADHD appears to be autosomal dominant were studied. Segregation analysis of the traits studied suggested that the best fitting model was a sex-influenced, single gene, Mendelian pattern. Several genetic models were evaluated based on estimates of penetrance, phenocopy rate, and allele frequency derived from our patient population and those of other investigators. No significant linkage was detected between the disease locus and markers spanning this chromosome 20 interval. 39 refs., 2 figs., 1 tab.

  19. Topographic and zonal organization of the olivocerebellar projection in the reeler mutant mouse

    SciTech Connect

    Blatt, G.J.; Eisenman, L.M.

    1988-01-22

    The organization of the olivocerebellar projection in the homozygous reeler mouse (rl/rl) was studied with the use of microinjections of /sup 3/H-leucine in different regions of the inferior olivary complex (IO) or horseradish peroxidase conjugated with wheat germ agglutinin (WGA-HRP) into medial, intermediate, or lateral regions of the reeler cerebellum. The purpose of this investigation was to determine the pattern of termination of olivocerebellar climbing fibers (CFs) in the cerebellum via an anterograde tracing technique, and to determine the topographic organization of the olivocerebellar projection via both anterograde and retrograde methods. The inferior olive injections were made via the ventral approach to the IO to minimize diffusion into other brainstem precerebellar nuclei and thus to ensure accurate well-restricted, injection sites. Labeled CF terminals were seen in both the superficial Purkinje cell (PC) layer (normally positioned PCs) and around PCs in the granular layer and central masses (ectopic PCs). The pattern of labeling is suggestive of orthogonal organization, in that vertical columns of cells are labeled. This is especially apparent in the medial PC group, where at least three bands are identified. Within an orthogonal band, CF terminals are seen around both superficial and deep Purkinje cells. Our data indicate that olivocerebellar topography is generally similar in reeler and normal mice despite severe abnormalities in target cell position in the reeler. The medial cerebellar region receives input from the caudal two-fifths of the medial accessory olive (MAO). The intermediate PC cluster receives input from more rostral portions of all three olivary divisions, while rostral portions of MAO and PO project to the lateral cerebellum.

  20. Francisella tularensis Schu S4 lipopolysaccharide core sugar and O-antigen mutants are attenuated in a mouse model of tularemia.

    PubMed

    Rasmussen, Jed A; Post, Deborah M B; Gibson, Bradford W; Lindemann, Stephen R; Apicella, Michael A; Meyerholz, David K; Jones, Bradley D

    2014-04-01

    The virulence factors mediating Francisella pathogenesis are being investigated, with an emphasis on understanding how the organism evades innate immunity mechanisms. Francisella tularensis produces a lipopolysaccharide (LPS) that is essentially inert and a polysaccharide capsule that helps the organism to evade detection by components of innate immunity. Using an F. tularensis Schu S4 mutant library, we identified strains that are disrupted for capsule and O-antigen production. These serum-sensitive strains lack both capsule production and O-antigen laddering. Analysis of the predicted protein sequences for the disrupted genes (FTT1236 and FTT1238c) revealed similarity to those for waa (rfa) biosynthetic genes in other bacteria. Mass spectrometry further revealed that these proteins are involved in LPS core sugar biosynthesis and the ligation of O antigen to the LPS core sugars. The 50% lethal dose (LD50) values of these strains are increased 100- to 1,000-fold for mice. Histopathology revealed that the immune response to the F. tularensis mutant strains was significantly different from that observed with wild-type-infected mice. The lung tissue from mutant-infected mice had widespread necrotic debris, but the spleens lacked necrosis and displayed neutrophilia. In contrast, the lungs of wild-type-infected mice had nominal necrosis, but the spleens had widespread necrosis. These data indicate that murine death caused by wild-type strains occurs by a mechanism different from that by which the mutant strains kill mice. Mice immunized with these mutant strains displayed >10-fold protective effects against virulent type A F. tularensis challenge.

  1. Francisella tularensis Schu S4 Lipopolysaccharide Core Sugar and O-Antigen Mutants Are Attenuated in a Mouse Model of Tularemia

    PubMed Central

    Rasmussen, Jed A.; Post, Deborah M. B.; Gibson, Bradford W.; Lindemann, Stephen R.; Apicella, Michael A.; Meyerholz, David K.

    2014-01-01

    The virulence factors mediating Francisella pathogenesis are being investigated, with an emphasis on understanding how the organism evades innate immunity mechanisms. Francisella tularensis produces a lipopolysaccharide (LPS) that is essentially inert and a polysaccharide capsule that helps the organism to evade detection by components of innate immunity. Using an F. tularensis Schu S4 mutant library, we identified strains that are disrupted for capsule and O-antigen production. These serum-sensitive strains lack both capsule production and O-antigen laddering. Analysis of the predicted protein sequences for the disrupted genes (FTT1236 and FTT1238c) revealed similarity to those for waa (rfa) biosynthetic genes in other bacteria. Mass spectrometry further revealed that these proteins are involved in LPS core sugar biosynthesis and the ligation of O antigen to the LPS core sugars. The 50% lethal dose (LD50) values of these strains are increased 100- to 1,000-fold for mice. Histopathology revealed that the immune response to the F. tularensis mutant strains was significantly different from that observed with wild-type-infected mice. The lung tissue from mutant-infected mice had widespread necrotic debris, but the spleens lacked necrosis and displayed neutrophilia. In contrast, the lungs of wild-type-infected mice had nominal necrosis, but the spleens had widespread necrosis. These data indicate that murine death caused by wild-type strains occurs by a mechanism different from that by which the mutant strains kill mice. Mice immunized with these mutant strains displayed >10-fold protective effects against virulent type A F. tularensis challenge. PMID:24452684

  2. Cell fusion-mediated improvement in transfection competence for repair-deficient mutant of mouse T cell line

    SciTech Connect

    Shiomi, T.; Hieda-Shiomi, N.; Sato, K.; Yoshizumi, T.; Nakazawa, T.

    1988-03-01

    A multiple mutagen-sensitive mutant (XUM1) of mouse T-cell lymphoma line, L5178Y, is hypersensitive to ionizing radiation, ultraviolet (UV) light, and cross-linking agents (such as mitomycin C). The frequency of transfection for XUM1 cells after exposure to calcium phosphate-coprecipitated pSV2neo DNA was more than 10(4)-fold less effective than that for Ltk-aprt- (LTA) cells. Other transfection methods (DEAE-dextran and polybrene-DMSO) were not effective for L5178Y and XUM1 cells. The transfection-proficient trait of LTA cells was demonstrated to be genetically dominant by examining the the transfection frequency in hybrid clones constructed between XUM1 and LTA cells. To circumvent the problem with XUM1, the LTA genes necessary for transformation processes were introduced into XUM1 cells by constructing hybrids between XUM1 and LTA cells irradiated with X-rays which causes directional chromosome elimination for hybrid cells. Four of 194 hybrid clones tested were transfection-proficient and hypersensitive to UV (XL102, XL107, XL215, and XL216). All four clones were not hypersensitive to X-rays or mitomycin C. The frequencies of transfection for XL102 and XL216 were nearly the same level as that for LTA cells. The efficiency of transfection for XL107 and XL215 was 10 to 100-fold lower than that for LTA cells.

  3. Developmental analysis of the external granular layer in the meander tail mutant mouse: do cerebellar microneurons have independent progenitors?

    PubMed

    Napieralski, J A; Eisenman, L M

    1993-08-01

    The cerebellum of the meander tail mutant mouse (mea/mea) is characterized by an apparently normal cytoarchitecture posteriorly with an abrupt transition to an abnormal anterior region. Anteriorly, there is abnormal foliation, a drastic reduction in the granule cells (GC) population, disorganization of the Purkinje cells (PC), and a virtual absence of Bergmann glial processes. In this paper we analyze the prenatal and postnatal development of the cerebellum in the mea/mea and attempt to determine the phenotypic onset of the mutation in the anterior region. Hematoxylin and eosin stained sections reveal a morphological difference in the cerebellum of the mea/mea as early as embryonic day 16 characterized by a reduction in the external granule cell layer (EGL). The reduction in the EGL becomes increasingly apparent as development proceeds. This deficit in the EGL most probably results in the absence of GC, but it is unclear at this point whether reduced migration, proliferation, and/or increased cell death is the major factor. Interestingly, immunohistochemical staining with a monoclonal antibody against parvalbumin reveals that the basket and stellate cells, which are also thought to arise from the EGL, are present in the anterior region of the mea/mea cerebellum. These results suggest that the lack of GC in the meander tail is due to an early expressed abnormality of the EGL. However, the presence of the basket and/or stellate cells raises some interesting questions concerning the lineage of the cerebellar microneurons.

  4. Effects of atherogenic diet on hepatic gene expression across mouse strains

    PubMed Central

    Witmer, David; Burgess-Herbert, Sarah L.; Paigen, Beverly; Churchill, Gary A.

    2009-01-01

    Diets high in fat and cholesterol are associated with increased obesity and metabolic disease in mice and humans. To study the molecular basis of the metabolic response to dietary fat, 10 inbred strains of mice were fed atherogenic high-fat and control low-fat diets. Liver gene expression and whole animal phenotypes were measured and analyzed in both sexes. The effects of diet, strain, and sex on gene expression were determined irrespective of complex processes, such as feedback mechanisms, that could have mediated the genomic responses. Global gene expression analyses demonstrated that animals of the same strain and sex have similar transcriptional profiles on a low-fat diet, but strains may show considerable variability in response to high-fat diet. Functional profiling indicated that high-fat feeding induced genes in the immune response, indicating liver damage, and repressed cholesterol biosynthesis. The physiological significance of the transcriptional changes was confirmed by a correlation analysis of transcript levels with whole animal phenotypes. The results found here were used to confirm a previously identified quantitative trait locus on chromosome 17 identified in males fed a high-fat diet in two crosses, PERA × DBA/2 and PERA × I/Ln. The gene expression data and phenotype data have been made publicly available as an online tool for exploring the effects of atherogenic diet in inbred mouse strains (http://cgd-array.jax.org/DietStrainSurvey). PMID:19671657

  5. Ribitol dehydrogenase of Klebsiella aerogenes. Sequence and properties of wild-type and mutant strains.

    PubMed Central

    Dothie, J M; Giglio, J R; Moore, C B; Taylor, S S; Hartley, B S

    1985-01-01

    Evidence is presented for the sequence of 249 amino acids in ribitol dehydrogenase-A from Klebsiella aerogenes. Continuous culture on xylitol yields strains that superproduce 'wild-type' enzyme but mutations appear to have arisen in this process. Other strains selected by such continuous culture produce enzymes with increased specific activity for xylitol but without loss of ribitol activity. One such enzyme, ribitol dehydrogenase-D, has Pro-196 for Gly-196. Another, ribitol dehydrogenase-B, has a different mutation. PMID:3904726

  6. Comparative evaluation of two vaccine candidates against experimental leishmaniasis due to Leishmania major infection in four inbred mouse strains.

    PubMed

    Benhnini, Fouad; Chenik, Mehdi; Laouini, Dhafer; Louzir, Hechmi; Cazenave, Pierre André; Dellagi, Koussay

    2009-11-01

    Experimental leishmaniasis in BALB/c and C57BL/6 mice are the most investigated murine models that were used for the preclinical evaluation of Leishmania vaccine candidates. We have previously described two new inbred mouse strains named PWK and MAI issued from feral founders that also support the development of experimental leishmaniasis due to L. major. In this study, we sought to determine whether different mouse inbred strains generate concordant or discordant results when used to evaluate the potential of Leishmania proteins to protect against experimental leishmaniasis. To this end, two Leishmania proteins, namely, LACK (for Leishmania homolog of receptor for activated C kinase) and LmPDI (for L. major protein disulfide isomerase) were compared for their capacity to protect against experimental leishmaniasis in PWK, MAI, BALB/c, and C57BL/6 inbred mouse strains. Our data show that the capacity of Leishmania proteins to confer protection depends on the mouse strain used, stressing the important role played by the genetic background in shaping the immune response against the pathogen. These results may have important implications for the preclinical evaluation of candidate Leishmania vaccines: rather than using a single mouse strain, a panel of different inbred strains of various genetic backgrounds should be tested in parallel. The antigen that confers protection in the larger range of inbred strains may have better chances to be also protective in outbred human populations and should be selected for clinical trials.

  7. Pigmentation restored in mutant laboratory strain of the lady beetle Coleomegilla maculata through dietary supplementation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A laboratory colony of Coleomegilla maculata (DeGeer), ye, selected for a pigmentation deficiency, was restored to near wild type cuticle coloration by adding crushed heads and wings of the red colored parental strain to the diet. While the wings and other colored portions of the cuticle regained th...

  8. SENCAR mouse skin tumorigenesis model versus other strains and stocks of mice.

    PubMed Central

    Slaga, T J

    1986-01-01

    The SENCAR mouse stock was selectively bred for eight generations for sensitivity to skin tumor induction by the two-stage tumorigenesis protocol using 7,12-dimethylbenz(a)anthracene (DMBA) as the initiator and 12-O-tetradecanoylphorbol-13-acetate (TPA) as the promoter. The SENCAR mouse was derived by crossing Charles River CD-1 mice with skin-tumor-sensitive mice (STS). The SENCAR mice are much more sensitive to both DMBA tumor initiation and TPA tumor promotion than CD-1, BALB/c, and DBA/2 mice. An even greater difference in the sensitivity to two-stage skin tumorigenesis is apparent between SENCAR and C57BL/6 mice when using DMBA-TPA treatment. However, the SENCAR and C57BL/6 mice have a similar tumor response to DMBA-benzoyl peroxide treatment, suggesting that TPA is not an effective promoter in C57BL/6 mice. The DBA/2 mice respond in a similar manner to the SENCAR mice when using N-methyl-N-nitro-N-nitrosoguanidine (MNNG)-TPA treatment. The SENCAR mouse model provides a good dose-response relationship for many carcinogens used as tumor initiators and for many compounds used as tumor promoter. When compared to other stocks and strains of mice, the SENCAR mouse has one of the largest data bases for carcinogens and promoters. PMID:3096709

  9. SENCAR mouse skin tumorigenesis model versus other strains and stocks of mice

    SciTech Connect

    Slaga, T.J.

    1986-09-01

    The SENCAR mouse stock was selectively bred for eight generations for sensitivity to skin tumor induction by the two-stage tumorigenesis protocol using 7,12-dimethylbenz(a)anthracene (DMBA) as the initiator and 12-O-tetradecanoylphorbol-13-acetate (TPA) as the promoter. The SENCAR mouse was derived by crossing Charles River CD-1 mice with skin-tumor-sensitive mice (STS). The SENCAR mice are much more sensitive to both DMBA tumor initiation and TPA tumor promotion than CD-1, BALB/c, and DBA/2 mice. An even greater difference in the sensitivity to two-stage skin tumorigenesis is apparent between SENCAR and C57BL/6 mice when using DMBA-TPA treatment. However, the SENCAR and C57BL/6 mice have a similar tumor response to DMBA-benzoyl peroxide treatment, suggesting that TPA is not an effective promoter in C57BL/6 mice. The DBA/2 mice respond in a similar manner to the SENCAR mice when using N-methyl-N-nitro-N-nitrosoguanidine (MNNG)-TPA treatment. The SENCAR mouse model provides a good dose-response relationship for many carcinogens used as tumor initiators and for many compounds used as tumor promoter. When compared to other stocks and strains of mice, the SENCAR mouse has one of the largest data bases for carcinogens and promoters.

  10. Anxiolytic-like activity of pregabalin in the Vogel conflict test in α2δ-1 (R217A) and α2δ-2 (R279A) mouse mutants.

    PubMed

    Lotarski, Susan M; Donevan, Sean; El-Kattan, Ayman; Osgood, Sarah; Poe, Julie; Taylor, Charles P; Offord, James

    2011-08-01

    The α(2)δ auxiliary subunits (α(2)δ-1 and α(2)δ-2) of voltage-sensitive calcium channels are thought to be the site of action of pregabalin (Lyrica), a drug that has been shown to be anxiolytic in clinical trials for generalized anxiety disorder. Pregabalin and the chemically related drug gabapentin have similar binding and pharmacology profiles, demonstrating high-affinity, in vitro binding to both α(2)δ-1 and α(2)δ-2 subunits. Two independent point mutant mouse strains were generated in which either the α(2)δ-1 subunit (arginine-to-alanine mutation at amino acid 217; R217A) or the α(2)δ-2 subunit (arginine-to-alanine mutation at amino acid 279; R279A) were rendered insensitive to gabapentin or pregabalin binding. These strains were used to characterize the activity of pregabalin in the Vogel conflict test, a measure of anxiolytic-like activity. Pregabalin showed robust anticonflict activity in wild-type littermates from each strain at a dose of 10 mg/kg but was inactive in the α(2)δ-1 (R217A) mutants up to a dose of 320 mg/kg. In contrast, pregabalin was active in the α(2)δ-2 (R279A) point mutants at 10 and 32 mg/kg. The positive control phenobarbital was active in mice carrying either mutation. These data suggest that the anxiolytic-like effects of pregabalin are mediated by binding of the drug to the α(2)δ-1 subunit.

  11. Isolation of a Saccharomyces cerevisiae mutant strain deficient in deoxycytidylate deaminase activity and partial characterization of the enzyme.

    PubMed Central

    McIntosh, E M; Haynes, R H

    1984-01-01

    Deoxycytidylate deaminase activity in Saccharomyces cerevisiae has been partially characterized. The yeast enzyme was found to exhibit properties similar to those of dCMP deaminases isolated from higher eucaryotes. A mutant strain completely deficient in dCMP deaminase activity was isolated by selection for resistance to 5-fluoro-2'-deoxycytidylate followed by screening for cross sensitivity to 5-fluoro-2'-deoxyuridylate, a potent inhibitor of the yeast thymidylate synthetase. We have designated this new allele dcd1 . A strain exhibiting an auxotrophic requirement for dUMP was isolated after mutagenesis of a dcd1 tup7 haploid. Genetic analysis revealed that this auxotrophic phenotype resulted from a combination of the dcd1 allele and a second, unlinked, nuclear mutation that we designated dmp1 . This allele, which by itself conveys no readily discernible phenotype, presumably impairs efficient synthesis of dUMP from UDP. The auxotrophic requirement of dcd1 dmp1 tup7 strains also can be satisfied by exogenous dTMP but not deoxyuridine. PMID:6373725

  12. Comparative analysis of the behavioral and biomolecular parameters of four mouse strains.

    PubMed

    Nesher, Elimelech; Peskov, Vladimir; Rylova, Anna; Raz, Olga; Pinhasov, Albert

    2012-02-01

    The use of mice as experimental models in pharmacological and biochemical research began over 100 years ago, during which time different mice strains with specific features were developed. Numerous studies demonstrate that the pharmacological efficacy of various compounds significantly varies among different animal strains, a factor which must be considered when analyzing experimental data. The Sabra strain, developed more than 35 years ago, is widely used for research in Israel but has an unclear origin and is not characterized as well as other strains. Comparative analyses of the molecular characteristics of Sabra and other strains should help to understand their characteristics and to enhance the validity of their experimental use. Thus, four mouse strains-outbred ICR and Sabra as well as inbred C57Bl/6J and Balb/c were compared. Animals' weight, blood corticosterone and hippocampal BDNF mRNA levels were measured, and animals' behavior was compared using the EPM, open field, FST, and hot plate tests. We found that although Sabra mice are bigger and heavier than other tested lines, this is not reflected in behavior or in biomolecular features, wherein Sabra mice lay within the diapason of other tested animals. Thus, behavioral tests of anxiety-like behavior and locomotor activity revealed that Sabra mice scored close to the mean of all tested lines. Analysis of blood corticosterone levels did not show significant differences among tested strains. We also found a correlation between general and locomotor activity of the tested strains and their hippocampal BDNF mRNA expression. In summary, we may conclude that Sabra mice have traits similar to the better known lines, and therefore they are good subjects for neuroscience research.

  13. Genetic influences on exercise-induced adult hippocampal neurogenesis across 12 divergent mouse strains

    PubMed Central

    Clark, Peter J.; Kohman, Rachel A.; Miller, Daniel S.; Bhattacharya, Tushar K.; Brzezinska, Weronika J.; Rhodes, Justin S.

    2011-01-01

    New neurons are continuously born in the hippocampus of several mammalian species throughout adulthood. Adult neurogenesis represents a natural model for understanding how to grow and incorporate new nerve cells into pre-existing circuits in the brain. Finding molecules or biological pathways that increase neurogenesis has broad potential for regenerative medicine. One strategy is to identify mouse strains that display large versus small increases in neurogenesis in response to wheel running so the strains can be contrasted to find common genes or biological pathways associated with enhanced neuron formation. Therefore, mice from 12 different isogenic strains were housed with or without running wheels for 43 days to measure the genetic regulation of exercise-induced neurogenesis. The first 10 days mice received daily injections of BrdU to label dividing cells. Neurogenesis was measured as the total number of BrdU cells co-expressing NeuN mature neuronal marker in the hippocampal granule cell layer by immunohistochemistry. Exercise increased neurogenesis in all strains, but the magnitude significantly depended on genotype. Strain means for distance run on wheels, but not distance traveled in cages without wheels, were significantly correlated with strain mean level of neurogenesis. Further, certain strains displayed greater neurogenesis than others for a fixed level of running. Strain means for neurogenesis under sedentary conditions were not correlated with neurogenesis under runner conditions suggesting that different genes influence baseline versus exercise-induced neurogenesis. Genetic contributions to exercise-induced hippocampal neurogenesis suggest that it may be possible to identify genes and pathways associated with enhanced neuroplastic responses to exercise. PMID:21223504

  14. Modelling Hepatitis B Virus Antiviral Therapy and Drug Resistant Mutant Strains

    NASA Astrophysics Data System (ADS)

    Bernal, Julie; Dix, Trevor; Allison, Lloyd; Bartholomeusz, Angeline; Yuen, Lilly

    Despite the existence of vaccines, the Hepatitis B virus (HBV) is still a serious global health concern. HBV targets liver cells. It has an unusual replication process involving an RNA pre-genome that the reverse transcriptase domain of the viral polymerase protein translates into viral DNA. The reverse transcription process is error prone and together with the high replication rates of the virus, allows the virus to exist as a heterogeneous population of mutants, known as a quasispecies, that can adapt and become resistant to antiviral therapy. This study presents an individual-based model of HBV inside an artificial liver, and associated blood serum, undergoing antiviral therapy. This model aims to provide insights into the evolution of the HBV quasispecies and the individual contribution of HBV mutations in the outcome of therapy.

  15. Effect of Farnesol on a Mouse Model of Systemic Candidiasis, Determined by Use of a DPP3 Knockout Mutant of Candida albicans▿

    PubMed Central

    Navarathna, Dhammika H. M. L. P.; Hornby, Jacob M.; Krishnan, Navasona; Parkhurst, Anne; Duhamel, Gerald E.; Nickerson, Kenneth W.

    2007-01-01

    This work extends our previous observation that the fungus Candida albicans secretes micromolar levels of farnesol and that accumulation of farnesol in vitro prevents the yeast-to-mycelium conversion in a quorum-sensing manner. What does farnesol do in vivo? The purpose of this study was to determine the role of farnesol during infection with a well-established mouse model of systemic candidiasis with C. albicans A72 administered by tail vein injection. This question was addressed by altering both endogenous and exogenous farnesol. For endogenous farnesol, we created a knockout mutation in DPP3, the gene encoding a phosphatase which converts farnesyl pyrophosphate to farnesol. This mutant (KWN2) produced six times less farnesol and was ca. 4.2 times less pathogenic than its SN152 parent. The strain with DPP3 reconstituted (KWN4) regained both its farnesol production levels and pathogenicity. These mutants (KWN1 to KWN4) retained their full dimorphic capability. With regard to exogenous farnesol, farnesol was administered either intraperitoneally (i.p.) or orally in the drinking water. Mice receiving C. albicans intravenously and farnesol (20 mM) orally had enhanced mortality (P < 0.03). Similarly, mice (n = 40) injected with 1.0 ml of 20 mM farnesol i.p. had enhanced mortality (P < 0.03), and the onset of mortality was 30 h sooner than for mice which received a control injection without farnesol. The effect of i.p. farnesol was more pronounced (P < 0.04) when mice were inoculated with a sublethal dose of C. albicans. These mice started to die 4 days earlier, and the percent survival on day 6 postinoculation (p.i.) was five times lower than for mice receiving C. albicans with control i.p. injections. In all experiments, mice administered farnesol alone or Tween 80 alone remained normal throughout a 14-day observation period. Finally, beginning at 12 h p.i., higher numbers of C. albicans cells were detected in kidneys from mice receiving i.p. farnesol than in those

  16. CYCLOPENTA-FUSED POLYCYCLIC AROMATIC HYDROCARBONS IN STRAIN A/J MOUSE LUNG: DNA ADDUCTS, ONCOGENE MUTATIONS, & TUMORIGENESIS

    EPA Science Inventory

    Cyclopenta-fused Polycyclic Aromatic Hydrocarbons in Strain AJJ Mouse Lung: DNA Adducts, Oncogene Mutations, and Tumorigenesis.

    We have examined the relationships between DNA adducts, Ki-ras oncogene mutations, DNA adducts, and adenoma induction in the lungs of strain A/J...

  17. Inhibitors of STAT3, β-catenin, and IGF-1R sensitize mouse PIK3CA-mutant breast cancer to PI3K inhibitors.

    PubMed

    Merino, Vanessa F; Cho, Soonweng; Liang, Xiaohui; Park, Sunju; Jin, Kideok; Chen, Qian; Pan, Duojia; Zahnow, Cynthia A; Rein, Alan R; Sukumar, Saraswati

    2017-03-15

    Although mutations in the phosphoinositide 3-kinase catalytic subunit (PIK3CA) are common in breast cancer, PI3K inhibitors alone have shown modest efficacy. We sought to identify additional pathways altered in PIK3CA-mutant tumors that might be targeted in combination with PI3K inhibitors. We generated two transgenic mouse models expressing the human PIK3CA-H1047R- and the -E545K hotspot-mutant genes in the mammary gland and evaluated their effects on development and tumor formation. Molecular analysis identified pathways altered in these mutant tumors, which were also targeted in multiple cell lines derived from the PIK3CA tumors. Finally, public databases were analyzed to determine whether novel pathways identified in the mouse tumors were altered in human tumors harboring mutant PIK3CA. Mutant mice showed increased branching and delayed involution of the mammary gland compared to parental FVB/N mice. Mammary tumors arose in 30% of the MMTV-PIK3CA-H1047R and in 13% of -E545K mice. Compared to MMTV-Her-2 transgenic mouse mammary tumors, H1047R tumors showed increased upregulation of Wnt/β-catenin/Axin2, hepatocyte growth factor (Hgf)/Stat3, insulin-like growth factor 2 (Igf-2), and Igf-1R pathways. Inhibitors of STAT3, β-catenin, and IGF-1R sensitized H1047R-derived mouse tumor cells and PIK3CA-H1047R overexpressing human HS578T breast cancer cells to the cytotoxic effects of PI3K inhibitors. Analysis of The Cancer Genome Atlas database showed that, unlike primary PIK3CA-wild-type and HER-2(+) breast carcinomas, PIK3CA-mutant tumors display increased expression of AXIN2, HGF, STAT3, IGF-1, and IGF-2 mRNA and activation of AKT, IGF1-MTOR, and WNT canonical signaling pathways. Drugs targeting additional pathways that are altered in PIK3CA-mutant tumors may improve treatment regimens using PI3K inhibitors alone.

  18. GATA2 is epigenetically repressed in human and mouse lung tumors and is not requisite for survival of KRAS mutant lung cancer

    PubMed Central

    Tessema, Mathewos; Yingling, Christin M.; Snider, Amanda M.; Do, Kieu; Juri, Daniel E.; Picchi, Maria A.; Zhang, Xiequn; Liu, Yushi; Leng, Shuguang; Tellez, Carmen S.; Belinsky, Steven A.

    2014-01-01

    Introduction GATA2 was recently described as a critical survival factor and therapeutic target for KRAS mutant non-small cell lung cancer (NSCLC). However, whether this role is affected by epigenetic repression of GATA2 in lung cancer is unclear. Methods GATA2 expression and promoter CpG island methylation were evaluated using human and mouse NSCLC cell lines and tumor-normal pairs. In vitro assays were used to study GATA2 repression on cell survival and during tobacco carcinogen-induced transformation. Results GATA2 expression in KRAS wild-type (n=15) and mutant (n=10) NSCLC cell lines and primary lung tumors (n=24) was significantly lower, 1.3–33.6-fold (p=2.2×10−9), compared to corresponding normal lung. GATA2 promoter was unmethylated in normal lung (0/10) but frequently methylated in lung tumors (96%, 159/165) and NSCLC cell lines (97%, 30/31). This highly prevalent aberrant methylation was independently validated using TCGA data for 369 NSCLC tumor-normal pairs. In vitro studies using an established carcinogen-induced pre-malignancy model revealed that GATA2 expression was initially repressed by chromatin remodeling followed by cytosine methylation during transformation. Similarly, expression of Gata2 in NNK-induced mouse lung tumors (n=6) and cell lines (n=5) was 5-fold and 100-fold lower, respectively, than normal mouse lung. Finally, siRNA-mediated knockdown of GATA2 in KRAS mutant [human (n=4) and murine (n=5)] and wild-type [human (n=4)] NSCLC cell lines showed that further reduction of expression (up to 95%) does not induce cell death. Conclusion GATA2 is epigenetically repressed in human and mouse lung tumors and its further inhibition is not a valid therapeutic strategy for KRAS mutant lung cancer. PMID:24807155

  19. The Tyr-265-to-Cys mutator mutant of DNA polymerase β induces a mutator phenotype in mouse LN12 cells

    PubMed Central

    Clairmont, Caroline A.; Narayanan, Latha; Sun, Ka-Wai; Glazer, Peter M.; Sweasy, Joann B.

    1999-01-01

    DNA polymerase β functions in both base excision repair and meiosis. Errors committed by polymerase β during these processes could result in mutations. Using a complementation system, in which rat DNA polymerase β substitutes for DNA polymerase I of Escherichia coli, we previously isolated a DNA polymerase β mutant in which Tyr-265 was altered to Cys (Y265C). The Y265C mutant is dominant to wild-type DNA polymerase β and possesses an intrinsic mutator activity. We now have expressed the wild-type DNA polymerase and the Y265C mutator mutant in mouse LN12 cells, which have endogenous DNA polymerase β activity. We demonstrate that expression of the Y265C mutator mutant in the LN12 cells results in an 8-fold increase in the spontaneous mutation frequency of λcII mutants compared with expression of the wild-type protein. Expression of Y265C results in at least a 40-fold increase in the frequency of deletions of three bases or more and a 7-fold increase in point mutations. Our results suggest that the mutations we observe in vivo result directly from the action of the mutator polymerase. To our knowledge, this is the first demonstration of a mutator phenotype resulting from expression of a DNA polymerase mutator mutant in mammalian cells. This work raises the possibility that variant polymerases may act in a dominant fashion in human cells, leading to genetic instability and carcinogenesis. PMID:10449735

  20. Effect of Crossing C57BL/6 and FVB Mouse Strains on Basal Cytokine Expression

    PubMed Central

    Szade, Agata; Nowak, Witold N.; Szade, Krzysztof; Gese, Anna; Czypicki, Ryszard; Waś, Halina; Dulak, Józef; Józkowicz, Alicja

    2015-01-01

    C57BL/6 is the most often used laboratory mouse strain. However, sometimes it is beneficial to cross the transgenic mice on the C57BL/6 background to the other strain, such as FVB. Although this is a common strategy, the influence of crossing these different strains on homeostatic expression of cytokines is not known. Here we have investigated the differences in the expression of selected cytokines between C57BL/6J and C57BL/6JxFVB mice in serum and skeletal muscle. We have found that only few cytokines were altered by crossing of the strains. Concentrations of IL5, IL7, LIF, MIP-2, and IP-10 were higher in serum of C57BL/6J mice than in C57BL/6JxFVB mice, whereas concentration of G-CSF was lower in C57BL/6J. In the skeletal muscle only the concentration of VEGF was higher in C57BL/6J mice than in C57BL/6JxFVB mice. Concluding, the differences in cytokine expression upon crossing C57BL/6 and FVB strain in basal conditions are not profound. PMID:25834307

  1. Chlamydomonas reinhardtii strains expressing nitrate reductase under control of the cabII-1 promoter: isolation of chlorate resistant mutants and identification of new loci for nitrate assimilation.

    PubMed

    Navarro, María Teresa; Mariscal, Vicente; Macías, María Isabel; Fernández, Emilio; Galván, Aurora

    2005-01-01

    The Chlamydomonas reinhardtii strain Tx11-8 is a transgenic alga that bears the nitrate reductase gene (Nia1) under control of the CabII-1 gene promoter (CabII-1-Nia1). Approximately nine copies of the chimeric CabII-1-Nia1 gene were found to be integrated in this strain and to confer a phenotype of chlorate sensitivity in the presence of ammonium. We have used this strain for the isolation of spontaneous chlorate resistant mutants in the presence of ammonium that were found to be defective at loci involved in MoCo metabolism and light-dependent growth in nitrate media. Of a total of 45 mutant strains analyzed first, 44 were affected in the MoCo activity (16 Nit(-), unable to grow in nitrate, and 28 Nit(+), able to grow in nitrate). All the Nit(-) strains lacked MoCo activity. Diploid complementation of Nit(-), MoCo(-) strains with C. reinhardtii MoCo mutants and genetic analysis indicated that some strains were defective at known loci for MoCo biosynthesis, while three strains were defective at two new loci, hereafter named Nit10 and Nit11. The other 28 Nit(+) strains showed almost undetectable MoCo activity or activity was below 20% of the parental strain. Second, only one strain (named 23c(+)) showed MoCo and NR activities comparable to those in the parental strain. Strain 23c(+) seems to be affected in a locus, Nit12, required for growth in nitrate under continuous light. It is proposed that this locus is required for nitrate/chlorate transport activity. In this work, mechanisms of chlorate toxicity are reviewed in the light of our results.

  2. Effect of amantadine on motility of reserpinized mice as a function of brain biogenic amines and mouse strains.

    PubMed

    Messiha, F S

    1989-01-01

    The effect of amantadine, reserpine or both on locomotor activity and whole brain content of selected biogenic amines and major metabolites was studied as a function of mouse strain. Successive administration of small dose regimens of reserpine, 0.2 mg/kg IP, did not alter motility from corresponding saline control. Administration of amantadine, 100 mg/kg, IP, prior to each of the reserpine treatments produced either stimulation of motor activity in the albino ICR and black C57BL/6 mice or caused inhibition from reserpine in the albino BALB/C and the brown CDF-1 mouse strains. This suggests a genotype strain sensitivity to the amantadine and reserpine interaction on the motor behavior of the mouse. The amantadine treatment did not alter brain dopamine concentration but increased its immediate acid metabolite, 3,4-dihydroxyphenylacetic acid, in the C57BL/6 mice as contrasted with reduction of the same in the BALB/C mouse strain. Both BALB/C and C57BL/6 mice showed changes in brain normetanephrine levels as a consequence of the pharmacologic intervention used which suggest catecholaminergic sensitivity. The only changes produced by the agents studied in brain serotonin or 5-hydroxyindoleacetic acid levels were confined to the BALB/C mouse strain. No changes occurred in brain levels of the compounds measured from corresponding controls in the CDF-1 mice. The results indicate differential sensitivity of the serotonergic and dopaminergic systems to drug-drug interaction studied which appears to be strain dependent.

  3. The genomic landscape shaped by selection on transposable elements across 18 mouse strains

    PubMed Central

    2012-01-01

    Background Transposable element (TE)-derived sequence dominates the landscape of mammalian genomes and can modulate gene function by dysregulating transcription and translation. Our current knowledge of TEs in laboratory mouse strains is limited primarily to those present in the C57BL/6J reference genome, with most mouse TEs being drawn from three distinct classes, namely short interspersed nuclear elements (SINEs), long interspersed nuclear elements (LINEs) and the endogenous retrovirus (ERV) superfamily. Despite their high prevalence, the different genomic and gene properties controlling whether TEs are preferentially purged from, or are retained by, genetic drift or positive selection in mammalian genomes remain poorly defined. Results Using whole genome sequencing data from 13 classical laboratory and 4 wild-derived mouse inbred strains, we developed a comprehensive catalogue of 103,798 polymorphic TE variants. We employ this extensive data set to characterize TE variants across the Mus lineage, and to infer neutral and selective processes that have acted over 2 million years. Our results indicate that the majority of TE variants are introduced though the male germline and that only a minority of TE variants exert detectable changes in gene expression. However, among genes with differential expression across the strains there are twice as many TE variants identified as being putative causal variants as expected. Conclusions Most TE variants that cause gene expression changes appear to be purged rapidly by purifying selection. Our findings demonstrate that past TE insertions have often been highly deleterious, and help to prioritize TE variants according to their likely contribution to gene expression or phenotype variation. PMID:22703977

  4. Effect of mouse strain as a background for Alzheimer's disease models on the clearance of amyloid-β.

    PubMed

    Qosa, Hisham; Kaddoumi, Amal

    2016-04-01

    Novel animal models of Alzheimer's disease (AD) are relentlessly being developed and existing ones are being fine-tuned; however, these models face multiple challenges associated with the complexity of the disease where most of these models do not reproduce the full phenotypical disease spectrum. Moreover, different AD models express different phenotypes that could affect their validity to recapitulate disease pathogenesis and/or response to a drug. One of the most important and understudied differences between AD models is differences in the phenotypic characteristics of the background species. Here, we used the brain clearance index (BCI) method to investigate the effect of strain differences on the clearance of amyloid β (Aβ) from the brains of four mouse strains. These mouse strains, namely C57BL/6, FVB/N, BALB/c and SJL/J, are widely used as a background for the development of AD mouse models. Findings showed that while Aβ clearance across the blood-brain barrier (BBB) was comparable between the 4 strains, levels of LRP1, an Aβ clearance protein, was significantly lower in SJL/J mice compared to other mouse strains. Furthermore, these mouse strains showed a significantly different response to rifampicin treatment with regard to Aβ clearance and effect on brain level of its clearance-related proteins. Our results provide for the first time an evidence for strain differences that could affect ability of AD mouse models to recapitulate response to a drug, and opens a new research avenue that requires further investigation to successfully develop mouse models that could simulate clinically important phenotypic characteristics of AD.

  5. Testing Current and Developing Novel Therapies for NF1-Mutant Sarcomas in a Genetically Engineered Mouse Model

    DTIC Science & Technology

    2015-04-01

    1   AWARD NUMBER: W81XWH-14-1-0067 TITLE: Testing Current and Developing Novel Therapies for NF1- Mutant Sarcomas in a Genetically Engineered...Mar 2014 - 14 Mar 2015 4. TITLE AND SUBTITLE Testing Current and Developing Novel Therapies for NF1- Mutant Sarcomas in a Genetically Engineered...NF1- mutant sarcomas.    These studies may identify more efficacious treatments for patients with NF1- mutant sarcomas. 15. SUBJECT TERMS sarcoma

  6. Monotherapy with a tumor-targeting mutant of Salmonella typhimurium cures orthotopic metastatic mouse models of human prostate cancer.

    PubMed

    Zhao, Ming; Geller, Jack; Ma, Huaiyu; Yang, Meng; Penman, Sheldon; Hoffman, Robert M

    2007-06-12

    Bacterial infection occasionally has a marked therapeutic effect on malignancies, as noted as early as the 19th century. Recently, there have been attempts to develop cancer treatment by using tumor-targeting bacteria. These treatments were developed to deliver therapeutic molecules specifically to tumors. Researchers used anaerobic microorganisms that preferentially grew in necrotic tumor areas. However, the resulting tumor killing was, at best, limited. We have developed a far more effective bacterial cancer therapy by targeting viable tumor tissue by using Salmonella typhimurium leu-arg auxotrophs. Although these bacteria grow in viable as well as necrotic areas of tumors, the nutritional auxo trophy severely restricts growth in normal tissue. In the current study, we measured the antitumor efficacy of the S. typhimurium A1-R mutant, which is auxotrophic for leu-arg and has increased antitumor virulence selected by tumor passage. A1-R was used to treat metastatic PC-3 human prostate tumors that had been orthotopically implanted in nude mice. GFP was used to image tumor and metastatic growth. Of the 10 mice with the PC-3 tumors that were injected weekly with S. typhimurium A1-R, 7 were alive and well at the time the last untreated mouse died. Four A1-R-treated mice remain alive and well 6 months after implantation. Ten additional nontumor-bearing mice were injected weekly to determine the toxicity of S. typhimurium A1-R. No toxic effects were observed. The approach described here, where bacterial monotherapy effectively treats metastatic prostate tumors, is a significant improvement over previous bacterial tumor-therapy strategies that require combination with toxic chemotherapy.

  7. Strain-dependent Damage in Mouse Lung After Carbon Ion Irradiation

    SciTech Connect

    Moritake, Takashi; Fujita, Hidetoshi; Yanagisawa, Mitsuru; Nakawatari, Miyako; Imadome, Kaori; Nakamura, Etsuko; Iwakawa, Mayumi; Imai, Takashi

    2012-09-01

    Purpose: To examine whether inherent factors produce differences in lung morbidity in response to carbon ion (C-ion) irradiation, and to identify the molecules that have a key role in strain-dependent adverse effects in the lung. Methods and Materials: Three strains of female mice (C3H/He Slc, C57BL/6J Jms Slc, and A/J Jms Slc) were locally irradiated in the thorax with either C-ion beams (290 MeV/n, in 6 cm spread-out Bragg peak) or with {sup 137}Cs {gamma}-rays as a reference beam. We performed survival assays and histologic examination of the lung with hematoxylin-eosin and Masson's trichrome staining. In addition, we performed immunohistochemical staining for hyaluronic acid (HA), CD44, and Mac3 and assayed for gene expression. Results: The survival data in mice showed a between-strain variance after C-ion irradiation with 10 Gy. The median survival time of C3H/He was significantly shortened after C-ion irradiation at the higher dose of 12.5 Gy. Histologic examination revealed early-phase hemorrhagic pneumonitis in C3H/He and late-phase focal fibrotic lesions in C57BL/6J after C-ion irradiation with 10 Gy. Pleural effusion was apparent in C57BL/6J and A/J mice, 168 days after C-ion irradiation with 10 Gy. Microarray analysis of irradiated lung tissue in the three mouse strains identified differential expression changes in growth differentiation factor 15 (Gdf15), which regulates macrophage function, and hyaluronan synthase 1 (Has1), which plays a role in HA metabolism. Immunohistochemistry showed that the number of CD44-positive cells, a surrogate marker for HA accumulation, and Mac3-positive cells, a marker for macrophage infiltration in irradiated lung, varied significantly among the three mouse strains during the early phase. Conclusions: This study demonstrated a strain-dependent differential response in mice to C-ion thoracic irradiation. Our findings identified candidate molecules that could be implicated in the between-strain variance to early

  8. Isolation of a novel mutant strain of Saccharomyces cerevisiae by an ethyl methane sulfonate-induced mutagenesis approach as a high producer of bioethanol.

    PubMed

    Mobini-Dehkordi, Mohsen; Nahvi, Iraj; Zarkesh-Esfahani, Hamid; Ghaedi, Kamran; Tavassoli, Manoochehr; Akada, Rinji

    2008-04-01

    In order to obtain mutant strains showing higher bioethanol production than wild-type strains, a commercial Saccharomyces cerevisiae type was subjected to mutagenesis using ethyl methane sulfonate (EMS). After adding EMS to a shaken yeast suspension, the viability of yeast cells was assessed by diluted sample inoculation to solid yeast-extract peptone glucose (YEPG) medium at 15-min intervals. At 45 min, the viability of yeast cells was estimated to be about 40%. Mutagenized cells were recovered from YEPG broth after incubation at 30 degrees C for 18 h. After this period, EMS-treated yeast cells were grown on solid aerobic low-peptone (ALP) medium containing 2-12% (v/v) ethanol. All plates were incubated at 30 degrees C for 2-6 d in order to form colonies. The mutant strains that tolerated high concentrations of ethanol were selected for bioethanol production in microfuge tubes containing fermentation medium. Formation of bioethanol in small tubes was detected by the distillation-colorimetric method. In addition, trehalose content and invertase activity were determined in each mutant strain. Among many isolated mutant strains, there were six isolated colonies that grew on ALP medium supplemented with 10% (v/v) ethanol and one of them produced bioethanol 17.3% more than the wild type.

  9. Transcriptomic analysis of Clostridium thermocellum Populus hydrolysate-tolerant mutant strain shows increased cellular efficiency in response to Populus hydrolysate compared to the wild type strain

    PubMed Central

    2014-01-01

    Background The thermophilic, anaerobic bacterium, Clostridium thermocellum is a model organism for consolidated processing due to its efficient fermentation of cellulose. Constituents of dilute acid pretreatment hydrolysate are known to inhibit C. thermocellum and other microorganisms. To evaluate the biological impact of this type of hydrolysate, a transcriptomic analysis of growth in hydrolysate-containing medium was conducted on 17.5% v/v Populus hydrolysate-tolerant mutant (PM) and wild type (WT) strains of C. thermocellum. Results In two levels of Populus hydrolysate medium (0% and 10% v/v), the PM showed both gene specific increases and decreases of gene expression compared to the wild-type strain. The PM had increased expression of genes in energy production and conversion, and amino acid transport and metabolism in both standard and 10% v/v Populus hydrolysate media. In particular, expression of the histidine metabolism increased up to 100 fold. In contrast, the PM decreased gene expression in cell division and sporulation (standard medium only), cell defense mechanisms, cell envelope, cell motility, and cellulosome in both media. The PM downregulated inorganic ion transport and metabolism in standard medium but upregulated it in the hydrolysate media when compared to the WT. The WT differentially expressed 1072 genes in response to the hydrolysate medium which included increased transcription of cell defense mechanisms, cell motility, and cellulosome, and decreased expression in cell envelope, amino acid transport and metabolism, inorganic ion transport and metabolism, and lipid metabolism, while the PM only differentially expressed 92 genes. The PM tolerates up to 17.5% v/v Populus hydrolysate and growth in it elicited 489 genes with differential expression, which included increased expression in energy production and conversion, cellulosome production, and inorganic ion transport and metabolism and decreased expression in transcription and cell

  10. Proliferation Potential of Müller Glia after Retinal Damage Varies between Mouse Strains

    PubMed Central

    Suga, Akiko; Sadamoto, Kazuyo; Fujii, Momo; Mandai, Michiko; Takahashi, Masayo

    2014-01-01

    Retinal Müller glia can serve as a source for regeneration of damaged retinal neurons in fish, birds and mammals. However, the proliferation rate of Müller glia has been reported to be low in the mammalian retina. To overcome this problem, growth factors and morphogens have been studied as potent promoters of Müller glial proliferation, but the molecular mechanisms that limit the proliferation of Müller glia in the mammalian retina remain unknown. In the present study, we found that the degree of damage-induced Müller glia proliferation varies across mouse strains. In mouse line 129×1/SvJ (129), there was a significantly larger proliferative response compared with that observed in C57BL/6 (B6) after photoreceptor cell death. Treatment with a Glycogen synthase kinase 3 (GSK3) inhibitor enhanced the proliferation of Müller glia in 129 but not in B6 mouse retinas. We therefore focused on the different gene expression patterns during retinal degeneration between B6 and 129. Expression levels of Cyclin D1 and Nestin correlated with the degree of Müller glial proliferation. A comparison of genome-wide gene expression between B6 and 129 showed that distinct sets of genes were upregulated in the retinas after damage, including immune response genes and chromatin remodeling factors. PMID:24747725

  11. Decreased coenzyme A levels in ridA mutant strains of Salmonella enterica result from inactivated serine hydroxymethyltransferase.

    PubMed

    Flynn, Jeffrey M; Christopherson, Melissa R; Downs, Diana M

    2013-08-01

    The RidA/Yer057/UK114 family of proteins is well represented across the domains of life and recent work has defined both an in vitro activity and an in vivo role for RidA. RidA proteins have enamine deaminase activity, and in their absence the reactive 2-aminoacrylate (2-AA) accumulates and inactivates at least some pyridoxal 5'-phosphate (PLP)-containing enzymes in Salmonella enterica. The conservation of RidA suggested that 2-AA was a ubiquitous cellular stressor that was generated in central metabolism. Phenotypically, strains of S. enterica that lack RidA accumulated significantly more pyruvate in the growth medium than wild-type strains. Here we dissected this ridA mutant phenotype and showed it was an indirect consequence of damage to serine hydroxymethyltransferase (GlyA; E.C. 2.1.2.1). The results here identified a fourth PLP enzyme as a target of enamine stress in Salmonella.

  12. Construction of "Toxin Complex" in a Mutant Serotype C Strain of Clostridium botulinum Harboring a Defective Neurotoxin Gene.

    PubMed

    Suzuki, Tomonori; Nagano, Thomas; Niwa, Koichi; Uchino, Masataka; Tomizawa, Motohiro; Sagane, Yoshimasa; Watanabe, Toshihiro

    2017-01-01

    A non-toxigenic mutant of the toxigenic serotype C Clostridium botulinum strain Stockholm (C-St), C-N71, does not produce the botulinum neurotoxin (BoNT). However, the original strain C-St produces botulinum toxin complex, in which BoNT is associated with non-toxic non-hemagglutinin (NTNHA) and three hemagglutinin proteins (HA-70, HA-33, and HA-17). Therefore, in this study, we aimed to elucidate the effects of bont gene knockout on the formation of the "toxin complex." Nucleotide sequence analysis revealed that a premature stop codon was introduced in the bont gene, whereas other genes were not affected by this mutation. Moreover, we successfully purified the "toxin complex" produced by C-N71. The "toxin complex" was identified as a mixture of NTNHA/HA-70/HA-17/HA-33 complexes with intact NTNHA or C-terminally truncated NTNHA, without BoNT. These results indicated that knockout of the bont gene does not affect the formation of the "toxin complex." Since the botulinum toxin complex has been shown to play an important role in oral toxin transport in the human and animal body, a non-neurotoxic "toxin complex" of C-N71 may be valuable for the development of an oral drug delivery system.

  13. Reward-related behavioral paradigms for addiction research in the mouse: performance of common inbred strains.

    PubMed

    Lederle, Lauren; Weber, Susanna; Wright, Tara; Feyder, Michael; Brigman, Jonathan L; Crombag, Hans S; Saksida, Lisa M; Bussey, Timothy J; Holmes, Andrew

    2011-01-10

    The mouse has emerged as a uniquely valuable species for studying the molecular and genetic basis of complex behaviors and modeling neuropsychiatric disease states. While valid and reliable preclinical assays for reward-related behaviors are critical to understanding addiction-related processes, and various behavioral procedures have been developed and characterized in rats and primates, there have been relatively few studies using operant-based addiction-relevant behavioral paradigms in the mouse. Here we describe the performance of the C57BL/6J inbred mouse strain on three major reward-related paradigms, and replicate the same procedures in two other commonly used inbred strains (DBA/2J, BALB/cJ). We examined Pavlovian-instrumental transfer (PIT) by measuring the ability of an auditory cue associated with food reward to promote an instrumental (lever press) response. In a separate experiment, we assessed the acquisition and extinction of a simple stimulus-reward instrumental behavior on a touch screen based task. Reinstatement of this behavior was then examined following either continuous exposure to cues (conditioned reinforcers, CRs) associated with reward, brief reward and CR exposure, or brief reward exposure followed by continuous CR exposure. The third paradigm examined sensitivity of an instrumental (lever press) response to devaluation of food reward (a probe for outcome insensitive, habitual behavior) by repeated pairing with malaise. Results showed that C57BL/6J mice displayed robust PIT, as well as clear extinction and reinstatement, but were insensitive to reinforcer devaluation. DBA/2J mice showed good PIT and (rewarded) reinstatement, but were slow to extinguish and did not show reinforcer devaluation or significant CR-reinstatement. BALB/cJ mice also displayed good PIT, extinction and reinstatement, and retained instrumental responding following devaluation, but, unlike the other strains, demonstrated reduced Pavlovian approach behavior (food

  14. Comparison of clenbuterol and salbutamol accumulation in the liver of two different mouse strains.

    PubMed

    Vulić, Ana; Pleadin, Jelka; Durgo, Ksenija; Scortichini, Giampiero; Stojković, Ranko

    2014-06-01

    In the European Union, β(2)-adrenergic agonists like clenbuterol and salbutamol are banned from use as growth promoters. Although clenbuterol and salbutamol both accumulate in the liver, differences in the accumulation rate can be seen among animal species due to different β(2)-adrenoreceptor distributions. The aim of this study was to compare the accumulation of the two in the liver tissue of two different mouse strains. The study included 200 8-week-old BALB/c and C57/BL/6 mice. One group of BALB/c (40) and one group of C57/BL/6 (40) mice were treated with 2.5 mg/kg body mass clenbuterol per os for 28 days. The remaining two animal groups were treated with salbutamol in the same manner. The animals were then randomly sacrificed on day 1, 15 and 30 post treatments. Despite of the same treatment dose, the results revealed clenbuterol to persist in the liver tissue longer than salbutamol. On post treatment day 30, the concentration of clenbuterol residue in C57/BL/6 and BALB/c mice liver tissue were 0.23 ± 0.02 and 0.21 ± 0.03 ng/g, respectively, while residues of salbutamol were not detected. When comparing the accumulation of both compounds between the two mouse strains, it becomes apparent that no significant difference (P > 0.05) in the accumulation rate can be found.

  15. Acquisition of nonspecific Bartonella strains by the northern grasshopper mouse (Onychomys leucogaster)

    USGS Publications Warehouse

    Bai, Y.; Kosoy, M.Y.; Cully, J.F.; Bala, T.; Ray, C.; Collinge, S.K.

    2007-01-01

    Rodent-associated Bartonella species are generally host-specific parasites in North America. Here evidence that Bartonella species can 'jump' between host species is presented. Northern grasshopper mice and other rodents were trapped in the western USA. A study of Bartonella infection in grasshopper mice demonstrated a high prevalence that varied from 25% to 90% by location. Bartonella infection was detected in other rodent species with a high prevalence as well. Sequence analyses of gltA identified 29 Bartonella variants in rodents, 10 of which were obtained from grasshopper mice. Among these 10, only six variants were specific to grasshopper mice, whereas four were identical to variants specific to deer mice or 13-lined ground squirrels. Fourteen of 90 sequenced isolates obtained from grasshopper mice were strains found more commonly in other rodent species and were apparently acquired from these animals. The ecological behavior of grasshopper mice may explain the occurrence of Bartonella strains in occasional hosts. The observed rate at which Bartonella jumps from a donor host species to the grasshopper mouse was directly proportional to a metric of donor host density and to the prevalence of Bartonella in the donor host, and inversely proportional to the same parameters for the grasshopper mouse. ?? 2007 Federation of European Microbiological Societies.

  16. Genetic mapping of social interaction behavior in B6/MSM consomic mouse strains.

    PubMed

    Takahashi, Aki; Tomihara, Kazuya; Shiroishi, Toshihiko; Koide, Tsuyoshi

    2010-05-01

    Genetic studies are indispensable for understanding the mechanisms by which individuals develop differences in social behavior. We report genetic mapping of social interaction behavior using inter-subspecific consomic strains established from MSM/Ms (MSM) and C57BL/6J (B6) mice. Two animals of the same strain and sex, aged 10 weeks, were introduced into a novel open-field for 10 min. Social contact was detected by an automated system when the distance between the centers of the two animals became less than approximately 12 cm. In addition, detailed behavioral observations were made of the males. The wild-derived mouse strain MSM showed significantly longer social contact as compared to B6. Analysis of the consomic panel identified two chromosomes (Chr 6 and Chr 17) with quantitative trait loci (QTL) responsible for lengthened social contact in MSM mice and two chromosomes (Chr 9 and Chr X) with QTL that inhibited social contact. Detailed behavioral analysis of males identified four additional chromosomes associated with social interaction behavior. B6 mice that contained Chr 13 from MSM showed more genital grooming and following than the parental B6 strain, whereas the presence of Chr 8 and Chr 12 from MSM resulted in a reduction of those behaviors. Longer social sniffing was observed in Chr 4 consomic strain than in B6 mice. Although the frequency was low, aggressive behavior was observed in a few pairs from consomic strains for Chrs 4, 13, 15 and 17, as well as from MSM. The social interaction test has been used as a model to measure anxiety, but genetic correlation analysis suggested that social interaction involves different aspects of anxiety than are measured by open-field test.

  17. Metabolic and behavioral effects of mutant huntingtin deletion in Sim1 neurons in the BACHD mouse model of Huntington’s disease

    PubMed Central

    Soylu-Kucharz, Rana; Baldo, Barbara; Petersén, Åsa

    2016-01-01

    Hypothalamic pathology, metabolic dysfunction and psychiatric symptoms are part of Huntington disease (HD), which is caused by an expanded CAG repeat in the huntingtin (HTT) gene. Inactivation of mutant HTT selectively in the hypothalamus prevents the development of metabolic dysfunction and depressive-like behavior in the BACHD mouse model. The hypothalamic paraventricular nucleus (PVN) is implicated in metabolic and emotional control, therefore we here tested whether inactivation of mutant HTT in the PVN affects metabolic and psychiatric manifestations of HD in BACHD mice. BACHD mice were crossed with mice expressing Cre-recombinase under the Sim1 promoter (Sim1-Cre) to inactivate mutant HTT in Sim1 expressing cells, i.e. the PVN of the hypothalamus. We found that inactivation of mutant HTT in Sim1 cells had a sex-specific effect on both the metabolic and the psychiatric phenotype, as these phenotypes were no longer different in male BACHD/Sim1-Cre mice compared to wild-type littermates. We also found a reduced number of GnRH neurons specifically in the anterior hypothalamus and an increased testes weight in male BACHD mice compared to wild-type littermates. Taken together, expression of mutant HTT in Sim1 cells may play a role for the development of metabolic dysfunction and depressive-like behavior in male BACHD mice. PMID:27334347

  18. Characterization of the Burkholderia mallei tonB Mutant and Its Potential as a Backbone Strain for Vaccine Development

    PubMed Central

    Mott, Tiffany M.; Vijayakumar, Sudhamathi; Sbrana, Elena; Endsley, Janice J.; Torres, Alfredo G.

    2015-01-01

    Background In this study, a Burkholderia mallei tonB mutant (TMM001) deficient in iron acquisition was constructed, characterized, and evaluated for its protective properties in acute inhalational infection models of murine glanders and melioidosis. Methodology/Principal Findings Compared to the wild-type, TMM001 exhibits slower growth kinetics, siderophore hyper-secretion and the inability to utilize heme-containing proteins as iron sources. A series of animal challenge studies showed an inverse correlation between the percentage of survival in BALB/c mice and iron-dependent TMM001 growth. Upon evaluation of TMM001 as a potential protective strain against infection, we found 100% survival following B. mallei CSM001 challenge of mice previously receiving 1.5 x 104 CFU of TMM001. At 21 days post-immunization, TMM001-treated animals showed significantly higher levels of B. mallei-specific IgG1, IgG2a and IgM when compared to PBS-treated controls. At 48 h post-challenge, PBS-treated controls exhibited higher levels of serum inflammatory cytokines and more severe pathological damage to target organs compared to animals receiving TMM001. In a cross-protection study of acute inhalational melioidosis with B. pseudomallei, TMM001-treated mice were significantly protected. While wild type was cleared in all B. mallei challenge studies, mice failed to clear TMM001. Conclusions/Significance Although further work is needed to prevent chronic infection by TMM001 while maintaining immunogenicity, our attenuated strain demonstrates great potential as a backbone strain for future vaccine development against both glanders and melioidosis. PMID:26114445

  19. Sperm morphology in two house mouse subspecies: do wild-derived strains and wild mice tell the same story?

    PubMed

    Albrechtová, Jana; Albrecht, Tomáš; Ďureje, Ludovít; Pallazola, Vincent A; Piálek, Jaroslav

    2014-01-01

    Being subject to intense post-copulatory selection, sperm size is a principal determining component of male fitness. Although previous studies have presented comparative sperm size data at higher taxonomic levels, information on the evolution of sperm size within species is generally lacking. Here, we studied two house mouse subspecies, Mus musculus musculus and Mus musculus domesticus, which undergo incipient speciation. We measured four sperm dimensions from cauda epididymis smears of 28 wild-caught mice of both subspecies. As inbred mouse strains are frequently used as proxies for exploring evolutionary processes, we further studied four wild-derived inbred strains from each subspecies. The subspecies differed significantly in terms of sperm head length and midpiece length, and these differences were consistent for wild mice and wild-derived strains pooled over genomes. When the inbred strains were analyzed individually, however, their strain-specific values were in some cases significantly shifted from subspecies-specific values derived from wild mice. We conclude that: (1) the size of sperm components differ in the two house mouse subspecies studied, and that (2) wild-derived strains reflect this natural polymorphism, serving as a potential tool to identify the genetic variation driving these evolutionary processes. Nevertheless, we suggest that more strains should be used in future experiments to account for natural variation and to avoid confounding results due to reduced variability and/or founder effect in the individual strains.

  20. Sperm Morphology in Two House Mouse Subspecies: Do Wild-Derived Strains and Wild Mice Tell the Same Story?

    PubMed Central

    Albrechtová, Jana; Albrecht, Tomáš; Ďureje, Ludovít; Pallazola, Vincent A.; Piálek, Jaroslav

    2014-01-01

    Being subject to intense post-copulatory selection, sperm size is a principal determining component of male fitness. Although previous studies have presented comparative sperm size data at higher taxonomic levels, information on the evolution of sperm size within species is generally lacking. Here, we studied two house mouse subspecies, Mus musculus musculus and Mus musculus domesticus, which undergo incipient speciation. We measured four sperm dimensions from cauda epididymis smears of 28 wild-caught mice of both subspecies. As inbred mouse strains are frequently used as proxies for exploring evolutionary processes, we further studied four wild-derived inbred strains from each subspecies. The subspecies differed significantly in terms of sperm head length and midpiece length, and these differences were consistent for wild mice and wild-derived strains pooled over genomes. When the inbred strains were analyzed individually, however, their strain-specific values were in some cases significantly shifted from subspecies-specific values derived from wild mice. We conclude that: (1) the size of sperm components differ in the two house mouse subspecies studied, and that (2) wild-derived strains reflect this natural polymorphism, serving as a potential tool to identify the genetic variation driving these evolutionary processes. Nevertheless, we suggest that more strains should be used in future experiments to account for natural variation and to avoid confounding results due to reduced variability and/or founder effect in the individual strains. PMID:25541964

  1. Analysis of the mouse mutant Cloth-ears shows a role for the voltage-gated sodium channel Scn8a in peripheral neural hearing loss.

    PubMed

    Mackenzie, F E; Parker, A; Parkinson, N J; Oliver, P L; Brooker, D; Underhill, P; Lukashkina, V A; Lukashkin, A N; Holmes, C; Brown, S D M

    2009-10-01

    Deafness is the most common sensory disorder in humans and the aetiology of genetic deafness is complex. Mouse mutants have been crucial in identifying genes involved in hearing. However, many deafness genes remain unidentified. Using N-ethyl N-nitrosourea (ENU) mutagenesis to generate new mouse models of deafness, we identified a novel semi-dominant mouse mutant, Cloth-ears (Clth). Cloth-ears mice show reduced acoustic startle response and mild hearing loss from approximately 30 days old. Auditory-evoked brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) analyses indicate that the peripheral neural auditory pathway is impaired in Cloth-ears mice, but that cochlear function is normal. In addition, both Clth/Clth and Clth/+ mice display paroxysmal tremor episodes with behavioural arrest. Clth/Clth mice also show a milder continuous tremor during movement and rest. Longitudinal phenotypic analysis showed that Clth/+ and Clth/Clth mice also have complex defects in behaviour, growth, neurological and motor function. Positional cloning of Cloth-ears identified a point mutation in the neuronal voltage-gated sodium channel alpha-subunit gene, Scn8a, causing an aspartic acid to valine (D981V) change six amino acids downstream of the sixth transmembrane segment of the second domain (D2S6). Complementation testing with a known Scn8a mouse mutant confirmed that this mutation is responsible for the Cloth-ears phenotype. Our findings suggest a novel role for Scn8a in peripheral neural hearing loss and paroxysmal motor dysfunction.

  2. Catheter colonization and abscess formation due to Staphylococcus epidermidis with normal and small-colony-variant phenotype is mouse strain dependent.

    PubMed

    Sander, Gunnar; Börner, Tina; Kriegeskorte, André; von Eiff, Christof; Becker, Karsten; Mahabir, Esther

    2012-01-01

    Coagulase-negative staphylococci (CoNS) form a thick, multilayered biofilm on foreign bodies and are a major cause of nosocomial implant-associated infections. Although foreign body infection models are well-established, limited in vivo data are available for CoNS with small-colony-variant (SCV) phenotype described as causative agents in implant-associated infections. Therefore, we investigated the impact of the Staphylococcus epidermidis phenotype on colonization of implanted PVC catheters and abscess formation in three different mouse strains. Following introduction of a catheter subcutaneously in each flank of 8- to 12-week-old inbred C57BL/6JCrl (B6J), outbred Crl:CD1(ICR) (CD-1), and inbred BALB/cAnNCrl (BALB/c) male mice, doses of S. epidermidis O-47 wild type, its hemB mutant with stable SCV phenotype, or its complemented mutant at concentrations of 10(6) to 10(9) colony forming units (CFUs) were gently spread onto each catheter. On day 7, mice were sacrificed and the size of the abscesses as well as bacterial colonization was determined. A total of 11,500 CFUs of the complemented mutant adhered to the catheter in BALB/c followed by 9,960 CFUs and 9,900 CFUs from S. epidermidis wild type in BALB/c and CD-1, respectively. SCV colonization was highest in CD-1 with 9,500 CFUs, whereas SCVs were not detected in B6J. The minimum dose that led to colonization or abscess formation in all mouse strains was 10(7) or 10(8) CFUs of the normal phenotype, respectively. A minimum dose of 10(8) or 10(9) CFU of the hemB mutant with stable SCV phenotype led to colonization only or abscess formation, respectively. The largest abscesses were detected in BALB/c inoculated with wild type bacteria or SCV (64 mm(2) vs. 28 mm(2)). Our results indicate that colonization and abscess formation by different phenotypes of S. epidermidis in a foreign body infection model is most effective in inbred BALB/c followed by outbred CD-1 and inbred B6J mice.

  3. Effects of Deletion of Mutant Huntingtin in Steroidogenic Factor 1 Neurons on the Psychiatric and Metabolic Phenotype in the BACHD Mouse Model of Huntington Disease

    PubMed Central

    Petersén, Åsa

    2014-01-01

    Psychiatric and metabolic features appear several years before motor disturbances in the neurodegenerative Huntington’s disease (HD), caused by an expanded CAG repeat in the huntingtin (HTT) gene. Although the mechanisms leading to these aspects are unknown, dysfunction in the hypothalamus, a brain region controlling emotion and metabolism, has been suggested. A direct link between the expression of the disease causing protein, huntingtin (HTT), in the hypothalamus and the development of metabolic and psychiatric-like features have been shown in the BACHD mouse model of HD. However, precisely which circuitry in the hypothalamus is critical for these features is not known. We hypothesized that expression of mutant HTT in the ventromedial hypothalamus, an area involved in the regulation of metabolism and emotion would be important for the development of these non-motor aspects. Therefore, we inactivated mutant HTT in a specific neuronal population of the ventromedial hypothalamus expressing the transcription factor steroidogenic factor 1 (SF1) in the BACHD mouse using cross-breeding based on a Cre-loxP system. Effects on anxiety-like behavior were assessed using the elevated plus maze and novelty-induced suppressed feeding test. Depressive-like behavior was assessed using the Porsolt forced swim test. Effects on the metabolic phenotype were analyzed using measurements of body weight and body fat, as well as serum insulin and leptin levels. Interestingly, the inactivation of mutant HTT in SF1-expressing neurons exerted a partial positive effect on the depressive-like behavior in female BACHD mice at 4 months of age. In this cohort of mice, no anxiety-like behavior was detected. The deletion of mutant HTT in SF1 neurons did not have any effect on the development of metabolic features in BACHD mice. Taken together, our results indicate that mutant HTT regulates metabolic networks by affecting hypothalamic circuitries that do not involve the SF1 neurons of the

  4. Synergistic activity of Card11 mutant and Bcl6 in the development of diffuse large B-cell lymphoma in a mouse model.

    PubMed

    Takahara, Taishi; Matsuo, Keitaro; Seto, Masao; Nakamura, Shigeo; Tsuzuki, Shinobu

    2016-11-01

    Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of malignant lymphoma; it derives from germinal center B cells. Although DLBCL harbors many genetic alterations, synergistic roles between such alterations in the development of lymphoma are largely undefined. We previously established a mouse model of lymphoma by transplanting gene-transduced germinal center B cells into mice. Here, we chose one of the frequently mutated genes in DLBCL, Card11 mutant, to explore its possible synergy with other genes, using our lymphoma model. Given that BCL6 and BCL2 expression and/or function are often deregulated in human lymphoma, we examined the possible synergy between Card11, Bcl6, and Bcl2. Germinal center B cells were induced in vitro, transduced with Card11 mutant, Bcl6, and Bcl2, and transplanted. Mice rapidly developed lymphomas, with exogenously transduced Bcl2 being dispensable. Although some mice developed lymphoma in the absence of transduced Bcl6, the absence was compensated by elevated expression of endogenous Bcl6. Additionally, the synergy between Card11 mutant and Bcl6 in the development of lymphoma was confirmed by the fact that the combination of Card11 mutant and Bcl6 caused lymphoma or death significantly earlier and with higher penetrance than Card11 mutant or Bcl6 alone. Lymphoma cells expressed interferon regulatory factor 4 and PR domain 1, indicating their differentiation toward plasmablasts, which characterize activated B cell-like DLBCL that represents a clinically aggressive subtype in humans. Thus, our mouse model provides a versatile tool for studying the synergistic roles of altered genes underlying lymphoma development.

  5. Strain-specific pulmonary defense achieved after repeated airway immunizations with non-typeable haemophilus influenzae in a mouse model.

    PubMed

    Koyama, Jun; Ahmed, Kamruddin; Zhao, Jizi; Saito, Mariko; Onizuka, Shozaburo; Oma, Keita; Watanabe, Kiwao; Watanabe, Hiroshi; Oishi, Kazunori

    2007-01-01

    Strain-specific immune responses may play a critical role in the acute exacerbation of chronic obstructive pulmonary disease (COPD) caused by Haemophilus influenzae (NTHi), and the outer membrane protein P2 is one of surface antigens of NTHi, which may contribute to the strain-specific protective immunity. We examined whether repeated airway immunizations with killed-NTHi strains bearing different P2 molecules were capable of inducing protective immunity against homologous or heterologous strains in the lungs of a mouse model. Three different strains of NTHi were used in this study. Three serial intratracheal (IT) immunizations of a single strain or three different strains of NTHi led to the production of cross-reactive immunoglobulins G and A in bronchoalveolar lavage fluids. Three serial IT immunizations with a single strain enhanced the bacterial clearance of the homologous strain in the lungs, but no enhancement of bacterial clearance was found with three serial IT immunizations of heterologous strains. The enhancement in bacterial clearance, therefore, appears to be primarily strain-specific. Enhanced bacterial clearance of a heterologous strain was also found after three serial IT immunizations of a single strain among two of the three strains employed for bacterial challenge. These findings suggest that P2 molecules and surface antigens other than P2 are involved in the development of pulmonary defense against NTHi in mice. Our data may explain, in part, why patients with COPD experience recurrent NTHi infections.

  6. Draft Genome Sequences of Two Heat-Resistant Mutant Strains (A52 and B41) of the Photosynthetic Hydrogen-Producing Bacterium Rhodobacter capsulatus

    PubMed Central

    Gokce, Abdulmecit; Cakar, Zeynep Petek; Yucel, Meral; Ozcan, Orhan; Sencan, Sevde; Sertdemir, Ibrahim; Erguner, Bekir; Yuceturk, Betul; Sarac, Aydan; Yuksel, Bayram

    2016-01-01

    The draft genome sequences of two heat-resistant mutant strains, A52 and B41, derived from Rhodobacter capsulatus DSM 1710, and with different hydrogen production levels, are reported here. These sequences may help understand the molecular basis of heat resistance and hydrogen production in R. capsulatus. PMID:27284151

  7. Compressive viscoelasticity of freshly excised mouse skin is dependent on specimen thickness, strain level and rate.

    PubMed

    Wang, Yuxiang; Marshall, Kara L; Baba, Yoshichika; Lumpkin, Ellen A; Gerling, Gregory J

    2015-01-01

    Although the skin's mechanical properties are well characterized in tension, little work has been done in compression. Here, the viscoelastic properties of a population of mouse skin specimens (139 samples from 36 mice, aged 5 to 34 weeks) were characterized upon varying specimen thickness, as well as strain level and rate. Over the population, we observed the skin's viscoelasticity to be quite variable, yet found systematic correlation of residual stress ratio with skin thickness and strain, and of relaxation time constants with strain rates. In particular, as specimen thickness ranged from 211 to 671 μm, we observed significant variation in both quasi-linear viscoelasticity (QLV) parameters, the relaxation time constant (τ1 = 0.19 ± 0.10 s) and steady-state residual stress ratio (G∞ = 0.28 ± 0.13). Moreover, when τ1 was decoupled and fixed, we observed that G∞ positively correlated with skin thickness. Second, as steady-state stretch was increased (λ∞ from 0.22 to 0.81), we observed significant variation in both QLV parameters (τ1 = 0.26 ± 0.14 s, G∞ = 0.47 ± 0.17), and when τ1 was fixed, G∞ positively correlated with stretch level. Third, as strain rate was increased from 0.06 to 22.88 s-1, the median time constant τ1 varied from 1.90 to 0.31 s, and thereby negatively correlated with strain rate. These findings indicate that the natural range of specimen thickness, as well as experimental controls of compression level and rate, significantly influence measurements of skin viscoelasticity.

  8. Compressive Viscoelasticity of Freshly Excised Mouse Skin Is Dependent on Specimen Thickness, Strain Level and Rate

    PubMed Central

    Wang, Yuxiang; Marshall, Kara L.; Baba, Yoshichika; Lumpkin, Ellen A.; Gerling, Gregory J.

    2015-01-01

    Although the skin’s mechanical properties are well characterized in tension, little work has been done in compression. Here, the viscoelastic properties of a population of mouse skin specimens (139 samples from 36 mice, aged 5 to 34 weeks) were characterized upon varying specimen thickness, as well as strain level and rate. Over the population, we observed the skin’s viscoelasticity to be quite variable, yet found systematic correlation of residual stress ratio with skin thickness and strain, and of relaxation time constants with strain rates. In particular, as specimen thickness ranged from 211 to 671 μm, we observed significant variation in both quasi-linear viscoelasticity (QLV) parameters, the relaxation time constant (τ1 = 0.19 ± 0.10 s) and steady-state residual stress ratio (G∞ = 0.28 ± 0.13). Moreover, when τ1 was decoupled and fixed, we observed that G∞ positively correlated with skin thickness. Second, as steady-state stretch was increased (λ∞ from 0.22 to 0.81), we observed significant variation in both QLV parameters (τ1 = 0.26 ± 0.14 s, G∞ = 0.47 ± 0.17), and when τ1 was fixed, G∞ positively correlated with stretch level. Third, as strain rate was increased from 0.06 to 22.88 s−1, the median time constant τ1 varied from 1.90 to 0.31 s, and thereby negatively correlated with strain rate. These findings indicate that the natural range of specimen thickness, as well as experimental controls of compression level and rate, significantly influence measurements of skin viscoelasticity. PMID:25803703

  9. Genetic stability and mutant selection in Sabin 2 strain of oral poliovirus vaccine grown under different cell culture conditions.

    PubMed

    Taffs, R E; Chumakov, K M; Rezapkin, G V; Lu, Z; Douthitt, M; Dragunsky, E M; Levenbook, I S

    1995-06-01

    Mutations that consistently accumulated in the attenuated Sabin 2 strain of poliovirus during propagation in cell cultures were identified by sequence heterogeneity assay and quantified by mutant analysis by PCR and restriction enzyme cleavage (MAPREC). Eight additional sites previously identified in stool isolates were also examined by MAPREC in the virus passages. The pattern of selectable mutations and the rate of their accumulation depended on the type and confluence of the cell culture and the temperature of virus growth. Five unstable genomic sites were identified in Sabin 2 virus passaged 10 times at 34 degrees in African green monkey kidney (AGMK) cells, with the mutations accumulating in the range 1 to 24%. Accumulation of these mutations did not appear to result in a loss of attenuated phenotype since the virus passaged under these conditions passed the monkey neurovirulence test (MNVT). The content of the 481-G revertant known to be related to neurovirulence in monkeys did not increase. Thus, our results suggest that upon growth of Sabin 2 virus in AGMK cells at 34 degrees, the key determinant(s) of attenuation remained stable, and the mutations that occurred did not affect monkey neurovirulence. In virus passaged 10 times at 37 degrees in AGMK cells, 4 unstable genomic sites were identified, in some of them accumulating up to 12% of the mutants. This virus sample severely failed the MNVT. Virus passaged in Vero cells at 34 and 37 degrees accumulated mutants at 7 and 14 genomic sites, respectively, including 481-G in both cases, with almost complete substitution of the original nucleotides at some of the sites. We tested 44 commercial monopools of Type 2 OPV and found out that all of them contained 481-G revertants in the range 0.4-1.1%. An increase in the 481-G revertants in passaged viruses to the level of 4% and above correlated with failure of these samples by the MNVT. Since the pattern of selectable mutations differed in viruses grown in the two

  10. Alterations in grooming activity and syntax in heterozygous SERT and BDNF knockout mice: the utility of behavior-recognition tools to characterize mutant mouse phenotypes.

    PubMed

    Kyzar, Evan J; Pham, Mimi; Roth, Andrew; Cachat, Jonathan; Green, Jeremy; Gaikwad, Siddharth; Kalueff, Allan V

    2012-12-01

    Serotonin transporter (SERT) and brain-derived neurotrophic factor (BDNF) are key modulators of molecular signaling, cognition and behavior. Although SERT and BDNF mutant mouse phenotypes have been extensively characterized, little is known about their self-grooming behavior. Grooming represents an important behavioral domain sensitive to environmental stimuli and is increasingly used as a model for repetitive behavioral syndromes, such as autism and attention deficit/hyperactivity disorder. The present study used heterozygous ((+/-)) SERT and BDNF male mutant mice on a C57BL/6J background and assessed their spontaneous self-grooming behavior applying both manual and automated techniques. Overall, SERT(+/-) mice displayed a general increase in grooming behavior, as indicated by more grooming bouts and more transitions between specific grooming stages. SERT(+/-) mice also aborted more grooming bouts, but showed generally unaltered activity levels in the observation chamber. In contrast, BDNF(+/-) mice displayed a global reduction in grooming activity, with fewer bouts and transitions between specific grooming stages, altered grooming syntax, as well as hypolocomotion and increased turning behavior. Finally, grooming data collected by manual and automated methods (HomeCageScan) significantly correlated in our experiments, confirming the utility of automated high-throughput quantification of grooming behaviors in various genetic mouse models with increased or decreased grooming phenotypes. Taken together, these findings indicate that mouse self-grooming behavior is a reliable behavioral biomarker of genetic deficits in SERT and BDNF pathways, and can be reliably measured using automated behavior-recognition technology.

  11. Phenotypic characterization of the KK/HlJ inbred mouse strain.

    PubMed

    Berndt, A; Sundberg, B A; Silva, K A; Kennedy, V E; Richardson, M A; Li, Q; Bronson, R T; Uitto, J; Sundberg, J P

    2014-07-01

    Detailed histopathological diagnoses of inbred mouse strains are important for interpreting research results and defining novel models of human diseases. The aim of this study was to histologically detect lesions affecting the KK/HlJ inbred strain. Mice were examined at 6, 12, and 20 months of age and near natural death (ie, moribund mice). Histopathological lesions were quantified by percentage of affected mice per age group and sex. Predominant lesions were mineralization, hyperplasia, and fibro-osseous lesions. Mineralization was most frequently found in the connective tissue dermal sheath of vibrissae, the heart, and the lung. Mineralization was also found in many other organs but to a lesser degree. Hyperplasia was found most commonly in the pancreatic islets, and fibro-osseous lesions were observed in several bones. The percentage of lesions increased with age until 20 months. This study shows that KK/HlJ mice demonstrate systemic aberrant mineralization, with greatest frequency in aged mice. The detailed information about histopathological lesions in the inbred strain KK/HlJ can help investigators to choose the right model and correctly interpret the experimental results.

  12. Booster vaccination with safe, modified, live-attenuated mutants of Brucella abortus strain RB51 vaccine confers protective immunity against virulent strains of B. abortus and Brucella canis in BALB/c mice.

    PubMed

    Truong, Quang Lam; Cho, Youngjae; Kim, Kiju; Park, Bo-Kyoung; Hahn, Tae-Wook

    2015-11-01

    Brucella abortus attenuated strain RB51 vaccine (RB51) is widely used in prevention of bovine brucellosis. Although vaccination with this strain has been shown to be effective in conferring protection against bovine brucellosis, RB51 has several drawbacks, including residual virulence for animals and humans. Therefore, a safe and efficacious vaccine is needed to overcome these disadvantages. In this study, we constructed several gene deletion mutants (ΔcydC, ΔcydD and ΔpurD single mutants, and ΔcydCΔcydD and ΔcydCΔpurD double mutants) of RB51 with the aim of increasing the safety of the possible use of these mutants as vaccine candidates. The RB51ΔcydC, RB51ΔcydD, RB51ΔpurD, RB51ΔcydCΔcydD and RB51ΔcydCΔpurD mutants exhibited significant attenuation of virulence when assayed in murine macrophages in vitro or in BALB/c mice. A single intraperitoneal immunization with RB51ΔcydC, RB51ΔcydD, RB51ΔcydCΔcydD or RB51ΔcydCΔpurD mutants was rapidly cleared from mice within 3 weeks, whereas the RB51ΔpurD mutant and RB51 were detectable in spleens until 4 and 7 weeks, respectively. Vaccination with a single dose of RB51 mutants induced lower protective immunity in mice than did parental RB51. However, a booster dose of these mutants provided significant levels of protection in mice against challenge with either the virulent homologous B. abortus strain 2308 or the heterologous Brucella canis strain 26. In addition, these mutants were found to induce a mixed but T-helper-1-biased humoral and cellular immune response in immunized mice. These data suggest that immunization with a booster dose of attenuated RB51 mutants provides an attractive strategy to protect against either bovine or canine brucellosis.

  13. Dynamics of the Emergence of a Human Cytomegalovirus UL97 Mutant Strain Conferring Ganciclovir Resistance in a Pediatric Stem-Cell Transplant Recipient

    PubMed Central

    Göhring, Katharina; Feuchtinger, Tobias; Mikeler, Elfriede; Lang, Peter; Jahn, Gerhard; Handgretinger, Rupert; Hamprecht, Klaus

    2009-01-01

    Stem-cell transplant recipients are at risk of developing ganciclovir-resistant human cytomegalovirus (HCMV) infection caused by mutations in the viral UL97 gene. Knowledge of the relative proportions of coexisting HCMV wild-type and mutant strains may contribute to a better understanding of the dynamics of in vivo mutant strain selection under ganciclovir. Currently, genotype resistance screening for UL97 is routinely performed by restriction fragment length polymorphism detection and sequencing. We present here the longitudinal course of a pediatric recipient of an allogeneic stem-cell transplant infected with a ganciclovir-resistant HCMV strain. EDTA-treated blood samples were analyzed longitudinally. The patient acquired a primary HCMV infection shortly before transplantation and reactivated the virus following allogeneic hematopoietic stem cell transplantation, thus receiving an intensive antiviral treatment schedule. Three different methods for UL97 mutation analysis, restriction fragment length polymorphism detection, sequencing, and a new, real-time PCR approach were performed. In conclusion, for our pediatric patient, during peak viral load, the UL97 wild-type strain predominates, while during clinical deterioration with low viral load, the predominant mutant strain persists. PMID:19477945

  14. Construction of a quadruple auxotrophic mutant of an industrial polyploid saccharomyces cerevisiae strain by using RNA-guided Cas9 nuclease.

    PubMed

    Zhang, Guo-Chang; Kong, In Iok; Kim, Heejin; Liu, Jing-Jing; Cate, Jamie H D; Jin, Yong-Su

    2014-12-01

    Industrial polyploid yeast strains harbor numerous beneficial traits but suffer from a lack of available auxotrophic markers for genetic manipulation. Here we demonstrated a quick and efficient strategy to generate auxotrophic markers in industrial polyploid yeast strains with the RNA-guided Cas9 nuclease. We successfully constructed a quadruple auxotrophic mutant of a popular industrial polyploid yeast strain, Saccharomyces cerevisiae ATCC 4124, with ura3, trp1, leu2, and his3 auxotrophies through RNA-guided Cas9 nuclease. Even though multiple alleles of auxotrophic marker genes had to be disrupted simultaneously, we observed knockouts in up to 60% of the positive colonies after targeted gene disruption. In addition, growth-based spotting assays and fermentation experiments showed that the auxotrophic mutants inherited the beneficial traits of the parental strain, such as tolerance of major fermentation inhibitors and high temperature. Moreover, the auxotrophic mutants could be transformed with plasmids containing selection marker genes. These results indicate that precise gene disruptions based on the RNA-guided Cas9 nuclease now enable metabolic engineering of polyploid S. cerevisiae strains that have been widely used in the wine, beer, and fermentation industries.

  15. A comparative phenotypic and genomic analysis of C57BL/6J and C57BL/6N mouse strains

    PubMed Central

    2013-01-01

    Background The mouse inbred line C57BL/6J is widely used in mouse genetics and its genome has been incorporated into many genetic reference populations. More recently large initiatives such as the International Knockout Mouse Consortium (IKMC) are using the C57BL/6N mouse strain to generate null alleles for all mouse genes. Hence both strains are now widely used in mouse genetics studies. Here we perform a comprehensive genomic and phenotypic analysis of the two strains to identify differences that may influence their underlying genetic mechanisms. Results We undertake genome sequence comparisons of C57BL/6J and C57BL/6N to identify SNPs, indels and structural variants, with a focus on identifying all coding variants. We annotate 34 SNPs and 2 indels that distinguish C57BL/6J and C57BL/6N coding sequences, as well as 15 structural variants that overlap a gene. In parallel we assess the comparative phenotypes of the two inbred lines utilizing the EMPReSSslim phenotyping pipeline, a broad based assessment encompassing diverse biological systems. We perform additional secondary phenotyping assessments to explore other phenotype domains and to elaborate phenotype differences identified in the primary assessment. We uncover significant phenotypic differences between the two lines, replicated across multiple centers, in a number of physiological, biochemical and behavioral systems. Conclusions Comparison of C57BL/6J and C57BL/6N demonstrates a range of phenotypic differences that have the potential to impact upon penetrance and expressivity of mutational effects in these strains. Moreover, the sequence variants we identify provide a set of candidate genes for the phenotypic differences observed between the two strains. PMID:23902802

  16. Dataset of differentially regulated proteins in HUVECs challenged with wild type and UGM1 mutant Aspergillus fumigatus strains.

    PubMed

    Neves, Gabriela Westerlund Peixoto; Curty, Nathália; Kubitschek-Barreira, Paula Helena; Fontaine, Thierry; Souza, Gustavo Henrique Martins Ferreira; Cunha, Marcel Lyra; Goldman, Gustavo H; Beauvais, Anne; Latgé, Jean-Paul; Lopes-Bezerra, Leila M

    2016-12-01

    Invasive aspergillosis is the primary opportunistic invasive fungal infection described in neutropenic hematologic patients, caused by the angioinvasive pathogen Aspergillus fumigatus. The molecular mechanisms associated with A. fumigatus infection in the vascular endothelium are poorly understood. In this context, we used a high-throughput proteomic approach to unveil the proteins modulated in HUVECs after interaction with a wild type strain and the UGM1 mutant (Δugm1) of A. fumigatus. The proteomic analysis was also performed in HUVECs challenged with a galactosaminogalactan (GAG) purified from A. fumigatus cell wall. The dataset presented here correspond to all proteins identified that fit a 2-fold change criteria (log 2 ratio ≥ 1 or ≤ -1), disregarding the statistical validation cut off, in order to supplement the research article entitled "Modifications to the composition of the hyphal outer layer of Aspergillus fumigatus modulates the HUVEC proteins associated with inflammatory and stress responses" (G.W.P. Neves, N.A. Curty, P.H. Kubitschek-Barreira, T. Fontaine, G.H.M.F. Souza, M. Lyra Cunha, G.H. Goldman, A. Beauvais, J.P. Latgé, L.M. Lopes-Bezerra, 2016) [1]. The mass spectrometry proteomic data have been deposited in the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PRIDE: PXD002823.

  17. Marine Mammal Brucella Reference Strains Are Attenuated in a BALB/c Mouse Model

    PubMed Central

    Nymo, Ingebjørg H.; Arias, Maykel A.; Pardo, Julián; Álvarez, María Pilar; Alcaraz, Ana; Godfroid, Jacques; Jiménez de Bagüés, María Pilar

    2016-01-01

    Brucellosis is a zoonosis of worldwide distribution with numerous animal host species. Since the novel isolation of Brucella spp. from marine mammals in 1994 the bacteria have been isolated from various marine mammal hosts. The marine mammal reference strains Brucella pinnipedialis 12890 (harbour seal, Phoca vitulina) and Brucella ceti 12891 (harbour porpoise, Phocoena phocoena) were included in genus Brucella in 2007, however, their pathogenicity in the mouse model is pending. Herein this is evaluated in BALB/c mice with Brucella suis 1330 as a control. Both marine mammal strains were attenuated, however, B. ceti was present at higher levels than B. pinnipedialis in blood, spleen and liver throughout the infection, in addition B. suis and B. ceti were isolated from brains and faeces at times with high levels of bacteraemia. In B. suis-infected mice serum cytokines peaked at day 7. In B. pinnipedialis-infected mice, levels were similar, but peaked predominantly at day 3 and an earlier peak in spleen weight likewise implied an earlier response. The inflammatory response induced pathology in the spleen and liver. In B. ceti-infected mice, most serum cytokine levels were comparable to those in uninfected mice, consistent with a limited inflammatory response, which also was indicated by restricted spleen and liver pathology. Specific immune responses against all three strains were detected in vitro after stimulation of splenocytes from infected mice with the homologous heat-killed brucellae. Antibody responses in vivo were also induced by the three brucellae. The immunological pattern of B. ceti in combination with persistence in organs and limited pathology has heretofore not been described for other brucellae. These two marine mammal wildtype strains show an attenuated pattern in BALB/c mice only previously described for Brucella neotomea. PMID:26959235

  18. Tumor Blood Flow Differs between Mouse Strains: Consequences for Vasoresponse to Photodynamic Therapy

    PubMed Central

    Mesquita, Rickson C.; Han, Sung Wan; Miller, Joann; Schenkel, Steven S.; Pole, Andrew; Esipova, Tatiana V.; Vinogradov, Sergei A.; Putt, Mary E.; Yodh, Arjun G.; Busch, Theresa M.

    2012-01-01

    Fluctuations in tumor blood flow are common and attributed to factors such as vasomotion or local vascular structure, yet, because vessel structure and physiology are host-derived, animal strain of tumor propagation may further determine blood flow characteristics. In the present report, baseline and stress-altered tumor hemodynamics as a function of murine strain were studied using radiation-induced fibrosacomas (RIF) grown in C3H or nude mice. Fluctuations in tumor blood flow during one hour of baseline monitoring or during vascular stress induced by photodynamic therapy (PDT) were measured by diffuse correlation spectroscopy. Baseline monitoring revealed fluctuating tumor blood flow highly correlated with heart rate and with similar median periods (i.e., ∼9 and 14 min in C3H and nudes, respectively). However, tumor blood flow in C3H animals was more sensitive to physiologic or stress-induced perturbations. Specifically, PDT-induced vascular insults produced greater decreases in blood flow in the tumors of C3H versus nude mice; similarly, during baseline monitoring, fluctuations in blood flow were more regular and more prevalent within the tumors of C3H mice versus nude mice; finally, the vasoconstrictor L-NNA reduced tumor blood flow in C3H mice but did not affect tumor blood flow in nudes. Underlying differences in vascular structure, such as smaller tumor blood vessels in C3H versus nude animals, may contribute to strain-dependent variation in vascular function. These data thus identify clear effects of mouse strain on tumor hemodynamics with consequences to PDT and potentially other vascular-mediated therapies. PMID:22624014

  19. Tumor blood flow differs between mouse strains: consequences for vasoresponse to photodynamic therapy.

    PubMed

    Mesquita, Rickson C; Han, Sung Wan; Miller, Joann; Schenkel, Steven S; Pole, Andrew; Esipova, Tatiana V; Vinogradov, Sergei A; Putt, Mary E; Yodh, Arjun G; Busch, Theresa M

    2012-01-01

    Fluctuations in tumor blood flow are common and attributed to factors such as vasomotion or local vascular structure, yet, because vessel structure and physiology are host-derived, animal strain of tumor propagation may further determine blood flow characteristics. In the present report, baseline and stress-altered tumor hemodynamics as a function of murine strain were studied using radiation-induced fibrosacomas (RIF) grown in C3H or nude mice. Fluctuations in tumor blood flow during one hour of baseline monitoring or during vascular stress induced by photodynamic therapy (PDT) were measured by diffuse correlation spectroscopy. Baseline monitoring revealed fluctuating tumor blood flow highly correlated with heart rate and with similar median periods (i.e., ∼9 and 14 min in C3H and nudes, respectively). However, tumor blood flow in C3H animals was more sensitive to physiologic or stress-induced perturbations. Specifically, PDT-induced vascular insults produced greater decreases in blood flow in the tumors of C3H versus nude mice; similarly, during baseline monitoring, fluctuations in blood flow were more regular and more prevalent within the tumors of C3H mice versus nude mice; finally, the vasoconstrictor L-NNA reduced tumor blood flow in C3H mice but did not affect tumor blood flow in nudes. Underlying differences in vascular structure, such as smaller tumor blood vessels in C3H versus nude animals, may contribute to strain-dependent variation in vascular function. These data thus identify clear effects of mouse strain on tumor hemodynamics with consequences to PDT and potentially other vascular-mediated therapies.

  20. Marine Mammal Brucella Reference Strains Are Attenuated in a BALB/c Mouse Model.

    PubMed

    Nymo, Ingebjørg H; Arias, Maykel A; Pardo, Julián; Álvarez, María Pilar; Alcaraz, Ana; Godfroid, Jacques; Jiménez de Bagüés, María Pilar

    2016-01-01

    Brucellosis is a zoonosis of worldwide distribution with numerous animal host species. Since the novel isolation of Brucella spp. from marine mammals in 1994 the bacteria have been isolated from various marine mammal hosts. The marine mammal reference strains Brucella pinnipedialis 12890 (harbour seal, Phoca vitulina) and Brucella ceti 12891 (harbour porpoise, Phocoena phocoena) were included in genus Brucella in 2007, however, their pathogenicity in the mouse model is pending. Herein this is evaluated in BALB/c mice with Brucella suis 1330 as a control. Both marine mammal strains were attenuated, however, B. ceti was present at higher levels than B. pinnipedialis in blood, spleen and liver throughout the infection, in addition B. suis and B. ceti were isolated from brains and faeces at times with high levels of bacteraemia. In B. suis-infected mice serum cytokines peaked at day 7. In B. pinnipedialis-infected mice, levels were similar, but peaked predominantly at day 3 and an earlier peak in spleen weight likewise implied an earlier response. The inflammatory response induced pathology in the spleen and liver. In B. ceti-infected mice, most serum cytokine levels were comparable to those in uninfected mice, consistent with a limited inflammatory response, which also was indicated by restricted spleen and liver pathology. Specific immune responses against all three strains were detected in vitro after stimulation of splenocytes from infected mice with the homologous heat-killed brucellae. Antibody responses in vivo were also induced by the three brucellae. The immunological pattern of B. ceti in combination with persistence in organs and limited pathology has heretofore not been described for other brucellae. These two marine mammal wildtype strains show an attenuated pattern in BALB/c mice only previously described for Brucella neotomea.

  1. New strain of mouse hepatitis virus as the cause of lethal enteritis in infant mice.

    PubMed Central

    Hierholzer, J C; Broderson, J R; Murphy, F A

    1979-01-01

    A new strain of mouse hepatitis virus (MHV) was isolated from pooled gut suspensions from an epizootic of lethal enteritis in newborn mice. Negative-contrast electron microscopy showed an abundance of coronavirus particles in the intestinal contents and intestinal epithelium of moribund mice. We found no other virus in the epizootic. Dams seroconverted to MHV polyvalent antigen and to the agent isolated, but did not develop antibodies to other known mouse pathogens. Virus propagated in NCTC-1469 tissue culture produced enteric disease in suckling mice but not fatal diarrhea; the dams of these mice also developed antibodies to MHV and to the isolates. By complement fixation, single radial hemolysis, and quantal neutralization tests, we found the isolates antigenically most closely related to MHV-S, unilaterally related to MHV-JHM, and more distantly related to MHV-1, MHV-3, MHV-A59, and human coronavirus OC-43. We also studied cross-reactions among the murine and human coronaviruses in detail. Tissues of infected newborn mice were examined by light microscopy, thin-section electron microscopy, and frozen-section indirect immunofluorescence, revealing that viral antigen, virus particles, and pathological changes were limited to the intestinal tract. We have designated our isolates as MHV-S/CDC. Images PMID:222687

  2. Differences in GABA-induced chloride ion influx in brain of inbred mouse strains

    SciTech Connect

    Yu, O.; Chiu, T.H.; Rosenberg, H.C.

    1986-03-01

    Audiogenic seizure-susceptible (AS) mice (DBA2J) are a widely used model of epilepsy. The precise pathophysiology of this mouse strain is not fully understood. One of the proposed mechanisms was a difference in GABA/BZ receptor affinity and population from that of audiogenic seizure resistant (ASR) mice. This study attempted to determine the difference in function of GABA/BZ receptor between DBA2J (AS) and C57BL6J (ASR) mice by directly measuring the GABA-induced chloride ion (/sup 36/Cl/sup -/) influx in twice washed crude brain homogenates. /sup 36/Cl/sup -/ influx was terminated by ice-cold buffer and collected by filtration. A concentration range of 2-1000 ..mu..M GABA and two age-matched groups (20-22 days and 40-42 days) were used. GABA-induced /sup 36/Cl/sup -/ influx was dose-dependent, and brain homogenates from DBA2J mice (20-22 days) were less sensitive to GABA-induced Cl/sup -/ ion influx than C57BL6J mice at both age groups. However, in older DBA2J mice (40-42 days), the sensitivity to GABA was intermediate between that of the younger AS mice and the control ASR mice. No significant difference in basal influx of Cl/sup -/ was observed between age groups and mouse strains, nor was there any significant difference between 20-22 days old and 40-42 days old C57BL6J mice. In conclusion, this study had demonstrated a malfunction may recover with age.

  3. Proteomic analysis of wild-type and mutant huntingtin-associated proteins in mouse brains identifies unique interactions and involvement in protein synthesis.

    PubMed

    Culver, Brady P; Savas, Jeffrey N; Park, Sung K; Choi, Jeong H; Zheng, Shuqiu; Zeitlin, Scott O; Yates, John R; Tanese, Naoko

    2012-06-22

    Huntington disease is a neurodegenerative disorder caused by a CAG repeat amplification in the gene huntingtin (HTT) that is reflected by a polyglutamine expansion in the Htt protein. Nearly 20 years of research have uncovered roles for Htt in a wide range of cellular processes, and many of these discoveries stemmed from the identification of Htt-interacting proteins. However, no study has employed an impartial and comprehensive strategy to identify proteins that differentially associate with full-length wild-type and mutant Htt in brain tissue, the most relevant sample source to the disease condition. We analyzed Htt affinity-purified complexes from wild-type and HTT mutant juvenile mouse brain from two different biochemical fractions by tandem mass spectrometry. We compared variations in protein spectral counts relative to Htt to identify those proteins that are the most significantly contrasted between wild-type and mutant Htt purifications. Previously unreported Htt interactions with Myo5a, Prkra (PACT), Gnb2l1 (RACK1), Rps6, and Syt2 were confirmed by Western blot analysis. Gene Ontology analysis of these and other Htt-associated proteins revealed a statistically significant enrichment for proteins involved in translation among other categories. Furthermore, Htt co-sedimentation with polysomes in cytoplasmic mouse brain extracts is dependent upon the presence of intact ribosomes. Finally, wild-type or mutant Htt overexpression inhibits cap-dependent translation of a reporter mRNA in an in vitro system. Cumulatively, these data support a new role for Htt in translation and provide impetus for further study into the link between protein synthesis and Huntington disease pathogenesis.

  4. Proteomic Analysis of Wild-type and Mutant Huntingtin-associated Proteins in Mouse Brains Identifies Unique Interactions and Involvement in Protein Synthesis*

    PubMed Central

    Culver, Brady P.; Savas, Jeffrey N.; Park, Sung K.; Choi, Jeong H.; Zheng, Shuqiu; Zeitlin, Scott O.; Yates, John R.; Tanese, Naoko

    2012-01-01

    Huntington disease is a neurodegenerative disorder caused by a CAG repeat amplification in the gene huntingtin (HTT) that is reflected by a polyglutamine expansion in the Htt protein. Nearly 20 years of research have uncovered roles for Htt in a wide range of cellular processes, and many of these discoveries stemmed from the identification of Htt-interacting proteins. However, no study has employed an impartial and comprehensive strategy to identify proteins that differentially associate with full-length wild-type and mutant Htt in brain tissue, the most relevant sample source to the disease condition. We analyzed Htt affinity-purified complexes from wild-type and HTT mutant juvenile mouse brain from two different biochemical fractions by tandem mass spectrometry. We compared variations in protein spectral counts relative to Htt to identify those proteins that are the most significantly contrasted between wild-type and mutant Htt purifications. Previously unreported Htt interactions with Myo5a, Prkra (PACT), Gnb2l1 (RACK1), Rps6, and Syt2 were confirmed by Western blot analysis. Gene Ontology analysis of these and other Htt-associated proteins revealed a statistically significant enrichment for proteins involved in translation among other categories. Furthermore, Htt co-sedimentation with polysomes in cytoplasmic mouse brain extracts is dependent upon the presence of intact ribosomes. Finally, wild-type or mutant Htt overexpression inhibits cap-dependent translation of a reporter mRNA in an in vitro system. Cumulatively, these data support a new role for Htt in translation and provide impetus for further study into the link between protein synthesis and Huntington disease pathogenesis. PMID:22556411

  5. Genome Sequence of “Candidatus Arthromitus” sp. Strain SFB-Mouse-NL, a Commensal Bacterium with a Key Role in Postnatal Maturation of Gut Immune Functions

    PubMed Central

    Bolotin, Alexander; de Wouters, Tomas; Schnupf, Pamela; Bouchier, Christiane; Loux, Valentin; Rhimi, Moez; Jamet, Alexandre; Dervyn, Rozenn; Boudebbouze, Samira; Blottière, Hervé M.; Sorokin, Alexei; Snel, Johannes; Cerf-Bensussan, Nadine; Gaboriau-Routhiau, Valérie; van de Guchte, Maarten

    2014-01-01

    “Candidatus Arthromitus” sp. strain SFB-mouse-NL (SFB, segmented filamentous bacteria) is a commensal bacterium necessary for inducing the postnatal maturation of homeostatic innate and adaptive immune responses in the mouse gut. Here, we report the genome sequence of this bacterium, which sets it apart from earlier sequenced mouse SFB isolates. PMID:25035333

  6. Detection of Mycoplasma mycoides subsp. mycoides SC in bronchoalveolar lavage fluids of cows based on a TaqMan real-time PCR discriminating wild type strains from an lppQ− mutant vaccine strain used for DIVA-strategies

    PubMed Central

    Vilei, Edy M.; Frey, Joachim

    2010-01-01

    Contagious bovine pleuropneumonia (CBPP) is the most serious cattle disease in Africa, caused by Mycoplasma mycoides subsp. mycoides small-colony type (SC). CBPP control strategies currently rely on vaccination with a vaccine based on live attenuated strains of the organism. Recently, an lppQ− mutant of the existing vaccine strain T1/44 has been developed (Janis et al., 2008). This T1lppQ− mutant strain is devoid of lipoprotein LppQ, a potential virulence attribute of M. mycoides subsp. mycoides SC. It is designated as a potential live DIVA (Differentiating Infected from Vaccinated Animals) vaccine strain allowing both serological and etiological differentiation. The present paper reports on the validation of a control strategy for CBPP in cattle, whereby a TaqMan real-time PCR based on the lppQ gene has been developed for the direct detection of M. mycoides subsp. mycoides SC in ex vivo bronchoalveolar lavage fluids of cows and for the discrimination of wild type strains from the lppQ− mutant vaccine strain. PMID:20381545

  7. INDUCTION OF DNA ADDUCTS, TUMORS, AND KI-RAS ONCOGENE MUTATIONS IN STRAIN A/J MOUSE LUNG BY IP. ADMINISTRATION OF DIBENZ[A,H]ANTHRACENE

    EPA Science Inventory

    Induction of DNA adducts, tumors, and Ki-ras oncogene mutations in strain AlJ mouse lung by ip. administration of dibenz[a,h]anthracene

    Previous studies of polycyclic aromatic hydrocarbon (P AH) induced lung tumors in the strain NJ mouse model system have demonstrated qua...

  8. In vitro propagation of the scrapie agent. I. Transformation of mouse glia and neuroblastoma cells after infection with the mouse-adapted scrapie strain c-506.

    PubMed

    Markovits, P; Dautheville, C; Dormont, D; Dianoux, L; Latarjet, R

    1983-01-01

    Seven cell lines including glia cells from mouse brains and mouse neuroblastoma cells were infected with the mouse-adapted scrapie strain c-506. During the early in vitro passages, a stimulation of growth was already observed but cellular morphology and differentiation did not alter. Later on, after 12-16 passages, six of the seven infected lines displayed cell proliferation and morphological alterations, suggesting an in vitro morphological transformation. At this stage, differentiation was no longer observed in the scrapie-infected neuroblastoma cells and all the scrapie-infected cells formed two to four times more colonies in liquid medium than the controls, and developed large tridimensional colonies in agar. The part played by the scrapie agent in these changes is discussed.

  9. Complete Genome Sequence of Turicibacter sp. Strain H121, Isolated from the Feces of a Contaminated Germ-Free Mouse

    PubMed Central

    Auchtung, T. A.; Holder, M. E.; Gesell, J. R.; Ajami, N. J.; Duarte, R. T. D.; Itoh, K.; Caspi, R. R.; Petrosino, J. F.; Horai, R.

    2016-01-01

    Turicibacter bacteria are commonly detected in the gastrointestinal tracts and feces of humans and animals, but their phylogeny, ecological role, and pathogenic potential remain unclear. We present here the first complete genome sequence of Turicibacter sp. strain H121, which was isolated from the feces of a mouse line contaminated following germ-free derivation. PMID:27013036

  10. Reliability assessment of an automated forced swim test device using two mouse strains.

    PubMed

    Kurtuncu, Murat; Luka, Lance J; Dimitrijevic, Nikola; Uz, Tolga; Manev, Hari

    2005-11-30

    The Porsolt forced swim test (FST) is one of the most widely used behavioral tests in the evaluation of the antidepressant effects of drugs. It is based on the fact that these drugs reduce the depression-related behaviors of learned helplessness. The model has been modified for use in mice. In contrast to rats, mice are exposed to forced swimming only once and their immobility behavior is measured and considered a "depression-like" phenotype. Like many other behavioral tests, FST can be affected by observer-related artifacts. In recent years, automated testing systems have been developed to decrease artifacts that may greatly influence the interpretation of results. In this work, we used two strains of mice, i.e., C3H/HeJ and C57BL/6J, which differ in their FST immobility times. We employed a new commercially available automated FST device and a blinded observer-based FST, and we examined their ability to measure behavioral differences between these two mouse strains. Our results suggest that the tested automated FST system generates reliable data comparable to results obtained by trained observers.

  11. Calcium, potassium, iron, copper and zinc concentrations in the white and gray matter of the cerebellum and corpus callosum in brain of four genetic mouse strains

    NASA Astrophysics Data System (ADS)

    Sergeant, C.; Vesvres, M. H.; Devès, G.; Guillou, F.

    2005-04-01

    In the central nervous system, metallic cations are involved in oligodendrocyte maturation and myelinogenesis. Moreover, the metallic cations have been associated with pathogenesis, particularly multiple sclerosis and malignant gliomas. The brain is vulnerable to either a deficit or an excess of available trace elements. Relationship between trace metals and myelinogenesis is important in understanding a severe human pathology : the multiple sclerosis, which remains without efficient treatment. One approach to understand this disease has used mutant or transgenic mice presenting myelin deficiency or excess. But to date, the concentration of trace metals and mineral elements in white and gray matter areas in wild type brain is unknown. The aim of this study is to establish the reference concentrations of trace metals (iron, copper and zinc) and minerals (potassium and calcium) in the white and gray matter of the mouse cerebellum and corpus callosum. The brains of four different genetic mouse strains (C57Black6/SJL, C57Black6/D2, SJL and C3H) were analyzed. The freeze-dried samples were prepared to allow PIXE (Proton-induced X-ray emission) and RBS (Rutherford backscattering spectrometry) analyses with the nuclear microprobe in Bordeaux. The results obtained give the first reference values. Furthermore, one species out of the fours testes exhibited differences in calcium, iron and zinc concentrations in the white matter.

  12. Impaired fear extinction learning and cortico-amygdala circuit abnormalities in a common genetic mouse strain.

    PubMed

    Hefner, Kathryn; Whittle, Nigel; Juhasz, Jaynann; Norcross, Maxine; Karlsson, Rose-Marie; Saksida, Lisa M; Bussey, Timothy J; Singewald, Nicolas; Holmes, Andrew

    2008-08-06

    Fear extinction is a form of new learning that results in the inhibition of conditioned fear. Trait deficits in fear extinction are a risk factor for anxiety disorders. There are few examples of naturally occurring animal models of impaired extinction. The present study compared fear extinction in a panel of inbred mouse strains. This strain survey revealed an impairment in fear extinction in 129/SvImJ (129S1). The phenotypic specificity of this deficit was evaluated by comparing 129S1 and C57BL/6J for one-trial and multitrial fear conditioning, nociception, and extinction of conditioned taste aversion and an appetitive instrumental response. 129S1 were tested for sensitivity to the extinction-facilitating effects of extended training, as well as d-cycloserine and yohimbine treatment. To elucidate the neural basis of impaired 129S1 fear extinction, c-Fos and Zif268 expression was mapped after extinction recall. Results showed that impaired fear extinction in 129S1 was unrelated to altered fear conditioning or nociception, and was dissociable from intact appetitive extinction. Yohimbine treatment facilitated extinction in 129S1, but neither extended extinction training nor d-cycloserine treatment improved 129S1 extinction. After extinction recall, 129S1 showed reduced c-Fos and Zif268 expression in the infralimbic cortex and basolateral amygdala, and elevated c-Fos or Zif268 expression in central nucleus of the amygdala and medial paracapsular intercalated cell mass, relative to C57BL/6J. Collectively, these data demonstrate a deficit in fear extinction in 129S1 associated with a failure to properly engage corticolimbic extinction circuitry. This common inbred strain provides a novel model for studying impaired fear extinction in anxiety disorders.

  13. Opioid-dependent regulation of high and low fear responses in two inbred mouse strains.

    PubMed

    Szklarczyk, Klaudia; Korostynski, Michal; Cieslak, Przemyslaw Eligiusz; Wawrzczak-Bargiela, Agnieszka; Przewlocki, Ryszard

    2015-10-01

    The molecular mechanisms underlying the susceptibility or resilience to trauma-related disorders remain incompletely understood. Opioids modulate emotional learning, but the roles of specific receptors are unclear. Here, we aimed to analyze the contribution of the opioid system to fear responses in two inbred mouse strains exhibiting distinct behavioral phenotypes. SWR/J and C57BL/6J mice were subjected to five consecutive electric footshocks (1mA each), and the contextual freezing time was measured. Stress-induced alterations in gene expression were analyzed in the amygdala and the hippocampus. In both strains, the fear response was modulated using pharmacological tools. SWR/J mice did not develop conditioned fear but exhibited increased transcriptional expression of Pdyn and Penk in the amygdala region. Blocking opioid receptors prior to the footshocks using naltrexone (2 mg/kg) or naltrindole (5 mg/kg) increased the freezing responses in these animals. The C57BL/6J strain displayed high conditioned fear, although no alteration in the mRNA abundance of genes encoding opioid precursors was observed. Double-injection of morphine (20 mg/kg) following stress and upon context re-exposure prevented the enhancement of freezing. Moreover, selective delta and kappa agonists caused a reduction in conditioned fear responses. To summarize, the increased expression of the Pdyn and Penk genes corresponded to reduced intensity of fear responses. Blockade of the endogenous opioid system restored freezing behavior in stress-resistant animals. The pharmacological stimulation of the kappa and delta opioid receptors in stress-susceptible individuals may alleviate fear. Thus, subtype-selective opioid receptor agonists may protect against the development of trauma-related disorders.

  14. Impaired fear extinction learning and cortico-amygdala circuit abnormalities in a common genetic mouse strain

    PubMed Central

    Hefner, Kathryn; Whittle, Nigel; Juhasz, Jaynann; Norcross, Maxine; Karlsson, Rose-Marie; Saksida, Lisa M.; Bussey, Timothy J.; Singewald, Nicolas; Holmes, Andrew

    2008-01-01

    Fear extinction is a form of new learning that results in the inhibition of conditioned fear. Trait deficits in fear extinction are a risk factor for anxiety disorders. There are few examples of naturally-occurring animal models of impaired extinction. The present study compared fear extinction in a panel of inbred mouse strains. This strain survey revealed an impairment in fear extinction in 129/SvImJ (129S1). The phenotypic specificity of this deficit was evaluated by comparing 129S1 and C57BL/6J for one-trial and multi-trial fear conditioning, nociception, and extinction of conditioned taste aversion (CTA) and an appetitive instrumental response. 129S1 were tested for sensitivity to the extinction-facilitating effects of extended training, as well as D-cycloserine and yohimbine treatment. To elucidate the neural basis of impaired 129S1 fear extinction, c-Fos and Zif268 expression was mapped following extinction recall. Results showed that impaired fear extinction in 129S1 was unrelated to altered fear conditioning or nociception, and was dissociable from intact appetitive extinction. Yohimbine treatment facilitated extinction in 129S1, but neither extended extinction training nor D-cycloserine treatment improved 129S1 extinction. Following extinction recall, 129S1 showed reduced c-Fos and Zif268 expression in the infralimbic cortex and basolateral amygdala, and elevated c-Fos or Zif268 expression in central nucleus of the amygdala and medial paracapsular intercalated cell mass, relative to C57BL/6J. Collectively, these data demonstrate a deficit in fear extinction in 129S1 associated with a failure to properly engage corticolimbic extinction circuitry. This common inbred strain provides a novel model for studying impaired fear extinction in anxiety disorders. PMID:18685032

  15. Cyclic mechanical strain maintains Nanog expression through PI3K/Akt signaling in mouse embryonic stem cells

    SciTech Connect

    Horiuchi, Rie; Akimoto, Takayuki; Hong, Zhang; Ushida, Takashi

    2012-08-15

    Mechanical strain has been reported to affect the proliferation/differentiation of many cell types; however, the effects of mechanotransduction on self-renewal as well as pluripotency of embryonic stem (ES) cells remains unknown. To investigate the effects of mechanical strain on mouse ES cell fate, we examined the expression of Nanog, which is an essential regulator of self-renewal and pluripotency as well as Nanog-associated intracellular signaling during uniaxial cyclic mechanical strain. The mouse ES cell line, CCE was plated onto elastic membranes, and we applied 10% strain at 0.17 Hz. The expression of Nanog was reduced during ES cell differentiation in response to the withdrawal of leukemia inhibitory factor (LIF); however, two days of cyclic mechanical strain attenuated this reduction of Nanog expression. On the other hand, the cyclic mechanical strain promoted PI3K-Akt signaling, which is reported as an upstream of Nanog transcription. The cyclic mechanical strain-induced Akt phosphorylation was blunted by the PI3K inhibitor wortmannin. Furthermore, cytochalasin D, an inhibitor of actin polymerization, also inhibited the mechanical strain-induced increase in phospho-Akt. These findings imply that mechanical force plays a role in regulating Nanog expression in ES cells through the actin cytoskeleton-PI3K-Akt signaling. -- Highlights: Black-Right-Pointing-Pointer The expression of Nanog, which is an essential regulator of 'stemness' was reduced during embryonic stem (ES) cell differentiation. Black-Right-Pointing-Pointer Cyclic mechanical strain attenuated the reduction of Nanog expression. Black-Right-Pointing-Pointer Cyclic mechanical strain promoted PI3K-Akt signaling and mechanical strain-induced Akt phosphorylation was blunted by the PI3K inhibitor and an inhibitor of actin polymerization.

  16. Analysis of the presence of cell proliferation-related molecules in the Tgf-β3 null mutant mouse palate reveals misexpression of EGF and Msx-1.

    PubMed

    del Río, A; Barrio, M C; Murillo, J; Maldonado, E; López-Gordillo, Y; Martínez-Sanz, E; Martínez, M L; Martínez-Álvarez, C

    2011-01-01

    The Tgf-β(3) null mutant mouse palate presents several cellular anomalies that lead to the appearance of cleft palate. One of them concerns the cell proliferation of both the palatal medial edge epithelium and mesenchyme. In this work, our aim was to determine whether there was any variation in the presence/distribution of several cell proliferation-related molecules that could be responsible for the cell proliferation defects observed in these palates. Our results showed no difference in the presence of EGF-R, PDGF-A, TGF-β(2), Bmp-2, and Bmp-4, and differences were minimal for FGF-10 and Shh. However, the expression of EGF and Msx-1 changed substantially. The shift of the EGF protein expression was the one that most correlated with that of cell proliferation. This molecule is regulated by TGF-β(3), and experiments blocking its activity in culture suggest that EGF misexpression in the Tgf-β(3) null mutant mouse palate plays a role in the cell proliferation defect observed.

  17. Strain measurement of a mouse bone by 3D-electronic speckle pattern interferometry (3D-ESPI)

    NASA Astrophysics Data System (ADS)

    Samala, Praveen R.; Su, Min; Liu, Sheng; Jiang, Hui H.; Yokota, Hiroki; Yang, Lianxiang

    2005-08-01

    Bone is a mechanosensitive tissue that adapts its mass, architecture and mechanical properties to mechanical loading. Appropriate mechanical loads provide an effective means to stimulate bone remodeling and prevent from bone loss. It is controversial whether in situ strain in bone is a critical determinant in enhancement of bone formation, and it is therefore important to evaluate load-driven strain in bone. Using electronic speckle pattern interferometry, we determined high-resolution three-dimensional strains on the mouse femur in response to two loading modalities: an axial loading modality (ALM) and a knee loading modality (KLM). We demonstrated that these two loading modalities induced a different pattern of strain distributions. ALM generated strain in the midshaft of cortical bone, while strains with KLM were concentrated on the distal epiphysis of the mouse femur. Since KLM is capable of enhancing bone formation in cortical bone distant from the knee, the current results indicate that in situ strain is not always necessary for load-driven bone formation.

  18. Brucella melitensis 16M: characterisation of the galE gene and mouse immunisation studies with a galE deficient mutant.

    PubMed

    Petrovska, L; Hewinson, R G; Dougan, G; Maskell, D J; Woodward, M J

    1999-02-23

    The galE gene of Streptomyces lividans was used to probe a cosmid library harbouring Brucella melitensis 16M DNA and the nucleotide sequence of a 2.5 kb ClaI fragment which hybridised was determined. An open reading frame encoding a predicted polypeptide with significant homology to UDP-galactose-4-epimerases of Brucella arbortus strain 2308 and other bacterial species was identified. DNA sequences flanking the B. melitensis galE gene shared no identity with other gal genes and, as for B. abortus, were located adjacent to a mazG homologue. A plasmid which encoded the B. melitensis galE open reading frame complemented a galE mutation in Salmonella typhimurium LB5010, as shown by the restoration of smooth lipopolysaccharide (LPS) biosynthesis, sensitivity to phage P22 infection and restoration of UDP-galactose-4-epimerase activity. The galE gene on the B. melitensis 16M chromosome was disrupted by insertional inactivation and these mutants lacked UDP-galactose-4-epimerase activity but no discernible differences in LPS structure between parent and the mutants were observed. One B. melitensis 16M galE mutant, Bm92, was assessed for virulence in CD-1 and BALB/c mice and displayed similar kinetics of invasion and persistence in tissues compared with the parent bacterial strain. CD-1 mice immunised with B. melitensis 16M galE were protected against B. melitensis 16M challenge.

  19. Mouse Model of Human Hereditary Pancreatitis

    DTIC Science & Technology

    2015-09-01

    trypsinogen cause hereditary pancreatitis in humans. Previous attempts to introduce these mutant forms of human trypsinogen into mice have failed to...cationic trypsinogen gene and obtained several new mutant strains. These newly created mouse strains will be characterized with respect to spontaneous...10 8. Special Reporting Requirements……………………………………11 9. Appendices……………………………………………………………11 4  Figure 1. Mutant forms of T7 trypsinogen

  20. Comparative Analysis and Modeling of the Severity of Steatohepatitis in DDC-Treated Mouse Strains

    PubMed Central

    Pandey, Vikash; Sultan, Marc; Kashofer, Karl; Ralser, Meryem; Amstislavskiy, Vyacheslav; Starmann, Julia; Osprian, Ingrid; Grimm, Christina; Hache, Hendrik; Yaspo, Marie-Laure; Sültmann, Holger; Trauner, Michael; Denk, Helmut; Zatloukal, Kurt; Lehrach, Hans; Wierling, Christoph

    2014-01-01

    Background Non-alcoholic fatty liver disease (NAFLD) has a broad spectrum of disease states ranging from mild steatosis characterized by an abnormal retention of lipids within liver cells to steatohepatitis (NASH) showing fat accumulation, inflammation, ballooning and degradation of hepatocytes, and fibrosis. Ultimately, steatohepatitis can result in liver cirrhosis and hepatocellular carcinoma. Methodology and Results In this study we have analyzed three different mouse strains, A/J, C57BL/6J, and PWD/PhJ, that show different degrees of steatohepatitis when administered a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) containing diet. RNA-Seq gene expression analysis, protein analysis and metabolic profiling were applied to identify differentially expressed genes/proteins and perturbed metabolite levels of mouse liver samples upon DDC-treatment. Pathway analysis revealed alteration of arachidonic acid (AA) and S-adenosylmethionine (SAMe) metabolism upon other pathways. To understand metabolic changes of arachidonic acid metabolism in the light of disease expression profiles a kinetic model of this pathway was developed and optimized according to metabolite levels. Subsequently, the model was used to study in silico effects of potential drug targets for steatohepatitis. Conclusions We identified AA/eicosanoid metabolism as highly perturbed in DDC-induced mice using a combination of an experimental and in silico approach. Our analysis of the AA/eicosanoid metabolic pathway suggests that 5-hydroxyeicosatetraenoic acid (5-HETE), 15-hydroxyeicosatetraenoic acid (15-HETE) and prostaglandin D2 (PGD2) are perturbed in DDC mice. We further demonstrate that a dynamic model can be used for qualitative prediction of metabolic changes based on transcriptomics data in a disease-related context. Furthermore, SAMe metabolism was identified as being perturbed due to DDC treatment. Several genes as well as some metabolites of this module show differences between A/J and C57BL/6J

  1. In vivo Editing of the Human Mutant Rhodopsin Gene by Electroporation of Plasmid-based CRISPR/Cas9 in the Mouse Retina

    PubMed Central

    Latella, Maria Carmela; Di Salvo, Maria Teresa; Cocchiarella, Fabienne; Benati, Daniela; Grisendi, Giulia; Comitato, Antonella; Marigo, Valeria; Recchia, Alessandra

    2016-01-01

    The bacterial CRISPR/Cas system has proven to be an efficient tool for genetic manipulation in various organisms. Here we show the application of CRISPR-Cas9 technology to edit the human Rhodopsin (RHO) gene in a mouse model for autosomal dominant Retinitis Pigmentosa. We designed single or double sgRNAs to knock-down mutant RHO expression by targeting exon 1 of the RHO gene carrying the P23H dominant mutation. By delivering Cas9 and sgRNAs in a single plasmid we induced an efficient gene editing in vitro, in HeLa cells engineered to constitutively express the P23H mutant RHO allele. Similarly, after subretinal electroporation of the CRISPR/Cas9 plasmid expressing two sgRNAs into P23H RHO transgenic mice, we scored specific gene editing as well as significant reduction of the mutant RHO protein. Successful in vivo application of the CRISPR/Cas9 system confirms its efficacy as a genetic engineering tool in photoreceptor cells. PMID:27874856

  2. Compound mouse mutants of bZIP transcription factors Mafg and Mafk reveal a regulatory network of non-crystallin genes associated with cataract

    PubMed Central

    Agrawal, Smriti A.; Anand, Deepti; Siddam, Archana D.; Kakrana, Atul; Dash, Soma; Scheiblin, David A.; Dang, Christine A.; Terrell, Anne M.; Waters, Stephanie M.; Singh, Abhyudai; Motohashi, Hozumi; Yamamoto, Masayuki; Lachke, Salil A.

    2015-01-01

    Although majority of the genes linked to early-onset cataract exhibit lens fiber cell-enriched expression, our understanding of gene regulation in these cells is limited to function of just eight transcription factors and largely in the context of crystallins. We report on small Maf transcription factors Mafg and Mafk as regulators of several non-crystallin human cataract-associated genes in fiber cells and establish their significance to this disease. We applied a bioinformatics tool for cataract gene discovery iSyTE to identify Mafg and its co-regulators in the lens, and generated various null-allelic combinations of Mafg:Mafk mouse mutants for phenotypic and molecular analysis. By age 4-months, Mafg−/−:Mafk+/− mutants exhibit lens defects that progressively develop into cataract. High-resolution phenotypic characterization of Mafg−/−:Mafk+/− mouse lens reveals severely disorganized fiber cells, while microarrays-based expression profiling identifies 97 differentially regulated genes (DRGs). Integrative analysis of Mafg−/−:Mafk+/− lens-DRGs with 1) binding-motifs and genomic targets of small Mafs and their regulatory partners, 2) iSyTE lens-expression data, and 3) interactions between DRGs in the String database, unravels a detailed small Maf regulatory network in the lens, several nodes of which are linked to cataract. This approach identifies 36 high-priority candidates from the original 97 DRGs. Significantly, 8/36 (22%) DRGs are associated with cataracts in human (GSTO1, MGST1, SC4MOL, UCHL1) or mouse (Aldh3a1, Crygf, Hspb1, Pcbd1), suggesting a multifactorial etiology that includes oxidative stress and mis-regulation of sterol synthesis. These data identify Mafg and Mafk as new cataract-associated candidates and define their function in regulating largely non-crystallin genes linked to human cataract. PMID:25896808

  3. Effects of static magnetic fields on growth and membrane lipid composition of Salmonella typhimurium wild-type and dam mutant strains.

    PubMed

    Mihoub, Mouadh; El May, Alya; Aloui, Amine; Chatti, Abdelwaheb; Landoulsi, Ahmed

    2012-07-02

    This study was carried out to explore the adaptive mechanisms of S. typhimurium particularly, the implication of the Dam methyltransferase in the remodelling of membrane lipid composition to overcome magnetic field stress. With this aim, we focused our analyses on the increase in viable numbers and membrane lipid modifications of S. typhimurium wild-type and dam mutant cells exposed for 10h to static magnetic fields (SMF; 200 mT). For the wild-type strain, exposure to SMF induced a significant decrease (p<0.05) of CFU at 6h, followed by an increase between 8 and 10h. Growth of the dam mutant was significantly affected (p<0.05) after 6h and no recovery was observed until 10h, highlighting a different behavior of SMF stressed wild-type and dam mutant strains. SMF significantly affected the phospholipid proportions in the two strains. The most affected were those of the acidic phospholipids, cardiolipins (CL). In the dam strain the phospholipid response to SMF followed a globally similar trend as in the wild-type with however lower effects, leading mainly to an unusual accumulation of CL. This would in part explain the different behavior of the wild-type and the dam strain. Results showed a significant increase of membrane cyclic fatty acids Cyc17 and Cyc19 in the wild-type strain but only the Cyc17 in the dam strain and a meaningful increase of the total unsaturated fatty acids (UFAs) to total saturated fatty acids (SFAs) ratios of the exposed cells compared to controls from 3 to 9h (p<0.05) for both strains. The net increase of the total UFAs to total SFAs ratios seemed to result mainly from the increase of (C18:1) proportion (p<0.05) and to a lower extent from that of (C16:1) (p<0.05). These modifications of cyclic and unsaturated fatty acid proportions constitute an adaptive response to SMF stress in S. typhimurium wild-type and dam mutants to maintain an optimum level of membrane fluidity under SMF.

  4. Isolation of an Escherichia coli K-12 mutant strain able to form biofilms on inert surfaces: involvement of a new ompR allele that increases curli expression.

    PubMed

    Vidal, O; Longin, R; Prigent-Combaret, C; Dorel, C; Hooreman, M; Lejeune, P

    1998-05-01

    Classical laboratory strains of Escherichia coli do not spontaneously colonize inert surfaces. However, when maintained in continuous culture for evolution studies or industrial processes, these strains usually generate adherent mutants which form a thick biofilm, visible with the naked eye, on the wall of the culture apparatus. Such a mutant was isolated to identify the genes and morphological structures involved in biofilm formation in the very well characterized E. coli K-12 context. This mutant acquired the ability to colonize hydrophilic (glass) and hydrophobic (polystyrene) surfaces and to form aggregation clumps. A single point mutation, resulting in the replacement of a leucine by an arginine residue at position 43 in the regulatory protein OmpR, was responsible for this phenotype. Observations by electron microscopy revealed the presence at the surfaces of the mutant bacteria of fibrillar structures looking like the particular fimbriae described by the Olsén group and designated curli (A. Olsén, A. Jonsson, and S. Normark, Nature 338:652-655, 1989). The production of curli (visualized by Congo red binding) and the expression of the csgA gene encoding curlin synthesis (monitored by coupling a reporter gene to its promoter) were significantly increased in the presence of the ompR allele described in this work. Transduction of knockout mutations in either csgA or ompR caused the loss of the adherence properties of several biofilm-forming E. coli strains, including all those which were isolated in this work from the wall of a continuous culture apparatus and two clinical strains isolated from patients with catheter-related infections. These results indicate that curli are morphological structures of major importance for inert surface colonization and biofilm formation and demonstrate that their synthesis is under the control of the EnvZ-OmpR two-component regulatory system.

  5. Longitudinal fundus and retinal studies with SD-OCT: a comparison of five mouse inbred strains.

    PubMed

    Puk, Oliver; de Angelis, Martin Hrabĕ; Graw, Jochen

    2013-06-01

    Spectral domain optical coherence tomography (SD-OCT) has recently been established as a method for in vivo imaging of fundus and retina in the mouse. It enables more effective studies of retinal diseases including investigations of etiopathologic mechanisms. In order to learn more about longitudinal fundus development and to enable recognition of disease-associated irregularities, we performed confocal scanning laser ophthalmoscopy (cSLO) and SD-OCT measurements in the inbred strains C57BL/6J, C3HeB/FeJ, FVB/NCrl, BALB/cByJ, and 129S2/SvJ when they were between 2 and 6 months of age. In general, cSLO and SD-OCT data did not reveal sex-specific or unilateral differences. C3HeB/FeJ and FVB/NCrl mice showed diffuse choroidal dysplasia. Choroidal vein-like structures appeared as dark fundus stripes in C3HeB/FeJ. In FVB/NCrl, fundus fleck accumulation was found. In contrast, only minor time-dependent changes of fundus appearance were observed in C57BL/6J, BALB/cByJ, and 129S2/SvJ. This was also found for individual fundic main blood vessel patterns in all inbred strains. Vessel numbers varied between 6 and 13 in C57BL/6J. This was comparable in most cases. We further found that retinae were significantly thicker in C57BL/6J compared to the other strains. Total retinal thickness generally did not change between 2 and 6 months of age. As a conclusion, our results indicate lifelong pathologic processes in C3HeB/FeJ and FVB/NCrl that affect choroid and orbital tissues. Inbred strains with regular retinal development did not reveal major time-dependent variations of fundus appearance, blood vessel pattern, or retinal thickness. Consequently, progressive changes of these parameters are suitable indicators for pathologic outliers.

  6. High Production of 2,3-butanediol by a Mutant Strain of the Newly Isolated Klebsiella pneumoniae SRP2 with Increased Tolerance Towards Glycerol

    PubMed Central

    Rahman, Md. Shafiqur; Xu, Chunbao (Charles); Ma, Kesen; Nanda, Malaya; Qin, Wensheng

    2017-01-01

    Biodiesel, a renewable fuel produced by transesterification of animal fats and vegetable oils, generates about 10% (v/v) of crude glycerol as a core byproduct. The high volume of this non bio-degradable glycerol is becoming of a great environmental and economical concern due to its worldwide ever-growing surplus. Herein we report a high production of 2,3-butanediol (2,3-BD) from pure and biodiesel derived crude glycerol using a mutant K. pneumoniae SRM2 obtained from a newly isolated strain Klebsiella pneumoniae SRP2. The mutant strain SRM2 with standing high glycerol concentration (220 g L-1 of medium) could rapidly convert glycerol aerobically to 2,3-BD, a versatile product extensively used in chemical, pharmaceutical and fuel industries Our study revealed that an increased GDH activity led to a substantially enhanced production of 2,3-BD. The mutant strain exhibited 1.3-fold higher activity of GDH than that of parent strain (500.08 vs. 638.6 µmol min -1 mg -1 protein), yielding of 32.3 g L-1 and 77.5 g L-1 2,3-BD with glycerol in batch and fed-batch process respectively. However, in batch culture with crude glycerol, cell growth and glycerol consumption were expressively boosted, and 2,3-BD production was 27.7 g L-1 from 75.0 g/L crude glycerol. In this report, the optimal conditions for high production of 2,3-BD were defined in a completely aerobic process, and 0.59 g g-1 product yield of 2,3-BD was attained by the mutated strain K. pneumoniae SRM2, which is the highest amount obtained from batch biotransformation process of glycerol metabolism till today. These results indicated that our newly developed mutant can tolerate high concentration of glycerol, have a high glycerol utilization rate, and high product yield of 2,3-BD. It is demonstrated that the mutant strain K. pneumoniae SRM2 has an ability to produce fewer co-products at trace concentrations at higher glycerol concentrations, and could be a potential candidate for 2,3-DB production in an industrial

  7. Nitrogen fixation ability of exopolysaccharide synthesis mutants of Rhizobium sp. strain NGR234 and Rhizobium trifolii is restored by the addition of homologous exopolysaccharides.

    PubMed Central

    Djordjevic, S P; Chen, H; Batley, M; Redmond, J W; Rolfe, B G

    1987-01-01

    Several transposon Tn5-induced mutants of the broad-host-range Rhizobium sp. strain NGR234 produce little or no detectable acidic exopolysaccharide (EPS) and are unable to induce nitrogen-fixing nodules on Leucaena leucocephala var. Peru or siratro plants. The ability of these Exo- mutants to induce functioning nodules on Leucaena plants was restored by coinoculation with a Sym plasmid-cured (Nod- Exo+) derivative of parent strain NGR234, purified EPS from the parent strain, or the oligosaccharide from the EPS. Coinoculation with EPS or related oligosaccharide also resulted in formation of nitrogen-fixing nodules on siratro plants. In addition, an Exo- mutant (ANU437) of Rhizobium trifolii ANU794 was able to form nitrogen-fixing nodules on white clover in the presence of added EPS or related oligosaccharide from R. trifolii ANU843. These results demonstrate that the absence of Rhizobium EPSs can result in failure of effective symbiosis with both temperate and subtropical legumes. Images PMID:3025187

  8. A polymorphic form of steroidogenic factor 1 associated with ACTH receptor deficiency in mouse adrenal cell mutants.

    PubMed

    Schimmer, Bernard P; Cordova, Martha; Tsao, Jennivine; Frigeri, Claudia

    2003-06-01

    We have described a family of adrenocortical tumor cell mutants (including clones OS3, Y6, and 10r9) that are resistant to ACTH because they fail to express the gene encoding the ACTH receptor (MC2R). The MC2R deficiency results from a mutation that impairs the activity of the nuclear receptor steroidogenic factor 1 (SF1) at the MC2R promoter. In this report, we show that ACTH resistance in the mutant clones is associated with a Sf1 gene that has Ser at codon 172 instead of Ala. In two of the three mutant clones, this Sf1 allele is amplified together with flanking DNA from chromosome 2 that includes the genes encoding germ cell nuclear factor and the beta-type proteosome subunit Psmb7. SF1(A172) and SF1(S172) exhibit little or no difference in transcriptional activity in SF1-dependent reporter gene assays, suggesting that SF1(S172) per se is not directly responsible for the loss of MC2R expression. Instead, the Sf1(S172) allele appears to be a marker of ACTH resistance in this family of adrenocortical tumor cell mutants, possibly reflecting the activity of a neighboring gene.

  9. Identification of concomitant infection with Chlamydia trachomatis IncA-negative mutant and wild-type strains by genomic, transcriptional, and biological characterizations.

    PubMed

    Suchland, Robert J; Jeffrey, Brendan M; Xia, Minsheng; Bhatia, Ajay; Chu, Hencelyn G; Rockey, Daniel D; Stamm, Walter E

    2008-12-01

    Clinical isolates of Chlamydia trachomatis that lack IncA on their inclusion membrane form nonfusogenic inclusions and have been associated with milder, subclinical infections in patients. The molecular events associated with the generation of IncA-negative strains and their roles in chlamydial sexually transmitted infections are not clear. We explored the biology of the IncA-negative strains by analyzing their genomic structure, transcription, and growth characteristics in vitro and in vivo in comparison with IncA-positive C. trachomatis strains. Three clinical samples were identified that contained a mixture of IncA-positive and -negative same-serovar C. trachomatis populations, and two more such pairs were found in serial isolates from persistently infected individuals. Genomic sequence analysis of individual strains from each of two serovar-matched pairs showed that these pairs were very similar genetically. In contrast, the genome sequence of an unmatched IncA-negative strain contained over 5,000 nucleotide polymorphisms relative to the genome sequence of a serovar-matched but otherwise unlinked strain. Transcriptional analysis, in vitro culture kinetics, and animal modeling demonstrated that IncA-negative strains isolated in the presence of a serovar-matched wild-type strain are phenotypically more similar to the wild-type strain than are IncA-negative strains isolated in the absence of a serovar-matched wild-type strain. These studies support a model suggesting that a change from an IncA-positive strain to the previously described IncA-negative phenotype may involve multiple steps, the first of which involves a translational inactivation of incA, associated with subsequent unidentified steps that lead to the observed decrease in transcript level, differences in growth rate, and differences in mouse infectivity.

  10. Differential mouse-strain specific expression of Junctional Adhesion Molecule (JAM)-B in placental structures.

    PubMed

    Stelzer, Ina Annelies; Mori, Mayumi; DeMayo, Francesco; Lydon, John; Arck, Petra Clara; Solano, Maria Emilia

    2016-03-03

    The junctional adhesion molecule (JAM)-B, a member of the immunoglobulin superfamily, is involved in stabilization of interendothelial cell-cell contacts, formation of vascular tubes, homeostasis of stem cell niches and promotion of leukocyte adhesion and transmigration. In the human placenta, JAM-B protein is abundant and mRNA transcripts are enriched in first-trimester extravillous trophoblast in comparison to the villous trophoblast. We here aimed to elucidate the yet unexplored spatio-temporal expression of JAM-B in the mouse placenta. We investigated and semi-quantified JAM-B protein expression by immunohistochemistry in early post-implantation si tes and in mid- to late gestation placentae of various murine mating combinations. Surprisingly, the endothelium of the placental labyrinth was devoid of JAM-B expression. JAM-B was mainly present in spongiotrophoblast cells of the junctional zone, as well as in the fetal vessels of the chorionic plate, the umbilical cord and in maternal myometrial smooth muscle. We observed a strain-specific placental increase of JAM-B protein expression from mid- to late gestation in Balb/c-mated C57BL/6 females, which was absent in DBA/2J-mated Balb/c females. Due to the essential role of progesterone during gestation, we further assessed a possible modulation of JAM-B in mid-gestational placentae deficient in the progesterone receptor (Pgr(-/-)) and observed an increased expression of JAM-B in Pgr(-/-) placentae, compared to Pgr(+/+) tissue samples. We propose that JAM-B is an as yet underappreciated trophoblast lineage-specific protein, which is modulated via the progesterone receptor and shows unique strain-specific kinetics. Future work is needed to elucidate its possible contribution to placental processes necessary to ensuring its integrity, ultimately facilitating placental development and fetal growth.

  11. Effects of age and strain on the microbiota colonization in an infant human flora-associated mouse model.

    PubMed

    Zeng, Benhua; Li, Guiqing; Yuan, Jing; Li, Wenxia; Tang, Huan; Wei, Hong

    2013-09-01

    The establishment of human flora-associated animal models allows the in vivo manipulation of host, microbial, and environmental parameters to influence the gut microbial community. However, it is difficult to simulate infant gut microbiota in germ-free animals because of the variation and dynamic state of infant microbial communities. In this study, the effects of age and strain on intestinal microbiota were observed in an infant human flora-associated (IHFA) mouse model. To establish an IHFA model, postnatal day (PND) 1 germ-free mice (Kunming, n = 10; BALB/c, n = 10) were infected with feces from a breast-fed infant. Microbiota in the feces of BALB/c mice (at PND 7, 14, and 21), and Kunming mice (at PND 14) were analyzed by PCR-denaturing gradient gel electrophoresis. Bifidobacteria and lactobacilli levels in the feces of BALB/c and Kunming mice (PND 7/14/21) were detected by quantitative real-time PCR. The Dice similarity coefficient (Cs) for the fecal microbiota of IHFA mice in comparison with the HD donor sample was higher for BALB/c mice than for Kunming mice (P < 0.05). In addition, the DCs at PND 7 were lower than those at PND 14 and PND 21 in both mouse strains (P < 0.05). The Bifidobacteria and Lactobacillus species colonizing the BALB/c mice were similar to those in the Kunming mice (at PND 7/14/21). The bifidobacteria counts increased with age in both mouse strains, whereas the lactobacilli counts decreased with age in both strains. These results suggest that both age and strain influence microbiota patterns in the IHFA mouse model.

  12. Infection of mouse bone marrow-derived immature dendritic cells with classical swine fever virus C-strain promotes cells maturation and lymphocyte proliferation.

    PubMed

    Zheng, Fu-Ying; Qiu, Chang-Qing; Jia, Huai-Jie; Chen, Guo-Hua; Zeng, Shuang; He, Xiao-Bing; Fang, Yong-Xiang; Lin, Guo-Zhen; Jing, Zhi-Zhong

    2013-12-01

    In this study, the interactions of classical swine fever virus (CSFV) C-strain and the virulent GSLZ strain with mouse bone marrow-derived immature dendritic cells (BM-imDCs) were investigated for the first time. Both the C-strain and the virulent GSLZ strain could effectively infect and replicate in mouse BM-imDCs. C-strain-infected BM-imDCs showed a greatly enhanced degree of maturation, and could effectively promote the expansion and proliferation of allogeneic naive T cells. The C-strain induced a stronger Th1 response. Infection with the virulent GSLZ strain had no obvious influence on cell maturation or lymphocyte proliferation, and failed to induce any obvious immune response. The results of this study provided initial information for research of the immunologic mechanisms of CSFV using mouse DCs as the model cells.

  13. Use of the quorum sensing inhibitor furanone C-30 to interfere with biofilm formation by Streptococcus mutans and its luxS mutant strain.

    PubMed

    He, Zhiyan; Wang, Qian; Hu, Yuejian; Liang, Jingping; Jiang, Yuntao; Ma, Rui; Tang, Zisheng; Huang, Zhengwei

    2012-07-01

    Streptococcus mutans is recognised as a major aetiological agent of dental caries. One of its important virulence factors is its ability to form biofilms on tooth surfaces. The aim of this study was to evaluate the effects of the quorum sensing inhibitor furanone C-30 on biofilm formation by S. mutans and its luxS mutant strain. The effects of furanone C-30 on biofilms of both strains formed on 96-well microtitre plates at 37 °C were determined by a colorimetric technique (MTT assay). Different concentrations of furanone C-30 (0.0, 2.0 and 4.0 μg/mL) and different time points of biofilm formation (4, 14 and 24 h) were investigated. The structures and thickness of the biofilms were observed by confocal laser scanning microscopy (CLSM). Quorum sensing-related gene expression (ftf, smu630, brpA, gbpB, gtfB, vicR, comDE and relA) was investigated by real-time polymerase chain reaction (RT-PCR). The results showed that synthetic furanone C-30 can inhibit biofilm formation by S. mutans and its luxS mutant strain, although it does not affect the bacterial growth rate itself. The quantities of biofilm formed by both strains significantly decreased (P<0.05) and the biofilms became thinner and looser as revealed by CLSM with increasing concentrations of furanone C-30. Expression of the genes tested was downregulated in the biofilms by the addition of furanone C-30. These results revealed that synthetic furanone C-30 can effectively inhibit biofilm formation by S. mutans and its luxS mutant strain.

  14. Initial genetic dissection of serum neuroactive steroids following chronic intermittent ethanol across BXD mouse strains.

    PubMed

    Porcu, Patrizia; O'Buckley, Todd K; Lopez, Marcelo F; Becker, Howard C; Miles, Michael F; Williams, Robert W; Morrow, A Leslie

    2017-02-01

    Neuroactive steroids modulate alcohol's impact on brain function and behavior. Ethanol exposure alters neuroactive steroid levels in rats, humans, and some mouse strains. We conducted an exploratory analysis of the neuroactive steroids (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP), (3α,5α)-3,21-dihydroxypregnan-20-one (3α,5α-THDOC), and pregnenolone across 126-158 individuals and 19 fully inbred strains belonging to the BXD family, which were subjected to air exposure, or chronic intermittent ethanol (CIE) exposure. Neuroactive steroids were measured by gas chromatography-mass spectrometry in serum following five cycles of CIE or air exposure (CTL). Pregnenolone levels in CTLs range from 272 to 578 pg/mL (strain variation of 2.1 fold with p = 0.049 for strain main effect), with heritability of 0.20 ± 0.006 (SEM), whereas in CIE cases values range from 304 to 919 pg/mL (3.0-fold variation, p = 0.007), with heritability of 0.23 ± 0.005. 3α,5α-THP levels in CTLs range from 375 to 1055 pg/mL (2.8-fold variation, p = 0.0007), with heritability of 0.28 ± 0.01; in CIE cases they range from 460 to 1022 pg/mL (2.2-fold variation, p = 0.004), with heritability of 0.23 ± 0.005. 3α,5α-THDOC levels in CTLs range from 94 to 448 pg/mL (4.8-fold variation, p = 0.002), with heritability of 0.30 ± 0.01, whereas levels in CIE cases do not differ significantly. However, global averages across all BXD strains do not differ between CTL and CIE for any of the steroids. 3α,5α-THDOC levels were lower in females than males in both groups (CTL -53%, CIE -55%, p < 0.001). Suggestive quantitative trait loci are identified for pregnenolone and 3α,5α-THP levels. Genetic variation in 3α,5α-THP was not correlated with two-bottle choice ethanol consumption in CTL or CIE-exposed animals. However, individual variation in 3α,5α-THP correlated negatively with ethanol consumption in both groups. Moreover, strain variation in neuroactive steroid levels

  15. Transgenerational developmental effects and genomic instability after X-irradiation of preimplantation embryos: studies on two mouse strains.

    PubMed

    Jacquet, P; Buset, J; Neefs, M; Vankerkom, J; Benotmane, M A; Derradji, H; Hildebrandt, G; Baatout, S

    2010-05-01

    Recent results have shown that irradiation of a single cell, the zygote or 1-cell embryo of various mouse strains, could lead to congenital anomalies in the fetuses. In the Heiligenberger strain, a link between the radiation-induced congenital anomalies and the development of a genomic instability was also suggested. Moreover, further studies showed that in that strain, both congenital anomalies and genomic instability could be transmitted to the next generation. The aim of the experiments described in this paper was to investigate whether such non-targeted transgenerational effects could also be observed in two other radiosensitive mouse strains (CF1 and ICR), using lower radiation doses. Irradiation of the CF1 and ICR female zygotes with 0.2 or 0.4Gy did not result in a decrease of their fertility after birth, when they had reached sexual maturity. Moreover, females of both strains that had been X-irradiated with 0.2Gy exhibited higher rates of pregnancy, less resorptions and more living fetuses. Additionally, the mean weight of living fetuses in these groups had significantly increased. Exencephaly and dwarfism were observed in CF1 fetuses issued from control and X-irradiated females. In the control group of that strain, polydactyly and limb deformity were also found. The yields of abnormal fetuses did not differ significantly between the control and X-irradiated groups. Polydactyly, exencephaly and dwarfism were observed in fetuses issued from ICR control females. In addition to these anomalies, gastroschisis, curly tail and open eye were observed at low frequencies in ICR fetuses issued from X-irradiated females. Again, the frequencies of abnormal fetuses found in the different groups did not differ significantly. In both CF1 and ICR mouse strains, irradiation of female zygotes did not result in the development of a genomic instability in the next generation embryos. Overall, our results suggest that, at the moderate doses used, developmental defects observed

  16. Inbred mouse strains reveal biomarkers that are pro-longevity, antilongevity or role switching.

    PubMed

    Moeller, Mark; Hirose, Misa; Mueller, Sarah; Roolf, Catrin; Baltrusch, Simone; Ibrahim, Saleh; Junghanss, Christian; Wolkenhauer, Olaf; Jaster, Robert; Köhling, Rüdiger; Kunz, Manfred; Tiedge, Markus; Schofield, Paul N; Fuellen, Georg

    2014-08-01

    Traditionally, biomarkers of aging are classified as either pro-longevity or antilongevity. Using longitudinal data sets from the large-scale inbred mouse strain study at the Jackson Laboratory Nathan Shock Center, we describe a protocol to identify two kinds of biomarkers: those with prognostic implication for lifespan and those with longitudinal evidence. Our protocol also identifies biomarkers for which, at first sight, there is conflicting evidence. Conflict resolution is possible by postulating a role switch. In these cases, high biomarker values are, for example, antilongevity in early life and pro-longevity in later life. Role-switching biomarkers correspond to features that must, for example, be minimized early, but maximized later, for optimal longevity. The clear-cut pro-longevity biomarkers we found reflect anti-inflammatory, anti-immunosenescent or anti-anaemic mechanisms, whereas clear-cut antilongevity biomarkers reflect inflammatory mechanisms. Many highly significant blood biomarkers relate to immune system features, indicating a shift from adaptive to innate processes, whereas most role-switching biomarkers relate to blood serum features and whole-body phenotypes. Our biomarker classification approach is applicable to any combination of longitudinal studies with life expectancy data, and it provides insights beyond a simplified scheme of biomarkers for long or short lifespan.

  17. MUTANT FREQUENCY AND MUTATIONAL SPECTRA IN THETK AND HPRT GENES OF N-ETHYL-N-NITROSOUREA TREATED MOUSE LYMPHOMA CELLS

    EPA Science Inventory

    Abstract

    The mouse lymphoma assay (MLA) utilizing the Tk locus is widely used to identify chemical mutagens. The autosomal location of the Tk locus allows for the detection of a wide range of mutational events, from point mutations to chromosome alterations. However, the ...

  18. Physical and transcriptional map of a 3-Mb region of mouse chromosome 1 containing the gene for the neural tube defect mutant loop-tail (Lp).

    PubMed

    Eddleston, J; Murdoch, J N; Copp, A J; Stanier, P

    1999-03-01

    The Lp mouse mutant provides a model for the severe human neural tube defect (NTD), cranio-rachischisis. To identify the Lp gene, a positional cloning approach has been adopted. Previously, linkage analysis in a large intraspecific backcross was used to map the Lp locus to distal mouse chromosome 1. Here we report a detailed physical map of this region. The interval surrounding Lp has been cloned in a yeast artificial chromosome (YAC) contig consisting of 63 clones spanning approximately 3.2 Mb. Fifty sequence tagged sites (STSs) have been used to construct the contig and establish marker order across the interval. Based on the high level of conserved synteny between distal mouse chromosome 1 and human 1q21-q24, many of these STSs were designed from expressed sequences identified by cross-screening human and mouse databases of expressed sequence tags. Added to other known genes in the region, a total of 29 genes were located and ordered within the contig. Seven novel polymorphisms were identified within the region, allowing refinement of the genetic map and a reduction in the size of the physical interval containing the Lp gene. The Lp interval, between D1Mit113 and Tagln2, can be spanned by two nonchimeric overlapping YACs that define a physical distance of approximately 1 Mb. Within this region, 10 potential candidate genes have been mapped. The materials and genes described here will provide a resource for the identification and further study of the mutated Lp gene that causes this severe neural tube defect and will provide candidates for other defects known to map to the homologous region on human chromosome 1q.

  19. Immunological responses induced by asd and wzy/asd mutant strains of Salmonella enterica serovar Typhimurium in BALB/c mice.

    PubMed

    Piao, Hong Hua; Tam, Vo Thi Minh; Na, Hee Sam; Kim, Hyun Ju; Ryu, Phil Youl; Kim, Soo Young; Rhee, Joon Haeng; Choy, Hyon E; Kim, Suhng Wook; Hong, Yeongjin

    2010-08-01

    Attenuated bacteria have long been developed as vaccine candidates but can have some disadvantages, such as the potential for damage to immune organs due to insufficient clearance. To minimize these disadvantages, we generated Salmonella enterica serovar Typhimurium mutants SHJ2104 (asd::cm) and HTSaYA (wzy::km, asd::cm). The wzy gene codes for the O-antigen polymerase, which is involved in lipopolysaccharide (LPS) biosynthesis, and asd codes for aspartate beta-semialdehyde dehydrogenase, which participates in cell wall formation. The strains synthesized LPS with a short-chain length, and showed lower cytotoxicity and reduced intracellular proliferation in animal cells compared to wild-type bacteria. After oral infection, the mutants were cleared in immune tissues, including the Peyer's patch, mesenteric lymph node, and spleen, within 5 days. The LD50 of the mutants in Balb/c mice was estimated to be 10(6) higher than wild-type bacteria when administered either via an oral or i.p. route, indicating that the two strains are highly attenuated. To compare the immune response to and protective effects of the mutants against wild-type bacterial infection, we inoculated the mutants into mice via an oral (1x10(10)CFU) or i.p. (1x10(7) CFU) route once or twice at a two week interval. All immune responses, such as serum IgG and secretory IgA levels, cytokine production, and delayed hypersensitivity, were highly induced by two rounds of immunization. HTSaYA and SHJ2104 induced similar immune responses, and mice immunized with HTSaYA or SHJ2104 via an i.p. route were protected against wild-type Salmonella infection even at 100-fold of the LD(50) (5x10(6) CFU). Taken together, these data indicate that HTSaYA and SHJ2104 could be developed as live attenuated Salmonella vaccine candidates.

  20. Systematic strain construction and process development: Xylitol production by Saccharomyces cerevisiae expressing Candida tenuis xylose reductase in wild-type or mutant form.

    PubMed

    Pratter, S M; Eixelsberger, T; Nidetzky, B

    2015-12-01

    A novel Saccharomyces cerevisiae whole-cell biocatalyst for xylitol production based on Candida tenuis xylose reductase (CtXR) is presented. Six recombinant strains expressing wild-type CtXR or an NADH-specific mutant were constructed and evaluated regarding effects of expression mode, promoter strength, biocatalyst concentration and medium composition. Intracellular XR activities ranged from 0.09 U mgProt(-1) to 1.05 U mgProt(-1) but did not correlate with the strains' xylitol productivities, indicating that other factors limited xylose conversion in the high-activity strains. The CtXR mutant decreased the biocatalyst's performance, suggesting use of the NADPH-preferring wild-type enzyme when (semi-)aerobic conditions are applied. In a bioreactor process, the best-performing strain converted 40 g L(-1) xylose with an initial productivity of 1.16 g L(-1)h(-1) and a xylitol yield of 100%. The obtained results underline the potential of CtXR wild-type for xylose reduction and point out parameters to improve "green" xylitol production.

  1. A non-mouse-adapted enterovirus 71 (EV71) strain exhibits neurotropism, causing neurological manifestations in a novel mouse model of EV71 infection.

    PubMed

    Khong, Wei Xin; Yan, Benedict; Yeo, Huimin; Tan, Eng Lee; Lee, Jia Jun; Ng, Jowin K W; Chow, Vincent T; Alonso, Sylvie

    2012-02-01

    Enterovirus 71 (EV71) is a neurotropic pathogen that has been consistently associated with the severe neurological forms of hand, foot, and mouth disease. The lack of a relevant animal model has hampered our understanding of EV71 pathogenesis, in particular the route and mode of viral dissemination. It has also hindered the development of effective prophylactic and therapeutic approaches, making EV71 one of the most pressing public health concerns in Southeast Asia. Here we report a novel mouse model of EV71 infection. We demonstrate that 2-week-old and younger immunodeficient AG129 mice, which lack type I and II interferon receptors, are susceptible to infection with a non-mouse-adapted EV71 strain via both the intraperitoneal (i.p.) and oral routes of inoculation. The infected mice displayed progressive limb paralysis prior to death. The dissemination of the virus was dependent on the route of inoculation but eventually resulted in virus accumulation in the central nervous systems of both animal groups, indicating a clear neurotropism of the virus. Histopathological examination revealed massive damage in the limb muscles, brainstem, and anterior horn areas. However, the minute amount of infectious viral particles in the limbs from orally infected animals argues against a direct viral cytopathic effect in this tissue and suggests that limb paralysis is a consequence of EV71 neuroinvasion. Together, our observations support that young AG129 mice display polio-like neuropathogenesis upon infection with a non-mouse-adapted EV71 strain, making this mouse model relevant for EV71 pathogenesis studies and an attractive platform for EV71 vaccine and drug testing.

  2. Genetic regulation of life span, metabolism, and body weight in Pohn, a new wild-derived mouse strain.

    PubMed

    Yuan, Rong; Flurkey, Kevin; Meng, Qingying; Astle, Mike C; Harrison, David E

    2013-01-01

    Quantitative trait loci (QTL) of longevity identified in human and mouse are significantly colocalized, suggesting that common mechanisms are involved. However, the limited number of strains that have been used in mouse longevity studies undermines the ability to identify longevity genes. We crossed C57BL/6J mice with a new wild-derived strain, Pohn, and identified two life span QTL-Ls1 and Ls2. Interestingly, homologous human longevity QTL colocalize with Ls1. We also defined new QTL for metabolic heat production and body weight. Both phenotypes are significantly correlated with life span. We found that large clone ratio, an in vitro indicator for cellular senescence, is not correlated with life span, suggesting that cell senescence and intrinsic aging are not always associated. Overall, by using Pohn mice, we identified new QTL for longevity-related traits, thus facilitating the exploration of the genetic regulation of aging.

  3. Constitutive and conditional mutant mouse models for understanding dopaminergic regulation of orofacial movements: emerging insights and challenges.

    PubMed

    Tomiyama, Katsunori; Drago, John; Waddington, John L; Koshikawa, Noriaki

    2012-01-01

    Among numerous mechanisms implicated in the regulation of orofacial movements, dopamine-containing neurons have received the most extensive study. Here we review the effects of a) constitutive knockout of D(1-5) dopamine receptors and b) conditional mutations with progressive ablation of D(1) receptor-expressing cells, on the topography of spontaneous and D(1)-like agonist-induced orofacial movements. In constitutive knockouts, D(1) and D(2) exert primary roles in regulating horizontal and vertical jaw movements, respectively, in opposite directions; in contrast, both D(1) and D(2) receptors regulate tongue protrusions and incisor chattering, in the same direction. D(3) and D(5) receptors play more subtle roles in regulating orofacial movements, while D(4) receptors do not play any material role. Progressive loss of forebrain D(1) receptor-expressing cells in CamKIIa/Cre D(1)Tox mutants is associated primarily with decreases in head and vibrissae movements, while progressive loss of striatal D(1) receptor-expressing cells in DARPP-32/Cre D(1)Tox mutants is associated primarily with reductions in jaw movements and tongue protrusions but increases in head and vibrissae movements. Further application of constitutive and particularly conditional mutants may clarify further not only dopaminergic regulation of orofacial movements but also the pathophysiology of orofacial dysfunction in Huntington's disease and Parkinson's disease.

  4. Technical note: Milk composition in mice--methodological aspects and effects of mouse strain and lactation day.

    PubMed

    Görs, S; Kucia, M; Langhammer, M; Junghans, P; Metges, C C

    2009-02-01

    Analysis in individual mouse milk samples is restricted by small sample volumes and hindered by high fat contents. Miniaturized methods were developed for the analysis of dry matter (DM), crude fat, crude protein (CP), and lactose in individual samples of mouse milk and used to compare milk from the mouse strain DU6, the largest growth-selected mouse line worldwide, with unselected mice (CON) on lactation d 3, 14, and 18. Individual milk samples were collected by means of a self-constructed milking machine. Aliquots of 10 microL of milk were used to measure DM [coefficient of variation (CV) <2.1%], which was subsequently used to analyze nitrogen for calculation of CP (CV 2.7%). Crude fat was determined in 100 microL via a miniaturized Röse-Gottlieb method (CV 2.8%). An HPLC protocol was used to analyze lactose in 20 microL of diluted whey (CV 5.3%). The miniaturized methods gave similar results compared with conventional approaches. Homogenization was the most important factor affecting milk composition and its reproducibility. Milk storage at -20 degrees C had no effect on composition. Irrespective of the mouse strain, maximum values of 45.5% DM, 29.8% fat, and 12.7% CP were observed at d 14. The greatest lactose contents were found on d 18 (2.41%). Milk lactose concentration at d 3 was lower in DU6 (1.13 +/- 0.10%) than CON (1.67 +/- 0.18%). The method provides an accurate assessment of mouse milk composition.

  5. Comparison of wild-type and UV-mutant beta-glucanase-producing strains of Talaromyces emersonii with potential in brewing applications.

    PubMed

    McCarthy, Tracey C; Lalor, Eoin; Hanniffy, Orla; Savage, Angela V; Tuohy, Maria G

    2005-04-01

    A screen of 46 UV-mutant strains of the moderately thermophilic fungus Talaromyces emersonii yielded two mutants (TC2, TC5) that displayed gross morphological differences to the parent strain and enhanced activity against mixed linkage cereal beta-glucans. Activity against beta-(1, 3)(1, 4)-D: -glucan from barley (BBGase) was measured during growth of the mutant and wild-type strains on a variety of carbon sources, ranging from solka floc to crude cereal fractions. In liquid culture, TC2 and TC5 secreted 1.2- to 8.6-fold more BBGase than the parent strain and markedly less beta-glucosidase (exo-activity); enzyme levels were dependent on the carbon source. Cellulose induced high BBGase. However, beet pulp, wheat bran, carob and tea-leaves were cheap and effective inducers. T. emersonii wild-type, TC2 and TC5 crude enzyme preparations achieved similar end-points during the hydrolysis of commercial barley beta-glucan (13.0-16.9%), but were more active against crude beta-glucan from barley (16.0-24.2% hydrolysis). The products of hydrolysis were quantified by high-performance anion-exchange chromatography. Mash trials indicated that enzyme preparations from all three organisms effected a significant reduction in wort viscosity and residual mash beta-glucan. Finally, TC2 and TC5 produce more efficient beta-glucan-depolymerizing enzymes; and wheat bran and solka floc can be used to provide inexpensive and potent enzyme cocktails with potential in brewing applications.

  6. Evaluation of the G145R Mutant of the Hepatitis B Virus as a Minor Strain in Mother-to-Child Transmission

    PubMed Central

    Komatsu, Haruki; Inui, Ayano; Umetsu, Shuichiro; Tsunoda, Tomoyuki; Sogo, Tsuyoshi; Konishi, Yasuhiro; Fujisawa, Tomoo

    2016-01-01

    The role of the hepatitis B virus (HBV) mutant G145R, with a single change in amino acid 145 of the surface protein, as a minor population remains unknown in mother-to-child transmission. The minor strain as well as the major strain of the G145R mutant were evaluated in three cohorts using a locked nucleic acid probe-based real-time PCR. The breakthrough cohort consisted of children who were born to HBV carrier mothers and became HBV carriers despite immnoprophylaxis (n = 25). The control cohort consisted of HBV carriers who had no history of receiving the hepatitis B vaccine, hepatitis B immunoglobulin or antiviral treatment (n = 126). The pregnant cohort comprised pregnant women with chronic HBV infection (n = 31). In the breakthrough cohort, 6 showed positive PCR results (major, 2; minor, 4). In the control cohort, 13 showed positive PCR results (major, 0; minor, 13). HBeAg-positive patients were prone to have the G145R mutant as a minor population. Deep sequencing was performed in a total of 32 children (PCR positive, n = 13; negative, n = 19). In the breakthrough cohort, the frequency of the G145R mutant ranged from 0.54% to 6.58%. In the control cohort, the frequency of the G145R mutant ranged from 0.42% to 4.1%. Of the 31 pregnant women, 4 showed positive PCR results (major, n = 0; minor, n = 4). All of the pregnant women were positive for HBeAg and showed a high viral load. Three babies born to 3 pregnant women with the G145R mutant were evaluated. After the completion of immunoprophylaxis, 2 infants became negative for HBsAg. The remaining infant became negative for HBsAg after the first dose of HB vaccine. G145R was detected in one-fourth of the children with immunoprophylaxis failure. However, the pre-existence of the G145R mutant as a minor population in pregnant women does not always cause breakthrough infection in infants. PMID:27812178

  7. Levels of dendritic cell populations and regulatory T cells vary significantly between two commonly used mouse strains.

    PubMed

    Vogelsang, Petra; Hovden, Arnt-Ove; Jonsson, Roland; Appel, Silke

    2009-12-01

    Dendritic cells (DC) are a heterogeneous group of professional antigen-presenting cells (APC) involved in both initiating immune responses and maintaining tolerance. Roughly, DC can be divided into plasmacytoid DC (pDC) and conventional DC (cDC). By controlling regulatory T cells (Treg), DC can influence the outcome of both immunity and autoimmunity. Since the use of mice as in vivo models became a practical tool for researchers studying pathological events in all kind of human diseases, we decided to compare levels of cDC, pDC and Treg in both spleen and blood between two inbred mouse strains. Here we show that two commonly used mouse strains, BALB/c and C57BL/10J mice, have significantly different levels of distinct CD11c(+)/CD4(-)/CD8a(+), CD11c(+)/CD4(+)/CD8a(-) and CD11c(+)/CD4(-)/CD8a(-) cDC populations, pDC and Treg. Therefore, we emphasize the importance of considering the proper model when comparing data sets from different mouse strains.

  8. Using the Textpresso Site-Specific Recombinases Web server to identify Cre expressing mouse strains and floxed alleles.

    PubMed

    Condie, Brian G; Urbanski, William M

    2014-01-01

    Effective tools for searching the biomedical literature are essential for identifying reagents or mouse strains as well as for effective experimental design and informed interpretation of experimental results. We have built the Textpresso Site Specific Recombinases (Textpresso SSR) Web server to enable researchers who use mice to perform in-depth searches of a rapidly growing and complex part of the mouse literature. Our Textpresso Web server provides an interface for searching the full text of most of the peer-reviewed publications that report the characterization or use of mouse strains that express Cre or Flp recombinase. The database also contains most of the publications that describe the characterization or analysis of strains carrying conditional alleles or transgenes that can be inactivated or activated by site-specific recombinases such as Cre or Flp. Textpresso SSR complements the existing online databases that catalog Cre and Flp expression patterns by providing a unique online interface for the in-depth text mining of the site specific recombinase literature.

  9. Distinct roles of autophagy-dependent and -independent functions of FIP200 revealed by generation and analysis of a mutant knock-in mouse model

    PubMed Central

    Chen, Song; Wang, Chenran; Yeo, Syn; Liang, Chun-Chi; Okamoto, Takako; Sun, Shaogang; Wen, Jian; Guan, Jun-Lin

    2016-01-01

    Autophagy is an evolutionarily conserved cellular process controlled through a set of essential autophagy genes (Atgs). However, there is increasing evidence that most, if not all, Atgs also possess functions independent of their requirement in canonical autophagy, making it difficult to distinguish the contributions of autophagy-dependent or -independent functions of a particular Atg to various biological processes. To distinguish these functions for FIP200 (FAK family-interacting protein of 200 kDa), an Atg in autophagy induction, we examined FIP200 interaction with its autophagy partner, Atg13. We found that residues 582–585 (LQFL) in FIP200 are required for interaction with Atg13, and mutation of these residues to AAAA (designated the FIP200-4A mutant) abolished its canonical autophagy function in vitro. Furthermore, we created a FIP200-4A mutant knock-in mouse model and found that specifically blocking FIP200 interaction with Atg13 abolishes autophagy in vivo, providing direct support for the essential role of the ULK1/Atg13/FIP200/Atg101 complex in the process beyond previous studies relying on the complete knockout of individual components. Analysis of the new mouse model showed that nonautophagic functions of FIP200 are sufficient to fully support embryogenesis by maintaining a protective role in TNFα-induced apoptosis. However, FIP200-mediated canonical autophagy is required to support neonatal survival and tumor cell growth. These studies provide the first genetic evidence linking an Atg's autophagy and nonautophagic functions to different biological processes in vivo. PMID:27013233

  10. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production from biodiesel by-product and propionic acid by mutant strains of Pandoraea sp.

    PubMed

    de Paula, Fabrício C; Contiero, Jonas; de Paula, Carolina B C; Gomez, José Gregório C; Steinbüchel, Alexander

    2017-04-10

    Pandoraea sp. MA03 wild type strain was subjected to UV mutation in order to obtain mutants unable to grow on propionic acid (PA) but still able to produce poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] from glycerol and PA at high 3HV yields. In shake flask experiments, mutant prp25 was selected from 52 mutants affected in the propionate metabolism exhibiting a conversion rate of PA into 3HV units of 0.78 gg(-1) . The utilization of crude glycerol (CG) plus PA or valeric acid resulted in a copolymer with 3HV contents varying from 21.9 to 30 mol% and 22.2 to 36.7 mol%, respectively. Fed-batch fermentations were performed using CG and PA and reached a 3HV yield of 1.16 gg(-1) , which is 86% of the maximum theoretical yield. Nitrogen limitation was a key parameter for polymer accumulation reaching up to 63.7% content and 18.1 mol% of 3HV. Henceforth, mutant prp25 is revealed as an additional alternative to minimize costs and support the P(3HB-co-3HV) production from biodiesel by-products. This article is protected by copyright. All rights reserved.

  11. Correlation between biofilm production, antibiotic susceptibility and exopolysaccharide composition in Burkholderia pseudomallei bpsI, ppk, and rpoS mutant strains.

    PubMed

    Mongkolrob, Rungrawee; Taweechaisupapong, Suwimol; Tungpradabkul, Sumalee

    2015-11-01

    Burkholderia pseudomallei is the cause of melioidosis, a fatal tropical infectious disease, which has been reported to have a high rate of recurrence, even when an intensive dose of antibiotics is used. Biofilm formation is believed to be one of the possible causes of relapse because of its ability to increase drug resistance. EPS in biofilms have been reported to be related to the limitation of antibiotic penetration in B. pseudomallei. However, the mechanisms by which biofilms restrict the diffusion of antibiotics remain unclear. The present study presents a correlation between exopolysaccharide production in biofilm matrix and antibiotic resistance in B. pseudomallei using bpsI, ppk, and rpoS mutant strains. CLSM revealed a reduction in exopolysaccharide production and disabled micro-colony formation in B. pseudomallei mutants, which paralleled the antibiotic resistance. Different ratios of carbohydrate contents in the exopolysaccharides of the mutants were detected, although they have the same components, including glucose, galactose, mannose, and rhamnose, with the exception being that no detectable rhamnose peak was observed in the bpsI mutant. These results indicate that the correlation between these phenomena in the B. pseudomallei biofilm at least results from the exopolysaccharide, which may be under the regulation of bpsI, ppk, or rpoS genes.

  12. Outer membrane vesicles derived from Salmonella Typhimurium mutants with truncated LPS induce cross-protective immune responses against infection of Salmonella enterica serovars in the mouse model.

    PubMed

    Liu, Qiong; Liu, Qing; Yi, Jie; Liang, Kang; Liu, Tian; Roland, Kenneth L; Jiang, Yanlong; Kong, Qingke

    2016-12-01

    Salmonella enterica cause diarrheal and systemic diseases and are of considerable concern worldwide. Vaccines that are cross-protective against multiple serovars could provide effective control of Salmonella-mediated diseases. Bacteria-derived outer membrane vesicles (OMVs) are highly immunogenic and are capable of eliciting protective immune responses. Alterations in lipopolysaccharide (LPS) length can result in outer membrane remodeling and composition of outer membrane proteins (OMPs) changing. In this study, we investigated the impact of truncated LPS on both the production and immunogenicity of Salmonella OMVs, including the ability of OMVs to elicit cross-protection against challenge by heterologous Salmonella strains. We found that mutations in waaJ and rfbP enhanced vesiculation, while mutations in waaC, waaF and waaG inhibited this process. Animal experiments indicated that OMVs from waaC, rfaH and rfbP mutants induced stronger serum immune responses compared to OMVs from the parent strain, while all elicited protective responses against the wild-type S. Typhimurium challenge. Furthermore, intranasal or intraperitoneal immunization with OMVs derived from the waaC and rfbP mutants elicited significantly higher cross-reactive IgG responses and provided enhanced cross-protection against S. Choleraesuis and S. Enteritidis challenge than the wild-type OMVs. These results indicate that truncated-LPS OMVs are capable of conferring cross protection against multiple serotypes of Salmonella infection.

  13. Construction of a flagellum-negative mutant of Proteus mirabilis: effect on internalization by human renal epithelial cells and virulence in a mouse model of ascending urinary tract infection.

    PubMed Central

    Mobley, H L; Belas, R; Lockatell, V; Chippendale, G; Trifillis, A L; Johnson, D E; Warren, J W

    1996-01-01

    To examine the role of flagella in pathogenesis of urinary tract infection caused by Proteus mirabilis, we constructed a nonmotile, nonswarming flagellum mutant of strain WPM111 (an hpmA hemolysin mutant of strain BA6163, chosen because of its lack of in vitro cytotoxicity in renal epithelial cell internalization studies). A nonpolar mutation was introduced into the flaD gene, which encodes the flagellar cap protein. This mutation does not affect the synthesis of flagellin but rather prevents the assembly of an intact flagellar filament. In in vitro assays, the genetically characterized nonmotile mutant was found to be internalized by cultured human renal proximal tubular epithelial cells in numbers less than 1% of those of the flagellated parent strain. Internalization of the nonmotile mutant was increased significantly (14- to 21-fold) by centrifugation onto the monolayer. To assess virulence in vivo, CBA mice were challenged transurethrally with 10(7) CFU of P. mirabilis BA6163 (wild type) (n = 16), WPM111 (hpmA mutant) (n = 46), or BB2401 (hmpA flaD mutant) (n = 46). Differences in quantitative cultures between the parent strain and the hemolysin-negative mutant were not significant. However, the hpmA flaD mutant was recovered in numbers approximately 100-fold lower than those of the hmpA mutant or the wild-type parent strain and thus was clearly attenuated. We conclude that while hemolysin does not significantly influence virulence, flagella contribute significantly to the ability of P. mirabilis to colonize the urinary tract and cause acute pyelonephritis in an experimental model of ascending urinary tract infection. PMID:8945585

  14. Absence of Nrf2 or Its Selective Overexpression in Neurons and Muscle Does Not Affect Survival in ALS-Linked Mutant hSOD1 Mouse Models

    PubMed Central

    Vargas, Marcelo R.; Burton, Neal C.; Gan, Li; Johnson, Delinda A.; Schäfer, Matthias; Werner, Sabine; Johnson, Jeffrey A.

    2013-01-01

    The nuclear factor erythroid 2-related factor 2 (Nrf2) governs the expression of antioxidant and phase II detoxifying enzymes. Nrf2 activation can prevent or reduce cellular damage associated with several types of injury in many different tissues and organs. Dominant mutations in Cu/Zn-superoxide dismutase (SOD1) cause familial forms of amyotrophic lateral sclerosis (ALS), a fatal disorder characterized by the progressive loss of motor neurons and subsequent muscular atrophy. We have previously shown that Nrf2 activation in astrocytes delays neurodegeneration in ALS mouse models. To further investigate the role of Nrf2 in ALS we determined the effect of absence of Nrf2 or its restricted overexpression in neurons or type II skeletal muscle fibers on symptoms onset and survival in mutant hSOD1 expressing mice. We did not observe any detrimental effect associated with the lack of Nrf2 in two different mutant hSOD1 animal models of ALS. However, restricted Nrf2 overexpression in neurons or type II skeletal muscle fibers delayed disease onset but failed to extend survival in hSOD1G93A mice. These results highlight the concept that not only the pharmacological target but also the cell type targeted may be relevant when considering a Nrf2-mediated therapeutic approach for ALS. PMID:23418589

  15. Genetic modulation of nephrocalcinosis in mouse models of ectopic mineralization: the Abcc6(tm1Jfk) and Enpp1(asj) mutant mice.

    PubMed

    Li, Qiaoli; Chou, David W; Price, Thea P; Sundberg, John P; Uitto, Jouni

    2014-06-01

    Ectopic mineralization of renal tissues in nephrocalcinosis is a complex, multifactorial process. The purpose of this study was to examine the role of genetic modulation and the role of diet in nephrocalcinosis using two established mouse models of ectopic mineralization, Abcc6(tm1Jfk) and Enpp1(asj) mice, which serve as models for pseudoxanthoma elasticum and generalized arterial calcification of infancy, two heritable disorders, respectively. These mutant mice, when on standard rodent diet, develop nephrocalcinosis only at a very late age. In contrast, when placed on an 'acceleration diet' composed of increased phosphate and reduced magnesium content, they showed extensive mineralization of the kidneys affecting primarily the medullary tubules as well as arcuate and renal arteries, as examined by histopathology and quantitated by chemical assay for calcium. Mineralization could also be detected noninvasively by micro computed tomography. Whereas the heterozygous mice did not develop nephrocalcinosis, compound heterozygous mice carrying both mutant alleles, Abcc6(tm1Jfk/+) and Enpp1(+/asj), developed ectopic mineralization similar to that noted in homozygous mice for either gene, indicating that deletion of one Abcc6 allele along with Enpp1 haploinsufficiency resulted in renal mineralization. Thus, synergistic genetic defects in the complex mineralization/antimineralization network can profoundly modulate the degree of ectopic mineralization in nephrocalcinosis.

  16. A reduction in Ptprq associated with specific features of the deafness phenotype of the miR-96 mutant mouse diminuendo.

    PubMed

    Chen, Jing; Johnson, Stuart L; Lewis, Morag A; Hilton, Jennifer M; Huma, Andreea; Marcotti, Walter; Steel, Karen P

    2014-03-01

    miR-96 is a microRNA, a non-coding RNA gene which regulates a wide array of downstream genes. The miR-96 mouse mutant diminuendo exhibits deafness and arrested hair cell functional and morphological differentiation. We have previously shown that several genes are markedly downregulated in the diminuendo organ of Corti; one of these is Ptprq, a gene known to be important for maturation and maintenance of hair cells. In order to study the contribution that downregulation of Ptprq makes to the diminuendo phenotype, we carried out microarrays, scanning electron microscopy and single hair cell electrophysiology to compare diminuendo mutants (heterozygous and homozygous) with mice homozygous for a functional null allele of Ptprq. In terms of both morphology and electrophysiology, the auditory phenotype of mice lacking Ptprq resembles that of diminuendo heterozygotes, while diminuendo homozygotes are more severely affected. A comparison of transcriptomes indicates there is a broad similarity between diminuendo homozygotes and Ptprq-null mice. The reduction in Ptprq observed in diminuendo mice appears to be a major contributor to the morphological, transcriptional and electrophysiological phenotype, but does not account for the complete diminuendo phenotype.

  17. Mouse mutant embryos overexpressing IGF-II exhibit phenotypic features of the Beckwith–Wiedemann and Simpson–Golabi–Behmel syndromes

    PubMed Central

    Eggenschwiler, Jonathan; Ludwig, Thomas; Fisher, Peter; Leighton, Philip A.; Tilghman, Shirley M.; Efstratiadis, Argiris

    1997-01-01

    In mice, the imprinted Igf2 gene (expressed from the paternal allele), which encodes a growth-promoting factor (IGF-II), is linked closely to the reciprocally imprinted H19 locus on chromosome 7. Also imprinted (expressed from the maternal allele) is the Igf2r gene on chromsome 17 encoding the type 2 IGF receptor that is involved in degradation of excess IGF-II. Double mutant embryos carrying a deletion around the H19 region and also a targeted Igf2r allele, both inherited maternally, have extremely high levels of IGF-II (7- and 11-fold higher than normal in tissues and serum, respectively) as a result of biallelic Igf2 expression (imprint relaxation by deletion of H19-associated sequence) in combination with lack of the IGF2R-mediated IGF-II turnover. This excess of IGF-II causes somatic overgrowth, visceromegaly, placentomegaly, omphalocele, and cardiac and adrenal defects, which are also features of the Beckwith–Wiedemann syndrome (BWS), a genetically complex human disorder associated with chromosomal abnormalities in the 11p15.5 region where the IGF2 gene resides. In addition, the double mutant mouse embryos exhibit skeletal defects and cleft palate, which are manifestations observed frequently in the Simpson–Golabi–Behmel syndrome, another overgrowth disorder overlapping phenotypically, but not genetically, with BWS. PMID:9389646

  18. Flocculus Purkinje cell signals in mouse Cacna1a calcium channel mutants of escalating severity: an investigation of the role of firing irregularity in ataxia

    PubMed Central

    Thumser, Zachary C.

    2014-01-01

    Mutation of the Cacna1a gene for the P/Q (CaV2.1) calcium channel invariably leads to cerebellar dysfunction. The dysfunction has been attributed to disrupted rhythmicity of cerebellar Purkinje cells, but the hypothesis remains unproven. If irregular firing rates cause cerebellar dysfunction, then the irregularity and behavioral deficits should covary in a series of mutant strains of escalating severity. We compared firing irregularity in floccular and anterior vermis Purkinje cells in the mildly affected rocker and moderately affected tottering Cacna1a mutants and normal C57BL/6 mice. We also measured the amplitude and timing of modulations of floccular Purkinje cell firing rate during the horizontal vestibuloocular reflex (VOR, 0.25–1 Hz) and the horizontal and vertical optokinetic reflex (OKR, 0.125–1 Hz). We recorded Purkinje cells selective for rotational stimulation about the vertical axis (VAPCs) and a horizontal axis (HAPCs). Irregularity scaled with behavioral deficit severity in the flocculus but failed to do so in the vermis, challenging the irregularity hypothesis. Mutant VAPCs exhibited unusually strong modulation during VOR and OKR, the response augmentation scaling with phenotypic severity. HAPCs exhibited increased OKR modulation but in tottering only. The data contradict prior claims that modulation amplitude is unaffected in tottering but support the idea that attenuated compensatory eye movements in Cacna1a mutants arise from defective transfer of Purkinje cell signals to downstream circuitry, rather than attenuated synaptic transmission within the cerebellar cortex. Shifts in the relative sizes of the VAPC and HAPC populations raise the possibility that Cacna1a mutations influence the development of floccular zone architecture. PMID:25143538

  19. Decreased reactivation of a herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) mutant using the in vivo mouse UV-B model of induced reactivation.

    PubMed

    BenMohamed, Lbachir; Osorio, Nelson; Srivastava, Ruchi; Khan, Arif A; Simpson, Jennifer L; Wechsler, Steven L

    2015-10-01

    Blinding ocular herpetic disease in humans is due to herpes simplex virus type 1 (HSV-1) reactivations from latency, rather than to primary acute infection. The cellular and molecular immune mechanisms that control the HSV-1 latency-reactivation cycle remain to be fully elucidated. The aim of this study was to determine if reactivation of the HSV-1 latency-associated transcript (LAT) deletion mutant (dLAT2903) was impaired in this model, as it is in the rabbit model of induced and spontaneous reactivation and in the trigeminal ganglia (TG) explant-induced reactivation model in mice. The eyes of mice latently infected with wild-type HSV-1 strain McKrae (LAT((+)) virus) or dLAT2903 (LAT((-)) virus) were irradiated with UV-B, and reactivation was determined. We found that compared to LAT((-)) virus, LAT((+)) virus reactivated at a higher rate as determined by shedding of virus in tears on days 3 to 7 after UV-B treatment. Thus, the UV-B-induced reactivation mouse model of HSV-1 appears to be a useful small animal model for studying the mechanisms involved in how LAT enhances the HSV-1 reactivation phenotype. The utility of the model for investigating the immune evasion mechanisms regulating the HSV-1 latency/reactivation cycle and for testing the protective efficacy of candidate therapeutic vaccines and drugs is discussed.

  20. Computational studies on the resistance of penicillin-binding protein 2B (PBP2B) of wild-type and mutant strains of Streptococcus pneumoniae against β-lactam antibiotics.

    PubMed

    Ramalingam, Jothi; Vennila, Jannet; Subbiah, Parthasarathy

    2013-09-01

    Mutations within transpeptidase domain of penicillin-binding protein 2B of the strains of Streptococcus pneumoniae leads to resistance against β-lactam antibiotics. To uncover the important residues responsible for sensitivity and resistance, the recently determined three dimensional structures of penicillin-binding protein 2B of both wild-type R6 (sensitive) and mutant 5204 (resistant) strains along with the predicted structures of other mutant strains G54, Hungary19A-6 and SP195 were considered for the interaction study with β-lactam antibiotics using induced-fit docking of Schrödinger. Associated binding energies of the complexes and their intermolecular interactions in the binding site clearly show that the wild-type R6 as sensitive, mutant strains 5204 and G54 as highly resistant, and the mutant strains Hungary19A-6 and SP195 as intermediate resistant. The study also reveals that the mutant strains Hungary19A-6 and SP195 exhibit intermediate resistant because of the existence of mutations till the intermediate 538th and 516th positions, respectively, and not till the end of the C-terminus. Furthermore, our investigations show that if the mutations are extended till the end of the C terminus, then the antibiotic resistance of induced-mutated strains increases from intermediate to high as in the strains 5204 and G54. The binding patterns obtained in the study are useful in designing potential inhibitors against multidrug resistant S. pneumoniae.

  1. Human P301L-Mutant Tau Expression in Mouse Entorhinal-Hippocampal Network Causes Tau Aggregation and Presynaptic Pathology but No Cognitive Deficits

    PubMed Central

    Harris, Julie A.; Koyama, Akihiko; Maeda, Sumihiro; Ho, Kaitlyn; Devidze, Nino; Dubal, Dena B.; Yu, Gui-Qiu; Masliah, Eliezer; Mucke, Lennart

    2012-01-01

    Accumulation of hyperphosphorylated tau in the entorhinal cortex (EC) is one of the earliest pathological hallmarks in patients with Alzheimer’s disease (AD). It can occur before significant Aβ deposition and appears to “spread” into anatomically connected brain regions. To determine whether this early-stage pathology is sufficient to cause disease progression and cognitive decline in experimental models, we overexpressed mutant human tau (hTauP301L) predominantly in layer II/III neurons of the mouse EC. Cognitive functions remained normal in mice at 4, 8, 12 and 16 months of age, despite early and extensive tau accumulation in the EC. Perforant path (PP) axon terminals within the dentate gyrus (DG) contained abnormal conformations of tau even in young EC-hTau mice, and phosphorylated tau increased with age in both the EC and PP. In old mice, ultrastructural alterations in presynaptic terminals were observed at PP-to-granule cell synapses. Phosphorylated tau was more abundant in presynaptic than postsynaptic elements. Human and pathological tau was also detected within hippocampal neurons of this mouse model. Thus, hTauP301L accumulation predominantly in the EC and related presynaptic pathology in hippocampal circuits was not sufficient to cause robust cognitive deficits within the age range analyzed here. PMID:23029293

  2. Locating a modifier gene of Ovum mutant through crosses between DDK and C57BL/6J inbred strains in mice.

    PubMed

    Tan, Jing; Song, Gen Di; Song, Jia Sheng; Ren, Shi Hao; Li, Chun Li; Zheng, Zhen Yu; Zhao, Wei Dong

    2016-06-01

    A striking infertile phenotype has been discovered in the DDK strain of mouse. The DDK females are usually infertile when crossed with males of other inbred strains, whereas DDK males exhibit normal fertility in reciprocal crosses. This phenomenon is caused by mutation in the ovum (Om) locus on chromosome 11 and known as the DDK syndrome. Previously, some research groups reported that the embryonic mortality deviated from the semilethal rate in backcrosses between heterozygous (Om/+) females and males of other strains. This embryonic mortality exhibited an aggravated trend with increasing background genes of other strains. These results indicated that some modifier genes of Om were present in other strains. In the present study, a population of N₂2 (Om/+) females from the backcrosses between C57BL/6J (B6) and F₁ (B6♀ × DDK♂) was used to map potential modifier genes of Om. Quantitative trait locus showed that a major locus, namely Amom1 (aggravate modifier gene of Om 1), was located at the middle part of chromosome 9 in mice. The Amom1 could increase the expressivity of Om gene, thereby aggravating embryonic lethality when heterozygous (Om/+) females mated with males of B6 strain. Further, the 1.5 LOD-drop analysis indicated that the confidence interval was between 37.54 and 44.46 cM, ~6.92 cM. Amom1 is the first modifier gene of Om in the B6 background.

  3. The mouse glucocorticoid receptor: mapping of functional domains by cloning, sequencing and expression of wild-type and mutant receptor proteins.

    PubMed Central

    Danielsen, M; Northrop, J P; Ringold, G M

    1986-01-01

    We have isolated mouse glucocorticoid receptor (GR) cDNAs which, when expressed in transfected mammalian cells, produce a fully functional GR protein. Sequence analysis reveals an open reading frame of 2349 bp which could encode a protein of approximately 86,000 daltons. We have also isolated two receptor cDNAs from mouse S49 nuclear transfer-deficient (nt-) cells which encode mutant forms of the receptor protein. One cDNA encodes a protein that is unable to bind hormone and represents the endogenous hormone binding deficient receptor recently discovered in S49 cells. The lesion in this receptor is due to a single amino acid substitution (Glu-546 to Gly). The second cDNA from nt- cells produces a receptor protein that is able to bind hormone but has reduced nuclear binding. This cDNA, therefore, encodes for the S49 nt- receptor which has been shown to have reduced affinity for DNA. The lesion maps to a single amino acid substitution (Arg-484 to His) located in a highly Cys, Lys, Arg-rich region of the protein previously implicated in DNA binding. Our studies provide unambiguous identification of receptor domains and specific amino acids critical for the hormone and DNA binding properties of this transcriptional regulatory protein. Contained within the first 106 amino acids of the mouse GR is a stretch of nine glutamines with two prolines which are related to the family of transcribed repetitive elements, opa, found in Drosophila melanogaster. A truncated receptor lacking these 106 amino acids is functionally indistinguishable from the wild-type receptor. Images Fig. 2. Fig. 5. Fig. 6. Fig. 7. PMID:3780669

  4. Rad51c- and Trp53-double-mutant mouse model reveals common features of homologous recombination-deficient breast cancers.

    PubMed

    Tumiati, M; Munne, P M; Edgren, H; Eldfors, S; Hemmes, A; Kuznetsov, S G

    2016-09-01

    Almost half of all hereditary breast cancers (BCs) are associated with germ-line mutations in homologous recombination (HR) genes. However, the tumor phenotypes associated with different HR genes vary, making it difficult to define the role of HR in BC predisposition. To distinguish between HR-dependent and -independent features of BCs, we generated a mouse model in which an essential HR gene, Rad51c, is knocked-out specifically in epidermal tissues. Rad51c is one of the key mediators of HR and a well-known BC predisposition gene. Here, we demonstrate that deletion of Rad51c invariably requires inactivation of the Trp53 tumor suppressor (TP53 in humans) to produce mammary carcinomas in 63% of female mice. Nonetheless, loss of Rad51c shortens the latency of Trp53-deficient mouse tumors from 11 to 6 months. Remarkably, the histopathological features of Rad51c-deficient mammary carcinomas, such as expression of hormone receptors and luminal epithelial markers, faithfully recapitulate the histopathology of human RAD51C-mutated BCs. Similar to other BC models, Rad51c/p53 double-mutant mouse mammary tumors also reveal a propensity for genomic instability, but lack the focal amplification of the Met locus or distinct mutational signatures reported for other HR genes. Using the human mammary epithelial cell line MCF10A, we show that deletion of TP53 can rescue RAD51C-deficient cells from radiation-induced cellular senescence, whereas it exacerbates their centrosome amplification and nuclear abnormalities. Altogether, our data indicate that a trend for genomic instability and inactivation of Trp53 are common features of HR-mediated BCs, whereas histopathology and somatic mutation patterns are specific for different HR genes.

  5. A comprehensive method for the conservation of mouse strains combining natural breeding, sperm cryopreservation and assisted reproductive technology.

    PubMed

    Li, Dun-Gao; Zhu, Yan; Li, He-Ping; Chen, Xue-Jin; Jiang, Man-Xi

    2014-05-01

    The maintenance and preservation of strains of mice used in biomedical research presents a unique challenge to individual investigators and research institutions. The goal of this study was to assess a comprehensive system for mouse strain conservation through a combination of natural mating, sperm cryopreservation and assisted reproductive technology. Our strategy was based on the collection and cryopreservation of fresh epididymal sperm from male mice by semi-vasectomy; these mice were then naturally mated for breeding purposes. If no satisfactory results were obtained from natural breeding, then the cryopreserved sperm were used for in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI); resultant embryos were then transferred into pseudopregnant-recipient female mice. Our results show that some semi-vasectomized mouse strains can be conserved by natural breeding, and that sterile males can be compensated for through the use of IVF and ICSI technology. As such, we believe this system is suitable for the purpose of strain conservation, allowing the continuation of natural breeding with the safeguard of assisted reproduction available.

  6. MUTANT FREQUENCIES AND LOSS OF HETEROZYGOSITY INDUCED BY N-ETHYL-N-NITROSOUREA (ENU) IN THE THYMIDINE KINASE (TK) GENE OF L5178YTK+/-3.7.2C MOUSE LYMPHOMA CELLS

    EPA Science Inventory

    MUTANT FREQUENCIES AND LOSS HETEROZYGOSITY INDUCED BY N-ETHYK-N-NITROSOUREA (ENU) IN THE THYMIDINE KINASE (tk) GENE IF l5178Y/TK+/-3.7.2C MOUSE LYMPHOMA CELLS

    N-ethyl-N-nitrosourea (ENU) is a potent monofunctional-ethylating agent that has been found to be mutagenic in a w...

  7. The Murphy Roths Large (MRL) mouse strain is naturally resistant to high fat diet-induced hyperglycemia

    PubMed Central

    Roberts, Nathan W.; Heydemann, Ahlke

    2014-01-01

    Objective Due to their previously identified naturally and chronically increased levels of skeletal muscle pAMPK we hypothesized and now investigated whether the MRL/MpJ (MRL) mice would be resistant to high fat diet (HFD)-induced metabolic changes. Materials/Methods Three-week old male MRL and control C57Bl/6 (B6) mice were randomly assigned to 12 weeks of high fat diets (HFD) or control diets (CD). Weekly animal masses and fasting blood glucose measurements were acquired. During the last week of diet intervention, fasted animals were subjected to glucose and insulin tolerance tests. At harvest, tissues were dissected for immunoblots and serum was collected for elisa assays. Results The MRL mouse strain is known for its ability to regenerate ear punch wounds, cardiac cryoinjury, and skeletal muscle disease. Despite gaining weight and increasing their fat deposits the MRL mice were resistant to all other indicators of HFD-induced metabolic alterations assayed. Only the HFD-B6 mice displayed fasting hyperglycemia, hyperinsulinemia and hypersensitivity to glucose challenge. HFD-MRL mice were indistinguishable from their CDMRL counterparts in these metrics. Skeletal muscles from the HFD-MRL contained heightened levels of pAMPK, even above their CD counterparts. Conclusions The MRL mouse strain is the first naturally occurring mouse strain that we are aware of that is resistant to HFD-induced metabolic changes. Furthermore, the increased pAMPK suggests a proximal mechanism for these beneficial metabolic differences. We further hypothesize that these metabolic differences and plasticity provide the basis for the MRL mouse strain’s super healing characteristics. This project’s ultimate aim is to identify novel therapeutic targets, which specifically increase pAMPK. PMID:25308446

  8. Sulphide Resistance in the Cyanobacterium Microcystis aeruginosa: a Comparative Study of Morphology and Photosynthetic Performance Between the Sulphide-Resistant Mutant and the Wild-Type Strain.

    PubMed

    Bañares-España, Elena; del Mar Fernández-Arjona, María; García-Sánchez, María Jesús; Hernández-López, Miguel; Reul, Andreas; Mariné, Mariona Hernández; Flores-Moya, Antonio

    2016-05-01

    The cyanobacterium Microcystis aeruginosa is a mesophilic freshwater organism, which cannot tolerate sulphide. However, it was possible to isolate a sulphide-resistant (S(r)) mutant strain that was able to survive in a normally lethal medium sulphide. In order to evaluate the cost of the mutation conferring sulphide resistance in the S(r) strain of M. aeruginosa, the morphology and the photosynthetic performance were compared to that found in the wild-type, sulphide-sensitive (S(s)) strain. An increase in size and a disrupted morphology was observed in S(r) cells in comparison to the S(s) counterpart. Phycoerythrin and phycocyanin levels were higher in the S(r) than in the S(s) cells, whereas a higher carotenoid content, per unit volume, was found in the S(s) strain. The irradiance-saturated photosynthetic oxygen-production rate (GPR max) and the photosynthetic efficiency (measured both by oxygen production and fluorescence, α(GPR) and α(ETR)) were lower in the S(r) strain than in the wild-type. These results appear to be the result of package effect. On the other hand, the S(r) strain showed higher quantum yield of non-photochemical quenching, especially those regulated mechanisms (estimated throughout qN and Y(NPQ)) and a significantly lower slope in the maximum quantum yield of light-adapted samples (Fv'/Fm') compared to the S(s) strain. These findings point to a change in the regulation of the quenching of the transition states (qT) in the S(r) strain which may be generated by a change in the distribution of thylakoidal membranes, which somehow could protect metalloenzymes of the electron transport chain from the lethal effect of sulphide.

  9. Genetic variance contributes to ingestive processes: a survey of eleven inbred mouse strains for fat (Intralipid) intake.

    PubMed

    Lewis, Sarah R; Dym, Cheryl; Chai, Christina; Singh, Amreeta; Kest, Benjamin; Bodnar, Richard J

    2007-01-30

    Genetic variation across inbred and outbred mouse strains have been observed for intake of sweet solutions, salts, bitter tastants and a high-fat diet. Our laboratory recently reported marked strain differences in the amounts and/or percentages of kilocalories of sucrose consumed among 11 inbred and one outbred mouse strains exposed to a wide range of nine sucrose concentrations (0.0001-5%) in two-bottle 24-h preference tests. To assess whether differences in fat intake were similarly associated with genetic variation, the present study examined intake of chow, water and an emulsified fat source (Intralipid) across nine different concentrations (0.00001-5%) in the same 11 inbred and 1 outbred mouse strains using two-bottle 24-h preference tests, which controlled for Intralipid concentration presentation effects, Intralipid and water bottle positions, and measurement of kilocalorie intake consumed as Intralipid or chow. Strains displayed differential increases in Intralipid intake relative to corresponding water with significant effects observed at the seven (BALB/cJ: 0.001% threshold sensitivity), four (AKR/J, C57BL/6J, DBA/2J, SWR/J: 0.5% threshold sensitivity), three (CD-1, C57BL/10J, SJL/J: 1% threshold sensitivity) and two (A/J, CBA/J, C3H/HeJ, 129P3/J: 2% threshold sensitivity) highest concentrations. In assessing the percentage of kilocalories consumed as Intralipid, SWR/J mice consumed significantly more at the three highest concentrations to a greater degree than BALB/cJ, C57BL/6J, CD-1, C3H/HeJ, DBA/J and 129P3/J strains which in turn consumed more than A/J, AKR/J, CBA/J, C57BL/10J and SJL/J mice. Relatively strong (h2 = 0.73-0.79) heritability estimates were obtained for weight-adjusted Intralipid intake at those concentrations (0.001-1%) that displayed the largest strain-specific effects in sensitivity to Intralipid. The identification of strains with diverging abilities to regulate kilocalorie intake when presented with high Intralipid concentrations

  10. NAD(P)+-Malic Enzyme Mutants of Sinorhizobium sp. Strain NGR234, but Not Azorhizobium caulinodans ORS571, Maintain Symbiotic N2 Fixation Capabilities

    PubMed Central

    Zhang, Ye; Aono, Toshihiro; Poole, Phillip

    2012-01-01

    C4-dicarboxylic acids appear to be metabolized via the tricarboxylic acid (TCA) cycle in N2-fixing bacteria (bacteroids) within legume nodules. In Sinorhizobium meliloti bacteroids from alfalfa, NAD+-malic enzyme (DME) is required for N2 fixation, and this activity is thought to be required for the anaplerotic synthesis of pyruvate. In contrast, in the pea symbiont Rhizobium leguminosarum, pyruvate synthesis occurs via either DME or a pathway catalyzed by phosphoenolpyruvate carboxykinase (PCK) and pyruvate kinase (PYK). Here we report that dme mutants of the broad-host-range Sinorhizobium sp. strain NGR234 formed nodules whose level of N2 fixation varied from 27 to 83% (plant dry weight) of the wild-type level, depending on the host plant inoculated. NGR234 bacteroids had significant PCK activity, and while single pckA and single dme mutants fixed N2 at reduced rates, a pckA dme double mutant had no N2-fixing activity (Fix−). Thus, NGR234 bacteroids appear to synthesize pyruvate from TCA cycle intermediates via DME or PCK pathways. These NGR234 data, together with other reports, suggested that the completely Fix− phenotype of S. meliloti dme mutants may be specific to the alfalfa-S. meliloti symbiosis. We therefore examined the ME-like genes azc3656 and azc0119 from Azorhizobium caulinodans, as azc3656 mutants were previously shown to form Fix− nodules on the tropical legume Sesbania rostrata. We found that purified AZC3656 protein is an NAD(P)+-malic enzyme whose activity is inhibited by acetyl-coenzyme A (acetyl-CoA) and stimulated by succinate and fumarate. Thus, whereas DME is required for symbiotic N2 fixation in A. caulinodans and S. meliloti, in other rhizobia this activity can be bypassed via another pathway(s). PMID:22307295

  11. 2-DE based proteomic analysis of Saccharomyces cerevisiae wild and K+ transport-affected mutant (trk1,2) strains at the growth exponential and stationary phases.

    PubMed

    Curto, Miguel; Valledor, Luis; Navarrete, Clara; Gutiérrez, Dolores; Sychrova, Hana; Ramos, José; Jorrin, Jesús

    2010-11-10

    By using a 2-DE based workflow, the proteome of wild and potassium transport mutant trk1,2 under optimal growth potassium concentration (50mM) has been analyzed. At the exponential and stationary phases, both strains showed similar growth, morphology potassium content, and Vmax of rubidium transport, the only difference found being the Km values for this potassium analogue transport, higher for the mutant (20mM) than for the wild (3-6mM) cells. Proteins were buffer-extracted, precipitated, solubilized, quantified, and subjected to 2-DE analysis in the 5-8 pH range. More differences in protein content (37-64mgg(-1) cell dry weight) and number of resolved spots (178-307) were found between growth phases than between strains. In all, 164 spots showed no differences between samples and a total of 105 were considered to be differential after ANOVA test. 171 proteins, corresponding to 71 unique gene products have been identified, this set being dominated by cytosolic species and glycolitic enzymes. The ranking of the more abundant spots revealed no differences between samples and indicated fermentative metabolism, and active cell wall biosynthesis, redox homeostasis, biosynthesis of amino acids, coenzymes, nucleotides, and RNA, and protein turnover, apart from cell division and growth. PCA analysis allowed the separation of growth phases (PC1 and 2) and strains at the stationary phase (PC3 and 4), but not at the exponential one. These results are also supported by clustering analysis. As a general tendency, a number of spots newly appeared at the stationary phase in wild type, and to a lesser extent, in the mutant. These up-accumulated spots corresponded to glycolitic enzymes, indicating a more active glucose catabolism, accompanied by an accumulation of methylglyoxal detoxification, and redox-homeostasis enzymes. Also, more extensive proteolysis was observed at the stationary phase with this resulting in an accumulation of low Mr protein species.

  12. Comparative Analysis of the Relationship between Trichloroethylene Metabolism and Tissue-Specific Toxicity among Inbred Mouse Strains: Liver Effects

    PubMed Central

    Yoo, Hong Sik; Bradford, Blair U.; Kosyk, Oksana; Shymonyak, Svitlana; Uehara, Takeki; Collins, Leonard B.; Bodnar, Wanda M.; Ball, Louise M.; Gold, Avram; Rusyn, Ivan

    2014-01-01

    Trichloroethylene (TCE) is a widely used organic solvent. Although TCE is classified as carcinogenic to humans, substantial gaps remain in our understanding of inter-individual variability in TCE metabolism and toxicity, especially in the liver. We tested a hypothesis that amounts of oxidative metabolites of TCE in mouse liver are associated with liver-specific toxicity. Oral dosing with TCE was conducted in sub-acute (600 mg/kg/d; 5 days; 7 inbred mouse strains) and sub-chronic (100 or 400 mg/kg/d; 1, 2, or 4 weeks; 2 inbred mouse strains) designs. We evaluated the quantitative relationship between strain-, dose-, and time-dependent formation of TCE metabolites from cytochrome P450-mediated oxidation [trichloroacetic acid (TCA), dichloroacetic acid (DCA), and trichloroethanol] and glutathione conjugation [S-(1,2-dichlorovinyl)-L-cysteine and S-(1,2-dichlorovinyl)glutathione] in serum and liver, and various liver toxicity phenotypes. In sub-acute study, inter-strain variability in TCE metabolite amounts was observed in serum and liver. No induction of Cyp2e1 protein levels in liver was detected. Serum and liver levels of TCA and DCA were correlated with increased transcription of peroxisome proliferator-marker genes Cyp4a10 and Acox1, but not with degree of induction in hepatocellular proliferation. In sub-chronic study, serum and liver levels of oxidative metabolites gradually decreased over time despite continuous dosing. Liver protein levels of Cyp2e1, Adh and Aldh2 were unaffected by treatment with TCE. While the magnitude of induction of peroxisome proliferator-marker genes also declined, hepatocellular proliferation increased. This study offers a unique opportunity to provide a scientific data-driven rationale for some of the major assumptions in human health assessment of TCE. PMID:25424544

  13. A sodium channel knockin mutant (NaV1.4-R669H) mouse model of hypokalemic periodic paralysis

    PubMed Central

    Wu, Fenfen; Mi, Wentao; Burns, Dennis K.; Fu, Yu; Gray, Hillery F.; Struyk, Arie F.; Cannon, Stephen C.

    2011-01-01

    Hypokalemic periodic paralysis (HypoPP) is an ion channelopathy of skeletal muscle characterized by attacks of muscle weakness associated with low serum K+. HypoPP results from a transient failure of muscle fiber excitability. Mutations in the genes encoding a calcium channel (CaV1.1) and a sodium channel (NaV1.4) have been identified in HypoPP families. Mutations of NaV1.4 give rise to a heterogeneous group of muscle disorders, with gain-of-function defects causing myotonia or hyperkalemic periodic paralysis. To address the question of specificity for the allele encoding the NaV1.4-R669H variant as a cause of HypoPP and to produce a model system in which to characterize functional defects of the mutant channel and susceptibility to paralysis, we generated knockin mice carrying the ortholog of the gene encoding the NaV1.4-R669H variant (referred to herein as R669H mice). Homozygous R669H mice had a robust HypoPP phenotype, with transient loss of muscle excitability and weakness in low-K+ challenge, insensitivity to high-K+ challenge, dominant inheritance, and absence of myotonia. Recovery was sensitive to the Na+/K+-ATPase pump inhibitor ouabain. Affected fibers had an anomalous inward current at hyperpolarized potentials, consistent with the proposal that a leaky gating pore in R669H channels triggers attacks, whereas a reduction in the amplitude of action potentials implies additional loss-of-function changes for the mutant NaV1.4 channels. PMID:21881211

  14. The influence of the lpr gene on B cell activation: differential antibody expression in lpr congenic mouse strains.

    PubMed

    Warren, R W; Caster, S A; Roths, J B; Murphy, E D; Pisetsky, D S

    1984-04-01

    Spontaneous immunoglobulin production in four strains of lpr/lpr congenic mice was investigated to identify genetic interactions in lpr-induced polyclonal B cell activation. Sera were obtained from male and female lpr/lpr mice of the MRL, B6, C3H, and AKR strains as well as controls of +/+ genotypes. Antibody levels were compared at the time of peak response. Quantitative antibody determinations were performed by isotype-specific ELISA assays using responses to single-stranded DNA (sDNA), mouse IgG, rabbit IgG, and keyhole limpet hemocyanin as models. Among the strains studied there were significant differences in the antibody levels observed, with the strain producing highest levels dependent on the response measured. Thus, MRL-lpr/lpr produced the highest levels of IgG anti-sDNA while B6-lpr/lpr mice produced more anti-IgG than mice of other strains. Within each strain, the lpr gene appeared to affect the IgG more than the IgM response. A consistently high response by females was observed only in B6-lpr/lpr mice. These studies suggest that lpr-induced polyclonal B cell activation is influenced by the background genome with the extent of these genetic effects variable among responses.

  15. Strain Differences in Behavioral Inhibition in a Go/No-go Task Demonstrated Using 15 Inbred Mouse Strains

    PubMed Central

    Gubner, Noah R.; Wilhelm, Clare J.; Phillips, Tamara J.; Mitchell, Suzanne H.

    2012-01-01

    Background High levels of impulsivity have been associated with a number of substance abuse disorders including alcohol abuse. Research has not yet revealed whether these high levels predate the development of alcohol abuse. Methods The current study examined impulsivity in 15 inbred strains of mice (A/HeJ, AKR/J, BALB/cJ, C3H/HeJ, C57BL/6J, C57L/J, C58/J, CBA/J, DBA/1J, DBA/2J, NZB/B1NJ, PL/J, SJL/J, SWR/J, and 129P3/J) using a Go/No-go task, which was designed to measure a subject’s ability to inhibit a behavior. Numerous aspects of response to ethanol and other drugs of abuse have been examined in these strains. Results There were significant strain differences in the number of responses made during the No-go signal (false alarms) and the extent to which strains responded differentially during the Go and No-go signals (d′). The rate of responding prior to the cue did not differ among strains, although there was a statistically significant correlation between false alarms and precue responding that was not related to basal activity level. Interstrain correlations suggested that false alarms and rate of responding were associated with strain differences in ethanol-related traits from the published literature. Conclusions The results of this study do support a link between innate level of impulsivity and response to ethanol and are consistent with a genetic basis for some measures of behavioral inhibition. PMID:20491731

  16. Functional MRI for characterization of renal perfusion impairment and edema formation due to acute kidney injury in different mouse strains

    PubMed Central

    Chen, Rongjun; Gutberlet, Marcel; Jang, Mi-Sun; Meier, Martin; Mengel, Michael; Hartung, Dagmar; Wacker, Frank; Rong, Song; Hueper, Katja

    2017-01-01

    Purpose The purpose was to characterize acute kidney injury (AKI) in C57BL/6 (B6)- and 129/Sv (Sv)-mice by noninvasive measurement of renal perfusion and tissue edema using functional MRI. Methods Different severities of AKI were induced in B6- and Sv-mice by renal ischemia reperfusion injury (IRI). Unilateral clamping of the renal pedicle for 35 min (moderate AKI) or 45 min (severe AKI) was done. MRI (7-Tesla) was performed 1, 7 and 28 days after surgery using a flow alternating inversion recovery (FAIR) arterial spin labeling (ASL) sequence. Maps of perfusion and T1-relaxation time were calculated. Relative MRI-parameters of the IRI kidney compared to the contralateral not-clipped kidney were compared between AKI severities and between mouse strains using unpaired t-tests. In addition, fibrosis was assessed by Masson Trichrome and collagen IV staining. Results After moderate AKI relative perfusion impairment was significantly higher in B6- than in Sv-mice at d7 (55±7% vs. 82±8%, p<0.05) and d28 (76±7% vs. 102±3%, p<0.01). T1-values increased in the early phase after AKI in both mouse strains. T1-increase was more severe after prolonged ischemia times of 45 min compared to 35 min in both mouse strains, measured in the renal cortex and outer stripe of outer medulla. Kidney volume loss (compared to the contralateral kidney) occurred already after 7 days but proceeded markedly towards 4 weeks in severe AKI. Early renal perfusion impairment was predictive for later kidney volume loss. The progression to chronic kidney disease (CKD) in the severe AKI model was similar in both mouse strains as revealed by histology. Conclusion Quantification of renal perfusion and tissue edema by functional MRI allows characterization of strain differences upon AKI. Renal perfusion impairment was stronger in B6- compared to Sv-animals following moderate AKI. Prolonged ischemia times were associated with more severe perfusion impairment and edema formation in the early phase and

  17. Comparative Study of Nonautolytic Mutant and Wild-Type Strains of Coprinopsis cinerea Supports an Important Role of Glucanases in Fruiting Body Autolysis.

    PubMed

    Liu, Zhonghua; Niu, Xin; Wang, Jun; Zhang, Wenming; Yang, Mingmei; Liu, Cuicui; Xiong, Yuanjing; Zhao, Yan; Pei, Siyu; Qin, Qin; Zhang, Yu; Yu, Yuan; Yuan, Sheng

    2015-11-04

    Autolysis of Coprinopsis cinerea fruiting bodies affects its commercial value. In this study, a mutant of C. cinerea that exhibits pileus expansion without pileus autolysis was obtained using ultraviolet mutagenesis. This suggests that pileus expansion and pileus autolysis involve different enzymes or proteins. Among the detected hydrolytic enzymes, only β-1,3-glucanase activity increased with expansion and autolysis of pilei in the wild-type strain, but the increase was abolished in the mutant. This suggests that β-1,3-glucanases plays a major role in the autolysis. Although there are 43 possible β-1,3-glucoside hydrolases genes, only 4 known genes, which have products that are thought to act synergistically to degrade the β-1,3-glucan backbone of cell walls during fruiting body autolysis, and an unreported gene were upregulated during pileus expansion and autolysis in the wild-type stain but were suppressed in the mutant. This suggests that expression of these β-1,3-glucanases is potentially controlled by a single regulatory mechanism.

  18. Cloning, sequencing, and expression of nitrile hydratase gene of mutant 4D strain of Rhodococcus rhodochrous PA 34 in E. coli.

    PubMed

    Pratush, Amit; Seth, Amit; Bhalla, T C

    2012-10-01

    The NHase encoding gene of mutant 4D was isolated by PCR amplification. The NHase gene of mutant 4D was successfully cloned and expressed in Escherichia coli by using Ek/LIC Duet cloning kits (Novagen). For the active expression of the NHase gene, the co-expression of small cobalt transporter gene (P-protein gene) has also been co-expressed with NHase gene E. coli. The nucleotide sequence of this NHase gene revealed high homology with the H-NHase of Rhodococcus rhodochrous J1. The recombinant E. coli cells showed higher NHase activity (5.9 U/mg dcw) as compared to the wild (4.1 U/mg dcw) whereas it is less than the mutant strain (8.4 U/mg dcw). Addition of cobalt ion in Luria-Bertani medium is needed up to a very small concentration (0.4 mM) for NHase activity. The recombinant E. coli exhibited maximum NHase activity at 6 h of incubation and was purified with a yield of 56 % with specific activity of 37.1 U/mg protein.

  19. Morphological and genetic characterization of group I Clostridium botulinum type B strain 111 and the transcriptional regulator spoIIID gene knockout mutant in sporulation.

    PubMed

    Hosomi, Koji; Kuwana, Ritsuko; Takamatsu, Hiromu; Kohda, Tomoko; Kozaki, Shunji; Mukamoto, Masafumi

    2015-06-01

    Clostridium botulinum is a heat-resistant spore-forming bacterium that causes the serious paralytic illness botulism. Heat-resistant spores may cause food sanitation hazards and sporulation plays a central role in the survival of C. botulinum. We observed morphological changes and investigated the role of the transcriptional regulator SpoIIID in the sporulation of C. botulinum type B strain 111 in order to elucidate the molecular mechanism in C. botulinum. C. botulinum type B formed heat-resistant spores through successive morphological changes corresponding to those of Bacillus subtilis, a spore-forming model organism. An analysis of the spoIIID gene knockout mutant revealed that the transcriptional regulator SpoIIID contributed to heat-resistant spore formation by C. botulinum type B and activated the transcription of the sigK gene later during sporulation. Transcription of the spoIIID gene, which differed from that in B. subtilis and Clostridium difficile, was observed in the sigE gene knockout mutant of C. botulinum type B. An analysis of the sigF gene knockout mutant showed that the sporulation-specific sigma factor SigF was essential for transcription of the spoIIID gene in C. botulinum type B. These results suggest that the regulation of sporulation in C. botulinum is not similar to that in B. subtilis and other clostridia.

  20. Sodium dodecyl sulphate, a strong inducer of thermostable glucanhydrolase secretion from a derepressed mutant strain of Bacillus alcalophilus GCBNA-4.

    PubMed

    Shamim, Nadia; Ali, Sikander; Ul-Haq, Ikram

    2013-04-01

    In the present study, we report the optimisation of batch conditions for improved α-1,4-glucan-glucanohydrolase (GGH) secretion by a nitrous acid (NA)-treated Bacillus alcalophilus. The wild (isolate GCB-18) and NA-derivative (mutant GCBNA-4) were grown in a medium containing 10 g/L nutrient broth, 10 g/L starch, 5 g/L lactose, 2 g/L ammonium sulphate, 2 g/L CaCl2 and phosphate buffer (pH 7.6). Sodium dodecyl sulphate (SDS) was used as an enzyme inducer while batch fermentations were carried out at 40 °C. The mutant produced GGH in 40 h which was 15-fold higher than the wild in presence of SDS. Thermodynamic studies revealed that the mutant culture exhibited the capability for improved enzyme activity over a broad range of temperature (35-70 °C). The enzyme was purified by cation-exchange column chromatography with ~80 % recovery. The performance of fuzzy-logic system control was found to be highly promising for the improved substrate conversion rate. The correlation (1.045E + 0025) among variables demonstrated the model terms as highly significant indicating commercial utility of the culture used (P < 0.05).

  1. Open fermentative production of fuel ethanol from food waste by an acid-tolerant mutant strain of Zymomonas mobilis.

    PubMed

    Ma, Kedong; Ruan, Zhiyong; Shui, Zongxia; Wang, Yanwei; Hu, Guoquan; He, Mingxiong

    2016-03-01

    The aim of present study was to develop a process for open ethanol fermentation from food waste using an acid-tolerant mutant of Zymomonas mobilis (ZMA7-2). The mutant showed strong tolerance to acid condition of food waste hydrolysate and high ethanol production performance. By optimizing fermentation parameters, ethanol fermentation with initial glucose concentration of 200 g/L, pH value around 4.0, inoculum size of 10% and without nutrient addition was considered as best conditions. Moreover, the potential of bench scales fermentation and cell reusability was also examined. The fermentation in bench scales (44 h) was faster than flask scale (48 h), and the maximum ethanol concentration and ethanol yield (99.78 g/L, 0.50 g/g) higher than that of flask scale (98.31 g/L, 0.49 g/g). In addition, the stable cell growth and ethanol production profile in five cycles successive fermentation was observed, indicating the mutant was suitable for industrial ethanol production.

  2. Eye pigments in wild-type and eye-color mutant strains of the African malaria vector Anopheles gambiae.

    PubMed

    Beard, C B; Benedict, M Q; Primus, J P; Finnerty, V; Collins, F H

    1995-01-01

    Chromatographic analysis of pigments extracted from wild-type eyes of the mosquito Anopheles gambiae reveals the presence of the ommatin precursor 3-hydroxykynurenine, its transamination derivative xanthurenic acid, and a dark, red-brown pigment spot that probably is composed of two or more low mobility xanthommatins. No colored or fluorescent pteridines are evident. Mosquitoes homozygous for an autosomal recessive mutation at the red-eye (r) locus have a brick-red eye color in larvae, pupae, and young adults, in contrast to the almost black color of the wild eye. Mosquitoes homozygous for this mutant allele have levels of ommochrome precursors that are indistinguishable from the wild-type, but the low-mobility xanthommatin spot is ochre-brown in color rather than red-brown as in the wild-type. Mosquitoes with two different mutant alleles at the X-linked pink-eye locus (p, which confers a pink eye color, and pw, which confers a white eye phenotype in homozygotes or hemizygous males) have normal levels of ommochrome precursors but no detectable xanthommatins. Mosquitoes homozygous for both the r and p mutant alleles have apricot-colored eyes and show no detectable xanthommatins. Both the pink-eye and red-eye mutations appear to involve defects in the transport into or assembly of pigments in the membrane-bound pigment granules rather then defects in ommochrome synthesis.

  3. Evaluation of the virulence of Xanthomonas campestris pv. campestris mutant strains lacking functional genes in the OxyR regulon.

    PubMed

    Charoenlap, Nisanart; Buranajitpakorn, Sarinya; Duang-Nkern, Jintana; Namchaiw, Poommaree; Vattanaviboon, Paiboon; Mongkolsuk, Skorn

    2011-08-01

    Xanthomonas campestris pv. campestris causes black rot in cruciferous crops. Hydrogen peroxide (H(2)O(2)) production and accumulation is an important initial response in plant defense against invading microbes. The role of genes involved in the bacterial H(2)O(2) protection system in pathogenicity was evaluated. Mutants of katA (encoding a monofunctional catalase) and, to a lesser extent, katG (encoding a catalase-peroxidase) and oxyR (encoding a H(2)O(2) sensor and a transcription regulator), are hypersensitive to H(2)O(2) treatments that mimic the plant H(2)O(2) burst. These data correlate with the results of pathogenicity testing that show katA, katG, and oxyR mutants are avirulent on a compatible plant. Moreover, exposure to H(2)O(2) (1, 2, and 4 mM) highly induces the expression of genes in the OxyR regulon, including katA, katG, and ahpC. The avirulent phenotype of the oxyR mutant is partly because of its inability to mount an adaptive response upon exposure to an H(2)O(2) burst. Our data provide insights into important roles of a transcription regulator and other genes involved in peroxide stress protection in the virulence of X. campestris pv. campestris.

  4. Progress in Using Mouse Inbred Strains, Consomics, and Mutants to Identify Genes Related to Stress, Anxiety, and Alcohol Phenotypes

    SciTech Connect

    Goldowitz, Daniel; Matthews, Douglas B.; Hamre, Kristin M.; Mittleman, Guy; Chesler, Elissa J; Becker, Howard C.; Lopez, Marcelo F.; Jones, Sara R.; Mathews, Tiffany A; Miles, Michael F.; Kerns, Robnet; Grant, Kathleen A.

    2006-01-01

    ALCOHOL ABUSE AND alcoholism result from the complex interplay of genetic and environmental factors. Stress is a factor that is widely thought to contribute to excessive drinking and alcoholism. One consequence of stressful experiences is anxiety, and there is a rich literature on the interactions between alcohol and anxiety. Less is known about brain mechanisms at the molecular, cellular, and system levels that mediate stress effects that contribute to excessive drinking and alcoholism. In addition, it is not clear whether and/or how genetic factors that contribute to excessive drinking interact with neural stress mechanisms.

  5. Newborns prefer the odor of milk and nipples from females matched in lactation age: Comparison of two mouse strains.

    PubMed

    Al Aïn, Syrina; Goudet, Camille; Schaal, Benoist; Patris, Bruno

    2015-08-01

    Newborn mice are attracted to mammary odor cues carried in murine milk and nipple secretions. However, murine milk odor is not equally attractive along lactation. The present study focuses on the differential response of 2day-old mouse pups of C57Bl/6 (C) and Balb/C (B) strains to the odor of milk (Experiment 1) and nipples (Experiment 2) that are matched/unmatched in terms of pup's age or strain. In Experiment 1, C and B pups were tested in a series of tests simultaneously opposing either murine milk and a blank (water), or two milks collected in early and late lactation (lactation days 2 and 15, respectively) from females belonging to their own or the other strain. Results showed that C and B pups were attracted to the odor of the different milks regardless of the lactation age and the strain of the donor female. Nevertheless, C and B pups preferred the odor conveyed by early- than late-lactation milk of either strain. Moreover, early-lactation milk from C females was more attractive than early-lactation milk from B females for pups of either strain. In Experiment 2, differential nipple grasping response of C and B pups was measured when they were exposed to nipples of females in early or late lactation. The proportion of C pups that grasped a nipple was greater when they were exposed to a nipple in early lactation regardless of the strain of the donor females, whereas the proportion of B pups that grasped a nipple was greater when they were exposed to a nipple in early lactation, but only from own strain. Thus, newborn mice prefer the odor of milk and nipples from females that are matched in lactation age. This result is discussed in terms of reciprocally adaptive mechanisms between lactating females and their newborn offspring.

  6. Comparative analysis of the relationship between trichloroethylene metabolism and tissue-specific toxicity among inbred mouse strains: kidney effects.

    PubMed

    Yoo, Hong Sik; Bradford, Blair U; Kosyk, Oksana; Uehara, Takeki; Shymonyak, Svitlana; Collins, Leonard B; Bodnar, Wanda M; Ball, Louise M; Gold, Avram; Rusyn, Ivan

    2015-01-01

    Trichloroethylene (TCE) is a well-known environmental and occupational toxicant that is classified as carcinogenic to humans based on the epidemiological evidence of an association with higher risk of renal-cell carcinoma. A number of scientific issues critical for assessing human health risks from TCE remain unresolved, such as the amount of kidney-toxic glutathione conjugation metabolites formed, interspecies and interindividual differences, and the mode of action for kidney carcinogenicity. It was postulated that TCE renal metabolite levels are associated with kidney-specific toxicity. Oral dosing with TCE was conducted in subacute (600 mg/kg/d; 5 d; 7 inbred mouse strains) and subchronic (100 or 400 mg/kg/d; 1, 2, or 4 wk; 2 inbred mouse strains) designs. The quantitative relationship was evaluated between strain-, dose, and time-dependent formation of TCE metabolites from cytochrome P-450-mediated oxidation (trichloroacetic acid [TCA], dichloroacetic acid [DCA], and trichloroethanol) and glutathione conjugation [S-(1,2-dichlorovinyl)-L-cysteine and S-(1,2-dichlorovinyl)glutathione], and various kidney toxicity phenotypes. In subacute study, interstrain differences in renal TCE metabolite levels were observed. In addition, data showed that in several strains kidney-specific effects of TCE included induction of peroxisome proliferator-marker genes Cyp4a10 and Acox1, increased cell proliferation, and expression of KIM-1, a marker of tubular damage and regeneration. In subchronic study, peroxisome proliferator-marker gene induction and renal toxicity diminished while cell proliferative response was elevated in a dose-dependent manner in NZW/LacJ but not C57BL/6J mice. Overall, data demonstrated that renal TCE metabolite levels are associated with kidney-specific toxicity and that these effects are strain dependent.

  7. Production of acetone butanol ethanol (ABE) by a hyper-producing mutant strain of Clostridium beijerinckii BA101 and recovery by pervaporation

    SciTech Connect

    Qureshi, N.; Blaschek, H.P.

    1999-07-01

    A silicone membrane was used to study butanol separation from model butanol solutions and fermentation broth. Depending upon the butanol feed concentration in the model solution and pervaporation conditions, butanol selectivities of 20.88--68.32 and flux values of 158.7--215.4 g m{sup {minus}2} h{sup {minus}1} were achieved. Higher flux values were obtained at higher butanol concentrations using air as sweep gas. In an integrated process of butanol fermentation--recovery, solvent productivities were improved to 200% of the control batch fermentation productivities. In a batch reactor the hyper-butanol-producing mutant strain C. beijerinckii BA101 utilized 57.3 g/L glucose and produced 24.2 g/L total solvents, while in the integrated process it produced 51.5 g/L (culture volume) total solvents. Concentrated glucose medium was also fermented. The C. beijerinckii BA101 mutant strain was not negatively affected by the pervaporative conditions. In the integrated experiment, acids were not produced. With the active fermentation broth, butanol selectivity was reduced by a factor of 2--3. However, the membrane flux was not affected by the active fermentation broth. The butanol permeate concentration ranged from 26.4 to 95.4 g/L, depending upon butanol concentration in the fermentation broth. Since the permeate of most membranes contains acetone, butanol, and ethanol, it is suggested that distillation be used for further purification.

  8. Comparative Evaluation of Agroindustrial Byproducts for the Production of Alkaline Protease by Wild and Mutant Strains of Bacillus subtilis in Submerged and Solid State Fermentation

    PubMed Central

    Haq, Ikramul

    2013-01-01

    The present study describes the screening of different agroindustrial byproducts for enhanced production of alkaline protease by a wild and EMS induced mutant strain of Bacillus subtilis IH-72EMS8. During submerged fermentation, different agro-industrial byproducts were tested which include defatted seed meals of rape, guar, sunflower, gluten, cotton, soybean, and gram. In addition to these meals, rice bran, wheat bran, and wheat flour were also evaluated for protease production. Of all the byproducts tested, soybean meal at a concentration of 20 g/L gave maximum production of the enzyme, that is, 5.74  ±  0.26 U/mL from wild and 11.28  ±  0.45 U/mL from mutant strain, during submerged fermentation. Different mesh sizes (coarse, medium, and fine) of the soybean meal were also evaluated, and a finely ground soybean meal (fine mesh) was found to be the best. In addition to the defatted seed meals, their alkali extracts were also tested for the production of alkaline protease by Bacillus subtilis, but these were proved nonsignificant for enhanced production of the enzyme. The production of the enzyme was also studied in solid state fermentation, and different agro-industrial byproducts were also evaluated for enzyme production. Wheat bran partially replaced with guar meal was found as the best substrate for maximum enzyme production under solid state fermentation conditions. PMID:24294129

  9. Production of acetone butanol ethanol (ABE) by a hyper-producing mutant strain of Clostridium beijerinckii BA101 and recovery by pervaporation.

    PubMed

    Qureshi, N; Blaschek, H P

    1999-01-01

    A silicone membrane was used to study butanol separation from model butanol solutions and fermentation broth. Depending upon the butanol feed concentration in the model solution and pervaporation conditions, butanol selectivities of 20.88-68.32 and flux values of 158.7-215.4 g m(-)(2) h(-)(1) were achieved. Higher flux values (400 g m(-)(2) h(-)(1)) were obtained at higher butanol concentrations using air as sweep gas. In an integrated process of butanol fermentation-recovery, solvent productivities were improved to 200% of the control batch fermentation productivities. In a batch reactor the hyper-butanol-producing mutant strain C. beijerinckii BA101 utilized 57.3 g/L glucose and produced 24.2 g/L total solvents, while in the integrated process it produced 51.5 g/L (culture volume) total solvents. Concentrated glucose medium was also fermented. The C. beijerinckii BA101 mutant strain was not negatively affected by the pervaporative conditions. In the integrated experiment, acids were not produced. With the active fermentation broth, butanol selectivity was reduced by a factor of 2-3. However, the membrane flux was not affected by the active fermentation broth. The butanol permeate concentration ranged from 26.4 to 95.4 g/L, depending upon butanol concentration in the fermentation broth. Since the permeate of most membranes contains acetone, butanol, and ethanol (and small concentrations of acids), it is suggested that distillation be used for further purification.

  10. Comparative genomic analysis of Klebsiella pneumonia (LCT-KP214) and a mutant strain (LCT-KP289) obtained after spaceflight

    PubMed Central

    2014-01-01

    Background With the development of space science, it is important to analyze the relationship between the space environment and genome variations that might cause phenotypic changes in microbes. Klebsiella pneumoniae is commonly found on the human body and is resistant to multiple drugs. To study space-environment-induced genome variations and drug resistance changes, K. pneumoniae was carried into outer space by the Shenzhou VIII spacecraft. Results The K. pneumoniae strain LCT-KP289 was selected after spaceflight based on its phenotypic differences compared to the ground-control strain. Analysis of genomic structural variations revealed one inversion, 25 deletions, fifty-nine insertions, two translocations and six translocations with inversions. In addition, 155 and 400 unique genes were observed in LCT-KP214 and LCT-KP289, respectively, including the gene encoding dihydroxyacetone kinase, which generates the ATP and NADH required for microbial growth. Furthermore, a large number of mutant genes were related to transport and metabolism. Phylogenetic analysis revealed that most genes in these two strains had a dN/dS value greater than 1, indicating that the strain diversity increased after spaceflight. Analysis of drug-resistance phenotypes revealed that the K. pneumoniae strain LCT-KP289 was resistant to sulfamethoxazole, whereas the control strain, LCT-KP214, was not; both strains were resistant to benzylpenicillin, ampicillin, lincomycin, vancomycin, chloramphenicol and streptomycin. The sulfamethoxazole resistance may be associated with sequences in Scaffold7 in LCT-KP289, which were not observed in LCT-K214; this scaffold contained the gene sul1. In the strain LCT-KP289, we also observed a drug-resistance integron containing emrE (confers multidrug resistance) and ant (confers resistance to spectinomycin, streptomycin, tobramycin, kanamycin, sisomicin, dibekacin, and gentamicin). The gene ampC (confers resistance to penicillin, cephalosporin-ii and

  11. Development of a nuclear transformation system for Oleaginous Green Alga Lobosphaera (Parietochloris) incisa and genetic complementation of a mutant strain, deficient in arachidonic acid biosynthesis.

    PubMed

    Zorin, Boris; Grundman, Omer; Khozin-Goldberg, Inna; Leu, Stefan; Shapira, Michal; Kaye, Yuval; Tourasse, Nicolas; Vallon, Olivier; Boussiba, Sammy

    2014-01-01

    Microalgae are considered a promising source for various high value products, such as carotenoids, ω-3 and ω-6 polyunsaturated fatty acids (PUFA). The unicellular green alga Lobosphaera (Parietochloris) incisa is an outstanding candidate for the efficient phototrophic production of arachidonic acid (AA), an essential ω-6 PUFA for infant brain development and a widely used ingredient in the baby formula industry. Although phototrophic production of such algal products has not yet been established, estimated costs are considered to be 2-5 times higher than competing heterotrophic production costs. This alga accumulates unprecedented amounts of AA within triacylglycerols and the molecular pathway of AA biosynthesis in L. incisa has been previously elucidated. Thus, progress in transformation and metabolic engineering of this high value alga could be exploited for increasing the efficient production of AA at competitive prices. We describe here the first successful transformation of L. incisa using the ble gene as a selection marker, under the control of the endogenous RBCS promoter. Furthermore, we have succeeded in the functional complementation of the L. incisa mutant strain P127, containing a mutated, inactive version of the delta-5 (Δ5) fatty acid desaturase gene. A copy of the functional Δ5 desaturase gene, linked to the ble selection marker, was transformed into the P127 mutant. The resulting transformants selected for zeocine resistant, had AA biosynthesis partially restored, indicating the functional complementation of the mutant strain with the wild-type gene. The results of this study present a platform for the successful genetic engineering of L. incisa and its long-chain PUFA metabolism.

  12. Sensitivity to isoflurane anesthesia increases in autism spectrum disorder Shank3(+/∆c) mutant mouse model.

    PubMed

    Li, Changsheng; Schaefer, Michele; Gray, Christy; Yang, Ya; Furmanski, Orion; Liu, Sufang; Worley, Paul; Mintz, C David; Tao, Feng; Johns, Roger A

    Autism is a heterogeneous developmental disorder characterized by impaired social interaction, impaired communication skills, and restricted and repetitive behavior. The abnormal behaviors of these patients can make their anesthetic and perioperative management difficult. Evidence in the literature suggests that some patients with autism or specific autism spectrum disorders (ASD) exhibit altered responses to pain and to anesthesia or sedation. A genetic mouse model of one particular ASD, Phelan McDermid Syndrome, has been developed that has a Shank3 haplotype truncation (Shank3(+/Δc)). These mice exhibit important characteristics of autism that mimic human autistic behavior. Our study demonstrates that a Shank3(+/ΔC) mutation in mice is associated with a reduction in both the MAC and RREC50 of isoflurane and down regulation of NR1 in vestibular nuclei and PSD95 in spinal cord. Decreased expression of NR1 and PSD95 in the central nervous system of Shank3(+/ΔC) mice could help reduce the MAC and RREC50 of isoflurane, which would warrant confirmation in a clinical study. If Shank3 mutations are found to affect anesthetic sensitivity in patients with ASD, better communication and stricter monitoring of anesthetic depth may be necessary.

  13. Comparative analysis of the relationship between trichloroethylene metabolism and tissue-specific toxicity among inbred mouse strains: liver effects.

    PubMed

    Yoo, Hong Sik; Bradford, Blair U; Kosyk, Oksana; Shymonyak, Svitlana; Uehara, Takeki; Collins, Leonard B; Bodnar, Wanda M; Ball, Louise M; Gold, Avram; Rusyn, Ivan

    2015-01-01

    Trichloroethylene (TCE) is a widely used organic solvent. Although TCE is classified as carcinogenic to humans, substantial gaps remain in our understanding of interindividual variability in TCE metabolism and toxicity, especially in the liver. A hypothesis was tested that amounts of oxidative metabolites of TCE in mouse liver are associated with hepatic-specific toxicity. Oral dosing with TCE was conducted in subacute (600 mg/kg/d; 5 d; 7 inbred mouse strains) and subchronic (100 or 400 mg/kg/d; 1, 2, or 4 wk; 2 inbred mouse strains) designs. The quantitative relationship was evaluated between strain-, dose-, and time-dependent formation of TCE metabolites from cytochrome P-450-mediated oxidation (trichloroacetic acid [TCA], dichloroacetic acid [DCA], and trichloroethanol) and glutathione conjugation [S-(1,2-dichlorovinyl)-L-cysteine and S-(1,2-dichlorovinyl)glutathione] in serum and liver, and various hepatic toxicity phenotypes. In subacute study, interstrain variability in TCE metabolite amounts was observed in serum and liver. No marked induction of Cyp2e1 protein levels in liver was detected. Serum and hepatic levels of TCA and DCA were correlated with increased transcription of peroxisome proliferator-marker genes Cyp4a10 and Acox1 but not with degree of induction in hepatocellular proliferation. In subchronic study, serum and liver levels of oxidative metabolites gradually decreased over time despite continuous dosing. Hepatic protein levels of CYP2E1, ADH, and ALDH2 were unaffected by treatment with TCE. While the magnitude of induction of peroxisome proliferator-marker genes also declined, hepatocellular proliferation increased. This study offers a unique opportunity to provide a scientific data-driven rationale for some of the major assumptions in human health assessment of TCE.

  14. Metabolic Engineering of Light and Dark Biochemical Pathways in Wild-Type and Mutant Strains of Synechocystis PCC 6803 for Maximal, 24-Hour Production of Hydrogen Gas

    SciTech Connect

    Ely, Roger L.; Chaplen, Frank W.R.

    2014-03-11

    enhanced H2 production profiles using selected culture conditions and inhibitors of specific pathways in WT cells and an NDH-1 mutant; 3. Create Synechocystis PCC 6803 mutant strains with modified hydrogenases exhibiting increased O2 tolerance and greater H2 production; and 4. Integrate enhanced hydrogenase mutants and culture and metabolic factor studies to maximize 24-hour H2 production.

  15. Populations of p53 codon 270 CGT to TGT mutant cells in SKH-1 mouse skin tumors induced by simulated solar light.

    PubMed

    Verkler, Tracie L; Delongchamp, Robert R; Couch, Letha H; Miller, Barbara J; Warbritton, Alan; Mellick, Paul W; Howard, Paul C; Parsons, Barbara L

    2008-11-01

    The p53 codon 270 CGT to TGT mutation was investigated as a biomarker of sunlight-induced mutagenesis and carcinogenesis. The relationship between tumor development and abundance of this hotspot mutation was analyzed in mouse skin tumors induced by chronic exposure to simulated solar light (SSL). The 24 tumors analyzed had similar growth kinetics, with an average doubling time of approximately 16.4 d. Levels of the p53 codon 270 mutation were quantified in the 24 mouse skin tumors using allele-specific competitive blocker-polymerase chain reaction (ACB-PCR). All tumors contained measurable amounts of the mutation. The p53 codon 270 CGT to TGT mutant fraction (MF) ranged from 2.29 x 10(-3) to 9.42 x 10(-2), with 3.26 x 10(-2) as the median. These p53 MF measurements are lower than expected for an initiating mutation involved in the development of tumors of monoclonal origin. There was no evidence of a correlation between p53 codon 270 MF and either tumor area or an estimate of tumor cell number. Thus, the data do not support the idea that p53 mutation accumulates linearly during tumor development. To investigate how p53 mutation was distributed within tumors, 19 needle biopsies from seven different tumors were analyzed by ACB-PCR. This analysis demonstrated that p53 codon 270 mutation is heterogeneously distributed within tumors. The long-term goal of this research is to combine morphological and p53 MF measurements from tissues corresponding to the various stages of tumor development, in order to derive mathematical models relating the p53 codon 270 mutation to the development of SSL-induced skin tumors.

  16. The Cataract-linked Mutant Connexin50D47A Causes Endoplasmic Reticulum Stress in Mouse Lenses.

    PubMed

    Berthoud, Viviana M; Minogue, Peter J; Lambert, Paul A; Snabb, Joseph I; Beyer, Eric C

    2016-08-19

    Mice expressing connexin50D47A (Cx50D47A) exhibit nuclear cataracts and impaired differentiation. Cx50D47A does not traffic properly, and homozygous mutant lenses show increased levels of the stress-responsive αB-crystallins. Therefore, we assessed whether expression of Cx50D47A led to endoplasmic reticulum (ER) stress in the lens in vivo Although pharmacologic induction of ER stress can be transduced by three different pathways, we found no evidence for activation of the IRE1α or ATF6 pathways in Cx50D47A-expressing lenses. In contrast, heterozygous and homozygous Cx50D47A lenses showed an increase in phosphorylated PERK immunoreactivity and in the ratio of phosphorylated to total EIF2α (2.4- and 3.3-fold, respectively) compared with wild type. Levels of ATF4 were similar in wild type and heterozygous lenses but elevated in homozygotes (391%). In both heterozygotes and homozygotes, levels of calreticulin protein were increased (184 and 262%, respectively), as was Chop mRNA (1.9- and 12.4-fold, respectively). CHOP protein was increased in homozygotes (384%). TUNEL staining was increased in Cx50D47A lenses, especially in homozygous mice. Levels of two factors that may be pro-survival, Irs2 and Trib3, were greatly increased in homozygous lenses. These results suggest that expression of Cx50D47A induces ER stress, triggering activation of the PERK-ATF4 pathway, which potentially contributes to the lens pathology and leads to increased expression of anti-apoptotic factors, allowing cell survival.

  17. The viable Mycobacterium tuberculosis H37Ra strain induces a stronger mouse macrophage response compared to the heat-inactivated H37Rv strain.

    PubMed

    He, Zong-Lin; Du, Fa-Wang; Du, Xian-Zhi

    2013-05-01

    Macrophages are the target cells for Mycobacterium tuberculosis (M. tuberculosis) as well as key effector cells for clearance of this pathogen. The aim of the present study was to measure and compare the responses of mouse peritoneal macrophages following exposure to the live M. tuberculosis H37Ra and heat-inactivated H37Rv strains. In vitro phagocytosis assays indicated that the macrophages had a higher capacity to engulf the live H37Ra strain compared to the inactivated H37Rv strain. Enzyme-linked immunosorbent assay (ELISA) demonstrated that H37Ra‑stimulated macrophages produced significantly increased concentrations of interleukin‑12p40 (IL‑12p40), tumor necrosis factor-α (TNF‑α) and interferon‑γ (IFN‑γ) compared to the untreated control cells. However, H37Rv exposure induced little to no increase in the levels of the cytokines examined. The results from ELISA were confirmed by reverse transcription-polymerase chain reaction (RT‑PCR) at the mRNA level. There was a dose-dependent increase in nitric oxide (NO) and hydrogen peroxide (H2O2) production from the H37Ra‑stimulated macrophages compared to the H37Rv‑stimulated ones. Confocal microscopy and flow cytometric analysis indicated that the IFN‑γ‑stimulated macrophages from viable H37Ra‑immunized mice had an enhanced surface expression of CD40 ligand (CD40L) compared to those from inactivated H37Rv‑immunized mice. Our data collectively indicate that exposure to the viable H37Ra strain induces a stronger macrophage response compared to exposure to the heat-inactivated H37Rv strain, which may be associated with the increased surface expression of CD40L in activated macrophages.

  18. Pacemaker-neuron–dependent disturbance of the molecular clockwork by a Drosophila CLOCK mutant homologous to the mouse Clock mutation

    PubMed Central

    Lee, Euna; Cho, Eunjoo; Kang, Doo Hyun; Jeong, Eun Hee; Chen, Zheng; Yoo, Seung-Hee; Kim, Eun Young

    2016-01-01

    Circadian clocks are composed of transcriptional/translational feedback loops (TTFLs) at the cellular level. In Drosophila TTFLs, the transcription factor dCLOCK (dCLK)/CYCLE (CYC) activates clock target gene expression, which is repressed by the physical interaction with PERIOD (PER). Here, we show that amino acids (AA) 657–707 of dCLK, a region that is homologous to the mouse Clock exon 19-encoded region, is crucial for PER binding and E-box–dependent transactivation in S2 cells. Consistently, in transgenic flies expressing dCLK with an AA657–707 deletion in the Clock (Clkout) genetic background (p{dClk-Δ};Clkout), oscillation of core clock genes’ mRNAs displayed diminished amplitude compared with control flies, and the highly abundant dCLKΔ657–707 showed significantly decreased binding to PER. Behaviorally, the p{dClk-Δ};Clkout flies exhibited arrhythmic locomotor behavior in the photic entrainment condition but showed anticipatory activities of temperature transition and improved free-running rhythms in the temperature entrainment condition. Surprisingly, p{dClk-Δ};Clkout flies showed pacemaker-neuron–dependent alterations in molecular rhythms; the abundance of dCLK target clock proteins was reduced in ventral lateral neurons (LNvs) but not in dorsal neurons (DNs) in both entrainment conditions. In p{dClk-Δ};Clkout flies, however, strong but delayed molecular oscillations in temperature cycle-sensitive pacemaker neurons, such as DN1s and DN2s, were correlated with delayed anticipatory activities of temperature transition. Taken together, our study reveals that the LNv molecular clockwork is more sensitive than the clockwork of DNs to dysregulation of dCLK by AA657–707 deletion. Therefore, we propose that the dCLK/CYC-controlled TTFL operates differently in subsets of pacemaker neurons, which may contribute to their specific functions. PMID:27489346

  19. A Conditional Mouse Mutant in the Tumor Suppressor SdhD Gene Unveils a Link between p21WAF1/Cip1 Induction and Mitochondrial Dysfunction

    PubMed Central

    Millán-Uclés, África; Díaz-Castro, Blanca; García-Flores, Paula; Báez, Alicia; Pérez-Simón, José Antonio; López-Barneo, José; Piruat, José I.

    2014-01-01

    Mutations in mitochondrial complex II (MCII; succinate dehydrogenase, Sdh) genes cause familiar pheochromocytoma/paraganglioma tumors. Several mechanisms have been proposed to account for Sdh-mutation-induced tumorigenesis, the most accepted of which is based on the constitutive expression of the hypoxia-inducible factor 1α (Hif1α) at normal oxygen tension, a theory referred to as “pseudo-hypoxic drive”. Other molecular processes, such as oxidative stress, apoptosis, or chromatin remodeling have been also proposed to play a causative role. Nevertheless, the actual contribution of each of these mechanisms has not been definitively established. Moreover, the biological factors that determine the tissue-specificity of these tumors have not been identified. In this work, we made use of the inducible SDHD-ESR mouse, a conditional mutant in the SdhD gene, which encodes the small subunit of MCII, and that acts as a tumor suppressor gene in humans. The analysis of the Hif1α pathway in SDHD-ESR tissues and in two newly derived cell lines after complete SdhD loss -a requirement for hereditary paraganglioma type-1 tumor formation in humans- partially recapitulated the “pseudo-hypoxic” response and rendered inconsistent results. Therefore, we performed microarray analysis of adrenal medulla and kidney in order to identify other early gene expression changes elicited by SdhD deletion. Our results revealed that each mutant tissue displayed different variations in their gene expression profiles affecting to different biological processes. However, we found that the Cdkn1a gene was up-regulated in both tissues. This gene encodes the cyclin-dependent kinase inhibitor p21WAF1/Cip1, a factor implicated in cell cycle, senescence, and cancer. The two SDHD-ESR cell lines also showed accumulation of this protein. This new and unprecedented evidence for a link between SdhD dysfunction and p21WAF1/Cip1 will open new avenues for the study of the mechanisms that cause tumors in

  20. 1 + 1 = 3: Development and validation of a SNP-based algorithm to identify genetic contributions from three distinct inbred mouse strains.

    PubMed

    Gorham, James D; Ranson, Matthew S; Smith, Janebeth C; Gorham, Beverly J; Muirhead, Kristen-Ashley

    2012-12-01

    State-of-the-art, genome-wide assessment of mouse genetic background uses single nucleotide polymorphism (SNP) PCR. As SNP analysis can use multiplex testing, it is amenable to high-throughput analysis and is the preferred method for shared resource facilities that offer genetic background assessment of mouse genomes. However, a typical individual SNP query yields only two alleles (A vs. B), limiting the application of this methodology to distinguishing contributions from no more than two inbred mouse strains. By contrast, simple sequence length polymorphism (SSLP) analysis yields multiple alleles but is not amenable to high-throughput testing. We sought to devise a SNP-based technique to identify donor strain origins when three distinct mouse strains potentially contribute to the genetic makeup of an individual mouse. A computational approach was used to devise a three-strain analysis (3SA) algorithm that would permit identification of three genetic backgrounds while still using a binary-output SNP platform. A panel of 15 mosaic mice with contributions from BALB/c, C57Bl/6, and DBA/2 genetic backgrounds was bred and analyzed using a genome-wide SNP panel using 1449 markers. The 3SA algorithm was applied and then validated using SSLP. The 3SA algorithm assigned 85% of 1449 SNPs as informative for the C57Bl/6, BALB/c, or DBA/2 backgrounds, respectively. Testing the panel of 15 F2 mice, the 3SA algorithm predicted donor strain origins genome-wide. Donor strain origins predicted by the 3SA algorithm correlated perfectly with results from individual SSLP markers located on five different chromosomes (n=70 tests). We have established and validated an analysis algorithm based on binary SNP data that can successfully identify the donor strain origins of chromosomal regions in mice that are bred from three distinct inbred mouse strains.

  1. LW-AFC Effects on N-glycan Profile in Senescence-Accelerated Mouse Prone 8 Strain, a Mouse Model of Alzheimer’s Disease

    PubMed Central

    Wang, Jianhui; Cheng, Xiaorui; Zeng, Ju; Yuan, Jiangbei; Wang, Zhongfu; Zhou, Wenxia; Zhang, Yongxiang

    2017-01-01

    Glycosylation is one of the most common eukaryotic post-translational modifications, and aberrant glycosylation has been linked to many diseases. However, glycosylation and glycome analysis is a significantly challenging task. Although several lines of evidence have indicated that protein glycosylation is defective in Alzheimer’s disease (AD), only a few studies have focused on AD glycomics. The etiology of AD is unclear and there are no effective disease-modifying treatments for AD. In this study, we found that the object recognition memory, passive avoidance, and spatial learning and memory of senescence-accelerated mouse prone 8 (SAMP8) strain, an AD animal model, were deficient, and LW-AFC, which was prepared from the traditional Chinese medicine prescription Liuwei Dihuang decoction, showed beneficial effects on the deterioration of cognitive capability in SAMP8 mice. Forty-three and 56 N-glycan were identified in the cerebral cortex and serum of SAMP8 mice, respectively. The N-glycan profile in SAMP8 mice was significantly different from that of senescence accelerated mouse resistant 1 (SAMR1) strains, the control of SAMP8 mice. Treatment with LW-AFC modulated the abundance of 21 and 6 N-glycan in the cerebral cortex and serum of SAMP8 mice, respectively. The abundance of (Hex)3(HexNAc)5(Fuc)1(Neu5Ac)1 and (Hex)2(HexNAc)4 decreased in the cerebral cortex and serum of SAMP8 mice compared with SAMR1 mice, decreases that were significantly correlated with learning and memory measures. The administration of LW-AFC could reverse or increase these levels in SAMP8 mice. These results indicated that the effects of LW-AFC on cognitive impairments in SAMP8 mice might be through modulation of N-glycan patterns, and LW-AFC may be a potential anti-AD agent. PMID:28203484

  2. Reproducibility of toxicity test data as a function of mouse strain, animal lot, and operator. [for bisphenol A polycarbonate

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Furst, A.

    1978-01-01

    The toxicity screening test method developed at the University of San Francisco was evaluated for reproducibility. The variables addressed were strain of mouse, lot of animals, and operator. There was a significant difference in response between Swiss Webster mice and ICR mice, with the latter exhibiting greater resistance. These two strains of mice are not interchangeable in this procedure. Variation between individual animals was significant and unavoidable. In view of this variation, between-lot and between-operator variations appear to have no practical significance. The significant variation between individual animals stresses the need for average values based on at least four animals, and preferably values based on at least two experiments and eight animals. Efforts to compare materials should be based on the evaluation of relatively simple responses using substantial numbers of animals, rather than on elaborate evaluation of single animals

  3. Comparison of atypical Brachyspira spp. clinical isolates and classic strains in a mouse model of swine dysentery.

    PubMed

    Burrough, Eric; Strait, Erin; Kinyon, Joann; Bower, Leslie; Madson, Darin; Schwartz, Kent; Frana, Timothy; Songer, J Glenn

    2012-12-07

    Multiple Brachyspira spp. can colonize the porcine colon, and the presence of the strongly beta-hemolytic Brachyspira hyodysenteriae is typically associated with clinical swine dysentery. Recently, several Brachyspira spp. have been isolated from the feces of pigs with clinical disease suggestive of swine dysentery, yet these isolates were not identified as B. hyodysenteriae by genotypic or phenotypic methods. This study used a mouse model of swine dysentery to compare the pathogenic potential of seventeen different Brachyspira isolates including eight atypical clinical isolates, six typical clinical isolates, the standard strain of B. hyodysenteriae (B204), and reference strains of Brachyspira intermedia and Brachyspira innocens. Results revealed that strongly beta-hemolytic isolates induced significantly greater cecal inflammation than weakly beta-hemolytic isolates regardless of the genetic identification of the isolate, and that strongly beta-hemolytic isolates identified as 'Brachyspira sp. SASK30446' and B. intermedia by PCR produced lesions indistinguishable from those caused by B. hyodysenteriae in this model.

  4. Complementation of a defect in the asparagine-linked glycosylation of a mouse FM3A mutant G258 cell line by spheroplast fusion of a human mega YAC clone 923f5.

    PubMed

    Masuda, Takahisa; Moriya, Masayuki; Kataoka, Kensuke; Nishikawa, Yoshihisa

    2012-01-01

    Mouse G258 mutant stopped both cell growth and the synthesis of lipid-linked oligosaccharide at the Man(3)GlcNAc(2)-P-P-Dolichol at a restricted temperature with a single gene mutation. To clarify the lesion in the G258 mutant, we isolated human genomic DNA transformants of the G258 mutant, which recovered from both defects by way of cell hybridization with X-ray irradiated HeLa cells. We detected a common 1.3-kb product by inter-human specific sequence in the L1 (L1Hs) PCR in the transformants (Kataoka et al., Somat. Cell Mol. Genet., 24, 235-243 (1998)). In the present study, we screened a human mega yeast artificial chromosome (YAC) library by PCR with primers designed according to the 1.3-kb DNA, and selected YAC clone 923f5. Moreover, we found by spheroplast fusion that YAC clone 923f5 complemented both defects of the G258 mutant. Since the human counterpart of the yeast ALG11 gene is localized in the region, the G258 mutant might have a defect in the mouse ALG11 gene.

  5. Effects of buspirone on posthypoxic ventilatory behavior in the C57BL/6J and A/J mouse strains.

    PubMed

    Yamauchi, Motoo; Dostal, Jesse; Kimura, Hiroshi; Strohl, Kingman P

    2008-08-01

    Buspirone, a partial agonist of the serotonergic 5-HT1A receptor, improves breathing irregularities in humans with Rett syndrome or brain stem injury. The purpose of this study was to examine whether buspirone alters posthypoxic ventilatory behavior in C57BL/6J (B6) and A/J mouse strains. Measurements of ventilatory behavior were collected from unanesthetized adult male mice (n=6 for each strain) using the plethysmographic method. Mice were given intraperitoneal injections of vehicle or several doses of buspirone and exposed to 2 min of hypoxia (10% O2) followed by rapid reoxygenation (100% O2). Twenty minutes later, mice were tested for hypercapnic response (8% CO(2)-92% O2). On a separate day, mice were injected with the 5-HT1A receptor antagonist 4-iodo-N-{2-[4-(methoxyphenyl)-1-piperazinyl] ethyl}-N-2-pyridinylbenzamide (p-MPPI) before the injection of buspirone, and measurements were repeated. In separate studies, arterial blood-gas analysis was performed for each strain (n=12 in B6 and 10 in A/J) with buspirone or vehicle. In both strains, buspirone stimulated ventilation at rest. In the B6 mice, the hypoxic response was unchanged, but the response to hypercapnia was reduced with buspirone (5 mg/kg; P<0.05). With reoxygenation, vehicle-treated B6 exhibited periodic breathing and greater variation in ventilation compared with A/J (P<0.01). In B6 animals, >or=3 mg/kg of buspirone reduced variation and prevented the occurrence of posthypoxic periodic breathing. Both effects were reversed by p-MPPI. Treatment effect of buspirone was not explained by a difference in resting arterial blood gases. We conclude that buspirone improves posthypoxic ventilatory irregularities in the B6 mouse through its agonist effects on the 5-HT1A receptor.

  6. Analysis of the light-sensitivity of the photoreceptor cells of the ataxia and male sterility (AMS) mouse, an Nna1 mutant.

    PubMed

    Araki, Asuka; Maruyama, Riruke; Harada, Yuji; Ishikawa, Noriyoshi; Harada, Takayuki

    2012-11-01

    We confirmed retinal degeneration in the ataxia and male sterility (AMS) mouse, a mutant of the Nna1 gene, and examined the photosensitivity of the photoreceptors to determine how closely related the intrinsic and extrinsic factors were in triggering photoreceptor cell death. The AMS mice reared in a dark environment did not show atrophy of the outer nuclear layer (ONL) before 4 weeks of age, but in the older mice, retinal atrophy progressed in the same manner as in the AMS mice housed under normal light conditions. Examining the sensitivity to intentional light stimulation revealed the atrophy of the AMS retina to be exacerbated by a weak light. After administering strong light irradiation, equally severe ONL atrophy occurred in both the wild-type and AMS mice. These results indicate that in addition to functional loss of Nna1, another injurious stimulation is necessary to trigger death signals in photoreceptor cells during the postnatal period, but the cells die gradually and autonomously in older age, and that the mutation makes the cells vulnerable to a weak light, but does not increase the number of cells sensitive to strong light stimulation. Thus, these two factors are mutually independent death triggers in AMS photoreceptor cells.

  7. Live Attenuated Mutants of Francisella tularensis Protect Rabbits against Aerosol Challenge with a Virulent Type A Strain

    PubMed Central

    Smith, Le'Kneitah P.; Cole, Kelly Stefano; Santiago, Araceli E.; Mann, Barbara J.; Barry, Eileen M.

    2014-01-01

    Francisella tularensis, a Gram-negative bacterium, is the causative agent of tularemia. No licensed vaccine is currently available for protection against tularemia, although an attenuated strain, dubbed the live vaccine strain (LVS), is given to at-risk laboratory personnel as an investigational new drug (IND). In an effort to develop a vaccine that offers better protection, recombinant attenuated derivatives of a virulent type A strain, SCHU S4, were evaluated in New Zealand White (NZW) rabbits. Rabbits vaccinated via scarification with the three attenuated derivatives (SCHU S4 ΔguaBA, ΔaroD, and ΔfipB strains) or with LVS developed a mild fever, but no weight loss was detected. Twenty-one days after vaccination, all vaccinated rabbits were seropositive for IgG to F. tularensis lipopolysaccharide (LPS). Thirty days after vaccination, all rabbits were challenged with aerosolized SCHU S4 at doses ranging from 50 to 500 50% lethal doses (LD50). All rabbits developed fevers and weight loss after challenge, but the severity was greater for mock-vaccinated rabbits. The ΔguaBA and ΔaroD SCHU S4 derivatives provided partial protection against death (27 to 36%) and a prolonged time to death compared to results for the mock-vaccinated group. In contrast, LVS and the ΔfipB strain both prolonged the time to death, but there were no survivors from the challenge. This is the first demonstration of vaccine efficacy against aerosol challenge with virulent type A F. tularensis in a species other than a rodent since the original work with LVS in the 1960s. The ΔguaBA and ΔaroD SCHU S4 derivatives warrant further evaluation and consideration as potential vaccines for tularemia and for identification of immunological correlates of protection. PMID:24614653

  8. Establishment of a tamoxifen-inducible Cre-driver mouse strain for widespread and temporal genetic modification in adult mice.

    PubMed

    Ichise, Hirotake; Hori, Akiko; Shiozawa, Seiji; Kondo, Saki; Kanegae, Yumi; Saito, Izumu; Ichise, Taeko; Yoshida, Nobuaki

    2016-07-29

    Temporal genetic modification of mice using the ligand-inducible Cre/loxP system is an important technique that allows the bypass of embryonic lethal phenotypes and access to adult phenotypes. In this study, we generated a tamoxifen-inducible Cre-driver mouse strain for the purpose of widespread and temporal Cre recombination. The new line, named CM32, expresses the GFPneo-fusion gene in a wide variety of tissues before FLP recombination and tamoxifen-inducible Cre after FLP recombination. Using FLP-recombined CM32 mice (CM32Δ mice) and Cre reporter mouse lines, we evaluated the efficiency of Cre recombination with and without tamoxifen administration to adult mice, and found tamoxifen-dependent induction of Cre recombination in a variety of adult tissues. In addition, we demonstrated that conditional activation of an oncogene could be achieved in adults using CM32Δ mice. CM32Δ;T26 mice, which harbored a Cre recombination-driven, SV40 large T antigen-expressing transgene, were viable and fertile. No overt phenotype was found in the mice up to 3 months after birth. Although they displayed pineoblastomas (pinealoblastomas) and/or thymic enlargement due to background Cre recombination by 6 months after birth, they developed epidermal hyperplasia when administered tamoxifen. Collectively, our results suggest that the CM32Δ transgenic mouse line can be applied to the assessment of adult phenotypes in mice with loxP-flanked transgenes.

  9. Genetic control of interferon action: mouse strain distribution and inheritance of an induced protein with guanylate-binding property.

    PubMed

    Staeheli, P; Prochazka, M; Steigmeier, P A; Haller, O

    1984-08-01

    Interferons (IFNs) induce in responsive cells the synthesis of various proteins including a set with high binding affinities to guanylates. These guanylate-binding proteins (GBPs) were analyzed in cells from 46 inbred mouse strains using GMP-agarose affinity chromatography. In cells of 11 strains, including A/J, BALB/cJ, and C3H/HeJ, type I and II IFNs induced the synthesis of a major GBP of Mr 65,000, designated here GBP-1, and of at least three minor GBPs. In contrast, cells of the remaining 35 strains, including DBA/2J, C57BL/6J, and A2G, failed to synthesize GBP-1 in response to both types of IFNs. Induction of the minor GBPs was comparable in cells of both groups of mice, confirming that they were all responsive to IFNs. Analysis of F1, F2, and BC1 offspring of crosses between GBP-1 inducible (A/J) and noninducible (DBA/2J or A2G) strains showed that inducibility of GBP-1 was inherited as a single autosomal gene. The symbol Gbp-1 is proposed for this locus, designated Gbp-1a for the allele causing inducibility and Gbp-1b for the other allele.

  10. Fentanyl Effects on Breath Generation in C57BL/6J and A/J Mouse Strains

    PubMed Central

    Fechtner, Linnea; Ali, Mazen El; Sattar, Abdus; Moore, Michael; Strohl, Kingman P

    2015-01-01

    We examined the effect of fentanyl on chemoresponsiveness in mouse strains divergent in the expression of spontaneous and post-hypoxic pauses. Frequency and tidal volume were recorded with plethysmography in A/J and C57BL/6J (B6) male mice. Mice selected at random received an intraperitoneal (IP) injection of either saline, low dose fentanyl (LDF=0.04mg/kg), or high dose fentanyl (HDF=0.4mg/kg) under hypoxia (8% O2) or hyperoxia (100%O2). LDF produced a decrease in frequency during hypoxia in B6, but not A/J, mice. HDF significantly decreased frequency and tidal volume in both strains under hypoxia and hyperoxia (p<0.01); naloxone, an opioid antagonist, reversed this response. The acute administration of fentanyl at any dose did not promote apneas in strains of mice exhibiting regular or irregular respiratory patterns. However, higher doses depressed respiratory frequency in both strains. The B6 mice responded with a depressive response to hypoxia that did not recover with reoxygenation, but did recover with time or naloxone. PMID:25936679

  11. Brucella pinnipedialis hooded seal (Cystophora cristata) strain in the mouse model with concurrent exposure to PCB 153.

    PubMed

    Nymo, Ingebjørg H; das Neves, Carlos G; Tryland, Morten; Bårdsen, Bård-Jørgen; Santos, Renato Lima; Turchetti, Andreia Pereira; Janczak, Andrew M; Djønne, Berit; Lie, Elisabeth; Berg, Vidar; Godfroid, Jacques

    2014-05-01

    Brucellosis, a worldwide zoonosis, is linked to reproductive problems in primary hosts. A high proportion of Brucella-positive hooded seals (Cystophora cristata) have been detected in the declined Northeast Atlantic stock. High concentrations of polychlorinated biphenyls (PCBs) have also been discovered in top predators in the Arctic, including the hooded seal, PCB 153 being most abundant. The aim of this study was to assess the pathogenicity of Brucella pinnipedialis hooded seal strain in the mouse model and to evaluate the outcome of Brucella spp. infection after exposure of mice to PCB 153. BALB/c mice were infected with B. pinnipedialis hooded seal strain or Brucella suis 1330, and half from each group was exposed to PCB 153 through the diet. B. pinnipedialis showed a reduced pathogenicity in the mouse model as compared to B. suis 1330. Exposure to PCB 153 affected neither the immunological parameters, nor the outcome of the infection. Altogether this indicates that it is unlikely that B. pinnipedialis contribute to the decline of hooded seals in the Northeast Atlantic.

  12. Unusual ∆7,12,19 C35:3 Alkenone Produced by the Mutant Emiliania huxleyi strain CCMP2758 in Culture

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Huang, Y.; Zhang, Y.; Dillon, J. T.

    2015-12-01

    Alkenones with chain length ranging from C37 to C40 are highly specific biomarkers for certain haptophyte algae in ocean and lake sediments and have been widely used for paleoclimate studies. Short chain alkenones (e.g., C35 and C36) have been found in environmental and culture samples but the origin and structures of these compounds are not fully understood. The benchmark marine alkenone producer, Emiliania huxleyi CCMP2758 strain (the mutant of strain CCMP1742, NEPCC55a) was reported to make 35:2 alkenone when cultured at 15 °C (Prahl et al., 2006). Here we show, when this strain is cultured at lower temperatures (e.g., 4°C), CCMP2758 produces large amount of 35:3 alkenone with unusual double bond positions of ∆7,12,19. We determined the double bond positions of the C35:3 methyl ketonee based on GC-MS analysis of cyclobutylimine derivatives and dimethyl disulfide derivatives respectively, and provide the first temperature calibrations based on the unsaturation ratios of C35 alkenones. Previous studies have found 35:2 alkenone with three methylene interruption in the Black Sea sediment, but it is the first time that an alkenone with a mixed three and five methylene interruption is found. The discovery of short chain alkenones with unusual double bond positions may shed new light to alkenone biosynthesis.

  13. Comparative transcriptome analysis between an evolved abscisic acid-overproducing mutant Botrytis cinerea TBC-A and its ancestral strain Botrytis cinerea TBC-6

    PubMed Central

    Ding, Zhongtao; Zhang, Zhi; Zhong, Juan; Luo, Di; Zhou, Jinyan; Yang, Jie; Xiao, Liang; Shu, Dan; Tan, Hong

    2016-01-01

    Abscisic acid (ABA) is a classical phytohormone which plays an important role in plant stress resistance. Moreover, ABA is also found to regulate the activation of innate immune cells and glucose homeostasis in mammals. Therefore, this ‘stress hormone’ is of great importance to theoretical research and agricultural and medical applications. Botrytis cinerea is a well-known phytopathogenic ascomycete that synthesizes ABA via a pathway substantially different from higher plants. Identification of the functional genes involved in ABA biosynthesis in B. cinerea would be of special interest. We developed an ABA-overproducing mutant strain, B. cinerea TBC-A, previously and obtained a 41.5-Mb genome sequence of B. cinerea TBC-A. In this study, the transcriptomes of B. cinerea TBC-A and its ancestral strain TBC-6 were sequenced under identical fermentation conditions. A stringent comparative transcriptome analysis was performed to identify differentially expressed genes participating in the metabolic pathways related to ABA biosynthesis in B. cinerea. This study provides the first global view of the transcriptional changes underlying the very different ABA productivity of the B. cinerea strains and will expand our knowledge of the molecular basis for ABA biosynthesis in B. cinerea. PMID:27892476

  14. Gain/loss of poly(Glu50Tyr50)/poly(Glu60Ala30Tyr10) responsiveness in the bm12 mutant strain

    PubMed Central

    1982-01-01

    The development of inbred strains of mutant mice has proven useful in ascribing specific gene functions to particular genetic loci within the regions and subregions of the H-2 complex. The B6.C-H-2bm12 (bm12) strain is of particular interest in that, compared to parental C57Bl/6Kh (B6) mice, it bears a presumptive single gene mutation altering the Ab beta chain encoded by the I-A subregion. Our data show that bm12 mice have gained the ability to respond to poly(Glu50Tyr50)(GT) and have lost the ability to make plaque-forming cell or delayed-type hypersensitivity responses to the closely related copolymer, poly(Glu60Ala30Tyr10)(GAT), although retaining the ability to mount a GAT-specific T cell proliferative response. This is in sharp contrast to the parental B6 strain, which is a GT nonresponder and a GAT responder. Thus, this study is the first to report the establishment of responder status as a consequence of mutation. Possible mechanisms accounting for the gain/loss of GT/GAT responsiveness in the context of a two-step helper T cell model are discussed. PMID:7047670

  15. In vivo recruitment analysis and a mutant strain without any group 2 σ factor reveal roles of different σ factors in cyanobacteria.

    PubMed

    Koskinen, Satu; Hakkila, Kaisa; Gunnelius, Liisa; Kurkela, Juha; Wada, Hajime; Tyystjärvi, Taina

    2016-01-01

    In eubacteria, replacement of one σ factor in the RNA polymerase (RNAP) holoenzyme by another one changes the transcription pattern. Cyanobacteria are eubacteria characterized by oxygenic photosynthesis, and they typically encode numerous group 2 σ factors that closely resemble the essential primary σ factor. A mutant strain of the model cyanobacterium Synechocystis sp. PCC 6803 without functional group 2 σ factors (named as ΔsigBCDE) could not acclimate to heat, high salt or bright light stress, but in standard conditions ΔsigBCDE grew only 9% slower than the control strain. One-fifth of the genes in ΔsigBCDE was differently expressed compared with the control strain in standard growth conditions and several physiological changes in photosynthesis, and pigment and lipid compositions were detected. To directly analyze the σ factor content of RNAP holoenzyme in vivo, a His-tag was added to the γ subunit of RNAP in Synechocystis and RNAPs were collected. The results revealed that all group 2 σ factors were recruited by RNAP in standard conditions, but recruitment of SigB and SigC increased in heat stress, SigD in bright light, SigE in darkness and SigB, SigC and SigE in high salt, explaining the poor acclimation of ΔsigBCDE to these stress conditions.

  16. SKHIN/Sprd, a new genetically defined inbred hairless mouse strain for UV-induced skin carcinogenesis studies

    PubMed Central

    Perez, Carlos; Parker-Thornburg, Jan; Mikulec, Carol; Kusewitt, Donna F.; Fischer, Susan M.; DiGiovanni, John; Conti, Claudio J.; Benavides, Fernando

    2013-01-01

    Strains of mice vary in their susceptibility to ultra-violet (UV) radiation-induced skin tumors. Some strains of hairless mice (homozygous for the spontaneous Hrhr mutation) are particularly susceptible to these tumors. The skin tumors that develop in hairless mice resemble, both at the morphologic and molecular levels, UV-induced squamous cell carcinomas (SCC) and their precursors in human. The most commonly employed hairless mice belong to the SKH1 stock. However, these mice are outbred and their genetic background is not characterized, which makes them a poor model for genetic studies. We have developed a new inbred strain from outbred SKH1 mice that we named SKHIN/Sprd (now at generation F31). In order to characterize the genetic background of this new strain, we genotyped a cohort of mice at F30 with 92 microsatellites and 140 single nucleotide polymorphisms (SNP) evenly distributed throughout the mouse genome. We also exposed SKHIN/Sprd mice to chronic UV irradiation and showed that they are as susceptible to UV-induced skin carcinogenesis as outbred SKH1 mice. In addition, we proved that, albeit with low efficiency, inbred SKHIN/Sprd mice are suitable for transgenic production by classical pronuclear microinjection. This new inbred strain will be useful for the development of transgenic and congenic strains on a hairless inbred background as well as the establishment of syngeneic tumor cell lines. These new tools can potentially help elucidate a number of features of the cutaneous response to UV irradiation in humans, including the effect of genetic background and modifier genes. PMID:22379968

  17. Zoledronate treatment has different effects in mouse strains with contrasting baseline bone mechanical phenotypes.

    PubMed

    Aref, M W; McNerny, E M B; Brown, D; Jepsen, K J; Allen, M R

    2016-12-01

    Two strains of mice with distinct bone morphologies and mechanical properties were treated with zoledronate. Our results show a different response to drug treatment in the two strains providing evidence that baseline properties of structure/material may influence response to zoledronate.

  18. EXAFS of Klebsiella pneumoniae nitrogenase MoFe protein from wild-type and nif V mutant strains

    SciTech Connect

    Eidsness, M.K.; Flank, A.M.; Smith, B.E.; Flood, A.C.; Garner, C.D.; Cramer. S.P.

    1986-05-14

    The enzyme nitrogenase catalyzes the biological reduction of N/sub 2/ to NH/sub 3/. In Klebsiella pneumoniae a cluster of 17 genes in seven transcriptional units has been associated with nitrogen fixation. The nitrogenase enzyme from the nif V mutants is relatively ineffective at dinitrogen reduction, is more efficient than the wild-type enzyme at HCN reduction, and has its hydrogen evolution activity inhibited up to 80% by CO. This altered substrate specificity has been shown to be associated with the iron-molybdenum cofactor, FeMo-co, of the enzyme. X-ray absorption spectroscopy has been a valuable tool for probing the molybdenum environment of wild-type nitrogenase, and the authors report here similar studies on the Nif V/sup -/ enzyme.

  19. Global gene expression profiling reveals similarities and differences among mouse pluripotent stem cells of different origins and strains

    PubMed Central

    Sharova, Lioudmila V.; Sharov, Alexei A.; Piao, Yulan; Shaik, Nabeebi; Sullivan, Terry; Stewart, Colin L.; Hogan, Brigid L.M.; Ko, Minoru S.H.

    2007-01-01

    Pluripotent stem cell lines with similar phenotypes can be derived from both blastocysts (embryonic stem cells, ESC) and primordial germ cells (embryonic germ cells, EGC). Here, we present a compendium DNA microarray analysis of multiple mouse ESCs and EGCs from different genetic backgrounds (strains 129 and C57BL/6) cultured under standard conditions and in differentiation-promoting conditions by the withdrawal of Leukemia Inhibitory Factor (LIF) or treatment with retinoic acid (RA). All pluripotent cell lines showed similar gene expression patterns, which separated them clearly from other tissue stem cells with lower developmental potency. Differences between pluripotent lines derived from different sources (ESC vs. EGC) were smaller than differences between lines derived from different mouse strains (129 vs. C57BL/6). Even in the differentiation-promoting conditions, these pluripotent cells showed the same general trends of gene expression changes regardless of their origin a