Science.gov

Sample records for mutant mouse strain

  1. Genetics of Peripheral Vestibular Dysfunction: Lessons from Mutant Mouse Strains

    PubMed Central

    Jones, Sherri M.; Jones, Timothy A.

    2015-01-01

    Background A considerable amount of research has been published about genetic hearing impairment. Fifty to sixty percent of hearing loss is thought to have a genetic cause. Genes may also play a significant role in acquired hearing loss due to aging, noise exposure, or ototoxic medications. Between 1995 and 2012, over 100 causative genes have been identified for syndromic and nonsyndromic forms of hereditary hearing loss (see Hereditary Hearing Loss Homepage http://hereditaryhearingloss.org). Mouse models have been extremely valuable in facilitating the discovery of hearing loss genes, and in understanding inner ear pathology due to genetic mutations or elucidating fundamental mechanisms of inner ear development. Purpose Whereas much is being learned about hereditary hearing loss and the genetics of cochlear disorders, relatively little is known about the role genes may play in peripheral vestibular impairment. Here we review the literature with regard to genetics of vestibular dysfunction and discuss what we have learned from studies using mutant mouse models and direct measures of peripheral vestibular neural function. Results Several genes are considered that when mutated lead to varying degrees of inner ear vestibular dysfunction due to deficits in otoconia, stereocilia, hair cells, or neurons. Behavior often does not reveal the inner ear deficit. Many of the examples presented are also known to cause human disorders. Conclusions Knowledge regarding the roles of particular genes in the operation of the vestibular sensory apparatus is growing and it is clear that gene products co-expressed in the cochlea and vestibule may play different roles in the respective end organs. The discovery of new genes mediating critical inner ear vestibular function carries the promise of new strategies in diagnosing, treating and managing patients as well as predicting the course and level of morbidity in human vestibular disease. PMID:25032973

  2. A phenotype survey of 36 mutant mouse strains with gene-targeted defects in glycosyltransferases or glycan-binding proteins

    PubMed Central

    Orr, Sally L; Le, Dzung; Long, Jeffrey M; Sobieszczuk, Peter; Ma, Bo; Tian, Hua; Fang, Xiaoqun; Paulson, James C; Marth, Jamey D; Varki, Nissi

    2013-01-01

    The consortium for functional glycomics (CFG) was a large research initiative providing networking and resources for investigators studying the role of glycans and glycan-binding proteins in health and disease. Starting in 2001, six scientific cores were established to generate data, materials and new technologies. By the end of funding in 2011, the mouse phenotype core (MPC) submitted data to a website from the phenotype screen of 36 mutant mouse strains deficient in a gene for either a glycan-binding protein (GBP) or glycosyltransferase (GT). Each mutant strain was allotted three months for analysis and screened by standard phenotype assays used in the fields of immunology, histology, hematology, coagulation, serum chemistry, metabolism and behavior. Twenty of the deficient mouse strains had been studied in other laboratories, and additional tests were performed on these strains to confirm previous observations and discover new data. The CFG constructed 16 new homozygous mutant mouse strains and completed the initial phenotype screen of the majority of these new mutant strains. In total, >300 phenotype changes were observed, but considering the over 100 assays performed on each strain, most of the phenotypes were unchanged. Phenotype differences include abnormal testis morphology in GlcNAcT9- and Siglec-H-deficient mice and lethality in Pomgnt1-deficient mice. The numerous altered phenotypes discovered, along with the consideration of the significant findings of normality, will provide a platform for future characterization to understand the important roles of glycans and GBPs in the mechanisms of health and disease. PMID:23118208

  3. FACS selection of valuable mutant mouse round spermatids and strain rescue via round spermatid injection.

    PubMed

    Zhu, Lian; Zhou, Wei; Kong, Peng-Cheng; Wang, Mei-Shan; Zhu, Yan; Feng, Li-Xin; Chen, Xue-Jin; Jiang, Man-Xi

    2015-06-01

    Round spermatid injection (ROSI) into mammalian oocytes can result in the development of viable embryos and offspring. One current limitation to this technique is the identification of suitable round spermatids. In the current paper, round spermatids were selected from testicular cells with phase contrast microscopy (PCM) and fluorescence-activated cell sorting (FACS), and ROSI was performed in two strains of mice. The rates of fertilization, embryonic development and offspring achieved were the same in all strains. Significantly, round spermatids selected by PCM and FACS were effectively used to rescue the infertile Pten-null mouse. The current results indicate that FACS selection of round spermatids can not only provide high-purity and viable round spermatids for use in ROSI, but also has no harmful effects on the developmental capacity of subsequently fertilized embryos. It was concluded that round spermatids selected by FACS are useful for mouse strain rederivation and rescue of infertile males; ROSI should be considered as a powerful addition to the armamentarium of assisted reproduction techniques applicable in the mouse.

  4. Safety, efficacy and efficiency of laser-assisted IVF in subfertile mutant mouse strains

    PubMed Central

    Li, Ming-Wen; Kinchen, Kristy L; Vallelunga, Jadine M; Young, Diana L; Wright, Kaleb D K; Gorano, Lisa N; Wasson, Katherine; Lloyd, K C Kent

    2013-01-01

    In the present report we studied the safety, efficacy and efficiency of using an infrared laser to facilitate IVF by assessing fertilization, development and birth rates after laser-zona drilling (LZD) in 30 subfertile genetically modified (GM) mouse lines. We determined that LZD increased the fertilization rate four to ten times that of regular IVF, thus facilitating the derivation of 26 of 30 (86.7%) GM mouse lines. Cryopreserved two-cell stage embryos derived by LZD-assisted IVF were recovered and developed to blastocysts in vitro at the same rate as frozen–thawed embryos derived by regular IVF. Surprisingly after surgical transfer to pseudopregnant recipients the birth rate of embryos derived by LZD-assisted IVF was significantly lower than that of embryos derived by regular IVF. However this result could be completely mitigated by the addition of 0.25 M sucrose to the culture medium during LZD which caused the oocyte to shrink in volume relative to the perivitelline space. By increasing the distance from the laser target site on the zona pellucida, we hypothesize that the hyperosmotic effect of sucrose reduced the potential for laser-induced cytotoxic thermal damage to the underlying oocytes. With appropriate preparation and cautious application, our results indicate that LZD-assisted IVF is a safe, efficacious and efficient assisted reproductive technology for deriving mutant mouse lines with male factor infertility and subfertility caused by sperm–zona penetration defects. PMID:23315689

  5. A Quantitative Survey of Gravity Receptor Function in Mutant Mouse Strains

    PubMed Central

    Johnson, Kenneth R.; Yu, Heping; Erway, Lawrence C.; Alagramam, Kumar N.; Pollak, Natasha; Jones, Timothy A.

    2005-01-01

    The purpose of this research was to identify vestibular deficits in mice using linear vestibular evoked potentials (VsEPs). VsEP thresholds, peak latencies, and peak amplitudes from 24 strains with known genetic mutations and 6 inbred background strains have been analyzed and descriptive statistics generated for each strain. Response parameters from mutant homozygotes were compared with heterozygote and/or background controls, and all strain averages were contrasted to normative ranges. Previous work established average values for normal screening VsEP parameters at +6 dB re: 1.0 g/ms: P1 = 1.3 ms, P2 = 2.2 ms, P3 = 2.8 ms; P1/N1 = 2 μV; P2/N2 = 1.6 μV. Normal thresholds averaged −8 dB re: 1.0 g/ms. Homozygotes of the following recessive mutations had absent VsEPs at the ages tested: Espnje, Atp2b2dfw-2J, Spnb4qv-lnd2J, Spnb4qv-3J, Myo7ash1, Tmiesr, Myo6sv, jc, Pcdh15av-J, Pcdh15av-2J, Pcdh15av-3J, Cdh23v-2J, Sansjs, hr, Kcne1pkr, and Pou3f4del. These results suggest profound gravity receptor deficits for these homozygotes, which is consistent with the structural deficits that have been documented for many of these strains. Homozygotes of Catna2cdf, Grid2ho4J, Wnt1sw, qk, and Mbpshi strains and heterozygotes of Grid2lc had measurable VsEPs, but one or more response parameters differed from the respective control group (heterozygote or background strain) or were outside normal ranges. For example, qk and Mbpshi homozygotes showed significantly prolonged latencies consistent with the abnormal myelin that has been described for these strains. Prolonged latencies may suggest deficits in neural conduction; elevated thresholds suggest reduced sensitivity, and reduced amplitudes may be suggestive for reduced neural synchrony. One mutation, Otx1jv, had all VsEP response parameters within normal limits, an expected finding because the abnormality in Otx1jv is presumably restricted to the lateral semicircular canal. Interestingly, some heterozygote groups also

  6. Characterization of a novel ENU-generated myosin VI mutant mouse strain with congenital deafness and vestibular dysfunction.

    PubMed

    Williams, Louise H; Miller, Kerry A; Dahl, Hans-Henrik M; Manji, Shehnaaz S M

    2013-05-01

    Myosin VI (Myo6) is known to play an important role in the mammalian auditory and vestibular systems. We have identified a novel N-ethyl-N-nitrosourea mutagenised mouse strain, charlie, carrying an intronic Myo6 splice site mutation. This mutation (IVS5+5G > A) results in skipping of exon 5, and is predicted to cause a frameshift and premature termination of the protein. We detected essentially no Myo6 transcript in tissue from charlie homozygous mutant mice (Myo6(chl/chl)). Myo6(chl/chl) mice exhibit vestibular dysfunction and profound hearing impairment when first tested at four weeks of age. Analysis of vestibular and cochlear hair cells by scanning electron microscopy and immunohistochemistry revealed highly disorganised hair bundles with irregular orientation and kinocilium position at postnatal stage P2-P3. Within a few weeks, the majority of hair cell stereocilia are missing, or fused and elongated, and degeneration of the sensory epithelium occurs. This novel mouse strain will be an important resource in elucidating the role myosin VI plays in the mammalian auditory system, as well as its non-auditory functions.

  7. A new osteopetrosis mutant mouse strain (ntl) with odontoma-like proliferations and lack of tooth roots.

    PubMed

    Lu, Xincheng; Rios, Hector F; Jiang, Baichun; Xing, Lianping; Kadlcek, Renata; Greenfield, Edward M; Luo, Guangbin; Feng, Jian Q

    2009-12-01

    A new spontaneous mouse mutant (ntl) with autosomal-recessive osteopetrosis was characterized. These mice formed tartrate-resistant acid phosphate (TRAP)-positive osteoclasts but their osteoclasts had no ruffled border and did not resorb bone. These mice displayed no tooth eruption or tooth root formation. Adult mutant mice developed odontoma-like proliferations near the proximal ends of the incisors. Intraperitoneal injection of progenitor cells from the liver of 16.5 days postcoitum wild-type embryos into newborn mutants rescued the osteopetrosis phenotype, indicating that the defects were intrinsic to the osteoclasts. Our findings not only provide further support for a critical role of osteoclasts in tooth eruption and tooth root development, but also suggest that the perturbation of the homeostasis of the odontogenic precursors of the incisors is primarily responsible for the development of the odontoma-like proliferations in this osteopetrosis mutant. Genetic mapping has narrowed down the location of the mutant allele to a genetic interval of 3.2 cM on mouse chromosome 17.

  8. The Use of NF1 and NF2 Mutant Mouse Strains in the Investigation of Gene Function and Disease Development

    DTIC Science & Technology

    1999-10-01

    combined germline Nfl/p53 mutant model that develops MPNSTs . Genetic modifier screens using the Nfl/p53 model have proceeded to the point of identifying...34 model of malignant peripheral nerve sheath tumors ( MPNSTs ) was recently published (10) and will not be described further here. The use of the Nfi...phosphorylation sites) will allow us to test this hypothesis in the context of our existing and future mouse models of neurofibroma and MPNST formation

  9. The Use of NF1 and NF2 Mutant Mouse Strains in the Investigation of Gene Function and Disease Development

    DTIC Science & Technology

    1998-10-01

    percentage of which show features of malignant peripheral nerve sheath tumors ( MPNSTs ). Importantly, human NFl patients also develop MPNSTs at high...significant subset (at least 50%) are malignant peripheral nerve sheath tumors ( MPNSTs ). This evaluation is based on the presence of S 100 staining...percentage of MPNSTs that develop in NF1 patients have mutations in p53. Thus, the Nfl/p53 mutant strain represents an animal model of the more malignant

  10. The Postnatal Development of d-Serine in the Retinas of Two Mouse Strains, Including a Mutant Mouse with a Deficiency in d-Amino Acid Oxidase and a Serine Racemase Knockout Mouse

    PubMed Central

    2015-01-01

    d-Serine, an N-methyl d-aspartate receptor coagonist, and its regulatory enzymes, d-amino acid oxidase (DAO; degradation) and serine racemase (SR; synthesis), have been implicated in crucial roles of the developing central nervous system, yet the functional position that they play in regulating the availability of d-serine throughout development of the mammalian retina is not well-known. Using capillary electrophoresis and a sensitive method of enantiomeric amino acid separation, we were able to determine total levels of d-serine at specific ages during postnatal development of the mouse retina in two different strains of mice, one of which contained a loss-of-function point mutation for DAO while the other was a SR knockout line. Each mouse line was tested against conspecific wild type (WT) mice for each genetic strain. The universal trend in all WT and transgenic mice was a large amount of total retinal d-serine at postnatal age 2 (P2), followed by a dramatic decrease as the mice matured into adulthood (P70–80). SR knockout mice retinas had 41% less d-serine than WT retinas at P2, and 10 times less as an adult. DAO mutant mice retinas had significantly elevated levels of d-serine when compared to WT retinas at P2 (217%), P4 (223%), P8 (194%), and adulthood (227%). PMID:25083578

  11. Retinal degeneration mutants in the mouse.

    PubMed

    Chang, B; Hawes, N L; Hurd, R E; Davisson, M T; Nusinowitz, S; Heckenlively, J R

    2002-02-01

    The Jackson Laboratory, having the world's largest collection of mouse mutant stocks and genetically diverse inbred strains, is an ideal place to look for genetically determined eye variations and disorders. Through ophthalmoscopy, electroretinography and histology, we have discovered disorders affecting all aspects of the eye including the lid, cornea, iris, lens and retina, resulting in corneal disorders, cataracts, glaucoma and retinal degenerations. Mouse models of retinal degeneration have been investigated for many years in the hope of understanding the causes of photoreceptor cell death. Sixteen naturally occurring mouse mutants that manifest degeneration of photoreceptors in the retina with preservation of all other retinal cell types have been found: retinal degeneration (formerly rd, identical with rodless retina, r, now Pde6b(rd1)); Purkinje cell degeneration (pcd); nervous (nr); retinal degeneration slow (rds, now Prph(Rd2)); retinal degeneration 3 (rd3); motor neuron degeneration (mnd); retinal degeneration 4 (Rd4); retinal degeneration 5 (rd5, now tub); vitiligo (vit, now Mitf(mi-vit)); retinal degeneration 6 (rd6); retinal degeneration 7 (rd7, now Nr2e3(rd7)); neuronal ceroid lipofuscinosis (nclf); retinal degeneration 8 (rd8); retinal degeneration 9 (Rd9); retinal degeneration 10 (rd10, now Pde6b(rd10)); and cone photoreceptor function loss (cpfl1). In this report, we first review the genotypes and phenotypes of these mutants and second, list the mouse strains that carry each mutation. We will also provide detailed information about the cpfl1 mutation. The phenotypic characteristics of cpfl1 mice are similar to those observed in patients with complete achromatopsia (ACHM2, OMIM 216900) and the cpfl1 mutation is the first naturally-arising mutation in mice to cause cone-specific photoreceptor function loss. cpfl1 mice may provide a model for congenital achromatopsia in humans.

  12. A novel mutant mouse, joggle, with inherited ataxia.

    PubMed

    Chen, Ziyan; Hayasaka, Shizu; Takagishi, Yoshiko; Murata, Yoshiharu; Oda, Sen-ichi

    2006-07-01

    While establishing a new mouse strain, we discovered a novel mutant mouse that exhibited ataxia. Mating experiments showed that the mutant phenotype was due to a single autosomal recessive gene, which we have termed joggle (gene symbol: jog). The ataxia becomes apparent around postnatal day 12, when the mice first attempt to walk, and worsens thereafter. The life span of the mutant mouse is comparable to that of the wild-type mouse. After 21 days of age, the cerebellum weights of the jog/jog mice are significantly lower than those of the wild-type mice. These observations indicate that jog/jog mutant mice could be useful models for biomedical research.

  13. Progress in using mouse inbred strains, consomics, and mutants to identify genes related to stress, anxiety, and alcohol phenotypes.

    PubMed

    Goldowitz, Daniel; Matthews, Douglas B; Hamre, Kristin M; Mittleman, Guy; Chesler, Elissa J; Becker, Howard C; Lopez, Marcelo F; Jones, Sara R; Mathews, Tiffany A; Miles, Michael F; Kerns, Robnet; Grant, Kathleen A

    2006-06-01

    This article summarizes the proceedings of a symposium that took place at the 2005 meeting of the Research Society on Alcoholism. The organizers/chairs were Daniel Goldowitz and Katheen A. Grant. The presentations were as follows: (1) High-Throughput Screening for Ethanol Phenotypes, by Douglas B. Matthews and Kristin M. Hamre; (2) Genetic Basis of Schedule-Induced Polydipsia in Mice, by Guy Mittleman and Elissa J. Chesler; (3) Effects of Stress and Ethanol Dependence on Ethanol Self-administration in Inbred and Mutant Mice, by Howard C. Becker and Marcelo F. Lopez; (4) Changes in Dopaminergic Mechanisms Associated With Ethanol Dependence, by Sara R. Jones and Tiffany A. Mathews; and (5) Defining Brain Region-Specific Gene Networks Relevant to Ethanol Behaviors, by Michael F. Miles and Robnet Kerns.

  14. EMMA--the European mouse mutant archive.

    PubMed

    Hagn, Michael; Marschall, Susan; Hrabè de Angelis, Martin

    2007-09-01

    The European Mouse Mutant Archive (EMMA) offers the worldwide scientific community a free archiving service for its mutant mouse lines and access to a wide range of disease models and other research tools. EMMA is currently comprised of seven partners who operate as the primary mouse repository in Europe. EMMA' s primary objectives are to establish and manage a unified repository for maintaining mouse mutations and to make them available to the scientific community. In addition to these core services, the consortium can generate germ-free (axenic) mice for its customers and also hosts courses in cryopreservation. EMMA is a founder member of the Federation of International Mouse Resources (FIMRe). The EMMA network is funded by the participating institutes, national research programmes and the European Commission Research Infrastructures Programme.

  15. EMMA—mouse mutant resources for the international scientific community

    PubMed Central

    Wilkinson, Phil; Sengerova, Jitka; Matteoni, Raffaele; Chen, Chao-Kung; Soulat, Gaetan; Ureta-Vidal, Abel; Fessele, Sabine; Hagn, Michael; Massimi, Marzia; Pickford, Karen; Butler, Richard H.; Marschall, Susan; Mallon, Ann-Marie; Pickard, Amanda; Raspa, Marcello; Scavizzi, Ferdinando; Fray, Martin; Larrigaldie, Vanessa; Leyritz, Johan; Birney, Ewan; Tocchini-Valentini, Glauco P.; Brown, Steve; Herault, Yann; Montoliu, Lluis; de Angelis, Martin Hrabé; Smedley, Damian

    2010-01-01

    The laboratory mouse is the premier animal model for studying human disease and thousands of mutants have been identified or produced, most recently through gene-specific mutagenesis approaches. High throughput strategies by the International Knockout Mouse Consortium (IKMC) are producing mutants for all protein coding genes. Generating a knock-out line involves huge monetary and time costs so capture of both the data describing each mutant alongside archiving of the line for distribution to future researchers is critical. The European Mouse Mutant Archive (EMMA) is a leading international network infrastructure for archiving and worldwide provision of mouse mutant strains. It operates in collaboration with the other members of the Federation of International Mouse Resources (FIMRe), EMMA being the European component. Additionally EMMA is one of four repositories involved in the IKMC, and therefore the current figure of 1700 archived lines will rise markedly. The EMMA database gathers and curates extensive data on each line and presents it through a user-friendly website. A BioMart interface allows advanced searching including integrated querying with other resources e.g. Ensembl. Other resources are able to display EMMA data by accessing our Distributed Annotation System server. EMMA database access is publicly available at http://www.emmanet.org. PMID:19783817

  16. EMMA--mouse mutant resources for the international scientific community.

    PubMed

    Wilkinson, Phil; Sengerova, Jitka; Matteoni, Raffaele; Chen, Chao-Kung; Soulat, Gaetan; Ureta-Vidal, Abel; Fessele, Sabine; Hagn, Michael; Massimi, Marzia; Pickford, Karen; Butler, Richard H; Marschall, Susan; Mallon, Ann-Marie; Pickard, Amanda; Raspa, Marcello; Scavizzi, Ferdinando; Fray, Martin; Larrigaldie, Vanessa; Leyritz, Johan; Birney, Ewan; Tocchini-Valentini, Glauco P; Brown, Steve; Herault, Yann; Montoliu, Lluis; de Angelis, Martin Hrabé; Smedley, Damian

    2010-01-01

    The laboratory mouse is the premier animal model for studying human disease and thousands of mutants have been identified or produced, most recently through gene-specific mutagenesis approaches. High throughput strategies by the International Knockout Mouse Consortium (IKMC) are producing mutants for all protein coding genes. Generating a knock-out line involves huge monetary and time costs so capture of both the data describing each mutant alongside archiving of the line for distribution to future researchers is critical. The European Mouse Mutant Archive (EMMA) is a leading international network infrastructure for archiving and worldwide provision of mouse mutant strains. It operates in collaboration with the other members of the Federation of International Mouse Resources (FIMRe), EMMA being the European component. Additionally EMMA is one of four repositories involved in the IKMC, and therefore the current figure of 1700 archived lines will rise markedly. The EMMA database gathers and curates extensive data on each line and presents it through a user-friendly website. A BioMart interface allows advanced searching including integrated querying with other resources e.g. Ensembl. Other resources are able to display EMMA data by accessing our Distributed Annotation System server. EMMA database access is publicly available at http://www.emmanet.org.

  17. Ovarian abnormalities in the staggerer mutant mouse.

    PubMed

    Guastavino, Jean-Marie; Boufares, Salima; Crusio, Wim E

    2005-08-24

    Disturbances in several reproductive functions of the staggerer cerebellar mutant mouse have been observed. In this study, reproductive efficiency of staggerer mice was compared to normal mice by recording the number of pups produced and the number of oocytes occurring. It was found that staggerer mothers produced smaller litters than controls and the number of oocytes produced in their ovaries was reduced by the staggerer mutation. These results indicate a pleiotropic effect on fertility of the Rora(sg) gene underlying the cerebellar abnormalities of the staggerer mutant.

  18. INFRAFRONTIER—providing mutant mouse resources as research tools for the international scientific community

    PubMed Central

    2015-01-01

    The laboratory mouse is a key model organism to investigate mechanism and therapeutics of human disease. The number of targeted genetic mouse models of disease is growing rapidly due to high-throughput production strategies employed by the International Mouse Phenotyping Consortium (IMPC) and the development of new, more efficient genome engineering techniques such as CRISPR based systems. We have previously described the European Mouse Mutant Archive (EMMA) resource and how this international infrastructure provides archiving and distribution worldwide for mutant mouse strains. EMMA has since evolved into INFRAFRONTIER (http://www.infrafrontier.eu), the pan-European research infrastructure for the systemic phenotyping, archiving and distribution of mouse disease models. Here we describe new features including improved search for mouse strains, support for new embryonic stem cell resources, access to training materials via a comprehensive knowledgebase and the promotion of innovative analytical and diagnostic techniques. PMID:25414328

  19. Mouse mutants from chemically mutagenized embryonic stem cells

    PubMed Central

    Munroe, Robert J.; Bergstrom, Rebecca A.; Zheng, Qing Yin; Libby, Brian; Smith, Richard; John, Simon W.M.; Schimenti, Kerry J.; Browning, Victoria L.; Schimenti, John C.

    2010-01-01

    The drive to characterize functions of human genes on a global scale has stimulated interest in large-scale generation of mouse mutants. Conventional germ-cell mutagenesis with N-ethyl-N-nitrosourea (ENU) is compromised by an inability to monitor mutation efficiency, strain1 and interlocus2 variation in mutation induction, and extensive husbandry requirements. To overcome these obstacles and develop new methods for generating mouse mutants, we devised protocols to generate germline chi-maeric mice from embryonic stem (ES) cells heavily mutagenized with ethylmethanesulphonate (EMS). Germline chimaeras were derived from cultures that underwent a mutation rate of up to 1 in 1,200 at the Hprt locus (encoding hypoxanthine guanine phosphoribosyl transferase). The spectrum of mutations induced by EMS and the frameshift mutagen ICR191 was consistent with that observed in other mammalian cells. Chimaeras derived from ES cells treated with EMS transmitted mutations affecting several processes, including limb development, hair growth, hearing and gametogenesis. This technology affords several advantages over traditional mutagenesis, including the ability to conduct shortened breeding schemes and to screen for mutant phenotypes directly in ES cells or their differentiated derivatives. PMID:10700192

  20. Mouse mutants from chemically mutagenized embryonic stem cells.

    PubMed

    Munroe, R J; Bergstrom, R A; Zheng, Q Y; Libby, B; Smith, R; John, S W; Schimenti, K J; Browning, V L; Schimenti, J C

    2000-03-01

    The drive to characterize functions of human genes on a global scale has stimulated interest in large-scale generation of mouse mutants. Conventional germ-cell mutagenesis with N-ethyl-N-nitrosourea (ENU) is compromised by an inability to monitor mutation efficiency, strain and interlocus variation in mutation induction, and extensive husbandry requirements. To overcome these obstacles and develop new methods for generating mouse mutants, we devised protocols to generate germline chimaeric mice from embryonic stem (ES) cells heavily mutagenized with ethylmethanesulphonate (EMS). Germline chimaeras were derived from cultures that underwent a mutation rate of up to 1 in 1,200 at the Hprt locus (encoding hypoxanthine guanine phosphoribosyl transferase). The spectrum of mutations induced by EMS and the frameshift mutagen ICR191 was consistent with that observed in other mammalian cells. Chimaeras derived from ES cells treated with EMS transmitted mutations affecting several processes, including limb development, hair growth, hearing and gametogenesis. This technology affords several advantages over traditional mutagenesis, including the ability to conduct shortened breeding schemes and to screen for mutant phenotypes directly in ES cells or their differentiated derivatives.

  1. Blastocyst genotyping for quality control of mouse mutant archives: an ethical and economical approach.

    PubMed

    Scavizzi, Ferdinando; Ryder, Edward; Newman, Stuart; Raspa, Marcello; Gleeson, Diane; Wardle-Jones, Hannah; Montoliu, Lluis; Fernandez, Almudena; Dessain, Marie-Laure; Larrigaldie, Vanessa; Khorshidi, Zuzana; Vuolteenaho, Reetta; Soininen, Raija; André, Philippe; Jacquot, Sylvie; Hong, Yi; de Angelis, Martin Hrabe; Ramirez-Solis, Ramiro; Doe, Brendan

    2015-10-01

    With the advent of modern developmental biology and molecular genetics, the scientific community has generated thousands of newly genetically altered strains of laboratory mice with the aim of elucidating gene function. To this end, a large group of Institutions which form the International Mouse Phenotyping Consortium is generating and phenotyping a knockout mouse strain for each of the ~20,000 protein-coding genes using the mutant ES cell resource produced by the International Knockout Mouse Consortium. These strains are made available to the research community via public repositories, mostly as cryopreserved sperm or embryos. To ensure the quality of this frozen resource there is a requirement that for each strain the frozen sperm/embryos are proven able to produce viable mutant progeny, before the live animal resource is removed from cages. Given the current requirement to generate live pups to demonstrate their mutant genotype, this quality control check necessitates the use and generation of many animals and requires considerable time, cage space, technical and economic resources. Here, we describe a simple and efficient method of genotyping pre-implantation stage blastocysts with significant ethical and economic advantages especially beneficial for current and future large-scale mouse mutagenesis projects.

  2. Auditory development in progressive motor neuronopathy mouse mutants.

    PubMed

    Volkenstein, Stefan; Brors, Dominik; Hansen, Stefan; Berend, Achim; Mlynski, Robert; Aletsee, Christoph; Dazert, Stefan

    2009-11-06

    The present study was performed to elucidate the hearing development in the progressive motor neuronopathy (pmn) mouse mutant. This mouse has been used as a model for human motoneuron disease. A missense mutation in the tubulin-specific chaperon E (Tbce) gene on mouse chromosome 13 was localized as the underlying genetic defect. The protein encoded by the Tbce gene is essential for the formation of primary tubulin complexes. Studies on motoneurons show disorganization in microtubules and disturbed axonal transport, followed by retrograde degeneration of the motoneurons. A similar pathomechanism is also possible for hearing disorders where disrupted microtubules could cause functional deficits in spiral ganglion neurons or in cochlear hair cells. Click auditory brainstem response (ABR) audiometry in homozygous pmn mutants showed a normal onset of hearing, but an increasing hearing threshold from postnatal day 26 (P26) on to death, compared to heterozygous mutants and wild-type mice. Histological sections of the cochlea at different ages showed a regular morphology. Additionally, spiral ganglion explants from mutant and wild-type mice were cultured. The neurite length from pmn mutants was shorter than in wild-type mice, and the neurite number/explant was significantly decreased in pmn mutants. We show that the pmn mouse mutant is a model for a progressive rapid hearing loss from P26 on, after initially normal hearing development. Heterozygous mice are not affected by this defect. With the knowledge of the well-known pathomechanism of this defect in motoneurons, a dysfunction of cellular mechanisms regulating tubulin assembling suggests that tubulin assembling plays an essential role in hearing function and maintenance.

  3. Generation of targeted mouse mutants by embryo microinjection of TALENs.

    PubMed

    Wefers, Benedikt; Ortiz, Oskar; Wurst, Wolfgang; Kühn, Ralf

    2014-08-15

    Gene engineering for generating targeted mouse mutants is a key technology for biomedical research. Using TALENs as nucleases to induce targeted double-strand breaks, the mouse genome can be directly modified in zygotes in a single step, without the need for embryonic stem cells. Thereby, knockout and knockin alleles can be generated fast and efficiently by embryo microinjection of TALEN mRNAs and targeting vectors. In this article we present an introduction into the TALEN technology and provide protocols for the application of TALENs in mouse zygotes.

  4. Developmental mechanisms underlying polydactyly in the mouse mutant Doublefoot

    PubMed Central

    Crick, Alexandra P; Babbs, Christian; Brown, Jennifer M; Morriss-Kay, Gillian M

    2003-01-01

    The pre-axial polydactylous mouse mutant Doublefoot has 6–9 digits per limb but lacks anteroposterior polarity (there is no biphalangeal digit 1). It differs from other polydactylous mutants in showing normal Shh expression, but polarizing activity (shown by mouse-chick grafting experiments) and hedgehog signalling activity (shown by expression of Ptc1) are present throughout the distal mesenchyme. The Dbf mutation has not yet been identified. Here we review current understanding of this mutant, and briefly report new results indicating (1) that limb bud expansion is concomitant with ectopic Ihh expression and with extension of the posterior high cell proliferation rate into the anterior region, and (2) that the Dbf mutation is epistatic to Shh in the limb. PMID:12587916

  5. Mutant strain of C. acetobutylicum and process for making butanol

    DOEpatents

    Jain, Mahendra K.; Beacom, Daniel; Datta, Rathin

    1993-01-01

    A biologically pure asporogenic mutant of Clostridium acetobutylicum is produced by growing sporogenic C. acetobutylicum ATCC 4259 and treating the parent strain with ethane methane sulfonate. The mutant which as been designated C. acetobutylicum ATCC 55025 is useful in an improved ABE fermentation process, and produces high concentrations of butanol and total solvents.

  6. Two-Pore Channels: Lessons from Mutant Mouse Models

    PubMed Central

    Ruas, Margarida; Galione, Antony; Parrington, John

    2016-01-01

    Recent interest in two-pore channels (TPCs) has resulted in a variety of studies dealing with the functional role and mechanism of action of these endo-lysosomal proteins in diverse physiological processes. With the availability of mouse lines harbouring mutant alleles for Tpcnl and/or Tpcn2 genes, several studies have made use of them to validate, consolidate and discover new roles for these channels not only at the cellular level but, importantly, also at the level of the whole organism. The different mutant mouse lines that have been used were derived from distinct genetic manipulation strategies, with the aim of knocking out expression of TPC proteins. However, the expression of different residual TPC sequences predicted to occur in these mutant mouse lines, together with the varied degree to which the effects on Tpcn expression have been studied, makes it important to assess the true knockout status of some of the lines. In this review we summarize these Tpcn mutant mouse lines with regard to their predicted effect on Tpcn expression and the extent to which they have been characterized. Additionally, we discuss how results derived from studies using these Tpcn mutant mouse lines have consolidated previously proposed roles for TPCs, such as mediators of NAADP signalling, endo-lysosomal functions, and pancreatic β cell physiology. We will also review how they have been instrumental in the assignment of new physiological roles for these cation channels in processes such as membrane electrical excitability, neoangiogenesis, viral infection and brown adipose tissue and heart function, revealing, in some cases, a specific contribution of a particular TPC isoform. PMID:27330869

  7. Human-mouse interspecies collagen I heterotrimer is functional during embryonic development of Mov13 mutant mouse embryos.

    PubMed Central

    Wu, H; Bateman, J F; Schnieke, A; Sharpe, A; Barker, D; Mascara, T; Eyre, D; Bruns, R; Krimpenfort, P; Berns, A

    1990-01-01

    To investigate whether the human pro alpha 1(I) collagen chain could form an in vivo functional interspecies heterotrimer with the mouse pro alpha 2(I) collagen chain, we introduced the human COL1A1 gene into Mov13 mice which have a functional deletion of the endogenous COL1A1 gene. Transgenic mouse strains (HucI and HucII) carrying the human COL1A1 gene were first generated by microinjecting the COL1A1 gene into wild-type mouse embryos. Genetic evidence indicated that the transgene in the HucI strain was closely linked to the endogenous mouse COL1A1 gene and was X linked in the HucII transgenic strain. Northern (RNA) blot and S1 protection analyses showed that the transgene was expressed in the appropriate tissue-specific manner and as efficiently as the endogenous COL1A1 gene. HucII mice were crossed with Mov13 mice to transfer the human transgene into the mutant strain. Whereas homozygous Mov13 embryos die between days 13 and 14 of gestation, the presence of the transgene permitted apparently normal development of the mutant embryos to birth. This indicated that the mouse-human interspecies collagen I heterotrimer was functional in the animal. The rescue was, however, only partial, as all homozygotes died within 36 h after delivery, with signs of internal bleeding. This could have been due to a functional defect in the interspecies hybrid collagen. Extensive analysis failed to reveal any biochemical or morphological abnormalities of the collagen I molecules in Mov13-HucII embryos.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:1690840

  8. The Tennessee Mouse Genome Consortium: Identification of ocular mutants

    SciTech Connect

    Jablonski, Monica M.; Wang, Xiaofei; Lu, Lu; Miller, Darla R; Rinchik, Eugene M; Williams, Robert; Goldowitz, Daniel

    2005-06-01

    The Tennessee Mouse Genome Consortium (TMGC) is in its fifth year of a ethylnitrosourea (ENU)-based mutagenesis screen to detect recessive mutations that affect the eye and brain. Each pedigree is tested by various phenotyping domains including the eye, neurohistology, behavior, aging, ethanol, drug, social behavior, auditory, and epilepsy domains. The utilization of a highly efficient breeding protocol and coordination of various universities across Tennessee makes it possible for mice with ENU-induced mutations to be evaluated by nine distinct phenotyping domains within this large-scale project known as the TMGC. Our goal is to create mutant lines that model human diseases and disease syndromes and to make the mutant mice available to the scientific research community. Within the eye domain, mice are screened for anterior and posterior segment abnormalities using slit-lamp biomicroscopy, indirect ophthalmoscopy, fundus photography, eye weight, histology, and immunohistochemistry. As of January 2005, we have screened 958 pedigrees and 4800 mice, excluding those used in mapping studies. We have thus far identified seven pedigrees with primary ocular abnormalities. Six of the mutant pedigrees have retinal or subretinal aberrations, while the remaining pedigree presents with an abnormal eye size. Continued characterization of these mutant mice should in most cases lead to the identification of the mutated gene, as well as provide insight into the function of each gene. Mice from each of these pedigrees of mutant mice are available for distribution to researchers for independent study.

  9. Applications of mutant yeast strains with low glycogen storage capability

    NASA Technical Reports Server (NTRS)

    Petersen, G. R.; Schubert, W. W.; Stokes, B. O.

    1981-01-01

    Several strains of Hansenula polymorpha were selected for possible low glycogen storage characteristics based on a selective I2 staining procedure. The levels of storage carbohydrates in the mutant strains were found to be 44-70% of the levels in the parent strain for cultures harvested in stationary phase. Similar differences generally were not found for cells harvested in exponential phase. Yeast strains deficient in glycogen storage capability are valuable in increasing the relative protein value of microbial biomass and also may provide significant cost savings in substrate utilization in fermentative processes.

  10. Applications of mutant yeast strains with low glycogen storage capability

    NASA Technical Reports Server (NTRS)

    Petersen, G. R.; Schubert, W. W.; Stokes, B. O.

    1981-01-01

    Several strains of Hansenula polymorpha were selected for possible low glycogen storage characteristics based on a selective I2 staining procedure. The levels of storage carbohydrates in the mutant strains were found to be 44-70% of the levels in the parent strain for cultures harvested in stationary phase. Similar differences generally were not found for cells harvested in exponential phase. Yeast strains deficient in glycogen storage capability are valuable in increasing the relative protein value of microbial biomass and also may provide significant cost savings in substrate utilization in fermentative processes.

  11. Survey of Common Eye Diseases in Laboratory Mouse Strains

    PubMed Central

    Chang, Bo; Hurd, Ron; Wang, Jieping; Nishina, Patsy

    2013-01-01

    Purpose. As in human populations, in which founder mutations have been identified in groups of families, a number of founder mutations have been observed across strains in mice. In this report, we provide a phenotype and genotype survey of three common eye diseases in the collection of JAX mice strains at The Jackson Laboratory (JAX). These eye diseases are retinal degeneration 1 (Pde6brd1), retinal degeneration 8 (Crb1rd8), and cone photoreceptor function loss 3 (Gnat2cpfl3). Methods. Ocular lesions for rd1 and rd8 were evaluated by fundus examination and fundus photography, and the abnormal retinal function observed in mice homozygous for cpfl3 was assessed by ERG. Genotyping protocols for rd1, rd8, and cpfl3 mutations were performed by PCR with appropriate primers. Results. We have actively screened retired breeders for surface dysmorphologies, and for intraocular defects by indirect ophthalmoscopy, slit-lamp biomicroscopy, and ERG to discover new spontaneous mutations in strains from the Genetic Resource Science (GRS) production colony. Through this process, we have found that of the strains screened, 99 strains carried the rd1 mutation, 85 strains carried the rd8 mutation, and 20 strains carried the cpfl3 mutation. Conclusions. Of the 1000 of strains screened during this study, 204 carried one of three founder mutations in Pde6b, Crb1, or Gnat2. Since these three retinal mutations occur commonly in various mouse strains, genotyping for these mutations, and/or avoiding mouse strains or stocks carrying these mutant alleles when studying new retinal disorders is recommended. The robust PCR genotyping protocols to test for these common alleles are described herein. PMID:23800770

  12. Insights into prevention of human neural tube defects by folic acid arising from consideration of mouse mutants.

    PubMed

    Harris, Muriel J

    2009-04-01

    Almost 30 years after the initial study by Richard W. Smithells and coworkers, it is still unknown how maternal periconceptional folic acid supplementation prevents human neural tube defects (NTDs). In this article, questions about human NTD prevention are considered in relation to three groups of mouse models: NTD mutants that respond to folate, NTD mutants and strains that do not respond to folate, and mutants involving folate-pathway genes. Of the 200 mouse NTD mutants, only a few have been tested with folate; half respond and half do not. Among responsive mutants, folic acid supplementation reduces exencephaly and/or spina bifida aperta frequency in the Sp(2H), Sp, Cd, Cited2, Cart1, and Gcn5 mutants. Prevention ranges from 35 to 85%. The responsive Sp(2H) (Pax3) mutant has abnormal folate metabolism, but the responsive Cited2 mutant does not. Neither folic nor folinic acid reduces NTD frequency in Axd, Grhl3, Fkbp8, Map3k4, or Nog mutants or in the curly tail or SELH/Bc strains. Spina bifida frequency is reduced in Axd by methionine and in curly tail by inositol. Exencephaly frequency is reduced in SELH/Bc by an alternative commercial ration. Mutations in folate-pathway genes do not cause NTDs, except for 30% exencephaly in folate-treated Folr1. Among folate-pathway mutants, neural tube closure is normal in Cbs, Folr2, Mthfd1, Mthfd2, Mthfr, and Shmt1 mutants. Embryos die by midgestation in Folr1, Mtr, Mtrr, and RFC1 mutants. The mouse models point to genetic heterogeneity in the ability to respond to folic acid and also to heterogeneity in genetic cause of NTDs that can be prevented by folic acid.

  13. Purkinje cell compartmentation in the cerebellum of the lysosomal Acid phosphatase 2 mutant mouse (nax - naked-ataxia mutant mouse).

    PubMed

    Bailey, Karen; Rahimi Balaei, Maryam; Mannan, Ashraf; Del Bigio, Marc R; Marzban, Hassan

    2014-01-01

    The Acp2 gene encodes the beta subunit of lysosomal acid phosphatase, which is an isoenzyme that hydrolyzes orthophosphoric monoesters. In mice, a spontaneous mutation in Acp2 results in severe cerebellar defects. These include a reduced size, abnormal lobulation, and an apparent anterior cerebellar disorder with an absent or hypoplastic vermis. Based on differential gene expression in the cerebellum, the mouse cerebellar cortex can normally be compartmentalized anteroposteriorly into four transverse zones and mediolaterally into parasagittal stripes. In this study, immunohistochemistry was performed using various Purkinje cell compartmentation markers to examine their expression patterns in the Acp2 mutant. Despite the abnormal lobulation and anterior cerebellar defects, zebrin II and PLCβ4 showed similar expression patterns in the nax mutant and wild type cerebellum. However, fewer stripes were found in the anterior zone of the nax mutant, which could be due to a lack of Purkinje cells or altered expression of the stripe markers. HSP25 expression was uniform in the central zone of the nax mutant cerebellum at around postnatal day (P) 18-19, suggesting that HSP25 immunonegative Purkinje cells are absent or delayed in stripe pattern expression compared to the wild type. HSP25 expression became heterogeneous around P22-23, with twice the number of parasagittal stripes in the nax mutant compared to the wild type. Aside from reduced size and cortical disorganization, both the posterior zone and nodular zone in the nax mutant appeared less abnormal than the rest of the cerebellum. From these results, it is evident that the anterior zone of the nax mutant cerebellum is the most severely affected, and this extends beyond the primary fissure into the rostral central zone/vermis. This suggests that ACP2 has critical roles in the development of the anterior cerebellum and it may regulate anterior and central zone compartmentation.

  14. Purkinje Cell Compartmentation in the Cerebellum of the Lysosomal Acid Phosphatase 2 Mutant Mouse (Nax - Naked-Ataxia Mutant Mouse)

    PubMed Central

    Bailey, Karen; Rahimi Balaei, Maryam; Mannan, Ashraf; Del Bigio, Marc R.; Marzban, Hassan

    2014-01-01

    The Acp2 gene encodes the beta subunit of lysosomal acid phosphatase, which is an isoenzyme that hydrolyzes orthophosphoric monoesters. In mice, a spontaneous mutation in Acp2 results in severe cerebellar defects. These include a reduced size, abnormal lobulation, and an apparent anterior cerebellar disorder with an absent or hypoplastic vermis. Based on differential gene expression in the cerebellum, the mouse cerebellar cortex can normally be compartmentalized anteroposteriorly into four transverse zones and mediolaterally into parasagittal stripes. In this study, immunohistochemistry was performed using various Purkinje cell compartmentation markers to examine their expression patterns in the Acp2 mutant. Despite the abnormal lobulation and anterior cerebellar defects, zebrin II and PLCβ4 showed similar expression patterns in the nax mutant and wild type cerebellum. However, fewer stripes were found in the anterior zone of the nax mutant, which could be due to a lack of Purkinje cells or altered expression of the stripe markers. HSP25 expression was uniform in the central zone of the nax mutant cerebellum at around postnatal day (P) 18–19, suggesting that HSP25 immunonegative Purkinje cells are absent or delayed in stripe pattern expression compared to the wild type. HSP25 expression became heterogeneous around P22–23, with twice the number of parasagittal stripes in the nax mutant compared to the wild type. Aside from reduced size and cortical disorganization, both the posterior zone and nodular zone in the nax mutant appeared less abnormal than the rest of the cerebellum. From these results, it is evident that the anterior zone of the nax mutant cerebellum is the most severely affected, and this extends beyond the primary fissure into the rostral central zone/vermis. This suggests that ACP2 has critical roles in the development of the anterior cerebellum and it may regulate anterior and central zone compartmentation. PMID:24722417

  15. Glycine receptor mouse mutants: model systems for human hyperekplexia

    PubMed Central

    Schaefer, Natascha; Langlhofer, Georg; Kluck, Christoph J; Villmann, Carmen

    2013-01-01

    Human hyperekplexia is a neuromotor disorder caused by disturbances in inhibitory glycine-mediated neurotransmission. Mutations in genes encoding for glycine receptor subunits or associated proteins, such as GLRA1, GLRB, GPHN and ARHGEF9, have been detected in patients suffering from hyperekplexia. Classical symptoms are exaggerated startle attacks upon unexpected acoustic or tactile stimuli, massive tremor, loss of postural control during startle and apnoea. Usually patients are treated with clonazepam, this helps to dampen the severe symptoms most probably by up-regulating GABAergic responses. However, the mechanism is not completely understood. Similar neuromotor phenotypes have been observed in mouse models that carry glycine receptor mutations. These mouse models serve as excellent tools for analysing the underlying pathomechanisms. Yet, studies in mutant mice looking for postsynaptic compensation of glycinergic dysfunction via an up-regulation in GABAA receptor numbers have failed, as expression levels were similar to those in wild-type mice. However, presynaptic adaptation mechanisms with an unusual switch from mixed GABA/glycinergic to GABAergic presynaptic terminals have been observed. Whether this presynaptic adaptation explains the improvement in symptoms or other compensation mechanisms exist is still under investigation. With the help of spontaneous glycine receptor mouse mutants, knock-in and knock-out studies, it is possible to associate behavioural changes with pharmacological differences in glycinergic inhibition. This review focuses on the structural and functional characteristics of the various mouse models used to elucidate the underlying signal transduction pathways and adaptation processes and describes a novel route that uses gene-therapeutic modulation of mutated receptors to overcome loss of function mutations. PMID:23941355

  16. Development of amnesia in different mouse strains.

    PubMed

    Sinovyev, D R; Dubrovina, N I; Kulikov, A V

    2009-05-01

    We studied passive avoidance retrieval after amnestic stimulation (arrest in unsafe section of the experimental setup) in C57Bl/6J, BALB/c, CBA/Lac, AKR/J, DBA/2J, C3H/HeJ, and ASC/Icg mice. We demonstrated resistance to amnestic stimulation in mice with high predisposition to freezing reaction (ASC/Icg) and memory deficit in other mouse strains.

  17. Characterization of glycoinositolphosphoryl ceramide structure mutant strains of Cryptococcus neoformans.

    PubMed

    Gutierrez, Ana L S; Farage, Layla; Melo, Manuel N; Mohana-Borges, Ronaldo S; Guerardel, Yann; Coddeville, Bernadete; Wieruszeski, Jean-Michel; Mendonça-Previato, Lucia; Previato, Jose O

    2007-06-01

    In fungi, glycoinositolphosphoryl ceramide (GIPC) biosynthetic pathway produces essential molecules for growth, viability, and virulence. In previous studies, we demonstrated that the opportunistic fungus Cryptococcus neoformans synthesizes a complex family of xylose-(Xyl) branched GIPCs, all of which have not been previously reported in fungi. As an effort to understand the biosynthesis of these sphingolipids, we have now characterized the structures of GIPCs from C. neoformans wild-type (KN99alpha) and mutant strains that lack UDP-Xyl, by disruption of either UDP-glucose dehydrogenase (NE321) or UDP-glucuronic acid decarboxylase (NE178). The structures of GIPCs were determined by a combination of nuclear magnetic resonance (NMR) spectroscopy, tandem mass spectrometry (MS), and gas chromatography-MS. The main and largest GIPC from wild-type strain was identified as an alpha-Manp(1 --> 6)alpha-Manp(1 --> 3)alpha-Manp[beta-Xylp(1 --> 2)]alpha-Manp(1 --> 4)beta-Galp(1 --> 6)alpha-Manp(1 --> 2) Ins-1-P-Ceramide, whereas the most abundant GIPC from both mutant strains was found to be an alpha-Manp(1 --> 3)alpha-Manp(1 --> 4)beta-Galp(1 --> 6)alpha-Manp(1 --> 2)Ins-1-P-Ceramide. The ceramide moieties of C. neoformans wild-type and mutant strains were composed of a C(18) phytosphingosine, which was N-acylated with 2-hydroxy tetra-, or hexacosanoic acid, and 2,3-dihydroxy-tetracosanoic acid. Our structural analysis results indicate that the C. neoformans mutant strains are unable to complete the assembly of the GIPC-oligosaccharide moiety due the absence of Xyl side chain.

  18. Application of hairless mouse strain to bioluminescence imaging of Arc expression in mouse brain.

    PubMed

    Izumi, Hironori; Ishimoto, Tetsuya; Yamamoto, Hiroshi; Mori, Hisashi

    2017-01-23

    Bioluminescence imaging (BLI) is a powerful technique for monitoring the temporal and spatial dynamics of gene expression in the mouse brain. However, the black fur, skin pigmentation and hair regrowth after depilation of mouse interfere with BLI during developmental and daily examination. The aim of this study was to extend the application of Arc-Luc transgenic (Tg) mice to the BLI of neuronal activity in the mouse brain by introducing the hairless (HL) gene and to examine Arc-Luc expression at various developmental stages without interference from black fur, skin pigmentation, and hair regrowth. The Arc-Luc Tg HL mice were established by crossing the Tg C57BL/6 mouse strain with the HL mouse strain. Under physiological and pathological conditions, BLI was performed to detect the signal intensity changes at various developmental stages and at an interval of <7 days. The established Arc-Luc Tg HL mice exhibited clear and stable photon signals from the brain without interference during development. After surgical monocular deprivation during visual-critical period, large signal intensity changes in bioluminescence were observed in the mouse visual cortex. Exposure of mice to a novel object changed the photon distribution in the caudal and rostral cerebral areas. The temporal pattern of kainic-acid-induced Arc-Luc expression showed biphasic changes in signal intensity over 24 h. This study showed the advantages of using the mutant HL gene in BLI of Arc expression in the mouse brain at various developmental stages. Thus, the use of the Arc-Luc Tg HL mice enabled the tracking of neuronal-activity-dependent processes over a wide range from a focal area to the entire brain area with various time windows.

  19. [Establishment of a mutant Lumican transgenic mouse model].

    PubMed

    Song, Yanzheng; Zhao, Yanyan; Zhang, Fengju; Yu, Yanqiu; Ma, Ling

    2014-01-01

    Pathological myopia (PM) is a hereditary ocular disease leading to severe loss of visual acuity and blindness. Lumican gene (LUM) is one of those candidate genes of PM. The purpose of this study was to establish a mutant Lumican transgenic mouse model, and to prepare for the further study of the pathogenesis of PM. Experimental study. Mutation of LUM gene was created by site-directed mutagenesis. Recombinant DNA techniques were used for the construction of the pRP. EX3d-EF1A>LUM/flag>IRES/hrGFP transgene. The gene fragments were microinjected into the zygote male pronuclei of BDF1 mice, and then the zygote cells alive were transplanted into the oviduct of acceptor pregnant female ICR mice. The F0 generation transgenic mice obtained were named C57-TgN (LUM)CCMU. Genome DNA from mice tail was detected by PCR and Western blotting. Six of 31 F0 generation mice were positive transgenic mice. The western blotting study showed that the flag-tag was expressed in the mouse tail tissue. Sixty-eight of 128 mice (F1 to F3 generation) were positive transgenic mice, the positive rate is 53.13%. The mutant Lumican (cDNA 596T>C) transgenic mouse model has been established. This model will provide fundamental conditions for studies of the pathogenesis of PM. Also it will be the basis of further studies about the effect of Lumican mutation on the development of PM and structure and function of the extra cellular matrix.

  20. The genetics of Fraser syndrome and the blebs mouse mutants.

    PubMed

    Smyth, Ian; Scambler, Peter

    2005-10-15

    Fraser syndrome is a recessive multisystem disorder characterized by embryonic epidermal blistering, cryptophthalmos, syndactyly, renal defects and a range of other developmental abnormalities. More than 17 years ago, the family of four mapped mouse blebs mutants was proposed as models of this disorder, given their striking phenotypic overlaps. In the last few years, these loci have been cloned, uncovering a family of three large extracellular matrix proteins and an intracellular adapter protein which are required for normal epidermal adhesion early in development. The proteins have also been shown to play a crucial role in the development and homeostasis of the kidney. We review the cloning and characterization of these genes and explore the consequences of their loss.

  1. Social behavior deficits in the Fmr1 mutant mouse.

    PubMed

    Mineur, Yann S; Huynh, Linh X; Crusio, Wim E

    2006-03-15

    Mice exhibiting deficits in social behavior may provide valuable models for autistic-like behavioral problems. We tested social interactions in male mice from three inbred strains: C57BL/6J (B6), BALB/cJ (C) and DBA/2J (D2). All three strains showed gradual habituation of the number of social interactions with an ovariectomized female over four subsequent 2min sessions, returning to initial levels when presented with another stimulus mouse. Next, we studied males with a knockout mutation in the Fmr1 gene on a B6 background. KO animals showed strongly reduced levels of social interaction, which were about similar as those of habituated controls. This social behavior deficit suggests that Fmr1 KO mice could possibly be used as models for autistic behaviors.

  2. An Escherichia coli MG1655 lipopolysaccharide deep-rough core mutant grows and survives in mouse cecal mucus but fails to colonize the mouse large intestine.

    PubMed

    Møller, Annette K; Leatham, Mary P; Conway, Tyrrell; Nuijten, Piet J M; de Haan, Louise A M; Krogfelt, Karen A; Cohen, Paul S

    2003-04-01

    The ability of E. coli strains to colonize the mouse large intestine has been correlated with their ability to grow in cecal and colonic mucus. In the present study, an E. coli MG1655 strain was mutagenized with a mini-Tn5 Km (kanamycin) transposon, and mutants were tested for the ability to grow on agar plates with mouse cecal mucus as the sole source of carbon and nitrogen. One mutant, designated MD42 (for mucus defective), grew poorly on cecal-mucus agar plates but grew well on Luria agar plates and on glucose minimal-agar plates. Sequencing revealed that the insertion in MD42 was in the waaQ gene, which is involved in lipopolysaccharide (LPS) core biosynthesis. Like "deep-rough" E. coli mutants, MD42 was hypersensitive to sodium dodecyl sulfate (SDS), bile salts, and the hydrophobic antibiotic novobiocin. Furthermore, its LPS core oligosaccharide was truncated, like that of a deep-rough mutant. MD42 initially grew in the large intestines of streptomycin-treated mice but then failed to colonize (<10(2) CFU per g of feces), whereas its parent colonized at levels between 10(7) and 10(8) CFU per g of feces. When mouse cecal mucosal sections were hybridized with an E. coli-specific rRNA probe, MD42 was observed in cecal mucus as clumps 24 h postfeeding, whereas its parent was present almost exclusively as single cells, suggesting that clumping may play a role in preventing MD42 colonization. Surprisingly, MD42 grew nearly as well as its parent during growth in undiluted, highly viscous cecal mucus isolated directly from the mouse cecum and, like its parent, survived well after reaching stationary phase, suggesting that there are no antimicrobials in mucus that prevent MD42 colonization. After mini-mariner transposon mutagenesis, an SDS-resistant suppressor mutant of MD42 was isolated. The mini-mariner insertion was shown to be in the bipA gene, a known regulator of E. coli surface components. When grown in Luria broth, the LPS core of the suppressor mutant remained

  3. Bladder dysfunction in a new mutant mouse model with increased superoxide--lack of nitric oxide?

    PubMed

    Soler, Roberto; Füllhase, Claudius; Lu, Baisong; Bishop, Colin E; Andersson, Karl-Erik

    2010-02-01

    Nitric oxide mediates urethral smooth muscle relaxation and may also be involved in detrusor activity control. Mice with mutation in the Immp2l gene have high superoxide ion levels and a consequent decrease in the bioavailable amount of nitric oxide. We studied bladder function in this mouse model. Young male mutants at ages 4 to 6 months, old female mutants at age 18 months and healthy WT age matched controls were used. The detrusor contractile response to carbachol and electrical field stimulation was tested in isolated detrusor strips in organ baths. In vivo bladder function was evaluated by cystometry in conscious animals. Young male mutants had significantly lower micturition and higher post-void residual volume than WT controls. They had pronounced voiding difficulty and strained when initiating micturition. Detrusor contractile responses to carbachol and electrical field stimulation were similar in mutant and WT mice. Old female mutant mice had lower bladder capacity and micturition volume, and higher micturition frequency and bladder-to-body weight ratio than WT controls. In the in vitro study detrusor strips from mutants showed a lower maximum response to carbachol. Mice with mutation in the Immp2l gene have bladder dysfunction, mainly characterized by emptying abnormalities in young males and increased detrusor activity in old females. Detrusor function was preserved in young males and impaired in old females. These animals are a natural model of oxidative stress with low bioavailable nitric oxide. Thus, they are interesting tools in which to evaluate the role of these conditions on bladder dysfunction. Copyright 2010 American Urological Association. Published by Elsevier Inc. All rights reserved.

  4. Bladder Dysfunction in a New Mutant Mouse Model With Increased Superoxide—Lack of Nitric Oxide?

    PubMed Central

    Soler, Roberto; Füllhase, Claudius; Lu, Baisong; Bishop, Colin E.; Andersson, Karl-Erik

    2013-01-01

    Purpose Nitric oxide mediates urethral smooth muscle relaxation and may also be involved in detrusor activity control. Mice with mutation in the Immp2l gene have high superoxide ion levels and a consequent decrease in the bioavailable amount of nitric oxide. We studied bladder function in this mouse model. Material and Methods Young male mutants at ages 4 to 6 months, old female mutants at age 18 months and healthy WT age matched controls were used. The detrusor contractile response to carbachol and electrical field stimulation was tested in isolated detrusor strips in organ baths. In vivo bladder function was evaluated by cystometry in conscious animals. Results Young male mutants had significantly lower micturition and higher post-void residual volume than WT controls. They had pronounced voiding difficulty and strained when initiating micturition. Detrusor contractile responses to carbachol and electrical field stimulation were similar in mutant and WT mice. Old female mutant mice had lower bladder capacity and micturition volume, and higher micturition frequency and bladder-to-body weight ratio than WT controls. In the in vitro study detrusor strips from mutants showed a lower maximum response to carbachol. Conclusions Mice with mutation in the Immp2l gene have bladder dysfunction, mainly characterized by emptying abnormalities in young males and increased detrusor activity in old females. Detrusor function was preserved in young males and impaired in old females. These animals are a natural model of oxidative stress with low bioavailable nitric oxide. Thus, they are interesting tools in which to evaluate the role of these conditions on bladder dysfunction. PMID:20022053

  5. Detected microsatellite polymorphisms in genetically altered inbred mouse strains.

    PubMed

    Du, Xiaoyan; Cui, Jing; Wang, Chao; Huo, Xueyun; Lu, Jing; Li, Yichen; Chen, Zhenwen

    2013-08-01

    loci were shared by Tg and KO mice, two (D15mit5 and D14mit102) (5%) by Tg and ENU-treated mice, and one (D14mit102) (2.5%) by all three genetic modifications. Collectively, our study implies that genetic modifications by KO, Tg or chemical mutant can trigger microsatellite CMPs in inbred mouse strains. These shared microsatellite loci could be regarded as "hot spots" of microsatellite mutation for genetic monitoring in genetic modified mice.

  6. A mouse B16 melanoma mutant deficient in glycolipids.

    PubMed Central

    Ichikawa, S; Nakajo, N; Sakiyama, H; Hirabayashi, Y

    1994-01-01

    Mouse B16 melanoma cell line, GM-95 (formerly designated as MEC-4), deficient in sialyllactosylceramide was examined for its primary defect. Glycolipids from the mutant cells were analyzed by high-performance TLC. No glycolipid was detected in GM-95 cells, even when total lipid from 10(7) cells was analyzed. In contrast, the content of ceramide, a precursor lipid molecule of glycolipids, was normal. Thus, the deficiency of glycolipids was attributed to the first glucosylation step of ceramide. The ceramide glucosyltransferase (EC 2.4.1.80) activity was not detected in GM-95 cells. There was no significant difference of sialyllactosylceramide synthase activity, however, between GM-95 and the parental cells. The deficiency of glycolipids in GM-95 cells was associated with changes of the cellular morphology and growth rate. The parental cells showed irregular shapes and tended to overlap each other. On the other hand, GM-95 cells exhibited an elongated fibroblastic morphology and parallel arrangement. The population-doubling times of GM-95 and the parental cells in serum-free medium were 28 hr and 19 hr, respectively. Images PMID:8146177

  7. An update to the list of mouse mutants with neural tube closure defects and advances toward a complete genetic perspective of neural tube closure.

    PubMed

    Harris, Muriel J; Juriloff, Diana M

    2010-08-01

    The number of mouse mutants and strains with neural tube defects (NTDs) now exceeds 240, including 205 representing specific genes, 30 for unidentified genes, and 9 multifactorial strains. These mutants identify genes needed for embryonic neural tube closure. Reports of 50 new NTD mutants since our 2007 review (Harris and Juriloff, 2007) were considered in relation to the previously reviewed mutants to obtain new insights into mechanisms of NTD etiology. In addition to null mutations, some are hypomorphs or conditional mutants. Some mutations do not cause NTDs on their own, but do so in digenic, trigenic, and oligogenic combinations, an etiology that likely parallels the nature of genetic etiology of human NTDs. Mutants that have only exencephaly are fourfold more frequent than those that have spina bifida aperta with or without exencephaly. Many diverse cellular functions and biochemical pathways are involved; the NTD mutants draw new attention to chromatin modification (epigenetics), the protease-activated receptor cascade, and the ciliopathies. Few mutants directly involve folate metabolism. Prevention of NTDs by maternal folate supplementation has been tested in 13 mutants and reduces NTD frequency in six diverse mutants. Inositol reduces spina bifida aperta frequency in the curly tail mutant, and three new mutants involve inositol metabolism. The many NTD mutants are the foundation for a future complete genetic understanding of the processes of neural fold elevation and fusion along mechanistically distinct cranial-caudal segments of the neural tube, and they point to several candidate processes for study in human NTD etiology.

  8. Mutant prevention concentrations of pradofloxacin for susceptible and mutant strains of Escherichia coli with reduced fluoroquinolone susceptibility.

    PubMed

    Marcusson, Linda L; Komp Lindgren, Patricia; Olofsson, Sara K; Hughes, Diarmaid; Cars, Otto

    2014-10-01

    Pharmacodynamic and mutant prevention properties of the fluoroquinolone pradofloxacin (PRA) were measured against a set of 17 Escherichia coli strains carrying no, one or two known mutations conferring reduced fluoroquinolone susceptibility. The strains included susceptible wild-types, isogenic constructed mutants, isogenic selected mutants and clinical isolates. The effectiveness of PRA was determined with regard to preventing the selection of resistant mutants, using static and changing concentrations of drug. Ciprofloxacin was used as a reference drug. Minimum inhibitory concentrations (MICs) and mutant prevention concentrations (MPCs) of PRA for the susceptible wild-type strains were in the range 0.012-0.016mg/L and 0.2-0.3mg/L, respectively, giving a mean±standard deviation mutant prevention index (MPI=MPC/MIC) of 17.7±1.1. The mean MPI PRA of the 14 mutant strains was 19.2±12, and the mean MPI across all 17 strains was 18.9±10.8. In an in vitro kinetic model in which PRA was diluted with a half-life of 7h to mimic in vivo conditions, an initial concentration of PRA of 1.6-2.4mg/L (8-10× MPC), giving a PRA AUC/MPC ratio of 73-92, and a T>MPC of 21-23h was sufficient to prevent the selection of resistant mutants from the three susceptible wild-type strains. Dosing to reduce selection for antibiotic resistance in veterinary therapy has a role in reducing the reservoir of resistant mutants. We conclude that a level of dosing that prevents the selection of resistant mutants during therapy should be achievable in vivo. Copyright © 2014 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  9. Mutants of Paracoccidioides brasiliensis strain IVIC Pb9 affected in dimorphism.

    PubMed

    San-Blas, F; San-Blas, G

    1992-01-01

    Morphological mutants were isolated after nitrosoguanidine treatment of Paracoccidioides brasiliensis strain IVIC Pb9. Two of these mutants, Pb257 and Pb258, developed a typical mycelia at 23 degrees C, however, the yeast cells which developed at 37 degrees C were indistinguishable from those of the parental strain. A third mutant, strain Pb267, was thermosensitive, grew as yeast-like cells at 23 degrees C, but was unable to survive at 37 degrees C. Morphological observations as well as serological and segregation tests confirmed that the mutant strains originated from P. brasiliensis. Cell wall chemical analyses of the mutant strains grown at 23 degrees C indicated the presence of alkali-soluble, acid-insoluble polysaccharides absent in the parental wild-type strain Pb9 grown under the same conditions. The phenotypes shown by the mutant strains may be related to deficiencies in the proper synthesis of cell wall components of the mycelial phase of this fungus.

  10. Revealing Differences in Metabolic Flux Distributions between a Mutant Strain and Its Parent Strain Gluconacetobacter xylinus CGMCC 2955

    PubMed Central

    Liu, Miao; Yang, Xiao-Ning; Zhu, Hui-Xia; Jia, Yuan-Yuan; Jia, Shi-Ru; Piergiovanni, Luciano

    2014-01-01

    A better understanding of metabolic fluxes is important for manipulating microbial metabolism toward desired end products, or away from undesirable by-products. A mutant strain, Gluconacetobacter xylinus AX2-16, was obtained by combined chemical mutation of the parent strain (G. xylinus CGMCC 2955) using DEC (diethyl sulfate) and LiCl. The highest bacterial cellulose production for this mutant was obtained at about 11.75 g/L, which was an increase of 62% compared with that by the parent strain. In contrast, gluconic acid (the main byproduct) concentration was only 5.71 g/L for mutant strain, which was 55.7% lower than that of parent strain. Metabolic flux analysis indicated that 40.1% of the carbon source was transformed to bacterial cellulose in mutant strain, compared with 24.2% for parent strain. Only 32.7% and 4.0% of the carbon source were converted into gluconic acid and acetic acid in mutant strain, compared with 58.5% and 9.5% of that in parent strain. In addition, a higher flux of tricarboxylic acid (TCA) cycle was obtained in mutant strain (57.0%) compared with parent strain (17.0%). It was also indicated from the flux analysis that more ATP was produced in mutant strain from pentose phosphate pathway (PPP) and TCA cycle. The enzymatic activity of succinate dehydrogenase (SDH), which is one of the key enzymes in TCA cycle, was 1.65-fold higher in mutant strain than that in parent strain at the end of culture. It was further validated by the measurement of ATPase that 3.53–6.41 fold higher enzymatic activity was obtained from mutant strain compared with parent strain. PMID:24901455

  11. Mutagenesis and behavioral screening for altered circadian activity identifies the mouse mutant, Wheels.

    PubMed

    Pickard, G E; Sollars, P J; Rinchik, E M; Nolan, P M; Bucan, M

    1995-12-24

    The molecular processes underlying the generation of circadian behavior in mammals are virtually unknown. To identify genes that regulate or alter circadian activity rhythms, a mouse mutagenesis program was initiated in conjunction with behavioral screening for alterations in circadian period (tau), a fundamental property of the biological clock. Male mice of the inbred BALB/c strain, treated with the potent mutagen N-ethyl-N-nitrosourea were mated with wild-type hybrids. Wheel-running activity of approximately 300 male progeny was monitored for 6-10 weeks under constant dark (DD) conditions. The tau DD of a single mouse (#187) was longer than the population mean by more than three standard deviations (24.20 vs. 23.32 +/- 0.02 h; mean +/- S.E.M.; n = 277). In addition, mouse #187 exhibited other abnormal phenotypes, including hyperactive bi-directional circling/spinning activity and an abnormal response to light. Heterozygous progeny of the founder mouse, generated from outcrossings with wild-type C57BL/6J mice, displayed lengthened tau DD although approximately 20% of the animals showed no wheel-running activity despite being quite active. Under light:dark conditions, all animals displaying circling behavior that ran in the activity wheels exhibited robust wheel-running activity at lights-ON and these animals also showed enhanced wheel-running activity in constant light conditions. The genetic dissection of the complex behavior associated with this mutation was facilitated by the previously described genetic mapping of the mutant locus causing circling behavior, designated Wheels (Whl), to the subcentromeric portion of mouse chromosome 4. In this report, the same locus is shown to be responsible for the abnormal responses to light and presumably for the altered circadian behavior. Characterization of the gene altered in the novel Whl mutation will contribute to understanding the molecular elements involved in mammalian circadian regulation.

  12. Mutant human myocilin induces strain specific differences in ocular hypertension and optic nerve damage in mice.

    PubMed

    McDowell, Colleen M; Luan, Tomi; Zhang, Zhang; Putliwala, Tasneem; Wordinger, Robert J; Millar, J Cameron; John, Simon W M; Pang, Iok-Hou; Clark, Abbot F

    2012-07-01

    Elevated intraocular pressure (IOP) is a causative risk factor for the development and progression of glaucoma. Glaucomatous mutations in myocilin (MYOC) damage the trabecular meshwork and elevate IOP in humans and in mice. Animal models of glaucoma are important to discover and better understand molecular pathogenic pathways and to test new glaucoma therapeutics. Although a number of different animal models of glaucoma have been developed and characterized, there are no true models of human primary open angle glaucoma (POAG). The overall goal of this work is to develop the first inducible mouse model of POAG using a human POAG relevant transgene (i.e. mutant MYOC) expression in mouse eyes to elevate IOP and cause pressure-induced damage to the optic nerve. Four mouse strains (A/J, BALB/cJ, C57BL/6J, and C3H/HeJ) were used in this study. Ad5.MYOC.Y437H (5 × 10(7) pfu) was injected intravitreally into one eye, with the uninjected contralateral eye serving as the control eye. Conscious IOP measurements were taken using a TonoLab rebound tonometer. Optic nerve damage was determined by scoring PPD stained optic nerve cross sections. Retinal ganglion cell and superior colliculus damage was assessed by Nissl stain cell counts. Intravitreal administration of viral vector Ad5.MYOC.Y437H caused a prolonged, reproducible, and statistically significant IOP elevation in BALB/cJ, A/J, and C57BL/6J mice. IOPs increased to approximately 25 mm Hg for 8 weeks (p < 0.0001). In contrast, the C3H/HeJ mouse strain was resistant to Ad5.MYOC.Y437H induced IOP elevation for the 8-week time period. IOPs were stable (12-15 mm Hg) in the uninjected control eyes. We also determined whether there were any strain differences in pressure-induced optic nerve damage. Even though IOP was similarly elevated in three of the strains tested (BALB/cJ, C57BL/6J, and A/J) only the A/J strain had considerable and significant optic nerve damage at the end of 8 weeks with optic nerve damage score of 2.64

  13. Lactococcus lactis SpOx Spontaneous Mutants: a Family of Oxidative-Stress-Resistant Dairy Strains§

    PubMed Central

    Rochat, Tatiana; Gratadoux, Jean-Jacques; Corthier, Gérard; Coqueran, Bérard; Nader-Macias, Maria-Elena; Gruss, Alexandra; Langella, Philippe

    2005-01-01

    Numerous industrial bacteria generate hydrogen peroxide (H2O2), which may inhibit the growth of other bacteria in mixed ecosystems. We isolated spontaneous oxidative-stress-resistant (SpOx) Lactococcus lactis mutants by using a natural selection method with milk-adapted strains on dairy culture medium containing H2O2. Three SpOx mutants displayed greater H2O2 resistance. One of them, SpOx3, demonstrated better behavior in different oxidative-stress situations: (i) higher long-term survival upon aeration in LM17 and milk and (ii) the ability to grow with H2O2-producing Lactobacillus delbrueckii subsp. delbrueckii strains. Furthermore, the transit kinetics of the SpOx3 mutant in the digestive tract of a human flora-associated mouse model was not affected. PMID:15870374

  14. Identification of 17 hearing impaired mouse strains in the TMGC ENU-mutagenesis screen

    SciTech Connect

    Kermany, Mohammad; Parker, Lisan; Guo, Yun-Kai; Miller, Darla R; Swanson, Douglas J; Yoo, Tai-June; Goldowitz, Daniel; Zuo, Jian

    2006-01-01

    The Tennessee Mouse Genome Consortium (TMGC) employed an N-ethyl-N-nitrosourea (ENU)-mutagenesis scheme to identify mouse recessive mutants with hearing phenotypes. We employed auditory brainstem responses (ABR) to click and 8, 16, and 32 kHz stimuli and screened 285 pedigrees (1819 mice of 8-11 weeks old in various mixed genetic backgrounds) each bred to carry a homozygous ENU-induced mutation. To define mutant pedigrees, we measured P12 mice per pedigree in P2 generations and used a criterion where the mean ABR threshold per pedigree was two standard deviations above the mean of all offspring from the same parental strain. We thus identified 17 mutant pedigrees (6%), all exhibiting hearing loss at high frequencies (P16 kHz) with an average threshold elevation of 30-35 dB SPL. Interestingly, four mutants showed sex-biased hearing loss and six mutants displayed wide range frequency hearing loss. Temporal bone histology revealed that six of the first nine mutants displayed cochlear morphological defects: degeneration of spiral ganglia, spiral ligament fibrocytes or inner hair cells (but not outer hair cells) mostly in basal turns. In contrast to other ENU-mutagenesis auditory screens, our screen identified high-frequency, mild and sex-biased hearing defects. Further characterization of these 17 mouse models will advance our understanding of presbycusis and noise-induced hearing loss in humans.

  15. Biofilm formation by exopolysaccharide mutants of Leuconostoc mesenteroides strain NRRL B-1355

    USDA-ARS?s Scientific Manuscript database

    Leuconostoc mesenteroides strain NRRL B-1355 produces the soluble exopolysaccharides alternan and dextran in planktonic cultures. A set of mutants of this strain are available that are deficient in the production of alternan, dextran, or both. Another mutant of NRRL B-1355, strain R1510, produces ...

  16. Isolation and characterization of mutant strains of Bordetella bronchiseptica lacking dermonecrotic toxin-producing ability.

    PubMed Central

    Nagano, H; Nakai, T; Horiguchi, Y; Kume, K

    1988-01-01

    Mutant strains of Bordetella bronchiseptica, named B-42, B-76, B-84, and B-119, were obtained after serial passages of a parent strain, L3, on Bordet-Gengou agar plates containing 20% horse blood and 200 micrograms of nalidixic acid per ml (BGN-20 agar plates) at 42 degrees C. Mutant strains completely lacked dermonecrotic toxin-producing ability, and lethal activity of the strains for mice was apparently reduced compared with that of strain L3. Mutant strains were able to grow at 42 degrees C, and the strains were nalidixic acid resistant. The mutant strains showed domed (Dom+) colony morphology with smooth texture (Scs+) and no production of zone of hemolysis (Hly-), but the agglutinability of these strains to antiserum prepared with Dom+ Scs+ Hly+ organisms of strain L3 was the same as that of strain L3. When strain B-42 was inoculated intramuscularly or intranasally into guinea pigs, all the animals survived without manifesting clinical signs and produced a high-level of serum agglutination antibodies against strain L3. These inoculated animals were protected against intranasal challenge with strain L3. These properties of mutant strains are hereditarily stable after 50 subcultures on BGN-20 agar plates or 20 passages in mice. These data suggest that the mutant strains lacking dermonecrotic toxin-producing ability can be used as a live attenuated vaccine against swine atrophic rhinitis. PMID:3182989

  17. A Novel Mouse Fgfr2 Mutant, Hobbyhorse (hob), Exhibits Complete XY Gonadal Sex Reversal

    PubMed Central

    Siggers, Pam; Carré, Gwenn-Aël; Bogani, Debora; Warr, Nick; Wells, Sara; Hilton, Helen; Esapa, Chris; Hajihosseini, Mohammad K.; Greenfield, Andy

    2014-01-01

    The secreted molecule fibroblast growth factor 9 (FGF9) plays a critical role in testis determination in the mouse. In embryonic gonadal somatic cells it is required for maintenance of SOX9 expression, a key determinant of Sertoli cell fate. Conditional gene targeting studies have identified FGFR2 as the main gonadal receptor for FGF9 during sex determination. However, such studies can be complicated by inefficient and variable deletion of floxed alleles, depending on the choice of Cre deleter strain. Here, we report a novel, constitutive allele of Fgfr2, hobbyhorse (hob), which was identified in an ENU-based forward genetic screen for novel testis-determining loci. Fgr2hob is caused by a C to T mutation in the invariant exon 7, resulting in a polypeptide with a mis-sense mutation at position 263 (Pro263Ser) in the third extracellular immunoglobulin-like domain of FGFR2. Mutant homozygous embryos show severe limb and lung defects and, when on the sensitised C57BL/6J (B6) genetic background, undergo complete XY gonadal sex reversal associated with failure to maintain expression of Sox9. Genetic crosses employing a null mutant of Fgfr2 suggest that Fgr2hob is a hypomorphic allele, affecting both the FGFR2b and FGFR2c splice isoforms of the receptor. We exploited the consistent phenotype of this constitutive mutant by analysing MAPK signalling at the sex-determining stage of gonad development, but no significant abnormalities in mutant embryos were detected. PMID:24956260

  18. Rhizobium japonicum mutant strains unable to grow chemoautotrophically with H2.

    PubMed Central

    Maier, R J

    1981-01-01

    Rhizobium japonicum strain SR grows chemoautotrophically on a mineral salts medium when incubated in an H2- and CO2-containing atmosphere. Mutant strains unable to grow or that grow very poorly chemoautotrophically with H2 have been isolated from strain SR. The mutant isolation procedure involved mutagenesis with ethyl methane sulfonate, penicillin selection under chemoautotrophic growth conditions, and plating of the survivors onto medium containing carbon. The resulting colonies were replica plated onto medium that did not contain carbon, and the plates were incubated in an H2- and CO2-containing atmosphere. Mutant strains unable to grow under these conditions were chosen. Over 100 mutant strains with defects in chemoautotrophic metabolism were obtained. The phenotypes of the mutants fall into various classes. These include strains unable to oxidize H2 and strains deficient in CO2 uptake. Some of the mutant strains were capable of oxidizing H2 only when artificial electron acceptors were provided. Two mutant strains specifically lack activity of the key CO2-fixing enzyme ribulose 1,5-bisphosphate carboxylase. Other mutant strains lack both H2-oxidizing ability and ribulose 1,5-bisphosphate carboxylase activity. PMID:6780521

  19. Fusion-defective mutants of mouse hepatitis virus A59 contain a mutation in the spike protein cleavage signal.

    PubMed Central

    Gombold, J L; Hingley, S T; Weiss, S R

    1993-01-01

    Infection of primary mouse glial cell cultures with mouse hepatitis virus strain A59 results in a productive, persistent infection, but without any obvious cytopathic effect. Mutant viruses isolated from infected glial cultures 16 to 18 weeks postinfection replicate with kinetics similar to those of wild-type virus but produce small plaques on fibroblasts and cause only minimal levels of cell-to-cell fusion under conditions in which wild type causes nearly complete cell fusion. However, since extensive fusion is present in mutant-infected cells at late times postinfection, the defect is actually a delay in kinetics rather than an absolute block in activity. Addition of trypsin to mutant-infected fibroblast cultures enhanced cell fusion a small (two- to fivefold) but significant degree, indicating that the defect could be due to a lack of cleavage of the viral spike (fusion) protein. Sequencing of portions of the spike genes of six fusion-defective mutants revealed that all contained the same single nucleotide mutation resulting in a substitution of aspartic acid for histidine in the spike cleavage signal. Mutant virions contained only the 180-kDa form of spike protein, suggesting that this mutation prevented the normal proteolytic cleavage of the 180-kDa protein into the 90-kDa subunits. Examination of revertants of the mutants supports this hypothesis. Acquisition of fusion competence correlates with the replacement of the negatively charged aspartic acid with either the wild-type histidine or a nonpolar amino acid and the restoration of spike protein cleavage. These data confirm and extend previous reports concluding cleavage of S is required for efficient cell-cell fusion by mouse hepatitis virus but not for virus-cell fusion (infectivity). Images PMID:8392595

  20. Mutant Strains of Escherichia coli K-12 Unable to Form Ubiquinone

    PubMed Central

    Cox, G. B.; Gibson, F.; Pittard, James

    1968-01-01

    A strain of Escherichia coli was isolated which was unable to form ubiquinone. This mutant was obtained by selecting strains unable to grow on malate as sole source of carbon. Such strains were further screened by examination of the quinone content of cells grown on a glucose medium. A mutant unable to form vitamin K was also isolated by this procedure. A genetic analysis of the ubiquinoneless strain showed that it possessed two mutations affecting ubiquinone biosynthesis. Images PMID:4870277

  1. Differences in susceptibility of mouse strains to tetrodotoxin.

    PubMed

    Suzuki, Hodaka

    2016-09-01

    The mouse bioassay for tetrodotoxin has been used for many years in Japan. To the best of our knowledge, however, there have only been a few reports that have specifically investigated differences in susceptibility to tetrodotoxin among mouse strains. In this study, we investigated the response of various mouse strains to tetrodotoxin. Tetrodotoxin solution was injected intraperitoneally into male mice of 5 inbred strains (A/J, BALB/c, C3H/He, C57BL/6, and DBA/2) and male and female mice of 2 non-inbred strains (ddY and ICR). Significant differences in susceptibility to tetrodotoxin were found among the mouse strains tested. In comparison to the ddY male mice, which are designated to be used in the Japanese reference method, the 5 inbred strains of mice tested were significantly more resistant to tetrodotoxin. However, no significant differences in tetrodotoxin susceptibility were observed between ddY male and female mice or between ddY male mice and ICR male and female mice. These results indicate that the users of the mouse bioassay should pay attention to differences in mouse strain in susceptibility to tetrodotoxin. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Mouse infection and pathogenesis by Trypanosoma brucei motility mutants.

    PubMed

    Kisalu, Neville K; Langousis, Gerasimos; Bentolila, Laurent A; Ralston, Katherine S; Hill, Kent L

    2014-06-01

    The flagellum of Trypanosoma brucei is an essential and multifunctional organelle that drives parasite motility and is receiving increased attention as a potential drug target. In the mammalian host, parasite motility is suspected to contribute to infection and disease pathogenesis. However, it has not been possible to test this hypothesis owing to lack of motility mutants that are viable in the bloodstream life cycle stage that infects the mammalian host. We recently identified a bloodstream-form motility mutant in 427-derived T. brucei in which point mutations in the LC1 dynein subunit disrupt propulsive motility but do not affect viability. These mutants have an actively beating flagellum, but cannot translocate. Here we demonstrate that the LC1 point mutant fails to show enhanced cell motility upon increasing viscosity of the surrounding medium, which is a hallmark of wild type T. brucei, thus indicating that motility of the mutant is fundamentally altered compared with wild type cells. We next used the LC1 point mutant to assess the influence of trypanosome motility on infection in mice. Wesurprisingly found that disrupting parasite motility has no discernible effect on T. brucei bloodstream infection. Infection time-course, maximum parasitaemia, number of waves of parasitaemia, clinical features and disease outcome are indistinguishable between motility mutant and control parasites. Our studies provide an important step toward understanding the contribution of parasite motility to infection and a foundation for future investigations of T. brucei interaction with the mammalian host.

  3. Live four-dimensional optical coherence tomography reveals embryonic cardiac phenotype in mouse mutant

    NASA Astrophysics Data System (ADS)

    Lopez, Andrew L., III; Wang, Shang; Larin, Kirill V.; Overbeek, Paul A.; Larina, Irina V.

    2015-09-01

    Efficient phenotyping of developmental defects in model organisms is critical for understanding the genetic specification of normal development and congenital abnormalities in humans. We previously reported that optical coherence tomography (OCT) combined with live embryo culture is a valuable tool for mouse embryo imaging and four-dimensional (4-D) cardiodynamic analysis; however, its capability for analysis of mouse mutants with cardiac phenotypes has not been previously explored. Here, we report 4-D (three-dimensional+time) OCT imaging and analysis of the embryonic heart in a Wdr19 mouse mutant, revealing a heart looping defect. Quantitative analysis of cardiac looping revealed a statistically significant difference between mutant and control embryos. Our results indicate that live 4-D OCT imaging provides a powerful phenotyping approach to characterize embryonic cardiac function in mouse models.

  4. Biological Basis of Differential Susceptibility to Hepatocarcinogenesis among Mouse Strains*

    PubMed Central

    Maronpot, Robert R.

    2009-01-01

    There is a vast amount of literature related to mouse liver tumorigenesis generated over the past 60 years, not all of which has been captured here. The studies reported in this literature have generally been state of the art at the time they were carried out. A PubMed search on the topic “mouse liver tumors” covering the past 10 years yields over 7000 scientific papers. This review address several important topics related to the unresolved controversy regarding the relevance of mouse liver tumor responses observed in cancer bioassays. The inherent mouse strain differential sensitivities to hepatocarcinogenesis largely parallel the strain susceptibility to chemically induced liver neoplasia. The effects of phenobarbital and halogenated hydrocarbons in mouse hepatocarcinogenesis have been summarized because of recurring interest and numerous publications on these topics. No single simple paradigm fully explains differential mouse strain responses, which can vary more than 50-fold among inbred strains. In addition to inherent genetics, modifying factors including cell cycle balance, enzyme induction, DNA methylation, oncogenes and suppressor genes, diet, and intercellular communication influence susceptibility to spontaneous and induced mouse hepatocarcinogenesis. Comments are offered on the evaluation, interpretation, and relevance of mouse liver tumor responses in the context of cancer bioassays. PMID:22271974

  5. Gastrointestinal Colonization by Candida albicans Mutant Strains in Antibiotic-Treated Mice

    PubMed Central

    Wiesner, Stephen M.; Jechorek, Robert P.; Garni, Robb M.; Bendel, Catherine M.; Wells, Carol L.

    2001-01-01

    Antibiotic-treated mice orally inoculated with one of three Candida albicans strains (including two mutant strains) or indigenous Candida pelliculosa showed levels of candidal gastrointestinal colonization that were strain specific. However, regardless of strain, the numbers of viable candida were intermediate to high in the stomach, were consistently lowest in the upper small intestine, and increased progressively down the intestinal tract. PMID:11139219

  6. Comparative metabolic flux analysis of an Ashbya gossypii wild type strain and a high riboflavin-producing mutant strain.

    PubMed

    Jeong, Bo-Young; Wittmann, Christoph; Kato, Tatsuya; Park, Enoch Y

    2015-01-01

    In the present study, we analyzed the central metabolic pathway of an Ashbya gossypii wild type strain and a riboflavin over-producing mutant strain developed in a previous study in order to characterize the riboflavin over-production pathway. (13)C-Metabolic flux analysis ((13)C-MFA) was carried out in both strains, and the resulting data were fit to a steady-state flux isotopomer model using OpenFLUX. Flux to pentose-5-phosphate (P5P) via the pentose phosphate pathway (PPP) was 9% higher in the mutant strain compared to the wild type strain. The flux from purine synthesis to riboflavin in the mutant strain was 1.6%, while that of the wild type strain was only 0.1%, a 16-fold difference. In addition, the flux from the cytoplasmic pyruvate pool to the extracellular metabolites, pyruvate, lactate, and alanine, was 2-fold higher in the mutant strain compared to the wild type strain. This result demonstrates that increased guanosine triphosphate (GTP) flux through the PPP and purine synthesis pathway (PSP) increased riboflavin production in the mutant strain. The present study provides the first insight into metabolic flux through the central carbon pathway in A. gossypii and sets the foundation for development of a quantitative and functional model of the A. gossypii metabolic network.

  7. Increased riboflavin production from activated bleaching earth by a mutant strain of Ashbya gossypii.

    PubMed

    Tajima, Satoshi; Itoh, Yoko; Sugimoto, Takashi; Kato, Tatsuya; Park, Enoch Y

    2009-10-01

    The production of riboflavin from vegetable oil was increased using a mutant strain of Ashbya gossypii. This mutant was generated by treating the wild-type strain with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Riboflavin production was 10-fold higher in the mutant compared to the wild-type strain. The specific intracellular catalase activity after 3 d of culture was 6-fold higher in the mutant than in the wild-type strain. For the mutant, riboflavin production in the presence of 40 mM hydrogen peroxide was 16% less than that in the absence of hydrogen peroxide, whereas it was 56% less for the wild-type strain. The isocitrate lyase (ICL) activity of the mutant was 0.26 mU/mg of protein during the active riboflavin production phase, which was 2.6-fold higher than the wild-type strain. These data indicate that the mutant utilizes the carbon flux from the TCA cycle to the glyoxylate cycle more efficiently than the wild-type strain, resulting in enhanced riboflavin production. This novel mutant has the potential to be of use for industrial-scale riboflavin production from waste-activated bleaching earth (ABE), thereby transforming a useless material into a valuable bioproduct.

  8. Kiss of the Mutant Mouse: How Genetically Altered Mice Advanced Our Understanding of Kisspeptin's Role in Reproductive Physiology

    PubMed Central

    Elias, Carol F.

    2012-01-01

    The kisspeptin system has emerged as one of the most important circuits within the central network governing reproduction. Although kisspeptin physiology has been examined in many species, much of our understanding of this system has come from mice. Recently, the study of several innovative strains of genetically engineered mouse models has revealed intriguing and unexpected insights into the functions of kisspeptin signaling in the hypothalamus. Here, we review the advancements in our knowledge of the central kisspeptin system through the use of mutant mice. PMID:23011921

  9. Molecular Genetic Analysis of Revertants from a Poliovirus Mutant That Is Specifically Adapted to the Mouse Spinal Cord

    PubMed Central

    Jia, Qingmei; Hogle, James M.; Hashikawa, Tsutomu; Nomoto, Akio

    2001-01-01

    SA virus, a mutant of the Mahoney strain of type 1 poliovirus (PV1/Mahoney), replicates specifically in the spinal cords of mice and causes paralysis, although the PV1/Mahoney strain does not show any mouse neurovirulence (Q. Jia, S. Ohka, K. Iwasaki, K. Tohyama, and A. Nomoto, J. Virol. 73:6041–6047, 1999). The key mutation site for the mouse neurovirulence of SA was mapped to nucleotide (nt) 928 of the genome (A to G), resulting in the amino acid substitution of Met for Ile at residue 62 within the capsid protein VP4 (VP4062). A small-plaque phenotype of SA appears to be indicative of its mouse-neurovirulent phenotype. To identify additional amino acid residues involved in the host range determination of PV, a total of 14 large-plaque (LP) variants were isolated from a single point mutant, Mah/I4062M, that showed the SA phenotype. All the LP variants no longer showed any mouse neurovirulence when delivered via an intraspinal inoculation route. Of these, 11 isolates had a back mutation at nt 928 (G to A) that restored the nucleotide of the PV1/Mahoney type. The reversions of the remaining three isolates (LP8, LP9, and LP14) were mediated by a second site mutation. Molecular genetic analysis involving recombinants between Mah/I4062M and the LP variants revealed that the mere substitution of an amino acid residue at position 107 in VP1 (Val to Leu) (LP9), position 33 in VP2 (Val to Ile) (LP14), or position 231 in VP3 (Ile to Thr) (LP8) was sufficient to restore the PV1/Mahoney phenotype. These amino acid residues are located either on the surface or inside of the virus particle. Our results indicate that the mouse neurovirulence of PV is determined by the virion surface structure, which is formed by all four capsid proteins. PMID:11689657

  10. Comparison of adhesion, invasion, motility, and toxin production of Campylobacter strains and their resistant mutants.

    PubMed

    Zeitouni, Salman; Guyard-Nicodème, Muriel; Kempf, Isabelle

    2013-04-01

    The objectives of this study were to compare the in vitro adhesion and invasion of human epithelial cells, motility, and toxin production characteristics of Campylobacter-susceptible strains and their fluoroquinolone- or macrolide-resistant mutants. Susceptible strains and resistant mutants demonstrated similar adhesion capacities to epithelial cells. For Campylobacter coli, fluoroquinolone-resistant mutants with Thr86Ile or Asp90Asn substitutions showed a higher rate of invasion of Caco-2 cells than their isogenic parental strain. Fluoroquinolone resistance did not impact C. coli motility. Mutants harboring Asp90Asn had greater cytotoxic activity than the parental strain. Macrolide resistance had no impact on the studied characteristics of C. coli. For Campylobacter jejuni, fluoroquinolone-resistant mutants had slightly different invasiveness levels and significantly lower motility than the isogenic parental strain. C. jejuni macrolide-resistant mutants with A2074G substitution in the 23S rRNA gene had a higher invasiveness level than its parental strain, but mutants with A2074C in 23S rRNA and G221A in rplD showed reduced motility and similar invasion levels to the susceptible strains. Neither fluoroquinolone nor macrolide resistance appears to affect C. jejuni cytotoxicity. In conclusion, mutations that are frequently encountered in Campylobacter-resistant strains can enhance the invasiveness in Caco-2 cells.

  11. Susceptibility of lipopolysaccharide-defective mutants of Pseudomonas aeruginosa strain PAO to dyes, detergents, and antibiotics.

    PubMed Central

    Kropinski, A M; Chan, L; Milazzo, F H

    1978-01-01

    Lipopolysaccharide-defective mutants of Pseudomonas aeruginosa strain PAO have been isolated on the basis of their resistance to lipopolysaccharide-specific bacteriophages. These mutants have been differentiated by their agglutination in NaCl and acriflavine, phage sensitivity, and chemical analysis of the lipopolysaccharides. The susceptibility of the wild-type strain and four mutants to a series of twenty-six agents, including dyes, detergents, antibiotics, and lysozyme, was examined. The roughest mutant (AK-43) exhibited increased susceptibility to sodium deoxycholate, hexadecylpyridinium chloride, benzalkonium chloride, ampicillin, penicillin G, erythromycin, colymycin, and polymyxin B. The role of cell envelope fractions in antibiotic resistance in P. aeruginosa is discussed. PMID:122525

  12. Phenotypes of Myopathy-Related Beta-Tropomyosin Mutants in Human and Mouse Tissue Cultures

    PubMed Central

    Abdul-Hussein, Saba; Rahl, Karin; Moslemi, Ali-Reza; Tajsharghi, Homa

    2013-01-01

    Mutations in TPM2 result in a variety of myopathies characterised by variable clinical and morphological features. We used human and mouse cultured cells to study the effects of β-TM mutants. The mutants induced a range of phenotypes in human myoblasts, which generally changed upon differentiation to myotubes. Human myotubes transfected with the E41K-β-TMEGFP mutant showed perinuclear aggregates. The G53ins-β-TMEGFP mutant tended to accumulate in myoblasts but was incorporated into filamentous structures of myotubes. The K49del-β-TMEGFP and E122K-β-TMEGFP mutants induced the formation of rod-like structures in human cells. The N202K-β-TMEGFP mutant failed to integrate into thin filaments and formed accumulations in myotubes. The accumulation of mutant β-TMEGFP in the perinuclear and peripheral areas of the cells was the striking feature in C2C12. We demonstrated that human tissue culture is a suitable system for studying the early stages of altered myofibrilogenesis and morphological changes linked to myopathy-related β-TM mutants. In addition, the histopathological phenotype associated with expression of the various mutant proteins depends on the cell type and varies with the maturation of the muscle cell. Further, the phenotype is a combinatorial effect of the specific amino acid change and the temporal expression of the mutant protein. PMID:24039757

  13. Molecular construction and characterization of nif mutants of the obligate methanotroph Methylosinus sp. strain 6.

    PubMed Central

    Toukdarian, A E; Lidstrom, M E

    1984-01-01

    We describe here a method for constructing mutants in bacteria that are not amenable to mutant isolation by conventional means. A one-step marker exchange procedure was used to construct nitrogen fixation (nif) mutants of the obligate methane-utilizing bacterium Methylosinus sp. strain 6, using transposon 5 (Tn5)-containing nif genes cloned into pBR325. The resultant mutants appeared to contain defects in nif structural genes, and DNA hybridization analysis showed that although one out of five had apparently been produced as a result of double-crossover homologous recombination, a variety of molecular events had led to the production of the other four mutants. Images PMID:6321452

  14. Morris Water Maze Test: Optimization for Mouse Strain and Testing Environment

    PubMed Central

    Weitzner, Daniel S.; Engler-Chiurazzi, Elizabeth B.; Kotilinek, Linda A.; Ashe, Karen Hsiao; Reed, Miranda Nicole

    2015-01-01

    The Morris water maze (MWM) is a commonly used task to assess hippocampal-dependent spatial learning and memory in transgenic mouse models of disease, including neurocognitive disorders such as Alzheimer’s disease. However, the background strain of the mouse model used can have a substantial effect on the observed behavioral phenotype, with some strains exhibiting superior learning ability relative to others. To ensure differences between transgene negative and transgene positive mice can be detected, identification of a training procedure sensitive to the background strain is essential. Failure to tailor the MWM protocol to the background strain of the mouse model may lead to under- or over- training, thereby masking group differences in probe trials. Here, a MWM protocol tailored for use with the F1 FVB/N x 129S6 background is described. This is a frequently used background strain to study the age-dependent effects of mutant P301L tau (rTg(TauP301L)4510 mice) on the memory deficits associated with Alzheimer’s disease. Also described is a strategy to re-optimize, as dictated by the particular testing environment utilized. PMID:26132096

  15. A polymorphic form of steroidogenic factor-1 is associated with adrenocorticotropin resistance in y1 mouse adrenocortical tumor cell mutants.

    PubMed

    Frigeri, Claudia; Tsao, Jennivine; Cordova, Martha; Schimmer, Bernard P

    2002-10-01

    ACTH resistance in mutant derivatives of the Y1 mouse adrenocortical tumor cell line results from a defect that affects the activity of steroidogenic factor-1 (SF1), thereby preventing the expression of the melanocortin-2 receptor. In this report, we show that the SF1 genes in ACTH-resistant mutants differ from the gene in ACTH-responsive Y1 cells by two base changes-one that changes an Ala to Ser at codon 172, and one in the third position of codon 3 that does not affect the protein sequence. Furthermore, several of the mutants contain multiple copies of this alternate SF1 gene (SF1(S172)) on acentric chromosome fragments. The SF1(S172) allele represents a polymorphism rather than a spontaneous mutation because the two SF1 alleles can be traced to the hybrid mouse strain (C57L/J x A/HeJ) from which the original adrenal tumor was derived. The SF1(A172) allele also is found in C57Bl/6J and C57Bl/10J mice, whereas the SF1(S172) allele also is found in C3H/HeJ and DBA/2J mice. The two forms of SF1 had only modest differences in activity suggesting that the SF1 polymorphism per se is not directly responsible for ACTH resistance. Our results indicate that the SF1(S172) allele is a marker of ACTH resistance in this family of adrenocortical tumor cells.

  16. Establishment of permanent chimerism in a lactate dehydrogenase-deficient mouse mutant with hemolytic anemia

    SciTech Connect

    Datta, T.; Doermer, P.

    1987-12-01

    Pluripotent hemopoietic stem cell function was investigated in the homozygous muscle type lactate dehydrogenase (LDH-A) mutant mouse using bone marrow transplantation experiments. Hemopoietic tissues of LDH-A mutants showed a marked decreased in enzyme activity that was associated with severe hemolytic anemia. This condition proved to be transplantable into wild type mice (+/+) through total body irradiation (TBI) at a lethal dose of 8.0 Gy followed by engraftment of mutant bone marrow cells. Since the mutants are extremely radiosensitive (lethal dose50/30 4.4 Gy vs 7.3 Gy in +/+ mice), 8.0-Gy TBI followed by injection of even high numbers of normal bone marrow cells did not prevent death within 5-6 days. After a nonlethal dose of 4.0 Gy and grafting of normal bone marrow cells, a transient chimerism showing peripheral blood characteristics of the wild type was produced that returned to the mutant condition within 12 weeks. The transfusion of wild type red blood cells prior to and following 8.0-Gy TBI and reconstitution with wild type bone marrow cells prevented the early death of the mutants and permanent chimerism was achieved. The chimeras showed all hematological parameters of wild type mice, and radiosensitivity returned to normal. It is concluded that the mutant pluripotent stem cells are functionally comparable to normal stem cells, emphasizing the significance of this mouse model for studies of stem cell regulation.

  17. Mutant strains of Tetrahymena thermophila defective in thymidine kinase activity: Biochemical and genetic characterization

    SciTech Connect

    Cornish, K.V.; Pearlman, R.E.

    1982-08-01

    Three mutant strains, one conditional, of Tetrahymena thermophila were defective in thymidine phosphorylating activity in vivo and in thymidine kinase activity in vitro. Nucleoside phosphotransferase activity in mutant cell extracts approached wild-type levels, suggesting that thymidine kinase is responsible for most, if not all, thymidine phosphorylation in vivo. Thymidine kinase activity in extracts of the conditional mutant strain was deficient when the cells were grown or assayed or both at the permissive temperature, implying a structural enzyme defect. Analysis of the reaction products from in vitro assays with partially purified enzymes showed that phosphorylation by thymidine kinase and nucleoside phosphotransferase occurred at the 5' position. Genetic analyses showed that the mutant phenotype was recessive and that mutations in each of the three mutant strains did not complement, suggesting allelism.

  18. Human homologue for the mouse mutant disorganisation: does it exist?

    PubMed Central

    Naguib, K K; Hamoud, M S; Khalil, E S; el-Khalifa, M Y

    1991-01-01

    We describe a newborn Arab male with defects similar to those seen in mice heterozygous for the mutant disorganisation (DS) gene. He had complete absence of the left lower limb including the left pelvic bone, hamartomas arising from the abdominal wall, a small penis, absent left half of the scrotal sac, absent left testicle, anterior displacement of the anus, and multiple vertebral defects. The similarity between the proband's anomalies and those found in affected heterozygotes for DS support the possibility of a human homologue of the DS gene. PMID:2002487

  19. Characterization of Brucella abortus mutant strain Δ22915, a potential vaccine candidate.

    PubMed

    Bao, Yanqing; Tian, Mingxing; Li, Peng; Liu, Jiameng; Ding, Chan; Yu, Shengqing

    2017-04-04

    Brucellosis, caused by Brucella spp., is an important zoonosis worldwide. Vaccination is an effective strategy for protection against Brucella infection in livestock in developing countries and in wildlife in developed countries. However, current vaccine strains including S19 and RB51 are pathogenic to humans and pregnant animals, limiting their use. In this study, we constructed the Brucella abortus (B. abortus) S2308 mutant strain Δ22915, in which the putative lytic transglycosylase gene BAB_RS22915 was deleted. The biological properties of mutant strain Δ22915 were characterized and protection of mice against virulent S2308 challenge was evaluated. The mutant strain Δ22915 showed reduced survival within RAW264.7 cells and survival in vivo in mice. In addition, the mutant strain Δ22915 failed to escape fusion with lysosomes within host cells, and caused no observable pathological damage. RNA-seq analysis indicated that four genes associated with amino acid/nucleotide transport and metabolism were significantly upregulated in mutant strain Δ22915. Furthermore, inoculation of ∆22915 at 10(5) colony forming units induced effective host immune responses and long-term protection of BALB/c mice. Therefore, mutant strain ∆22915 could be used as a novel vaccine candidate in the future to protect animals against B. abortus infection.

  20. Transgenic mouse with human mutant p53 expression in the prostate epithelium.

    PubMed

    Elgavish, Ada; Wood, Philip A; Pinkert, Carl A; Eltoum, Isam-Eldin; Cartee, Todd; Wilbanks, John; Mentor-Marcel, Roycelynn; Tian, Liqun; Scroggins, Samuel E

    2004-09-15

    Apoptosis is disrupted in prostate tumor cells, conferring a survival advantage. p53 is a nuclear protein believed to regulate cancer progression, in part by inducing apoptosis. To test this possibility in future studies, the objective of the present study was to generate a transgenic mouse model expressing mutant p53 in the prostate (PR). Transgene incorporation was tested using Southern analysis. Expression of mutant p53 protein was examined using immunofluorescence microscopy. Apoptosis in the PR was evaluated using the Tunnel method. A construct, consisting of the rat probasin promoter and a mutant human p53 fragment, was prepared and used to generate transgenic mice. rPB-mutant p53 transgene incorporation, as well as nuclear accumulation of mutant human p53 protein, was demonstrated. Prostatic intraepithelial neoplasia (PIN) III and IV were found in PR of 52-week old transgenic mice, whereas no pathological changes were found in the other organs examined. PR ability to undergo apoptosis following castration was reduced in rPB-mutant p53 mice as compared to non transgenic littermates. Transgenic rPB-mutant p53 mice accumulate mutant p53 protein in PR, resulting in neoplastic lesions and reduced apoptotic potential in the PR. Breeding rPB-mutant p53 mice with mice expressing an oncogene in their PR will be useful in examining interactions of multiple genes that result in progression of slow growing prostate tumors expressing oncogenes alone to metastatic cancer. Copyright 2004 Wiley-Liss, Inc.

  1. Developing mouse models of aging: a consideration of strain differences in age-related behavioral and neural parameters.

    PubMed

    Ingram, D K; Jucker, M

    1999-01-01

    Increased interest is emerging for using mouse models to assess the genetics of brain aging and age-related neurodegenerative diseases. Despite this demand, relatively little information is available on aging in behavioral or neuromorphological parameters in various mouse strains that are being used to create transgenic and null mutant mice. We review several issues regarding selection of appropriate strains as follows: (1) Does the behavioral parameter exhibit a significant age by strain interaction? (2) Do the strains differ in lifespan? (3) Are there potential intervening variables, such as strain-specific performance strategies or disease, in the behavioral task being investigated that would confound the desired conclusions? (4) Does the behavioral difference have an underlying neural correlate? In this context we present a conceptual model pertaining to the selection of mouse strains and behavioral parameters for genetic analyses. We also review the importance of applying stereological techniques for determining age-related structural changes in the mouse brain as well as the potential value of a database that would catalog this information. Thus, our intention is to underscore the growing importance of mouse models of brain aging and the concomitant need for additional information about mouse aging in general.

  2. Free mycolic acid accumulation in the cell wall of the mce1 operon mutant strain of Mycobacterium tuberculosis.

    PubMed

    Cantrell, Sally A; Leavell, Michael D; Marjanovic, Olivera; Iavarone, Anthony T; Leary, Julie A; Riley, Lee W

    2013-10-01

    The lipid-rich cell wall of Mycobacterium tuberculosis, the agent of tuberculosis, serves as an effective barrier against many chemotherapeutic agents and toxic host cell effector molecules, and it may contribute to the mechanism of persistence. Mycobacterium tuberculosis strains mutated in a 13-gene operon called mce1, which encodes a putative ABC lipid transporter, induce aberrant granulomatous response in mouse lungs. Because of the postulated role of the mce1 operon in lipid importation, we compared the cell wall lipid composition of wild type and mce1 operon mutant M. tuberculosis H37Rv strains. High resolution mass spectrometric analyses of the mce1 mutant lipid extracts showed unbound mycolic acids to accumulate in the cell wall. Quantitative analysis revealed a 10.7 fold greater amount of free mycolates in the mutant compared to that of the wild type strain. The free mycolates were comprised of alpha, methoxy and keto mycolates in the ratio 1:0.9:0.6, respectively. Since the mce1 operon is regulated in vivo, the free mycolates that accumulate during infection may serve as a barrier for M. tuberculosis against toxic products and contribute to the pathogen's persistence.

  3. Evidence for a mouse pathogenicity locus in certain temperature-sensitive mutants of foot-and-mouth disease virus.

    PubMed Central

    Richmond, J Y

    1977-01-01

    Serial tissue culture passaging of three foot-and-mouth disease temperature-sensitive mutants demonstrated the stability of their temperature sensitivity and mouse avirulence characteristics. Recovery of mouse-virulent temperature-sensitive viruses after passage of the mutants in mice suggested that these were not covariant expressions of the same locus, but were under the control of different genes. PMID:197007

  4. Mutant E. coli strain with increased succinic acid production

    DOEpatents

    Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    2001-09-25

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which has been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria.

  5. Mutant E. coli strain with increased succinic acid production

    DOEpatents

    Donnelly, M.; Millard, C.S.; Stols, L.

    1998-06-23

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which as been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria. 2 figs.

  6. Mutant E. coli strain with increased succinic acid production

    DOEpatents

    Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    1998-01-01

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which as been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria.

  7. Mutant E. coli strain with increased succinic acid production

    DOEpatents

    Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    2002-01-01

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which has been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria.

  8. Convergent Replication of Mouse Synthetic Prion Strains

    PubMed Central

    Ghaemmaghami, Sina; Colby, David W.; Nguyen, Hoang-Oanh B.; Hayashi, Shigenari; Oehler, Abby; DeArmond, Stephen J.; Prusiner, Stanley B.

    2014-01-01

    Prion diseases are neurodegenerative disorders characterized by the aberrant folding of endogenous proteins into self-propagating pathogenic conformers. Prion disease can be initiated in animal models by inoculation with amyloid fibrils formed from bacterially derived recombinant prion protein. The synthetic prions that accumulated in infected organisms are structurally distinct from the amyloid preparations used to initiate their formation and change conformationally on repeated passage. To investigate the nature of synthetic prion transformation, we infected mice with a conformationally diverse set of amyloids and serially passaged the resulting prion strains. At each passage, we monitored changes in the biochemical and biological properties of the adapting strain. The physicochemical properties of each synthetic prion strain gradually changed on serial propagation until attaining a common adapted state with shared physicochemical characteristics. These results indicate that synthetic prions can assume multiple intermediate conformations before converging into one conformation optimized for in vivo propagation. PMID:23438476

  9. Effects of tazobactam on the frequency of the emergence of resistant strains from Enterobacter cloacae, Citrobacter freundii, and Proteus vulgaris (beta-lactamase derepressed mutants).

    PubMed

    Higashitani, F; Nishida, K; Hyodo, A; Inoue, M

    1995-09-01

    When Enterobacter cloacae, Citrobacter freundii, and Proteus vulgaris were treated with piperacillin (PIPC) in combination with tazobactam (TAZ), the in vitro frequency of emergence of resistant strains (beta-lactamase producing mutants) was lower than with PIPC or ceftazidime (CAZ) treated bacteria. In a mouse intraperitoneal infection model caused by E. cloacae, beta-lactamase derepressed mutants were detected following therapy with PIPC or CAZ, although no derepressed mutants were detected after treatment with PIPC in combination with TAZ. This suppression of the selection of derepressed mutants, which produce large amounts of beta-lactamases, by the combination of TAZ and PIPC suggests that the combination delays the increase of resistant mutants compared with PIPC alone.

  10. The International Mouse Strain Resource (IMSR): cataloging worldwide mouse and ES cell line resources.

    PubMed

    Eppig, Janan T; Motenko, Howie; Richardson, Joel E; Richards-Smith, Beverly; Smith, Cynthia L

    2015-10-01

    The availability of and access to quality genetically defined, health-status known mouse resources is critical for biomedical research. By ensuring that mice used in research experiments are biologically, genetically, and health-status equivalent, we enable knowledge transfer, hypothesis building based on multiple data streams, and experimental reproducibility based on common mouse resources (reagents). Major repositories for mouse resources have developed over time and each has significant unique resources to offer. Here we (a) describe The International Mouse Strain Resource that offers users a combined catalog of worldwide mouse resources (live, cryopreserved, embryonic stem cells), with direct access to repository sites holding resources of interest and (b) discuss the commitment to nomenclature standards among resources that remain a challenge in unifying mouse resource catalogs.

  11. Mutant IDH1 Disrupts the Mouse Subventricular Zone and Alters Brain Tumor Progression.

    PubMed

    Pirozzi, Christopher J; Carpenter, Austin B; Waitkus, Matthew S; Wang, Catherine Y; Zhu, Huishan; Hansen, Landon J; Chen, Lee H; Greer, Paula K; Feng, Jie; Wang, Yu; Bock, Cheryl B; Fan, Ping; Spasojevic, Ivan; McLendon, Roger E; Bigner, Darell D; He, Yiping; Yan, Hai

    2017-02-01

    IDH1 mutations occur in the majority of low-grade gliomas and lead to the production of the oncometabolite, D-2-hydroxyglutarate (D-2HG). To understand the effects of tumor-associated mutant IDH1 (IDH1-R132H) on both the neural stem cell (NSC) population and brain tumorigenesis, genetically faithful cell lines and mouse model systems were generated. Here, it is reported that mouse NSCs expressing Idh1-R132H displayed reduced proliferation due to p53-mediated cell cycle arrest as well as a decreased ability to undergo neuronal differentiation. In vivo, Idh1-R132H expression reduced proliferation of cells within the germinal zone of the subventricular zone (SVZ). The NSCs within this area were dispersed and disorganized in mutant animals, suggesting that Idh1-R132H perturbed the NSCs and the microenvironment from which gliomas arise. Additionally, tumor-bearing animals expressing mutant Idh1 displayed a prolonged survival and also overexpressed Olig2, features consistent with IDH1-mutated human gliomas. These data indicate that mutant Idh1 disrupts the NSC microenvironment and the candidate cell of origin for glioma; thus, altering the progression of tumorigenesis. Additionally, this study provides a mutant Idh1 brain tumor model that genetically recapitulates human disease, laying the foundation for future investigations on mutant IDH1-mediated brain tumorigenesis and targeted therapy.

  12. Accelerated Human Mutant Tau Aggregation by Knocking Out Murine Tau in a Transgenic Mouse Model

    PubMed Central

    Ando, Kunie; Leroy, Karelle; Héraud, Céline; Yilmaz, Zehra; Authelet, Michèle; Suain, Valèrie; De Decker, Robert; Brion, Jean-Pierre

    2011-01-01

    Many models of human tauopathies have been generated in mice by expression of a human mutant tau with maintained expression of mouse endogenous tau. Because murine tau might interfere with the toxic effects of human mutant tau, we generated a model in which a pathogenic human tau protein is expressed in the absence of wild-type tau protein, with the aim of facilitating the study of the pathogenic role of the mutant tau and to reproduce more faithfully a human tauopathy. The Tg30 line is a tau transgenic mouse model overexpressing human 1N4R double-mutant tau (P301S and G272V) that develops Alzheimer's disease-like neurofibrillary tangles in an age-dependent manner. By crossing Tg30 mice with mice invalidated for their endogenous tau gene, we obtained Tg30xtau−/− mice that express only exogenous human double-mutant 1N4R tau. Although Tg30xtau−/− mice express less tau protein compared with Tg30, they exhibit signs of decreased survival, increased proportion of sarkosyl-insoluble tau in the brain and in the spinal cord, increased number of Gallyas-positive neurofibrillary tangles in the hippocampus, increased number of inclusions in the spinal cord, and a more severe motor phenotype. Deletion of murine tau accelerated tau aggregation during aging of this mutant tau transgenic model, suggesting that murine tau could interfere with the development of tau pathology in transgenic models of human tauopathies. PMID:21281813

  13. Cerebellar Expression of the Neurotrophin Receptor p75 in Naked-Ataxia Mutant Mouse.

    PubMed

    Rahimi Balaei, Maryam; Jiao, Xiaodan; Ashtari, Niloufar; Afsharinezhad, Pegah; Ghavami, Saeid; Marzban, Hassan

    2016-01-15

    Spontaneous mutation in the lysosomal acid phosphatase 2 (Acp2) mouse (nax--naked-ataxia mutant mouse) correlates with severe cerebellar defects including ataxia, reduced size and abnormal lobulation as well as Purkinje cell (Pc) degeneration. Loss of Pcs in the nax cerebellum is compartmentalized and harmonized to the classic pattern of gene expression of the cerebellum in the wild type mouse. Usually, degeneration starts in the anterior and posterior zones and continues to the central and nodular zones of cerebellum. Studies have suggested that the p75 neurotrophin receptor (NTR) plays a role in Pc degeneration; thus, in this study, we investigated the p75NTR pattern and protein expression in the cerebellum of the nax mutant mouse. Despite massive Pc degeneration that was observed in the nax mouse cerebellum, p75NTR pattern expression was similar to the HSP25 pattern in nax mice and comparable with wild type sibling cerebellum. In addition, immunoblot analysis of p75NTR protein expression did not show any significant difference between nax and wild type sibling (p > 0.5). In comparison with wild type counterparts, p75NTR pattern expression is aligned with the fundamental cytoarchitecture organization of the cerebellum and is unchanged in the nax mouse cerebellum despite the severe neurodevelopmental disorder accompanied with Pc degeneration.

  14. Characterization of a spontaneous adhesion-defective mutant of Ruminococcus albus strain 20.

    PubMed

    Mosoni, P; Gaillard-Martinie, B

    2001-07-01

    A spontaneous adhesion-defective mutant (mutant D5) of Ruminococcus albus strain 20 was isolated and compared to the parent to investigate the impact of the mutation on cellulolysis and to identify the adhesion mechanism of R. albus. The comparison of kinetics of cellulose degradation by strain 20 and mutant D5 showed that the mutation delayed and reduced bacterial growth on cellulose and cellulose degradation. These results were partly explained by a twofold lower cellulase activity in the mutant than in the parent. The glycocalyx of strain 20, observed by transmission electron microscopy, was large and homogeneous, and linked cells to cellulose. The mutant glycocalyx was aggregated at its periphery and cells attached loosely to cellulose. A glycoprotein of 25 kDa (GP25), present in the membrane fraction and the extracellular medium of strain 20, was not detected in the same fractions of mutant D5. Though glycoprotein GP25 did not bind to cellulose, it may be involved in adhesion as an intermediate component. Different cell-surface features of mutant D5 (cellulases, glycoprotein GP25, glycocalyx) were thus affected, any or all of which may be involved in its adhesion-defective phenotype. These results suggest that adhesion and cellulolysis are linked and that adhesion is a multifactorial phenomenon that involves at least the extracellular glycocalyx.

  15. Mouse model of Sanfilippo syndrome type B: relation of phenotypic features to background strain.

    PubMed

    Gografe, Sylvia I; Garbuzova-Davis, Svitlana; Willing, Alison E; Haas, Ken; Chamizo, Wilfredo; Sanberg, Paul R

    2003-12-01

    Sanfilippo syndrome type B or mucopolysaccharidosis type III B (MPS IIIB) is a lysosomal storage disorder that is inherited in autosomal recessive manner. It is characterized by systemic heparan sulfate accumulation in lysosomes due to deficiency of the enzyme alpha-N-acetylglucosaminidase (Naglu). Devastating clinical abnormalities with severe central nervous system involvement and somatic disease lead to premature death. A mouse model of Sanfilippo syndrome type B was created by targeted disruption of the gene encoding Naglu, providing a powerful tool for understanding pathogenesis and developing novel therapeutic strategies. However, the JAX GEMM Strain B6.129S6-Naglutm1Efn mouse, although showing biochemical similarities to humans with Sanfilippo syndrome, exhibits aging and behavioral differences. We observed idiosyncrasies, such as skeletal dysmorphism, hydrocephalus, ocular abnormalities, organomegaly, growth retardation, and anomalies of the integument, in our breeding colony of Naglu mutant mice and determined that several of them were at least partially related to the background strain C57BL/6. These background strain abnormalities, therefore, potentially mimic or overlap signs of the induced syndrome in our mice. Our observations may prove useful in studies of Naglu mutant mice. The necessity for distinguishing background anomalies from signs of the modeled disease is apparent.

  16. An Escherichia coli Nissle 1917 Missense Mutant Colonizes the Streptomycin-Treated Mouse Intestine Better than the Wild Type but Is Not a Better Probiotic

    PubMed Central

    Adediran, Jimmy; Leatham-Jensen, Mary P.; Mokszycki, Matthew E.; Frimodt-Møller, Jakob; Krogfelt, Karen A.; Kazmierczak, Krystyna; Kenney, Linda J.; Conway, Tyrrell

    2014-01-01

    Previously we reported that the streptomycin-treated mouse intestine selected for two different Escherichia coli MG1655 mutants with improved colonizing ability: nonmotile E. coli MG1655 flhDC deletion mutants that grew 15% faster in vitro in mouse cecal mucus and motile E. coli MG1655 envZ missense mutants that grew slower in vitro in mouse cecal mucus yet were able to cocolonize with the faster-growing flhDC mutants. The E. coli MG1655 envZ gene encodes a histidine kinase that is a member of the envZ-ompR two-component signal transduction system, which regulates outer membrane protein profiles. In the present investigation, the envZP41L gene was transferred from the intestinally selected E. coli MG1655 mutant to E. coli Nissle 1917, a human probiotic strain used to treat gastrointestinal infections. Both the E. coli MG1655 and E. coli Nissle 1917 strains containing envZP41L produced more phosphorylated OmpR than their parents. The E. coli Nissle 1917 strain containing envZP41L also became more resistant to bile salts and colicin V and grew 50% slower in vitro in mucus and 15% to 30% slower on several sugars present in mucus, yet it was a 10-fold better colonizer than E. coli Nissle 1917. However, E. coli Nissle 1917 envZP41L was not better at preventing colonization by enterohemorrhagic E. coli EDL933. The data can be explained according to our “restaurant” hypothesis for commensal E. coli strains, i.e., that they colonize the intestine as sessile members of mixed biofilms, obtaining the sugars they need for growth locally, but compete for sugars with invading E. coli pathogens planktonically. PMID:24478082

  17. Examining the virulence of Candida albicans transcription factor mutants using Galleria mellonella and mouse infection models.

    PubMed

    Amorim-Vaz, Sara; Delarze, Eric; Ischer, Françoise; Sanglard, Dominique; Coste, Alix T

    2015-01-01

    The aim of the present study was to identify Candida albicans transcription factors (TFs) involved in virulence. Although mice are considered the gold-standard model to study fungal virulence, mini-host infection models have been increasingly used. Here, barcoded TF mutants were first screened in mice by pools of strains and fungal burdens (FBs) quantified in kidneys. Mutants of unannotated genes which generated a kidney FB significantly different from that of wild-type were selected and individually examined in Galleria mellonella. In addition, mutants that could not be detected in mice were also tested in G. mellonella. Only 25% of these mutants displayed matching phenotypes in both hosts, highlighting a significant discrepancy between the two models. To address the basis of this difference (pool or host effects), a set of 19 mutants tested in G. mellonella were also injected individually into mice. Matching FB phenotypes were observed in 50% of the cases, highlighting the bias due to host effects. In contrast, 33.4% concordance was observed between pool and single strain infections in mice, thereby highlighting the bias introduced by the "pool effect." After filtering the results obtained from the two infection models, mutants for MBF1 and ZCF6 were selected. Independent marker-free mutants were subsequently tested in both hosts to validate previous results. The MBF1 mutant showed impaired infection in both models, while the ZCF6 mutant was only significant in mice infections. The two mutants showed no obvious in vitro phenotypes compared with the wild-type, indicating that these genes might be specifically involved in in vivo adapt.

  18. Examining the virulence of Candida albicans transcription factor mutants using Galleria mellonella and mouse infection models

    PubMed Central

    Amorim-Vaz, Sara; Delarze, Eric; Ischer, Françoise; Sanglard, Dominique; Coste, Alix T

    2015-01-01

    The aim of the present study was to identify Candida albicans transcription factors (TFs) involved in virulence. Although mice are considered the gold-standard model to study fungal virulence, mini-host infection models have been increasingly used. Here, barcoded TF mutants were first screened in mice by pools of strains and fungal burdens (FBs) quantified in kidneys. Mutants of unannotated genes which generated a kidney FB significantly different from that of wild-type were selected and individually examined in Galleria mellonella. In addition, mutants that could not be detected in mice were also tested in G. mellonella. Only 25% of these mutants displayed matching phenotypes in both hosts, highlighting a significant discrepancy between the two models. To address the basis of this difference (pool or host effects), a set of 19 mutants tested in G. mellonella were also injected individually into mice. Matching FB phenotypes were observed in 50% of the cases, highlighting the bias due to host effects. In contrast, 33.4% concordance was observed between pool and single strain infections in mice, thereby highlighting the bias introduced by the “pool effect.” After filtering the results obtained from the two infection models, mutants for MBF1 and ZCF6 were selected. Independent marker-free mutants were subsequently tested in both hosts to validate previous results. The MBF1 mutant showed impaired infection in both models, while the ZCF6 mutant was only significant in mice infections. The two mutants showed no obvious in vitro phenotypes compared with the wild-type, indicating that these genes might be specifically involved in in vivo adapt PMID:25999923

  19. Toxoplasma gondii strain-dependent effects on mouse behaviour.

    PubMed

    Kannan, Geetha; Moldovan, Krisztina; Xiao, Jian-Chun; Yolken, Robert H; Jones-Brando, Lorraine; Pletnikov, Mikhail V

    2010-06-01

    Toxoplasma gondii reportedly manipulates rodent behaviour to increase transmission to its definitive feline host. We compared the effects of mouse infection by two Type II strains of T. gondii, Prugniaud (PRU) and ME49, on attraction to cat odour, locomotor activity, anxiety, sensorimotor gating, and spatial working and recognition memory 2 months post-infection (mpi). Attraction to cat odour was reassessed 7 mpi. At 2 mpi, mice infected with either strain exhibited significantly more attraction to cat odour than uninfected animals did, but only PRU-infected mice exhibited this behaviour 7 mpi. PRU-infected mice had significantly greater body weights and hyperactivity, while ME49-infected mice exhibited impaired spatial working memory. No differences in parasite antibody titres were seen between PRU- and ME49-infected mice. The present data suggest the effect of T. gondii infection on mouse behaviour is parasite strain-dependent.

  20. The circling mutant Pcdh15roda is a new mouse model for hearing loss.

    PubMed

    Torres, Adriana Amorim; Rzadzinska, Agnieszka K; Ribeiro, Andrea Frozino; Silva, Daniel Almeida da Silva E; Guénet, Jean-Louis; Massironi, Sílvia Maria Gomes; Godard, Ana Lúcia Brunialti

    2013-01-01

    Mouse mutagenesis is a key tool for studying gene function and several mutant alleles have been described and constitute mouse models for human hereditary diseases. Genetic hearing loss represents over 50% of all hearing loss cases in children and, due to the heterogeneity of the disorder, there is still a demand for the isolation and characterization of new genes and alleles. Here we report phenotypic and molecular characterization of a new mouse model for hereditary hearing loss. The mutant rodador, isolated by Massironi and colleagues in 2006, presents an autosomal recessive disorder characterized by deafness and balance dysfunction associated with abnormal stereocilia in the inner ear. The mutation was mapped to mouse chromosome 10, and characterization of the gene Pcdh15 revealed an AT-to-GC transition in intron 23 of mutant animals. The alteration led to the switch of a dinucleotide ApA for ApG, creating a novel intronic acceptor splice site, which leads to incorporation of eight intronic bases into the processed mRNA and alteration of the downstream reading frame. In silico analysis indicated that the mutated protein is truncated and lacks two cadherin domains, and the transmembrane and cytoplasmic domains. Real Time PCR analyses revealed a significantly reduced Pcdh15 mRNA level in the brain of mutant mice, which might be due to the mechanism of non-sense mediated decay. In man, mutations in the orthologue PCDH15 cause non-syndromic deafness and Usher Syndrome Type 1F, a genetic disorder characterized by hearing loss and retinitis pigmentosa. Rodador mouse constitutes a new model for studying deafness in these conditions and may help in the comprehension of the pathogeneses of the disease, as well as of the mechanisms involved in the morphogenesis and function of inner ear stereocilia. This is a new ENU-induced allele and the first isolated in a BALB/c background.

  1. Hush puppy: a new mouse mutant with pinna, ossicle, and inner ear defects.

    PubMed

    Pau, Henry; Fuchs, Helmut; de Angelis, Martin Hrabé; Steel, Karen P

    2005-01-01

    Deafness can be associated with abnormalities of the pinna, ossicles, and cochlea. The authors studied a newly generated mouse mutant with pinna defects and asked whether these defects are associated with peripheral auditory or facial skeletal abnormalities, or both. Furthermore, the authors investigated where the mutation responsible for these defects was located in the mouse genome. The hearing of hush puppy mutants was assessed by Preyer reflex and electrophysiological measurement. The morphological features of their middle and inner ears were investigated by microdissection, paint-filling of the labyrinth, and scanning electron microscopy. Skeletal staining of skulls was performed to assess the craniofacial dimensions. Genome scanning was performed using microsatellite markers to localize the mutation to a chromosomal region. Some hush puppy mutants showed early onset of hearing impairment. They had small, bat-like pinnae and normal malleus but abnormal incus and stapes. Some mutants had asymmetrical defects and showed reduced penetrance of the ear abnormalities. Paint-filling of newborns' inner ears revealed no morphological abnormality, although half of the mice studied were expected to carry the mutation. Reduced numbers of outer hair cells were demonstrated in mutants' cochlea on scanning electron microscopy. Skeletal staining showed that the mutants have significantly shorter snouts and mandibles. Genome scan revealed that the mutation lies on chromosome 8 between markers D8Mit58 and D8Mit289. The study results indicate developmental problems of the first and second branchial arches and otocyst as a result of a single gene mutation. Similar defects are found in humans, and hush puppy provides a mouse model for investigation of such defects.

  2. Reporter Gene Silencing in Targeted Mouse Mutants Is Associated with Promoter CpG Island Methylation

    PubMed Central

    Kirov, Julia V.; Adkisson, Michael; Nava, A. J.; Cipollone, Andreana; Willis, Brandon; Engelhard, Eric K.; Lloyd, K. C. Kent; de Jong, Pieter; West, David B.

    2015-01-01

    Targeted mutations in mouse disrupt local chromatin structure and may lead to unanticipated local effects. We evaluated targeted gene promoter silencing in a group of six mutants carrying the tm1a Knockout Mouse Project allele containing both a LacZ reporter gene driven by the native promoter and a neo selection cassette. Messenger RNA levels of the reporter gene and targeted gene were assessed by qRT-PCR, and methylation of the promoter CpG islands and LacZ coding sequence were evaluated by sequencing of bisulfite-treated DNA. Mutants were stratified by LacZ staining into presumed Silenced and Expressed reporter genes. Silenced mutants had reduced relative quantities LacZ mRNA and greater CpG Island methylation compared with the Expressed mutant group. Within the silenced group, LacZ coding sequence methylation was significantly and positively correlated with CpG Island methylation, while promoter CpG methylation was only weakly correlated with LacZ gene mRNA. The results support the conclusion that there is promoter silencing in a subset of mutants carrying the tm1a allele. The features of targeted genes which promote local silencing when targeted remain unknown. PMID:26275310

  3. Reporter Gene Silencing in Targeted Mouse Mutants Is Associated with Promoter CpG Island Methylation.

    PubMed

    Kirov, Julia V; Adkisson, Michael; Nava, A J; Cipollone, Andreana; Willis, Brandon; Engelhard, Eric K; Lloyd, K C Kent; de Jong, Pieter; West, David B

    2015-01-01

    Targeted mutations in mouse disrupt local chromatin structure and may lead to unanticipated local effects. We evaluated targeted gene promoter silencing in a group of six mutants carrying the tm1a Knockout Mouse Project allele containing both a LacZ reporter gene driven by the native promoter and a neo selection cassette. Messenger RNA levels of the reporter gene and targeted gene were assessed by qRT-PCR, and methylation of the promoter CpG islands and LacZ coding sequence were evaluated by sequencing of bisulfite-treated DNA. Mutants were stratified by LacZ staining into presumed Silenced and Expressed reporter genes. Silenced mutants had reduced relative quantities LacZ mRNA and greater CpG Island methylation compared with the Expressed mutant group. Within the silenced group, LacZ coding sequence methylation was significantly and positively correlated with CpG Island methylation, while promoter CpG methylation was only weakly correlated with LacZ gene mRNA. The results support the conclusion that there is promoter silencing in a subset of mutants carrying the tm1a allele. The features of targeted genes which promote local silencing when targeted remain unknown.

  4. Electrical Phenotypes of Calcium Transport Mutant Strains of a Filamentous Fungus, Neurospora crassa

    PubMed Central

    Hamam, Ahmed

    2012-01-01

    We characterized the electrical phenotypes of mutants with mutations in genes encoding calcium transporters—a mechanosensitive channel homolog (MscS), a Ca2+/H+ exchange protein (cax), and Ca2+-ATPases (nca-1, nca-2, nca-3)—as well as those of double mutants (the nca-2 cax, nca-2 nca-3, and nca-3 cax mutants). The electrical characterization used dual impalements to obtain cable-corrected current-voltage measurements. Only two types of mutants (the MscS mutant; the nca-2 mutant and nca-2-containing double mutants) exhibited lower resting potentials. For the nca-2 mutant, on the basis of unchanged conductance and cyanide-induced depolarization of the potential, the cause is attenuated H+-ATPase activity. The growth of the nca-2 mutant-containing strains was inhibited by elevated extracellular Ca2+ levels, indicative of lesions in Ca2+ homeostasis. However, the net Ca2+ effluxes of the nca-2 mutant, measured noninvasively with a self-referencing Ca2+-selective microelectrode, were similar to those of the wild type. All of the mutants exhibited osmosensitivity similar to that of the wild type (the turgor of the nca-2 mutant was also similar to that of the wild type), suggesting that Ca2+ signaling does not play a role in osmoregulation. The hyphal tip morphology and tip-localized mitochondria of the nca-2 mutant were similar to those of the wild type, even when the external [Ca2+] was elevated. Thus, although Ca2+ homeostasis is perturbed in the nca-2 mutant (B. J. Bowman et al., Eukaryot. Cell 10:654–661, 2011), the phenotype does not extend to tip growth or to osmoregulation but is revealed by lower H+-ATPase activity. PMID:22408225

  5. Characterization of mutant strains of Candida albicans deficient in expression of a surface determinant.

    PubMed Central

    Chaffin, W L; Collins, B; Marx, J N; Cole, G T; Morrow, K J

    1993-01-01

    Monoclonal antibody (MAb) 17E4 reacts with a surface carbohydrate determinant and agglutinates cells of Candida albicans. Using this MAb, we have isolated N-methyl-N'-nitro-N-nitrosoguanidine-induced nonagglutinating mutants. Eleven of these were characterized for the presence and expression of the surface antigen recognized by MAb 17E4 by immunoblot analysis of whole cells and by fluorescence flow cytometry. Soluble cell wall extracts from five mutant strains were negative by immunoblot analysis. The reactivities of the strains with several other MAbs and commercial antisera (Candida Check; Iatron Laboratories, Tokyo, Japan) which also recognize carbohydrate determinants were examined by immunoblot analysis of whole cells. Mutant strains showed no or reduced expression of the MAb 17E4 antigen and could be placed into at least two distinct phenotypic classes. Recognition by the other MAbs tested showed a similar pattern, while recognition by the commercial antisera was unchanged in the mutant strains. 1H and 13C nuclear magnetic resonance spectral analysis of mannan prepared from the wild type and nonexpressing mutant-strain 4A showed that the spectra from the mutant strain were simpler than those of the wild type. Most of the beta-1,2 linkages and all of the C-1 phosphate linkages were absent in the 4A mannan spectra, which suggested that the mutant mannan lacked the phosphate-bound beta-1,2-linked mannooligosaccharides. The effect of the surface defect on the ability of mutant strain 4A to adhere and to invade host tissue was examined in two murine models. In ex vivo binding assays, strain 4A showed reduced binding to the marginal zone and increased binding to the white pulp of splenic tissue, decreased binding to kidney tissue, and no change in binding to liver tissue compared with the wild type. In vivo, no difference was observed in translocation of the wild type or strain 4A to liver following immuno-compromising treatment of infant mice which had been

  6. Effects of a Mutant Strain and a Wild Type Strain of Verticillium lecanii on Heterodera glycines Populations in the Greenhouse

    PubMed Central

    Meyer, Susan L. F.; Meyer, Robert J.

    1995-01-01

    A wild type strain ofVerticillium lecanii and a mutant strain with increased tolerance to the fungicide benomyl were evaluated in greenhouse experiments for effects on Heterodera glycines populations. Nematodes were applied at 300 eggs and juveniles per 4,550-cm³ pot (two soybean plants in 4,990 g loamy sand per pot) and at both 300 and 10,000 eggs and juveniles per 1,720-cm³ pot (one soybean plant in 2,060 g sand per pot). With 300 nematodes added per pot, both V. lecanii strains significantly reduced nematode populations in loamy sand (fungus applied at 0.02% dry weight per dry weight loamy sand) and sand (0.006% and 0.06% fungus application rates). The mutant strain applied at 0.002% to sand also significantly reduced cyst numbers. When 10,000 nematodes were added per pot, only the mutant strain at 0.06% significantly decreased population. Various media were tested for isolation of the fungus strains from prills, loamy sand, and sand, but the fungi were recovered from few of the greenhouse pots. PMID:19277306

  7. Characterization of a temperature-sensitive mutant of mouse FM3A cells defective in DNA replication.

    PubMed Central

    Murakami, Y; Yasuda, H; Miyazawa, H; Hanaoka, F; Yamada, M

    1985-01-01

    The characterization of a temperature-sensitive mutant (tsFT20 strain, dnats) of mouse FM3A cells is reported. After incubation of tsFT20 cells at the nonpermissive temperature (39 degrees C), DNA synthesis ceased with little change in either RNA or protein synthesis. Flow-microfluorometric analysis revealed that the cell cycle of tsFT20 cells grown at 39 degrees C for 16 hr was similar to that of wild-type cells that were synchronized at the G1/S boundary and at S phase by treatment with aphidicolin, a specific inhibitor of DNA polymerase alpha. The DNA polymerase alpha activity of tsFT20 cells measured in crude cell extracts or in purified preparations was inactivated more rapidly at 39 degrees C than the activity of wild-type cells. In the growth revertants of the tsFT20 cell strain, the heat lability of DNA polymerase alpha decreased. These data suggest that tsFT20 is a temperature-sensitive mutant of DNA polymerase alpha or of a factor associated with DNA polymerase alpha that is essential for its activity. PMID:3856858

  8. Phosphoregulation of an Inner Dynein Arm Complex in Chlamydomonas reinhardtii Is Altered in Phototactic Mutant Strains

    PubMed Central

    King, Stephen J.; Dutcher, Susan K.

    1997-01-01

    To gain a further understanding of axonemal dynein regulation, mutant strains of Chlamydomonas reinhardtii that had defects in both phototactic behavior and flagellar motility were identified and characterized. ptm1, ptm2, and ptm3 mutant strains exhibited motility phenotypes that resembled those of known inner dynein arm region mutant strains, but did not have biochemical or genetic phenotypes characteristic of other inner dynein arm mutations. Three other mutant strains had defects in the f class of inner dynein arms. Dynein extracts from the pf9-4 strain were missing the entire f complex. Strains with mutations in pf9/ida1, ida2, or ida3 failed to assemble the f dynein complex and did not exhibit phototactic behavior. Fractionated dynein from mia1-1 and mia2-1 axonemes exhibited a novel f class inner dynein arm biochemical phenotype; the 138-kD f intermediate chain was present in altered phosphorylation forms. In vitro axonemal dynein activity was reduced by the mia1-1 and mia2-1 mutations. The addition of kinase inhibitor restored axonemal dynein activity concomitant with the dephosphorylation of the 138-kD f intermediate chain. Dynein extracts from uni1-1 axonemes, which specifically assemble only one of the two flagella, contained relatively high levels of the altered phosphorylation forms of the 138-kD intermediate chain. We suggest that the f dynein complex may be phosphoregulated asymmetrically between the two flagella to achieve phototactic turning. PMID:9008712

  9. A novel stereocilia defect in sensory hair cells of the deaf mouse mutant Tasmanian devil.

    PubMed

    Erven, Alexandra; Skynner, Michael J; Okumura, Katsuzumi; Takebayashi, Shin-ichiro; Brown, Steve D M; Steel, Karen P; Allen, Nicholas D

    2002-10-01

    Stereocilia are specialized actin-filled, finger-like processes arrayed in rows of graded heights to form a crescent or W-shape on the apical surface of sensory hair cells. The stereocilia are deflected by the vibration of sound, which opens transduction channels and allows an influx of ions to depolarize the hair cell, in turn triggering synaptic activity. The specialized morphology and organization of the stereocilia bundle is crucial in the process of sensory transduction in the inner ear. However, we know little about the development of stereocilia in the mouse and few molecules that are involved in stereocilia maturation are known. We describe here a new mouse mutant with abnormal stereocilia development. The Tasmanian devil (tde) mouse mutation arose by insertional mutagenesis and has been mapped to the middle of chromosome 5. Homozygotes show head-tossing and circling and have raised thresholds for cochlear nerve responses to sound. The gross morphology of the inner ear was normal, but the stereocilia of cochlear and vestibular hair cells are abnormally thin, and they become progressively disorganized with increasing age. Ultimately, the hair cells die. This is the first report of a mutant showing thin stereocilia. The association of thin stereocilia with cochlear dysfunction emphasizes the critical role of stereocilia in auditory transduction, and the discovery of the Tasmanian devil mutant provides a resource for the identification of an essential molecule in hair cell function.

  10. Assessment of a systematic expression profiling approach in ENU-induced mouse mutant lines.

    PubMed

    Seltmann, Matthias; Horsch, Marion; Drobyshev, Alexei; Chen, Yali; de Angelis, Martin Hrabé; Beckers, Johannes

    2005-01-01

    Comparative genomewide expression profiling is a powerful tool in the effort to annotate the mouse genome with biological function. The systematic analysis of RNA expression data of mouse lines from the Munich ENU mutagenesis screen might support the understanding of the molecular biology of such mutants and provide new insights into mammalian gene function. In a direct comparison of DNA microarray experiments of individual versus pooled RNA samples of organs from ENU-induced mouse mutants, we provide evidence that individual RNA samples may outperform pools in some aspects. Genes with high biological variability in their expression levels (noisy genes) are identified as false positives in pooled samples. Evidence suggests that highly stringent housing conditions and standardized procedures for the isolation of organs significantly reduce biological variability in gene expression profiling experiments. Data on wild-type individuals demonstrate the positive effect of controlling variables such as social status, food intake before organ sampling, and stress with regard to reproducibility of gene expression patterns. Analyses of several organs from various ENU-induced mutant lines in general show low numbers of differentially expressed genes. We demonstrate the feasibility to detect transcriptionally affected organs employing RNA expression profiling as a tool for molecular phenotyping.

  11. The First Scube3 Mutant Mouse Line with Pleiotropic Phenotypic Alterations.

    PubMed

    Fuchs, Helmut; Sabrautzki, Sibylle; Przemeck, Gerhard K H; Leuchtenberger, Stefanie; Lorenz-Depiereux, Bettina; Becker, Lore; Rathkolb, Birgit; Horsch, Marion; Garrett, Lillian; Östereicher, Manuela A; Hans, Wolfgang; Abe, Koichiro; Sagawa, Nobuho; Rozman, Jan; Vargas-Panesso, Ingrid L; Sandholzer, Michael; Lisse, Thomas S; Adler, Thure; Aguilar-Pimentel, Juan Antonio; Calzada-Wack, Julia; Ehrhard, Nicole; Elvert, Ralf; Gau, Christine; Hölter, Sabine M; Micklich, Katja; Moreth, Kristin; Prehn, Cornelia; Puk, Oliver; Racz, Ildiko; Stoeger, Claudia; Vernaleken, Alexandra; Michel, Dian; Diener, Susanne; Wieland, Thomas; Adamski, Jerzy; Bekeredjian, Raffi; Busch, Dirk H; Favor, John; Graw, Jochen; Klingenspor, Martin; Lengger, Christoph; Maier, Holger; Neff, Frauke; Ollert, Markus; Stoeger, Tobias; Yildirim, Ali Önder; Strom, Tim M; Zimmer, Andreas; Wolf, Eckhard; Wurst, Wolfgang; Klopstock, Thomas; Beckers, Johannes; Gailus-Durner, Valerie; Hrabé de Angelis, Martin

    2016-12-07

    The vertebrate Scube (Signal peptide, CUB, and EGF-like domain-containing protein) family consists of three independent members, Scube1-3, which encode secreted cell surface-associated membrane glycoproteins. Limited information about the general function of this gene family is available, and their roles during adulthood. Here, we present the first Scube3 mutant mouse line (Scube3(N294K/N294K)), which clearly shows phenotypic alterations by carrying a missense mutation in exon 8, and thus contributes to our understanding of SCUBE3 functions. We performed a detailed phenotypic characterization in the German Mouse Clinic (GMC). Scube3(N294K/N294K) mutants showed morphological abnormalities of the skeleton, alterations of parameters relevant for bone metabolism, changes in renal function, and hearing impairments. These findings correlate with characteristics of the rare metabolic bone disorder Paget disease of bone (PDB), associated with the chromosomal region of human SCUBE3 In addition, alterations in energy metabolism, behavior, and neurological functions were detected in Scube3(N294K/N294K) mice. The Scube3(N294K/N294K) mutant mouse line may serve as a new model for further studying the effect of impaired SCUBE3 gene function. Copyright © 2016 Fuchs et al.

  12. The First Scube3 Mutant Mouse Line with Pleiotropic Phenotypic Alterations

    PubMed Central

    Fuchs, Helmut; Sabrautzki, Sibylle; Przemeck, Gerhard K. H.; Leuchtenberger, Stefanie; Lorenz-Depiereux, Bettina; Becker, Lore; Rathkolb, Birgit; Horsch, Marion; Garrett, Lillian; Östereicher, Manuela A.; Hans, Wolfgang; Abe, Koichiro; Sagawa, Nobuho; Rozman, Jan; Vargas-Panesso, Ingrid L.; Sandholzer, Michael; Lisse, Thomas S.; Adler, Thure; Aguilar-Pimentel, Juan Antonio; Calzada-Wack, Julia; Ehrhard, Nicole; Elvert, Ralf; Gau, Christine; Hölter, Sabine M.; Micklich, Katja; Moreth, Kristin; Prehn, Cornelia; Puk, Oliver; Racz, Ildiko; Stoeger, Claudia; Vernaleken, Alexandra; Michel, Dian; Diener, Susanne; Wieland, Thomas; Adamski, Jerzy; Bekeredjian, Raffi; Busch, Dirk H.; Favor, John; Graw, Jochen; Klingenspor, Martin; Lengger, Christoph; Maier, Holger; Neff, Frauke; Ollert, Markus; Stoeger, Tobias; Yildirim, Ali Önder; Strom, Tim M.; Zimmer, Andreas; Wolf, Eckhard; Wurst, Wolfgang; Klopstock, Thomas; Beckers, Johannes; Gailus-Durner, Valerie; Hrabé de Angelis, Martin

    2016-01-01

    The vertebrate Scube (Signal peptide, CUB, and EGF-like domain-containing protein) family consists of three independent members, Scube1–3, which encode secreted cell surface-associated membrane glycoproteins. Limited information about the general function of this gene family is available, and their roles during adulthood. Here, we present the first Scube3 mutant mouse line (Scube3N294K/N294K), which clearly shows phenotypic alterations by carrying a missense mutation in exon 8, and thus contributes to our understanding of SCUBE3 functions. We performed a detailed phenotypic characterization in the German Mouse Clinic (GMC). Scube3N294K/N294K mutants showed morphological abnormalities of the skeleton, alterations of parameters relevant for bone metabolism, changes in renal function, and hearing impairments. These findings correlate with characteristics of the rare metabolic bone disorder Paget disease of bone (PDB), associated with the chromosomal region of human SCUBE3. In addition, alterations in energy metabolism, behavior, and neurological functions were detected in Scube3N294K/N294K mice. The Scube3N294K/N294K mutant mouse line may serve as a new model for further studying the effect of impaired SCUBE3 gene function. PMID:27815347

  13. The Mouse MC13 Mutant Is a Novel ENU Mutation in Collagen Type II, Alpha 1

    PubMed Central

    Cionni, Megan; Menke, Chelsea; Stottmann, Rolf W.

    2014-01-01

    Phenotype-driven mutagenesis experiments are a powerful approach to identifying novel alleles in a variety of contexts. The traditional disadvantage of this approach has been the subsequent task of identifying the affected locus in the mutants of interest. Recent advances in bioinformatics and sequencing have reduced the burden of cloning these ENU mutants. Here we report our experience with an ENU mutagenesis experiment and the rapid identification of a mutation in a previously known gene. A combination of mapping the mutation with a high-density SNP panel and a candidate gene approach has identified a mutation in collagen type II, alpha I (Col2a1). Col2a1 has previously been studied in the mouse and our mutant phenotype closely resembles mutations made in the Col2a1 locus. PMID:25541700

  14. Dopaminergic function in relation to genes associated with risk for schizophrenia: translational mutant mouse models.

    PubMed

    Moran, Paula M; O'Tuathaigh, Colm M P; Papaleo, Francesco; Waddington, John L

    2014-01-01

    Mutant mice play an increasingly important role in understanding disease processes at multiple levels. In particular, they illuminate the impact of risk genes for disease on such processes. This article reviews recent advances in the application of mutant mice to study the intricacies of dopaminergic (DAergic) function in relation to the putative pathophysiology of psychotic illness, particularly schizophrenia, and antipsychotic drug action. It considers models for understanding the role(s) of risk genes, with a particular focus on DTNBP1 and NRG1, their interactions with environmental factors, and with each other (epistasis). In overview, it considers new schemas for understanding psychotic illness that integrate DAergic pathophysiology with developmental, social, and cognitive processes, and how mutant mouse models can reflect and inform on such schemas.

  15. Silencing neuronal mutant androgen receptor in a mouse model of spinal and bulbar muscular atrophy.

    PubMed

    Sahashi, Kentaro; Katsuno, Masahisa; Hung, Gene; Adachi, Hiroaki; Kondo, Naohide; Nakatsuji, Hideaki; Tohnai, Genki; Iida, Madoka; Bennett, C Frank; Sobue, Gen

    2015-11-01

    Spinal and bulbar muscular atrophy (SBMA), an adult-onset neurodegenerative disease that affects males, results from a CAG triplet repeat/polyglutamine expansions in the androgen receptor (AR) gene. Patients develop progressive muscular weakness and atrophy, and no effective therapy is currently available. The tissue-specific pathogenesis, especially relative pathological contributions between degenerative motor neurons and muscles, remains inconclusive. Though peripheral pathology in skeletal muscle caused by toxic AR protein has been recently reported to play a pivotal role in the pathogenesis of SBMA using mouse models, the role of motor neuron degeneration in SBMA has not been rigorously investigated. Here, we exploited synthetic antisense oligonucleotides to inhibit the RNA levels of mutant AR in the central nervous system (CNS) and explore its therapeutic effects in our SBMA mouse model that harbors a mutant AR gene with 97 CAG expansions and characteristic SBMA-like neurogenic phenotypes. A single intracerebroventricular administration of the antisense oligonucleotides in the presymptomatic phase efficiently suppressed the mutant gene expression in the CNS, and delayed the onset and progression of motor dysfunction, improved body weight gain and survival with the amelioration of neuronal histopathology in motor units such as spinal motor neurons, neuromuscular junctions and skeletal muscle. These findings highlight the importance of the neurotoxicity of mutant AR protein in motor neurons as a therapeutic target. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Overexpression of mutant ataxin-3 in mouse cerebellum induces ataxia and cerebellar neuropathology.

    PubMed

    Nóbrega, Clévio; Nascimento-Ferreira, Isabel; Onofre, Isabel; Albuquerque, David; Conceição, Mariana; Déglon, Nicole; de Almeida, Luís Pereira

    2013-08-01

    Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3 (SCA3), is a fatal, dominant neurodegenerative disorder caused by the polyglutamine-expanded protein ataxin-3. Clinical manifestations include cerebellar ataxia and pyramidal signs culminating in severe neuronal degeneration. Currently, there is no therapy able to modify disease progression. In the present study, we aimed at investigating one of the most severely affected brain regions in the disorder--the cerebellum--and the behavioral defects associated with the neuropathology in this region. For this purpose, we injected lentiviral vectors encoding full-length human mutant ataxin-3 in the mouse cerebellum of 3-week-old C57/BL6 mice. We show that circumscribed expression of human mutant ataxin-3 in the cerebellum mediates within a short time frame--6 weeks, the development of a behavioral phenotype including reduced motor coordination, wide-based ataxic gait, and hyperactivity. Furthermore, the expression of mutant ataxin-3 resulted in the accumulation of intranuclear inclusions, neuropathological abnormalities, and neuronal death. These data show that lentiviral-based expression of mutant ataxin-3 in the mouse cerebellum induces localized neuropathology, which is sufficient to generate a behavioral ataxic phenotype. Moreover, this approach provides a physiologically relevant, cost-effective and time-effective animal model to gain further insights into the pathogenesis of MJD and for the evaluation of experimental therapeutics of MJD.

  17. Avirulence of Candida albicans FAS2 mutants in a mouse model of systemic candidiasis.

    PubMed

    Zhao, X J; McElhaney-Feser, G E; Sheridan, M J; Broedel, S E; Cihlar, R L

    1997-02-01

    Disruption of both alleles of the Candida albicans FAS2 gene abolishes the ability of the organism to establish infection in a murine model of systemic candidiasis. Within 72 h all mice inoculated with 10(6) CFU of the parental C. albicans strain had died. In contrast, all animals inoculated with the mutant strain CFD2 survived for the course of the experiment (21 days). Animals infected with either mutant strain CFD1 or CFD3, in which only one FAS2 allele was disrupted, also succumbed to infection, but mortality was not observed until 4 days postinfection and survivors remained for up to 20 days postinfection. The results demonstrate that FAS2 is required for successful C. albicans infection.

  18. Avirulence of Candida albicans FAS2 mutants in a mouse model of systemic candidiasis.

    PubMed Central

    Zhao, X J; McElhaney-Feser, G E; Sheridan, M J; Broedel, S E; Cihlar, R L

    1997-01-01

    Disruption of both alleles of the Candida albicans FAS2 gene abolishes the ability of the organism to establish infection in a murine model of systemic candidiasis. Within 72 h all mice inoculated with 10(6) CFU of the parental C. albicans strain had died. In contrast, all animals inoculated with the mutant strain CFD2 survived for the course of the experiment (21 days). Animals infected with either mutant strain CFD1 or CFD3, in which only one FAS2 allele was disrupted, also succumbed to infection, but mortality was not observed until 4 days postinfection and survivors remained for up to 20 days postinfection. The results demonstrate that FAS2 is required for successful C. albicans infection. PMID:9009352

  19. Antifolate Agents Against Wild and Mutant Strains of Plasmodium falciparum

    PubMed Central

    Shaikh, M. S.; Rana, J.; Gaikwad, D.; Leartsakulpanich, U.; Ambre, Premlata K.; Pissurlenkar, R. R. S.; Coutinho, E. C.

    2014-01-01

    Plasmodium falciparum dihydrofolate reductase is an important target for antimalarial chemotherapy. The emergence of resistance has significantly reduced the efficacy of the classic antifolate drugs cycloguanil and pyrimethamine. In this paper we report new dihydrofolate reductase inhibitors identified using molecular modelling principles with the goal of designing new antifolate agents active against both wild and tetramutant dihydrofolate reductase strains three series of trimethoprim analogues were designed, synthesised and tested for biological activity. Pyrimethamine and cycloguanil have been reported to loose efficacy because of steric repulsion in the active site pocket produced due to mutation in Plasmodium falciparum dihydrofolate reductase. The synthesised molecules have sufficient flexibility to withstand this steric repulsion to counteract the resistance. The molecules have been synthesised by conventional techniques and fully characterised by spectroscopic methods. The potency of these molecules was evaluated by in vitro enzyme specific assays. Some of the molecules were active in micromolar concentrations and can easily be optimised to improve binding and activity. PMID:24843184

  20. A γA-Crystallin Mouse Mutant Secc with Small Eye, Cataract and Closed Eyelid.

    PubMed

    Cheng, Man Hei; Tam, Chung Nga; Choy, Kwong Wai; Tsang, Wai Hung; Tsang, Sze Lan; Pang, Chi Pui; Song, You Qiang; Sham, Mai Har

    2016-01-01

    Cataract is the most common cause of visual loss in humans. A spontaneously occurred, autosomal dominant mouse mutant Secc, which displayed combined features of small eye, cataract and closed eyelid was discovered in our laboratory. In this study, we identified the mutation and characterized the cataract phenotype of this novel Secc mutant. The Secc mutant mice have eyelids that remain half-closed throughout their life. The mutant lens has a significant reduction in size and with opaque spots clustered in the centre. Histological analysis showed that in the core region of the mutant lens, the fiber cells were disorganized and clefts and vacuoles were observed. The cataract phenotype was evident from new born stage. We identified the Secc mutation by linkage analysis using whole genome microsatellite markers and SNP markers. The Secc locus was mapped at chromosome 1 flanked by SNPs rs3158129 and rs13475900. Based on the chromosomal position, the candidate cataract locus γ-crystallin gene cluster (Cryg) was investigated by sequencing. A single base deletion (299delG) in exon 3 of Cryga which led to a frame-shift of amino acid sequence from position 91 was identified. As a result of this mutation, the sequences of the 3rd and 4th Greek-key motifs of the γA-crystallin are replaced with an unrelated C-terminal peptide of 75 residues long. Coincidentally, the point mutation generated a HindIII restriction site, allowing the identification of the CrygaSecc mutant allele by RFLP. Western blot analysis of 3-week old lenses showed that the expression of γ-crystallins was reduced in the CrygaSecc mutant. Furthermore, in cell transfection assays using CrygaSecc mutant cDNA expression constructs in 293T, COS-7 and human lens epithelial B3 cell lines, the mutant γA-crystallins were enriched in the insoluble fractions and appeared as insoluble aggregates in the transfected cells. In conclusion, we have demonstrated that the Secc mutation leads to the generation of Cryga

  1. A γA-Crystallin Mouse Mutant Secc with Small Eye, Cataract and Closed Eyelid

    PubMed Central

    Cheng, Man Hei; Tam, Chung Nga; Choy, Kwong Wai; Tsang, Wai Hung; Tsang, Sze Lan; Pang, Chi Pui; Song, You Qiang; Sham, Mai Har

    2016-01-01

    Cataract is the most common cause of visual loss in humans. A spontaneously occurred, autosomal dominant mouse mutant Secc, which displayed combined features of small eye, cataract and closed eyelid was discovered in our laboratory. In this study, we identified the mutation and characterized the cataract phenotype of this novel Secc mutant. The Secc mutant mice have eyelids that remain half-closed throughout their life. The mutant lens has a significant reduction in size and with opaque spots clustered in the centre. Histological analysis showed that in the core region of the mutant lens, the fiber cells were disorganized and clefts and vacuoles were observed. The cataract phenotype was evident from new born stage. We identified the Secc mutation by linkage analysis using whole genome microsatellite markers and SNP markers. The Secc locus was mapped at chromosome 1 flanked by SNPs rs3158129 and rs13475900. Based on the chromosomal position, the candidate cataract locus γ-crystallin gene cluster (Cryg) was investigated by sequencing. A single base deletion (299delG) in exon 3 of Cryga which led to a frame-shift of amino acid sequence from position 91 was identified. As a result of this mutation, the sequences of the 3rd and 4th Greek-key motifs of the γA-crystallin are replaced with an unrelated C-terminal peptide of 75 residues long. Coincidentally, the point mutation generated a HindIII restriction site, allowing the identification of the CrygaSecc mutant allele by RFLP. Western blot analysis of 3-week old lenses showed that the expression of γ-crystallins was reduced in the CrygaSecc mutant. Furthermore, in cell transfection assays using CrygaSecc mutant cDNA expression constructs in 293T, COS-7 and human lens epithelial B3 cell lines, the mutant γA-crystallins were enriched in the insoluble fractions and appeared as insoluble aggregates in the transfected cells. In conclusion, we have demonstrated that the Secc mutation leads to the generation of Cryga

  2. Deglycosylation of the NS1 protein of dengue 2 virus, strain 16681: construction and characterization of mutant viruses.

    PubMed

    Crabtree, M B; Kinney, R M; Miller, B R

    2005-04-01

    The dengue 2 virus (DENV-2) NS1 glycoprotein contains two potential sites for N-linked glycosylation at Asn-130 and Asn-207. NS1 produced in infected cells is glycosylated at both of these sites. We used site-directed mutagenesis of a DENV-2, strain 16681, full length infectious clone to create mutant viruses lacking the Asn-130, Asn-207 or both of these NS1 glycosylation sites in order to investigate the effects of deglycosylation. Ablation of both NS1 glycosylation sites resulted in unstable viruses that acquired numerous additional mutations; these viruses were not further characterized. Viruses altered at the Asn-130 site exhibited growth characteristics similar to the wild-type (WT) 16681 virus in LLC-MK(2) cells and reduced growth in C6/36 cells. Viruses mutated at the Asn-207 site achieved similar titers in LLC-MK(2) cells compared to WT, however, the appearance of cytopathic effect was delayed and growth of these viruses in C6/36 cells was also reduced compared to WT virus. The plaque size of mutant viruses altered at the Asn-130 site did not differ from that of the WT virus, while mutants altered at the Asn-207 site exhibited a reduced and mixed plaque size. Temperature sensitivity studies comparing the growth of the viruses at 37 degrees C and 39 degrees C showed no significant differences compared to the WT virus. Immunofluorescent antibody staining of infected cells showed that for WT 16681 virus or the Asn-130 site mutant viruses NS1 was located throughout the cytoplasm, however, Asn-207 site mutant virus NS1 protein appeared to be localized to the perinuclear region. Viruses deglycosylated at either site exhibited a significant reduction in mouse neurovirulence compared to the WT virus. The results of our studies indicate that glycosylation of the DENV-2 virus NS1 protein may influence NS1 protein processing/transport as well as the pathogenicity of the virus.

  3. Gene-environment interactions in a mutant mouse kindred with native airway constrictor hyperresponsiveness.

    PubMed

    Pinto, Lawrence H; Eaton, Emily; Chen, Bohao; Fleisher, Jonah; Shuster, Dmitry; McCauley, Joel; Kedainis, Dalius; Siepka, Sandra M; Shimomura, Kazuhiro; Song, Eun-Joo; Husain, Aliya; Lakser, Oren J; Mitchell, Richard W; Dowell, Maria L; Brown, Melanie; Camoretti-Mercado, Blanca; Naclerio, Robert; Sperling, Anne I; Levin, Stephen I; Turek, Fred W; Solway, Julian

    2008-01-01

    We mutagenized male BTBR mice with N-ethyl-N-nitrosourea and screened 1315 of their G3 offspring for airway hyperresponsiveness. A phenovariant G3 mouse with exaggerated methacholine bronchoconstrictor response was identified and his progeny bred in a nonspecific-pathogen-free (SPF) facility where sentinels tested positive for minute virus of mice and mouse parvovirus and where softwood bedding was used. The mutant phenotype was inherited through G11 as a single autosomal semidominant mutation with marked gender restriction, with males exhibiting almost full penetrance and very few females phenotypically abnormal. Between G11 and G12, facility infection eradication was undertaken and bedding was changed to hardwood. We could no longer detect airway hyperresponsiveness in more than 37 G12 offspring of 26 hyperresponsive G11 males. Also, we could not identify the mutant phenotype among offspring of hyperresponsive G8-G10 sires rederived into an SPF facility despite 21 attempts. These two observations suggest that both genetic and environmental factors were needed for phenotype expression. We suspect that rederivation into an SPF facility or altered exposure to pathogens or other unidentified substances modified environmental interactions with the mutant allele, and so resulted in disappearance of the hyperresponsive phenotype. Our experience suggests that future searches for genes that confer susceptibility for airway hyperresponsiveness might not be able to identify some genes that confer susceptibility if the searches are performed in SPF facilities. Experimenters are advised to arrange for multigeneration constancy of mouse care in order to clone mutant genes. Indeed, we were not able to map the mutation before losing the phenotype.

  4. Iron uptake from plasma transferrin by a transferrin receptor 2 mutant mouse model of haemochromatosis

    PubMed Central

    Chua, Anita C.G.; Delima, Roheeth D.; Morgan, Evan H.; Herbison, Carly E.; Tirnitz-Parker, Janina E.E.; Graham, Ross M.; Fleming, Robert E.; Britton, Robert S.; Bacon, Bruce R.; Olynyk, John K.; Trinder, Debbie

    2010-01-01

    Background & Aims Hereditary haemochromatosis type 3 is caused by mutations in transferrin receptor (TFR) 2. TFR2 has been shown to mediate iron transport in vitro and regulate iron homeostasis. The aim of this study was to determine the role of Tfr2 in iron transport in vivo using a Tfr2 mutant mouse. Methods Tfr2 mutant and wild-type mice were injected intravenously with 59Fe-transferrin and tissue 59Fe uptake was measured. Tfr1, Tfr2 and ferroportin expression was measured by real-time PCR and Western blot. Cellular localisation of ferroportin was determined by immunohistochemistry. Results Transferrin-bound iron uptake by the liver and spleen in Tfr2 mutant mice was reduced by 20% and 65%, respectively, whilst duodenal and renal uptake was unchanged compared with iron-loaded wild-type mice. In Tfr2 mutant mice, liver Tfr2 protein was absent, whilst ferroportin protein was increased in non-parenchymal cells and there was a low level of expression in hepatocytes. Tfr1 expression was unchanged compared with iron-loaded wild-type mice. Splenic Tfr2 protein expression was absent whilst Tfr1 and ferroportin protein expression was increased in Tfr2 mutant mice compared with iron-loaded wild-type mice. Conclusions A small reduction in hepatic transferrin-bound iron uptake in Tfr2 mutant mice suggests that Tfr2 plays a minor role in liver iron transport and its primary role is to regulate iron metabolism. Increased ferroportin expression due to decreased hepcidin mRNA levels is likely to be responsible for impaired splenic iron uptake in Tfr2 mutant mice. PMID:20133002

  5. Expression and In Vivo Rescue of Human ABCC6 Disease-Causing Mutants in Mouse Liver

    PubMed Central

    Le Saux, Olivier; Fülöp, Krisztina; Yamaguchi, Yukiko; Iliás, Attila; Szabó, Zalán; Brampton, Christopher N.; Pomozi, Viola; Huszár, Krisztina; Arányi, Tamás; Váradi, András

    2011-01-01

    Loss-of-function mutations in ABCC6 can cause chronic or acute forms of dystrophic mineralization described in disease models such as pseudoxanthoma elasticum (OMIM 26480) in human and dystrophic cardiac calcification in mice. The ABCC6 protein is a large membrane-embedded organic anion transporter primarily found in the plasma membrane of hepatocytes. We have established a complex experimental strategy to determine the structural and functional consequences of disease-causing mutations in the human ABCC6. The major aim of our study was to identify mutants with preserved transport activity but failure in intracellular targeting. Five missense mutations were investigated: R1138Q, V1298F, R1314W, G1321S and R1339C. Using in vitro assays, we have identified two variants; R1138Q and R1314W that retained significant transport activity. All mutants were transiently expressed in vivo, in mouse liver via hydrodynamic tail vein injections. The inactive V1298F was the only mutant that showed normal cellular localization in liver hepatocytes while the other mutants showed mostly intracellular accumulation indicating abnormal trafficking. As both R1138Q and R1314W displayed endoplasmic reticulum localization, we tested whether 4-phenylbutyrate (4-PBA), a drug approved for clinical use, could restore their intracellular trafficking to the plasma membrane in MDCKII and mouse liver. The cellular localization of R1314W was significantly improved by 4-PBA treatment, thus potentially rescuing its physiological function. Our work demonstrates the feasibility of the in vivo rescue of cellular maturation of some ABCC6 mutants in physiological conditions very similar to the biology of the fully differentiated human liver and could have future human therapeutic application. PMID:21935449

  6. Failure of Surface Ring Mutant Strains of Helicobacter mustelae To Persistently Infect the Ferret Stomach

    PubMed Central

    Patterson, M. M.; O'Toole, P. W.; Forester, N. T.; Noonan, B.; Trust, T. J.; Xu, S.; Taylor, N. S.; Marini, R. P.; Ihrig, M. M.; Fox, J. G.

    2003-01-01

    Helicobacter mustelae, the gastric pathogen of ferrets, produces an array of surface ring structures which have not been described for any other member of the genus Helicobacter, including H. pylori. The unique ring structures are composed of a protein named Hsr. To investigate whether the Hsr rings are important for colonization of the ferret stomach, ferrets specific pathogen free for H. mustelae were inoculated with an Hsr-deficient mutant strain or the wild-type H. mustelae strain. Quantitative cultures from antral biopsy specimens obtained at 3, 6, and 9 weeks postinoculation demonstrated no significant difference in the levels of bacteria in the ferrets that received the Hsr-negative strain and the ferrets infected with the parent strain. However, when the ferrets were biopsied at 12 and 15 weeks and necropsied at 18 weeks after infection, the levels of bacteria of the Hsr-negative strain in the stomach antrum were significantly reduced. This decline contrasted the robust antral colonization by the wild-type strain. The Hsr-negative strain did not efficiently colonize the gastric body of the study ferrets. Histological examination at 18 weeks postinoculation revealed minimal gastric inflammation in the animals that received the mutant H. mustelae strain, a finding consistent with its waning infection status, whereas lesions characteristic of helicobacter infection were present in ferrets infected with the wild-type strain. Scant colonization by the Hsr-negative H. mustelae strain at the end of the 18-week study, despite initial successful colonization, indicates an inability of the mutant to persist, perhaps due to a specific host response. PMID:12704104

  7. A new conditional Apc-mutant mouse model for colorectal cancer.

    PubMed

    Robanus-Maandag, Els C; Koelink, Pim J; Breukel, Cor; Salvatori, Daniela C F; Jagmohan-Changur, Shantie C; Bosch, Cathy A J; Verspaget, Hein W; Devilee, Peter; Fodde, Riccardo; Smits, Ron

    2010-05-01

    Mutations of the adenomatous polyposis coli (APC) gene predispose individuals to familial adenomatous polyposis (FAP), characterized by multiple tumours in the large intestine. Most mouse models heterozygous for truncating mutant Apc alleles mimic FAP, however, the intestinal tumours occur mainly in the small intestine. To model large intestinal tumours, we generated a new conditional Apc-mutant allele, Apc(15lox), with exon 15 flanked by loxP sites. Similar survival of Apc(1638N/15lox) and Apc(1638N/+) mice indicated that the normal function of Apc was not impaired by the loxP sites. Deletion of exon 15, encoding nearly all functional Apc domains and containing the polyadenylation signal, resulted in a mutant allele expressing low levels of a 74 kDa truncated Apc protein. Germ line Cre-mediated deletion of exon 15 resulted in Apc(Delta15/+) mice, showing a severe Apc(Min/+)-like phenotype characterized by multiple tumours in the small intestine and early lethality. In contrast, conditional Cre-mediated deletion of exon 15 specifically directed to the epithelia of distal small and large intestine of FabplCre;Apc(15lox/+) mice led to longer survival and to tumours that developed predominantly in the large intestine, mimicking human FAP-associated colorectal cancer and sporadic colorectal cancer. We conclude that the FabplCre;Apc(15lox/+) mouse should be an attractive model for studies on prevention and treatment of colorectal cancer.

  8. Mechanical properties of elytra from Tribolium castaneum wild-type and body color mutant strains

    USDA-ARS?s Scientific Manuscript database

    Cuticle tanning in insects involves simultaneous cuticular hardening and pigmentation. The dynamic mechanical properties of the highly modified and cuticle-rich forewings (elytra) from Tribolium castaneum (red flour beetle) body color mutant strains were investigated to determine the relationship b...

  9. Increased apoptosis and hypomyelination in cerebral white matter of macular mutant mouse brain.

    PubMed

    Takikita, Shoichi; Takano, Tomoyuki; Narita, Tsutomu; Maruo, Yoshihiro

    2015-09-01

    Hypomyelination in developing brain is often accompanied by congenital metabolic disorders. Menkes kinky hair disease is an X-linked neurodegenerative disease of impaired copper transport, resulting from a mutation of the Menkes disease gene, a transmembrane copper-transporting p-type ATPase gene (ATP7A). In a macular mutant mouse model, the murine ortholog of Menkes gene (mottled gene) is mutated, and widespread neurodegeneration and subsequent death are observed. Although some biochemical analysis of myelin protein in macular mouse has been reported, detailed histological study of myelination in this mouse model is currently lacking. Since myelin abnormality is one of the neuropathologic findings of human Menkes disease, in this study early myelination in macular mouse brain was evaluated by immunohistochemistry. Two-week-old macular mice and normal littermates were perfused with 4% paraformaldehyde. Immunohistochemical staining of paraffin embedded and vibratome sections was performed using antibodies against either CNPase, cleaved caspase-3 or O4 (marker of immature oligodendrocytes). This staining showed that cerebral myelination in macular mouse was generally hypoplastic and that hypomyelination was remarkable in internal capsule, corpus callosum, and cingulate cortex. In addition, an increased number of cleaved caspase-3 positive cells were observed in corpus callosum and internal capsule. Copper deficiency induced by low copper diet has been reported to induce oligodendrocyte dysfunction and leads to hypomyelination in this mouse model. Taken together, hypomyelination observed in this study in a mouse model of Menkes disease is assumed to be induced by increased apoptosis of immature oligodendrocytes in developing cerebrum, through deficient intracellular copper metabolism.

  10. Increased apoptosis and hypomyelination in cerebral white matter of macular mutant mouse brain

    PubMed Central

    Takikita, Shoichi; Takano, Tomoyuki; Narita, Tsutomu; Maruo, Yoshihiro

    2015-01-01

    Hypomyelination in developing brain is often accompanied by congenital metabolic disorders. Menkes kinky hair disease is an X-linked neurodegenerative disease of impaired copper transport, resulting from a mutation of the Menkes disease gene, a transmembrane copper-transporting p-type ATPase gene (ATP7A). In a macular mutant mouse model, the murine ortholog of Menkes gene (mottled gene) is mutated, and widespread neurodegeneration and subsequent death are observed. Although some biochemical analysis of myelin protein in macular mouse has been reported, detailed histological study of myelination in this mouse model is currently lacking. Since myelin abnormality is one of the neuropathologic findings of human Menkes disease, in this study early myelination in macular mouse brain was evaluated by immunohistochemistry. Two-week-old macular mice and normal littermates were perfused with 4% paraformaldehyde. Immunohistochemical staining of paraffin embedded and vibratome sections was performed using antibodies against either CNPase, cleaved caspase-3 or O4 (marker of immature oligodendrocytes). This staining showed that cerebral myelination in macular mouse was generally hypoplastic and that hypomyelination was remarkable in internal capsule, corpus callosum, and cingulate cortex. In addition, an increased number of cleaved caspase-3 positive cells were observed in corpus callosum and internal capsule. Copper deficiency induced by low copper diet has been reported to induce oligodendrocyte dysfunction and leads to hypomyelination in this mouse model. Taken together, hypomyelination observed in this study in a mouse model of Menkes disease is assumed to be induced by increased apoptosis of immature oligodendrocytes in developing cerebrum, through deficient intracellular copper metabolism. PMID:26937406

  11. Mouse and hamster mutants as models for Waardenburg syndromes in humans.

    PubMed Central

    Asher, J H; Friedman, T B

    1990-01-01

    Four different Waardenburg syndromes have been defined based upon observed phenotypes. These syndromes are responsible for approximately 2% of subjects with profound congenital hearing loss. At present, Waardenburg syndromes have not been mapped to particular human chromosomes. One or more of the mouse mutant alleles, Ph (patch), s (piebald), Sp (splotch), and Mior (microphthalmia-Oak Ridge) and the hamster mutation Wh (anophthalmic white) may be homologous to mutations causing Waardenburg syndromes. In heterozygotes, phenotypic effects of these four mouse mutations and the hamster mutation are similar to the phenotypes produced by different Waardenburg syndrome mutations. The chromosomal locations and syntenic relationships associated with three of the four mouse mutant genes have been used to predict human chromosomal locations for Waardenburg syndromes: (1) on chromosome 2q near FN1 (fibronectin 1), (2) on chromosome 3p near the proto-oncogene RAF1 or 3q near RHO (rhodopsin), and (3) on chromosome 4p near the proto-oncogene KIT. Waardenburg syndromes show extensive intrafamilial phenotypic variability. Results of our studies with the hamster mutation Wh suggest that this variability may be explained in part by modifier genes segregating within families. Images PMID:2246770

  12. The scurfy mouse mutant has previously unrecognized hematological abnormalities and resembles Wiskott-Aldrich syndrome.

    PubMed Central

    Lyon, M F; Peters, J; Glenister, P H; Ball, S; Wright, E

    1990-01-01

    The X chromosome-linked scurfy (sf) mutant of the mouse is recognized by the scaliness of the skin from which the name is derived and results in death of affected males at about 3-4 weeks of age. Consideration of known man-mouse homologies of the X chromosome prompted hematological studies, which have shown that the blood is highly abnormal. The platelet and erythrocyte counts are both reduced and become progressively lower relative to normal as the disease progresses. There is gastrointestinal bleeding, and most animals appear to die of severe anemia. By contrast, the leukocyte count is consistently raised. Some animals showed signs of infection but it is not yet clear whether there is immunodeficiency. Other features include the scaly skin and apparently reduced lateral growth of the skin, conjunctivitis, and diarrhea in some animals. The mutant resembles Wiskott-Aldrich syndrome in man, which is characterized by thrombocytopenia, eczema, diarrhea, and immunodeficiency. The loci of the human and mouse genes lie in homologous segments of the X chromosome, although apparently in somewhat different positions relative to other gene loci. Scurfy differs from Wiskott-Aldrich syndrome in that scurfy males are consistently hypogonadal. Images PMID:2320565

  13. [Observation on the growth and metastasis of cross-strain transplanted tumors in different mouse strains].

    PubMed

    Gu, Bei; Feng, Hai-Liang; Liu, Yu-qin

    2013-07-01

    Mouse tumors were subcutaneously transplanted into different mouse strains and their growth and metastatic properties were checked, to explore the possibility of establishing animal tumor models in different mouse strains other than their normal host strains. Seven mouse tumor cell lines: H22, S180, U14, FC, Ca761, SMG-A and DCS were transplanted into C57BL/6J, ICR or KM mice, and their tumorigenicity, growth and metastasis were recorded and analyzed. The tumor formation rate of H22 cells in both the C57BL/6J and ICR mice was 100%, but the growth of H22 tumors was significantly faster in the C57BL/6J (2.8 ± 0.4)g than in the ICR mice (1.5 ± 0.5)g at the 17th day after transplantation (P<0.001). The S180 tumors grew stably in C57BL/6J mice and the tumor formation rate was 100%. The U14 inoculated into C57BL/6J and KM mice showed both lymphatic and lung metastasis and formed significantly larger tumors in KM mice [(12.6 ± 3.4)g] than that in the C57BL/6J mice [(10.2 ± 2.2)g] on the 32rd day after transplantation (P = 0.002). Transplantation of FC, Ca761, and SMG-A did not form tumors or the tumors were completely regressed later in C57BL/6J mice. DCS cells formed tumors in C57BL/6J mice, but some of the tumors regressed. The retained tumors were passaged in C57BL/6J mice, and the substrain DCS-C57 cells was established which showed stable growth and had a 100% tumor formation rate and 100% lung metastasis rate in C57BL/6J mice. Cross-strain transplanted tumors can be successfully established by inoculation of poorly differentiated and highly malignant tumor cells into different mouse strains. Some highly immunogenic tumor cells may form tumor, however, the tumors are regressed later, and can not establish cross-strain transplanted tumors in other mouse strains. Stable transplanted tumor models can be obtained from the partially regressed tumors after continuous passages in vivo.

  14. A mutant ('lab strain') of the hyperthermophilic archaeon Pyrococcus furiosus, lacking flagella, has unusual growth physiology.

    PubMed

    Lewis, Derrick L; Notey, Jaspreet S; Chandrayan, Sanjeev K; Loder, Andrew J; Lipscomb, Gina L; Adams, Michael W W; Kelly, Robert M

    2015-03-01

    A mutant ('lab strain') of the hyperthermophilic archaeon Pyrococcus furiosus DSM3638 exhibited an extended exponential phase and atypical cell aggregation behavior. Genomic DNA from the mutant culture was sequenced and compared to wild-type (WT) DSM3638, revealing 145 genes with one or more insertions, deletions, or substitutions (12 silent, 33 amino acid substitutions, and 100 frame shifts). Approximately, half of the mutated genes were transposases or hypothetical proteins. The WT transcriptome revealed numerous changes in amino acid and pyrimidine biosynthesis pathways coincidental with growth phase transitions, unlike the mutant whose transcriptome reflected the observed prolonged exponential phase. Targeted gene deletions, based on frame-shifted ORFs in the mutant genome, in a genetically tractable strain of P. furiosus (COM1) could not generate the extended exponential phase behavior observed for the mutant. For example, a putative radical SAM family protein (PF2064) was the most highly up-regulated ORF (>25-fold) in the WT between exponential and stationary phase, although this ORF was unresponsive in the mutant; deletion of this gene in P. furiosus COM1 resulted in no apparent phenotype. On the other hand, frame-shifting mutations in the mutant genome negatively impacted transcription of a flagellar biosynthesis operon (PF0329-PF0338).Consequently, cells in the mutant culture lacked flagella and, unlike the WT, showed minimal evidence of exopolysaccharide-based cell aggregation in post-exponential phase. Electron microscopy of PF0331-PF0337 deletions in P. furiosus COM1 showed that absence of flagella impacted normal cell aggregation behavior and, furthermore, indicated that flagella play a key role, beyond motility, in the growth physiology of P. furiosus.

  15. Activity of gemifloxacin against quinolone-resistant Streptococcus pneumoniae strains in vitro and in a mouse pneumonia model.

    PubMed

    Azoulay-Dupuis, E; Bédos, J P; Mohler, J; Moine, P; Cherbuliez, C; Peytavin, G; Fantin, B; Köhler, T

    2005-03-01

    Gemifloxacin is a novel fluoronaphthyridone quinolone with enhanced in vitro activity against Streptococcus pneumoniae. We investigated the activities of gemifloxacin and trovafloxacin, their abilities to select for resistance in vitro and in vivo, and their efficacies in a mouse model of acute pneumonia. Immunocompetent Swiss mice were infected with 10(5) CFU of a virulent, encapsulated S. pneumoniae strain, P-4241, or its isogenic parC, gyrA, parC gyrA, and efflux mutant derivatives (serotype 3); and leukopenic mice were infected with 10(7) CFU of two poorly virulent clinical strains (serotype 11A) carrying either a parE mutation or a parC, gyrA, and parE triple mutation. The drugs were administered six times every 12 h, starting at either 3 or 18 h postinfection. In vitro, gemifloxacin was the most potent agent against strains with and without acquired resistance to fluoroquinolones. While control mice died within 6 days, gemifloxacin at doses of 25 and 50 mg/kg of body weight was highly effective (survival rates, 90 to 100%) against the wild-type strain and against mutants harboring a single mutation, corresponding to area under the time-versus-serum concentration curve at 24 h (AUC(24))/MIC ratios of 56.5 to 113, and provided a 40% survival rate against a mutant with a double mutation (parC and gyrA). A total AUC(24)/MIC ratio of 28.5 was associated with poor efficacy and the emergence of resistant mutants. Trovafloxacin was as effective as gemifloxacin against mutants with single mutations but did not provide any protection against the mutant with double mutations, despite treatment with a high dose of 200 mg/kg. Gemifloxacin preferentially selected for parC mutants both in vitro and in vivo.

  16. Activity of Gemifloxacin against Quinolone-Resistant Streptococcus pneumoniae Strains In Vitro and in a Mouse Pneumonia Model

    PubMed Central

    Azoulay-Dupuis, E.; Bédos, J. P.; Mohler, J.; Moine, P.; Cherbuliez, C.; Peytavin, G.; Fantin, B.; Köhler, T.

    2005-01-01

    Gemifloxacin is a novel fluoronaphthyridone quinolone with enhanced in vitro activity against Streptococcus pneumoniae. We investigated the activities of gemifloxacin and trovafloxacin, their abilities to select for resistance in vitro and in vivo, and their efficacies in a mouse model of acute pneumonia. Immunocompetent Swiss mice were infected with 105 CFU of a virulent, encapsulated S. pneumoniae strain, P-4241, or its isogenic parC, gyrA, parC gyrA, and efflux mutant derivatives (serotype 3); and leukopenic mice were infected with 107 CFU of two poorly virulent clinical strains (serotype 11A) carrying either a parE mutation or a parC, gyrA, and parE triple mutation. The drugs were administered six times every 12 h, starting at either 3 or 18 h postinfection. In vitro, gemifloxacin was the most potent agent against strains with and without acquired resistance to fluoroquinolones. While control mice died within 6 days, gemifloxacin at doses of 25 and 50 mg/kg of body weight was highly effective (survival rates, 90 to 100%) against the wild-type strain and against mutants harboring a single mutation, corresponding to area under the time-versus-serum concentration curve at 24 h (AUC24)/MIC ratios of 56.5 to 113, and provided a 40% survival rate against a mutant with a double mutation (parC and gyrA). A total AUC24/MIC ratio of 28.5 was associated with poor efficacy and the emergence of resistant mutants. Trovafloxacin was as effective as gemifloxacin against mutants with single mutations but did not provide any protection against the mutant with double mutations, despite treatment with a high dose of 200 mg/kg. Gemifloxacin preferentially selected for parC mutants both in vitro and in vivo. PMID:15728901

  17. The super super-healing MRL mouse strain.

    PubMed

    Heydemann, Ahlke

    2012-12-01

    The Murphy Roths Large (MRL/MpJ) mice provide unique insights into wound repair and regeneration. These mice and the closely related MRL/MpJ-Fas(lpr) /J and Large strains heal wounds made in multiple tissues without production of a fibrotic scar. The precise mechanism of this remarkable ability still eludes researchers, but some data has been generated and insights are being revealed. For example, MRL cells reepithelialize over dermal wound sites faster than cells of other mouse strains. This allows a blastema to develop beneath the protective layer. The MRL mice also have an altered basal immune system and an altered immune response to injury. In addition, MRL mice have differences in their tissue resident progenitor cells and certain cell cycle regulatory proteins. The difficulty often lies in separating the causative differences from the corollary differences. Remarkably, not every tissue in these mice heals scarlessly, and the specific type of wound and priming affect regeneration ability as well. The MRL/MpJ, MRL/MpJ-Fas(lpr) /J, and Large mouse strains are also being investigated for their autoimmune characteristic. Whether the two phenotypes of regeneration and autoimmunity are related remains an enigma.

  18. The super super-healing MRL mouse strain

    PubMed Central

    HEYDEMANN, Ahlke

    2013-01-01

    The Murphy Roths Large (MRL/MpJ) mice provide unique insights into wound repair and regeneration. These mice and the closely related MRL/MpJ-Faslpr/J and Large strains heal wounds made in multiple tissues without production of a fibrotic scar. The precise mechanism of this remarkable ability still eludes researchers, but some data has been generated and insights are being revealed. For example, MRL cells reepithelialize over dermal wound sites faster than cells of other mouse strains. This allows a blastema to develop beneath the protective layer. The MRL mice also have an altered basal immune system and an altered immune response to injury. In addition, MRL mice have differences in their tissue resident progenitor cells and certain cell cycle regulatory proteins. The difficulty often lies in separating the causative differences from the corollary differences. Remarkably, not every tissue in these mice heals scarlessly, and the specific type of wound and priming affect regeneration ability as well. The MRL/MpJ, MRL/MpJ-Faslpr/J, and Large mouse strains are also being investigated for their autoimmune characteristic. Whether the two phenotypes of regeneration and autoimmunity are related remains an enigma. PMID:24163690

  19. Comparison of mouse strains using the local lymph node assay.

    PubMed

    Woolhiser, M R; Munson, A E; Meade, B J

    2000-05-05

    The local lymph node assay (LLNA), as recommended by the Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM), only allows for the use of CBA mice. The objective of these studies was to begin to assess the response of chemical sensitizers in the LLNA across six strains of female mice (C57BL/6, SJL/J, BALB/c, B6C3F1, DBA/2 and CBA). The moderate sensitizer alpha-hexylcinnamaldehyde (HCA) was chosen as the test chemical, while toluene diisocyanate (TDI) and 2,4-dinitrofluorobenzene (DNFB) were evaluated at single concentrations as positive controls. Draining lymph node cell proliferation following acetone exposure varied across strains. SJL mice had a significantly higher degree of proliferation with 2111 d.p.m./2 nodes. The remaining five strains demonstrated responses which ranged from 345 to 887 dpm/2 nodes. DBA/2, B6C3F1, BALB/c and CBA mice had essentially equal levels of lymph node proliferation following exposure to the three chemicals. While C57BL/6 mice gave similar results as CBA mice following DNFB and HCA administration, the LLNA response to TDI was considerably lower. SJL mice provided low stimulation indexes (SI) values for all three chemicals evaluated. Regardless of the level of LLNA response, all six mouse strains identified the sensitization potential of HCA, TDI or DNFB. Based on these studies, DBA/2, B6C3F1 and BALB/c mice are good choices for continued evaluation as additional mouse strains for use in the LLNA.

  20. The frissonnant mutant mouse, a model of dopamino-sensitive, inherited motor syndrome.

    PubMed

    Callizot, N; Guénet, J L; Baillet, C; Warter, J M; Poindron, P

    2001-06-01

    The frissonnant (fri) mutation is an autosomic recessive mutation which spontaneously appeared in the stock of C3H mice. fri mutant mice have locomotor instability and rapid tremor. Since tremor ceases when mutant mice have sleep or are anaesthetized, and because of their obvious stereotyped motor behavior, these mice could represent an inherited Parkinsonian syndrome. We show here that the fri/fri mouse fulfills two out of the three criteria required to validate an experimental model of human disease, that is isomorphism, homology and predictivity. Indeed, fri/fri mice present an important motor deficit accompanying visible tremor and stereotypies. They display some memory deficits as in human Parkinson's desease. l-Dopa and apomorphine (dopaminergic agonists), ropinirole (selective D2 agonist), and selegiline (an monoamino-oxidase B [MAO-B] inhibitor) improve their clinical status. However, neither anatomopathological evidence of nigrostriatal lesion, nor decrease in tyrosine hydroxylase production could be seen.

  1. Selenite-stress selected mutant strains of probiotic bacteria for Se source production.

    PubMed

    Pusztahelyi, Tünde; Kovács, Szilvia; Pócsi, István; Prokisch, József

    2015-04-01

    Selenium deficiency is a major health problem worldwide for about 1 billion people. Bacterial cells usually possess low tolerance to selenite stress and also low ability to reduce high concentrations of toxic selenite. Here, high tolerance to selenite and selenium bioaccumulation capability were developed in mutated clones of probiotic and starter bacteria including Enterococcus faecium, Bifidobacterium animalis ssp. lactis, Lactobacillus casei and Lactococcus lactis ssp. lactis by food-level strain development process and clone selection. All mutant clones possessed increased glutathione concentration and glutathione reductase activity. The selenite treatment increased further these values in L. casei mutant strain pointing at a different selenite reduction pathway and/or stress response in this organism. Considerable conversion of selenite to cell bound selenium forms with a concomitant high biomass production was detected in E. faecium and B. animalis ssp. lactis cultures. Possible application of these strains as food and feed supplements is under investigation.

  2. Comparative intrinsic optical signal imaging of wild-type and mutant mouse retinas.

    PubMed

    Zhang, Qiu-Xiang; Zhang, Youwen; Lu, Rong-Wen; Li, Yi-Chao; Pittler, Steven J; Kraft, Timothy W; Yao, Xin-Cheng

    2012-03-26

    Functional measurement is important for retinal study and disease diagnosis. Transient intrinsic optical signal (IOS) response, tightly correlated with functional stimulation, has been previously detected in normal retinas. In this paper, comparative IOS imaging of wild-type (WT) and rod-degenerated mutant mouse retinas is reported. Both 2-month and 1-year-old mice were measured. In 2-month-old mutant mice, time course and peak value of the stimulus-evoked IOS were significantly delayed (relative to stimulus onset) and reduced, respectively, compared to age matched WT mice. In 1-year-old mutant mice, stimulus-evoked IOS was totally absent. However, enhanced spontaneous IOS responses, which might reflect inner neural remodeling in diseased retina, were observed in both 2-month and 1-year-old mutant retinas. Our experiments demonstrate the potential of using IOS imaging for noninvasive and high resolution identification of disease-associated retinal dysfunctions. Moreover, high spatiotemporal resolution IOS imaging may also lead to advanced understanding of disease-associated neural remodeling in the retina.

  3. Comparative intrinsic optical signal imaging of wild-type and mutant mouse retinas

    PubMed Central

    Zhang, Qiu-Xiang; Zhang, Youwen; Lu, Rong-Wen; Li, Yi-Chao; Pittler, Steven J.; Kraft, Timothy W.; Yao, Xin-Cheng

    2012-01-01

    Functional measurement is important for retinal study and disease diagnosis. Transient intrinsic optical signal (IOS) response, tightly correlated with functional stimulation, has been previously detected in normal retinas. In this paper, comparative IOS imaging of wild-type (WT) and rod-degenerated mutant mouse retinas is reported. Both 2-month and 1-year-old mice were measured. In 2-month-old mutant mice, time course and peak value of the stimulus-evoked IOS were significantly delayed (relative to stimulus onset) and reduced, respectively, compared to age matched WT mice. In 1-year-old mutant mice, stimulus-evoked IOS was totally absent. However, enhanced spontaneous IOS responses, which might reflect inner neural remodeling in diseased retina, were observed in both 2-month and 1-year-old mutant retinas. Our experiments demonstrate the potential of using IOS imaging for noninvasive and high resolution identification of disease-associated retinal dysfunctions. Moreover, high spatiotemporal resolution IOS imaging may also lead to advanced understanding of disease-associated neural remodeling in the retina. PMID:22453443

  4. Spontaneous Gac Mutants of Pseudomonas Biological Control Strains: Cheaters or Mutualists? ▿

    PubMed Central

    Driscoll, William W.; Pepper, John W.; Pierson, Leland S.; Pierson, Elizabeth A.

    2011-01-01

    Bacteria rely on a range of extracellular metabolites to suppress competitors, gain access to resources, and exploit plant or animal hosts. The GacS/GacA two-component regulatory system positively controls the expression of many of these beneficial external products in pseudomonad bacteria. Natural populations often contain variants with defective Gac systems that do not produce most external products. These mutants benefit from a decreased metabolic load but do not appear to displace the wild type in nature. How could natural selection maintain the wild type in the presence of a mutant with enhanced growth? One hypothesis is that Gac mutants are “cheaters” that do not contribute to the public good, favored within groups but selected against between groups, as groups containing more mutants lose access to ecologically important external products. An alternative hypothesis is that Gac mutants have a mutualistic interaction with the wild type, so that each variant benefits by the presence of the other. In the biocontrol bacterium Pseudomonas chlororaphis strain 30-84, Gac mutants do not produce phenazines, which suppress competitor growth and are critical for biofilm formation. Here, we test the predictions of these alternative hypotheses by quantifying interactions between the wild type and the phenazine- and biofilm-deficient Gac mutant within growing biofilms. We find evidence that the wild type and Gac mutants interact mutualistically in the biofilm context, whereas a phenazine-defective structural mutant does not. Our results suggest that the persistence of alternative Gac phenotypes may be due to the stabilizing role of local mutualistic interactions. PMID:21873476

  5. [Ribosome engineering of streptomyces sp. FJ3 from Three Gorges reservoir area and metabolic product of the selected mutant strain].

    PubMed

    Hai, Le; Huang, Yuqi; Liao, Guojian; Hu, Changhua

    2011-07-01

    To explore new resource from inactive actinomycete strains, we screened resistant mutant strains by ribosome engineering, and analyzed the products derived from the selected mutant strains. Three Gorges reservoir area-derived actinomycete strains including BD20, FJ3, WZ20 and FJ5 were used as initial strains, which showed no-antibacterial activities. The streptomycin-resistant (str(R)) mutants and rifampicin-resistant (rif(R)) mutants were screened by single colony isolation on streptomycin-containing plates and rifampicin-containing plates according to the method for obtaining drug-resistant mutants in ribosome engineering. The four initial strains and their str(R)-mutants and rif(R)-mutants were fermented in a liquid medium with the same composition. Mutants with anti-Staphylococcus aureus activity were obtained by paper chromatography. The components of fermentation broth were analyzed by high performance liquid chromatography (HPLC) and high performance liquid chromatography-mass spectrometry (LC-MS). Furthermore, FJ3 strain was identified by 16S rDNA and morphology. The minimal inhibitory concentration (MIC) of streptomycin and rifampicin for FJ3 was: 0.5 microg/mL and 110 microg/mL, respectively. Twenty-four strR-mutant strains and 20 rif(R)-mutant strains of FJ3 mutant strains were selected for bioassay. The result of the antibacterial activity screening demonstrated that six strains inhibited bacteria. Two strains (FJ3-2 and FJ3-6) were screened from the streptomycin-resistance mutants of inactive strain FJ3. The result of bioassay showed that the fermentation broth of FJ3-2 and FJ3-6 exhibited obvious anti-Staphylococcus aureus activity. The assay of paper chromatography showed that the active substance may be nucleic acid class antibiotic via using solvent system Doskochilova. Moreover, the results of HPLC and LC-MS exhibited that this substance may be thiolutin. Ribosome engineering for changing the secondary metabolic function of the inactive wild

  6. Mouse Genetic Nomenclature: Standardization of Strain, Gene, and Protein Symbols

    PubMed Central

    Sundberg, John P.; Schofield, Paul N

    2011-01-01

    The use of standard nomenclatures for describing the strains, genes, and proteins of species is vital for the interpretation, archiving, analysis, and recovery of experimental data on the laboratory mouse. At a time when sharing of data and meta- analysis of experimental results is becoming a dominant mode of scientific investigation, failure to respect formal nomenclatures can cause confusion, errors, and in some cases contribute to poor science. Here we present the basic nomenclature rules for laboratory mice and explain how these rules should be applied to complex genetic manipulations and crosses. PMID:20685919

  7. Characterization of the TO strains of Theiler's mouse encephalomyelitis viruses.

    PubMed Central

    Lipton, H L

    1978-01-01

    Theiler's mouse encephalomyelitis virus isolates from the central nervous systems of spontaneously paralyzed mice and stools of asymptomatic mice resemble Theiler's original virus isolates. In this study four such strains were adapted by blind subpassage to replicate and to produce cytopathic effect in cell culture. These viruses were then found to be closely related to each other and to GDVII virus by cross-neutralization and to form small plaques. Bovine serum was found to contain cross-reacting antibodies to these viruses. PMID:208981

  8. Neuregulin 1 Expression and Electrophysiological Abnormalities in the Neuregulin 1 Transmembrane Domain Heterozygous Mutant Mouse

    PubMed Central

    Frank, Elisabeth; Shaw, Alex; Liu, Shijie; Huang, Xu-Feng; Pinault, Didier; Karl, Tim; O’Brien, Terence J.; Shannon Weickert, Cynthia; Jones, Nigel C.

    2015-01-01

    Background The Neuregulin 1 transmembrane domain heterozygous mutant (Nrg1 TM HET) mouse is used to investigate the role of Nrg1 in brain function and schizophrenia-like behavioural phenotypes. However, the molecular alterations in brain Nrg1 expression that underpin the behavioural observations have been assumed, but not directly determined. Here we comprehensively characterise mRNA Nrg1 transcripts throughout development of the Nrg1 TM HET mouse. In addition, we investigate the regulation of high-frequency (gamma) electrophysiological oscillations in this mutant mouse to associate molecular changes in Nrg1 with a schizophrenia-relevant neurophysiological profile. Methods Using exonic probes spanning the cysteine-rich, epidermal growth factor (EGF)-like, transmembrane and intracellular domain encoding regions of Nrg1, mRNA levels were measured using qPCR in hippocampus and frontal cortex from male and female Nrg1 TM HET and wild type-like (WT) mice throughout development. We also performed electrophysiological recordings in adult mice and analysed gamma oscillatory at baseline, in responses to auditory stimuli and to ketamine. Results In both hippocampus and cortex, Nrg1 TM HET mice show significantly reduced expression of the exon encoding the transmembrane domain of Nrg1 compared with WT, but unaltered mRNA expression encoding the extracellular bioactive EGF-like and the cysteine-rich (type III) domains, and development-specific and region-specific reductions in the mRNA encoding the intracellular domain. Hippocampal Nrg1 protein expression was not altered, but NMDA receptor NR2B subunit phosphorylation was lower in Nrg1 TM HET mice. We identified elevated ongoing and reduced sensory-evoked gamma power in Nrg1 TM HET mice. Interpretation We found no evidence to support the claim that the Nrg1 TM HET mouse represents a simple haploinsufficient model. Further research is required to explore the possibility that mutation results in a gain of Nrg1 function. PMID

  9. Autosomal dominant frontonasal dysplasia (atypical Greig syndrome): Lessons from the Xt mutant mouse

    SciTech Connect

    Cunningham, M.L.; Nunes, M.E.

    1994-09-01

    Greig syndrome is the autosomal dominant association of mild hypertelorism, variable polysyndactyly, and normal intelligence. Several families have been found to have translocations or deletions of 7p13 interrupting the normal expression of GLI3 (a zinc finger, DNA binding, transcription repressor). Recently, a mutation in the mouse homologue of GLI3 was found in the extra-toes mutant mouse (Xt). The phenotypic features of this mouse model include mild hypertelorism, postaxial polydactyly of the forelimbs, preaxial polydactyly of the hindlimbs, and variable tibial hemimelia. The homozygous mutant Xt/Xt have severe frontonasal dysplasia (FND), polysyndactyly of fore-and hindlimbs and invariable tibial hemimelia. We have recently evaluated a child with severe (type D) frontonasal dysplasia, fifth finger camptodactyly, preaxial polydactyly of one foot, and ispilateral tibial hemimelia. His father was born with a bifid nose, broad columnella, broad feet, and a two centimeter leg length discrepancy. The paternal grandmother of the proband is phenotypically normal; however, her fraternal twin died at birth with severe facial anomalies. The paternal great-grandmother of the proband is phenotypically normal however her niece was born with moderate ocular hypertelorism. This pedigree is suggestive of an autosomal dominant form of frontonasal dysplasia with variable expressivity. The phenotypic features of our case more closely resemble the Xt mouse than the previously defined features of Greig syndrome in humans. This suggests that a mutation in GLI3 may be responsible for FND in this family. We are currently using polymorphic dinucleotide repeat markers flanking GLI3 in a attempt to demonstrate linkage in this pedigree. Demonstration of a GLI3 mutation in this family would broaden our view of the spectrum of phenotypes possible in Greig syndrome and could provide insight into genotype/phenotype correlation in FND.

  10. Isolation of cDNA clones for the catalytic gamma subunit of mouse muscle phosphorylase kinase: expression of mRNA in normal and mutant Phk mice.

    PubMed Central

    Chamberlain, J S; VanTuinen, P; Reeves, A A; Philip, B A; Caskey, C T

    1987-01-01

    We have isolated and characterized cDNA clones for the gamma subunit of mouse muscle phosphorylase kinase (gamma-Phk). These clones were isolated from a lambda gt11 mouse muscle cDNA library via screening with a synthetic oligonucleotide probe corresponding to a portion of the rabbit gamma-Phk amino acid sequence. The gamma-Phk cDNA clones code for a 387-amino acid protein that shares 93% amino acid sequence identity with the corresponding rabbit amino acid sequence. RNA gel blot analysis reveals that the muscle gamma-Phk probe hybridizes to two mRNA species (2.4 and 1.6 kilobases) in skeletal muscle, cardiac muscle, and brain, but does not hybridize to liver RNA. Phk-deficient I-strain (Phk) mouse muscle contains reduced levels of gamma-Phk mRNA as compared with control mice. Although the Phk defect is an X-linked recessive trait, hybridization to a human-rodent somatic cell hybrid mapping panel shows that the gamma-Phk gene is not located on the X chromosome. Rather, the gamma-Phk cross-hybridizing human restriction fragments map to human chromosomes 7 (multiple) and 11 (single). Reduced gamma-Phk mRNA in I-strain mice, therefore, appears to be a consequence of the Phk-mutant trait and does not stem from a mutant gamma-subunit gene. Images PMID:3472241

  11. Withdrawal severity after chronic intermittent ethanol in inbred mouse strains

    PubMed Central

    Metten, Pamela; Sorensen, Michelle L.; Cameron, Andy Jade; Yu, Chia-Hua; Crabbe, John C.

    2010-01-01

    Background To study withdrawal, ethanol is usually administered chronically without interruption. However, interest has recurred in models of episodic exposure. Increasing evidence suggests that chronic intermittent exposure to ethanol leads to a sensitization effect in both withdrawal severity and in ethanol consumption. The goal of the present study was to examine mouse inbred strain differences in withdrawal severity following chronic intermittent exposure using the handling induced convulsion as the behavioral endpoint. We also sought to compare the withdrawal responses of inbred strains across acute, chronic continuous, and chronic intermittent exposure regimens. Methods Male mice from 15 standard inbred strains were exposed to ethanol vapor for 16 hours each day for 3 days and removed to an air chamber during the intervening 8 hours. Mice in the control groups were handled the same, except that they were exposed only to air. Daily blood ethanol concentrations were averaged for each mouse to estimate total dose of ethanol experienced. Results Across strains, mice had an average daily blood ethanol concentration (BEC) of 1.45 ± 0.02 mg/ml and we restricted the range of this value to 1.00 to 2.00 mg/ml. To evaluate strain differences, we divided data into two dose groups based on BEC, Low Dose (1.29 ± 0.1 mg/ml) and High Dose (1.71 ± 0.02 mg/ml). After the third inhalation exposure, ethanol- and air-exposed groups were tested hourly for handling-induced convulsions for 10 hr and at hr 24 and 25. Strains differed markedly in the severity of withdrawal (after subtraction of air control values) in both dose groups. Conclusion The chronic intermittent exposure paradigm is sufficient to elicit differential withdrawal responses across nearly all strains. Data from the High Dose groups correlated well with withdrawal data derived from prior acute (single high dose) and chronic continuous (for 72 hrs) ethanol withdrawal studies, supporting the influence of common

  12. Keratinase production and keratin degradation by a mutant strain of Bacillus subtilis *

    PubMed Central

    Cai, Cheng-gang; Lou, Bing-gan; Zheng, Xiao-dong

    2008-01-01

    A new feather-degrading bacterium was isolated from a local feather waste site and identified as Bacillus subtilis based on morphological, physiochemical, and phylogenetic characteristics. Screening for mutants with elevated keratinolytic activity using N-methyl-N′-nitro-N-nitrosoguanidine mutagenesis resulted in a mutant strain KD-N2 producing keratinolytic activity about 2.5 times that of the wild-type strain. The mutant strain produced inducible keratinase in different substrates of feathers, hair, wool and silk under submerged cultivation. Scanning electron microscopy studies showed the degradation of feathers, hair and silk by the keratinase. The optimal conditions for keratinase production include initial pH of 7.5, inoculum size of 2% (v/v), age of inoculum of 16 h, and cultivation at 23 °C. The maximum keratinolytic activity of KD-N2 was achieved after 30 h. Essential amino acids like threonine, valine, methionine as well as ammonia were produced when feathers were used as substrates. Strain KD-N2, therefore, shows great promise of finding potential applications in keratin hydrolysis and keratinase production. PMID:18196614

  13. Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum

    SciTech Connect

    Lynd, Lee R; Shao, Xiongjun; Raman, Babu; Mielenz, Jonathan R; Brown, Steven D; Guss, Adam M; Zhu, Mingjun

    2011-01-01

    Clostridium thermocellum is a model microorganism for converting cellulosic biomass into fuels and chemicals via consolidated bioprocessing. One of the challenges for industrial application of this organism is its low ethanol tolerance, typically 1 2% (w/v) in wild-type strains. In this study, we report the development and characterization of mutant C. thermocellum strains that can grow in the presence of high ethanol concentrations. Starting from a single colony, wild-type C. thermocellum ATCC 27405 was sub-cultured and adapted for growth in up to 50 g/L ethanol using either cellobiose or crystalline cellulose as the growth substrate. Both the adapted strains retained their ability to grow on either substrate and displayed a higher growth rate and biomass yield than the wild-type strain in the absence of ethanol. With added ethanol in the media, the mutant strains displayed an inverse correlation between ethanol concentration and growth rate or biomass yield. Genome sequencing revealed six common mutations in the two ethanol-tolerant strains including an alcohol dehydrogenase gene and genes involved in arginine/pyrimidine biosynthetic pathway. The potential role of these mutations in ethanol tolerance phenotype is discussed.

  14. Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum

    SciTech Connect

    Shao, Xiongjun; Raman, Babu; Zhu, Mingjun; Mielenz, Jonathan R; Brown, Steven D; Guss, Adam M; Lynd, Lee R

    2011-01-01

    Clostridium thermocellum is a model microorganism for converting cellulosic biomass into fuels and chemicals via consolidated bioprocessing. One of the challenges for industrial application of this organism is its low ethanol tolerance, typically 1-2% (w/v) in wild-type strains. In this study, we report the development and characterization of mutant C. thermocellum strains that can grow in the presence of high ethanol concentrations. Starting from a single colony, wild-type C. thermocellum ATCC 27405 was sub-cultured and adapted for growth in up to 50 g/L ethanol using either cellobiose or crystalline cellulose as the growth substrate. Both the adapted strains retained their ability to grow on either substrate and displayed a higher growth rate and biomass yield than the wild-type strain in the absence of ethanol. With added ethanol in the media, the mutant strains displayed an inverse correlation between ethanol concentration and growth rate or biomass yield. Genome sequencing revealed six common mutations in the two ethanol-tolerant strains including an alcohol dehydrogenase gene and genes involved in arginine/pyrimidine biosynthetic pathway. The potential role of these mutations in ethanol tolerance phenotype is discussed.

  15. Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum.

    PubMed

    Shao, Xiongjun; Raman, Babu; Zhu, Mingjun; Mielenz, Jonathan R; Brown, Steven D; Guss, Adam M; Lynd, Lee R

    2011-11-01

    Clostridium thermocellum is a model microorganism for converting cellulosic biomass into fuels and chemicals via consolidated bioprocessing. One of the challenges for industrial application of this organism is its low ethanol tolerance, typically 1-2% (w/v) in wild-type strains. In this study, we report the development and characterization of mutant C. thermocellum strains that can grow in the presence of high ethanol concentrations. Starting from a single colony, wild-type C. thermocellum ATCC 27405 was sub-cultured and adapted for growth in up to 50 g/L ethanol using either cellobiose or crystalline cellulose as the growth substrate. Both the adapted strains retained their ability to grow on either substrate and displayed a higher growth rate and biomass yield than the wild-type strain in the absence of ethanol. With added ethanol in the media, the mutant strains displayed an inverse correlation between ethanol concentration and growth rate or biomass yield. Genome sequencing revealed six common mutations in the two ethanol-tolerant strains including an alcohol dehydrogenase gene and genes involved in arginine/pyrimidine biosynthetic pathway. The potential role of these mutations in ethanol tolerance phenotype is discussed.

  16. Isolation and characterization of the E. coli membrane protein production strain Mutant56(DE3)

    PubMed Central

    Baumgarten, Thomas; Schlegel, Susan; Wagner, Samuel; Löw, Mirjam; Eriksson, Jonas; Bonde, Ida; Herrgård, Markus J.; Heipieper, Hermann J.; Nørholm, Morten H. H.; Slotboom, Dirk Jan; de Gier, Jan-Willem

    2017-01-01

    Membrane protein production is usually toxic to E. coli. However, using genetic screens strains can be isolated in which the toxicity of membrane protein production is reduced, thereby improving production yields. Best known examples are the C41(DE3) and C43(DE3) strains, which are both derived from the T7 RNA polymerase (P)-based BL21(DE3) protein production strain. In C41(DE3) and C43(DE3) mutations lowering t7rnap expression levels result in strongly reduced T7 RNAP accumulation levels. As a consequence membrane protein production stress is alleviated in the C41(DE3) and C43(DE3) strains, thereby increasing membrane protein yields. Here, we isolated Mutant56(DE3) from BL21(DE3) using a genetic screen designed to isolate BL21(DE3)-derived strains with mutations alleviating membrane protein production stress other than the ones in C41(DE3) and C43(DE3). The defining mutation of Mutant56(DE3) changes one amino acid in its T7 RNAP, which weakens the binding of the T7 RNAP to the T7 promoter governing target gene expression rather than lowering T7 RNAP levels. For most membrane proteins tested yields in Mutant56(DE3) were considerably higher than in C41(DE3) and C43(DE3). Thus, the isolation of Mutant56(DE3) shows that the evolution of BL21(DE3) can be promoted towards further enhanced membrane protein production. PMID:28338018

  17. Isolation and characterization of the E. coli membrane protein production strain Mutant56(DE3).

    PubMed

    Baumgarten, Thomas; Schlegel, Susan; Wagner, Samuel; Löw, Mirjam; Eriksson, Jonas; Bonde, Ida; Herrgård, Markus J; Heipieper, Hermann J; Nørholm, Morten H H; Slotboom, Dirk Jan; de Gier, Jan-Willem

    2017-03-24

    Membrane protein production is usually toxic to E. coli. However, using genetic screens strains can be isolated in which the toxicity of membrane protein production is reduced, thereby improving production yields. Best known examples are the C41(DE3) and C43(DE3) strains, which are both derived from the T7 RNA polymerase (P)-based BL21(DE3) protein production strain. In C41(DE3) and C43(DE3) mutations lowering t7rnap expression levels result in strongly reduced T7 RNAP accumulation levels. As a consequence membrane protein production stress is alleviated in the C41(DE3) and C43(DE3) strains, thereby increasing membrane protein yields. Here, we isolated Mutant56(DE3) from BL21(DE3) using a genetic screen designed to isolate BL21(DE3)-derived strains with mutations alleviating membrane protein production stress other than the ones in C41(DE3) and C43(DE3). The defining mutation of Mutant56(DE3) changes one amino acid in its T7 RNAP, which weakens the binding of the T7 RNAP to the T7 promoter governing target gene expression rather than lowering T7 RNAP levels. For most membrane proteins tested yields in Mutant56(DE3) were considerably higher than in C41(DE3) and C43(DE3). Thus, the isolation of Mutant56(DE3) shows that the evolution of BL21(DE3) can be promoted towards further enhanced membrane protein production.

  18. Reselection of a genomic upstream open reading frame in mouse hepatitis coronavirus 5'-untranslated-region mutants.

    PubMed

    Wu, Hung-Yi; Guan, Bo-Jhih; Su, Yu-Pin; Fan, Yi-Hsin; Brian, David A

    2014-01-01

    An AUG-initiated upstream open reading frame (uORF) encoding a potential polypeptide of 3 to 13 amino acids (aa) is found within the 5' untranslated region (UTR) of >75% of coronavirus genomes based on 38 reference strains. Potential CUG-initiated uORFs are also found in many strains. The AUG-initiated uORF is presumably translated following genomic 5'-end cap-dependent ribosomal scanning, but its function is unknown. Here, in a reverse-genetics study with mouse hepatitis coronavirus, the following were observed. (i) When the uORF AUG-initiating codon was replaced with a UAG stop codon along with a U112A mutation to maintain a uORF-harboring stem-loop 4 structure, an unimpaired virus with wild-type (WT) growth kinetics was recovered. However, reversion was found at all mutated sites within five virus passages. (ii) When the uORF was fused with genomic (main) ORF1 by converting three in-frame stop codons to nonstop codons, a uORF-ORF1 fusion protein was made, and virus replicated at WT levels. However, a frameshifting G insertion at virus passage 7 established a slightly 5'-extended original uORF. (iii) When uAUG-eliminating deletions of 20, 30, or 51 nucleotides (nt) were made within stem-loop 4, viable but debilitated virus was recovered. However, a C80U mutation in the first mutant and an A77G mutation in the second appeared by passage 10, which generated alternate uORFs that correlated with restored WT growth kinetics. In vitro, the uORF-disrupting nondeletion mutants showed enhanced translation of the downstream ORF1 compared with the WT. These results together suggest that the uORF represses ORF1 translation yet plays a beneficial but nonessential role in coronavirus replication in cell culture.

  19. Comparative analysis of salt-tolerant gene HOG1 in a Zygosaccharomyces rouxii mutant strain and its parent strain.

    PubMed

    Wei, Yonghua; Wang, Cong; Wang, Meng; Cao, Xiaohong; Hou, Lihua

    2013-08-30

    A higher-salt-tolerant mutant strain Zygosaccharomyces rouxii 3-2 (strain S3-2) that could be used for improving the flavour of high-salt liquid state soy sauce was previously constructed from parent strain Z. rouxii (strain S) by genome shuffling. However, whether the mutations in this strain affect HOG1 encoding MAPK Hog1p and improve intracellular glycerol production remains to be elucidated. Although two mutations in the ORF and one in the promoter of the HOG1 gene sequence of strain S3-2 occurred compared with that of strain S, there was no significant difference in secondary and tertiary structures between S3-2Hog1p and SHog1p. It was found that the expression level of S3-2HOG1 was higher than that of SHOG1 in YPDN medium with high salt concentration. Furthermore, overexpression of S3-2HOG1 in Saccharomyces cerevisiae W303-1A could improve the salt tolerance and osmotolerance of engineered yeast compared with that of SHOG1. Enhancement of the transcription level of HOG1 induced by mutation in the promoter region may be one of the main reasons for the improved salt tolerance of strain S3-2 compared with that of strain S. Considering food security, the conservation of S3-2HOG1 would be beneficial for application of strain S3-2 in the fermentation of soy sauce. © 2013 Society of Chemical Industry.

  20. Production of a thermal stress resistant mutant Euglena gracilis strain using Fe-ion beam irradiation.

    PubMed

    Yamada, Koji; Kazama, Yusuke; Mitra, Sharbanee; Marukawa, Yuka; Arashida, Ryo; Abe, Tomoko; Ishikawa, Takahiro; Suzuki, Kengo

    2016-08-01

    Euglena gracilis is a common phytoplankton species, which also has motile flagellate characteristics. Recent research and development has enabled the industrial use of E. gracilis and selective breeding of this species is expected to further expand its application. However, the production of E. gracilis nuclear mutants is difficult because of the robustness of its genome. To establish an efficient mutation induction procedure for E. gracilis, we employed Fe-ion beam irradiation in the RIKEN RI beam factory. A decrease in the survival rate was observed with the increase in irradiation dose, and the upper limit used for E. gracilis selective breeding was around 50 Gy. For a practical trial of Fe-ion irradiation, we conducted a screening to isolate high-temperature-tolerant mutants. The screening yielded mutants that proliferated faster than the wild-type strain at 32 °C. Our results demonstrate the effectiveness of heavy-ion irradiation on E. gracilis selective breeding.

  1. Prevention of neural tube defects in Lrp2 mutant mouse embryos by folic acid supplementation.

    PubMed

    Sabatino, Julia A; Stokes, Bethany A; Zohn, Irene E

    2017-01-20

    Neural tube defects (NTDs) are among the most common structural birth defects in humans and are caused by the complex interaction of genetic and environmental factors. Periconceptional supplementation with folic acid can prevent NTDs in both mouse models and human populations. A better understanding of how genes and environmental factors interact is critical toward development of rational strategies to prevent NTDs. Low density lipoprotein-related protein 2 (Lrp2) is involved in endocytosis of the folic acid receptor among numerous other nutrients and ligands. We determined the effect of iron and/or folic acid supplementation on the penetrance of NTDs in the Lrp2(null) mouse model. The effects of supplementation on folate and iron status were measured in embryos and dams. Periconceptional dietary supplementation with folic acid did not prevent NTDs in Lrp2 mutant embryos, whereas high levels of folic acid supplementation by intraperitoneal injection reduced incidence of NTDs. Importantly, Lrp2(null/+) dams had reduced blood folate levels that improved with daily intraperitoneal injections of folate but not dietary supplementation. On the contrary, iron supplementation had no effect on the penetrance of NTDs in Lrp2 mutant embryos and negated the preventative effect of folic acid supplementation in Lrp2(null/null) mutants. Lrp2 is required for folate homeostasis in heterozygous dams and high levels of supplementation prevents NTDs. Furthermore, high levels of dietary iron supplementation interfered with folic acid supplementation negating the positive effects of supplementation in this model. Birth Defects Research 109:16-26, 2017. © 2016 The Authors Birth Defects Published by Wiley Periodicals, Inc. © 2016 The Authors Birth Defects Research Published by Wiley Periodicals, Inc.

  2. Electroacupuncture remediates glial dysfunction and ameliorates neurodegeneration in the astrocytic α-synuclein mutant mouse model.

    PubMed

    Deng, Jiahui; Lv, E; Yang, Jian; Gong, Xiaoli; Zhang, Wenzhong; Liang, Xibin; Wang, Jiazeng; Jia, Jun; Wang, Xiaomin

    2015-05-28

    The acupuncture or electroacupuncture (EA) shows the therapeutic effect on various neurodegenerative diseases. This effect was thought to be partially achieved by its ability to alleviate existing neuroinflammation and glial dysfunction. In this study, we systematically investigated the effect of EA on abnormal neurochemical changes and motor symptoms in a mouse neurodegenerative disease model. The transgenic mouse which expresses a mutant α-synuclein (α-syn) protein, A53T α-syn, in brain astrocytic cells was used. These mice exhibit extensive neuroinflammatory and motor phenotypes of neurodegenerative disorders. In this study, the effects of EA on these phenotypic changes were examined in these mice. EA improved the movement detected in multiple motor tests in A53T mutant mice. At the cellular level, EA significantly reduced the activation of microglia and prevented the loss of dopaminergic neurons in the midbrain and motor neurons in the spinal cord. At the molecular level, EA suppressed the abnormal elevation of proinflammatory factors (tumor necrosis factor-α and interleukin-1β) in the striatum and midbrain of A53T mice. In contrast, EA increased striatal and midbrain expression of a transcription factor, nuclear factor E2-related factor 2, and its downstream antioxidants (heme oxygenase-1 and glutamate-cysteine ligase modifier subunits). These results suggest that EA possesses the ability to ameliorate mutant α-syn-induced motor abnormalities. This ability may be due to that EA enhances both anti-inflammatory and antioxidant activities and suppresses aberrant glial activation in the diseased sites of brains.

  3. Identification of sonic hedgehog as a candidate gene responsible for the polydactylous mouse mutant Sasquatch.

    PubMed

    Sharpe, J; Lettice, L; Hecksher-Sorensen, J; Fox, M; Hill, R; Krumlauf, R

    1999-01-28

    The mouse mutants of the hemimelia-luxate group (lx, lu, lst, Dh, Xt, and the more recently identified Hx, Xpl and Rim4; [1] [2] [3] [4] [5]) have in common preaxial polydactyly and longbone abnormalities. Associated with the duplication of digits are changes in the regulation of development of the anterior limb bud resulting in ectopic expression of signalling components such as Sonic hedgehog (Shh) and fibroblast growth factor-4 (Fgf4), but little is known about the molecular causes of this misregulation. We generated, by a transgene insertion event, a new member of this group of mutants, Sasquatch (Ssq), which disrupted aspects of both anteroposterior (AP) and dorsoventral (DV) patterning. The mutant displayed preaxial polydactyly in the hindlimbs of heterozygous embryos, and in both hindlimbs and forelimbs of homozygotes. The Shh, Fgf4, Fgf8, Hoxd12 and Hoxd13 genes were all ectopically expressed in the anterior region of affected limb buds. The insertion site was found to lie close to the Shh locus. Furthermore, expression from the transgene reporter has come under the control of a regulatory element that directs a pattern mirroring the endogenous expression pattern of Shh in limbs. In abnormal limbs, both Shh and the reporter were ectopically induced in the anterior region, whereas in normal limbs the reporter and Shh were restricted to the zone of polarising activity (ZPA). These data strongly suggest that Ssq is caused by direct interference with the cis regulation of the Shh gene.

  4. Immunological roles of Pasteurella multocida toxin (PMT) using a PMT mutant strain.

    PubMed

    Kim, Tae Jung; Toan, Nguyen Tat; Jang, Eun Jin; Jung, Bock Gie; Lee, Jae Il; Lee, Bong Joo

    2007-08-01

    The immunological role of the Pasteurella multocida toxin (PMT) in mice was examined using a PMT mutant strain. After a nasal inoculation, the mutant strain failed to induce interstitial pneumonia. Moreover, PMT had no significant effect on the populations of CD4+, CD8+, CD3+, and CD19+ immunocytes in blood or on the populations of CD4+ and CD8+ splenocytes (P<0.01). However, there was a significant increase in the total number of cells in the BAL samples obtained from the wild-type P. multocida-inoculated mice. On the other hand, the level of IL-1 expression decreased when the macrophages from the bronchio-alveolar lavage were stimulated with PMT. Overall, PMT appears to play some role (stimulating and/or inhibiting) in the immunological responses but further studies will be required to confirm this.

  5. Inactivation of Streptococcus pyogenes extracellular cysteine protease significantly decreases mouse lethality of serotype M3 and M49 strains.

    PubMed Central

    Lukomski, S; Sreevatsan, S; Amberg, C; Reichardt, W; Woischnik, M; Podbielski, A; Musser, J M

    1997-01-01

    Cysteine proteases have been implicated as important virulence factors in a wide range of prokaryotic and eukaryotic pathogens, but little direct evidence has been presented to support this notion. Virtually all strains of the human bacterial pathogen Streptococcus pyogenes express a highly conserved extracellular cysteine protease known as streptococcal pyrogenic exotoxin B (SpeB). Two sets of isogenic strains deficient in SpeB cysteine protease activity were constructed by integrational mutagenesis using nonreplicating recombinant plasmids containing a truncated segment of the speB gene. Immunoblot analyses and enzyme assays confirmed that the mutant derivatives were deficient in expression of enzymatically active SpeB cysteine protease. To test the hypothesis that the cysteine protease participates in host mortality, we assessed the ability of serotype M3 and M49 wild-type strains and isogenic protease-negative mutants to cause death in outbred mice after intraperitoneal inoculation. Compared to wild-type parental organisms, the serotype M3 speB mutant lost virtually all ability to cause mouse death (P < 0.00001), and similarly, the virulence of the M49 mutant was detrimentally altered (P < 0.005). The data unambiguously demonstrate that the streptococcal enzyme is a virulence factor, and thereby provide additional evidence that microbial cysteine proteases are critical in host-pathogen interactions. PMID:9169486

  6. Regulation of nitrogen metabolism is altered in a glnB mutant strain of Rhizobium leguminosarum.

    PubMed

    Amar, M; Patriarca, E J; Manco, G; Bernard, P; Riccio, A; Lamberti, A; Defez, R; Iaccarino, M

    1994-02-01

    We isolated a Rhizobium leguminosarum mutant strain altered in the glnB gene. This event, which has never been described in the Rhizobiaceae, is rare in comparison to mutants isolated in the contiguous gene, glnA. The glnB mutation removes the glnBA promoter but in vivo does not prevent glnA expression from its own promoter, which is not nitrogen regulated. The glnB mutant strain does not grow on nitrate as a sole nitrogen source and it is Nod+, Fix+. Two -24/-12 promoters, for the glnII and glnBA genes, are constitutively expressed in the glnB mutant, while two -35/-10-like promoters for glnA and ntrBC are unaffected. We propose that the glnB gene product, the PII protein, plays a negative role in the ability of NtrC to activate transcription from its target promoters and a positive role in the mechanism of nitrate utilization.

  7. Cytological characterization of an Aspergillus Nidulans mutant from a strain with chromosomic duplication

    PubMed Central

    Giancoli, Ágata Cristiane Huppert; de Azevedo, João Lúcio; Pizzirani-Kleiner, Aline Aparecida

    2010-01-01

    A development mutant, named V103, was obtained spontaneously from the A strain of A. nidulans. The A strain contains a duplicated segment of chromosome I that has undergone translocation to chromosome II (I II). It is mitotically unstable and generates phenotypically deteriorated types, some with enhanced stability. The deteriorated variants of A. nidulans show abnormal development, exhibiting slower colony growth, variations in colony pigmentation and changes in conidiophore structure. The alterations observed in the conidiophore include fewer metulae and phialides, further elongation and ramification of these structures, delayed nuclear migration and the presence of secondary conidiophores. PMID:24031489

  8. A cysG mutant strain of Rhizobium etli pleiotropically defective in sulfate and nitrate assimilation.

    PubMed Central

    Tate, R; Riccio, A; Iaccarino, M; Patriarca, E J

    1997-01-01

    By its inability to grow on sulfate as the sole sulfur source, a mutant strain (CTNUX8) of Rhizobium etli carrying Tn5 was isolated and characterized. Sequence analysis showed that Tn5 is inserted into a cysG (siroheme synthetase)-homologous gene. By RNase protection assays, it was established that the cysG-like gene had a basal level of expression in thiosulfate- or cysteine-grown cells, which was induced when sulfate or methionine was used. Unlike its wild-type parent (strain CE3), the mutant strain, CTNUX8, was also unable to grow on nitrate as the sole nitrogen source and was unable to induce a high level of nitrite reductase. Despite its pleiotropic phenotype, strain CTNUX8 was able to induce pink, effective (N2-fixing) nodules on the roots of Phaseolus vulgaris plants. However, mixed inoculation experiments showed that strain CTNUX8 is significantly different from the wild type in its ability to nodulate. Our data support the notion that sulfate (or sulfite) is the sulfur source of R. etli in the rhizosphere, while cysteine, methionine, or glutathione is supplied by the root cells to bacteria growing inside the plant. PMID:9393698

  9. New modified trichothecenes accumulated in solid culture by mutant strains of Fusarium sporotrichioides.

    PubMed Central

    McCormick, S P; Taylor, S L; Plattner, R D; Beremand, M N

    1989-01-01

    Mutant strains of Fusarium sporotrichioides NRRL 3299 deficient in the ability to synthesize T-2 toxin were examined on solid rice medium. Five novel alicyclic trichothecenes were isolated: 11 alpha-hydroxytrichodiene; tricho-9-ene-2 alpha,3 alpha,11 alpha-triol; tricho-9-ene-2 alpha,3 alpha,8 alpha,11 alpha-tetraol; tricho-9-ene-2 alpha,3 alpha,8 beta,11 alpha-tetraol; and tricho-9-ene-2 alpha,3 alpha,11 alpha,16-tetraol. PMID:2802605

  10. Role of cilia in structural birth defects: insights from ciliopathy mutant mouse models.

    PubMed

    Rao Damerla, Rama; Gabriel, George C; Li, You; Klena, Nikolai T; Liu, Xiaoqin; Chen, Yu; Cui, Cheng; Pazour, Gregory J; Lo, Cecilia W

    2014-06-01

    Structural birth defect (SBD) is a major cause of morbidity and mortality in the newborn period. Although the etiology of SBD is diverse, a wide spectrum of SBD associated with ciliopathies points to the cilium as having a central role in the pathogenesis of SBDs. Ciliopathies are human diseases arising from disruption of cilia structure and/or function. They are associated with developmental anomalies in one or more organ systems and can involve defects in motile cilia, such as those in the airway epithelia or from defects in nonmotile (primary cilia) that have sensory and cell signaling function. Availability of low cost next generation sequencing has allowed for explosion of new knowledge in genetic etiology of ciliopathies. This has led to the appreciation that many genes are shared in common between otherwise clinically distinct ciliopathies. Further insights into the relevance of the cilium in SBD has come from recovery of pathogenic mutations in cilia-related genes from many large-scale mouse forward genetic screens with differing developmental phenotyping focus. Our mouse mutagenesis screen for congenital heart disease (CHD) using noninvasive fetal echocardiography has yielded a marked enrichment for pathogenic mutations in genes required for motile or primary cilia function. These novel mutant mouse models will be invaluable for modeling human ciliopathies and further interrogating the role of the cilium in the pathogenesis of SBD and CHD. Overall, these findings suggest a central role for the cilium in the pathogenesis of a wide spectrum of developmental anomalies associated with CHD and SBDs.

  11. Coenzyme Q10 production in a 150-l reactor by a mutant strain of Rhodobacter sphaeroides.

    PubMed

    Kien, Nguyen Ba; Kong, In-Soo; Lee, Min-Gyu; Kim, Joong Kyun

    2010-05-01

    For the commercial production of CoQ(10), batch-type fermentations were attempted in a 150-l fermenter using a mutant strain of R. sphaeroides. Optimum temperature and initial aeration rate were found to be 30 degrees C and 2 vvm, respectively. Under optimum fermentation conditions, the maximum value of specific CoQ(10) content was achieved reproducibly as 6.34 mg/g DCW after 24 h, with 3.02 g/l of DCW. During the fermentation, aeration shift (from the adequate aeration at the early growth phase to the limited aeration in active cellular metabolism) was a key factor in CoQ(10) production for scale-up. A higher value of the specific CoQ(10) content (8.12 mg/g DCW) was achieved in fed-batch fermentation and comparable to those produced by the pilot-scale fed-batch fermentations of A. tumefaciens, which indicated that the mutant strain of R. sphaeroides used in this study was a potential high CoQ(10) producer. This is the first detailed study to demonstrate a pilot-scale production of CoQ(10) using a mutant strain of R. sphaeroides.

  12. Activities of garenoxacin against quinolone-resistant Streptococcus pneumoniae strains in vitro and in a mouse pneumonia model.

    PubMed

    Azoulay-Dupuis, E; Bédos, J P; Mohler, J; Peytavin, G; Isturiz, R; Moine, P; Rieux, V; Cherbuliez, C; Péchère, J C; Fantin, B; Köhler, T

    2004-03-01

    Garenoxacin is a novel des-F(6) quinolone with enhanced in vitro activities against both gram-positive and gram-negative bacteria. We compared the activity of garenoxacin with that of trovafloxacin (TVA) against Streptococcus pneumoniae, together with their efficacies and their capacities to select for resistant mutants, in a mouse model of acute pneumonia. In vitro, garenoxacin was more potent than TVA against wild-type S. pneumoniae and against a mutant with a single mutation (parC), a mutant with double mutations (gyrA and parC), and a mutant with triple mutations (gyrA, parC, and parE). Swiss mice were infected with 10(5) CFU of virulent, encapsulated S. pneumoniae strain P-4241 or its derived isogenic parC, gyrA, gyrA parC, and efflux mutants and 10(7) CFU of poorly virulent clinical strains carrying a parE mutation or gyrA, parC, and parE mutations. The drugs were administered six times, every 12 h, beginning at either 3 or 18 h postinfection. The pulmonary pharmacokinetic parameters in mice infected with strain P-4241 and treated with garenoxacin or TVA (25 mg/kg of body weight) were as follows: maximum concentration of drug in serum (C(max); 17.3 and 21.2 micro g/ml, respectively), C(max)/MIC ratio (288 and 170, respectively), area under the concentration-time curve (AUC; 48.5 and 250 microg. h/ml, respectively), and AUC/MIC ratio (808 and 2000, respectively). Garenoxacin at 25 and 50 mg/kg was highly effective (survival rates, 85 to 100%) against the wild-type strain and mutants harboring a single mutation. TVA was as effective as garenoxacin against these strains. TVA at 200 mg/kg and garenoxacin at 50 mg/kg were ineffective against the mutant with the parC and gyrA double mutations and the mutant with the gyrA, parC, and parE triple mutations. The efficacy of garenoxacin was reduced only when strains bore several mutations for quinolone resistance.

  13. Superovulation strategies for 6 commonly used mouse strains.

    PubMed

    Luo, Charlie; Zuñiga, Juliana; Edison, Earnessa; Palla, Shana; Dong, Wenli; Parker-Thornburg, Jan

    2011-07-01

    We examined different weight ranges and hormone dosages to determine superovulation protocols for 6 mouse strains commonly used in genetic engineering: C57BL/6NHsd, B6(Cg)-Tyr(c-2J)/J, B6D2F1/Hsd, FVB/NHsd, BALB/cAnNCr, and Crl:CD1(ICR). Mice from each strain were divided into groups based on weight roughly corresponding to those of 3-, 4-, 5-, and 6-wk-old mice. Mice were treated with 5 IU pregnant mare serum gonadotropin (PMSG) and 5 IU human chorionic gonadotropin (HCG). The weights of mice that produced maximal numbers of oocytes in response to these doses were 14.2 g or less for C57BL/6NHsd, 13.7 g or less for B6(Cg)-Tyr(c-2J)/J, 6.0 to 9.9 g for B6D2F1/Hsd, 14.5 to 16.4 g for FVB/NHsd, 14.8 g or less for BALB/cAnNCr, and 23.5 g or more for Crl:CD1(ICR). We then compared PMSG dosages of 5 and 2.5 IU per mouse and determined whether 2 doses of PMSG (5 or 2.5 IU, depending on prior results) administered 1 wk apart, followed by the standard HCG injection, would produce more oocytes when compared to a single dose of PMSG. FVB, B6D2F1, BALB/c, and CD1 mice responded best to a single dose of 5 IU of each hormone, whereas B6(Cg)-Tyr (c-2J)/J mice produced more oocytes after 2.5 IU PMSG. Although C57BL/6 mice given the standard dose produced good numbers of oocytes, the number was higher after 2 doses of PMSG at 5 IU per dose. We conclude that response to superovulation can be optimized based on mouse strain, weight, and the dose and timing of hormone injection. Copyright 2011 by the American Association for Laboratory Animal Science

  14. Superovulation Strategies for 6 Commonly Used Mouse Strains

    PubMed Central

    Luo, Charlie; Zuñiga, Juliana; Edison, Earnessa; Palla, Shana; Dong, Wenli; Parker-Thornburg, Jan

    2011-01-01

    We examined different weight ranges and hormone dosages to determine superovulation protocols for 6 mouse strains commonly used in genetic engineering: C57BL/6NHsd, B6(Cg)-Tyrc-2J/J, B6D2F1/Hsd, FVB/NHsd, BALB/cAnNCr, and Crl:CD1(ICR). Mice from each strain were divided into groups based on weight roughly corresponding to those of 3-, 4-, 5-, and 6-wk-old mice. Mice were treated with 5 IU pregnant mare serum gonadotropin (PMSG) and 5 IU human chorionic gonadotropin (HCG). The weights of mice that produced maximal numbers of oocytes in response to these doses were 14.2 g or less for C57BL/6NHsd, 13.7 g or less for B6(Cg)-Tyrc-2J/J, 6.0 to 9.9 g for B6D2F1/Hsd, 14.5 to 16.4 g for FVB/NHsd, 14.8 g or less for BALB/cAnNCr, and 23.5 g or more for Crl:CD1(ICR). We then compared PMSG dosages of 5 and 2.5 IU per mouse and determined whether 2 doses of PMSG (5 or 2.5 IU, depending on prior results) administered 1 wk apart, followed by the standard HCG injection, would produce more oocytes when compared to a single dose of PMSG. FVB, B6D2F1, BALB/c, and CD1 mice responded best to a single dose of 5 IU of each hormone, whereas B6(Cg)-Tyrc-2J/J mice produced more oocytes after 2.5 IU PMSG. Although C57BL/6 mice given the standard dose produced good numbers of oocytes, the number was higher after 2 doses of PMSG at 5 IU per dose. We conclude that response to superovulation can be optimized based on mouse strain, weight, and the dose and timing of hormone injection. PMID:21838974

  15. A novel spontaneous mutation of BCAR3 results in extrusion cataracts in CF#1 mouse strain.

    PubMed

    Kondo, Tomohiro; Nakamori, Taketo; Nagai, Hiroaki; Takeshita, Ai; Kusakabe, Ken-Takeshi; Okada, Toshiya

    2016-10-01

    A substrain of mice originating from the CF#1 strain (an outbred colony) reared at Osaka Prefecture University (CF#1/lr mice) develops cataracts beginning at 4 weeks of age. Affected mice were fully viable and fertile and developed cataracts by 14 weeks of age. Histologically, CF#1/lr mice showed vacuolation of the lens cortex, swollen lens fibers, lens rupture and nuclear extrusion. To elucidate the mode of inheritance, we analyzed heterozygous mutant hybrids generated from CF#1/lr mice and wild-type BALB/c mice. None of the heterozygous mutants were affected, and the ratio of affected to unaffected mice was 1:3 among the offspring of the heterozygous mutants. For the initial genome-wide screening and further mapping, we used affected progeny of CF#1/lr × (CF#1/lr × BALB/c) mice. We concluded that the cataracts in CF#1/lr mice are inherited through an autosomal recessive mutation and that the mutant gene is located on mouse chromosome 3 between D3Mit79 and D3Mit216. In this region, we identified 8 genes associated with ocular disease. All 8 genes were sequenced and a novel point mutation (1 bp insertion of cytosine) in exon 7 of the Bcar3 gene was identified. This mutation produced a premature stop codon and a truncated protein. In conclusion, we have identified the first spontaneous mutation in the Bcar3 gene associated with lens extrusion cataracts. This novel cataract model may provide further knowledge of the molecular biology of cataractogenesis and the function of the BCAR3 protein.

  16. Draft Genome Sequences for Clostridium thermocellum Wild-Type Strain YS and Derived Cellulose Adhesion-Defective Mutant Strain AD2

    SciTech Connect

    Brown, Steven D; Lamed, Raphael; Morag, Ely; Borovok, Ilya; Shoham, Yuval; Klingeman, Dawn Marie; Johnson, Courtney M; Yang, Zamin; Land, Miriam L; Utturkar, Sagar M; Keller, Martin; Bayer, Edward A

    2012-01-01

    Clostridium thermocellum wild-type strain YS is an anaerobic, thermophilic, cellulolytic bacterium capable of directly converting cellulosic substrates into ethanol. Strain YS and a derived cellulose adhesion-defective mutant strain AD2 played pivotal roles in describing the original cellulosome concept. We present their draft genome sequences.

  17. Novel DNA motif binding activity observed in vivo with an estrogen receptor α mutant mouse.

    PubMed

    Hewitt, Sylvia C; Li, Leping; Grimm, Sara A; Winuthayanon, Wipawee; Hamilton, Katherine J; Pockette, Brianna; Rubel, Cory A; Pedersen, Lars C; Fargo, David; Lanz, Rainer B; DeMayo, Francesco J; Schütz, Günther; Korach, Kenneth S

    2014-06-01

    Estrogen receptor α (ERα) interacts with DNA directly or indirectly via other transcription factors, referred to as "tethering." Evidence for tethering is based on in vitro studies and a widely used "KIKO" mouse model containing mutations that prevent direct estrogen response element DNA- binding. KIKO mice are infertile, due in part to the inability of estradiol (E2) to induce uterine epithelial proliferation. To elucidate the molecular events that prevent KIKO uterine growth, regulation of the pro-proliferative E2 target gene Klf4 and of Klf15, a progesterone (P4) target gene that opposes the pro-proliferative activity of KLF4, was evaluated. Klf4 induction was impaired in KIKO uteri; however, Klf15 was induced by E2 rather than by P4. Whole uterine chromatin immunoprecipitation-sequencing revealed enrichment of KIKO ERα binding to hormone response elements (HREs) motifs. KIKO binding to HRE motifs was verified using reporter gene and DNA-binding assays. Because the KIKO ERα has HRE DNA-binding activity, we evaluated the "EAAE" ERα, which has more severe DNA-binding domain mutations, and demonstrated a lack of estrogen response element or HRE reporter gene induction or DNA-binding. The EAAE mouse has an ERα null-like phenotype, with impaired uterine growth and transcriptional activity. Our findings demonstrate that the KIKO mouse model, which has been used by numerous investigators, cannot be used to establish biological functions for ERα tethering, because KIKO ERα effectively stimulates transcription using HRE motifs. The EAAE-ERα DNA-binding domain mutant mouse demonstrates that ERα DNA-binding is crucial for biological and transcriptional processes in reproductive tissues and that ERα tethering may not contribute to estrogen responsiveness in vivo.

  18. Novel DNA Motif Binding Activity Observed In Vivo With an Estrogen Receptor α Mutant Mouse

    PubMed Central

    Li, Leping; Grimm, Sara A.; Winuthayanon, Wipawee; Hamilton, Katherine J.; Pockette, Brianna; Rubel, Cory A.; Pedersen, Lars C.; Fargo, David; Lanz, Rainer B.; DeMayo, Francesco J.; Schütz, Günther; Korach, Kenneth S.

    2014-01-01

    Estrogen receptor α (ERα) interacts with DNA directly or indirectly via other transcription factors, referred to as “tethering.” Evidence for tethering is based on in vitro studies and a widely used “KIKO” mouse model containing mutations that prevent direct estrogen response element DNA- binding. KIKO mice are infertile, due in part to the inability of estradiol (E2) to induce uterine epithelial proliferation. To elucidate the molecular events that prevent KIKO uterine growth, regulation of the pro-proliferative E2 target gene Klf4 and of Klf15, a progesterone (P4) target gene that opposes the pro-proliferative activity of KLF4, was evaluated. Klf4 induction was impaired in KIKO uteri; however, Klf15 was induced by E2 rather than by P4. Whole uterine chromatin immunoprecipitation-sequencing revealed enrichment of KIKO ERα binding to hormone response elements (HREs) motifs. KIKO binding to HRE motifs was verified using reporter gene and DNA-binding assays. Because the KIKO ERα has HRE DNA-binding activity, we evaluated the “EAAE” ERα, which has more severe DNA-binding domain mutations, and demonstrated a lack of estrogen response element or HRE reporter gene induction or DNA-binding. The EAAE mouse has an ERα null–like phenotype, with impaired uterine growth and transcriptional activity. Our findings demonstrate that the KIKO mouse model, which has been used by numerous investigators, cannot be used to establish biological functions for ERα tethering, because KIKO ERα effectively stimulates transcription using HRE motifs. The EAAE-ERα DNA-binding domain mutant mouse demonstrates that ERα DNA-binding is crucial for biological and transcriptional processes in reproductive tissues and that ERα tethering may not contribute to estrogen responsiveness in vivo. PMID:24713037

  19. In vivo regulation of phenylalanine hydroxylase in the genetic mutant hph-1 mouse model.

    PubMed

    Gunasekera, Richard S; Hyland, Keith

    2009-11-01

    The hph-1 mouse has low liver activity of GTP cyclohydrolase 1, the rate limiting enzyme in the biosynthesis of tetrahydrobiopterin (BH(4)). BH(4) is the cofactor for phenylalanine hydroxylase (PAH) and in the early stages of life the hph-1 mouse is hyperphenylalaninemic. At approximately 15 days after birth the blood phenylalanine levels normalize. During this period the animals provide an in vivo model which can be used to study the regulatory effects of phenylalanine on PAH, and for related pediatric metabolic disease in humans; from birth to youth. We therefore, examined; liver PAH activity using BH(4) and 6-methyltetrahydropterin (6MPH(4)) as cofactor; PAH total enzyme concentration by Western blotting using the PH8 antibody, and PAH state of phosphorylation using the PH7 antibody from 4 to 18 days after birth. The findings were compared to the wild type animals that are not hyperphenylalaninemic during this period. PAH (6MPH(4)) activity and total protein (PH8 antibody) rose steadily in the hph-1 mice. In control mice, both activity and total protein fluctuated. The degree of phosphorylation of PAH in the mutants and the state of activation (as measured by the 6MPH(4)/BH(4) activity ratio) increased as phenylalanine levels rose, and decreased when they fell. Similar patterns were not seen in the control animals. These studies provide in vivo evidence that phenylalanine concentration regulates the activity of PAH in the hph-1 mouse and that this acts via a mechanism that includes phosphorylation of the PAH molecule. The kinetic values (K(m) and V(max)) for mouse PAH are also reported.

  20. Altered Regulation of Escherichia coli Biotin Biosynthesis in BirA Superrepressor Mutant Strains

    PubMed Central

    Chakravartty, Vandana

    2012-01-01

    Transcription of the Escherichia coli biotin (bio) operon is directly regulated by the biotin protein ligase BirA, the enzyme that covalently attaches biotin to its cognate acceptor proteins. Binding of BirA to the bio operator requires dimerization of the protein, which is triggered by BirA-catalyzed synthesis of biotinoyl-adenylate (biotinoyl-5′-AMP), the obligatory intermediate of the ligation reaction. Although several aspects of this regulatory system are well understood, no BirA superrepressor mutant strains had been isolated. Such superrepressor BirA proteins would repress the biotin operon transcription in vivo at biotin concentrations well below those needed for repression by wild-type BirA. We isolated mutant strains having this phenotype by a combined selection-screening approach and resolved multiple mutations to give several birA superrepressor alleles, each having a single mutation, all of which showed repression dominant over that of the wild-type allele. All of these mutant strains repressed bio operon transcription in vivo at biotin concentrations that gave derepression of the wild-type strain and retained sufficient ligation activity for growth when overexpressed. All of the strains except that encoding G154D BirA showed derepression of bio operon transcription upon overproduction of a biotin-accepting protein. In BirA, G154D was a lethal mutation in single copy, and the purified protein was unable to transfer biotin from enzyme-bound biotinoyl-adenylate either to the natural acceptor protein or to a biotin-accepting peptide sequence. Consistent with the transcriptional repression data, each of the purified mutant proteins showed increased affinity for the biotin operator DNA in electrophoretic mobility shift assays. Surprisingly, although most of the mutations were located in the catalytic domain, all of those tested, except G154D BirA, had normal ligase activity. Most of the mutations that gave superrepressor phenotypes altered residues

  1. N-acetylcysteine potentiates diclofenac toxicity in Saccharomyces cerevisiae: stronger potentiation in ABC transporter mutant strains.

    PubMed

    Al-Attrache, Houssein; Chamieh, Hala; Hamzé, Monzer; Morel, Isabelle; Taha, Samir; Abdel-Razzak, Ziad

    2017-05-15

    Diclofenac (DCF) adverse reactions involve diverse mechanisms in different models. We recently demonstrated that DCF-induced toxicity in HepaRG decreases as they express DCF-metabolizing enzymes. DCF metabolism promotes toxicity in Saccharomyces cerevisiae expressing heterologous cytochromes-P450. N-Acetylcysteine (NAC) is used to treat diverse medical conditions due to its multiple properties (antioxidant, metal chelator, thiol-disulfide disruption). The latter property accounts for its mucolytic effects and broadens its potential molecular targets to signal transduction proteins, ABC transporters and others. Interaction of NAC with DCF effects depends on the experimental model. This study aims to investigate NAC/DCF interaction and the involvement of ABC transporters in wild type and mutant Saccharomyces cerevisiae. DCF inhibited yeast growth in a dose- and time-dependent manner and the cells started adapting to DCF 24-h post-treatment. NAC potentiated DCF-induced toxicity if added prior or parallel to DCF. Pretreatment with NAC increased its potentiation effect and compromised cells adaption to DCF. Post-treatment with NAC potentiated DCF toxicity without compromising adaptation. Moreover, mutant strains in ABC transporters Pdr5, Yor1, Bpt1 or Pdr15, were more sensitive to DCF; while mutant strains in Pdr5, Vmr1 or Pdr12 were more sensitive to NAC/DCF interaction. DCF ± NAC elicited on the mutant strain in Yap1, an oxidative stress-related protein, the same effects as on the wild type. Therefore, oxidative stress does not seem to be key actor in DCF toxicity in our model. Our hypothesis is that NAC potentiation effect is at least due to its ability to disrupt disulfide bridge in proteins required to overcome DCF toxicity in yeast.

  2. Modeling diseases in multiple mouse strains for precision medicine studies.

    PubMed

    Klein, Andrés D

    2017-03-01

    The genetic basis of the phenotypic variability observed in patients can be studied in mice by generating disease models through genetic or chemical interventions in many genetic backgrounds where the clinical phenotypes can be assessed and used for genome-wide association studies (GWAS). This is particularly relevant for rare disorders, where patients sharing identical mutations can present with a wide variety of symptoms, but there are not enough number of patients to ensure statistical power of GWAS. Inbred strains are homozygous for each loci, and their single nucleotide polymorphisms catalogs are known and freely available, facilitating the bioinformatics and reducing the costs of the study, since it is not required to genotype every mouse. This kind of approach can be applied to pharmacogenomics studies as well.

  3. Interaction of mutant lpr gene with background strain influences renal disease.

    PubMed

    Kelley, V E; Roths, J B

    1985-11-01

    The mutant gene lpr on the MRL/Mp strain of mice is responsible for converting a late onset glomerulonephritis into an early, aggressive, and fatal renal disease. This gene induces the proliferation of a unique subset of lymphocytes, the production of a variety of autoantibodies and shortened survival in MRL/Mp as well as in the genetically distinct strains C3H/HeJ, C57BL/6J, and AKR/J. The present study examined in detail the role of the lpr gene in the formation of lupus nephritis. The results show that C3H-lpr and B6-lpr mice do not develop nephritis while the AKR-lpr strain has a mild form of renal disease. None of these newly constructed congenic mutant strains have the severity of proteinuria or the degree of renal pathology characteristic of MRL-lpr mice. Thus, the lpr gene alone is insufficient in producing severe renal injury. The interaction of the lpr gene with other factors is required for the induction of life-threatening lupus nephritis.

  4. Guanabenz Treatment Accelerates Disease in a Mutant SOD1 Mouse Model of ALS

    PubMed Central

    Vieira, Fernando G.; Ping, Qinggong; Moreno, Andy J.; Kidd, Joshua D.; Thompson, Kenneth; Jiang, Bingbing; Lincecum, John M.; Wang, Monica Z.; De Zutter, Gerard S.; Tassinari, Valerie R.; Levine, Beth; Hatzipetros, Theo; Gill, Alan; Perrin, Steven

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by loss of motor neurons. The mechanisms leading to motor neuron degeneration in ALS are unclear. However, there is evidence for involvement of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in ALS, notably in mutant SOD1 mediated models of ALS. Stress induced phosphorylation of the eIF2 alpha subunit by eukaryotic translation initiation factor 2-alpha kinase 3 Perk activates the UPR. Guanabenz is a centrally acting alpha2 adrenergic receptor agonist shown to interact with a regulatory subunit of the protein phosphatase, Pp1/Gadd34, and selectively disrupt the dephosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eif2alpha). Here we demonstrate that guanabenz is protective in fibroblasts expressing G93A mutant SOD1 when they are exposed to tunicamycin mediated ER stress. However, in contrast to other reports, guanabenz treatment accelerated ALS-like disease progression in a strain of mutant SOD1 transgenic ALS mice. This study highlights challenges of pharmacological interventions of cellular stress responses in whole animal models of ALS. PMID:26288094

  5. Deciphering the mechanisms of developmental disorders: phenotype analysis of embryos from mutant mouse lines

    PubMed Central

    Wilson, Robert; McGuire, Christina; Mohun, Timothy

    2016-01-01

    The Deciphering the Mechanisms of Developmental Disorders (DMDD) consortium is a research programme set up to identify genes in the mouse, which if mutated (or knocked-out) result in embryonic lethality when homozygous, and initiate the study of why disruption of their function has such profound effects on embryo development and survival. The project uses a combination of comprehensive high resolution 3D imaging and tissue histology to identify abnormalities in embryo and placental structures of embryonic lethal lines. The image data we have collected and the phenotypes scored are freely available through the project website (http://dmdd.org.uk). In this article we describe the web interface to the images that allows the embryo data to be viewed at full resolution in different planes, discuss how to search the database for a phenotype, and our approach to organising the data for an embryo and a mutant line so it is easy to comprehend and intuitive to navigate. PMID:26519470

  6. Deciphering the mechanisms of developmental disorders: phenotype analysis of embryos from mutant mouse lines.

    PubMed

    Wilson, Robert; McGuire, Christina; Mohun, Timothy

    2016-01-04

    The Deciphering the Mechanisms of Developmental Disorders (DMDD) consortium is a research programme set up to identify genes in the mouse, which if mutated (or knocked-out) result in embryonic lethality when homozygous, and initiate the study of why disruption of their function has such profound effects on embryo development and survival. The project uses a combination of comprehensive high resolution 3D imaging and tissue histology to identify abnormalities in embryo and placental structures of embryonic lethal lines. The image data we have collected and the phenotypes scored are freely available through the project website (http://dmdd.org.uk). In this article we describe the web interface to the images that allows the embryo data to be viewed at full resolution in different planes, discuss how to search the database for a phenotype, and our approach to organising the data for an embryo and a mutant line so it is easy to comprehend and intuitive to navigate.

  7. Flagellar mutants of Chlamydomonas: Studies of radial spoke-defective strains by dikaryon and revertant analysis

    PubMed Central

    Luck, David; Piperno, Gianni; Ramanis, Zenta; Huang, B.

    1977-01-01

    The motility mutant of Chlamydomonas reinhardtii pf14 lacks radial spoke structures in its flagellar axonemes, and 12 proteins present in wild type are missing from a two-dimensional map (isoelectrofocusing/sodium dodecyl sulfate electrophoresis) of its 35S-labeled flagellar proteins. Six of these same proteins are missing in pf1, which lacks spoke-heads. To determine whether any of the missing proteins represent the mutant gene product two experimental approaches have been applied. The first makes use of the fact that gametes of either mutant strain when fused with wild-type gametes to form quadriflagellate dikaryons undergo recovery of flagellar function. Recovery at the molecular level was monitored by prelabeling the mutant proteins with 35S and allowing recovery to occur in the absence of protein synthesis. It is to be expected that the mutant gene product would not be restored as a radioactive protein and that recovery would depend on the assembly of the wild-type counterpart that is not labeled. The second technique makes use of revertants induced by UV irradiation. Dikaryon rescue in the case of pf14 leads to restoration of 11 radioactive components; only protein 3 fails to appear as a radioactive spot. For pf1 only two radioactive proteins are restored; proteins 4, 6, 9, and 10 were not radioactive. Analysis of revertants of pf1 gave evidence (altered map positions) that protein 4 is the mutant gene product. In the case of pf14, analysis of 22 revertants has not provided similar positive evidence that protein 3 is the gene product. Images PMID:269405

  8. What cardiovascular defect does my prenatal mouse mutant have, and why?

    PubMed

    Conway, Simon J; Kruzynska-Frejtag, Agnieszka; Kneer, Paige L; Machnicki, Michal; Koushik, Srinagesh V

    2003-01-01

    Since the advent of mouse targeted mutations, gene traps, an escalating use of a variety of complex transgenic manipulations, and large-scale chemical mutagenesis projects yielding many mutants with cardiovascular defects, it has become increasingly evident that defects within the heart and vascular system are largely responsible for the observed in utero lethality of the embryo and early fetus. If a transgenically altered embryo survives implantation but fails to be born, it usually indicates that there is some form of lethal cardiovascular defect present. A number of embryonic organ and body systems, including the central nervous system, gut, lungs, urogenital system, and musculoskeletal system appear to have little or no survival value in utero (Copp, 1995). Cardiovascular abnormalities include the failure to establish an adequate yolk-sac vascular circulation, which results in early lethality (E8.5-10.5); poor cardiac function (E9.0-birth); failure to undergo correct looping and chamber formation of the primitive heart tube (E9.0-11.0); improper septation, including division of the common ventricle and atria and the establishment of a divided outflow tract (E11.0-13.0); inadequate establishment of the cardiac conduction system (E12.0-birth); and the failure of the in utero cardiovascular system to adapt to adult life (birth) and close the interatrial and aorta-pulmonary trunk shunts that are required for normal fetal life. Importantly, the developmental timing of lethality is usually a good indicator of both the type of the cardiovascular defect present and may also suggest the possible underlying cause/s. The purpose of this review is both to review the literature and to provide a beginner's guide for analysing cardiovascular defects in mouse mutants.

  9. Gluco-oligosaccharides synthesized by glucosyltransferases from constitutive mutants of Leuconostoc mesenteroides strain Lm 28.

    PubMed

    Iliev, I; Vassileva, T; Ignatova, C; Ivanova, I; Haertlé, T; Monsan, P; Chobert, J-M

    2008-01-01

    To find different types of glucosyltransferases (GTFs) produced by Leuconostoc mesenteroides strain Lm 28 and its mutant forms, and to check the effectiveness of gluco-oligosaccharide synthesis using maltose as the acceptor. Constitutive mutants were obtained after chemical mutagenesis by ethyl methane sulfonate. Lm M281 produced more active GTFs than that obtained by the parental strain cultivated on sucrose. GTF from Lm M286 produced a resistant glucan, based on endo-dextranase and amyloglucosidase hydrolysis. The extracellular enzymes from Lm M286 catalyse acceptor reactions and transfer the glucose unit from sucrose to maltose to produce gluco-oligosaccharides (GOS). By increasing the sucrose/maltose ratio, it was possible to catalyse the synthesis of oligosaccharides of increasing degree of polymerization (DP). Different types of GTFs (dextransucrase, alternansucrase and levansucrase) were produced from new constitutive mutants of Leuc. mesenteroides. GTFs from Lm M286 can catalyse the acceptor reaction in the presence of maltose, leading to the synthesis of branched oligosaccharides. Conditions were optimized to synthesize GOS by using GTFs from Lm M286, with the aim of producing maximum quantities of branched-chain oligosaccharides with DP 3-5. This would allow the use of the latter as prebiotics.

  10. Comparative metabolic profiling of mce1 operon mutant vs wild-type Mycobacterium tuberculosis strains.

    PubMed

    Queiroz, Adriano; Medina-Cleghorn, Daniel; Marjanovic, Olivera; Nomura, Daniel K; Riley, Lee W

    2015-11-01

    Mycobacterium tuberculosis disrupted in a 13-gene operon (mce1) accumulates free mycolic acids (FM) in its cell wall and causes accelerated death in mice. Here, to more comprehensively analyze differences in their cell wall lipid composition, we used an untargeted metabolomics approach to compare the lipid profiles of wild-type and mce1 operon mutant strains. By liquid chromatography-mass spectrometry, we identified >400 distinct lipids significantly altered in the mce1 mutant compared to wild type. These lipids included decreased levels of saccharolipids and glycerophospholipids, and increased levels of alpha-, methoxy- and keto mycolic acids (MA), and hydroxyphthioceranic acid. The mutant showed reduced expression of mmpL8, mmpL10, stf0, pks2 and papA2 genes involved in transport and metabolism of lipids recognized to induce proinflammatory response; these lipids were found to be decreased in the mutant. In contrast, the transcripts of mmpL3, fasI, kasA, kasB, acpM and RV3451 involved in MA transport and metabolism increased; MA inhibits inflammatory response in macrophages. Since the mce1 operon is known to be regulated in intracellular M. tuberculosis, we speculate that the differences we observed in cell wall lipid metabolism and composition may affect host response to M. tuberculosis infection and determine the clinical outcome of such an infection. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Behavioural and other phenotypes in a cytoplasmic dynein light intermediate chain 1 mutant mouse

    PubMed Central

    Banks, Gareth T.; Haas, Matilda A.; Line, Samantha; Shepherd, Hazel L.; AlQatari, Mona; Stewart, Sammy; Rishal, Ida; Philpott, Amelia; Kalmar, Bernadett; Kuta, Anna; Groves, Michael; Parkinson, Nicholas; Acevedo-Arozena, Abraham; Brandner, Sebastian; Bannerman, David; Greensmith, Linda; Hafezparast, Majid; Koltzenburg, Martin; Deacon, Robert; Fainzilber, Mike; Fisher, Elizabeth M.C.

    2011-01-01

    The cytoplasmic dynein complex is fundamentally important to all eukaryotic cells for transporting a variety of essential cargoes along microtubules within the cell. This complex also plays more specialised roles in neurons. The complex consists of 11 types of protein that interact with each other and with external adaptors, regulators and cargoes. Despite the importance of the cytoplasmic dynein complex, we know comparatively little of the roles of each component protein, and in mammals few mutants exist that allow us to explore the effects of defects in dynein controlled processes in the context of the whole organism. Here we have taken a genotype-driven approach in mouse (Mus musculus) to analyse the role of one subunit, the dynein light intermediate chain 1 (Dync1li1). We find that, surprisingly, an N235Y point mutation in this protein results in altered neuronal development, as shown from in vivo studies in the developing cortex, and analyses of electrophysiological function. Moreover, mutant mice display increased anxiety, thus linking dynein functions to a behavioural phenotype in mammals for the first time. These results demonstrate the important role that dynein controlled processes play in the correct development and function of the mammalian nervous system. PMID:21471385

  12. Behavioral and other phenotypes in a cytoplasmic Dynein light intermediate chain 1 mutant mouse.

    PubMed

    Banks, Gareth T; Haas, Matilda A; Line, Samantha; Shepherd, Hazel L; Alqatari, Mona; Stewart, Sammy; Rishal, Ida; Philpott, Amelia; Kalmar, Bernadett; Kuta, Anna; Groves, Michael; Parkinson, Nicholas; Acevedo-Arozena, Abraham; Brandner, Sebastian; Bannerman, David; Greensmith, Linda; Hafezparast, Majid; Koltzenburg, Martin; Deacon, Robert; Fainzilber, Mike; Fisher, Elizabeth M C

    2011-04-06

    The cytoplasmic dynein complex is fundamentally important to all eukaryotic cells for transporting a variety of essential cargoes along microtubules within the cell. This complex also plays more specialized roles in neurons. The complex consists of 11 types of protein that interact with each other and with external adaptors, regulators and cargoes. Despite the importance of the cytoplasmic dynein complex, we know comparatively little of the roles of each component protein, and in mammals few mutants exist that allow us to explore the effects of defects in dynein-controlled processes in the context of the whole organism. Here we have taken a genotype-driven approach in mouse (Mus musculus) to analyze the role of one subunit, the dynein light intermediate chain 1 (Dync1li1). We find that, surprisingly, an N235Y point mutation in this protein results in altered neuronal development, as shown from in vivo studies in the developing cortex, and analyses of electrophysiological function. Moreover, mutant mice display increased anxiety, thus linking dynein functions to a behavioral phenotype in mammals for the first time. These results demonstrate the important role that dynein-controlled processes play in the correct development and function of the mammalian nervous system.

  13. Colonization of gnotobiotic piglets by a luxS mutant strain of Escherichia coli O157:H7.

    PubMed

    Jordan, Dianna M; Sperandio, Vanessa; Kaper, James B; Dean-Nystrom, Evelyn A; Moon, Harley W

    2005-02-01

    Gnotobiotic piglets inoculated with Escherichia coli O157:H7, its luxS mutant derivative, or nonpathogenic E. coli were evaluated for attaching and effacing lesions. Although no differences in clinical symptoms were seen between pigs inoculated with the parent and those inoculated with the luxS mutant, the luxS mutant-inoculated pigs had a lower frequency of attaching and effacing lesions in the spiral colon than parent strain-inoculated pigs.

  14. Enhanced sodium-dependent extrusion of magnesium in mutant cells established from a mouse renal tubular cell line.

    PubMed

    Watanabe, Masaru; Konishi, Masato; Ohkido, Ichiro; Matsufuji, Senya

    2005-10-01

    To study the regulatory mechanisms of intracellular Mg(2+) concentration ([Mg(2+)](i)) in renal tubular cells as well as in other cell types, we established a mutant strain of mouse renal cortical tubular cells that can grow in culture media with very high extracellular Mg(2+) concentrations ([Mg(2+)](o) > 100 mM: 101Mg-tolerant cells). [Mg(2+)](i) was measured with a fluorescent indicator furaptra (mag-fura 2) in wild-type and 101Mg-tolerant cells. The average level of [Mg(2+)](i) in the 101Mg-tolerant cells was kept lower than that in the wild-type cells either at 51 mM or 1 mM [Mg(2+)](o). When [Mg(2+)](o) was lowered from 51 to 1 mM, the decrease in [Mg(2+)](i) was significantly faster in the 101Mg-tolerant cells than in the wild-type cells. These differences between the 101Mg-tolerant cells and the wild-type cells were abolished in the absence of extracellular Na(+) or in the presence of imipramine, a known inhibitor of Na(+)/Mg(2+) exchange. We conclude that Na(+)-dependent Mg(2+) transport activity is enhanced in the 101Mg-tolerant cells. The enhanced Mg(2+) extrusion may prevent [Mg(2+)](i) increase to higher levels and may be responsible for the Mg(2+) tolerance.

  15. Simulated space radiation-induced mutants in the mouse kidney display widespread genomic change.

    PubMed

    Turker, Mitchell S; Grygoryev, Dmytro; Lasarev, Michael; Ohlrich, Anna; Rwatambuga, Furaha A; Johnson, Sorrel; Dan, Cristian; Eckelmann, Bradley; Hryciw, Gwen; Mao, Jian-Hua; Snijders, Antoine M; Gauny, Stacey; Kronenberg, Amy

    2017-01-01

    Exposure to a small number of high-energy heavy charged particles (HZE ions), as found in the deep space environment, could significantly affect astronaut health following prolonged periods of space travel if these ions induce mutations and related cancers. In this study, we used an in vivo mutagenesis assay to define the mutagenic effects of accelerated 56Fe ions (1 GeV/amu, 151 keV/μm) in the mouse kidney epithelium exposed to doses ranging from 0.25 to 2.0 Gy. These doses represent fluences ranging from 1 to 8 particle traversals per cell nucleus. The Aprt locus, located on chromosome 8, was used to select induced and spontaneous mutants. To fully define the mutagenic effects, we used multiple endpoints including mutant frequencies, mutation spectrum for chromosome 8, translocations involving chromosome 8, and mutations affecting non-selected chromosomes. The results demonstrate mutagenic effects that often affect multiple chromosomes for all Fe ion doses tested. For comparison with the most abundant sparsely ionizing particle found in space, we also examined the mutagenic effects of high-energy protons (1 GeV, 0.24 keV/μm) at 0.5 and 1.0 Gy. Similar doses of protons were not as mutagenic as Fe ions for many assays, though genomic effects were detected in Aprt mutants at these doses. Considered as a whole, the data demonstrate that Fe ions are highly mutagenic at the low doses and fluences of relevance to human spaceflight, and that cells with considerable genomic mutations are readily induced by these exposures and persist in the kidney epithelium. The level of genomic change produced by low fluence exposure to heavy ions is reminiscent of the extensive rearrangements seen in tumor genomes suggesting a potential initiation step in radiation carcinogenesis.

  16. Simulated space radiation-induced mutants in the mouse kidney display widespread genomic change

    PubMed Central

    Grygoryev, Dmytro; Lasarev, Michael; Ohlrich, Anna; Rwatambuga, Furaha A.; Johnson, Sorrel; Dan, Cristian; Eckelmann, Bradley; Hryciw, Gwen; Mao, Jian-Hua; Snijders, Antoine M.; Gauny, Stacey; Kronenberg, Amy

    2017-01-01

    Exposure to a small number of high-energy heavy charged particles (HZE ions), as found in the deep space environment, could significantly affect astronaut health following prolonged periods of space travel if these ions induce mutations and related cancers. In this study, we used an in vivo mutagenesis assay to define the mutagenic effects of accelerated 56Fe ions (1 GeV/amu, 151 keV/μm) in the mouse kidney epithelium exposed to doses ranging from 0.25 to 2.0 Gy. These doses represent fluences ranging from 1 to 8 particle traversals per cell nucleus. The Aprt locus, located on chromosome 8, was used to select induced and spontaneous mutants. To fully define the mutagenic effects, we used multiple endpoints including mutant frequencies, mutation spectrum for chromosome 8, translocations involving chromosome 8, and mutations affecting non-selected chromosomes. The results demonstrate mutagenic effects that often affect multiple chromosomes for all Fe ion doses tested. For comparison with the most abundant sparsely ionizing particle found in space, we also examined the mutagenic effects of high-energy protons (1 GeV, 0.24 keV/μm) at 0.5 and 1.0 Gy. Similar doses of protons were not as mutagenic as Fe ions for many assays, though genomic effects were detected in Aprt mutants at these doses. Considered as a whole, the data demonstrate that Fe ions are highly mutagenic at the low doses and fluences of relevance to human spaceflight, and that cells with considerable genomic mutations are readily induced by these exposures and persist in the kidney epithelium. The level of genomic change produced by low fluence exposure to heavy ions is reminiscent of the extensive rearrangements seen in tumor genomes suggesting a potential initiation step in radiation carcinogenesis. PMID:28683078

  17. Strains and stressors: an analysis of touchscreen learning in genetically diverse mouse strains.

    PubMed

    Graybeal, Carolyn; Bachu, Munisa; Mozhui, Khyobeni; Saksida, Lisa M; Bussey, Timothy J; Sagalyn, Erica; Williams, Robert W; Holmes, Andrew

    2014-01-01

    Touchscreen-based systems are growing in popularity as a tractable, translational approach for studying learning and cognition in rodents. However, while mouse strains are well known to differ in learning across various settings, performance variation between strains in touchscreen learning has not been well described. The selection of appropriate genetic strains and backgrounds is critical to the design of touchscreen-based studies and provides a basis for elucidating genetic factors moderating behavior. Here we provide a quantitative foundation for visual discrimination and reversal learning using touchscreen assays across a total of 35 genotypes. We found significant differences in operant performance and learning, including faster reversal learning in DBA/2J compared to C57BL/6J mice. We then assessed DBA/2J and C57BL/6J for differential sensitivity to an environmental insult by testing for alterations in reversal learning following exposure to repeated swim stress. Stress facilitated reversal learning (selectively during the late stage of reversal) in C57BL/6J, but did not affect learning in DBA/2J. To dissect genetic factors underlying these differences, we phenotyped a family of 27 BXD strains generated by crossing C57BL/6J and DBA/2J. There was marked variation in discrimination, reversal and extinction learning across the BXD strains, suggesting this task may be useful for identifying underlying genetic differences. Moreover, different measures of touchscreen learning were only modestly correlated in the BXD strains, indicating that these processes are comparatively independent at both genetic and phenotypic levels. Finally, we examined the behavioral structure of learning via principal component analysis of the current data, plus an archival dataset, totaling 765 mice. This revealed 5 independent factors suggestive of "reversal learning," "motivation-related late reversal learning," "discrimination learning," "speed to respond," and "motivation during

  18. Lithium prevents parkinsonian behavioral and striatal phenotypes in an aged parkin mutant transgenic mouse model.

    PubMed

    Lieu, Christopher A; Dewey, Colleen M; Chinta, Shankar J; Rane, Anand; Rajagopalan, Subramanian; Batir, Sean; Kim, Yong-Hwan; Andersen, Julie K

    2014-12-03

    Lithium has long been used as a treatment for the psychiatric disease bipolar disorder. However, previous studies suggest that lithium provides neuroprotective effects in neurodegenerative diseases such as Parkinson's disease (PD) and Alzheimer's disease. The exact mechanism by which lithium exerts these effects still remains unclear. In the present study, we evaluated the effects of low-dose lithium treatment in an aged mouse model expressing a parkin mutation within dopaminergic neurons. We found that low-dose lithium treatment prevented motor impairment as demonstrated by the open field test, pole test, and rearing behavior. Furthermore, lithium prevented dopaminergic striatal degeneration in parkin animals. We also found that parkin-induced striatal astrogliosis and microglial activation were prevented by lithium treatment. Our results further corroborate the use of this parkin mutant transgenic mouse line as a model for PD for testing novel therapeutics. The findings of the present study also provide further validation that lithium could be re-purposed as a therapy for PD and suggest that anti-inflammatory effects may contribute to its neuroprotective mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Evaluation of Planar-Cell-Polarity Phenotypes in Ciliopathy Mouse Mutant Cochlea.

    PubMed

    May-Simera, Helen

    2016-02-21

    In recent years, primary cilia have emerged as key regulators in development and disease by influencing numerous signaling pathways. One of the earliest signaling pathways shown to be associated with ciliary function was the non-canonical Wnt signaling pathway, also referred to as planar cell polarity (PCP) signaling. One of the best places in which to study the effects of planar cell polarity (PCP) signaling during vertebrate development is the mammalian cochlea. PCP signaling disruption in the mouse cochlea disrupts cochlear outgrowth, cellular patterning and hair cell orientation, all of which are affected by cilia dysfunction. The goal of this protocol is to describe the analysis of PCP signaling in the developing mammalian cochlea via phenotypic analysis, immunohistochemistry and scanning electron microscopy. Defects in convergence and extension are manifested as a shortening of the cochlear duct and/or changes in cellular patterning, which can be quantified following dissection from developing mouse mutants. Changes in stereociliary bundle orientation and kinocilia length or positioning can be observed and quantitated using either immunofluorescence or scanning electron microscopy (SEM). A deeper insight into the role of ciliary proteins in cellular signaling pathways and other biological phenomena is crucial for our understanding of cellular and developmental biology, as well as for the development of targeted treatment strategies.

  20. A Mutant Strain of a Surfactant-Producing Bacterium with Increased Emulsification Activity

    NASA Astrophysics Data System (ADS)

    Liu, Qingmei; Yao, Jianming; Pan, Renrui; Yu, Zengliang

    2005-06-01

    As reported in this paper, a strain of oil-degrading bacterium Sp-5-3 was determined to belong to Enterobacteriaceae, which would be useful for microbial enhanced oil recovery (MEOR). The aim of our study was to generate a mutant using low energy N+ beam implantation. With 10 keV of energy and 5.2 × 1014 N+/cm2 of dose - the optimum condition, a mutant, S-34, was obtained, which had nearly a 5-fold higher surface and a 13-fold higher of emulsification activity than the wild type. The surface activity was measured by two methods, namely, a surface tension measuring instrument and a recording of the repulsive circle of the oil film; the emulsification activity was scaled through measuring the separating time of the oil-fermentation mixture. The metabolic acid was determined as methane by means of gas chromatography.

  1. Screening of mutant strain Streptomyces mediolani sp. AC37 for (-)-8-O-methyltetrangomycin production enhancement.

    PubMed

    Jiménez, Jakeline Trejos; Sturdíková, Maria; Brezová, Vlasta; Svajdlenka, Emil; Novotová, Marta

    2012-12-01

    Streptomyces mediolani sp. AC37 was isolated from the root system of higher plant Taxus baccata and produced metabolite identified as (-)-8-O-methyltetrangomycin according to LC/MS/MS analysis. In our screening program for improvements of bioactive secondary metabolites from plant associate streptomycetes, mutation was used as a tool for the induction of genetic variations for selection of higher (-)-8-O-methyltetrangomycin producers of isolates. S. mediolani sp. AC37 was treated with UV irradiation and chemical mutagenic treatment (N-nitroso-N-methyl-urea). The radical scavenging and antioxidant capacity of (-)-8-O-methyltetrangomycin and extracts isolated from mutants were tested using EPR spin trapping technique and ABTS(·+) assay. Comparison of electron microscopic images of Streptomyces sp. AC37 and mutant strains of Streptomyces sp. AC37 revealed substantial differences in morphology and ultrastructure.

  2. Enhanced production of thrombinase by Streptomyces venezuelae: kinetic studies on growth and enzyme production of mutant strain.

    PubMed

    Naveena, Balakrishnan; Gopinath, Kannapan Panchamoorthy; Sakthiselvan, Punniavan; Partha, Nagarajan

    2012-05-01

    This investigation provides the enhanced production of thrombinase, a fibrinolytic enzyme using mutant Streptomyces venezuelae. Initially the mutagenesis of the marine isolate was done by UV and Ethyl methane sulfonate (EMS) and their mutational efficiencies were compared. The mutants were selected based on their high thrombinase activity and used for further studies. The mutant was found to be more halo and thermo tolerant comparing to wild. The effect of Dissolved oxygen level was also determined and the mutant offered the maximum specific growth rate as 0.2404 (h(-1)). The mutant showed high resistance to higher initial lactose concentration and the inhibition concentration was found to be 155.1mg/mL. The effect of S(0)/X(0) ratio on specific substrate consumption and production rate were also investigated. Both mutant and wild showed increase in specific substrate consumption and production rate at higher S(0)/X(0) ratio but the mutant showed better values than the wild strain.

  3. Production and downstream processing of (1→3)-β-D-glucan from mutant strain of Agrobacterium sp. ATCC 31750

    PubMed Central

    2012-01-01

    We isolated a mutant that produced higher levels of curdlan than the wild strain Agrobacterium sp. ATCC 31750 by chemical mutagenesis using N-methyl-N-nitro-nitrosoguanidine. The mutant strain produced 66 g/L of curdlan in 120 h with a yield of (0.88) while, the wild strain produced 41 g/L in 120 h with a yield of (0.62) in a stirred bioreactor. The mutant could not produce curdlan when the pH was shifted from 7.0 to 5.5 after nitrogen depletion as followed for wild strain. In contrast, pH optimum for cell growth and curdlan production for mutant was found to be 7.0. We optimized the downstream processing of curdlan by varying different volumes of NaOH and HCl for extraction and precipitation of curdlan. The molecular weight of the purified curdlan from the wild and mutant strain was 6.6 × 105 Da and 5.8 × 105 Da respectively. The monosaccharide analyses confirm that curdlan from both wild and mutant strain contains only glucose units. From the NMR and FTIR data, it has been confirmed that curdlan was exclusively composed of β (1 → 3)-D-glucan residues. PMID:22681895

  4. A Small Indel Mutant Mouse Model of Epidermolytic Palmoplantar Keratoderma and Its Application to Mutant-specific shRNA Therapy

    PubMed Central

    Lyu, Ya-Su; Shi, Pei-liang; Chen, Xiao-Ling; Tang, Yue-Xiao; Wang, Yan-Fang; Liu, Rong-Rong; Luan, Xiao-Rui; Fang, Yu; Mei, Ru-Huan; Du, Zhen-Fang; Ke, Hai-Ping; Matro, Erik; Li, Ling-En; Lin, Zhao-Yu; Zhao, Jing; Gao, Xiang; Zhang, Xian-Ning

    2016-01-01

    Epidermolytic palmoplantar keratoderma (EPPK) is a relatively common autosomal-dominant skin disorder caused by mutations in the keratin 9 gene (KRT9), with few therapeutic options for the affected so far. Here, we report a knock-in transgenic mouse model that carried a small insertion–deletion (indel) mutant of Krt9, c.434delAinsGGCT (p.Tyr144delinsTrpLeu), corresponding to the human mutation KRT9/c.500delAinsGGCT (p.Tyr167delinsTrpLeu), which resulted in a human EPPK-like phenotype in the weight-stress areas of the fore- and hind-paws of both Krt9+/mut and Krt9mut/mut mice. The phenotype confirmed that EPPK is a dominant-negative condition, such that mice heterozygotic for the K9-mutant allele (Krt9+/mut) showed a clear EPPK-like phenotype. Then, we developed a mutant-specific short hairpin RNA (shRNA) therapy for EPPK mice. Mutant-specific shRNAs were systematically identified in vitro using a luciferase reporter gene assay and delivered into Krt9+/mut mice. shRNA-mediated knockdown of mutant protein resulted in almost normal morphology and functions of the skin, whereas the same shRNA had a negligible effect in wild-type K9 mice. Our results suggest that EPPK can be treated by gene therapy, and this has significant implications for future clinical application. PMID:27003758

  5. Characterisation of a cold adapted esterase and mutants from a psychotolerant Pseudomonas sp. strain.

    PubMed

    Dong, Juan; Gasmalla, Mohammed A A; Zhao, Wei; Sun, Jingtao; Liu, Wenyu; Wang, Mingming; Han, Liang; Yang, Ruijin

    2016-07-13

    A cold-adapted esterase-producing strain named T1-39 was isolated from Glacier No.1, Tianshan, China, and identified as Pseudomonas sp. from 16S rRNA sequence analysis. The esterase (EstT1-39) secreted by this strain preferentially hydrolyzed esters of glycerol with short- and medium-chain fatty acids. Mutants of T1-39 were generated by the atmospheric and room-temperature plasma (ARTP) method and screened for enhanced esterase activity. Among all the mutants, strain TB11 had 4.45-fold higher esterase productivity than T1-39, with high genetic stability over 10 generations of continuous cultivation. Maximum activity of EstT1-39 and EstTB11 was observed at 30°C, pH 9.0 and 25°C, pH 8.5, respectively. EstTB11 was thermally more stable (50°C for 1 hour) and active over a broader pH range than EstT1-39. EstTB11 also retained 38% of its maximal activity at 0°C and was found to be able to hydrolyze milk fats into short- and medium-chain fatty acids at 4°C. The characteristics of EstT1-39 made it a cold-adapted enzyme and the EstTB11 from the mutant, with its higher activity at lower temperatures, may be suitable for the production of aromas and flavors in the dairy industry. This article is protected by copyright. All rights reserved.

  6. Establishment of markerless gene deletion tools in thermophilic Bacillus smithii and construction of multiple mutant strains.

    PubMed

    Bosma, Elleke F; van de Weijer, Antonius H P; van der Vlist, Laurens; de Vos, Willem M; van der Oost, John; van Kranenburg, Richard

    2015-07-07

    Microbial conversion of biomass to fuels or chemicals is an attractive alternative for fossil-based fuels and chemicals. Thermophilic microorganisms have several operational advantages as a production host over mesophilic organisms, such as low cooling costs, reduced contamination risks and a process temperature matching that of commercial hydrolytic enzymes, enabling simultaneous saccharification and fermentation at higher efficiencies and with less enzymes. However, genetic tools for biotechnologically relevant thermophiles are still in their infancy. In this study we developed a markerless gene deletion method for the thermophile Bacillus smithii and we report the first metabolic engineering of this species as a potential platform organism. Clean deletions of the ldhL gene were made in two B. smithii strains (DSM 4216(T) and compost isolate ET 138) by homologous recombination. Whereas both wild-type strains produced mainly L-lactate, deletion of the ldhL gene blocked L-lactate production and caused impaired anaerobic growth and acid production. To facilitate the mutagenesis process, we established a counter-selection system for efficient plasmid removal based on lacZ-mediated X-gal toxicity. This counter-selection system was applied to construct a sporulation-deficient B. smithii ΔldhL ΔsigF mutant strain. Next, we demonstrated that the system can be used repetitively by creating B. smithii triple mutant strain ET 138 ΔldhL ΔsigF ΔpdhA, from which also the gene encoding the α-subunit of the E1 component of the pyruvate dehydrogenase complex is deleted. This triple mutant strain produced no acetate and is auxotrophic for acetate, indicating that pyruvate dehydrogenase is the major route from pyruvate to acetyl-CoA. In this study, we developed a markerless gene deletion method including a counter-selection system for thermophilic B. smithii, constituting the first report of metabolic engineering in this species. The described markerless gene deletion system

  7. An enhanced Q175 knock-in mouse model of Huntington disease with higher mutant huntingtin levels and accelerated disease phenotypes

    PubMed Central

    Southwell, Amber L.; Smith-Dijak, Amy; Kay, Chris; Sepers, Marja; Villanueva, Erika B.; Parsons, Matthew P.; Xie, Yuanyun; Anderson, Lisa; Felczak, Boguslaw; Waltl, Sabine; Ko, Seunghyun; Cheung, Daphne; Dal Cengio, Louisa; Slama, Ramy; Petoukhov, Eugenia; Raymond, Lynn A.; Hayden, Michael R.

    2016-01-01

    Huntington disease (HD) model mice with heterozygous knock-in (KI) of an expanded CAG tract in exon 1 of the mouse huntingtin (Htt) gene homolog genetically recapitulate the mutation that causes HD, and might be favoured for preclinical studies. However, historically these mice have failed to phenotypically recapitulate the human disease. Thus, homozygous KI mice, which lack wildtype Htt, and are much less relevant to human HD, have been used. The zQ175 model was the first KI mouse to exhibit significant HD-like phenotypes when heterozygous. In an effort to exacerbate HD-like phenotypes and enhance preclinical utility, we have backcrossed zQ175 mice to FVB/N, a strain highly susceptible to neurodegeneration. These Q175F mice display significant HD-like phenotypes along with sudden early death from fatal seizures. The zQ175 KI allele retains a floxed neomycin resistance cassette upstream of the Htt gene locus and produces dramatically reduced mutant Htt as compared to the endogenous wildtype Htt allele. By intercrossing with mice expressing cre in germ line cells, we have excised the neo cassette from Q175F mice generating a new line, Q175FΔneo (Q175FDN). Removal of the neo cassette resulted in a ∼2 fold increase in mutant Htt and rescue of fatal seizures, indicating that the early death phenotype of Q175F mice is caused by Htt deficiency rather than by mutant Htt. Additionally, Q175FDN mice exhibit earlier onset and a greater variety and severity of HD-like phenotypes than Q175F mice or any previously reported KI HD mouse model, making them valuable for preclinical studies. PMID:27378694

  8. Enhancement of photohydrogen production using phbC deficient mutant Rhodopseudomonas palustris strain M23.

    PubMed

    Yang, Chu-Fang; Lee, Chi-Mei

    2011-05-01

    This study used a DNA recombination method to knock out the poly-β-hydroxybutyrate (PHB) synthesis gene phbC in the photosynthetic bacterium Rhodopseudomonas palustris WP3-5. The experimental results indicated that the mutant strain Rps. palustris M23 could be successfully screened. Fluorescent observation with Nile blue staining showed no significant PHB granule accumulation in the mutant cells. Batch mode experiments using acetic acid as a carbon source revealed a 29.1% and 25.9% hydrogen gas content from M23 and WP3-5, respectively. However, this trend did not appear when using propionic acid as carbon source. Under continuous operation, the hydrogen gas content from M23 could be maintained above 72%. The average hydrogen production rates of the WP3-5 and M23 strains were 264 mL-H(2)/L/day and 457 mL-H(2)/L/day, respectively. The total biogas volume collected from M23 was 1.7 times higher than that from the wild type. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Prediction of dynamic behavior of mutant strains from limited wild-type data.

    PubMed

    Song, Hyun-Seob; Ramkrishna, Doraiswami

    2012-03-01

    Metabolic engineering is the field of introducing genetic changes in organisms so as to modify their function towards synthesizing new products of high impact to society. However, engineered cells frequently have impaired growth rates thus seriously limiting the rate at which such products are made. The problem is attributable to inadequate understanding of how a metabolic network functions in a dynamic sense. Predictions of mutant strain behavior in the past have been based on steady state theories such as flux balance analysis (FBA), minimization of metabolic adjustment (MOMA), and regulatory on/off minimization (ROOM). Such predictions are restricted to product yields and cannot address productivity, which is of focal interest to applications. We demonstrate that our framework ( [Song and Ramkrishna, 2010] and [Song and Ramkrishna, 2011]), based on a “cybernetic” view of metabolic systems, makes predictions of the dynamic behavior of mutant strains of Escherichia coli from a limited amount of data obtained from the wild-type. Dynamic frameworks must necessarily address the issue of metabolic regulation, which the cybernetic approach does by postulating that metabolism is an optimal dynamic response of the organism to the environment in driving reactions towards ensuring survival. The predictions made in this paper are without parallel in the literature and lay the foundation for rational metabolic engineering. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. A mutant Tat protein inhibits infection of human cells by strains from diverse HIV-1 subtypes.

    PubMed

    Rustanti, Lina; Jin, Hongping; Lor, Mary; Lin, Min Hsuan; Rawle, Daniel J; Harrich, David

    2017-03-14

    Nullbasic is a mutant HIV-1 Tat protein that inhibits HIV-1 replication via three independent mechanisms that disrupts 1) reverse transcription of the viral RNA genome into a DNA copy, 2) HIV-1 Rev protein function required for viral mRNA transport from the nucleus to the cytoplasm and 3) HIV-1 mRNA transcription by RNA Polymerase II. The Nullbasic protein is derived from the subtype B strain HIV-1BH10 and has only been tested against other HIV-1 subtype B strains. However, subtype B strains only account for ~10% of HIV-1 infections globally and HIV-1 Tat sequences vary between subtypes especially for subtype C, which is responsible for ~50% HIV-1 infection worldwide. These differences could influence the ability of Tat to interact with RNA and cellular proteins and thus could affect the antiviral activity of Nullbasic. Therefore, Nullbasic was tested against representative HIV-1 strains from subtypes C, D and A/D recombinant to determine if it can inhibit their replication. Nullbasic was delivered to human cells using a self-inactivating (SIN) γ-retroviral system. We evaluated Nullbasic-mCherry (NB-mCh) fusion protein activity against the HIV-1 strains in TZM-bl cell lines for inhibition of transactivation and virus replication. We also examined antiviral activity of Nullbasic-ZsGreen1 (NB-ZSG1) fusion protein against the same strains in primary CD4(+) T cells. The Nullbasic expression was monitored by western blot and flow cytometry. The effects of Nullbasic on primary CD4(+) T cells cytotoxicity, proliferation and apoptosis were also examined. The results show that Nullbasic inhibits Tat-mediated transactivation and virus replication of all the HIV-1 strains tested in TZM-bl cells. Importantly, Nullbasic inhibits replication of the HIV-1 strains in primary CD4(+) T cells without affecting cell proliferation, cytotoxicity or level of apoptotic cells. A SIN-based γ-retroviral vector used to express Nullbasic fusion proteins improved protein expression

  11. IRetinal Organization in the retinal degeneration 10 (rd10) Mutant Mouse: a Morphological and ERG Study

    PubMed Central

    Gargini, Cludia; Terzibasi, Eva; Mazzoni, Francesca; Strettoi, Enrica

    2008-01-01

    Retinal degeneration 10 (rd10) mice are a model of autosomal recessive Retinitis Pigmentosa (RP), identified by Chang et al. in 2002. These mice carry a spontaneous mutation of the rod-phosphodiesterase (PDE) gene, leading to a rod degeneration that starts around P18. Later, cones are also lost. Because of photoreceptor degeneration does not overlap with retinal development, and light responses can be recorded for about a month after birth, rd10 mice mimic typical human RP more closely than the well-known rd1 mutants. Aim of this study is to provide a comprehensive analysis of the morphology and function of the rd10 mouse retina during the period of maximum photoreceptor degeneration, thus contributing useful data for exploiting this novel model to study RP. We analyze the morphology and survival of retinal cells in rd10 mice of various ages with quantitative immunocytochemistry and confocal microscopy; we also study retinal function with the electroretinogram (ERG), recorded between P18 and P30. We find that photoreceptor death (peaking around P25) is accompanied and followed by dendritic retraction in bipolar and horizontal cells, which eventually undergo secondary degeneration. ERG reveals alterations in the physiology of the inner retina as early as P18 (before any obvious morphological change of inner neurons) and yet consistently with a reduced band amplification by bipolar cells. Thus, changes in the rd10 retina are very similar to what previously found in rd1 mutants. However, an overall slower decay of retinal structure and function predict that rd10 mice might become excellent models for rescue approaches. PMID:17111372

  12. Developmental analysis of GFAP immunoreactivity in the cerebellum of the meander tail mutant mouse.

    PubMed

    Grishkat, H L; Schwartz, E; Jain, G; Eisenman, L M

    1996-08-01

    It is thought that Bergmann glial fibers assist in the inward migration of granule cells. Model systems in which there is a perturbation of either the migrating cells or the glial cell population have been useful in understanding the migratory process. In the meander tail mutant mouse, the anterior cerebellar region is agranular, whereas the posterior cerebellum is relatively unaffected by the mutation. This study presents a qualitative analysis of the development of cerebellar radial glia in mea/mea and +/mea mice aged from postnatal day 0 to adult, using an antibody against the glia specific antigen, glial fibrillary acidic protein. The results indicate a slight delay in the onset of immunoreactivity in the mea/mea cerebellum and abnormal glial formation in the anterior and posterior regions by postnatal day 5. At postnatal day 11, the full complement of labeled fibers appears to be present and although they appear abnormal in formation, they eventually reach the surface and terminate in oddly shaped and irregularly spaced endfeet. In adult mea/mea and +/mea mice, as compared to the early postnatal stages, there is a significant reduction in GFAP immunoreactive fibers. Cresyl violet stained adult mea/mea sections revealed the presence of ectopic granule cells in radial columns and small clumps at the surface of and within the molecular layer of the caudal cerebellum. Quantitative analyses revealed a 4- to 5-fold increase in the number of ectopic granule cells in lobule VIII of the mea/mea when compared with the +/mea cerebellum. These results suggest that the radial glia in the mea/mea cerebellum exhibit some uncharacteristic morphologies, but that these abnormalities are most likely the consequence of environmental alterations produced by the mutant gene.

  13. A mutant RNA pseudoknot that promotes ribosomal frameshifting in mouse mammary tumor virus.

    PubMed

    Kang, H; Tinoco, I

    1997-05-15

    A single A-->G mutation that changes a potential A.U base pair to a G.U pair at the junction of the stems and loops of a non-frameshifting pseudoknot dramatically increases its frameshifting efficiency in mouse mammary tumor virus. The structure of the non-frameshifting pseudoknot APK has been found to be very different from that of pseudoknots that cause efficient frameshifting [Kang,H., Hines,J.V. and Tinoco,I. (1995) J. Mol. Biol. , 259, 135-147]. The 3-dimensional structure of the mutant pseudoknot was determined by restrained molecular dynamics based on NMR-derived interproton distance and torsion angle constraints. One striking feature of the mutant pseudoknot compared with the parent pseudoknot is that a G.U base pair forms at the top of stem 2, thus leaving only 1 nt at the junction of the two stems. The conformation is very different from that of the previously determined non-frameshifting parent pseudoknot, which lacks the A.U base pair at the top of the stem and has 2 nt between the stems. However, the conformation is quite similar to that of efficient frameshifting pseudoknots whose structures were previously determined by NMR. A single adenylate residue intervenes between the two stems and interrupts their coaxial stacking. This unpaired nucleotide produces a bent structure. The structural similarity among the efficient frameshifting pseudoknots indicates that a specific conformation is required for ribosomal frameshifting, further implying a specific interaction of the pseudoknot with the ribosome.

  14. Human CRB1-Associated Retinal Degeneration: Comparison with the rd8 Crb1-Mutant Mouse Model

    PubMed Central

    Aleman, Tomas S.; Cideciyan, Artur V.; Aguirre, Geoffrey K.; Huang, Wei Chieh; Mullins, Cristina L.; Roman, Alejandro J.; Sumaroka, Alexander; Olivares, Melani B.; Tsai, Frank F.; Schwartz, Sharon B.; Vandenberghe, Luk H.; Limberis, Maria P.; Stone, Edwin M.; Bell, Peter; Wilson, James M.

    2011-01-01

    Purpose. To investigate the human disease due to CRB1 mutations and compare results with the Crb1-mutant rd8 mouse. Methods. Twenty-two patients with CRB1 mutations were studied. Function was assessed with perimetry and electroretinography (ERG) and retinal structure with optical coherence tomography (OCT). Cortical structure and function were quantified with magnetic resonance imaging (MRI). Rd8 mice underwent ERG, OCT, and retinal histopathology. Results. Visual acuities ranged from 20/25 to light perception. Rod ERGs were not detectable; small cone signals were recordable. By perimetry, small central visual islands were separated by midperipheral scotomas from far temporal peripheral islands. The central islands were cone mediated, whereas the peripheral islands retained some rod function. With OCT, there were small foveal islands of thinned outer nuclear layer (ONL) surrounded by thick delaminated retina with intraretinal hyperreflective lesions. MRI showed structurally normal optic nerves and only subtle changes to occipital lobe white and gray matter. Functional MRI indicated that whole-brain responses from patients were of reduced amplitude and spatial extent compared with those of normal controls. Rd8 mice had essentially normal ERGs; OCT and histopathology showed patchy retinal disorganization with pseudorosettes more pronounced in ventral than in dorsal retina. Photoreceptor degeneration was associated with dysplastic regions. Conclusions. CRB1 mutations lead to early-onset severe loss of vision with thickened, disorganized, nonseeing retina. Impaired peripheral vision can persist in late disease stages. Rd8 mice also have a disorganized retina, but there is sufficient photoreceptor integrity to produce largely normal retinal function. Differences between human and mouse diseases will complicate proof-of-concept studies intended to advance treatment initiatives. PMID:21757580

  15. Induction of various autoantibodies by mutant gene lpr in several strains of mice.

    PubMed

    Izui, S; Kelley, V E; Masuda, K; Yoshida, H; Roths, J B; Murphy, E D

    1984-07-01

    The effect of the autosomal mutant gene lpr (lymphoproliferation) on the development of various autoantibodies and immune complex (IC) glomerulonephritis was investigated in four genetically distinct strains of mice: MRL/ MpJ , C3H/HeJ, C57BL/6J, and AKR/J. The presence of the lpr gene not only enhanced the production of autoantibodies in the autoimmune MRL/ MpJ strain, but also induced the formation of various kinds of autoantibodies in the three other strains of mice without any apparent predisposition to autoimmune disease. Autoantibodies induced by the lpr gene included anti-double-stranded DNA, anti-single-stranded DNA, anti-IgG, anti-thymocyte, and anti-serum glycoprotein gp70. This indicates that the action of the lpr gene on the development of autoantibody response does not require the particular abnormalities of the MRL genome. The differences in amounts and types of autoantibodies among the lpr strains reflect the difference in the background genome of each strain, suggesting the participation of other genes or factors determining the quantity and/or specificity of autoantibodies. In addition to the development of autoantibodies, the three nonautoimmune strains of mice produced high levels of unidentified IC in the presence of the lpr gene, detectable by the C1q and the conglutinin binding tests. Their glomerular lesions, however, were relatively limited when compared with MRL/ MpJ -lpr/lpr mice, which developed severe glomerulonephritis early in their life. These results suggest that the lpr gene is able to induce the formation of various autoantibodies and IC at significant concentrations in nonautoimmune mice, but for the full manifestation of systemic lupus erythematosus there may be a requirement for supplemental genetic abnormalities or factors.

  16. Strains and Stressors: An Analysis of Touchscreen Learning in Genetically Diverse Mouse Strains

    PubMed Central

    Graybeal, Carolyn; Bachu, Munisa; Mozhui, Khyobeni; Saksida, Lisa M.; Bussey, Timothy J.; Sagalyn, Erica; Williams, Robert W.; Holmes, Andrew

    2014-01-01

    Touchscreen-based systems are growing in popularity as a tractable, translational approach for studying learning and cognition in rodents. However, while mouse strains are well known to differ in learning across various settings, performance variation between strains in touchscreen learning has not been well described. The selection of appropriate genetic strains and backgrounds is critical to the design of touchscreen-based studies and provides a basis for elucidating genetic factors moderating behavior. Here we provide a quantitative foundation for visual discrimination and reversal learning using touchscreen assays across a total of 35 genotypes. We found significant differences in operant performance and learning, including faster reversal learning in DBA/2J compared to C57BL/6J mice. We then assessed DBA/2J and C57BL/6J for differential sensitivity to an environmental insult by testing for alterations in reversal learning following exposure to repeated swim stress. Stress facilitated reversal learning (selectively during the late stage of reversal) in C57BL/6J, but did not affect learning in DBA/2J. To dissect genetic factors underlying these differences, we phenotyped a family of 27 BXD strains generated by crossing C57BL/6J and DBA/2J. There was marked variation in discrimination, reversal and extinction learning across the BXD strains, suggesting this task may be useful for identifying underlying genetic differences. Moreover, different measures of touchscreen learning were only modestly correlated in the BXD strains, indicating that these processes are comparatively independent at both genetic and phenotypic levels. Finally, we examined the behavioral structure of learning via principal component analysis of the current data, plus an archival dataset, totaling 765 mice. This revealed 5 independent factors suggestive of “reversal learning,” “motivation-related late reversal learning,” “discrimination learning,” “speed to respond,” and

  17. Juvenile manifestation of ultrasound communication deficits in the neuroligin-4 null mutant mouse model of autism.

    PubMed

    Ju, Anes; Hammerschmidt, Kurt; Tantra, Martesa; Krueger, Dilja; Brose, Nils; Ehrenreich, Hannelore

    2014-08-15

    Neuroligin-4 (Nlgn4) is a member of the neuroligin family of postsynaptic cell adhesion molecules. Loss-of-function mutations of NLGN4 are among the most frequent, known genetic causes of heritable autism. Adult Nlgn4 null mutant (Nlgn4(-/-)) mice are a construct valid model of human autism, with both genders displaying a remarkable autistic phenotype, including deficits in social interaction and communication as well as restricted and repetitive behaviors. In contrast to adults, autism-related abnormalities in neonatal and juvenile Nlgn4(-/-) mice have not been reported yet. The present study has been designed to systematically investigate in male and female Nlgn4(-/-) pups versus wildtype littermates (WT, Nlgn4(+/+)) developmental milestones and stimulus-induced ultrasound vocalization (USV). Neonatal development, followed daily from postnatal days (PND) 4 to 21, including physical development, neurological reflexes and neuromotor coordination, did not yield any differences between Nlgn4(-/-) and their WT littermates. USV in pups (PND8-9) in response to brief separation from their mothers revealed remarkable gender effects, and a genotype influence in females regarding latency to first call. In juveniles (PND22-23), USV monitoring upon exposure to an anesthetized female intruder mouse uncovered a clear genotype effect with reduced USV in Nlgn4(-/-) mice, and again a more prominent phenotype in females. Together, these data support an early manifestation of communication deficits in Nlgn4(-/-) mice that appear more pronounced in immature females with their overall stronger USV as compared to males.

  18. Novel roles for erythroid Ankyrin-1 revealed through an ENU-induced null mouse mutant

    PubMed Central

    Rank, Gerhard; Sutton, Rosemary; Marshall, Vikki; Lundie, Rachel J.; Caddy, Jacinta; Romeo, Tony; Fernandez, Kate; McCormack, Matthew P.; Cooke, Brian M.; Foote, Simon J.; Crabb, Brendan S.; Curtis, David J.; Hilton, Douglas J.; Kile, Benjamin T.

    2009-01-01

    Insights into the role of ankyrin-1 (ANK-1) in the formation and stabilization of the red cell cytoskeleton have come from studies on the nb/nb mice, which carry hypomorphic alleles of Ank-1. Here, we revise several paradigms established in the nb/nb mice through analysis of an N-ethyl-N-nitrosourea (ENU)–induced Ank-1–null mouse. Mice homozygous for the Ank-1 mutation are profoundly anemic in utero and most die perinatally, indicating that Ank-1 plays a nonredundant role in erythroid development. The surviving pups exhibit features of severe hereditary spherocytosis (HS), with marked hemolysis, jaundice, compensatory extramedullary erythropoiesis, and tissue iron overload. Red cell membrane analysis reveals a complete loss of ANK-1 protein and a marked reduction in β-spectrin. As a consequence, the red cells exhibit total disruption of cytoskeletal architecture and severely altered hemorheologic properties. Heterozygous mutant mice, which have wild-type levels of ANK-1 and spectrin in their RBC membranes and normal red cell survival and ultrastructure, exhibit profound resistance to malaria, which is not due to impaired parasite entry into RBC. These findings provide novel insights into the role of Ank-1, and define an ideal model for the study of HS and malarial resistance. PMID:19179303

  19. Neuromuscular dysfunction in the mutant superoxide dismutase mouse model of amyotrophic lateral sclerosis.

    PubMed

    Parkhouse, Wade S; Cunningham, Lori; McFee, Ingrid; Miller, Jennifer M Litt; Whitney, Darryl; Pelech, Steven L; Krieger, Charles

    2008-01-01

    To better understand the interaction between motor neuron dysfunction and denervation in amyotrophic lateral sclerosis (ALS), we have evaluated motor neuron number and the retrograde uptake and transport of fluorogold by motor neurons in mice overexpressing mutant superoxide dismutase (mSOD), and wild-type controls. N-CAM immunoreactivity and protein kinase expression were determined in skeletal muscle during denervation. We found that in severely affected mSOD mice, motor neuron loss is moderate (approximate 40% reduction), whereas retrograde uptake/transport as assessed using fluorogold is profoundly impaired (approximately 90% reduction). The impairment in fluorogold uptake/transport corresponds to measures of progressive muscle denervation such as increased N-CAM immunoreactivity of muscle and increased expression of protein kinase B (PKB) in denervated muscle. These data suggest that the debility in the mSOD mouse model of ALS is produced, in part, by impaired retrograde uptake/transport in motor neuron axons in spite of regenerative support from muscle such as elevated expression of PKB.

  20. HPA axis dysregulation and behavioral analysis of mouse mutants with altered GR or MR function

    PubMed Central

    Kolber, Benedict J.; Wieczorek, Lindsay; Muglia, Louis J.

    2009-01-01

    Corticosteroid receptors are critical for the maintenance of homeostasis after both psychological and physiological stress. To properly understand the different roles and interactions of the glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) during stress, it is necessary to dissect the role of corticosteroid signaling at both the system and sub-system level. A variety of GR transgenic mouse lines have recently been used to characterize the role of GR in the CNS as a whole and particularly in the forebrain. We will describe both the behavioral and cellular/molecular implications of disrupting GR function in these animal models and describe the implications of this data for our understanding of normal endocrine function and stress adaptation. MRs in tight epithelia have a long established role in sodium homeostasis. Recently however, evidence has suggested that limbic MRs also play an important role in psychological stress. Just as with GR, targeted mutations in MR induce a variety of behavioral changes associated with stress adaptation. In this review, we will discuss the implications of this work on MR. Finally, we will discuss the possible interaction between MR and GR and how future work using double mutants (through conventional means or virus based gene alteration) will be needed to fully understand how signaling through these two steroid receptors provides the adaptive mechanisms to deal with a variety of stressors. PMID:18609295

  1. Heterotaxy and complex structural heart defects in a mutant mouse model of primary ciliary dyskinesia

    PubMed Central

    Tan, Serena Y.; Rosenthal, Julie; Zhao, Xiao-Qing; Francis, Richard J.; Chatterjee, Bishwanath; Sabol, Steven L.; Linask, Kaari L.; Bracero, Luciann; Connelly, Patricia S.; Daniels, Mathew P.; Yu, Qing; Omran, Heymut; Leatherbury, Linda; Lo, Cecilia W.

    2007-01-01

    Primary ciliary dyskinesia (PCD) is a genetically heterogeneous disorder associated with ciliary defects and situs inversus totalis, the complete mirror image reversal of internal organ situs (positioning). A variable incidence of heterotaxy, or irregular organ situs, also has been reported in PCD patients, but it is not known whether this is elicited by the PCD-causing genetic lesion. We studied a mouse model of PCD with a recessive mutation in Dnahc5, a dynein gene commonly mutated in PCD. Analysis of homozygous mutant embryos from 18 litters yielded 25% with normal organ situs, 35% with situs inversus totalis, and 40% with heterotaxy. Embryos with heterotaxy had complex structural heart defects that included discordant atrioventricular and ventricular outflow situs and atrial/pulmonary isomerisms. Variable combinations of a distinct set of cardiovascular anomalies were observed, including superior-inferior ventricles, great artery alignment defects, and interrupted inferior vena cava with azygos continuation. The surprisingly high incidence of heterotaxy led us to evaluate the diagnosis of PCD. PCD was confirmed by EM, which revealed missing outer dynein arms in the respiratory cilia. Ciliary dyskinesia was observed by videomicroscopy. These findings show that Dnahc5 is required for the specification of left-right asymmetry and suggest that the PCD-causing Dnahc5 mutation may also be associated with heterotaxy. PMID:18037990

  2. Gas exchange in the filamentous cyanobacterium Nostoc punctiforme strain ATCC 29133 and Its hydrogenase-deficient mutant strain NHM5.

    PubMed

    Lindberg, Pia; Lindblad, Peter; Cournac, Laurent

    2004-04-01

    Nostoc punctiforme ATCC 29133 is a nitrogen-fixing, heterocystous cyanobacterium of symbiotic origin. During nitrogen fixation, it produces molecular hydrogen (H(2)), which is recaptured by an uptake hydrogenase. Gas exchange in cultures of N. punctiforme ATCC 29133 and its hydrogenase-free mutant strain NHM5 was studied. Exchange of O(2), CO(2), N(2), and H(2) was followed simultaneously with a mass spectrometer in cultures grown under nitrogen-fixing conditions. Isotopic tracing was used to separate evolution and uptake of CO(2) and O(2). The amount of H(2) produced per molecule of N(2) fixed was found to vary with light conditions, high light giving a greater increase in H(2) production than N(2) fixation. The ratio under low light and high light was approximately 1.4 and 6.1 molecules of H(2) produced per molecule of N(2) fixed, respectively. Incubation under high light for a longer time, until the culture was depleted of CO(2), caused a decrease in the nitrogen fixation rate. At the same time, hydrogen production in the hydrogenase-deficient strain was increased from an initial rate of approximately 6 micro mol (mg of chlorophyll a)(-1) h(-1) to 9 micro mol (mg of chlorophyll a)(-1) h(-1) after about 50 min. A light-stimulated hydrogen-deuterium exchange activity stemming from the nitrogenase was observed in the two strains. The present findings are important for understanding this nitrogenase-based system, aiming at photobiological hydrogen production, as we have identified the conditions under which the energy flow through the nitrogenase can be directed towards hydrogen production rather than nitrogen fixation.

  3. Anticonvulsant activity of pregabalin in the maximal electroshock-induced seizure assay in α2δ1 (R217A) and α2δ2 (R279A) mouse mutants.

    PubMed

    Lotarski, Susan; Hain, Heather; Peterson, Jason; Galvin, Stacey; Strenkowski, Bryan; Donevan, Sean; Offord, James

    2014-07-01

    Pregabalin has been shown to have anticonvulsant, analgesic, and anxiolytic activity in animal models. Pregabalin binds with high affinity to the α2δ1 and α2δ2 subunits of voltage-gated calcium channels. In order to better understand the relative contribution that binding to either the α2δ1 or α2δ2 subunits confers on the anticonvulsant activity of pregabalin, we characterized the anticonvulsant activity of pregabalin in different wild-type (WT) and mutant mouse strains. Two targeted mouse mutants have been made in which either the α2δ1 subunit was mutated (arginine-to-alanine mutation at amino acid 217; R217A) or the α2δ2 subunit was mutated (arginine-to-alanine mutation at amino acid 279; R279A). These mutations in α2δ1 or α2δ2 render the subunits relatively insensitive to pregabalin binding. The anticonvulsant activity of pregabalin was assessed in these different mouse lines using the maximal electroshock-induced seizure (MES) model. Pregabalin reduced the percentage of seizures and increased the latency to seizure in the MES model in two parental mouse strains used to construct the mutants. Pregabalin also reduced the percentage of seizures and increased latency to seizure similarly in the α2δ2 (R279A) and WT littermate control mice. In contrast, pregabalin's anticonvulsant efficacy was significantly reduced in α2δ1 (R217A) mutants compared with WT littermate control mice. Phenytoin showed anticonvulsant activity across all WT and mutant mice. These data show that the anticonvulsant activity of pregabalin in the MES model requires binding to the α2δ1 subunit.

  4. Recovery of Nonpathogenic Mutant Bacteria from Tumors Caused by Several Agrobacterium tumefaciens Strains: a Frequent Event?▿

    PubMed Central

    Llop, Pablo; Murillo, Jesús; Lastra, Beatriz; López, María M.

    2009-01-01

    We have evaluated the interaction that bacterial genotypes and plant hosts have with the loss of pathogenicity in tumors, using seven Agrobacterium tumefaciens strains inoculated on 12 herbaceous and woody hosts. We performed a screening of the agrobacteria present inside the tumors, looking for nonpathogenic strains, and found a high variability of those strains in this niche. To verify the origin of the putative nonpathogenic mutant bacteria, we applied an efficient, reproducible, and specific randomly amplified polymorphic DNA analysis method. In contrast with previous studies, we recovered a very small percentage (0.01%) of nonpathogenic strains that can be considered true mutants. Of 5,419 agrobacterial isolates examined, 662 were nonpathogenic in tomato, although only 7 (from pepper and tomato tumors induced by two A. tumefaciens strains) could be considered to derive from the inoculated strain. Six mutants were affected in the transferred DNA (T-DNA) region; one of them contained IS426 inserted into the iaaM gene, whereas the whole T-DNA region was apparently deleted in three other mutants, and the virulence of the remaining two mutants was fully restored with the T-DNA genes as well. The plasmid profile was altered in six of the mutants, with changes in the size of the Ti plasmid or other plasmids and/or the acquisition of new plasmids. Our results also suggest that the frequent occurrence of nonpathogenic clones in the tumors is probably due to the preferential growth of nonpathogenic agrobacteria, of either endophytic or environmental origin, but different from the bacterial strain inducing the tumor. PMID:19700547

  5. Characterization of xanthan gum produced from glycerol by a mutant strain Xanthomonas campestris CCTCC M2015714.

    PubMed

    Wang, Zichao; Wu, Jianrong; Zhu, Li; Zhan, Xiaobei

    2017-02-10

    Xanthan gum was produced by a mutant strain X. campestris CCTCC M2015714 with glycerol as the sole carbon source. The monosaccharide composition and molar ratio of xanthan gum produced from glycerol are glucose: mannose: glucuronic acid=2.0:1.65:1.0. Meanwhile, chemical structure of xanthan gum produced from glycerol is similar to that of the commercial xanthan through FT-IR and NMR. Remarkably, the molecular weight of xanthan gum produced using our method (3.0±0.14×10(6)Da) is about half that of the commercial one (5.8±0.25×10(6)Da), and the consistency index (K) of which is less than 1/10 that of the commercial xanthan. This work paves the way for xanthan production from glycerol and is useful for studying the structure/application of xanthan gum.

  6. Localization of 17beta-hydroxysteroid dehydrogenase in Mycobacterium sp. VKM Ac-1815D mutant strain.

    PubMed

    Egorova, O V; Nikolayeva, V M; Suzina, N E; Donova, M V

    2005-04-01

    The localization of mycobacterial 17beta-hydroxysteroid dehydrogenase (17beta-OH SDH) was studied using cell fractionation and cytochemical investigation. Mycobacterium sp. Et1 mutant strain derived from Mycobacterium sp. VKM Ac-1815D and characterized by increased 17beta-OH SDH activity was used as a model organism. Subcellular distribution study showed both soluble and membrane-bound forms of mycobacterial 17beta-hydroxysteroid dehydrogenase. The cytochemical method based on a copper ferrocyanide procedure followed by electron microscopic visualization was applied in order to investigate the intracellular localization of bacterial 17beta-OH SDH in more detail. The enzyme was found to be located in the peripheral cytoplasmic zone adjoining the cytoplasmic membrane (CM). 17beta-OH SDH was loosely membrane bound and easily released into the environment under the cell integrity failure.

  7. Purification and characterisation of α-amylase produced by mutant strain of Aspergillus oryzae EMS-18.

    PubMed

    Abdullah, Roheena; Ikram-ul-Haq

    2015-01-01

    α-Amylase produced by a mutant strain of Aspergillus oryzae EMS-18 has been purified to homogeneity as judged by sodium dodecyle sulphate polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme was purified by using 70% ammonium sulphate precipitation followed by anion exchange chromatography on DEAE-Sephadex column and gel filtration on Sephadex G-100. An enzyme purification factor of 9.5-fold was achieved with a final specific activity of 1987.7 U/mg protein and overall yield of 23.8%. The molecular weight of purified α-amylase was estimated to be 48 kDa by SDS-PAGE. The purified enzyme revealed an optimum assay temperature and pH 40°C and 5.0, respectively. Except Ca(++) all other metal ions such as Mg, Mn, Na, Zn, Ni, Fe, Cu, Co and Ba were found to be inhibitory to enzyme activity.

  8. A Dominant Loss-of-Function GJA1 (Cx43) Mutant Impairs Parturition in the Mouse1

    PubMed Central

    Tong, Dan; Lu, Xuerong; Wang, Hong-Xing; Plante, Isabelle; Lui, Ed; Laird, Dale W.; Bai, Donglin; Kidder, Gerald M.

    2009-01-01

    Expression of GJA1 (commonly known as connexin43 or Cx43), a major myometrial gap junction protein, is upregulated before the onset of delivery, suggesting an essential role for Cx43-mediated gap junctional intercellular communication (GJIC) in normal uterine contraction during parturition. To determine how a disease-linked Cx43 mutation affects myometrial function, we studied a mutant mouse model carrying an autosomal dominant mutation (Gja1Jrt) in the gene encoding Cx43 that displays features of the human genetic disease oculodentodigital dysplasia. We found that Cx43 level, specifically the phosphorylated species of the protein, is significantly reduced in the myometrium of the mutant mice (Gja1Jrt/+), as revealed by Western blotting and immunostaining. Patch-clamp electrophysiological measurements demonstrated that coupling between myometrial smooth muscle cells is reduced to <15% of wild-type, indicating that the mutant protein acts dominantly on its wild-type counterpart. The phosphorylated species of Cx43 in the mutant myometrium failed to increase prior to parturition as well as in response to exogenous estrogen. Correspondingly, in vitro experiments with uterine strips revealed weaker contraction of the mutant myometrium and reduced responsiveness to oxytocin, providing an explanation for the prolonged gestation and presence of suffocated fetuses in the uteri that were observed in some of the mutant mice. We conclude that the Gja1Jrt mutation has a dominant-negative effect on Cx43 function in the myometrium, severely reducing GJIC, leading to impaired parturition. PMID:19176884

  9. Mutant p53(R270H) gain of function phenotype in a mouse model for oncogene-induced mammary carcinogenesis.

    PubMed

    Heinlein, Christina; Krepulat, Frauke; Löhler, Jürgen; Speidel, Daniel; Deppert, Wolfgang; Tolstonog, Genrich V

    2008-04-15

    In human breast cancer, mutations in the p53 gene are associated with poor prognosis. However, analysis of patient data so far did not clarify, whether missense point mutations in the p53 gene, in addition to causing loss of wild-type p53 function, also confer a gain of function phenotype to the encoded mutant p53. As heterogeneity of patient material and data might obscure a clear answer, we studied the effects of a coexpressed mutant p53(R270H) in transgenic mice in which SV40 early proteins initiate the development of mammary adenocarcinoma (WAP-T mice). In such tumors the endogenous wild-type p53 is functionally compromised by complex formation with SV40 T-antigen, thereby constituting a loss of wild-type p53 function situation that allowed analysis of the postulated gain of function effects of mutant p53(R270H). We found that mutant p53(R270H) in bi-transgenic mice enhanced the transition from intraepithelial neoplasia to invasive carcinoma, resulting in a higher frequency of invasive carcinoma per gland and per mouse, a more severe tumor phenotype, and more frequent pulmonary metastasis. Surprisingly, mutant p53(R270H) in this system does not increase genomic instability. Therefore, other postulated gain of function activities of mutant p53 must be responsible for the effects described here.

  10. Sensitivity of dark mutants of various strains of luminescent bacteria to reactive oxygen species.

    PubMed

    Lyzeń, Robert; Wegrzyn, Grzegorz

    2005-03-01

    Recent studies indicated that bioluminescence of the marine bacterium Vibrio harveyi may both stimulate DNA repair and contribute to detoxification of deleterious oxygen derivatives. Therefore, it was also proposed that these reactions can be considered biological roles of bacterial luminescence and might act as evolutionary drives in development of luminous systems. However, experimental evidence for the physiological role of luciferase in protection of cells against oxidative stress has been demonstrated only in one bacterial species, raising the question whether this is a specific or a more general phenomenon. Here we demonstrate that in the presence of various oxidants (hydrogen peroxide, cumene hydroperoxide, t-butyl hydroperoxide and ferrous ions) growth of dark mutants of different strains of Vibrio fischeri and Photobacterium leiognathi is impaired relative to wild-type bacteria, though to various extents. Deleterious effects of oxidants on the mutants could be reduced (with different efficiency) by addition of antioxidants, A-TEMPO or 4OH-TEMPO. These results support the hypotheses that (1) activities of bacterial luciferases may detoxify deleterious oxygen derivatives, and (2) significantly different efficiencies of this reaction are characteristic for various luciferases.

  11. A mutant of Saccharomyces cerevisiae lacking catabolic NAD-specific glutamate dehydrogenase. Growth characteristics of the mutant and regulation of enzyme synthesis in the wild-type strain.

    PubMed

    Middelhoven, W J; van Eijk, J; van Renesse, R; Blijham, J M

    1978-01-01

    NAD-specific glutamate dehydrogenase (GDH-B) was induced in a wild-type strain derived of alpha-sigma 1278b by alpha-amino acids, the nitrogen of which according to known degradative pathways is transferred to 2-oxoglutarate. A recessive mutant (gdhB) devoid of GDH-B activity grew more slowly than the wild type if one of these amino acids was the sole source of nitrogen. Addition of ammonium chloride, glutamine, asparagine or serine to growth media with inducing alpha-amino acids as the main nitrogen source increased the growth rate of the gdhB mutant to the wild-type level and repressed GDH-B synthesis in the wild type. Arginine, urea and allantoin similarly increased the growth rate of the gdhB mutant and repressed GDH-B synthesis in the presence of glutamate, but not in the presence of aspartate, alanine or proline as the main nitrogen source. These observations are consistent with the view that GDH-B in vivo deaminates glutamate. Ammonium ions are required for the biosynthesis of glutamine, asparagine, arginine, histidine and purine and pyrimidine bases. Aspartate and alanine apparently are more potent inducers of GDH-B than glutamate. Anabolic NADP-specific glutamate dehydrogenase (GDH-A) can not fulfil the function of GDH-B in the gdhB mutant. This is concluded from the equal growth rates in glutamate, aspartate and proline media as observed with a gdhB mutant and with a gdhA, gdhB double mutant in which both glutamate dehydrogenases area lacking. The double mutant showed an anomalous growth behaviour, growth rates on several nitrogen sources being unexpectedly low.

  12. Mating-Type Mutations in SCHIZOSACCHAROMYCES POMBE: Isolation of Mutants and Analysis of Strains with an h- or h+ Phenotype

    PubMed Central

    Meade, James H.; Gutz, Herbert

    1976-01-01

    Mutants defective in various steps of the sexual cycle have been isolated from homothallic strains of Schizosaccharomyces pombe by Bresch, Müller and Egel (1968). These mutants include heterothallic h+ and h- strains. We have isolated additional h+ and h- mutants from homothallic strains. Those mutants which are due to mutations in the mating-type region were analyzed in detail. Our results show that the mating-type gene mat2 not only has a function in copulation and meiosis, but that it also regulates the formation of the map1 gene product (map1 is a mating-type auxiliary gene). Some of the h - mutants have lost only one of the three functions while others are defective in at least two, and perhaps all three, functions. Further, we show that the mat1- allele of h90 strains can mutate to mat1+ but that mutations in mat2 appear to affect the mutational behavior of mat1. Finally, we describe a new inactive mating-type allele, mat2*, which is different from mat20 in that it can mutate to mat2+. PMID:17248713

  13. Mating-Type Mutations in SCHIZOSACCHAROMYCES POMBE: Isolation of Mutants and Analysis of Strains with an h or h Phenotype.

    PubMed

    Meade, J H; Gutz, H

    1976-06-01

    Mutants defective in various steps of the sexual cycle have been isolated from homothallic strains of Schizosaccharomyces pombe by Bresch, Müller and Egel (1968). These mutants include heterothallic h(+) and h(-) strains. We have isolated additional h(+) and h(- ) mutants from homothallic strains. Those mutants which are due to mutations in the mating-type region were analyzed in detail. Our results show that the mating-type gene mat2 not only has a function in copulation and meiosis, but that it also regulates the formation of the map1 gene product (map1 is a mating-type auxiliary gene). Some of the h( -) mutants have lost only one of the three functions while others are defective in at least two, and perhaps all three, functions. Further, we show that the mat1(-) allele of h(90) strains can mutate to mat1(+) but that mutations in mat2 appear to affect the mutational behavior of mat1. Finally, we describe a new inactive mating-type allele, mat2*, which is different from mat2(0) in that it can mutate to mat2(+).

  14. Identification of sdiA-regulated genes in a mouse commensal strain of Enterobacter cloacae

    PubMed Central

    Sabag-Daigle, Anice; Dyszel, Jessica L.; Gonzalez, Juan F.; Ali, Mohamed M.; Ahmer, Brian M. M.

    2015-01-01

    Many bacteria determine their population density using quorum sensing. The most intensively studied mechanism of quorum sensing utilizes proteins of the LuxI family to synthesize a signaling molecule of the acylhomoserine lactone (AHL) type, and a protein of the LuxR family to bind AHL and regulate transcription. Genes regulated by quorum sensing often encode functions that are most effective when a group of bacteria are working cooperatively (e.g., luminescence, biofilm formation, host interactions). Bacteria in the Escherichia, Salmonella, Klebsiella, and Enterobacter genera do not encode an AHL synthase but they do encode an AHL receptor of the LuxR family, SdiA. Instead of detecting their own AHL synthesis, these organisms use SdiA to detect the AHLs synthesized by other bacterial species. In this study, we used a genetic screen to identify AHL-responsive genes in a commensal Enterobacter cloacae strain that was isolated from a laboratory mouse. The genes include a putative type VI secretion system, copA (a copper transporter), and fepE (extends O-antigen chain length). A new transposon mutagenesis strategy and suicide vectors were used to construct an sdiA mutant of E. cloacae. The AHL-responsiveness of all fusions was entirely sdiA-dependent, although some genes were regulated by sdiA in the absence of AHL. PMID:26075189

  15. Identification of sdiA-regulated genes in a mouse commensal strain of Enterobacter cloacae.

    PubMed

    Sabag-Daigle, Anice; Dyszel, Jessica L; Gonzalez, Juan F; Ali, Mohamed M; Ahmer, Brian M M

    2015-01-01

    Many bacteria determine their population density using quorum sensing. The most intensively studied mechanism of quorum sensing utilizes proteins of the LuxI family to synthesize a signaling molecule of the acylhomoserine lactone (AHL) type, and a protein of the LuxR family to bind AHL and regulate transcription. Genes regulated by quorum sensing often encode functions that are most effective when a group of bacteria are working cooperatively (e.g., luminescence, biofilm formation, host interactions). Bacteria in the Escherichia, Salmonella, Klebsiella, and Enterobacter genera do not encode an AHL synthase but they do encode an AHL receptor of the LuxR family, SdiA. Instead of detecting their own AHL synthesis, these organisms use SdiA to detect the AHLs synthesized by other bacterial species. In this study, we used a genetic screen to identify AHL-responsive genes in a commensal Enterobacter cloacae strain that was isolated from a laboratory mouse. The genes include a putative type VI secretion system, copA (a copper transporter), and fepE (extends O-antigen chain length). A new transposon mutagenesis strategy and suicide vectors were used to construct an sdiA mutant of E. cloacae. The AHL-responsiveness of all fusions was entirely sdiA-dependent, although some genes were regulated by sdiA in the absence of AHL.

  16. Disulphide linkage in mouse ST6Gal-I: determination of linkage positions and mutant analysis.

    PubMed

    Hirano, Yuichi; Suzuki, Takehiro; Matsumoto, Takumi; Ishihara, Yoshimi; Takaki, Yoshie; Kono, Mari; Dohmae, Naoshi; Tsuji, Shuichi

    2012-02-01

    All cloned sialyltransferases from vertebrates are classified into four subfamilies and are characterized as having type II transmembrane topology. The catalytic domain has highly conserved motifs known as sialylmotifs. Besides sialylmotifs, each family has several unique conserved cysteine (Cys) residues mainly in the catalytic domain. The number and loci of conserved amino acids, however, differ with each subfamily, suggesting that the conserved Cys-residues and/or disulphide linkages they make may contribute to linkage specificity. Using Matrix Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-TOF)-mass spectrometry, the present study performed disulphide linkage analysis on soluble mouse ST6Gal-I, which has six Cys-residues. Results confirmed that there were no free Cys-residues, and all six residues contributed to disulphide linkage formation, C(139)-C(403), C(181)-C(332) and C(350)-C(361). Study of single amino acid-substituted mutants revealed that the disulphide linkage C(181)-C(332) was necessary for molecular expression of the enzyme, and that the disulphide linkage C(350)-C(361) was necessary for enzyme activity. The remaining disulphide linkage C(139)-C(403) was not necessary for enzyme expression or for activity, including substrate specificity. Crystallographic study of pig ST3Gal I has recently been reported. Interestingly, the loci of disulphide linkages in ST6Gal-I differ from those in ST3Gal I, suggesting that the linkage specificity of sialyltransferase may results from significant structural differences, including the loci of disulphide linkages.

  17. Alterations in dopamine and serotonin uptake systems in the striatum of the weaver mutant mouse.

    PubMed

    Stotz, E H; Palacios, J M; Landwehrmeyer, B; Norton, J; Ghetti, B; Simon, J R; Triarhou, L C

    1994-01-01

    In the striatum of the homozygous weaver mutant mouse (wv/wv), dopamine content, uptake and tyrosine hydroxylase activity are decreased compared to wild-type (+/+) mice. In mice heterozygous for the weaver gene (wv/+), these dopaminergic parameters exhibit only minor reductions compared to +/+ mice. The wv/wv striatum has recently been shown to have an increase in serotonin content. In the present study, the serotonin uptake system of the weaver striatum was investigated. Synaptosomal uptake of [3H] serotonin was determined in the dorsal portion of wv/wv and +/+ striatum, and serotonin uptake sites were examined by the binding of [3H] citalopram in the striatum of wv/wv, wv/+ and +/+ mice. The dopamine uptake system was also investigated in all three genotypes via the binding of [3H] mazindol. Synaptosomal uptake of [3H] serotonin was increased by 79% in the dorsal portion of the wv/wv striatum compared to that seen in the +/+ striatum. The binding of [3H] citalopram was increased by 62% in the dorsolateral and by 111% in the dorsomedial portions of the wv/wv striatum compared to +/+. [3H] Citalopram binding in the wv/+ striatum was also higher than +/+, but this increase did not reach statistical significance. Within the wv/wv striatum, [3H] mazindol binding was almost completely absent (88-89% reduction) in the dorsal portion and severely reduced in the other striatal areas. These data support the notion that the dorsal portion of the wv/wv striatum, which has the severest reduction in dopamine uptake, is hyperinnervated by serotonin fibers.

  18. Newborn Mouse Lens Proteome and Its Alteration by Lysine 6 Mutant Ubiquitin

    PubMed Central

    2015-01-01

    Ubiquitin is a tag that often initiates degradation of proteins by the proteasome in the ubiquitin proteasome system. Targeted expression of K6W mutant ubiquitin (K6W-Ub) in the lens results in defects in lens development and cataract formation, suggesting critical functions for ubiquitin in lens. To study the developmental processes that require intact ubiquitin, we executed the most extensive characterization of the lens proteome to date. We quantified lens protein expression changes in multiple replicate pools of P1 wild-type and K6W-Ub-expressing mouse lenses. Lens proteins were digested with trypsin, peptides were separated using strong cation exchange and reversed-phase liquid chromatography, and tandem mass (MS/MS) spectra were collected with a linear ion trap. Transgenic mice that expressed low levels of K6W-Ub (low expressers) had normal, clear lenses at birth, whereas the lenses that expressed high levels of K6W-Ub (higher expressers) had abnormal lenses and cataracts at birth. A total of 2052 proteins were identified, of which 996 were reliably quantified and compared between wild-type and K6W-Ub transgenic mice. Consistent with a delayed developmental program, fiber-cell-specific proteins, such as γ-crystallins (γA, γB, γC, and γE), were down-regulated in K6W-Ub higher expressers. Up-regulated proteins were involved in energy metabolism, signal transduction, and proteolysis. The K6W-Ub low expressers exhibited delayed onset and milder cataract consistent with smaller changes in protein expression. Because lens protein expression changes occurred prior to lens morphological abnormalities and cataract formation in K6W-Ub low expressers, it appears that expression of K6W-Ub sets in motion a process of altered protein expression that results in developmental defects and cataract. PMID:24450463

  19. High frequency of mosaic mutants produced by N-ethyl-N-nitrosourea exposure of mouse zygotes.

    PubMed

    Russell, L B; Bangham, J W; Stelzner, K F; Hunsicker, P R

    1988-12-01

    Mouse zygotes containing one multiple-recessive parental genome (a, b; p cch; d se; s) and the corresponding wild-type alleles in the other were exposed to N-ethyl-N-nitrosourea (ENU) at various stages in vivo. At weaning age, the resulting mice were examined for mutations at the marked loci as well as at others producing externally visible phenotypes. Because of viability problems in one of two reciprocal crosses, the bulk of the mutagenesis data are derived from the cross that detects recessive mutations in the maternal genome. The mutation rate was approximately 8 times higher in groups treated 2.5-3 hr postmating (sperm entry, completion of second meiotic division) than in those injected 5-6 hr postmating (pronuclear formation). In the former more sensitive zygote population, the mutation rate is about an order of magnitude greater than that induced by the same ENU exposure (50 mg/kg) to spermatogonial stem cells. Of 11 mutants recovered, 8 were mosaics. Progeny tests have demonstrated germ-line involvement for most of the mosaics, and the average fraction of the germ line carrying the mutation is close to 50%. The nature of the mutations indicates (i) that the mosaicism results not from misassortment at the first cleavage but from mutation affecting one DNA strand of the maternal chromosome, and (ii) that the mutations are intragenic lesions rather than multilocus deletions, thus resembling ENU-induced mutations in spermatogonia. The finding that mosaicism for presumed point mutations is readily inducible by ENU treatment of zygotes may provide a means of generating genetic materials that can be of use for developmental studies.

  20. Disulphide linkage in mouse ST6Gal-I: determination of linkage positions and mutant analysis

    PubMed Central

    Hirano, Yuichi; Suzuki, Takehiro; Matsumoto, Takumi; Ishihara, Yoshimi; Takaki, Yoshie; Kono, Mari; Dohmae, Naoshi; Tsuji, Shuichi

    2012-01-01

    All cloned sialyltransferases from vertebrates are classified into four subfamilies and are characterized as having type II transmembrane topology. The catalytic domain has highly conserved motifs known as sialylmotifs. Besides sialylmotifs, each family has several unique conserved cysteine (Cys) residues mainly in the catalytic domain. The number and loci of conserved amino acids, however, differ with each subfamily, suggesting that the conserved Cys-residues and/or disulphide linkages they make may contribute to linkage specificity. Using Matrix Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-TOF)-mass spectrometry, the present study performed disulphide linkage analysis on soluble mouse ST6Gal-I, which has six Cys-residues. Results confirmed that there were no free Cys-residues, and all six residues contributed to disulphide linkage formation, C139–C403, C181–C332 and C350–C361. Study of single amino acid-substituted mutants revealed that the disulphide linkage C181–C332 was necessary for molecular expression of the enzyme, and that the disulphide linkage C350–C361 was necessary for enzyme activity. The remaining disulphide linkage C139–C403 was not necessary for enzyme expression or for activity, including substrate specificity. Crystallographic study of pig ST3Gal I has recently been reported. Interestingly, the loci of disulphide linkages in ST6Gal-I differ from those in ST3Gal I, suggesting that the linkage specificity of sialyltransferase may results from significant structural differences, including the loci of disulphide linkages. PMID:22039275

  1. The Clock mutant mouse is a novel experimental model for nocturia and nocturnal polyuria.

    PubMed

    Ihara, Tatsuya; Mitsui, Takahiko; Nakamura, Yuki; Kira, Satoru; Miyamoto, Tatsuya; Nakagomi, Hiroshi; Sawada, Norifumi; Hirayama, Yuri; Shibata, Keisuke; Shigetomi, Eiji; Shinozaki, Yoichi; Yoshiyama, Mitsuharu; Andersson, Karl-Erik; Nakao, Atsuhito; Takeda, Masayuki; Koizumi, Schuichi

    2017-04-01

    The pathophysiologies of nocturia (NOC) and nocturnal polyuria (NP) are multifactorial and their etiologies remain unclear in a large number of patients. Clock genes exist in most cells and organs, and the products of Clock regulate circadian rhythms as representative clock genes. Clock genes regulate lower urinary tract function, and a newly suggested concept is that abnormalities in clock genes cause lower urinary tract symptoms. In the present study, we investigated the voiding behavior of Clock mutant (Clock(Δ19/Δ19) ) mice in order to determine the effects of clock genes on NOC/NP. Male C57BL/6 mice aged 8-12 weeks (WT) and male C57BL/6 Clock(Δ19/Δ19) mice aged 8 weeks were used. They were bred under 12 hr light/dark conditions for 2 weeks and voiding behavior was investigated by measuring water intake volume, urine volume, urine volume/void, and voiding frequency in metabolic cages in the dark and light periods. No significant differences were observed in behavior patterns between Clock(Δ19/Δ19) and WT mice. Clock(Δ19/Δ19) mice showed greater voiding frequencies and urine volumes during the sleep phase than WT mice. The diurnal change in urine volume/void between the dark and light periods in WT mice was absent in Clock(Δ19/Δ19) mice. Additionally, functional bladder capacity was significantly lower in Clock(Δ19/Δ19) mice than in WT mice. We demonstrated that Clock(Δ19/Δ19) mice showed the phenotype of NOC/NP. The Clock(Δ19/Δ19) mouse may be used as an animal model of NOC and NP. Neurourol. Urodynam. 36:1034-1038, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Proteomic Analysis of Anti-Cancerous Scopularide Production by a Marine Microascus brevicaulis Strain and Its UV Mutant

    PubMed Central

    Kramer, Annemarie; Beck, Hans Christian; Kumar, Abhishek; Kristensen, Lars Peter; Imhoff, Johannes F.; Labes, Antje

    2015-01-01

    The marine fungus Microascus brevicaulis strain LF580 is a non-model secondary metabolite producer with high yields of the two secondary metabolites scopularides A and B, which exhibit distinct activities against tumour cell lines. A mutant strain was obtained using UV mutagenesis, showing faster growth and differences in pellet formation besides higher production levels. Here, we show the first proteome study of a marine fungus. Comparative proteomics were applied to gain deeper understanding of the regulation of production and of the physiology of the wild type strain and its mutant. For this purpose, an optimised protein extraction protocol was established. In total, 4759 proteins were identified. The central metabolic pathway of strain LF580 was mapped using the KEGG pathway analysis and GO annotation. Employing iTRAQ labelling, 318 proteins were shown to be significantly regulated in the mutant strain: 189 were down- and 129 upregulated. Proteomics are a powerful tool for the understanding of regulatory aspects: The differences on proteome level could be attributed to limited nutrient availability in the wild type strain due to a strong pellet formation. This information can be applied for optimisation on strain and process level. The linkage between nutrient limitation and pellet formation in the non-model fungus M. brevicaulis is in consensus with the knowledge on model organisms like Aspergillus niger and Penicillium chrysogenum. PMID:26460745

  3. Mitochondrial genome expression in a mutant strain of D. subobscura, an animal model for large scale mtDNA deletion.

    PubMed Central

    Beziat, F; Morel, F; Volz-Lingenhol, A; Saint Paul, N; Alziari, S

    1993-01-01

    A mitochondrial mutant strain of D. subobscura has two mitochondrial genome populations (heteroplasmy): the first (20-30% of the population, 15.9 kb) is the same as could be found in the wild type; the second (70-80% of the population, 11 kb) has lost by deletion several genes coding for complex I and III subunits, and four tRNAs. In human pathology, this kind of mutation has been correlated with severe diseases such as the Kearns-Sayre syndrome, but the mutant strain, does not seem to be affected by the mutation (1). Studies reported here show that: a) Transcripts from genes not concerned by the mutation are present at the same level in both strains. b) In contrast, transcript concentrations from genes involved in the deletion are significantly decreased (30-50%) in the mutant. c) Deleted DNA was expressed as shown by the detection of the fusion transcript. d) The mtDNA/nuc.DNA ratio is 1.5 times higher in the mutant strain than in the wild type. The mutation leads to change in the transcript level equilibrium. The apparent innocuousness of the mutation may suggest some post-transcriptional compensation mechanisms. This drosophila strain is an interesting model to study the consequence of this type of mitochondrial genome deletion. Images PMID:8441651

  4. Efficient method for generation of bacteriophage insensitive mutants of Streptococcus thermophilus yoghurt and mozzarella strains.

    PubMed

    Mills, S; Coffey, A; McAuliffe, O E; Meijer, W C; Hafkamp, B; Ross, R P

    2007-07-01

    Bacteriophage infection of Streptococcus thermophilus is becoming increasingly problematic in many industry fermentations such as yoghurt and mozzarella manufacture. This study describes the development of an efficient and rapid 3-step approach for the generation of bacteriophage insensitive mutants (BIMs) of these starter strains. The method initially involves infection of a culture in solid media at a multiplicity of infection (M.O.I.) of 10 which is then incubated in milk overnight. BIMs are then isolated following successive rounds (20-25) of growth in 10% reconstituted skimmed milk (RSM) in the presence of high phage titres. The method selects for BIMs which can grow efficiently in milk. Using this approach BIMs of two industrial strains were generated, whose starter performance was comparable to the parent starters in terms of performance in milk. Genomic fingerprinting used to validate the identity of each BIM, revealed a number of restriction fragment length polymorphisms (RFLPs) in two of the resultant BIMs. This method provides a simple and reliable method for generation of BIMs of industrial starters which does not require any specialised equipment and should be widely applicable.

  5. Induced drought tolerance through wild and mutant bacterial strain Pseudomonas simiae in mung bean (Vigna radiata L.).

    PubMed

    Kumari, Sarita; Vaishnav, Anukool; Jain, Shekhar; Varma, Ajit; Choudhary, Devendra Kumar

    2016-01-01

    The present study focused on the overproducing mutant of a plant growth promoting rhizobacterium (PGPR) Pseudomonas simiae strain AU (MTCC-12057) for significant drought tolerance in mung bean plants. Five mutants namely AU-M1, AU-M2, AU-M3, AU-M4 and AU-M5 were made after treatment of wild type strain with N-methyl-N-nitro-N-nitrosoguanidine. Mutant strain AU-M4 was recorded for enhanced ACC deaminase (ACC-D) activity, indole acetic acid (IAA) production and inorganic phosphate (Pi) solubilization compared to wild strain and other four mutant strains under drought condition. AU-M4 showed higher phosphate solubilization index (8.17) together with higher ACC-D activity (98 nmol/mg/h) and IAA concentration (69.35 µg/ml) compared with the wild type P. simiae strain AU ACC-D activity (79 nmol/mg/h) and IAA concentration (38.98 µg/ml) respectively. In this report, we investigated the effect of both wild and mutant type bacterial strain on mung bean plants under drought stress. Results showed that mutant AU-M4 and wild type strain AU inoculated plants exhibited superior tolerance against drought stress, as shown by their enhanced plant biomass (fresh weight), higher water content, higher proline accumulation and lower osmotic stress injury. Mutant AU-M4 and wild strain AU inoculated plants reduced the ethylene level by 59 and 45% respectively, compared to the control under stress condition. Furthermore, bacterial inoculated plants showed enhanced induced systemic drought tolerance by reducing stomata size and net photosynthesis resulting higher water content in mung bean plants that may help in survival of plants during drought condition. To mitigate the effects of drought stress, use of PGPR will be needed to ensure sufficient production of food from crop plants. Taking current leads available, concerted future research is needed in this area, particularly on field evaluation with application of potential microorganisms.

  6. Alteration of medial-edge epithelium cell adhesion in two Tgf-beta3 null mouse strains.

    PubMed

    Martínez-Sanz, Elena; Del Río, Aurora; Barrio, Carmen; Murillo, Jorge; Maldonado, Estela; Garcillán, Beatriz; Amorós, María; Fuerte, Tamara; Fernández, Alvaro; Trinidad, Eva; Rabadán, María Angeles; López, Yamila; Martínez, María Luisa; Martínez-Alvarez, Concepción

    2008-04-01

    Although palatal shelf adhesion is a crucial event during palate development, little work has been carried out to determine which molecules are responsible for this process. Furthermore, whether altered palatal shelf adhesion causes the cleft palate presented by Tgf-beta3 null mutant mice has not yet been clarified. Here, we study the presence/distribution of some extracellular matrix and cell adhesion molecules at the time of the contact of palatal shelves in both wild-type and Tgf-beta3 null mutant palates of two strains of mice (C57/BL/6J (C57), and MF1) that develop cleft palates of different severity. We have performed immunohistochemistry with antibodies against collagens IV and IX, laminin, fibronectin, the alpha5- and beta1-integrins, and ICAM-1; in situ hybridization with a Nectin-1 riboprobe; and palatal shelf cultures treated or untreated with TGF-beta3 or neutralizing antibodies against fibronectin or the alpha5-integrin. Our results show the location of these molecules in the wild-type mouse medial edge epithelium (MEE) of both strains at the time of the contact of palatal shelves; the heavier (C57) and milder (MF1) alteration of their presence in the Tgf-beta3 null mutants; the importance of TGF-beta3 to restore their normal pattern of expression; and the crucial role of fibronectin and the alpha5-integrin in palatal shelf adhesion. We thus provide insight into the molecular bases of this important process and the cleft palate presented by Tgf-beta3 null mutant mice.

  7. Alteration of medial-edge epithelium cell adhesion in two Tgf-β3 null mouse strains

    PubMed Central

    Martínez-Sanz, Elena; Del Río, Aurora; Barrio, Carmen; Murillo, Jorge; Maldonado, Estela; Garcillán, Beatriz; Amorós, María; Fuerte, Tamara; Fernández, Álvaro; Trinidad, Eva; Rabadán, M Ángeles; López, Yamila; Martínez, M Luisa; Martínez-Álvarez, Concepción

    2008-01-01

    Although palatal shelf adhesion is a crucial event during palate development, little work has been carried out to determine which molecules are responsible for this process. Furthermore, whether altered palatal shelf adhesion causes the cleft palate presented by Tgf-β3 null mutant mice has not yet been clarified. Here, we study the presence/distribution of some extracellular matrix and cell adhesion molecules at the time of the contact of palatal shelves in both wild-type and Tgf-β3 null mutant palates of two strains of mice (C57/BL/6J (C57), and MF1) that develop cleft palates of different severity. We have performed immunohistochemistry with antibodies against collagens IV and IX, laminin, fibronectin, the α5- and β1-integrins, and ICAM-1; in situ hybridization with a Nectin-1 riboprobe; and palatal shelf cultures treated or untreated with TGF-β3 or neutralizing antibodies against fibronectin or the α5-integrin. Our results show the location of these molecules in the wild-type mouse medial edge epithelium (MEE) of both strains at the time of the contact of palatal shelves; the heavier (C57) and milder (MF1) alteration of their presence in the Tgf-β3 null mutants; the importance of TGF-β3 to restore their normal pattern of expression; and the crucial role of fibronectin and the α5-integrin in palatal shelf adhesion. We thus provide insight into the molecular bases of this important process and the cleft palate presented by Tgf-β3 null mutant mice. PMID:18431835

  8. Enhancing cellulase production by overexpression of xylanase regulator protein gene, xlnR, in Talaromyces cellulolyticus cellulase hyperproducing mutant strain.

    PubMed

    Okuda, Naoyuki; Fujii, Tatsuya; Inoue, Hiroyuki; Ishikawa, Kazuhiko; Hoshino, Tamotsu

    2016-10-01

    We obtained strains with the xylanase regulator gene, xlnR, overexpressed (HXlnR) and disrupted (DXlnR) derived from Talaromyces cellulolyticus strain C-1, which is a cellulase hyperproducing mutant. Filter paper degrading enzyme activity and cellobiohydrolase I gene expression was the highest in HXlnR, followed by C-1 and DXlnR. These results indicate that the enhancement of cellulase productivity was succeeded by xlnR overexpression.

  9. Determination of reference genes for circadian studies in different tissues and mouse strains

    PubMed Central

    2010-01-01

    Background Circadian rhythms have a profound effect on human health. Their disruption can lead to serious pathologies, such as cancer and obesity. Gene expression studies in these pathologies are often studied in different mouse strains by quantitative real time polymerase chain reaction (qPCR). Selection of reference genes is a crucial step of qPCR experiments. Recent studies show that reference gene stability can vary between species and tissues, but none has taken circadian experiments into consideration. Results In the present study the expression of ten candidate reference genes (Actb, Eif2a, Gapdh, Hmbs, Hprt1, Ppib, Rn18s, Rplp0, Tbcc and Utp6c) was measured in 131 liver and 97 adrenal gland samples taken from three mouse strains (C57BL/6JOlaHsd, 129Pas plus C57BL/6J and Crem KO on 129Pas plus C57BL/6J background) every 4 h in a 24 h period. Expression stability was evaluated by geNorm and NormFinder programs. Differences in ranking of the most stable reference genes were observed both between individual mouse strains as well as between tissues within each mouse strain. We show that selection of reference gene (Actb) that is often used for analyses in individual mouse strains leads to errors if used for normalization when different mouse strains are compared. We identified alternative reference genes that are stable in these comparisons. Conclusions Genetic background and circadian time influence the expression stability of reference genes. Differences between mouse strains and tissues should be taken into consideration to avoid false interpretations. We show that the use of a single reference gene can lead to false biological conclusions. This manuscript provides a useful reference point for researchers that search for stable reference genes in the field of circadian biology. PMID:20712867

  10. Functional analysis of an feoB mutant in Clostridium perfringens strain 13.

    PubMed

    Awad, Milena M; Cheung, Jackie K; Tan, Joanne E; McEwan, Alastair G; Lyras, Dena; Rood, Julian I

    2016-10-01

    Bacterial pathogens have adopted numerous mechanisms for acquiring iron from host proteins during an infection, including the direct acquisition of ferric iron from heme-associated proteins or from iron-scavenging siderophores. Ferric iron then is transported into the cytosol, where it can be utilized by the bacterial pathogen. Under anaerobic conditions bacteria can also transport ferrous iron using the transmembrane complex FeoAB, but little is known about iron transport systems in anaerobic bacteria such as the pathogenic clostridia. In this study we sought to characterize the iron acquisition process in Clostridium perfringens. Bioinformatic analysis of the Clostridium perfringens strain 13 genome sequence revealed that it has seven potential iron acquisition systems: three siderophore-mediated systems, one ferric citrate uptake system, two heme-associated acquisition systems and one ferrous iron uptake system (FeoAB). The relative level of expression of these systems was determined using quantitative real-time RT-PCR assays that were specific for one gene from each system. Each of these genes was expressed, with the feoAB genes generating the most abundant iron-uptake related transcripts. To further examine the role of this system in the growth of C. perfringens, insertional inactivation was used to isolate a chromosomal feoB mutant. Growth of this mutant in the presence and absence of iron revealed that it had altered growth properties and a markedly reduced total iron and manganese content compared to the wild type; effects that were reversed upon complementation with the wild-type feoB gene. These studies suggest that under anaerobic conditions FeoB is the major protein required for the uptake of iron into the cell and that it may play an important role in the pathogenesis of C. perfringens infections. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Comparison of the metabolic activities of four wild-type Clostridium perfringens strains with their gatifloxacin-selected resistant mutants.

    PubMed

    Rafii, Fatemeh; Park, Miseon; Gamboa da Costa, Gonçalo; Camacho, Luisa

    2009-12-01

    The production of short-chain fatty acids, reductive enzymes, and hydrolytic enzymes by four gatifloxacin-selected, fluoroquinolone-resistant, mutant strains of C. perfringens, with stable mutations either in DNA gyrase or in both DNA gyrase and topoisomerase IV, was compared with that produced by the wild-type parent strains to investigate the effect of mutations associated with the selection of gatifloxacin resistance on bacterial metabolic activities. The mutants differed from their respective wild-type parent strains in the enzymatic activities of azoreductase, nitroreductase, and beta-glucosidase and in the ratio of butyric acid to acetic acid production. Microarray analysis of one wild type and the corresponding mutant revealed different levels of mRNA expression for the enzymes involved in short-chain fatty acid (SCFA) synthesis and for beta-glucosidase and oxidoreductases. In addition to mutations in the target genes, selection of resistance to gatifloxacin resulted in strain-specific physiological changes in the resistant mutants of C. perfringens that affected their metabolic activities.

  12. Simplifying multidimensional fermentation dataset analysis and visualization: One step closer to capturing high-quality mutant strains

    PubMed Central

    Zhou, Xiang; Xu, Dan; Jiang, Ting-Ting

    2017-01-01

    In this study, we analyzed mutants of Clostridium acetobutylicum, an organism used in a broad range of industrial processes related to biofuel production, to facilitate future studies of bioreactor and bioprocess design and scale-up, which are very important research projects for industrial microbiology applications. To accomplish this, we generated 329 mutant strains and applied principal component analysis (PCA) to fermentation data gathered from these strains to identify a core set of independent features for comparison. By doing so, we were able to explain the differences in the mutant strains’ fermentation expression states and simplify the analysis and visualization of the multidimensional datasets related to the strains. Our study has produced a high-efficiency PCA application based on a data analytics tool that is designed to visualize screening results and to support several hundred sets of data on fermentation interactions to assist researchers in more precisely screening and capturing high-quality mutant strains. More importantly, although this study focused on the use of PCA in microbial fermentation engineering, its results are broadly applicable. PMID:28045110

  13. Synthesis of nitrogenase in mutants of the cyanobacterium Anabaena sp. strain PCC 7120 affected in heterocyst development or metabolism.

    PubMed Central

    Ernst, A; Black, T; Cai, Y; Panoff, J M; Tiwari, D N; Wolk, C P

    1992-01-01

    Mutants of Anabaena sp. strain PCC 7120 that are incapable of sustained growth with air as the sole source of nitrogen were generated by using Tn5-derived transposons. Nitrogenase was expressed only in mutants that showed obvious morphological signs of heterocyst differentiation. Even under rigorously anaerobic conditions, nitrogenase was not synthesized in filaments that were unable to develop heterocysts. These results suggest that competence to synthesize nitrogenase requires a process that leads to an early stage of visible heterocyst development and are consistent with the idea that synthesis of nitrogenase is under developmental control (J. Elhai and C. P. Wolk, EMBO J. 9:3379-3388, 1990). We isolated mutants in which differentiation was arrested at an intermediate stage of heterocyst formation, suggesting that differentiation proceeds in stages; those mutants, as well as mutants with aberrant heterocyst envelopes and a mutant with defective respiration, expressed active nitrogenase under anaerobic conditions only. These results support the idea that the heterocyst envelope and heterocyst respiration are required for protection of nitrogenase from inactivation by oxygen. In the presence of air, such mutants contained less nitrogenase than under anaerobic conditions, and the Fe-protein was present in a posttranslationally modified inactive form. We conclude that internal partial oxygen pressure sufficient to inactivate nitrogenase is insufficient to repress synthesis of the enzyme completely. Among mutants with an apparently intact heterocyst envelope and normal respiration, three had virtually undetectable levels of dinitrogenase reductase under all conditions employed. However, three others expressed oxygen-sensitive nitrogenase activity, suggesting that respiration and barrier to diffusion of gases may not suffice for oxygen protection of nitrogenase in these mutants; two of these mutants reduced acetylene to ethylene and ethane. Images PMID:1328150

  14. Maltodextrin Acceptance and Preference in Eight Mouse Strains

    PubMed Central

    Aleman, Tiffany R.; Ellis, Hillary T.; Tordoff, Michael G.

    2016-01-01

    Rodents are strongly attracted to the taste(s) of maltodextrins. A first step toward discovery of the underlying genes involves identifying phenotypic differences among inbred strains of mice. To do this, we used 5-s brief-access tests and 48-h 2-bottle choice tests to survey the avidity for the maltodextrin, Maltrin M040, of mice from 8 inbred strains (129S1/SvImJ, A/J, CAST/EiJ, C57BL/6J, NOD/ShiLTJ, NZO/HlLtJ, PWK/PhJ, and WSB/EiJ). In brief-access tests, the CAST and PWK strains licked significantly less maltodextrin than equivalent concentrations of sucrose, whereas the other strains generally licked the 2 carbohydrates equally. Similarly, in 2-bottle choice tests, the CAST and PWK strains drank less 4% maltodextrin than 4% sucrose, whereas the other strains had similar intakes of these 2 solutions; the CAST and PWK strains did not differ from the C57, NOD, or NZO strains in 4% sucrose intake. In sum, we have identified strain variation in maltodextrin perception that is distinct from variation in sucrose perception. The phenotypic variation characterized here will aid in identifying genes responsible for maltodextrin acceptance. Our results identify C57 × PWK mice or NZO × CAST mice as informative crosses to produce segregating hybrids that will expose quantitative trait loci underlying maltodextrin acceptance and preference. PMID:26464499

  15. Maltodextrin Acceptance and Preference in Eight Mouse Strains.

    PubMed

    Poole, Rachel L; Aleman, Tiffany R; Ellis, Hillary T; Tordoff, Michael G

    2016-01-01

    Rodents are strongly attracted to the taste(s) of maltodextrins. A first step toward discovery of the underlying genes involves identifying phenotypic differences among inbred strains of mice. To do this, we used 5-s brief-access tests and 48-h 2-bottle choice tests to survey the avidity for the maltodextrin, Maltrin M040, of mice from 8 inbred strains (129S1/SvImJ, A/J, CAST/EiJ, C57BL/6J, NOD/ShiLTJ, NZO/HlLtJ, PWK/PhJ, and WSB/EiJ). In brief-access tests, the CAST and PWK strains licked significantly less maltodextrin than equivalent concentrations of sucrose, whereas the other strains generally licked the 2 carbohydrates equally. Similarly, in 2-bottle choice tests, the CAST and PWK strains drank less 4% maltodextrin than 4% sucrose, whereas the other strains had similar intakes of these 2 solutions; the CAST and PWK strains did not differ from the C57, NOD, or NZO strains in 4% sucrose intake. In sum, we have identified strain variation in maltodextrin perception that is distinct from variation in sucrose perception. The phenotypic variation characterized here will aid in identifying genes responsible for maltodextrin acceptance. Our results identify C57 × PWK mice or NZO × CAST mice as informative crosses to produce segregating hybrids that will expose quantitative trait loci underlying maltodextrin acceptance and preference.

  16. Control of Salmonella Enteritidis and Salmonella Gallinarum in birds by using live vaccine candidate containing attenuated Salmonella Gallinarum mutant strain.

    PubMed

    Penha Filho, Rafael Antonio Casarin; de Paiva, Jacqueline Boldrin; da Silva, Mariana Dias; de Almeida, Adriana Maria; Berchieri, Angelo

    2010-04-01

    The ideal live vaccine to control Salmonella in commercial chicken flocks should engender protection against various strains. The purpose of the present study was to confirm the attenuation of a Salmonella Gallinarum (SG) mutant strain with deletion on genes cobS and cbiA, that are involved in the biosynthesis of cobalamin. Furthermore, evaluate its use as a live vaccine against Salmonella. For the evaluation of the vaccine efficacy, two experiments were conducted separately. Birds from a commercial brown line of chickens were used to perform challenge with SG wild type strain and birds from a commercial white line of chickens were used to perform challenge with Salmonella Enteritidis (SE) wild type strain. In both experiments, the birds were separated in three groups (A, B and C). Birds were orally vaccinated with the SG mutant as the following programme: group A, one dose at 5 days of age; group B, one dose at 5 days of age and a second dose at 25 days of age; and group C, birds were kept unvaccinated as controls. At 45 days of age, birds from all groups, including the control, were challenged orally by SG wild type (brown line) or SE wild type (white line). Lastly, another experiment was performed to evaluate the use of the SG mutant strain to prevent caecal colonization by SE wild type on 1-day-old broiler chicks. Mortality and systemic infection by SG wild type strain were assessed in brown chickens; faecal shedding and systemic infection by SE wild type were assessed in white chickens and caecal colonization was assessed in broiler chicks. Either vaccination with one or two doses of SG mutant, were capable to protect brown chickens against SG wild type. In the experiment with white chickens, only vaccination with two doses of SG mutant protected the birds against challenge with SE wild type. Although, SG mutant could not prevent caecal colonization in 1-day-old broiler chicks by the challenge strain SE wild type. Overall, the results indicated that SG mutant

  17. The Annona muricata leaf ethanol extract affects mobility and reproduction in mutant strain NB327 Caenorhabditis elegans.

    PubMed

    Bustos, A V Gualteros; Jiménez, M Gómez; Mora, R M Sánchez

    2017-07-01

    The C. elegans NB327 mutant strain is characterized for the knockdown of the dic-1 gene. The dic-1 gene is homologous to the dice-1 gene in humans, encoding the protein DICE-1 as a tumor suppressor. Absence or under-regulation of the dice-1 gene can be reflected in lung and prostate cancer [17], [18]. This study evaluated the effect of EEAML on the C. elegans NB327 mutant strain. Phenotypic aspects such as morphology, body length, locomotion, and reproductive behaviour were analyzed. It is important to emphasize that the strain presents a phenotype characteristic with respect to egg laying and hatching. Reported studies showed that Annona muricata extract and its active components evidence anti-cancer and anti-tumor effects, through experimentation in vivo and in vitro models. However, neurotoxicity has been reported as a side effect. The results showed that the mutant strain NB327 was exposed to EEAML (5 mg/ml) concentration, it showed a significant decrease in average locomotion, resulting in 13 undulations in 30 s. This contrasts with the control strain's 17.5 undulations in 30 s. Similarly, the number of progenies was reduced from 188 progenies (control strain) to 114 and 92 progenies at the dose of (1 mg/ml and 5 mg/m) EEAML. The results of this study suggest that EEAML has a possible neurotoxic effect in concentrations equal to or greater than 5 mg/ml. Also, it does not have positive effects on the mutant strain of Caenorhabditis elegans NB327 phenotype.

  18. l-tyrosine induces melanocyte differentiation in novel pink-eyed dilution castaneus mouse mutant showing age-related pigmentation.

    PubMed

    Hirobe, Tomohisa; Ishikawa, Akira

    2015-12-01

    The mouse pink-eyed dilution (oculocutaneous albinism II; p/Oca2(p)) locus is known to control tyrosinase activity, melanin content, and melanosome development in melanocytes. Pink-eyed dilution castaneus (p(cas)/Oca2(p-cas)) is a novel mutant allele on mouse chromosome 7 that arose spontaneously in Indonesian wild mice, Mus musculus castaneus. Mice homozygous for Oca2(p-cas) usually exhibit pink eyes and beige-colored coat on nonagouti C57BL/6 (B6) background. Recently, a novel spontaneous mutation occurred in the progeny between this mutant and B6 mice. The eyes of this novel mutant progressively become black from pink and the coat becomes dark gray from beige with aging. The aim of this study is to clarify whatever differences exist in melanocyte proliferation and differentiation between the ordinary (pink-eyed) and novel (black-eyed) mutant using serum-free primary culture system. The characteristics of melanocyte proliferation and differentiation were investigated by serum-free primary culture system using melanocyte-proliferation medium (MDMD). The proliferation of melanoblasts in MDMD did not differ between the two mice. However, when the epidermal cell suspensions were cultured with MDMD supplemented with l-tyrosine (Tyr), the differentiation of black-eyed melanocytes was greatly induced in a concentration-dependent manner compared with pink-eyed melanocytes. Immunocytochemistry demonstrated that the expression of tyrosinase and tyrosinase-related protein-1 (Tyrp1) was greatly induced or stimulated both in pink-eyed and black-eyed melanocytes, whereas the expression of microphthalmia-associated transcription factor (Mitf) was stimulated only in black-eyed melanocytes. These results suggest that the age-related coat darkening in black-eyed mutant may be caused by the increased ability of melanocyte differentiation dependent on l-Tyr through the upregulation of tyrosinase, Tyrp1, and Mitf. This mutant mouse may be useful for animal model to clarify the

  19. The development and biological characteristics of a novel potentially radioresistant inbred mouse strain

    PubMed Central

    Wang, Qin; Du, Liqing; Wang, Yan; Xu, Chang; Sun, Zhijuan; Fu, Yue; Yang, Bing; Wang, Yueying; Mu, Chuanjie; Fan, Saijun; Cai, Lu; Katsube, Takanori; Liu, Qiang

    2017-01-01

    The growth of biomedical research over the previous decades has been accompanied by an increase in the number, complexity and diversity of experimental animals developed as research tools, and inbred mice are some of the most widely used. However, thus far, no inbred mice have exhibited strong radioresistance for use in radiation-damage research. To develop a radioresistant mouse model, a female Japanese outbreeding strain ICR/JCL mouse was mated with a male Chinese inbred strain 615 mouse. From the F1 generation, the mouse line was maintained by brother-to-sister mating. A novel mouse strain was established over >20 continuous generations and designated the Institute of Radiation Medicine-2 (IRM-2) mouse. The biological characteristics, genetic characteristics and susceptibility to radiation of these mice were determined. The IRM-2 mice inherited traits from the parents, including strong reproductive capacity, stable physiological and biochemical indices and few differences among individuals. According to the genetic results, the IRM-2 mice exhibited homozygosity, isogenicity and consistency, in agreement with international standards for inbred strains. Radiosensitivity studies have previously suggested that the lethal dose (LD)50 values for IRM-2 mice were 7.17 Gy (male) and 7.5 Gy (female), resulting in a dose reduction factor value of 1.39 (male) and 1.37 (female). The mortality of IRM-2 mice irradiated with 8 Gy total body irradiation was 15% at day 9 and 90% at day 15 after radiation. The number of nucleated cells in bone marrow, DNA content and colony-forming unit-spleen counts in IRM-2 mice after exposure to γ-ray irradiation were markedly higher than the corresponding values for the parental strains, suggesting that the IRM-2 mice exhibit high resistance to ionizing radiation. Thus, it is suggested that this novel inbred mouse strain may be developed as an animal model of radioresistance for future use in radiation research. PMID:28035407

  20. The effect of gamma irradiation on astaxanthin synthetase encoding gene in two mutant strains of Phaffia rhodozyma

    PubMed Central

    Najafi, Naeimeh; Hosseini, Ramin; Ahmadi, Ali-Reza

    2013-01-01

    Background and Objectives Astaxanthin, an orange-red carotenoid pigment, acts as a protective agent against oxidative damage to cells in vivo. The astaxanthin synthetase gene (crtS) size consists of 3995 bp. This gene has been suggested to catalyse β-carotene to astaxanthin in Phaffia rhodozyma. The aim of this research was to find any possible changes in this gene in two mutant strains, Gam1 and Gam2 (with high astaxanthin pigment production), previously created by gamma irradiation. Materials and Methods The astaxanthin synthetase gene sequence of Phaffia rhodozyma in the NCBI Gene bank was used to design primer. In Gam1, this gene was amplified using primers Asta F1, Asta R2, Asta F3, Asta R4. In Gam2, primers asta F1, asta R4 were used to amplify the gene. The amplified fragments were 8 sequenced using primers Asta F1, Asta R1, Asta F2, Asta R2, Asta F3, Asta R3 and Asta F4, Asta R4. Astaxanthin synthetase gene from two mutant strains, Gam1 and Gam2 were amplified using PCR. The amplified products were sequenced and aligned using the ClustalW software. Conclusion The comparison of this gene showed 98% and 99% similarities between the reference sequence and Gam1 and Gam2 mutant strains, respectively, whereas the comparison of this gene in Gam1 and Gam2 mutant strains showed 97% similarity. However, the deduced proteins showed 78% and 83% between the reference protein obtained from the wild type and Gam1 and Gam2, respectively. This similarity was 75% between the mutant strains. PMID:24475339

  1. Assessing benzene-induced toxicity on wild type Euglena gracilis Z and its mutant strain SMZ.

    PubMed

    Peng, Cheng; Arthur, Dionne M; Sichani, Homa Teimouri; Xia, Qing; Ng, Jack C

    2013-11-01

    Benzene is a representative member of volatile organic compounds and has been widely used as an industrial solvent. Groundwater contamination of benzene may pose risks to human health and ecosystems. Detection of benzene in the groundwater using chemical analysis is expensive and time consuming. In addition, biological responses to environmental exposures are uninformative using such analysis. Therefore, the aim of this study was to employ a microorganism, Euglena gracilis (E. gracilis) as a putative model to monitor the contamination of benzene in groundwater. To this end, we examined the wild type of E. gracilis Z and its mutant form, SMZ in their growth rate, morphology, chlorophyll content, formation of reactive oxygen species (ROS) and DNA damage in response to benzene exposure. The results showed that benzene inhibited cell growth in a dose response manner up to 48 h of exposure. SMZ showed a greater sensitivity compared to Z in response to benzene exposure. The difference was more evident at lower concentrations of benzene (0.005-5 μM) where growth inhibition occurred in SMZ but not in Z cells. We found that benzene induced morphological changes, formation of lipofuscin, and decreased chlorophyll content in Z strain in a dose response manner. No significant differences were found between the two strains in ROS formation and DNA damage by benzene at concentrations affecting cell growth. Based on these results, we conclude that E. gracilis cells were sensitive to benzene-induced toxicities for certain endpoints such as cell growth rate, morphological change, depletion of chlorophyll. Therefore, it is a potentially suitable model for monitoring the contamination of benzene and its effects in the groundwater.

  2. A non-cell autonomous mouse model of CNS haemangioblastoma mediated by mutant KRAS

    PubMed Central

    Bao, Leyuan; Al-Assar, Osama; Drynan, Lesley F.; Arends, Mark J.; Tyers, Pam; Barker, Roger A.; Rabbitts, Terence H.

    2017-01-01

    Haemangioblastoma is a rare malignancy of the CNS where vascular proliferation causes lesions due to endothelial propagation. We found that conditionally expressing mutant Kras, using Rag1-Cre, gave rise to CNS haemangioblastoma in the cortex and cerebellum in mice that present with highly vascular tumours with stromal cells similar to human haemangioblastomas. The aberrant haemangioblastoma endothelial cells do not express mutant Kras but rather the mutant oncogene is expressed in CNS interstitial cells, including neuronal cells and progeny. This demonstrates a non-cell autonomous origin of this disease that is unexpectedly induced via Rag1-Cre expression in CNS interstitial cells. This is the first time that mutant RAS has been shown to stimulate non-cell autonomous proliferation in malignancy and suggests that mutant RAS can control endothelial cell proliferation in neo-vascularisation when expressed in certain cells. PMID:28322325

  3. Cellulase production and saccharification of rice straw by the mutant strain Hypocrea koningii RSC1.

    PubMed

    Palaniyandi, Sasikumar Arunachalam; Yang, Seung Hwan; Suh, Joo-Won

    2014-01-01

    The production of cellulase using solid-state fermentation of rice straw by the mutant strain Hypocrea koningii RSC1 was studied. Optimization of culture conditions, such as the nitrogen source, pH, and temperature, resulted in a maximum filter paper cellulase activity of 44.15 U g(-1) substrate, a carboxymethylcellulase activity of 324.6 U g(-1) substrate, and a β-glucosidase activity of 7.45 U g(-1) substrate. Saccharification of untreated, 1% H(2)SO(4)-treated, and 2.5% NaOH-treated rice straw using the RSC1 cellulase resulted in 19, 17, and 34 g L(-1) of reducing sugar, respectively. Further studies on the morphological and compositional changes of rice straw upon treatment with the cellulase by scanning electron microscopy analysis and Fourier transform infrared spectroscopy revealed the disruption of the arrangement of fibers and changes in the functional groups that occur in cellulose. X-ray diffraction analysis revealed a reduction in crystallinity of the rice straw upon treatment with the cellulase. Our study shows that H. koningii RSC1 could be a good choice for the production of cellulase and reducing sugars from rice straw.

  4. The spontaneous ataxic mouse mutant tippy is characterized by a novel Purkinje cell morphogenesis and degeneration phenotype

    PubMed Central

    Shih, Evelyn K.; Sekerková, Gabriella; Ohtsuki, Gen; Aldinger, Kimberly A.; Chizhikov, Victor V.; Hansel, Christian; Mugnaini, Enrico; Millen, Kathleen J.

    2015-01-01

    This study represents the first detailed analysis of the spontaneous neurological mouse mutant, tippy, uncovering its unique cerebellar phenotype. Homozygous tippy mutant mice are small, ataxic and die around weaning. Although the cerebellum shows grossly normal foliation, tippy mutants display a complex cerebellar Purkinje cell phenotype consisting of abnormal dendritic branching with immature spine features and patchy, non-apoptotic cell death that is associated with widespread dystrophy and degeneration of the Purkinje cell axons throughout the white matter, the cerebellar nuclei and the vestibular nuclei. Moderate anatomical abnormalities of climbing fiber innervation of tippy mutant Purkinje cells were not associated with changes in climbing fiber-EPSC amplitudes. However, decreased ESPC amplitudes were observed in response to parallel fiber stimulation and correlated well with anatomical evidence for patchy dark cell degeneration of Purkinje cell dendrites in the molecular layer. The data suggest that the Purkinje neurons are a primary target of the tippy mutation. Furthermore, we hypothesize that the Purkinje cell axonal pathology together with disruptions in the balance of climbing fiber and parallel fiber Purkinje cell input in the cerebellar cortex underlie the ataxic phenotype in these mice. The constellation of Purkinje cell dendritic malformation and degeneration phenotypes in tippy mutants is unique and has not been reported in any other neurologic mutant. Fine mapping of the tippy mutation to a 2.1MB region of distal chromosome 9, which does not encompass any gene previously implicated in cerebellar development or neuronal degeneration, confirms that the tippy mutation identifies novel biology and gene function. PMID:25626522

  5. Immunological variation between inbred laboratory mouse strains: points to consider in phenotyping genetically immunomodified mice.

    PubMed

    Sellers, R S; Clifford, C B; Treuting, P M; Brayton, C

    2012-01-01

    Inbred laboratory mouse strains are highly divergent in their immune response patterns as a result of genetic mutations and polymorphisms. The generation of genetically engineered mice (GEM) has, in the past, used embryonic stem (ES) cells for gene targeting from various 129 substrains followed by backcrossing into more fecund mouse strains. Although common inbred mice are considered "immune competent," many have variations in their immune system-some of which have been described-that may affect the phenotype. Recognition of these immune variations among commonly used inbred mouse strains is essential for the accurate interpretation of expected phenotypes or those that may arise unexpectedly. In GEM developed to study specific components of the immune system, accurate evaluation of immune responses must take into consideration not only the gene of interest but also how the background strain and microbial milieu contribute to the manifestation of findings in these mice. This article discusses points to consider regarding immunological differences between the common inbred laboratory mouse strains, particularly in their use as background strains in GEM.

  6. IMMUNOLOGICAL DISTINCTIONS OF TWO STRAINS OF THE MOUSE TYPHOID GROUP ISOLATED DURING TWO SPONTANEOUS OUTBREAKS AMONG THE SAME STOCK

    PubMed Central

    Amoss, Harold L.; Haselbauer, Peter P.

    1922-01-01

    Two strains of the paratyphoid B-enteritidis group causing separate epidemics of mouse typhoid among 2,500 to 4,000 cancer breeding mice are found to be antigenically different. Mouse Typhoid I, isolated from the first outbreak, is related but not identical with two strains of enteritidis, while Mouse Typhoid II is related to but not identical with the human paratyphoid B strains. In a separate paper in this series, Webster has identified Mouse Typhoid II strain with Bacillus pestis caviæ Smith and has suggested its close relation to the Bacillus aertrycke (mutton) group of Schütze. PMID:19868651

  7. Sensorimotor enhancement in mouse mutants lacking the Purkinje cell-specific Gi/o modulator, Pcp2(L7)

    PubMed Central

    Iscru, Emilia; Serinagaoglu, Yelda; Schilling, Karl; Tian, Jinbin; Bowers-Kidder, Stephanie L.; Zhang, Rui; Morgan, James I.; DeVries, A. Courtney; Nelson, Randy J.; Zhu, Michael X.; Oberdick, John

    2009-01-01

    Pcp2(L7) is a GoLoco domain protein specifically and abundantly expressed in cerebellar Purkinje cells. It has been hypothesized to “tune” Gi/o-coupled receptor modulation of physiological effectors, including the P-type Ca2+ channel. We have analyzed a mouse mutant in which the Pcp2(L7) gene was inactivated and find significant anatomical, behavioral and electrophysiological changes. Anatomically, we observed mild cerebellar hypoplasia. Behaviorally, the mutants were altered in modalities atypical for a traditional cerebellar mutant, and oddly, all of these changes could be considered functional enhancements. This includes increased asymptotic performance in gross motor learning, increased rate of acquisition in tone-conditioned fear, and enhanced pre-pulse inhibition of the acoustic startle response. Electrophysiological analysis of Purkinje cells in the mutants reveals depression of the complex spike waveform that may underlie the behavioral changes. Based on these observations we suggest that the Pcp2(L7) protein acts as a sensorimotor damper that modulates time- and sense-dependent changes in motor responses. PMID:18930827

  8. Sensorimotor enhancement in mouse mutants lacking the Purkinje cell-specific Gi/o modulator, Pcp2(L7).

    PubMed

    Iscru, Emilia; Serinagaoglu, Yelda; Schilling, Karl; Tian, Jinbin; Bowers-Kidder, Stephanie L; Zhang, Rui; Morgan, James I; DeVries, A Courtney; Nelson, Randy J; Zhu, Michael X; Oberdick, John

    2009-01-01

    Pcp2(L7) is a GoLoco domain protein specifically and abundantly expressed in cerebellar Purkinje cells. It has been hypothesized to "tune" G(i/o)-coupled receptor modulation of physiological effectors, including the P-type Ca(2+) channel. We have analyzed a mouse mutant in which the Pcp2(L7) gene was inactivated and find significant anatomical, behavioral and electrophysiological changes. Anatomically, we observed mild cerebellar hypoplasia. Behaviorally, the mutants were altered in modalities atypical for a traditional cerebellar mutant, and oddly, all of these changes could be considered functional enhancements. This includes increased asymptotic performance in gross motor learning, increased rate of acquisition in tone-conditioned fear, and enhanced pre-pulse inhibition of the acoustic startle response. Electrophysiological analysis of Purkinje cells in the mutants reveals depression of the complex spike waveform that may underlie the behavioral changes. Based on these observations we suggest that the Pcp2(L7) protein acts as a sensorimotor damper that modulates time- and sense-dependent changes in motor responses.

  9. DNA vaccine elicits an efficient antitumor response by targeting the mutant Kras in a transgenic mouse lung cancer model.

    PubMed

    Weng, T-Y; Yen, M-C; Huang, C-T; Hung, J-J; Chen, Y-L; Chen, W-C; Wang, C-Y; Chang, J-Y; Lai, M-D

    2014-10-01

    Mutant Kras (V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog) is observed in more than 20% of non-small-cell lung cancers; however, no effective Kras target therapy is available at present. The Kras DNA vaccine may represent as a novel immunotherapeutic agent in lung cancer. In this study, we investigated the antitumor efficacy of the Kras DNA vaccine in a genetically engineered inducible mouse lung tumor model driven by Kras(G12D). Lung tumors were induced by doxycycline, and the therapeutic effects of Kras DNA vaccine were evaluated with delivery of Kras(G12D) plasmids. Mutant Kras(G12D) DNA vaccine significantly decreased the tumor nodules. A dominant-negative mutant Kras(G12D)N17, devoid of oncogenic activity, achieved similar therapeutic effects. The T-helper 1 immune response was enhanced in mice treated with Kras DNA vaccine. Splenocytes from mice receiving Kras DNA vaccine presented an antigen-specific response by treatment with peptides of Kras but not Hras or OVA. The number of tumor-infiltrating CD8(+) T cells increased after Kras vaccination. In contrast, Kras DNA vaccine was not effective in the lung tumor in transgenic mice, which was induced by mutant L858R epidermal growth factor receptor. Overall, these results indicate that Kras DNA vaccine produces an effective antitumor response in transgenic mice, and may be useful in treating lung cancer-carrying Ras mutation.

  10. Expression of chicken vinculin complements the adhesion-defective phenotype of a mutant mouse F9 embryonal carcinoma cell.

    PubMed

    Samuels, M; Ezzell, R M; Cardozo, T J; Critchley, D R; Coll, J L; Adamson, E D

    1993-05-01

    A mutant cell line, derived from the mouse embryonal carcinoma cell line F9, is defective in cell-cell adhesion (compaction) and in cell-substrate adhesion. We have previously shown that neither uvomorulin (E-cadherin) nor integrins are responsible for the mutant phenotype (Calogero, A., M. Samuels, T. Darland, S. A. Edwards, R. Kemler, and E. D. Adamson. 1991. Dev. Biol. 146:499-508). Several cytoskeleton proteins were assayed and only vinculin was found to be absent in mutant (5.51) cells. A chicken vinculin expression vector was transfected into the 5.51 cells together with a neomycin-resistance vector. Clones that were adherent to the substrate were selected in medium containing G418. Two clones, 5.51Vin3 and Vin4, were analyzed by Nomarski differential interference contrast and laser confocal microscopy as well as by biochemical and molecular biological techniques. Both clones adhered well to substrates and both exhibited F-actin stress fibers with vinculin localized at stress fiber tips in focal contacts. This was in marked contrast to 5.51 parental cells, which had no stress fibers and no vinculin. The mutant and complemented F9 cell lines will be useful models for examining the complex interactions between cytoskeletal and cell adhesion proteins.

  11. Residual virulence and immunogenicity of CGV26 and CGV2631 B. melitensis Rev. 1 deletion mutant strains in sheep after subcutaneous or conjunctival vaccination.

    PubMed

    Guilloteau, Laurence A; Laroucau, Karine; Olivier, Michel; Grillo, Maria Jesus; Marin, Clara M; Verger, Jean-Michel; Blasco, Jose-Maria

    2006-04-24

    The CGV26 and CGV2631 strains are novel engineered Brucella melitensis Rev.1 mutant strains deleted for the bp26 gene or for both bp26 and omp31 genes, respectively, coding for proteins of diagnostic significance. The residual virulence and immunogenicity of both mutants were compared to the parental Rev.1 strain in sheep after subcutaneous or conjunctival vaccination. The deletion of the bp26 gene or both bp26 and omp31 genes had no significant effect on the intracellular survival of the Rev.1 strain in ovine macrophage cultures. The kinetics of infection induced by both mutants in sheep was similar to the Rev.1 strain, and inoculation by the subcutaneous route produced wider and more generalized infections than the conjunctival route. All strains were cleared from lymph nodes and organs within 3 months after inoculation. The CGV26 and CGV2631 mutants induced both specific systemic antibody response and lymphoproliferation in sheep. The kinetics of the responses induced by the mutants was quite similar to that of the parental Rev.1 strain, except for the intensity of the lymphoproliferative response, which was attenuated for the CGV2631 mutant. In conclusion, the residual virulence of both CGV26 and CGV2631 mutants in sheep was similar to that of the parental Rev.1 vaccine strain. These mutants induced also significant specific antibody and cell-mediated immunity in sheep and are suitable to be evaluated as potential vaccine candidates against B. melitensis and B. ovis infections in sheep.

  12. Mouse mutants for the nicotinic acetylcholine receptor ß2 subunit display changes in cell adhesion and neurodegeneration response genes.

    PubMed

    Rubin, Carol M; van der List, Deborah A; Ballesteros, Jose M; Goloshchapov, Andrey V; Chalupa, Leo M; Chapman, Barbara

    2011-04-25

    Mice lacking expression of the ß2 subunit of the neuronal nicotinic acetylcholine receptor (CHRNB2) display abnormal retinal waves and a dispersed projection of retinal ganglion cell (RGC) axons to their dorsal lateral geniculate nuclei (dLGNs). Transcriptomes of LGN tissue from two independently generated Chrnb2-/- mutants and from wildtype mice were obtained at postnatal day 4 (P4), during the normal period of segregation of eye-specific afferents to the LGN. Microarray analysis reveals reduced expression of genes located on the cell membrane or in extracellular space, and of genes active in cell adhesion and calcium signaling. In particular, mRNA for cadherin 1 (Cdh1), a known axon growth regulator, is reduced to nearly undetectable levels in the LGN of P4 mutant mice and Lypd2 mRNA is similarly suppressed. Similar analysis of retinal tissue shows increased expression of crumbs 1 (Crb1) and chemokine (C-C motif) ligand 21 (Ccl21) mRNAs in Chrnb2-/- mutant animals. Mutations in these genes are associated with retinal neuronal degeneration. The retinas of Chrnb2-/- mutants are normal in appearance, but the increased expression of these genes may also be involved in the abnormal projection patterns of RGC to the LGN. These data may provide the tools to distinguish the interplay between neural activity and molecular expression. Finally, comparison of the transcriptomes of the two different Chrnb2-/- mutant strains reveals the effects of genetic background upon gene expression.

  13. Mouse strain-dependent effect of amantadine on motility and brain biogenic amines.

    PubMed

    Messiha, F S

    1989-01-01

    The effect of amantadine hydrochloride, injected i.p. in 6 increments of 100 mg/kg each over 30 hr, on mouse motility and whole brain content of selected biogenic amines and major metabolites was studied in 4 strains of mice. These were the albino Sprague-Dawley ICR and BALB/C, the black C57BL/6 and the brown CDF-I mouse strains. Amantadine treatment produced a biphasic effect on mouse motility. The initial dose of amantadine depressed locomotor activity in all mouse strains studied with the BALB/C mice being the most sensitive. Subsequent amantadine treatments produced enhancement of motility from corresponding control in all mouse strains with the BALB/C mice being the least sensitive. The locomotor activity was decreased from corresponding controls in all strains studied, except for the ICR mice, during an overnight drug-free period following the fourth amantadine treatment. Readministration of amantadine, after a drug-free overnight period, increased motility from respective saline control in all strains with exception of the BALB/C mice where suppression of motility occurred. Treatment with amantadine did not alter whole brain dopamine levels but decreased the amounts of 3,4-dihydroxyphenylacetic acid in the BALB/C mice compared to saline control. Conversely, brain normetanephrine concentration was increased from saline control by amantadine in the BALB/C mice. The results suggest a strain-dependent effect of amantadine on motility and indicate a differential response to the acute and multiple dose regimens used. The BALB/C mouse was the most sensitive strain and could serve as the strain of choice for evaluating the side effects of amantadine. The biochemical results of brain biogenic amines of BALB/C mouse strain suggest a probable decrease of catecholamine turnover rate and/or metabolism by monoamine oxidase and a resulting increase in O-methylation of norepinephrine which may account for a behavioral depression caused by amantadine in the BALB/C mice.

  14. In vitro induction and selection of fluoroquinolone-resistant mutants of Streptococcus pyogenes strains with multiple emm types.

    PubMed

    Billal, Dewan S; Fedorko, Daniel P; Yan, S Steve; Hotomi, Muneki; Fujihara, Keiji; Nelson, Nancy; Yamanaka, Noboru

    2007-01-01

    To perform a systematic analysis of point mutations in the quinolone resistance determining regions (QRDRs) of the DNA gyrase and topoisomerase genes of emm type 6 and other emm types of Streptococcus pyogenes strains after in vitro exposure to stepwise increasing concentrations of levofloxacin. Twelve parent strains of S. pyogenes, each with a different emm type, were chosen for stepwise exposure to increasing levels of levofloxacin followed by selection of resistant mutants. The QRDRs of gyrA, gyrB, parC and parE correlating to mutants with increased MICs were analysed for point mutations. Multiple mutants with significantly increased MICs were generated from each strain. The amino acid substitutions identified were consistent regardless of emm type and were similar to the mechanisms of resistance reported in clinical isolates of S. pyogenes. The number of induction/selection cycles required for the emergence of key point mutations in gyrA and parC was variable among strains. For each parent-mutant set, when MIC increased, serine-81 of gyrA and serine-79 of parC were the primary targets for amino acid substitutions. No point mutations were found in the QRDRs of gyrB and parE in any of the resistant mutants sequenced. Despite its intrinsic polymorphism in the QRDR of parC, emm type 6 is not more likely to develop high-level resistance to fluoroquinolones when compared with other emm types. All emm types seem equally inducible to high-level fluoroquinolone resistance.

  15. Enlargement of the Axial Length and Altered Ultrastructural Features of the Sclera in a Mutant Lumican Transgenic Mouse Model.

    PubMed

    Song, Yanzheng; Zhang, Fengju; Zhao, Yanyan; Sun, Mingshen; Tao, Jun; Liang, Yanchuang; Ma, Ling; Yu, Yanqiu; Wang, Jianhua; Hao, Junfeng

    2016-01-01

    Lumican (LUM) is a candidate gene for myopia in the MYP3 locus. In this study, a mutant lumican (L199P) transgenic mouse model was established to investigate the axial length changes and ultrastructural features of the sclera. The mouse model was established by pronuclear microinjection. Transgenic mice and wild-type B6 mice were killed at eight weeks of age. Gene expression levels of LUM and collagen type I (COL1) in the sclera were analyzed by quantitative real-time polymerase chain reaction (qPCR), and the protein levels were assessed by Western blot analysis. Ocular axial lengths were measured on the enucleated whole eye under a dissecting microscope. Ultrastructural features of collagen fibrils in the sclera were examined with transmission electron microscopy (TEM). Lumican and collagen type I were both elevated at the transcriptional and protein levels. The mean axial length of eyes in the transgenic mice was significantly longer than that in the wild-type mice (3,231.0 ± 11.2 μm (transgenic group) vs 3,199.7 ± 11.1 μm (controls), p<0.05 =). Some ultrastructural changes were observed in the sclera of the transgenic mice under TEM, such as evident lamellar disorganizations and abnormal inter-fibril spacing. The average collagen fibril diameter was smaller than that in their wild-type counterparts. These results indicate that the ectopic mutant lumican (L199P) may induce enlargement of axial lengths and abnormal structures and distributions of collagen fibrils in mouse sclera. This transgenic mouse model can be used for the mechanistic study of myopia.

  16. Enlargement of the Axial Length and Altered Ultrastructural Features of the Sclera in a Mutant Lumican Transgenic Mouse Model

    PubMed Central

    Song, Yanzheng; Zhang, Fengju; Zhao, Yanyan; Sun, Mingshen; Tao, Jun; Liang, Yanchuang; Ma, Ling; Yu, Yanqiu; Wang, Jianhua; Hao, Junfeng

    2016-01-01

    Lumican (LUM) is a candidate gene for myopia in the MYP3 locus. In this study, a mutant lumican (L199P) transgenic mouse model was established to investigate the axial length changes and ultrastructural features of the sclera. The mouse model was established by pronuclear microinjection. Transgenic mice and wild-type B6 mice were killed at eight weeks of age. Gene expression levels of LUM and collagen type I (COL1) in the sclera were analyzed by quantitative real-time polymerase chain reaction (qPCR), and the protein levels were assessed by Western blot analysis. Ocular axial lengths were measured on the enucleated whole eye under a dissecting microscope. Ultrastructural features of collagen fibrils in the sclera were examined with transmission electron microscopy (TEM). Lumican and collagen type I were both elevated at the transcriptional and protein levels. The mean axial length of eyes in the transgenic mice was significantly longer than that in the wild-type mice (3,231.0 ± 11.2 μm (transgenic group) vs 3,199.7 ± 11.1 μm (controls), p<0.05 =). Some ultrastructural changes were observed in the sclera of the transgenic mice under TEM, such as evident lamellar disorganizations and abnormal inter-fibril spacing. The average collagen fibril diameter was smaller than that in their wild-type counterparts. These results indicate that the ectopic mutant lumican (L199P) may induce enlargement of axial lengths and abnormal structures and distributions of collagen fibrils in mouse sclera. This transgenic mouse model can be used for the mechanistic study of myopia. PMID:27711221

  17. Functional complementation of Leishmania (Leishmania) amazonensis AP endonuclease gene (lamap) in Escherichia coli mutant strains challenged with DNA damage agents

    PubMed Central

    Verissimo-Villela, Erika; Kitahara-Oliveira, Milene Yoko; dos Reis, Ana Beatriz de Bragança; Albano, Rodolpho Mattos; Da-Cruz, Alda Maria; Bello, Alexandre Ribeiro

    2016-01-01

    During its life cycle Leishmania spp. face several stress conditions that can cause DNA damages. Base Excision Repair plays an important role in DNA maintenance and it is one of the most conserved mechanisms in all living organisms. DNA repair in trypanosomatids has been reported only for Old World Leishmania species. Here the AP endonuclease from Leishmania (L.) amazonensis was cloned, expressed in Escherichia coli mutants defective on the DNA repair machinery, that were submitted to different stress conditions, showing ability to survive in comparison to the triple null mutant parental strain BW535. Phylogenetic and multiple sequence analyses also confirmed that LAMAP belongs to the AP endonuclease class of proteins. PMID:27223868

  18. A mouse model for testing the pathogenicity of equine herpes virus-1 strains.

    PubMed

    van Woensel, P A; Goovaerts, D; Markx, D; Visser, N

    1995-07-01

    A mouse model was developed for testing the pathogenicity of equine herpes virus-1 (EHV-1) strains. The model was validated with EHV-1 strains that are known to be of a low or high pathogenicity in horses. From all parameters tested, the safety index, which was calculated from the body weights of the mice after infection, proved to be the best predictive parameter. When this parameter was used, good and reliable correlations were found with the pathogenicity of the EHV-1 strains in horses. This method enabled the differentiation between the two experimental EHV-1 strains whose genetic backgrounds were supposedly equal.

  19. Dynamics of Photosynthesis in a Glycogen-Deficient glgC Mutant of Synechococcus sp. Strain PCC 7002

    PubMed Central

    Jackson, Simon A.; Eaton-Rye, Julian J.; Bryant, Donald A.; Posewitz, Matthew C.

    2015-01-01

    Cyanobacterial glycogen-deficient mutants display impaired degradation of light-harvesting phycobilisomes under nitrogen-limiting growth conditions and secrete a suite of organic acids as a putative reductant-spilling mechanism. This genetic background, therefore, represents an important platform to better understand the complex relationships between light harvesting, photosynthetic electron transport, carbon fixation, and carbon/nitrogen metabolisms. In this study, we conducted a comprehensive analysis of the dynamics of photosynthesis as a function of reductant sink manipulation in a glycogen-deficient glgC mutant of Synechococcus sp. strain PCC 7002. The glgC mutant showed increased susceptibility to photoinhibition during the initial phase of nitrogen deprivation. However, after extended periods of nitrogen deprivation, glgC mutant cells maintained higher levels of photosynthetic activity than the wild type, supporting continuous organic acid secretion in the absence of biomass accumulation. In contrast to the wild type, the glgC mutant maintained efficient energy transfer from phycobilisomes to photosystem II (PSII) reaction centers, had an elevated PSII/PSI ratio as a result of reduced PSII degradation, and retained a nitrogen-replete-type ultrastructure, including an extensive thylakoid membrane network, after prolonged nitrogen deprivation. Together, these results suggest that multiple global signals for nitrogen deprivation are not activated in the glgC mutant, allowing the maintenance of active photosynthetic complexes under conditions where photosynthesis would normally be abolished. PMID:26150450

  20. Mutant strains of Spirulina (Arthrospira) platensis to increase the efficiency of micro-ecological life support systems

    NASA Astrophysics Data System (ADS)

    Brown, Igor

    The European Micro-Ecological Life Support System Alternative (MELiSSA) is an advanced idea for organizing a bioregenerative system for long term space flights and extraterrestrial settlements (Hendrickx, De Wever et al., 2005). Despite the hostility of both lunar and Martian environments to unprotected life, it seems possible to cultivate photosynthetic bacteria using closed bioreactors illuminated and heated by solar energy. Such reactors might be employed in critical processes, e.g. air revitalization, foodcaloric and protein source, as well as an immunomodulators production. The MELiSSA team suggested cyanobacterium Spirulina as most appropriate agent to revitalize air and produce a simple "fast" food. This is right suggestion because Spirulina was recently shown to be an oxygenic organism with the highest level of O2 production per unit mass (Ananyev et al., 2005). Chemical composition of Spirulina includes proteins (55Aiming to make Spirulina cultivation in life support systems like MELiSSA more efficient, we selected Spirulina mutant strains with increased fraction of methionine in the biomass of this cyanobacterium and compared the effect of parental wild strain of Spirulina and its mutants on the tendency of such experimental illnesses as radiationinduced lesions and hemolythic anemia. Results: It was found that mutant strains 198B and 27G contain higher quantities of total protein, essential amino acids, c-phycocyanin, allophycocyanin and chlorophyll a than parental wild strain of S. platensis. The strain 198B is also characterized with increased content of carotenoids. Revealed biochemical peculiarities of mutant strains suggest that these strains can serve as an additional source of essential amino acids as well as phycobiliproteins and carotenoids for the astronauts. Feeding animals suffering from radiation-induced lesions, c-phycocyanin, extracted from strain 27G, led to a correction in deficient dehydrogenase activity and energy-rich phosphate levels

  1. Transcriptome Profiling of Wild-Type and pga-Knockout Mutant Strains Reveal the Role of Exopolysaccharide in Aggregatibacter actinomycetemcomitans.

    PubMed

    Shanmugam, Mayilvahanan; El Abbar, Faiha; Ramasubbu, Narayanan

    2015-01-01

    Exopolysaccharides have a diverse set of functions in most bacteria including a mechanistic role in protecting bacteria against environmental stresses. Among the many functions attributed to the exopolysaccharides, biofilm formation, antibiotic resistance, immune evasion and colonization have been studied most extensively. The exopolysaccharide produced by many Gram positive as well as Gram negative bacteria including the oral pathogen Aggregatibacter actinomycetemcomitans is the homopolymer of β(1,6)-linked N-acetylglucosamine. Recently, we reported that the PGA-deficient mutant of A. actinomycetemcomitans failed to colonize or induce bone resorption in a rat model of periodontal disease, and the colonization genes, apiA and aae, were significantly down regulated in the mutant strain. To understand the role of exopolysaccharide and the pga locus in the global expression of A. actinomycetemcomitans, we have used comparative transcriptome profiling to identify differentially expressed genes in the wild-type strain in relation to the PGA-deficient strain. Transcriptome analysis revealed that about 50% of the genes are differently expressed (P < 0.05 and fold change >1.5). Our study demonstrated that the absence of the pga locus affects the genes involved in peptidoglycan recycling, glycogen storage, and virulence. Further, using confocal microscopy and plating assays, we show that the viability of pga mutant strain is significantly reduced during biofilm growth. Thus, this study highlights the importance of pga genes and the exopolysaccharide in the virulence of A. actinomycetemcomitans.

  2. Acetoin production by wild-type strains and a lactate dehydrogenase-deficient mutant of Streptococcus mutans.

    PubMed

    Hillman, J D; Andrews, S W; Dzuback, A L

    1987-06-01

    Eleven different laboratory strains of Streptococcus mutans representing the various serogroups were found to produce an average of 6.0 +/- 4.8 mM acetoin when grown in glucose-containing medium under aerobic conditions. None of the strains produced detectable acetoin when grown anaerobically. A lactate dehydrogenase-deficient mutant produced acetoin both aerobically and anaerobically and in substantially greater amounts than the wild-type strains did. Substitution of mannitol for glucose resulted in decreased acetoin production by wild-type strains and the lactate dehydrogenase-deficient mutant, indicating a role for NADH2 in the regulation of the acetoin pathway. Pyruvate incorporated into the growth medium of a wild-type strain caused acetoin to be produced anaerobically and stimulated acetoin production aerobically. Cell extracts of a wild-type S. mutans strain were capable of producing acetoin from pyruvate and were (partly) dependent on thiamine PPi. Extracts prepared from aerobically grown cells had approximately twice the acetoin-producing activity as did extracts prepared from anaerobically grown cells. The results indicate that acetoin production by S. mutans may represent an auxiliary reaction of pyruvate dehydrogenase in this organism.

  3. Acetoin production by wild-type strains and a lactate dehydrogenase-deficient mutant of Streptococcus mutans.

    PubMed Central

    Hillman, J D; Andrews, S W; Dzuback, A L

    1987-01-01

    Eleven different laboratory strains of Streptococcus mutans representing the various serogroups were found to produce an average of 6.0 +/- 4.8 mM acetoin when grown in glucose-containing medium under aerobic conditions. None of the strains produced detectable acetoin when grown anaerobically. A lactate dehydrogenase-deficient mutant produced acetoin both aerobically and anaerobically and in substantially greater amounts than the wild-type strains did. Substitution of mannitol for glucose resulted in decreased acetoin production by wild-type strains and the lactate dehydrogenase-deficient mutant, indicating a role for NADH2 in the regulation of the acetoin pathway. Pyruvate incorporated into the growth medium of a wild-type strain caused acetoin to be produced anaerobically and stimulated acetoin production aerobically. Cell extracts of a wild-type S. mutans strain were capable of producing acetoin from pyruvate and were (partly) dependent on thiamine PPi. Extracts prepared from aerobically grown cells had approximately twice the acetoin-producing activity as did extracts prepared from anaerobically grown cells. The results indicate that acetoin production by S. mutans may represent an auxiliary reaction of pyruvate dehydrogenase in this organism. PMID:3570471

  4. Phenotypic analysis of mutant and overexpressing strains of lipid metabolism genes in Saccharomyces cerevisiae: implication in growth at low temperatures.

    PubMed

    López-Malo, María; Chiva, Rosana; Rozes, Nicolas; Guillamon, José Manuel

    2013-03-01

    The growing demand for wines with a more pronounced aromatic profile calls for low temperature alcoholic fermentations (10-15°C). However, there are certain drawbacks to low temperature fermentations such as reduced growth rate, long lag phase and sluggish or stuck fermentations. The lipid metabolism of Saccharomyces cerevisiae plays a central role in low temperature adaptation. The aim of this study was to detect lipid metabolism genes involved in cold adaptation. To do so, we analyzed the growth of knockouts in phospholipids, sterols and sphingolipids, from the EUROSCARF collection S. cerevisiae BY4742 strain at low and optimal temperatures. Growth rate of these knockouts, compared with the control, enabled us to identify the genes involved, which were also deleted or overexpressed in a derivative haploid of a commercial wine strain. We identified genes involved in the phospholipid (PSD1 and OPI3), sterol (ERG3 and IDI1) and sphingolipid (LCB3) pathways, whose deletion strongly impaired growth at low temperature and whose overexpression reduced generation or division time by almost half. Our study also reveals many phenotypic differences between the laboratory strain and the commercial wine yeast strain, showing the importance of constructing mutant and overexpressing strains in both genetic backgrounds. The phenotypic differences in the mutant and overexpressing strains were correlated with changes in their lipid composition. Copyright © 2013. Published by Elsevier B.V.

  5. Ex vivo determination of bone tissue strains for an in vivo mouse tibial loading model.

    PubMed

    Carriero, Alessandra; Abela, Lisa; Pitsillides, Andrew A; Shefelbine, Sandra J

    2014-07-18

    Previous studies introduced the digital image correlation (DIC) as a viable technique for measuring bone strain during loading. In this study, we investigated the sensitivity of a DIC system in determining surface strains in a mouse tibia while loaded in compression through the knee joint. Specifically, we examined the effect of speckle distribution, facet size and overlap, initial vertical alignment of the bone into the loading cups, rotation with respect to cameras, and ex vivo loading configurations on the strain contour maps measured with a DIC system. We loaded tibiae of C57BL/6 mice (12 and 18 weeks old male) up to 12 N at 8 N/min. Images of speckles on the bone surface were recorded at 1N intervals and DIC was used to compute strains. Results showed that speckles must have the correct size and density with respect to the facet size of choice for the strain distribution to be computed and reproducible. Initial alignment of the bone within the loading cups does not influence the strain distribution measured during peak loading, but bones must be placed in front of the camera with the same orientation in order for strains to be comparable. Finally, the ex vivo loading configurations with the tibia attached to the entire mouse, or to the femur and foot, or only to the foot, showed different strain contour maps. This work provides a better understanding of parameters affecting full field strain measurements from DIC in ex vivo murine tibial loading tests.

  6. Altered performance characteristics in cognitive tasks: comparison of the albino ICR and CD1 mouse strains.

    PubMed

    Adams, Benjamin; Fitch, Thomas; Chaney, Stephen; Gerlai, Robert

    2002-07-18

    With the advent of recombinant DNA technology the mouse has become a favored model organism in brain research. Numerous mouse strains are available to use as a host for carrying genetic alteration induced by targeted or random mutagenesis. Most strains differ in their genetic makeup and phenotypical characteristics. The choice of the host strain thus can be crucial for the analysis of functional effects of the induced mutation. In the present paper we analyze the behavior of two related outbred albino strains of mice, ICR and CD1, that are often used in transgenic research. Using two frequently employed learning tasks, the Morris water maze (MWM) and the context-dependent fear conditioning (CFC) as well as other behavioral tests, we demonstrate significant performance differences between the strains. ICR suffers from a severe visual impairment making this strain difficult to use in several behavioral paradigms that require good visual perception, e.g. the MWM. CD1 does not suffer from grossly impaired vision but, similarly to the ICR strain, CD1 mice exhibit decreased freezing in all phases of CFC. Although the strains are able to learn, such deficits can render them significantly impaired dependent on the performance demands of the cognitive test employed. Our findings underscore the need for careful examination of the characteristics of the host strain, the choice of which must be made in accordance with the expected functional alterations induced by the mutation.

  7. Mislocalization of TDP-43 in the G93A mutant SOD1 transgenic mouse model of ALS.

    PubMed

    Shan, Xiaoyang; Vocadlo, David; Krieger, Charles

    2009-07-17

    Previous evidence demonstrates that TAR DNA binding protein (TDP-43) mislocalization is a key pathological feature of amyotrophic lateral sclerosis (ALS). TDP-43 normally shows nuclear localization, but in CNS tissue from patients who died with ALS this protein mislocalizes to the cytoplasm. Disease specific TDP-43 species have also been reported to include hyperphosphorylated TDP-43, as well as a C-terminal fragment. Whether these abnormal TDP-43 features are present in patients with SOD1-related familial ALS (fALS), or in mutant SOD1 over-expressing transgenic mouse models of ALS remains controversial. Here we investigate TDP-43 pathology in transgenic mice expressing the G93A mutant form of SOD1. In contrast to previous reports we observe redistribution of TDP-43 to the cytoplasm of motor neurons in mutant SOD1 transgenic mice, but this is seen only in mice having advanced disease. Furthermore, we also observe rounded TDP-43 immunoreactive inclusions associated with intense ubiquitin immunoreactivity in lumbar spinal cord at end stage disease in mSOD mice. These data indicate that TDP-43 mislocalization and ubiquitination are present in end stage mSOD mice. However, we do not observe C-terminal TDP-43 fragments nor TDP-43 hyperphosphorylated species in these end stage mSOD mice. Our findings indicate that G93A mutant SOD1 transgenic mice recapitulate some key pathological, but not all biochemical hallmarks, of TDP-43 pathology previously observed in human ALS. These studies suggest motor neuron degeneration in the mutant SOD1 transgenic mice is associated with TDP-43 histopathology.

  8. Binding of purified and radioiodinated capsular polysaccharides from Cryptococcus neoformans serotype A strains to capsule-free mutants

    SciTech Connect

    Small, J.M.; Mitchell, T.G.

    1986-12-01

    Strains 6, 15, 98, 110, and 145 of Cryptococcus neoformans serotype A vary in capsule size, animal virulence, and susceptibility to in vitro phagocytosis. The isolated capsular polysaccharides (CPSs) differ in monosaccharide composition ratios and molecular size, as determined by gel filtration. The purpose of this investigation was to characterize the binding of CPSs to capsule-free mutants of C. neoformans and to examine CPSs from these strains for differences in their ability to bind, to determine whether such differences might explain the variation in the pathobiology of these strains. CPSs were partially periodate oxidized, tyraminated, iodinated with /sup 125/I, and used in binding studies with two capsule-free mutants of C. neoformans, strain 602 and Cap59. Binding was specific for yeast species and for polysaccharide and was saturable, which is consistent with a receptor-mediated mechanism of attachment. Binding occurred rapidly and was only slowly reversible. Binding was also independent of pH from pH 5.5 to 8, of cation concentrations, and of competition by sugars up to 1.0 M concentrations. Only a portion of CPS was capable of binding, and strains varied in the extent to which their CPS bound. CPS-15-IV (peak IV was the major polysaccharide peak on DEAE-cellulose chromatography of CPS from strain 15) had the highest proportion of binding (40%), followed by CPS from strains 98, 6, 145, 110, and 15-III (peak III was an earlier eluting fraction of CPS from strain 15). The CPSs differed similarly in their ability to competitively inhibit binding. Treatment of CPS, but not yeast cells, with proteinase XIV abolished binding without altering the CPS gross structure. Treatment of yeast cells with proteases, heat, or formaldehyde did not alter binding, and both strain 602 and Cap59 bound CPS similarly. Binding to encapsulated yeast cells was minimal.

  9. Developing Novel Automated Apparatus for Studying Battery of Social Behaviors in Mutant Mouse Models for Autism

    DTIC Science & Technology

    2013-06-01

    the females). Task 2b: Automated behavioral phenotyping of a mouse model for autism using the video - and RFID-based tracking technology Over the...behavioral traits and the relationship between environmental-gene interactions in mouse models for autism . Finally, since our experimental platform poses no...animal research models . 5 Body Task 1: Develop a combined video - and RFID-based experimental system to allow high- throughput standardized

  10. Behavior of two Tannerella forsythia strains and cell surface mutants in multispecies oral biofilms.

    PubMed

    Bloch, Susanne; Thurnheer, Thomas; Murakami, Yukitaka; Belibasakis, Georgios N; Schäffer, Christina

    2017-04-05

    As a member of subgingival multispecies biofilms, Tannerella forsythia is commonly associated with periodontitis. The bacterium has a characteristic cell surface (S-) layer modified with a unique O-glycan. Both the S-layer and the O-glycan were analyzed in this study for their role in biofilm formation by employing an in vitro multispecies biofilm model mimicking the situation in the oral cavity. Different T. forsythia strains and mutants with characterized defects in cell surface composition were incorporated into the model, together with nine species of select oral bacteria. The influence of the T. forsythia S-layer and attached glycan on the bacterial composition of the biofilms was analyzed quantitatively using colony forming unit counts and quantitative real-time PCR, as well as qualitatively by fluorescence in situ hybridization and confocal laser scanning microscopy. This revealed that changes of the T. forsythia cell surface did not affect the quantitative composition of the multispecies consortium, with the exception of Campylobacter rectus cell numbers. The localization of T. forsythia within the bacterial agglomeration varied depending on changes in the S-layer glycan, and this also affected its aggregation with Porphyromonas gingivalis. This suggests a selective role for the glycosylated T. forsythia S-layer in the positioning of this species within the biofilm, its co-localization with P. gingivalis, and the prevalence of C. rectus. These findings might translate into a potential role of T. forsythia cell surface structures in the virulence of this species when interacting with host tissues and immune system, from within or beyond the biofilm. This article is protected by copyright. All rights reserved.

  11. Hippocampal mossy fiber distributions and intermale aggression in seven inbred mouse strains.

    PubMed

    Guillot, P V; Roubertoux, P L; Crusio, W E

    1994-10-10

    The capacity to initiate attack behavior against a passive standard opponent was measured in 140 male mice belonging to seven different inbred mouse strains. Large strain differences were found, which strongly correlated with the size of the hippocampal intra- and infrapyramidal mossy fibers terminal fields. These results, combined with those obtained from earlier experiments, point to a possible modulating role of the hippocampus in the regulation of attack behavior in male mice.

  12. NaCl Taste Thresholds in 13 Inbred Mouse Strains

    PubMed Central

    Ishiwatari, Yutaka

    2012-01-01

    Molecular mechanisms of salty taste in mammals are not completely understood. We use genetic approaches to study these mechanisms. Previously, we developed a high-throughput procedure to measure NaCl taste thresholds, which involves conditioning mice to avoid LiCl and then examining avoidance of NaCl solutions presented in 48-h 2-bottle preference tests. Using this procedure, we measured NaCl taste thresholds of mice from 13 genealogically divergent inbred stains: 129P3/J, A/J, BALB/cByJ, C3H/HeJ, C57BL/6ByJ, C57BL/6J, CBA/J, CE/J, DBA/2J, FVB/NJ, NZB/BlNJ, PWK/PhJ, and SJL/J. We found substantial strain variation in NaCl taste thresholds: mice from the A/J and 129P3/J strains had high thresholds (were less sensitive), whereas mice from the BALB/cByJ, C57BL/6J, C57BL/6ByJ, CE/J, DBA/2J, NZB/BINJ, and SJL/J had low thresholds (were more sensitive). NaCl taste thresholds measured in this study did not significantly correlate with NaCl preferences or amiloride sensitivity of chorda tympani nerve responses to NaCl determined in the same strains in other studies. To examine whether strain differences in NaCl taste thresholds could have been affected by variation in learning ability or sensitivity to toxic effects of LiCl, we used the same method to measure citric acid taste thresholds in 4 inbred strains with large differences in NaCl taste thresholds but similar acid sensitivity in preference tests (129P3/J, A/J, C57BL/6J, and DBA/2J). Citric acid taste thresholds were similar in these 4 strains. This suggests that our technique measures taste quality–specific thresholds that are likely to represent differences in peripheral taste responsiveness. The strain differences in NaCl taste sensitivity found in this study provide a basis for genetic analysis of this phenotype. PMID:22293936

  13. Mouse Slc9a8 Mutants Exhibit Retinal Defects Due to Retinal Pigmented Epithelium Dysfunction

    PubMed Central

    Jadeja, Shalini; Barnard, Alun R.; McKie, Lisa; Cross, Sally H.; White, Jacqueline K.; Robertson, Morag; Budd, Peter S.; MacLaren, Robert E.; Jackson, Ian J.

    2015-01-01

    Purpose. As part of a large scale systematic screen to determine the effects of gene knockout mutations in mice, a retinal phenotype was found in mice lacking the Slc9a8 gene, encoding the sodium/hydrogen ion exchange protein NHE8. We aimed to characterize the mutant phenotype and the role of sodium/hydrogen ion exchange in retinal function. Methods. Detailed histology characterized the pathological consequences of Slc9a8 mutation, and retinal function was assessed by electroretinography (ERG). A conditional allele was used to identify the cells in which NHE8 function is critical for retinal function, and mutant cells analyzed for the effect of the mutation on endosomes. Results. Histology of mutant retinas reveals a separation of photoreceptors from the RPE and infiltration by macrophages. There is a small reduction in photoreceptor length and a mislocalization of visual pigments. The ERG testing reveals a deficit in rod and cone pathway function. The RPE shows abnormal morphology, and mutation of Slc9a8 in only RPE cells recapitulates the mutant phenotype. The NHE8 protein localizes to endosomes, and mutant cells have much smaller recycling endosomes. Conclusions. The NHE8 protein is required in the RPE to maintain correct regulation of endosomal volume and/or pH which is essential for the cellular integrity and subsequent function of RPE. PMID:25736793

  14. Individual strains of Lactobacillus paracasei differentially inhibit human basophil and mouse mast cell activation

    PubMed Central

    Cassard, Lydie; Lalanne, Ana Inés; Garault, Peggy; Cotillard, Aurélie; Chervaux, Christian; Wels, Michiel; Smokvina, Tamara

    2016-01-01

    Abstract Introduction The microbiota controls a variety of biological functions, including immunity, and alterations of the microbiota in early life are associated with a higher risk of developing allergies later in life. Several probiotic bacteria, and particularly lactic acid bacteria, were described to reduce both the induction of allergic responses and allergic manifestations. Although specific probiotic strains were used in these studies, their protective effects on allergic responses also might be common for all lactobacilli. Methods To determine whether allergic effector cells inhibition is a common feature of lactobacilli or whether it varies among lactobacilli strains, we compared the ability of 40 strains of the same Lactobacillus paracasei species to inhibit IgE‐dependent mouse mast cell and human basophil activation. Results We uncovered a marked heterogeneity in the inhibitory properties of the 40 Lactobacillus strains tested. These segregated into three to four clusters depending on the intensity of inhibition. Some strains inhibited both mouse mast cell and human basophil activation, others strains inhibited only one cell type and another group induced no inhibition of activation for either cell type. Conclusions Individual Lactobacillus strains of the same species differentially inhibit IgE‐dependent activation of mouse mast cells and human basophils, two cell types that are critical in the onset of allergic manifestations. Although we failed to identify specific bacterial genes associated with inhibition by gene‐trait matching analysis, our findings demonstrate the complexity of the interactions between the microbiota and the host. These results suggest that some L. paracasei strains might be more beneficial in allergies than others strains and provide the bases for a rational screening of lactic acid bacteria strains as next‐generation probiotics in the field of allergy. PMID:27621812

  15. Absence of light-induced proton extrusion in a cotA-less mutant of Synechocystis sp. strain PCC6803.

    PubMed

    Katoh, A; Sonoda, M; Katoh, H; Ogawa, T

    1996-09-01

    cotA of Synechocystis sp. strain PCC6803 was isolated as a gene that complemented a mutant defective in CO2 transport and is homologous to cemA that encodes a chloroplast envelope membrane protein (A. Katoh, K.S. Lee, H. Fukuzawa, K. Ohyama, and T. Ogawa, Proc. Natl. Acad. Sci. USA 93:4006-4010, 1996). A mutant (M29) constructed by replacing cotA in the wild-type (WT) Synechocystis strain with the omega fragment was unable to grow in BG11 medium (approximately 17 mM Na+) at pH 6.4 or at any pH in a low-sodium medium (100 microM Na+) under aeration with 3% (vol/vol) CO2 in air. The WT cells grew well in the pH range between 6.4 and 8.5 in BG11 medium but only at alkaline pH in the low-sodium medium. Illumination of the WT cells resulted in an extrusion followed by an uptake of protons. In contrast, only proton uptake was observed for the M29 mutant in the light without proton extrusion. There was no difference in sodium uptake activity between the WT and mutant. The mutant still possessed 51% of the WT CO2 transport activity in the presence of 15 mM NaCl. On the basis of these results we concluded that cotA has a role in light-induced proton extrusion and that the inhibition of CO2 transport in the M29 mutant is a secondary effect of the inhibition of proton extrusion.

  16. Multi-omics approach to study global changes in a triclosan-resistant mutant strain of Acinetobacter baumannii ATCC 17978.

    PubMed

    Fernando, Dinesh M; Chong, Patrick; Singh, Manu; Spicer, Victor; Unger, Mark; Loewen, Peter C; Westmacott, Garrett; Kumar, Ayush

    2017-01-01

    Acinetobacter baumannii AB042, a triclosan-resistant mutant strain, was examined for modulated gene expression using whole-genome sequencing, transcriptomics and proteomics in order to understand the mechanism of triclosan resistance as well as its impact on A. baumannii. Data revealed modulated expression of the fatty acid metabolism pathway, co-factors known to play a role in the synthesis of fatty acids, as well as several transcriptional regulators. The membrane composition of the mutant revealed a decrease in C18 with a corresponding increase in C16 fatty acids compared with the parent strain A. baumannii ATCC 17978. These data indicate that A. baumannii responds to triclosan by altering the expression of genes involved in fatty acid metabolism, antibiotic resistance and amino acid metabolism.

  17. Anthraquinone dyes decolorization capacity of anamorphic Bjerkandera adusta CCBAS 930 strain and its HRP-like negative mutants.

    PubMed

    Korniłłowicz-Kowalska, Teresa; Rybczyńska, Kamila

    2014-06-01

    Cultures of the anamorphic fungus Bjerkandera adusta CCBAS 930 decolorizing, in stationary cultures, 0.01 % solutions of carminic acid and Poly R-478, were characterised by a strong increase in the activity of the horseradish peroxidase (HRP-like) and manganese-dependent peroxidase (MnP) at a low activity of lignin peroxidase. Genotypically modified mutants of B. adusta CCBAS 930: 930-5 and 930-14, with total or partial loss of decolorization capabilities relative to anthraquinonic dyes, showed inhibition of the activity of HRP-like peroxidase and MnP. Whereas, compared to the parental strain, in the mutant cultures there was an increase in the activity of lignin peroxidase and laccase. The paper presents a discussion of the role of the studied enzymatic activities in the process of decolorization of anthraquinonic dyes by the strain B. adusta CCBAS 930.

  18. [Study of the transcriptional and transpositional activities of the Tirant retrotransposon in Drosophila melanogaster strains mutant for the flamenco locus].

    PubMed

    Nefedova, L N; Urusov, F A; Romanova, N I; Shmel'kova, A O; Kim, A I

    2012-11-01

    Transpositions of the gypsy retrotransposon in the Drosophila melanogaster genome are controlled by the flamenco locus, which is represented as an accumulation of defective copies of transposable elements. In the present work, genetic control by the flamenco locus of the transcriptional and transpositional activities of the Tirant retrotransposon from the gypsy group was studied. Tissue-specific expression of Tirant was detected in the tissues of ovaries in a strain mutant for the flamenco locus. Tirant was found to be transpositionally active in isogenic D. melanogaster strains mutant for the flamenco locus. The sites of two new insertions have been localized by the method of subtractive hybridization. It has been concluded from the results obtained that the flamenco locus is involved in the genetic control of Tirant transpositions.

  19. Reversible modulation of SIRT1 activity in a mouse strain

    PubMed Central

    Clark-Knowles, Katherine V.; He, Xiaohong; Jardine, Karen; Coulombe, Josée; Dewar-Darch, Danielle; Caron, Annabelle Z.

    2017-01-01

    The SIRT1 protein deacetylase is reported to have a remarkably wide spectrum of biological functions affecting such varied processes as aging, cancer, metabolism, neurodegeneration and immunity. However, the SIRT1 literature is also full of contradictions. To help establish the role(s) of SIRT1 in these and other biological processes, we set out to create a mouse in which the SIRT1 activity could be toggled between on and off states by fusing the estrogen receptor ligand-binding domain (ER) to the C terminus of the SIRT1 protein. We found that the catalytic activity of the SIRT1-ER fusion protein increased 4–5 fold in cells treated with its ligand, 4-hydroxy-tamoxifen (4OHT). The 4OHT-induced activation of SIRT1-ER was due in large part to a 2 to 4-fold increase in abundance of the SIRT1-ER protein in cells in culture and in tissues in vivo. This increase is reversible and is a consequence of 4OHT-induced stabilization of the SIRT1-ER protein. Since changes in SIRT1 level or activity of 2–4 fold are frequently reported to be sufficient to affect its biological functions, this mouse should be helpful in establishing the causal relationships between SIRT1 and the diseases and processes it affects. PMID:28273169

  20. Reversible modulation of SIRT1 activity in a mouse strain.

    PubMed

    Clark-Knowles, Katherine V; He, Xiaohong; Jardine, Karen; Coulombe, Josée; Dewar-Darch, Danielle; Caron, Annabelle Z; Gray, Douglas A; McBurney, Michael W

    2017-01-01

    The SIRT1 protein deacetylase is reported to have a remarkably wide spectrum of biological functions affecting such varied processes as aging, cancer, metabolism, neurodegeneration and immunity. However, the SIRT1 literature is also full of contradictions. To help establish the role(s) of SIRT1 in these and other biological processes, we set out to create a mouse in which the SIRT1 activity could be toggled between on and off states by fusing the estrogen receptor ligand-binding domain (ER) to the C terminus of the SIRT1 protein. We found that the catalytic activity of the SIRT1-ER fusion protein increased 4-5 fold in cells treated with its ligand, 4-hydroxy-tamoxifen (4OHT). The 4OHT-induced activation of SIRT1-ER was due in large part to a 2 to 4-fold increase in abundance of the SIRT1-ER protein in cells in culture and in tissues in vivo. This increase is reversible and is a consequence of 4OHT-induced stabilization of the SIRT1-ER protein. Since changes in SIRT1 level or activity of 2-4 fold are frequently reported to be sufficient to affect its biological functions, this mouse should be helpful in establishing the causal relationships between SIRT1 and the diseases and processes it affects.

  1. What makes a good mother? Implication of inter-, and intrastrain strain "cross fostering" for emotional changes in mouse offspring.

    PubMed

    Lerch, Sandra; Brandwein, Christiane; Dormann, Christof; Gass, Peter; Chourbaji, Sabine

    2014-11-01

    Currently, the mouse represents the preferred model organism among mammals used for animal studies. Due to a great availability of mutant strains it represents a standard method to analyze in vivo the effects of targeted gene manipulations. While this - at least in theory - represents a valuable tool to elucidate the pathophysiology of certain human diseases, there are several caveats which need to be considered working with animals. In our study we aimed at elucidating, how a widely established breeding strategy, i.e. the use of "foster mothers" to save the survival of compromised mouse pups for ongoing experiments, per se, affects the emotional phenotype of the fostered offspring. Since it is a popular method to use outbred strains like NMRI to do this job, we sought to evaluate the potential effects of such an artificial postnatal condition and compare either offspring nurtured by their biological mothers or two different strains of foster mothers. Hence we analysed changes in maternal care and later on the emotional behaviour of male and female C57BL/6 mice reared by (i) their biological C57BL/6 mothers, (ii) C57BL/6 foster mothers and (iii) NMRI foster mothers in a behavioural test battery. In addition we assessed corticosterone levels as indicator for stress-physiological changes. Besides clear differences in maternal behaviour, our study indicates an altered emotional state (i.e. differences in anxiety and depressive-like features) in mice reared by different "categories" of mothers, which emphasizes the importance to embed such perinatal conditions in the evaluation of animal-deriving data.

  2. Characterization of oxidative phosphorylation enzymes in Euglena gracilis and its white mutant strain W(gm)ZOflL.

    PubMed

    Krnáčová, Katarína; Rýdlová, Ivana; Vinarčíková, Michaela; Krajčovič, Juraj; Vesteg, Matej; Horváth, Anton

    2015-03-12

    The enzymes involved in Euglena oxidative phosphorylation (OXPHOS) were characterized in this study. We have demonstrated that Euglena gracilis strain Z and its stable bleached non-photosynthetic mutant strain WgmZOflL both possess fully functional OXPHOS apparatus as well as pathways requiring terminal alternative oxidase(s) and alternative mitochondrial NADH-dehydrogenase(s). Light (or dark) and plastid (non)functionality seem to have little effect on oxygen consumption, the activities of the enzymes involved in OXPHOS and the action of respiration inhibitors in Euglena. This study also demonstrates biochemical properties of complex III (cytochrome c reductase) in Euglena.

  3. Expression of the cloned Escherichia coli O9 rfb gene in various mutant strains of Salmonella typhimurium.

    PubMed Central

    Sugiyama, T; Kido, N; Komatsu, T; Ohta, M; Kato, N

    1991-01-01

    To investigate the effect of chromosomal mutation on the synthesis of rfe-dependent Escherichia coli O9 lipopolysaccharide (LPS), the cloned E. coli O9 rfb gene was introduced into Salmonella typhimurium strains defective in various genes involved in the synthesis of LPS. When E. coli O9 rfb was introduced into S. typhimurium strains possessing defects in rfb or rfc, they synthesized E. coli O9 LPS on their cell surfaces. The rfe-defective mutant of S. typhimurium synthesized only very small amounts of E. coli O9 LPS after the introduction of E. coli O9 rfb. These results confirmed the widely accepted idea that the biosynthesis of E. coli O9-specific polysaccharide does not require rfc but requires rfe. By using an rfbT mutant of the E. coli O9 rfb gene, the mechanism of transfer of the synthesized E. coli O9-specific polysaccharide from antigen carrier lipid to the R-core of S. typhimurium was investigated. The rfbT mutant of the E. coli O9 rfb gene failed to direct the synthesis of E. coli O9 LPS in the rfc mutant strain of S. typhimurium, in which rfaL and rfbT functions are intact, but directed the synthesis of the precursor. Because the intact E. coli O9 rfb gene directed the synthesis of E. coli O9 LPS in the same strain, it was suggested that the rfaL product of S. typhimurium and rfbT product of E. coli O9 cooperate to synthesize E. coli O9 LPS in S. typhimurium. Images PMID:1987133

  4. A Novel Bmal1 Mutant Mouse Reveals Essential Roles of the C-Terminal Domain on Circadian Rhythms.

    PubMed

    Park, Noheon; Kim, Hee-Dae; Cheon, Solmi; Row, Hansang; Lee, Jiyeon; Han, Dong-Hee; Cho, Sehyung; Kim, Kyungjin

    2015-01-01

    The mammalian circadian clock is an endogenous biological timer comprised of transcriptional/translational feedback loops of clock genes. Bmal1 encodes an indispensable transcription factor for the generation of circadian rhythms. Here, we report a new circadian mutant mouse from gene-trapped embryonic stem cells harboring a C-terminus truncated Bmal1 (Bmal1GTΔC) allele. The homozygous mutant (Bmal1GTΔC/GTΔC) mice immediately lost circadian behavioral rhythms under constant darkness. The heterozygous (Bmal1+/GTΔC) mice displayed a gradual loss of rhythms, in contrast to Bmal1+/- mice where rhythms were sustained. Bmal1GTΔC/GTΔC mice also showed arrhythmic mRNA and protein expression in the SCN and liver. Lack of circadian reporter oscillation was also observed in cultured fibroblast cells, indicating that the arrhythmicity of Bmal1GTΔC/GTΔC mice resulted from impaired molecular clock machinery. Expression of clock genes exhibited distinct responses to the mutant allele in Bmal1+/GTΔC and Bmal1GTΔC/GTΔC mice. Despite normal cellular localization and heterodimerization with CLOCK, overexpressed BMAL1GTΔC was unable to activate transcription of Per1 promoter and BMAL1-dependent CLOCK degradation. These results indicate that the C-terminal region of Bmal1 has pivotal roles in the regulation of circadian rhythms and the Bmal1GTΔC mice constitute a novel model system to evaluate circadian functional mechanism of BMAL1.

  5. A Novel Bmal1 Mutant Mouse Reveals Essential Roles of the C-Terminal Domain on Circadian Rhythms

    PubMed Central

    Cheon, Solmi; Row, Hansang; Lee, Jiyeon; Han, Dong-Hee; Cho, Sehyung; Kim, Kyungjin

    2015-01-01

    The mammalian circadian clock is an endogenous biological timer comprised of transcriptional/translational feedback loops of clock genes. Bmal1 encodes an indispensable transcription factor for the generation of circadian rhythms. Here, we report a new circadian mutant mouse from gene-trapped embryonic stem cells harboring a C-terminus truncated Bmal1 (Bmal1GTΔC) allele. The homozygous mutant (Bmal1GTΔC/GTΔC) mice immediately lost circadian behavioral rhythms under constant darkness. The heterozygous (Bmal1+/GTΔC) mice displayed a gradual loss of rhythms, in contrast to Bmal1+/- mice where rhythms were sustained. Bmal1GTΔC/GTΔC mice also showed arrhythmic mRNA and protein expression in the SCN and liver. Lack of circadian reporter oscillation was also observed in cultured fibroblast cells, indicating that the arrhythmicity of Bmal1GTΔC/GTΔC mice resulted from impaired molecular clock machinery. Expression of clock genes exhibited distinct responses to the mutant allele in Bmal1+/GTΔC and Bmal1GTΔC/GTΔC mice. Despite normal cellular localization and heterodimerization with CLOCK, overexpressed BMAL1GTΔC was unable to activate transcription of Per1 promoter and BMAL1-dependent CLOCK degradation. These results indicate that the C-terminal region of Bmal1 has pivotal roles in the regulation of circadian rhythms and the Bmal1GTΔC mice constitute a novel model system to evaluate circadian functional mechanism of BMAL1. PMID:26394143

  6. Pathological Features in the LmnaDhe/+ Mutant Mouse Provide a Novel Model of Human Otitis Media and Laminopathies

    PubMed Central

    Zhang, Yan; Yu, Heping; Xu, Min; Han, Fengchan; Tian, Cong; Kim, Suejin; Fredman, Elisha; Zhang, Jin; Benedict-Alderfer, Cindy; Zheng, Qing Yin

    2013-01-01

    Genetic predisposition is recognized as an important pathogenetic factor in otitis media (OM) and associated diseases. Mutant Lmna mice heterozygous for the disheveled hair and ears allele (LmnaDhe/+) exhibit early-onset, profound hearing deficits and other pathological features mimicking human laminopathy associated with the LMNA mutation. We assessed the effects of the LmnaDhe/+ mutation on development of OM and pathological abnormalities characteristic of laminopathy. Malformation and abnormal positioning of the eustachian tube, accompanied by OM, were observed in all of the LmnaDhe/+ mice (100% penetrance) as early as postnatal day P12. Scanning electronic microscopy revealed ultrastructural damage to the cilia in middle ears that exhibited OM. Hearing assessment revealed significant hearing loss, paralleling that in human OM. Expression of NF-κB, TNF-α, and TGF-β, which correlated with inflammation and/or bony development, was up-regulated in the ears or in the peritoneal macrophages of LmnaDhe/+ mice. Rugous, disintegrative, and enlarged nuclear morphology of peritoneal macrophages and hyperphosphatemia were found in LmnaDhe/+ mutant mice. Taken together, these features resemble the pathology of human laminopathies, possibly revealing some profound pathology, beyond OM, associated with the mutation. The LmnaDhe/+ mutant mouse provides a novel model of human OM and laminopathy. PMID:22819531

  7. A mouse renin distal enhancer is essential for blood pressure homeostasis in BAC-rescued renin-null mutant mice.

    PubMed

    Tanimoto, Keiji; Kanafusa, Sumiyo; Ushiki, Aki; Matsuzaki, Hitomi; Ishida, Junji; Sugiyama, Fumihiro; Fukamizu, Akiyoshi

    2014-10-01

    Renin is predominantly expressed in juxtaglomerular cells in the kidney and regulates blood pressure homeostasis. To examine possible in vivo functions of a mouse distal enhancer (mdE), we generated transgenic mice (TgM) carrying either wild-type or mdE-deficient renin BACs (bacterial artificial chromosome), integrated at the identical chromosomal site. In the kidneys of the TgM, the mdE contributed 80% to basal renin promoter activity. To test for possible physiological roles for the mdE, renin BAC transgenes were used to rescue the hypotensive renin-null mice. Interestingly, renal renin expression in the Tg(BAC):renin-null compound mice was indistinguishable between the wild-type and mutant BAC carriers. Surprisingly, however, the plasma renin activity and angiotensin I concentration in the mdE compound mutant mice were significantly lower than the same parameters in the control mice, and the mutants were consistently hypotensive, demonstrating that blood pressure homeostasis is regulated through transcriptional cis elements controlling renin activity.

  8. Molecular and Genetic Analysis of Collagen Type IV Mutant Mouse Models of Spontaneous Intracerebral Hemorrhage Identify Mechanisms for Stroke Prevention

    PubMed Central

    Jeanne, Marion; Jorgensen, Jeff; Gould, Douglas B.

    2015-01-01

    Background Collagen type IV alpha 1 (COL4A1) and alpha 2 (COL4A2) form heterotrimers critical for vascular basement membrane stability and function. Patients with COL4A1 or COL4A2 mutations suffer from diverse cerebrovascular diseases including cerebral microbleeds, porencephaly and fatal intracerebral hemorrhage (ICH). However, the pathogenic mechanisms remain unknown and there is a lack of effective treatment. Methods and Results Using Col4a1 and Col4a2 mutant mouse models, we investigated the genetic complexity and cellular mechanisms underlying the disease. We found that Col4a1 mutations cause abnormal vascular development, which triggers small vessel disease, recurrent hemorrhagic strokes and age-related macro-angiopathy. We showed that allelic heterogeneity, genetic context and environmental factors, such as acute exercise or anticoagulant medication, modulated disease severity and contributed to phenotypic heterogeneity. We found that intracellular accumulation of mutant collagen in vascular endothelial cells and pericytes was a key triggering factor of ICH. Finally, we showed that treatment of mutant mice with a FDA-approved chemical chaperone resulted in a decreased collagen intracellular accumulation and a significant reduction of ICH severity. Conclusions Our data are the first to show therapeutic prevention in vivo of ICH due to Col4a1 mutation, and imply that a mechanism-based therapy promoting protein folding might also prevent ICH in patients with COL4A1 and COL4A2 mutations. PMID:25753534

  9. Construction of an Efficient Mutant Strain of Trichosporonoides oedocephalis with HOG1 Gene Deletion for Production of Erythritol.

    PubMed

    Li, Liangzhi; Yang, Tianyi; Guo, Weiqiang; Ju, Xin; Hu, Cuiying; Tang, Bingyu; Fu, Jiaolong; Gu, Jingsheng; Zhang, Haiyang

    2016-04-28

    The mitogen-activated protein kinase HOG1 (high-osmolarity glycerol response pathway) plays a crucial role in the response of yeast to hyperosmotic shock. Trichosporonoides oedocephalis produces large amounts of polyols (,e.g., erythritol and glycerol) in a culture medium. However, the effects of HOG1 gene knockout and environmental stress on the production of these polyols have not yet been studied. In this study, a To-HOG1 null mutation was constructed in T. oedocephalis using the loxP-Kan-loxP/Cre system as replacement of the targeted genes, and the resultant mutants showed much smaller colonies than the wild-type controls. Interestingly, compared with the wild-type strains, the results of shake-flask culture showed that To-HOG1 null mutation increased erythritol production by 1.44-fold while decreasing glycerol production by 71.23%. In addition, this study investigated the effects of citric acid stress on the T. oedocephalis HOG1 null mutants and the wild-type strain. When the supplementation of citric acid in the fermentation medium was controlled at 0.3% (w/v), the concentration of erythritol produced from the wild-type and To-HOG1 knockout mutant strains improved by 18.21% and 21.65%, respectively.

  10. Effects of Pyrogallol on Growth and Cytotoxicity of Wild-Type and katG Mutant Strains of Vibrio vulnificus

    PubMed Central

    Lim, Ju Young; Kim, Choon-Mee; Rhee, Joon Haeng; Kim, Young Ran

    2016-01-01

    Vibrio vulnificus is a causative agent of fatal septicemia and necrotic wound infection and the pathogen infection became an important public health problem in many counties. Vibrio vulnificus causes RtxA1 toxin-induced acute cell death. We tried to identify natural products that inhibit the acute cytotoxicity of V. vulnificus using a lactate hydrogenase assay. A polyphenol pyrogallol protected HeLa cells from V. vulnificus-induced cytotoxicity. Pyrogallol also decreased the growth of V. vulnificus; this inhibitory effect was more significant during log phase than stationary phase. To further elucidate the inhibitory mechanism, pyrogallol-induced toxicity was compared between a V. vulnificus catalase-peroxidase mutant (katG−) and the isogenic wild-type MO6-24/O strains. No growth was observed for the katG− mutant in the presence of pyrogallol (50 μg/mL) even after 24 h, whereas the wild-type strain demonstrated growth recovery following a prolonged lag phase. Pyrogallol-mediated growth inhibition of the katG− mutant strain was partially rescued by exogenous catalase treatment. These results indicate that the mechanism by which pyrogallol inhibits the growth and cytotoxicity of V. vulnificus likely involves polyphenol-induced prooxidant damage. Taken together, these results suggest that pyrogallol has potential for development as a new paradigm drug to treat infectious diseases. PMID:27936080

  11. Complete Genome Sequence of Acinetobacter sp. Strain NCu2D-2 Isolated from a Mouse

    PubMed Central

    Blaschke, Ulrike

    2017-01-01

    ABSTRACT Whole-genome sequencing of Acinetobacter sp. strain NCu2D-2, isolated from the trachea of a mouse, revealed the presence of a plasmid of 309,964 bp with little overall similarity to known plasmids and enriched in insertion sequences (ISs) closely related to IS elements known from the nosocomial pathogen Acinetobacter baumannii. PMID:28126932

  12. Extensive variation between inbred mouse strains due to endogenous L1 retrotransposition

    PubMed Central

    Akagi, Keiko; Li, Jingfeng; Stephens, Robert M.; Volfovsky, Natalia; Symer, David E.

    2008-01-01

    Numerous inbred mouse strains comprise models for human diseases and diversity, but the molecular differences between them are mostly unknown. Several mammalian genomes have been assembled, providing a framework for identifying structural variations. To identify variants between inbred mouse strains at a single nucleotide resolution, we aligned 26 million individual sequence traces from four laboratory mouse strains to the C57BL/6J reference genome. We discovered and analyzed over 10,000 intermediate-length genomic variants (from 100 nucleotides to 10 kilobases), distinguishing these strains from the C57BL/6J reference. Approximately 85% of such variants are due to recent mobilization of endogenous retrotransposons, predominantly L1 elements, greatly exceeding that reported in humans. Many genes’ structures and expression are altered directly by polymorphic L1 retrotransposons, including Drosha (also called Rnasen), Parp8, Scn1a, Arhgap15, and others, including novel genes. L1 polymorphisms are distributed nonrandomly across the genome, as they are excluded significantly from the X chromosome and from genes associated with the cell cycle, but are enriched in receptor genes. Thus, recent endogenous L1 retrotransposition has diversified genomic structures and transcripts extensively, distinguishing mouse lineages and driving a major portion of natural genetic variation. PMID:18381897

  13. Comparison of motor performance, brain biochemistry and histology of two A30P α-synuclein transgenic mouse strains.

    PubMed

    Piltonen, M; Savolainen, M; Patrikainen, S; Baekelandt, V; Myöhänen, T T; Männistö, P T

    2013-02-12

    Three point mutations in the SNCA gene encoding α-synuclein (aSyn) have been associated with autosomal dominant forms of Parkinson's disease. To better understand the role of the A30P mutant aSyn, we compared two transgenic mouse strains: a knock-in mouse with an introduced A30P point mutation in the wild-type (WT) gene (Snca(tm(A30P))) and a transgenic (Tg) mouse overexpressing the human A30P aSyn gene under the prion promoter [tg(Prnp-SNCA A30P)]. The brain aSyn load, motor performance, brain dopamine (DA) and sensitivity to 6-hydroxydopamine (6-OHDA) were studied in these mice. aSyn was evidently accumulating with age in all mice, particularly in tg(Prnp-SNCA A30P) Tg mice. There were no robust changes in basal locomotor activities of the mice of either line at 6 months, but after 1 year, tg(Prnp-SNCA A30P) Tg mice developed severe problems with vertical movements. However, the younger Tg mice had a reduced locomotor response to 1mg/kg of d-amphetamine. Snca(tm(A30P)) mice with the targeted mutation (Tm) were slightly hyperactive at all ages. Less 6-OHDA was required in tg(Prnp-SNCA A30P) Tg (1 μg) than in WT (3μg) mice for an ipsilateral rotational bias by d-amphetamine. That was not seen with the Snca(tm(A30P)) strain. A small dose of 6-OHDA (0.33 μg) led to contralateral rotations and elevated striatal DA in Tg/Tm mice of both lines but otherwise 6-OHDA-induced striatal DA depletion was similar in all mice, indicating no A30P-aSyn-related toxin sensitivity. 3,4-Dihydroxyphenylacetic acid/DA-ratio was elevated in tg(Prnp-SNCA A30P) mice, suggesting an enhanced DA turnover. This ratio and homovanillic acid/DA-ratio were declined in Snca(tm(A30P)) mice. Our results demonstrate that the two differently constructed A30P-aSyn mouse strains have distinct behavioral and biochemical characteristics, some of which are opposite. Since the two lines with the same background were not identically produced, the deviations found may be partially caused by factors other

  14. Sheathless Mutant of Cyanobacterium Gloeothece sp. Strain PCC 6909 with Increased Capacity To Remove Copper Ions from Aqueous Solutions▿

    PubMed Central

    Micheletti, Ernesto; Pereira, Sara; Mannelli, Francesca; Moradas-Ferreira, Pedro; Tamagnini, Paula; De Philippis, Roberto

    2008-01-01

    The cyanobacterium Gloeothece sp. strain PCC 6909 and its sheathless mutant were tested for their abilities to remove copper ions from aqueous solutions, with the aim of defining the role of the various outermost polysaccharidic investments in the removal of the metal ions. Microscopy studies and chemical analyses revealed that, although the mutant does not possess a sheath, it releases large amounts of polysaccharidic material (released exocellular polysaccharides [RPS]) into the culture medium. The RPS of the wild type and the mutant are composed of the same 11 sugars, although they are present in different amounts, and the RPS of the mutant possesses a larger amount of acidic sugars and a smaller amount of deoxysugars than the wild type. Unexpectedly, whole cultures of the mutant were more effective in the removal of the heavy metal than the wild type (46.3 ± 3.1 and 26.7 ± 1.5 mg of Cu2+ removed per g of dry weight, respectively). Moreover, we demonstrated that the contribution of the sheath to the metal-removal capacity of the wild type is scarce and that the RPS of the mutant is more efficient in removing copper. This suggests that the metal ions are preferably bound to the cell wall and to RPS functional groups rather than to the sheath. Therefore, the increased copper binding efficiency observed with the sheathless mutant can be attributed to the release of a polysaccharide containing larger amounts and/or more accessible functional groups (e.g., carboxyl and amide groups). PMID:18326679

  15. Comparative gene expression profiling in two congenic mouse strains following Bordetella pertussis infection

    PubMed Central

    Banus, Sander; Vandebriel, Rob J; Pennings, Jeroen LA; Gremmer, Eric R; Wester, Piet W; van Kranen, Henk J; Breit, Timo M; Demant, Peter; Mooi, Frits R; Hoebee, Barbara; Kimman, Tjeerd G

    2007-01-01

    Background Susceptibility to Bordetella pertussis infection varies widely. These differences can partly be explained by genetic host factors. HcB-28 mice are more resistant to B. pertussis infection than C3H mice, which could partially be ascribed to the B. pertussis susceptibility locus-1 (Bps1) on chromosome 12. The presence of C57BL/10 genome on this locus instead of C3H genome resulted in a decreased number of bacteria in the lung. To further elucidate the role of host genetic factors, in particular in the Bps1 locus, in B. pertussis infection, and to identify candidate genes within in this region, we compared expression profiles in the lungs of the C3H and HcB-28 mouse strains following B. pertussis inoculation. Twelve and a half percent of the genomes of these mice are from a different genetic background. Results Upon B. pertussis inoculation 2,353 genes were differentially expressed in the lungs of both mouse strains. Two hundred and six genes were differentially expressed between the two mouse strains, but, remarkably, none of these were up- or down-regulated upon B. pertussis infection. Of these 206 genes, 17 were located in the Bps1 region. Eight of these genes, which showed a strong difference in gene expression between the two mouse strains, map to the immunoglobulin heavy chain complex (Igh). Conclusion Gene expression changes upon B. pertussis infection are highly identical between the two mouse strains despite the differences in the course of B. pertussis infection. Because the genes that were differentially regulated between the mouse strains only showed differences in expression before infection, it appears likely that such intrinsic differences in gene regulation are involved in determining differences in susceptibility to B. pertussis infection. Alternatively, such genetic differences in susceptibility may be explained by genes that are not differentially regulated between these two mouse strains. Genes in the Igh complex, among which Igh-1a

  16. Misfolded Mutant SOD1 Directly Inhibits VDAC1 Conductance in a Mouse Model of Inherited ALS

    PubMed Central

    Israelson, Adrian; Arbel, Nir; Cruz, Sandrine Da; Ilieva, Hristelina; Yamanaka, Koji; Shoshan-Barmatz, Varda; Cleveland, Don W.

    2010-01-01

    Summary Mutations in superoxide dismutase (SOD1) cause amyotrophic lateral sclerosis (ALS), a neurodegenerative disease characterized by loss of motor neurons. With conformation specific antibodies, we now demonstrate that misfolded mutant SOD1 binds directly to the voltage-dependent anion channel (VDAC1), an integral membrane protein imbedded in the outer mitochondrial membrane. This interaction is found on isolated spinal cord mitochondria and can be reconstituted with purified components in vitro. ADP passage through the outer membrane is diminished in spinal mitochondria from mutant SOD1-expressing ALS rats. Direct binding of mutant SOD1 to VDAC1 inhibits conductance of individual channels when reconstituted in a lipid bilayer. Reduction of VDAC1 activity with targeted gene disruption is shown to diminish survival by accelerating onset of fatal paralysis in mice expressing the ALS-causing mutation SOD1G37R. Taken together, our results establish a direct link between misfolded mutant SOD1 and mitochondrial dysfunction in this form of inherited ALS. PMID:20797535

  17. Abnormal mesoderm patterning in mouse embryos mutant for the SH2 tyrosine phosphatase Shp-2.

    PubMed Central

    Saxton, T M; Henkemeyer, M; Gasca, S; Shen, R; Rossi, D J; Shalaby, F; Feng, G S; Pawson, T

    1997-01-01

    Shp-1, Shp-2 and corkscrew comprise a small family of cytoplasmic tyrosine phosphatases that possess two tandem SH2 domains. To investigate the biological functions of Shp-2, a targeted mutation has been introduced into the murine Shp-2 gene, which results in an internal deletion of residues 46-110 in the N-terminal SH2 domain. Shp-2 is required for embryonic development, as mice homozygous for the mutant allele die in utero at mid-gestation. The Shp-2 mutant embryos fail to gastrulate properly as evidenced by defects in the node, notochord and posterior elongation. Biochemical analysis of mutant cells indicates that Shp-2 can function as either a positive or negative regulator of MAP kinase activation, depending on the specific receptor pathway stimulated. In particular, Shp-2 is required for full and sustained activation of the MAP kinase pathway following stimulation with fibroblast growth factor (FGF), raising the possibility that the phenotype of Shp-2 mutant embryos results from a defect in FGF-receptor signalling. Thus, Shp-2 modulates tyrosine kinase signalling in vivo and is crucial for gastrulation during mammalian development. PMID:9171349

  18. Abnormal mesoderm patterning in mouse embryos mutant for the SH2 tyrosine phosphatase Shp-2.

    PubMed

    Saxton, T M; Henkemeyer, M; Gasca, S; Shen, R; Rossi, D J; Shalaby, F; Feng, G S; Pawson, T

    1997-05-01

    Shp-1, Shp-2 and corkscrew comprise a small family of cytoplasmic tyrosine phosphatases that possess two tandem SH2 domains. To investigate the biological functions of Shp-2, a targeted mutation has been introduced into the murine Shp-2 gene, which results in an internal deletion of residues 46-110 in the N-terminal SH2 domain. Shp-2 is required for embryonic development, as mice homozygous for the mutant allele die in utero at mid-gestation. The Shp-2 mutant embryos fail to gastrulate properly as evidenced by defects in the node, notochord and posterior elongation. Biochemical analysis of mutant cells indicates that Shp-2 can function as either a positive or negative regulator of MAP kinase activation, depending on the specific receptor pathway stimulated. In particular, Shp-2 is required for full and sustained activation of the MAP kinase pathway following stimulation with fibroblast growth factor (FGF), raising the possibility that the phenotype of Shp-2 mutant embryos results from a defect in FGF-receptor signalling. Thus, Shp-2 modulates tyrosine kinase signalling in vivo and is crucial for gastrulation during mammalian development.

  19. Newborn mouse lens proteome and its alteration by lysine 6 mutant ubiquitin

    USDA-ARS?s Scientific Manuscript database

    Ubiquitin is a tag that often initiates degradation of proteins by the proteasome in the ubiquitin proteasome system. Targeted expression of K6W mutant ubiquitin (K6W-Ub) in the lens results in defects in lens development and cataract formation, suggesting critical functions for ubiquitin in lens. T...

  20. Mucosal-associated invariant T cell–rich congenic mouse strain allows functional evaluation

    PubMed Central

    Cui, Yue; Franciszkiewicz, Katarzyna; Mburu, Yvonne K.; Mondot, Stanislas; Le Bourhis, Lionel; Premel, Virginie; Martin, Emmanuel; Kachaner, Alexandra; Duban, Livine; Ingersoll, Molly A.; Rabot, Sylvie; Jaubert, Jean; De Villartay, Jean-Pierre; Soudais, Claire; Lantz, Olivier

    2015-01-01

    Mucosal-associated invariant T cells (MAITs) have potent antimicrobial activity and are abundant in humans (5%–10% in blood). Despite strong evolutionary conservation of the invariant TCR-α chain and restricting molecule MR1, this population is rare in laboratory mouse strains (≈0.1% in lymphoid organs), and lack of an appropriate mouse model has hampered the study of MAIT biology. Herein, we show that MAITs are 20 times more frequent in clean wild-derived inbred CAST/EiJ mice than in C57BL/6J mice. Increased MAIT frequency was linked to one CAST genetic trait that mapped to the TCR-α locus and led to higher usage of the distal Vα segments, including Vα19. We generated a MAIThi congenic strain that was then crossed to a transgenic Rorcgt-GFP reporter strain. Using this tool, we characterized polyclonal mouse MAITs as memory (CD44+) CD4–CD8lo/neg T cells with tissue-homing properties (CCR6+CCR7–). Similar to human MAITs, mouse MAITs expressed the cytokine receptors IL-7R, IL-18Rα, and IL-12Rβ and the transcription factors promyelocytic leukemia zinc finger (PLZF) and RAR-related orphan receptor γ (RORγt). Mouse MAITs produced Th1/2/17 cytokines upon TCR stimulation and recognized a bacterial compound in an MR1-dependent manner. During experimental urinary tract infection, MAITs migrated to the bladder and decreased bacterial load. Our study demonstrates that the MAIThi congenic strain allows phenotypic and functional characterization of naturally occurring mouse MAITs in health and disease. PMID:26524590

  1. Mouse Mutants for the Nicotinic Acetylcholine Receptor ß2 Subunit Display Changes in Cell Adhesion and Neurodegeneration Response Genes

    PubMed Central

    Rubin, Carol M.; van der List, Deborah A.; Ballesteros, Jose M.; Goloshchapov, Andrey V.; Chalupa, Leo M.; Chapman, Barbara

    2011-01-01

    Mice lacking expression of the ß2 subunit of the neuronal nicotinic acetylcholine receptor (CHRNB2) display abnormal retinal waves and a dispersed projection of retinal ganglion cell (RGC) axons to their dorsal lateral geniculate nuclei (dLGNs). Transcriptomes of LGN tissue from two independently generated Chrnb2−/− mutants and from wildtype mice were obtained at postnatal day 4 (P4), during the normal period of segregation of eye-specific afferents to the LGN. Microarray analysis reveals reduced expression of genes located on the cell membrane or in extracellular space, and of genes active in cell adhesion and calcium signaling. In particular, mRNA for cadherin 1 (Cdh1), a known axon growth regulator, is reduced to nearly undetectable levels in the LGN of P4 mutant mice and Lypd2 mRNA is similarly suppressed. Similar analysis of retinal tissue shows increased expression of crumbs 1 (Crb1) and chemokine (C-C motif) ligand 21 (Ccl21) mRNAs in Chrnb2−/− mutant animals. Mutations in these genes are associated with retinal neuronal degeneration. The retinas of Chrnb2−/− mutants are normal in appearance, but the increased expression of these genes may also be involved in the abnormal projection patterns of RGC to the LGN. These data may provide the tools to distinguish the interplay between neural activity and molecular expression. Finally, comparison of the transcriptomes of the two different Chrnb2−/− mutant strains reveals the effects of genetic background upon gene expression. PMID:21547082

  2. Constitutive expression of the tzs gene from Agrobacterium tumefaciens virG mutant strains is responsible for improved transgenic plant regeneration in cotton meristem transformation.

    PubMed

    Ye, Xudong; Chen, Yurong; Wan, Yuechun; Hong, Yun-Jeong; Ruebelt, Martin C; Gilbertson, Larry A

    2016-03-01

    KEY MESSAGE : virG mutant strains of a nopaline type of Agrobacterium tumefaciens increase the transformation frequency in cotton meristem transformation. Constitutive cytokinin expression from the tzs gene in the virG mutant strains is responsible for the improvement. Strains of Agrobacterium tumefaciens were tested for their ability to improve cotton meristem transformation frequency. Two disarmed A. tumefaciens nopaline strains with either a virGN54D constitutively active mutation or virGI77V hypersensitive induction mutation significantly increased the transformation frequency in a cotton meristem transformation system. The virG mutant strains resulted in greener explants after three days of co-culture in the presence of light, which could be attributed to a cytokinin effect of the mutants. A tzs knockout strain of virGI77V mutant showed more elongated, less green explants and decreased cotton transformation frequency, as compared to a wild type parental strain, suggesting that expression of the tzs gene is required for transformation frequency improvement in cotton meristem transformation. In vitro cytokinin levels in culture media were tenfold higher in the virGN54D strain, and approximately 30-fold higher in the virGI77V strain, in the absence of acetosyringone induction, compared to the wild type strain. The cytokinin level in the virGN54D strain is further increased upon acetosyringone induction, while the cytokinin level in the virGI77V mutant is decreased by induction, suggesting that different tzs gene expression regulation mechanisms are present in the two virG mutant strains. Based on these data, we suggest that the increased cytokinin levels play a major role in increasing Agrobacterium attachment and stimulating localized division of the attached plant cells.

  3. GABA uptake in embryonic palate mesenchymal cells of two mouse strains.

    PubMed

    Wee, E L; Zimmerman, E F

    1985-12-01

    To obtain further evidence that the inhibitory neurotransmitter GABA functions in palate development, the presence of an active GABA uptake mechanism was sought using primary cultures of embryonic palate mesenchymal cells. Uptake was compared from cells of two inbred mouse strains in which the SWV strain shows greater sensitivity than the AJ strain to effects of GABA on palate morphogenesis and of diazepam in producing cleft palate. Palate cells were capable of accumulating [3H]GABA by saturable uptake mechanisms characteristic of a high and low affinity active transport as indicated by temperature, Na+ ion and carrier dependence as well as Km and Vmax values that were comparable to other biological systems. The Vmax of the high-affinity uptake system from cells of the SWV strain was 1.8 fold higher than that of the AJ. GABA uptake was also observed in fibroblasts from various sources including embryonic mouse limb cells, human skin fibroblasts and 3T3 cells. When active GABA uptake was measured in skin fibroblasts from the mouse SWV and AJ strains, the rate of uptake from SWV cells under high affinity conditions was also 1.8 fold greater than in AJ cells. Thus active GABA uptake appears to be genetically regulated in non-neural cells which may contribute to differential responses to GABA.

  4. A mechanism to account for mouse strain variation in resistance to the larval cestode, Taenia taeniaeformis.

    PubMed Central

    Mitchell, G F; Rajasekariah, G R; Rickard, M D

    1980-01-01

    Mice of various inbred strains differ markedly in resistance to first infection with Taenia taeniaeformis. Hypothymic nude mice of relatively resistant (e.g. BALB/c) and relatively susceptible (e.g. CBA/H) genotypes are highly susceptible but both can be protected against infection by injection of serum from infected mice. Using differential pH elution of "immune serum" from protein A-Sepharose, evidence was obtained that a combination of the pH 6 eluate (enriched for IgG1 molecules) plus the pH 3 or 4 eluate (enriched for IgG2 molecules) was more effective than either eluate alone at transferring protection to nude mice. By using whole serum transfer techniques, the rate of appearance of "host protective serum activity" (presumably antibody) was shown to be increased in genetically resistant versus susceptible mouse strains. It is suggested that, in relatively resistant mouse strains, host protective antibodies prejudice the establishment (or subsequent survival) of larvae prior to the full expression of protective mechanisms in the establishing larvae. In keeping with a host-protective effect of an accelerated immune response early in infection, a high dose challenge with eggs actually resulted in lower infection levels in genetically resistant mouse strains such as BALB/c and C57B1/6. The proposed mechanism of immunologically mediated, genetically based variation in susceptibility to T. taeniaeformis should not influence the effectiveness of a model vaccine against first infection in all strains of mice. PMID:7380476

  5. Successful mouse cloning of an outbred strain by trichostatin A treatment after somatic nuclear transfer.

    PubMed

    Kishigami, Satoshi; Bui, Hong-Thuy; Wakayama, Sayaka; Tokunaga, Kenzo; Van Thuan, Nguyen; Hikichi, Takafusa; Mizutani, Eiji; Ohta, Hiroshi; Suetsugu, Rinako; Sata, Tetsutaro; Wakayama, Teruhiko

    2007-02-01

    Although the somatic cloning technique has been used for numerous applications and basic research of reprogramming in various species, extremely low success rates have plagued this technique for a decade. Further in mice, the "clonable" strains have been limited to mainly hybrid F1 strains such as B6D2F1. Recently, we established a new efficient cloning technique using trichostatin A (TSA) which leads to a 2-5 fold increase in success rates for mouse cloning of B6D2F1 cumulus cells. To further test the validity of this TSA cloning technique, we tried to clone the adult ICR mouse, an outbred strain, which has never been directly cloned before. Only when TSA was used did we obtain both male and female cloned mice from cumulus and fibroblast cells of adult ICR mice with 4-5% success rates, which is comparable to 5-7% of B6D2F1. Thus, the TSA treatment is the first cloning technique to allow us to successfully clone outbred mice, demonstrating that this technique not only improves the success rates of cloning from hybrid strains, but also enables mouse cloning from normally "unclonable" strains.

  6. A mouse muscle-adapted enterovirus 71 strain with increased virulence in mice.

    PubMed

    Wang, Wei; Duo, Jianying; Liu, Jiangning; Ma, Chunmei; Zhang, Lianfeng; Wei, Qiang; Qin, Chuan

    2011-09-01

    Enterovirus 71 (EV71) infections can usually cause epidemic hand, foot, and mouth disease (HFMD), and occasionally lead to aseptic meningitis, encephalitis, and polio-like illness. Skeletal muscles have been thought to be crucial for the pathogenesis of EV71-related diseases. However, little is known about the virulence of mouse muscle-adapted EV71. The EV71 0805 were subjected to four passages in the mouse muscle to generate a mouse-adapted EV71 strain of 0805a. In comparison with the parental EV71 0805, the mouse muscle-adapted EV71 0805a displayed stronger cytotoxicity against Rhabdomyosarcoma (RD) cells and more efficient replication in RD cells. Furthermore, infection with the EV71 0805a significantly inhibited the gain of body weight, accompanied by increased muscle virus load and multiple tissue distribution in the infected mouse. Histological examinations indicated that infection with the EV71 0805 did not cause obvious pathogenic lesions in mice, while infection with the muscle-adapted 0805a resulted in severe necrotizing myositis in the skeletal and cardio muscles, and intestinitis in mice on day 5 post infection. Further analysis revealed many mutations in different regions of the genome of mouse muscle-adapted virus. Collectively, these data demonstrated the mouse muscle-adapted EV71 0805a with increased virulence in mice.

  7. [Analysis of the structure and expression of the DIP1 gene in Drosophila melanogaster strains mutant for the flamenco gene].

    PubMed

    Nefedova, L N; Potanova, M V; Romanova, N I; Kim, A I

    2009-02-01

    DIP1 gene transcription was analyzed with the use of RT-PCR in three Drosophila melanogaster strains with the flamenco- phenotype (flam(SS), flam(MS), and flam(Ore)) and in one flamenco+ strain at the stages of embryos (0-24 h), third-instar larvae, and adult flies. The mutant strains flam(SS) and flam(Ore) lack an active copy of transposon gypsy. Theflam(MS) strain was obtained by introducing an active copy of gypsy in flies of theflam(SS) strain and is characterized by a high rate of gypsy transpositions. The experiments showed that at least five forms of DIP1 gene transcripts are produced. The form of cDNA corresponding to CDS DIP1-d was discovered only in embryos. It was found that DIP1 gene transcription depends on the age of flies: at the larval stage the level of transcription is significantly reduced. However, no reduction of gene transcription is observed in theflam(Ore) strain. These results suggest that the flamenco- phenotype may be associated with an alteration of DIP1 gene transcription, as in differentflamenco- strains the DIP1 gene expression is changed differently.

  8. Basso Mouse Scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains.

    PubMed

    Basso, D Michele; Fisher, Lesley C; Anderson, Aileen J; Jakeman, Lyn B; McTigue, Dana M; Popovich, Phillip G

    2006-05-01

    Genetically engineered mice are used extensively to examine molecular responses to spinal cord injury (SCI). Inherent strain differences may confound behavioral outcomes; therefore, behavioral characterization of several strains after SCI is warranted. The Basso, Beattie, Bresnahan Locomotor Rating Scale (BBB) for rats has been widely used for SCI mice, but may not accurately reflect their unique recovery pattern. This study's purpose was to develop a valid locomotor rating scale for mice and to identify strain differences in locomotor recovery after SCI. We examined C57BL/6, C57BL/10, B10.PL, BALB/c, and C57BL/6x129S6 F1 strains for 42 days after mild, moderate, and severe contusive SCI or transection of the mid thoracic spinal cord. Contusions were created using the Ohio State University electromagnetic SCI device which is a displacement-driven model, and the Infinite Horizon device, which is a force-driven model. Attributes and rankings for the Basso Mouse Scale for Locomotion (BMS) were determined from frequency analyses of seven locomotor categories. Mouse recovery differed from rats for coordination, paw position and trunk instability. Disagreement occurred across six expert raters using BBB (p < 0.05) but not BMS to assess the same mice. BMS detected significant differences in locomotor outcomes between severe contusion and transection (p < 0.05) and SCI severity gradations resulting from displacement variations of only 0.1 mm (p < 0.05). BMS demonstrated significant face, predictive and concurrent validity. Novice BMS raters with training scored within 0.5 points of experts and demonstrated high reliability (0.92-0.99). The BMS is a sensitive, valid and reliable locomotor measure in SCI mice. BMS revealed significantly higher recovery in C57BL/10, B10.PL and F1 than the C57BL/6 and BALB/c strains after moderate SCI (p < 0.05). The differing behavioral response to SCI suggests inherent genetic factors significantly impact locomotor recovery and must be

  9. A live attenuated strain of Yersinia pestis ΔyscB provides protection against bubonic and pneumonic plagues in mouse model.

    PubMed

    Zhang, Xuecan; Qi, Zhizhen; Du, Zongmin; Bi, Yujing; Zhang, Qingwen; Tan, Yafang; Yang, Huiying; Xin, Youquan; Yang, Ruifu; Wang, Xiaoyi

    2013-05-24

    To develop a safe and effective live plague vaccine, the ΔyscB mutant was constructed based on Yersinia pestis biovar Microtus strain 201 that is avirulent to humans, but virulent to mice. The virulence, immunogenicity and protective efficacy of the ΔyscB mutant were evaluated in this study. The results showed that the ΔyscB mutant was severely attenuated, elicited a higher F1-specific antibody titer and provided protective efficacy against bubonic and pneumonic plague in mouse model. The ΔyscB mutant could induce the secretion of both Th1-associated cytokines (IFN-γ, IL-2 and TNF-α) and Th2-associated cytokines (IL-4 and IL-10). Taken together, the ΔyscB mutant represented a potential vaccine candidate based on its ability to generate strong humoral and cell-mediated immune responses and to provide good protection against both subcutaneous and intranasal Y. pestis challenge. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Cyclic loading increases friction and changes cartilage surface integrity in lubricin-mutant mouse knees

    PubMed Central

    Drewniak, Elizabeth I; Jay, Gregory D; Fleming, Braden C; Zhang, Ling; Warman, Matthew L; Crisco, Joseph J

    2012-01-01

    Objective To investigate the effects of lubricin gene dosage and cyclic loading on whole joint coefficient of friction and articular cartilage surface integrity in mouse knee joints. Methods Joints from mice with 2 (Prg4+/+), 1 (Prg4+/−), or no (Prg4−/−) functioning lubricin alleles were subjected to 26 hours of cyclic loading using a custom-built pendulum. Coefficient of friction values were measured at multiple time points. Contralateral control joints were left unloaded. Following testing, joints were examined for histologic evidence of damage and cell viability. Results At baseline, the coefficient of friction values in Prg4−/− mice were significantly higher than those in Prg4+/+ and Prg4+/− mice (P < 0.001). Cyclic loading continuously increased the coefficient of friction in Prg4−/− mouse joints. In contrast, Prg4+/− and Prg4+/+ mouse joints had no coefficient of friction increases during the first 4 hours of loading. After 26 hours of loading, joints from all genotypes had increased coefficient of friction values compared to baseline and unloaded controls. Significantly greater increases occurred in Prg4−/− and Prg4+/− mouse joints compared to Prg4+/+ mouse joints. The coefficient of friction values were not significantly associated with histologic evidence of damage or loss of cell viability. Conclusion Our findings indicate that mice lacking lubricin have increased baseline coefficient of friction values and are not protected against further increases caused by loading. Prg4+/− mice are indistinguishable from Prg4+/+ mice at baseline, but have significantly greater coefficient of friction values following 26 hours of loading. Lubricin dosage affects joint properties during loading, and may have clinical implications in patients for whom injury or illness alters lubricin abundance. PMID:21905020

  11. Cyclic loading increases friction and changes cartilage surface integrity in lubricin-mutant mouse knees.

    PubMed

    Drewniak, Elizabeth I; Jay, Gregory D; Fleming, Braden C; Zhang, Ling; Warman, Matthew L; Crisco, Joseph J

    2012-02-01

    To investigate the effects of lubricin gene dosage and cyclic loading on whole joint coefficient of friction and articular cartilage surface integrity in mouse knee joints. Joints from mice with 2 (Prg4(+/+)), 1 (Prg4(+/-)), or no (Prg4(-/-)) functioning lubricin alleles were subjected to 26 hours of cyclic loading using a custom-built pendulum. Coefficient of friction values were measured at multiple time points. Contralateral control joints were left unloaded. Following testing, joints were examined for histologic evidence of damage and cell viability. At baseline, the coefficient of friction values in Prg4(-/-) mice were significantly higher than those in Prg4(+/+) and Prg4(+/-) mice (P < 0.001). Cyclic loading continuously increased the coefficient of friction in Prg4(-/-) mouse joints. In contrast, Prg4(+/-) and Prg4(+/+) mouse joints had no coefficient of friction increases during the first 4 hours of loading. After 26 hours of loading, joints from all genotypes had increased coefficient of friction values compared to baseline and unloaded controls. Significantly greater increases occurred in Prg4(-/-) and Prg4(+/-) mouse joints compared to Prg4(+/+) mouse joints. The coefficient of friction values were not significantly associated with histologic evidence of damage or loss of cell viability. Our findings indicate that mice lacking lubricin have increased baseline coefficient of friction values and are not protected against further increases caused by loading. Prg4(+/-) mice are indistinguishable from Prg4(+/+) mice at baseline, but have significantly greater coefficient of friction values following 26 hours of loading. Lubricin dosage affects joint properties during loading, and may have clinical implications in patients for whom injury or illness alters lubricin abundance. Copyright © 2012 by the American College of Rheumatology.

  12. Susceptibility to quantum dot induced lung inflammation differs widely among the Collaborative Cross founder mouse strains

    PubMed Central

    Scoville, David K.; White, Collin C.; Botta, Dianne; McConnachie, Lisa A.; Zadworny, Megan E.; Schmuck, Stefanie C.; Hu, Xiaoge; Gao, Xiaohu; Yu, Jianbo; Dills, Russell L.; Sheppard, Lianne; Delaney, Martha A.; Griffith, William C.; Beyer, Richard P.; Zangar, Richard C.; Pounds, Joel G.; Faustman, Elaine M.; Kavanagh, Terrance J.

    2015-01-01

    Quantum dots (QDs) are engineered semiconductor nanoparticles with unique physicochemical properties that make them potentially useful in clinical, research and industrial settings. However, a growing body of evidence indicates that like other engineered nanomaterials, QDs have the potential to be respiratory hazards, especially in the context of the manufacture of QDs and products containing them, as well as exposures to consumers using these products. The overall goal of this study was to investigate the role of mouse strain in determining susceptibility to QD-induced pulmonary inflammation and toxicity. Male mice from 8 genetically diverse inbred strains (the Collaborative Cross founder strains) were exposed to CdSe–ZnS core–shell QDs stabilized with an amphiphilic polymer. QD treatment resulted in significant increases in the percentage of neutrophils and levels of cytokines present in bronchoalveolar lavage fluid (BALF) obtained from NOD/ShiLtJ and NZO/HlLtJ mice relative to their saline (Sal) treated controls. Cadmium measurements in lung tissue indicated strain-dependent differences in disposition of QDs in the lung. Total glutathione levels in lung tissue were significantly correlated with percent neutrophils in BALF as well as with lung tissue Cd levels. Our findings indicate that QD-induced acute lung inflammation is mouse strain dependent, that it is heritable, and that the choice of mouse strain is an important consideration in planning QD toxicity studies. These data also suggest that formal genetic analyses using additional strains or recombinant inbred strains from these mice could be useful for discovering potential QD-induced inflammation susceptibility loci. PMID:26476918

  13. A new model for non-typeable Haemophilus influenzae middle ear infection in the Junbo mutant mouse

    PubMed Central

    Hood, Derek; Moxon, Richard; Purnell, Tom; Richter, Caroline; Williams, Debbie; Azar, Ali; Crompton, Michael; Wells, Sara; Fray, Martin; Brown, Steve D. M.; Cheeseman, Michael T.

    2016-01-01

    ABSTRACT Acute otitis media, inflammation of the middle ear, is the most common bacterial infection in children and, as a consequence, is the most common reason for antimicrobial prescription to this age group. There is currently no effective vaccine for the principal pathogen involved, non-typeable Haemophilus influenzae (NTHi). The most frequently used and widely accepted experimental animal model of middle ear infection is in chinchillas, but mice and gerbils have also been used. We have established a robust model of middle ear infection by NTHi in the Junbo mouse, a mutant mouse line that spontaneously develops chronic middle ear inflammation in specific pathogen-free conditions. The heterozygote Junbo mouse (Jbo/+) bears a mutation in a gene (Evi1, also known as Mecom) that plays a role in host innate immune regulation; pre-existing middle ear inflammation promotes NTHi middle ear infection. A single intranasal inoculation with NTHi produces high rates (up to 90%) of middle ear infection and bacterial titres (104-105 colony-forming units/µl) in bulla fluids. Bacteria are cleared from the majority of middle ears between day 21 and 35 post-inoculation but remain in approximately 20% of middle ears at least up to day 56 post-infection. The expression of Toll-like receptor-dependent response cytokine genes is elevated in the middle ear of the Jbo/+ mouse following NTHi infection. The translational potential of the Junbo model for studying antimicrobial intervention regimens was shown using a 3 day course of azithromycin to clear NTHi infection, and its potential use in vaccine development studies was shown by demonstrating protection in mice immunized with killed homologous, but not heterologous, NTHi bacteria. PMID:26611891

  14. A new model for non-typeable Haemophilus influenzae middle ear infection in the Junbo mutant mouse.

    PubMed

    Hood, Derek; Moxon, Richard; Purnell, Tom; Richter, Caroline; Williams, Debbie; Azar, Ali; Crompton, Michael; Wells, Sara; Fray, Martin; Brown, Steve D M; Cheeseman, Michael T

    2016-01-01

    Acute otitis media, inflammation of the middle ear, is the most common bacterial infection in children and, as a consequence, is the most common reason for antimicrobial prescription to this age group. There is currently no effective vaccine for the principal pathogen involved, non-typeable Haemophilus influenzae (NTHi). The most frequently used and widely accepted experimental animal model of middle ear infection is in chinchillas, but mice and gerbils have also been used. We have established a robust model of middle ear infection by NTHi in the Junbo mouse, a mutant mouse line that spontaneously develops chronic middle ear inflammation in specific pathogen-free conditions. The heterozygote Junbo mouse (Jbo/+) bears a mutation in a gene (Evi1, also known as Mecom) that plays a role in host innate immune regulation; pre-existing middle ear inflammation promotes NTHi middle ear infection. A single intranasal inoculation with NTHi produces high rates (up to 90%) of middle ear infection and bacterial titres (10(4)-10(5) colony-forming units/µl) in bulla fluids. Bacteria are cleared from the majority of middle ears between day 21 and 35 post-inoculation but remain in approximately 20% of middle ears at least up to day 56 post-infection. The expression of Toll-like receptor-dependent response cytokine genes is elevated in the middle ear of the Jbo/+ mouse following NTHi infection. The translational potential of the Junbo model for studying antimicrobial intervention regimens was shown using a 3 day course of azithromycin to clear NTHi infection, and its potential use in vaccine development studies was shown by demonstrating protection in mice immunized with killed homologous, but not heterologous, NTHi bacteria.

  15. Potentiometric analysis of the cytochromes of an Escherichia coli mutant strain lacking the cytochrome d terminal oxidase complex.

    PubMed Central

    Lorence, R M; Green, G N; Gennis, R B

    1984-01-01

    A combination of potentiometric analysis and electrochemically poised low-temperature difference spectroscopy was used to examine a mutant strain of Escherichia coli that was previously shown by immunological criteria to be lacking the cytochrome d terminal oxidase. It was shown that this strain is missing cytochromes d, a1, and b558 and that the cytochrome composition of the mutant is similar to that of the wild-type strain grown under conditions of high aeration. The data indicate that the high-aeration branch of the respiratory chain contains two cytochrome components, b556 (midpoint potential [Em] = +35 mV) and cytochrome o (Em = +165 mV). The latter component binds to CO and apparently has a reduced-minus-oxidized split-alpha band with peaks at 555 and 562 nm. When the wild-type strain was grown under conditions of low aeration, the components of the cytochrome d terminal oxidase complex were observed: cytochrome d (Em = +260 mV), cytochrome a1 (Em = +150 mV) and cytochrome b558 (Em = +180 mV). All cytochromes appeared to undergo simple one-electron oxidation-reduction reactions. In the absence of CO, cytochromes b558 and o have nearly the same Em values. In the presence of CO, the Em of cytochrome o is raised, thus allowing cytochromes b558 and o to be individually quantitated by potentiometric analysis when they are both present. PMID:6317644

  16. Chromosomal changes in high- and low-invasive mouse lung adenocarcinoma cell strains derived from early passage mouse lung adenocarcinoma cell strains

    SciTech Connect

    Sargent, Linda M. Ensell, Mang X.; Ostvold, Anne-Carine; Baldwin, Kimberly T.; Kashon, Michael L.; Lowry, David T.; Senft, Jamie R.; Jefferson, Amy M.; Johnson, Robert C.; Li Zhi; Tyson, Frederick L.; Reynolds, Steven H.

    2008-11-15

    The incidence of adenocarcinoma of the lung is increasing in the United States, however, the difficulties in obtaining lung cancer families and representative samples of early to late stages of the disease have lead to the study of mouse models for lung cancer. We used Spectral Karyotyping (SKY), mapping with fluorescently labeled genomic clones (FISH), comparative genomic hybridization (CGH) arrays, gene expression arrays, Western immunoblot and real time polymerase chain reaction (PCR) to analyze nine pairs of high-invasive and low-invasive tumor cell strains derived from early passage mouse lung adenocarcinoma cells to detect molecular changes associated with tumor invasion. The duplication of chromosomes 1 and 15 and deletion of chromosome 8 were significantly associated with a high-invasive phenotype. The duplication of chromosome 1 at band C4 and E1/2-H1 were the most significant chromosomal changes in the high-invasive cell strains. Mapping with FISH and CGH array further narrowed the minimum region of duplication of chromosome 1 to 71-82 centimorgans (cM). Expression array analysis and confirmation by real time PCR demonstrated increased expression of COX-2, Translin (TB-RBP), DYRK3, NUCKS and Tubulin-{alpha}4 genes in the high-invasive cell strains. Elevated expression and copy number of these genes, which are involved in inflammation, cell movement, proliferation, inhibition of apoptosis and telomere elongation, were associated with an invasive phenotype. Similar linkage groups are altered in invasive human lung adenocarcinoma, implying that the mouse is a valid genetic model for the study of the progression of human lung adenocarcinoma.

  17. Cox4i2, Ifit2, and Prdm11 Mutant Mice: Effective Selection of Genes Predisposing to an Altered Airway Inflammatory Response from a Large Compendium of Mutant Mouse Lines.

    PubMed

    Horsch, Marion; Aguilar-Pimentel, Juan Antonio; Bönisch, Clemens; Côme, Christophe; Kolster-Fog, Cathrine; Jensen, Klaus T; Lund, Anders H; Lee, Icksoo; Grossman, Lawrence I; Sinkler, Christopher; Hüttemann, Maik; Bohn, Erwin; Fuchs, Helmut; Ollert, Markus; Gailus-Durner, Valérie; de Angelis, Martin Hrabĕ; Beckers, Johannes

    2015-01-01

    We established a selection strategy to identify new models for an altered airway inflammatory response from a large compendium of mutant mouse lines that were systemically phenotyped in the German Mouse Clinic (GMC). As selection criteria we included published gene functional data, as well as immunological and transcriptome data from GMC phenotyping screens under standard conditions. Applying these criteria we identified a few from several hundred mutant mouse lines and further characterized the Cox4i2tm1Hutt, Ifit2tm1.1Ebsb, and Prdm11tm1.1ahl lines following ovalbumin (OVA) sensitization and repeated OVA airway challenge. Challenged Prdm11tm1.1ahl mice exhibited changes in B cell counts, CD4+ T cell counts, and in the number of neutrophils in bronchoalveolar lavages, whereas challenged Ifit2tm1.1Ebsb mice displayed alterations in plasma IgE, IgG1, IgG3, and IgM levels compared to the challenged wild type littermates. In contrast, challenged Cox4i2tm1Hutt mutant mice did not show alterations in the humoral or cellular immune response compared to challenged wild type mice. Transcriptome analyses from lungs of the challenged mutant mouse lines showed extensive changes in gene expression in Prdm11tm1.1ahl mice. Functional annotations of regulated genes of all three mutant mouse lines were primarily related to inflammation and airway smooth muscle (ASM) remodeling. We were thus able to define an effective selection strategy to identify new candidate genes for the predisposition to an altered airway inflammatory response under OVA challenge conditions. Similar selection strategies may be used for the analysis of additional genotype-envirotype interactions for other diseases.

  18. Cox4i2, Ifit2, and Prdm11 Mutant Mice: Effective Selection of Genes Predisposing to an Altered Airway Inflammatory Response from a Large Compendium of Mutant Mouse Lines

    PubMed Central

    Bönisch, Clemens; Côme, Christophe; Kolster-Fog, Cathrine; Jensen, Klaus T.; Lund, Anders H.; Lee, Icksoo; Grossman, Lawrence I.; Sinkler, Christopher; Hüttemann, Maik; Bohn, Erwin; Fuchs, Helmut; Ollert, Markus; Gailus-Durner, Valérie; Hrabĕ de Angelis, Martin; Beckers, Johannes

    2015-01-01

    We established a selection strategy to identify new models for an altered airway inflammatory response from a large compendium of mutant mouse lines that were systemically phenotyped in the German Mouse Clinic (GMC). As selection criteria we included published gene functional data, as well as immunological and transcriptome data from GMC phenotyping screens under standard conditions. Applying these criteria we identified a few from several hundred mutant mouse lines and further characterized the Cox4i2tm1Hutt, Ifit2tm1.1Ebsb, and Prdm11tm1.1ahl lines following ovalbumin (OVA) sensitization and repeated OVA airway challenge. Challenged Prdm11tm1.1ahl mice exhibited changes in B cell counts, CD4+ T cell counts, and in the number of neutrophils in bronchoalveolar lavages, whereas challenged Ifit2tm1.1Ebsb mice displayed alterations in plasma IgE, IgG1, IgG3, and IgM levels compared to the challenged wild type littermates. In contrast, challenged Cox4i2tm1Hutt mutant mice did not show alterations in the humoral or cellular immune response compared to challenged wild type mice. Transcriptome analyses from lungs of the challenged mutant mouse lines showed extensive changes in gene expression in Prdm11tm1.1ahl mice. Functional annotations of regulated genes of all three mutant mouse lines were primarily related to inflammation and airway smooth muscle (ASM) remodeling. We were thus able to define an effective selection strategy to identify new candidate genes for the predisposition to an altered airway inflammatory response under OVA challenge conditions. Similar selection strategies may be used for the analysis of additional genotype – envirotype interactions for other diseases. PMID:26263558

  19. Altered striatal function in a mutant mouse lacking D1A dopamine receptors.

    PubMed Central

    Drago, J; Gerfen, C R; Lachowicz, J E; Steiner, H; Hollon, T R; Love, P E; Ooi, G T; Grinberg, A; Lee, E J; Huang, S P

    1994-01-01

    Of the five known dopamine receptors, D1A and D2 represent the major subtypes expressed in the striatum of the adult brain. Within the striatum, these two subtypes are differentially distributed in the two main neuronal populations that provide direct and indirect pathways between the striatum and the output nuclei of the basal ganglia. Movement disorders, including Parkinson disease and various dystonias, are thought to result from imbalanced activity in these pathways. Dopamine regulates movement through its differential effects on D1A receptors expressed by direct output neurons and D2 receptors expressed by indirect output neurons. To further examine the interaction of D1A and D2 neuronal pathways in the striatum, we used homologous recombination to generate mutant mice lacking functional D1A receptors (D1A-/-). D1A-/- mutants are growth retarded and die shortly after weaning age unless their diet is supplemented with hydrated food. With such treatment the mice gain weight and survive to adulthood. Neurologically, D1A-/- mice exhibit normal coordination and locomotion, although they display a significant decrease in rearing behavior. Examination of the striatum revealed changes associated with the altered phenotype of these mutants. D1A receptor binding was absent in striatal sections from D1A-/- mice. Striatal neurons normally expressing functional D1A receptors are formed and persist in adult homozygous mutants. Moreover, substance P mRNA, which is colocalized specifically in striatal neurons with D1A receptors, is expressed at a reduced level. In contrast, levels of enkephalin mRNA, which is expressed in striatal neurons with D2 receptors, are unaffected. These findings show that D1A-/- mice exhibit selective functional alterations in the striatal neurons giving rise to the direct striatal output pathway. Images Fig. 2 Fig. 4 PMID:7809078

  20. Functional genomics screening utilizing mutant mouse embryonic stem cells identifies novel radiation-response genes.

    PubMed

    Loesch, Kimberly; Galaviz, Stacy; Hamoui, Zaher; Clanton, Ryan; Akabani, Gamal; Deveau, Michael; DeJesus, Michael; Ioerger, Thomas; Sacchettini, James C; Wallis, Deeann

    2015-01-01

    Elucidating the genetic determinants of radiation response is crucial to optimizing and individualizing radiotherapy for cancer patients. In order to identify genes that are involved in enhanced sensitivity or resistance to radiation, a library of stable mutant murine embryonic stem cells (ESCs), each with a defined mutation, was screened for cell viability and gene expression in response to radiation exposure. We focused on a cancer-relevant subset of over 500 mutant ESC lines. We identified 13 genes; 7 genes that have been previously implicated in radiation response and 6 other genes that have never been implicated in radiation response. After screening, proteomic analysis showed enrichment for genes involved in cellular component disassembly (e.g. Dstn and Pex14) and regulation of growth (e.g. Adnp2, Epc1, and Ing4). Overall, the best targets with the highest potential for sensitizing cancer cells to radiation were Dstn and Map2k6, and the best targets for enhancing resistance to radiation were Iqgap and Vcan. Hence, we provide compelling evidence that screening mutant ESCs is a powerful approach to identify genes that alter radiation response. Ultimately, this knowledge can be used to define genetic variants or therapeutic targets that will enhance clinical therapy.

  1. Bilateral subcortical heterotopia with partial callosal agenesis in a mouse mutant.

    PubMed

    Rosen, G D; Azoulay, N G; Griffin, E G; Newbury, A; Koganti, L; Fujisaki, N; Takahashi, E; Grant, P E; Truong, D T; Fitch, R H; Lu, L; Williams, R W

    2013-04-01

    Cognition and behavior depend on the precise placement and interconnection of complex ensembles of neurons in cerebral cortex. Mutations that disrupt migration of immature neurons from the ventricular zone to the cortical plate have provided major insight into mechanisms of brain development and disease. We have discovered a new and highly penetrant spontaneous mutation that leads to large nodular bilateral subcortical heterotopias with partial callosal agenesis. The mutant phenotype was first detected in a colony of fully inbred BXD29 mice already known to harbor a mutation in Tlr4. Neurons confined to the heterotopias are mainly born in midgestation to late gestation and would normally have migrated into layers 2-4 of overlying neocortex. Callosal cross-sectional area and fiber number are reduced up to 50% compared with coisogenic wildtype BXD29 substrain controls. Mutants have a pronounced and highly selective defect in rapid auditory processing. The segregation pattern of the mutant phenotype is most consistent with a two-locus autosomal recessive model, and selective genotyping definitively rules out the Tlr4 mutation as a cause. The discovery of a novel mutation with strong pleiotropic anatomical and behavioral effects provides an important new resource for dissecting molecular mechanisms and functional consequences of errors of neuronal migration.

  2. Cefoperazone-treated Mouse Model of Clinically-relevant Clostridium difficile Strain R20291

    PubMed Central

    Winston, Jenessa A.; Thanissery, Rajani; Montgomery, Stephanie A.; Theriot, Casey M.

    2017-01-01

    Clostridium difficile is an anaerobic, gram-positive, spore-forming enteric pathogen that is associated with increasing morbidity and mortality and consequently poses an urgent threat to public health. Recurrence of a C. difficile infection (CDI) after successful treatment with antibiotics is high, occurring in 20–30% of patients, thus necessitating the discovery of novel therapeutics against this pathogen. Current animal models of CDI result in high mortality rates and thus do not approximate the chronic, insidious disease manifestations seen in humans with CDI. To evaluate therapeutics against C. difficile, a mouse model approximating human disease utilizing a clinically-relevant strain is needed. This protocol outlines the cefoperazone mouse model of CDI using a clinically-relevant and genetically-tractable strain, R20291. Techniques for clinical disease monitoring, C. difficile bacterial enumeration, toxin cytotoxicity, and histopathological changes throughout CDI in a mouse model are detailed in the protocol. Compared to other mouse models of CDI, this model is not uniformly lethal at the dose administered, allowing for the observation of a prolonged clinical course of infection concordant with the human disease. Therefore, this cefoperazone mouse model of CDI proves a valuable experimental platform to assess the effects of novel therapeutics on the amelioration of clinical disease and on the restoration of colonization resistance against C. difficile. PMID:28060346

  3. Neurotoxicity of chlorpromazine and modulation by amantadine as a function of mouse strain.

    PubMed

    Messiha, F S

    1991-01-01

    The separate and combined effects of successive administration of amantadine, 100 mg/kg, i.p., and chlorpromazine, 0.2 mg/kg, i.p., on motor activity and whole brain levels of certain biogenic amines and major metabolites were studied in four strains of mice. These were the albino ICR, the inbred BALB/C, C57BL/6 and the hybrid CDF-I mice. Amantadine produced a strain-dependent behavioral stimulation subsequent the fourth dose. This was apparent in ICR and C57BL/6 mouse strains and was followed by a behavioral depression phase occurring during the night in C57BL/6 mice which was antagonized by chlorpromazine. Administration of chlorpromazine alone affected only CDF-1 mouse mobility. Chlorpromazine reduced only ICR mouse brain dopamine without concomitant changes in major acid metabolites. Repeated administration of amantadine prior to chlorpromazine negated this effect. Chlorpromazine enhancement of BALB/C brain serotonin and 5-hydroxyindoleacetic acid was antagonised by pretreatment with amantadine. This antagonism was also evident in BALB/C mouse brain dihydroxyphenylacetic acid. The results suggest genotypic-dependent behavioral and cerebral effects by the drugs studied. The antagonism between amantadine and chlorpromazine on brain amines may explain the therapeutic efficacy of amantadine in modulating chlorpromazine-induced extrapyramidal disorders.

  4. The effect of Clostridium perfringens type C strain CN3685 and its isogenic beta toxin null mutant in goats.

    PubMed

    Garcia, J P; Beingesser, J; Fisher, D J; Sayeed, S; McClane, B A; Posthaus, H; Uzal, F A

    2012-06-15

    Clostridium perfringens type C is an important cause of enteritis and/or enterocolitis in several animal species, including pigs, sheep, goats, horses and humans. The disease is a classic enterotoxemia and the enteric lesions and associated systemic effects are thought to be caused primarily by beta toxin (CPB), one of two typing toxins produced by C. perfringens type C. This has been demonstrated recently by fulfilling molecular Koch's postulates in rabbits and mice. We present here an experimental study to fulfill these postulates in goats, a natural host of C. perfringens type C disease. Nine healthy male or female Anglo Nubian goat kids were inoculated with the virulent C. perfringens type C wild-type strain CN3685, an isogenic CPB null mutant or a strain where the cpb null mutation had been reversed. Three goats inoculated with the wild-type strain presented abdominal pain, hemorrhagic diarrhea, necrotizing enterocolitis, pulmonary edema, hydropericardium and death within 24h of inoculation. Two goats inoculated with the CPB null mutant and two goats inoculated with sterile culture media (negative controls) remained clinically healthy during 24h after inoculation and no gross or histological abnormalities were observed in the tissues of any of them. Reversal of the null mutation to partially restore CPB production also increased virulence; 2 goats inoculated with this reversed mutant presented clinical and pathological changes similar to those observed in goats inoculated with the wild-type strain, except that spontaneous death was not observed. These results indicate that CPB is required for C. perfringens type C to induce disease in goats, supporting a key role for this toxin in natural C. perfringens type C disease pathogenesis. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. The effect of Clostridium perfringens type C strain CN3685 and its isogenic beta toxin null mutant in goats

    PubMed Central

    Garcia, J. P.; Beingesser, J.; Fisher, D. J.; Sayeed, S.; McClane, B. A.; Posthaus, H.; Uzal, F. A.

    2012-01-01

    Clostridium perfringens type C is an important cause of enteritis and/or enterocolitis in several animal species, including pigs, sheep, goats, horses and humans. The disease is a classic enterotoxemia and the enteric lesions and associated systemic effects are thought to be caused primarily by beta toxin (CPB), one of two typing toxins produced by C. perfringens type C. This has been demonstrated recently by fulfilling molecular Koch’s postulates in rabbits and mice. We present here an experimental study to fulfill these postulates in goats, a natural host of C. perfringens type C disease. Nine healthy male or female Anglo Nubian goat kids were inoculated with the virulent C. perfringens type C wild-type strain CN3685, an isogenic CPB null mutant or a strain where the cpb null mutation had been reversed. Three goats inoculated with the wild-type strain presented abdominal pain, hemorrhagic diarrhea, necrotizing enterocolitis, pulmonary edema, hydropericardium and death within 24 h of inoculation. Two goats inoculated with the CPB null mutant and two goats inoculated with sterile culture media (negative controls) remained clinically healthy during 24 h after inoculation and no gross or histological abnormalities were observed in the tissues of any of them. Reversal of the null mutation to partially restore CPB production also increased virulence; 2 goats inoculated with this reversed mutant presented clinical and pathological changes similar to those observed in goats inoculated with the wild-type strain, except that spontaneous death was not observed. These results indicate that CPB is required for C. perfringens type C to induce disease in goats, supporting a key role for this toxin in natural C. perfringens type C disease pathogenesis. PMID:22296994

  6. Scleral Permeability Varies by Mouse Strain and Is Decreased by Chronic Experimental Glaucoma

    PubMed Central

    Pease, Mary E.; Oglesby, Ericka N.; Cone-Kimball, Elizabeth; Jefferys, Joan L.; Steinhart, Matthew R.; Kim, Anthony J.; Hanes, Justin; Quigley, Harry A.

    2014-01-01

    Purpose. To determine differences in scleral permeability, as measured by diffusion of macromolecules, by using fluorescence recovery after photobleaching (FRAP), with reference to differences by mouse strain, scleral region, and the effect of experimental glaucoma. Methods. In three mouse strains (B6, CD1, and B6 mice with mutation in collagen 8α2 [Aca23]), we used FRAP to measure the diffusion of fluorescein isothiocyanate–dextran, molecular weight 40 kDa, into a photobleached zone of sclera. Scleral regions near the optic nerve head (peripapillary) and two successively more anterior regions were compared. Sclera from mouse eyes subjected to chronically elevated intraocular pressure after bead injection into the anterior chamber were compared to fellow eye controls. FRAP data were compared against estimated retinal ganglion cell axon loss in glaucomatous eyes. Results. Diffusion rates of dextran molecules in the sclera were significantly greater in Aca23 and B6 mice than in CD1 mice in a multivariate model adjusted for region and axial length (P < 0.0001). Dextran diffusion significantly decreased in glaucomatous eyes, and the decline increased with greater axon loss (P = 0.0003, multivariable model). Peripapillary scleral permeability was higher in CD1 than B6 and Aca23 mice (P < 0.05, multivariable model, adjusted by Bonferroni). Conclusions. Measurement of the diffusion rates of dextran molecules in the sclera showed that glaucoma leads to decreased scleral permeability in all three mouse strains tested. Among mouse strains tested, those that were more susceptible to glaucomatous loss of retinal ganglion cells had a lower scleral permeability at baseline. PMID:24557355

  7. Flocculation characteristics of an isolated mutant flocculent Saccharomyces cerevisiae strain and its application for fuel ethanol production from kitchen refuse.

    PubMed

    Ma, Kedong; Wakisaka, Minato; Sakai, Kenji; Shirai, Yoshihito

    2009-04-01

    A stable mutant flocculent yeast strain of Saccharomyces cerevisiae KRM-1 was isolated during repeated-batch ethanol fermentation using kitchen refuse as the medium. The mechanism of flocculation and interaction with the medium was investigated. According to sugar inhibition assay, it was found that the mutant flocculent strain was a NewFlo phenotype. Flocculation was completely inhibited by protease, proteinase K and partially reduced by treatments with carbohydrate-hydrolyzing enzymes. Flocculation ability showed no difference for pH 3.0-6.0. Furthermore, the mutant flocculent yeast provided repeated-batch cultivations employing cell recycles by flocculation over 10 rounds of cultivation for the production of ethanol from kitchen refuse medium, resulting in relatively high productivity averaging 8.25 g/L/h over 10 batches and with a maximal of 10.08 g/L/h in the final batch. Cell recycle by flocculation was fast and convenient, and could therefore be applicable for industrial-scale ethanol production.

  8. Isolation of a cytochrome-deficient mutant strain of Sporomusa sphaeroides not capable of oxidizing methyl groups.

    PubMed Central

    Kamlage, B; Blaut, M

    1993-01-01

    The homoacetogenic anaerobic bacterium Sporomusa sphaeroides was mutagenized with UV light. Taking advantage of the ampicillin enrichment technique and a newly developed test for the detection of heme in bacterial colonies, the cytochrome-deficient mutant strain S. sphaeroides BK824 was isolated. In contrast to the wild type, this mutant strain failed to grow on betaine, betaine plus methanol, H2 plus CO2, and methanol plus CO2. Growth on betaine plus formate, betaine plus H2, betaine plus pyruvate, methanol plus H2 and CO2, and acetoin was not impaired. All enzymes of the Wood pathway as well as hydrogenase and carbon monoxide dehydrogenase were detectable at comparable activities in both the wild type and the cytochrome-deficient mutant. Labeling experiments with [14C]methanol demonstrated the inability of S. sphaeroides BK824 to oxidize methyl groups. The role of cytochromes in electron transport steps associated with the Wood pathway enzymes and their possible role in energy conservation during autotrophic growth in acetogens are discussed. PMID:8491723

  9. Deficits in adult neurogenesis, contextual fear conditioning, and spatial learning in a Gfap mutant mouse model of Alexander disease.

    PubMed

    Hagemann, Tracy L; Paylor, Richard; Messing, Albee

    2013-11-20

    Glial fibrillary acidic protein (GFAP) is the major intermediate filament of mature astrocytes in the mammalian CNS. Dominant gain of function mutations in GFAP lead to the fatal neurodegenerative disorder, Alexander disease (AxD), which is characterized by cytoplasmic protein aggregates known as Rosenthal fibers along with variable degrees of leukodystrophy and intellectual disability. The mechanisms by which mutant GFAP leads to these pleiotropic effects are unknown. In addition to astrocytes, GFAP is also expressed in other cell types, particularly neural stem cells that form the reservoir supporting adult neurogenesis in the hippocampal dentate gyrus and subventricular zone of the lateral ventricles. Here, we show that mouse models of AxD exhibit significant pathology in GFAP-positive radial glia-like cells in the dentate gyrus, and suffer from deficits in adult neurogenesis. In addition, they display impairments in contextual learning and spatial memory. This is the first demonstration of cognitive phenotypes in a model of primary astrocyte disease.

  10. A mouse-adapted enterovirus 71 strain causes neurological disease in mice after oral infection.

    PubMed

    Wang, Ya-Fang; Chou, Chun-Ting; Lei, Huan-Yao; Liu, Ching-Chuan; Wang, Shih-Min; Yan, Jing-Jou; Su, Ih-Jen; Wang, Jen-Reng; Yeh, Trai-Ming; Chen, Shun-Hua; Yu, Chun-Keung

    2004-08-01

    A mouse-adapted enterovirus 71 (EV71) strain with increased virulence in mice, MP4, was generated after four serial passages of the parental EV71 strain 4643 in mice. Strain MP4 exhibited a larger plaque size, grew more rapidly, and was more cytotoxic in vitro than strain 4643. Although strains 4643 and MP4 both induced apoptosis of SK-N-SH human neuroblastoma cells, MP4 was more virulent than 4643 in 1-day-old mice (50% lethal doses, 10(2) and 10(4) PFU/mouse, respectively). Strain MP4 (5 x 10(6) PFU/mouse), but not 4643, could orally infect 7-day-old mice, resulting in rear-limb paralysis followed by death 5 to 9 days after inoculation with the virus. Histopathologically, neuronal loss and apoptosis were evident in the spinal cords as well as the brain stems of the infected mice. The limb muscles displayed massive necrosis. There was early and transient virus replication in the intestines, whereas the spinal cord, brain, and muscle became the sites of viral replication during the late phase of the infection. Virus transmission occurred among infected and noninfected cagemates, as demonstrated by the occurrence of seroconversion and the presence of viable viruses in the stool samples of the latter. Protection against EV71 challenge was demonstrated following administration of hyperimmune serum 1 day after inoculation with the virus. Nucleotide sequence analysis of the genome of EV71 strain MP4 revealed four nucleotide changes on the 5' untranslated region, three on the VP2 region, and eight on the 2C region, resulting in one and four amino acid substitutions in the VP2 and 2C proteins, respectively.

  11. A Mouse-Adapted Enterovirus 71 Strain Causes Neurological Disease in Mice after Oral Infection

    PubMed Central

    Wang, Ya-Fang; Chou, Chun-Ting; Lei, Huan-Yao; Liu, Ching-Chuan; Wang, Shih-Min; Yan, Jing-Jou; Su, Ih-Jen; Wang, Jen-Reng; Yeh, Trai-Ming; Chen, Shun-Hua; Yu, Chun-Keung

    2004-01-01

    A mouse-adapted enterovirus 71 (EV71) strain with increased virulence in mice, MP4, was generated after four serial passages of the parental EV71 strain 4643 in mice. Strain MP4 exhibited a larger plaque size, grew more rapidly, and was more cytotoxic in vitro than strain 4643. Although strains 4643 and MP4 both induced apoptosis of SK-N-SH human neuroblastoma cells, MP4 was more virulent than 4643 in 1-day-old mice (50% lethal doses, 102 and 104 PFU/mouse, respectively). Strain MP4 (5 × 106 PFU/mouse), but not 4643, could orally infect 7-day-old mice, resulting in rear-limb paralysis followed by death 5 to 9 days after inoculation with the virus. Histopathologically, neuronal loss and apoptosis were evident in the spinal cords as well as the brain stems of the infected mice. The limb muscles displayed massive necrosis. There was early and transient virus replication in the intestines, whereas the spinal cord, brain, and muscle became the sites of viral replication during the late phase of the infection. Virus transmission occurred among infected and noninfected cagemates, as demonstrated by the occurrence of seroconversion and the presence of viable viruses in the stool samples of the latter. Protection against EV71 challenge was demonstrated following administration of hyperimmune serum 1 day after inoculation with the virus. Nucleotide sequence analysis of the genome of EV71 strain MP4 revealed four nucleotide changes on the 5′ untranslated region, three on the VP2 region, and eight on the 2C region, resulting in one and four amino acid substitutions in the VP2 and 2C proteins, respectively. PMID:15254164

  12. Tissue persistence and vaccine efficacy of tricarboxylic acid cycle and one-carbon metabolism mutant strains of Edwardsiella ictaluri.

    PubMed

    Dahal, Neeti; Abdelhamed, Hossam; Karsi, Attila; Lawrence, Mark L

    2014-06-30

    Edwardsiella ictaluri causes enteric septicemia in fish. Recently, we reported construction of E. ictaluri mutants with single and double gene deletions in tricarboxylic acid cycle (TCA) and one-carbon (C-1) metabolism. Here, we report the tissue persistence, virulence, and vaccine efficacy of TCA cycle (EiΔsdhC, EiΔfrdA, and EiΔmdh), C-1 metabolism (EiΔgcvP and EiΔglyA), and combination mutants (EiΔfrdAΔsdhC, EiΔgcvPΔsdhC, EiΔmdhΔsdhC, and EiΔgcvPΔglyA) in channel catfish. The tissue persistence study showed that EiΔsdhC, EiΔfrdA, EiΔfrdAΔsdhC, and EiΔgcvPΔsdhC were able to invade catfish and persist until 11 days post-infection. Vaccination of catfish fingerlings with all nine mutants provided significant (P<0.05) protection against subsequent challenge with the virulent parental strain. Vaccinated catfish fingerlings had 100% survival when subsequently challenged by immersion with wild-type E. ictaluri except for EiΔgcvPΔglyA and EiΔgcvP. Mutant EiΔgcvPΔsdhC was found to be very good at protecting catfish fry, as evidenced by 10-fold higher survival compared to non-vaccinated fish.

  13. Control of RFM strain endogenous retrovirus in RFM mouse cells

    SciTech Connect

    Tennant, R.W.; Otten, J.A.; Wang, T.W.; Liou, R.S.; Brown, A.; Yang, W.K.

    1983-01-01

    RFM/Un mice express an endogenous type C retrovirus throughout their life span in many tissues; primary or established embryo fibroblast cell cultures do not express a virus but can be induced by exposure to 5-iodo-2'-deoxyuridine. All of our sources yielded a single ecotropic virus (RFV) which appeared to be related more closely to the endogenous N-tropic virus (WN1802N) of BALB/c mice than to Gross leukemia virus on the basis of two-dimensional gel electropherograms of virion proteins. No xenotropic or recombinant viruses were isolated by cocultivation techniques. RFV is N-tropic, and RFM/Un cells possess the Fv-1/sup n/ allele, as indicated by restriction of B-tropic virus and susceptibility to Gross strain N-tropic virus. However, RFM cells are highly resistant to RFV and other endogenous N-tropic viruses. This resistance is expressed by two-hit titration kinetics and by inhibition of viral linear duplex DNA formation. This is similar to the effects of the Fv-1 locus, but preliminary work has shown no apparent genetic linkage between the two restrictions. The relative strength of the restriction, the presence of a single class of ecotropic virus, and the absence of recombinant viruses suggest that in RFM mice virus is expressed only in cells in which it is induced and not by cell-to-cell transmission.

  14. Antidepressant-like Responses to Lithium in Genetically Diverse Mouse Strains

    PubMed Central

    Can, Adem; Blackwell, Robert A.; Piantadosi, Sean C.; Dao, David T.; O’Donnell, Kelley C.; Gould, Todd D.

    2011-01-01

    A mood stabilizing and antidepressant response to lithium is only found in a subgroup of bipolar disorder and depression patients. Identifying strains of mice that are responsive and non-responsive to lithium may elucidate genomic and other biological factors that play a role in lithium responsiveness. Mouse strains were tested in the forced swim, tail suspension, and open field tests after acute and chronic systemic, and intracerebroventricular and chronic lithium treatments. Serum and brain lithium levels were measured. Three (129S6/SvEvTac, C3H/HeNHsd, C57BL/6J) of the eight inbred strains tested, and one (CD-1) of the three outbred strains, showed an antidepressant-like response in the forced swim test following acute systemic administration of lithium. The three responsive inbred strains, as well as the DBA/2J strain, were also responsive in the forced swim test after chronic administration of lithium. However, in the tail suspension test, acute lithium resulted in an antidepressant-like effect only in C3H/HeNHsd mice. Only C57BL/6J and DBA/2J were responsive in the tail suspension test after chronic administration of lithium. Intracerebroventricular lithium administration resulted in a similar response profile in BALB/cJ (non-responsive) and C57BL/6J (responsive) strains. Serum and brain lithium concentrations demonstrated that behavioral results were not due to differential pharmacokinetics of lithium in individual strains, suggesting that genetic factors likely regulate responsiveness to lithium. Our results indicate that responsiveness to lithium in tests of antidepressant efficacy varies among genetically diverse mouse strains. These results will assist in identifying genomic factors associated with lithium responsiveness and the mechanisms of lithium action. PMID:21306560

  15. Inflammatory and epithelial responses in mouse strains that differ in sensitivity to hyperoxic injury.

    PubMed

    Johnston, C J; Stripp, B R; Piedbeouf, B; Wright, T W; Mango, G W; Reed, C K; Finkelstein, J N

    1998-01-01

    The pulmonary response to various toxicants including bleomycin, ozone, ionizing radiation, and hyperoxia is highly variable among mouse strains. The current study tests the hypothesis that at a similar stage of injury, regardless of strain, expression of inflammatory cytokine and epithelial marker genes would be similar, indicating a common pathway of injury progression. Three strains of mice, C57B1/6J, 129/J, and C3H/HeJ, ranging from sensitive to resistant, were exposed to > 95% O2 for varying times. Ribonuclease protection was used to quantify changes in cytokine mRNA. Despite differences in the kinetics, each strain demonstrated similar hyperoxia-induced changes in the abundance of interleukin (IL)-6, IL-1 beta, IL-3, and tumor neucrosis factor (TNF)-alpha. For each strain, death was accompanied by similar increases in cytokine mRNAs above steady-state control levels. Other inflammatory cytokines, including IL-1 alpha, IL-4, and interferon (IFN)-gamma, were unaltered in all strains at all times. In situ hybridization analysis of the epithelial markers, surfactant protein B (SPB), and clara cell secretory protein (CCSP) at the time of proinflammatory induction showed a similar pattern of expression in all strains. Increased SPB was detected in bronchiolar epithelium, while the number of type II cells expressing this message declined. Both the number of cells expressing CCSP as well as abundance per cell declined. These results suggest that although differences in acute sensitivity to hyperoxia exist between mouse strains, once initiated, acute epithelial cell injury and associated inflammatory changes follow the same pattern in all strains.

  16. Ex vivo determination of bone tissue strains for an in vivo mouse tibial loading model

    PubMed Central

    Carriero, Alessandra; Abela, Lisa; Pitsillides, Andrew A.; Shefelbine, Sandra J.

    2014-01-01

    Previous studies introduced the digital image correlation (DIC) as a viable technique for measuring bone strain during loading. In this study, we investigated the sensitivity of a DIC system in determining surface strains in a mouse tibia while loaded in compression through the knee joint. Specifically, we examined the effect of speckle distribution, facet size and overlap, initial vertical alignment of the bone into the loading cups, rotation with respect to cameras, and ex vivo loading configurations on the strain contour maps measured with a DIC system. We loaded tibiae of C57BL/6 mice (12 and 18 weeks old male) up to 12 N at 8 N/min. Images of speckles on the bone surface were recorded at 1 N intervals and DIC was used to compute strains. Results showed that speckles must have the correct size and density with respect to the facet size of choice for the strain distribution to be computed and reproducible. Initial alignment of the bone within the loading cups does not influence the strain distribution measured during peak loading, but bones must be placed in front of the camera with the same orientation in order for strains to be comparable. Finally, the ex vivo loading configurations with the tibia attached to the entire mouse, or to the femur and foot, or only to the foot, showed different strain contour maps. This work provides a better understanding of parameters affecting full field strain measurements from DIC in ex vivo murine tibial loading tests. PMID:24835472

  17. Comparison of toluene-induced locomotor activity in Four Mouse Strains

    PubMed Central

    Bowen, Scott E; Kimar, Sarah; Irtenkauf, Susan

    2010-01-01

    The mechanisms by which abused inhalants exert their neurobehavioral effects are only partially understood. In research with other drugs of abuse, specific inbred mouse strains have been useful in exploring genetic loci important to variation in behavioral reactions to these drugs. In the present investigation, mice from three inbred strains (Balb/cByj, C57BL/6J and DBA/2J) and one outbred strain (Swiss Webster) were studied for their acute and chronic sensitivity to toluene-induced changes in locomotor activity. Mice were exposed to toluene (0, 100, 2000, 8000, 10000 ppm) for 30 min in static exposure chambers equipped with activity monitors. In the acute condition, concentrations of toluene <8000 ppm increased ambulatory distance while the concentrations of ≥8000 ppm induced temporally biphasic effects with initial increases in activity followed by hypoactivity. Between-group differences in absolute locomotor activity levels were evident. The inbred Balb/cByj and DBA/2J strains as well as the outbred Swiss Webster strain of mice showed greater increases in activity after an acute challenge exposure to 2000 ppm than the inbred C57BL/6J strain. The same animals were then exposed 30 min/day to 8000 ppm toluene for 14 consecutive days. Re-determination of responses to 2000-ppm challenge exposures revealed that sensitization developed in locomotor activity and that the DBA/2J strain showed the greatest increase in sensitivity. These baseline differences in acute sensitivity and the differential shifts in sensitivity after repeated exposures among the inbred mouse strains suggest a genetic basis for the behavioral effects to toluene. The results support the notion that like for other drugs of abuse, using various strains of mice may be useful for investigating mechanisms that underlie risk for inhalant abuse. PMID:20138905

  18. The Chlamydomonas zygospore: mutant strains of Chlamydomonas monoica blocked in zygospore morphogenesis comprise 46 complementation groups.

    PubMed Central

    VanWinkle-Swift, K; Baron, K; McNamara, A; Minke, P; Burrascano, C; Maddock, J

    1998-01-01

    Chlamydomonas monoica undergoes homothallic sexual reproduction in response to nitrogen starvation. Mating pairs are established in clonal culture via flagellar agglutination and fuse by way of activated mating structures to form the quadriflagellate zygote. The zygote further matures into a dormant diploid zygospore through a series of events that we collectively refer to as zygosporulation. Mutants that arrest development prior to the completion of zygosporulation have been obtained through the use of a variety of mutagens, including ultraviolet irradiation, 5-fluorodeoxyuridine, ethyl methanesulfonate, and methyl methanesulfonate. Complementation analysis indicates that the present mutant collection includes alleles affecting 46 distinct zygote-specific functions. The frequency with which alleles at previously defined loci have been recovered in the most recent mutant searches suggests that as many as 30 additional zygote-specific loci may still remain to be identified. Nevertheless, the present collection should provide a powerful base for ultrastructural, biochemical, and molecular analysis of zygospore morphogenesis and dormancy in Chlamydomonas. PMID:9475727

  19. Detection of quantitative trait loci causing abnormal spermatogenesis and reduced testis weight in the small testis (Smt) mutant mouse.

    PubMed

    Bolor, Hasbaira; Wakasugi, Noboru; Zhao, Wei Dong; Ishikawa, Akira

    2006-04-01

    The small testis (Smt) mutant mouse is characterized by a small testis of one third to one half the size of a normal testis, and its spermatogenesis is mostly arrested at early stages of meiosis, although a small number of spermatocytes at the late prophase of meiosis and a few spermatids can sometimes be seen. We performed quantitative trait locus (QTL) analysis of these spermatogenic traits and testis weight using 221 F2 males obtained from a cross between Smt and MOM (Mus musculus molossinus) mice. At the genome-wide 5% level, we detected two QTLs affecting meiosis on chromosomes 4 and 13, and two QTLs for paired testis weight as a percentage of body weight on chromosomes 4 and X. In addition, we found several QTLs for degenerated germ cells and multinuclear giant cells on chromosomes 4, 7 and 13. Interestingly, for cell degeneration, the QTL on chromosome 13 interacted epistatically with the QTL on chromosome 4. These results reveal polygenic participation in the abnormal spermatogenesis and small testis size in the Smt mutant.

  20. Characterization of a conditional interleukin-1 receptor 1 mouse mutant using the Cre/LoxP system.

    PubMed

    Abdulaal, Wesam H; Walker, Catherine R; Costello, Ryan; Redondo-Castro, Elena; Mufazalov, Ilgiz A; Papaemmanouil, Athina; Rothwell, Nancy J; Allan, Stuart M; Waisman, Ari; Pinteaux, Emmanuel; Müller, Werner

    2016-04-01

    IL-1 is a key cytokine known to drive chronic inflammation and to regulate many physiological, immunological, and neuroimmunological responses via actions on diverse cell types of the body. To determine the mechanisms of IL-1 actions as part of the inflammatory response in vivo, we generated a conditional IL-1 receptor 1 (IL-1R1) mouse mutant using the Cre/LoxP system (IL-1R1(fl/fl) ). In the mutant generated, exon 5, which encodes part of the extracellular-binding region of the receptor, is flanked by LoxP sites, thereby inactivating the two previously described functional IL-1R1 gene transcripts after Cre-mediated recombination. Using keratin 14-Cre driver mice, new IL-1R1 deficient (-/-) mice were subsequently generated, in which all signaling IL-1 receptor isoforms are deleted ubiquitously. Furthermore, using vav-iCre driver mice, we deleted IL-1 receptor isoforms in the hematopoietic system. In these mice, we show that both the IL-17 and IL-22 cytokine response is reduced, when mice are challenged by the helminth Trichuris muris. We are currently crossing IL-1R1(fl/fl) mice with different Cre-expressing mice in order to study mechanisms of acute and chronic inflammatory diseases. © 2015 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Behavioural effects of high fat diet in a mutant mouse model for the schizophrenia risk gene neuregulin 1.

    PubMed

    Holm-Hansen, S; Low, J K; Zieba, J; Gjedde, A; Bergersen, L H; Karl, T

    2016-03-01

    Schizophrenia patients are often obese or overweight and poor dietary choices appear to be a factor in this phenomenon. Poor diet has been found to have complex consequences for the mental state of patients. Thus, this study investigated whether an unhealthy diet [i.e. high fat diet (HFD)] impacts on the behaviour of a genetic mouse model for the schizophrenia risk gene neuregulin 1 (i.e. transmembrane domain Nrg1 mutant mice: Nrg1 HET). Female Nrg1 HET and wild-type-like littermates (WT) were fed with either HFD or a control chow diet. The mice were tested for baseline (e.g. anxiety) and schizophrenia-relevant behaviours after 7 weeks of diet exposure. HFD increased body weight and impaired glucose tolerance in all mice. Only Nrg1 females on HFD displayed a hyper-locomotive phenotype as locomotion-suppressive effects of HFD were only evident in WT mice. HFD also induced an anxiety-like response and increased freezing in the context and the cued version of the fear conditioning task. Importantly, CHOW-fed Nrg1 females displayed impaired social recognition memory, which was absent in HFD-fed mutants. Sensorimotor gating deficits of Nrg1 females were not affected by diet. In summary, HFD had complex effects on the behavioural phenotype of test mice and attenuated particular cognitive deficits of Nrg1 mutant females. This topic requires further investigations thereby also considering other dietary factors of relevance for schizophrenia as well as interactive effects of diet with medication and sex.

  2. A genome-scale Escherichia coli kinetic metabolic model k-ecoli457 satisfying flux data for multiple mutant strains

    DOE PAGES

    Khodayari, Ali; Maranas, Costas D.

    2016-12-20

    Kinetic models of metabolism at a genome scale that faithfully recapitulate the effect of multiple genetic interventions would be transformative in our ability to reliably design novel overproducing microbial strains. Here, we introduce k-ecoli457, a genome-scale kinetic model of Escherichia coli metabolism that satisfies fluxomic data for wild-type and 25 mutant strains under different substrates and growth conditions. The k-ecoli457 model contains 457 model reactions, 337 metabolites and 295 substrate-level regulatory interactions. Parameterization is carried out using a genetic algorithm by simultaneously imposing all available fluxomic data (about 30 measured fluxes per mutant). Furthermore, the Pearson correlation coefficient between experimentalmore » data and predicted product yields for 320 engineered strains spanning 24 product metabolites is 0.84. This is substantially higher than that using flux balance analysis, minimization of metabolic adjustment or maximization of product yield exhibiting systematic errors with correlation coefficients of, respectively, 0.18, 0.37 and 0.47.« less

  3. A genome-scale Escherichia coli kinetic metabolic model k-ecoli457 satisfying flux data for multiple mutant strains

    PubMed Central

    Khodayari, Ali; Maranas, Costas D.

    2016-01-01

    Kinetic models of metabolism at a genome scale that faithfully recapitulate the effect of multiple genetic interventions would be transformative in our ability to reliably design novel overproducing microbial strains. Here, we introduce k-ecoli457, a genome-scale kinetic model of Escherichia coli metabolism that satisfies fluxomic data for wild-type and 25 mutant strains under different substrates and growth conditions. The k-ecoli457 model contains 457 model reactions, 337 metabolites and 295 substrate-level regulatory interactions. Parameterization is carried out using a genetic algorithm by simultaneously imposing all available fluxomic data (about 30 measured fluxes per mutant). The Pearson correlation coefficient between experimental data and predicted product yields for 320 engineered strains spanning 24 product metabolites is 0.84. This is substantially higher than that using flux balance analysis, minimization of metabolic adjustment or maximization of product yield exhibiting systematic errors with correlation coefficients of, respectively, 0.18, 0.37 and 0.47 (k-ecoli457 is available for download at http://www.maranasgroup.com). PMID:27996047

  4. A tailored mouse model of CLN2 disease: A nonsense mutant for testing personalized therapies

    PubMed Central

    Geraets, Ryan D.; Beraldi, Rosanna; Weimer, Jill M.; Pearce, David A.

    2017-01-01

    The Neuronal Ceroid Lipofuscinoses (NCLs), also known as Batten disease, result from mutations in over a dozen genes. Although, adults are susceptible, the NCLs are frequently classified as pediatric neurodegenerative diseases due to their greater pediatric prevalence. Initial clinical presentation usually consists of either seizures or retinopathy but develops to encompass both in conjunction with declining motor and cognitive function. The NCLs result in premature death due to the absence of curative therapies. Nevertheless, preclinical and clinical trials exist for various therapies. However, the genotypes of NCL animal models determine which therapeutic approaches can be assessed. Mutations of the CLN2 gene encoding a soluble lysosomal enzyme, tripeptidyl peptidase 1 (TPP1), cause late infantile NCL/CLN2 disease. The genotype of the original mouse model of CLN2 disease, Cln2-/-, excludes mutation guided therapies like antisense oligonucleotides and nonsense suppression. Therefore, the purpose of this study was to develop a model of CLN2 disease that allows for the assessment of all therapeutic approaches. Nonsense mutations in CLN2 disease are frequent, the most common being CLN2R208X. Thus, we created a mouse model that carries a mutation equivalent to the human p.R208X mutation. Molecular assessment of Cln2R207X/R207X tissues determined significant reduction in Cln2 transcript abundance and TPP1 enzyme activity. This reduction leads to the development of neurological impairment (e.g. tremors) and neuropathology (e.g. astrocytosis). Collectively, these assessments indicate that the Cln2R207X/R207X mouse is a valid CLN2 disease model which can be used for the preclinical evaluation of all therapeutic approaches including mutation guided therapies. PMID:28464005

  5. Maternal Supply of Cas9 to Zygotes Facilitates the Efficient Generation of Site-Specific Mutant Mouse Models

    PubMed Central

    Cebrian-Serrano, Alberto; Zha, Shijun; Hanssen, Lars; Biggs, Daniel; Preece, Christopher

    2017-01-01

    Genome manipulation in the mouse via microinjection of CRISPR/Cas9 site-specific nucleases has allowed the production time for genetically modified mouse models to be significantly reduced. Successful genome manipulation in the mouse has already been reported using Cas9 supplied by microinjection of a DNA construct, in vitro transcribed mRNA and recombinant protein. Recently the use of transgenic strains of mice overexpressing Cas9 has been shown to facilitate site-specific mutagenesis via maternal supply to zygotes and this route may provide an alternative to exogenous supply. We have investigated the feasibility of supplying Cas9 genetically in more detail and for this purpose we report the generation of a transgenic mice which overexpress Cas9 ubiquitously, via a CAG-Cas9 transgene targeted to the Gt(ROSA26)Sor locus. We show that zygotes prepared from female mice harbouring this transgene are sufficiently loaded with maternally contributed Cas9 for efficient production of embryos and mice harbouring indel, genomic deletion and knock-in alleles by microinjection of guide RNAs and templates alone. We compare the mutagenesis rates and efficacy of mutagenesis using this genetic supply with exogenous Cas9 supply by either mRNA or protein microinjection. In general, we report increased generation rates of knock-in alleles and show that the levels of mutagenesis at certain genome target sites are significantly higher and more consistent when Cas9 is supplied genetically relative to exogenous supply. PMID:28081254

  6. Knockin mouse with mutant Gα11 mimics human inherited hypocalcemia and is rescued by pharmacologic inhibitors

    PubMed Central

    Roszko, Kelly L.; Bi, Ruiye; Gorvin, Caroline M.; Xiong, Xiao-Feng; Inoue, Asuka; Thakker, Rajesh V.; Strømgaard, Kristian; Gardella, Thomas

    2017-01-01

    Heterotrimeric G proteins play critical roles in transducing extracellular signals generated by 7-transmembrane domain receptors. Somatic gain-of-function mutations in G protein α subunits are associated with a variety of diseases. Recently, we identified gain-of-function mutations in Gα11 in patients with autosomal-dominant hypocalcemia type 2 (ADH2), an inherited disorder of hypocalcemia, low parathyroid hormone (PTH), and hyperphosphatemia. We have generated knockin mice harboring the point mutation GNA11 c.C178T (p.Arg60Cys) identified in ADH2 patients. The mutant mice faithfully replicated human ADH2. They also exhibited low bone mineral density and increased skin pigmentation. Treatment with NPS 2143, a negative allosteric modulator of the calcium-sensing receptor (CASR), increased PTH and calcium concentrations in WT and mutant mice, suggesting that the gain-of-function effect of GNA11R6OC is partly dependent on coupling to the CASR. Treatment with the Gα11/q-specific inhibitor YM-254890 increased blood calcium in heterozygous but not in homozygous GNA11R60C mice, consistent with published crystal structure data showing that Arg60 forms a critical contact with YM-254890. This animal model of ADH2 provides insights into molecular mechanism of this G protein–related disease and potential paths toward new lines of therapy. PMID:28194446

  7. Knockin mouse with mutant Gα11 mimics human inherited hypocalcemia and is rescued by pharmacologic inhibitors.

    PubMed

    Roszko, Kelly L; Bi, Ruiye; Gorvin, Caroline M; Bräuner-Osborne, Hans; Xiong, Xiao-Feng; Inoue, Asuka; Thakker, Rajesh V; Strømgaard, Kristian; Gardella, Thomas; Mannstadt, Michael

    2017-02-09

    Heterotrimeric G proteins play critical roles in transducing extracellular signals generated by 7-transmembrane domain receptors. Somatic gain-of-function mutations in G protein α subunits are associated with a variety of diseases. Recently, we identified gain-of-function mutations in Gα11 in patients with autosomal-dominant hypocalcemia type 2 (ADH2), an inherited disorder of hypocalcemia, low parathyroid hormone (PTH), and hyperphosphatemia. We have generated knockin mice harboring the point mutation GNA11 c.C178T (p.Arg60Cys) identified in ADH2 patients. The mutant mice faithfully replicated human ADH2. They also exhibited low bone mineral density and increased skin pigmentation. Treatment with NPS 2143, a negative allosteric modulator of the calcium-sensing receptor (CASR), increased PTH and calcium concentrations in WT and mutant mice, suggesting that the gain-of-function effect of GNA11(R6OC) is partly dependent on coupling to the CASR. Treatment with the Gα11/q-specific inhibitor YM-254890 increased blood calcium in heterozygous but not in homozygous GNA11(R60C) mice, consistent with published crystal structure data showing that Arg60 forms a critical contact with YM-254890. This animal model of ADH2 provides insights into molecular mechanism of this G protein-related disease and potential paths toward new lines of therapy.

  8. Firefly Luciferase Mutants Allow Substrate-Selective Bioluminescence Imaging in the Mouse Brain.

    PubMed

    Adams, Spencer T; Mofford, David M; Reddy, G S Kiran Kumar; Miller, Stephen C

    2016-04-11

    Bioluminescence imaging is a powerful approach for visualizing specific events occurring inside live mice. Animals can be made to glow in response to the expression of a gene, the activity of an enzyme, or the growth of a tumor. But bioluminescence requires the interaction of a luciferase enzyme with a small-molecule luciferin, and its scope has been limited by the mere handful of natural combinations. Herein, we show that mutants of firefly luciferase can discriminate between natural and synthetic substrates in the brains of live mice. When using adeno-associated viral (AAV) vectors to express luciferases in the brain, we found that mutant luciferases that are inactive or weakly active with d-luciferin can light up brightly when treated with the aminoluciferins CycLuc1 and CycLuc2 or their respective FAAH-sensitive luciferin amides. Further development of selective luciferases promises to expand the power of bioluminescence and allow multiple events to be imaged in the same live animal.

  9. Coloboma mouse mutant as an animal model of hyperkinesis and attention deficit hyperactivity disorder.

    PubMed

    Wilson, M C

    2000-01-01

    Hyperkinesis and developmental behavioral deficiencies are cardinal signs of attention-deficit hyperactivity disorder. In mice, the mutation coloboma (Cm) corresponds to a contiguous gene defect that results in phenotypic abnormalities including spontaneous hyperactivity, head-bobbing, and ocular dysmorphology. In addition, coloboma mutant mice exhibit delays in achieving complex neonatal motor abilities and deficits in hippocampal physiology, which may contribute to learning deficiencies. The hyperkinesis is ameliorated by low doses of the psychostimulant D-amphetamine and can be rescued genetically by a transgene encoding SNAP-25, located within the Cm deletion. Together with syntaxin and synaptobrevin/VAMP, SNAP-25 constitutes a core protein complex integral to synaptic vesicle fusion and neurotransmitter release. Despite the ubiquitous role of SNAP-25 in synaptic transmission, and uniformly decreased expression in the mutants, coloboma mice show marked deficits in Ca2+-dependent dopamine release selectively in dorsal but not ventral striatum. This suggests that haploinsufficiency of SNAP-25 reveals a specific vulnerability of the nigrostriatal pathway which regulates motor activity and may provide a model for impaired striatal input into executive functions encoded by the prefrontal cortex associated with ADHD.

  10. Embryonic Mutant Huntingtin Aggregate Formation in Mouse Models of Huntington's Disease.

    PubMed

    Osmand, Alexander P; Bichell, Terry Jo; Bowman, Aaron B; Bates, Gillian P

    2016-12-15

    The role of aggregate formation in the pathophysiology of Huntington's disease (HD) remains uncertain. However, the temporal appearance of aggregates tends to correlate with the onset of symptoms and the numbers of neuropil aggregates correlate with the progression of clinical disease. Using highly sensitive immunohistochemical methods we have detected the appearance of diffuse aggregates during embryonic development in the R6/2 and YAC128 mouse models of HD. These are initially seen in developing axonal tracts and appear to spread throughout the cerebrum in the early neonate.

  11. Embryonic Mutant Huntingtin Aggregate Formation in Mouse Models of Huntington’s Disease

    PubMed Central

    Osmand, Alexander P.; Bichell, Terry Jo.; Bowman, Aaron B.; Bates, Gillian P.

    2016-01-01

    The role of aggregate formation in the pathophysiology of Huntington’s disease (HD) remains uncertain. However, the temporal appearance of aggregates tends to correlate with the onset of symptoms and the numbers of neuropil aggregates correlate with the progression of clinical disease. Using highly sensitive immunohistochemical methods we have detected the appearance of diffuse aggregates during embryonic development in the R6/2 and YAC128 mouse models of HD. These are initially seen in developing axonal tracts and appear to spread throughout the cerebrum in the early neonate. PMID:27886014

  12. p53 constrains progression to anaplastic thyroid carcinoma in a Braf-mutant mouse model of papillary thyroid cancer

    PubMed Central

    McFadden, David G.; Vernon, Amanda; Santiago, Philip M.; Martinez-McFaline, Raul; Bhutkar, Arjun; Crowley, Denise M.; McMahon, Martin; Sadow, Peter M.; Jacks, Tyler

    2014-01-01

    Anaplastic thyroid carcinoma (ATC) has among the worst prognoses of any solid malignancy. The low incidence of the disease has in part precluded systematic clinical trials and tissue collection, and there has been little progress in developing effective therapies. v-raf murine sarcoma viral oncogene homolog B (BRAF) and tumor protein p53 (TP53) mutations cooccur in a high proportion of ATCs, particularly those associated with a precursor papillary thyroid carcinoma (PTC). To develop an adult-onset model of BRAF-mutant ATC, we generated a thyroid-specific CreER transgenic mouse. We used a Cre-regulated BrafV600E mouse and a conditional Trp53 allelic series to demonstrate that p53 constrains progression from PTC to ATC. Gene expression and immunohistochemical analyses of murine tumors identified the cardinal features of human ATC including loss of differentiation, local invasion, distant metastasis, and rapid lethality. We used small-animal ultrasound imaging to monitor autochthonous tumors and showed that treatment with the selective BRAF inhibitor PLX4720 improved survival but did not lead to tumor regression or suppress signaling through the MAPK pathway. The combination of PLX4720 and the mapk/Erk kinase (MEK) inhibitor PD0325901 more completely suppressed MAPK pathway activation in mouse and human ATC cell lines and improved the structural response and survival of ATC-bearing animals. This model expands the limited repertoire of autochthonous models of clinically aggressive thyroid cancer, and these data suggest that small-molecule MAPK pathway inhibitors hold clinical promise in the treatment of advanced thyroid carcinoma. PMID:24711431

  13. A mutagenesis-derived Lrp5 mouse mutant with abnormal retinal vasculature and low bone mineral density

    PubMed Central

    Charette, Jeremy R.; Earp, Sarah E.; Bell, Brent A.; Ackert-Bicknell, Cheryl L.; Godfrey, Dana A.; Rao, Sujata; Anand-Apte, Bela; Nishina, Patsy M.

    2017-01-01

    Purpose Familial exudative vitreoretinopathy (FEVR) is caused by mutations in the genes encoding low-density lipoprotein receptor-related protein (LRP5) or its interacting partners, namely frizzled class receptor 4 (FZD4) and norrin cystine knot growth factor (NDP). Mouse models for Lrp5, Fzd4, and Ndp have proven to be important for understanding the retinal pathophysiology underlying FEVR and systemic abnormalities related to defective Wnt signaling. Here, we report a new mouse mutant, tvrm111B, which was identified by electroretinogram (ERG) screening of mice generated in the Jackson Laboratory Translational Vision Research Models (TVRM) mutagenesis program. Methods ERGs were used to examine outer retinal physiology. The retinal vasculature was examined by in vivo retinal imaging, as well as by histology and immunohistochemistry. The tvrm111B locus was identified by genetic mapping of mice generated in a cross to DBA/2J, and subsequent sequencing analysis. Gene expression was examined by real-time PCR of retinal RNA. Bone mineral density (BMD) was examined by peripheral dual-energy X-ray absorptiometry. Results The tvrm111B allele is inherited as an autosomal recessive trait. Genetic mapping of the decreased ERG b-wave phenotype of tvrm111B mice localized the mutation to a region on chromosome 19 that included Lrp5. Sequencing of Lrp5 identified the insertion of a cytosine (c.4724_4725insC), which is predicted to cause a frameshift that disrupts the last three of five conserved PPPSPxS motifs in the cytoplasmic domain of LRP5, culminating in a premature termination. In addition to a reduced ERG b-wave, Lrp5tvrm111B homozygotes have low BMD and abnormal features of the retinal vasculature that have been reported previously in Lrp5 mutant mice, including persistent hyaloid vessels, leakage on fluorescein angiography, and an absence of the deep retinal capillary bed. Conclusions The phenotype of the Lrp5tvrm111B mutant includes abnormalities of the retinal

  14. Regional and strain-specific gene expression mapping in the adult mouse brain

    PubMed Central

    Sandberg, Rickard; Yasuda, Rie; Pankratz, Daniel G.; Carter, Todd A.; Del Rio, Jo A.; Wodicka, Lisa; Mayford, Mark; Lockhart, David J.; Barlow, Carrolee

    2000-01-01

    To determine the genetic causes and molecular mechanisms responsible for neurobehavioral differences in mice, we used highly parallel gene expression profiling to detect genes that are differentially expressed between the 129SvEv and C57BL/6 mouse strains at baseline and in response to seizure. In addition, we identified genes that are differentially expressed in specific brain regions. We found that approximately 1% of expressed genes are differentially expressed between strains in at least one region of the brain and that the gene expression response to seizure is significantly different between the two inbred strains. The results lead to the identification of differences in gene expression that may account for distinct phenotypes in inbred strains and the unique functions of specific brain regions. PMID:11005875

  15. Mouse strains differ in their sensitivity to alprazolam effect in the staircase test.

    PubMed

    Weizman, R; Paz, L; Backer, M M; Amiri, Z; Modai, I; Pick, C G

    1999-08-21

    The behavioral responses of five mouse strains (inbred: C57 and BALB/c; outbred: Swiss, ICR and HS/Ibg) to alprazolam was examined in the staircase test, an animal model sensitive to benzodiazepines (BZs). Alprazolam administration resulted in a dose-dependent suppression of rearing behavior, but to a different extent among the strains. By contrast, the number of stairs ascended was not suppressed by alprazolam at doses of 0.25 and 0.5 mg/kg, except in the C57 mice. The addition of flumazenil antagonized the alprazolam effect on rearing and climbing in all strains. There was a consistency within strains in sensitivity to alprazolam, with some strains being highly sensitive (C57 and HS) or less sensitive (Swiss, ICR and BALB/c) with regard to both rearing and climbing behaviors. Serum alprazolam levels did not differ significantly among the strains. This strain-dependent pattern of response to alprazolam seems to indicate a genetic component, rather than pharmacokinetic, in the behavior sensitivity to the BZ, with a spectrum of degree of responsivity among strains.

  16. In Vitro and In Vivo Characterization of a Bordetella bronchiseptica Mutant Strain with a Deep Rough Lipopolysaccharide Structure

    PubMed Central

    Sisti, Federico; Fernández, Julieta; Rodríguez, María Eugenia; Lagares, Antonio; Guiso, Nicole; Hozbor, Daniela Flavia

    2002-01-01

    Bordetella bronchiseptica is closely related to Bordetella pertussis, which produces respiratory disease primarily in mammals other than humans. However, its importance as a human pathogen is being increasingly recognized. Although a large amount of research on Bordetella has been generated regarding protein virulence factors, the participation of the surface lipopolysaccharide (LPS) during B. bronchiseptica infection is less understood. To get a better insight into this matter, we constructed and characterized the behavior of an LPS mutant with the deepest possible rough phenotype. We generated the defective mutant B. bronchiseptica LP39 on the waaC gene, which codes for a heptosyl transferase involved in the biosynthesis of the core region of the LPS molecule. Although in B. bronchiseptica LP39 the production of the principal virulence determinants adenylate cyclase-hemolysin, filamentous hemagglutinin, and pertactin persisted, the quantity of the two latter factors was diminished, with the levels of pertactin being the most greatly affected. Furthermore, the LPS of B. bronchiseptica LP39 did not react with sera obtained from mice that had been infected with the parental strain, indicating that this defective LPS is immunologically different from the wild-type LPS. In vivo experiments demonstrated that the ability to colonize the respiratory tract is reduced in the mutant, being effectively cleared from lungs within 5 days, whereas the parental strain survived at least for 30 days. In vitro experiments have demonstrated that, although B. bronchiseptica LP39 was impaired for adhesion to human epithelial cells, it is still able to survive within the host cells as efficiently as the parental strain. These results seem to indicate that the deep rough form of B. bronchiseptica LPS cannot represent a dominant phenotype at the first stage of colonization. Since isolates with deep rough LPS phenotype have already been obtained from human B. bronchiseptica chronic

  17. Inducible Cre transgenic mouse strain for skeletal muscle-specific gene targeting

    PubMed Central

    2012-01-01

    Background The use of the Cre/loxP system for gene targeting has been proven to be a powerful tool for understanding gene function. The purpose of this study was to create and characterize an inducible, skeletal muscle-specific Cre transgenic mouse strain. Methods To achieve skeletal muscle-specific expression, the human α-skeletal actin promoter was used to drive expression of a chimeric Cre recombinase containing two mutated estrogen receptor ligand-binding domains. Results Western blot analysis, PCR and β-galactosidase staining confirmed that Cre-mediated recombination was restricted to limb and craniofacial skeletal muscles only after tamoxifen administration. Conclusions A transgenic mouse was created that allows inducible, gene targeting of floxed genes in adult skeletal muscle of different developmental origins. This new mouse will be of great utility to the skeletal muscle community. PMID:22564549

  18. Competitive growth experiments with a high-lipid Chlamydomonas reinhardtii mutant strain and its wild-type to predict industrial and ecological risks.

    PubMed

    Russo, David A; Beckerman, Andrew P; Pandhal, Jagroop

    2017-12-01

    Key microalgal species are currently being exploited as biomanufacturing platforms using mass cultivation systems. The opportunities to enhance productivity levels or produce non-native compounds are increasing as genetic manipulation and metabolic engineering tools are rapidly advancing. Regardless of the end product, there are both environmental and industrial risks associated to open pond cultivation of mutant microalgal strains. A mutant escape could be detrimental to local biodiversity and increase the risk of algal blooms. Similarly, if the cultivation pond is invaded by a wild-type (WT) microalgae or the mutant reverts to WT phenotypes, productivity could be impacted. To investigate these potential risks, a response surface methodology was applied to determine the competitive outcome of two Chlamydomonas reinhardtii strains, a WT (CC-124) and a high-lipid accumulating mutant (CC-4333), grown in mixotrophic conditions, with differing levels of nitrogen and initial WT to mutant ratios. Results of the growth experiments show that mutant cells have double the exponential growth rate of the WT in monoculture. However, due to a slower transition from lag phase to exponential phase, mutant cells are outcompeted by the WT in every co-culture treatment. This suggests that, under the conditions tested, outdoor cultivation of the C. reinhardtii cell wall-deficient mutant strains does not carry a significant environmental risk to its WT in an escape scenario. Furthermore, lipid results show the mutant strain accumulates over 200% more TAGs per cell, at 50 mg L(-1) NH4Cl, compared to the WT, therefore, the fragility of the mutant strain could impact on overall industrial productivity.

  19. Load/Strain Distribution between Ulna and Radius in the Mouse Forearm Compression Loading Model

    PubMed Central

    Lu, Yunkai; Thiagarajan, Ganesh; Nicolella, Daniel P.; Johnson, Mark L.

    2011-01-01

    Finite element analysis (FEA) of the mouse forearm compression loading model is used to relate strain distributions with downstream changes in bone formation and responses of bone cells. The objective of this study was to develop two FEA models – the first one with the traditional ulna only and the second one in which both the ulna and radius are included, in order to examine the effect of the inclusion of the radius on the strain distributions in the ulna. The entire mouse forearm was scanned using microCT and images were converted into FEA tetrahedral meshes using a suite of software programs. The performance of both linear and quadratic tetrahedral elements and coarse and fine meshes were studied. A load of 2 N was applied to the ulna/radius model and a 1.3 N load (based on previous investigations of load sharing between the ulna and radius in rats) was applied to the ulna only model for subsequent simulations. The results showed differences in the cross sectional strain distributions and magnitude within the ulna for the combined ulna/radius model versus the ulna only model. The maximal strain in the combined model occurred about 4 mm towards the distal end from the ulna mid-shaft in both models. Results from the FEA model simulations were also compared to experimentally determined strain values. We conclude that inclusion of the radius in FE models to predict strains during in vivo forearm loading increases the magnitude of the estimated ulna strains compared to those predicted from a model of the ulna alone but the distribution was similar. This has important ramifications for future studies to understand strain thresholds needed to activate bone cell responses to mechanical loading. PMID:21903442

  20. Differences in saccharin preference and genetic alterations of the Tas1r3 gene among senescence-accelerated mouse strains and their parental AKR/J strain.

    PubMed

    Niimi, Kimie; Takahashi, Eiki

    2014-05-10

    The senescence-accelerated mouse (SAM) is used as an animal model of senescence acceleration and age-associated disorders. SAM is derived from unexpected crosses between the AKR/J and unknown mouse strains. There are nine senescence-prone (SAMP) strains and three senescence-resistant (SAMR) strains. Although SAMP strains exhibit strain-specific and age-related pathological changes, the genes responsible for the pathologic changes in SAMP strains have not been comprehensively identified. In the present study, we evaluated sweet taste perception using the two-bottle test. We compared genotypes of the taste related gene, Tas1r3, using SAM strains and the parental AKR/J strain. The two-bottle test revealed that SAMR1 (R1), SAMP6 (P6), SAMP8 (P8), and SAMP10 (P10) mice were saccharin-preferring strains, whereas AKR/J did not prefer saccharin. All genotypes of the R1, P6, P8, and P10 strains at the polymorphic sites in Tas1r3, which is known to influence saccharin preference, were identical to those of C57BL6/J, a well-known saccharin-preferring strain, and were completely different from those of the parental AKR/J strain. These genetic alterations in SAM strains appear to arise from an unknown strain that is thought to have been crossed with AKR/J initially. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Skin fragility in the wild-derived, inbred mouse strain Mus pahari/EiJ.

    PubMed

    Herbert Pratt, C; Potter, Christopher S; Kuiper, Raoul V; Karst, Son Yong; Dadras, Soheil S; Roopenian, Derry C; Sundberg, John P

    2017-02-01

    Mus pahari is a wild-derived, inbred mouse strain. M. pahari colony managers observed fragility of this strain's skin resulting in separation of tail skin from the mouse if handled incorrectly. Tail skin tension testing of M. pahari resulted in significantly lowered force threshold for caudal skin rupture and loss in comparison to closely related inbred mouse species and subspecies and even more than a model for junctional epidermolysis bullosa. Histologically, the tail skin separated at the subdermal level with the dermis firmly attached to the epidermis, excluding the epidermolysis bullosa complex of diseases. The dermal collagen bundles were abnormally thickened and branched. Elastin fiber deposition was focally altered in the dermis adjacent to the hair follicle. Collagens present in the skin could not be differentiated between the species in protein gels following digestion with pepsin. Together these data suggest that M. pahari have altered extracellular matrix development resulting in separation of the skin below the level of the dermis with moderate force similar to the African spiny mouse (Acomys spp.). Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Radiation-induced strain differences in mouse alveolar inflammatory cell apoptosis.

    PubMed

    O'Brien, Thomas J; Létuvé, Séverine; Haston, Christina K

    2005-01-01

    Whole-thorax irradiation results in the development of the diffuse inflammatory response alveolitis in C3H/HeJ (C3H) mice and a milder alveolitis with fibrosis in C57BL/6J (B6) mice. In this study, we investigate if this mouse strain difference in response to radiation is due to differences in lung inflammatory cell apoptosis. Mice of the C3H and B6 strains were given a radiation dose of 18 Gy to the thorax and the animals were sacrificed at 11 or 18 weeks following exposure or when they were moribund. Active caspase-3 staining was used to identify apoptotic cells in the alveolar space of histological lung sections from the mice. The apoptotic index of B6 mice was greater than that of C3H mice at 11 weeks postirradiation (17.8% of airspace cells vs. 7.8%, p = 0.028) and in mice sacrificed because of illness (27.3% vs. 14.4%, p = 0.036). No C3H mice survived to the later time point. The inflammatory cells undergoing apoptosis in the mouse lungs were morphologically consistent with alveolar macrophages. We conclude that a difference in inflammatory cell apoptosis may contribute to the disparate pulmonary radiation response of these mouse strains.

  3. Emergence of Potential Superbug Mycobacterium Tuberculosis, Lessons from New Delhi Mutant-1 Bacterial Strains

    PubMed Central

    Nazir, Taha; Abraham, Suraj; Islam, Azharul

    2012-01-01

    Recent reports have shown that certain bacterial strains attain the New Delhi Metallo-beta-lactamase-1 (NDM-1) enzyme and become resistant to a broad range of antibiotics. Similarly, more dangerous “superbugs” of multi-drug resistant (MDR) and extensive drug resistant (XDR) Mycobacterium tuberculosis strains are gradually emerging through rapid genetic mutation caused by prescription non-compliance or unsupervised indiscriminate use of anti-tubercular drugs or other antibiotics. Mycobacterium tuberculosis cases have been reported in highly susceptible population groups including the aboriginal communities of US and Canada. In Canada alone, the total number of reported tuberculosis cases has decreased over the past decade. However, there is a steady increase in HIV cases in certain communities including the aboriginal communities. Reintroduction of MDR/XDR strains of tuberculosis is possible in these susceptible communities, which in turn may pose serious public health situation. MDR/XDR strains of tuberculosis are virtually untreatable using current anti-tubercular medication protocols. Thus, MDR/XDR tuberculosis presents a grave global public health threat. The unpredictable genetic mechanism involved in generating MDR/XDR resistant strains of Mycobacterium tuberculosis may pose greater challenges in developing appropriate treatment strategies. In this article, we briefly review potential genetic mechanism of emerging NDM-1 bacterial strains and draw a rationale parallel to the underlying genetic mechanism of MDR/XDR Mycobacterium tuberculosis strain development. PMID:23267308

  4. Emergence of potential superbug mycobacterium tuberculosis, lessons from new delhi mutant-1 bacterial strains.

    PubMed

    Nazir, Taha; Abraham, Suraj; Islam, Azharul

    2012-01-01

    Recent reports have shown that certain bacterial strains attain the New Delhi Metallo-beta-lactamase-1 (NDM-1) enzyme and become resistant to a broad range of antibiotics. Similarly, more dangerous "superbugs" of multi-drug resistant (MDR) and extensive drug resistant (XDR) Mycobacterium tuberculosis strains are gradually emerging through rapid genetic mutation caused by prescription non-compliance or unsupervised indiscriminate use of anti-tubercular drugs or other antibiotics. Mycobacterium tuberculosis cases have been reported in highly susceptible population groups including the aboriginal communities of US and Canada. In Canada alone, the total number of reported tuberculosis cases has decreased over the past decade. However, there is a steady increase in HIV cases in certain communities including the aboriginal communities. Reintroduction of MDR/XDR strains of tuberculosis is possible in these susceptible communities, which in turn may pose serious public health situation. MDR/XDR strains of tuberculosis are virtually untreatable using current anti-tubercular medication protocols. Thus, MDR/XDR tuberculosis presents a grave global public health threat. The unpredictable genetic mechanism involved in generating MDR/XDR resistant strains of Mycobacterium tuberculosis may pose greater challenges in developing appropriate treatment strategies. In this article, we briefly review potential genetic mechanism of emerging NDM-1 bacterial strains and draw a rationale parallel to the underlying genetic mechanism of MDR/XDR Mycobacterium tuberculosis strain development.

  5. Increased Lipid Accumulation in the Chlamydomonas reinhardtii sta7-10 Starchless Isoamylase Mutant and Increased Carbohydrate Synthesis in Complemented Strains

    PubMed Central

    Work, Victoria H.; Radakovits, Randor; Jinkerson, Robert E.; Meuser, Jonathan E.; Elliott, Lee G.; Vinyard, David J.; Laurens, Lieve M. L.; Dismukes, G. Charles; Posewitz, Matthew C.

    2010-01-01

    The accumulation of bioenergy carriers was assessed in two starchless mutants of Chlamydomonas reinhardtii (the sta6 [ADP-glucose pyrophosphorylase] and sta7-10 [isoamylase] mutants), a control strain (CC124), and two complemented strains of the sta7-10 mutant. The results indicate that the genetic blockage of starch synthesis in the sta6 and sta7-10 mutants increases the accumulation of lipids on a cellular basis during nitrogen deprivation relative to that in the CC124 control as determined by conversion to fatty acid methyl esters. However, this increased level of lipid accumulation is energetically insufficient to completely offset the loss of cellular starch that is synthesized by CC124 during nitrogen deprivation. We therefore investigated acetate utilization and O2 evolution to obtain further insights into the physiological adjustments utilized by the two starchless mutants in the absence of starch synthesis. The results demonstrate that both starchless mutants metabolize less acetate and have more severely attenuated levels of photosynthetic O2 evolution than CC124, indicating that a decrease in overall anabolic processes is a significant physiological response in the starchless mutants during nitrogen deprivation. Interestingly, two independent sta7-10:STA7 complemented strains exhibited significantly greater quantities of cellular starch and lipid than CC124 during acclimation to nitrogen deprivation. Moreover, the complemented strains synthesized significant quantities of starch even when cultured in nutrient-replete medium. PMID:20562225

  6. Increased lipid accumulation in the Chlamydomonas reinhardtii sta7-10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains.

    PubMed

    Work, Victoria H; Radakovits, Randor; Jinkerson, Robert E; Meuser, Jonathan E; Elliott, Lee G; Vinyard, David J; Laurens, Lieve M L; Dismukes, G Charles; Posewitz, Matthew C

    2010-08-01

    The accumulation of bioenergy carriers was assessed in two starchless mutants of Chlamydomonas reinhardtii (the sta6 [ADP-glucose pyrophosphorylase] and sta7-10 [isoamylase] mutants), a control strain (CC124), and two complemented strains of the sta7-10 mutant. The results indicate that the genetic blockage of starch synthesis in the sta6 and sta7-10 mutants increases the accumulation of lipids on a cellular basis during nitrogen deprivation relative to that in the CC124 control as determined by conversion to fatty acid methyl esters. However, this increased level of lipid accumulation is energetically insufficient to completely offset the loss of cellular starch that is synthesized by CC124 during nitrogen deprivation. We therefore investigated acetate utilization and O(2) evolution to obtain further insights into the physiological adjustments utilized by the two starchless mutants in the absence of starch synthesis. The results demonstrate that both starchless mutants metabolize less acetate and have more severely attenuated levels of photosynthetic O(2) evolution than CC124, indicating that a decrease in overall anabolic processes is a significant physiological response in the starchless mutants during nitrogen deprivation. Interestingly, two independent sta7-10:STA7 complemented strains exhibited significantly greater quantities of cellular starch and lipid than CC124 during acclimation to nitrogen deprivation. Moreover, the complemented strains synthesized significant quantities of starch even when cultured in nutrient-replete medium.

  7. Regulators of pseudohyphal differentiation in Saccharomyces cerevisiae identified through multicopy suppressor analysis in ammonium permease mutant strains.

    PubMed Central

    Lorenz, M C; Heitman, J

    1998-01-01

    Nitrogen-starved diploid cells of the yeast Saccharomyces cerevisiae differentiate into a filamentous, pseudohyphal growth form. Recognition of nitrogen starvation is mediated, at least in part, by the ammonium permease Mep2p and the Galpha subunit Gpa2p. Genetic activation of the pheromone-responsive MAP kinase cascade, which is also required for filamentous growth, only weakly suppresses the filamentation defect of Deltamep2/Deltamep2 and Deltagpa2/Deltagpa2 strain. Surprisingly, deletion of Mep1p, an ammonium permease not previously thought to regulate differentiation, significantly enhances the potency of MAP kinase activation, such that the STE11-4 allele induces filamentation to near wild-type levels in Deltamep1/Deltamep1 Deltamep2/Deltamep2 and Deltamep1/Deltamep1 Deltagpa2/Deltagpa2 strains. To identify additional regulatory components, we isolated high-copy suppressors of the filamentation defect of the Deltamep1/Deltamep1 Deltamep2/Deltamep2 mutant. Multicopy expression of TEC1, PHD1, PHD2 (MSS10/MSN1/FUP4), MSN5, CDC6, MSS11, MGA1, SKN7, DOT6, HMS1, HMS2, or MEP2 each restored filamentation in a Deltamep1/Deltamep1 Deltamep2/Deltamep2 strain. Overexpression of SRK1 (SSD1), URE2, DAL80, MEP1, or MEP3 suppressed only the growth defect of the Deltamep1/Deltamep1 Deltamep2/Deltamep2 mutant strain. Characterization of these genes through deletion analysis and epistasis underscores the complexity of this developmental pathway and suggests that stress conditions other than nitrogen deprivation may also promote filamentous growth. PMID:9832522

  8. Industrial Robustness: Understanding the Mechanism of Tolerance for the Populus Hydrolysate-Tolerant Mutant Strain of Clostridium thermocellum

    PubMed Central

    Linville, Jessica L.; Rodriguez, Miguel; Land, Miriam; Syed, Mustafa H.; Engle, Nancy L.; Tschaplinski, Timothy J.; Mielenz, Jonathan R.; Cox, Chris D.

    2013-01-01

    Background An industrially robust microorganism that can efficiently degrade and convert lignocellulosic biomass into ethanol and next-generation fuels is required to economically produce future sustainable liquid transportation fuels. The anaerobic, thermophilic, cellulolytic bacterium Clostridium thermocellum is a candidate microorganism for such conversions but it, like many bacteria, is sensitive to potential toxic inhibitors developed in the liquid hydrolysate produced during biomass processing. Microbial processes leading to tolerance of these inhibitory compounds found in the pretreated biomass hydrolysate are likely complex and involve multiple genes. Methodology/Principal Findings In this study, we developed a 17.5% v/v Populus hydrolysate tolerant mutant strain of C. thermocellum by directed evolution. The genome of the wild type strain, six intermediate population samples and seven single colony isolates were sequenced to elucidate the mechanism of tolerance. Analysis of the 224 putative mutations revealed 73 high confidence mutations. A longitudinal analysis of the intermediate population samples, a pan-genomic analysis of the isolates, and a hotspot analysis revealed 24 core genes common to all seven isolates and 8 hotspots. Genetic mutations were matched with the observed phenotype through comparison of RNA expression levels during fermentation by the wild type strain and mutant isolate 6 in various concentrations of Populus hydrolysate (0%, 10%, and 17.5% v/v). Conclusion/Significance The findings suggest that there are multiple mutations responsible for the Populus hydrolysate tolerant phenotype resulting in several simultaneous mechanisms of action, including increases in cellular repair, and altered energy metabolism. To date, this study provides the most comprehensive elucidation of the mechanism of tolerance to a pretreated biomass hydrolysate by C. thermocellum. These findings make important contributions to the development of industrially

  9. Heat shock protein 70 chaperone overexpression ameliorates phenotypes of the spinal and bulbar muscular atrophy transgenic mouse model by reducing nuclear-localized mutant androgen receptor protein.

    PubMed

    Adachi, Hiroaki; Katsuno, Masahisa; Minamiyama, Makoto; Sang, Chen; Pagoulatos, Gerassimos; Angelidis, Charalampos; Kusakabe, Moriaki; Yoshiki, Atsushi; Kobayashi, Yasushi; Doyu, Manabu; Sobue, Gen

    2003-03-15

    Spinal and bulbar muscular atrophy (SBMA) is an inherited motor neuron disease caused by the expansion of the polyglutamine (polyQ) tract within the androgen receptor (AR). The nuclear inclusions consisting of the mutant AR protein are characteristic and combine with many components of ubiquitin-proteasome and molecular chaperone pathways, raising the possibility that misfolding and altered degradation of mutant AR may be involved in the pathogenesis. We have reported that the overexpression of heat shock protein (HSP) chaperones reduces mutant AR aggregation and cell death in a neuronal cell model (Kobayashi et al., 2000). To determine whether increasing the expression level of chaperone improves the phenotype in a mouse model, we cross-bred SBMA transgenic mice with mice overexpressing the inducible form of human HSP70. We demonstrated that high expression of HSP70 markedly ameliorated the motor function of the SBMA model mice. In double-transgenic mice, the nuclear-localized mutant AR protein, particularly that of the large complex form, was significantly reduced. Monomeric mutant AR was also reduced in amount by HSP70 overexpression, suggesting the enhanced degradation of mutant AR. These findings suggest that HSP70 overexpression ameliorates SBMA phenotypes in mice by reducing nuclear-localized mutant AR, probably caused by enhanced mutant AR degradation. Our study may provide the basis for the development of an HSP70-related therapy for SBMA and other polyQ diseases.

  10. Association of brain immune genes with social behavior of inbred mouse strains.

    PubMed

    Ma, Li; Piirainen, Sami; Kulesskaya, Natalia; Rauvala, Heikki; Tian, Li

    2015-04-18

    Social deficit is one of the core symptoms of neuropsychiatric diseases, in which immune genes play an important role. Although a few immune genes have been shown to regulate social and emotional behaviors, how immune gene network(s) may jointly regulate sociability has not been investigated so far. To decipher the potential immune-mediated mechanisms underlying social behavior, we first studied the brain microarray data of eight inbred mouse strains with known variations in social behavior and retrieved the differentially expressed immune genes. We then made a protein-protein interaction analysis of them to find the major networks and explored the potential association of these genes with the behavior and brain morphology in the mouse phenome database. To validate the expression and function of the candidate immune genes, we selected the C57BL/6 J and DBA/2 J strains among the eight inbred strains, compared their social behaviors in resident-intruder and 3-chambered social tests and the mRNA levels of these genes, and analyzed the correlations of these genes with the social behaviors. A group of immune genes were differentially expressed in the brains of these mouse strains. The representative C57BL/6 J and DBA/2 J strains displayed significant differences in social behaviors, DBA/2 J mice being less active in social dominance and social interaction than C57BL/6 J mice. The mRNA levels of H2-d1 in the prefrontal cortex, hippocampus, and hypothalamus and C1qb in the hippocampus of the DBA/2 J strain were significantly down-regulated as compared to those in the C57BL/6 J strain. In contrast, Polr3b in the hippocampus and Tnfsf13b in the prefrontal cortex of the DBA/2 J strain were up-regulated. Furthermore, C1qb, Cx3cl1, H2-d1, H2-k1, Polr3b, and Tnfsf13b were predicted to be associated with various behavioral and brain morphological features across the eight inbred strains. Importantly, the C1qb mRNA level was confirmed to be significantly correlated with the

  11. Passenger mutations and aberrant gene expression in congenic tissue plasminogen activator-deficient mouse strains

    PubMed Central

    Szabo, R.; Samson, A. L.; Lawrence, D. A.; Medcalf, R. L.; Bugge, T. H.

    2017-01-01

    Summary Background The ability to generate defined null mutations in mice revolutionized the analysis of gene function in mammals. However, gene-deficient mice generated by using 129-derived embryonic stem cells may carry large segments of 129 DNA, even when extensively backcrossed to reference strains, such as C57BL/6J, and this may confound interpretation of experiments performed in these mice. Tissue plasminogen activator (tPA), encoded by the PLAT gene, is a fibrinolytic serine protease that is widely expressed in the brain. A number of neurological abnormalities have been reported in tPA-deficient mice. Objectives To study genetic contamination of tPA-deficient mice. Materials and methods Whole genome expression array analysis, RNAseq expression profiling, low- and high-density SNP analysis, bioinformatics, and genome editing was used to analyze gene expression in tPA-deficient mouse brains. Results and conclusions Genes differentially expressed in the brain of Plat−/− mice from two independent colonies highly backcrossed onto the C57BL/6J strain clustered near Plat on chromosome 8. SNP analysis attributed this anomaly to about 20 Mbp of DNA flanking Plat being of 129 origin in both strains. Bioinformatic analysis of these 129-derived chromosomal segments identified a significant number of mutations in genes co-segregating with the targeted Plat allele, including several potential null mutations. Using zinc finger nuclease technology, we generated novel “passenger mutation”-free isogenic C57BL/6J-Plat−/− and FVB/NJ-Plat−/− mouse strains by introducing an 11 bp deletion in the exon encoding the signal peptide. These novel mouse strains will be a useful community resource for further exploration of tPA function in physiological and pathological processes. PMID:27079292

  12. Genetic variability to diet-induced hippocampal dysfunction in BXD recombinant inbred (RI) mouse strains

    PubMed Central

    Xue, Yueqiang; Li, JingJing; Yan, Lei; Lu, Lu; Liao, Francesca-Fang

    2016-01-01

    Evidence has emerged suggesting that diet-induced obesity can have a negative effect on cognitive function. Here, we exploited a mouse genetic reference population to look for the linkage between these two processes on a genome-wide scale. The focus of this report is to determine whether the various BXD RI strains exhibited different behavioral performance and hippocampal function under high fat dietary (HFD) condition. We quantified genetic variation in body weight gain and consequent influences on behavioral tests in a cohort of 14 BXD strains of mice (8–12 mice/strain, n=153), for which we have matched data on gene expression and neuroanatomical changes in the hippocampus. It showed that BXD66 was the most susceptible, whereas BXD77 was the least susceptible strain to dietary influences. The performance of spatial reference memory tasks was strongly correlated with body weight gain (P<0.05). The obesity-prone strains displayed more pronounced spatial memory defects compared to the obesity-resistant strains. These abnormalities were associated with neuro inflammation, synaptic dysfunction, and neuronal loss in the hippocampus. The biological relevance of DSCAM gene polymorphism was assessed using the trait correlation analysis tool in Genenet work. Further more, a significant strain-dependent gene expression difference of DSCAM was detected in the hippocampus of obese BXD strains by real-time quantitative PCR. In conclusion, a variety of across-strain hippocampal alterations and genetic predispositions to diet-induced obesity were found in a set of BXD strains. The obesity-prone and obesity-resistant lines we have identified should be highly useful to study the molecular genetics of diet-induced cognitive decline. PMID:26092713

  13. Recapitulation of the ovum mutant (Om) phenotype and loss of Om locus polarity in cloned mouse embryos.

    PubMed

    Gao, Shaorong; Wu, Guangming; Han, Zhiming; de la Casa-Esperón, Elena; Sapienza, Carmen; Latham, Keith E

    2005-02-01

    The ovum mutant (Om) locus in mice affects early interactions between sperm and egg that in turn affect viability of embryos beyond the morula stage. Crosses of DDK females to males of many other inbred strains are 95% lethal around the morula stage, whereas reciprocal crosses are fully viable. Available data indicate that the early lethality is the result of an interaction between a factor in the ooplasm and the paternal genome. In this study, we examined whether this lethal interaction would likewise occur in cloned embryos produced by somatic cell nuclear transfer. We find that the Om effect is recapitulated but that the parental origin effect at the Om locus is no longer evident in cloned embryos.

  14. Nicotine does not enhance tumorigenesis in mutant K-ras-driven mouse models of lung cancer.

    PubMed

    Maier, Colleen R; Hollander, M Christine; Hobbs, Evthokia A; Dogan, Irem; Linnoila, R Ilona; Dennis, Phillip A

    2011-11-01

    Smoking is the leading cause of preventable cancer deaths in the United States. Nicotine replacement therapies (NRT) have been developed to aid in smoking cessation, which decreases lung cancer incidence. However, the safety of NRT is controversial because numerous preclinical studies have shown that nicotine enhances tumor cell growth in vitro and in vivo. We modeled NRT in mice to determine the effects of physiologic levels of nicotine on lung tumor formation, tumor growth, or metastasis. Nicotine administered in drinking water did not enhance lung tumorigenesis after treatment with the tobacco carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Tumors that develop in this model have mutations in K-ras, which is commonly observed in smoking-related, human lung adenocarcinomas. In a transgenic model of mutant K-ras-driven lung cancer, nicotine did not increase tumor number or size and did not affect overall survival. Likewise, in a syngeneic model using lung cancer cell lines derived from NNK-treated mice, oral nicotine did not enhance tumor growth or metastasis. These data show that nicotine does not enhance lung tumorigenesis when given to achieve levels comparable with those of NRT, suggesting that nicotine has a dose threshold, below which it has no appreciable effect. These studies are consistent with epidemiologic data showing that NRT does not enhance lung cancer risk in former smokers.

  15. Nicotine does not enhance tumorigenesis in mutant K-Ras-driven mouse models of lung cancer

    PubMed Central

    Maier, Colleen R.; Hollander, M. Christine; Hobbs, Evthokia A.; Dogan, Irem; Dennis, Phillip A.

    2011-01-01

    Smoking is the leading cause of preventable cancer deaths in the United States. Nicotine replacement therapies (NRT) have been developed to aid in smoking cessation, which decreases lung cancer incidence. However, the safety of NRT is controversial because numerous preclinical studies have shown that nicotine enhances tumor cell growth in vitro and in vivo. We modeled NRT in mice to determine the effects of physiological levels of nicotine on lung tumor formation, tumor growth or metastasis. Nicotine administered in drinking water did not enhance lung tumorigenesis after treatment with the tobacco carcinogen, NNK. Tumors that develop in this model have mutations in K-ras, which is a commonly observed in smoking-related, human lung adenocarcinomas. In a transgenic model of mutant K-ras-driven lung cancer, nicotine did not increase tumor number or size, and did not affect overall survival. Likewise, in a syngeneic model of lung cancer cell lines derived from NNK-treated mice, oral nicotine did not enhance tumor growth or metastasis. These data show that nicotine does not enhance lung tumorigenesis when given to achieve levels comparable to those of NRT, suggesting that nicotine has a dose threshold, below which it has no appreciable effect. These studies are consistent with epidemiological data showing that NRT does not enhance lung cancer risk in former smokers. PMID:22027685

  16. Oxidative stress and diabetes: what can we learn about insulin resistance from antioxidant mutant mouse models?

    PubMed Central

    Styskal, JennaLynn; Van Remmen, Holly; Richardson, Arlan; Salmon, Adam B.

    2011-01-01

    The development of metabolic dysfunctions like diabetes and insulin resistance in mammals is regulated by a myriad of factors. Oxidative stress seems to play a central role in this process as recent evidence shows a general increase in oxidative damage and a decrease in oxidative defense associated with several metabolic diseases. These changes in oxidative stress can be directly correlated with increased fat accumulation, obesity and consumption of high calorie/high fat diets. Modulation of oxidant protection through either genetic mutation or treatment with antioxidants can significantly alter oxidative stress resistance and accumulation of oxidative damage in laboratory rodents. Antioxidant mutant mice have previously been utilized to examine the role of oxidative stress in other disease models, but have been relatively unexplored as models to study the regulation of glucose metabolism. In this review, we will discuss the evidence for oxidative stress as a primary mechanism linking obesity and metabolic disorders and whether alteration of antioxidant status in laboratory rodents can significantly alter the development of insulin resistance or diabetes. PMID:22056908

  17. Establishing a Markerless Genetic Exchange System for Methanosarcina mazei Strain Gö1 for Constructing Chromosomal Mutants of Small RNA Genes

    PubMed Central

    Ehlers, Claudia; Jäger, Dominik; Schmitz, Ruth A.

    2011-01-01

    A markerless genetic exchange system was successfully established in Methanosarcina mazei strain Gö1 using the hpt gene coding for hypoxanthine phosphoribosyltransferase. First, a chromosomal deletion mutant of the hpt gene was generated conferring resistance to the purine analog 8-aza-2,6-diaminopurine (8-ADP). The nonreplicating allelic exchange vector (pRS345) carrying the pac-resistance cassette for direct selection of chromosomal integration, and the hpt gene for counterselection was introduced into this strain. By a pop-in and ultimately pop-out event of the plasmid from the chromosome, allelic exchange is enabled. Using this system, we successfully generated a M. mazei deletion mutant of the gene encoding the regulatory non-coding RNA sRNA154. Characterizing M. mazeiΔsRNA 154 under nitrogen limiting conditions demonstrated differential expression of at least three cytoplasmic proteins and reduced growth strongly arguing for a prominent role of sRNA154 in regulation of nitrogen fixation by posttranscriptional regulation. PMID:21941461

  18. Significant gene content variation characterizes the genomes of inbred mouse strains

    PubMed Central

    Cutler, Gene; Marshall, Lisa A.; Chin, Ni; Baribault, Helene; Kassner, Paul D.

    2007-01-01

    The contribution to genetic diversity of genomic segmental copy number variations (CNVs) is less well understood than that of single-nucleotide polymorphisms (SNPs). While less frequent than SNPs, CNVs have greater potential to affect phenotype. In this study, we have performed the most comprehensive survey to date of CNVs in mice, analyzing the genomes of 42 Mouse Phenome Consortium priority strains. This microarray comparative genomic hybridization (CGH)-based analysis has identified 2094 putative CNVs, with an average of 10 Mb of DNA in 51 CNVs when individual mouse strains were compared to the reference strain C57BL/6J. This amount of variation results in gene content that can differ by hundreds of genes between strains. These genes include members of large families such as the major histocompatibility and pheromone receptor genes, but there are also many singleton genes including genes with expected phenotypic consequences from their deletion or amplification. Using a whole-genome association analysis, we demonstrate that complex multigenic phenotypes, such as food intake, can be associated with specific copy number changes. PMID:17989247

  19. Structure of 4-hydrophenylpyruvic acid dioxygenase (HPD) gene and its mutation in tyrosinemic mouse strain III

    SciTech Connect

    Awata, H.; Endo, F.; Matsuda, I.

    1994-09-01

    4-Hydroxphenylpyruvic acid dioxygenase (HPD) is an important enzyme in tyrosine catabolism in most organisms. The activity of this enzyme is expressed mainly in the liver and is developmentally regulated in mammals. A genetic deficiency of the enzyme in man and mouse leads to hereditary tyrosinemia type 3. Using human HPD cDNA as a probe, a chromosomal gene related to HPD was isolated from human and mouse gene libraries. The human HPD gene is over 30 kilo-bases long and is split into 14 exons. Analysis of the 5{prime} flanking sequence of the gene suggests that expression of the gene is regulated by hepatocyte-specific and liver-enriched transcription factors, as well as by hormones. These features of the 5{prime} flanking region of the gene are similar to those of other genes which are specifically expressed in hepatocytes and which are developmentally regulated. The gene for mouse HPD has a similar structure and we obtained evidence for a nucleotide substitution which generates a termination codon in exon 7 of the HPD gene in III mice. This mutation associates a partial exon skipping and most of the mRNA lacks sequences corresponding to exon 7. The partial exon skipping apparently is the result of a nonsense mutation in the exon. Thus, mouse strain III can serve as a genetic model for human tyrosinemia type 3. Ongoing studies are expected to elucidate the disease process involved in hereditary tyrosinemia type 1 and to shed light on mechanisms that mediate developmental regulation of HPD gene expression. In addition, mouse strain III together with recently established models for tyrosinemia type 1 will facilitate studies on hereditary tyrosinemias.

  20. Regulation of TGF-β signalling by Fbxo11, the gene mutated in the Jeff otitis media mouse mutant

    PubMed Central

    Tateossian, Hilda; Hardisty-Hughes, Rachel E; Morse, Susan; Romero, Maria R; Hilton, Helen; Dean, Charlotte; Brown, Steve DM

    2009-01-01

    Background Jeff is a dominant mouse mutant displaying chronic otitis media. The gene underlying Jeff is Fbxo11, a member of the large F-box family, which are specificity factors for the SCF E3 ubiquitin ligase complex. Jeff homozygotes die shortly after birth displaying a number of developmental abnormalities including cleft palate and eyes open at birth. TGF-β signalling is involved in a number of epithelial developmental processes and we have investigated the impact of the Jeff mutation on the expression of this pathway. Results Phospho-Smad2 (pSmad2) is significantly upregulated in epithelia of Jeff homozygotes. Moreover, there was a significant increase in nuclear localization of pSmad2 in contrast to wild type. Mice heterozygous for both Jeff and Smad2 mutations recapitulate many of the features of the Jeff homozygous phenotype. However, tissue immunoprecipitations failed to detect any interaction between Fbxo11 and Smad2. Fbxo11 is known to neddylate p53, a co-factor of pSmad2, but we did not find any evidence of genetic interactions between Jeff and p53 mutants. Nevertheless, p53 levels are substantially reduced in Jeff mice suggesting that Fbxo11 plays a role in stabilizing p53. Conclusion Overall, our findings support a model whereby Fbxo11, possibly via stabilization of p53, is required to limit the accumulation of pSmad2 in the nucleus of epithelial cells of palatal shelves, eyelids and airways of the lungs. The finding that Fbxo11 impacts upon TGF-β signalling has important implications for our understanding of the underlying disease mechanisms of middle ear inflammatory disease. PMID:19580641

  1. The connexin26 S17F mouse mutant represents a model for the human hereditary keratitis-ichthyosis-deafness syndrome.

    PubMed

    Schütz, Melanie; Auth, Tanja; Gehrt, Anna; Bosen, Felicitas; Körber, Inken; Strenzke, Nicola; Moser, Tobias; Willecke, Klaus

    2011-01-01

    Mutations in the GJB2 gene coding for connexin26 (Cx26) can cause a variety of deafness and hereditary hyperproliferative skin disorders in humans. In this study, we investigated the Cx26S17F mutation in mice, which had been identified to cause the keratitis-ichthyosis-deafness (KID) syndrome in humans. The KID syndrome is characterized by keratitis and chronic progressive corneal neovascularization, skin hyperplasia, sensorineural hearing loss and increased carcinogenic potential. We have generated a conditional mouse mutant, in which the floxed wild-type Cx26-coding DNA can be deleted and the Cx26S17F mutation is expressed under control of the endogenous Cx26 promoter. Homozygous mutants are not viable, whereas the surviving heterozygous mice show hyperplasia of tail and foot epidermis, wounded tails and annular tail restrictions, and are smaller than their wild-type littermates. Analyses of auditory brainstem responses (ABRs) indicate an ∼35 dB increased hearing threshold in these mice, which is likely due to the reduction of the endocochlear potential by 20-40%. Our results indicate that the Cx26S17F protein, which does not form functional gap junction channels or hemichannels, alters epidermal proliferation and differentiation in the heterozygous state. In the inner ear, reduced intercellular coupling by heteromeric channels composed of Cx26S17F and Cx30 could contribute to hearing impairment in heterozygous mice, while remaining wild-type Cx26 may be sufficient to stabilize Cx30 and partially maintain cochlear homeostasis. The phenotype of heterozygous mice resembles many of the symptoms of the human KID syndrome. Thus, these mice represent an appropriate model to further investigate the disease mechanism.

  2. Oxygen association-dissociation and stability analysis on mouse hemoglobins with mutant alpha- and beta-globins.

    PubMed

    D'Surney, S J; Popp, R A

    1992-10-01

    Oxygen association-dissociation and hemoglobin stability analysis were performed on mouse hemoglobins with amino acid substitutions in an alpha-globin (alpha 89, His to Leu) and a beta-globin (beta 59, Lys to Ile). The variant alpha-globin, designated chain 5m in the Hbag2 haplotype, had an high oxygen affinity and was stable. The variant beta-globin, (beta s2) of the Hbbs2 haplotype, also had an elevated oxygen affinity and in addition was moderately unstable in 19% isopropanol. Hemoglobins from the expected nine (Hbag2/Hbag2;Hbbs/Hbbs x Hbaa/Hbaa;Hbbs2/Hbbs2) F2 genotypes can be grouped into five classes of P50 values characterized by strict additivity and dependency on mutant globin gene dosage; physiologically, both globin variants gave indistinguishable effects on oxygen affinity. The hemoglobin of normal mice (Hbaa/Hbaa;Hbbs/Hbbs) had a P50 = 40 mm Hg and the hemoglobin of Hbag2/Hbag2;Hbbs2/Hbbs2 F2 mice had a P50 = 25 mm Hg (human P50 = 26 mm Hg). Peripheral blood from Hbag2/Hbag2;Hbbs/Hbbs, Hbaa/Hbaa;Hbbs2/Hbbs2 and Hbag2/Hbag2;Hbbs2/Hbbs2 mice exhibited normal hematological values except for a slightly higher hematocrit for Hbag2/Hbag2;Hbbs/Hbbs and Hbag2/Hbag2;Hbbs2/Hbbs2 mice, slightly elevated red cell counts for mice of the three mutant genotypes, and significantly lower values for the mean corpuscular volume and mean corpuscular hemoglobin for Hbag2/Hbag2;Hbbs2/Hbbs2 mice.

  3. Multiple cells-of-origin of mutant K-Ras–induced mouse lung adenocarcinoma

    PubMed Central

    Sutherland, Kate D.; Song, Ji-Ying; Kwon, Min Chul; Proost, Natalie; Zevenhoven, John; Berns, Anton

    2014-01-01

    Much controversy surrounds the cell-of-origin of mutant K-Ras (K-RasG12D)–induced lung adenocarcinoma. To shed light on this issue, we have used technology that enables us to conditionally target K-RasG12D expression in Surfactant Protein C (SPC)+ alveolar type 2 cells and in Clara cell antigen 10 (CC10)+ Clara cells by use of cell-type–restricted recombinant Adeno-Cre viruses. Experiments were performed both in the presence and absence of the tumor suppressor gene p53, enabling us to assess what effect the cell-of-origin and the introduced genetic lesions have on the phenotypic characteristics of the resulting adenocarcinomas. We conclude that both SPC-expressing alveolar type 2 cells and CC10-expressing Clara cells have the ability to initiate malignant transformation following the introduction of these genetic alterations. The lungs of K-Raslox–Stop–lox–G12D/+ and K-Raslox–Stop–lox–G12D/+;tumor suppressor gene Trp53F/F mice infected with Adeno5–SPC–Cre and Adeno5–CC10–Cre viruses displayed differences in their tumor spectrum, indicating distinct cellular routes of tumor initiation. Moreover, using a multicolor Cre reporter line, we demonstrate that the resulting tumors arise from a clonal expansion of switched cells. Taken together, these results indicate that there are multiple cellular paths to K-RasG12D–induced adenocarcinoma and that the initiating cell influences the histopathological phenotype of the tumors that arise. PMID:24586047

  4. p53 suppression partially rescues the mutant phenotype in mouse models of DiGeorge syndrome

    PubMed Central

    Caprio, Cinzia; Baldini, Antonio

    2014-01-01

    T-box 1 (Tbx1), a gene encoding a T-box transcription factor, is required for embryonic development in humans and mice. Half dosage of this gene in humans causes most of the features of the DiGeorge or Velocardiofacial syndrome phenotypes, including aortic arch and cardiac outflow tract abnormalities. Here we found a strong genetic interaction between Tbx1 and transformation related protein 53 (Trp53). Indeed, genetic ablation of Trp53, or pharmacological inhibition of its protein product p53, rescues significantly the cardiovascular defects of Tbx1 heterozygous and hypomorphic mutants. We found that the Tbx1 and p53 proteins do not interact directly but both occupy a genetic element of Gbx2, which is required for aortic arch and cardiac outflow tract development, and is a known genetic interactor of Tbx1. We found that Gbx2 expression is down-regulated in Tbx1+/− embryos and is restored to normal levels in Tbx1+/−;Trp53+/− embryos. In addition, we found that the genetic element that binds both Tbx1 and p53 is highly enriched in H3K27 trimethylation, and upon p53 suppression H3K27me3 levels are reduced, along with Ezh2 enrichment. This finding suggests that the rescue of Gbx2 expression in Tbx1+/−;Trp53+/− embryos is due to reduction of repressive chromatin marks. Overall our data identify unexpected genetic interactions between Tbx1 and Trp53 and provide a proof of principle that developmental defects associated with reduced dosage of Tbx1 can be rescued pharmacologically. PMID:25197075

  5. p53 Suppression partially rescues the mutant phenotype in mouse models of DiGeorge syndrome.

    PubMed

    Caprio, Cinzia; Baldini, Antonio

    2014-09-16

    T-box 1 (Tbx1), a gene encoding a T-box transcription factor, is required for embryonic development in humans and mice. Half dosage of this gene in humans causes most of the features of the DiGeorge or Velocardiofacial syndrome phenotypes, including aortic arch and cardiac outflow tract abnormalities. Here we found a strong genetic interaction between Tbx1 and transformation related protein 53 (Trp53). Indeed, genetic ablation of Trp53, or pharmacological inhibition of its protein product p53, rescues significantly the cardiovascular defects of Tbx1 heterozygous and hypomorphic mutants. We found that the Tbx1 and p53 proteins do not interact directly but both occupy a genetic element of Gbx2, which is required for aortic arch and cardiac outflow tract development, and is a known genetic interactor of Tbx1. We found that Gbx2 expression is down-regulated in Tbx1(+/-) embryos and is restored to normal levels in Tbx1(+/-);Trp53(+/-) embryos. In addition, we found that the genetic element that binds both Tbx1 and p53 is highly enriched in H3K27 trimethylation, and upon p53 suppression H3K27me3 levels are reduced, along with Ezh2 enrichment. This finding suggests that the rescue of Gbx2 expression in Tbx1(+/-);Trp53(+/-) embryos is due to reduction of repressive chromatin marks. Overall our data identify unexpected genetic interactions between Tbx1 and Trp53 and provide a proof of principle that developmental defects associated with reduced dosage of Tbx1 can be rescued pharmacologically.

  6. Fluoroquinolone and Quinazolinedione Activities against Wild-Type and Gyrase Mutant Strains of Mycobacterium smegmatis▿

    PubMed Central

    Malik, Muhammad; Marks, Kevin R.; Mustaev, Arkady; Zhao, Xilin; Chavda, Kalyan; Kerns, Robert J.; Drlica, Karl

    2011-01-01

    Quinazolinediones (diones) are fluoroquinolone-like inhibitors of bacterial gyrase and DNA topoisomerase IV. To assess activity against mycobacteria, C-8-methoxy dione derivatives were compared with cognate fluoroquinolones by using cultured Mycobacterium smegmatis. Diones exhibited higher MIC values than fluoroquinolones; however, MICs for fluoroquinolone-resistant gyrA mutants, normalized to the MIC for wild-type cells, were lower. Addition of a 3-amino group to the 2,4-dione core increased relative activity against mutants, while alteration of the 8-methoxy group to a methyl or of the 2,4-dione core to a 1,3-dione core lowered activity against mutants. A GyrA G89C bacterial variant was strikingly susceptible to most of the diones tested; in contrast, low susceptibility to fluoroquinolones was observed. Many of the bacteriostatic differences between diones and fluoroquinolones were explained by interactions at the N terminus of GyrA helix IV revealed by recently published X-ray structures of drug-topoisomerase-DNA complexes. When lethal activity was normalized to the MIC in order to minimize the effects of drug uptake, efflux, and ternary complex formation, a 3-amino-2,4-dione exhibited killing activity comparable to that of a cognate fluoroquinolone. Surprisingly, the lethal activity of the dione was inhibited less by chloramphenicol than that of the cognate fluoroquinolone. This observation adds the 2,4-dione structural motif to the list of structural features known to impart lethality to fluoroquinolone-like compounds in the absence of protein synthesis, a phenomenon that is not explained by X-ray structures of drug-enzyme-DNA complexes. PMID:21383100

  7. Fluoroquinolone and quinazolinedione activities against wild-type and gyrase mutant strains of Mycobacterium smegmatis.

    PubMed

    Malik, Muhammad; Marks, Kevin R; Mustaev, Arkady; Zhao, Xilin; Chavda, Kalyan; Kerns, Robert J; Drlica, Karl

    2011-05-01

    Quinazolinediones (diones) are fluoroquinolone-like inhibitors of bacterial gyrase and DNA topoisomerase IV. To assess activity against mycobacteria, C-8-methoxy dione derivatives were compared with cognate fluoroquinolones by using cultured Mycobacterium smegmatis. Diones exhibited higher MIC values than fluoroquinolones; however, MICs for fluoroquinolone-resistant gyrA mutants, normalized to the MIC for wild-type cells, were lower. Addition of a 3-amino group to the 2,4-dione core increased relative activity against mutants, while alteration of the 8-methoxy group to a methyl or of the 2,4-dione core to a 1,3-dione core lowered activity against mutants. A GyrA G89C bacterial variant was strikingly susceptible to most of the diones tested; in contrast, low susceptibility to fluoroquinolones was observed. Many of the bacteriostatic differences between diones and fluoroquinolones were explained by interactions at the N terminus of GyrA helix IV revealed by recently published X-ray structures of drug-topoisomerase-DNA complexes. When lethal activity was normalized to the MIC in order to minimize the effects of drug uptake, efflux, and ternary complex formation, a 3-amino-2,4-dione exhibited killing activity comparable to that of a cognate fluoroquinolone. Surprisingly, the lethal activity of the dione was inhibited less by chloramphenicol than that of the cognate fluoroquinolone. This observation adds the 2,4-dione structural motif to the list of structural features known to impart lethality to fluoroquinolone-like compounds in the absence of protein synthesis, a phenomenon that is not explained by X-ray structures of drug-enzyme-DNA complexes.

  8. Novel Jbts17 mutant mouse model of Joubert syndrome with cilia transition zone defects and cerebellar and other ciliopathy related anomalies.

    PubMed

    Damerla, Rama Rao; Cui, Cheng; Gabriel, George C; Liu, Xiaoqin; Craige, Branch; Gibbs, Brian C; Francis, Richard; Li, You; Chatterjee, Bishwanath; San Agustin, Jovenal T; Eguether, Thibaut; Subramanian, Ramiah; Witman, George B; Michaud, Jacques L; Pazour, Gregory J; Lo, Cecilia W

    2015-07-15

    Recent studies identified a previously uncharacterized gene C5ORF42 (JBTS17) as a major cause of Joubert syndrome (JBTS), a ciliopathy associated with cerebellar abnormalities and other birth defects. Here we report the first Jbts17 mutant mouse model, Heart Under Glass (Hug), recovered from a forward genetic screen. Exome sequencing identified Hug as a S235P missense mutation in the mouse homolog of JBTS17 (2410089e03rik). Hug mutants exhibit multiple birth defects typical of ciliopathies, including skeletal dysplasia, polydactyly, craniofacial anomalies, kidney cysts and eye defects. Some Hug mutants exhibit congenital heart defects ranging from mild pulmonary stenosis to severe pulmonary atresia. Immunostaining showed JBTS17 is localized in the cilia transition zone. Fibroblasts from Hug mutant mice and a JBTS patient with a JBTS17 mutation showed ciliogenesis defects. Significantly, Hug mutant fibroblasts showed loss of not only JBTS17, but also NPHP1 and CEP290 from the cilia transition zone. Hug mutants exhibited reduced ciliation in the cerebellum. This was associated with reduction in cerebellar foliation. Using a fibroblast wound-healing assay, we showed Hug mutant cells cannot establish cell polarity required for directional cell migration. However, stereocilia patterning was grossly normal in the cochlea, indicating planar cell polarity is not markedly affected. Overall, we showed the JBTS pathophysiology is replicated in the Hug mutant mice harboring a Jbts17 mutation. Our findings demonstrate JBTS17 is a cilia transition zone component that acts upstream of other Joubert syndrome associated transition zone proteins NPHP1 and CEP290, indicating its importance in the pathogenesis of Joubert syndrome.

  9. Novel Jbts17 mutant mouse model of Joubert syndrome with cilia transition zone defects and cerebellar and other ciliopathy related anomalies

    PubMed Central

    Damerla, Rama Rao; Cui, Cheng; Gabriel, George C.; Liu, Xiaoqin; Craige, Branch; Gibbs, Brian C.; Francis, Richard; Li, You; Chatterjee, Bishwanath; San Agustin, Jovenal T.; Eguether, Thibaut; Subramanian, Ramiah; Witman, George B.; Michaud, Jacques L.; Pazour, Gregory J.; Lo, Cecilia W.

    2015-01-01

    Recent studies identified a previously uncharacterized gene C5ORF42 (JBTS17) as a major cause of Joubert syndrome (JBTS), a ciliopathy associated with cerebellar abnormalities and other birth defects. Here we report the first Jbts17 mutant mouse model, Heart Under Glass (Hug), recovered from a forward genetic screen. Exome sequencing identified Hug as a S235P missense mutation in the mouse homolog of JBTS17 (2410089e03rik). Hug mutants exhibit multiple birth defects typical of ciliopathies, including skeletal dysplasia, polydactyly, craniofacial anomalies, kidney cysts and eye defects. Some Hug mutants exhibit congenital heart defects ranging from mild pulmonary stenosis to severe pulmonary atresia. Immunostaining showed JBTS17 is localized in the cilia transition zone. Fibroblasts from Hug mutant mice and a JBTS patient with a JBTS17 mutation showed ciliogenesis defects. Significantly, Hug mutant fibroblasts showed loss of not only JBTS17, but also NPHP1 and CEP290 from the cilia transition zone. Hug mutants exhibited reduced ciliation in the cerebellum. This was associated with reduction in cerebellar foliation. Using a fibroblast wound-healing assay, we showed Hug mutant cells cannot establish cell polarity required for directional cell migration. However, stereocilia patterning was grossly normal in the cochlea, indicating planar cell polarity is not markedly affected. Overall, we showed the JBTS pathophysiology is replicated in the Hug mutant mice harboring a Jbts17 mutation. Our findings demonstrate JBTS17 is a cilia transition zone component that acts upstream of other Joubert syndrome associated transition zone proteins NPHP1 and CEP290, indicating its importance in the pathogenesis of Joubert syndrome. PMID:25877302

  10. Absence of linkage of apparently single gene mediated ADHD with the human syntenic region of the mouse mutant coloboma

    SciTech Connect

    Hess, E.J.; Rogan, P.K.; Domoto, M.

    1995-12-18

    Attention deficit disorder (ADHD) is a complex biobehavioral phenotype which affects up to 8% of the general population and often impairs social, academic, and job performance. Its origins are heterogeneous, but a significant genetic component is suggested by family and twin studies. The murine strain, coloboma, displays a spontaneously hyperactive phenotype that is responsive to dextroamphetamine and has been proposed as a genetic model for ADHD. Coloboma is a semi-dominant mutation that is caused by a hemizygous deletion of the SNAP-25 and other genes on mouse chromosome 2q. To test the possibility that the human homolog of the mouse coloboma gene(s) could be responsible for ADHD, we have carried out linkage studies with polymorphic markers in the region syntenic to coloboma (20p11-p12). Five families in which the pattern of inheritance of ADHD appears to be autosomal dominant were studied. Segregation analysis of the traits studied suggested that the best fitting model was a sex-influenced, single gene, Mendelian pattern. Several genetic models were evaluated based on estimates of penetrance, phenocopy rate, and allele frequency derived from our patient population and those of other investigators. No significant linkage was detected between the disease locus and markers spanning this chromosome 20 interval. 39 refs., 2 figs., 1 tab.

  11. Effects of atherogenic diet on hepatic gene expression across mouse strains

    PubMed Central

    Witmer, David; Burgess-Herbert, Sarah L.; Paigen, Beverly; Churchill, Gary A.

    2009-01-01

    Diets high in fat and cholesterol are associated with increased obesity and metabolic disease in mice and humans. To study the molecular basis of the metabolic response to dietary fat, 10 inbred strains of mice were fed atherogenic high-fat and control low-fat diets. Liver gene expression and whole animal phenotypes were measured and analyzed in both sexes. The effects of diet, strain, and sex on gene expression were determined irrespective of complex processes, such as feedback mechanisms, that could have mediated the genomic responses. Global gene expression analyses demonstrated that animals of the same strain and sex have similar transcriptional profiles on a low-fat diet, but strains may show considerable variability in response to high-fat diet. Functional profiling indicated that high-fat feeding induced genes in the immune response, indicating liver damage, and repressed cholesterol biosynthesis. The physiological significance of the transcriptional changes was confirmed by a correlation analysis of transcript levels with whole animal phenotypes. The results found here were used to confirm a previously identified quantitative trait locus on chromosome 17 identified in males fed a high-fat diet in two crosses, PERA × DBA/2 and PERA × I/Ln. The gene expression data and phenotype data have been made publicly available as an online tool for exploring the effects of atherogenic diet in inbred mouse strains (http://cgd-array.jax.org/DietStrainSurvey). PMID:19671657

  12. Transgenic Mouse Model Expressing the Caspase 6 Fragment of Mutant Huntingtin

    PubMed Central

    Roby, Elaine Waldron; Ratovitski, Tamara; Wang, XiaoFang; Jiang, Mali; Watkin, Erin; Arbez, Nikolas; Graham, Rona K.; Hayden, Michael R.; Hou, Zhipeng; Mori, Susumu; Swing, Deborah; Pletnikov, Mikhail; Duan, Wenzhen; Tessarollo, Lino; Ross, Christopher A.

    2012-01-01

    Huntington’s disease (HD) is caused by a polyglutamine expansion in the Huntingtin (Htt) protein. Proteolytic cleavage of Htt into toxic N-terminal fragments is believed to be a key aspect of pathogenesis. The best characterized putative cleavage event is at amino acid 586, hypothesized to be mediated by caspase 6. A corollary of the caspase 6 cleavage hypothesis is that the caspase 6 fragment should be a toxic fragment. To test this hypothesis, and further characterize the role of this fragment, we have generated transgenic mice expressing the N-terminal 586 aa of Htt with a polyglutamine repeat length of 82 (N586-82Q), under the control of the prion promoter. N586-82Q mice show a clear progressive rotarod deficit by four months of age, and are hyperactive starting at 5 months, later changing to hypoactivity prior to early mortality. MRI studies reveal widespread brain atrophy, and histologic studies demonstrate an abundance of Htt aggregates, mostly cytoplasmic, which are predominantly composed of the N586-82Q polypeptide. Smaller soluble N-terminal fragments appear to accumulate over time, peaking at four months, and are predominantly found in the nuclear fraction. This model appears to have a phenotype more severe than current full-length Htt models, but less severe than HD mouse models expressing shorter Htt fragments. These studies suggest that the caspase 6 fragment may be a transient intermediate, that fragment size is a factor contributing to the rate of disease progression, and that short soluble nuclear fragments may be most relevant to pathogenesis. PMID:22219281

  13. Topographic and zonal organization of the olivocerebellar projection in the reeler mutant mouse

    SciTech Connect

    Blatt, G.J.; Eisenman, L.M.

    1988-01-22

    The organization of the olivocerebellar projection in the homozygous reeler mouse (rl/rl) was studied with the use of microinjections of /sup 3/H-leucine in different regions of the inferior olivary complex (IO) or horseradish peroxidase conjugated with wheat germ agglutinin (WGA-HRP) into medial, intermediate, or lateral regions of the reeler cerebellum. The purpose of this investigation was to determine the pattern of termination of olivocerebellar climbing fibers (CFs) in the cerebellum via an anterograde tracing technique, and to determine the topographic organization of the olivocerebellar projection via both anterograde and retrograde methods. The inferior olive injections were made via the ventral approach to the IO to minimize diffusion into other brainstem precerebellar nuclei and thus to ensure accurate well-restricted, injection sites. Labeled CF terminals were seen in both the superficial Purkinje cell (PC) layer (normally positioned PCs) and around PCs in the granular layer and central masses (ectopic PCs). The pattern of labeling is suggestive of orthogonal organization, in that vertical columns of cells are labeled. This is especially apparent in the medial PC group, where at least three bands are identified. Within an orthogonal band, CF terminals are seen around both superficial and deep Purkinje cells. Our data indicate that olivocerebellar topography is generally similar in reeler and normal mice despite severe abnormalities in target cell position in the reeler. The medial cerebellar region receives input from the caudal two-fifths of the medial accessory olive (MAO). The intermediate PC cluster receives input from more rostral portions of all three olivary divisions, while rostral portions of MAO and PO project to the lateral cerebellum.

  14. Behavioral, physiological, and molecular differences in response to dietary restriction in three inbred mouse strains.

    PubMed

    Gelegen, Cigdem; Collier, David A; Campbell, Iain C; Oppelaar, Hugo; Kas, Martien J H

    2006-09-01

    Food restriction paradigms are widely used in animal studies to investigate systems involved in energy regulation. We have observed behavioral, physiological, and molecular differences in response to food restriction in three inbred mouse strains, C57BL/6J, A/J, and DBA/2J. These are the progenitors of chromosome substitution and recombinant inbred mouse strains used for mapping complex traits. DBA/2J and A/J mice increased their locomotor activity during food restriction, and both displayed a decrease in body temperature, but the decrease was significantly larger in DBA/2J compared with A/J mice. C57BL/6J mice did not increase their locomotor activity and displayed a large decrease in their body temperature. The large decline in body temperature during food restriction in DBA/2J and C57BL/6J strains was associated with a robust reduction in plasma leptin levels. DBA/2J mice showed a marked decrease in white and brown adipose tissue masses and an upregulation of the antithermogenic hypothalamic neuropeptide Y Y(1) receptor. In contrast, A/J mice showed a reduction in body temperature to a lesser extent that may be explained by downregulation of the thermogenic melanocortin 3 receptor and by behavioral thermoregulation as a consequence of their increased locomotor activity. These data indicate that genetic background is an important parameter in controlling an animal's adaptation strategy in response to food restriction. Therefore, mouse genetic mapping populations based on these progenitor lines are highly valuable for investigating mechanisms underlying strain-dependent differences in behavioral physiology that are seen during reduced food availability.

  15. Appearance of a metronidazole-resistant Helicobacter pylori strain in an infected-ICR-mouse model and difference in eradication of metronidazole-resistant and -sensitive strains.

    PubMed Central

    Matsumoto, S; Washizuka, Y; Matsumoto, Y; Tawara, S; Ikeda, F; Yokota, Y; Karita, M

    1997-01-01

    We tested whether antibiotic-resistant strains appeared in vivo after the failure of treatment using the Helicobacter pylori-infected euthymic mouse model. The numbers of colonies isolated from 56 ICR mice 2 weeks after 4 days of treatment with metronidazole (3.2, 10, or 32 mg/kg of body weight) or amoxicillin (1, 3.2 or 10 mg/kg), with treatment started 4 days after H. pylori CPY2052 inoculation, were counted, and the isolated strains were tested for their sensitivities to two antibiotics to rule out the presence of antibiotic-resistant strains. One metronidazole-resistant strain was detected in a mouse treated with 10 mg of metronidazole per kg, and the MIC of metronidazole for this strain was 25 microg/ml, compared to a MIC of 1.56 microg/ml for the original strain. However, no resistant strain was detected in the amoxicillin treatment group. After the examination described above, mice challenged with a metronidazole-resistant or -sensitive strain isolated from the stomach of a mouse were treated with metronidazole or amoxicillin. The metronidazole-resistant strain was more difficult to eradicate in vivo than the sensitive strain after treatment with metronidazole but not after treatment with amoxicillin. Thus, a metronidazole-resistant H. pylori strain was selected by insufficient treatment, but no resistant strain was selected with amoxicillin. Eradication of a metronidazole-resistant H. pylori strain in vivo required a higher dosage than eradication of a metronidazole-sensitive H. pylori strain. These results may explain one of the reasons for H. pylori treatment failure. PMID:9420026

  16. Ribitol dehydrogenase of Klebsiella aerogenes. Sequence and properties of wild-type and mutant strains.

    PubMed Central

    Dothie, J M; Giglio, J R; Moore, C B; Taylor, S S; Hartley, B S

    1985-01-01

    Evidence is presented for the sequence of 249 amino acids in ribitol dehydrogenase-A from Klebsiella aerogenes. Continuous culture on xylitol yields strains that superproduce 'wild-type' enzyme but mutations appear to have arisen in this process. Other strains selected by such continuous culture produce enzymes with increased specific activity for xylitol but without loss of ribitol activity. One such enzyme, ribitol dehydrogenase-D, has Pro-196 for Gly-196. Another, ribitol dehydrogenase-B, has a different mutation. PMID:3904726

  17. Structural analysis and characterization of dextran produced by wild and mutant strains of Leuconostoc mesenteroides.

    PubMed

    Siddiqui, Nadir Naveed; Aman, Afsheen; Silipo, Alba; Qader, Shah Ali Ul; Molinaro, Antonio

    2014-01-01

    An exopolysaccharide known as dextran was produced by Leuconostoc mesenteroides KIBGE-IB22 (wild) and L. mesenteroides KIBGE-IB22M20 (mutant). The structure was characterized using FTIR, (1)H NMR, (13)C NMR and 2D NMR spectroscopic techniques, whereas surface morphology was analyzed using SEM. A clear difference in the spectral chemical shift patterns was observed in both samples. All the spectral data indicated that the exopolysaccharide produced by KIBGE-IB22 is a mixture of two biopolymers. One was dextran in α-(1 → 6) configuration with a small proportion of α-(1 → 3) branching and the other was levan containing β-(2 → 6) fructan fructofuranosyl linkages. However, remarkably the mutant only produced dextran without any concomitant production of levan. Study suggested that the property of KIBGE-IB22M20, regarding improved production of high molecular weight dextran in a shorter period of fermentation time without any contamination of other exopolysaccharide, could be employed to make the downstream process more feasible and cost effective on large scale. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Pads and flexion creases on the plantar surface of hammertoe mutant mouse (Hm).

    PubMed

    Kimura, S; Terashima, T; Schaumann, B A; Shimada, M; Shiota, K

    2000-09-01

    The purpose of the present work was to determine the effects of the hereditary malformation of Hammertoe mutant mice (gene symbol Hm) on the surrounding morphological structures and, specifically, on the volar pads, i.e., the sites of the epidermal ridge patterns (dermatoglyphics). The hindlimbs of the wild-type (+/+) Hammertoe mice show no anomalies and their major pad and flexion crease configurations correspond to those of normal mice. The heterozygous (Hm/+) and homozygous (Hm/Hm) mice display a fusion of the interdigital tissues involving all digits with the exception of digit I. In Hm/Hm mice, this webbing extends to the distal phalanx and the markedly flexed digits form a shape resembling a hammer. In Hm/+ mice, the interdigital webbing does not extend as far and the digits show moderate flexion compared to those of Hm/Hm mice. Both Hm/Hm and Hm/+ have a rudimentary extra digit in the postaxial area of the hindlimbs. The ventral volar skin of the flexed digits is incompletely developed. The more posterior digits show the more severe camptodactyly. These aberrant configurations are related to the abnormal occurrence of the programmed cell death (PCD) in the interdigital zones II-IV and the proximal part of the postaxial margin during hindlimb development. They are limited to the pads on the plantar surface of the postaxial area; the preaxial area is not affected. As a result of a severe camptodactyly of digit V, its volar skin is shifted into the distal portion of the hypothenar area. This shifting affects the number, size, and location of the pads, especially of the hypothenar pad, resulting in varying pad configurations, such as a displacement of the distal and proximal components of the hypothenar pad, or a fusion of the two components of the hypothenar pad, leading to a reduced final pad number. These pad modifications are induced by the postaxial plantar surface shifting proximally and are not affected by the presence of an extra rudimentary digit. The

  19. Comparative evaluation of two vaccine candidates against experimental leishmaniasis due to Leishmania major infection in four inbred mouse strains.

    PubMed

    Benhnini, Fouad; Chenik, Mehdi; Laouini, Dhafer; Louzir, Hechmi; Cazenave, Pierre André; Dellagi, Koussay

    2009-11-01

    Experimental leishmaniasis in BALB/c and C57BL/6 mice are the most investigated murine models that were used for the preclinical evaluation of Leishmania vaccine candidates. We have previously described two new inbred mouse strains named PWK and MAI issued from feral founders that also support the development of experimental leishmaniasis due to L. major. In this study, we sought to determine whether different mouse inbred strains generate concordant or discordant results when used to evaluate the potential of Leishmania proteins to protect against experimental leishmaniasis. To this end, two Leishmania proteins, namely, LACK (for Leishmania homolog of receptor for activated C kinase) and LmPDI (for L. major protein disulfide isomerase) were compared for their capacity to protect against experimental leishmaniasis in PWK, MAI, BALB/c, and C57BL/6 inbred mouse strains. Our data show that the capacity of Leishmania proteins to confer protection depends on the mouse strain used, stressing the important role played by the genetic background in shaping the immune response against the pathogen. These results may have important implications for the preclinical evaluation of candidate Leishmania vaccines: rather than using a single mouse strain, a panel of different inbred strains of various genetic backgrounds should be tested in parallel. The antigen that confers protection in the larger range of inbred strains may have better chances to be also protective in outbred human populations and should be selected for clinical trials.

  20. The Streptomycin-Treated Mouse Intestine Selects Escherichia coli envZ Missense Mutants That Interact with Dense and Diverse Intestinal Microbiota

    PubMed Central

    Leatham-Jensen, Mary P.; Frimodt-Møller, Jakob; Adediran, Jimmy; Mokszycki, Matthew E.; Banner, Megan E.; Caughron, Joyce E.; Krogfelt, Karen A.; Conway, Tyrrell

    2012-01-01

    Previously, we reported that the streptomycin-treated mouse intestine selected nonmotile Escherichia coli MG1655 flhDC deletion mutants of E. coli MG1655 with improved colonizing ability that grow 15% faster in vitro in mouse cecal mucus and 15 to 30% faster on sugars present in mucus (M. P. Leatham et al., Infect. Immun. 73:8039–8049, 2005). Here, we report that the 10 to 20% remaining motile E. coli MG1655 are envZ missense mutants that are also better colonizers of the mouse intestine than E. coli MG1655. One of the flhDC mutants, E. coli MG1655 ΔflhD, and one of the envZ missense mutants, E. coli MG1655 mot-1, were studied further. E. coli MG1655 mot-1 is more resistant to bile salts and colicin V than E. coli MG1655 ΔflhD and grows ca. 15% slower in vitro in mouse cecal mucus and on several sugars present in mucus compared to E. coli MG1655 ΔflhD but grows 30% faster on galactose. Moreover, E. coli MG1655 mot-1 and E. coli MG1655 ΔflhD appear to colonize equally well in one intestinal niche, but E. coli MG1655 mot-1 appears to use galactose to colonize a second, smaller intestinal niche either not colonized or colonized poorly by E. coli MG1655 ΔflhD. Evidence is also presented that E. coli MG1655 is a minority member of mixed bacterial biofilms in the mucus layer of the streptomycin-treated mouse intestine. We offer a hypothesis, which we call the “Restaurant” hypothesis, that explains how nutrient acquisition in different biofilms comprised of different anaerobes can account for our results. PMID:22392928

  1. Pigmentation restored in mutant laboratory strain of the lady beetle Coleomegilla maculata through dietary supplementation

    USDA-ARS?s Scientific Manuscript database

    A laboratory colony of Coleomegilla maculata (DeGeer), ye, selected for a pigmentation deficiency, was restored to near wild type cuticle coloration by adding crushed heads and wings of the red colored parental strain to the diet. While the wings and other colored portions of the cuticle regained th...

  2. Francisella tularensis Schu S4 lipopolysaccharide core sugar and O-antigen mutants are attenuated in a mouse model of tularemia.

    PubMed

    Rasmussen, Jed A; Post, Deborah M B; Gibson, Bradford W; Lindemann, Stephen R; Apicella, Michael A; Meyerholz, David K; Jones, Bradley D

    2014-04-01

    The virulence factors mediating Francisella pathogenesis are being investigated, with an emphasis on understanding how the organism evades innate immunity mechanisms. Francisella tularensis produces a lipopolysaccharide (LPS) that is essentially inert and a polysaccharide capsule that helps the organism to evade detection by components of innate immunity. Using an F. tularensis Schu S4 mutant library, we identified strains that are disrupted for capsule and O-antigen production. These serum-sensitive strains lack both capsule production and O-antigen laddering. Analysis of the predicted protein sequences for the disrupted genes (FTT1236 and FTT1238c) revealed similarity to those for waa (rfa) biosynthetic genes in other bacteria. Mass spectrometry further revealed that these proteins are involved in LPS core sugar biosynthesis and the ligation of O antigen to the LPS core sugars. The 50% lethal dose (LD50) values of these strains are increased 100- to 1,000-fold for mice. Histopathology revealed that the immune response to the F. tularensis mutant strains was significantly different from that observed with wild-type-infected mice. The lung tissue from mutant-infected mice had widespread necrotic debris, but the spleens lacked necrosis and displayed neutrophilia. In contrast, the lungs of wild-type-infected mice had nominal necrosis, but the spleens had widespread necrosis. These data indicate that murine death caused by wild-type strains occurs by a mechanism different from that by which the mutant strains kill mice. Mice immunized with these mutant strains displayed >10-fold protective effects against virulent type A F. tularensis challenge.

  3. Francisella tularensis Schu S4 Lipopolysaccharide Core Sugar and O-Antigen Mutants Are Attenuated in a Mouse Model of Tularemia

    PubMed Central

    Rasmussen, Jed A.; Post, Deborah M. B.; Gibson, Bradford W.; Lindemann, Stephen R.; Apicella, Michael A.; Meyerholz, David K.

    2014-01-01

    The virulence factors mediating Francisella pathogenesis are being investigated, with an emphasis on understanding how the organism evades innate immunity mechanisms. Francisella tularensis produces a lipopolysaccharide (LPS) that is essentially inert and a polysaccharide capsule that helps the organism to evade detection by components of innate immunity. Using an F. tularensis Schu S4 mutant library, we identified strains that are disrupted for capsule and O-antigen production. These serum-sensitive strains lack both capsule production and O-antigen laddering. Analysis of the predicted protein sequences for the disrupted genes (FTT1236 and FTT1238c) revealed similarity to those for waa (rfa) biosynthetic genes in other bacteria. Mass spectrometry further revealed that these proteins are involved in LPS core sugar biosynthesis and the ligation of O antigen to the LPS core sugars. The 50% lethal dose (LD50) values of these strains are increased 100- to 1,000-fold for mice. Histopathology revealed that the immune response to the F. tularensis mutant strains was significantly different from that observed with wild-type-infected mice. The lung tissue from mutant-infected mice had widespread necrotic debris, but the spleens lacked necrosis and displayed neutrophilia. In contrast, the lungs of wild-type-infected mice had nominal necrosis, but the spleens had widespread necrosis. These data indicate that murine death caused by wild-type strains occurs by a mechanism different from that by which the mutant strains kill mice. Mice immunized with these mutant strains displayed >10-fold protective effects against virulent type A F. tularensis challenge. PMID:24452684

  4. SENCAR mouse skin tumorigenesis model versus other strains and stocks of mice.

    PubMed Central

    Slaga, T J

    1986-01-01

    The SENCAR mouse stock was selectively bred for eight generations for sensitivity to skin tumor induction by the two-stage tumorigenesis protocol using 7,12-dimethylbenz(a)anthracene (DMBA) as the initiator and 12-O-tetradecanoylphorbol-13-acetate (TPA) as the promoter. The SENCAR mouse was derived by crossing Charles River CD-1 mice with skin-tumor-sensitive mice (STS). The SENCAR mice are much more sensitive to both DMBA tumor initiation and TPA tumor promotion than CD-1, BALB/c, and DBA/2 mice. An even greater difference in the sensitivity to two-stage skin tumorigenesis is apparent between SENCAR and C57BL/6 mice when using DMBA-TPA treatment. However, the SENCAR and C57BL/6 mice have a similar tumor response to DMBA-benzoyl peroxide treatment, suggesting that TPA is not an effective promoter in C57BL/6 mice. The DBA/2 mice respond in a similar manner to the SENCAR mice when using N-methyl-N-nitro-N-nitrosoguanidine (MNNG)-TPA treatment. The SENCAR mouse model provides a good dose-response relationship for many carcinogens used as tumor initiators and for many compounds used as tumor promoter. When compared to other stocks and strains of mice, the SENCAR mouse has one of the largest data bases for carcinogens and promoters. PMID:3096709

  5. SENCAR mouse skin tumorigenesis model versus other strains and stocks of mice

    SciTech Connect

    Slaga, T.J.

    1986-09-01

    The SENCAR mouse stock was selectively bred for eight generations for sensitivity to skin tumor induction by the two-stage tumorigenesis protocol using 7,12-dimethylbenz(a)anthracene (DMBA) as the initiator and 12-O-tetradecanoylphorbol-13-acetate (TPA) as the promoter. The SENCAR mouse was derived by crossing Charles River CD-1 mice with skin-tumor-sensitive mice (STS). The SENCAR mice are much more sensitive to both DMBA tumor initiation and TPA tumor promotion than CD-1, BALB/c, and DBA/2 mice. An even greater difference in the sensitivity to two-stage skin tumorigenesis is apparent between SENCAR and C57BL/6 mice when using DMBA-TPA treatment. However, the SENCAR and C57BL/6 mice have a similar tumor response to DMBA-benzoyl peroxide treatment, suggesting that TPA is not an effective promoter in C57BL/6 mice. The DBA/2 mice respond in a similar manner to the SENCAR mice when using N-methyl-N-nitro-N-nitrosoguanidine (MNNG)-TPA treatment. The SENCAR mouse model provides a good dose-response relationship for many carcinogens used as tumor initiators and for many compounds used as tumor promoter. When compared to other stocks and strains of mice, the SENCAR mouse has one of the largest data bases for carcinogens and promoters.

  6. Developmental analysis of the external granular layer in the meander tail mutant mouse: do cerebellar microneurons have independent progenitors?

    PubMed

    Napieralski, J A; Eisenman, L M

    1993-08-01

    The cerebellum of the meander tail mutant mouse (mea/mea) is characterized by an apparently normal cytoarchitecture posteriorly with an abrupt transition to an abnormal anterior region. Anteriorly, there is abnormal foliation, a drastic reduction in the granule cells (GC) population, disorganization of the Purkinje cells (PC), and a virtual absence of Bergmann glial processes. In this paper we analyze the prenatal and postnatal development of the cerebellum in the mea/mea and attempt to determine the phenotypic onset of the mutation in the anterior region. Hematoxylin and eosin stained sections reveal a morphological difference in the cerebellum of the mea/mea as early as embryonic day 16 characterized by a reduction in the external granule cell layer (EGL). The reduction in the EGL becomes increasingly apparent as development proceeds. This deficit in the EGL most probably results in the absence of GC, but it is unclear at this point whether reduced migration, proliferation, and/or increased cell death is the major factor. Interestingly, immunohistochemical staining with a monoclonal antibody against parvalbumin reveals that the basket and stellate cells, which are also thought to arise from the EGL, are present in the anterior region of the mea/mea cerebellum. These results suggest that the lack of GC in the meander tail is due to an early expressed abnormality of the EGL. However, the presence of the basket and/or stellate cells raises some interesting questions concerning the lineage of the cerebellar microneurons.

  7. Cell fusion-mediated improvement in transfection competence for repair-deficient mutant of mouse T cell line

    SciTech Connect

    Shiomi, T.; Hieda-Shiomi, N.; Sato, K.; Yoshizumi, T.; Nakazawa, T.

    1988-03-01

    A multiple mutagen-sensitive mutant (XUM1) of mouse T-cell lymphoma line, L5178Y, is hypersensitive to ionizing radiation, ultraviolet (UV) light, and cross-linking agents (such as mitomycin C). The frequency of transfection for XUM1 cells after exposure to calcium phosphate-coprecipitated pSV2neo DNA was more than 10(4)-fold less effective than that for Ltk-aprt- (LTA) cells. Other transfection methods (DEAE-dextran and polybrene-DMSO) were not effective for L5178Y and XUM1 cells. The transfection-proficient trait of LTA cells was demonstrated to be genetically dominant by examining the the transfection frequency in hybrid clones constructed between XUM1 and LTA cells. To circumvent the problem with XUM1, the LTA genes necessary for transformation processes were introduced into XUM1 cells by constructing hybrids between XUM1 and LTA cells irradiated with X-rays which causes directional chromosome elimination for hybrid cells. Four of 194 hybrid clones tested were transfection-proficient and hypersensitive to UV (XL102, XL107, XL215, and XL216). All four clones were not hypersensitive to X-rays or mitomycin C. The frequencies of transfection for XL102 and XL216 were nearly the same level as that for LTA cells. The efficiency of transfection for XL107 and XL215 was 10 to 100-fold lower than that for LTA cells.

  8. Activity, reconstitution, and accumulation of nitrogenase components in Azotobacter vinelandii mutant strains containing defined deletions within the nitrogenase structural gene cluster.

    PubMed Central

    Robinson, A C; Burgess, B K; Dean, D R

    1986-01-01

    The Azotobacter vinelandii genes encoding the nitrogenase structural components are clustered and ordered: nifH (Fe protein)-nifD (MoFe protein alpha subunit)-nifK (MoFe protein beta subunit). In this study various A. vinelandii mutant strains which contain defined deletions within the nitrogenase structural genes were isolated and studied. Mutants deleted for the nifD or nifK genes were still able to accumulate significant amounts of the unaltered MoFe protein subunit as well as active Fe protein. Extracts of such nifD or nifK deletion strains had no MoFe protein activity. However, active MoFe protein could be reconstituted by mixing extracts of the mutant strains. These results establish an approach for the purification of the individual MoFe protein subunits. Mutants lacking either or both of the MoFe protein subunits were still able to synthesize the iron-molybdenum cofactor (FeMo-cofactor), indicating that in A. vinelandii the FeMo-cofactor is preassembled and inserted into the MoFe protein. In contrast, a mutant strain lacking both the Fe protein and the MoFe protein failed to accumulate any detectable FeMo-cofactor. The further utility of specifically altered A. vinelandii strains for the study of the assembly, structure, and reactivity of nitrogenase is discussed. Images PMID:3457004

  9. Differential effects of sucrose and fructose on dietary obesity in four mouse strains

    PubMed Central

    Glendinnning, John I.; Breinager, Lindsey; Kyrillou, Emily; Lacuna, Kristine; Rocha, Rotsen; Sclafani, Anthony

    2010-01-01

    We examined sugar-induced obesity in mouse strains polymorphic for Tas1r3, a gene that codes for the T1R3 sugar taste receptor. The T1R3 receptor in the FVB and B6 strains has a higher affinity for sugars than that in the AKR and 129P3 strains. In Experiment 1, mice had 40 days of access to lab chow plus water, sucrose (10 or 34%), or fructose (10 or 34%) solutions. The strains consumed more of the sucrose than isocaloric fructose solutions. The pattern of strain differences in caloric intake from the 10% sugar solutions was FVB > 129P3 = B6 > AKR; and that from the 34% sugar solutions was FVB > 129P3 > B6 ≥ AKR. Despite consuming more sugar calories, the FVB mice resisted obesity altogether. The AKR and 129P3 mice became obese exclusively on the 34% sucrose diet, while the B6 mice did so on the 34% sucrose and 34% fructose diets. In Experiment 2, we compared total caloric intake from diets containing chow versus chow plus 34% sucrose. All strains consumed 15-29% more calories from the sucrose-supplemented diet. In Experiment 3, we compared the oral acceptability of the sucrose and fructose solutions, using lick tests. All strains licked more avidly for the 10% sucrose solutions. The results indicate that in mice (a) Tas1r3 genotype does not predict sugar-induced hyperphagia or obesity; (b) sucrose solutions stimulate higher daily intakes than isocaloric fructose solutions; and (c) susceptibility to sugar-induced obesity varies with strain, sugar concentration and sugar type. PMID:20600198

  10. Genetic influences on exercise-induced adult hippocampal neurogenesis across 12 divergent mouse strains

    PubMed Central

    Clark, Peter J.; Kohman, Rachel A.; Miller, Daniel S.; Bhattacharya, Tushar K.; Brzezinska, Weronika J.; Rhodes, Justin S.

    2011-01-01

    New neurons are continuously born in the hippocampus of several mammalian species throughout adulthood. Adult neurogenesis represents a natural model for understanding how to grow and incorporate new nerve cells into pre-existing circuits in the brain. Finding molecules or biological pathways that increase neurogenesis has broad potential for regenerative medicine. One strategy is to identify mouse strains that display large versus small increases in neurogenesis in response to wheel running so the strains can be contrasted to find common genes or biological pathways associated with enhanced neuron formation. Therefore, mice from 12 different isogenic strains were housed with or without running wheels for 43 days to measure the genetic regulation of exercise-induced neurogenesis. The first 10 days mice received daily injections of BrdU to label dividing cells. Neurogenesis was measured as the total number of BrdU cells co-expressing NeuN mature neuronal marker in the hippocampal granule cell layer by immunohistochemistry. Exercise increased neurogenesis in all strains, but the magnitude significantly depended on genotype. Strain means for distance run on wheels, but not distance traveled in cages without wheels, were significantly correlated with strain mean level of neurogenesis. Further, certain strains displayed greater neurogenesis than others for a fixed level of running. Strain means for neurogenesis under sedentary conditions were not correlated with neurogenesis under runner conditions suggesting that different genes influence baseline versus exercise-induced neurogenesis. Genetic contributions to exercise-induced hippocampal neurogenesis suggest that it may be possible to identify genes and pathways associated with enhanced neuroplastic responses to exercise. PMID:21223504

  11. Comparative analysis of the behavioral and biomolecular parameters of four mouse strains.

    PubMed

    Nesher, Elimelech; Peskov, Vladimir; Rylova, Anna; Raz, Olga; Pinhasov, Albert

    2012-02-01

    The use of mice as experimental models in pharmacological and biochemical research began over 100 years ago, during which time different mice strains with specific features were developed. Numerous studies demonstrate that the pharmacological efficacy of various compounds significantly varies among different animal strains, a factor which must be considered when analyzing experimental data. The Sabra strain, developed more than 35 years ago, is widely used for research in Israel but has an unclear origin and is not characterized as well as other strains. Comparative analyses of the molecular characteristics of Sabra and other strains should help to understand their characteristics and to enhance the validity of their experimental use. Thus, four mouse strains-outbred ICR and Sabra as well as inbred C57Bl/6J and Balb/c were compared. Animals' weight, blood corticosterone and hippocampal BDNF mRNA levels were measured, and animals' behavior was compared using the EPM, open field, FST, and hot plate tests. We found that although Sabra mice are bigger and heavier than other tested lines, this is not reflected in behavior or in biomolecular features, wherein Sabra mice lay within the diapason of other tested animals. Thus, behavioral tests of anxiety-like behavior and locomotor activity revealed that Sabra mice scored close to the mean of all tested lines. Analysis of blood corticosterone levels did not show significant differences among tested strains. We also found a correlation between general and locomotor activity of the tested strains and their hippocampal BDNF mRNA expression. In summary, we may conclude that Sabra mice have traits similar to the better known lines, and therefore they are good subjects for neuroscience research.

  12. Isolation of a Saccharomyces cerevisiae mutant strain deficient in deoxycytidylate deaminase activity and partial characterization of the enzyme.

    PubMed Central

    McIntosh, E M; Haynes, R H

    1984-01-01

    Deoxycytidylate deaminase activity in Saccharomyces cerevisiae has been partially characterized. The yeast enzyme was found to exhibit properties similar to those of dCMP deaminases isolated from higher eucaryotes. A mutant strain completely deficient in dCMP deaminase activity was isolated by selection for resistance to 5-fluoro-2'-deoxycytidylate followed by screening for cross sensitivity to 5-fluoro-2'-deoxyuridylate, a potent inhibitor of the yeast thymidylate synthetase. We have designated this new allele dcd1 . A strain exhibiting an auxotrophic requirement for dUMP was isolated after mutagenesis of a dcd1 tup7 haploid. Genetic analysis revealed that this auxotrophic phenotype resulted from a combination of the dcd1 allele and a second, unlinked, nuclear mutation that we designated dmp1 . This allele, which by itself conveys no readily discernible phenotype, presumably impairs efficient synthesis of dUMP from UDP. The auxotrophic requirement of dcd1 dmp1 tup7 strains also can be satisfied by exogenous dTMP but not deoxyuridine. PMID:6373725

  13. Mouse strains to study cold-inducible beige progenitors and beige adipocyte formation and function

    PubMed Central

    Berry, Daniel C.; Jiang, Yuwei; Graff, Jonathan M.

    2016-01-01

    Cold temperatures induce formation of beige adipocytes, which convert glucose and fatty acids to heat, and may increase energy expenditure, reduce adiposity and lower blood glucose. This therapeutic potential is unrealized, hindered by a dearth of genetic tools to fate map, track and manipulate beige progenitors and ‘beiging'. Here we examined 12 Cre/inducible Cre mouse strains that mark adipocyte, muscle and mural lineages, three proposed beige origins. Among these mouse strains, only those that marked perivascular mural cells tracked the cold-induced beige lineage. Two SMA-based strains, SMA-CreERT2 and SMA-rtTA, fate mapped into the majority of cold-induced beige adipocytes and SMA-marked progenitors appeared essential for beiging. Disruption of the potential of the SMA-tracked progenitors to form beige adipocytes was accompanied by an inability to maintain body temperature and by hyperglycaemia. Thus, SMA-engineered mice may be useful to track and manipulate beige progenitors, beige adipocyte formation and function. PMID:26729601

  14. Effects of Varied Housing Density on a Hybrid Mouse Strain Followed for 20 Months

    PubMed Central

    Currer, Joanne M.

    2016-01-01

    To evaluate the effect of increased housing density in a hybrid mouse strain, we evaluated a panel of physiological and behavioral traits in animals that were housed in groups of 3, 5, 8, or 12, using cages that provide 78.1 in2 of floor space. Such groupings resulted in cage densities that ranged from half to almost twice the density recommended by the Guide for the Care and Use of Laboratory Animals. While previous studies have investigated physiological effects of increased housing density using inbred mouse strains, including C57BL/6J and 129S1/SvImJ, this study tested an F1 hybrid population of C57BL/6J x 129S1/SvImJ for changes resulting from either decreased or increased housing density. Mice were followed until they were 20 months old, a substantially longer duration than has been used in previous density studies. We evaluated mortality, growth, home cage behavior, blood pressure, body composition, clinical plasma chemistries, immune function, and organ weights (heart, kidney, adrenal glands, and testes) as endpoints of chronic stress that may arise from sub-optimal housing conditions. Few statistically different parameters were observed in this study, none of which describe chronic stress and all within normal physiological ranges for research mice, suggesting that this hybrid strain was not adversely affected by housing at twice the density currently recommended. PMID:26900840

  15. Experimental mouse lethality of Escherichia coli strains isolated from free ranging Tibetan yaks.

    PubMed

    Rehman, Mujeeb Ur; Zhang, Hui; Wang, Yajing; Mehmood, Khalid; Huang, Shucheng; Iqbal, Muhammad Kashif; Li, Jiakui

    2017-08-01

    The present study has examined the virulence potential of Escherichia coli isolates harboring at least one virulence gene (associated with ExPEC or InPEC pathotype and belonging to different phylogenetic groups: A, B1, B2 or D), isolated from free ranging Tibetan yak feces. The E. coli isolates (n = 87) were characterized for different serogroups and a mouse model of subcutaneous-infection was used to envisage the virulence within these E. coli strains. Of the 87 E. coli isolates examined, 23% of the E. coli isolates caused lethal infections in a mouse model of subcutaneous infection and were classified as killer. Moreover, the majority of the killer strains belonged to phylogroup A (65%) and serogroup O60 or O101 (35%). Phylogroup B1, serogroups O60 and O101 were statistically associated with the killer status (P < 0.05). However, positive associations (OR >1) were observed between the killer status isolates and all other bacterial virulence traits. This study comprises the first report on the virulence potential of E. coli strains isolated from free-ranging Tibetan yaks feces. Our findings suggest that pathogenic E. coli of free ranging yaks is highly worrisome, as these feces are used as manures by farmers and therewith pose a health risk to humans upon exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Modelling Hepatitis B Virus Antiviral Therapy and Drug Resistant Mutant Strains

    NASA Astrophysics Data System (ADS)

    Bernal, Julie; Dix, Trevor; Allison, Lloyd; Bartholomeusz, Angeline; Yuen, Lilly

    Despite the existence of vaccines, the Hepatitis B virus (HBV) is still a serious global health concern. HBV targets liver cells. It has an unusual replication process involving an RNA pre-genome that the reverse transcriptase domain of the viral polymerase protein translates into viral DNA. The reverse transcription process is error prone and together with the high replication rates of the virus, allows the virus to exist as a heterogeneous population of mutants, known as a quasispecies, that can adapt and become resistant to antiviral therapy. This study presents an individual-based model of HBV inside an artificial liver, and associated blood serum, undergoing antiviral therapy. This model aims to provide insights into the evolution of the HBV quasispecies and the individual contribution of HBV mutations in the outcome of therapy.

  17. CYCLOPENTA-FUSED POLYCYCLIC AROMATIC HYDROCARBONS IN STRAIN A/J MOUSE LUNG: DNA ADDUCTS, ONCOGENE MUTATIONS, & TUMORIGENESIS

    EPA Science Inventory

    Cyclopenta-fused